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NOTATION

� v = (v1, v2, . . . , vn), u = (u1, u2, . . . , un) ∈ Rn, 〈v, u〉 =
∑n

i=1 viui

� B(x∗, ε) = {y ∈ Rn : ‖y − x∗‖ < ε}

� B̄(x∗, ε) = {y ∈ Rn : ‖y − x∗‖ ≤ ε}

� Rn+ = [0,∞)n

� Rn++ = (0,∞)n

� For x, y ∈ Rn, y � x ⇔ yi < xi for all i ∈ {1, 2, . . . , n}

� For x, y ∈ Rn, y ≤ x⇔ yi ≤ xi for all i ∈ {1, 2, . . . , n}

� [x, y] = {w : w = (1− λ)x+ λy, λ ∈ [0, 1]}

� ∇f = ( ∂f
∂x1
, . . . , ∂f

∂xn
)

� JF = ( ∂fi
∂xj

) i, j = 1, . . . , n

� ∇2f = ( ∂2f
∂xi∂xj

) i, j = 1, . . . , n
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The integrability problem is one of the oldest problems in mathematical economics,

dating from the end of the 19th century. Starting by the deeply influential work

of Hurwicz and Uzawa in 1971, various proofs showed that the problem has a

solution. In this thesis, we study the approach of Hurwicz and Uzawa in detail.

We then highlight a shortcoming of their result, and we present an amendment

proposed by Jackson. We conclude by presenting a recent approach by Hadjisavvas

and Penot.
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CHAPTER 1

INTRODUCTION

The famous “integrability problem” was first mentioned by G. B. Antonelli back

in 1886 [1], but it was formulated in a more precise way in 1892 by I. Fisher [7],

in what Paul Samuelson called “perhaps the best of all doctoral dissertations in

economics”. Actually, Fisher thought initially that the problem did not have a

solution. But the first deep study of the problem was made by P. A. Samuelson,

in a series of seminal papers in 1938, 1948, and 1950 [20, 21, 23]. Samuelson gave

an affirmative answer to the problem, with a complete proof, but only in the case

of an economy where there are just two commodities. He also gave a heuristic

proof of the general case of n commodities, but his proof was far from rigorous.

The general case of n commodities remained unsolved for many years, until 1971

when Hurwicz and Uzawa gave a complete proof based on Nikliborc’s theorem

and on Thomas’ theorem of the theory of PDEs [11]. Since then several other

proofs appeared. For example, Chiappori and Ekeland in their book [3] make use

of the Darboux theorem on differential forms. In [6], the proof is quite technical,
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but it is based only on the theory of ODEs. In [14, 8, 2], one makes use of the

Frobenius theorem for PDEs. Besides using various methods, the assumptions of

the existing proofs also differ. Some use additional technical assumptions, others

do not. But the most important difference between results related to the integra-

bility problem, concerns what is exactly proved. In many papers, actually only

the local existence of a solution of a partial differential equation is deduced; this is

in fact the easiest part of the problem. In others, like [11], one constructs a utility

function that is not defined on the whole positive cone Rn+ (in economic terms,

on the whole set of commodity bundles), but on a certain surface. In some others

like [6], one constructs a solution defined on a compact “box” in Rn+, and then

it is only affirmed that a similar proof can be made to construct the solution on

the whole positive cone. A recent preprint [2] contains a simplified and amended

version of the very complicated proof by Hurwicz and Uzawa.

Demand functions play a key role in developing the integrability problem, and

historically there have been two main ways to study them in mathematical eco-

nomics. (1) The finite approach. This involves finite sets of points. For example,

the “revealed preference” approach, pioneered by P. A. Samuelson and developed

by H. Houthaker. (2) The infinitesimal approach. This involves derivatives of de-

mand functions. This was pioneered by Slutsky, in his development of substitution

functions, as well as Hicks, Allen, and Samuelson. This is mainly the approach of

the paper by Hurwicz and Uzawa [11]. In Hick’s “Value and Capital” [10], and

Samuelson’s “Foundations of Economic Analysis” [22], it is established that the

2



maximization of a consumer’s “utility function” u, generates a demand function

ξ. It also implies the symmetry as well as negative semidefiniteness of the so-

called Slutsky matrix σ, a construction fundamental within the latter approach.

The “Integrability Problem” concerns the converse question; given a function ξ

that satisfies some conditions, such as the symmetry and negative semidefinite-

ness of the associated Slutsky matrix, can we construct a utility function u such

that ξ is the corresponding demand function? In economic terms, if we know the

commodities consumers are purchasing, given their budget and the prices of the

commodities, can we infer their preferences, or ‘utility’, based on their choices?

In this thesis, we present several works dealing with the above question. In Chap-

ter 2, we present preliminary notions essential for the development of the problem.

Mainly, we recall definitions and notions from mathematical economics and con-

vex analysis, which will be play an important role in the development of the

problem. In Chapter 3, we talk about the Utility Maximization Problem and

Expenditure Minimization Problem, two optimization problems of interest to our

discussion, and conclude the chapter by defining the Slutsky matrix, a key no-

tion in establishing a solution to the problem. In Chapter 4, we actually study,

in detail, the integrability problem through the influential work by Hurwicz and

Uzawa [11]. We then highlight a shortcoming of the authors’ approach in Chapter

5, and present an amendment proposed by Jackson. We conclude in Chapter 6 by

presenting a modern approach by Hadjisavvas and Penot, which, although might

appear similar in some respects to the approach in [11], is in fact quite different.
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CHAPTER 2

PRELIMINARIES

In this chapter, we present preliminary notions that will facilitate our discussion

about consumer theory, and ultimately enable us to study and understand the

integrability problem in mathematical economics. We also recall some classical

definitions and results from convex analysis that are essential to the development

of the main problem.

The model on which we base our discussion of consumer preferences is that of

a pure exchange economy. In this model, the economic agents are only the con-

sumers that can exchange goods; there are no producers of goods involved.

2.1 Commodities

Definition 2.1 A commodity is essentially a good or service.

That commodity could be tangible, e.g., a house or a car, or intangible, such

as a service.
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Definition 2.2 A commodity bundle, or market basket, is a vector

x = (x1, x2, . . . , xn) ∈ Rn+, where xi represents the quantity of the ith commodity.

We shall use Rn+ as the set of commodity bundles from which consumers can

choose. It is worth mentioning that time, and even location, can be incorporated

into the definition of a commodity. For example, water in Paris in the spring

season is not as valuable as water in the arid Sahara desert in the summer. This

perspective gives the two commodities different values, and as such makes them

fundamentally different items.

2.2 Preference Relations

We assume that for each consumer there is a preference relation � on Rn+.

Definition 2.3 The preference relation � is a binary relation that describes the

consumer’s preferences on Rn+.

Given two commodity bundles x, y ∈ Rn+, we read x � y as “commodity bundle

y is at least as desirable as commodity bundle x”. We further assume that this

relation is a complete preorder relation.

Definition 2.4 We say that a binary relation � is complete (or total) if, for

every x, y ∈ Rn+, x � y or y � x (or both).

That is, the consumer can always compare any two commodity bundles. The

strength of this assumption should not to be taken for granted; it is obvious how
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tricky it could be to compare alternatives that are radically different from one

another.

Definition 2.5 We say that a binary relation � is reflexive if x � x, for all x ∈

Rn+.

Definition 2.6 We say that a binary relation � is transitive if, given x, y, and

z ∈ Rn+, if x � y and y � z, then x � z.

Definition 2.7 A preorder is a binary relation that is both reflexive and transi-

tive.

Note that the assumption of reflexivity is implied by the completeness of � .

Once again, the significance of the assumption of transitivity should not be under-

estimated. It eliminates situations where the preferences of the consumer seem to

cycle. For instance, say that a consumer prefers a BMW car model to a Mercedes,

and prefers a Porsche to the BMW, then, had we not imposed transitivity, the

consumer might prefer the Mercedes to the Porsche, leading to the cycle: Mer-

cedes � BMW � Porsche � Mercedes. For a consistent and smooth study of

economic theory, we impose transitivity in the sequel.

Additionally, note that we do not impose the assumption that � is anti-

symmetric; that is, x � y and y � x imply that x = y. In other words, a consumer

could very well like two different commodity bundles as much as each other. In

this respect, the preference relation � is not an order relation.

6



Definition 2.8 When a consumer desires two different baskets x, y ∈ Rn+ as much

as each other, i.e., when x � y and y � x, we say that “x is indifferent to y”,

and we denote that by x ∼ y.

Proposition 2.1 The relation ∼ has the following properties:

(i) Reflexivity: x ∼ x for all x ∈ Rn+

(ii) Transitivity: if x ∼ y and y ∼ z, then x ∼ z

(iii) Symmetry: if x ∼ y, then y ∼ x

In other words, ∼ is an equivalence relation.

Definition 2.9 Given a basket x ∈ X, and the preference relation � of a con-

sumer, the indifference set (or curve) containing x is the set of all baskets indif-

ferent to x, i.e.,
{
y ∈ Rn+ : y ∼ x

}
.

Definition 2.10 We say that x is strictly preferred to y, and write x ≺ y, if and

only if x � y holds but y � x does not.

Proposition 2.2 The strict preference relation ≺ has the following properties:

(i) Irreflexivity: x ≺ x never holds

(ii) Transitivity: if x ≺ y and y ≺ z, then x ≺ z

Definition 2.11 We say that the preference relation � on Rn+ is monotone if

x ∈ Rn+, and y � x imply y ≺ x. It is strongly monotone if y ≤ x and x 6= y

imply that y ≤ x.

7



Definition 2.12 The preference relation � on Rn+ is locally non-satiated if, for

every x ∈ Rn+, and every ε > 0, there exists a y ∈ Rn+ such that ||y − x|| ≤ ε, and

x ≺ y.

2.3 Utility Functions

It is often convenient in economics to describe the preferences of consumers in

terms of utility functions (or indicators). A utility function u compares differ-

ent commodity bundles in Rn+ by assigning numerical values to each bundle, in

accordance with the consumer’s preferences. Formally, we define u as follows.

Definition 2.13 A function u : Rn+ → R is a utility function representing pref-

erence relation � if, for all x, y ∈ Rn+,

x � y ⇔ u(x) ≤ u(y).

It is worth mentioning that the utility function u representing the relation �

is not unique.

Proposition 2.3 Consider a utility function u representing the preference rela-

tion �. For any strictly increasing function f : R → R, the composition function

h = f ◦ u represents � as well.

From the definition of a utility function u representing �, we can infer the

connection between the indifference curve containing x and the level set of u at

x:
{
y ∈ Rn+ : y ∼ x

}
=
{
y ∈ Rn+ : u(y) = u(x)

}
.

8



Definition 2.14 We say that a preference relation � is continuous if for every

x ∈ Rn+, the two sets

{
y ∈ Rn+ : x � y

}
and

{
y ∈ Rn+ : y � x

}
(2.1)

are closed.

This of course is equivalent to saying that their complements, i.e., the sets

{
y ∈ Rn+ : y ≺ x

}
and

{
y ∈ Rn+ : x ≺ y

}

are open. From an economic point of view, this is a reasonable assumption: it

means that if the consumer strictly prefers x to y, then by changing y very slightly,

his preference will not change. The same is for the other set.

From a mathematical point of view it is also very convenient. In fact, if � may

be represented by a continuous utility function, then the sets in (2.1) are the sets

{
y ∈ Rn+ : u(x) ≤ u(y)

}
and

{
y ∈ Rn+ : u(y) ≤ u(x)

}

which are of course closed.

Definition 2.15 A function f : Rn → R is lower semicontinuous at x̄ ∈ Rn if,

for all α < f(x̄), there exists δ > 0 such that, for all x with ‖x− x̄‖ < δ, α < f(x).

Definition 2.16 A function f : Rn → R is upper semicontinuous at x̄ ∈ Rn if

−f is lower semicontinuous at x̄.

9



In fact, the set {y ∈ Rn+ : u(y) ≤ u(x)} is closed if and only if u is lower semi-

continuous. Similarly, the set {y ∈ Rn+ : u(y) ≥ u(x)} is closed if and only if u is

upper semi-continuous.

Even more impressively, the following statement is true.

Theorem 2.1 For every continuous preference relation, there exists a continuous

utility map that represents it.

The theorem is spectacular because it asserts the existence of a utility map

that represents the preference relation, under the weak assumption of continuity.

Definition 2.17 A utility function u : Rn+ → R is called monotone if x ∈ Rn+

and y � x imply u(y) < u(x). It is strongly monotone if y ≤ x and x 6= y imply

u(y) < u(x).

In economics terms, the utility function u is monotone if all commodities are

desirable by the consumer.

Proposition 2.4 Let the preference relation � be represented by the utility func-

tion u. Then � is monotone if and only if u is monotone.

Definition 2.18 We say that a utility function u is locally nonsatiated if, given

x∗ ∈ Rn+, for all ε > 0, there exists a vector x ∈ Rn+ ∩ B(x∗, ε) such that u(x) >

u(x∗).

Proposition 2.5 If u is a utility function representing a locally nonsatiated re-

lation �, then u is locally nonsatiated.

10



2.4 Convexity and Concavity

Definition 2.19 A set A ⊆ Rn is convex if, for all x, y ∈ A, (1− λ)x+ λy ∈ A,

λ ∈ [0, 1].

Definition 2.20 Let f : A → R, where A ⊆ Rn is convex. We say that f is

convex if, for all x, y ∈ A, f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y), λ ∈ [0, 1].

Definition 2.21 A preference relation � is called convex if, for all x, y, and z ∈

Rn+ and all λ ∈ [0, 1], the relations x � y and x � z imply x � (1− λ) y + λz.

Definition 2.22 A preference relation is called strictly convex, if for all x, y ∈

Rn+ and all λ ∈ (0, 1), the relations x � y and x 6= y imply x ≺ (1− λ) x + λy.

Convexity (or strict convexity) of the preference relation means that the con-

sumer prefers to diversify his acquisitions; for example, instead of a basket contain-

ing only eggs or a basket containing only oil, he would prefer a basket containing

smaller quantities of both, because it is the only way to make an omelet.

Definition 2.23 A function u : Rn+ → R is called quasiconcave if for all x, y ∈

Rn+ and z ∈ [x, y], the following relation holds:

u(z) ≥ min{u(x), u(y)}.

Proposition 2.6 u is quasiconcave if for all α ∈ R the set [u ≥ α] = {x : u(x) ≥

α} is convex.
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Definition 2.24 u is strictly quasiconcave if for all x, y ∈ Rn+, x 6= y, and all λ

∈ (0, 1), u((1− λ)x+ λy) > min{u(x), u(y)}.

Proposition 2.7 A function u is strictly quasiconcave if, for all x, y ∈ Rn+, x 6=

y, and all λ ∈ (0, 1) , one has

[u(x) ≤ u(y) and x 6= y] ⇒ u(x) < u((1− λ)x+ λy).

Proposition 2.8 Let the preference relation � be represented by the utility func-

tion u. Then:

(i) � is convex if and only if u is quasiconcave;

(ii) � is strictly convex if and only if u is strictly quasiconcave

Due to the convenience they provide us, we will mostly deal with utility func-

tions rather than preference relations.

2.5 Prices

Definition 2.25 We denote by p = (p1, p2, . . . , pn) ∈ Rn a price vector, whose

ith component pi represents the price per unit of the ith commodity.

Note that it is not obligatory for the vector p to be non-negative. However,

for the purposes of our discussion, we assume that prices are strictly positive, i.e.,

p ∈ Rn++.
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The reason is that if a price of a commodity is zero, then probably all consumers

would like to acquire the whole available quantity of that commodity.

Given a price vector p and a commodity bundle x, the total worth of x is

obviously
n∑
i=1

pixi = 〈p, x〉 .

We let m ≥ 0 be a number representing the wealth of the consumer.

Definition 2.26 The Walrasian budget set Wm(p) = {y ∈ Rn+ : 〈p, y〉 ≤ m} is

the set of all feasible commodity bundles that the consumer can afford, given his

wealth m and the prices p.

Definition 2.27 We call the set {y ∈ Rn+ : 〈p, y〉 = m} the budget hyperplane.

In the case n = 2, the budget hyperplane is called the budget line.

Proposition 2.9 Let p ∈ Rn++. Then for any m ≥ 0, the budget set Wm(p) is

nonempty, convex and compact.

Proof. It is clear that Wm(p) is nonempty (it contains 0), closed and convex. To

see that it is bounded, just note that for all y = (y1, y2, . . . , yn) ∈Wm(p), one has

n∑
i=1

piyi ≤ m, so (since everything is non-negative), piyi ≤ m, i.e., 0 ≤ yi ≤ m/pi.

Since each coordinate of y is bounded by a constant, Wm(p) is bounded.

We assume that each consumer seeks to maximize his satisfaction by choosing

the best affordable commodity bundle, i.e., that bundle in Wm(p) that maximizes

his utility. The following proposition shows that, if all prices are positive, then

such a bundle exists.
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Proposition 2.10 Assume that p ∈ Rn++, and that the utility function u is upper

semi-continuous. Then for any m ≥ 0, there exists a commodity bundle x ∈

Wm(p) such that u(y) ≤ u(x) for all y ∈ Wm(p). If, in addition, u is strictly

quasiconcave, then x is uniquely defined.

Proof. Since Wm(p) is nonempty, compact and the utility function u is upper

semicontinuous, u has a maximum on Wm(p), so there exists at least one max-

imizer of u on Wm(p). Assume that there are two points x, x′ ∈ Wm(p) such

that u(x) = u(x′) = maxy∈Wm(p) u(y). By strict quasiconcavity, the point x′′ =

(x + x′)/2 satisfies u(x′′) > u(x). In addition, x′′ ∈ Wm(p), since is convex. This

contradicts the fact that x maximizes u in Wm(p).

Proposition 2.11 The budget set Wm(p) does not change upon multiplying all

prices and budget by a number λ > 0.

Proof. If we multiply all prices and budget by λ > 0, then the budget set

becomes

Wλm(λp) = {x ∈ Rn+ : 〈λp, x〉 ≤ λm} = {x ∈ Rn+ : 〈p, x〉 ≤ m} = Wm(p)

i.e., it does not change.

2.6 Demand Functions

Definition 2.28 We call the function ξ : Rn++ × R+ → Rn+ a demand function,

if, for every (p,m) ∈ Rn++ × R+, ξ(p,m) is the commodity bundle that yields
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the highest satisfaction for the consumer over his budget set. In other words,

u(ξ(p,m)) ≥ u(x), for all x ∈ Wm(p).

Note that in the above definition we tacitly assume that ξ(p,m) exists and

is unique. For example, this happens if u is upper semicontiuous and strictly

quasiconcave.

From Proposition (2.11), we immediately obtain the following assertion.

Proposition 2.12 The demand function ξ(p,m) is homogeneous of degree zero

with respect to (p,m). That is, ξ(αp, αm) = ξ(p,m), for all (p,m) ∈ Rn++ × R+,

and α ∈ R.

Definition 2.29 We say that the utility function u is nonsatiated if, for a given

price vector p ∈ Rn++, a budget m ≥ 0, and a basket x ∈ Rn+ such that 〈p, x〉 < m,

there exists another basket y ∈ Rn+ such that u(y) > u(x) and 〈p, y〉 ≤ m.

Note that this is equivalent to saying that 〈p, ξ(p,m)〉 = m. This means that

for each p, the value of the best bundle ξ(p,m) exhausts the whole wealth of the

consumer.

Proposition 2.13 For a utility function u, the following series of implications

hold:

u is monotone ⇒ u is locally nonsatiated ⇒ u is nonsatiated

Theorem 2.2 Assume that the utility function u is continuous and locally non-

satiated. Then the demand function ξ : Rn++ × R+ → Rn+ is continuous.
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Proof. Let {(pk,mk)} be a sequence in Rn++ × R+ converging to (p∗,m∗) ∈

Rn++ × R+. By nonsatiation, 〈pk, ξ(pk,mk)〉 = mk. Since mk → m∗, the sequence

{mk} is bounded. Let pk,i, p
∗
i , ξi(pk,mk) be, respectively, the ith coordinates of

pk, p
∗, and ξ(pk,mk). Then pk,iξi(pk,mk) ≤ 〈pk, ξ(pk,mk)〉 = mk. On the other

hand, pk,i → p∗i > 0, so for k large enough, pk,i > p∗i /2. This implies that

0 ≤ ξi(pk,mk) ≤
mk

pk,i
≤ 2mk

p∗i
(2.2)

We have two cases:

� If m∗ = 0, then W0(p) = 0, so ξ(p, 0) = 0. On the other hand, (2.2) together

with mk → 0 imply that ξi(pk,mk)→ 0, i.e., ξ(pk,mk)→ ξ(p,m∗)

� If m∗ > 0, then since the sequence mk is bounded, (2.2) shows that for each

i, 〈ξi(pk,mk)〉 is bounded.

Hence 〈ξ(pk,mk)〉 is bounded. By taking a subsequence, if necessary, we may

assume that it converges to a vector y. We will show that y = ξ(p∗,m∗). Since

〈pk, ξ(pk,mk)〉 = mk, by taking limits we get 〈p∗, y〉 = m. This implies that

y ∈ Wm∗(p
∗). Let us show that y is the preferred bundle in Wm∗(p

∗). So let us

first take any x such that 〈p∗, x〉 < m. Then for k large enough, 〈pk, x〉 < mk.

Hence, x ∈ Wmk
(pk). By definition of ξ, we have u(x) ≤ u(ξ(pk,mk)). By taking

the limit and using continuity of u we obtain u(x) ≤ u(y), valid for all x with

〈p∗, x〉 < m. Now assume that x is such that 〈p∗, x〉 = m. Obviously, there

exists a sequence {xk} such that xk → x and 〈p∗, x〉 < m. Since by the preceding

16



proof u(xk) ≤ u(y), we obtain by continuity of u that u(x) ≤ u(y). Thus, y is

the preferred bundle in Wm∗(p
∗), i.e., ξ(p∗,m∗) = y = lim ξ(pk,mk). Thus ξ is

continuous.
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CHAPTER 3

THE UMP AND EMP

Two optimization problems of particular interest to our discussion are the Util-

ity Maximization Problem (UMP), and the Expenditure Minimization Problem

(EMP). As we shall see in Section 3.3, the two problems are closely related to

each other. In fact, they are in a sense duals whose solutions coincide.

3.1 The Utility Maximization Problem (UMP)

Given a price vector p ∈ Rn++, and a budget m ≥ 0 of a consumer, we formulate

the utility maximization problem as

max
x≥0

u(x)

s.t. 〈p, x〉 ≤ m.

Basically, the consumer chooses the basket that maximizes his satisfaction

from the feasible set of baskets. It is obvious that the feasible set for the UMP is
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the Walrasian budget set Wm(p) = {x ∈ Rn+ : 〈p, x〉 ≤ m}.

As we saw in Proposition 2.10, if u is upper semicontinuous, then the UMP

has a solution.

Definition 3.1 Given a price-budget pair (p,m) ∈ Rn++ × R+, the Walrasian

demand correspondence x∗(p,m) is the set of bundles that solves the UMP.

Note that, in general, x∗(p,m) is a set of bundles that satisfy the UMP. How-

ever, when u is strictly quasiconcave, Proposition 2.10 shows that x∗(p,m) is a

unique bundle. In this case, we say that x∗(p,m) = ξ(p,m) is the Walrasian

demand function. Here, x∗(p,m) = ξ(p,m) = arg max{u(x) : x ∈ Rn+, 〈p, x〉 ≤ m}

Proposition 3.1 Suppose u is a continuous, locally nonsatiated utility function

on Rn+. Then the Walrasian demand correspondence x∗(p,m) has the following

properties:

1. x∗(p,m) is homogeneous of degree zero in (p,m): x∗(αp, αm) = x∗(p,m) for

any p, m and scalar α > 0.

2. The budget exhaustion 〈p, x〉 = m holds for all x ∈ x∗(p,m)

3. If � is convex, so that u is quasiconcave, then x∗(p,m) is a convex set.

Moreover, if � is strictly convex, so that u is strictly quasiconcave, then

x∗(p,m) is the singleton ξ(p,m).

The proof is relatively straightforward and follows from the definition of x∗, there-

fore we omit it.
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Definition 3.2 Given a price-budget pair (p,m), we call the function v(p,m)

= u(ξ(p,m)) the indirect utility function.

Obviously, v(p,m) is the maximum utility level that is achieved given the pair

(p,m), i.e., it is the result of the UMP: v(p,m) = max{u(x) : x ∈ Rn+, 〈p, x〉 ≤ m}.

Proposition 3.2 Let u be a continuous, locally nonsatiated utility function on

Rn+. The indirect utility function v(p,m) has the following properties:

1. Homogeneity of degree zero; v(αp, αm) = v(p,m), α > 0

2. Strictly increasing in m, and nonincreasing in pi for any i ∈ {1, 2, . . . , n}

3. Quasiconvex; i.e., the set {(p,m) : v(p,m) ≤ v̄} is convex for any v̄

4. Continuous in p and m

We omit the proof for this proposition since the properties follow from the defini-

tion of v.

We now turn our attention to the Expenditure Minimization Problem (EMP).
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3.2 The Expenditure Minimization Problem

(EMP)

Starting with the price vector p ∈ Rn++, and the fixed utility level v ∈ R, we

formulate the expenditure minimization problem as

min
x≥0
〈p, x〉

s.t. u(x) ≥ v

In the EMP, the objective is to minimize the amount of money spent in order

to achieve a level of satisfaction that is at least v. Simply put, we aim to achieve

at least utility level v as cheaply as we could.

We shall call the feasible set of the EMP H(v) = {x ∈ Rn+ : u(x) ≥ v} the

Hicksian budget set.

Definition 3.3 Given a price vector p ∈ Rn++, and utility level v, the Hicksian

demand correspondence h(p, v) is the set of bundles that solves the EMP given

(p, v).

The following proposition about the properties of the Hicksian demand corre-

spondence parallels Proposition 3.1 for Walrasian demand.

Proposition 3.3 Suppose u is a continuous, locally nonsatiated utility function

on Rn+. Then the Hicksian demand correspondance h(p, v) has the following prop-

erties:
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1. Homogeneous of degree zero in p : h(αp, v) = h(p, v) for any p, v, and α > 0.

2. Minimum utility: For any x ∈ h(p, v), u(x) = v.

3. Convexity/uniqueness: If � is convex, then h(p, v) is a convex set. If, more-

over, � is strictly convex, so that u is strictly quasiconcave, then h(p, v) is

a singleton.

In the case when h is single-valued, h(p, v) is called the Hicksian demand

function. Here, h(p, v) = arg min{〈p, x〉 : x ∈ Rn+, u(x) ≥ v}.

In parallel to the indirect utility function v(p,m), we define the Hicksian ex-

penditure function as follows.

Definition 3.4 Given a price-utility pair (p, v), we call the function e(p, v) =

〈p, h(p, v)〉 the Hicksian expenditure function.

It is clear that the Hicksian expenditure function is the result of the EMP

given (p, v); i.e., e(p, v) = min{〈p, x〉 : x ∈ Rn+, u(x) ≥ v}.

In the same spirit as in Proposition 3.2, Proposition 3.4 gives a characterization

of the properties of the expenditure function.

Proposition 3.4 Let u be a continuous, locally nonsatiated utility function on

Rn+. The expenditure function e(p, v) has the following properties:

1. Homogeneous of degree one in p : e(αp, v) = αe(p, v)

2. Strictly increasing in v and nondecreasing in pi for all i ∈ {1, 2, . . . , n}
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3. Concave in p

4. Continuous in p and v

3.3 The Duality of the UMP and EMP

Before delving into the duality between the Utility Maximization Problem and

the Expenditure Minimization Problem, we summarize the main constituents of

each problem in the following table, where we consider a continuous, locally-

nonsatiated, strictly quasiconcave utility function u, a price vector p ∈ Rn+, a

budget m ≥ 0, and a utility level v ∈ R.

UMP EMP

maxx≥0 u(x) minx≥0 〈p, x〉

s.t. 〈p, x〉 ≤ m s.t. u(x) ≥ v

Walrasian budget set: Hicksian budget set:

Wm(p) = {x ∈ Rn+ : 〈p, x〉 ≤ m} H(v) = {x ∈ Rn+ : u(x) ≥ v}

Indirect utility function: Hicksian expenditure function:

v(p,m) = max{u(x) : x ∈ Rn+, 〈p, x〉 ≤ m} e(p, v) = min{〈p, x〉 : x ∈ Rn+, u(x) ≥ v}

Walrasian demand funcion: Hicksian demand function:

ξ(p,m) = arg max{u(x) : x ∈ Rn+, 〈p, x〉 ≤ m} h(p, v) = arg min{〈p, x〉 : x ∈ Rn+, u(x) ≥ v}

v(p,m) = u(ξ(p,m)) e(p, v) = 〈p, h(p, v)〉

Table 3.1: Summary of EMP and UMP
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We can understand the “duality” between the two problems in the following sense.

Say we begin with the UMP. Given the price vector p, and the budget m, we

calculate the Walrasian demand funcion ξ(p,m) (the optimum bundle) and its

corresponding utility u(ξ(p,m)) = v(p,m).

Next, we set v = v(p,m), and, along with the price vector p, use these quantities

as inputs to the EMP. Doing so, we will find that the optimum bundle h(p, v) is

exactly ξ(p,m), and the expenditure, i.e., the money necessary to buy h(p, v), is

exactly equal to m. That is, we have

h(p, v) = ξ(p,m)

e(p, v) = m

where v = v(p,m).

Dually, let us start from the EMP with a price vector p and a desired utility value

v. We calculate the Hicksian demand function h(p, v), the optimum bundle, and

the expenditure 〈p, h(p, v)〉 = e(p, v). Then, using this expenditure as the budget

in the UMP, i.e., taking m = e(p, v), we will find that the optimum bundle ξ(p,m)

is exactly h(p, v), and the corresponding utility u(ξ(p,m)) = v(p,m) is exactly v.

That is

ξ(p,m) = h(p, v)

v(p,m) = v
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where m = e(p, v).

Note that from the above it follows:

v = v(p,m)⇔ e(p, v) = m

Let us prove these assertions.

Proposition 3.5 Let u be a continuous, locally nonsatiated, and strictly quasi-

concave utility function on Rn+. Then

h(p, v) = ξ(p, e(p, v)) (3.1)

ξ(p,m) = h(p, v(p,m)) (3.2)

e(p, v(p,m)) = m (3.3)

v(p, e(p, v)) = v (3.4)

Proof. The single-valuedness of the Walrasian and Hicksian demand functions ξ

and h is established in Proposition 3.1 and Proposition 3.3, respectively. To show

(3.1), one needs to show that h(p, v) belongs to the budget set We(p,v)(p), and

it maximizes the utility there. h(p, v) ∈ We(p,v)(p) is true because 〈p, h(p, v)〉 =

e(p, v), from the EMP. Then we have to show that 〈p, x〉 ≤ e(p, v) implies u(x) ≤

u(h(p, v)). Indeed, assume to the contrary that u(x) > u(h(p, v)) ≥ v, but 〈p, x〉 ≤

e(p, v). Given that e(p, v) is the minimal value of a basket with utility at least v,
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we would have that this minimum is achieved also by x. But this contradicts the

uniqueness of h(p, v). Hence (3.1) holds.

(3.2) can be proved similarly: we need to show that ξ(p,m) has utility at least

v(p,m) (which is obviously true), and that it minimizes the value of all baskets

with utility at least v(p,m). Indeed, assume to the contrary that there is a basket

y such that u(y) ≥ v(p,m) and 〈p, y〉 < 〈p, ξ(p,m)〉 ≤ m.

Then y ∈ Wm(p) so y maximizes the utility inside Wm(p). But this contradicts

the uniqueness of ξ(p,m).

Since u is nonsatiated, we know that m = 〈p, ξ(p,m)〉. We deduce from (3.2) and

〈p, h(p, v)〉 = e(p, v) that m = 〈p, h(p, v(p,m))〉 = e(p, v(p,m)).

Finally, since we know that u(h(p, v)) = v, we deduce from (3.1) and v(p,m) =

u(ξ(p,m)) that v = u(ξ(p, e(p, v)) = v(p, e(p, v)).

3.4 The Slutsky Term

We now develop an important definition, which is that of the Slutsky matrix. In

order to do so, however, we first recall a simple version of the Envelope Theorem.

Theorem 3.1 (Envelope Theorem) Let f : X × T → R be a function of two

variables, where X is any set and T an open interval. Define V (t) = sup{f(x, t) :

x ∈ X}. If t0 ∈ T, x0 ∈ X are such that f(x0, t0) = V (t0), and V and f(x, ·) are

differentiable at t0, then

∂V (t0)

∂t
=
∂f(x0, t0)

∂t
.
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That is, the derivative of V is the partial derivative of f , at any point x that

achieves the maximum.

Proof. For every s ∈ T, g(s) := f(x0, s) − V (s) ≤ 0 by definition of V . Also,

g(t0) = 0. Thus, g has a maximum at t0. Since g is differentiable by assumption,

g′(t0) = 0. This gives (3.1).

A consequence is the so-called Shephard’s lemma:

Lemma 3.1 (Shephard) Assume that the function e(p, v) is differentiable with

respect to p (or at least that the partial derivatives exist). Then

hi(p, v) =
∂e(p, v)

∂pi
.

Proof. The proof is a direct consequence of the Envelope Theorem: Since

e(p, v) = min{p1x1 + p2x2 + . . .+ pnxn : u(x1, x2, . . . , xn) ≥ v}

by the envelope theorem, ∂e(p,v)
∂pi

= ∂(p1x1+p2x2+...+pnxn)
∂pi

= xi, where (x1, x2, . . . , xn)

is a solution of the minimization problem, i.e., h(p, v).

Now let us calculate ∂hi(p,v)
∂pj

.

Using (3.1), Shephard’s lemma, as well as the chain rule, we get

∂hi(p, v)

∂pj
=
∂ξi(p, e(p, v))

∂pj
=
∂ξi(p,m)

∂pj
|m=e(p,v) +

∂ξi(p,m)

∂m
|m=e(p,v)

∂e(p, v)

∂pj

=
∂ξi(p,m)

∂pj
|m=e(p,v) +

∂ξi(p,m)

∂m
|m=e(p,v) ξj(p, e(p, v))
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The last is true because ∂e(p,v)
∂pi

= hi(p, v) = ξi(p, e(p, v)). Thus, we proved:

∂hi(p, v)

∂pj
=
∂ξi(p,m)

∂pj
+
∂ξi(p,m)

∂m
ξj(p,m),

where m = e(p, v) (or equivalently, v = v(p,m)).

Definition 3.5 We call the term σij(p,m) = ∂ξi(p,m)
∂pj

+ ∂ξi(p,m)
∂m

ξj(p,m) the Slutsky

substitution function. Additionally, the Slutsky matrix (sometimes the Slutsky-

Hicks) is given by σ(p,m) = (σij(p,m))1≤i,i≤n.

According to the derivation in this section, given m one has

σij(p,m) =
∂hi(p, v)

∂pj

with v = v(p,m). Thus,

σij(p,m) =
∂2e(p, v)

∂pj∂pi

so it is symmetric. Also, it is negative semidefinite since e is concave with respect

to p.
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CHAPTER 4

THE INTEGRABILITY

PROBLEM

We are now ready to study the Integrability Problem, following the seminal paper

of Hurwicz and Uzawa [11].

4.1 The Assumptions

The assumptions that we are going to impose on the demand function ξ are the

following:

(A) Single-valuedness: ξ(p,m) is a single-valued, n-vector function on Rn++×R+

(B) The budget exhaustion (i.e., nonsatiation): 〈p, ξ(p,m)〉 = m, for all (p,m) ∈

Rn++ × R+

(D) Differentiability: ξi(p,m) are differentiable on Rn++ × R+, i = 1, 2, · · · , n
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(E) Boundedness: For any 0� a′ � a′′ ∈ Rn++, there exists a number Ma′,a′′ > 0

such that, for all m ≥ 0,

a′ ≤ p ≤ a′′ ⇒
∣∣∣∣∂ξi(p,m)

∂m

∣∣∣∣ ≤Ma′,a′′

We will also impose two additional assumptions that concern the Slutsky matrix:

(S) Symmetry: The Slutsky matrix σ(p,m) is symmetric

(NSD) Negative semidefiniteness: The Slutsky matrix σ(p,m) is negative semidef-

inite.

We already discussed conditions (A), (B), and (D). Condition (E) is imposed for

mathematical convenience. As for conditions (S) and (NSD), we saw in Section

3.4 that they can be proved using some assumptions on the utility function u. In

[11], the same is proved under slightly more general assumptions:

Theorem 4.1 Let u be a utility function represented by a complete preorder � on

a set D ⊆ Rn+. Let ξ : Rn++×R+ → D be a single-valued demand function such that

ξ(p,m) uniquely maximizes u(x), for all x ∈ Wm(p). In addition to assumption

(A), assume (B), and (D). Then the matrix σ(p,m) is defined and is symmetric

and negative semidefinite for all (p,m) ∈ Rn++ × R+.

We omit the proof of Theorem 4.1. Let X ⊆ Rn+ denote the range of the demand

function ξ, i.e., X = {ξ(p,m) : (p,m) ∈ Rn++ × R+}. The integrability problem is

the following.
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Theorem 4.2 (Main Theorem) Let ξ(p,m) satisfy (A), (B), (D), and (E). In

addition, let the Slutsky matrix σ associated with ξ satisfy (S) and (NSD). Then

there exists a utility function u : X → R such that ξ(p,m) is the unique maximizer

of u over Wm(p).

We will not present the proof in full detail of Theorem 4.2; rather, we present, to

a large extent, the general approach to recovering u from ξ. The construction of

the utility function u involves the so-called income compensation function µ.

Definition 4.1 The income compensation function is given by µ(p; p0,m0) =

e(p, v(p0,m0)).

Clearly, µ(p0; p0,m0) = e(p0, v(p0,m0)) = m0.

We shall often deal with µ(p; p0,m0) as a function of the variable p only, i.e.,

µ(p; p0,m0) = µ(p) with the understanding that the initial condition is (p0,m0).

It follows from the definition of µ and the envelope theorem that

∂µ(p; p0,m0)

∂pi
=
∂e(p, v(p0,m0))

∂pi
= hi(p, v(p0,m0)) = ξi(p, e(p, v(p0,m0))) (4.1)

= ξi(p, µ(p; p0,m0)), i = 1, 2, . . . , n.
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4.2 Outline of the Argument

Our aim will be to first solve the so-called total differential equation (4.1). That

is, given an initial condition (p0,m0), we aim to find a function µ such that

∂µ(p)

∂pi
= ξi(p, µ(p)), i = 1, 2, . . . , n.

Once we have found such a function µ, we express it explicitly in terms of the

initial condition µ(p0) = m0 as µ(p; p0,m0).

We then interchange the roles of the vector p and the initial condition (p0,m0), by

fixing p as p∗, and treating the initial data (p0,m0) as a variable (p,m) ∈ Rn++×R+,

from which we define the function

w(p,m) = µ(p∗; p,m) = e(p∗, v(p,m)).

Observe that this function w is another utility function, in the sense that

w(p,m) ≥ w(p′,m′)⇔ v(p,m) ≥ v(p′,m′)

This is true since the expenditure function e is increasing in v,

w(p,m) = e(p∗, v(p,m)) ≥ e(p∗, v(p′,m′)) = w(p′,m′)⇔ v(p,m) ≥ v(p′,m′)

We then express the price-budget pair (p,m) in terms of the demand ξ.
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Finally, we define the utility function u on the range of the demand function ξ as

u(x) = Up∗(x) = w(p,m) = µ(p∗; p,m)

where x = ξ(p,m).

Before proceeding with the proof, we present two examples to illustrate the pro-

cedure outlined above.

4.3 Two Examples

Example 4.3 Consider the Cobb-Douglas utility function u(x1, x2) = xα1x
β
2 ,

where α + β = 1. Consider also a price vector p̄ = (p1, p2) ∈ R2
++, and a budget

m̄ ≥ 0. Recall that the demand function ξ(p̄, m̄) = (x∗1(p̄, m̄), x∗2(p̄, m̄)) is homoge-

neous of degree zero, thus we may divide the arguments by p2, and take the price

vector to be (p, 1), and the budget as m. In order to find the demand components

x∗1 and x∗2, we solve the UMP

maxu(x1, x2)

s.t. 〈(p, 1), (x1, x2)〉 ≤ m

We get

x∗1(p,m) =
αm

p
.
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From the constraint of the problem px1 + x2 = m, we have

x∗2 = βm.

Substituting these values into the utility function u, we find the indirect utility

function to be

v(p,m) = mββ(
α

p
)α.

In order to find the expenditure function e, we solve the EMP

min 〈(p, 1), (x1, x2)〉

s.t. u(x1, x2) ≥ v

We find the expenditure function to be

e(p, v) = vβ−β(
p

α
)α.

Now choose (p0,m0), and define

µ(p; p0,m0) = e(p, v(p0,m0)) = m0(
p

p0
)α

Clearly, µ(p0; p0,m0) = m0.
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Finally, note that this function µ satisfies the differential equation

∂µ(p)

∂p
= α[m0(p0)−α]pα−1 =

αµ(p)

p
= x∗1(p, µ(p)).

Example 4.4 In this example, we concern ourselves with the reverse process to

Example (4.3). Here, we illustrate the procedure that we outlined in the previous

section to recover a utility function from a demand function. Given the price vector

(p, 1) ∈ R2
++, the budget m, and the demand component x∗1(p,m) = αm

p
, we aim

to recover a utility function u such that ξ(p,m) = (x∗1(p,m), x∗2(p,m)) maximizes

u subject to the constraint 〈(p, 1), (x1, x2)〉 ≤ m. From the budget constraint of the

UMP 〈(p, 1), (x1, x2)〉 = m, we get that x∗2(p,m) = (1 − α)m. Next, we solve the

differential equation

∂µ(p)

∂p
= x∗1(p, µ(p)) =

αµ(p)

p

⇔ µ′

µ
=
α

p

⇔ µ(p) = cpα

Given the initial condition (p0,m0), we determine the value of the constant c by

satisfying µ(p0) = m0 :

µ(p0) = c(p0)α = m0

⇔ c =
m0

(p0)α

35



Thus, the income compensation function µ is

µ(p; p0,m0) =
m0

(p0)α
pα

We now interchange the roles of the variable p, and the initial condition (p0,m0),

by fixing the former to be p∗ = 1, and letting the initial condition be the variable

(p,m), to define the utility function Up∗ :

Up∗ = w(p,m) = µ(p∗; p,m) =
m

pα
(4.2)

We are almost there, but we need to express the variables p and m in terms of

the demand components x∗1 and x∗2. For simplicity, we call the latter x1 and x2,

respectively, and we solve the equations x1 = αm
p

and x2 = (1−α)m for p and m.

Doing so, we obtain

p =
α

1− α
x2

x1

m =
x2

1− α

Finally, we substitute these values into (4.2) to obtain the utility function

Up∗(x1, x2) = Kxα1x
1−α
2

where K is a constant. Hence, we have recovered the well-known Cobb-Douglas

utility function from the given demand function.
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4.4 Solutions of Total Differential Equations

In order to proceed with the proof of the theorem, we first discuss solutions of

total differential equations similar to (4.1).

Consider Ω = Π×Θ, where Π ⊆ Rn, Θ ⊆ R.

Let f : Π×Θ→ Rn, with f(x, z) = (f1(x, z), f2(x, z), . . . , fn(x, z))

We are interested in solving the total differential equation

∂z

∂xi
= fi(x1, x2, . . . , xn, z), i = 1, 2, . . . , n. (4.3)

Definition 4.2 A real-valued function z = w(x) defined on Π∗ ⊆ Π is a solution

to (4.3), with initial condition (x0, z0) ∈ Ω, if x0 ∈ Π∗, and

∂w

∂xi
(x) = fi(x,w(x)), i = 1, 2, . . . , n, for all x ∈ Π∗

and

w(x0) = z0

Now we consider the following assumptions:

(CD) Continuous differentiability: ∂fi
∂xj

(x, z) and ∂fi
∂z

(x, z) exist and are continuous

on Ω;

(DD) Differentiability: fi(x, z) are differentiable on Ω for i = 1, 2, . . . , n;
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(UD) Uniform boundedness of derivative:
∂fj
∂z

(x, z) are uniformly bounded on Ω;

i.e., there is a K ∈ R such that

∣∣∣∣∂fj∂z (x, z)

∣∣∣∣ ≤ K,

for all (x, z) ∈ Ω;

(SS) Symmetry: ∂fi
∂xj

(x, z) + ∂fi
∂z

(x, z) · fj(x, z) =
∂fj
∂xi

(x, z) +
∂fj
∂z

(x, z) · fi(x, z),

i = 1, 2, . . . , n, for all (x, z) ∈ Ω.

The following theorem was proved by Thomas [24]. It is a version of the Frobenius

theorem of PDEs.

Theorem 4.5 (Thomas’s) Let Let f : Π×Θ→ Rn, where, for a′ < a′′,

Π = {x : a′ < xi < a′′, i = 1, 2, . . . , n}, Θ = R

Assume (CD), (UD), (SS).

Then there exists a unique continuous solution w(x) = w(x;x0, z0) of (4.3) with

initial condition (x0, z0), for which the domain of definition is Π.

The following theorem, in which (CD) is relaxed into (DD), was proved by Hurwicz

and Uzawa [11].

Theorem 4.6 (Existence Theorem I) Let f : Π×Θ→ Rn, where, for a′ < a′′,

Π = {x : a′ < xi < a′′, i = 1, 2, . . . , n}, Θ = R
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Assume (DD), (UD), (SS).

Then there exists a unique continuous solution w(x) = w(x;x0, z0) of (4.3) with

initial condition (x0, z0), for which the domain of definition is Π. Furthermore,

w(x;x0, z0) is continuous with respect to x, and continuous with respect to (x0, z0).

According to Hartman [9], w(x;x0, z0) is in fact continuous with respect to the

vector (x;x0, z0) altogether.

The next theorem, also due to Hurwicz and Uzawa [11], refines the second com-

ponent of the domain Θ into Rn+.

Theorem 4.7 (Existence Theorem II) Let f : Π×Θ→ Rn, where, for a′ < a′′,

Π = {x : a′ ≤ xi ≤ a′′, i = 1, 2, . . . , n}, Θ = R+

Assume (DD), (UD), (SS). Assume, further, that

fi(x, 0) = 0, for all x ∈ Π (4.4)

Then there exists a unique continuous solution w(x) = w(x;x0, z0) of (4.3) with

initial condition (x0, z0), for which the domain of definition is Π.

Furthermore, w(x;x0, z0) is continuous with respect to x, and continuous with

respect to (x0, z0).

We are now ready to prove the theorem that is needed for our purpose.
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Theorem 4.8 (Existence Theorem III) Let f : Π×Θ→ Rn, where

Π = Rn++, Θ = R+

Assume (DD), (SS), (4.4). Assume, further,

(UD)’: For any 0� a′ � a′′ ∈ Rn++, there exists a number Ma′,a′′ ∈ R such that,

for all m ≥ 0,

a′ ≤ x ≤ a′′ ⇒ |∂fi(x, z)
∂z

| ≤Ma′,a′′

Then there exists a unique continuous solution w(x) = w(x;x0, z0) of (4.3) with

initial condition (x0, z0), for which the domain of definition is Π.

Furthermore, w(x;x0, z0) is continuous with respect to x, and continuous with

respect to (x0, z0).

Proof. We begin with an initial condition (x0, z0) ∈ Π × Θ, where, for some

0 < a′ < a′′, Π = {x : a′ ≤ xi ≤ a′′}, Θ = Rn+. By Theorem (4.7), there exists

a unique continuous solution w(x) = w(x;x0, z0) of (4.3) with initial condition

(x0, z0), for which the domain of definition is Π. Now let us start with the same

initial condition (x0, z0). Take a′ = 1
n
, and a′′ = n, where n ∈ N. For a sufficiently

large n, the domain Π = {x : 1
n
≤ xi ≤ n} contains x0. Once again, by Existence

Theorem III, there is a unique solution w to (4.3) passing through the point

(x0, z0). Finally, we let n→∞ to get Π = Rn+, and the conclusion of the theorem

follows.

40



4.5 Construction of the Utility u from ξ

We now return to the total differential equation

∂µ(p)

∂pi
= ξi(p, µ(p)), i = 1, 2, . . . , n (4.5)

Or

∂µ(p)

∂p
= ξ(p, µ(p)).

We are half-way through with the proof of Theorem 4.2. We now introduce a

series of lemmas to complete the proof.

Lemma 4.1 Let the demand function ξ(p,m) satisfy (A), (D), (E), and (S).

Then (4.5) is uniquely integrable; that is, for any (p∗,m∗) ∈ Ω = Rn++×R+, there

exists a unique function µ(p; p∗,m∗) defined for all p ∈ Rn++ such that

µ(p∗; p∗,m∗) = m∗ (4.6)

∂µ(p; p∗,m∗)

∂pi
= ξi(p, µ(p; p∗,m∗)), i = 1, 2, . . . , n, for all p ∈ Rn++

Furthermore, µ(p∗; ·, ·) is continuous for every fixed p∗.

Lemma 4.2 Consider (p′,m′) and (p′′,m′′), with (p′,m′) 6= (p′′,m′′). If

µ(p0; p′,m′) = µ(p0; p′′,m′′), then

µ(p; p′,m′) = µ(p; p′′,m′′) for all p ∈ Π.
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Proof. Assume µ(p0; p′,m′) = µ(p0; p′′,m′′) = m0, for some p0 ∈ Rn++, m
0 ∈

R+. By the definition of µ, the function µ(p; p0,m0) passes through the point

(p0,m0), i.e., µ(p0; p0,m0) = m0. But by the uniqueness of the solution of (4.5)

from Theorem 4.8, µ(p; p0,m0) = µ(p; p′,m′) = µ(p; p′′,m′′), for all p ∈ Π.

Lemma 4.3 Consider (p′,m′) and (p′′,m′′), with (p′,m′) 6= (p′′,m′′). If

µ(p0; p′,m′) < µ(p0; p′′,m′′), then

µ(p; p′,m′) < µ(p; p′′,m′′).

Proof. Suppose there exist p0, p1 ∈ Rn++ such that µ(p0; p′,m′) < µ(p0; p′′,m′′),

but µ(p1; p′,m′) > µ(p1; p′′,m′′). By Theorem 4.8, µ(·; p∗,m∗) is continuous. Con-

sider now the function g(p) = µ(p; p′,m′) − µ(p; p′′,m′′). g is continuous with

respect to p, since µ is continuous. Observe that g(p0) < 0, while g(p1) > 0. By

the Intermediate Value theorem, there exists an element p̄ = (1 − λ)p0 + λp1,

λ ∈ (0, 1), such that g(p̄) = 0, i.e., µ(p̄; p′,m′) = µ(p̄; p′′,m′′). But by Theorem

4.2, this would imply that µ(p; p′,m′) = µ(p; p′′,m′′) for all p ∈ Π, a contradiction.

Now we use the income compensation function µ(p∗; p,m) to construct, on the

range X of the demand function ξ, the utility function u(x) in Theorem 4.2.

We shall define u as

u(x) = Up∗(x) = µ(p∗; p,m), where p∗ is fixed, and x = ξ(p,m)
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Our objective now is to prove that this construction of u(x) is indeed a utility

function. First, however, we show that, for a given p∗, Up∗(x) is uniquely deter-

mined, irrespective of the choice of (p,m), such that x = ξ(p,m). We now give

further properties of µ.

Lemma 4.4 Consider (p0,m0), (p1,m1), such that x0 = ξ(p0,m0), x1 =

ξ(p1,m1), and x0 6= x1. Assume that m1 ≥ µ(p1; p0,m0). Then

〈
p0, x1

〉
>
〈
p0, x0

〉

Proof. Define

p(t) = (1− t)p0 + tp1,

m(t) = µ(p(t); p0,m0),

and

x(t) = ξ(p(t),m(t)).

Clearly, p(0) = p0, p(1) = p1. Thus, x(0) = ξ(p0, µ(p0; p0,m0)) = ξ(p0,m0) = x0,

and x(1) = ξ(p1, µ(p1; p0,m0)).

Let

φ(t) =
〈
p0, x(t)

〉
=

n∑
i=1

p0
i ξi(p(t), µ(p(t); p0,m0)) (4.7)
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We differentiate with respect to t and use the chain rule to get:

φ′(t) =
n∑
i=1

p0
i

d

dt
ξi(p(t), µ(p(t); p0,m0)) (4.8)

=
n∑
i=1

p0
i

n∑
j=1

(
∂ξi
∂pj

+
∂ξi
∂m

∂µ

∂pj
)(p1

j − p0
j)

=
n∑
i=1

n∑
j=1

(
∂ξi
∂pj

+
∂ξi
∂m

ξj)(p
1
j − p0

j)p
0
i

By the budget exhaustion condition (B), we get

m(t) = 〈p(t), x(t)〉 =
n∑
i=1

pi(t)ξi(p(t), µ(p(t); p0,m0))

Differentiating m on the left-hand side with respect to t, we get

d

dt
m(t) =

n∑
i=1

∂µ

∂pi

d

dt
p(t) =

n∑
i=1

ξi(p(t),m(t))(p1
i − p0

i )

Differentiating the right-hand side, we get

n∑
i=1

{(p1
i − p0

i )ξi(p(t), µ(p(t); p0,m0)) + pi(t)
n∑
i=1

(
∂ξi
∂pj

+
∂ξi
∂m

ξj)(p
1
j − p0

j)}.

From the two expressions above, we obtain,

n∑
i=1

n∑
j=1

(
∂ξi
∂pj

+
∂ξi
∂m

ξj)(p
1
j − p0

j)pi(t) = 0.
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We subtract this equation from (4.8) to get

φ′(t) =
n∑
i=1

n∑
j=1

(
∂ξi
∂pj

+
∂ξi
∂m

ξj)(p
1
j − p0

j)(p
0
i − pi(t))

= −t
n∑
i=1

n∑
j=1

(
∂ξi
∂pj

+
∂ξi
∂m

ξj)(p
1
i − p0

i )(p
1
j − p0

j)

= −t
n∑
i=1

n∑
j=1

σi,j(p(t),m(t))(p1
i − p0

i )(p
1
j − p0

j)

By the (NSD), we get φ′(t) ≥ 0, and thus φ(1) ≥ φ(0). In other words,

〈
p0, x1

〉
≥
〈
p0, x0

〉
= m0.

Lemma 4.5 (Weak Axiom of Revealed Preference) Let x0 = ξ(p0,m0), x1 =

ξ(p1,m1). If 〈
p0, x0

〉
≥
〈
p0, x1

〉
, x0 6= x1

then 〈
p1, x0

〉
>
〈
p1, x1

〉
Proof. Assume the two bundles x0, x1 are different, and that, given the price

system p0, 〈p0, x0〉 ≥ 〈p0, x1〉 , i.e., it is ”revealed” that x0 is preferable to x1 under

this system. Applying the contrapositive of Lemma 4.4, we obtain

µ(p1; p1,m1) = m1 < µ(p1; p0,m0)
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By Lemma 4.3, we obtain

µ(p0; p1,m1) < µ(p0; p0,m0) = m0.

We apply Lemma 4.4 again to this inequality, and interchange the roles of 0 and

1, to conclude 〈
p1, x0

〉
>
〈
p1, x1

〉

Lemma 4.6 For any x ∈ X, the set {(p,m) : ξ(p,m) = x} is convex.

Proof. We make the following definitions:

x̄ = ξ(p0,m0) = ξ(p1,m1), (4.9)

p(t) = p0 + t(p1 − p0) (4.10)

m(t) = m0 + t(m1 −m0) (4.11)

x(t) = ξ(p(t),m(t))

Thus

m(t) = 〈p(t), x(t)〉

We get from (4.9) that m0 = 〈p0, x̄〉 , and m1 = 〈p1, x̄〉 . We can also see that

〈p(t), x̄〉 =
〈
p0 + t(p1 − p0), x̄

〉
= m0 + t(m1 −m0) = m(t) = 〈p(t), x(t)〉 (4.12)
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Our objective now is to show that x(t) = x̄, for all t ∈ [0, 1]. We proceed by

contradiction. Suppose there is a t ∈ (0, 1) for which x(t) 6= x̄. From (4.12) and

the Weak Axiom of Revealed Preference 4.5, we have

〈
p0, x̄

〉
<
〈
p0, x(t)

〉
(4.13)

and 〈
p1, x̄

〉
<
〈
p1, x(t)

〉
(4.14)

We now perform (1− t)(4.13) + t(4.14):

〈p(t), x̄〉 < 〈p(t), x(t)〉

contradicting (4.12). We conclude that x(t) = x̄ is true for all t ∈ [0, 1] , hence

the set {(p,m) : ξ(p,m) = x̄} is convex.

Lemma 4.7 If ξ(p0,m0) = ξ(p1,m1), then

µ(p; p0,m0) = µ(p; p1,m1) for all p

Proof. We use the definitions (4.10) and (4.11) for p(t) and m(t). We know

from Lemma 4.6 that

ξ(p(t),m(t)) = ξ(p0,m0) = x̄, t ∈ [0, 1]
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From (4.12), we have

m(t) = 〈x̄, p(t)〉

Differentiating with respect to t, we get

dm(t)

dt
= x̄

dp(t)

dt
= ξ(p(t),m(t))

dp(t)

dt
, t ∈ [0, 1]. (4.15)

On the other hand,

d

dt
(µ(p(t); p0,m0)) =

n∑
i=1

∂µ

∂pi

dpi
dt

(4.16)

For µ solution of (4.6),

∂µ(p)

∂pi
= ξi(p, µ(p)) (4.17)

Combining (4.16) and (4.17), we obtain

dm

dt
=

d

dt
µ(p(t), p0,m0) (4.18)

So µ and m differ by a constant. For t = 0, we get that the constant is zero.

Thus, we have

µ(p(t); p0,m0) = m(t), t ∈ [0, 1]

which yields, when t = 1,

µ(p1; p0,m0) = m1.
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Applying Lemma 4.2 one more time, we obtain

µ(p; p0,m0) = µ(p; p1,m1), for all p.

Lemma 4.8 Let the demand function ξ satisfy (A), (B), (D), (E), (S), and

(NSD). For any p∗, Up∗(x) = µ(p∗; p,m) is a single-valued function defined on

the range X of the demand function ξ, and for any p and m,

Up∗(ξ(p,m)) > Up∗(x)

for all x ∈ X, subject to 〈p, x〉 ≤ m, x 6= ξ(p,m).

Proof. The utility function Up∗ is single-valued from Lemmas 4.1, 4.2, and 4.7.

Now let

x0 = ξ(p0,m0),
〈
p0, x0

〉
= m0

x1 = ξ(p1,m1),
〈
p1, x1

〉
= m1

and 〈
p0, x1

〉
≤ m0, x0 6= x1.

Using the contrapositive of Lemma 4.4,

m1 < µ(p1; p0,m0).
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But m1 = µ(p1; p1,m1) from Lemma 4.1, thus,

µ(p1; p1,m1) < µ(p1; p0,m0)

By Lemma 4.3,

µ(p; p1,m1) < µ(p; p0,m0), for all p.

In particular, for p = p∗, we obtain

Up∗(x
0) > Up∗(x

1).

Lemma 4.8 concludes the proof of Theorem 4.2.

4.6 Some Properties of the Utility Function u

According to the discussion of the previous sections, the integrability problem has

a solution. That is, given a demand function ξ that satisfies some properties,

there exists a utility function u such that ξ maximizes u on the budget set. It is

clear that u is not uniquely defined since it depends on the choice of p∗. We will

now show, however, that the corresponding preference relation does not depend

on the choice of p∗.

Definition 4.3 Two functions f, g : A→ R, are said to induce the same ordering
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on A if: for all a′, a′′ ∈ A,

f(a′) > f(a′′)⇔ g(a′) > g(a′′.)

Note that whenever f, g induce the same ordering, one has

f(a′) = f(a′′)⇔ g(a′) = g(a′′) (4.19)

Proposition 4.1 If two real-valued functions f, g induce the same ordering on a

set A, then one of them is the composition of a strictly increasing function with

the other.

Proof. If the functions f, g, induce the same ordering, we would like to determine

if, say, g = h ◦ f, where h is a strictly increasing function. Let f(A) and g(A)

denote the ranges of f and g, respectively. Define a function h : f(A) → g(A),

as follows: For every y ∈ f(A), there exists at least one element x ∈ A such that

y = f(x). We set h(y) = g(x). Then obviously h(f(x)) = g(x).

� h is well-defined. Consider x1, x2 ∈ A. If f(x1) = f(x2) = y, then, from

(4.19), we obtain g(x1) = h(f(x1)) = h(f(x2)) = g(x2). h(y) is thus well-

defined.

� h is strictly increasing. Let y1, y2 ∈ f(A), with y1 < y2. Clearly, y1 = f(x1),

y2 = f(x2), for some x1, x2 ∈ A. Now, y1 < y2 ⇒ f(x1) < f(x2), and since

f, g induce the same ordering on A, we get g(x1) < g(x2). But by definition,
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g(x1) = h(y1) < h(y2) = g(x2). In other words, h is strictly increasing.

Theorem 4.9 For any price vectors p∗, p∗∗ ∈ Rn++, the functions Up∗ and Up∗∗

induce the same ordering on the range X of ξ(p,m).

Proof. The result follows from the definitions of Up∗ and Up∗∗ and 4.3.

We will now examine other properties of the constructed utility, such as mono-

tonicity, quasiconcavity, and upper semicontinuity.

Definition 4.4 The indifference sets of f : A→ R are said to be strictly convex

toward the origin if, for any a0 ∈ A, there exists a q ∈ Rn++ such that 〈q, a0〉 <

〈q, a〉 for all a ∈ A satisfying f(a) = f(a0), a 6= a0.

Theorem 4.10 For any p∗ ∈ Rn++, Up∗(x) is monotone increasing with respect

to the vectorial ordering of X, and the indifference sets of Up∗ are strictly convex

toward the origin.

Proof. Lemma 4.8 guarantees the monotonicity of Up∗ .As for the strict convexity

toward the origin of the indifference sets of Up∗ , it suffices to prove that for any

(p0,m0) ∈ Rn++ × R+, 〈
p0, x

〉
>
〈
p0, x0

〉
,

for all x ∈ X satisfying Up∗(x) = Up∗(x
0). Now let x0 = ξ(p0,m0), and let x1 =

ξ(p1,m1) be a bundle satisfying

Up∗(x
1) = Up∗(x

0)
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Consider φ(t) defined by (4.7). We know from the proof of Lemma 4.4 that

φ(0) < φ(1) whenever x0 6= x1, i.e., 〈p0, x〉 > 〈p0, x0〉 .

Theorem 4.11 Under the assumptions of Theorem 4.2, Up∗(x) is upper semicon-

tinuous in x, for every p∗.

Proof. We prove that the lower level sets {x : x ∈ X,Up∗(x) < α} are open

for every α ∈ R. In other words, we prove that for every x1 ∈ X such that

Up∗(x
1) < α, there exists a δ-neighborhood around x1, ‖x− x1‖ < δ, such that for

every vector x of which we have

Up∗(x) < α.

Let x1 = ξ(p1,m1). Now, Up∗(x
1) = µ(p∗; p1,m1) < α. Due to the continuity of

µ(p∗; p1,m) with respect to m, there exists an ε > 0 such that

µ(p∗; p1,m1 + ε) < α. (4.20)

Additionally, m1 = 〈p1, x1〉 , and the function 〈p1, x〉 is continuous with respect to

x. Therefore, there exists a δ > 0 such that

〈
p1, x

〉
< m1 + ε (4.21)

for all x satisfying ‖x− x1‖ < δ. Now let xε = ξ(p1,m1 + ε). Applying Lemma 4.8
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and (4.21) above, we obtain

Up∗(x) < Up∗(x
ε),

for all x satisfying ‖x− x1‖ < δ. By the way we have constructed xε, (4.20) may

be written as

Up∗(x
ε) < α.

This implies that for all x satisfying ‖x− x1‖ < δ, Up∗(x) < α, and thus the sets

{x : x ∈ X,Up∗(x) < α} are open for all α ∈ R.

The last theorem, whose proof we omit, examines the continuity of the constructed

utility.

Theorem 4.12 The utility function Up∗(x) is lower semicontinuous in x ∈ X for

every choice of p∗ if, in addition to the assumptions (A), (B), (D), and (E) of

Theorem 4.2, we also have any one of the following three conditions

(a) If the sequence {pk}, k ∈ N, converges to some p0 such that p0 6= 0, p0 ≯ 0,

then the sequence {xk}, where xk = ξ
(
pk, µ(pk; p,m)

)
, is unbounded for

every choice of (p,m), p > 0, m ≥ 0;

(b) There exists a single-valued inverse demand function; that is

ξ(p′,m′) = ξ(p′′,m′′)

implies m′ = m′′ = 0, or p′

m′
= p′′

m′′
;

54



(c) ξ(p,m) is Lipschitzian with respect to the boundary; that is, for every p0 such

that p0 = 0, p0 6= 0, p0 ≯ 0, there exist positive numbers ε and K = Kε,p0

such that

‖ξ(p,m′)− ξ(p,m′′)‖ < K |m′ −m′′|

for all m′, m′′ ≥ 0 and all p > 0, ‖p− p0‖ < ε.
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CHAPTER 5

EXTENSION OF THE DOMAIN

OF THE UTILITY FUNCTION

A drawback of the work of Hurwicz and Uzawa that we presented in the previous

chapter was that the constructed utility was not defined on the whole cone of

commodity bundles, Rn+, but only on the range X of the demand function ξ. This

drawback was remedied later by the work of Jackson [12], where it was shown

that, under the same assumptions in [11], one can extend the domain of definition

of u to the whole cone Rn+. In this chapter, we will present this approach.

The main theorem of this chapter is the following.

Theorem 5.1 Assume that a function ξ : Rn++ × R+ → Rn+ satisfies conditions

(A), (B), (D), and (E), and that its associated Slutsky matrix σ satisfies the

conditions (S) and (NSD). Then there exists an upper semicontinuous, quasi-

concave, and increasing utility function U defined on Rn+ such that ξ(p,m) is the

unique maximizer of U(x) over the set {x ∈ Rn+ : 〈p, x〉 ≤ m}.

56



5.1 Procedure for Extending the Domain of the

Utility Function

In order to prove Theorem 5.1, we consider expenditure functions and utility

functions having specific properties. We then establish two theorems showing the

existence of bijections between some classes of the above expenditure and utility

functions. Afterwards, we utilize earlier results to define an expenditure function

in terms of the income compensation function given by Definition 4.1. Finally, we

use a bijection to map this expenditure function onto a utility function defined

over the entire space of Rn+.

Consider the set of expenditure functions {ē : Rn++ × R+ → R+}, each of which

having at least one of the following properties:

(E1) ē(p, ·) is continuous

(E2) ē(p, u) = 0⇔ u = 0

(E3) ē(p, ·) is unbounded above

(E4) ē(·, u) is concave

(E5) ē(·, u) is positive homogeneous degree one

(E6) For each x0 ∈ Rn+, u ≥ 0, and ε > 0 such that 〈p, x0〉 ≥ ē(p, u + ε) for all

p ∈ Rn++, there exists a number δ ∈ (0, 1) such that 〈p, δx0〉 > ē(p, u) for all

p ∈ Rn++.

(E7) ē(p, ·) is non-decreasing
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(E8) ē(·, u) is non-decreasing

Now consider the set of expenditure functions {Ū : Rn+ → R+}, each of which

having at least one of the following properties:

(U1) Ū is increasing

(U2) Ū is continuous

(U3) Ū(0) = 0

(U4) Ū is unbounded above

(U5) Ū is quasi-concave

(U6) Ū is upper semi-continuous

Additionally, define the following two functions as in [12]:

[ψ(Ū)](p, u) = min{〈p, x〉 : Ū(x) ≥ u} (5.1)

[ψ−1(ē)](x) = max{u : 〈p, x〉 ≥ ē(p, u), for all p} (5.2)

Theorem 5.2 The function ψ, defined by (5.1), is a bijection, with inverse ψ−1,

defined by (5.2), between the class of expenditure functions having properties

(E1)→(E5), (E7), and (E8), and the class of utility functions having properties

(U1), and (U3)→(U6).
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Theorem 5.3 The function ψ, defined by (5.1), is a bijection, with inverse ψ−1,

defined by (5.2), between the class of expenditure functions having properties

(E1)→(E6), and the class of utility functions having properties (U1)→(U5).

Now choose any (p0,m0) ∈ Rn++ × R+. Define an expenditure function

ē(p, u) = µ(p; p0, um0), (5.3)

Lemma 5.1 Pick any (p′,m′) ∈ Rn++ × R+, and p′′ ∈ Rn++. Then

〈p, ξ(p′′, µ(p′′; p′,m′))〉 ≥ µ(p; p′,m′) for all p.

Proof. Choose any p∗, and define x′′ = ξ(p′′, µ(p′′; p′,m′)), x∗ =

ξ(p∗, µ(p∗; p′,m′)). By Lemma 4.1, µ(p∗; p′,m′) = µ(p∗; p∗, µ(p∗; p′,m′)). By

Lemma 4.2, µ(p′′; p′,m′) = µ(p′′; p∗, µ(p∗; p′,m′)). If x′′ 6= x∗, then, by Lemma 4.4,

〈p∗, x′′〉 > 〈p∗, x∗〉 . If x′′ = x∗, then 〈p∗, x′′〉 = 〈p∗, x∗〉 . Thus, 〈p∗, x′′〉 ≥ 〈p∗, x∗〉 .

By the budget exhaustion condition (B), 〈p∗, ξ(p′′, µ(p′′; p′,m′))〉 ≥ µ(p∗; p′,m′).

But the choice of p∗ was arbitrary, thus the conclusion is true for all p.

Using Lemmas 4.1, 4.2, 4.3, 4.4, 4.7, and 5.1, we can verify that the expenditure

function ē defined by (5.3) is increasing, and possesses properties (E1)→(E5),

(E7), and (E8).

We now use Theorem 5.2 to define the utility function

Ū(x) = max{u : 〈p, x〉 ≥ µ(p; p0, um0) for all p} (5.4)
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We can verify that this utility function possesses properties (U1), and (U3)→(U6).

Finally, we show that the maximization of the utility function Ū gives rise to the

demand function ξ(p,m), according to the following lemma.

Lemma 5.2 Suppose that ξ(p,m) satisfies conditions (A), (B), (D), (E), (S),

and (NSD). Then for any (p0,m0) ∈ Rn++ × R+, Ū(x), given by (5.4), is single-

valued, defined on Rn+, and for any (p,m) ∈ Rn++×R+, Ū(ξ(p,m)) > Ū(x) for all

x ∈ Rn+ subject to 〈p, x〉 ≤ m, and x 6= ξ(p,m).

Proof. The definition of Ū and Theorem 5.2 yield its single-valuedness.

Pick (p′,m′) ∈ Rn++ × R+, and let x′ = ξ(p′,m′). Choose x2 6= x′ such that

〈p, x2〉 ≤ m′. Since ē(p, ·) is continuous, unbounded, increasing, and ē(p, 0) = 0,

we can find a utility level u′ such that ē(p′, u′) = m′.

By the budget exhaustion condition (B), 〈p′, x′〉 = ē(p′, u′). By Lemma 5.1,

Ū(x′) = u′. Since 〈p′, x2〉 ≤ ē(p′, u′), we have Ū(x2) ≤ u′ = Ū(x′). Suppose

the equality holds, i.e., Ū(x2) = Ū(x′).

Now since x′ 6= x2, Ū(x2) = u′, and 〈p′, x2〉 ≥ ē(p′, u′), then 〈p′, x2〉 = ē(p′, u′) =

〈p′, x′〉 . It follows that there is an i ∈ {1, 2, . . . , n} such that x2
i < x′i.

Let pγ = p′ + γei, where ei is the ith component of the unit basis vector. Then

〈pγ, x′〉 > 〈pγ, x2〉 ≥ ē(pγ, u′) for all γ > 0.

Let xγ = ξ(pγ, e(pγ, u′)). By the condition (D), ξ is differentiable and continuous in

(p,m), and since ē(·, u) is concave and thus continuous, it follows that ξ(p, ē(p, u′))

is continuous in p. Let ε = 〈ei, x′ − x2〉. We can then find δ such that if ‖pγ − p′‖ <

δ, then ‖xγ − x′‖ < ε.
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Therefore, if ‖pγ − p′‖ < δ, then 〈ei, x′ − xγ〉 < 〈ei, x′ − x2〉 and so 〈ei, xγ〉 >

〈ei, x2〉 . By Lemma 5.1, 〈p′, xγ〉 ≥ 〈p′, x2〉 = ē(p′, u′), from which we get 〈pγ, xγ〉 ≥

〈pγ, x2〉 , which contradicts the fact that 〈pγ, x2〉 ≥ ē(pγ, u′) = 〈pγ, xγ〉 . Hence,

Ū(x′) > Ū(x2).

Definition 5.1 We say that a function ξ is strongly non-inferior if

� ξ(p,m1) ≥ ξ(p,m2) for all p ∈ Rn++ and m1 > m2, and

� whenever ξi(p,m
2) > 0 and ξ(p,m2) ≯ 0, we have ξi(p,m

1) ≥ ξi(p,m
2).

Theorem 5.4 Let ξ(p,m) satisfy conditions (A), (B), (D), (E), (S), and (NSD).

In addition, let ξ be strongly non-inferior. If the range of ξ(p,m) is Rn+, then there

exists a continuous, quasi-concave, and increasing utility function U defined on Rn+

such that ξ(p,m) is the unique maximizer of U over the set {x ∈ Rn+ : 〈p, x〉 ≤ m}.

We have shown in Theorem 4.12 that if a function ξ satisfies the conditions (A),

(B), (D), (E), (S), and (NSD), in addition to any one of the conditions (a), (b),

or (c), then the utility function u is continuous and defined on the range X of the

demand function ξ. In the next theorem, we establish that either condition (a) or

(c) suffices to guarantee that the utility function u is defined on all of the closed

positive orthant Rn+.

Theorem 5.5 Let ξ(p,m) satisfy conditions (A), (B), (D), (E), (S), and (NSD).

In addition, let ξ satisfy either condition (a) or (c). Then there exists a contin-

uous, quasi-concave, and increasing utility function U defined on Rn+ such that

ξ(p,m) is the unique maximizer of U over the set {x ∈ Rn+ : 〈p, x〉 ≤ m}.
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Note that this theorem rules out demand functions where boundary points are

demanded for some price-budget pairs (p,m).

Furthermore, condition (a) requires knowledge about the income compensation

function µ.

We now define another condition that enables us to deal with the demand function

ξ directly, without involving µ.

(C) For any sequence {(pk,mk)} ⊆ Rn+1
++ , with (pk,mk) → (p′,m′), such that

p′ 6= 0, p′ ≯ 0, and limk→∞ ξ(pk,mk) = x′. Either

� There is a set P ⊆ Rn+1
++ and δ ∈ (0, 1) such that P is closed, and for any

t ∈ [δ, 1],

tx′ = ξ(p, 〈p, tx′〉)

for some p ∈ P, or

� given ε > 0, there exists a number K such that ‖ξ(p,m′)− ξ(p,m′′)‖ <

K |m′ −m′′| for m′, m′′ ≥ 0, m′ 6= m′′, and p satisfying ‖p− p′‖ < ε.

Theorem 5.6 Let ξ(p,m) satisfy conditions (A), (B), (D), (E), (S), and (NSD).

In addition, let ξ satisfy condition (C). Then there exists a continuous, quasi-

concave, and increasing utility function U defined on Rn+ such that ξ(p,m) is the

unique maximizer of U over the set {x ∈ Rn+ : 〈p, x〉 ≤ m}.
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CHAPTER 6

ALTERNATIVE APPROACH

In this chapter, we take a different approach to the integrability problem. We

present the approach by Hadjisavvas and Penot in [8]. The authors deal with

Banach spaces in their paper. However, in order to maintain the uniformity of

our treatment, we deal with the Euclidean space Rn only. Many of the proofs in

this chapter are quite technical, therefore we will omit them.

6.1 An Interlude: The Theorem of Frobenius

The theorem of Frobenius asserts the existence of solutions for a system of PDEs.

It is a generalization of the following theorem, known from advanced calculus.

Theorem 6.1 Let F : A→ Rn, F = (f1, . . . , fn), be a C1 vector field, defined on

an open, simply connected1 subset A ⊆ Rn. Then there exists a function s : A→ R

such that ∇s(x) = F (x), x ∈ A, if and only if the Jacobian JF of F is symmetric.

1A set A ⊆ Rn is called simply connected if every simple closed curve can be contin-
uously mapped into a point in the set. Loosely speaking, if A has no “holes”.
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That is,

∂fi
∂xj

=
∂fj
∂xi

,

i, j = 1, . . . , n.

In other words, this theorem gives a condition for the system of PDEs ∇s(x) =

F (x), x ∈ A to have solution. The theorem of Frobenius treats the more general

case of a system of PDEs of the form ∇s(x) = (F (x), s(x)). We will need the

theorem in the following form.

Theorem 6.2 (Frobenius) Let K ⊆ Rn × R be open, and F : K → Rn be a C1

function. Suppose that, for all (x, t) ∈ K, the following condition is satisfied: the

matrix JxF (x, t)+ ∂F (x,t)
∂t

T
F (x, t) is symmetric. Then, for all (x̄, t̄) ∈ K, there exist

some neighborhoods U and V of x̄ and t̄, respectively, and a unique C1 function

s : U × U × V → R such that

s(x, x, t) = t

and

∇xs(x, x
′, t′) = F (x, s(x, x′, t′))

for all (x, x′, t′) ∈ U × U × V.

In the above theorem, JxF is the Jacobian of F with respect to x, and ∇xs is

the gradient of s with respect to x. The function s(x, x′, t′) is a solution of the

system ∇s(x) = F (x, s(x)), depending on x and the initial condition: If we write

s(x, x′, t′) = sx′,t′(x), then sx′,t′ is a solution of the system that satisfies the initial
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condition sx′,t′(x
′) = t′. We also have a global version of the theorem, for which

we need the notion of a starshaped set.

Definition 6.1 We say that a subset U ⊆ Rn is starshaped with respect to u ∈ U

if, for all u′ ∈ U, and t ∈ [0, 1], (1− t)u+ tu′ ∈ U.

Clearly, U is convex if and only if it is starshaped with respect to all its elements.

Theorem 6.3 Let K and F be as in the Frobenius theorem. Then, for every given

(x̄, t̄) ∈ K, there exists a greatest open set Ux̄,t̄ which is starshaped with respect to

x̄ and a unique C1 map sx̄,t̄ : Ux̄,t̄ → R such that

sx̄,t̄(x̄) = t̄

and

∇xsx̄,t̄(x) = F (x, sx̄,t̄(x))

for all x ∈ Ux̄,t̄.

6.2 Normalizations and Important Tools

Recall the Walrasian budget set: Wm(p) = {x : 〈p, x〉 ≤ m}. By Proposition 2.10,

we know that the budget set remains the same upon division of both p and m by

a constant. We use this fact and normalize Wm(p) by dividing the price vectors
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and budget by m, thus obtaining the normalized budget set :

W (p) = {x : 〈p, x〉 ≤ 1}

In the context of the above normalization, we define the following notions:

� The normalized demand correspondence

X(p) = {x ∈ W (p) : u(x) ≥ u(y),∀y ∈ W (p)}

� The budget exhaustion condition (i.e., nonsatiation): for all x ∈ X(p),

〈p, x〉 = 1

� The normalized indirect utility function

v(p) = max{u(x) : x ∈ Rn+, 〈p, x〉 ≤ 1}

As we saw in Proposition 3.2, v is nonincreasing in p, as well as quasiconvex.

Definition 6.2 We say that a set K ⊂ Rn is evenly convex if it can be written

as an intersection of open half spaces.

It is a consequence of the Hahn-Banach separation theorem that every open convex

set, as well as every closed convex set, is evenly convex. However, a set such as

A = ([−1, 1]× [−1, 1])\({1} × [0, 1]) is convex, but not evenly convex.
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Definition 6.3 We say that a function f : Rn → R is evenly quasiconvex if its

lower level sets are evenly convex. That is, for any α ∈ R, the lower level sets

{x ∈ Rn : f(x) ≤ α} are intersections of open half spaces in Rn.

The following result is classic, and establishes a duality between the utility func-

tion u and the indirect utility function v.

Proposition 6.1 Let v : Rn++ → R be evenly quasiconvex and nonincreasing.

Then v is the indirect utility function of the quasiconcave utility function u :

Rn+ → R ∪ {−∞} given by

u(x) = min{v(p) : p ∈ Rn++, 〈p, x〉 ≤ 1}

Moreover, if v has no local minimizers, then the nonsatiation condition holds.

Let x ∈ X(p) be given. As a consequence of the definitions of v and X(p), we

have the following result.

Proposition 6.2 v(p) = min{v(p′) : p′ ∈ Rn++, 〈p, x〉 ≤ 1}.

Proof. For p′ ∈ Rn++, 〈p, x〉 ≤ 1, we have x ∈ W (p), hence v(p′) ≥ u(x) = v(p).

Using the Karush-Kuhn Tucker conditions, we obtain that there exists a number

µ ≥ 0 such that

∇v(p) = −µx. (6.1)
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Furthermore, if ∇v(p) 6= 0, and the nonsatiation condition holds, then, multiply-

ing both sides of (6.1) by p, we obtain

µ = −〈∇v(p), p〉 6= 0 (6.2)

and therefore x is uniquely determined in X(p) by

x =
∇v(p)

−µ
=
∇v(p)

〈∇v(p), p〉

When we have the above situation, it is clear that µ and x could be treated as

functions of p, i.e., µ(p) = −〈∇v(p), p〉 , and x(p) = ∇v(p)
〈∇v(p),p〉 . We therefore obtain

∇v(p) = −µ(p)x(p) (6.3)

If v is twice differentiable, it follows that µ(p) is differentiable.

From (6.2), we know that µ(p) 6= 0, from which we see that x(p) = ∇v(p)
−µ(p)

is

orthogonal at p to the indifference price surface

S(p) = {p′ ∈ Rn : v(p′) = v(p)}.

From (6.3), we get

∇2v(p) = −x(p)T∇µ(p)− µ(p)Jx(p).
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Thus, or every p1, p2 ∈ x(p)⊥ = {p′ ∈ Rn : 〈p′, x(p)〉 = 0}, we obtain

〈
p2,∇2v(p)p1

〉
= −µ(p) 〈p2, Jx(p)p1〉 = −µ(p) 〈p2, Jx(p)p1〉

Similarly, 〈p1,∇2v(p)p2〉 = −µ(p) 〈p1, Jx(p)p2〉 .

We know that ∇2v(p) is symmetric, therefore 〈p2,∇2v(p)p1〉 = 〈p1,∇2v(p)p2〉 . We

deduce that Jx(p) is symmetric on the subspace x(p)⊥, provided that ∇v(p) 6= 0.

Since v(p) is quasiconvex, for all p ∈ Rn++, ∇2v(p) is positive semidefinite on

x(p)⊥. So 〈q,∇2v(p)q〉 = −µ(p) 〈q, Jx(p)q〉 for all q ∈ x(p)⊥. When ∇v(p) 6= 0,

this yields that Jx(p) is negative semidefinite on x(p)⊥.

6.3 Assumptions

We will impose the following assumptions on the function x : Rn++ → Rn+ :

(DN) Differentiability: x is C1

(BN) Budget exhaustion (nonsatiation): 〈p, x(p)〉 = 1

(SNSD) Symmetry and negative semidefiniteness: The restriction of Jx(p) to the

subspace x(p)⊥ is symmetric and negative semidefinite

Basically, our objective is to establish that the function x, having the above prop-

erties, is a demand function maximizing some utility function u : Rn+ → R∪{−∞}.

We are familiar with conditions (DN) and (BN), for they are the normalized

versions of conditions (D) and (B), respectively. Further, it is not difficult to link
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condition (SNSD) to the symmetry and negative semidefiniteness of the Slutsky

matrix. In order to see this, however, we recall John’s [13] definition of the Slutsky

matrix:

s(p) = Jx(p)− Jx(p)pTx(p) (6.4)

for all p′ ∈ Rn.

When conditions (DN), (BN), and (SNSD) hold, s(p) possesses the following prop-

erties:

� s(p) is symmetric if and only if the restriction of Jx(p) to x(p)⊥ is symmetric

� s(p) is negative semidefinite if and only if the restriction of Jx(p) to x(p)⊥

is negative semidefinite

We now present the main theorem.

Theorem 6.4 Let x : Rn++ → Rn+ be a function satisfying conditions (BN), (DN),

and (SNSD). Then there exists a quasiconcave and upper semicontinuous utility

function u : Rn+ → R such that the nonsatiation condition holds, and, for all

p ∈ Rn++, the normalized demand set X(p) associated to u is {x(p)}. Moreover,

the associated indirect utility function v is real-valued, differentiable, decreasing

along rays, nonincreasing, and pseudoconvex.

To prove the theorem, we present some notions and decompose the commodity

and price spaces in a specific manner.
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6.4 A Decomposition of Rn

Let e ∈ Rn++ be the unit vector

e =
1√
n

(1, . . . , 1)

and Q be the subspace

Q = e⊥ = {(x1, . . . , xn) ∈ Rn :
n∑
i=1

xi = 0}.

Then Rn can be written as

Rn = Q⊕ Re.

Using this decomposition, we can express every vector x ∈ Rn as x = y+ te, with

y ∈ Q and t ∈ R. For simplicity, we write x = (y, t). In this way, if x(p) is the

demand function, we express p as p = (q, r) and x(p) as

x(p) = x(q, r) = (a(q, r), b(q, r)) = (a(p), b(p)) ∈ Q× R.

Observe that the component b(p) > 0, since b(p) = 〈e, x(p)〉 > 0 due to the budget

exhaustion condition (BN).
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6.5 Recovering the Utility Function u

Our method for recovering the utility function u will involve the indirect utility

function v. Essentially, we will first construct v, and then apply Proposition 6.1

to recover u. The procedure for doing so is as follows. Say we start with the price

vector p0 = (q0, r0) ∈ Rn++. We first determine the indifference price surface S(p0)

as the graph of a C1 function s : Q0 → R, where Q0 ⊂ Q is open. We show

that 0 ∈ Q0, so that the ray (0,∞)e intersects the graph of s. By prescribing

a given value to v on (0,∞)e, it is thus possible to define v on the graph of s,

and ultimately on the whole space Rn++. The uniqueness of v will follow from the

uniqueness of the solution s.

We show that this function v has good properties, and defines a utility function

u for which x(·) is the demand function.

6.5.1 Construction of v

If v exists and is C1, then ∇v(p) = −µ(p)x(p) should hold, and x(p) should be

orthogonal to the graph of s at the point p = (q, s(q)), q ∈ Q0. But x(p) =

x(q, s(q)) = (a(q, s(q)), b(q, s(q)), thus it is then natural to seek s as a solution of

the total differential equation

∇s(q) = −a(q, s(q))

b(q, s(q))
, (6.5)

with s(q0) = r0.
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In order to proceed with the proof, we define

r(q) = inf{t ∈ R : q + te ∈ Rn++}.

We also define the open convex cone K by

K = {(q, r) ∈ Q× R : q + re ∈ Rn++} = {(q, r) ∈ Q× R : r > r(q)}

and the map F : K → Q by

F (q, r) = −a(q, r)

b(q, r)
.

A calculation shows that the symmetry condition (SNSD) implies the symme-

try requirement of the Frobenius Theorem; consequently, (6.5) is locally solvable

around any point (q0, r0) ∈ Rn++, and we obtain the following result.

Proposition 6.3 For every p0 = q0 + r0e ∈ Rn++, (6.5) has a unique solution in

a neighborhood of p0.

From now on, we mean by a solution of (6.5) the uniquely defined solution s with

greatest starshaped domain with respect to q0, according to Theorem 6.3.

Proposition 6.4 If s : U → R is the solution to (6.5) with initial condition

(q0, r0) ∈ K, with largest starshaped domain with respect to q0, then 0 ∈ U.

Given (q, r) ∈ Rn++, we denote by sq,r(·) the solution to (6.5) issued from (q0, r0) :=

73



(q, r). Since F is C1, it follows that s is C1. By Proposition (6.4), sq,r(0) is defined

for all (q, r) ∈ Rn++.

Given a smooth decreasing function h : (0,∞) → R satisfying h′(t) < 0 for all

t ∈ (0,∞), and given p = q + re ∈ Rn++, we set

v(p) = h(sq,r(0)). (6.6)

Since, s0,r(0) = r, for all r > 0 by construction, we get v(re) = h(r) for all r > 0.

The C1 function v thus defined is constant on the graph of sq,r(·), since for all

q′ in U, setting sq,r(q
′) = r′ yields sq′,r′(q

′) = r′ = sq,r(q
′). Thus, by uniqueness,

sq′,r′(0) = sq,r(0).

Obviously, because h was arbitrarily chosen, v is not uniquely defined, even though

s is. However, once the values of v along (0,∞)e are assigned, v is uniquely

determined.

6.5.2 Some Properties of v

Because v is constant on the graph of s, and because sq,r(q) = r for every (q, r) ∈

K, we have

∇qv(q, r) +
∂v(q, r)

∂r
∇qsq,r(q) = 0

or

∇qv(q, r)− ∂v(q, r)

∂r

a(q, r)

b(q, r)
= 0.
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Setting

µ(q, r) = −
∂v(q,r)
∂r

b(q, r)
,

it follows that (∇qv(q, r), ∂v(q,r)
∂r

) = −µ(q, r)(a(q, r), b(q, r)) or

∇v(p) = −µ(p)x(p). (6.7)

Since the nonsatiation condition holds 〈p, x(p)〉 = 1, we obtain

µ(p) = −〈p,∇v(p)〉 .

One can show the following result.

Lemma 6.1 For all p ∈ Rn++, one has ∇v(p) 6= 0, µ(p) > 0, and in fact

〈e,∇v(p)〉 < 0.

We now recall some notions of generalized convexity.

Definition 6.4 A C1 function f : U → R, where U ⊆ Rn is open and convex,

is said to be pseudoconvex if, for all u, v ∈ U, one has f(v) ≥ f(u) whenever

〈∇f(u), (v − u)〉 ≥ 0.

Definition 6.5 An operator T : U → Rn is said to be pseudomonotone if, for

every p′, p′′ ∈ U, one has 〈Tp′, p′ − p〉 ≥ 0 whenever 〈Tp, p′ − p〉 ≥ 0.

The following characterization is well-known.
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Proposition 6.5 A function f is pseudoconvex if and only if ∇f is pseudomono-

tone.

The following result is due to John [13].

Proposition 6.6 If conditions (BN), (DN), and (SNSD) hold, then −x(·) is

pseudomonotone.

We are now ready to prove Theorem 6.4.

Proof. We define v by the construction (6.6). v in this case is real-valued,

(6.7) holds, µ(p) > 0 for all p ∈ Rn++, and −x(·) is pseudomonotone. The op-

erator ∇v(·) = −µ(·)x(·) is therefore pseudomonotone. By Proposition 6.5, v is

pseudoconvex.

Now, for all p′, p′′ ∈ Rn++,

〈p′,∇v(p)〉 = −µ(p) 〈p′, x(p)〉 < 0,

since −µ(p) < 0 and 〈p′, x(p)〉 > 0. The map t 7−→ v(p + tp′) is decreasing and

v(p+ p′) < v(p). In particular, v is decreasing along rays. If, moreover, p ∈ Rn++,

p′ ∈ Rn+, taking a sequence {p′n} ⊆ Rn++, with p′n → p′, we get v(p + p′) ≤ v(p)

since v is continuous and is of class C1.

We now define u : Rn+ → R ∪ {−∞} as

u(x) = inf{v(p) : p ∈ Rn++, 〈p, x〉 ≤ 1}. (6.8)

By Proposition 6.1, v is the indirect utility function associated with u, i.e., for all
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p ∈ Rn++,

v(p) = max{u(x) : x ∈ Rn+, 〈p, x〉 ≤ 1}. (6.9)

We now show that, given p ∈ Rn++, u(x(p)) = v(p). Since 〈p, x(p)〉 = 1, we get

that x(p) is a maximizer of u on W (p), i.e., x(p) ∈ X(p).

Further, for all p′ ∈ Rn++ satisfying 〈p′, x(p)〉 ≤ 1, we have 〈p′ − p, x(p)〉 ≤ 0.

Thus,

〈p′ − p,∇v(p)〉 = −µ(p) 〈p′ − p, x(p)〉 ≥ 0.

Now, v is pseudoconvex, so we get v(p′) ≥ v(p). (6.8) then shows u(x(p)) ≥ v(p),

and, since the reverse inequality holds because v satisfies (6.9) and x(p) ∈ W (p),

we have

u(x(p)) = v(p).

Since v is pseudoconvex, it is also quasiconvex. Moreover, it is continuous and

decreasing along rays, thus Proposition 6.1 shows that the nonsatiation condi-

tion holds. It follows by ([19], Lemma 1) that, since v is continuous, then u is

uppersemicontinuous.

Now if x′ ∈ X(p), then v(p) = u(x′), thus by (6.8),

v(p) = min{v(p′) : p′ ∈ Rn++, 〈p′, x′〉 ≤ 1},

i.e., p is a minimizer of v subject to 〈p, x′〉 ≤ 1. Since v is smooth, there exists

a number λ ≥ 0 such that ∇v(p) = −λx′. Here, we use the fact that x′ 6= 0 by
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the nonsatiation. Finally, using the facts ∇v(p) = −µ(p)x(p), ∇v(p) = −λx′, and

〈p, x′〉 = 〈p, x(p)〉 = 1, we deduce that x′ = x(p), i.e., that X(p) = {x(p)}.

Example 6.5 Consider the commodity bundles space Rn+, and the price space

Rn++. Take e = 1√
n
(1, 1, . . . , 1) ∈ Rn. It is easy to check that

x(p) =
e

〈e, p〉

p ∈ Rn++, is a demand map satisfying conditions (DN), (BN), and (SNSD). We

also have

x(p) = x(q, r) = (a(q, r), b(q, r)) = (0,
1

〈p, e〉
).

Thus, the solution to (6.5) is s(·, q, r) = r. Taking h(r) = 1
r

for r ∈ (0,∞), we get

v(p) = 1
〈p,e〉 . It can be shown, moreover, that the utility function u recovered from v

is given by u(x) = max{t ∈ R+ : te ≤ x}, x ∈ Rn+. This yields: u(x1, x2, . . . , xn) =

√
nmin(x1, x2, . . . , xn), which is a nonsmooth utility function. In fact, for all

p ∈ Rn++, we have u(x(p)) = 1
〈p,e〉 , and if u(x) > 1

〈p,e〉 , we have xi >
ci
〈p,e〉 for all

i = 1, 2, . . . , n, thus 〈p, x〉 > (p1 + . . .+ pn)/ 〈p, e〉 = 1 and x /∈ W (p).

So for all x ∈ W (p), we have u(x) ≤ 1
〈p,e〉 and v(p) = 1

〈p,e〉 .

This is the famous Leontieff function.
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CONCLUSION

There are various approaches to study and understand the integrability problem,

from which we presented two. We discussed conditions under which the problem

has a solution, as was proposed by Hurwicz and Uzawa. But as it turned out,

their constrcution of the utility function contained a shortcoming, which Jackson

later remedied. We then explored the approach by Hadjisavvas and Penot. The

authors, albeit utilized theorems similar to those used by Hurwicz and Uzawa,

took a radically different approach to the problem and succeeded in recovering

a utility function in a Banach space setting. To maintain the uniformity of the

discussion, however, we restricted the treatment to the Euclidean space Rn only.

The significance of the integrability problem in mathematical economics stems

from the fact that knowing the preferences and tastes of consumers enables pro-

ducers to allocate their resources efficiently and therefore to maximize their profit.

This, in addition to maximizing the utility of consumers, yield an overall improved

economy.
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