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THESIS ABSTRACT

NAME: Taher Ahmed Mohammed Ghaleb

TITLE OF STUDY: Extending Sequence Diagrams for Better Comprehension

of Program Control-flow
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The reverse engineering of sequence diagrams from software systems is an effec-

tive approach that can facilitate the comprehension of the behavior of programs for

maintenance or learning purposes. After studying the state-of-the-art techniques,

we observed that less research has been conducted for investigating how to precisely

reflect program control-flow in the UML sequence diagram (SD). Actually, the lack

of notations in the standard UML sequence diagram makes it unable to represent

most of the interactions and flow of control of any given program. This leads to

either losing such information or imprecisely representing them in the produced

sequence diagrams, which in turn reduces program comprehension. The main ob-

jective of the thesis is to introduce an approach that employs a static program anal-

ysis for reverse engineering of sequence diagrams extended with notations that can

xi



expressively and precisely map the program control-flow represented in the source

code. Our proposed approach composes three main techniques: control-flow in-

formation extractor, interactions tracer, and trace visualizer. Gathering program

control-flow has been achieved using an extensible compiler, called Polyglot, that

facilitates recovering the design of Java programs represented by Abstract Syn-

tax Trees (ASTs). The collected information are then traced using a query-based

tracer to identify all entry points, branches, and calls in the program and preserve

them in an extended notation of UML 2.0. Finally, the resulting traces are visu-

alized using UML sequence diagrams extended with new expressive notations. A

proof-of-concept prototype of the proposed approach has been implemented and then

validated over various samples of case studies that cover all our SD extensions,

in addition to a well-known open-source Java project called Greenfoot. Finally,

we have conducted a controlled experiment to evaluate our proposed SD exten-

sions The evaluation was focused on measuring the effectiveness of the extensions

for program comprehension as well as their complexity and precision compared

with the UML standard of sequence diagrams. The obtained results indicate that

having extended notations in sequence diagrams can significantly improve the un-

derstandability of the control-flow of programs. Although they could be somewhat

complicated, they still have an advantage to providing a precise representation

about the program control flow. Finally, we conclude this thesis by highlighting

the main characteristics and limitation of our work and the possible directions for

research in the future.
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 ملخص الرسالة

 
 

 طاهر أحمد محمد غالب  :الاسم الكامل
 

 توسيع المخططات التسلسلية لفهم تدفق عناصر التحكم بالبرامج بشكل أفضل :عنوان الرسالة
 

 علوم الحاسب الآلي :التخصص
 

5102ديسمبر  :تاريخ الدرجة العلمية  

 
أو صيانة لالبرامج لغرض االهندسة العكسية للمخططات التسلسلية من الأنظمية البرمجية هي وسيلة فعّالة لتسهيل فهم 

 ،علمجال واستكشاف ميزاتها وعيوبها. في الواقاكل التقنيات في هذا لبعمل مسح أدبي قمنا  ،في بداية هذا العمل التعلم.

. هم البرامجوذلك لدعم ف أو الإثنان معا   البرامج إما بشكل ساكن أو ديناميكي تحليلترتكز على التقنيات تلك لاحظنا أن 

فهم البرامج بشكل فعّال تختلف عن تلك الموجودة لقررنا تطوير طريقة خاصة بنا  استكشاف الفجوات خلالها، بعد

عالج م ت  د من الفجوات التى لسابقا  من ناحية الهدف والمضمون. نحن نسعى من خلال تقنيتنا المقترحة إلى تغطية العدي

فهم البرامج وذلك من خلال استخدام العديد من  كفاءةمرنة تتركز على زيادة موسعة ومن قبل وذلك بتوفير حلول 

 والأحداث الموجودة داخل البرامج لعرض التفاعلات االإضافات للمخططات التسلسلية والتي نسعى من خلاله

المقترحة في هذه الرسالة من ثلاث عمليات رئيسية وهي  ةوغير معقدة. تتكون التقني ،سهلة الفهم ،معبرة بترميزات

( تحليل هذه المعلومات لتتبع كل 5المعلومات عن البرامج المراد فهمها من شفرة المصدر الخاصة بها ) استخراج( 0)

 هتتبلور حصيلة هذالرسومية.  ( عرض هذه التفاعلات بشكل مرئي على واجهة المستخدم3التفاعلات الموجودة فيها )

 هاختبارم وت المقترحة ومبنى خصيصا  للتعامل مع البرامج المصصمة بلغة الجافا ةالرسالة في إنتاج نموذج للتقني

لمنتج النهائي تم تقييم ا ،مشاريع البرمجية المفتوحة المصدر. إضافة  إلى ذلكبتطبيقه على بعض ة عمله قدلتحقق من وا

القياسية ة قيمحكمة تقوم بقياس مدى فهم المستخدمين للبرامج باستخدام الطريقة المقترحة مقارنة بالطرباستخدام تجربة 

نتائج هذه التجربة تبين أن الإضافات التي قمنا تحليل  دوذلك من خلال العديد من المهام التي صممت لهذا الغرض. بع

فقد ساعدت المستخدمين على فهم البرامج والأكواد  ،غير معقدةكانت بسيطة وبها لمخططات التسلسلية بتوسيع ا

 الإعتيادية.التسلسلية البرمجية بوقت أسرع وبدقة أكبر مما هي عليه في حالة استخدام المخططات 



CHAPTER 1

INTRODUCTION

1.1 Overview

Software engineers may spend a considerable amount of time with an extensive ef-

fort looking over source codes to deduce the structure and/or behavior of software

systems before performing any software maintenance task. The reason behind

this is related to a poor or nonexistent documentation and specification of that

software systems [1]. Such exhausting investigation would reduce the productivity

of software engineers as it is not carried out in a systematic manner. Therefore,

reverse engineering techniques have been introduced to facilitate the analysis of

software components and extract them into a readable and manageable format.

Reverse engineering (RE) is one of the most significant endeavors in software

engineering that facilitates recovering and understanding the structure and the

behavior of software systems [2]. RE is usually accomplished through a set of

processes that, typically, include: analyzing a program statically or dynamically

(based on the source code or byte/binary code), and then the collected information
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is then transformed into a higher level and more abstract representation or models

[3]. This representation might then be usable for different activities. For example,

it can help in conforming design and behavior of the currently implemented system

to its design specifications [4].

In general, reverse engineering of software behavior is more challenging than

that of software structure [5]. In particular, existing techniques of analyzing soft-

ware interactions utilize different methods for identifying software components.

The overall process comprises a set of operations: parsing programs, tracing in-

teractions within which, and visualizing the resultant behavior using manageable

and understandable diagrams/views. Object construction at runtime, methods

polymorphism and other dynamic operations make this process more complicated.

The identification of such behavioral operations requires sophisticated techniques

to analyze source code and/or trace program execution.

The typical way to represent the program behavior and its interactions is by

using sequence diagrams (SDs). Sequence diagrams have the capability of showing

the program behavior using a series of messages representing the interactions

between classes and objects in that program. In addition, sequence diagrams

have been provided as a UML standard, which involves a set of notations that can

reflect the program control-flow showing all paths a message can go through.

This thesis conjoins a set of correlated concepts concerning program compre-

hension, including reverse engineering, program analysis, and program visualiza-

tion.
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1.2 Problem Statement

During our review of the state-of-the-art techniques that aim to improve the un-

derstandability of software systems, we deduced that their final representations

of program interactions using the standard UML sequence diagrams is still not

sufficient for a thorough and precise comprehension of software interactions. In

addition, a limited research emphasizes on the appearance of the resulting se-

quence diagrams and the amount of information about program interactions to

be represented within, whereas much research is available for other kinds of views

that represent program structure (e.g., class diagrams).

Motivated by this, we aim in this thesis to introduce new extensions to the

UML notation of sequence diagrams along with extended elements and fragments.

The ultimate purpose of such extensions is to precisely reflect the control-flow of

programs for enhancing the ability to understanding the anticipated interactions

of programs and how they are represented in the source code. Some of these

extensions are simple in a way they extended the UML standard without adding

a new notation. In other words, they utilize the existing UML elements of sequence

diagrams and use them in a different way. On the other hand, other extensions

considered adding new notations to the UML standard represented by a set of

connected and meaningful elements.

In order to get an overall summarization of the research problems addressed

in this thesis, we formalize them using the following three research questions:

3



RQ1: How can UML sequence diagrams be extended to effectively enhance

the representation of program interactions to improve program comprehension?

Since the main purpose of program comprehension-related techniques is to

facilitate understanding the behavior of programs, representing them in a static

(lifeless) sequence diagram is still inadequate and does not fully satisfy the pur-

pose if utilized as is. This, indeed, requires improving the current model of UML

sequence diagrams with extensions that can increase the understandability of soft-

ware behavior.

RQ2: How can Polyglot be extended to gather more useful information about

program control-flow?

Polyglot is an extensible Java compiler that allows programmers to extend Java

or create new domain-specific programming languages [6]. We have specifically

chosen Polyglot as it facilitates defining new constructs, syntax, and semantics

in a modular way so that the base compiler code is not modified. In addition, it

employs the visitor design pattern to access all nodes of the Abstract Syntax Tree

(AST). Actually, Polyglot has never been utilized for reverse engineering purposes.

Hence, adapting it for analyzing programs and then extract all information about

their interactions and control-flow structures that can later be used for program

understanding, for sure, requires to be extended properly. Extending Polyglot

involves extending its Node Factory along with the compilation passes and visits.

should be considered through the extending process as they allow accessing the

prospective extensions at any stage of compilation.
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RQ3: How to trace program interactions in a way that can generate the

representation of the extensions required?

Since Polyglot can assist in recovering the overall program design and control-

flow, it is necessary to trace the sequence of interactions of that program to retrieve

its expected behavior. This requires developing a set of queries and heuristics ca-

pable of identifying all entry point of the program, control structures, different

kinds of call messages, and other information that can enhance program under-

standability.

1.3 Thesis Objectives

Our main objective in this thesis is to introduce the design and specification of

a set of extensions to the UML notation of sequence diagrams that can precisely

capture the flow of control in the program’s source code and consequently enhance

program comprehension. We also aim to conduct a static program analysis by (1)

extending Polyglot to properly gather information about of Java programs and

their control flow; (2) performing a set of queries and heuristics for tracing all

interactions within programs; and (3) producing sequence diagrams with extended

notations that can precisely reflect the actual flow of control of such programs.

To carefully achieve our objectives, we take into consideration the restrictions

of the current notation of UML sequence diagrams along with the limitations of

the state-of-the-art techniques. We also endeavor to fulfill our goals by taking into

account the research questions RQ1, RQ2, and RQ3 stated earlier.
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To carefully address the research questions, it is important to ascertain the

following visualization goals:

Preciseness and Expressiveness: all the control flow information of the pro-

gram should be displayed in the produced diagrams abstractly and precisely. This

includes all kinds of loops (e.g., while, for or do-while), calls (simple, nested,

chained or recursive) and conditions and alternatives (e.g., ‘if’, ‘if-else’, ‘switch’,

‘?:’, or even ‘try-catch-finally’). Also, the target lifelines should refer to classes

and objects at the same time, in addition to some others that can represent the in-

teractions between internal system objects with external entities (such as, system

console, file system, GUI, remote objects, or system libraries).

Scalability: the resulting diagrams may display all the interactions expected to

be executed in the program runtime. Doing so would for sure complicate the

resulting diagrams and make them unreadable or untraceable, especially when

complex systems are used. Therefore, the produced diagrams should employ scal-

ability facilities that can enable users to visualize both simple and complex pro-

grams, without impacting their effectiveness and expressiveness.

Usability and User Interaction: to make the resulting diagrams usable and

useful, a number of facilities may be embedded with the elements visualized. Each

element in the diagram can, for example, convey its location in the source code,

so that whenever a user needs to access the source code of a certain element,

he/she can directly navigate to it. In addition, showing documentation comments

of methods and lifelines may also assist users in understanding the functionality
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of a certain element in the diagram.

1.4 Thesis Contributions

The intention of this thesis is to address the mentioned research problems in a

way that satisfies our objective. This is accomplished by introducing a program

analysis technique that reverse engineers sequence diagrams from the source code

of Java programs statically. This technique was constructed using Polyglot [6], an

extensible compiler for Java programming language. Essentially, the main purpose

of Polyglot is to allow developers to create their own programming languages by

extending the compiler of Java instead of doing so from scratch.

Making sequence diagrams more expressive actually requires extending the

standard notations of sequence diagram provided in the UML standard with new

convenient notations. Consequently, classical tools used for visualizing sequence

diagrams would not assist us in achieving our goal. Therefore, we have built our

own visualization tool that is capable of reflecting the information gathered via

program analysis.

In this thesis, we come up with six correlated contributions. First, we have

conducted a thorough review of the current approaches proposed in the litera-

ture in this context. Second, we have constructed a language extension that can

support reverse engineering sequence diagrams from Java source code. Third, a

query-based tracer of program interactions has been developed. Fourth, a set of

extensions to the UML sequence diagrams have been designed. Fifth, a trace
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visualizer has been implemented to produce extended sequence diagrams of the

given program. Finally, a controlled experiment has been conducted to evaluate

the proposed SD extensions.

1.4.1 A Comprehensive Literature Survey

A detailed literature survey of reverse engineering and program analysis techniques

that rely on reverse engineered sequence diagrams as a main output. This survey

is composed of brief descriptions of the techniques along with their features and

limitations. Then, these techniques have been qualitatively evaluated based on

different evaluation criteria.

Outcome: The outcome here is a comprehensive review paper that summarizes

and evaluates program analysis techniques and demonstrates their current limita-

tions along with the limitations of their produced sequence diagrams. This paper

also presents the different aspects and applications of program comprehension

with a concentration on the comprehension of program control flows and how it

can be enhanced in the future.

1.4.2 Program Information Extractor as a Language Exten-

sion

An extension to the Polyglot compiler is accomplished to support capturing useful

information about program behavior. The nature of Polyglot is to parse Java

programs by visiting program constructs using the visitor design pattern. During
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its visits, it checks the validity to the compilation process and produces proper

error messages if an error in the syntax or semantics occurs. However, some useful

information about programs are not collected by the Polyglot parser generator.

For example, documentation comments are not parsed, but we could get a recent

Polyglot extension that is capable of doing so. Some other parts of the program

are not explicitly defined as nodes of the Abstract Syntax Tree. For example, the

if node consists of three nodes: condition, consequence, and alternative. These

nodes are defined as Stmt nodes, which means that the visitor cannot identify in

which part of the construct a method is invoked. Therefore, we have extended

Polyglot NodeFactory with the proper AST nodes that enable the visitor to

identify them throughout the compilation process.

Outcome: The outcome here is a Polyglot extension, which is given the name

JRev. This extension is deployed as an executable jar file that can be used by

other tracing programs. In addition, the output of this extension, if applied to

a certain Java program, would be generated as a log file that is structured as

an XML (Extensible Markup Language) tree containing all useful information

about programs. Actually, this generated XML document would not represent

the sequence of interactions or the behavior(s) of the parsed program. However,

it contains all constructs used in the program, class declarations, method decla-

rations, method calls, object constructions, etc. that can be later traced in order

to recognize the sequence of method calls that exists in the given program.
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1.4.3 A Query-based Tracer of Program Interactions

Once the XML file that contains the information about a certain program is gen-

erated, it is fed to the tracer that can follow the sequence of interactions of that

program represented by method invocations. This tracer begins with the main

method(s) of the program and goes step-by-step through each call individually un-

til it reaches the end of the program. While tracing, the trace logs the information

about control-flow constructs as well as the methods invoked in an XMI (XML

Metadata Interchange) representation. The resulting XMI file can eventually be

viewed by a visualization tool.

Outcome: The upshot of this contribution is another paper that talks about

a novel reverse engineering tool that can capture program information using an

extensible compiler, and then trace interactions within that program using XPath

queries. The paper discusses the feature provided by this tool along with the

methodology employed to make the resultant XMI file compatible with the tradi-

tional sequence diagrams visualizers.

1.4.4 Extensions to UML Sequence Diagrams

A set of UML sequence diagram extensions is proposed in this thesis. These

extensions are meant to enrich sequence diagrams with adequate information that

make users understand what is happening in the program without the need to go

to its source code. This means that the extended sequence diagrams should not

only display the messages between objects and classes of the program, but also the
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information that users may need to comprehend the program well. For example,

comments do not tell anything about program behavior. However, providing

them appropriately in sequence diagrams can help users identify the purpose or

description of a certain class/object/method.

Outcome: Our product of this contribution is a paper that proposes a set of

extension to UML sequence diagrams. The description of these extensions, their

purposes, shapes, and XMI representations are elaborated. In addition, we have

discussed a strategy that can make extended sequence diagrams readable by other

visualization tools.

1.4.5 Trace Visualizer

The motivation behind the construction our own visualization is two fold. First,

all conventional sequence diagram visualizers are not capable of rendering the

extended elements of sequence diagrams proposed in this thesis. Second, current

visualizers lack some scalability and navigation facilities that might boost the

program understandability.

Outcome: A proof-of-concept prototype is provided with the facilities intended

to uphold program comprehension. The implementation of this prototype involved

deploying it as tool dependent on the language extension, interactions tracer, and

sequence diagram extensions proposed in this thesis.
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1.4.6 Controlled Experiment

In order to evaluate the extended sequence diagrams generated by our technique,

we have carried out a controlled experiment that involved an computer-based ques-

tionnaire to be filled by a number of participants. The questionnaire is composed

of various comprehension tasks that cover the major SD extensions designed in

this thesis.

Outcome: The major outcome of this contribution is the conclusions we have

obtained regarding our technique and our proposed SD extensions. These conclu-

sions are useful in a way that helped us get an impression about how our work is

effective and efficient for program comprehension.

1.5 Thesis Outline

The reminder of this work is structured as follows. Chapter 2 presents a litera-

ture review of techniques that aim to improve program comprehension through

the use of reverse-engineered sequence diagrams. It also demonstrates the main

characteristics of each technique and evaluates the effectiveness of their visualized

output. Chapter 3 introduces the proposed program analysis approach along with

the prospective extensions to UML sequence diagram that may increase the un-

derstandability of software behavior. Chapter 4 highlights the implementation of

all stages of our proposed technique as a proof-of-concept prototype. Chapter 5

discusses the evaluation of our proposed extensions to the sequence diagram. To

this end, we have used a well-known open-source Java project called Greenfoot.
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The evaluation was conducted through a controlled experiment, wherein a group

of students participated in the evaluation across a computer-oriented question-

naire. Finally, Chapter 6 concludes the thesis, lists the limitation of the approach

proposed, and recommends a set of directions in which future work can be carried

out.

13



CHAPTER 2

LITERATURE REVIEW

Reverse engineering of sequence diagrams refers to the process of extracting mean-

ingful information about the behavior of software systems in the form of appro-

priately generated sequence diagrams [2]. This process has become a practical

method for retrieving the behavior of software systems, primarily those with in-

adequate documentation. Different kinds of approaches have been proposed in

the literature for the sake of producing a series of interactions from a given soft-

ware system, which can later be used for so many purposes. The reason for the

wide diversity of approaches is the need to offer sequence diagrams that can cater

for the users’ specific goals and needs, which can vary wildly depending on the

users’ perception and understandability of visual representations and the target

application domains.

Various techniques have been introduced in the literature with a capability

of analyzing software systems, tracing interactions within which, and producing

corresponding diagrams that represent the expected or actual behavior of that
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systems. Each technique mostly relies on a certain tool to accomplish program

parsing and tracing. In this chapter, we introduce an extensive exposition of

sequence diagrams, their usage, and their current restrictions that can reduce the

understandability of software behavior. In addition, we present a set of aspects of

program comprehension that should, completely or partially, be considered by any

of the proposed techniques. Moreover, existing program analysis techniques aimed

to produce sequence diagrams as their output are demonstrated and evaluated

based on well-defined evaluation criteria and attributes. The evaluation results can

indicate how useful are these techniques towards program comprehension based

on how much information about programs they provide. After that, an analysis

of the evaluation results is elaborated with a detailed discussion.

2.1 Program Visualization with Sequence Diagrams

As the ultimate objective of reverse engineering is to express meaningful infor-

mation to humans, a considerable attention in the literature has been given to

the generation of understandable and useful visualizations [7]. Visualizing the

program behavior is one of the challenges that can directly affect how meaningful

the retrieved program information is. Visualizing all possible interactions of non-

trivial programs (i.e., complex systems) can produce more complicated sequence

diagrams, which are likely to exceed the cognitive abilities of human beings. On

the other hand, hiding portions of the interactions of small programs (e.g. intro-

ductory student programs) from the produced sequence diagrams may result in
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Object 1 Object 2

methodCall1()

methodCall2()fragment

Figure 2.1: An example of a UML sequence diagram

losing important information that might have helped in understanding the pro-

grams thoroughly.

2.1.1 UML Sequence Diagrams

Based on the Unified Modeling Language (UML) standard, sequence diagrams

can model the flow and interactions of a software system visually with the use of

incoming and outgoing messages [8], which facilitate understanding and validating

the program logic. In UML 2.0, several more advanced notational elements have

been added to provide an expressive representation tool for various programming

constructs and functions. As shown in Fig. 2.1, the notational element named

fragment provides consistent places where interactions can be categorized into

fragments. For example, a frame might be used to represent interactions executed

inside alternation or loop constructs; e.g. if, for, etc.
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2.1.2 Limitations of UML Sequence Diagrams

Vertical expansion: As they represent a series of interactions, sequence dia-

grams by their nature can only expand vertically. This makes it difficult for users

to have an overall vision of the system behavior, especially when there is a large

number of interactions.

Sparse entity behavior: In sequence diagrams, it is easy to observe messages

communicated between different objects via method calls. However, it is some-

times difficult for users to recognize what interactions executed inside a certain

method as the only possible way to achieve this is to track all incoming and out-

going messages occurring within the execution bar of that method. On the other

hand, recognizing all interactions connected to a specific object/class is also te-

dious, since it also requires tracking all messages received and sent by that object.

Therefore, representing only the objects that receive the messages in such interac-

tions is important in order to have more precise sequence diagram, which indeed

helps in increasing program understandability [9].

Restricted fragments: Fragments introduced in the latest version of UML (i.e.,

UML 2.0 [10]) reduced most of the complexity of the sequence diagram repre-

sentation by abstracting interactions executed in certain blocks of codes called

fragments. Although the use of fragments has proved useful in providing better

views of program control-flow, fragments do not adapt well with some unstruc-

tured control-flow constructs. For example, the break fragment defined by UML

2.0 exits from its immediate enclosing loop fragment, which makes it impossible to
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jump over a number of levels of nesting. This particular limitation was addressed

by Rountev et al. [11] who proposed a generalized break fragment that enables

exiting from a certain surrounding fragment.

Representing messages using arrows: In the standard UML sequence dia-

gram, all kinds of messages are represented using left-directed or right-directed

arrows. Despite the availability of different shapes of arrows in the standard UML

sequence diagram, messages can only be represented by single arrows. This kind

of representation may not be valid for all kinds of messages that can appear in a

program. For example, how can a call that contains several calls inside its argu-

ments be represented using such arrows? The only possible solution is to represent

every call (the original call and the calls nested within which) by a separate arrow.

This representation, however, is not precise since it actually captures a different

scenario where the calls are sequenced rather than nested.

2.1.3 Other Forms of Visualization

Using standard diagrams like UML Sequence Diagrams [8] is normally preferred

over non-standard tools to represent the behavior of software systems. Tools

that comply with standard rules typically enjoy more usability than others (due

to increased interoperability and consistency of generated specifications) and are

supported by a wider development community. To enhance program comprehen-

sion, several standard and non-standard visualization forms have been used in the

literature to represent the program structure and behavior. Although standard
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visualizations are popular, many users are using other non-standard methods of

visualization to overcome their limitations and fulfill specific needs of program

comprehension that are not directly supported.

2.2 Program Comprehension

Program comprehension, or program understanding, is defined as the activity of

identifying the different aspects of software systems, including the structure and

behavior [12]. This activity is important for various purposes, such as mainte-

nance, inspection, extension or reuse of existing software systems. Studies in

the literature address program comprehension from different perspectives, such as

theories, methods, tools and cognitive process [13].

Challenges in understanding programs are concerned with the complexity of

existing (legacy) systems and the amount of information they hide behind their

implementation. These challenges are mostly faced when the source code of such

systems is not available. Nevertheless, it is also the case even with the availability

of source code, especially if no (or inadequate) documentations are extant. There-

fore, research trends in this context have been diversified into different areas of

software understanding, and the majority of them focus on software visualiza-

tion [14].

Program analysis techniques, either static or dynamic, represent one of the

key approaches that supports program comprehension [15, 7]. They facilitate the

extraction of program components into readable and manageable formats. In the
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case of understanding the structure of software systems, static analysis is indeed

sufficient, whereas it needs to be incorporated with dynamic analysis in order to

get an overall overview of program behavior.

On the other hand, software visualization are the essential aid of increasing

the level of program understandability. Techniques, and most of them are tool-

supported, have been proposed in the literature with the goal of enhancing pro-

gram comprehension through the use of various styles of visualization representing

either program from structure or behavior traces.

In general, techniques that aim to improve program comprehension are usu-

ally evaluated using controlled experiments, which involve the preparation of a

set of tasks that relate to comprehension activities [16]. The main objective of

such experiments is to measure the time spent by users to respond to the prede-

fined comprehension tasks and evaluate the correctness of their responses. Such a

method of evaluation has widely been used by several research who could evaluate

their tools in comparison with other approaches [17, 14, 18].

Our main observation in this context is the absence of relevant studies for

evaluating sufficiency and suitability of UML sequence diagrams for program com-

prehension. As we will see later in this chapter, several techniques used to use

sequence diagrams as a main visual representation of program interactions, but

none of them has investigated its adequacy for understanding program behavior.

Instead of introducing new extensions to the UML notations of sequence diagrams,

some techniques incorporated other diagrams in order to supply more information
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about programs, while the former approach can be more appropriate (details on

this are available in sections 2.4 and 2.5).

2.3 Aspects of Program Comprehension

Satisfying the needs of a wide range of stakeholders of the reverse-engineered se-

quence diagrams requires considering various aspects of comprehending programs.

For such an objective, the resulting sequence diagrams need to either include all

programs’ information or employ different versions of them, where each version

covers a particular aspect of comprehension. Actually, having all program in-

formation to be shown in a single sequence diagram can complicate it, and its

understandability will hence be reduced. Therefore, having in between options

may be desirable to cover a large scale of users.

On the other hand, sequence diagrams can be abstracted into a higher level of

representation. In other words, instead of showing all objects with their interac-

tions in the diagram, deducing and displaying certain metrics about the number

of messages, paths or fragments may provide a better understanding of the overall

breadth and depth of the behavior of the system.

2.3.1 Original System’s Documentation

The fundamental goal of reverse engineering techniques that recover program’s

behavior and represent it by means of sequence diagrams is to recover the system’s

interaction that was originally established in the system’s design phase [2]. The
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purpose of such retrieval may differ from one user to another. In some cases,

the system’s documentation could be lost and the software engineer needs to

restore it from the standing system. In other cases, the developer might need

to match the original design with the design of the existing implementation of a

system to identify the positive/negative changes that have happened throughout

the system’s implementation.

2.3.2 Program Control Flow

It is common to have users interested in acquiring sequence diagrams that can

capture exactly the control flow of the written programs [19]. Control flow pro-

vides an abstraction of all paths, branches, and jumps within which program

interactions and messages between objects are executed. Techniques that depend

on dynamic analysis always render interactions once they are executed. This,

however, leads to the production of all series of interactions in a way that users

will miss the different paths where the messages have gone through (i.e., control

flow is not preserved). Some dynamic-analysis-based techniques can build specific

representations of execution paths, which may not necessarily match the source

code exactly. For example, a sequence of messages performed using a recursive

call may be demonstrated in the sequence diagram as a for or a while loop. Al-

though this kind of rendering is generally acceptable, it does not precisely capture

the control flow set out in the source code. Therefore, static analysis of the source

code of programs is the preferred approach in retrieving the exact program control
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flow [11].

2.3.3 Program Interactions at Runtime

Interactions carried out throughout program execution constitute a significant

percentage of sequence diagrams. Demonstration of such interactions is actually

desired by almost all kinds of users. In this perspective, users are interested

in understanding all possible program scenarios that can be executed through

different parameters [20]. Techniques in this context are not aware of what exactly

is being processed in the source code of the program. Instead, they are concerned

with the interactions being processed throughout the program runtime [21]. This

means that users are only interested in observing the actual interactions executed

during the system runtime, regardless of what actually happens in the program

control flow [22]. For example, users in this manner would like to inspect the

different paths that interactions are directed to within one run of a program,

which means that optional (or opt) and alternative (or alt) fragments might not

be desirable in the resulting diagram. A similar case is applied to the actions

executed within loops. In this case, users wish to see all the messages sent from

one object to another, instead of seeing a loop fragment.

The timing of program interactions is also important in certain domains of

applications [23]. Time needed to execute every particular message in a sequence

diagram can indicate the time required to execute the method representing that

message. In addition, the time spent on sending a request from an object to
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receiving it by another object is a useful sign of the performance of the environment

under which a program is running (i.e., a single machine or a network node).

2.3.4 Concurrent and Distributed Interactions

Real program interactions may occasionally need to be enriched with information

related to the actual source that triggered them. Expressly, messages communi-

cated between objects are not always sent to or received from the same thread in

the program, and objects themselves might not reside on the same machine where

the program is being run. Therefore, techniques have been proposed in the litera-

ture to represent concurrent and distributed interactions essentially by visualizing

the threads and machines that participated in these interactions [5, 24, 25, 26, 27].

2.3.5 Program Performance

Here, the amount of resources (i.e., CPU time, memory or storage space, etc.)

consumed by every action performed in the system is the most important piece

of information to be visualized and presented to users, epecially for real time

systems [28, 29]. This helps to figure out the objects, messages, threads, or any

other entities that exhaust system resources more than others in a certain program.

UML sequence diagrams have been extended with special annotations to support

the visualization of schedulability, performance, and time of a program to assist

developers and users monitor performance issues in their programs [30, 31, 32].
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2.3.6 Security Analysis

A less common, yet important, aspect of program comprehension using sequence

diagrams is checking security properties of systems. Some techniques have been

developed to reverse engineer the security properties of given programs [33, 34, 35].

These techniques usually focus their analysis on the user access roles to trace all

possible steps they might follow to achieve their tasks. Sequence diagrams in this

aspect are useful for deducing the permissions for each user role, understanding

security vulnerabilities (e.g., SQL injection), modeling security patterns, or visu-

alizing the security-critical interactions between system objects [33]. To support

the visualization of such interactions, several security-enhanced UML extended

notations have been proposed in the literature [36, 34, 37].

2.4 Existing Surveys of Program Analysis Tech-

niques

In the literature, surveys in this context were conducted to summarize and discuss

characteristics of those techniques from different perspectives. Pacione et al. [38]

in 2003 introduced a comparison between the performance of dynamic software

visualization techniques. In 2004, Hamou-Lhadj [39] discussed the benefits and

drawbacks of trace exploration techniques and showed how they work and how

they could be enhanced. Briand et al. [5] in 2006 and Cornelissen [7] in 2009

presented existing program analysis techniques in the literature that are only
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based on dynamic analysis. The main objective of these two reviews is to show

the various research efforts, methodologies, and target applications and systems

of the reviewed techniques. Another survey was introduced in 2011 by Cornelissen

et al. [14] who summarized all the related techniques along with the applications

in which they were validated.

In accordance with our investigation of current reviews in this context, we

noticed that none of them has conducted an evaluation of the existing sequence

diagram-based techniques for their effectiveness and usefulness towards program

comprehension. In other words, the amount and kind of information equipped

with the resulting sequence diagrams determine how understandable they are and,

hence, indicate how effective these techniques are.

Therefore, we have been motivated by this to conduct a thorough study of

existing program analysis techniques that contributed to improving the under-

standability of software interactions by means of sequence diagrams. The state-

of-the-art techniques are classified herein based on the type of analysis they employ

(i.e., static, dynamic, or hybrid program analysis).

2.4.1 Program Analysis Approaches

Program analysis methods that are used for the systematic retrieval of design and

behavior of software systems can be either static, relying solely on the source code,

or dynamic, where execution traces of the program are analyzed [40]. It is also

common to combine both kinds of analysis within the same technique to be able to
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achieve certain program comprehension tasks that would otherwise be hard or im-

possible to achieve. For example, in object-oriented systems, polymorphism, and

dynamic binding make it difficult for static analysis alone to anticipate runtime

behavior. Furthermore, certain assumptions and filtering policies are usually made

when performing program analysis for comprehension to cope with the complexity

of systems and the needs of users. For example, in dynamic analysis of execution

traces, it might be useful to assume that there are no unstructured control-flow

constructs (e.g., ‘goto’) in the source code as their presence may complicate both:

the analysis process and the resulting diagrams.

2.4.1.1 Static Analysis

Static analysis is a software exploration process that relies on the source code

of the program in order to derive both: the structure and behavior of software

systems including all interactions (i.e., method calls) between objects [41]. Static

analysis is usually accomplished without executing the intended programs [42].

This kind of program analysis essentially works by parsing program source files

and logging all interactions between internal system components. Starting from

the main entry point of the program (e.g., main method), the analyzer keeps

track of all object construction operations and method invocations between them,

while taking into account all constructs that control the flow. For every particular

interaction in the program, information obtained through the analysis are usually

logged into memory as interaction traces to be used by the visualization process

at a later stage.
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Although static analysis is an efficient analysis method that can easily recover

the structure and design of a program, it can only provide a conservative approx-

imation of the runtime behavior of the program, which may lead to less precise

behavioral representations. This limitation poses many challenges when analyzing

programs that make use of dynamic features. For instance, in object-oriented lan-

guages with dynamic class loading (like in Java), the interactions between those

classes cannot actually be captured or even depicted via static analysis of source

code. Another example is the challenge of analyzing distributed software systems

that employ multi-users or multi-threaded processes that might have parallel in-

teractions [5]. Furthermore, users (or threads) in such systems can be added or

removed at runtime, further complicating the analysis task. In addition, captur-

ing the communication between threads or remote objects is not likely to occur

in static analysis because such information can only be gathered during the exe-

cution of the program. However, using static analysis, it is sometimes possible to

show an expectation of how such interactions would be executed in the program

at runtime.

Nevertheless, based on [43] and the recommendation in [44], incorporating

behavioral information through the static analysis of source code is essential for

any technique that aims to visualize dynamic execution traces.

The study by [45] formally demonstrated the relationship conformance of dif-

ferently generated sequence diagrams. Sequence diagrams of a certain artifact

might be reused in an application with various changes in that specific applica-
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tion. In addition, the names of lifelines, messages, and system variables may be

changed as well. Therefore, it is important to verify that the sequence diagrams

of an application conform to the ones in the artifact, by avoiding name conflicts,

and that was the main objective of the work presented by Lu and Kim [45].

Korshunova et al. [4] presented a tool that can reverse engineer class, sequence,

and activity diagrams of any given C++ system by parsing its source code and

then extracting its AST. The derived structural and behavioral models were rep-

resented and stored in XMI files [46], which represent UML elements in an XML

format. Objects and method calls were used to construct sequence diagrams while

Activity Diagrams were generated from the conditional and loop constructs.

2.4.1.2 Dynamic Analysis

Dynamic analysis of software systems is concerned with investigating their be-

havior at runtime [47]. This kind of analysis does not require the availability of

source code, although it may make use of it when present. Indeed, having the

source code facilitates injecting tracing code snippets into programs that can help

in capturing all interactions taking place at runtime. This can be done by logging

all required information about method calls along with their callers and callees.

Alternatively, several other dynamic analysis-based techniques do not require the

source code to be available. Instead, they depend on (customized) debuggers that

can supply them with the required information about program behavior [21].

Although dynamic analysis can recover precise information about the actual

behavior of a system, it is challenged by the problem of coverage. A run of the
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program explores a sample execution trace typically covering only a few behaviors

out of many more possible behaviors. Increasing coverage, and hence obtaining a

complete view of the program’s behavior, requires multiple executions of the pro-

gram with varying parameters representing different execution scenarios. Having

multiple runs, however, entails the generation of multiple sequence diagrams, pos-

ing the other challenge of combining these diagrams into a single comprehensive

one [5].

Another limitation of dynamic analysis is that the information it gathers al-

ways represents the series of interactions in a program without considering the

control flow constructs through which these interactions passed through [48]. It,

therefore, lacks the ability to capture information about whether these interactions

passed through conditional alternatives (e.g., if, switch, exception handling,

etc.), repetition loops (e.g., for, while, do-while, etc.), or recursive calls. Notice

that such information can be easily collected using static analysis of the source

code, if performed well. To allow dynamic analysis-based techniques to identify

such kind of information, it is helpful to utilize the availability of source code

to inject certain scripts for recognizing the changes in the program control flow.

Such scripts will do their job while the source code of the program is instrumented

using multiple traces [5].

Another challenge is that dynamic analysis can only work with complete soft-

ware systems, rather than software fragments or components. This means that

dynamic analysis of subsystems may require them to be instrumented by auto-
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matically employing program stubs (e.g. a specially crafted main class) to enable

the collection of sample executions of certain program components [49].

In [50], a concise and clear representation of program execution was proposed

by summarizing sequence diagrams using state diagrams. In that study, it was

stated that state diagrams had never been previously used to represent program

execution. However, user participation in the summarization process is required in

that technique. The process of summarization could be performed after executing

the program multiple times.

Briand et al. [5] introduced a dynamic analysis technique of program exe-

cution that works by creating several aspect-oriented snippets (in AspectJ) that

can capture object creation and method calls, and then log all interactions into

appropriate trace files. They addressed the issue of distributed systems, and how

message senders and receivers can be identified when objects are executed at dif-

ferent network nodes. Their resulting sequence diagrams were partial in a way

that each individual trace has its own sequence diagram, which concludes that a

single combined diagram is not produced.

Oechsle et al. [51] targeted students by proposing JAVAVIS to help them

understand the interactions executed at runtime of small-sized programs. They

represented each active method by an object diagram, whereas the whole program

was represented using a single sequence diagram. Their approach was well pre-

sented as a visual debugger providing a graphical user interface through which a

user can run the program step-by-step and visually observe what is happening,
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control the speed of the animations, and select the classes required to be displayed.

Each loop iteration is represented as a separate block of messages. Calls to system

classes’ methods are filtered out and not shown in the sequence diagram.

In [26], a monitoring tool called Kieker was introduced to continuously (or on-

demand) observe the behavior of Java programs. Their instrumentation strategy

was based on AspectJ as well. Their main focus was on Web applications in which

the behavior differs from one user to another. The purpose of their approach was

to minimize the monitoring overhead as much as possible. Performance analysis

and evaluation of the approach were demonstrated in [52]. Their experimental

evaluation showed that Kieker could achieve a smaller linear overhead compared

with others, which makes it potentially appropriate in industrial settings.

The goal of the technique proposed in [53] was to reduce sequence diagram

size by removing the less important details and methods from them, especially,

local objects. This technique applies the dominance algorithm on the dynamic

call graphs to compute the dominance relation between objects. Based on their

previous tool (called Amida [54]), they proposed two different but complementary

tools: the first one performs the dynamic analysis of the program execution while

the other statically analyzes the produced trace file. Their experiments showed

that their approach could remove 40% of the objects from execution traces. How-

ever, the elimination of such objects reduces the precision of the resulting diagram

in that it may miss important details about the program behavior.

Ziadi et al. [55] introduced a technique that performs dynamic analysis of

32



Java programs without the need for source code; i.e., only the Java bytecode was

needed. Each trace of program execution was represented as a Labeled Transition

System (LTS), a variant of classical finite automata. All labeled transition systems

related to one program are then merged using the k-tail algorithm [48].

Sequence diagrams are then identified as regular expressions to eventually

generate sequence diagrams that conform to all traces. A step-by-step description

of the approach was presented. While conditional alternatives and iterations are

hard to recognize via dynamic analysis, this approach was able to detect them

while merging the different traces. They could achieve that by using the k-tail

algorithm that had the ability to go through the different paths in the finite states

and detect all possible blocks of interactions. However, the authors stated that

the k-tail algorithm can sometimes be inaccurate, and more accurate algorithms

are needed to be investigated.

2.4.1.3 Hybrid Analysis

Recently, several techniques have been developed that combine the two types of

analysis together: static and dynamic. Such techniques are considered to be more

effective and efficient as the results produced from one analysis is complemented

by the other’s results [56, 57]. Hybrid techniques exploit the power of both kinds of

analysis while limiting their weaknesses. However, the major challenge of this type

of techniques concerned with merging and compacting the diagrams generated

from the two different analysis approaches, which was also taken into account in

a recent study [58].
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From a different perspective, hybrid techniques are considered to be time-

consuming as the instrumentation overhead increases with the implementation

of the two types of analysis [56]. In addition, the multiple sequence diagrams

generated by dynamic analysis and the one generated by the static analysis all

need to be merged into a single comprehensive diagram to represent the entire

program behavior [43].

Labiche et al. [56] presented a reverse engineering technique that combines

both static and dynamic analyses. Their main objective was to reduce the instru-

mentation overhead required by the dynamic analysis, by collecting only a small

amount of runtime information that cannot be derived from static analysis, like

threads. Other information can be obtained via static analysis, which in turn col-

lects the control flow information to eventually generate separate UML scenario

diagrams per each trace. This technique, however, does not produce a complete

sequence diagram that combines the different generated sequence diagrams.

Myers et al. [43] introduced a technique that uses both static and dynamic

analyses to collect information about programs. Their objective was to improve

the visual appearance of the generated sequence diagrams. They did so by intro-

ducing an algorithm that compacts a large amount of information of call/message

interactions between system objects. Although this kind of abstraction is useful,

it can adversely affect precision as many interactions will be hidden from the user.

Another trend of reverse engineering techniques focuses on web-based appli-

cations [33, 59, 60]. In web-based applications, techniques were usually used to
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represent web pages as objects in the resulting diagrams, while the transactions

between them represent the interaction messages. Alalfi et al. [33] described

how PHP2XMI, a reverse engineering tool, can be used to retrieve role permis-

sions of web pages at the access level and represent them in sequence diagrams.

They evaluated PHP2XMI at the entity level and investigated how it can be used

to test other security vulnerabilities of web applications, such as SQL injection.

Their approach was able to filter execution traces related to database insertions,

and automatically exclude any information that might complicate the comprehen-

sion process, and eventually produced the corresponding sequence diagrams that

represent the interactions between users and web pages.

2.5 Evaluation of the Approaches

In this section, we present an extensive evaluation of the state-of-the-art tech-

niques that produce reverse-engineered sequence diagrams, and study their ex-

pressiveness, usability and usefulness for program comprehension purposes. This

is accomplished by first defining a set of evaluation attributes and then project-

ing them onto the techniques reviewed in order to compare and contrast their

strengths and limitations and to identify gaps that can potentially be filled.

2.5.1 Evaluation Attributes

A total of sixteen evaluation attributes is identified and listed in Table 2.1. The

particular selection of these attributes was motivated by our intention to focus on
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showing how understandable, scalable and usable the diagrams produced by each

of the techniques being compared. The understandability of a technique is mea-

sured by the amount of information about interactions each technique can retrieve

from programs. The diversity of objectives, languages, dependent techniques and

kinds of diagrams can express how usable and applicable these techniques are to

a wide range of software systems. We also present the case studies used by the

different techniques to assess their scalability.

Some of the attributes have newly been identified throughout our review of the

related techniques, while some others, such as language, diagram, target lifelines,

conditions, loops, tool support, and threads have been inspired by other research

works [5, 7] . Table 2.1 summarizes these attributes with some remarks that in-

dicate their impact on the evaluation. A subset of these attributes is not actually

helpful in evaluating the techniques towards program comprehension, such as the

language, kind of diagram, and dependent tools. Such attributes can help users

to select the appropriate technique based on their needs. On the other hand, the

remaining attributes have a direct impact on the evaluation of the effectiveness

of techniques in understanding programs. Some attributes have been chosen to

represent a set or group of attributes. For instance, the ‘loop identification’ at-

tribute refers to the ability of the technique in gathering information about the

different kinds of iterative constructs, such as for, while, do-while. What made

us go for such grouping is that some techniques were restricted to parse only a

limited number of forms of each category. This is due to the fact that having the
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ability to gather one form of loop constructs, for example, indicates the possibility

of applying it to other forms as well. Therefore, techniques that can capture at

least one form of a certain attribute are considered to be satisfying that attribute.

Table 2.1: Evaluation attributes

Attribute Description
1 Dependent technique(s) Lists all supporting tools or techniques employed by a given technique.
2 Major Objective(s) Describes the main objective of the technique on which the authors concentrated.
3 Case Study Describes whether the technique has been empirically tested and validated on real projects.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4 Condition Identification Indicates the ability of the technique in capturing alternatives in a program (if, switch, etc.).
5 Loop Identification Indicates the ability of the technique in capturing iterative loops (for, while, etc.).
6 Recursive calls Indicates the ability of the technique in capturing recursive calls.
7 Threads Identification Indicates the ability of the technique in identifying communicating threads.
8 Multi-users Identification Indicates the ability of the technique in identifying communicating users.
9 Compaction Indicates whether the technique filters the messages to summarize the resulting diagram.
10 Multiple scenarios Indicates whether a technique performs the instrumentation with different scenarios.
11 Merging Diagrams Indicates whether the technique combines scenario diagrams into a single sequence diagram.
12 Tool Support Indicates whether the technique has an available tool or it is just a prototype.
13 Analysis Indicates whether the technique has a static, dynamic or hybrid analysis.
14 Language(s) Identifies the type of programming language on which the technique works.
15 Target lifeline(s) Refers to the main entities that interact with each other in a given software system.
16 Diagram(s) Lists all possible output visualization diagrams used by the technique.

Table 2.2: Major characteristics of the reviewed program analysis techniques

Ref. Dependent technique(s) Major Objective(s) Case Study

[45] Unknown Conformance of different SDs JHotDraw and Monetary Access Control
[4] Columbus/CAN, DOT Coordinating objects and messages 30 KLoCs, 60 KLoCs projects
[5] Unknown Distributed systems A library system
[50] JIVE Deriving SCD from SD Dining PhilosopherâĂŹs problem.
[51] JDI Learning programming Small-sized programs

[26] UMLGraph, R, GNU, Reduce time overhead iBATIS JPetStore, SPECjAppServer2004Plotutils, Graphviz. + multi-user web apps.
[61] Their tool, Amida [54] Compacting SDs jEdit, Gemini, Scheduler, LogCompactor
[53] Their tool, Amida [54] Compacting SDs An enterprise web application
[62] Oberon [63] Compacting SDs + User-Interaction Kepler + A Compiler Construction Framework
[27] JVM Profiler Interface A framework for distributed systems analysis A Technical Report System (TRS)
[64] MAS [65], ATL [66] Understanding API usage Not mentioned
[67] Rigi Overlapping info of static and dynamic views FUJABA project
[21] JExtractor, Rigi, SCED Deriving SCD from SD FUJABA project
[56] Their work in [5] Reduce time overhead 5 large systems and 2 small programs.
[43] Unknown Compacting SDs Eclipse IDE, HSQLDB, Jetty web server platform

[55] K-tail algorithm [48] Merging SDs A project with 500+ classes and interfaces,
with 25000 lines of code.

2.5.2 Analysis and Discussion

This section presents a detailed comparative evaluation of the most relevant tech-

niques to our study based on the attributes introduced in the previous section.
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Table 2.3: Evaluating the program analysis techniques
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[45] X X · · · · · X X Static Java & Prolog object SD
[4] X X · · · · · · X Static C++ object SD, CD & AD
[5] X X · · X · X · · Dynamic Java object SD
[50] · · · · · X X X · Dynamic Java object SD & SCD
[51] · · · · · · · X X Dynamic Java object SD & OD
[26] · · · · X · X X X Dynamic Java class SD, MC, CDG & TD
[61] · X X · · X X X X Dynamic Java object SD
[53] · X · · · X X X X Dynamic Java object SD
[55] X X · · · · X X · Dynamic Java object SD
[62] · · · · · X X · X Dynamic Oberon object SD
[27] · · · X X X X · X Dynamic Java object SD
[64] X X · · · · X X · Dynamic Java class SD & SMD
[67] · · · · · X X X X Static & Dynamic Java class SD & SCD
[21] · X · · X X X X · Static & Dynamic Java class SD & SCD
[56] X X · · · · X · · Static & Dynamic Java object SD
[43] X X · X · X X X · Static & Dynamic Java object SD
SD: Sequence Diagram, AD: Activity Diagram, MC: Markov Chains, TD: Timing Diagram, SCD: State Chart Diagram,
CD: Class Diagram, OD: Object Diagram, CDG: Component Dependency Graphs, SMD: State Machine Diagram.

Table 2.2 and Table 2.3 show the major characteristics of each technique and the

application of that technique to each particular attribute, respectively.

A direct rendering of program execution behaviors into a sequence diagram

may result in an awkward and hard-to-comprehend output. To avoid such a

problem, a program analysis technique has to be smart enough to identify control

flow patterns including alternatives, repetitions, threading, or even recursive calls.

Several techniques exist in the literature that tackles these issues using either static

information from source code or helper algorithms to compact messages that relate

to a loop or a condition into a single fragment. Other techniques rely on merging

such messages in other kinds of diagrams rather than sequence diagrams (e.g.,

State Chart diagrams or Markov Chains).
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From Tables 2.2 and 2.3, it can be observed that each technique intends to

capture behaviors that were not addressed by others while missing some important

ones. Some of them introduced similar approaches with previous ones, but with

different objectives like reducing time overhead, or compaction of the collected

information. Time overhead is an important issue that has to be taken into

account when building any software tool. However, the ultimate goal of the users

of program analysis techniques is the understanding of programs in an expressive

way rather than going through source code.

AS sequence diagrams have been introduced as a UML standard, the are basi-

cally delivered in the system’s specification documents to guide programmers, in

the design phase of forward engineering, about what would happen in the software

implementation. Almost all techniques try to adapt sequence diagrams to demon-

strate the interaction between objects (or just classes), but in a static fashion.

In other words, users need to have more interactive views, like [68], that exactly

reflect what is going on in the program execution. For example, the programmer

may need to see the time taken by each message to be completely executed, or

when exactly one message comes after another. Such information cannot be rep-

resented in the standard UML sequence diagram, as it only shows the order of

messages.

Another issue is related to the kind of entities to be represented in the resulting

lifelines of sequence diagrams. Having objects only may lead to ignoring calls to

static methods of certain classes. Similarly, using only classes as lifelines without
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their constructed objects may hide information about the interactions executed

between objects within the same class. Therefore, both classes and objects should

appear in the produced sequence diagrams in order to provide a thorough repre-

sentation of all interactions of a certain software system. From the table given,

we can observe that the state-of-the-art techniques differ in this matter. The ma-

jority of them use objects as lifelines while a few of them represent the class-level

interactions.

It can also be noticed that even though dynamic analysis is useful in identify-

ing the multi-threaded interactions, most of dynamic analysis-based techniques in

the literature did not include such information in their analysis, and they could

not identify the interactions executed between those threads. In other words, to

better recognize the interactions between different threads, the resulting sequence

diagram should display, for example, that an object O1 from a thread T1 is com-

municating with another object O2 from a different thread T2. Producing more

effective diagrams may require developing new reverse engineering techniques (or

even extending existing ones) program comprehension and reverse engineering

techniques to be able to capture such information during the analysis. In addi-

tion, to visualize such information, one also needs to extend an existing visualizing

tool to incorporate the new types of information in the existing notation of the

UML standard of sequence diagrams.

It is clear that the state-of-the-art techniques do not usually focus on the

amount of information that should be involved in the resulting diagrams to ef-
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fectively understand a program. Adequate information in the resulting view will

assist users to comprehend programs without having to go through the source code

all over again. This will increase the users’ productivity and help them conduct

their maintenance tasks effectively.
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CHAPTER 3

PROPOSED APPROACH

To effectively accomplish our objectives, we have proposed our approach in a

form of extensions to existing techniques and standards introduced in the litera-

ture. These extensions are demonstrated in our work in three different aspects,

namely, UML sequence diagram extensions, Polyglot extensions, and tool features

extensions.

3.1 Extensions to UML Sequence Diagrams

Program comprehension is the activity of understanding the static and/or dy-

namic aspects of computer programs, namely the structure and behavior. Pro-

gram visualization tools play a vital role in this regards. The goal of program

comprehension-supporting methodologies is to facilitate understanding of com-

puter programs effectively through cognitively understandable views. This can

be achieved by visualizing the several aspects of the program in a way that gives

the user an overall outlook of the program structure or behavior. This by itself

42



requires enriching the produced views with as much information as possible so

that the user will not have to go to the source code to understand the program.

In addition, such techniques should not distract users with too many forms of

visualizations, but at the same time, they should not use a single visualization

with too many elements.

Sequence Diagrams (SDs) are very useful in representing the behavioral aspects

of computer programs, including the control-flow and the communication between

objects. Indeed, SDs provide a set of visual elements or notations that can help

users to understand what is happening or what would happen in the program

execution. These elements have to be used in an appropriate way so that they do

not disperse user attention.

Although UML sequence diagrams are considered the standard views for repre-

senting the behavior of programs, they are restricted to a set of limited notational

elements. Such notations are useful for representing some of program interaction

scenarios, but many other scenarios cannot be shown using this restricted nota-

tions. This, in fact, reduces the effectiveness of comprehending programs since

much information are either hidden from the user or represented in a different

fashion that does not reflect the actual representation given in the source code,

which ends with a wrong comprehension of the actual program behavior.

We intend in this thesis to extend sequence diagrams with appropriate nota-

tions that assist in reflecting the actual behavior of programs. These notations

would make SDs more expressive in representing program interactions and control-
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flow. We firstly provide a simple extension that can distinguish all interactions

related to static initialization or implemented in static blocks for other interac-

tions. Another extension is concerned with showing variables and the place in

which their variables are changed. Lifelines in the standard sequence diagram

are represented in a general way so that all kinds of objects and classes appear

with the same shape. We intend to extend the lifeline notation of the UML se-

quence diagram to make classes and objects of a certain category appear with

a notation different from other classes or objects. In addition, objects that are

constructed using the new keyword are represented using a specific notation in

the UML sequence diagram. Similarly, creating lifelines after type casting opera-

tions is not obvious in the UML SD. To this end, we provide a new notation that

explicitly represent type casting operations. However, objects that returned from

called methods do not have a specialized representation. Therefore, we provide

an extension that is capable of representing such created lifelines. The next set of

extensions are concerned with the kinds of method calls a program may contain,

namely nested calls, chained calls, and recursive calls. Moreover, we provide an ex-

tension to sequence diagram fragments. This extension targets demonstrating the

messages that are fired from method calls inside the fragments’ operands. With

respect to fragments, we also extend them to make them capable of representing

try − catch− finally blocks.
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3.1.1 Static Initialization

In Java, the JVM starts by executing all static initializations before accessing

the method of the program. This includes the static block and declarations of

the static variables, if any, where the sequence of their execution depends on the

order of their appearance in the source code. In case the program, represented

by its main class, has a declaration of static variables, all object construction

calls are executed firstly. If the source code of the constructors used for object

creation is available in the same program, then all interactions performed inside

their body would also be executed. The other case is with the variables that are

initialized using method calls, which indeed applies the same scenario, except the

message type here is different (i.e., the message kind of object creation is ‘create’

while in the case of method calls, it is ‘asynchCall’). Regarding the static block,

all interactions inside this block will also be executed. Fig. 3.1 demonstrate the

representation of the static lifeline along with a representation for the static block.

Figure 3.1: Notation representing static initialization

After tracing all static initializations, the main method of the program will be
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accessed. Actually, this is only the case of accessing the main class of the program.

There is also another case where static initializations are executed first, which can

happen when creating objects of classes that have static initialization.

3.1.2 Variable Declarations and Usage

Usually, sequence diagrams do not display variable declarations and assignments.

However, they show variable usage inside the fragments and call messages. The

appearance of such variables in the diagram may confuse the user as there is no

information about that variable provided in the diagram, like their types or where

their values are changed.

Figure 3.2: Notation representing variables

This issue could be resolved by displaying the variable declarations and assign-

ments in the diagram in a way that users can recognize them whenever they want

to know more information about them. Our extension is concerned with showing

variables in the produced sequence diagram using a new notation as shown in Fig.

3.2. It is clear that there exist a declaration for the variable x of an integer type

represented using the diamond. That variable is then be used in the condition of

the ‘if’ statement that comes after the declaration.

46



3.1.3 Extended Notations for Lifelines

Some interactions in software systems are executed in collaboration with external

entities rather than the ones that internally exist in the program. For instance, a

program might interact with libraries of the programming language to use methods

of reading from/writing to the system console, file system, GUI control, remote

object or even another program. Programs can also call methods from the libraries

of the operating systems. Although there can be a large number of lifelines in the

diagram, but most of them may relate to each other in different characteristics.

Horizontally displaying a considerable number of lifelines in the sequence di-

agram would complicate the diagram and would decrease its readability, which

may also confuse users since there might be too many of them shown in one dia-

gram. On the other hand, hiding them would decrease the expressiveness of the

diagrams since the user may sometimes need to know about them, especially if

the program is relatively small.

Figure 3.3: Notation distinguishing lifeline categories
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In our work, we resolve this problem by proposing a new way for represent-

ing lifelines that classify lifelines into different categories, where each category is

represented by a special notation that distinguishes it from the others, as shown

in Fig 3.3. All classes from a certain category This can significantly help users

identify external the lifelines that hold the interactions between the main objects

of a program and other external entities.

The core advantage of this extension is that users can now recognize the dif-

ferent kinds of lifelines along with the interactions that are connected to them. In

addition, users can also, with a tool-support, hide a specific lifeline category that

might not interest them while showing the most important ones. For example, all

lifelines that relate to the system console can be hidden while interactions with

the file system can be shown.

The categories of lifelines that could appear in Java projects include, but not

limited to, the following:

• Local lifelines:

– Local object: this lifeline represents the source of messages that are

sent/received by an instance of a certain class.

– Local class: this lifeline represents the source of messages that are

considered as static methods, which are usually called using the class

name.

– Main Method: this lifeline represents the source of all messages that

are originated by the main method of the program.
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– Static Initialization: this lifeline represents the source of all messages

that are originated during the static initialization of the program.

• Non-local lifelines:

– Remote Object: this lifeline represents the source of all messages that

are communicated between program’s objects/classes and other objects

that are located on a remote machine (e.g., RMI objects).

– External Process: this lifeline represents the source of all messages

that are communicated between program’s objects/classes and other

processes in the system (e.g., through the ‘Runtime’ class).

– System Console: this lifeline represents the source of all messages that

are communicated between the program and the system console (in-

put/output).

– GUI: this lifeline represents the source of all messages that are commu-

nicated between the program and the graphical user interface (GUI)

(input/output).

– File System: this lifeline represents the source of all messages that are

communicated between the program and the file system (input/out-

put).

– Network Socket: this lifeline represents all classes or objects that relate

to interacting Java programs with local and Internet networks, such as

downloading files, opening web pages, transferring files, etc.
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– Database Connectivity: this lifeline represents the classes or objects

used for communicating a java program with databases, which can in-

clude updating and querying the database or dealing with its metadata.

– Other language libraries: this lifeline represents the source of other

kinds of messages that are sent/received by instances or classes of li-

braries of Java.

3.1.4 Lifelines from Returned Objects

Object construction can be achieved in several ways in Java. The first approach to

instantiate objects is with the use of the ‘new’ statement, which immediately calls

the constructor of the intended class. This particular object creation already has

a special notation in the standard sequence diagram, which represents it using a

dashed message arrow. Another way of constructing objects is by calling methods

that have the ability to return representative objects that can be assigned to the

object needed to be constructed. Unfortunately, the UML standard of sequence

diagrams does not provide a facility of showing such object construction. All

what it does is representing the call to the method and its returned value using

message arrows without showing the lifeline that should be created from that

return operation. However, a lifeline representing the created object will be shown

whenever that object is used in later stages of the sequence diagram.

We have addressed this particular issue and came up with a way that can

precisely reflect the flow of the operations discussed above. Actually, our approach
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in this context does not introduce a new notation to the sequence diagram, but it

utilizes the currently available notations in the UML standard to accomplish the

goal. Representing such a flow of control in our approach is shown in Fig. 3.4

that reflects the interaction carried out in the below statement.

A a2 = a1.getObj ();

It is clear now that the returned value of the method invoked caused the

creation of the lifeline.

Figure 3.4: Representing lifelines created from return objects

3.1.5 Type Casting

In this extension, we just complement the previous extension with a notation that

can cover all aspects of object creation. This aspect is related to creating objects

of one type from objects of other types, which requires maintaining an appropriate

type casting operation that can convert objects of one type to another. Repre-

senting type casting is not supported by the UML sequence diagram assuming

that users will be able to implicitly assume that object type is converted from

another type.
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In our approach, we do address this kind of operation while generating sequence

diagrams by introducing a new SD notation shown in Fig. 3.5 that represents such

operations visually. We tried to make the shape of this notation as meaningful

as possible by representing it as an adapter that can accept an input of a certain

type and produces an output of a different type. The diagram shown in the figure

is produced from the following statement:

A a = (A) b.getObj ();

Figure 3.5: Notation representing type casting operations

3.1.6 Nested Calls (Calls Inside the Arguments of Other

Calls)

Method calls may sometimes have nested calls in their parameters. Indeed, the

program in such cases starts with invoking the methods inside the call parameters

and after that, it invokes the main method call. Invoking the method calls that

reside inside the parameters of another method call can be either in a left-to-

right or right-to-left order. In our case, since we focus on Java, the left-to-right

associativity is considered.
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Now, let us take the following code representing two nested calls, where the

call to the method ‘getObj’ of the object ‘b’ is nested with the call to the method

‘setObj’ of the object ‘a’;

a.setObj(x, b.getObj ());

In the standard sequence diagram, this set of method calls is represented in

two different ways as shown in Fig. 3.6, depending on the tool that uses the

UML standard of sequence diagrams. It is obvious that the first representation

(Fig. 3.6a) shows the exact number of interactions, but does not precisely reflect

the actual flow of control. The other representation simplified the whole state-

ment using only one message arrow, which does not reflect the actual number of

interactions.

Figure 3.6: Representing nested calls in the standard SD

To overcome this kind of problems, we propose a new SD notation that can

distinguish this kind of method calls from other kinds of calls. This notation is

shaped like a box entitled with the main method call, and all other calls that are

to be executed are shown as messages inside that box, as shown in Fig. 3.7.

This notation reflects the actual flow of control with the exact number of inter-

actions. As shown in the figure, the method ‘setObject’ is firstly called but lastly
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Figure 3.7: Notation representing nested calls

executed. Also, the parameter x does represent an interaction while the second

parameter, the method ‘getObj’, represents a nested interaction that is executed

inside and before its enclosing method. This methodology is also applicable to

the interactions of the type ‘return’ and ‘new’ in case they involve method calls

within their parameters.

3.1.7 Chained Calls

It is common in object-oriented programming to see what is called chained calls.

Chained calls are the set of calls that depend on each other in their execution.

This means that the object needed to call one method is returned by its preceding

method call. As an example, we provide the following chain of calls:

a.getString (). indexOf("a");

We can see that the method ‘getString’ of the object ‘a’ will be called and

will return an anonymous object of type ‘String’, which will be used to call the

method ‘indexOf’ with a string parameter. The standard sequence diagram deals

with such calls separately, which means that the diagram will show that these two

calls are independent and do not depend on each other (as shown in Fig. 3.8).
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However, it shows the exact number of interactions, but take in mind that some

tools represent the whole statement using one message while some others only

represent the first method call of the chain.

Figure 3.8: Representing chained calls in the standard SD

We have targeted this case by providing a new notation that can precisely

represent the chain of the calls and the dependence of one call on another. As

demonstrated in Fig. 3.9, the notation is intuitively expressive and reflects the

actual flow of control and the exact number of interactions.

Figure 3.9: Notation representing type chained calls
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3.1.8 Fragment’s Operands with Calls

Sometimes, it happens that the specifications of a certain fragment contain a

method call or a set of method calls. We refer by specifications to all guarding

operands of fragments. For instance, the specification of the ‘loop’ fragment is rep-

resented by the initialization, condition, and iteration sections of the loop guard.

Likewise, alternative and optional fragments, such as if, switch, and conditional

operator in Java, have their own guard specification represented by the associated

condition. Now, if such a specification contains a method call, then this method

call will neither be represented in the standard XMI nor visualized in the standard

layout.

For example, if we have the following ‘if’ construct in Java:

i f (a.hasObj ()) {
// code

}

Inside the operands of this condition, there is a call to the method ‘hasObj’

of the object ‘a’. The standard sequence diagram does not care about whether

the condition is based on a call or not. It represents the condition as text in the

specification part of the fragment as shown in Fig. 3.10.

On the other hand, our extended notation to the sequence diagram tackles

this problem by allowing calls inside the operands to be represented as messages

to the corresponding lifelines as shown in Fig. 3.11.

A similar case can happen with loops, such as ‘for’ loops, where the operands

part of the loop is composed of method calls, like the following example:

for ( int i=0; a.hasObj (); incr(i)) { }
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Figure 3.10: Representing conditional operands with calls in the standard SD

Figure 3.11: Representing conditional operands with calls using our notation

As we can see, the associated conditional and iteration statements in the above

examples are based on values returned from method calls. These methods may

exist in the self-class/object or others. Therefore, representing that method call

as a message in the resulting SD would add more information that can help in un-

derstating what exactly is going on in the source code, as represented in Fig. 3.12.

Similar to the case of the conditional fragments, the standard sequence diagram

represents what is written in the operands as text in the produced fragment, like

the one presented in Fig. 3.13 for the same above example.
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Figure 3.12: Representing loop operands with calls using our notation

Figure 3.13: Representing loop operands with calls in the standard SD

3.1.9 Recursive Calls

Recursive calls are repetitive calls (just like loops) that make a sequence of com-

mands executing many times. However, unlike loops, there is no specific control

structure in programming languages that can indicate the presence of recursive

calls. Therefore, this kind of repetitions is unlikely to be captured through the

static analysis of the source code. On the other hand, dynamic analysis techniques

can detect this kind of repetition but without knowing whether they are recursive
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calls or normal loops.

One problem behind the inability of static analysis to distinguish recursive calls

is that the methods may not only be called from themselves, but also from other

methods that are already called by the original method. For example, if method1

calls itself, then a recursive call happens. Also, if method1 calls method2, and

then method2 calls method1; then this is also considered as recursion as well.

This issue can simply be resolved by tracking the calls through a stack struc-

ture. Whenever a call to a certain method happens, its signature is pushed into a

stack. Whenever the end of such method is reached, it is popped. The indication

of a recursive call can only occur if a call happens to a method that already exists

in the stack. Let’s take the case of the following example:

void fact( int n){
fact(n-1);

}
main (){

fact (5);
}

As we can see, the method ‘fact’ is recursive as it calls itself (assume that we

are inside the object ‘a’). In the standard representation shown in Fig. 3.14a,

it is represented as a self-message, while not all self-messages are recursive since

they represent calling methods of the same lifeline. On the other hand, our new

notation shown in Fig. 3.14b could expressively represent the recursive call so

that users can identify it from the first sight.
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Figure 3.14: Representing recursive calls using our proposed notation

3.1.10 Documentation Comments (Javadoc)

It can happen that a program contains some classes or methods with meaningless

names. For example, a class with the name c1 or a method with the name m1.

However, such classes or methods can have Javadoc comments that describe what

do they do. Actually, the UML sequence diagram will be able to show such classes

and methods with their own names without any further description about their

purpose (i.e., Javadoc comments are not shown), which would require users to

go to the source code or the system documentation (i.e., Javadoc) seeking the

description of each particular class/method. This, indeed, consumes much time

and consequently reduces user’s productivity.

Our extension here is focused on attaching Javadoc comments of classes or

methods, if any, in a given program with the resulting sequence diagrams using a

specific notation (see Fig. 3.15). Actually, we do not aim to make such notations

appear throughout the diagram for two reasons. First, rendering them on the
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Figure 3.15: Representing recursive calls using our proposed notation

diagram can complicate it and decrease its readability. Second, users may not

be interests in knowing the comments of each class or method. Therefore, our

approach addresses this issue by making such comments hidden in the normal

mode. Once a user hovers or right clicks the mouse on a certain lifeline or message,

it corresponding comments will appear immediately on the screen.

3.1.11 Locations of Elements in Source Code

Typically, the main goal of reverse engineering is assisting users to understand

and then maintain software systems. This means that users may intend to modify

the source code after figuring out certain problems. Using conventional SDs en-

forces users go to source code and search for the specific locations intended to be

modified. Our objective in this regards is to embed information about the source

code location (file path and start/end line numbers) of each element of the SD.

Whenever a user needs to re-engineer the software, he/she can double-click on the

particular elements needed to be revised, and our SD would navigate them their

locations in the source code.
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3.2 The Proposed Process Model

In order to reverse engineer sequence diagrams from a given Java software sys-

tem, a sequence of consecutive processes are to be accomplished. Each of these

processes supplies its output as an input to the following process. This supports

feeding each process with the required information to enable the integration of

the entire process. The entire process model is shown in Fig. 3.16, where a Java

software system is analyzed statically. Using the information collected from the

static analysis, the expected system behavior is traced starting from the main

entry point in it, and ending with a trace file that contains the representation

of the corresponding SD. Eventually, this file is visualized using the proper SD

elements (the standard and the extended).

3.2.1 Model of Gathering Program Information

Once a user specifies the software project intended to be reverse engineered, the

process of information collection (shown in Fig. 3.17) starts to gather all required

information from the source code of the given project. If the project consists of

several source files, each file will be parsed to get the AST within which, and then

each node of that AST will be visited individually.

When the parser comes across a declaration node (such as class, interface,

method, or constructor declaration), it logs its signature and then checks whether

it contains inner nodes inside its block or not. If yes, it keeps collecting them

one-by-one, and proceed with the proper action based on the type of each node.
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Figure 3.16: The entire process model

Whatever the type of the node is, its signature and position are logged (i.e., the

file and line number where it is located). Then, other information regarding that

particular node will be investigated, including its child nodes.

With respect to control structure nodes (i.e., for, while, do−while, if , switch,

(? :) operator, try−catch clause), the first reaction of the visitor is to record their

start and end positions. After that, their child nodes are visited, including the

block of inner statements (i.e., the body), if any, and a different action is applied

to each inner statement based on its kind. Child nodes are actually different
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from one control structure to another. Table 3.1 demonstrates the various control

structure nodes with their possible child nodes. With respect to the body of such

nodes, it can either be a block of statements or a single statement. Some control

structures can have either option.

Table 3.1: Types of control structure nodes and their child nodes

Control structure node Child nodes Block or Single statement
for statement Initializer | Condition | Increment X X
while statement Condition X X
do..while statement Condition X
if statement Condition | Consequence | Alternative X X
switch statement Condition | Case | Default X
(? :) operator Condition | Consequence | Alternative X
try − catch clause Try | Catch | Finally X

Method call nodes are the most important portions of the code as they repre-

sent the actual interactions between objects and classes of a project. This inter-

action can either be achieved locally, internally or externally. Local interactions

refer to the communication of system components with each others. Internal inter-

actions denote to links created between system objects and classes with the ones

of other same-language projects or of the programming language itself. Exter-

nal calls are represented by the invocations of operating system libraries, remote

methods, or even the methods that try to read/write to the memory, file system,

command prompt, GUI, network sockets, etc. For each kind of these calls, the

visitor examines whether the method call involves other calls inside its parameters

or not (i.e., nested calls). If yes, it registers their signatures and types and then

continues to the next node in the parent block.

Variable declarations and assignments are also important. Their importance

is expressed by their occurrence in method calls. In other words, it is common to
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Figure 3.17: Model of extracting program information
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have variables in controls structures and method calls. Variables can be used in

the conditions, method call parameters or as a recipient for the values returned

by method calls. Therefore, having their information in the final output would

help in understanding the overall sense of any element.

The information collection process keeps up gathering program nodes and

transcribing their signatures in a temporary storage file. Once the visitor finds

no more nodes in a certain project, it wraps up the log file to be utilized by the

tracer in the immediate subsequent step.

3.2.2 Model of Tracing Program Interactions

All information gathered by the visitor are essentially required to feed the tracer,

which will capture the actual behavior and the series of interactions of the given

program. Once the tracer acquires the collected program information, it begins

to trace method calls executed in the program.

Actually, it is not necessary to have the main method to appear at the onset

of the program. This implies that the tracing process will not read the collected

information in sequence. Instead, it initiates the tracing by looking for the main

entry point(s) in the program.

It can happen in some programs to have multiple scenarios represented by

having multiple main methods. One of the unique features of our technique is

the ability to identify all entry points (i.e., main methods) of the program and

produce the corresponding sequence diagrams based on the selected ones(s). This
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signifies that users will be notified about the multiplicity of main methods in the

program (if any), and they will decide on either to trace all different scenarios of

the program or choose the ones they prefer.

Start

A method call?

Yes

No

A control-flow element?

Get next inner element

No

Create other elements for 

(new, return, vars, etc.)

Yes

Create a proper combined-

fragment element

Has more inner elements?

Yes

Exit from 

current method

No

Go to Method Call model

Capture its guard(s) and 

inner elements

append created elements 

to the parent one

Figure 3.18: Model of tracing interactions of program

Another unique feature of our proposed technique is that the tracer is able to

trace method calls even if the program cannot be executed due to the presence

of certain type of errors. For instance, if the program has an invocation to a

non-defined or out of scope method (say m1), then the compiler will produce an

error message saying “error: cannot find symbol m1()". However, our program

collector is still able to gather program information and, subsequently, the tracer

can trace method calls and visually notify the user about the errors.

As shown in Fig. 3.18, each element in that method is taken and logged into

an XMI representation of SD. Whenever a control structure element is found, the
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tracer logs a fragment element with the proper signature and register the start

and end of the control block. Other elements that do not require processing are

directly logged with their suitable element types.
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Get the ID of its first occurrence 

and mark it as recursive

Remove its signature from the hashmap

Trace using the Method Tracing 

model

Exit current call
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Add its signature into a hashmap

In this call, refer to the ID of its 

first occurrence

Create a proper XMI element containing the method's:

Signature: name, type, parameters, location, etc. 

Locality: internal or external

Callee kind : class or object

Etc.

Figure 3.19: Model of tracing a certain method call

Whenever a method call element appears, it is required to determine the avail-

ability of the called method and its object to locate them in the raw program

information. After locating the anticipated method definition, the tracer jumps

to it and starts to process the method call model shown in Fig. 3.19. In the call-

ing process model, the tracer pushes the method signature into a stack to allow
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the identification of recursive calls. Just before pushing, once the tracer finds out

that the method signature is already in the stack, then that method is marked

as recursive. After that, the tracer repeats the same process done in the main

method until it reaches the end of the method body. At that stage, the method

signature is popped from the stack and logged with its proper tag.

3.2.3 Model of Visualizing Program Scenarios

The visualizing model is demonstrated in Fig. 3.20. In this model, all elements

generated by the tracer are visualized using their appropriate visual elements (i.e.,

notations). The process here starts with looking at the trace file generated by the

previous process (i.e., program interactions tracer). If the program contains static

initializations, then all interactions to be executed in the initialization will be

originated from special kind of lifelines that is specifically used for such kinds of

interactions. If not, the main method will be considered as the starting point of

that program. In case there exist different main methods distributed in different

classes, then that program is considered to have various entry points. Thus, the

visualizer will take each entry point as a separate scenario and produce different

diagrams representing the different scenarios.

Each tag in the trace file has its own attributes. Therefore, the visualizer

fetches all the important information about each element from its attributes, sub-

elements, or even from other elements that are referred to by this particular ele-

ment.
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Figure 3.20: Model of visualizing program traces
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CHAPTER 4

IMPLEMENTATION

In this chapter, we introduce all details related to the technical implementation

of the proposed approach. This includes the environment has been used as an

infrastructure to our implementation, programming languages, and frameworks.

In addition, we show how each stage of our technique is implemented and present

the rationale behind choosing each of them.

4.1 Selected Programming Language

In our work, we have selected the Java programming language as a target language

on which our extensions would be built. Java was selected due to its popularity

and the availability of various open-source extensible compilers as well as open-

source projects. In addition, most of the related work in the literature used Java in

their implementations, which helps in conducting fair comparisons between them

and our approach.

The version of Java grammar that is by default used by Polyglot is 1.4. How-
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ever, recent versions (1.5, 1.6, and 1.7) of Java grammar have been extended to

Polyglot so that developers can use the version they prefer while making exten-

sions. In our work, we have just conducted our work with the default grammar

used by Polyglot, that is 1.4, and linking it with other versions would not be a

problem. What motivated us to do so is that extending the base compiler that is

linked to older versions of grammar will make it compatible with recent versions

of the grammar, but is not the case if we accomplished it using a recent version.

In other words, extending the compiler based on newer versions of grammar will

not make it compatible with older releases of Java grammar.

4.2 Polyglot, an Extensible Compiler for Java

Polyglot [6] is an open-source compiler framework for Java that enables devel-

opers to extend the Java compiler in a modular way (i.e., without touching the

base compiler). In addition, it facilitates source code analysis, debugging, and

constructing new domain-specific programming languages.

Polyglot has the capability of parsing Java source programs and generating the

Abstract Syntax Tree (AST) by utilizing the Visitor design pattern [69]. Visitor

design pattern allows capturing of nodes and their children easily, along with the

ability to revisit the newly created nodes. This mechanism can duly be adapted to

accomplish a static program analysis for the sake of reverse engineering of program

interactions. Information on class declarations, object creations, methods calls,

as well as the control flow of programs can easily be captured and logged in
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appropriate formats, which can then be used for tracing all call sequences in order

to construct the sequence diagrams that reflect the corresponding Java program.

Nevertheless, some of Java constructs are abstracted in Polyglot, which leads to

the anonymous visiting of child nodes. This means that, in some cases, the visitor

cannot expose which calls relate to which sub-nodes. For example, if the visitor

finds an if node, it visits its child nodes in sequence, including the condition,

consequent and alternative nodes. However, it cannot identify what interactions

are executed in each child node. Therefore, it is necessary to properly extend

Polyglot to allow gathering as much useful information about programs as possible.

4.3 Extending Polyglot to Extract Program Infor-

mation

Polyglot was not capable of capturing the Javadoc comments (or any other com-

ments) because they are basically ignored by the parser that Polyglot is based on.

Therefore, we tended to extend Polyglot and its parser’s rules to enable them to

accomplish such an activity. However, after communicating Polyglot community,

we could get an extended version of it that was already developed by another per-

son. Recently, in August 2015, Polyglot has been released with the 2.7.0 version,

and that version covers this particular feature.
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4.3.1 Extending the Compiler Node Factory

In Polyglot, some of the AST, epecially the child, nodes are anonymous. This

means that they are visited as expressions or statements where the information

about where exactly they are executed is missed. For example, ‘If’ and ‘Condi-

tional’ nodes represent if statements and ‘? :’ conditional operators, respectively.

Each one of these nodes contains three child nodes inside it: ‘Condition’, ‘Then’,

and ‘Else’ parts. In the ‘If’ node, Then and Else parts are statement nodes of the

type ‘Stmt’ node, while in the ‘Conditional’ node they are expression nodes of the

type ‘Expr’ node. In both ‘If’ and ‘Conditional’ nodes, the Condition part is of

the type ‘Expr’.

When the Polyglot’s visitor-pass visits these child nodes, the NodeV isitor can-

not determine what gets executed in each part. For instance, if the ‘if’ statement

has a method call in the ‘Condition’, one in the ‘Then’ part, and another one in

the ‘Else’ part, then our NodeV isitor-based information gatherer captures them

as three consecutive ‘Call’ child nodes in the ‘If’ node. As mentioned above, this

is because that ‘Condition’, ‘Then’, ‘Else’ parts are not marked in the AST tree.

To resolve this issue, we tried different approaches to properly extend Poly-

glot. In one approach, we faced a difficulty in configuring the type system, while

another one forced us to modify the base compiler. We eventually continued our

work with the approach that could effectively achieve the goal. Here, we only

discuss two approaches that we have implemented for extending Polyglot.
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4.3.1.1 First Approach

We have extended the ‘Stmt’ and ‘Expr’ nodes (represented as interfaces) to have

a marker variable that determines whether a statement or expression is accessed in

a ‘Condition’, ‘Then’, or ‘Else’ part. This marker is defined as an integer variable

that can be assigned to one of the values shown in Table 4.1. Each newly created

statement will initially be assigned a value of ‘NONE’. This approach is helpful

to mark the statements and expressions of the nodes that are composite of child

nodes.

Table 4.1: Flags used to mark ‘Stmt’ nodes

Flag Value Anticipated Parent Node(s)
NONE 0 All
COND 1 If, For, While, Do, Conditional
THEN 2 If, Conditional
ELSE 3 If, Conditional
INIT 4 For
ITER 5 For
TRY_CLAUSE 5 Try
CATCH_BLOCK(S) 6 Try
FINALLY_BLOCK 7 Try

To thoroughly achieve this kind of marking for statements and expressions

of the ‘If’, ‘For’, ‘Conditional’ and other pre-listed nodes, their constructors have

also been extended to manage the initialization of such expressions and statements

with the appropriate marker values. This allows the information collector to iden-

tify where other blocks of statements and expressions are accessed throughout the

source code.
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4.3.1.2 Second Approach

The problem of Approach1 is that we were required to modify the base Polyglot

compiler. As an alternative Approach, the base compiler is not affected as ev-

erything is embedded within our own extension. In this approach, each of the

nodes that may compose of certain blocks of statement is extended in our own

Node Factory. In other words, the extended node factory will have an extension

of each node, named as ‘Ext_’+<NodeName>, where child nodes are accessed

in a systematic way. For example, the ‘If’ node is represented by the ‘If’ interface

and ‘If_c’ class in the base compiler. Therefore, it is extended and given the

interface name of ‘Ext_If’ and class name ‘Ext_If_c’; where ‘Ext_If’

extends ‘If’, and ‘Ext_If_c’ extends ‘If_c’ and implements ’Ext_If’.

In addition, the constructor of ‘Ext_If_c’ invokes its super constructor and

supplies it with the needed parameters.

The ‘visitChildren’ method is the routine that is responsible for visiting child

nodes of any composite statement. This means that visiting child nodes can be

controlled through this method. By default, Polyglot’s compiler visits child nodes

of a statement in sequence taking into account the left-associative principle of

Java. Therefore, we have overridden such a method in each of the extended nodes

to allow injecting our child-node identification code before visiting every child

node. For example, in the ‘Ext_If_c’ node, we could identify the visits of

child nodes as shown below:

76



@Override

public Node visitChildren(NodeVisitor v) {

// Notifying the InfoGatherer pass

// initialization statement(s) is visited here

List<ForInit> inits = visitList(this.inits, v);

// initialization statement(s) is terminated here

// condition expression is visited here

Expr cond = visitChild(this.cond, v);

// condition expression is terminated here

// iteration statement(s) is visited here

List<ForUpdate> iters = visitList(this.iters, v);

// iteration statement(s) is terminated here

// body is visited here

Stmt body = visitChild(this.body, v);

// body is terminated here

return reconstruct(this, inits, cond, iters, body);

}

4.3.2 Adapting the Grammar rules

Since we have already extended the AST node factory, it is necessary to modify

the grammar rules, that are directly connected to all extended AST nodes, to cope

with the changes that have been made. This includes replacing the non-terminals

connected to the old version of the node factory with proper references to its

extended version.

For instance, the grammar rule that is matched by the compiler whenever

a ‘for’ statement occurs in the source code is represented by the non-terminal

‘for_statement’. Typically, this non-terminal will immediately create a new node

of ‘For’, which is represented by the one defined in the Node Factory of the base
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compiler. Hence, we have mutated this node construction to refer to our extended

version of the for-statement, which is represented in our Node Factory by the node

‘Ext_For’.

As an example of how the grammar was adapted, we provide the extension of

the ‘if’ node, we customized one of the grammar rules that access this particular

node as follows:

drop { if_then_else_statement }

extend if_then_else_statement ::=

IF:n LPAREN expression:a RPAREN statement_no_short_if:b

ELSE statement:c

{: RESULT = parser.nf.ExtendedIf(parser.pos(n, c),

a,

b,

c);

:}

4.3.3 Extending the Compiler Visits

Polyglot has many compiler visits that are prepared to accomplish the complete

compilation that results in .class files. Each visit is responsible for a particular

functionality that is separate from the other visits. To allow Polyglot to gather

program info and log them into our intended format, we have extended the ‘Node-

Visitor’ visit class in Polyglot with another visit class called ‘InfoGatherer’. This

compiler visit performs all our reverse engineering functionality, including the

collection of elements and their signatures and logging them as an XML tree.

Our extended visit overrides several method of the ‘NodeVisitor’ visit, like

‘begin’/‘finish’ and ‘enter’/‘leave’ methods. The methods begin and end are

78



just used to open the log file for writing and to close it after logging all needed

information, respectively. The ‘enter’ and ‘leave’ methods are called each

time the compiler passes enter a new node in the AST tree and exit from that

node, respectively. Actually, all needed information of Java programs are collected

in these two methods where the kind of nodes required to be gathered and logged

are specified. Actually, our visits escape some of the nodes that are not important

in our technique. In other words, some nodes in Polyglot can be nested with too

many child nodes. Therefore, we limited our collector to specific types of nodes

that we are interested in.

4.3.4 Extending the Compiler Passes

Polyglot employs a set on compiler passes that are executed one after another in

order to comprehensively analyze the source code from all perspectives. In our

work, we have extended the Polyglot scheduler with two co-related passes shown

in Fig. 4.1 with gray-filled boxes.

The first pass is placed after the Polyglot parsing pass, and is responsible

for gathering the program info regardless of its correctness. This means that all

information is gathered and logged even if errors exist in the source code. After

that, Polyglot continues with the other passes until it reaches the Validation pass

which guarantees that the program is fully checked across all aspects including

type checking, reachability checking, etc. If the program is validated successfully,

then our second pass is reached and it starts gathering information again, but now
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Figure 4.1: Extended Polyglot passes

they are enriched with types. Otherwise, the program has compilation errors and

our second pass is not reached, which means that the tracer and visualizer would

continue their work with a dirty program.

4.3.5 XML Output Format

As we saw in Chapter 2, the state-of-the-art techniques for reverse engineering

usually use XML representation for storing the raw information collected from

parsed programs. Such information are generated either at runtime (i.e., through

dynamic analysis) or by analyzing the source code (i.e., static analysis). This is

useful as it allows to trace specific scenarios of a program.

Likewise, in our case, we have used the same representation (i.e., XML files)

but with the introduction of new XML tags, elements, and attributes. Basically,

each XML document must have a root element, which in our case named either

"<Project>" in case there are semantic errors in the program or "<Typed_Project>"
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if the program is free of errors. All other program elements (or nodes) are stored

inside this root element.

Class and interface declarations are represented using <Class> element with an

attribute called ‘type’ that identifies whether it is a ‘class’ or ‘interface’. Similarly,

method and constructor declarations are represented using <Method> element

with an option ‘type’ that indicates whether it is a ‘method’ or ‘constructor’.

Method and constructor calls are represented using a <Call> element, where an

attribute is set to indicate whether the callee is defined within the program or

it is external. External callees are the ones that contain methods that are not

defined in the program itself, but from other packages like language or system

libraries. All elements contain the three attributes: ‘file’, ‘posStart’ and ‘posEnd’

to determine their correct locations (i.e., line numbers in the their contained Java

source code). This can help in navigating the source code at any time during

visualization, or even during our implementation.

Let us take the below sample class. It is clear that this class has a Javadoc

comment and contains only one method, which is composed of a variable decla-

ration and an ‘if’ condition. The ‘if’ condition has actually two branches, one is

its consequence while the other is the alternative. In the consequence, we have a

call to the method ‘factorial’ while in the alternative we have a return statement.

1 /**

81



2 This is the Main class of the program.

3 */

4 public class Simple

5 {

6 public static void main(String args[])

7 {

8 int i;

9 if(i > 0)

10 {

11 factorial(i);

12 }

13 else

14 return;

15 }

16 }

Once the above class is parsed using our information gatherer, it generates its

corresponding XML file that contains all the important information about that

program, as shown below.

<?xml version="1.0" encoding="UTF-8"?>

<TypedProject>

<Class name="Simple" package="null" type="class" modifiers="public"

extends="" implements="" posStart="4" posEnd="16"

filepath="C:\myprojects\Simple.java">

<Javadoc>

This is the Main class of the program.

</Javadoc>

<Method name="main" params="String args" type="method"

paramTypes="String[]" modifiers="public static"

returnType="void" posStart="6" posEnd="15">

<Declare name="args" type="String[]" posStart="6" posEnd="6"/>

<Declare name="i" type="int" posStart="8" posEnd="8"/>

<ControlFlow type="if" params="i &gt; 0" posStart="9" posEnd="14">

<Branch type="Cond" params="i &gt; 0"/>

<Branch type="Then" params="i &gt; 0" posStart="10" posEnd="12">

<Call name="factorial" callee="Simple" calleeType="Simple"

params="i" paramTypes="int" chained="No" nested="No"

recursive="No" posStart="9" posEnd="9">

<Arg type="var" name="i" posStart="9" posEnd="9"/>

</Call>

</Branch>
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<Branch type="Else" params="" posStart="13" posEnd="14">

<Return params="fact" posStart="14" posEnd="14"/>

</Branch>

</ControlFlow>

</Method>

</Class>

</TypedProject>

4.4 The Query-based Tracer of XML-stored Pro-

gram Interactions

To extract the actual program behavior we need to trace the calls in a given

program starting from the main method(s). Indeed, the program might have

more than one entry point, where each of which can generate a different scenario.

The user can participate in determining the main entry point to the corresponding

program in order to have the desired program behavior.

The tracing technique is composed of a set of heuristics built in Java program

that employs XPath [70] parsers and queries to access, load, and search for partic-

ular information from the XML log file generated by our previous technique built

as an extension of Polyglot. The tracer launches its work by executing an XPath

query that returns the entry points of the program. If one entry point exists, then

the tracer starts tracking method calls recursively until it reaches the end of the

entry point. If there are multiple entry points in the program, the tracer informs

the user about the existing main methods in the project. As a result, the user is

asked to participate in the determination of whether to proceed with a particular
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entry point or let the tracer go through each of them independently in order to

produce all possible obtainable scenarios in the program.

While tracing, the tracer keeps notes about the lifelines, objects, fragments,

messages, and lifelines of the corresponding scenario. These notes are stored in

an XMI document that represents the resulting sequence diagram. As mentioned

earlier in this report, several extensions to SD have been proposed to enrich it

with expressive information that helps in program comprehension, the XMI rep-

resentation of SD is extended with new tags, elements, and options that fulfill

the goal of such extensions. These extensions are intended to be added to the

XMI representation in a way that keeps it backward compatible with the stan-

dard UML SD. In other words, though our representation of SDs uses extended

XMI representation, it can be visualized using the conventional tools.

4.4.1 Extended XMI Representation

To support our objectives in this thesis, we have extended the standard notation

of UML sequence diagrams with XMI tag and visual elements that are capable of

carrying all the required information about the proposed extensions.

Each of our proposed extensions has its own XMI representation, represented

by elements and attributes. To show the extended XMI of our proposed extension,

we have captured screenshots of applying these extensions to selected sample

programs.

4.4.1.1 Extension Creation and Identification
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We have assigned our extension an XML namespace called "xmlns:xxmi". This

namespace is defined in the main "<uml:Model>" element that encompasses all

elements of any given sequence diagram. This namespace is used as a qualifier for

our proposed elements and attributes. For instance, static blocks are represented

in our extended XMI representation using the element "<xxmi:staticBlock>".

Likewise, extended attributes of standard element are given their names aligned

with the ‘xxmi’ namespace as prefixes; e.g., for the ‘<message>’ element, a new

attribute called "xxmi:isRecursive" has been proposed. Note that attributes of

the new extended elements are not given the prefix ‘xxmi:’.

4.4.1.2 Generating elements’ identifiers (IDs)

Each element in the generated XMI representation is given a unique identifier.

This identifier is important when one element refers to another element in the

XMI file. We have differentiated elements identifiers in our XMI representations

with proper prefixes to help us recognize the type of the element during visualiza-

tion. Types of element identifiers include the IDs of the messages, lifelines, and

fragments and so many others representing additional and assisting elements as

well the elements representing our proposed notations.

The format of the automatically generated IDs is given by the triple "<pre-

fix><underscore><number>", where ‘<prefix>’, ‘<underscore>’, and ‘<num-

ber>’ represent placeholders for the appropriate prefix type, ‘_’, and a type-based

unique number, respectively. For each element type, the unique number begins

counting from one, in a 6-leading-zeros style. For example, the first element of
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the type ‘message’ is given the id of ‘message_0001’, while the first element of

the type ‘lifeline’ is given the id of ‘lifeline_0001’ in the same XMI file.

4.4.1.3 Element location in the source code

For each element described below, we observe the occurrence of the following

attributes:

xxmi:file="C:\tests\cases\Sample.java"

xxmi:posStart="13"

xxmi:posEnd="13"

These attributes hold information about the location of a certain element

in the source code, which assist in navigating the source code of that element.

The location is represented by the file path, starting line, and ending line of any

particular element.

4.4.1.4 Opening/Closing enclosing elements

For representing a block of calls, we have used an approach that is different from

the typical approach. In other words, it is typical to use opening and closing tags

for including a set of elements inside another enclosing one. This approach works

well in our XMI representation, but the problem occurs when we tried to make it

compatible with the standard XMI model. If another standard tool tried to parse

our extended XMI, it would not be able to fetch the interactions that are inside

an enclosing element that is created by our methodology. The reason behind this

problem is that other tool always ignores non-standard elements and attributes,

which means that the entire extended block (with its inner interactions) will be

skipped.
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Therefore, we have introduced another solution to this problem to make our

output compatible with other standard tools. To this end, instead of using open-

ing/closing tags for a certain block of interactions, we have used opening/closing

elements. To open a new enclosing element we assign it an ID followed by an

attribute that marks it as it is an opening tag; i.e., ‘xxmi:status="start"’. To

close this enclosing element, we use another value for this attribute that refers to

the closing mark; i.e., ‘xxmi:status="end"’. Now, if our extended XMI is parsed

by other tools, only the opening and closing elements will be ignored, meaning

that all interactions happening inside them will be readable.

4.4.1.5 Static initialization

For interactions accomplished during the static initialization process that is usu-

ally accessed by the JVM before accessing the main method, we have created an

additional lifeline in the resulting SD layout that will represent the source of all

these interactions. This lifeline is colored with a special color to distinguish it from

other lifelines and given the name of the format "Static@<MainClassName>",

where the ‘<MainClassName>’ represents a placeholder for the name of the main

class of the program.

In order to correctly capture the initialization process, we have made a test case

that involves a set of static classes, variables, methods, and block. We scattered

different message-printing methods to recognize which part is executed before. Af-

ter the execution, we have realized that the execution is based on their appearance

in the source code.

<xxmi:staticBlock xmi:id="staticblock_0001"
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xxmi:status="start"

filepath="C:\tests\cases\Sample.java" posStart="9" posEnd="11"

/>

<!--Sequence of Variable and Message Occurrences & CombinedFragments-->

<xxmi:staticBlock xxmi:status="end"/>

All interactions executed within static blocks are placed between the opening

(i.e., with xxmi:status="start") and closing (i.e., with xxmi:status="end") ele-

ments of the static block.

4.4.1.6 Variable declarations

In this extension, we provide a new elements called "<xxmi:var>" that preserves

the general information of variable declarations, including name, data type, type

(i.e., local or member), location, etc., as shown below:

<xxmi:var xmi:id="var_0001"

name="str"

type="String"

xxmi:kind="Local"

xxmi:hasAssign="Yes"

xxmi:file="C:\tests\cases\Sample.java" xxmi:posStart="13" xxmi:posEnd="13"

/>

Each variable-declaration element has an ID, name, and type. The attribute

"xxmi:kind" differentiate local variables from the variables that are declared as

parameters of a given method/constructor. If the variable has assigned a values,

then the "xxmi:hasAssign" attribute will be given the values ‘Yes’; otherwise, a

‘No’ value will be given. In addition, the location of the variable in the source

code is provided as well.

Another element of the type "<fragment>" and event ‘defaultEventOfVarOc-
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currency’ will be generated to reflect the occurrence of such variable declaration.

This element will have its own ID along with a pointer to the ID of the intended

variable declaration.

<fragment xmi:id="varOccur_0001"

var="var_0001"

event="defaultEventOfVarOccurrency"

xmi:type="xuml:VarOccurrenceSpecification"

xxmi:status="start"

covered="lifeline_0001"

/>

<!--Sequence of interactions used for variable assignment-->

<fragment event="defaultEventOfVarOccurrency" var="var_0001" xxmi:status="end"/>

As we can see, the variable occurrence contains opening and closing fragments.

This is needed for enclosing all interactions that represent the set of method calls

used for assigning a value for such a variable, if any. If so, this occurrence will

cover lifelines (covered by the calls used for variable assignment) by listing their

IDs in the ‘covered’ attribute.

4.4.1.7 Extended Lifelines’ Objects

In order to support the differentiation between lifeline types proposed in 3.1.3,

we have added new attributes to the classes that are always connected to lifelines

in the the XMI representation of SD. These classes are usually created using an

element of the type "<packagedElement>", as follows:

<packagedElement

xmi:type="uml:Class"

xmi:id="class_0001" name="SB"

xxmi:locality="Local" xxmi:NonLocalType=""

xxmi:file="C:\tests\cases\Sample.java" xxmi:posStart="1" xxmi:posEnd="18"

/>

The attribute ‘xxmi:locality’ denotes to whether the lifeline corresponds to a
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locally-created class/object or utilized from language libraries (i.e., the possible

values are either ‘Local’ or ‘Lang’). If it is not local, the ‘xxmi:NonLocalType’

attribute will have a value that defines the general type of this class/object.

Now, to associate this class to a specific lifeline, we should refer to its ID at

the corresponding lifeline. Depending on the standard XMI of SDs, each lifeline

should correspond to an "<ownedAttribute>", which in turn refers to the ID of

its class type, as shown below:

<lifeline

xmi:type="uml:Lifeline"

xmi:id="lifeline_0001"

name="s:Sample"

represents="ownedAttribute_0001" <!-- refers to the ID of the ownedAttribute -->

coveredBy=""

/>

<ownedAttribute

xmi:id="ownedAttribute_0001"

name="Sample"

type="class_0001" <!-- refers to the ID of the class -->

/>

4.4.1.8 Nested Calls (calls inside a call)

To represent nested calls, we have constructed three new XMI elements: "<xxmi:nestedcallfragment>",

"<xxmi:originalCall>", and "<xxmi:innerCalls>". The element "<xxmi:nestedcallfragment>"

is used to enclose all the nested interactions executed inside the arguments of the

original call, including the original call itself "<xxmi:originalCall>" and its inner

messages "<xxmi:innerCalls>". The following XMI representation elaborates this

particular case:

<xxmi:nestedcallfragment xmi:id="nestedcallfragment_0001"

message="message_0001"

xxmi:status="start"

/>
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<xxmi:originalCall covered="lifeline_0001" xxmi:status="start"/>

<!--MessageOccurrency of the original call-->

<xxmi:originalCall xxmi:status="end"/>

<xxmi:innerCalls covered="lifeline_0001" xxmi:status="start"/>

<!--Sequence of interactions that appear in the arguments-->

<xxmi:innerCalls xxmi:status="end"/>

<xxmi:nestedcallfragment xmi:id="nestedcallfragment_0001" xxmi:status="end"/>

4.4.1.9 Chained Calls

Chained calls are the set of method calls that can be implemented using a single

statement where each call depends on an object returned by its preceding one.

Actually, while visiting the statements that involve a chain of calls, Polyglot’s

visitor visits that calls from right to left. For example, if we have the same

example discussed in section 3.1.7:

A.method1().method2().method3();

Polyglot in this particular case will firstly visit the call to method3, then method2,

and finally it finishes by visiting method1, while the actual scenario is executed

in the opposite direction. This means that this order is also preserved in the XML

generated by the information collector. Therefore, to resolve this issue, we have

managed a heuristic that can parse the chained calls in their correct order.

The set of chained calls is represented in our extended XMI of sequence dia-

gram using a vertical bar on which all the correlated calls in the chain lie. This bar

is represented by a new element called "<xxmi:chaincallbar>" that encompasses

all such calls. The order of these call depends on their execution from left to right.

The first call returns an anonymous object that is used to call the second call.

Then, the second call does the same for its following call, and so on.
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<xxmi:chaincallbar

xmi:id="chaincallbar_0001"

covered="lifeline_0001"

xxmi:status="start"

/>

<!--Sequence of interactions that appear along the vertical chain bar-->

<xxmi:chaincallbar xmi:id="chaincallbar_0001" xxmi:status="end"/>

For each message appearing inside this bar, we have added an attribute that in-

dicates at which bar this message lie. The name of this attribute is ‘xxmi:chainBar’

and its value contains the ‘ID’ of the chain bar where this message appears. If a

given message does not relate to any chain bar, then the value of this attribute

would be empty.

4.4.1.10 Call-driven Combined-Fragment Specifications

It is known that loops, options, and alternatives are represented in the standard

XMI using an element called "<CombinedFragment>". This element is divided

into operands, where each operand involves of two sections: one is for the guard

specification(s) and the other is for the interactions executed inside the block of the

operand. It is common for guards to use text-oriented specifications. However, if

the specification is based on method calls, then it is necessary to extend its element

representation to contain the messages that reflect the occurrences of such calls.

Therefore, we have extended the guard specification element to hold this kind of

message-oriented specifications. Now, the following ‘for’ loop:

for(int i=0; isTrue(); increment()) { }

is represented as follows:

<fragment xmi:id="fragment_0001"

xmi:type="uml:CombinedFragment"
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name="loop:For"

covered="lifeline_0001 lifeline_0002"

interactionOperator="loop"

xxmi:file="C:\tests\cases\Sample.java" xxmi:posStart="18" xxmi:posEnd="18"

>

<operand xmi:id="fragment_0001.operand_0001"

name="operand.operand_0001"

xmi:type="uml:InteractionOperand"

xxmi:type="Body"

xxmi:value=""

covered="lifeline_0001 lifeline_0002"

>

<guard xmi:id="fragment_0001.operand_0001.guard_0001"

name="guard.guard_0001"

xmi:type="uml:InteractionConstraint"

>

<!------ Initialization part ------->

<specification xmi:id="fragment_0001.operand_0000.guard_0001.specification_0001"

xmi:type="Init" value="int i = 0" covered=""

>

<fragment xmi:type="xuml:VarOccurrenceSpecification"

xmi:id="varOccur_0001"

event="defaultEventOfVarOccurrency"

var="var_0001"

covered="lifeline_0001"

xxmi:status="start"

/>

<fragment event="defaultEventOfVarOccurrency" var="var_0003" xxmi:status="end"/>

</specification>

<!------ Condition part ------->

<specification xmi:id="fragment_0001.operand_0000.guard_0001.specification_0002"

xmi:type="uml:LiteralString" value="this.isTrue()" covered="lifeline_0001"

>

<fragment xmi:id="messageSendOccur_0001"

xmi:type="uml:MessageOccurrenceSpecification"

event="defaultEventOfMessageOccurrency"

message="message_0001"

covered="lifeline_0001"

/>

<fragment xmi:id="messageReceiveOccur_0001"

xmi:type="uml:MessageOccurrenceSpecification"

event="defaultEventOfMessageOccurrency"

message="message_0001"

covered="lifeline_0002"

/>
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</specification>

<!------ Iterative part ------->

<specification xmi:id="fragment_0001.operand_0000.guard_0001.specification_0003"

xmi:type="Iters"

value="this.increment()"

covered=""

>

<fragment xmi:id="messageSendOccur_0002"

xmi:type="uml:MessageOccurrenceSpecification"

event="defaultEventOfMessageOccurrency"

message="message_0002"

covered="lifeline_0001"

/>

</specification>

</guard>

<!--Inner sequence of Variable and Message Occurrences & CombinedFragments-->

</operand>

</fragment>

We observe that this ‘for’ loop contains one operand consisting of two parts: the

guard and interactions. The guard consists of three specifications: the initial-

ization, condition, and iteration. The initialization part has an occurrence of a

variable declaration of ‘int i’. The condition has a message representing the call

to ‘isTrue()’ that in turn triggers a return message. The last part is the iteration,

which is used for inc/decrementing ‘i’ using the method call ‘this.increment()’.

Then, messages representing method calls inside the ‘for’ loop are placed between

the closing tag of the guard and the closing tag of the operand. Notice that al-

ternatives (e.g., ‘switch’ or ‘if’ with else part(s)) contain more than one operand,

where each operand contains a single specification, which is the condition.

4.4.1.11 Recursive Calls

Recursive calls are considered as one of the crucial components of program in-

teractions that need to be effectively handled. Actually, ignoring recursive calls
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in our approach would lead to infinite loops that would eventually lead to Stack

Overflow exceptions. Therefore, capturing the existence of such calls is required

for resolving this issue as well as increasing program understandability.

A Hashmap was maintained to preserve the signature of each invoked method

call that has an execution body (it is removed from the Hashmap once it finishes its

execution). During the execution of such a method call, if a method call matches

its signature, then the firstly called method is considered as recursive, and we

point to its ID in the new call to it. The resulting XMI representation explains

this scenario by having an attribute to each message called ‘xxmi:isRecursive’.

The value of this attribute is set ‘Yes’ if the message is recursive (i.e., there is

another call to it while it is under execution) and ‘No’ otherwise. For any message

that invokes that recursive message, we give it the ID of that message stored in

a new attribute called ‘xxmi:recursiveMessageId’. We have also created another

attribute for message elements called ‘xxmi:returnType’. This attribute holds the

type of the returned value of that message. Lets have the following example:

1 void main(String args[]){

2 direct_recursive(5);

3 }

4 void direct_recursive(int i){

5 if(i > 0)

6 direct_recursive(i-1);

7 }

This particular example represents the case where the recursive call occurs

inside the method itself.

<message xmi:id="message_0001"

messageSort="synchCall"

name="direct_recursive(5)"
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xxmi:isRecursive="Yes"

sendEvent="messageSendOccur_0001"

receiveEvent="messageReceiveOccur_0001"

xxmi:chainBar=""

xxmi:recursiveMessageId=""

xxmi:returnType=""

xxmi:file="C:\tests\cases\Sample.java" xxmi:posStart="7" xxmi:posEnd="7"

/>

<message xmi:id="message_0002"

messageSort="synchCall"

name="direct_recursive(i-1)"

xxmi:isRecursive="No"

sendEvent="messageSendOccur_0002"

receiveEvent="messageReceiveOccur_0002"

xxmi:chainBar=""

xxmi:recursiveMessageId="message_0001"

xxmi:returnType=""

xxmi:file="C:\tests\cases\Sample.java" xxmi:posStart="26" xxmi:posEnd="26"

/>

It can also happen that the invocation to the recursive call occurs from outside

the body of the currently executing method. The following example demonstrates

this case:

1 void main(String args[]){

2 indirect_recursive(5);

3 }

4 void indirect_recursive(int i){

5 if(i > 0)

6 another_method(i);

7 }

8 void another_method(int i){

9 indirect_recursive(i-1);

10 }

This kind of mutual recursion is also captured in our approach and represented

using the same extended XMI notation demonstrated above, which employs a

reference to the first invocation of the recursive call in the other calls of it happened
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while it is executing.

4.4.1.12 Documentation comments (Javadocs)

Documentation comments are represented using a new element called "<xxmi:JavaDoc>".

This element is generated for each class or method declaration that has a Javadoc

comment. These comments are gathered from the source code without any mod-

ification since it is intended to parse them during visualization as HTML code.

The only two elements that can have a Javadoc elements are: "<message>" and

"<packagedElement>" of the xmi:type ‘uml:Class’.

<xxmi:JavaDoc>

This is the main class/method of the program.

</xxmi:JavaDoc>

4.5 The Visualizer of XMI-represented Program

Interactions

Visualizer is the tool that is used to display the resulting SD that is already

represented in an XMI file. The visualizer should take care of several issues such

as element positioning, diagram dimensions, and what/how to show/hide.

As a starting point for our visualization work, we have searched for all avail-

able closed/open source tools that either reverse engineer programs or design UML

sequence diagrams to investigate their ability to visualize standard XMI represen-

tations of SDs. We downloaded all well-known tools (listed in table 4.2) in this

context.
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Table 4.2: SD visualization tools with their attempts towards visualization

Tool Import Element Drawing Correct Visualization
ArgoUML v0.34 [71] X × ×
Altova UModel v.2015 Prof [72] X × ×
Enterprise Architect v12.0 [73] X X ×
Modelio v3.4 [74] X × ×
StarUML v2.5.1 [75] X × ×
Trace Modeler v1.6.11 [76] × × ×
Visual Paradigm v12.2 [77] X × ×

To the best of our knowledge, some of these tools could never import standard

XMI representations of sequence diagrams in order to visualize their elements.

Other tools could actually import the standard XMIs, identify their elements,

and detect errors if any, but the problem is concerned with visualization. None

of these tools could visualize the elements. The main reason for this restriction is

that these tools always use various UML extensions for representing the visualiza-

tion of diagram elements, such as coordinates, colors, etc. Consequently, if such

extensions are not available, sequence diagrams cannot be visualized in such tools.

The only tool that tried to somewhat visualize of the standard XMI representa-

tion is Enterprise Architect. However, all elements of the imported diagrams are

stacked at the top-left journal of the layout with missing most of the important

information and loosing the correct order and direction of the messages/lifelines.

As a result, we have been motivated by these limitations of the existing tools to

build a tool that is capable of demonstrating and visualizing XMI representations

of sequence diagrams, even if they were generated by other tools. This indeed

means that our tool would be capable of visualizing standard XMIs as well as

XMIs that are generated and extended using our reverse engineering approach.
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Notice that XMI files have been extended and generated by other tools can also

be visualized in our visualizer. This is achieved by the visualizer’s ability to parse

only standard elements in case the file contains other unknown elements (i.e.,

proprietary extensions generated by other tools are escaped).

4.5.1 Extended Elements to the SD Model

4.5.1.1 Static initialization

In order to distinguish the interaction executed throughout the initialization pro-

cess, we have created a standalone lifeline that would be responsible for send-

ing/receiving the interaction messages to the other lifelines. It can be observed

from Figure 4.2 that the lifeline used for this task is named ‘Static@SB’, where SB

is the name of the main class of the program. It can also be seen that interactions

of the Static lifeline have started before the ones of the ‘Main@SB’ lifeline, which

is concerned with the interactions executed in the main method of the program.

We have divided the interactions used for static initialization into two cate-

gories: the ones executed inside the static block and the ones executed in response

to the initialization of the member variables.
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Figure 4.2: Static initialization elements

Static block is shown as an enclosing box containing all interaction messages

(or fragments if any) executed within which.

4.5.1.2 Variable declarations

Sometimes, it is very important to show the declarations of the variables that have

been used in the resulting SD. Users might see in a message or loop a reference

to a variable without being known where this variable is declared and/or has

been assigned a value. Therefore, we proposed two new elements to show the

declaration of variables in the lifelines where these variables are declared. The

first element that appears in a plain diamond as shown in Figure 4.3 and is used

to represent the variables that are declared inside the method’s arguments. The

other element is shown with a black-filled diamond to demonstrate the declaration

of local and member variables.
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Figure 4.3: Variable declaration elements

Our extended XMI also contains information about the assignment statements

used to assign a value for any given variable or change its current value. The

demonstration of such information in the current implementation is done through

the mouse hovering feature.

4.5.1.3 Extended Lifelines’ types

In the standard SD, there are two kinds of lifelines that differentiate between

objects and classes. Both of them have the same element style, but the dif-

ference is within the label. Object lifelines are represented in the form "<Ob-

ject_Name>:<Class_Type_Name>", whereas class labels are represented in the

form "<Class_Type_Name>". There is a special case where the object is anony-

mous (or default), which can usually be created using a statement like "new

A().m1()" that creates single-use objects. In this case, lifeline labels would be

of the form ":<Class_Type_Name>", where the object name is omitted.

We aim through our extension to distinguish the interactions of any given pro-

gram that represent the communications between the program’s internal objects
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and classes themselves as well as the communication between them and other enti-

ties of the system. This will allow users to recognize the amount of interactions of

the program with the language or system libraries or components. In particular,

we have distinguished the program accesses to the system console, file system,

and the GUI. This could be identified from the language-supported libraries that

allow programs to interact with this external entities.

As shown in Figure 4.4, in the current implementation of the proof-of-concept

prototype, different lifeline colors have been applied to the different types of ob-

jects. For example, the lifeline that represents the ‘Main’ method is colored with a

black color and uses the symbol ‘@’ to attach the name of the main class that con-

tains this method. Lifelines representing objects that relate to the FileSystem,

SystemConsole, and GUI are represented using certain notations. Here, we just

used colors to distinguish the lifelines of different categories. Other types of life-

lines are drawn using the ‘cyan’ color. These colors can actually be changed in

the future to different icons that intuitively reflect the main purpose of the cor-

responding lifeline. This extension is also helpful for enabling users to hide the

interactions of a certain type of lifelines if they are not important for his under-

standing of the program behavior. Likewise, it can be useful for the ones who

care about these interactions by providing them the facility to only show the

interactions between programs and these lifelines.
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Figure 4.4: Extended Lifelines’ Types

4.5.1.4 Nested Calls (calls inside a call)

Visualizing nested call is one of the major extensions in our work. Actually, visu-

alizing such calls can be achieved using the standard SD elements (i.e., messages)

in two different ways. The first way is to show the inner calls (i.e., calls inside the

parameters) using separate message elements as shown in Figure 4.5a. another

way is to only show the original call with a label that shows that it contains some

other calls inside its parameters (i.e., without showing separate message lines) as

shown in Figure 4.5a. However, both ways do not exactly reflect what is actually

represented in the source code, because the execution body of the inner calls might

contain lots of important interactions in the program. Therefore, we proposed a

new SD element that can represent this kind of calls in an intuitive manner.

Now, to expressively demonstrate the different between the standard visual-
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ization and our extension, lets have the following example:

b.m1(b.m3(), 1, a.m2());

(a) Standard SD elements 1 (b) Standard SD elements 2

(c) Extended SD elements

Figure 4.5: Nested calls visualization

As we can see in Figure 4.5c, through the object ‘b’ that is of type ‘B’, we have a

call to the method ‘m1’. The first parameter in this method invocation we have

another call to the method ‘m3’ from the same object, the second parameter is just

a constant values, and the last parameter is also a call to a method called ‘m2’ but

from another object called ‘a’ of type ‘A’. Our visualization elements could manage

the representation of such a call by having what we have called ’A call box’ that

represents the original call by a bold message line while showing all its parameters

as small filled rectangles lying at the left side. We show the parameter as if it is a

constant value or a variable. In the case of having a parameter with a method call,

then thinner message lines will be drawn approaching the corresponding lifeline
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of owner object of that method. Of course, if the body of that method has plenty

of interactions, then all of them will also appear inside the call box.

4.5.1.5 Chained Calls

As discussed earlier in this chapter, each method in a nested call statement returns

an anonymous object that can be used to call the next method until we reach to

the ultimate call that will return the final result. As shown in Figure 4.6a, the

statement "a.m2().substring(2).trim();" uses three different lifelines for

visualizing the three messages invoked through which. This will confuse the user

as it might give an indication of the presence of three separate method calls in the

program. This what motivated us to come up with our own extended element that

can exactly show the statement calls in a way that is identical to their structure

in the source code.

Figure 4.6b demonstrates our proposed notation for representing chained calls,

which is provided as an extension to the UML SD representation. We can observe

the red vertical bar that holds all messages executed within a single statement

of chained calls. This bar starts with the message that represents the method

that is directly connected to the first object used for initiating this kind of calls

(i.e., the method ‘m2’ of the object ‘a’). Then, after executing ‘m2’, it will return

an object to the same vertical bar, which in turn will trigger the next message

‘substring’ with an integer parameter ‘2’. Likewise, after executing ‘substring’,

another object will be returned to the bar to eventually be used to call the last

method called ‘trim’ whose value is returned to the lifeline initiated the entire set
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of calls.

(a) Standard SD elements
(b) Extended SD elements

Figure 4.6: Chained calls visualization

4.5.1.6 Call-driven Combined-Fragment Specifications

For the case of having loops, optional, or alternative clauses where their specifi-

cation (i.e., their condition or iteration parts) is composed of a method call (and

of course this call may trigger other calls inside the body of the used method),

standard SD cannot show these internal calls, as shown in Figure 4.7a. Showing

such calls may actually complicate the displayed SD but, on the other hand, it

opens a window to other interactions that users may be interested in.

Figure 4.7b demonstrate out proposed extension the combined fragments that

are usually used in UML 2.0 for representing interactions that are executing within

a certain block. We can see that our extended SD notations could show all the

interactions executed throughout the execution of the ‘for’ loop whose condition

and iteration parts are based on method calls. Although the standard SD is simple

and easy to read, lots of information is hidden from the user. In order to support

the simplicity of such extension, we allow this kind of information to be hidden

in a certain level of zooming.
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(a) Standard SD elements
(b) Extended SD elements

Figure 4.7: Visualization of call-driven combined-fragment specifications

4.5.1.7 Recursive Calls

With respect to recursive calls, the UML standard of sequence diagrams represents

them as self messages. This means that user should track any self message an check

if it is still under execution in order to identify whether it is recursive or not.

However, this applies only when the recursion happens within the same method.

In case we have an indirect recursion, especially with methods of different classes,

it will be represented using a normal message line. This urged us to come up with

an extension that can expressively represent the case as shown in Figure 4.8. It

is clear from the figure that referring to a recursive call is demonstrated using a

turnaround line with the new argument passed to that method. Notice that, the

label of the first message to the recursive method refers to the parameter of the

first invocation but that does not mean that these parameters are always sent to

that method.
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Figure 4.8: Recursive calls visualization

4.5.1.8 Documentation comments (Javadocs)

This extension is used to give more information about lifelines or methods whose

actually purpose can not be gained through their names. We refer by this to

the explanation of classes and methods that can be provided in the source code

as Javadoc comments. Here, we allow users to show the HTML-based Javadoc

comments in the SD layout in two different ways. The first way is by hovering

among the particular element intended to know more information about. The

other way is using the biggest zooming level that will show all information about

elements in the layout.

Figure 4.9 demonstrates an example of displaying the Javadoc comments of

the class ‘A’ that corresponds to the shown lifeline in the SD layout as a pop-up

tooltip when hovering the mouse among the area of that lifeline.
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Figure 4.9: Javadoc comments visualization

4.5.2 Extended Facilities to the Visualization Tool

4.5.2.1 Lifeline positioning

One challenge of the visualization process is determining the coordinates of the

SD lifelines. Lifeline positioning can be addressed from different aspects. a)

Objects of the same class can be located nearby each other. b) Classes of the

same package can be located nearby each other. c) Classes and objects that have

more interactions can be located close to each other regardless where they are

located in the source code.

4.5.2.2 Diagram Dimensioning and Zooming (What to show/hide)

Diagram dimension should be relative to different factors. To make the diagram

readable, it should be visualized with dimensions relative to the computer screen

and resolution. In addition, the number of lifelines, fragments, and messages

used in the diagram can also play a role in defining the proper dimension of the

resulting diagram. Furthermore, the visualizer provides a zooming facility that

enables users to select the desired dimension to their vision.

Zooming in/out depends on a set of predefined templates of levels that regulate
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the information demonstration in the produced SD. In other words, zooming-in

to 150% would show more information than that with 100%, while zooming-

out to 50% would reduce the amount of information shown. Therefore, in these

templates, we can specify the information intended to be shown/hidden whenever

a user attempts to zoom in/out. In addition, the visualizer should provide a facility

that allows users to choose certain lifelines to be visualized (i.e., shading in/out).

This would help in focusing only on the interactions between those lifelines while

the others are disappeared, shaded-out, or decreased in size.

The visualizer also provides extra options that allow users to select the desired

elements to be displayed. For instance, a user might need to zoom-in to 150%

and, at the same time, he/she does not want to see the interactions with external

lifelines. Hence, providing such options would assist in achieving this goal easily.

Actually, determining what to show and what to hide is a complex process and

is based on the same factors as the ones used for dimension specification. This

means that the amount of information to be displayed participates in deciding

what information to show/hide. For example, an SD for a small program can

show the self-interactions that show the messages from a certain lifeline to itself,

while for larger programs such interactions may be hidden.

4.5.2.3 Mouse hovering

Some hidden information can be displayed on-demand using the mouse hovering

facility. This means that the user can point out at the area of a certain element

in the SD layout to see more information about it (e.g., Javadoc comments).
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4.5.2.4 Source code navigation

To facilitate re-engineering of software projects, the visualizer should support ac-

cessing the source code of any item in the displayed SD. This includes declarations,

calls, and control structures.

4.5.3 Tool Support

The proof of concept prototype of this work is deployed as a Java executable Jar

application that can run under any environment. Since it is a prototype, it is not

integrated yet with the other techniques proposed in this work that are responsible

for collecting program information and tracing program interactions. Therefore,

to visualize a Java project, one needs to run our second tool, specify the project

path, and generate the XMI file(s) representing all the trace information. Then

through the visualizer tool, the user can open that XMI file and everything will be

displayed in the layout of the tool. A snapshot of the tool is shown in Fig. 4.10.

Figure 4.10: The visualizer tool
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4.6 Limitations of the Current Implementation

In this section, we discuss some of the limitation in the current implementation

of the proposed technique. These limitations may actually lead to producing

imprecise diagrams in certain scenarios.

4.6.1 Constructing Objects Inside Constructors

Instantiating a new object inside a constructor can lead to producing one lifeline

for that object. The lifeline will then be used by all constructed objects through

that constructor. For instance, if we have the following program:
1 class A{ public void go(){} }

2 class Example{

3 public A a;

4 public Example(){

5 a = new A();

6 a.go();

7 }

8 public static void main(String args[]){

9 Example ex1 = new Example();

10 Example ex2 = new Example();

11 }

12 }

In our technique, the produced sequence diagram representing this particular

program is shown in Fig. 4.12, whereas the anticipated SD should appear as

shown in Fig. 4.11.
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Figure 4.11: The expected SD for the object example provided

Figure 4.12: The produced SD for the example provided

4.6.2 Default Type Casting

JVM automatically casts the integer values to double ones in case of the argu-

ment is sent to a method or constructor that accepts a double parameter. Our

approach in this particular case will search for the constructor that accepts in-

teger, which is unlikely to be there. The following example represents the case

where the constructor ‘Example2’ accepts a parameter of the type ‘double’. When

that constructor is accessed as shown in the example using an integer value, the

JVM will use this particular constructor after casting the integer ‘2’ into double,

which results in having ‘2.0’.
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1 class Example2{

2 public Example2(double d){

3 }

4 public static void main(String args[]){

5 Example2 ex2 = new Example2(2);

6 }

7 }

4.6.3 Event-based Programs

Almost all the interactions that are executed inside the methods that are called

using event-driven actions are not captured in our program analysis techniques.

This is due to the fact that this kind of interactions are dynamic and can only be

captured using a dynamic analysis approach. Therefore, if we have the following

program, for example:

1 class Ex3 extends JFrame implements ActionListener

2 {

3 public Ex3 () {

4 JButton jb = new JButton("run");

5 jb.addActionListener(this);

6 this.add(jb);

7 }

8 public void actionPerformed(ActionEvent ev) {

9 // All program interactions

10 }

11 public static void main(String args[]) {

12 Ex3 ex3 = new Ex3();

13 ex3.show();

14 }

15 }
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The produced sequence diagram for this particular program using our approach

is represented as shown in Fig. 4.13, while actual program interactions can be

much more than that simple behavior, of course.

Figure 4.13: The produced SD for the event-based example provided
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CHAPTER 5

EVALUATION

The purpose of this chapter is to quantitatively evaluate the validity, usefulness

and effectiveness of the proposed Sequence Diagram (SD) extensions for program

comprehension. Furthermore, to gain a deeper confidence of their added value,

we investigate which aspects of the program control flow benefit the most from

the proposed extensions to the sequence diagram. To achieve these goals, we have

designed and conducted a controlled experiment in which we measured how these

extensions could affect 1) the time that is needed for various kinds of compre-

hension tasks, and 2) the correctness of the answers provided by the participants

during those tasks. Each task was represented as an independent question in the

designed questionnaire, where for each question, it is needed to calculate the time

spent for answering the question and the points assigned to all its answers. Tasks

have been classified into different categories based on the type of answer expected

for in each.
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5.1 Experimental Design

To satisfy our objective of this chapter, we define a list of comprehension tasks of

different kinds and measure the sequence diagram extensions’ added value to the

standard representation of the UML sequence diagram. We maintain a distinction

between the correctness of the responses given and the time spent on the tasks. On

the other hand, some tasks have been created for obtaining users’ own evaluation

of the proposed extensions in terms of usefulness, complexity, and precision in

reflecting the actual flow of control. Furthermore, we have identified the different

types of tasks to which the use of our extensions is the most advantageous. In

addition, we selected Greenfoot [78] as a case study for our experiment as it

includes different scenarios that cover most of our extensions.

5.1.1 Research Questions and Hypotheses

Based on our selected case study, we define the following research questions:

1. Does the availability of our proposed extensions to the sequence diagram

reduce the time that is needed to achieve the comprehension tasks?

2. Does the availability of our proposed sequence diagram extensions increase

the correctness of the answers provided during those tasks?

3. Is representing programs using our proposed sequence diagram extensions

less complex and more precise than that with the use of the standard se-

quence diagram?
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4. According to the answers provided to these research questions, which types

of tasks benefited most from the availability of our proposed extensions and

from control-flow modeling in general?

Then, we associate the first three research questions with three null hypotheses,

formulated as follows:

• H10: The use of our proposed sequence diagram extensions does not affect

the time needed to complete each comprehension task.

• H20: The use of our proposed sequence diagram extensions does not affect

the correctness of responses given during those tasks.

After that, we have stated the alternative hypotheses used in the experiment,

as follows:

• H1: The use of our proposed sequence diagram extensions decreases the

time needed to complete each comprehension task.

• H2: The use of our proposed sequence diagram extensions improves the

correctness of answers given during those tasks.

The first alternative hypothesis is motivated by the fact that the sequence

diagram extensions we have introduced provide a detailed and explicit outlook of

every particular construct of the subject system, which may help users to recognize

the interactions of the system along with the different control structures in the

source code more quickly than doing so with the use of the UML standard of
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sequence diagrams, which require users to implicitly infer about certain behaviors

of the system.

On the other hand, the rationale behind the second alternative hypothesis is

the inherent precision of our static analysis aligned with the meaningful notations

used to differentiate between the various aspects of the expected program behav-

ior. This indeed results in a more deep and detailed understanding and therefore

provide more accurate answers.

The third alternative hypothesis is induced by the way and style our extensions

are represented. The design of the style of the extended in intended to reflect the

actual flow of control in programs by using the least number and size of elements.

In order for the hypotheses H10 and H20 to be tested, a set of comprehension

tasks have been defined in a way that they can be addressed by both a control

group and an experimental group. These two groups are differently treated, where

the former group uses a standard UML sequence diagram, whereas the latter group

has been given a diagram extended with our proposed notations. A between-

subjects design is maintained to allow each subject to be either in the control

group or in the experimental group.

5.1.2 The Object of the Experiment

The system that our experiment is based on is Greenfoot, a Java environment

that simplifies the development of two-dimensional graphical applications and is

meant for educational purposes of programming languages. Generating reverse-

119



engineered sequence diagrams for the overall functionality of Greenfoot will for

sure result in obtaining more complex and disappointing diagrams for the sub-

jects to achieve the tasks. Therefore, we have selected only a specific scenario

of Greenfoot used for browsing classes. This scenario is based on a class called

ClassBrowser, which is responsible for drawing and laying out the classes on the

user interface. The resulting diagrams contain more than 50 method calls between

around 20 objects/classes.

Our choice of Greenfoot, and its selected scenario in particular, as the object

of this experiment has been motivated by several factors, stated as follows:

• Greenfoot is open source, which is indeed necessary for our experiment since

our technique is based on static analysis, which requires the availability of

the source code.

• It is a modular environment, which allows the analysis and modeling of some

of its scenarios easily.

• It is written in Java, with which many potential subjects are sufficiently

familiar.

• The scenario of Greenfoot that we have chosen for our case study covers

most of the our proposed extensions.

Before applying our approach to the case study, a stub class has been created as

a starting point of the ClassBrowser functionality. After that, the standard and

extended reversed-engineered sequence diagrams representing that scenario have
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been generated. For the standard one, we have used the Visual Paradigm 12.2 tool

for producing the UML sequence diagram and used it as a reference. Our extended

sequence diagram has been exported to a PDF file allowing users to search for

certain terms or to zoom in/out while responding to the tasks assigned. For

the evaluation to be completely fair, we have reproduced the standard sequence

diagram using Visio and exported to a PDF as well.

The description and analysis of the methodology used to generate these dia-

grams have been discussed in chapter 3 of this thesis. Our prime objective in this

chapter is to analyze whether the availability of our proposed extensions to the

sequence diagrams is profitable during the program comprehension activity.

5.1.3 Task Design

With respect to the comprehension tasks that are to be addressed during our

experiment, we tried our best to have them representative of real user needs as

much as possible. In addition, we designed the tasks so that no task is biased

toward either the UML sequence diagram or our extended one. However, since our

objective is to evaluate the usefulness of the extended notations over the standard

ones, some of the tasks initially appeared to be a bit biased to our extensions. To

resolve this and to maintain the balance, we modified some the tasks in a way that

made them somewhat easier to be solved using the standard sequence diagram.

In the literature, related controlled experiments for program comprehension

applied the comprehension framework proposed by Pacione et al. [16], who classi-
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fied the comprehension tasks of software visualization into nine primary activities.

These activities are intended to represent both general and specific reverse engi-

neering tasks and to cover both static and dynamic information. Again, since

we are evaluating specific extensions over a standard representation as a bench-

mark (i.e., not the tool developed) and we are only interested in the behavioral

information (i.e., structural information are not covered), most of such tasks do

not apply to our case of evaluation. Therefore, we have designed the tasks to be

of different types of questions, where each type requires a different kind of input

from the users than the other types.

In particular, tasks in our experiment have been designed based on 4 different

evaluation categories (Table 5.1). Categories C1, C2, and C3 represent different

comprehension activities in which users are required to provide a different kind

of answer to each. In these categories, the time users spent on answering each

particular question of them is important since it measures how the information

provided by the standard or extended sequence diagram is useful enough to get

the answer quickly. In the C4 category, time requirement is not essential since

they require users themselves to rate the complexity and precision of the diagrams

provided in representing certain scenarios of interaction. Finally, C5 category is

composed of only one question that asks users to give their own opinion about

whether the proposed extension (and other ones not yet implemented) are useful

and effective in understanding programs.

A collection of thirteen tasks has been proposed to cover the aforementioned
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Table 5.1: Categories of evaluation tasks

Category Description

C1 Searching for the number or names of certain program components
C2 Writing code representing a certain sub-diagram
C3 Snapping the sub-diagram representing some certain code
C4 Comparative rating
C5 General user opinion about all the extensions

comprehension categories. Category C1 contains the tasks T1.1, T1.2, and T1.3.

Tasks T2.1, T2.2, T2.3, and T2.4 are of the category C2. Category C3 involves

only one task, which is T3. Under category C4, we have four tasks, namely T4.1,

T4.2, T4.3, and T4.4 while category C5 has only one task, which is T5.

We aim to highlight all aspects of our extensions in the ClassBrowser case

study. Table 5.2 shows descriptions of the tasks by presenting how each of which

covers the particular aspects of our proposed extensions. In addition to T5 that

covers all the proposed extensions, each particular extension is covered by at least

one task. For Example, The extension representing Chained Calls is covered by

the Tasks T2.1, T2.2, and T4.1 and the Nested Calls extension is covered by T2.2,

T3, and T4.3. Notice that some tasks may cover more than one extension.

With respect to the tasks of the categories C4 and C5, feedback obtained

from users is not graded further. In other words, there was no need to grade

responses gathered for these tasks as they are already of a rating kind. Feedback

on the tasks of the category C4 represents an evaluation of the users themselves

for the complexity and precision of the extended representation compared with

the standard one. Similarly, feedback on the task of category C5 refers to how the
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(a) Standard SD for the control group (b) Extended SD for the experimental group

Figure 5.1: Figures provided with task T2.1

proposed extensions were useful and effective towards understanding programs,

from the point of view of the participants themselves.

Rather than using multiple-choice question types, we provided our experiment

with open questions, which made it harder for participants to guess the answers.

This has made the tasks more representative in rendering real comprehension

situations. In particular, this only applies to the tasks of the categories C1, C2,

and C3. Rating and opinion questions, included in the tasks of category C4 an C5,

were designed with multiple choice questions listing all possible ratings between 0

and 4. Each answer can at the end earn a point from 0 to 4. Points were awarded

by a sole evaluator, the author of this thesis, to ensure a uniform and fair grading

based on a solution model.

5.1.4 Subjects

The subjects in this experiment are 2 PhD candidates, 8 MS students, and 12

BS students in the senior stage. The PhD and MS students are actually mixed

in their degrees in the computer science department and the resulting group thus
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(a) Standard SD for the control group

(b) Extended SD for the experimental group

Figure 5.2: Figures provided with task T2.2

(a) Standard SD for the control group (b) Extended SD for the experimental group

Figure 5.3: Figures provided with task T2.3

(a) Standard SD for the control group (b) Extended SD for the experimental group

Figure 5.4: Figures provided with task T2.4
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(a) Standard SD for the control group (b) Extended SD for the experimental group

Figure 5.5: Figures provided with task T4.1

(a) Standard SD for the control group
(b) Extended SD for the experimental group

Figure 5.6: Figures provided with task T4.2

(a) Standard SD for the control group
(b) Extended SD for the experimental group

Figure 5.7: Figures provided with task T4.3

(a) Standard SD for the control group (b) Extended SD for the experimental group

Figure 5.8: Figures provided with task T4.4
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Table 5.3: The list of extensions to be evaluated in task T5

Extension ID Extension Name Notation

Ex1 Try-Catch fragment

Ex2 Lifeline distinction fragment

Ex3 Lifelines created from returned objects

Ex4 Type casting

Ex5 Calls inside fragmentâĂŹs operands

Ex6 Recursive calls

Ex7 Nested calls

Ex8 Chained calls

Ex9 Variables names and all their assignments

Ex10 Javadoc comments of classes and methods

Ex11 Events and event handling

Take into account that event-driven methods
are usually executed when a certain action
is fired. Therefore, they cannot appear in
the sequence diagram in a specific order.
Do you think that showing them will add
value to the program understanding?
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consists of 22 subjects. The collection of subjects is somewhat heterogeneous in

that it represents five different nationalities and all kinds of students are working

on different areas of computer science and software engineering.

Although it was recommended by Di Penta et al. [79] that “a subject group

made up entirely of students might not adequately represent the intended user

population”, we were constrained by the time allotted and could not make the

subjects more diversified. We hope in the future to extend our subjects to include

professors and participants from the industry. Overall, all subjects participated

as volunteers, which can thus be assumed that they were appropriately motivated.

All of them have prior experience with the UML sequence diagram but none of

them has previous knowledge about our extensions.

To partition the subjects in the two groups, we have considered their fields of

expertise that can strongly influence the individual performance. They actually

represent variables that can really affect the results and should be controlled

during the experiment. Therefore, their distribution among the two groups was

even and based on their knowledge of Java, software modeling, sequence diagrams

and reverse engineering. Since all the undergraduate students were working on

senior projects in software engineering, they were just evenly partitioned into two

groups of 6 students, one as control and another as experimental. MS and PhD

students have been divided based on their experience in software engineering and

that was measured by the number and kind of courses they took from the software

engineering program. This was actually assessed using informal questions asked
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to each subject in order to test his experience with sequence diagrams. Questions

included asking about the courses they took, even in their master’s degree or

in their undergraduate studies, and whether they worked on projects related to

sequence diagram modeling. Thus, they were equally assigned to the groups (i.e.,

one PhD and 4 MS students per each group). This ended up with having 11

students in each group, each of which contains 1 PhD, 4 MS and 6 BS students.

5.1.5 Experiment Procedure

The experiment was carried out through two sessions, each of which took place at

a computer lab in the department at our university. Both sessions were conducted

on workstations with similar specifications, i.e., all of them are of Intel Core i3 -

2.93 GHz CPUs, 4 GB RAM, and screen resolutions of 1440 x 900. In addition, the

workstations were using the same Internet connection provided by the university

network.

The first session involved the MS and PhD students of both groups while the

second session was for the BS students. A 5-minute recall tutorial on sequence

diagrams was given to both groups, highlighting the main notations of and how

can they reflect Java code. In addition to that, we conducted a 10-minutes presen-

tation showing our proposed extensions to the standard sequence diagram. Both

sessions were supervised, allowing the subjects to pose clarification questions and

preventing them from communication with each other.

The subjects were given links containing the online questionnaire along with
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other links for downloading the corresponding diagrams and the tutorial docu-

ment. The links to the questionnaires were provided as publicly accessible links,

meaning that the identity of the subjects cannot be recognized. The assignment

was to complete the 13 comprehension tasks within around 35 minutes. During the

whole duration of the sessions, we kept requiring the subjects to motivate their

answers at all times. The subjects were advised to complete the tasks within

the time allocated, recommending them to skip and write ‘I could not identify

the answer for this’ for any question that might take more than 5 minutes. Fi-

nally, the questionnaire asks the subjects to write their opinions or any further

recommendations regarding the experiment, our extensions, or any other related

aspects.

5.1.6 Variables and Analysis

The availability of our extended notations in the experiment is regarded as the

independent variable to the UML sequence diagram during all the tasks.

The first dependent variable is the time spent on each task and is measured

by having the subjects to record the starting time of any new task. To effectively

accomplish this, we have written a small script that can automatically get the

system time and show it as text in each task page, allowing them to copy/paste

or drag/drop it to a certain field on that web page. In addition, we have disabled

the ‘Back’ button on each page to prevent the subjects from navigating back to

earlier tasks.
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The second dependent variable is the correctness of the given answers. This

has been measured by applying our answer model to the subjects’ responses, which

specifies the required elements and the associated scores. For the other tasks that

require users themselves to rate the complexity and precision of our extensions in

representing program code in comparison with the standard representation, there

were no answer models for such tasks.

To test our hypotheses, the sample distributions have firstly been tested via

the Kolmogorov−Smirnov test [80] to see whether they are normal. In addition,

Another test, that is Levene’s test [81], was used to check whether sample distri-

butions have equal variances. In general, in case these tests passed successfully,

the Student’s t-test is used to evaluate the hypotheses.

Following our alternative hypotheses, we employed the one-tailed variant of

each statistical test. For the time as well as the correctness variables, a typical

confidence level of 95 percent was maintained (α = 0.05). The statistical package

that we have used for our calculations is R version 3.2.2 (32-bit).

5.1.7 Pilot Studies

Before carrying out the experimental sessions, we conducted two pilot studies to

refine several experimental parameters, such as the number and kind of tasks,

their feasibility, clarity, and the amount of time would be required. The pilots for

the control and experimental groups were performed by two MS students of the

computer engineering department. Both did not join in the actual experiment.
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The purpose of selecting students from an area that is somewhat outside software

engineering is to get a helpful impression about the parameters mentioned above.

Both pilots did not have the basic knowledge about sequence diagrams, although

they said that they took a related course in their undergraduate studies a long

time ago. Therefore, we have given a detailed tutorial, for around 30 minutes and

we then got them working on the experiments.

The results of the pilots led to the elimination of three tasks. These tasks were

either time consuming or not clear at all, even after live clarification during the

experiment. In addition, the studies suggested changing one of the tasks from one

category to another. Furthermore, the studies helped us to refine several tasks

for the sake of making them clearer and easier to understand. Other than this,

the tasks were found to be sufficiently feasible in both the standard and extended

sequence diagrams. We have also utilized these studies to create a clear tutorial

as a presentation to show 1) the basics of sequence diagrams, our extensions, and

the types of tasks and how should they be responded to.

5.2 Results

Table 5.4 displays a set of descriptive statistics of the questionnaire results based

on aggregated measurements over the eight tasks, which are basically based on

grading users’ answers and time spent.

Based on the individual results of each task, we have observed no outliers to

be removed from the final results. However, as a key factor for both time and

133



Table 5.4: Statistics of the questionnaire results

Time (in minutes) Correctness (in points)
Standard SD Extended SD Standard SD Extended SD

mean 23.81 17.81 14.40 26.80
difference -25.20% +86.11%
min 17.33 11.26 7 17
max 32.82 24.80 20 30
median 21.45 18.59 14 27
stdev. 5.72 5.10 3.37 3.85
Kolmogorov-Smirnov 0.594 0.597 0.070 0.005
Levene F 0.6405 0.7525
Student’s t-test
df 17.76 17.69
t 2.47 -7.66
p-value 0.0237 0.0001

correctness, we have noticed that two subject (one from each group) were not very

interested in conducting the questionnaire as we have noticed that they did not

respond to the provided tasks properly. For example, one of them has written

some zeros as responses for some of the tasks of the category C2 that required

writing code, while the other has entered similar rating values for all both criteria

and both diagrams in the tasks of the category C4. Subsequently, we disregarded

the entire input provided by these two particular subjects (i.e., we ended up with

having responses of 10 subjects from the control group and 10 subjects from the

experimental group).

5.2.1 Time Results

We have started by testing the null hypothesis H10 described in section 5.1.1 that

stated that the time needed to complete comprehension tasks is not impacted by

the availability of our proposed sequence diagram extensions. Fig. 5.9a shows the
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total time spent by the subjects on the first eight tasks using a box plot. It can be

also indicated from Table 5.4 that, on average, extended diagram group required

25.20 percent less time.

The distributions of the samples are normal and they have equal variances as

well. This has been was proven by the Kolmogorov-Smirnov and Levene tests,

which have succeeded for the timing results shown in Table 5.4). This concludes

that Student’s t-test can be used to test H10. As presented in Table 5.4, a

statistically significant result has been yielded from the t-test, which is represented

by the p-value of 0.0237 that is less than 0.05. The average time spent by the

extended sequence diagram group was visibly lower, which means that H10 can

be rejected in support of the alternative hypothesis H1, implying that the use of

our sequence diagram extensions decreases the time needed to achieve different

comprehension tasks.

5.2.2 Correctness Results

Now, the null hypothesis H20 that states that the use of our sequence diagram

extensions does not affect the accuracy of answers given during the comprehension

tasks is tested.

Fig. 5.9b demonstrates the points obtained by the subjects on the first eight

tasks by means of a box plot. Notice that we take into consideration the overall

points rather than individual ones (Points per task are discussed in section 5.3.3).

The correctness difference is obviously seen from the box plot, and is even more
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Figure 5.9: Box plots for the overall time spent and correctness
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pronounced than that for the timing results. Answers provided by the extended

diagram-based subjects were more accurate by 86.11 percent (refer to Table 5.4),

that is obtained through averaging 26.8 out of 32 points compared to 14.40 points

for the standard diagram group.

Like the timing results, Table 5.4 also shows the results of the Student’s t-test

for response correctness, in which the requirements for the use of the t-test were

met as well. The p-value of 0.0001 implies statistical significance, which means

that H20 can be rejected in support of our alternative hypothesis H2, which states

that the availability of our sequence diagram extensions enhances the correctness

of answers provided throughout the conducted comprehension tasks.

5.3 Analysis and Discussion

This section presents our observations and conclusion of the results obtained from

the experiment. It also justifies and elaborates the results of the overall perfor-

mance, performance per task and performance per subject level.

5.3.1 Reasons for Different Time Requirements

There are several factors that contributed to the lower time requirements for

the extended sequence diagram participants. First, most of program interactions

and control flow constructs are explicitly represented using special and explicit

notations, which helps in finding certain information by just having an outlook

to the provided diagram. Users using the standard UML sequence diagram, on
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the other side, tended to look for certain pointers that might assist them inferring

the locations of certain program information. Second, as most of the program

information were either not, wrongly or inappropriately presented in the standard

sequence diagram, users tended to search for answers to the questions even more

than once in some portions of the diagram, which for sure results in having a

cognitive load.

On the other hand, there might be several factors that led to having a negative

impact on the time requirements of the users who used the extended sequence

diagrams. The main important factor is the unfamiliarity of these extensions

to the users as it was the first time for users to see such extensions. This has

led to having the users requesting a copy of the tutorial presented while they

were conducting the questionnaire. Therefore, referring to the tutorial for every

particular SD extension in some of the questions contributed to spending a certain

amount of time as overhead for recalling its meaning. This could be solved by

incorporating the proposed extensions into standard UML as well as the tool that

generate it.

5.3.2 Reasons for Response Accuracy Differences

We regard the added value of our proposed extensions for correctness to several

factors. The style in which the new sequence diagram extensions have been de-

signed almost talks about the code behind them. This means that, looking up a

certain information, writing the representative code or locating the corresponding
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excerpt of a specific statement was a bit easier compared to the standard one.

Second, as the main objective of the proposed extensions is to provide a com-

prehensive and precise overview of the program control flow using representative

notations, users were confident and thus able to capture the correct answer of most

of the provided questions. Finally, the debriefing questionnaire results shown in

Table 5.4 show that the extended sequence diagram group used their assigned

diagram most of the time. In other words, in some of the tasks where users could

provide correct answers, they spent a bit more time to get that answer. This has

further been reinforced by the users’ ratings that indicate that the extensions were

precise while they were somewhat complex at a certain degree in some cases.

5.3.3 Individual Task Performance

The main goal of our third research question is to enable us to identify the compre-

hension tasks that benefited most from using our proposed extensions to sequence

diagrams. Therefore, we have examined the performance of the subjects per each

task independently in more detail. Fig. 5.10 demonstrates, from a task perspec-

tive, the average time spent and points obtained by each group. Although our

experiment composes thirteen tasks, only eight of them were considered in this

particular evaluation. Others, of the categories C4 and C5, have a different kind

of evaluation that is based on the opinion of the users themselves. Based on these

results, we can notice that time spent and correctness are negatively correlated.

This means that users who needed a relatively little effort could score relatively
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Figure 5.10: Time and correctness averages per task

high points, and vise versa.

5.3.3.1 Task T1.1

The main goal of the firstly introduced task was to identify all type-casting opera-

tions in which objects are converted from one type to another. The difficulty that

the participants of the control group faced in this task is the fact that the standard

UML sequence diagram does not contain a special notation for representing such

operations. Therefore, they consumed too much time trying to identify where ob-

jects are returned of certain types and then created with lifelines of other types.

At the end, almost all of them could not capture such operations in the stan-

dard sequence diagram they were given. On the other hand, since the extended

sequence diagram has a special notation for such operations, almost all users of

the experimental group were able to identify all such operations with a minimal

amount of time. The significant difference between the time and points of the

answers is obvious.
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5.3.3.2 Task T1.2

Task T1.2 concerned a recognition of the methods that are recursively called dur-

ing the communications between objects. Achieving this task was also easier using

our new notations than that with the standard representation since it explicitly

exposes all recursive messages using a meaningful notation. In this task, all exper-

imental users could get the full points (i.e., 4 out of 4) and needed less than half

the time required by the control group. The main reason of having only two sub-

jects out of eleven who could catch the recursive methods is the fact that self and

recursive messages are represented using the same notation in the UML standard

of sequence diagrams. Therefore, such users consumed too much time tracking all

self-messages for the sake of identifying whether they are being executed or not.

Nevertheless, only a few of them could catch the recursive ones.

5.3.3.3 Task T1.3

This task was actually related to counting the number of messages fired inside the

try block of the try − catch construct. Again, our extended diagram contains a

simple extension to the UML sequence diagram fragment. Our extension could

utilize the fragment, with a certain color, to enclose all messages originated from

the try, catch or finally blocks. This means that users of the experimental group

could recognize that fragment and started counting the number of messages fired

from the try block. Although their scores were relatively higher than the one

of the control group, there was no significance difference in the time spent. The

main cause of that is the shape similarity of the try − catch fragment with other
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fragments representing other blocks, such as loops, conditions, and alternatives,

which required users to investigate each fragment to check whether it relates

to a try block. Another reason was with the counting strategy; some users were

confused whether to only count the messages originated from the try block only or

they should include the ones originated from the catch block. A similar confusion

was with the messages created within the nested and chained calls. With respect

to the control group, some users were searching for keys that can direct them to

find messages inside a try block, by searching for an Exception class for example.

Once they could not find any, they just answered with ’0’. Others had the fact

that the UML does not provide a specific notation for try−catch and subsequently

gave a ’0’ answer as well. Thus, the time spent in this task by the control group

was closer to, but a bit higher than, that of the experimental group, but of course,

all the answers provided by the standard diagram participants were not correct.

5.3.3.4 Task T2.1

This kind of tasks was concerned with the ability to recognize the code snippet

that caused the generation of a certain excerpt of a sequence diagram. We came

up with this kind of question to check whether our extension was simple enough

in representing the control flow of programs. Based on the timing results, we

can see that users spent less time in writing the code representing an excerpt of a

standard sequence diagram compared with the users of the extended diagram, but

again answers of the experimental group got higher scores. This is justified by the

slight complexity of our proposed extensions compared with the simplicity of the
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standards. Since the standard representation was simple, users could immediately

write the code but in a wrong way since the standard sequence diagram does not

reflect the actual flow of the chained calls. Inversely, users used the extended

diagram were able to recognize the correct flow of messages with the price of time

that was almost spent for recalling what such a notation means by referring to

the tutorial provided.

5.3.3.5 Task T2.2

This is another task of writing the code snippet that generated the excerpt of the

diagram. As the flow of messages here was relying on chained and nested calls,

the diagram excerpts of both the standard and extended diagrams were somewhat

complicated. However, users of the experimental group could write the code faster

and more correct than those of the control group. The time was 1.8 minutes less

while the score was 1.1 points more.

5.3.3.6 Task T2.3

In this task, we clearly observe that the time spent by the experimental group

was greater than that spent by the control one. The diagram excerpt used for this

task was fairly simple using both: the standard and extended sequence diagrams.

This caused the standard users responding faster but, due to the limitation of

the UML sequence diagram in creating lifelines for objects once they are returned

from a method call, most users could not recognize that the message provided in

the excerpt returns an object to a named variable, which as a result led to wrong

answers. On the other hand, the extended diagram users were able to identify the
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returned object and could answer the question better but with the price of time

spent.

5.3.3.7 Task T2.4

The question here was also provided with a simple diagram excerpt, representing

a conditional fragment with an operand containing a method call. Users of both

groups could immediately recognize the representative code, but the one of the

control group were a bit faster and got better scores as well. The extension

in this context was a bit more complicated that the standard representation as

it explicitly demonstrates the call inside the operand with a message connected

to a lifeline. The standard diagram was simple because it uses only text for

representing the operand with no matter what is inside it.

5.3.3.8 Task T3

This is the only task that represents the category C3. Here, subjects are provided

with source code and requested to search for the portion of the supplied diagram

representing that code snippet. Again, the diagram excerpt representing that code

was relatively simpler and users go catch quickly. However, we can observe the

significance of the time spent for this task compared with the other tasks, which

actually is caused by having users to search, screenshot, save the snipped image,

and then upload that image as a response to this task. However, we can see that

it is less than that with the control group. We can see, on the other hand, that

the answers provided by the experimental were less accurate in comparison with

the standard group users, who could achieve better scores (only 0.3 more than
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the experimental group). While investigating the root cause of that, we observed

that there was another excerpt of the diagram that is somehow identical to the

one requested in this task. Everything was similar in those two excerpts except

the name of one of the classes used as a parameter to one of the methods called.

5.3.3.9 Task T4.1

In this task and the other tasks of category C4, we allow users to give their eval-

uation for the complexity and precision of our extensions in representing certain

program behavior. To this end, we have defined these two criteria as follows:

Complexity : this criterion refers to the number and shape of the elements used

in each notation of the sequence diagram, either the standard or the extended,

and the overall composition of such notations.

Precision : this criterion measures how precise is the diagram in representing

the associated code snippet. This involves the capability of the diagram of covering

all aspects of the given code, such as the types of messages, the composition of

different messages, and lifeline interactions.

In all tasks of such a category, users are allowed to rate the provided diagrams

against such criteria based on the code given. The rating is done on a scale of

0-4 (i.e., 0, 1, 2, 3 or 4). After collecting the results of all tasks of this kind, we

have aggregated them using the median rather than the mean. This is because

that the mean will not appropriately represent the overall complexity and criteria

as it averages the inputs. Questions of this category are represented similarly to

all participant included the control and experimental groups. Overall results are
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Figure 5.11: Average complexity and precisions per task for both: standard and
extended sequence diagrams

also obtained from all participants as one chunk.

In particular, Task T4.1 comparatively measures the complexity and precision

of the standard and extended sequence diagrams in representing chained calls. It

can be seen from Fig. 5.11 that representing chained call using our proposed no-

tation was twice precise than the notation used by the UML standard of sequence

diagrams. In addition, in terms of complexity, the representation of chained calls

is half complex than the representation using the standard sequence diagram.

5.3.3.10 Task T4.2

With respect to representing loops that contain method calls inside their spec-

ifications, our notation appeared to be similar to the standard representation.

However, it was more precise in reflecting the number and kinds of the messages

and lifelines would be used during the execution of that for loop.

5.3.3.11 Task T4.3
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Regarding nested calls, it is also clear that our representation is more simple and

precise at the same time. This is because that the standard sequence diagram

complicates the representation by generating lots of separate messages related to

the method calls used in the program, which consequently makes it represent the

program as it appears in a different flow of control.

5.3.3.12 Task T4.4

Recursive calls notation was also one of the extensions that significantly simplified

the representation of recursive methods and their corresponding calls. At the same

time, it was precise as it rendered the actual flow of control of the given scenario.

5.3.3.13 Task T5

In this task, we just take the subjects’ opinion about the extensions provided in

the experiment. Control group users were asked whether the provided extensions

would definitely help them answering the questions they already answered in a

better way, somewhat or will not help them at all. Similarly, users of the ex-

perimental group were asked whether the proposed notations were advantageous

while they are carrying out the experiment.

Results in Fig. 5.12 show that almost all proposed extensions to the sequence

diagram were useful and effective for understanding the control flow of programs.

5.3.3.14 Summary

After a deep interpretation of the performances obtained per each individual task,

we analytically generalize our discussion. From the results of all tasks of the cate-

gory C1, namely T1.1, T1.2 and T1.3, it has become obvious that our extensions
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Figure 5.12: Average usefulness of each SD extension

to the standard sequence diagram are of great help in grasping the interactions

executed throughout the program or even within a certain kind of control struc-

tures. Another conclusion is related to the UML standard of sequence diagram

which was basically designed for forward software engineering and is not sufficient

for reverse engineering.

In addition, our sequence diagram extensions provide explicit representations

of most of the constructs used to control the flow of programs. It is useful in a

way that it represents program interactions such that users can visually distinguish

patterns. We refer by patterns to every particular block of interactions, construct,

operation or control of the program flow a program may employ. This indeed turns

out to expose and derive more accurate information than could be obtained from

the exhausting examination of these patterns from the standard UML sequence

diagram by the users themselves.
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For some of the tasks where the representation of program control flow was

simpler using the standard sequence diagram, we can conclude that extensions

should focus on reducing the complexity of the resulting diagrams while preserving

the precision. This is actually a trade off and we could investigate more about

such a trade-off through the use of the tasks of the category C4.

5.3.4 Individual Subject Experience Levels Performance

In order to address the concerns that may arise regarding the effect of the ex-

perience of the students used as subjects in this experiment, we have analyzed

the performance of each level of students separately. In other words, we have

aggregated the results of the PhD students, MS students, and BS students in-

dependently so that we can recognize which level of students had a significant

impact on the overall results obtained, taking into account that there was only

one PhD student per each group.

It can be shown from Fig. 5.13 and Fig. 5.14 that student level of study or

experience does not significantly contribute to the change of the overall results. In

each level, the mean time spent by students to respond to the given tasks is less

for the experimental group than that for the control group. On the other hand,

in each of the levels of students’ study, scores gained by the participants of the

experimental group were much greater than the scores obtained by the control

group’s participants. Since we have only one PhD student per each group, we

cannot comment further on the results provided since the min, max, and mean
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Figure 5.13: Box plots for the time spent per subject levels

values are the same in this particular case.

From the individual results of the subject levels, we can notice that, in both

groups, most of the BS students’ results were above the mean in terms of time

spent while the majority of MS students were under the mean. From a different

perspective, the performance of almost all the BS students of the control group

was low in terms of giving correct answers to the tasks questions while it is varied

for MS students of the same group. However, both MS and BS students of the

experimental groups were performing well in answering the questions based on

the extended sequence diagram.

We also demonstrate the student’s performance per each level of study in Fig.

5.15. This figure makes it obvious that the performance of the students of the
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different level of study is about similar in a way that the control group took more

time than the experimental with fewer points for the answers given. We conclude

that the level of study or experience of the subjects does not have a drastic impact

on the overall results as long as they are assigned to both groups of the experiment

based on their experience.

5.4 Threats to Validity

In this section, we discuss the validity threats and how we addressed them in our

experiment. Such validity threats have been classified into two different categories,

namely internal validity and external validity.

5.4.1 Internal Validity

This type of validity refers to the cause-effect inferences made throughout the

analysis. It includes the threats related to subjects, tasks, and other variables.

5.4.1.1 Subjects

Since we did not conduct a detailed prior assessment of the subjects competence

in the field of software engineering, they may not be adequately competent. To

reduce this threat, we ensured that the distribution of the subjects to the two

groups of the experiment is fair enough, which was based on their experience

in software engineering in general and in sequence diagrams in particular. For

this purpose, we firstly asked each subject from the MS and PhD level a set of

informal questions in order to infer and measure their comparative experience in

152



the field of the experiment. For undergraduate students, we did our best to select

students from the same level (i.e., the senior level) and particularly the ones who

are working in similar senior projects with the same supervisor. Second, we have

designed a detailed tutorial that could give them an idea about the concept of

sequence diagrams as well as our extensions. Then, this tutorial was provided to

all of them to allow them to refer to it at any point they feel they might need it.

Another aspect of subject-driven threats is related to the different levels of

study as well. A particular level of students can affect the overall results. There-

fore, we have analyzed the results of each level to investigate whether there exists

any level impacting the overall results.

From a different aspect, subjects may not have been properly motivated to

participate in the experiment. This threat is mitigated by the fact that all of them

participated as volunteers. Another threat might be related to the knowledge

of participants about the objective of the experiment. Actually, most of them,

especially the graduate ones, knew that were working on this project. We tried

to alleviate this threat by encouraging them to provide fair answers as much as

they can. We also told them that we were in the position of enhancing this work

and that was why their fair answers, even if they were negative, would definitely

help us to improve the quality of the work.

5.4.1.2 Tasks

We have designed the comprehension tasks used in this experiment ourselves.

This can indicate that these tasks may have been biased toward our proposed
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extensions. To avoid this threat, we have designed them in a way that the difficulty

of some tasks is distributed over the standard and the extended diagram. In other

words, some of the tasks were easier to answer using the standard diagram than

the extended one while some others were quite the opposite. Moreover, we have

categorized the tasks so that some of the extensions are evaluated using more than

one task.

Another threat that is related to task design is that they may have been too

tough. This possibility was refuted by the use of pilot studies that enabled us to

refine the presentation of the tasks and remove the ones considered very difficult

or time-consuming. It could also be possible that subjects’ answers were graded

wrongly. This threat was mitigated by the use of a model answer that was used

as a reference. In addition, the grading process was task-wise, which means that

we grade only one task at a time for all the participants.

Another threat that is important to be addressed is the recording of the time

spent by users on each particular task. Unfortunately, we could not find an online

survey-building tool that provides this feature of keeping track of the time spent

for each task (we could only find one tool that can supply timers for questions but

it was prohibitively expensive to be used). We tackled this issue by having the

online questionnaire (using SoGoSurvey) to be divided into several pages, were

on each page, there exist only one question and a field for inserting the starting

time of each task That time is automatically generated and shown in front of the

users. Then, the task involves a question asking users to copy and paste it in its
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corresponding field. The ’Back’ button has also been disabled. This could lead to

another threat in a way that users might tamper with the time or insert incorrect

values manually. It can also happen that the user refreshes the web page after

spending a certain amount of time on a task and that will lead to generating a

new starting time for that task, which will affect the timing of that task and the

one that precede it. This should be managed in the future by designing our own

survey from scratch and embedding it with hidden timers that can record the time

spent for each task in the background.

5.4.1.3 Miscellaneous

Time constraints may have influenced the accuracy of the subject’s responses to

the tasks. To resolve this, the pilot studies were also useful here as it helped

us to estimate the maximum required time for the whole experiment since the

participant in such studies were inexperienced with sequence diagrams as they

are from the computer engineering department. In addition, we allowed users to

slightly exceed (i.e., by a maximum of five minutes) the experiment time that was

initially set to be 35 minutes.

Furthermore, our statistical analysis may not have been completely accurate

due to having two students with empty-like answers or similar rating points. In

order to escape from this threat, we have removed the responses of these two

students on all tasks from our analysis.

Another threat to validity could be the way in which the two different diagrams,

the standard and the extended, have been deployed to the subjects. This threat
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was reduced by reproducing such diagrams using the same tool, that is Visio, and

exporting them as PDF files. This allowed subjects of both groups to make use

of the capabilities provided by the acrobat reader that was installed on the lab

machines (of the same version), such as zooming and searching.

5.4.2 External Validity

External threats to validity are concerned with the possibility of generalizing the

results to different contexts, and the limited representativeness of the tasks, the

subjects and the use of Greenfoot as an object.

With respect to the subjects, the use of a different kind or a large number of

participants, such as professionals from the industry or more students of various

levels could be a possible threat. Unfortunately, it was quite difficult to invite

more than this number of students to the experiment as it was conducted the

week before the week of the final exams of the semester. On the other hand,

inviting people from industry is also a big issue as they always concerned about

their time and how to spend it efficiently. We plan to extend the number of

participants in our evaluation of the proposed extensions using another extended

controlled experiment.
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CHAPTER 6

CONCLUSION AND FUTURE

WORK

6.1 Conclusion

This work has investigated the possibility of enhancing the comprehension of pro-

gram interactions using a better visualization approach. After studying the related

work in the literature, we observed that most techniques in this context focused on

reverse engineering of sequence diagrams using proper program analysis method,

such as static analysis, dynamic analysis, or both together. We carried out a deep

analysis of the state-of-the-art techniques and identified the limitations and gaps

within which, which are concerned with the way sequence diagrams are repre-

sented and the amount of information to be presented.

Accordingly, we have defined specific research questions that address the main

research problems in program analysis and comprehension that we ultimately aim

157



to address throughout this work. Then, our objectives have been identified along

with a detailed articulation of the contributions ad their potential outcomes that

can support the fulfillment of these objectives.

The essential contribution of this work is the development of a static program

analysis technique that intend to improve the understandability of program inter-

actions and control flow. Our technique composes three major processes: program

information extraction, interactions tracing, and trace visualization. The core of

our visualization is demonstrated as a set of extensions to the UML notation of

sequence diagrams that can carry more information about program interactions

and control flow and present them in convenient manner.

The technique has been deployed as tool prototype and applied to a case

study, namely Greenfoot, to validate its performance and precision of the pro-

duced results. The diagram representing a single scenario of Greenfoot, called

ClassBrowser, has particularly been selected for the evaluation of the proposed

extensions in terms of efficiency and effectiveness towards program comprehension,

compared with the standard representation of sequence diagrams as a benchmark.

Results obtained were promising and indicated that most of our extensions to the

sequence diagram were simple and so useful in comprehending programs in less

time with a precise understanding.
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6.2 Future work

Several ideas have arisen throughout our work in this thesis, but due to the time

limit, we could not go deep and accomplish every particular idea. Therefore, we

would like to recommend working on them in the future as their employment

would further increase the understandability of programs.

6.2.1 More extensions to the UML sequence diagram

• Events and event handlers: GUI-based interactions should be visualized

in sequence diagrams to allow users to identify the interactions among the ex-

ecution of GUI-based applications. Current standard UML-notations do not

support the identification of the different events that can be executed at the

program runtime. For example, button-pressing, mouse-clicking, window-

resizing and many other events can trigger a call for a set of program inter-

actions. Characterizing such events along with their sources in the sequence

diagram would increase the comprehensibility of any GUI-based software.

Keep in mind that all interactions that can be triggered by GUI events are

considered as inactive when static analysis is used. Therefore, it is impor-

tant to employ dynamic analysis techniques in order to effectively support

such an extension.

• Errors in the source code: The ability of a reverse engineering technique

to extract program information from programs that contain semantic errors

would make it more preferable by the users who would like to debug and
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trace their programs visually. For instance, if a program contains a call to a

method that is not defined or from undeclared object, then this call should

be, in a way or another, represented in the resulting diagram by using a

message line ending with a red cross, for example. We recommend adding

such a functionality to current techniques of program visualization as it may

add a value to program understandability.

6.2.2 More extensions to the program information collector

and interaction tracer

• Enriching SDs with dynamic information: As we know, static anal-

ysis misses most of the dynamic interactions that can only be obtained

through the program at runtime. Therefore, to enrich sequence diagrams

produced by our technique, one needs to incorporate dynamic analysis and

is best to be accomplished through instrumentation. This additional kind

of analysis can capture the interactions information that the static analysis

misses. Our suggestion in this matter is to apply aspect-oriented constructs

that can facilitate the monitoring of all program method calls and perform

proper information logging. In particular, for Java-based programs, AspectJ

pointcuts and advices can achieve this job perfectly.

• Combining dynamic and static information of SDs: One of the main

challenges of applying hybrid analysis of programs is how to merge the infor-

mation collected through dynamic analysis with the ones gathered through
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static analysis. To this end, we hope in the future to address such a challenge

using the following procedure:

− Apply the static analysis first, then the dynamic one.

− Each element gathered through the static analysis should have its own

signature without any conflicts stored in an XMI representation.

− Once the dynamic analysis starts working, a signature of each element

should be captured using the same way and format used in the static

analysis.

− For each element collected through the dynamic analysis, apply an

XPath query to get its corresponding elements in the static XMI repre-

sentation. If the query returned an element, attach the new information

with the existing ones. Otherwise, the element is considered as it is no

longer be collected through the static analysis, which leads to create a

new record for this particular element in the XMI representation (with

proper location in the file) aligned with its signature and information.

6.2.3 More extensions to the visualization tool

• Visual Re-engineering: In addition to the navigation to the source code,

the visualization tool may provide a facility that allows users to re-engineer

programs visually. This means that they may change method calls, objects,

or parameters as well as duplicate call messages and interchange the order of

them. All such operations, and maybe more, should be provided through the
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visualization tool where the changes made are reflected to the corresponding

source code. In addition, users may be supplied with the facility that enales

them to add normal comments or Javadoc comments in the layout if they

are not available or not clear enough in the source code.

• Live SD enrichment: With respect to combining dynamic and static anal-

yses, we suggest that the resulting sequence diagram immediately appears

after performing the static analysis. After that, the program is executed

and the dynamic analysis can launch at that time. Throughout the pro-

gram runtime, all information collected should be rendered on the already

displayed sequence diagram (supposing that the program and SD layout are

cascaded in the screen). This means that users will be able to observe the

newly added information to the sequence diagram in a live manner.
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