

iii

© Baligh Al-Helali

2016

iv

Dedication

To my son Mohammed and my daughter Buthaina

v

ACKNOWLEDGMENTS

First I would like to thank almighty Allah for giving me the ability and the strength to

work on and complete this thesis.

I would like to give my sincere appreciation to my advisor Prof. Sabri Mahmoud for all

the hard work he has put in this work, and for the guidance and encouragement he

provided throughout this research. Prof. Sabri has been a mentor, teacher and a father. I

feel very lucky to have had Prof. Sabri as my thesis supervisor. I would also like to thank

Prof. Sabri for helping me in my future endeavors. I would also like to thank the

committee members, Prof. Radwan Abdel-aal and Dr. Wasfi Al-khatib, for dedicating

time out of their busy schedule for this work and providing their feedback.

I am grateful to KFUPM for providing support for all these years. I would also like to

sincerely thank and appreciate my home institution, Ibb university-Yemen, which donors

me a scholarship to continue my graduate studies abroad.

I also acknowledge the support provided by King Abdul-Aziz City for Science and

Technology (KACST) through the Science & Technology Unit at King Fahd University

of Petroleum & Minerals (KFUPM) for supporting this work through project no. 11-

INF2153-04 as part of the National Science, Technology and Innovation Plan.

I would like to express thanks to my parents, without them I would never be here, and

they sacrificed so much to give me a better life. I’m thankful for my wife, for her

patience and love. I appreciate my brothers and sisters for supporting me in pursuing my

interests.

vi

I would also like to thank all of my previous teachers, as their valuable work has laid the

foundation for this work. I would like to thank all my friends and colleagues for their

encouragement and moral support.

Last, but not least, there are many others who have been supportive of my efforts, I

extend my deepest thanks to them all.

vii

TABLE OF CONTENTS

ACKNOWLEDGMENTS .. V

TABLE OF CONTENTS .. VII

LIST OF TABLES.. X

LIST OF FIGURES ... XII

LIST OF ABBREVIATIONS .. XIV

ABSTRACT ... XV

الرسالة ملخص ... XVII

 CHAPTER 1 INTRODUCTION .. 1

1.1 Characteristics and Challenges of Arabic Online Text .. 2

1.2 Arabic Online Text Recognition Model ... 13

1.3 Motivation ... 17

1.4 Thesis Objectives and Outcomes .. 17

1.5 Thesis Organization ... 19

 CHAPTER 2 LITERATURE REVIEW ... 20

2.1 Arabic Online Datasets.. 20

2.2 Preprocessing Approaches .. 25

2.3 Segmentation Approaches .. 36

2.4 Feature Extraction Approaches .. 44

2.5 Classification Approaches ... 51

viii

2.5.1 Non-Cursive Text Recognition .. 52

2.5.2 Cursive Text Recognition .. 60

2.6 Post-Processing ... 74

 CHAPTER 3 A STATISTICAL FRAMEWORK FOR ONLINE ARABIC

CHARACTER RECOGNITION .. 76

3.1 The Proposed Framework ... 77

3.2 Delayed Strokes Handling ... 79

3.3 Pre-Processing ... 82

3.4 Feature Extraction ... 86

3.5 Classification.. 89

3.6 Experimental Results .. 91

 CHAPTER 4 ARABIC ONLINE HANDWRITTEN TEXT RECOGNITION102

4.1 Cursive Input Pre-Processing .. 102

4.2 Classification.. 106

4.2.1 HMM ... 106

4.2.2 Dynamic Bayesian network (DBN) ... 108

4.2.3 Segmentation-based Cursive Text Recognition ... 110

4.2.4 DBN-based Hierarchical HMMs (HHMMs) ... 112

4.2.5 Segmentation-free Cursive Text Recognition Using HMM-HTK. ... 114

4.3 Experimental Results .. 115

 CHAPTER 5 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS123

5.1 Conclusions.. 123

5.2 Future Research Directions ... 125

 APPENDICES ...127

ix

Appendix A. Database details, transliteration of Arabic letters ... 127

Appendix B. Statistical Framework GUI Guide... 130

Appendix C. Statistical Feature Extraction ... 137

Appendix D. Character Recognition Detailed Results.. 140

Appendix E. Cursive Text Recognition Detailed Results .. 154

REFERENCES ...157

VITAE ..169

x

LIST OF TABLES

Table 1.1 Arabic alphabet. ... 3

Table 2.1 Summary of some online Arabic text databases ... 25

Table 2.2 Summary of pre-processing in some AOTR studies ... 35

Table 2.3 Summary of segmentation methods for online Arabic text. 43

Table 2.4 A summary of the features used in some AOTR studies. 49

Table 2.5 Summary of non-cursive AOTR .. 59

Table 2.6 Summary of cursive AOTR .. 71

Table 3.1 Statistics of Online-KHATT segmented characters. ... 92

Table 3.2. Some results of basic shapes classification using the validation set. 93

Table 3.3 Confusion Matrix of the tested data. .. 101

Table 4.1 Results of using some statistical features for cursive text recognition on

Online-KHATT database.. 115

Table 4.2 Results of using PCA statistical features for cursive text recognition on

Online-KHATT database.. 116

Table 4.3. Some recognition results on Online-KHATT text lines using HTK with

different statistical features. ... 119

Table 6.1 Statistics of Online-KHATT database ... 127

Table 6.2: Transliteration codes for Online-KHATT database [125]. 129

Table 6.3 Mappings Relate Characters, Models, and Secondary Objects. 132

Table 6.4 Mappings Relate Delayed Strokes Models and Secondary Objects. 132

Table 6.5 List of extracted statistical features. ... 137

Table 6.6. Some results on annotated Basic Shapes classifier: All_100_30_100_30. 141

Table 6.7 Basic Shapes Confusion Matrix: All_100_30_100_30. 141

Table 6.8 Basic Shapes Confusion Matrix: All_70_15_70_15. .. 143

Table 6.9 Basic Shapes Confusion Matrix: All_100_30_inf_inf. 144

Table 6.10 Basic Shapes Confusion Matrix: All_70_15_inf_inf. 146

Table 6.11 Basic Shapes Confusion Matrix: All_40_10_inf_inf. 147

Table 6.12 Results on annotated Positional-Based Basic Shapes classifiers. 149

Table 6.13 Best results of positional classifiers on annotated balanced samples. 150

Table 6.14 Confusion matrix of I-position characters classification. 150

Table 6.15 Confusion matrix of B-position characters classification. 151

Table 6.16 Confusion matrix of M-position characters classification. 151

Table 6.17 Confusion matrix of E-position characters classification. 152

Table 6.18 Results on delayed strokes classification. .. 153

Table 6.19 Results of using some statistical features for cursive text recognition on

ADAB database. .. 154

xi

Table 6.20 Results of using PCA statistical features for cursive text recognition on

ADAB database. .. 155

Table 6.21 Results of using PCA statistical features for cursive text recognition on

Online-KHATT Lines. .. 155

xii

LIST OF FIGURES

Figure 1.1 Ligature examples. ... 4

Figure 1.2 Difficulties in addressing the dots... 6

Figure 1.3 Main and secondary (delayed) strokes. .. 6

Figure 1.4 SEEN letter handwritten in different non-uniform writing styles....................... 6

Figure 1.5 Online internal discontinuity with (a) visual discontinuity, and (b) visual

continuity (in two strokes) .. 9

Figure 1.6 Discontinuity in a PAW written in Naskh style. .. 9

Figure 1.7 Connectivity difficulties. ... 9

Figure 1.8 Handwriting variability. ... 10

Figure 1.9 Variability in the number of strokes. .. 12

Figure 1.10 The same word written with a different stroke order. 12

Figure 1.11 Handwriting movement variations.. 12

Figure 1.12 Using the beginning form of the letter “Haa” هـ in the isolated and end

positions.. 12

Figure 1.13 Text recognition capabilities. .. 15

Figure 1.14 The general model of online text recognition, adapted from [2] 16

Figure 2.1 Example of detected baseline correction (green) [32] 30

Figure 2.2 Detection of the curvilinear velocity extremum points [100] 39

Figure 2.3 Topological characteristics used in the detection of specific points (above)

and grapheme segmentation (below) [33].. 39

Figure 2.4 An ambiguity that is caused when delayed strokes are removed 74

Figure 3.1 The proposed framework for character recognition... 78

Figure 3.2 Examples internal discontinuity. ... 80

Figure 3.3 Examples of delayed strokes larger than main strokes. 83

Figure 3.4 Internal discontinuity handling. .. 85

Figure 3.5 Freeman Chain Code. .. 88

Figure 3.6 Statistical Directional feature extraction. ... 88

Figure 3.7 Characters with similar basic shapes but different delayed strokes. 96

Figure 3.8 Examples of segmentation-based intra-errors. ... 97

Figure 3.9 Examples of segmentation-based inter-errors. ... 98

Figure 3.10 Examples of errors originated from writing distortion. 98

Figure 3.11 Example of confusions caused from the segmentation. 100

Figure 4.1 Preprocessing operations outputs. ... 104

Figure 4.2 Histogram-based baseline detection on a skewed text. 105

Figure 4.3 EM-based baseline detection on a skewed text. ... 105

Figure 4.4 Initial set of secondary strokes, correct (circle), incorrect (rectangle). 105

Figure 4.5 Simple HMM Bakis model with five states [128]. .. 107

Figure 4.6 A DBN representation of HMM [126]. .. 109

file:///E:/KFUPM/152/Writing/Thesis/My%20Modf%20Template/MyThesis_Lib_Modf_2.docx%23_Toc451418372

xiii

Figure 4.7 Segmentation-based Cursive Text Recognition Approach (adopted from

[130]) .. 111

Figure 4.8 A DBN for modelling a PAW. .. 113

Figure 4.9 DBN-HHMM modeling the PAW لما" " (LMA). .. 113

Figure 4.10 Architecture of a cursive online text HMM-based Recogniser. 114

Figure 4.11 Samples of Online-KHATT PAWs. ... 118

Figure 4.12 Samples of the Online-KHATT lines. .. 122

Figure 6.1 Samples of text from Online-KHATT. ... 128

Figure 6.2 Preparing GUI. ... 131

Figure 6.3 A gui for Statistical Character Recognizer. .. 136

Figure 6.4 Samples of ADAB PAWs. .. 156

xiv

LIST OF ABBREVIATIONS

OCR : Optical Character Recognition

AOTR : Arabic Online Text Recognition

PAW : Part of Arabic Word

HMM : Hidden Markov Model

DBN : Dynamic Bayesian Network

ANN : Artificial Neural Network

KNN : K-Nearest Neighbor

TM : Template Matching

DT : Decision Tree

GMM : Gaussian Mixture Model

CRR : Character Recognition Rate

WRR : Word Recognition Rate

WI : Writer Independent

WD : Writer Dependent

xv

ABSTRACT

Full Name : [Baligh Mohammed Ahmed Al-Helali]

Thesis Title : [Online Arabic Text Recognition Using Statistical Techniques]

Major Field : [Computer Sciences]

Date of Degree : [April 2016]

The widespread use of pen-based hand-held devices, such as PDAs, smart phones, and

tablets, has increased the demand for online text recognition systems. This technology

has great potential in markets that involve friendly learning environments, business

applications, education and more.

The purpose of this thesis is to conduct research on Arabic online text recognition. This

implies addressing the different phases of text recognition systems. In particular, the main

focus is on using statistical features and techniques. We investigate the applicability of

statistical-based techniques to Arabic online text recognition.

In this thesis, we present a comprehensive survey of the related work. We then develop

recognition prototypes for both non-cursive and cursive online Arabic text recognition.

We present several novel techniques for the different phases of online Arabic text

recognition using statistical approach. One of the contributions of this research is the

methodology of handling the delayed strokes. The delayed strokes are handled at the

different phases of the recognition process differently to improve the overall

performance. Another contribution is the intensive investigation of several novel

statistical features using a developed framework for generating different statistical

features. The framework consists of two main components. The first one is to extract the

xvi

point-based features (local features). A statistical layer is then added to form statistical

features. Moreover, the used dataset is extracted from a database of unconstrained online

cursive text. Using such dataset implies the need of addressing additional difficulties such

as connectivity, variability, and delayed strokes challenges.

The results of the proposed statistical techniques are presented and analyzed. These

techniques are applied to the recognition of Arabic online segmented characters, parts of

words and text. In addition, the presented techniques may be utilized in many areas of

scientific research such as writer identification/verification, forensic handwriting

analysis, and signature verification systems. Finally, the thesis ends with summarizing the

conclusions of our work and the future directions.

xvii

 ملخص الرسالة

 احمد الهلاليمحمـد بليغ :الاسم الكامل

 حصائيةتقنيات االعربية بإستخدام نيةالآالتعرف على الكتابة :عنوان الرسالة

 علوم الحاسب الآلي التخصص:

 2016نيسان :تاريخ الدرجة العلمية

التعرف على انظمة الانتشار الواسع لاجهزة اللمس والادوات التي تدعم الكتابة الالكترونية بالقلم او باليد من الطلب زاد
 و التطييقات التجارية و غيرها. التعليم الذهكيات ذه التقيية تطييقات مهمة من مميها بي ان لهنية. على الكتابة الآ

هذها اليحث المراحل المختلفة من يتضمن . لتعرف على الكتابة الأنية العربيةالرسالة اجراء بحث علمي ل الغرض من هذه ان
سيكون على التقييات الاحصائية و قابليتها للتطييق على تركيزمزيد من العلى وجه الخصوص, نظم التعرف على اليصوص.

 .نية العربيةالتعرف على الكتابة الآ

ً بتطوير العديد من الأساليب كما بمسح شامل للدراسات السابقة. في هذه الرسالةقميا ستخدامها في المراحل لا قميا أيضا
اليقاط و الهمزات اسهامات هذه الرسالة هو الطريقة المطورة للتعامل مع ىاحد .نية العربيةالآ الكتابةالمختلفة للتعرف على

خذهها بالاعتيار في ختتل المراحل من اجل حسسن الاداء الامااي.. باوذلك "كتابة المتأخرةالو ما في حكمها والتي تسمى "
الاولى لاستخراج المميزات المحلية ,مرحلتن كون من المو لاختيار المكف للعديد من المميزات الاحصائية اجدديدة با وقد قميا

هي من قاعدة بيانات كتابة عربية آنية ييانات المستخدمة د من الاحصائيات عليها. كذهلك فإن الوالفانية لحساب العدي
 امافية مفل الترابط و التغاير و صعوبات اليقاط و علامات الترقيم. بدون قيود مما يعني الحاجة للتعامل مع صعوبات

وف المقسمة واجزاء الكلمات حسليلها بعد تطييقها على مستوى الحر نتائج التقييات والطرق المقترحة و تم عرض هذها وقد
التحقق من الكاتب و عرف العديد من المجالات مفل التفي الطرق المقدمة يمكن استخدام اليصوص المكتوبة. امافة الى ذلكو

انظمة التحقق من التوقيع. اخيراً تختتم هذه الرسالة بتلخيص الاستيتاجات من لتقصي اجديائي للكتابة اليدوية و اوالتحليل و
 كذهلك اتجاهات اليحث المستقيلية.عمليا هذها و

1

1 CHAPTER 1

INTRODUCTION

Arabic Online Text Recognition (AOTR) is an active research area that has potential

markets in friendly learning environments, business applications, education and more.

These applications are facilitated by the widespread use of pen-based hand-held devices,

such as PDAs, smart phones, and tablet-PC’s.

In the mid-1970s, digitizer tablets became available in which analog-to-digital conversion

techniques were employed [1]. With these tablets, it was possible to track the pen tip. A

number of technologies became available for writing pads or tablets that are based on

electronic, electromagnetic, electrostatic or pressure sensitive devices. Handwriting in

such devices is called online text, and the corresponding technologies facilitate the

capture of the dynamic or temporal information of the handwriting. The main component

of online writing is the stroke, which is the writing trajectory from pen down to pen up.

Online devices represent each stroke as a one-dimensional, ordered vector of (x, y)

coordinates of points.

In this chapter, we present the characteristics and challenges of Arabic online text, a

general model for online text recognition systems highlighting their main phases, and the

motivation, objectives and outcomes of our work.

2

1.1 Characteristics and Challenges of Arabic Online Text

In this section, we present the characteristics and challenges of AOTR and more details

can be found in [2], [3].

Arabic characters, in addition to being used in Arabic, are used in Kurdish, Persian,

Pashto and Urdu. The Arabic alphabet has 28 or 29 letters (the basic 28 plus the Hamza-

on-the-line letter constructed from the Hamza letter form). In these counts, the Hamza

letter marks are considered to be diacritical. Some researchers add other characters to

form 40 Arabic letters (viz. the basic 28, Alif-Maqsura, Ta-Marbuta, four Lam-Alif

ligatures, and six Hamza letters) [4].

Arabic script is cursive in nature, as most Arabic letters are connected to their

neighboring letters. Arabic letters can be written using two to four shapes depending on

their position, as shown in Table 1.1. Note that characters with two forms have their

initial and middle forms similar to the other forms, and their corresponding cell in the

table is thus left blank, e.g., Alif “ A letter is said to be isolated if .”و“ and Waw ,”ز“ Za ,”أ

it is not connected from the left or from the right. Its position is middle if it is connected

from both sides. It is in the beginning (end) form when it is connected only from the left

(right). The set of connected letters is a sub-word, which is called a Part of Arabic Word

(PAW). Arabic script is written from right to left. Although there is some overlap with

Arabic off-line text recognition, it is harder to perform online text recognition because the

writing in online devices is less controlled than a pen on paper. A PAW can be an

isolated letter or a written script that begins with a beginning-shaped letter and ends with

an end-shaped letter.

3

At certain positions of a word, some overlapping (horizontally or vertically) Arabic

letters are represented by ligatures. In Arabic typing, the ligatures depend on the font.

The ligatures are more challenging in Arabic handwriting because the writer might not be

consistent in writing the ligatures (i.e., the same set of letters can be represented as a

ligature or as a string of non-overlapping characters by the same writer at different parts

of the handwritten text). Examples of some of the ligatures are shown in Figure 1.1.

Table 1.1 Arabic alphabet.

Character Isolated Initial Middle Final Character Isolated Initial Middle Final

Alif ـا ا Dhad ـض ـضـ ضـ ض

Ba ـب ـبـ بـ ب Taa ـط ـطـ طـ ط

Ta ـت ـتـ تـ ت Dha ـظ ـظـ ظـ ظ

Tha ـث ـتـ ثـ ث Ayn ـع ـعـ عـ ع

Jeem ـج ـجـ جـ ج Ghain ـغ ـغـ غـ غ

Ha ـح ـحـ حـ ح Fa ـف ـفـ فـ ف

Kha ـخ ـخـ خـ خ Qaf ـق ـقـ قـ ق

Dal ـد د Kaf ـك ـكـ كـ ك

The ـذ ذ Lam ـل ـلـ لـ ل

Ra ـر ر Meem ـم ـمـ مـ م

Za ـز ز Noon ـن ـنـ نـ ن

Seen ـس ـسـ سـ س He ـه ـهـ هـ ه

Sheen ـش ـشـ شـ ش Waw ـو و

Sad ـص ـصـ صـ ص Ya ـي ـيـ يـ ي

4

a)

b)

c)

Figure 1.1 Ligature examples.

5

Arabic text contains special symbols, such as dots and diacritics that are used as

secondary units to complete the meaning of the main text. Some Arabic letters have dots

above or below their basic shape. Diacritics are used in Arabic to resolve linguistic

ambiguities in the text. Arabic letters that have similar basic shapes are distinguished

from one another by the number of dots and their positions. It is common in Arabic

handwriting to ignore the diacritics. In some handwriting, the dots are not carefully

written, and the words are recognized from the context. Two dots can be written as a

small horizontal stroke, and three dots can be written as a hat shape, as shown in

Figure 1.2. Variations in the handwriting of these units can result from the stroke size,

number, order, location, shape, or writing direction, as shown in Figure 1.2. The diacritics

are written above or below the main text. Dots and diacritics can be a source of

confusions, particularly with unconstrained natural Arabic handwriting. These objects are

typically called secondary components and are normally handled as delayed strokes, as

shown in Figure 1.3. Such strokes are called “delayed” as they are normally written after

completing the strokes that represent the main body of the online text.

Arabic script can include digits and punctuation marks, which can lead to some confusion

(e.g., a zero (.) vs. a full stop mark (.), the digit one (1) vs. the letter Alif (,In addition .)(ا

Arabic numbers are written from left to write, whereas the characters are written from

right to left.

Arabic has different writing styles. In general, the main styles are Naskh, Ruqqah and

several others, notably Thuluth, Kofi, and Diwani, which are used for decorative

calligraphy. In general, writers do not follow handwritten style rules, which increases

recognition difficulty, as shown in Figure 1.4.

6

a) Misleading dot locations

 b) Two dots in different shapes

c) Hat shape of

three dots.

Figure 1.2 Difficulties in addressing the dots.

 a) The whole input
 b) Main strokes

c) Secondary strokes

Figure 1.3 Main and secondary (delayed) strokes.

Figure 1.4 SEEN letter handwritten in different non-uniform writing styles

7

The connectivity of the handwritten text can lead to several difficulties, such as the

presence of internal discontinuity and external connectivity. Internal discontinuity is a cut

in the writing trajectory of a handwritten input that is expected to be represented by a

connected component. An online internal discontinuity is different from an offline

handwriting internal discontinuity in terms of defining the writing component. An offline

writing component is spatially connected, whereas a stroke connects online components.

An offline discontinuity is caused by spatial gaps in the input trajectory. This type of

discontinuity may exist in a connected online writing component (a single stroke). An

online internal discontinuity occurs when more than one stroke is used to write a

handwritten input that is expected to be represented by a single stroke. Some writers

might move their hands up while writing one component. An online internal discontinuity

can result in a visual discontinuity, as shown in Figure 1.5.a (where the letter consists of

two strokes instead of one), whereas it is visually connected in Figure 1.5.b.

Internal discontinuity is more problematic in systems that assume that PAWs will be

represented by connected components. For example, the middle forms of some letters

(e.g., "ح") are difficult to draw without lifting the pen when using the Naskh style, as

shown in Figure 1.6.

8

External connectivity can be a source of several difficulties. The separation between

consecutive units might not be clear. These units can be strokes in the online case or

letters, PAWs, or words in the offline text. External connectivity is apparent when

consecutive units are touching, as shown in Figure 1.7.a. Online connectivity depends on

the recording process of the number of strokes, input order and writing time. Online

touching occurs when consecutive units are handwritten in one stroke when they should

be represented by separate strokes, as shown in Figure 1.7.b, in which the letter ALEF is

connected to the next letter when writing "إلا". Another difficulty occurs when the

trajectories of different units overlap with regard to the x-axis, as shown in Figure 1.7.c.

The acquired input might contain some variations that originate with the handwriting

process. Most of the variations are spatial in nature, such as different character shapes

and alignments, handwriting drifts, skews, slants, hooks, and curvatures. Figure 1.8

shows examples of geometric and visual variations.

9

Figure 1.5 Online internal discontinuity with (a) visual discontinuity, and (b) visual continuity (in two strokes)

Figure 1.6 Discontinuity in a PAW written in Naskh style.

a) Offline touching

b) Online touching c) Overlapping

Figure 1.7 Connectivity difficulties.

10

a) Geometric variations in GEEM

b) Variability in the loop shape.

Figure 1.8 Handwriting variability.

11

The variations can originate from the online-based characteristics, such as the number of

strokes, the order of strokes, and the writing direction. The same unit can be handwritten

with a different number of strokes as a result of the handwriting style adopted, as shown

in Figure 1.9.a, or because emphasized strokes were added, as shown in Figure 1.9.b. The

strokes that represent the handwritten text can be input in various orders, as shown in

Figure 1.10. The variations may result from the direction of the pen movement when

drawing strokes, as shown in Figure 1.11.

Although these variations are common among different writers, online text styles can also

vary with the same writer, which might result from writing conditions, the writer’s mood,

familiarity with software or hardware, or other factors. Moreover, some writers have their

own handwriting style. For example, the beginning form of the letter “Haa” هـ is used in

the isolated and end positions, although this type of usage is relatively unusual, as shown

in Figure 1.12.

12

a) The letter Kaf with a different number of strokes

b) Over-tracing [5]

Figure 1.9 Variability in the number of strokes.

Figure 1.10 The same word written with a different stroke order.

a) Digit writing directions in [5]

b) Different writings of MEEM [6]

Figure 1.11 Handwriting movement variations.

Figure 1.12 Using the beginning form of the letter “Haa” هـ in the isolated and end positions.

13

There are several challenges in addressing online Arabic text recognition, which can be

classified into three main categories: general issues, Arabic-text-specific issues, and

Arabic-handwriting-specific issues [7]. The general issues are those that Arabic shares in

common with the online recognition systems of other languages, such as the hardware

devices, data availability, linguistic problems, presence of noise in the input and some

non-character objects. Arabic-text-specific issues refers to the challenges that arise from

the nature and characteristics of Arabic text, such as its cursive nature, ligatures, delayed

strokes, stylistic variations (corresponding to fonts in printed text), and the presence of

dots and diacritics and different writing forms, to name a few. Some of the difficulties

result from the variability in personal writing styles, size, direction, slant, separating

spaces, and cut text. The personal factors that affect online text writing include

idiosyncrasies such as the writer’s handedness. Right- and left-handed people may use

different directions and positions when writing. Situational factors depend on the

presentation of the handwriting, which might have been executed in haste or under duress

[8], [9]. The material factors are based on the device used, which might cause

comfort/discomfort to the writer and lead to handwriting variations, such as the size of

the writing board, inaccuracies of the pen-down indication, and features of the device that

might limit its accuracy [1], [8]. More details regarding the problems of writing on pen-

based devices in online handwriting recognition systems can be found in [10].

1.2 Arabic Online Text Recognition Model

Text recognition systems can be categorized as online and offline, based on input. Online

input is handwritten in nature, whereas offline input can be handwritten or machine

printed. Printed text can be single font or Omni-font, depending on the font restrictions.

14

Text recognition systems are classified based on the input text connectivity into isolated

characters and cursive text. The different capabilities of text recognition systems are

illustrated in Figure 1.13.

Handwriting recognition is also categorized into writer-dependent and writer-independent

systems. The main difference is that the writers of the testing dataset in writer-

independent systems are disjoint from those writing the training data. Constrained

handwriting refers to handwritten text that conforms to predefined writing rules, such as

untouched, discrete-spaced characters, base-lined and aligned texts. Typically,

unconstrained handwriting refers to cursive or mixed cursive handwriting script without

restrictions on the writing. Dealing with constrained handwriting is easier, but it is not

realistic for Arabic cursive text. Unconstrained handwriting is a more challenging

problem. In general, research data is collected for use in experimental setups rather than

being collected from daily life applications, which makes the data less natural, even if it

is unconstrained.

Online text recognition employs a general model that is similar to that used for offline

text recognition, as shown in Figure 1.14. The input is acquired from a pen-based device,

which may require preprocessing. The online text may then be segmented into smaller

units (e.g., strokes into letters or graphemes). Then, features are extracted to build the

classification models in the training phase and to recognize the input by a trained

classifier in the testing phase. Finally, the recognition results can be improved by an

optional post-processing step.

15

Figure 1.13 Text recognition capabilities.

16

Figure 1.14 The general model of online text recognition, adapted from [2]

17

1.3 Motivation

The wide spread use of pen-based hand held devices such as PDAs, smart phones, and

tablet-PC, increases the demand for online text recognition systems. These man machine

interface systems are alternative to the traditional keyboard with the advantages of being

easier, user friendly, and natural. This technology has great potential markets in friendly

learning environments, business applications and more. Also, there is need for systems

that support free cursive handwriting with multilingual capabilities. Besides the above

mentioned facts, there are needs for research on the recognition of online Arabic text.

Most of the used techniques of online Arabic text recognition are derived from those used

for other languages. However, techniques of other languages may not suit Arabic text

recognition. Hence, it is useful to develop systems that utilize the characteristics of online

Arabic text.

The cursive nature of online Arabic text and the variability among a large number of

writing styles makes the recognition of online Arabic text a challenging problem.

Although this overlaps with Arabic offline text recognition, it is harder in online text

recognition as the writing in online devices is less controlled than a pen on paper.

1.4 Thesis Objectives and Outcomes

The main objective of this thesis is to conduct research on automatic recognition of

online Arabic text. This implies addressing the different phases of building a recognition

prototype. Achieving the objective of this thesis may be useful in many applications such

18

as data entry using tablets and touch screen devices, data entry using smart phones and

PDAs.

The outcomes of this thesis can be utilized in other areas of scientific research such as

writer identification/verification, forensic handwriting analysis, and signature

verification. The main outcomes of this thesis are as follows:

- Literature Review: A comprehensive survey of the published studies related to

our topic has been conducted. This survey gives more focus on the studies that are

not included in the existing published surveys (latest published survey addressed

research up to 2011) and describes the limitations and restrictions of the reviewed

studies and future directions.

- Algorithms and Procedures: The most important outcomes of the thesis are the

methods and procedures that have been developed for online Arabic text

recognition. Different preprocessing methods were developed to address the

difficulties facing the existing methods. A large number of features were extracted

and used for developing the prototypes. The main focus is on using statistical

patterns. For classification, the approaches that are suitable for Arabic online text

are adopted. We focused on classifiers based on Bayesian approach (like Hidden

Markov Models).

- Possible Publications: The developed work is a result of research activities

integrated into a prototype. The results of our research are reported in papers for

possible publication. Some of the submitted papers are:

19

- Baligh M. Al-Helali and Sabri A. Mahmoud, ““Arabic Online Handwriting

Recognition (AOHR): A Survey,” submitted.

- Baligh M. Al-Helali and Sabri A. Mahmoud, “A Statistical Framework for Online

Arabic Character Recognition,” Cybernetics, submitted.

- Mahmoud, Sabri A., Hamzah Luqman, Baligh M. Al-Helali, Galal BinMakhashen, and

Mohammad Tanvir Parvez. 2016. “Online-KHATT: An Open-Vocabulary Arabic Online

Text Database,” submitted.

- Mohammad Tanvir Parvez, Hamzah Luqman, Baligh Al-Helali, Sabri A. Mahmoud,

“ICFHR2016 Competition on Arabic Online Text Recognition using Online-

KHATT Database”, the 15th International Conference on Frontiers in Handwriting

Recognition, 23-26, October, Shenzhen, China, accepted.

- Baligh M. Al-Helali, Hamzah Luqman, and Sabri A. Mahmoud, “Extension of

Arabic online text database Online-KHATT,” submitted.

- Patent: Baligh M. Al-Helali and Sabri A. Mahmoud, “A Statistical Framework for

Online Arabic Character Recognition”, submitted.

1.5 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 presents a comprehensive

literature review of research on online Arabic handwriting recognition. The developed

character’s recognizer is described and the related experimental results are given in

Chapter 3. Chapter 4 presents the details of the online text recognition prototype. Finally

Chapter 5 concludes this thesis and summarizes the outcomes and future work.

20

2 CHAPTER 2

LITERATURE REVIEW

In this chapter, we present a comprehensive survey of AOTR that focuses on published

work not covered by other surveys and reviews, such as [11]–[21]. This survey presents

the characteristics of Arabic text as related to AOTR. Reference is made to [2], [22] for

surveys on Arabic offline handwritten text recognition and to [3] for a general and

comprehensive survey of Arabic text recognition. This chapter is organized based on the

recognition phases. It reviews related published works to present their contributions and

limitations. Summary tables are presented for each phase for the purpose of reference and

comparison to facilitate easy comparison of the different techniques. At the beginning of

each phase, we offer a general overview of the surveyed work to highlight capabilities

and limitations and then present our detailed discussions.

2.1 Arabic Online Datasets

This section describes the main databases that are used in AOTR research. The other

datasets used are described in the classification section because their use is limited to the

cited references.

LMCA: An on/off-line dual Arabic handwriting database is presented in [23]. It is called

LMCA (from the French "Lettres, Mots et Chiffres Arabe") and contains both on/off line

samples of 500 Arabic words, 100,000 Arabic letters and 30,000 digits collected from 55

writers. This database is limited to a small set of words and is not natural Arabic text.

Instead of extracting them from the collected words, the letters are collected separately;

21

hence, it does not reflect natural Arabic handwriting. The digit samples of the LMCA are

used in [24], and the words’ subset is used in [25].

AOD: AOD is a database of online Arabic Digits [5]. It is collected from 300 writers

who were 11 to 70 years of age. Each of these writers wrote an average of 10 samples for

each digit. There were no constraints on the writing style, such as orientation, size, or

number of strokes for each digit. The total number of collected samples is 30,000, with

300 samples per digit in which the samples of 80% of the writers are grouped into the

training set and the remaining 20% into the testing set. This database is limited to digits

and is freely available at (http://www.aucegypt.edu/sse/eeng/Pages/AOD.aspx).

ADAB: ADAB (Arabic DataBase) was developed in a cooperative arrangement between

the Institut fuer Nachrichtentechnik (IfN) and the Research group on Intelligent Machines

(REGIM). This database contains online samples for 937 Tunisian city names and is used

in competitions [26], [27]. It contains 33,164 Arabic words (174,690 characters) written

by approximately 166 different writers. Most of the selected writers are from the

narrower range of the l’Ecole Nationale d’Ing`enieurs de Sfax (ENIS). Although this

database is used more often than other databases, it has several limitations. First, it has a

small lexicon with limited coverage and levels. The data is available in isolated word

samples, and no segmentation of the words into letters or PAWs is provided. The

database is limited to city names, and it is thus not a natural Arabic online text. Despite

these limitations, the ADAB database is widely used in the AOTR literature, such as in

[28]–[41].

22

OHASD: An Online Handwritten Arabic Sentence Database (OHASD) is presented in

[42], which was inspired by the IAM-Database [43] and the IAM-OnDB datasets [44].

Constructing OHASD is undertaken by collecting samples of paragraphs of complete

sentences that range from 15 to 46 words. Erratic/illegible handwriting is excluded,

which results in 154 paragraphs written by 48 writers, containing 3825 words and 19,467

characters. This database has a limited lexicon, limited data and a limited number of

writers.

MAYASTROUN: This Multilanguage database for both online and off-line

unconstrained handwriting is called the “MAYASTROUN-database” and was developed

in the REGIM laboratory. This database contains cursive Arabic and Latin texts, words,

characters, digits, signatures and mathematical expressions and it is presented in two

versions. The first version is “MAYASTROUN set1”, which was collected from 100

writers in [45] and consists of 2600 letters, 1000 words, 1000 digits and 200 Arabic texts.

The dataset has been used in previous studies [46], [47]. In the second version, set 2, the

database is extended in [48] and has more than 67,825 data samples written by 355

writers. The Arabic text lexicon is limited in this dataset.

ALTEC: A large lexicon in an online Arabic text database is produced by the Arabic

Language Technology Center (ALTEC) [49]. It consists of 152,680 samples of 39,945

unique words, including 325,477 samples of 14,740 unique PAWs. The database is

collected from approximately 1000 writers and contains samples for digits, characters and

punctuation marks. A new version of the database is AltecOnDB: A Large-Vocabulary

Arabic Online Handwriting database with an added set (viz. Set-H)[50]. This set is more

suitable for writer-dependent research. The main drawback is that the data is collected by

23

writing on paper, and the x, y co-ordinates of writing are collected by a wireless signal.

Writing on paper is much more controlled and looks better than online writing on

devices. Hence, systems that are built based on this database may be less accurate when

used with online writing devices. In addition, this database is not freely available.

QHW: An online handwritten Arabic word dataset is collected in [51] that is called the

Quranic Handwritten Words (QHW) database because the collected words are the most

commonly used words in the holy Quran. There are 120 words selected that are divided

into two equal-size sets. Two hundred writers from several countries from 6 to 50 years

of age were asked to contribute by writing 12,000 word samples, which included more

than 23,300 PAWs and 42,800 characters. This database is a closed vocabulary data set

and has samples of a limited number of words.

To overcome the difficulty of obtaining a comprehensive natural online database, there

have been some attempts to generate comprehensive databases synthetically. Saabni and

El-Sana [40], [52] presented methods for generating synthetic online Arabic script from a

given lexicon that determines the set of words and PAWs in addition to a set of

handwriting prototypes. This lexicon could be generated manually by human writers or

extracted automatically from a given small dataset of word shapes. These methods are

used to synthesize large sets of shapes for each PAW in the lexicon. A collection of

Arabic texts is explored to extract 300,000 different words with 48,000 unique PAWs.

Ignoring additional strokes reduced the number of unique PAWs to 28,500. The

generated data is synthetic and hence not real online data. This data can be used in the

case of limited online data in the training phase to improve the trained models. Systems

built with this data may have poor results when used with real online devices because the

24

synthesized data is not natural, and the errors of the synthetic generation affect the

performance of the entire system.

Based on the analysis of these databases, there is no benchmarking database of natural

Arabic online text for AOTR that is freely available to researchers. Hence, different

researchers use their own or available databases. Some databases are limited by size,

whereas others are limited to digits or words. As shown below, the closest to the required

benchmarking database are two databases, the first is AltecOn which has the major

drawback that the data collection was undertaken by writing on paper and the x, y co-

ordinates of the writing are collected by a wireless signal. Writing on paper is much more

controlled and looks better than online writing on devices. In addition, the database is not

freely available. The second database, ADAB, is limited to city names, and it is thus not a

natural Arabic online text. As shown below, other databases have more limitations.

Table 2.1 shows a summary of online Arabic text databases. The statistics for these

datasets are extracted from the cited references. We found that statistics derived from

some of the actual databases have discrepancies with published statistics, and some of

these discrepancies are based on the source of the text data rather than on the collected

handwritten samples, e.g., the number of characters shown in the ADAB database refers

to the characters included in the words of the ground truth text, although this database

does not contain segmented samples of characters. An overview of online Arabic

databases and applications that focus on LCMA and ADAB can be found in [53].

25

Table 2.1 Summary of some online Arabic text databases 1

Dataset Digits Chars PAWs Words Lines Pages Writers

LMCA [23] 30,000 100,000 NM 500 - - 55

OHASD [42] - 19,467 NM 3,825 NM 154 48

ADAB [26] NM 174,690 NM 33,164 - 1,575 166

AOD [5] 30,000 - - - - - 100

MAYASTROUN [48] 6500 5600 NM 1500 NM 200 355

ALTECOnDb [50] NM 106,433 325,477 152,680 31,124 4,512 1000

QHW [51] - 42,800 23,300 12,000 - - 200

As shown above, most of the databases are limited to a certain level of text (e.g., digits,

words) and are also limited in size and number of writers. Moreover, databases that are

more generic and representative of the Arabic language are not freely available. As a

result of the lack of freely available online Arabic text databases that satisfy their

requirements, several researchers have used their own collected data [51]. These datasets

are described in the classification section because their usage is limited to the references

cited.

2.2 Preprocessing Approaches

The preprocessing phase aims to prepare the input to be more suitable for subsequent

phases. This preparation typically includes enhancing the input, processing the delayed

strokes and identifying the baseline. In this section, we review different preprocessing

techniques, including online text simplification, smoothing, interpolation and resampling,

normalization, de-hooking, processing of delayed strokes, and baseline identification.

The raw input is typically refined by reducing the noise and distortion that is caused by

hardware and software limitations or by the writer’s handwriting style and erratic hand

motion. The noise that originates from the devices used includes missing points, irregular

1 “NM” means not mentioned, and “-“ not included

26

text size, jitters in the text, and uneven distances between the collected points. The

distortion that originates from the handwriting includes variations in style, size, spaces,

and hooks.

Simplification of the input point sequences aims to discard redundant points that are

irrelevant for pattern classification. The simplification is performed by eliminating

duplicate points and thus reducing the number of total points, which can be undertaken

by simply removing any number of successive points in a stroke that have the same

indices, leaving only one [37]–[39], or by point clustering [54]. Douglas and Peucker’s

algorithm [55] is used to simplify the input points in [56]–[60]. Simplification is

performed by forcing a minimum distance between consecutive points, as in [61], [62].

Smoothing is used to reduce the noise and eliminate hardware imperfections and

irregularities in the input handwriting signal caused by the acquisition devices. A

common technique is to replace a point in a stroke by a weighted average of its

neighbors, as in [5], [37]–[39], [63]–[68]. Smoothing is also performed by using low-pass

filters, as in [54], [56], [57], [60]. Such filters include the Laplacian filter, as in [69], [70],

a local regression called the “loess” filter in [59], and the Chebyshev second type filter,

which is applied to the normalized trajectory, as in [25], [32]–[35], [71]. In [72],

smoothing is based on the orthogonal decomposition of the online data into the Haar

basis. The smoothed trajectory is the approximation coefficients of a single-level one-

dimensional wavelet decomposition for each of the x and y streams.

Interpolation and re-sampling operations are used to recover missing data or to force

points to lie at a uniform distance. Due to variations in writing speed, the acquired points

27

are not distributed evenly along the stroke trajectory. Interpolation is used to restore the

missing points, which can be performed with several methods. The linear interpolation

introduced in [73] is used in [5], [28], [37]–[39]. In [41], Spline interpolation is used to

obtain equidistant smoothed data sequences. Resampling can be performed to obtain a

sequence of points that are equidistant with respect to the coordinates (equally spaced

points in terms of area), as performed in [37]–[39], or with respect to time (equally time-

spaced points) [74].

A normalization step is typically performed to reduce some handwriting variations and

simplify the inputs because normalization adjusts the input size in a manner that

preserves the writing’s spatial structure to achieve scale invariance. This task is

performed in [60], [74] using linear transformation – which includes scaling – while

preserving the aspect ratio. The same authors used a transition invariance step that was

undertaken by shifting the points in such a way that the minimum x and y coordinates

become zero. In [61], each character is mapped into a rectangle of fixed size. In [63], the

input stroke fit maximally in a 100 × 100 square that was centered at the origin. In [41],

the input size is normalized to one. The vertical dimension of the handwritten line

sentence is adjusted to a fixed value to obtain a normalized size script in [33], [34].

Shifting is used to center the input as in [51], [59]. Stroke length normalization is useful

for easy alignment and subsequent classification. To achieve scale invariance, re-

sampling is used to make all the instants the same length, as in [64], which is

accomplished by replacing the captured point sequence with a sequence that has a fixed

number of equidistant points in [67], [68], [75], [76]. The writing speed is normalized by

using vertex removal in [77] and using re-sampling in [56], [57].

28

De-hooking entails the elimination of the hook-shaped parts from the start or end of

strokes. Hooks result from rapid or erratic motions with respect to placing the stylus on –

or lifting it off – the tablet. De-hooking can be performed in two steps. The first step is

finding the sharp points to extract the segments that form the input stroke. The second

step is to remove the end segments that are straight and have a short length relative to the

whole stroke. Hooks are detected and removed in the preprocessing phase, as in [39],

[50], [54], [64], or they can also be modeled as a legal pattern of a ligature in natural

cursive handwriting.

The baseline is the virtual line on which semi-cursive or cursive text is aligned/joined,

which is an ideal parameter to use in simplifying handwritten text [78]. Baseline

detection can be utilized for slant correction [21], baseline drift correction [20], localizing

and removing delayed strokes [28] and in feature extraction, as in [37]. Hence, errors in

baseline detection may impact other processes.

The traditional histogram method for baseline detection is used in [37]–[39], [65], [66],

[79], [80]. The baseline is detected by projecting the input points onto a vertical line, and

the maximal peak in the histogram is then used to locate the baseline, as described in

[73]. A method that is based on dynamic programing is presented in [81]; it attempts to

find the paths that have the minimum cost between the collections of text line segments.

In [78], an algorithm of straight or curved baseline detection for short Arabic handwriting

is presented. The baseline detection is performed in two stages. In the first stage, a set of

points of an aligned neighborhood is detected. The second stage measures the level of

verification of some of the topological conditions by the most numerous set of points

29

found in the first stage. The conditions that characterize the baseline are based on the

intersection points, with some cases of the tracings of the trajectories (e.g., ‘legs’) and the

curvature angles of the grapheme trajectories below/over the baseline. This algorithm is

used in [32], [34] for baseline detection and correction, as shown in Figure 2.1. The

baseline is detected by checking combined geometric and logic conditions in [30], [33],

which is performed by inspecting the alignment and the tangent direction of each point

according to the neighborhood points.

Local baseline detection for online Arabic cursive script is presented in [82]. The

proposed method is divided into three steps: diacritical marks segmentation, primary

baseline estimation and local baseline estimation. The local baseline is estimated using

the features extracted from the ending shapes of words. Different rules are used for

baseline estimations in the Nasta'liq and Naskh style because of structural differences of

the styles. The vertical density histogram of the normalized and resampled sub-strokes is

calculated to determine the baseline in [58]. The height of the stroke (y-axis) is

partitioned into ten intervals of equal length. The center of the most frequent interval is

taken as the baseline location.

30

Figure 2.1 Example of detected baseline correction (green) [32]

31

Delayed strokes are those strokes that are added by the writer to the main strokes of the

handwritten text. Delayed strokes may be dots, diacritics, or complements of handwritten

text such as the Assa “ا” of the letter Taa “ط”. Dealing with delayed strokes is a

challenging issue in AOTR. Several approaches have been used to deal with delayed

strokes. These approaches can be sorted into two main categories based on the

involvement of the delayed strokes in the different phases. In some methods, the delayed

strokes are eliminated, and the main classification processes are performed on the main

strokes. In other methods, the delayed strokes are integrated into the input.

In the first approach, the delayed strokes are not considered at all. This approach is

employed because of certain restrictions on the collected data in which the diacritical

marks are ignored, as in [54], [64], [66]–[68], [75], [76], [83]–[86]. The delayed strokes

are eliminated manually from the dataset when preparing the data in [41]. In [87], they

are removed in the preprocessing phase. In these methods, a single stroke input is

expected, and only the first input is considered when there are more than one. Thus, this

approach is very restrictive.

In the second approach, the features are extracted from the entire input regardless of the

stroke types, as in [88]. Such methods do not utilize the special characteristics of

diacritical marks, and they suffer because of the writing variations of these symbols.

In the third approach, delayed strokes are detected, identified and utilized in feature

extraction. In [33], the identified diacritics are associated with the segmented graphemes,

and their association rates are concatenated with the features of the corresponding

graphemes. In [31], [32], a method for diacritic detection and fuzzy affectation is

32

presented. Delayed strokes are modeled by fuzzy parameters and are associated with the

segmented main graphemes using fuzzy membership function. This approach propagates

the preprocessing errors to the extracted features as the diacritic identification and

associated errors lead to problematic feature extraction.

In the fourth approach, delayed strokes are detected, identified, crisply assigned,

removed, and then used for lexicon reduction in the classification phase. The delayed

strokes are identified and used to reduce the number of candidate letters, as in [77], [89],

which is undertaken with a reduced lexicon dictionary, as in [28], [29], [84], or with a

hierarchical tree decision, as in [90]. In [91], once a delayed stroke is detected, it is

crisply assigned to the grapheme with the maximum x-axis histogram overlap. The

delayed strokes are crisply interpreted and used for lexicon reduction. In this approach,

the classification process is simplified based on the results of delayed stroke

preprocessing. However, the errors of this preprocessing are difficult to repair in

subsequent phases, and the overall recognition accuracy is thus affected.

In the fifth approach, delayed strokes are detected, removed, and then restored in a post-

processing phase to improve the classification results. The delayed strokes are used to

distinguish different letters that have the same basic shape as in [69], [92], [93]. In [6],

the delayed strokes are removed in the preprocessing phase and then restored in the post-

processing phase to remove the classification decisions that conflict with Arabic language

characteristics. Sternby et al. [94] propose a dual-graph approach using a dynamic

algorithm to handle the diacritical mark variations. Branch-and-bound search techniques

are used to discriminate between word hypotheses that have similar basic shapes but

different diacritics. This approach utilizes delayed strokes to enhance the recognition

33

results. However, this approach increases the hypothesis space and decreases the

discriminating power of the classifier, as will be discussed in the classification section.

In the sixth approach, delayed strokes are connected to the main strokes, which makes the

entire handwritten input a continuous sequence of strokes. In [94], delayed strokes are

connected to the end of a main stroke by a special stroke. In [5], linear interpolation is

used to concatenate the strokes of the digit samples after reversing the points of the

strokes with a directional change in the writing flow. Detected delayed strokes are

projected to the nearest word part in [56], [57]. This method does not work properly

when the strokes are not well located. In this study, the writers are asked to write the

delayed strokes after completing the main stroke and to align them carefully. A similar

method is used in [34]. The primary difference is that the delayed stroke end points

(corresponding to the velocity profile) are vertically projected to the nearest main body

segment. In this approach, in addition to the errors in the detection of the delayed strokes,

these end points could be connected to the wrong locations.

In the seventh approach, delayed strokes are handled by rearranging the input segments to

match the system models, as in [37]–[39]. This approach is used to overcome the

problems of the other approaches and does not require the initial detection of the delayed

strokes because all the strokes of the input are handled similarly. However, it adds to the

complexity of the delayed stroke rearrangement step.

In the approaches in which it is necessary to detect the delayed strokes, the detection is

processed based on certain features, such as the location, sequential order, size, and

bounding box shape with respect to the entire input, as in [56], [57], [69], [77], [92], [93].

34

Delayed strokes are determined based on their position with respect to the detected

baseline, as in [31]–[34], [79].

Several methods are used to identify the detected delayed strokes. The identification of

the delayed strokes is performed by fuzzy classification using parameters representing

dimensions and shapes in [31], [32]. In [28], [29], [91], a holistic approach is used to

detect the delayed strokes using a set of Boolean expressions based on the strokes’

dimensions, vertical distance from the baseline, the number of points, the shape, and the

trace duration for each category of the eight diacritics. In [95], the geometric features

from all the strokes are used to remove the secondary strokes in two stages. In the first

stage, small size strokes (e.g., single dots) are filtered out, and in the second stage, an

estimation for the baseline is used to filter the larger delayed strokes (e.g., Hamza,

Madda, Kaf-hat). In [33], identification of the detected delayed strokes is performed

using a k-nearest neighbor classifier based on the sizes and shapes of the strokes

(modeled by Fourier descriptors).

Handling the delayed strokes presents several challenges. One problem is detecting the

delayed strokes, particularly in the case of internal discontinuity. Another difficulty is

identifying the detected delayed strokes. Moreover, in unconstrained writing, it is

difficult to associate such strokes with the corresponding characters of the main strokes.

The effects of delayed strokes on the recognition in an online Farsi handwriting study are

presented in [96]. Some of the small characters and sub-strokes are confused as delayed

strokes because of the discontinuity and vice versa (see Figure 1.5). Spatial-based

decisions may cause errors because the delayed strokes are not typically located carefully

during the natural handwriting, as shown in Figure 1.2. Handling the delayed strokes

35

based on a sequential order might not be suitable because the stroke order is not

necessarily fixed. For example, delayed strokes may be written before completion of the

main text, and some words can be written with different orders of strokes, as shown in

Figure 1.10. Table 2.2 shows a summary of the pre-processing operations employed in the

literature.

Table 2.2 Summary of pre-processing in some AOTR studies

Study Method

Alsallakh [63] Smoothing, normalization, then resampling.

Mezghani [67], [68], [85] Smoothing, then resampling.

Izadi [64] Smoothing, de-hooking, and point re-sampling.

Daifallah [54] Smoothing, simplification, and de-hooking.

Omer [79] Detecting baseline, delayed stroke identification.

Biadsy [56], [57] Smoothing, simplification, re-sampling, and connecting delayed strokes.

Khodadad et al. [74] Resampling, shifting, and scale normalization.

Ahmed, Abdelazeem,

Eraqi [28], [29], [91]

Interpolation, smoothing, baseline detection, then delayed stroke association

and removal.

Hosny [37] Simplification, interpolation, smoothing, re-sampling, reordering.

Elanwar [6], [95] Smoothing, resampling, normalization, baseline, delayed stroke removal.

Azeem [5] Resampling, smoothing.

Tagougui [34] Normalization, smoothing, baseline detection, delayed stroke connection.

Abdelaziz [50] Simplification, interpolation, smoothing, resampling, dehooking, reordering.

Kour [41] Size normalization, simplification, re-sampling, smoothing.

Ramzi [60]

Online: shifting, normalization, smoothing, resampling, simplifying. Offline:

binarization, cropping, scaling, filtering, edge detection.

Abdelaziz [39]

Reordering, resampling, interpolation, smoothing, simplification, dehooking

(best combination).

Abuzaraida [51], [59] Smoothing, simplification, size normalization, centering.

As shown in this table, different preprocessing operations and orders are experimented

with in [39], and the best results are achieved when using the reported combination, as

36

shown in Table 2.2. Offline preprocessing is also used after transforming the online input

into a binary image, as in [57], [93], or by combining online and offline preprocessing as

in [60], [91], [92]. The offline operations include contrast enhancing and noise removal

as in [97]. In [60], the offline preprocessing includes binarization, image cropping, image

scaling, low-pass filtering, and edge detection.

2.3 Segmentation Approaches

This section presents a summary of the segmentation techniques used, focusing on how

the segmentation is performed rather than on how it is employed for recognition. We

present the segmentation at the grapheme, character, PAW, word and line levels. The

methods that do not include segmentation are categorized as global or holistic

approaches, in which the input is processed as a whole during the different recognition

phases. This approach avoids the error-prone segmentation step, which is a challenging

problem. However, the entire vocabulary must be considered when building such

systems, which is suitable for small lexicon applications, such as non-cursive text

recognizers (e.g., characters and digits), or for small vocabulary applications, such as

check processing. The main drawback of this approach concerns recognizing cursive text

(e.g., word and PAW) in large vocabulary applications. In other words, a large training

dataset is required, and an efficient recognizer should be used to discriminate a large

number of classes. For this reason, an analytic recognition approach is used for such

applications.

In the analytic approach, the classification level is smaller than the input level. This

approach reduces the search space when dealing with cursive handwriting recognition,

and as a result, the need for a large training data set is reduced. However, it propagates

37

segmentation errors to subsequent phases, which increases the likelihood of recognition

errors for the entire system. The segmentation methods are categorized into "external" vs.

"internal" segmentation, depending on whether the recognition is required in the process

[20]. In [98], the segmentation strategies are classified into a classical approach called

“dissection” segmentation versus recognition-based segmentation based on how the

classification and segmentation phases interact in the overall process.

In the internal approach, the main interest is to bypass the segmentation problem (i.e.,

building a complex segmentation algorithm is unnecessary), and the segmentation is

adjusted by the classification phase. Moreover, the results can be improved by including

language models. However, this approach is sensitive to the training data, and a more

complex training stage is required. Overall, the recognition errors are basically due to

classification failures. Some of the internal segmentation techniques used are not

typically thought of as segmentation methods, particularly those that are thought of as

segmentation-free approaches. Most of the details of such methods are related to the

classification phase, as will be shown below.

External segmentation is the classical approach in which segmentation is explicitly

performed prior to the classification phase. In this approach, the dissection of the input

into smaller components is based on "component-like" characteristics. In [99], extreme

points, direction, intersection points, and pen speed are computed between consecutive

points to distinguish between the segments. Finding the extreme points is also used in

[88] for dividing letters into strokes (pre-segmentation), and each stroke is then divided

into sub-strokes (tokens). In [94], the input is segmented at the vertical extreme points

with respect to the writing direction. The Beta-Elliptical strategy is used to segment the

38

input stroke in simple movements by inspecting the extreme points of the curvilinear

velocity in [25], [34], [100], as shown in Figure 2.2.

In [101], the segmentation is based on the perceptual encoding system by using genetic

algorithms (GAs) to detect the global perceptual codes (GPCs) and fuzzy theory for the

elementary perceptual codes (EPCs). A similar approach is used in [45]–[47]. The details

of using GAs for GPC extraction are presented in [102]. A fuzzy approach is also adopted

in [30] to develop a grapheme segmentation-based model. Fuzzification is achieved by

overlapping the graphemes’ segments based on the confidence degrees associated with

the detected separating points. The fuzzy membership of the points of the extracted fuzzy

graphemes are then considered for modeling the fuzzified boundary shapes. In [32], the

detected baseline is used to detect the valley bottoms and the angular points to segment

the input trajectory into graphemes. Such methods suffer as a result of the geometric- and

spatial-based variations that are common in unconstrained Arabic handwriting,

particularly online writing.

The grapheme segmentation algorithm presented in [91] is based on the local writing

direction. The algorithm aims to segment each PAW’s main stroke into its basic

graphemes (at least one grapheme). It begins with arbitrary segmentation based on the

angle between consecutive points. These points are then filtered and used to extract

small, hill, circular, tail, and early segmentation junctions. The center points of the valid

junctions are considered the final segmentation points. In [33], the grapheme

segmentation is performed by detecting the baseline and estimating the width of the

median zone. The detected baseline is then used as a topologic reference to extract

specific points that delimit the grapheme trajectories, as shown in Figure 2.3.

39

Figure 2.2 Detection of the curvilinear velocity extremum points [100]

Figure 2.3 Topological characteristics used in the detection of specific points (above) and grapheme

segmentation (below) [33].

40

Baghshah et al. presented a method for segmenting each stroke into tokens of lines, arcs,

or loops [62]. Each token is specified by two end points that are determined by

computing the average of the changes in the angles of successive points. In [65],

character boundary–based segmentation is proposed. The algorithm consists of two

stages. The first stage specifies the three types of straight writing lines: right-to-left

horizontal lines, bottom-up vertical lines, and top-down vertical lines. The second stage is

for detecting the beginning and end boundaries of the characters. In [103], a statistical

segmentation method is presented. The main idea is to flatten the words to represent

multi-connected lines, which are then filtered to obtain the ligature positions.

Segmentation points are determined based on normalization, direction transformation and

clustering. Then, filters are used to correct the segmentation errors at the first, last and

overlapped character.

Segmentation of unconstrained cursive Arabic online handwritten documents is presented

in [6]. The document is broken up into text lines, words or sub-words by a rule-based

method for grouping the input strokes. Successive input strokes are compared spatially to

determine whether they belong to the same word. Different strokes are considered to

belong to the same word if they touch or have an x-axis histogram overlap or if the inter-

stroke distance is less than the average stroke width. Otherwise, they are assumed to

belong to different words. This method is not suitable for unconstrained data because of

connectivity problems and incorrect segmentation that is obtained for inputs similar to

those shown in Figure 1.7. In [56], [57], a straightforward PAW segmentation is

performed because the input is restricted such that a PAW body should be written in a

single continuous stroke. An automatic text line-detection method is proposed in [81].

41

Those authors used dynamic programming to find the paths with the minimum cost

between collections of text lines that were segmented based on their spatial information.

In the internal segmentation approach, segmentation and classification are integrated and

are thus called recognition-based segmentation. The connection degree between them

depends on the scheme used. An initial segmentation can be performed and validated by

the classification. The segmentation can be performed implicitly when the classification

phase is involved in finding the input segments that match the classes in its alphabet.

Recognition-based segmentation is performed in two stages. In the first stage, an initial

segmentation points are provided. The segments obtained are then examined by a

recognizer, and the unacceptable recognition results are re-segmented. Daifallah et al.

[54] presented a recognition-based segmentation method for segmenting the input strokes

into letters in four stages. The first stage is nominating arbitrary segmentation points

(SPs). The segmentation is then enhanced by locating semi-horizontal right-to-left

moving lines. This step is followed by consecutively connecting segments using a

predefined set of rules to ensure that the joints do not have any writings above or below

in the same stroke. Finally, the sub-strokes are classified into letters using HMM with Hu

features, and the letter candidates and their scores are used to locate the best set of

segmentation points. A real-time approach for segmenting open-dictionary Arabic

handwritten script is presented in [58]. The segmentation is performed at the stroke level.

Morphological features are employed to nominate potential SPs. The sub-strokes that

result from the segmentation points are classified using a k-NN letter classifier, and the

final segmentation points are then selected by finding the best-scored segmentation path.

42

Another interaction between classification and segmentation occurs when the classifier is

used to select the best segments from a set of possibilities. In [87], the segmentation is

performed manually during the training phase. For testing, a genetic algorithm with a

fitness function that computes the match degree between a gene and the real handwritten

word is used to find the best combination of characters. In [6], the cut points of the input

feature vector are found using a dynamic programming algorithm that minimizes a

defined cost function for segmenting the strokes into letters. Saabni and El-Sana [77]

used a series of filters hierarchically and extracted global geometrical features that were

used to determine and order the trained models (candidates) matching the input sequence

using a dynamic time warping recognizer.

In [56], [57], the training is performed at the letter level, and the recognition is performed

at the continuous PAW level. The writers are asked to specify demarcation points among

letter shapes and align all the delayed strokes horizontally based on those demarcation

points. A similar approach is adopted in [29], [37]–[39]. In [38], the alignment mode of

the Hidden Markov Models tool is used to find the best character segmentation of a word.

This segmentation is undertaken by checking all the possible segmentation hypotheses

and retrieving the combination with the highest score according to the trained models. In

[95], the segmentation process has two stages. In the first stage, words are segmented into

letters using HMM-based simultaneous segmentation-recognition. The second stage

involves a rule-based validation for the proposed segmentation points to solve the

different segmentation errors without contextual information.

43

Table 2.3 Summary of segmentation methods for online Arabic text.

Level External Internal

Character Alsallakh [63], Mustafa [65], Al-Emami [99],

Potrus [103], Harouni [104].

Elanwar [6], Al-Barhamtoshy [38],

Daifallah [54], Biadsy [56], Biadsy [57],

Alimi [87], Elanwar [95].

Graphemes Boubaker [30], Boubaker [33], Baghshah

[62], Al-Taani [80], Harouni [88], Eraqi [91],

Sternby [94], Boubaker [100], Njah [101].

Abdelazeem [29], Hosny [37], Al-

Barhamtoshy [38], Abdelaziz [39], Kour

[58], Al-Habian [83].

Word/WP Elanwar [6], Biadsy [56], Biadsy [57]. Kour [58], Elanwar [95].

Line Elanwar [81].

As shown in Table 2.3, there is limited research at higher text levels (e.g., lines, and

words). The input is segmented into graphemes rather than letters in some methods. A

grapheme can be a combination of 2 or 3 letters, a letter or a part of a letter depending on

the used method. Graphemes are sub-strokes that are extracted based on geometric

primitives and shapes as in [72], [105], and they include primitive skeleton patterns in

[6]. Segmentation into graphemes is also performed on non-cursive text, as in [71], [72],

[80].

The classical external segmentation extracts the segmentation points using features such

as the extreme points of the handwriting trajectory/velocity and points with low slopes.

The main limitation of this approach is that Arabic letters may not have distinct

segmentation boundaries. For example, the under-segmentation problem is typically a

result of ligatures. When handwritten as shown in Figure 1.1.a, the PAW لم (Lam-Mim)

does not contain a horizontal hyphen-like segment between the letters (ل) and (م). This

method is less limited when segmenting into ligature graphemes. Segmentation is highly

influenced by several challenges, such as Arabic handwriting variations, connectivity,

and ligatures. In this approach, the obtained segments are passed to the next phases, and

44

no feedback from those later phases is used to enhance the segmentation phase. Hence,

the segmentation performance influences the performance of the subsequent phases.

2.4 Feature Extraction Approaches

The goal of the feature extraction phase is to generate attributes that can be used to

represent the input data compactly. These attributes or “features” are used in the

recognition phase to discriminate between the inputs that belong to the different classes.

The features can be classified into global vs. local features. Global features are those that

represent the entire sample within a specific domain (e.g., stroke, character, word),

whereas local features are computed for part of a sample and represent part of a stroke or

character or sub-character. Another method of classifying features is based on the nature

of the extracted feature into structural vs. statistical features. Structural features describe

the structure of the input data, such as geometric attributes. Statistical features are

computed from the raw data or from other features, such as ratios and histograms.

Features are classified into online features and offline features based on the extraction

processing time. The online features are extracted from the original input signal directly,

whereas the offline features are extracted from a corresponding offline image of the

original input. The features can also be classified based on the raw data that are used for

the extraction. Spatial features are extracted from the coordinates of the input signal, and

the features that are extracted using the timing of the handwriting are said to be temporal.

In this section, we present the feature extraction approaches that are used by AOTR

researchers.

Some researchers model the online text before feature extraction. In [87], the input is

modeled based on the motor theory of movement generation and the neurophysiological

45

and biomechanical parameters of the equation that describes the curvilinear velocity of

the script. The kinematics and geometry in the trajectory modeling are combined by

representing each stroke using dynamic Beta parameters and static circular parameters

[23], [106], [107]. The parameters are extracted from the curvilinear velocity of the

points. The approach is improved by introducing the elliptical parameters to generate the

Beta-elliptical modeling [25], [71], [100], [101], [108]. A neuro-Beta-elliptical model for

handwriting generation movements is presented in [109]. Chaabouni et al. [110] used

multi-fractal modeling for online text-independent writer identification. Haddad et al.

[111] built a system using an adaptation module (AM) and found that it decreased the

error rate without altering the writer-independent system. In [30], Fourier descriptors are

used to model open forms of segmented graphemes, and the association of points with

graphemes is accomplished using fuzzy membership degrees.

Visual features are extracted based on the visual appearance of the handwritten text, such

as loops, valleys, and primitive shapes. The loop shape is detected by finding a crossing

point in the writing trajectory, which is used as a local feature to indicate whether the

point belongs to a loop, as in [39], [56], [57], and it is used globally to indicate whether

the trajectory (e.g., stroke) contains a loop, as in [92], [97]. In [77], global ascender and

descender loops, local features, and local relations between adjacent points are extracted

from the main strokes of the body shape. However, the secondary strokes are described

based on size, location, and order. The hat feature is used to indicate whether the current

point is part of a delayed stroke [39].

Geometric features are widely used in AOTR. One of the simplest geometric features

consists of the x-y coordinates of the points that constitute the stroke, as in [63], and their

46

relative positions are used in [89], [94]. Tangents and slopes are used in [30], [63], [68],

[75], [76], [100]. Distances between consecutive points (delta features) are used in [28],

[64], [83], [112]. The angles of the line segments that constitute the stroke are used in

[29], [37]–[39], [56], [57], [62], [64], [90], [112]. The curvature of the handwriting

trajectory at a point is a measure of how sensitive its tangent line is compared with the

largest line of other nearby points, as in [37]–[39], [50]. Curliness is used to describe the

deviation from a straight line in the vicinity of the current point in [29], [39], [50], [95].

In [64], the authors obtained features from the relative pairwise distances and from the

angles of the writing trajectory, which they call the Relative Context (RC). In [95], the

line length and the angle for each point are called the "Polar Moving Eye" feature when

computed with respect to the current point. Similar features are also computed with

respect to the first point in the current stroke or with respect to the first point in the first

stroke, which these authors called "Polar PAW Fixed Eye" and "Polar Word Fixed Eye",

respectively.

Several challenges arise when using structural features. The geometrical features are

sensitive to the spatial-based variations of the handwritten text. The angles, sharpness,

curvature and straightness attributes can vary for the same letter, as shown in Figure 1.8.a.

The visual appearance of the handwritten text is not guaranteed to be as expected; for

example, the loop shape can be handwritten in different ways, as shown in Figure 1.8.b.

Arabic text style variation is another challenge that arises from using structural features.

For example, the descriptors of the letters 'SEEN' in Nasakh style are different from those

extracted when written in Ruqqah. Moreover, even if the common font styles are

considered, a non-uniform writing style can be found, as shown in Figure 1.4.

47

Considering all the visual characteristics and their variations complicates the feature

extraction phase.

Pen movements and writing direction features are those attributes that are extracted to

describe the direction of the pen movement during handwriting. The cosine and sine

functions are used to describe the local writing direction at each point in [39], [65], [66],

[91]. Such functions are used to represent the instantaneous and relative directions in

[95]. The instantaneous feature is the local writing direction “Moving Eye”. The relative

feature is the writing direction with respect to one fixed sample and is called “Word

Fixed Eye” when the fixed point is the first point on the first stroke in the word (i.e., the

word head). It is called “PAW Fixed Eye” when it is the first point on the current stroke

(i.e., the PAW head). The instantaneous feature is considered to represent the role of the

online features, whereas the fixed relative features represent the role of the offline

features. The writing direction can also be represented by Freeman chain code, as in [6],

[113]. The direction code is computed by quantizing the angles that are retrieved from the

inverse tangents. A 32-directional chain code is used in [29], [37], [39], [50], [79]. This

chain code follows the trajectory in a counter-clockwise manner to keep track of the

directions from one point to the next. Sixteen directional codes are used in [61], whereas

the direction codes are used as global features in [93], [104].

Time-dependent features such as curvilinear and angular velocities are used in [24], [32],

[78], [101], Neuro-physio logical and bio-mechanical features are used in [87]. The beta-

elliptical features are combined with visual coding in [25]. In [34], the dynamic features

are Beta velocity profiles of the successive strokes, and the static features are the

parameters of a continuous stroke segment modeled by the two arcs of an ellipse.

48

Acceleration coefficients are used in [28]. In [39], some dynamic sequences are used as

extended functions, such as the path velocity magnitude and the total acceleration

magnitude.

When using the directional features, there are some cases that should be considered. For

example, the same object can be handwritten with movements in different directions, as

shown in Figure 1.11.a. The delayed strokes may alter the expected movement direction

pattern, particularly those tracing (writing) a previously handwritten script, as shown in

Figure 1.11.b. The time-dependent features are more related to the writer than to the

handwritten text.

Statistical features are extracted by computing certain statistics using other features or of

the raw data. The stroke length and its relative ratio to the length of the entire input are

used in [94], [104], and the number of strokes is used in [89], [92], [97], [114]. The

density ratio can be used as a feature and extracted by computing the ratio of the black

pixels after transforming the input into an offline image [92], [93]. The bounding box is

extracted, and its height-to-width ratio (aspect ratio) is used in [50], [63], [93], [95]. The

winding value, which is the algebraic sum of the direction changes, is used in [63]. In

[68], [76], histograms of tangent angles and tangent angle differences are generated to

represent the input character. In [69], [70], a horizontal and vertical projection profile as

well as a Laplacian filter are used as features of the characters.

The characteristics of the statistical features depend on the attributes used to compute

them. For example, histograms of tangent angle differences are invariant to scaling,

translation and rotation because the tangent angle differences are invariant to these same

49

transformations. However, some of the statistics may lead to wrong results. For example,

if the number of strokes is used as a feature, then different styles for some diacritics

should be considered (e.g., Kaf can be written with a different number of strokes, as

shown in Figure 1.9.a).

Global transforms are used to extract the features from online handwritten text. Fourier

descriptors of the x and y components of the pen positions are used as a global

representation in [30], [33], [68], [75]. The Discrete Cosine Transform (DCT) of the x

and y coordinate signals takes advantage of the temporal features in [74], [115].

Some of the features are extracted from an offline image that is constructed from the

online input. In [57], the features used include the binary pixel values. In [54], Hu’s

moments are extracted as a feature vector. In [115], a sequence of images is generated,

and differences in the motions of the sequence images are then accumulated and

analyzed. In [93], the offline features used include the density, aspect ratio, and character

alignment ratio. In [60], the extraction of offline features is accomplished over three

steps: zoning, traversal, and determining the types of line segments (horizontal, vertical,

right diagonal, and left diagonal lines). The feature vector is formed by combining the

features of the zones. The features of each zone are the normalized length of each line

type, the normalized area, Euler number, regional area, and eccentricity. A summary of

the features used in some studies is given in Table 2.4.

Table 2.4 A summary of the features used in some AOTR studies.

Study Features S
ta

tistica
l

S
tru

ctu
ra

l

El-Wakil [89] Number of dots, relative positions, secondary stroke counts and slopes.

Mezghani [75] Global: Fourier descriptors. Local: tangents.

50

Mezghani [68], [76] Histograms of tangents and tangent differences.

Alsallakh [63] Coordinates series, tangents, winding value, aspect ratio.

Elanwar [6] Three Freeman chain codes.

Izadi [64] Relative Context (RC): from distances and angles of the trajectory.

Daifallah [54] Hu’s moments.

Sternby [94] Angle, arc type, connection angle, length ratio, and relative positions

of points.

Al-Taani [92] Segment count, loops, sharp edges, secondary segments, density,

orientation.

Biadsy [56], [57] Local-angle, super-segment, and loop-presence.

Biadsy [57] Offline pixel values by sliding window.

Ahmed [28] Delta and acceleration coefficients, direction.

Abdelazeem [29] Moving window. Local: delta, direction, angle. Vicinity: aspect,

curliness, slope.

Hosny [37] Chain code, Turning angles, curvature, baseline, and vertical position.

Azeem [5] Temporal: writing direction. Spatial: global aspect and concavity

features.

Elanwar [95] Moving window. Local: Moving Eye, PAW Fixed Eye, Word-Fixed

Eye, Polar Moving Eye, Polar PAW Fixed Eye, Polar Word Fixed Eye.

Vicinity: Chords.

Alijla [93] Online Features: Number of strokes, letter direction. Secondary object

Off-Line Features: Density, aspect ratio, character alignment ratio.

Addakiri [97] Number of segments, loops, sharp edges.

Abdlshafy [66], [91] Handwriting direction via sine and cosine sequences.

Ramzi [60] Online: directions, 8-directional freeman code. Offline: zones,

geometric features.

Abdelaziz [50] 32-directional chain code, curliness, aspect ratio, curvature.

Abdelaziz [39] Chain code, curliness, aspect, direction, curvature, baseline and zones,

loops, hat, path-tangent, curvature radius, velocity and acceleration

Omer, Abuzaraida

[59], [79]

Freeman Chain code

As shown in Table 2.4, different types of features are typically combined because of the

shortcomings of each type individually. In [60], several experiments with different types

of features are conducted to select the best features. The best results are obtained when

using the chain code online features combined with geometric features extracted from the

offline image (which is divided into 9 zones). The features can be extracted for the point,

set of points, stroke, or set of strokes, or for the entire input. The sliding window

technique, which is used for feature extraction in offline systems – and particularly when

adopting HMM classification – is also used for online systems. This technique is used in

51

[83], for recognizing the sub-letter strokes; a feature vector that is adopted in [116] is

extracted from a sliding window that has a length of 10 points (the stroke’s average

samples’ lengths) with 50% overlap. In [57], the features are the pixel values extracted

from a rectangular window with a three-column width shifted from right to left across a

binary image generated from the online input script. In [29], [95], the local features are

extracted from the trajectory points, and the vicinity features are extracted from a set of

points within a sliding window. Some techniques are used to improve the feature

extraction phase. Z-score normalization is used to reduce the effect of the range value

differences of the extracted features in [37]. The feature vectors are embedded into a

normed wavelet coefficient domain in which the Earth Movers Distance metric is

approximated using the Manhattan distance in [41].

2.5 Classification Approaches

This section presents the classification techniques that are used in AOTR. Different types

of classifiers are used, such as structural approaches, SVM, Fuzzy SVM, Neural

Networks, HMM, Genetic algorithms, decision trees, and rule-based systems. This

section is organized into two main sub-sections. One sub-section addresses recognition

approaches for non-cursive text, such as for recognizing digits and characters, whereas

the second sub-section addresses recognition approaches for cursive text, such as for

words and lines of text. Global and analytic approaches of cursive text recognition are

reviewed and then analyzed.

The order of presentation is based on the recognition level—non-cursive studies and then

studies that recognize cursive text. The information reported includes the classification

method used, details about the data set used, the performance evaluation methodology,

52

and the accuracy. The recognition level is considered the level of the input rather than the

level that is used in the basic classification unit. These details are presented when

describing the classification method used for each study. The dataset details, such as the

vocabulary, size of the dataset, number of writers, and method of collecting the data are

stated. The performance evaluation methodology describes how the experiments were

conducted, how the performance was evaluated, and the level at which the accuracy is

computed. We use “WD” to denote that the experiment is writer-dependent and “WI” if it

is writer-independent. The details are presented based on the explicit or implicit

information in the study that is reviewed. However, sometimes the required information

is difficult to extract, such as the use of separate training and testing datasets does not

imply that the evaluation is writer-independent if the separation of the writers is not

specified.

The goal of the classification is to classify unknown objects into one of a finite set of

classes. These classes could be whole word, sub-word, stroke, or sub-stroke, depending

on the approach used. A number of classification techniques have been used in AOTR,

such as Hidden Markov Model (HMM) [29], [33], [39], [50], [54], [57], decision trees

[79], [92], [99], template matching [89], dynamic programming [6], [61], Artificial

Neural Networks (ANNs) [34], [67], [74], [93], [97], k-nearest neighbor [115], and

combinations of classification techniques [5], [71], [84]. A survey of recognition systems

that focus on the classification techniques for AOTR can be found in [16].

2.5.1 Non-Cursive Text Recognition

Recognition of non-cursive text assumes that the inputs are digits or characters. Such

recognizers can also be integrated into a cursive text recognition system.

53

Using a Beta-circular modeling approach, Kherallah et al. [117] presented an Arabic

online handwritten digit recognition system that is based on neural networks. Although

the circular strokes are superposed, they do not have overlapping shapes and cannot thus

perfectly reconstruct the handwritten trajectory. The reported performance is (95%) on a

dataset of 10,000 samples (1000 for each digit) divided into a 7:3 ratio for training and

testing, respectively. An online Arabic digits structural recognizer is presented in [80],

[105]. A Finite Transition Network containing digit grammar is used for matching

primitive strings in each test sample. Then, the ambiguities for some digits are resolved

by checking the predefined constraints. An average recognition rate of approximately

95% is reported on their own dataset, which contains 30,000 samples of the digits 0–9

collected from 100 writers. The method does not require training. Each digit is modeled

using different patterns to handle the handwriting variability. A fuzzy approach is used to

develop a multilayer perception neural network classifier (MLPNN) in [24]. The training

stage is performed by an association of fuzzy k-nearest neighbor algorithms (FKNNA)

with self-organization maps (SOMs) to obtain maps (subsystems) of digit classes with the

membership degrees of those that are in the same cluster. This information is used as the

desired output of the MLPNN. A database of 30,000 Arabic digits (from LMCA) was

used to test the system, which resulted in a reported recognition rate of approximately

95.08%. The classification is performed in two stages in [5]. In the first stage, a single

linear Support Vector Machine (SVM) classifier is used to recognize the digit Zero. In

the second stage, a multi-class nonlinear SVM using the One Versus One (OVO) scheme

is used to discriminate the other nine digits. The reported recognition rates are 99.69%

and 98.89% in the two stages, respectively, with an overall reported accuracy of 98.73%

54

on the AOD dataset in a writer-independent setup. In [59], a matching algorithm called

Global Alignment Algorithm (GAA) is used to recognize Arabic digits. A recognition

rate of approximately 98% is reported on a dataset of 100 samples for each digit collected

using a touch screen laptop from 100 writers. The data used are too small for practical

applications.

A comparison of three classifiers used to recognize online Arabic letters is presented in

[84]. The diacritics are ignored, leaving only 15 distinct ‘primary’ letter classes. The

investigators used the perceptron, multi-layer perceptron (MLP), and genetic

programming (GP) classifiers with reported recognition rates of 95%, 95%, and 83.3%,

respectively. The dataset is collected from 25 writers divided into training (≈1680

samples), validation (≈1080 samples) and testing (≈1000 samples) disjoint sets. The

Kohonen memory classifier was developed and compared with the nearest neighbor

classifier (NN), which led to obtaining the reported recognition rates of 83.43% and

86.02%, respectively, in [67]. The Kohonen memory classifier results were improved by

several runs, which led to a memory that increased the accuracy to approximately

88.38%. The dataset used contained approximately 7400 samples for 18 basic shapes of

Arabic isolated characters collected from 17 writers. Each writer was asked to write each

character 24 times. Unconstrained data were collected, which led to a wide variety of

sizes and orientations. The database is divided into two sets: 5000 samples for training

and 2400 for testing. This dataset was used in other studies but with only 17 distinct

classes of shapes, considering that the “Fa” (ف) and “Qaf” (ق) letters have the same basic

shape. The basic shapes of “Fa” (ف) and “Qaf” (ق) are not the same when written in the

isolated or ending forms. It is expected that the recognition rates will be lower when the

55

entire Arabic character set and all forms of the characters are used. Mezghani et al. [75]

developed a classifier that was based on a combination of two Kohonen maps for two

different representations of letters. The reported recognition rate is 93.54%. An

associative memory with the Hellinger distance is used in [76] with a reported

recognition rate of 94.56%. In [85], [86], the recognition is conducted by associative

memories using several distance measures. The reported recognition rates were 94.07%,

94.56%, and 94.48% when using the Euclidean, Hellinger, and Kullback–Leibler

divergence measures, respectively. These measures are also used with the nearest

neighbor classifier, and the corresponding reported accuracy rates were 95.26%, 95.09%,

and 95.34%. An SVM classifier using the “one-vs-one” approach is used for multi-class

classification, and it obtained a reported writer-independent recognition rate of 97.8% in

[64]. Mezghani et al. [68] adopted a Bayesian approach for online Arabic character

classification, using Gibbs modeling of the class-conditional probability density. The

evaluation was performed on the dataset of [67] after adding 5 writers, which resulted in

a total of 22 writers. They compared different classifiers, namely direct Bayes, indirect

Bayes, Combination of Bayes, Kohonen neural network, and nearest neighbor, with

reported recognition rates of 84.85%, 90.19%, 92.61%, 90%, and 94.00%, respectively.

The 17 classes used in [75] are used in addition to an extra class for the letter Kaf (ك),

based on the number of strokes.

Alimi and Ghorbel [61] developed a recognition system of 28 isolated Arabic letters

using dynamic programming. The training set consisted of 20 sets that contained sample

replications of each letter. For testing purposes, 280 additional samples were used, which

resulted in a reported recognition rate of 93%. The number of characters and samples

56

were limited. A decision tree is used in [92], which reports an accuracy of approximately

75.3% using a dataset that contained 1400 samples collected from 10 writers in which

each writes the 28 letters five times. The same dataset is used in [97], with similar online

features and excluding offline features. For classification purposes, neural networks with

feed-forward back propagation is used. A recognition rate of approximately 83% is

reported. Decision tree and matching algorithm are used based on matching the stroke

directional string in [79]. The training dataset is collected from four writers; each wrote

the 28 letters three times, thus producing 336 samples. For testing, five writers were

asked to write the 28 letters randomly, and the reported recognition rate was 97.6%.

A rule-based classifier for recognizing isolated Arabic letters was proposed and

compared with MLP neural networks and decision tree classifiers, with reported

classification results of 97.6%, 98.85%, and 97.5%, respectively [69]. The dataset used

contained 840 samples, 504 for training and 336 for testing, and it was written by

different writers. The same dataset is used in [70] with a reported recognition rate of

96.7% when a decision tree is combined with an MLP Neural Network. The size of the

dataset and the number of writers are limited. In [93], the letters are clustered into four

groups based on the number of strokes. For each cluster, a multi-layer feed-forward

neural network with a different structure is used. Approximately 500 samples are used for

evaluation, and the reported recognition rates are 99.1% for trained writers and 95.7% for

untrained writers. These authors considered the writing variations that are in the number

of strokes in the letters Taa (ت), Thaa (ث), and Qaaf (ق). As a practical matter, other

characters might have variability in the number of strokes. A multi-layer neural network

is used for isolated Arabic/Persian character recognition in [74], which used a 3-layer

57

feed-forward neural network with 35 neurons in the hidden layer (chosen empirically)

and 32 output nodes (which represent the 32 classes: 28 Arabic + 4 additional Persian).

The dataset used consists of 120 samples for each letter: 100 for training and 20 for

testing, by different writers. The reported accuracy is approximately 95.69%. Similar to

other research, it is expected that recognition rates will drop when all forms of Arabic and

Persian characters are used. In [60], the classification is performed in two stages. In the

first stage, a back propagation neural network is used to classify 15 non-dotted basic

letter shapes. The second stage is performed using logic programming for handling

delayed strokes based on their counts and locations. The evaluation is performed on a

database with a similar number of online and offline character samples. For training,

1050 samples are collected from five users. The best recognition rate is 74.8% on 420 test

samples. The writers are asked to write with stroke number and stroke order restrictions.

In a natural setting, different writers may use different numbers of strokes for the same

character, and sometimes the same writer could write the same character with different

number of strokes.

El-Wakil and Shoukry [89] used a three-stage classifier that combined a hierarchical

classifier, template matching, and K-NN for recognizing position-dependent Arabic letter

shapes. The reported recognition rate is 84% and reached 93% when the features were

manually weighted on a dataset that was collected from 7 writers. A real-time Arabic

handwritten character recognition system is developed in [114], using a hierarchical

classifier with a tree structure. The character shapes are grouped into four sets based on

the position of the character, and each set is divided into four subsets based on the

number of strokes. The reported recognition rate is 99.6% on data that are collected from

58

one writer (data from only one writer are limited and explain the high recognition rate).

Harouni et al. [104] proposes a deductive method for online handwritten Persian/Arabic

character recognition. The input strokes are segmented into tokens, and the features that

are extracted from those tokens are fed into the Back Propagation and Multilayer

Perceptron (BP/MLP) neural network classifiers. The evaluation is performed on a

dataset of 31,620 samples with 102 different position-dependent Persian/Arabic character

shapes. The recognition rates are computed for the four writing positions, for which the

reported recognition rates are between 92.60% and 96.84%. The data is divided into

training and testing sets. It is unclear if there is overlap between writers. The recognition

of the segmented characters of the ADAB database is presented in [118], using SVM

with an RBF kernel classifier and reporting 97.11% recognition rate. The number of the

segmented characters are: 25,251 samples for 19 isolated letter classes and four ligatures,

29,757 samples for 12 beginning letter classes, 23,536 samples for 14 middle letter

classes, and 29,538 samples for 19 end-form classes.

Alsallakh and Safadi [63] proposed AraPen, an Arabic online handwriting recognition

system. This system is designed to handle non-cursive isolated letters and digits and is

then adapted to the cursive case. A two-level classifier is used. First, the top three

candidates are obtained using Dynamic Time Warping (DTW). A simple neural method

is then used to classify those candidates. Although AraPen is not writer independent,

users can train it with their own style and add new patterns; thus, AraPen is trainable and

Alphabet-Extensible. To evaluate the system's performance, a small corpus is collected.

For the non-cursive data, the reported accuracy is 91% on the basic patterns and 98%

after training. A recognition rate less than 50% was obtained when the system was

59

adapted to cursive text. Assaleh et al. [115] proposes a video-based approach for online

Arabic letter recognition via hand motion tracking. Two classification techniques are

used: Hidden Markov Models (HMM) with time-dependent features and K-nearest

neighbor (K-NN) with time-independent features. The highest reported recognition rate is

99.11% on a dataset that consists of videos of each letter being written 8 times by two

writers. The video-based approach for recognizing handwriting implies several

difficulties, such as processing videos and extracting text from images, in addition to the

other phases of text recognition. A summary of some studies of online Arabic

handwritten digit/isolated character recognition is shown in Table 2.5.

Table 2.5 Summary of non-cursive AOTR2

Data Study Method Results %

10,000 digits. Train: 7000. Test:

3000

Kherallah [117] Neural Networks 95

30,000 digits, 100 writers. Al-Taani [80] Structural approach 95

LMCA digits Kherallah [71] Fuzzy+ MLP+ SOM+ K-NN 95.08

AOD digits Azeem [5] SVM 98.73

Digits each by 100 writers Abuzaraida [59] Matching Algorithm 98

15 letter shapes, 25 writers Klassen [84] Perception, MLP and GP WI:95,95,83

18 letter shapes, 7400 samples,

17 writers.

Mezghani [67] Kohonen memory, K-NN 88.38, 86.02

Mezghani [75] Kohonen maps 93.54

Mezghani [76] Associative memory 94.56

Mezghani [86] Associative memory, K-NN 94.56, 95.34

18 letter shapes, 528 samples for

each letter * 22 writers.

Mezghani [68] Bayes direct, indirect Bayes,

combine Bayes, ANN, K-NN

84.85, 90.19,

92.61, 90, 94

Izadi [64] SVM WI: 97.8

28 letters, Train: 20 sets of

samples, Test: 280 samples

Alimi [61] Dynamic programming

WI: 93

28 Letters, 8 samples each, 2

writers

Assaleh [115] K-NN, HMM 99.11(K-NN)

28 letters. Train: 336 samples, 4

writers. Test: random, 5 writers

Omer [79] Decision tree 97.6

28 Letters 1400 samples, 10

writers

Al-Taani [92] Decision tree 75.3

Addakiri [97] FFBP ANN 83

2 WD: writer dependent, WI: writer independent

60

28 letters, 500 samples Alijla [93] ANN WI:95 WD:99

28 letters, 504 samples for

training and 336 testing

Ismail [69] Rule based, Decision tree,

ANN

WI: 97.6, 97.5,

98.85

Ismail [70] Decision tree + ANN WI: 96.7

29 letters, each 250, 25 writers Harouni [88] BP/MLP 96.50

28 letters. Online and offline

Train: 1050, 5 writers. Test: 410.

Ramzi [60] BPNN + logic programming 74.8

32 Arabic/Persian Letters, 100

train and 20 test samples each

Khodadad [74] ANN WI:95.69

64 characters, 108,082 samples of
ADAB, manually segmented.

Azeem [118] SVM 97.11

102 Arabic/Persian characters,

31,620 samples, 31 writers

Harouni [104] ANN 92.60-96.84

Recognizing non-cursive text can be used in special purpose applications, such as

educational learning, as in [38], [119]–[121], or utilized in cursive text recognition

systems, particularly with analytic recognition approaches (described later). There are

two main limitations in the reviewed studies: the first limitation is related to the method

of acquiring the data, and the second is related to the collected data themselves. In most

studies, the samples are collected individually in their non-cursive forms, which limits the

usability of the system in cursive text recognition. Another limitation that is found in

almost all the surveyed non-cursive recognition studies is the size of the used data. The

size of the data and the number of writers do not seem to be sufficiently large to

guarantee applicability to real-life systems. Although the first limitation is avoided in

[118], where the samples are extracted from cursive text, the limitations are inherited

from the cursive text database (ADAB). In addition, most of the studies discussed above

addressed a limited number of Arabic character classes and not all characters in all

positional forms.

2.5.2 Cursive Text Recognition

There are two main approaches for recognizing Arabic cursive text: the global approach

and the analytic approach. The global approach recognizes the input as a whole, without

61

segmentation, whereas the analytic approach recognizes the input based on its

constituents. The analytic approach requires some type of segmentation, depending on

the scheme adopted. Two main schemes are used in this approach. In the first, the

segmentation is performed explicitly, whereas it is performed implicitly in the second

scheme.

The global approach is also called the holistic recognition approach, in which the

classification is performed on the input without segmenting it into smaller units. This

scheme avoids errors that result from the segmentation. However, the classifier is trained

on the entire dictionary, which is impractical for large vocabulary applications [19].

Global recognition of Arabic words using genetic algorithms and visual encoding is

proposed in [107]. A set of 100 Arabic words is used for training, and two sets are used

for testing; all the sets are collected from one writer. The first set of test words contains a

list of words that are included in the training set. The second test set consists of pre-

selected words with syllables that are included in the learned word set. The reported

recognition rate using the first test set is 92%, and that rate is approximately 70% on the

second test set. A similar approach is adopted in [25] on a dataset of 500 words written

by 24 writers, with a reported recognition rate of 97% for isolated words. An online

Arabic PAWs recognition system was developed based on an elastic matching technique

in [52]. The performance of this systems is evaluated using two datasets of 500 selected

unique PAWs. In the first dataset, the samples were collected from 6 writers. The second

dataset is constructed by generating the samples synthetically. The reported recognition

rates are 81% and 82% for the manual and synthetic datasets, respectively. In [77], a

multi-level recognizer for cursive text is presented in which hierarchical filters are used

62

to reduce the search space. In the first filter, delayed strokes and global features were

used to reduce the PAW candidates. The second filter utilizes local features in a dynamic

time warping (DTW) classification. A set of Arabic words that includes the different

shapes of Arabic letters is used for evaluation purposes. For training, samples of these

words are collected from 10 writers. In addition, for each writer, the shapes of all the

words are generated by a semi-automatic system. For testing, six writers were asked to

write 100 random PAWs from the database 10 times. Three of the writers participated in

the training set, and the reported results after applying a geometric filter were between 83

and 88%. The recognition results after using the shape context filter with five candidates

improved to between 86 and 90%. This system is used in [40] on three datasets: a

manually modified ADAB database (MM-Adab), synthetic generation from ADAB (SG-

Adab), and synthetic generation from users (SG-ON-User). MM-Adab is a modified

version of the ADAB database that includes 2,200 PAWs with 16,356 different shapes.

The modification aims to ensure the correctness of the main component; in other words,

each PAW is represented as a single connected component. The reported precision rate

on MM-Adab is 78.21%, and the recall is 79.21%. SG-Adab consists of 22,000 different

shapes that are generated using the letters and PAWs of the MM-Adab. The precision rate

using SG-Adab is 78.64%, and the recall rate is 77.96%. In SG-ON-User, 48 writers were

used to train the system to generate three sets of prototypes based on three proposed style

schemes in which 31,230 different shapes for the PAWs of the MM-Adab set were

generated. A precision rate of 80.43% and a recall rate of 78.12% were reported when

using the SG-ON-User dataset.

63

In the explicit analytical scheme, a segmentation phase provides the classifier with the

basic units, which is the reason it is called segmentation-based recognition. Using this

approach has the advantage of being adaptable to large and even unlimited vocabulary

applications, and more types of classifiers can be used. However, it suffers from the

challenging nature of connectivity in Arabic cursive writing, particularly with online

Arabic text, which makes perfect segmentation difficult, if not impossible. As a result,

the segmentation errors propagate into the subsequent phases, which increases the

likelihood of recognition error over the entire system. In this approach, an explicit

segmentation step is employed to provide small units that can be used to construct the

entire cursive text. These units can be letters, as in [41], [66], [99], or graphemes that

represent sub-strokes, as in [30]–[32], [35], [91], [94].

Al-Emami and Usher [99] used Genetic algorithms for recognizing postal codes based on

13 Arabic characters, with reported recognition rates of 86% and 100% for writer-

independent and writer-dependent classification, respectively. In [94], a template

matching scheme is used for recognizing single characters and cursive words. A set of 66

Arabic words were selected such that the different shapes of the Arabic letters were

included. The dataset is collected from 40 writers, which resulted in 1578 word samples

and samples for the isolated characters. Half of the word samples (839) and 27 of the

writers of isolated single characters are used for training. The single-character recognition

experiments are writer-independent, and the highest reported accuracy was 94.8%,

whereas the best reported word recognition rates are 91.2% (WI) and 91.6% (WD). In

[91], one-vs-one (OVO) multiclass fuzzy support vector machines are used to the pre-

64

segmented graphemes using the RBF kernel. The evaluation is performed on the ADAB

database with a reported word-based recognition rate of 87%.

The classification methodology discussed in [122] is adopted in [30]–[33], for

recognizing Arabic words in the ADAB database. The input is segmented explicitly into

graphemes, and a network of interconnected left-to-right discrete HMMs is then used to

recognize the character sequences. They used a codebook size of 256 using the HTK tool,

where the Viterbi algorithm is used to improve the training models. A recognition rate of

approximately 86% is reported in [30]. The results are reported for three experiments

conducted on ADAB database sets 1 and 2 in [31], [32]. The first reported a recognition

rate of 57.87% on set 1 and 54.26% on set 2, without diacritics [123]. The recognition

rate in the second experiment is 79.46% on set 1 and 77.61% on set 2 after filtering and

without diacritics. The third experiment is performed with a fuzzy affectation of diacritics

after filtering, which obtained a recognition rate of 87.13% on set 1 and 84.79% on set 2.

The diacritics considered are limited to simple dots, double merged dots, three merged

dots, or ‘shadda’. In [33], the ADAB sets 1, 2, and 3 are used for training, and sets 4, 5,

and 6 are used for testing. The reported accuracy is 87.46% for the training sets and

85.37%, 85.37%, and 87.62% for testing sets 4, 5, and 6, respectively.

Tagougui et al. [34], [35] proposed a hybrid MLPNN/HMM system for Arabic online

text recognition. The input is segmented into continuous sub-strokes called segments

based on the Beta-Elliptical strategy by inspecting the extremums’ points of the

curvilinear velocity profile. They used Multi-Layer Perception Neural Networks

(MLPNNs) trained on segment-level contextual information to extract character class

probabilities. The output of this network is decoded into 120 characters that are modeled

65

by a 4-state left-to-right discrete HMM with a codebook size of 256 to provide character-

level recognition. These 120 models are the positional-based character shapes in addition

to digits and some ligatures found in the ADAB database. For the training, 6000 words

were chosen randomly from the first three sets of the ADAB and segmented into

characters, which yielded 378950 segment strokes. These strokes are injected into the

MLPNN to assemble different Arabic character skeletons that are used in HMM

modeling. The training is supervised, and some steps are performed manually. For

testing, sets 4, 5 and 6 of the ADAB are used to evaluate the proposed system

performance, with a reported 96.4% character-based recognition rate. The system is

designed in a character-based manner to be used for open lexicon applications. In [66],

the classifier is designed based on HMMs with Gaussian-mixture models (GMM). In the

training phase, the segmentation algorithm in [65] supplies the classifier with exact letter

segments to train the corresponding HMM models. However, the algorithm proposes

many alternatives of the segments in the testing phase, and the best sequence is selected

as a classification result. The evaluation is performed using 100 samples of two personal

names with different writing styles.

In [41], a rapid Arabic online handwritten character recognizer is proposed that aims at

facilitating real-time handwritten script analysis tasks. For character-based classification,

a k-d tree is built to be used by k nearest neighbors for retrieving a given query character.

DTW is employed in refining the similarity scoring of the candidates. The PAW

recognition is performed by a holistic approach that employs the character classification

information that is obtained using real-time segmentation. The system is trained and

evaluated on characters of all positions using letter samples that are extracted manually

66

from the ADAB database. The performance of the classifier is measured using 10-fold

cross-validation, and the highest reported recognition rates are 91% for characters and

90.8% for PAWs.

In the implicit analytic scheme, recognition and segmentation are performed

simultaneously. This scheme avoids the main disadvantages of the other two methods:

the need for large amounts of training data and the error-prone explicit segmentation

process. This approach can be performed using a parallel or serial optimization scheme.

The serial method searches for a "satisfactory" recognition result iteratively in a left-to-

right scan of the input. In the parallel scheme, the process is performed more globally by

generating a lattice of all (or many) possible combinations, and the final decision is found

by choosing an optimal path through the lattice. Typically, the input is systematically

divided into overlapping segments and is used to find a coherent

segmentation/recognition result. This approach is also called "segmentation-free"

recognition. "Segmentation-free" is considered to be misleading as terminology [98]

because recognition necessarily involves segmentation, whether explicitly or implicitly.

In [87], a genetic algorithm is used to select the best combination of the recognized

characters using a fuzzy neural network. The models considered are the position-

dependent basic shapes of Arabic letters that can be represented by one stroke and the

Kashida (ــ) connecting character. The dataset used is collected from one writer, and a

training set of 2,000 character samples and a testing set of 100 samples of one word

achieved 89% recognition rate. The data is limited and is from only one writer.

Biadsy et al. [56] used recognition of un-diacritized (un-vocalized) Arabic words based

on Hidden Markov Model (HMMs). Each position-dependent letter shape is modeled by

67

a discrete left-to-right HMM with various numbers of states based on the geometric

complexity of the characters. These models are embedded in a network that represents the

PAW dictionary, which is optimized by grouping all the shared suffixes. For word

recognition, the best PAW sequence is found from the input PAW observation sequences.

The training data is collected from four writers, where each is asked to write a list of 800

words that were selected to include all Arabic letter shapes with an almost uniform

distribution. The testing dataset contains samples of 280 other words that were collected

from ten writers (the four trainers and six new writers). Several experiments are

conducted with different dictionaries, where all contain the 280 test words. The results

are reported for word and PAW recognition. The highest reported recognition rates are

96.47% (WD) and 96.28% (WI) for words and 98.44% (WD) and 98.49% (WI) for

PAWs. This work is extended in [57], and a segmentation-free system is introduced by

performing the recognition at the continuous PAW level and the training at the letter

level. The presented results in [56] are compared with the results derived from using

different datasets, features, and classifiers. To validate the results of using the manual

database, the system is applied using a synthetic database. The methods given in [52] are

used to synthetically generate the same 280 test words. In total, the evaluation set

included 3282 multiple shapes of the same 280 words that were synthetically generated

and 1200 shapes written by the four trainers. The results of using the HMM classifier on

the synthetic database are 92.14% (WD) and 91.44% (WI). To evaluate the effectiveness

of the features used, the same system and dataset (manual database) are used while the

geometric features set are replaced by sliding window offline features, for which

recognition rates of 91.21% (WD) and 92.11% (WI) were reported. A Dynamic Time

68

Warping (DTW) technique is used for comparison with the HMM classifier, which yields

recognition rates of 91.24% (WD) and 96.18% (WI) using the geometric features of the

manual database.

Al-Habian and Assaleh [83] presented a recognizer for online Arabic cursive handwriting

using HMMs with Gaussian-mixture continuous emissions in which the basic recognition

units are the sub-letter strokes. HMMs are used for stroke recognition, and a decision

logic tree is then used to convert the output into recognized words. The dataset used is

collected from six writers, where each is asked to write a number of words six times

(which are chosen to include all strokes in a balanced manner). A writer-dependent

evaluation is performed in which half of the data for each writer are used for training, and

the remaining half are used for testing. The reported recognition rates for the strokes and

letters are 78.25% and 75.25%, respectively. Daifallah et al. [54] presented a recognition-

based segmentation of Arabic words and letters that was based on HMM. The number of

states and codebook size were fixed at 7 and 4096 for all the models, respectively. The

system is evaluated using 150 non-pointed word samples that consist of 720 letters. The

results of the writer-dependent experiment on the same training user samples are 92.6%

for words and 97.2% for letters. However, the testing results for samples written by a new

user who knows how to use the tablet and pen are 85.3% for words and 88.8% for letters.

Moreover, the testing for samples that are collected from new users who do not know

how to use the tablet and pen yields reported recognition rates of 71.3% for words and

79% for letters.

In [6], a simultaneous recognition and segmentation system of words in an unconstrained

cursive online text using Rule-based dynamic programming is presented. The input

69

strokes are manually segmented according to pre-defined pattern shapes for training.

These patterns are clustered and stored in a registry. In the testing stage, words are tested

sequentially, and the extracted skeleton patterns are compared with all the training

patterns using a dynamic programming technique using Minimum Edit Distance to find a

globally optimal set of cuts of the input test string (feature vector), which minimizes the

defined cost function. The training set consists of 317 words (1,814 characters), which

were written by four writers, and the testing set consists of 94 words (435 characters),

which were written by another four writers. The reported recognition rates are 95% and

≈75% for character- and word-based recognition, respectively. The HTK Toolkit is used

to implement a HMM-based simultaneous segmentation and recognition in [28], [29].

Left-to-right HMMs with 16 Gaussian Mixtures are used for modeling the primary shapes

of the position-dependent Arabic characters after removing the delayed strokes. The

delayed strokes are then restored to reduce the candidates. In [28], the first three sets in

ADAB are used to conduct three experiments; in each experiment, two sets are used for

training and the third for testing. The highest reported word-based recognition rate is

95.27%, which is obtained when the testing set is set 3. In [29], the training is performed

on the ADAB database using non-segmented words and manually segmented characters.

For testing, 300 Arabic personal names are collected from 10 writers; each was asked to

write 30 names randomly. The reported recognition rate is 92.5% for word-based

recognition. In [36], a fusion of two HMM-based classifiers was applied, which resulted

in a word-recognition rate of 97.78% using ADAB sets 1, 2, and 3 for training and set 4

for testing. One classifier is designed to recognize the online input by directly utilizing

70

online features, and the other classifier recognizes the input after converting it into an

offline image.

In [37]–[39], a more sophisticated HMM-based approach is used. Hidden Markov

Models are trained with advanced modeling techniques adopted from speech recognition,

such as context-dependent modeling, speaker-adaptive training, discriminative training

and Gaussian mixture splitting. The training process is initiated by building 115 mono-

grapheme models that represent the different characters in the ADAB database (103

Arabic letter position-dependent shapes, 10 English digits, Arabic MAD symbol '~' and

the English letter Capital V). The HMMs used are applied left to right with the number of

states varying from 3 to 9, depending on the complexity of the character’s shape. A more

sophisticated HMM modeling method is then used by building tri-grapheme context-

dependent models. This type of modeling method requires a large dataset. To address this

problem, a decision tree–based clustering technique is used. When ADAB database sets

1, 2 and 3 are used for training, and when set 4 is used for testing, the system

performance is evaluated using Mono Grapheme, Writer Adaptive Training (WAT), Tri-

Grapheme, DT, and Gradual Gaussian techniques with reported word-based recognition

rates of 88.71%, 90.84%, 93.48%, 94.44%, and 94.63%, respectively, in [37], and

94.43%, 94.83%, 96.18%, and 97.13% in [39]. In [39], the system is evaluated using a

large vocabulary database (i.e., the ALTEC Arabic Handwriting database

(ALTECOnDB)) [50]. Two passes are used. In the first pass, a word-internal tri-

grapheme HMM model with a bi-gram language model is used to generate a word lattice

that represents a reduced search space of the hypothesis sets. In the second pass, this

lattice is re-scored with a cross-word tri-grapheme HMM model and a fifth-gram

71

language model. The performance of pass one that is obtained is improved by using pass

two, where the reported accuracy is increased from 68.76% to 80.07% for the Writer-

Independent models and from 79.40% to 87.47% for the Adapted models. A summary of

selected online Arabic cursive text recognition research is shown in Table 2.6.

Table 2.6 Summary of cursive AOTR3

Data Study Method Results %

120 words of 13 characters Al-Emami [99] Genetic algorithm WI: 86 WD:100

Train: 2000 letter Test: one word

100 samples, one writer

Alimi [87] Genetic algorithm 89 WR.

100 words; one writer Kherallah [107] Genetic algorithm 92 WR.

LMCA words Kherallah [25] Genetic algorithm 97 WR.

Words, 2916 letters, 6 writers Al-Habian [83] HMM +decision tree WD: 75.25 CR

66 words, 1578 samples, 40

writers

Sternby [94] Template matching WD: 91.6 WR

WI: 91.2WR,94.8 CR

150 word samples, 3 writers Daifallah [54] HMM WD:92 WR, 97CR

WI: 85 WR, 88 CR

100 samples for two names taken

from SUSTOLAH.

Abd Alshafy [66] HMM 90

Train: 800 words, 3200 samples,

4 trainers. Test: 280 words, 2358

samples, 4 trainers + 6 testers

Biadsy [56] HMM WD: 96.47 WR,98.44

WPR WI: 96.28 WR,

98.49 WPR

Biadsy [57] DTW WD:91.24,WI:96.18

Biadsy [57] HMM, Offline WD: 91.21 WI: 92.11

Synthetic words. Train: 800, Test:

280; 4,480 samples

Biadsy [57] HMM WD: 92.14 WI: 91.44

ADAB sets 1, and 2. Boubaker [32] HMM 1: 87.13, 2: 84.79

Boubaker [30] HMM 1: 86.39, 2: 83.56

MM-Adab, SG-Adab, and SG-

ON-User.

Saabni [40] DTW PrR: 78.21, 78.64,

80.43. ReR: 79.21,

77.96, 78.12

5056 words in 1023 lines from 5

writers.

Parwej [124] HMM (Offline,

Online, Combined)

PrR: 62.8, 66.3, 68.2

ADAB sets 1,2 and 3 Eraqi [91] Fuzzy SVM 87

Ahmed [28] HMM 95.27

Kour [41] k-d tree+K-

NN+DTW

91 CR, 90.8 WPR

ADAB Train: 6000 words from

sets 1,2,3.Test:4,5, 6

Tagougui [34] hybrid

MLPNN/HMM

96.4 CR

ADAB Training: sets 1, 2, 3;

Testing: sets 1+2+3, 4, 5, 6

Boubaker [33] HMM 87.46, 85.37, 85.37,

87.62

ADAB Training: sets 1, 2, 3;

Testing: set 4

Hosny [37] HMM 94.63

Azeem [36] HMM (Offline,

Online, and Fusion)

95, 95.5, 97.78

Abdelaziz [39] HMM 97.13

3 WD: writer-dependent, WI: writer independent, WR: word recognition rate, WPR: word-part (PAW)
recognition rate, CR: character recognition rate. PrR: Precision Rate, ReR: Recall Rate.

72

Train: 317 words, 4 writers. Test:

94 words, other 4 writers

Elanwar [6] Rule-based, DP WI: 95 CR, 75 WR

ALTECOnDB Abdelaziz [39] HMM WI 80.07, 87.47 WD

The results are organized based on the data used, including the vocabulary, number of

writers, dataset size, and separation of training and testing sets. This is useful for

comparing the different techniques. Some of the results are different, although the same

data and classifier are used, which is due to the difference in the preprocessing steps, in

the features used, or in the setup. Most databases are difficult to obtain. Moreover, the

statistics are not available for other databases, such as SUSTOLAH [66] and APOHCD

[74]. Most researchers use their own databases, and some present results using databases

that are not available to the public [60]. Each database is mostly used by its originators,

which makes it difficult to compare different researchers’ results, and such comparisons

are important to improve research. One exception is the ADAB database, which is used

as a benchmark in several studies as well as being used in competitions [26], [27].

However, this database has several limitations, as described in Section 2. The evaluation

of the experiments depends on the methodology used, and in some studies, the accuracy

is computed at the character level for recognizing cursive text.

It is difficult to achieve high recognition rates without considering the variations in

Arabic text because there is significant variability when writing some of the characters

with different styles. Some of the studies avoid this obstacle by restricting the allowed

style (constraint) as in [6], which used only Naskh. One method for handling the intra-

variation is to use multi-patterns for some classes. Determining those patterns is difficult.

Such patterns can be constructed manually based on certain characteristics. In [93], the

letters Taa (ت), Thaa (ث), and Qaaf (ق) have patterns based on the number of strokes,

73

which can be accomplished automatically during training by using SOM with fuzzy k-

nearest neighbor algorithms (FKNNA) as in [24]. Another method for handling the intra-

variation is to rely on the classifier to tolerate the variations in the samples that belong to

the same class, based on the variability of the training dataset, as in [37]–[39], [74],

[121].

Statistical approaches are useful for handling class variations. However, they require

large amounts of training data. Structural approaches are robust even with limited

training data, and no training is required with some methods, as in [80]. The difficulty

comes from the need to consider different patterns for the same class when there is intra -

class variation. HMMs are widely used for cursive text recognition because of their

ability to learn the segmentation behavior from a training set. The HMM-based

“segmentation-free” approach that is used in speech recognition is employed in AOTR by

utilizing the similarity in the serial digital representation of both speech and online text.

The basic units of classification can be an entire word (global scheme) or a character or

even a sub-character. Recognition based on sub-character graphemes reduces the number

of basic classes, as in [83]. However, some effort is required to produce meaningful text

from these graphemes. Processing the diacritical marks, special symbols, punctuation

marks, and non-text objects is mostly addressed when they are available in the dataset

used. For example, when the ADAB database is used, there are certain digits and the

Latin letter “V” that are modeled that are in addition to the Arabic letters.

Considering diacritics when modeling letters in cursive text assumes that the delayed

strokes are integrated with the main strokes and that the features are extracted from the

74

result. This approach helps to improve the discrimination power of the classifier.

However, the main problem is the error-prone integration methods, as such methods are

expected to have errors when the handwriting is unconstrained. Alternatively, when

modeling letters without diacritics is adopted, the classification complexity is reduced

because different letters are represented as one model (class) if they share the same main

body (i.e., they differ only by the number and position of the delayed strokes). This

approach has the drawback of losing some information that is required when building a

general recognizer. Even if the application is limited and does not have to differentiate

between different units with the same main body, ambiguity can result if some Arabic

letters have a shape that is similar to the composition of other letters. For example, the

word "بين" which consists of the three letters “ي“ ,"ب", and "ن" (Figure 2.4.b), is similar to

the letter “س” (Figure 2.4.a) when the delayed strokes are removed (Figure 2.4.c). Hence,

there is a need for an extra phase to utilize these removed strokes to enhance recognition

results.

a) An Arabic letter

b) An Arabic word with dots

c) The word in (b) without dots

Figure 2.4 An ambiguity that is caused when delayed strokes are removed

2.6 Post-Processing

The output of the classification phase is normally a list of hypotheses or the recognized

unit. The post-processing phase is used to enhance the recognition accuracy by utilizing

the context to improve the results of the classification phase. As shown below, few

research studies have used post-processing techniques to improve the results. The most

75

commonly used approach is to use a dictionary of frequently used words to find the best

string that matches the classification output [87].

Post-processing is conducted in two steps in [83]. First, rules are imposed on the letter

shapes to exclude the recognized candidate letter shapes that are invalid for a

corresponding position in a word. Then, a word dictionary is used to manage forming the

words by joining the recognized letters. In [57], a PAW dictionary network for letter

models is constructed. This network is utilized to verify the PAW recognition and

construction of the recognized words from the recognized PAWs. Testing is performed

with five different dictionary sizes to evaluate the performances under different

conditions of ambiguity.

In [39], the system results are enhanced using an additional post-processing step to re-

score the multiple hypotheses of the system’s results with higher order language models

and cross-word HMM models. A dot restoration step is added in [6]. The restored dots

are used to remove the inconsistent decisions from the list based on Arabic-language

characteristics. A ranked list is created after filtering the initial list, which is built based

on the classification results. Filtering is performed by removing the candidate characters

that are inconsistent with the numbers and locations of the dots. In [94], the word

recognition results are given with and without dictionaries of different sizes. Using a

reasonable size dictionary improves the performance. The dictionary used is limited to

static matching, and it is better if it is expanded to handle other cases. Spell checking can

be used to enhance the classification results where a dictionary is utilized in addition to

natural language processing techniques.

76

3 CHAPTER 3

A STATISTICAL FRAMEWORK FOR ONLINE ARABIC

CHARACTER RECOGNITION

Research on recognition of segmented (non-cursive) characters has several advantages. It

can be used to validate the techniques employed in the different phases of the recognition

systems. It can be utilized in cursive text recognition systems, especially those using the

analytic approach as in [41], [66]. It also can be used for specific purpose applications

such as educational systems, forms filling, and digits recognition (digits in Arabic are

non-cursive).

In this chapter, a recognizer for unconstrained Arabic online character is developed. One

of the contributions reported is the methodology of handling the delayed strokes. The

delayed strokes are handled differently at the different phases of the recognition process

to improve the overall performance. Another contribution is the intensive investigation of

several novel statistical features using a developed framework for generating different

statistical features. The framework consists of two main components. Most of the point-

based features (local features) that are found in the related literature are extracted. A

statistical layer is then added to form statistical features. Those features can be at the

level of points, sub-strokes, the whole stroke, or a combination of the different levels.

77

Moreover, the used dataset is extracted from a database of unconstrained online cursive

text and not written in isolated form. Using such dataset implies the need of addressing

additional complexities as will be discussed later.

3.1 The Proposed Framework

In this section, we briefly describe the proposed framework shown in Figure 3.1. The

details of preprocessing, feature extraction and classification phases are given in their

corresponding sections. A character sample is input into a pre-processing phase which

involves enhancing the input signal, detecting the primary and delayed strokes, and then

merging the primary strokes. The output is the main stroke and a set of secondary strokes

(if any). The attributes of those strokes are obtained using the proposed statistical features

extraction method. The extracted features are then fed into the classification phase to

identify the primary and secondary candidates with their likelihoods and combine them to

select the most probable character.

78

Figure 3.1 The proposed framework for character recognition.

79

3.2 Delayed Strokes Handling

Handling the delayed strokes is described in this section as it is involved in the different

phases (dashed rectangle Figure 3.1). Delayed strokes handling has several challenges.

Such strokes are assumed to be “delayed” during handwriting (i.e. written after

completing the main strokes). Thus, processing of the delayed strokes is complicated

when the delayed strokes are written before the main strokes. The main stroke represents

the main body shape of the character whereas the secondary strokes, normally, represent

the dots and diacritics. This assumption has drawbacks when the delayed stroke is a

complement grapheme and in the presence of internal discontinuity as shown in

Figure 3.2. For instance, the end form of the letter Dal “د” can be written using two

strokes as shown in Figure 3.2.a. In this figure, none of the strokes represents a diacritical

mark. Another cause of complication is due to the variability of the shape, size, and

location of the graphemes that represent them.

The difficulties of handling delayed strokes can be avoided by imposing constraints such

as writing the main stroke before the secondary strokes as in [60] or by forcing the main

body of the input to be written in one stroke as in [61]. Most reviewed studies considered

the delayed strokes as diacritical marks. However, such constraints limit the applicability

of the system on realistic data and impact extending the character recognizer to the

cursive case. More discriminative features may address the variation problem and

possibly using more models for the diacritics.

80

a) End form of Dal “ـد”

b) Beginning form of Kaf “كـ”

c) Middle form of Ha “ـحـ”

Figure 3.2 Examples internal discontinuity.

81

In this work, the delayed strokes are considered in the different phases of the proposed

recognizer. For example, detection and merging operations are performed when needed

in the preprocessing phase. In the feature extraction phase, some features are extracted

for the delayed strokes such as number, position, dimensions, aspect ratio, and

changeability of writing directions. A simple hierarchical classifier is used to identify the

detected delayed strokes. The classifier returns the candidate types along with the

corresponding likelihoods. In the first level, the candidates are filtered according to their

position and strokes’ number. For example, three secondary strokes lying above the main

stroke are considered as three dots and the other options are ignored. A second level is

involved in the case of having more than one candidate returned from the first level (e.g.

an above secondary stroke which can be one dot, two dots, three dots, Hamza …). This

process assigns confidence values for the delayed strokes. The identified delayed strokes

candidates are then used for lexicon reduction by eliminating the main shape models that

are unlikely to have any of the detected secondary units. An extra step is performed to

select the best main-secondary stroke combination. The selection is based on the

classification likelihood of the main stroke candidate, the secondary unit identification

likelihood, and the association likelihood between them.

82

3.3 Pre-Processing

This phase involves single-stroke and multi-strokes preprocessing. Single-stroke

preprocessing enhances the input signal using simplification, resampling, smoothing, and

interpolation. The simplification process is performed by eliminating any number of

duplicate successive points in a stroke, leaving only one. A weighted average smoothing

filter is used to reduce the noise and eliminate hardware imperfections and trembles in the

input handwriting signal caused by acquisition devices. We applied interpolation and

resampling operations to recover missing data and to make points lie at uniform

distances. The linear interpolation introduced in [73] is used for this purpose.

Multi-strokes preprocessing stage is employed for inputs with more than one stroke. It

implies detecting the primary and delayed strokes and then merging the primary strokes.

The output is the main stroke and a set of secondary strokes (if any). The detection of the

primary and secondary strokes is based on some global features (viz. the size, distances,

and the ratio of points lying above, below, left, right of the main stroke, and the order of

input). Depending on these attributes individually causes errors. For example, the size-

based detection is not suitable since the delayed stroke can be larger than the main stroke

as shown in Figure 3.3. Strokes’ location and relative position are not useful in the case

of segmented characters. Such features are more suitable for the cursive text case since

some methods can be utilized such as the baseline detection. The expected strokes' input

order has some variations, i.e. the delayed strokes can be input before the main stroke in

some cases.

83

a) Up, the delayed stroke

“hamza” in the letter "أ".

b) Down, the delayed stroke

“two dots” in the letter "ـيـ" .

b) Down, the delayed stroke

“hamza” in the letter "إ" .

Figure 3.3 Examples of delayed strokes larger than main strokes.

84

The merging process is developed in a manner that avoids difficulties resulting from the

internal discontinuity problems like those shown in Figure 3.2, where the main body is

represented by more than one stroke. The order of the merge process during the

preprocessing is important. If the merge is performed before the geometric pre-processing

then some unwanted results may occur. For example, if the strokes of the segmented

characters representing the end form of the letter "ha" ح in Figure 3.4.a are concatenated

using a linear interpolation then the output will be similar to the end form of the letter

Ain “ع” as in Figure 3.4.b. This problem is avoided in [118] by removing the small

strokes that are on the left or the right sides of the main stroke. However, such deletion

operation has its own problems. Removing the delayed stroke can cause confusion in

some cases. For example, ignoring the “Kashida” stroke makes the character similar to

the isolated form of the letter "ha" ح as shown in Figure 3.4.c. Similarly, removing the

red strokes in Figure 3.2.(a-c) result in shapes that are similar to beginning forms of Dal

 ,”ك“ beginning form of Kaf ,”د“ rather than the end form of Dal ”ح“ and Ha ,”ل“ Lam ,”د“

and middle form of Ha “ح”, respectively. In this example separating the two strokes can

be adopted when modeling the Kaf letter as having a delayed stroke (La+AbvLine).

However, this will cause errors when similar cases occur for letters that have no delayed

strokes as in the other cases.

85

a) End form of “ha” ح.

b) The result of linear interpolation.

c) The result of ignoring 'Kashida'.

Figure 3.4 Internal discontinuity handling.

86

3.4 Feature Extraction

In this work, we propose a framework to investigate novel statistical features that are not

used, to the best of our knowledge, by other researchers. We use different statistics of

several raw features at different levels producing a large set of statistical features.

The raw features are the local features that are extracted at the points’ level. Some of

these features describe the geometric characteristics such as the axis coordinates, distance

(horizontal, vertical, and Euclidean), the relative position, aspect ratio, curvature, slope,

tangent, cosine, sine, angle with their differences. The temporal features are time,

pressure, velocity, acceleration -w.r.t x, y, and both-, and their changes. In addition, the

chain codes of writing direction (ingoing and outgoing) are extracted. Such features

represent the raw data that is used to compute the statistical features.

The statistical features are extracted by computing some statistics such as histogram,

mean, mode, maximum, minimum, change (range), variance, and standard deviation from

the raw point-based features for the sub-segments of the main strokes. The sub-segments

are determined by the length and the overlapping parameters. In general, the statistical

features represent global features that are based on the local ones. The global features are

those extracted from a set of points that may constitute the whole stroke or sub-stroke

(sliding segments of the stroke) like aspect ratio, bounding box, length. The used feature

extraction method allows obtaining novel statistical features such as histogram of

Freeman code, mean of tangent, mode of angles, variance of x distances, mean of

Freeman code, histogram of cosine, variance of angles, mean of y distances, mode of

87

Freeman code, mean of sine, variance of x-axis, mean of curliness, max of Freeman code,

variance of cosine, change of Y-axis, variance of curvature, variance of Freeman code,

histogram of angles, mean of relative X-axis, mean of acceleration, mean of angles,

change of relative Y-axis, and mean of aspect ratio. More details on statistical features

extraction can be found in Appendix B and Appendix C.

The manner of obtaining the statistical features has several advantages besides using

them as global features. It performs preprocessing operations, can be used as a codebook

and enhance the extracted features (e.g. mean of writing direction). For example, the

Freeman Chain Code feature is extracted for each point as shown in Figure 3.5.a. To

capture the emphasis nature of writing we use a modified Freeman Chain code as shown

in Figure 3.5.b. The modified code can be used to represent the writing direction without

removing the duplicated points. For instance, if the original input is as shown in

Figure 3.6.a, then the result of the classical preprocessing is shown in Figure 3.6.b and

the result of taking the direction code after preprocessing is 4s. This segment is then

represented as one writing movement as in [104], or as a primitive shape in [89].

However, the whole set of these operations can be alternated by simply taking the mode

of the raw direction code feature extracted from the original input as shown in

Figure 3.6.c, i.e. mode([5,4,4,4,3,5,4,4,4])=4) .

88

A. Freeman Chain Code

B. Modified Freeman Chain Code.

Figure 3.5 Freeman Chain Code.

a) Trajectory points.

b) Smoothed trajectory

[4,4,4,4,4,4,4,4,4]

c) Directional code

[5,4,4,4,3,5,4,4,4]

Figure 3.6 Statistical Directional feature extraction.

89

3.5 Classification

The classification phase consists of three main processes. The first process is the

identification of the delayed strokes. The outcome of this process (secondary models

candidates) is used for reducing the main stroke models. In the second process, the input

main stroke is classified against the reduced main models. Finally, the results of the

classification of both main stroke and delayed strokes are combined to obtain the overall

result of the character classification.

For secondary stroke identification, different classifiers are used such as K-nearest

neighbor’s (KNN), Bayes network (Bnet) and Dynamic Bayes Networks (DBN).

However, the main strokes classification is carried using DBN-based HMM classifier.

The parameters of each classifier are chosen empirically as will be detailed in the

experimental results section. The success of using HMM for speech recognition and the

similarity of the digital representations of both speech and online text and its robustness

to the intra-variability motivate us to use HMM classifier.

After the classification is performed on the main and delayed strokes, we have a set of

main model candidates and another set of secondary strokes model candidates. Each set

has a corresponding set of likelihood values. The final recognition result is a set of

character candidates, each identified by both main and secondary stroke models. For

those characters having no secondary strokes a virtual secondary model is used to refer to

none. The likelihoods of those character candidates are computed according to the

corresponding main and secondary candidates. Let 𝑀 = {𝑀𝑖}𝑖=1
𝑚 be the set of the main

90

models’ candidates from the main classifier and 𝑆 = {𝑆𝑗}𝑗=1
𝑙 is the secondary models’

candidates from the secondary classifier where the corresponding likelihoods are

computed, normalized, and denoted as 𝑀𝐿 = {𝑀𝐿𝑖}𝑖=1
𝑚 , and 𝑆𝐿 = {𝑆𝐿𝑗}𝑗=1

𝑙 , respectively,

then the likelihoods of the characters’ classes candidates CLi,j are computed as in

Equation 1 where 𝜆 is a scalar factor of the weight of the secondary candidates.

𝐶𝐿𝑖,𝑗 = 𝑀𝐿𝑖 + 𝜆(𝑆𝐿𝑗) (1)

The non-zero character likelihood candidates are denoted as Ci,j and refer to the character

class that has the main model Mi and the secondary object Sj. The selected class is the

one having the maximum aggregative likelihood, i.e. 𝐶�̂��̂� where,

𝐶𝑖̂̂𝑗̂ = 𝑎𝑟𝑔 {max
𝑖,𝑗

𝐶𝐿𝑖,𝑗} (2)

The grouping of the letters based on their basic shape is usually performed regarding their

isolated forms. However, considering the position-dependent shapes provides a more

useful clustering methodology. For example, the beginning and middle basic forms of the

letters ي ,ن are similar to their corresponding forms of the commonly clustered letters

 This reduces the number of the used classification models and simplifies the main .ب,ت,ث

stroke classification process.

Intra-variation is the variability of the samples that belong to the same class. This

variation can originate from the Arabic text styles (e.g. Naskh, Ruqaa) or from the

handwriting process itself. This variation can be left to be handled implicitly by the used

classifier or can be addressed explicitly when modeling the desired classes. In this work,

the two approaches are combined to address the intra-variability. For some characters,

91

different classification models are considered when there is a significant variability

regarding the writing styles (e.g. “س” vs. "س") or when it can be represented by a

different number of strokes (e.g. “Kaf”). On the other hand, variations that are subject to

the handwriting process itself such as size and direction are handled by the used statistical

classifier. A semi-automatic methodology is adopted to extract the classification models

for each character and to annotate the delayed strokes. The training samples of each

character are utilized for building its model based on the global features representing

strokes’ number, position, and dominating writing direction.

3.6 Experimental Results

The experimental work includes data preparation, data labeling, modeling, and finally

testing the integrated system and analyzing the results. The main and secondary strokes

are classified separately, then the results of the two classifiers are combined to identify

the input character. The used dataset is a subset of the segmented characters of the

Online-KHATT database [125]. The database consists of 10,040 lines of online Arabic

text written by 623 writers using Android- and Windows-based devices. The characters’

samples were acquired by segmenting online Arabic text into the corresponding

characters. Besides the position-dependent character labeling of the samples, a semi-

automatic stroke-based annotation is performed. For evaluation, we split the data into

70%, 15%, and 15% training, validation, testing sets, respectively. The statistics of this

dataset are shown in Table 3.1. More details on Online-KHATT can be found in

Appendix A.

92

Table 3.1 Statistics of Online-KHATT segmented characters.

 Isolated Begin Middle End Total Writers

Training 4013 4101 3158 4298 15570 48

Validation 908 994 727 1033 3662 13

Testing 946 942 686 989 3563 12

Total 5867 6037 4571 6320 22795 73

In the first stage of the experimental work, the training and validation datasets are used in

intensive experiments to select the suitable parameters (viz. preprocessing, feature

extraction, and classification settings). In this stage, we addressed single and multi-

strokes’ classification and generated models for both basic shapes and delayed strokes.

We utilized single-strokes’ models for multi-strokes’ classification. The different parts

and modules are integrated to form the desired recognizer.

There are 28 basic shape classes each has at least 100 training samples and 30 validation

samples and the corresponding datasets contain 11801 training samples, 2880 validation,

and 2565 testing samples. To conduct a balanced evaluation, in each experiment we pick

randomly 100 samples for training and 30 samples for validation and averaged the results

of each class. However, the testing is performed on the all available test data for the

considered classes.

Our system is implemented using Bnet Matlab tool version 7, developed by Kevin

Murphy [126] and acquired from the link: https://code.google.com/p/bnt. Several

preprocessing operations are examined in different orders and the best results are

obtained when applying simplification, smoothing, interpolation, then resampling. We

extracted 103 features (some unreasonable features are ignored, e.g. max and min X-Y

https://code.google.com/p/bnt

93

coordinates when no size normalization pre-processing is performed). Due to the large

number of features, it is difficult to examine all possible combinations (2103

combinations). Hence, selected combinations are examined and principle components

analysis (PCA) approach for features selection is used in the analysis. We extracted

several features from the online points trajectory input and statistical features from a

sliding window of the input. Table 3.2 shows the results achieved using different features

where RR refers to the recognition rate and Top3 is the accuracy of retrieving the desired

output among the first three candidates. We used one of the most used features in the

literature (i.e. the local writing direction represented by cosine and sine trigonometric

functions). This feature is used in combination with other features as in [93], [118] and it

is also used alone as in [91]. We computed also the average of the local direction in a

sliding window. The results show that the statistical feature outperforms the points based

feature. Hence, we adopted the statistical features in the other experiments. The following

table shows some of the obtained results using the validation set.

Table 3.2. Some results of basic shapes classification using the validation set.

Features RR Top3

Local writing direction Cos; Sin 32% 52%

Mean(Cos); Mean(Sin) from a sliding segment window 54% 83%

In_FreeMan (Histogram, Mode, Mean, Variance); X (Change);

Y(Change); Curvature(Mean) 56% 85%

In_FreeMan (Histogram, Mode, Mean) Curvature (Mean). 57% 84%

Cos (Mean); Sin (Mean); In_FreeMan (Mean); Out_FreeMan(Mean) 57% 85%

PCA (10 features) 61% 86%

Cos (Mean); Sin (Mean); In_FreeMan (Mean, Histogram); Out_FreeMan 66%

94

(Mean); Curvature (Mean) RX (Mean); RY (Mean) 88%

PCA (15 features) 73% 92%

The best results are obtained when using PCA feature selection method. In this

experiment, we used 103 statistical features (a 138-diminsional feature vector). We

applied the PCA method to select 15 components (several values are tried). The other

parameters are selected empirically. The statistical features are extracted using a sliding

window of size 18 points with 6 points overlapping. The numbers of hidden states and

Gaussian mixtures are fixed for all models at 15 and 64, respectively.

In the classification of the delayed strokes, simpler classification methods are used. We

used different classifiers such as K-nearest neighbor’s (KNN), Bayes network (Bnet) and

Dynamic Bayes Networks (DBN) with several features. The best result is 92% when

using KNN classifier with delta x, delta y and aspect ratio features.

A recognition rate of 82% is obtained on a test set of 2565 samples that are not uniformly

distributed as some characters are more frequent and some characters have no test

samples (e.g. se-B “سـ” and ya-I “ي”). However, they are shown in the confusion matrix

(Table 3.3) because samples of other characters are recognized as those characters. More

details on character recognition can be found in Appendix D.

On the analysis of the confusion matrix we note the following:

- The inclusion of the delayed strokes resulted in resolving several confusion cases of

the basic shape classifier. Using the delayed strokes position and count distinguishes

between characters with the same basic shapes such as “fa-B” فـ and “wa-I” و as

shown in Figure 3.7.

95

- The accuracy of the complete recognizer depends on the performance of the basic

classifiers. There are some errors that are due to basic shapes misclassification like

recognizing ha-B as da-I. There are errors in the classification of the delayed strokes

which lead to wrong character recognition. For example, an error in detecting the

delayed stroke in the ya-M “ـيـ” results in recognizing it as th-M “ـثـ”. Several

classification inter-errors in the characters ba, ta, th are caused by errors in identifying

the delayed strokes. These results from writing the two and three dots in one stroke.

For example, the merged two dots sample is recognized as three dots.

- Segmentation-based intra-errors come from confusion between different positional

forms of the same character. The beginning (isolated) form is similar to the middle

(end) form for most characters as the main difference is a connecting stroke called

"Kashida". Examples of such errors are shown in Figure 3.8. These errors are

resolved by combining the codes of the same characters and the shape of the different

positions of the characters are automatically addressed by contextual processing of

the editors.

- Segmentation-based inter-errors are those errors caused by the confusion between

different positional classes of different characters that seem to be similar after

segmentation. Examples of such errors are shown in Figure 3.9.

- Errors due to writing distortion come from the confusion that is originated from the

writing quality which can be influenced by some variations such as writing

movements’ direction (e.g. ma-B vs. ha-B) or curvatures (e.g. da-E vs. ra-E).

Examples of these errors are shown in Figure 3.10.

96

a) The character fa-B “فـ”

b) The basic shape of fa-B confused with the wa-I “و”

Figure 3.7 Characters with similar basic shapes but different delayed strokes.

97

a) Letter (ha) “ح” intra-errors, left: a middle sample (ha-M) “ـحـ” recognized as begin (ha-B) “حـ”,

right: a begin sample (ha-B) “حـ” recognized as middle (ha-M) “ـحـ”

b) Letter (ra) “ر” intra-errors, left: an isolated sample (ra-I) “ر” recognized as end (ra-E) “ـر”,

right: an end sample (ra-E) “ـر” recognized as isolated model (ra-I) “ر”

c) Letter (wa) “و” intra-errors, left: an isolated sample (wa-I) “و” recognized as end (wa-E) “ـو”,

right: an end sample (wa-E) “ـو” recognized as isolated model (wa-I) “و”

Figure 3.8 Examples of segmentation-based intra-errors.

98

a) da-I “د” as ha-B “حـ” b) wa-I “و” as ma-B “مـ”

Figure 3.9 Examples of segmentation-based inter-errors.

a) gh-M “ـغـ” as fa-M “ـفـ” b) ra-E “ـر” as da-E “ـد”

Figure 3.10 Examples of errors originated from writing distortion.

99

Segmentation-based intra-errors account for 116 errors (i.e. about 25% of the total errors)

and segmentation-based inter-errors account for about 210 errors (i.e., 45% of the total

errors). Such errors are reasonable and are due to the high similarity between the

confused characters and they disappear when computing top-3 recognition rate. The rest

30% of errors are originated from writing distortion.

Some difficulties may arise when extracting the characters' samples from the cursive text

manually. The determination of the segmentation points and the implication of parts of the

different strokes are some examples. Let us take as an example the input in Figure 3.11.a. Some

of the characters that should be extracted after segmentation are shown in Figure 3.11.b:(1) ha-

M, (2) ja-M, (3) ja-E, (4) ha-B, (5) ja-I. One segmentation can be seen as in Figure 3.11.c (in

order). This segmentation is most probably obtained when using segmentation similar to those

adopted in the offline case where the spatial features are utilized to extract rectangular

segmentation which makes the segmentation points as the red ones in the in Figure 3.11.d.

However, in the online case the segmentation can be done based on the temporal trace trajectory

of the points which may lead to segmentation points as colored in blue, and in turn gives different

segmentation for some characters as shown in Figure 3.11.e. This makes the segmented

character of (1) ha-M be similar to (4) ha-B and (3) ja-E similar to (5) ja-I.

100

a) Cursive text input.

b) Some desired segmented characters (1) ha-M, (2) ja-M, (3) ja-E, (4) ha-B, (5) ja-I

c) Possible extracted characters.

d) Two possible segmentation points (one in red and another in blue).

e) Different segmentation for some characters.

Figure 3.11 Example of confusions caused from the segmentation.

101

Table 3.3 Confusion Matrix of the tested data.

Id: Character order in the experiment, Char: Character shape; Lbl: Positional label, #T: number of tested

samples, RR%: recognition rate percent.

102

4 CHAPTER 4

ARABIC ONLINE HANDWRITTEN TEXT

RECOGNITION

In this chapter, we address Arabic online cursive text recognition at three levels. In the

first we utilize the DBN-based HMM character classifier to recognize the characters and

then combine them for cursive text. The second one is to classify the PAWs using DBN-

based HHMM recognizer. Thirdly, a segmentation-free recognition online handwritten

cursive text recognition using HMM classifier is adopted.

4.1 Cursive Input Pre-Processing

The preprocessing of cursive text input consists of several operations. Firstly, geometric

operations are performed to obtain stroke-based enhancements. The results for

implementing some of the geometric preprocessing operations are shown in Figure 4.1.

The second stage is to detect the delayed strokes. For this purpose, we identify the main

and secondary strokes. Unlike the segmented characters case, it is useful to utilize the

baseline detection in cursive text recognition. Using the histogram method for baseline

detection may not be adequate in some cases (see Figure 4.2) because of the baseline

shifts and undulations, the inter-line distance variability and the baseline-skew variability.

In addition, the diacritics and holes in the characters may yield false maximums and false

minimums, respectively. Hence, we adopt expectation–maximization (EM) method

103

proposed by [127] for baseline detection in the offline case. An example of its application

on online input is shown in Figure 4.3. Once the baseline is detected, an initial set of the

main strokes is considered to be all strokes that intersect the baseline. The other strokes

are initially grouped in the secondary strokes set. This set is indicated by the strokes

surrounded by circles and rectangles as shown in Figure 4.4. Some of these strokes are

correctly detected (indicated by circles) but there are other strokes that are incorrectly

detected like those indicated by rectangles. Hence, an extra filtering step is performed by

examining the overlapping and the size (i.e. each secondary stroke is compared to the

non-secondary strokes and it is considered as main stroke if there is no overlapping with

other strokes with respect to the x-axis).

104

a) An image of the input

b) Average smoothing

c) Writing speed normalization.

d) One pixel equidistant resampling

e) Simplification then minimum equidistant resampling

Figure 4.1 Preprocessing operations outputs.

105

Figure 4.2 Histogram-based baseline detection on a skewed text.

Figure 4.3 EM-based baseline detection on a skewed text.

Figure 4.4 Initial set of secondary strokes, correct (circle), incorrect (rectangle).

106

4.2 Classification

In this section, the methods of cursive text recognition are described.

4.2.1 HMM

An HMM is a stochastic finite automaton that is denoted in the first order by λ and

defined by the triple (π, A, B), where π is the vector of the initial state probabilities, A the

state transition matrix, and B the observation probability distribution:

 π(i) ={πi|πi=P(S1 = i)}

 A={aij|aij = P(St = j|St-1 = i)}

 B={ bj(ok) | bj(ok) = P(Ot=ok|St = j)}.

Figure 4.5 shows a simple HMM Bakis model with five states. The three internal states

are emitting states and the first and last states have no output probability distributions.

The dimension of the transition matrix for this model is 5×5. Each row sums to one

except for the final row which is zero since no transitions are allowed out of the final

state. For discrete HMM, a codebook of the output of the input feature vector quantiser is

used. When the observations are continuous, each observation probability distribution can

be represented by a Gaussian mixture. Reference may be made to [128] for more details

on HMM.

107

Figure 4.5 Simple HMM Bakis model with five states [128].

108

4.2.2 Dynamic Bayesian network (DBN)

Bayesian networks (BNs) or belief networks, also known as probabilistic networks (PNs)

are representations of domains involving uncertain relations among a group of random

variables. The extension of Bayes nets can be done using Dynamic Bayesian network

(DBN) [129] to model semi-infinite collections of random variables, Z1, Z2,…. The

partition of the variables are Zt = (Ut, Xt, Yt) representing the input, hidden and output

variables.

A DBN is a pair (B1, B→), where B1 is a BN which defines the prior P(Z1), and B→ is a

two-slice temporal Bayes net (2TBN) which defines P(Zt| Zt-1) by means of a DAG

(directed acyclic graph) as follows:

where Zi
t is the ith node at time t, which could be a component of Xt, Yt or Ut, and Pa(Zi

t)

are the parents of Zi
t in the graph.

An HMM can be represented as an instance of a DBN unrolled for 3 slices as shown in

Figure 4.6.a where the shading refers to observation nodes, clear nodes are hidden, and

the arcs represent the assumptions: (the Markov property) and

for t’≠t. Figure 4.6.b shows an HMM in which the parameters are explicitly represented.

The parameters are P(X1=i) =π(i), P(Xt=j|Xt-1=i)=A(i,j), and P(Yt=j|Xt=i)=B(i,j). If the

conditional probability distribution (CPD) for Y is a Gaussian, the B node can be

replaced with the mean and covariance or with a Gaussian mixture matrix M as in

Figure 4.6.c. Reference may be made to [126] for more details on DBN.

109

a)

b)

c)

Figure 4.6 A DBN representation of HMM [126].

110

4.2.3 Segmentation-based Cursive Text Recognition

In this approach, the designed non-cursive character recognizer is utilized in cursive text

recognition. The adopted methodology is shown in Figure 4.7. The writing trajectory is

traced and different segmentations are extracted using sliding window method. The

features are then extracted from those segments and fed into the character classifier to

return list of character hypothesis. The character hypothesis are used to generate paths of

words representing word hypothesis. Finally, the word paths are scored and ranked to

come up with a final ordered list.

Several methods are employed in this approach. The time-dependent features (velocity

and pressure) are used for initial hypothesis generation. Global features are utilized for

hypothesis reject such as: variability in direction, curvature, and dimensions. For example

segments like which is a sample of the basic shape of middle “na” ن has no chance

to be compared with the middle basic shapes of several models such as “sa” ص, “ma” م,

“la” ل . Statistics from the training data are considered when generating the candidate

paths such as: max, min, and mean of the training dataset of positional-based segmented

samples, the maximum length of the Arabic PAWs and words.

111

Figure 4.7 Segmentation-based Cursive Text Recognition Approach (adopted from [130])

112

4.2.4 DBN-based Hierarchical HMMs (HHMMs)

The Hierarchical HMM (HHMM) [131] is an extension of the HMM that is designed to

model domains with hierarchical structure and/or dependencies at multiple length/time

scales. In an HHMM, the states of the stochastic automaton can emit single observations

or strings of observations. Those emitting single observations are called “production

states”, and those emitting strings are termed “abstract states”. The strings emitted by

abstract states are themselves governed by sub-HHMMs, which can be called recursively.

When the sub-HHMM is finished, control is returned to where it was called from; the

calling context is memorized using a depth-limited stack. Based on [132], a dynamic

Bayesian net for modelling the writing of a PAW is shown as in Figure 4.8. Qh is the state

(position) in the PAW HMM; Q is the character; S is the state (position) within the

character HMM, Y is the acoustic vector. Fs is a binary indicator variable that turns on

when the character HMM is transmitted. Figure 4.9 shows a DBN modeling instance for

the PAW لما"" (Lma) written using three characters: /la/-/ma/-/aa/. It uses the

deterministic variables “Position” and “Character”, and the stochastic variables

“Transition” and “Observation” as follows.

- Position refers to the current position in the PAW model. It takes values 1,…,N,

where N is the maximum length of a PAW model.

- Character refers to which character is associated with the current Position.

- Transition refers to whether a transition is being taken out of this character using

only two possible values: 1 or 0.

- Observation refers to the acoustics online PAW input. In the case of multiple

acoustic streams, it can be replicated for each stream for each time frame.

113

Figure 4.8 A DBN for modelling a PAW.

Figure 4.9 DBN-HHMM modeling the PAW لما" " (LMA).

114

4.2.5 Segmentation-free Cursive Text Recognition Using HMM-HTK.

The principal components of a cursive online text recognizer are illustrated in

Figure 4.10. The input from an online device is converted into a sequence of fixed size

acoustic vectors Y1:T=y1,...,yT in a feature extraction phase.

Figure 4.10 Architecture of a cursive online text HMM-based Recogniser.

HTK is a toolkit for building Hidden Markov Models (HMMs) involving two main

stages. The first stage is the training process which uses training utterances and their

associated transcriptions to estimate the parameters HMMs’ models. Secondly, the HTK

recognition tools are used to recognize (transcribe) unknown utterances. HTK is initially

developed for speech recognition. However, it is used for several other tasks like

handwriting recognition as we do in this work. Reference may be made to [128] for more

details on HMM-htk.

115

4.3 Experimental Results

To evaluate the recognition of unconstrained cursive text we use Online-KHATT

database. We started by a subset of segmented cursive units extracted from Online-

KHATT database for evaluating the proposed methods. In this dataset, the cursive text is

segmented using a semi-automatic method. The available dataset contains 4,814 letter

samples, 1123 PAW samples and 731 words’ samples. Samples of this dataset are shown

in Figure 4.11. Several experiments have been conducted, however, some of the achieved

results with different statistical features are shown in Table 4.1.

Table 4.1 Results of using some statistical features for cursive text recognition on Online-KHATT database.

Features SB HHMM HTK

Average of Freeman Code 37.1% 47.5% 54.7%

Averages of Sine and Cosine 40.3% 49% 53.2 %

Average of Relative Position 37.7% 47% 53.5%

Average of Curvature 38.7% 40% 53.7%

Average of Curliness 38.2% 39.6% 52.6%

Histogram of Freeman Code+ Variance of Freeman

Code

41.3% 53.5% 51.4%

Histogram of Freeman Code +average of Curliness

+averages of Sine and Cosine

51.3% 57.3% 59.6%

Histogram of Freeman Code 45.6% 60.3% 51.3%

Mode of Freeman Code 42.3% 50% 50.7%

Variance of Freeman Code 33.3% 47.8% 51.7%

Average of Tangent 32.2% 43.1% 33%

Average of Velocity 27% 36.6% 36.1%

Average of Acceleration 27.9% 21.3% 35.3%

Averages of Sine, Cosine, Velocity, Acceleration,

Freeman Code, Curvature

50.1% 53.3% 51.5%

Histogram of Freeman Code + Average of Freeman

Code

54.3% 47.1% 66.6%

116

Due to the difficulty of examining all possible extracted statistical features, we used PCA

method for feature dimension reduction. We used different dimensions and some of the

achieved results are shown in Table 4.2 to compare the different classification methods.

More details on cursive text recognition can be found in Appendix E.

Table 4.2 Results of using PCA statistical features for cursive text recognition on Online-KHATT database.

Features SB HHMM HTK

PCA (10) 50.5% 44.2% 57.3%

PCA (15) 57.6% 60.9% 67.3%

PCA (20) 55.1% 54 % 61.7%

On the above cursive text recognition results we have the following comments.

- The accuracy is computed at the character level, i.e. character recognition rate

within the cursive text.

- The method SB is segmentation-based cursive text recognition approach using

DBN-HMM, the method HHMM is the DBN-HHMM, and HTK refers to the HTK-

HMM method.

- DBNs are typical for temporal processes modeling with the advantages:

nonlinearity, interpretability, efficiency, and extensibility [132].

- The segmentation-based recognition approach has some advantages. The extensive

work on character recognition is utilized. The need for large verified cursive text

dataset is avoided. The flexibility in improving the recognizer by employing some

methods such as: position detection, alternative results, delayed strokes association,

and reduction. However, there are several limitations of using segmentation-based

cursive text recognition. One of these limitations is the time-consuming recognition

117

process. Moreover, the performance of the character recognizer impacts the cursive

text recognizer. Hence, any problem of the character recognizer is propagated to the

cursive case and improving the performance of the cursive text recognizer requires

modeling the character recognizer which is a complicated process.

- To train the HHMM model, semi-supervised learning techniques are used. A semi-

automatic method is used to label the hidden states in the first level and to set the

values of transition flags among the sequent HMMs.

- When using each category of features separately, the statistics of the directional

features are more descriptive than the other features and the statistical time-

dependent features are the less descriptive features. This is due to the nature of the

handwriting, that is, the time-dependent features are more related to the writer

identification rather than to the handwritten text recognition.

- For evaluating the segmentation-based (SB) approach, the models are built in the

training stage on the letter samples and the results are obtained on the cursive PAW

samples in the testing stage.

- The DBN-HHMM approach may need more effort in a pre-training process. Each

cursive PAW is considered as a separate model and hence it requires training,

hence, its applicability is limited. Such approach is useful in small vocabulary

application but not with open vocabulary applications.

- The DBN-HHMM approach can employ the HMMs trained in the segmentation-

based method when constructing the cursive models by initializing the underline

character HMM models. However, this scheme requires extra effort for pre-training

and deterministic variables setting.

118

Figure 4.11 Samples of Online-KHATT PAWs.

119

The above experimental work aims at evaluating the proposed methods for cursive text

recognition and it is conducted on the available segmented data. The next step is to apply

the recognition on cursive text lines. DBN-HHMM and SB approaches require the

training data to be segmented in a pre-training process. Due to the lack of fully

segmented text lines, we use the segmentation-free approach provided by htk toolkit

[128] to conduct the experiments of text lines recognition. Table 4.3 shows some

recognition results on Online-KHATT text lines using HTK with different statistical

features. The results are obtained by using 700 lines for training, 150 validation lines, and

150 testing results where the parameters are chosen empirically. Samples of the Online-

KHATT lines are shown in Figure 4.12.

Table 4.3. Some recognition results on Online-KHATT text lines using HTK with different statistical features.

Features Correct Accuracy

Average of Freeman Code 38.6% 27.5%

Averages of Sine and Cosine 34.3% 25.2%

Average of Curvature 25.% 17.2%

Histogram of Freeman Code + Variance of Freeman Code. 24.3% 16.7%

Histogram of Freeman Code + average of Curliness +

averages of Sine and Cosine

35.5% 26.5%

Histogram of Freeman Code + Average of Freeman Code 36.1% 26.2%

PCA (10) 46.2% 34.4%

PCA (15) 50.1% 40.1 %

PCA (20) 50.2% 40.3%

PCA (25) 47.1% 36.1 %

120

Once the optimal alignment has been found, the number of substitution errors (S),

deletion errors (D) and insertion errors (I) can be calculated. The percentage of

correctness is then

Percentage of correctness =
𝑁 − 𝐷 − 𝑆

𝑁
× 100%

where N is the total number of labels in the reference transcriptions. Notice that this

measure ignores insertion errors. For many purposes, the percentage of accuracy defined

as

Percentage of accuracy =
𝑁 − 𝐷 − 𝑆 − 𝐼

𝑁
× 100%

is a more representative figure of recogniser performance.

There are two difficulties when dealing with text lines, delayed strokes and the

connectivity issues. To handle the delayed strokes, the features’ vector is extracted in a

manner that considers the upper and lower delayed strokes after detecting and associating

them. This is done by firstly detecting and rearranging the delayed strokes then

concatenating the features extracted from the delayed strokes with the features extracted

from the main strokes using the sliding window technique. Let F[1..N] be the features’

vector then F[1,N1] is the vector of features extracted from the main stroke, F[N1+1,

N1+N2], and F[N1+N2+1, N] are the features’ vectors extracted from the upper, and lower

delayed strokes, respectively. Where, N1 is the dimension of the features’ vector

extracted from the main stroke using sliding window, N2 is the dimension of the features’

vector extracted from the delayed strokes, hence N= N1 + 2N2 is the dimension of the

121

concatenated features’ vector. When there is no upper (lower) delayed strokes then the

corresponding vector is assigned to zeros. For the connectivity issue, a virtual stroke is

used to connect the consecutive main strokes which is then considered when extracting

the features to get a separating null feature vector using the adopted sliding window

method.

122

Figure 4.12 Samples of the Online-KHATT lines.

123

5 CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCH

DIRECTIONS

In this chapter, we conclude the work of the thesis and summarize its outcomes and then

present future research directions.

5.1 Conclusions

Automatic recognition of Arabic online text has several applications like friendly

learning environments, business applications, communication and more. There are many

challenges facing research on Arabic online text recognition such as the lack of

benchmarking databases, the cursive nature of Arabic text, overlapping characters and

ligatures, and the delayed strokes’ presence and variability.

In this thesis, research on Arabic online text recognition was conducted. Our approach is

based on statistical techniques. Novel statistical features are presented and several

methods and algorithms are proposed.

The contributions of this thesis can be summarized as follows.

- A comprehensive survey of Arabic online text recognition: This thesis provides

a detailed literature review of the related research in the different phases of Arabic

online text recognition. It presents critical comments, conclusions and future

directions.

124

- Unconstrained Arabic online character recognizer. In this thesis, a recognizer

for unconstrained Arabic online character was developed. The recognizer

integrates the different phases of online Arabic character recognition. The system

is tested with unconstrained online Arabic characters that are segmented from

online text. This implies several challenges like delayed strokes handling,

connectivity problems, variability, and style change of text.

- Statistical feature extraction technique: Another contribution of this work is the

intensive investigation of several novel statistical features using a developed

framework for generating different statistical features. The framework consists of

two main components. Most of the point-based features (local features) that are

found in the related literature are extracted. A statistical layer is then added to form

statistical features. Those features can be at the level of points, sub-strokes, the

whole stroke, or a combination of the different levels.

- Delayed strokes handling approach. We proposed and implemented an approach

of handling delayed strokes which includes several methods to process the delayed

strokes at the different phases of the recognition process to improve the overall

performance.

- Recognition of Arabic online cursive text. The Arabic online cursive text

recognition is addressed at three levels. In the first we utilize the DBN-based

HMM character classifier to recognize the characters and then combine them to

125

cursive text. The second one is to the recognition at PAWs level using DBN-based

HHMM recognizer. Thirdly, a segmentation-free recognition is addressed at

cursive text handwritten lines using HMM classifier. The results show that the

HMM approach outperforms the other approaches because it avoids the errors

originating from the segmentation.

5.2 Future Research Directions

There are several extensions for future work to improve the performance of Arabic online

text recognition.

 Handling more delayed strokes. In our work, we considered a number of

delayed strokes that are used frequently in Arabic online text. Applications that

deal with official documents or with holy texts such as QURAN and HADITH

require the use of additional types of the delayed strokes.

 Investigating the effect of writing styles. This implies applying our techniques

and possibly adding more features to address wider range of styles of writing

Arabic text.

 Using advanced classification techniques. Other classification techniques such

as adaptive training, deep learning may be investigated.

 Combination of statistical and syntactical features is a natural extension of the

work which expected to improve the performance considerably.

126

 Post-processing. The recognition performance can be improved by adding a post-

processing phase. Such phase may utilize lexicon/dictionary, language models,

linguistic information, etc. Moreover, natural language processing techniques can

be utilized to further improvement of the recognition performance.

 Real-time recognition. Unlike offline systems, online recognizers require real-

time processing and more research is required in this area in which the trade-off

between accuracy and computational complexity must be addressed carefully.

Given that our work is applied on unconstrained Arabic online text, the achieved

recognition rates are acceptable. However, there is big room for improvements and more

research is needed to enhance the current state of the art.

With this discussion, we conclude our thesis. All praises and thanks due to Allah who has

helped us and permitted us to complete this thesis.

127

6 APPENDICES

Appendix A. Database details, transliteration of Arabic letters

This section presents some details of Online-KHATT database. Table 6.1 shows statistics

of Online-KHATT database. Figure 6.1 shows samples of text from Online-KHATT.

Table 6.2 shows Transliteration codes for Online-KHATT database [125].

Table 6.1 Statistics of Online-KHATT database

Set
Word

counts

Character

counts

Line

counts
Unigrams Bigrams Trigrams

Training 56950 564241 6996 19775 47464 55730

Validation 12004 126125 1482 4635 9998 11530

Testing 12205 127196 1645 5450 10561 11839

Whole Database 81159 817562 10123 29860 68023 79099

128

Figure 6.1 Samples of text from Online-KHATT.

129

Table 6.2: Transliteration codes for Online-KHATT database [125].

 Arabic Char د خ ح ج ث ة ت ب ا إ أ آ ء

 Transliteration hh Am ae Ah aa ba ta tee th ja ha kh da

 Arabic Char ق ف غ ع ظ ط ض ص ش س ز ر ذ

 Transliteration dh Ra za se sh sa de to zha ay gh fa ka

 Arabic Char ئ ى ي ؤ و ه ن م ل ك

 Transliteration ke la ma na he wa wl ya ee al

 Symbol 0 1 2 3 4 5 6 7 8 9 @ : "

 Transliteration n0 n1 n2 n3 n4 n5 n6 n7 n8 n9 atr col dbq

 Symbol , ؛ ، ? ! . () / \ = - _

 Transliteration com com com qts exc dot bro brc fsl bsl equ hyp usc

Symbol # %

Blank

space

 Transliteration Scr Per Sp

 Diacritics ُ ُ ُ ُ ~ ُ ُ ُ

 Transliteration D H K F X B N Z

130

Appendix B. Statistical Framework GUI Guide

In our experiments, the first step is preparing the required settings such as data labels,

dictionary, datasets’ separation. The GUI shown in Figure 6.2 is developed to prepare the

experimental environment including several modules such as:

- Organizing the characters' labels and the relation between them: models for basic

shapes without delayed strokes and others with dots.

- Modules for the training of the basic models and rules of relating them with delayed

strokes to get the appropriate character model.

- Modules for detecting, separating, and connecting the main strokes and the secondary

strokes.

- Modules for recognizing samples with or without delayed strokes.

- Since our method requires handling the delayed strokes and labeling the main shapes we

implemented a module for annotating the data.

131

Figure 6.2 Preparing GUI.

132

The details of the outcome of this task are organized in excel and then converted to mat

files for experimental purposes. Samples of the setting files are shown in the following

tables. Table 6.3 shows mappings relate characters, models, and secondary objects.

Table 6.4 shows mappings relate delayed strokes models and secondary objects.

Table 6.3 Mappings Relate Characters, Models, and Secondary Objects.

ClssLbl LtrLbl DSsLbl

I_aa I_aa NDS

I_aa I_ae AbvHmz

I_Nbr I_ba Blw1Dt

I_Nbr I_ta Abv2Dt

I_Nbr I_th Abv3Dt

M_Nbr M_na Abv1Dt

M_Nbr M_ya Blw2Dt

M_Nbr M_al AbvHmz

Table 6.4 Mappings Relate Delayed Strokes Models and Secondary Objects.

DSsLbl DSsCnt DSsPos SubDSs

NDS 0 0 NDS

Abv3Dt 1 1 Mrg3Dts

Abv3Dt 2 1 Mrg2Dts,Dot

Abv3Dt 3 1 Dot,Dot,Dot

133

Then, we designed a GUI shown in Figure 6.3 that can be used to manage the proposed

classifier by examining different parameters of the experiments. This GUI allows the

following operations.

1. Getting Data

Choosing the training and testing data from the prepared data folder. They contain

training and testing samples for the same classes.

2. PreProcessing

Showing the available preprocessing methods and selecting the needed methods and their

order. The implemented operations are Simplification, Smoothing, Interpolation and

Resampling.

In the Preprocessing panel,

a. Highlight a method in the available methods list then click the button (>) to select it.

b. Highlight a method in the selected methods list then click the button (delete) to

de-select it.

c. Click the button PreProcessing to apply the selected methods with the same listed

order on both training and testing which produces mat formatted files of preprocessed

data.

3. Feature extraction:

In the Statistical Features panel,

a. Select the features category from the available combo list and the corresponding

features will be listed in the available list

b. Highlight a feature in the available features list and statistics from the statistics list

134

then click the button (>) to select them.

c. Highlight a feature in the selected features list then click (delete) to de-select it.

d. Click the button Feature Extraction to extract the selected features with the same

listed order on both training and testing samples generate mat formatted files of the

extracted features data.

 Statistical features describing the raw data: select Stroke length or geometrical feature

s X and Y and choose the required statistics.

 The sliding window length and the overlapping

 To use the original feature value, choose length=1, overlapping=0, and the statistics=

max, min, or mean.

 To use the whole stroke, we choose length=0.

4. DBN initialization. In the Classification Initialization panel,

a. Set the number of hidden nodes (NofHSs) and the number of Gaussian Mixture

models (NofGMs).

b. Click the button “Initialization” to initialize the DBN classifier by the stated

parameters and format the training and testing data to generate mat files that are

formatted according to the DBN settings.

c. Classifier initialization

(Number of observation nodes, Slicing time T and inference engine, Features Length)

5. Training

In the Classification Training panel, set the maximum number of training iterations.

6. Testing Results

135

The classification results for each class and for all classes. All of the above

experiment parameters are shown and can be saved in both .mat, and .xls formats to

be used in the analysis process.

136

Figure 6.3 A gui for Statistical Character Recognizer.

137

Appendix C. Statistical Feature Extraction

We have the raw features: {'In_Direction', 'Out_Direction', 'Delta_Direction', 'Tanget',

'DTanget', 'Angle', 'DAngle', 'CosA', 'SinA', 'DCosA', 'DSinA', 'X', 'Y', 'RX', 'RY', 'DX',

'DY', 'E_Distance', 'X_Distance', 'Y_Distance', 'Curliness', 'DCurliness', 'Aspect_Ratio',

'DAspect_Ratio', 'CurvatureA', 'CurvatureB', 'DeltaAccelaration', 'Presure',

'DeltaPresure'};

And the considered statistics are: Statistics={'Histogram', 'Mean', 'Mode', 'Max', 'Min',

'Var', 'Change'};

The resulted statistical features are shown in Table 6.5.

Table 6.5 List of extracted statistical features.

In_Direction,Histogram DAngle,Min RX,Mean Y_Distance,Var

In_Direction,Mean DAngle,Var RX,Mode Y_Distance,Change

In_Direction,Mode DAngle,Change RX,Max Curliness,Histogram

In_Direction,Max CosA,Histogram RX,Min Curliness,Mean

In_Direction,Min CosA,Mean RX,Var Curliness,Mode

In_Direction,Var CosA,Mode RX,Change Curliness,Max

In_Direction,Change CosA,Max RY,Histogram Curliness,Min

Out_Direction,Histogram CosA,Min RY,Mean Curliness,Var

Out_Direction,Mean CosA,Var RY,Mode Curliness,Change

Out_Direction,Mode CosA,Change RY,Max DCurliness,Histogram

Out_Direction,Max SinA,Histogram RY,Min DCurliness,Mean

Out_Direction,Min SinA,Mean RY,Var DCurliness,Mode

Out_Direction,Var SinA,Mode RY,Change DCurliness,Max

138

Out_Direction,Change SinA,Max DX,Histogram DCurliness,Min

Delta_Direction,Histogram SinA,Min DX,Mean DCurliness,Var

Delta_Direction,Mean SinA,Var DX,Mode DCurliness,Change

Delta_Direction,Mode SinA,Change DX,Max Aspect_Ratio,Histogram

Delta_Direction,Max DCosA,Histogram DX,Min Aspect_Ratio,Mean

Delta_Direction,Min DCosA,Mean DX,Var Aspect_Ratio,Mode

Delta_Direction,Var DCosA,Mode DX,Change Aspect_Ratio,Max

Delta_Direction,Change DCosA,Max DY,Histogram Aspect_Ratio,Min

Tanget,Histogram DCosA,Min DY,Mean Aspect_Ratio,Var

Tanget,Mean DCosA,Var DY,Mode Aspect_Ratio,Change

Tanget,Mode DCosA,Change DY,Max DAspect_Ratio,Histogram

Tanget,Max DSinA,Histogram DY,Min DAspect_Ratio,Mean

Tanget,Min DSinA,Mean DY,Var DAspect_Ratio,Mode

Tanget,Var DSinA,Mode DY,Change DAspect_Ratio,Max

Tanget,Change DSinA,Max E_Distance,Histogram DAspect_Ratio,Min

DTanget,Histogram DSinA,Min E_Distance,Mean DAspect_Ratio,Var

DTanget,Mean DSinA,Var E_Distance,Mode DAspect_Ratio,Change

DTanget,Mode DSinA,Change E_Distance,Max CurvatureA,Histogram

DTanget,Max X,Histogram E_Distance,Min CurvatureA,Mean

DTanget,Min X,Mean E_Distance,Var CurvatureA,Mode

DTanget,Var X,Mode E_Distance,Change CurvatureA,Max

DTanget,Change X,Max X_Distance,Histogram CurvatureA,Min

Angle,Histogram X,Min X_Distance,Mean CurvatureA,Var

Angle,Mean X,Var X_Distance,Mode CurvatureA,Change

Angle,Mode X,Change X_Distance,Max CurvatureB,Histogram

Angle,Max Y,Histogram X_Distance,Min CurvatureB,Mean

Angle,Min Y,Mean X_Distance,Var CurvatureB,Mode

139

Angle,Var Y,Mode X_Distance,Change CurvatureB,Max

Angle,Change Y,Max Y_Distance,Histogram CurvatureB,Min

DAngle,Histogram Y,Min Y_Distance,Mean CurvatureB,Var

DAngle,Mean Y,Var Y_Distance,Mode CurvatureB,Change

DAngle,Mode Y,Change Y_Distance,Max DCurvatureA,Histogram

DAngle,Max RX,Histogram Y_Distance,Min DCurvatureA,Mean

DCurvatureA,Mode DCurvatureB,Min DCurvatureB,Mean DCurvatureA,Var

DCurvatureA,Max DCurvatureB,Var DCurvatureB,Mode DCurvatureA,Change

DCurvatureA,Min DCurvatureB,Change DCurvatureB,Max DCurvatureB,Histogram

140

Appendix D. Character Recognition Detailed Results

Since the collected text is a natural text, the samples of the characters are not uniformly

disturbed and some characters have few number of samples for some characters.

Moreover, some samples are discarded due to errors in the manual segmentation. For this

reason, and because we use a statistical classifier (the statistical classifiers are sensitive to

the size of the used data and its distribution), some classes are not used in some

experiments. A threshold value of the minimum number of samples for the classes to be

considered is stated. We enforce some minimum threshold on the minimum number of

samples in training and validation sets. The considered classes are based on the number

of its data samples. The used models are those having predefined threshold values of

samples in the training, and validation sets, where the threshold can be set to “inf” to

refer to selecting all available samples. The experiments are named as

KHATT_Ann_Scope_StrokeType_TrMin_VaMin_ TrMax_VaMax.

Where Scope can be {All: All forms; I:Isolated Form; B:Begining Form; M:Middle

Form; E:End Form}. Stroke Type: {Primary; Secondary}

1. Basic Shapes Classification

In these experiments, the goal is to recognize the basic shapes of the characters, hence,

the main strokes are used and the delayed strokes are not considered.

1.1. Balanced Evaluation

All_100_30_100_30:

141

For classes having at least 100 training samples and 30 validation samples, we used 100

training samples and 30 testing samples (All_100_30_100_30). This setting is used to

compare the local features with the statistical features as shown in Table 6.6

Table 6.6. Some results on annotated Basic Shapes classifier: All_100_30_100_30.

Classes # Train Samples

Test

Samples

Rec

Rate

Top3

RR

Features

28 2800 840 32% 52% Local writing direction Cos; Sin

28 2800 840 54% 83%

Mean(Cos); Mean(Sin) from a sliding segment

window

There are 28 basic shape classes each has 100 training samples and 30 validation samples

in the validation set resulting in a training set of 2800 samples and 840 samples in the

validation set, all are uniformly distributed. The statistical features show results better

than the local ones and hence they are used in the other experiments. The following table

(Table 6.7) shows the confusion matrix using the statistical features. Where, Id: Class

order in the experiment, Lbl: Positional label, #C: number of correctly recognized

samples, #T: number of test samples, RR%: recognition rate percent.

Table 6.7 Basic Shapes Confusion Matrix: All_100_30_100_30.

Id Lbl 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 #C #T RR%

1 B_Nbr 5 1 1 0 0 0 0 1 0 1 1 0 0 3 0 2 6 0 3 1 0 2 0 1 0 1 0 1 5 30 17%

2 B_ay 0 25 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 25 30 83%

3 B_fa 0 0 13 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 7 1 3 2 1 0 0 0 13 30 43%

4 B_ha 0 0 0 15 2 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 2 7 0 0 0 15 30 50%

5 B_he 0 0 0 0 22 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 7 0 0 22 30 73%

6 B_la 0 0 0 0 0 18 0 0 0 0 1 0 4 0 0 1 0 0 0 2 0 0 0 0 0 0 4 0 18 30 60%

7 B_ma 0 0 3 0 0 1 18 0 0 0 2 0 0 0 0 0 0 0 0 0 4 0 0 2 0 0 0 0 18 30 60%

8 E_Nbr 0 0 0 0 0 0 0 16 0 0 1 0 4 0 0 3 6 0 0 0 0 0 0 0 0 0 0 0 16 30 53%

9 E_aa 0 0 0 0 1 0 0 0 16 0 0 0 3 0 0 0 0 0 0 0 0 0 4 0 0 0 6 0 16 30 53%

10 E_da 0 2 0 0 0 1 0 3 0 12 0 0 1 2 0 2 1 0 0 0 0 6 0 0 0 0 0 0 12 30 40%

142

11 E_ee 0 0 0 0 0 0 0 12 0 0 11 0 0 0 0 2 2 0 0 0 0 0 1 0 2 0 0 0 11 30 37%

12 E_he 0 0 0 0 0 0 1 0 0 0 0 27 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 27 30 90%

13 E_la 0 0 0 0 0 0 0 1 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 24 30 80%

14 E_ra 0 1 0 0 0 2 0 2 0 1 1 0 2 8 0 1 2 0 1 9 0 0 0 0 0 0 0 0 8 30 27%

15 E_wa 0 0 1 0 0 0 0 0 0 1 0 0 0 0 10 0 0 0 0 0 13 0 1 4 0 0 0 0 10 30 33%

16 I_Na 0 0 0 0 0 0 0 5 0 0 2 0 0 0 0 8 11 0 0 0 0 0 0 1 0 3 0 0 8 30 27%

17 I_Nbr 0 1 0 0 0 0 0 3 0 0 2 0 0 0 0 5 19 0 0 0 0 0 0 0 0 0 0 0 19 30 63%

18 I_aa 0 0 0 0 0 3 0 0 1 0 0 0 1 0 0 0 0 22 0 0 0 0 0 0 0 0 3 0 22 30 73%

19 I_da 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 2 1 0 19 0 0 0 0 0 3 2 0 0 19 30 63%

20 I_ra 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 24 0 1 0 0 0 0 0 0 24 30 80%

21 I_wa 0 0 4 0 0 0 0 1 0 1 0 0 0 0 10 0 0 0 1 0 12 0 1 0 0 0 0 0 12 30 40%

22 M_Nbr 2 0 0 0 0 1 0 3 0 2 1 0 0 0 0 0 6 0 0 0 0 10 0 1 0 1 0 3 10 30 33%

23 M_ay 0 0 2 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 13 6 2 2 0 0 13 30 43%

24 M_fa 0 0 1 0 0 0 0 0 0 1 0 0 0 0 5 0 0 0 0 0 0 0 6 15 0 2 0 0 15 30 50%

25 M_ha 0 2 0 8 0 0 0 1 0 0 0 0 0 0 0 0 0 0 5 0 1 0 0 0 11 2 0 0 11 30 37%

26 M_he 0 0 0 0 5 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 21 0 0 21 30 70%

27 M_la 0 0 0 0 0 1 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0 23 30 77%

28 M_se 1 1 0 0 0 0 2 2 0 2 0 0 0 0 0 0 4 0 0 0 0 1 0 0 0 0 0 17 17 30 57%

Total

454 840 54%

When analyzing the recognition results, the confusion sources can be categorized as:

1. Segmentation-based intra-error recognition accounts for 119 errors (i.e. about 30% of the

total errors).

2. Segmentation-based inter-error recognition accounts for about 68 errors (i.e.,17% of the

total errors).

3. Errors caused from writing distortion account for about 122 errors (i.e.,31% of the total

errors).

- Experiment 2. All_70_15_70_15

143

Another balanced experiment is performed for classes having at least 70 training samples

and 15 validation samples, consider only 70 training samples and 15 validation samples

(35 classes, 2450 samples for training and 1050 for validation, Recognition rate:53%,

shown in Table 6.8).

Table 6.8 Basic Shapes Confusion Matrix: All_70_15_70_15.

Id Lbl 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 #C #T RR

1 B_Nbr 2 0 1 0 0 0 1 0 2 1 0 1 1 0 0 0 0 0 1 3 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 2 15 13%

2 B_ay 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 12 15 80%

3 B_fa 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 5 0 2 1 0 0 0 0 0 0 5 15 33%

4 B_ha 0 0 0 10 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 1 0 10 15 67%

5 B_he 0 0 0 0 13 0 0 1 0 1 0 13 15 87%

6 B_la 0 0 0 0 0 1 0 0 0 0 0 0 0 0 3 0 2 0 1 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 1 15 7%

7 B_ma 0 0 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 6 0 1 4 15 27%

8 B_sa 0 0 0 0 4 0 0 10 1 0 0 0 0 0 0 0 10 15 67%

9 B_se 0 0 2 1 0 0 1 0 6 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 2 6 15 40%

10 E_Nbr 0 0 0 0 0 0 0 0 0 5 0 0 0 0 3 0 0 0 2 1 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 5 15 33%

11 E_aa 0 0 0 1 0 0 0 0 0 0 10 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 10 15 67%

12 E_da 0 0 0 0 0 0 0 0 0 1 0 9 0 1 2 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 9 15 60%

13 E_ee 0 0 0 0 0 0 0 0 0 1 0 0 8 0 0 0 0 0 2 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 8 15 53%

14 E_he 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 15 15 100%

15 E_la 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 14 15 93%

16 E_ma 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 15 100%

17 E_ra 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3 0 0 1 1 9 0 0 0 0 0 0 0 0 0 0 1 15 7%

18 E_wa 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 2 0 0 1 0 2 0 0 0 0 7 15 47%

19 I_Na 0 0 0 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0 3 5 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 3 15 20%

20 I_Nbr 0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 1 10 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 10 15 67%

21 I_aa 0 0 0 0 0 1 0 0 0 0 0 0 0 0 6 0 0 0 0 0 6 0 0 2 0 0 0 0 0 0 0 0 0 0 0 6 15 40%

22 I_da 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 12 0 0 1 0 0 0 0 0 0 0 0 0 0 12 15 80%

23 I_ee 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 1 0 0 0 9 2 0 0 0 0 0 0 0 0 0 0 0 9 15 60%

24 I_la 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 12 15 80%

144

25 I_ra 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 4 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 9 15 60%

26 I_wa 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 9 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 5 15 33%

27 M_Nbr 0 0 0 0 0 0 0 0 1 1 1 3 1 0 0 0 0 0 1 3 0 0 0 0 0 0 3 0 0 0 0 0 0 0 1 3 15 20%

28 M_ay 0 0 1 0 1 0 6 6 0 1 0 0 0 0 6 15 40%

29 M_fa 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 7 5 0 0 0 0 0 0 5 15 33%

30 M_ha 0 0 0 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 8 0 0 0 0 0 8 15 53%

31 M_he 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 9 0 1 0 0 9 15 60%

32 M_la 0 0 0 0 0 1 0 0 0 0 0 1 0 0 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 9 0 0 0 9 15 60%

33 M_ma 0 1 0 0 3 0 10 0 1 10 15 67%

34 M_sa 0 0 0 0 0 0 0 4 0 1 0 0 1 1 8 0 8 15 53%

35 M_se 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 8 8 15 53%

Total

279 525 53%

1. Segmentation-based intra-error recognition accounts for 80 errors (i.e. about 33% of

the total errors).

2. Segmentation-based inter-error recognition accounts for about 39 errors (i.e.,16% of

the total errors).

3. Errors caused from writing distortion account for about 37 errors (i.e.30% of the total

errors).

1.2. Imbalanced Evaluation:

In these experiments, all samples of classes having minimum threshold are considered.

Imbalanced Evaluation

- All_100_30_inf_inf

For classes having at least 100 training samples and 30 testing samples, consider all

training samples and all testing samples (28 classes 11801 training samples, 2880

validation. RR:53%, shown in Table 6.9).

Table 6.9 Basic Shapes Confusion Matrix: All_100_30_inf_inf.

Id Lbl 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 #C #T RR%

145

1 B_Nbr 21 1 4 0 0 4 2 14 0 5 2 3 0 14 0 30 51 1 18 8 0 12 1 3 0 7 1 1 21 203 10%

2 B_ay 1 79 1 0 0 0 1 0 0 0 4 0 0 0 0 0 3 0 3 0 0 0 0 0 1 0 0 0 79 93 85%

3 B_fa 1 0 40 0 0 0 0 0 0 2 0 0 4 0 6 0 0 0 2 0 17 1 4 11 0 1 0 1 40 90 44%

4 B_ha 0 0 5 35 4 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 7 4 21 1 0 0 35 81 43%

5 B_he 0 0 0 2 30 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 30 37 81%

6 B_la 2 0 1 0 2 108 0 1 0 1 1 0 17 22 1 2 0 5 0 3 1 0 1 0 0 0 32 0 108 200 54%

7 B_ma 2 3 22 0 0 0 50 0 0 4 4 0 1 0 4 0 1 0 0 0 9 0 1 3 3 3 0 1 50 111 45%

8 E_Nbr 0 0 0 0 0 1 0 26 0 0 5 0 8 0 0 12 28 0 0 0 0 4 1 1 0 0 0 0 26 86 30%

9 E_aa 0 0 0 0 7 0 0 0 166 0 1 7 21 0 0 0 0 6 0 0 0 0 6 0 0 0 28 0 166 242 69%

10 E_da 1 1 0 0 0 4 0 2 0 22 0 0 0 3 0 2 4 0 0 1 0 8 0 0 0 0 4 0 22 52 42%

11 E_ee 0 1 0 0 0 3 0 16 1 0 44 0 1 0 0 45 18 0 1 0 0 0 1 0 1 3 0 0 44 135 33%

12 E_he 0 0 0 0 1 0 0 0 0 0 0 95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 95 96 99%

13 E_la 0 0 0 0 0 0 0 1 0 0 0 0 31 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 31 35 89%

14 E_ra 3 4 0 0 0 9 0 0 0 4 0 0 0 58 2 6 22 0 5 36 5 1 0 0 0 0 1 0 58 156 37%

15 E_wa 0 0 11 0 1 0 0 0 0 7 0 0 5 0 57 0 0 0 1 0 26 0 0 6 0 2 0 0 57 116 49%

16 I_Na 1 0 1 0 0 0 0 0 0 0 2 0 0 0 0 20 13 0 0 2 0 0 0 0 0 5 0 0 20 44 45%

17 I_Nbr 2 0 0 0 0 1 0 0 0 0 2 0 0 1 0 13 28 0 0 0 0 0 0 0 0 1 0 0 28 48 58%

18 I_aa 0 0 0 0 1 19 0 0 1 0 0 0 15 5 0 4 0 207 0 2 1 0 0 0 0 0 26 0 207 281 74%

19 I_da 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 4 4 0 31 1 3 0 0 0 4 0 0 0 31 50 62%

20 I_ra 1 0 0 0 0 0 0 0 0 1 0 0 0 13 0 0 4 1 2 40 1 0 0 0 0 1 0 0 40 64 63%

21 I_wa 1 0 14 0 0 0 0 1 0 10 0 0 4 0 44 0 1 0 2 0 44 0 1 3 1 0 0 0 44 126 35%

22 M_Nbr 6 0 1 0 0 1 1 20 1 21 0 4 0 3 0 4 34 0 0 2 0 65 0 4 0 11 0 6 65 184 35%

23 M_ay 0 0 4 0 0 0 0 0 0 1 0 0 2 0 8 0 1 0 0 0 0 0 33 17 0 3 0 0 33 69 48%

24 M_fa 0 0 5 0 0 0 0 0 0 0 0 0 0 0 4 0 1 0 0 0 1 0 13 46 0 1 0 0 46 71 65%

25 M_ha 1 2 0 7 1 0 0 0 0 0 0 0 0 0 1 0 1 0 6 0 3 0 0 0 26 0 0 0 26 48 54%

26 M_he 0 0 2 0 8 0 0 0 0 0 2 0 2 0 0 0 1 0 0 0 0 0 2 3 1 30 0 0 30 51 59%

27 M_la 0 0 0 0 0 3 0 0 0 1 0 0 9 1 1 0 0 0 0 0 0 0 1 0 0 0 62 0 62 78 79%

28 M_se 2 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 6 0 0 0 0 4 0 0 0 1 0 18 18 33 55%

 1512 2880 53%

1. Segmentation-based intra-error recognition accounts for 414 errors (i.e. about 30% of

the total errors).

146

2. Segmentation-based inter-error recognition accounts for about 159 errors (i.e.,12% of

the total errors).

3. Errors caused from writing distortion account for about 467 errors (i.e.,34% of the

total errors).

- All_70_15_inf_inf

For classes having at least 70 training samples and 15 testing samples, consider all

training samples and all testing samples (35 classes 12560 training samples, 3028

validation, Table 6.10).

Table 6.10 Basic Shapes Confusion Matrix: All_70_15_inf_inf.

Lbl 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

1 B_Nbr 13 0 3 0 0 3 0 0 9 13 0 2 4 3 0 0 11 0 31 65 1 3 1 2 10 0 20 0 4 0 2 3 0 0 0 13 203 6%

2 B_ay 1 75 1 0 0 0 0 0 0 0 0 0 3 0 0 1 0 0 0 3 0 1 4 0 0 0 0 0 0 2 2 0 0 0 0 75 93 81%

3 B_fa 1 0 35 2 0 0 0 0 0 3 0 1 0 0 3 0 0 9 0 1 0 0 1 0 0 13 1 4 15 0 0 0 0 0 1 35 90 39%

4 B_ha 0 0 2 20 2 0 1 21 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 8 2 20 1 0 0 1 0 20 81 25%

5 B_he 0 0 0 5 25 0 0 4 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 25 37 68%

6 B_la 2 0 0 0 0 41 0 0 0 0 0 1 0 0 7 0 11 2 3 0 3 1 0 86 2 0 0 3 0 0 0 38 0 0 0 41 200 21%

7 B_ma 2 0 17 1 2 0 21 0 1 3 0 2 5 0 2 4 0 2 0 1 0 0 0 0 0 9 0 0 7 2 1 0 27 0 2 21 111 19%

8 B_sa 0 0 0 0 1 0 0 25 0 25 26 96%

9 B_se 1 2 1 3 0 0 0 0 11 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 5 11 26 42%

10 E_Nbr 0 0 0 1 0 0 0 0 0 35 0 0 2 0 4 0 0 0 17 9 0 0 5 5 0 0 4 1 1 0 0 2 0 0 0 35 86 41%

11 E_aa 0 0 0 0 3 0 0 7 0 0 163 0 0 17 10 0 0 0 0 0 6 1 0 0 0 0 0 9 0 0 0 26 0 0 0 163 242 67%

12 E_da 2 1 0 0 0 2 0 0 0 5 0 21 0 0 0 0 0 1 2 4 0 0 0 1 1 0 6 1 1 0 0 4 0 0 0 21 52 40%

13 E_ee 0 1 0 1 1 1 0 0 0 19 1 0 34 0 0 0 0 0 49 3 0 0 19 0 0 0 0 1 0 2 3 0 0 0 0 34 135 25%

14 E_he 0 0 0 0 2 0 0 0 0 0 0 0 0 86 8 0 86 96 90%

15 E_la 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 7 0 0 0 23 35 66%

16 E_ma 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 15 100%

17 E_ra 0 5 0 0 0 2 0 0 0 1 0 2 0 0 0 0 40 0 10 19 0 1 3 21 45 6 0 0 0 0 0 1 0 0 0 40 156 26%

18 E_wa 0 0 12 0 1 0 0 0 0 2 0 4 0 0 4 0 0 61 0 1 0 0 0 0 0 25 0 0 5 0 1 0 0 0 0 61 116 53%

147

19 I_Na 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 27 4 0 0 2 3 2 0 0 0 1 0 1 0 1 0 0 27 44 61%

20 I_Nbr 0 0 0 0 0 0 0 0 0 3 0 0 1 0 0 0 0 0 31 9 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 9 48 19%

21 I_aa 0 1 0 0 0 3 0 0 0 0 1 0 0 0 14 0 6 1 4 0 213 0 0 16 0 1 0 1 0 0 0 20 0 0 0 213 281 76%

22 I_da 0 0 1 3 0 0 1 0 0 0 0 0 0 0 0 0 0 1 3 8 0 26 0 0 1 3 0 0 0 3 0 0 0 0 0 26 50 52%

23 I_ee 0 0 0 0 0 0 0 0 0 1 0 0 9 0 0 0 0 0 3 2 0 0 7 2 0 0 0 1 0 0 0 0 0 0 0 7 25 28%

24 I_la 0 0 0 0 0 1 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 1 0 0 0 12 17 71%

25 I_ra 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 9 0 2 5 1 2 0 1 42 1 0 0 0 0 0 0 0 0 0 42 64 66%

26 I_wa 0 0 18 0 0 0 0 0 0 2 0 10 0 0 1 0 0 40 0 0 0 2 1 1 0 45 0 0 5 1 0 0 0 0 0 45 126 36%

27 M_Nbr 5 0 1 0 0 0 1 0 1 20 0 22 4 4 0 0 1 0 5 24 0 0 5 1 3 0 67 0 4 0 10 2 0 0 4 67 184 36%

28 M_ay 0 0 5 0 2 0 0 0 0 0 0 1 1 0 1 0 0 9 0 1 0 0 0 0 0 0 0 32 15 0 2 0 0 0 0 32 69 46%

29 M_fa 0 0 8 0 0 0 0 0 0 0 0 1 0 0 0 0 0 5 0 1 0 0 0 0 0 1 0 10 42 0 0 0 0 3 0 42 71 59%

30 M_ha 0 2 1 15 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 2 0 2 0 0 0 3 0 0 1 18 0 0 0 0 0 18 48 38%

31 M_he 0 0 0 2 9 0 0 1 0 0 0 0 2 0 3 0 0 1 0 2 0 0 0 0 0 0 0 3 2 0 26 0 0 0 0 26 51 51%

32 M_la 0 0 0 0 0 1 0 0 0 0 0 1 0 0 5 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 67 0 0 0 67 78 86%

33 M_ma 0 1 0 0 0 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 11 0 2 11 21 52%

34 M_sa 0 0 0 0 0 0 0 9 0 3 1 0 0 0 5 0 5 18 28%

35 M_se 0 0 0 0 0 0 0 0 3 2 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 8 0 0 0 2 0 0 0 15 15 33 45%

Total

1408 3028 46%

- All_40_10_inf_inf

For classes having at least 40 training samples and 10 testing samples, consider all

training samples and all testing samples (42 classes 12978 training samples, 3121

validation, RR:46%. Table 6.11).

Table 6.11 Basic Shapes Confusion Matrix: All_40_10_inf_inf.

Id Lbl 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 #C #T RC%

1 B_Nbr 26 1 1 0 0 17 1 0 0 7 12 0 0 0 0 3 1 0 12 1 30 59 1 0 6 0 0 2 1 1 8 2 5 1 4 0 0 1 0 0 0 0 26 203 13%

2 B_ay 4 66 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 2 0 0 0 5 0 8 0 0 0 0 0 0 0 2 0 0 3 0 0 0 66 93 71%

3 B_fa 0 0 9 0 0 0 0 0 1 0 2 0 0 1 0 0 0 0 0 6 1 1 0 0 0 2 0 0 0 7 0 21 1 12 24 0 1 0 0 0 1 0 9 90 10%

4 B_ha 0 0 2 32 2 0 0 1 10 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 4 0 0 0 3 3 17 0 0 0 0 0 6 32 81 40%

5 B_he 0 0 0 3 23 0 0 0 5 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 3 23 37 62%

6 B_ke 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 10 13 77%

148

7 B_la 2 0 1 0 1 0 37 0 0 0 0 0 0 0 1 0 22 0 22 2 0 0 3 0 3 0 0 0 82 0 2 0 0 2 0 0 1 19 0 0 0 0 37 200 19%

8 B_ma 2 0 7 0 1 0 0 19 0 1 2 0 0 2 3 0 0 6 0 1 0 0 0 0 0 1 0 0 2 7 0 13 0 1 10 1 0 0 32 0 0 0 19 111 17%

9 B_sa 0 0 0 1 1 0 0 0 22 0 1 0 1 22 26 85%

10 B_se 1 1 0 1 0 0 0 0 0 12 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 6 1 12 26 46%

11 E_Nbr 1 0 0 0 0 0 0 0 0 0 38 0 0 0 4 0 7 0 0 0 14 14 0 1 0 4 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 38 86 44%

12 E_aa 0 0 0 0 2 0 0 0 7 0 0 160 0 0 0 18 9 0 0 0 0 0 4 0 1 0 0 0 2 0 0 0 1 9 0 0 0 29 0 0 0 0 160 242 66%

13 E_ay 0 0 0 0 0 0 0 0 0 0 0 0 11 0 11 11 100%

14 E_da 1 1 0 0 0 0 2 0 0 0 2 0 0 12 0 0 2 0 5 0 3 3 0 0 0 0 0 1 1 0 1 1 11 0 2 0 0 3 0 0 1 0 12 52 23%

15 E_ee 0 0 0 0 1 0 1 0 0 0 23 0 0 0 40 0 1 0 0 0 34 11 0 2 1 13 1 0 0 0 0 0 0 4 0 3 0 0 0 0 0 0 40 135 30%

16 E_he 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 92 3 0 1 92 96 96%

17 E_la 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 3 0 0 0 0 28 35 80%

18 E_ma 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 15 15 100%

19 E_ra 2 0 0 0 0 2 4 0 0 0 1 0 0 1 7 0 1 0 44 1 6 33 0 0 2 3 0 1 4 0 43 1 0 0 0 0 0 0 0 0 0 0 44 156 28%

20 E_wa 0 0 0 0 0 0 0 0 0 0 1 0 5 3 0 0 0 0 2 61 0 0 0 0 0 0 0 0 0 5 0 25 0 1 12 0 0 0 0 0 0 1 61 116 53%

21 I_Na 0 0 0 0 0 6 0 0 0 0 1 0 0 0 4 0 0 1 0 0 19 10 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 19 44 43%

22 I_Nbr 0 0 0 0 0 0 0 0 0 0 5 0 0 0 2 0 0 0 1 0 19 19 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 19 48 40%

23 I_aa 0 1 0 0 0 0 2 0 0 0 0 1 7 0 0 0 9 0 8 0 1 0 215 0 0 0 0 1 22 0 0 0 0 0 0 0 0 14 0 0 0 0 215 281 77%

24 I_com 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 5 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 5 12 42%

25 I_da 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 7 0 0 28 0 1 0 0 0 1 4 0 0 0 4 0 0 0 0 0 0 28 50 56%

26 I_ee 0 0 0 0 0 0 0 0 0 0 2 0 0 0 8 0 0 0 0 0 3 5 0 0 0 6 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 6 25 24%

27 I_he 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 5 0 0 0 0 1 0 0 0 0 0 0 4 0 0 0 5 16 31%

28 I_hh 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 5 0 0 2 0 0 0 0 0 0 0 0 0 0 0 5 14 36%

29 I_la 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 13 17 76%

30 I_ma 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 11 14 79%

31 I_ra 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 6 1 0 0 0 0 0 0 0 41 1 0 0 0 0 0 0 0 0 0 0 41 64 64%

32 I_wa 0 0 2 0 0 0 0 0 0 0 5 0 2 2 0 0 0 0 2 35 0 1 0 0 1 6 0 0 0 4 0 60 0 0 6 0 0 0 0 0 0 0 60 126 48%

33 M_Nbr 9 0 0 0 0 20 0 1 0 1 26 1 0 13 1 4 0 0 6 0 2 26 0 0 0 2 1 0 0 0 2 0 53 1 3 0 0 0 0 0 12 0 53 184 29%

34 M_ay 0 0 1 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 6 0 0 0 0 0 1 0 0 0 0 0 1 0 34 16 1 1 1 0 0 0 4 34 69 49%

35 M_fa 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 17 40 0 0 0 0 2 0 6 40 71 56%

36 M_ha 1 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 3 0 0 1 0 1 0 3 0 0 1 26 0 0 0 1 0 1 26 48 54%

37 M_he 0 0 0 2 7 0 0 0 1 2 0 0 0 0 1 2 0 0 0 1 0 0 0 1 0 7 0 0 0 0 0 0 0 1 1 0 18 0 1 1 0 5 18 51 35%

38 M_la 0 0 0 0 0 0 1 0 0 0 0 0 2 1 0 0 20 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 50 0 0 0 0 50 78 64%

39 M_ma 0 1 0 0 0 0 0 1 0 1 0 1 2 0 13 0 2 0 13 21 62%

40 M_sa 0 0 0 0 0 0 0 0 6 0 3 0 9 3 18 17%

41 M_se 2 0 0 0 0 2 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 4 0 0 0 1 0 0 0 17 0 17 33 52%

149

42 M_to 0 0 0 0 0 0 0 0 3 0 2 0 0 0 0 4 0 4 4 13 31%

1442 3121 46%

2. Positional-based Classifiers

It can be noticed that the most misclassification source comes from classes of different

positions having similar forms when segmented. Since, in the online case, the position is

more likely to be determined in advance when capturing the online input (with

considering the connectivity problems), it is useful to have different positional-dependent

classifiers. Some of the results of Positional-Based classifiers are shown in the following

table (Table 6.12).

Table 6.12 Results on annotated Positional-Based Basic Shapes classifiers.

Classes

Train

Samples

Test

Samples

Rec

Rate

Features Data setting

11 594 166 67.5
Curvature,Mean;In_Direction,Mode;Rx,Mean
;Ry,Mean.

I_Primary_20_5_100_25

3 300 60 100

In_Direction,Histogram I_Primary_100_20_100_2

0

6 1263 287 92.7

In_Direction,Mode;In_Direction,Mean;

In_Direction,Var;X,Change;Y,Change

I_Primary_30_5_Inf_Inf

8 1372 345 86.1
In_Direction,Mode;In_Direction,Mean;
In_Direction,Var;X,Change;Y,Change

E_Primary_30_5_Inf_Inf

7 490 105 82

CosA,Mean;SinA,Mean;In_Direction,Mean;O

ut_Direction,Mean

B_Primary_70_15_70_15

4 280 60 93.3

CosA,Mean;SinA,Mean;In_Direction,Mean;O

ut_Direction,Mean

I_Primary_70_15_70_15

6 420 90 81.1
CosA,Mean;SinA,Mean;In_Direction,Mean;O
ut_Direction,Mean

M_Primary_70_15_70_15

8 560 120 81.7

CosA,Mean;SinA,Mean;In_Direction,Mean;O

ut_Direction,Mean

E_Primary_70_15_70_15

The similar setting for the experiment shown in Table 6.7 are used to construct four

different positional-based classifiers and the results are shown in Table 6.13.

150

Table 6.13 Best results of positional classifiers on annotated balanced samples.

Classes # Train Samples # Test Samples Rec Rate Top3 RR Position

6 600 180 86% 100% Isolated

7 700 210 81% 96% Begin

7 700 210 73% 91% Middle

8 800 240 81% 97% End

Testing using the positional based classifiers results higher accuracy as shown in the

following confusion matrices: (I-position, 13 characters, 423 samples, RR :88%,

Table 6.14), (B-Position, 15 characters, 770 samples, RR :83%, Table 6.15), (M-Position,

16 characters, 510 samples, RR :82%, Table 6.16), (E-Position, 18 characters, 862

samples, RR:94% Table 6.17)

Table 6.14 Confusion matrix of I-position characters classification.

1 2 3 4 5 6 7 8 9 10 11 12 13

 1 I_aa 83 0 0 0 0 0 0 3 0 0 1 0 0 83 87 95%

2 I_ae 0 5 0 0 0 0 0 0 0 0 0 1 0 5 6 83%

3 I_ah 0 0 7 0 0 0 0 0 0 0 0 0 0 7 7 100%

4 I_ba 0 0 0 17 0 0 0 0 0 0 0 0 0 17 17 100%

5 I_da 0 0 0 0 39 0 0 5 0 0 1 0 0 39 45 87%

6 I_dh 0 0 0 0 0 13 1 0 0 0 0 0 2 13 16 81%

7 I_na 0 0 0 0 0 0 33 0 0 1 0 3 1 33 38 87%

8 I_ra 0 0 0 0 2 0 0 66 0 0 3 0 0 66 71 93%

9 I_ta 0 0 0 0 0 0 3 0 18 2 0 0 0 18 23 78%

10 I_th 0 0 0 0 0 0 0 0 3 0 0 0 0 0 3 0%

11 I_wa 0 0 0 0 5 0 0 12 0 0 83 0 0 83 100 83%

12 I_za 0 0 0 0 0 0 3 0 0 0 0 7 0 7 10 70%

13 I_wl 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

83 5 7 17 46 13 40 86 21 3 88 11 3 371 423 88%

151

Table 6.15 Confusion matrix of B-position characters classification.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 1 B_ay 60 0 0 0 0 0 0 0 0 1 4 0 0 0 0 60 65 92%

2 B_ba 0 58 0 0 0 0 1 0 0 0 0 0 0 0 3 58 62 94%

3 B_fa 0 0 26 17 0 0 0 0 3 0 0 3 0 0 0 26 49 53%

4 B_gh 0 0 0 4 0 0 0 0 0 0 0 1 0 0 0 4 5 80%

5 B_ha 3 0 0 0 31 5 0 0 0 0 1 0 0 0 0 31 40 78%

6 B_he 0 0 0 0 13 19 0 0 0 0 5 0 0 0 0 19 37 51%

7 B_ja 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 25 25 100%

8 B_ka 0 0 2 2 0 0 0 17 0 0 0 0 0 0 0 17 21 81%

9 B_kh 0 0 1 1 0 0 0 0 16 0 0 0 0 0 0 16 18 89%

10 B_la 1 0 0 0 1 4 0 0 0 194 10 0 0 0 0 194 210 92%

11 B_ma 8 0 0 0 22 2 0 0 0 2 72 0 0 0 0 72 106 68%

12 B_na 0 0 0 1 0 0 0 0 0 0 0 35 0 0 0 35 36 97%

13 B_ta 0 0 0 0 0 0 0 0 0 0 0 2 23 0 0 23 25 92%

14 B_th 0 1 0 2 0 0 0 0 0 0 0 1 1 4 0 4 9 44%

15 B_ya 0 6 0 0 0 0 1 0 0 0 0 0 0 0 55 55 62 89%

72 65 29 27 67 30 27 17 19 197 92 42 24 4 58 639 770 83%

Table 6.16 Confusion matrix of M-position characters classification.

id Lbl 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 #C #T RR

1 M_ay 51 0 0 0 2 0 0 0 0 1 0 3 0 0 0 0 51 57 89%

2 M_ba 0 38 0 0 0 0 2 0 0 0 0 0 0 0 0 1 38 41 93%

3 M_fa 0 0 15 4 0 0 0 1 0 0 0 0 1 0 0 0 15 21 71%

4 M_gh 0 0 3 4 0 0 0 0 0 0 0 0 0 0 0 0 4 7 57%

5 M_ha 1 0 0 0 15 1 0 0 0 0 0 0 0 0 0 0 15 17 88%

6 M_he 8 0 0 0 4 35 0 0 0 0 0 0 0 0 0 0 35 47 74%

7 M_ja 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 10 10 100%

8 M_ka 0 0 11 1 0 0 0 34 0 0 0 0 0 0 0 0 34 46 74%

9 M_kh 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 6 6 100%

152

10 M_la 0 0 0 0 0 0 0 0 0 59 0 0 0 0 0 0 59 59 100%

11 M_na 0 0 1 1 0 0 0 0 1 0 38 0 2 1 0 0 38 44 86%

12 M_se 0 0 0 0 1 0 0 0 0 0 0 23 0 0 0 0 23 24 96%

13 M_sh 0 0 0 0 0 0 0 0 0 0 2 0 3 0 3 0 3 8 38%

14 M_ta 0 0 0 1 0 0 0 1 0 0 7 0 2 27 1 0 27 39 69%

15 M_th 0 0 0 2 0 0 1 0 0 0 1 0 1 0 3 0 3 8 38%

16 M_ya 0 14 0 0 0 0 2 1 0 0 0 0 0 0 1 58 58 76 76%

Sum 60 52 30 13 22 36 15 37 7 60 48 26 9 28 8 59 419 510 82%

Table 6.17 Confusion matrix of E-position characters classification.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 E_aa 252 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 252 252 100%

2 E_ae 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 100%

3 E_ah 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 100%

4 E_ba 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 9 100%

5 E_da 1 0 0 0 38 0 0 0 3 0 0 0 0 0 0 0 0 0 38 42 90%

6 E_dh 0 0 0 0 0 14 0 0 0 2 0 0 0 0 0 0 0 0 14 16 88%

7 E_ee 3 0 0 0 0 0 26 0 0 0 0 0 0 0 0 0 0 0 26 29 90%

8 E_he 4 0 0 0 0 0 1 50 0 0 0 0 0 0 0 0 0 0 50 55 91%

9 E_la 3 0 0 0 0 0 0 0 39 0 0 0 0 0 0 0 0 0 39 42 93%

10 E_na 0 0 0 0 0 0 0 0 0 48 0 0 0 0 0 0 0 0 48 48 100%

11 E_ra 1 0 0 0 8 0 1 0 0 0 128 0 0 0 0 0 0 0 128 138 93%

12 E_ta 0 0 0 0 0 0 0 0 0 2 0 4 0 0 0 0 0 0 4 6 67%

13 E_tee 0 0 0 0 0 0 0 0 0 2 0 3 56 0 0 0 0 0 56 61 92%

14 E_th 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 100%

15 E_wa 0 0 0 0 0 0 0 0 0 0 5 0 0 0 82 0 0 0 82 87 94%

16 E_wl 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2 2 100%

17 E_ya 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 50 0 50 53 94%

18 E_za 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 12 12 18 67%

264 1 2 12 46 14 28 50 42 60 133 7 56 1 82 2 50 12 814 862 94%

153

3. Delayed Strokes Classification

In the classification of the delayed strokes, simpler classification methods are used. We

use different classifiers with several features. Some of the obtained results are shown in

the following table (Table 6.18).

Table 6.18 Results on delayed strokes classification.

Classes

Train

Samples

Test

Samples

Rec

Rate

Features Classifier

3 60 15 66.7 In_Direction,Histogram Bnet

3 60 15 80 In_Direction,Histogram KNN

5 2271 515 87 X,Change;Y,Change KNN

5 2271 515 89 X,Change;Y,Change Bnet

5 2271 515 97 X,Change; Y,Change, Aspect Ratio KNN

154

Appendix E. Cursive Text Recognition Detailed Results

Here are some of the details of the experimental work of cursive text recognition.

When developing the proposed methods, we used a set of segmented PAWs (Parts of

Arabic Words) which is generated from ADAB database in [41]. This dataset is prepared

by segmenting at the character level and all delayed strokes are removed manually. The

available dataset contains 15,854 letter samples and 513 PAW samples. Samples of this

dataset are shown in Figure 6.4. Some of the achieved results with different statistical

features are shown in Table 6.19.

Table 6.19 Results of using some statistical features for cursive text recognition on ADAB database.

Features SB HHMM HTK

Average of Freeman Code 40.4% 57.3% 60.6%

Averages of Sine and Cosine 46.1% 55.8% 60.3%

Average of Relative Position 44.4% 48.7% 65.8%

Average of Curvature 45% 42.2% 63.7%

Average of Curliness 48.2% 47.6% 62%

Histogram of Freeman Code + Variance of Freeman

Code.

51.5% 55.3% 63.7%

Histogram of Freeman Code+ average of Curliness +

averages of Sine and Cosine

61.8% 63.7% 68.8%

Histogram of Freeman Code 55% 62% 59.1%

Mode of Freeman Code 46.1% 53.4% 56.3%

Variance of Freeman Code 24.4% 45.8% 58.9%

Average of Tangent 41% 33.2% 40.4%

Histogram of Freeman Code + Average of Freeman

Code

66.2% 51.3% 64.9%

155

Due to the difficulty of examining all possible extracted statistical features, we used PCA

method for feature dimension reduction. We used different dimensions and some of the

achieved results are shown in Table 6.20 to compare the different classification methods.

Table 6.20 Results of using PCA statistical features for cursive text recognition on ADAB database.

Features SB HHMM HTK

PCA (10) 58.3% 52.1% 61.8%

PCA (15) 65.7% 66.6% 79.7%

PCA (20) 56.3% 50.1% 81.1%

Table 6.21 shows some recognition results on Online-KHATT text lines using HTK with

adopting PCA statistical features. Where N is the number of characters, D is the number

of deletions, S is the number of substitutions, I is the number of insertions, A is the

accuracy rate, and C is the correctness rate.

Table 6.21 Results of using PCA statistical features for cursive text recognition on Online-KHATT Lines.

Features N D S I A% C%

PCA (10) 2656 531 646 483 37.5 55.68524

PCA (15) 2656 472 555 467 43.75 61.33283

PCA (20) 2656 431 525 443 47.32681 64.00602

PCA (25) 2656 481 566 431 44.35241 60.57982

156

Figure 6.4 Samples of ADAB PAWs.

157

References

[1] A. Sharma, “Online handwritten Gurmukhi character recognition,” Thapar

University, Punjab, India., 2009.

[2] M. T. Parvez and S. A. Mahmoud, “Offline Arabic Handwritten Text Recognition:

A Survey,” ACM Comput. Surv., vol. 45, no. 2, pp. 23:1–23:35, Mar. 2013.

[3] B. Al-Badr and S. Mahmoud, “Survey and bibliography of Arabic optical text

recognition,” Signal Processing, vol. 41, no. 1, pp. 49–77, Jan. 1995.

[4] N. Y. Habash, “Introduction to Arabic natural language processing,” Synth. Lect.

Hum. Lang. Technol., vol. 3, no. 1, pp. 1–187, 2010.

[5] S. A. Azeem, M. El Meseery, and H. Ahmed, “Online Arabic Handwritten Digits

Recognition,” in International Conference on Frontiers in Handwriting

Recognition (ICFHR), 2012, pp. 135–140.

[6] R. I. Elanwar, M. Rashwan, and S. Mashali, “Simultaneous segmentation and

recognition of Arabic characters in an unconstrained on-line cursive handwritten

document,” in Proceedings of world academy of science, engineering and

technology, International conference on Machine learning and Pattern

Recognition MLPR2007, 2007, vol. 23, pp. 288–291.

[7] R. A. Haraty and C. Ghaddar, “Arabic text recognition,” Int. Arab J. Inf. Technol.,

vol. 1, no. 2, pp. 156–163, 2004.

[8] T. T. Kuklinski, “Components of handprint style variability,” in Proceedings of

Seventh International Conference of Pattern Recognition, 1984, pp. 924–926.

[9] A. M. Wing, “Variability in handwritten characters,” Visible Lang., vol. 13, no. 3,

pp. 283–298, 1979.

[10] M. A. Abuzaraida, A. M. Zeki, and A. M. Zeki, “Problems of writing on digital

surfaces in online handwriting recognition systems,” in 2013 5th International

Conference on Information and Communication Technology for the Muslim World

(ICT4M), 2013, pp. 1–5.

[11] M. Al-Ammar, R. Al-Majed, and H. Aboalsamh, “Online handwriting recognition

for the Arabic letter set,” Recent Res. Commun. IT, pp. 42–49, 2011.

158

[12] S. Impedovo, “More than twenty years of advancements on Frontiers in

handwriting recognition,” Pattern Recognit., vol. 47, no. 3, pp. 916–928, 2014.

[13] L. Likforman-Sulem, “Recent Approaches in Handwriting Recognition with

Markovian Modelling and Recurrent Neural Networks,” in Recent Advances of

Neural Network Models and Applications, Springer, 2014, pp. 261–267.

[14] A. N. Azmi, D. Nasien, and S. M. Shamsuddin, “A review on handwritten

character and numeral recognition for Roman, Arabic, Chinese and Indian scripts,”

Int. J. Adv. Stud. Comput. Sci. Eng., vol. 2, no. 4, pp. 1–8, 2013.

[15] U. Saeed, “Automatic Recognition of Handwritten Arabic Text: A Survey,” Life

Sci. J., vol. 11, no. 3s, 2014.

[16] M. A. Abuzaraida, A. M. Zeki, and A. M. Zeki, “Recognition Techniques for

Online Arabic Handwriting Recognition Systems,” in International Conference on

Advanced Computer Science Applications and Technologies (ACSAT), 2012, pp.

518–523.

[17] M. A. Abuzaraida, A. M. Zeki, and A. M. Zeki, “Segmentation techniques for

online Arabic handwriting recognition: a survey,” in Proceeding of the 3rd

International Conference on Information and Communication Technology for the

Moslem World (ICT4M), 2010, pp. 37–40.

[18] M. A. Abuzaraida, A. M. Zeki, and A. M. Zeki, “Feature extraction techniques of

online handwriting arabic text recognition,” in 5th International Conference on

Information and Communication Technology for the Muslim World (ICT4M),

2013, pp. 1–7.

[19] N. Tagougui, M. Kherallah, and A. M. Alimi, “Online Arabic handwriting

recognition: a survey,” Int. J. Doc. Anal. Recognit., vol. 16, no. 3, pp. 209–226,

2012.

[20] C. C. Tappert, C. Y. Suen, and T. Wakahara, “The state of the art in online

handwriting recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, no. 8,

pp. 787–808, 1990.

[21] J. Kim and B.-K. Sin, “Online Handwriting Recognition,” Handb. Doc. Image

Process. Recognit., pp. 887–915, 2014.

[22] L. M. Lorigo and V. Govindaraju, “Offline Arabic handwriting recognition: a

survey,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 5, pp. 712–724,

2006.

159

[23] M. Kherallah, A. Elbaati, H. E. Abed, and A. M. Alimi, “The on/off (LMCA) dual

Arabic handwriting database,” in 11th International Conference on Frontiers in

Handwriting Recognition (ICFHR), 2008.

[24] M. Kherallah, L. Haddad, A. M. Alimi, and A. Mitiche, “On-line handwritten digit

recognition based on trajectory and velocity modeling,” Pattern Recognit. Lett.,

vol. 29, no. 5, pp. 580–594, 2008.

[25] M. Kherallah, F. Bouri, and A. M. Alimi, “On-line Arabic handwriting recognition

system based on visual encoding and genetic algorithm,” Eng. Appl. Artif. Intell.,

vol. 22, no. 1, pp. 153–170, 2009.

[26] H. El Abed, M. Kherallah, V. Märgner, and A. M. Alimi, “On-line Arabic

handwriting recognition competition,” Int. J. Doc. Anal. Recognit., vol. 14, no. 1,

pp. 15–23, 2011.

[27] H. El Abed, V. Margner, M. Kherallah, and A. M. Alimi, “Icdar 2009 online

arabic handwriting recognition competition,” in 10th International Conference on

Document Analysis and Recognition, ICDAR’09., 2009, pp. 1388–1392.

[28] H. Ahmed and S. A. Azeem, “On-line Arabic handwriting recognition system

based on HMM,” in International Conference on Document Analysis and

Recognition (ICDAR), 2011, pp. 1324–1328.

[29] S. Abdelazeem and H. M. Eraqi, “On-line Arabic handwritten personal names

recognition system based on HMM,” in International Conference on Document

Analysis and Recognition (ICDAR), 2011, pp. 1304–1308.

[30] H. Boubaker, A. Chaabouni, M. Kherallah, A. M. Alimi, and H. El Abed, “Fuzzy

segmentation and graphemes modeling for online Arabic handwriting

recognition,” in International Conference on Frontiers in Handwriting

Recognition (ICFHR), 2010, pp. 695–700.

[31] H. Boubaker, A. Chaabouni, M. Ben Halima, A. El Baati, and H. El Abed, “Arabic

diacritics detection and fuzzy representation for segmented handwriting graphemes

modeling,” in 6th International Conference of Soft Computing and Pattern

Recognition (SoCPaR), 2014, pp. 71–76.

[32] H. Boubaker, A. El Baati, M. Kherallah, A. M. Alimi, and H. Elabed, “Online

Arabic handwriting modeling system based on the graphemes segmentation,” in

20th International Conference on Pattern Recognition (ICPR), 2010, pp. 2061–

2064.

[33] H. Boubaker, N. Tagougui, H. El Abed, M. Kherallah, and A. M. Alimi,

“Graphemes Segmentation for Arabic Online Handwriting Modeling,” J. Inf.

Process. Syst., vol. 10, no. 4, pp. 503–522, 2014.

160

[34] N. Tagougui, H. Boubaker, M. Kherallah, and A. M. Alimi, “A hybrid

MLPNN/HMM recognition system for online Arabic Handwritten script,” in

World Congress on Computer and Information Technology (WCCIT), 2013, pp. 1–

6.

[35] N. Tagougui, H. Boubaker, M. Kherallah, and A. M. Alimi, “A Hybrid NN/HMM

Modeling Technique for Online Arabic Handwriting Recognition,” Int. J. Comput.

Linguist. Res., vol. 4, no. 3, pp. 107–118, 2013.

[36] S. A. Azeem and H. Ahmed, “Combining online and offline systems for Arabic

handwriting recognition,” in 21st International Conference on Pattern Recognition

(ICPR), 2012, pp. 3725–3728.

[37] I. Hosny, S. Abdou, and A. Fahmy, “Using advanced hidden markov models for

online Arabic handwriting recognition,” in First Asian Conference on Pattern

Recognition (ACPR), 2011, pp. 565–569.

[38] H. Al-Barhamtoshy, S. Abdou, and F. A. Al-Wajih, “A Toolkit for Teaching

Arabic Handwriting,” Int. J. Comput. Appl., vol. 49, no. 23, pp. 17–23, 2012.

[39] I. Abdelaziz, S. Abdou, and H. Al-Barhamtoshy, “A large vocabulary system for

Arabic online handwriting recognition,” Pattern Anal. Appl., pp. 1–13, 2015.

[40] R. Saabni and J. El-Sana, “Comprehensive synthetic Arabic database for on/off-

line script recognition research,” Int. J. Doc. Anal. Recognit., vol. 16, no. 3, pp.

285–294, 2013.

[41] G. Kour and R. Saabne, “Fast classification of handwritten on-line Arabic

characters,” in 6th International Conference of Soft Computing and Pattern

Recognition (SoCPaR), 2014, pp. 312–318.

[42] R. I. Elanwar, M. Rashwan, and S. Mashali, “OHASD: the first on-line Arabic

sentence database handwritten on tablet PC,” in Proceedings of World Academy of

Science, Engineering and Technology (WASET), International conference on

International Conference on Signal and Image Processing ICSIP, 2010, vol. 69,

pp. 910–915.

[43] U.-V. Marti and H. Bunke, “The IAM-database: an English sentence database for

offline handwriting recognition,” Int. J. Doc. Anal. Recognit., vol. 5, no. 1, pp. 39–

46, 2002.

[44] M. Liwicki and H. Bunke, “IAM-OnDB-an on-line English sentence database

acquired from handwritten text on a whiteboard,” in Eighth International

Conference on Document Analysis and Recognition, 2005, pp. 956–961.

161

[45] S. Njah, H. Bezine, and A. M. Alimi, “On-line Arabic Handwriting Segmentation

via Perceptual Codes: Application to MAYASTROUN database.,” in IEEE SSD,

2011, pp. 1–5.

[46] S. Njah, H. Bezine, and A. M. Alimi, “A fuzzy genetic system for segmentation of

on-line handwriting: Application to ADAB database,” in IEEE SSCI 2011:

Symposium Series on Computational Intelligence - GEFS 2011: 2011 IEEE 5th

International Workshop on Genetic and Evolutionary Fuzzy Systems, 2011, pp.

95–102.

[47] S. Njah, M. Ltaief, H. Bezine, and A. M. Alimi, “The PerTOHS Theory for f or

On- On - Line Handwriting Segmentation,” IJCSI Int. J. Comput. Sci. Issues, vol.

9, no. 5, pp. 142–151, 2012.

[48] S. Njah, B. Ben Nouma, H. Bezine, and A. M. Alimi, “MAYASTROUN: A

Multilanguage Handwriting Database,” in 2012 International Conference on

Frontiers in Handwriting Recognition, 2012, pp. 308–312.

[49] S. Abdou, W. Fakhr, I. Hosny, and F. Alwajeeh, “A general purpose large scale

Arabic Online Handwriting Corpus,” in The Egyptian Socity of Language

Engineering Conference, 2010.

[50] I. Abdelaziz and S. Abdou, “AltecOnDB: A Large-Vocabulary Arabic Online

Handwriting Recognition Database,” arXiv preprint arXiv:1412.7626. 2014.

[51] M. A. Abuzaraida, A. M. Zeki, and A. M. Zeki, “Online database on Quranic

hadwritten words,” J. Theor. Appl. Inf. Technol., vol. 62, no. 2, pp. 485–492, 2014.

[52] R. Saabni and J. El-Sana, “Efficient generation of comprehensive database for

online arabic script recognition,” in 10th International Conference on Document

Analysis and Recognition, ICDAR’09., 2009, pp. 1231–1235.

[53] H. Boubaker, A. Elbaati, N. Tagougui, H. El Abed, M. Kherallah, and A. M.

Alimi, “Online Arabic databases and applications,” in Guide to OCR for Arabic

Scripts, Springer, 2012, pp. 541–557.

[54] K. Daifallah, N. Zarka, and H. Jamous, “Recognition-based segmentation

algorithm for on-line arabic handwriting,” in 10th International Conference on

Document Analysis and Recognition, ICDAR’09, 2009, pp. 886–890.

[55] D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the number of

points required to represent a digitized line or its caricature,” Cartogr. Int. J.

Geogr. Inf. Geovisualization, vol. 10, no. 2, pp. 112–122, 1973.

162

[56] F. Biadsy, J. El-Sana, and N. Y. Habash, “Online arabic handwriting recognition

using hidden markov models,” in Proceedings of the 10th International Workshop

on Frontiers of Handwriting and Recognition, 2006, pp. 85–90.

[57] F. Biadsy, R. Saabni, and J. El-Sana, “Segmentation-free online arabic handwriting

recognition,” Int. J. Pattern Recognit. Artif. Intell., vol. 25, no. 07, pp. 1009–1033,

2011.

[58] G. Kour and R. Saabne, “Real-time segmentation of on-line handwritten arabic

script,” in 14th International Conference on Frontiers in Handwriting Recognition

(ICFHR), 2014, pp. 417–422.

[59] M. A. Abuzaraida, A. M. Zeki, and A. M. Zeki, “Online Recognition System For

Handwritten Arabic Digits,” in ICIT15: The 7th International Conference on

Information Technology, 2015, pp. 45–49.

[60] A. Ramzi and A. Zahary, “Online Arabic handwritten character recognition using

online-offline feature extraction and back-propagation neural network,” in 1st

International Conference on Advanced Technologies for Signal and Image

Processing (ATSIP), 2014, pp. 350–355.

[61] A. M. Alimi and O. A. Ghorbel, “The analysis of error in an on-line recognition

system of Arabic handwritten characters,” in Third International Conference on

Document Analysis and Recognition (ICDAR’95), 1995, pp. 890–893.

[62] M. S. Baghshah, S. B. Shouraki, and S. Kasaei, “A novel fuzzy classifier using

fuzzy LVQ to recognize online persian handwriting,” in The 2nd International

Conference on Information and Communication Technologies, ICTTA’06., 2006,

vol. 1, pp. 1878–1883.

[63] B. Alsallakh and H. Safadi, “Arapen: an arabic online handwriting recognition

system,” in The 2nd International Conference on Information and Communication

Technologies, ICTTA’06., 2006, pp. 1844–1849.

[64] S. Izadi and C. Y. Suen, “Online Writer-Independent Character Recognition Using

a Novel Relational Context Representation,” in Seventh International Conference

on Machine Learning and Applications, ICMLA’08., 2008, pp. 867–870.

[65] M. E. Mustafa and H. A. Abd Alshafy, “Characters’ boundaries based

segmentation for online Arabic handwriting,” in International Conference on

Computing, Electrical and Electronics Engineering (ICCEEE)., 2013, pp. 306–

310.

[66] H. A. Abd Alshafy and M. E. Mustafa, “HMM based approach for Online Arabic

Handwriting recognition,” in 14th International Conference on Intelligent Systems

Design and Applications (ISDA)., 2014, pp. 211–215.

163

[67] N. Mezghani, A. Mitiche, and M. Cheriet, “On-line recognition of handwritten

arabic characters using a kohonen neural network,” in Proceedings Eighth

International Workshop on Frontiers in Handwriting Recognition, 2002, pp. 490–

495.

[68] N. Mezghani, A. Mitiche, and M. Cheriet, “Bayes classification of online arabic

characters by gibbs modeling of class conditional densities,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 30, no. 7, pp. 1121–1131, 2008.

[69] S. M. Ismail and S. N. H. S. Abdullah, “Online arabic handwritten character

recognition based on a rule based approach,” J. Comput. Sci., vol. 8, no. 11, pp.

1859–1868, 2012.

[70] S. M. Ismail and S. N. H. S. Abdullah, “Geometrical-Matrix Feature Extraction for

on-Line Handwritten Characters Recognition,” J. Theor. Appl. Inf. Technol., vol.

49, no. 1, 2013.

[71] M. Kherallah, L. Hadded, A. Mitiche, and A. M. Alimi, “On-Line Recognition Of

Handwritten Digits Based On Trajectory And Velocity Modelling,” Int. J. Pattern

Recognit. Lett., vol. 29, no. 5, pp. 580–594, 2008.

[72] S. Izadi, M. Haji, and C. Y. Suen, “A new segmentation algorithm for online

handwritten word recognition in Persian script,” in Proc. Eleventh International

Conf. Frontiers in Handwriting Recognition (CFHR 2008), 2008, pp. 598–603.

[73] B. Q. Huang, Y. B. Zhang, and M.-T. Kechadi, “Preprocessing techniques for

online handwriting recognition,” in Intelligent Text Categorization and Clustering,

Springer, 2009, pp. 25–45.

[74] I. Khodadad, M. Sid-Ahmed, and E. Abdel-Raheem, “Online Arabic/Persian

character recognition using neural network classifier and DCT features,” in IEEE

54th International Midwest Symposium on Circuits and Systems (MWSCAS), 2011,

pp. 1–4.

[75] N. Mezghani, M. Cheriet, and A. Mitiche, “Combination of pruned kohonen maps

for on-line arabic characters recognition,” in Seventh International Conference on

Document Analysis and Recognition, 2003, pp. 900–904.

[76] N. Mezghani, A. Mitiche, and M. Cheriet, “On-line character recognition using

histograms of features and an associative memory,” in IEEE International

Conference on Acousitics, Speech, and Signal Processing, ICASSP-04, 2004, pp.

841–844.

[77] R. Saabni and J. El-Sana, “Hierarchical on-line arabic handwriting recognition,” in

10th International Conference on Document Analysis and Recognition, ICDAR’09,

2009, pp. 867–871.

164

[78] H. Boubaker, M. Kherallah, and A. M. Alimi, “New algorithm of straight or

curved baseline detection for short arabic handwritten writing,” in 10th

International Conference on Document Analysis and Recognition, ICDAR’09.,

2009, pp. 778–782.

[79] M. A. H. Omer and S. L. Ma, “Online Arabic handwriting character recognition

using matching algorithm,” in The 2nd International Conference on Computer and

Automation Engineering (ICCAE), 2010, vol. 2, pp. 259–262.

[80] A. T. Al-Taani, “An efficient feature extraction algorithm for the recognition of

handwritten arabic digits,” Int. J. Comput. Intell., vol. 2, no. 2, pp. 107–111, 2005.

[81] R. I. Elanwar, M. Rashwan, and S. Mashali, “On-Line Arabic Handwriting Text

Line Detection Using Dynamic Programming,” in International Conference on

Computer Mathematics and Natural Computing (ICCMNC), 2011, vol. 74, pp.

588–593.

[82] M. I. Razzak, M. Sher, and S. A. Hussain, “Locally baseline detection for online

Arabic script based languages character recognition,” Int. J. Phys. Sci., vol. 5, no.

7, pp. 955–959, 2010.

[83] G. Al-Habian and K. Assaleh, “Online Arabic handwriting recognition using

continuous Gaussian mixture HMMs,” in International Conference on Intelligent

and Advanced Systems, ICIAS, 2007, pp. 1183–1186.

[84] T. J. Klassen and M. I. Heywood, “Towards the on-line recognition of arabic

characters,” in International Joint Conference on Neural Networks IJCNN, 2002,

vol. 2, pp. 1900–1905.

[85] N. Mezghani, A. Mitiche, and M. Cheriet, “A new representation of shape and its

use for high performance in online Arabic character recognition by an associative

memory,” Int. J. Doc. Anal. Recognit., vol. 7, no. 4, pp. 201–210, 2005.

[86] N. Mezghani, A. Mitiche, and M. Cheriet, “A new representation of character

shape and its use in on-line character recognition by a self organizing map,” in

International Conference on Image Processing, ICIP’04., 2004, vol. 3, pp. 2123–

2126.

[87] A. M. Alimi, “An evolutionary neuro-fuzzy approach to recognize on-line Arabic

handwriting,” in Proceedings of the Fourth International Conference on Document

Analysis and Recognition, 1997, vol. 1, pp. 382–386.

[88] M. Harouni, D. Mohamad, M. S. M. Rahim, S. M. Halawani, and M. Afzali,

“Handwritten Arabic Character Recognition Based on Minimal Geometric

Features,” Int. J. Mach. Learn. Comput., vol. 2, no. 5, pp. 578–582, 2012.

165

[89] M. S. El-Wakil and A. A. Shoukry, “On-line recognition of handwritten isolated

Arabic characters,” Pattern Recognit., vol. 22, no. 2, pp. 97–105, 1989.

[90] V. Ghods, E. Kabir, and F. Razzazi, “Fusion of HMM Classifiers, Based on x, y

and (x, y) Signals, for the Recognition of Online Farsi Handwriting: a Large

Lexicon Approach,” Arab. J. Sci. Eng., vol. 39, no. 3, pp. 1713–1723, 2014.

[91] H. M. Eraqi and S. A. Azeem, “An On-line Arabic Handwriting Recognition

System: Based on a New On-line Graphemes Segmentation Technique,” in

International Conference on Document Analysis and Recognition (ICDAR), 2011,

pp. 409–413.

[92] A. T. Al-Taani and S. Al-Haj, “Recognition of on-line arabic handwritten

characters using structural features,” J. Pattern Recognit. Res., vol. 1, pp. 23–37,

2010.

[93] B. Alijla and K. Kwaik, “Oiahcr: online isolated arabic handwritten character

recognition using neural network.,” Int. Arab J. Inf. Technol., vol. 9, no. 4, pp.

343–351, 2012.

[94] J. Sternby, J. Morwing, J. Andersson, and C. Friberg, “On-line Arabic handwriting

recognition with templates,” Pattern Recognit., vol. 42, no. 12, pp. 3278–3286,

2009.

[95] R. I. Elanwar, M. Rashwan, and S. Mashali, “Unconstrained arabic online

handwritten words segmentation using new hmm state design,” Int. Sch. Sci. Res.

Innov., vol. 6, no. 4, pp. 1189–1197, 2012.

[96] V. Ghods, E. Kabir, and F. Razzazi, “Effect of delayed strokes on the recognition

of online Farsi handwriting,” Pattern Recognit. Lett., vol. 34, no. 5, pp. 486–491,

2013.

[97] K. Addakiri and M. Bahaj, “On-line handwritten arabic character recognition using

artificial neural network,” Int. J. Comput. Appl., vol. 55, no. 13, pp. 42–46, 2012.

[98] R. G. Casey and E. Lecolinet, “A survey of methods and strategies in character

segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, no. 7, pp. 690–

706, 1996.

[99] S. Al-Emami and M. Usher, “On-line recognition of handwritten Arabic

characters,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, no. 7, pp. 704–710,

1990.

[100] H. Boubaker, M. Kherallah, and A. M. Alimi, “New strategy for the on-line

handwriting modelling,” in Ninth International Conference on Document Analysis

and Recognition, ICDAR, 2007, vol. 2, pp. 1233–1247.

166

[101] S. Njah, H. Bezine, and A. M. Alimi, “A new encoding system: Application to on-

line Arabic handwriting,” in International Conference on Frontiers in Handwriting

Recognition (ICFHR), 2010, pp. 451–456.

[102] M. Ltaief, S. Njah, H. Bezine, and A. M. Alimi, “Genetic Algorithms for

Perceptual Codes Extraction,” J. Intell. Learn. Syst. Appl., vol. 4, no. 04, pp. 255–

265, 2012.

[103] M. Y. Potrus, U. K. Ngah, and H. A. M. Sakim, “An effective segmentation

method for single stroke online cursive Arabic words,” in International

Conference on Computer Applications and Industrial Electronics (ICCAIE), 2010,

pp. 217–221.

[104] M. Harouni, D. Mohamad, and A. Rasouli, “Deductive method for recognition of

on-line handwritten Persian/Arabic characters,” in The 2nd International

Conference on Computer and Automation Engineering (ICCAE), 2010, vol. 5, pp.

791–795.

[105] A. T. Al-Taani and H. Maen, “Recognition of on-line handwritten Arabic digits

using structural features and transition network,” Informatica, vol. 32, pp. 275–

281, 2008.

[106] H. Bezine, A. M. Alimi, and N. Sherkat, “Generation and analysis of handwriting

script with the beta-elliptic model,” in Ninth International Workshop on Frontiers

in Handwriting Recognition, IWFHR-9, 2004, pp. 515–520.

[107] M. Kherallah, N. Rokbani, and A. M. Alimi, “Global recognition of the Arabic

words by genetic algorithm and visual encoding,” in 17th IMACS World Congress

Scientific Computing, Applied Mathematics and Simulation (IMACS’2005), 2005.

[108] M. Kherallah, L. Haddad, and A. Alimi, “A new Approach for Online Arabic

Handwriting Recognition,” in Proceedings of the Second International Conference

on Arabic Language Resources and Tools, 2009, pp. 22–23.

[109] M. Ltaief, H. Bezine, and A. M. Alimi, “A Neuro-beta-Elliptic Model for

Handwriting Generation Movements,” in 2012 International Conference on

Frontiers in Handwriting Recognition, 2012, pp. 803–808.

[110] A. Chaabouni, H. Boubaker, M. Kherallah, A. M. Alimi, and H. El Abed, “Multi-

fractal modeling for on-line text-independent writer identification,” in 11th

International Conference on Document Analysis and Recognition (ICDAR2011).,

2011, pp. 623–627.

[111] L. Haddad, T. M. Hamdani, and A. M. Alimi, “OHRS-MEWA: On-line

Handwriting Recognition System with Multi-Environment Writer Adaptation,” in

167

14th International Conference on Frontiers in Handwriting Recognition (ICFHR),

2014, pp. 335–340.

[112] M. I. Razzak, F. Anwar, S. A. Husain, A. Belaid, and M. Sher, “HMM and fuzzy

logic: A hybrid approach for online Urdu script-based languages’ character

recognition,” Knowledge-Based Syst., vol. 23, no. 8, pp. 914–923, 2010.

[113] B. Jouini, M. Kherallah, and A. M. Alimi, “A new approach for on-line visual

encoding and recognition of handwriting script by using neural network system,”

in Artificial neural nets and genetic algorithms, 2003, pp. 161–167.

[114] T. S. El-Sheikh and S. G. El-Taweel, “Real-time Arabic handwritten character

recognition,” in Third International Conference on Image Processing and its

Applications., 1989, pp. 212–216.

[115] K. Assaleh, T. Shanableh, and H. Hajjaj, “Recognition of handwritten Arabic

alphabet via hand motion tracking,” J. Franklin Inst., vol. 346, no. 2, pp. 175–189,

2009.

[116] A. Biem, “Minimum classification error training for online handwriting

recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 7, pp. 1041–

1051, 2006.

[117] M. Kherallah, S. Njah, A. M. Alimi, and N. Derbel, “Recognition of on-line

handwritten digits by neural networks using circular and beta approaches,” in

IEEE International Conference on Systems, Man and Cybernetics SMC’02, 2002,

vol. 2, pp. 164–169.

[118] S. A. Azeem and H. Ahmed, “Recognition of Segmented Online Arabic

Handwritten Characters of the ADAB Database,” in 10th International Conference

on Machine Learning and Applications and Workshops (ICMLA)., 2011, vol. 1,

pp. 204–207.

[119] H. Bezine and A. M. Alimi, “Development of an Arabic Handwriting Learning

Educational System,” IJSEA Int. J. Softw. Eng. Appl., vol. 4, no. 2, pp. 33–49,

2013.

[120] M. Hammadi, H. Bezine, S. Njah, and A. M. Alimi, “Towards an educational tool

for Arabic handwriting learning,” in 2012 International Conference on Education

and e-Learning Innovations (ICEELI), 2012, pp. 1–6.

[121] H. Al-Barhamtoshy, S. Abdou, and M. Rashwan, “Mobile Technology for Illiterate

Education,” Life Sci. J., vol. 11, no. 9, pp. 242–248, 2014.

[122] M. Hamdani, H. El Abed, M. Kherallah, and A. M. Alimi, “Combining multiple

HMMs using on-line and off-line features for off-line Arabic handwriting

168

recognition,” in 10th International Conference on Document Analysis and

Recognition, ICDAR’09., 2009, pp. 201–205.

[123] E. Grosicki and H. El Abed, “ICDAR 2009 handwriting recognition competition,”

in 10th International Conference on Document Analysis and Recognition,

ICDAR’09., 2009, pp. 1398–1402.

[124] F. Parwej, “The State of the Art Recognize in Arabic Script through Combination

of Online and Offline,” Int. J. Comput. Sci. Telecommun., vol. 4, no. 3, pp. 60–66,

2013.

[125] S. A. Mahmoud, H. Luqman, B. M. Al-Helali, G. BinMakhashen, and M. T.

Parvez, “Online-KHATT: An Open-Vocabulary Arabic Online Text Database,”

2016.

[126] K. P. Murphy, “Dynamic bayesian networks: representation, inference and

learning,” California, Berkeley, 2002.

[127] M. Parvez and S. A. Mahmoud, “Arabic handwriting recognition using structural

and syntactic pattern attributes,” Pattern Recognit., vol. 46, no. 1, pp. 141–154,

2013.

[128] S. Young, D. Kershaw, J. Odell, D. Ollason, V. Valtchev, and P. Woodland, The

HTK Book V2. 2. Entropic Ltd., Jan, 1999.

[129] T. Dean and K. Kanazawa, “A model for reasoning about persistence and

causation,” Comput. Intell., vol. 5, no. 2, pp. 142–150, 1989.

[130] NICI, “The NICI stroke-based recognizer of on-line handwriting,” 2015. [Online].

Available: http://www.ai.rug.nl/~lambert/recog/nici-stroke-based-recognizer.html.

[131] S. Fine, Y. Singer, and N. Tishby, “The hierarchical hidden Markov model:

Analysis and applications,” Mach. Learn., vol. 32, no. 1, pp. 41–62, 1998.

[132] G. Zweig and S. Russell, “Speech recognition with dynamic Bayesian networks,”

in Proceedings of the fifteenth national/tenth conference on Artificial

intelligence/Innovative applications of artificial intelligence, 1998, pp. 173–180.

169

Vitae

Name :Baligh Mohammed Ahmed Al-Helali

Nationality :YEMEN

Date of Birth :1/1/1981

 Email :baleegh.helali@gmail.com

Address :KFUPM-Students Housing

Education :BSc degree in Computer and Mathematics, University of

Ibb, Yemen, 2003.MSc degree in Applied Mathematics, University of Taiz,

Yemen, 2010.

PUBLICATIONS:

- Rashad A. Al-Jawfi, Baligh M. Al-Helali, Adil M. Ahmed, Fractal Image

Compression Using Modified Operator (IFS). Journal of Advances in

Mathematics, 5(1), pp. 549-561, 2013.

- Rashad A. Al-Jawfi, Baligh M. Al-Helali, Adil M. Ahmed, Fractal Image

Compression Using Self-Organizing Mapping. Applied Mathematics, 05(12),

pp. 1810-1819, 2014.

- Baligh M. Al-Helali and Sabri A. Mahmoud, ““Arabic Online Handwriting

Recognition (AOHR): A Survey,” submitted.

170

- Baligh M. Al-Helali and Sabri A. Mahmoud, “A Statistical Framework for

Online Arabic Character Recognition,” Cybernetics, submitted.

- Mahmoud, Sabri A., Hamzah Luqman, Baligh M. Al-Helali, Galal

BinMakhashen, and Mohammad Tanvir Parvez. “Online-KHATT: An Open-

Vocabulary Arabic Online Text Database,” submitted.

- Mohammad Tanvir Parvez, Hamzah Luqman, Baligh Al-Helali, Sabri A.

Mahmoud, “ICFHR2016 Competition on Arabic Online Text Recognition

using Online-KHATT Database”, the 15th International Conference on Frontiers

in Handwriting Recognition, 23-26, October, Shenzhen, China, accepted.

- Baligh M. Al-Helali, Hamzah Luqman, and Sabri A. Mahmoud, “Extension of

Arabic online text database Online-KHATT,” submitted.

- Patent: Baligh M. Al-Helali and Sabri A. Mahmoud, “A Statistical Framework

for Online Arabic Character Recognition”, submitted.

