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In this thesis, the static and dynamic behaviors of micro-electromechanical system (MEMS) 

double clamped-clamped microbeams are investigated. Two numerical methods were used in this 

investigation, which are the reduced-order modeling (ROM) and the perturbation method. The 

ROM was derived based on the Galerkin expansion method and assuming linear undamped 

mode shapes of straight beam as the basis functions. The perturbation method was generated 

using the method of multiple scales by direct attack of the equations of motion. The problem was 

first carried out by reproducing the results of the single microbeam (both static and dynamic). 

The static analysis for the double-microbeams was performed next using the ROM resulting 

equations. The results showed that the double-microbeams configuration requires a lower 

actuation voltage and a lower switching time as compared to the single one. Then, the effects of 

selection the air gap depths were investigated. The eigenvalue problem was investigated to 

obtain the fundamental natural frequencies and to study their variation with the applied DC load. 

Dynamic analyses, assuming the above two numerical methods, were performed and a 

comparison of the results showed good agreement. Finally, a parametric study was performed 

using the perturbation on different parameters and the results revealed different interesting 

features, which hopefully can be useful for some MEMS-based applications.  
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 ملخص الرسالة

 
 عبدالرحمن محمد العوفً :الاسم الكامل

  
 الكهرباءدراسة فً السلوك الغٌر خطً لأجهزة المٌمس المشغلة بواسطة  :عنوان الرسالة

 
 الهندسة المٌكانٌكٌة التخصص:

 
 5102نوفمبر  :تاريخ الدرجة العلمية

فً هذه الرسالة, سٌتم دراسة السلوك فً حالة السكون و أٌضا فً حالة الحركة لنوع من أنظمة الماٌكرو )وهو استخدام 

. تم استخدام طرٌقتٌن عددٌة للتحلٌل, (بالمٌمس)عامودٌن( التً تستخدم الكهرباء وتعتمد على حركة مٌكانٌكٌة أو ماٌسمى 

ٌل الاضطراب. تم اشتقاق نموذج الدرجة المخفضة باستخدام طرٌقة جالركٌن وهً كالتالً: نموذج الدرجة المخفضة وتحل

بافتراض وضعٌة الأشكال للنظام الخطً الغٌر واهن للعامود المستقٌم كدوال أساسٌة عند الاشتقاق. بٌنما تم صنع طرٌقة 

كة. فً البداٌة تم إعادة إٌجاد النتائج تحلٌل الاضطراب باستخدام طرٌقة النطاقات المتعددة بتفعٌلها مباشرة على معادلات الحر

للعامود الواحد فً حالتٌه الساكنة والمتحركة. بعد ذلك تم إجراء التحلٌل العددي للعامودٌن باستخدام المعادلات الناتجة من 

وأٌضا إلى نموذج الدرجة المخفضة. أظهرت النتائج أن استخدام عامودٌن ٌؤدي إلى احتٌاج أقل من الجهد الكهربائً للتولٌد 

وقت أقل فً التبدٌل مقارنة مع استخدام عامود واحد. بعد ذلك, تم دراسة تأثٌر اختٌار عمق فراغ الهواء على النظام. ومن ثم 

تم فحص مسألة القٌمة الذاتٌة وذلك لإٌجاد الترددات الأساسٌة الطبٌعٌة ودراسة تأثٌر تغٌٌراتها مع الجهد الكهربائً. تم إجراء 

لى التحلٌل المتحرك باستخدام الطرٌقتٌن العددٌتٌن السابقة, وأظهرت النتائج تطابق جٌد بٌن الطرٌقتٌن. أخٌرا, أٌضا دراسة ع

تم إجراء دراسة لعدة عوامل متغٌرة فً المعادلة باستخدام تحلٌل الاضطراب وأظهرت النتائج عدة خصائص مثٌرة للاهتمام, 

.هزة المٌمسوالتً نأمل أن تستخدم لاحقا لبعض تطبٌقات أج
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CHAPTER 1: INTRODUCTION 

1.1 Motivation 

Since the 1980s, when micro-electro-mechanical-systems (MEMS) were invented, the demands 

for these tiny devices have increased dramatically. This is due to their excellent properties 

(mechanical, electrical etc.) and features (small sizes, easily fabricated etc.). While they were 

used first as sensors and actuators, they are nowadays used in many other applications in our 

daily life [1]. For example, MEMS are being used as pressure sensors  [2, 3], accelerometers [4, 

5], microphones in cellphones [6], micro-mirrors in plasma TVs [7], GPS [8] and many other 

useful applications. Moreover, they are still being developed by scientists and researchers, and 

these developments will hopefully lead to more useful features and become even more important 

in life. 

A clamped-clamped microbeam forms one of the basic structures for building MEMS devices. 

Its desired features in many terms (fabrication, sensitivity, cost etc.) make it attractive in many 

MEMS-related applications. For example, the process of fabrication is easy and can be done by 

using bulk and surface micromachining techniques [9, 10]. Moreover, the natural frequencies of 

the clamped-clamped microbeam are higher relative to other microstructures such as cantilever 

microbeams. This feature is desirable since it helps in increasing the sensitivity of the 

microstructures to be used as RF filters [11], RF switches [12] and resonant sensors [13]. 

Applications of the clamped-clamped microbeam are numerous and examples can be found in 

projection display arrays [14], optical fibers [15] and thermal actuators [16]. 



2 

 

In the MEMS community, there are many different types of structures available and the selection 

depends on the type of the application. For example, the configuration of a parallel-plates 

actuator made of a single microbeam provides a long range of travel with high power 

consumption and switching time. This is needed for many applications but not for others, where 

more desirable features and better performing structures can be achieved. One of the suggested 

structures is the use of double-microbeams instead of one in the parallel-plates actuators. Using 

double-microbeams increases the deflection of the microbeam with the same voltage that is 

provided in a single microbeam. As a result, it may help reducing the power consumption and the 

switching time for this type of applications. 

Investigating the pull-in voltage is very important in electrically actuated micro-structures. In a 

static DC field, the microbeam will be actuated by a DC voltage, which will shift its equilibrium 

position into new one [17]. It is necessary that the microbeam operates far away from the pull-in 

voltage, otherwise the microstructure will fail, adhering to its down electrode. For double-

microbeams there are many previous studies which shed light on this. However, in a dynamic 

AC field, in addition to the DC voltage, there will be a vibratory motion which excites the 

microbeam around its natural frequency. Accordingly, the pull-in voltage will change [17]. 

Further studies are needed, since still the area of dynamic double-microbeams configurations is 

sparse.  

It is clear from the aforementioned few published investigations that studying the static and 

dynamic behaviors of clamped-clamped double-microbeams type of actuators is important and 

needs a lot of scope. Also, studying its dynamics may reveal very interesting phenomena, which 

may be used for inventing new devices or improving existing ones.  



3 

 

1.2 Literature Review 

In this section, the main contributions of previously published investigations related to the static 

and dynamic analysis of double-microbeams are summarized. We will start by summarizing the 

main contributions in obtaining the deflection of microbeams in a theoretical way. Then, we will 

discuss more complicated and sophisticated numerical techniques, such as reduced-order 

modeling based on Galerkin expansion, as well as perturbation techniques. Finally, the literature 

review will discuss the use of double-microbeams as MEMS devices. 

1.2.1 Solving the Nonlinear Microbeam’s Equation 

One of the main challenges in MEMS is obtaining the deflection of the microbeam until reaching 

the pull-in voltage. This will help in designing MEMS devices to obtain the desired features in 

less time, as compared to the trial and error method. However, this is not an easy task and many 

researchers have tried to find a way in to tackle this problem. The main techniques in solving the 

problem involve reducing the order of the partial differential governing equation, which is 

difficult to treat, to ordinary differential equation, which is easier in treatment. Three different 

approaches are used to obtain the reduction, which are idealization of the microbeam as a rigid 

body, discretization and constructing the reduced-order model. 

The first approach is by idealization of the microbeam as a rigid body. The comparison of this 

method with a distributed parameter system showed that it under-predicts the pull-in voltage for 

cantilever [18] and clamped-clamped microbeams [19]. The second method is discretization, 

which uses an FEM (Finite Element Method), BEM (Boundary Element Method) or FDM (Finite 

Difference Method). Unlike the previous method, this method is adequate for predicting the pull-

in voltage. However, the problem arises when solving for dynamic behavior, since it consumes 
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too much time, which makes the process computationally expensive. The last method is 

construction of the reduced-order model, which drew much attention in the previous years. The 

reduced-order model (ROM) is excellent in predicting the pull-in voltage, and can solve the 

dynamic deflection of the microbeam in a short time. 

1.2.2 Reduced Order Modeling (ROM) 

Nowadays, ROM plays an important role in obtaining the structural behavior of MEMS 

microstructures. There are many available investigations which used the method to solve the 

non-linear partial differential equation [20, 21] and many researchers tend to use this method, 

which made it among the most common numerical methods used in the MEMS community. 

In 2003, Younis et al. [22] presented a new reduced-order model (macromodel) to solve for the 

non-linear partial differential equation. The macromodel uses the Galerkin procedure to 

discretize the distributed parameter system into finite degree of freedom system in the form of 

ordinary differential equations in time. The linear undamped mode shapes in straight positions 

are used as basis functions in the Galerkin procedure. The convergence of the method is reached 

by using only the first few mode shapes of the beam, hence saving both time and computational 

costs. They compared the macromodel results with results available in the literature, based 

mainly on finite element softwares and some experimental results, and they found that their 

method is more attractive than the finite element method in terms of accuracy and cost. 

Nayfeh et al. [23] reviewed the work of ROM in MEMS devices. They classified the ROM into 

two main categories: node and domain methods. The idea of the node method is to evaluate the 

system equations at each node and then use the obtained lower order approximations, while the 

domain method uses modal analysis and the Galerkin method to convert the partial-differential-
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equations (PDEs) into ordinary differential equations (ODEs) by eliminating the spatial 

dependence, which will describe the equations in terms of domain-wide modes (eigenfunctions). 

There are two proposed ways to obtain the basis set in the Galerkin procedure. The first way is to 

conduct experiments, or by using an FEM or FDM to solve for the PDEs, and then the basis set 

will be extracted from the time series. The second way is to use the mode shapes obtained by 

solving the linear undamped eigenvalue problem (EVP) of the device. At the end, they presented 

a ROM for microbeams and microplates, and presented approaches to deal with two types of 

damping as well as analytical expressions for the damping coefficient. They validated the results 

after comparing them with available results in the literature. 

1.2.3 Perturbation Theory 

There have been several attempts using several different approaches to investigate the dynamic 

behavior of microbeams [24-26]. For example, ROM was just one of approaches used, Zook et 

al. [27] investigated the behavior experimentally, others used Rayleigh‟s energy method [28, 29], 

and several have made use of the perturbation theory [30-32] in their investigations. 

Turner and Andrews [33] used the perturbation method to obtain an approximation for the 

nonlinear resonance frequency of a microbeam. They modeled the problem by using a spring 

mass model, and they included a cubic restoring force to represent the mid-plane stretching. 

They indicated that to achieve high sensitivity it is required to limit the amplitude of vibration at 

a fixed and small value.  

Younis et al. [34] used the method of multiple scales, as a perturbation method, in a model that 

accounted for the electrical loads (both DC and AC) and for the mid-plane stretching for a 

clamped-clamped single microbeam resonator. They lumped the parameters into a non-
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dimensional form and obtained two equations in the form of nonlinear ODEs. They compared 

the results with some experimental results, validating their results. 

1.2.4 Double-Microbeams Configuration in MEMS 

There are a few investigators that discussed the use of double-microbeams as building blocks in 

several MEMS devices. Abbaspour-Sani et al. [35] proposed a double beam structure where both 

the contact plates are non-stationary to be used in micro-machined switches applications. They 

indicated that the proposed structure is able to reduce the actuation voltage by 30% if used with a 

single beam. Moreover, the structure will reduce the stress which results from the actuation 

voltage and so the switching life time will be increased. 

Chaffey et al. [36] developed an analytical model for cantilever structures. Then, the model was 

used in a double-cantilever microstructure to investigate the properties. They concluded that the 

use of a double-cantilever microbeam structure will reduce the pull-in voltage, as compared to a 

single cantilever microbeam structure. 

Samaali et al. [37] proposed a new structure by using double-cantilever microbeams for RF 

micro-switch applications. They developed the mathematical model for the structure by 

considering the microbeams as flexible and the microplates as rigid. After examining the static 

and dynamic behaviors, they indicated that the structure will reduce the actuation voltage by 

30% and reduce the switching time by 45%, as compared to a single microbeam configuration. 

Ouakad et al. [38] used the Galerkin procedure and an ANSYS software package to calculate the 

maximum static deflection that can be obtained from an electrically actuated microbeam and an 

electrically actuated double-microbeams actuator. Their comparison showed that larger 
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deflections can be obtained by using the double-microbeams scheme. They concluded that it is 

more desirable to use the double-microbeams whenever large deflections are needed. 

So, it is clear from the above-mentioned literature that there is a great need to study the dynamic 

characteristics of clamped-clamped double-microbeams MEMS-based actuators. 

1.3 Thesis Objectives and Organization 

In this thesis, there are three major objectives: 

- To reproduce the results of the previous work (the static and dynamic behaviors of one 

microbeam and the static behavior of a double-microbeams MEMS actuator). 

- To solve the eigenvalue problem of the double-microbeams MEMS actuator to obtain the 

natural frequencies and the mode shapes of the system. 

- To investigate the dynamic problem of a double-microbeams configuration by using two 

different methods (the Galerkin procedure and the perturbation theory) and then make a 

comparison between the approaches. 

- Finally, carry out a thorough parametric study for different geometrical cases with 

concentration more on the dynamic of double-microbeams case. 

This paragraph will discuss the organization of the rest of this thesis. The second chapter will 

present small background about some phenomena and terminologies that are bases in the MEMS 

community and then show the problem formulation for the proposed model. In Chapter 3, the 

static analysis of one microbeam will be carried out by using the Galerkin method with a 

parametric study at the end. In Chapter 4, the analysis of the eigenvalue problem will be carried 

out for both single and double-microbeams and present the variation of the natural frequencies 

and mode shapes. Chapter 5 will investigate the dynamic behavior of double-microbeams using 
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both methods (Galerkin and perturbation) and the comparison between them with a parametric 

study for several cases. Finally, Chapter 6 will be for the summary and some recommendations 

for future work.  
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CHAPTER 2: BACKGROUND 

This chapter will present and summarize general concepts about some common terminologies 

used in the MEMS field. Also, this chapter will summarize some background about two methods 

which will be used in solving the microbeams equations, which are the Galerkin and the 

perturbation methods. At the end of the chapter, the problem for single and double-microbeams 

configurations will be formulated. 

2.1 Parallel-plates Electrostatic Actuation 

The parallel-plates electrostatic actuation forms one of the most used actuation methods in many 

MEMS devices [39]. This is due to the powerful advantages that it possesses. For example, it can 

generate high force with low power consumption and fast actuation [40]. Also, it can be 

integrated into a standard integrated circuit [41]. A simple model of this system, which is shown 

in Figure  2.1, can be described as one moving electrode, which is made of a conductive material 

-usually silicon- and is restrained by a spring, and another fixed electrode made of the same 

material, which is placed underneath the moving electrode. The distance between the two 

electrodes is called the gap and it is made of a dielectric medium, usually air. When there is no 

voltage difference between the two electrodes or no applied voltage, the two electrodes will be 

held in their initial parallel positions and the separated distance is called the rest gap distance. 

However, if there is an applied source voltage between the two, there will be potential difference 

which will make the moving plate travelling toward or away from the fixed plate until the 

electrostatic force and the spring force are equal to each other. [42]  
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Figure  2.1: A parallel-plates capacitor configuration [43] 

2.2 Electrostatic Force 

In this section the electrostatic force between two parallel-plates will be derived. A schematic 

model of this system is shown in Figure  2.1, where it is assumed that the electric field lines 

between the two plates are perpendicular to them, and no fringing field effects are considered, 

even close to the edges. Here, we let the electrical charge be (Q) and the source voltage be (V), 

which is responsible for deriving the capacitor. The electrical charge and the potential energy 

stored in the capacitor can be written according to Hayt [44] as follows, respectively: 

    ( )  ( 2.1) 

   
  

 
 ( ) ( 2.2) 

where C (z) is the capacitance between the two electrodes, and for rectangular parallel-plates can 

be written as [44]: 

  ( )  
    

 
 ( 2.3) 
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and where ԑ0 is the air permittivity and is equal to 8.85*10
-12

 (C
2
/N.m

2
), and L and b are the 

length and the width of the plate, respectively.  

Since the mathematical expression for the electrostatic force is written as follows [44]: 

    
  

 

  ( )

  
 ( 2.4) 

the electrostatic force of the rectangular parallel-plates type of capacitor, Figure  2.1, can then be 

written as: 

    
      

 

   
 ( 2.5) 

2.3 Pull-in Instability 

Despite the excellent properties and features of electrically-actuated MEMS, they are like any 

system, in that there are some drawbacks which need to be avoided. One of the main drawbacks 

of these systems is called the pull-in instability. In order to describe this phenomenon we assume 

the beam that is shown in Figure  2.2 is subjected to an electrical load. The beam is at rest before 

the application of the load. By applying a small electrical load, the restoring force of the beam 

will resist this amount of load, and as a result the beam will move to a new equilibrium position. 

As the applied load increases the beam will try to resist that and move to another new 

equilibrium position. This continues until a critical amount of load is reached, the restoring force 

of the beam will be exceeded and the beam can no longer resist the load. There will be a sudden 

drop of the beam to the fixed electrode and it will adhere to it, which is known as the pull-in 

phenomenon [45]. 
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Figure  2.2: 3D schematic of a single microbeam actuator under DC and AC electric loads [46]. 

 

2.4 Perturbation Theory 

The perturbation theory is usually used to approximate the solution of problems that are difficult 

to solve computationally. The idea of this technique involves the consideration of a related 

problem, which can be solved easily, solving the related problem and then using it as a leading 

term in the solution, which needs to be written as a power series as follows [47]: 

  (   )    ( )      ( )      ( )    ( 2.6) 

So, according to the previous equation (u0) is considered to be the leading term and (u1, u2, …, 

un) are deviations or perturbation from the leading term (or higher order terms) and can be solved 

by using some systematic procedure. 

The letter (ԑ) is a small parameter which is used to represent the significance of each in the 

series‟ term. As a result, the significance of the leading term is always the highest and it 

decreases as it moves to the right until reaching (un), which is the term that has the lowest 

significance. For most of the problems, it is enough to consider the approximate solution as a 

summation of the first two terms. So, the approximate solution can be written as follows [47]: 
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  (   )    ( )      ( ) ( 2.7) 

One of the most common used methods in the perturbation theory is the method of multiple 

scales. The idea of the method is to convert time (t) into different time scales, as follows: 

 0 ,T t         
1 ,T t       2

2 ,T t         ,n

nT t  ( 2.8) 

where the Tn represent different time scales. 

Thus, the independent variable is changed from time (t) to T1, T2, … .Then, the uniform 

approximate solution can be written as follows:[47] 

  (            )    (          )      (          )    ( 2.9) 

2.5 Galerkin Method 

The Galerkin method is a helpful method for converting a continuous system into a discrete one. 

It was first discovered by Walther Ritz, but it is usually ascribed to the 

mathematician scientist Boris Galerkin [48]. There are many examples of the Galerkin method 

and one of the most common methods is called “the Galerkin method of weighted residuals”, 

which can be used to solve differential equations.  The idea of the method is to first consider the 

solution of the differential equation according to the finite element method as a polynomial in 

this form: 

  ( )  ∑     ( )
 

   
 ( 2.10) 
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where, *  |       + are called basis functions (or trial functions), which should satisfy the 

boundary conditions. These functions should be continuously differentiable and chosen carefully, 

since the accuracy of the solution is highly dependent on them. The Galerkin method is 

concerned with finding the unknown coefficients of the equation i.e. *  |       + , which is 

done by making every solution ui(x) *  |       + orthogonal to  * ( )+, which is the 

differential operator to u(x). [49] 

2.6 Euler-Bernoulli Beam Model 

The Euler-Bernoulli beam is so named for the contribution of two scientists, Leonhard Euler and 

Daniel Bernoulli. The beam can be considered as a special case of the Timoshenko beam theory 

after following some assumptions. Though the theory was developed long ago, around 1750, it 

was not considered trustworthy until its validation on large scales, which was in the late 19
th

 

century [50]. The equation of the beam relates the deflection of the beam with the applied load in 

a 4
th

 order differential equation. In dealing with static load, the equation will be an ordinary 

differential equation and can be written as [51]: 

  
2 2

2 2

 
 

 

d d w
EI q x

dx dx
 ( 2.11) 

where E is the modulus of elasticity, I is the second moment of area which is calculated with 

respect to the axis that is perpendicular to the applied load and passing through the centroid of 

the cross section, w is the deflection of the microbeam in the z-axis and it is function of x 

(position) and  q x  is the distributed load. The equation can be simplified by considering the 
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product EI as being independent of the position (x), which is often the case, so equation ( 2.12) 

will simply be: 

  
4

4


d w
EI q x

dx
 ( 2.12) 

In the dynamic case, the Euler-Bernoulli beam equation will be a partial differential equation 

with respect to the position (x) and the time (t) variables, which can be written as: 

  
4 2

4 2
,

 
 

 

w w
EI q x t

x t
  ( 2.13) 

where, μ is the mass per unit length. 

2.7 Problem Formulation 

This section will discuss the problem formulation and derivation of the equations for the chosen 

system of single and double-microbeams MEMS based actuators. 

2.7.1 Free Body Diagram (FBD) of a Single Microbeam  

 

Figure  2.3: 2D schematic of single microbeam actuator configuration 
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It is clear from Figure  2.3 that, the model is a microbeam which is clamped-clamped at both ends 

and electrically actuated by a DC bias (VDC) and a harmonic excitation (VAC). The free body 

diagram (FBD) of the microbeam is shown below: 

 

Figure  2.4: Free body diagram for the single microbeam of Figure  2.3 

where: 

 ̂ is the normal forces at the boundaries,  ̂  is the damping force on the microbeam,  ̂ is the 

mid-plane stretching term,  ̂  is the force that results from the axial load on the microbeam, and 

 ̂  is the electrostatic force that acts on the microbeam from the fixed electrode, where the 

separated distance at any point on the lower microbeam to the fixed electrode is the initial gap 

between them ( ) minus its deflection ( ̂( ̂)). 

2.7.2 Free Body Diagram (FBD) of Double-microbeams 

 

Figure  2.5: 2D schematic of double-microbeams actuator configuration 
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The chosen model for the double-microbeams, which is shown in Figure  2.5, is clamped-

clamped for both ends of both microbeams and it is electrically actuated by a DC bias (VDC) and 

a harmonic excitation (VAC). The free body diagrams (FBD) for the two microbeams are shown 

below: 

-  For the lower microbeam:    - For the upper microbeam: 

 

 

 

 

 

 

 

 

 

where: 

 ̂  ,  ̂  ,  ̂ ,  ̂ ,  ̂   and  ̂   are the same definition in one microbeam with the subscripts of (1) 

and (2) to indicate the lower and upper microbeams, respectively. 

 ̂   is the electrostatic force that actuates the lower microbeam from the fixed electrode, where 

the separation distance at any point on the lower microbeam to the fixed electrode is the initial 

gap between them (  ) minus its deflection ( ̂ ( ̂)). 

 ̂   is the electrostatic force that each microbeams is mutually applying to each other, where the 

separated distance between two points at different microbeams is the initial gap between them 

(  ) to which is added the deflection of the lower microbeam ( ̂ ( ̂))  and from which is 

subtracted ( ̂ ( ̂)). 

 

Figure 2.7: FBD for the upper microbeam of 

Figure 2.5 

Figure 2.6: FBD for the lower microbeam of 

Figure 2.5 
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2.7.3 Deriving the System Equations of Motion 

The followed method used in deriving the equations is Newton‟s second law where: 

 ∑ ⃗    ⃗ ( 2.14) 

The mathematical expression for each force is shown in the next table: 

Table  2.1: Mathematical expression of the forces 

Force Expression Force Expression 
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where  ̂ is the viscous damping coefficient; E is Young‟s modulus of elasticity;   is the cross 

sectional area and is equal to   , where   and   are the width and the height of the microbeam, 

respectively;   is the length of the beam;  ̂ is the axial load;    is the dielectric constant;     and 

    are, respectively, the applied DC and AC voltages and  ̂ is the frequency. 
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Using Newton‟s second law with Euler Bernoulli‟s beam equation, we obtain: 

- For a single microbeam: 

 
 

24 2 2 2

0

24 2 20

ˆ ˆˆ ˆ ˆ ˆ ˆ ( cos( ))ˆˆ ˆ
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w w dw EA w w b V V t
EI bh c dx N

x t dt L x x D w




     
    

    

  
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and the associated boundary conditions: 
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 ( 2.16) 

- For double-microbeams: 
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( 2.17) 

 

( 2.18) 

and the associated boundary conditions are: 
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where   is the mass density and   is the moment of inertia, which is equal to 
 

  
   . 

2.7.4 Normalization 

In order to deal with these types of equations in the micro-scale, it is more convenient to write 

these equations in non-dimensional form; this can be done by considering the following non-

dimensional variables: 
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t̂
t

T
  ( 2.21) 

where   is a time scale parameter and is chosen to be   √
     

   
 

So, substituting equation ( 2.21) into equations ( 2.17), ( 2.18), ( 2.19) and ( 2.20) will give:  

- For a single microbeam: 
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- For double-microbeams: 
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( 2.27) 

where the nondimensional parameters are defined as follows: 
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So from now on, equations ( 2.22) and ( 2.23) will be used to solve for the single microbeam 

whereas for double-microbeams equations ( 2.24), ( 2.25), ( 2.26) and ( 2.27) will be used.  
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CHAPTER 3: STATIC ANALYSIS 

In this chapter, the static analysis of straight clamped-clamped and double-microbeams actuated 

by electrostatic force will be carried out. The results obtained will be compared to the results that 

are available in the literature. The method used to evaluate the deflection of the microbeam is 

ROM and the procedure is described in the coming chapter‟s sections. 

3.1 Static Analysis of a Single Microbeam Based MEMS Actuator 

 

Figure  3.1: Schematic of an electrostatically actuated single microbeam actuator [38] 

3.1.1 Model and ROM 

As in the aforementioned, equation ( 2.22) expresses the equation of a clamped-clamped straight 

microbeam actuated by electrical force. In dealing with the static behavior, the equation will be 

independent of time. As a result, the inertia, damping and the harmonic force terms will be 

dropped. So, the equation of the microbeam will be reduced to: 
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The boundary conditions will remain the same. In order to get the (ROM), the previous equation 

will be discretized using Galerkin method. This can be done by letting the static deflection be: 

 
1

( , ) ( )

N

i i

i

w x t k x


  ( 3.2) 

where the coefficients ik
 
are constants independent of the time and ( )i x

 
are the symmetric 

mode shapes of the linear undamped microbeam. 

To solve for the constants ik  it is required to substitute equation ( 3.2) into equation ( 3.1), then 

multiply the outcome by ( )j x , and finally integrate the outcome from x=0 to x=1. Following the 

previous procedure will give: 
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 ( 3.3) 

It can be seen that the previous equation is an algebraic equation with the constants ik  being the 

only unknowns. The number of equations here is equal to the number of modes that are 

considered in equation ( 3.2). In order to know the dominant number of modes we need to start 

with one mode and then increase the number of modes; for each number of modes we solve for 
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the unknowns    and then evaluate the maximum deflection until the solution is converged. To 

reduce the computational cost it is better to multiply the previous equation by 

2

1

1 ( )
N

i i

i

k x


 
 

 
  to 

get rid of the unknowns ik  in the denominator when integrating [22]. So, the method in getting 

the deflection at any point on the microbeam can be summarized as follows: 

1- Start with assuming only one mode in the ROM, find the ik  by solving equation ( 3.3). 

2- Evaluate and plot the maximum nondimensional deflection by substituting the ik ‟s in 

equation ( 3.2) for various DC voltages. 

3- Increase the number of modes by one  

4- Repeat the previous steps until the maximum deflection is converged 

5- The deflection of the microbeam at any point can be obtained by evaluating equation 

( 3.2) and then multiplying it by the air gap width (D). 

3.1.2 Results 

Younis [46] investigated a similar problem by considering the parameters summarized in 

Table  3.1. To validate our analysis, we would like to reproduce the same results by considering 

the same selected parameters.  
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Table  3.1: Selected parameters for obtaining the static deflection of the single microbeam 

actuator 

Parameter Value Parameter Value 

Beam Length (L) 100 µm Effective young„s modulus (E) 124 GPa 

Beam thickness (h) 0.5 µm Density (ρ) 2,332 kg/m
3
 

Beam width (b) 10 µm Air gap width (D) 1.0 µm 

Axial load (N) 0   

The maximum deflection of the microbeam is plotted versus the applied DC voltage, as seen in 

Figure  3.2, up to four modes. It can be noticed from the graph that increasing the number of 

modes will converge the solution and three modes seems to be sufficient for convergence. 

 

Figure  3.2: Convergence of the maximum deflection for the single microbeam of Table  3.1 
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A comparison between the obtained results and the results available in the literature using three 

modes is shown in Figure  3.3, which shows excellent agreement. 

 

Figure  3.3: Comparison for the obtained maximum static deflection of the single microbeam 

with literature results 

3.2 Static Analysis of Double Microbeams Actuator 

3.2.1 Model and ROM 

 

Figure  3.4: Schematic of electrostatically actuated double-microbeams actuator [38] 
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The equations of double clamped-clamped straight microbeams actuated by an electrostatic force 

are given in equations ( 2.24) and ( 2.25). As in the previous section, the equations will be 

independent of time since we are dealing with a static problem. After cancelling the time 

dependent terms the equations will be reduced to: 

  
   

2 24 2

4 41 1
3 1 2 24 2

1 2 1 1 21

DC DCV Vd w d w
N

dx dx w d d w w

 
    

 
 ( 3.4) 

  
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24 2

42 2
3 2 24 2

2 1 1 2

DCVd w d w
N

dx dx d d w w


   

 
 ( 3.5) 

The reduced-order model can be obtained by discretizing the previous two equations using the 

Galerkin expansion. So, the static deflection for the two microbeams will be discretized as 

follows: 

 1

1

( , ) ( )
N

i i

i

w x t f x


  ( 3.6) 

 2

1

( , ) ( )
N

i i

i

w x t g x


  ( 3.7) 

where, the if  and the ig  are unknown constants that are independent of time. 
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To solve for the constants 
if  and

ig , it is required to substitute equations ( 3.6) and ( 3.7) into 

equations ( 3.4) and ( 3.5), then multiply the outcome by ( )j x , and finally integrate the outcome 

from x=0 to x=1 to get the following equations:
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 ( 3.9) 

In the previous algebraic equations we have to set the unknowns if  and ig . In this instance, the 

number of equations will be double that of the number of modes that we considered. The 

procedure in getting the dominant number of modes is similar to that of the single beam, except 

that the number of constants will be double. We propose to verify the convergence of the beam 

that has maximum deflection, since the other converges by default. We can reduce the 

computational cost by multiplying the first equation by 
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i i

d d f x g x 
 

 
  

 
  , which will help in getting rid of the unknown constants in the 

denominator when integrating with space.  

3.2.2 Results 

This problem was investigated first by Ouakad et al. [38]. Here we considered the same 

parameters to reproduce the same results. The chosen parameters are shown in Table  3.2. To 

check the convergence, the maximum deflection of the upper microbeam is plotted versus the 

applied DC voltage, since it has the maximum deflection, as seen in Figure  3.5. Again, as in the 

single microbeam case, it can be noted from the graph that when the number of modes is 

increased the solution is converging, until convergence is reached for three modes.  

Table  3.2: Selected parameters for obtaining the static deflection of the double-microbeams 

actuator 

Parameter Value Parameter Value 

Beam Length (L) 150 µm Effective young„s modulus (E) 124 GPa 

Beam thickness (h) 1.0 µm Density (ρ) 2,332 kg/m
3
 

Beam width (b) 4.0 µm Air gap width (d1 and d2) 1.0 µm 
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Axial Load (N) 0   

 

Figure  3.5: Convergence of the maximum static deflection for the upper microbeam of system 

of Table  3.2 

A comparison between the obtained results and the results available in literature is shown in 

Figure  3.6, which shows somehow a dis-agreement. This is mainly due to a non-correct 

equations of motion that were used by Ouakad et al. in their recently published work [38] and 

that we adjusted in our present investigation. 
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Figure  3.6: Comparison for the maximum static deflection of the upper microbeam of system of 

Table  3.2 

3.2.3 Parametric Study 

In this section, a parametric study will be carried out to investigate the effect of changing the air 

gaps between the movable microbeams on their static profiles. Three different air gaps were 

assumed, which are: 1.0, 1.25 and 1.5 μm and they were restricted by the following condition: 

           μm ( 3.10) 

Accordingly, three different cases were considered, which are: 

 Case 1: d1=d2 (where both of the gaps =1.25 μm) 

 Case 2: d1>d2 (where d1=1.5 μm and d2=1.0 μm) 

 Case 3: d1<d2 (where d1=1.0 μm and d2=1.5 μm) 
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The other assumed geometric properties are summarized in Table  3.3. 

Table  3.3: Microbeams geometrical and material properties 

Parameter Value Parameter Value 

Beam Length (L) 210 µm Effective young„s modulus (E) 169 GPa 

Beam thickness (h) 1.5 µm Density (ρ) 2,332 kg/m
3
 

Beam width (b) 20 µm Axial Load (N) 0 

a) Case 1 (d1=d2) 

The maximum static deflection versus the applied DC voltage for both microbeams is plotted in 

Figure  3.7. It is clear from the figure that, the upper microbeam is deflected downward (positive 

value in Figure  3.7), which seems to be reasonable since the upper microbeam is affected by the 

force from the lower microbeam, which pulls it downward. By contrast, the lower microbeam is 

deflected upward (negative value in Figure  3.7), which means that the force which results due to 

the potential between the two microbeams is higher than the force from the fixed electrode. Also, 

the deflection for the upper microbeam is higher than the lower microbeam and it reaches pull-in 

first, which is about 23 Volt. The static profiles for the lower and upper microbeams along the 

beams for three different voltages (5, 10 and 14 Volt) are plotted in Figure  3.8 and Figure  3.9 

respectively. 
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Figure  3.7: The maximum static deflection for the lower and upper microbeams for the case: 

when d1=d2 

 

Figure  3.8: Static profile of the lower microbeam for three different voltages and for the case: 

when d1=d2 
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Figure  3.9: Static profile of the upper microbeam for three different voltages and for the case: 

when d1=d2 

b) Case 2 (d1>d2)  

In this particular case, the behavior of the maximum static deflection for both microbeams is 

similar to the previous case, as shown in Figure  3.10. Again, the upper microbeam reaches the 

pull-in instability first at about 15 Volt. Figure  3.11 and Figure  3.12 show the static profile of the 

lower and upper microbeams, respectively, for three different applied DC voltages. As compared 

to the previous case, the pull-in voltage is reduced and more deflection will occur if similar 

voltages are used.  
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Figure  3.10: The maximum static deflection for the lower and upper microbeams for the case: 

when d1>d2 

 

Figure  3.11: Static profile of the lower microbeam for three different voltages and for the case: 

when d1>d2 
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Figure  3.12: Static profile of the upper microbeam for three different voltages and for the case: 

when d1>d2 

c) Case 3 (d1<d2) 

By plotting the maximum static deflection versus the applied voltage, as shown in Figure  3.13, 

we can recognize some interesting results that differ from the previous investigated cases. For 

example, the lower microbeam is deflected downward this time, which means the force resulting 

from the fixed electrode is higher than the force exerted by the upper microbeam. Furthermore, 

the magnitude of the deflection for the lower microbeam is higher than the upper and it reaches 

the pull-in instability first at about 23 Volt. The static profiles for the lower and upper 

microbeams for the same chosen voltages in the previous cases are shown in Figure  3.14 and 

Figure  3.15, respectively.  
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Figure  3.13: The maximum static deflection for the lower and upper microbeams for the case: 

when d1<d2 

 

Figure  3.14: Static profile of the lower microbeam for three different voltages and for the case: 

when d1<d2 
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Figure  3.15: Static profile of the upper microbeam for three different voltages and for the case: 

when d1<d2 

A comparison between the static deflection for the upper microbeam, when considering all three 

investigated cases as well as the case considering only one microbeam is shown in Figure ‎3.16. 

So, in all of the three cases more deflection will be provided at the same voltage if using double-

microbeams rather than a single microbeam. However, the pull-in voltage is reduced by a 

significant amount, since for a single microbeam the pull-in voltage is about 236 Volt. 

The table below compares the pull-in voltage for the three cases with the single microbeam. 

 Table  3.4: Comparison of pull-in voltage  
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Figure  3.16: Comparison between the maximum static deflection for the upper microbeam for 

all three cases with the single microbeam case 

Also, a closer look to Figure  3.16 reveals an interesting behavior. While, in all of the 

configurations, increasing the voltage makes the upper microbeam approach the pull-in voltage 

faster, it can be seen that for the last point (case of d1<d2) there is no such tendency. This strange 

behavior may be because the lower microbeam in this case is very close to the pull-in instability 

from the applied force from the fixed electrode. As a result, the lower microbeam gets closer to 

the fixed electrode and the distance between the two microbeams will be higher. This makes the 

force between the two microbeams lower, and so the upper microbeam will be far from the pull-

in instability. 

 

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

V
DC

 (Volt)

w
m

ax
 (


 m
)

 

 

d
1
=d

2

d
1
>d

2

d
1
<d

2

One microbeam

up to pull in

voltage around 236

Volt



40 

 

CHAPTER 4: EIGENVALUE PROBLEM 

Determining the natural frequencies and mode shapes of microbeams is important in the MEMS 

field, since it will help in investigating their dynamic characteristics. The method used to 

determine the natural frequencies will be described in this section and variations of their values 

with the applied DC voltages will be carried out. 

4.1 Single Microbeam Case 

4.1.1 Eigenvalue Problem Equation 

In determining the natural frequencies of microbeams, it is necessary to cancel the time-

dependent forces in the equation of motion. As a result, the damping force and the harmonic 

force will be dropped from equation ( 2.22). Hence, the equation of the microbeam will be 

reduced to: 

  
 

4 2 2 2

2
1 24 2 2

1

DCw w w V
N

x t x w




  
    

   
 ( 4.1) 

In order to develop the ROM, the deflection of the microbeam will be assumed as: 

 
1

( , ) ( ) ( )
N

ii i
w x t U t x


  ( 4.2) 

where: ϕi (x) are the undamped linear mode shapes of the system and Ui (t) are some unknown 

functions depending on the time, and can be written as follows: Ui (t)=ki+ηi (t) where ki are the 
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same constants that were calculated in the static analysis and ηi (t) are unknown functions that 

are dependent on time. 

 Substituting equation ( 4.2) into equation ( 4.1) will give: 
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( 4.3) 

Expanding the electrostatic force term using a Taylor series expansion, assuming a small 

variation of   ( ) about (0) and dropping the higher order terms of    ( )), will result in: 
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 ( 4.4) 

After plugging equation ( 4.4) into equation ( 4.3), canceling all the terms that verify the static 

equation and writing the resultant equation in state space representation, the equation can be 

written in the following matrix form: 

  (  ) ̅̇   (  )  ̅ ( 4.5) 



42 

 

where  ̅̇ and  ̅ have the form of , ̈   ̈   -  and [       - , respectively. Also,  (  ) is a matrix 

representing the coefficients multiplying  ̅̇, and finally,  (  ) is known as the Jacobian matrix. 

The natural frequencies of the beam for a given voltage can be obtained by taking the square 

roots of the eigenvalues that can be obtained by solving the following algebraic equation: 

            ( (  )
   (  )    )    ( 4.6) 

The mode shapes of the system can be obtained by evaluating the eigenvectors of     . So, it is 

clear from the previous equation, that the number of natural frequencies obtained will be similar 

to the number of modes, and also equal to the number of mode shapes assumed in the Galerkin 

expansion.  

4.1.2 Results 

Table  4.1: Assumed geometrical and material properties [46] 

Parameter Value Parameter Value 

Beam Length (L) 210 µm Effective Young„s Modulus (E) 169 GPa 

Beam Thickness (h) 1.5 µm Density (ρ) 2,332 kg/m
3
 

Beam Width (b) 100 µm Air Gap Width (D) 1.18 µm 

Axial Load ( ̂) 0.0009 Newton   
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Figure  4.1: Comparison between the obtained fundamental natural frequencies with literature 

[46] 

Younis [46] calculated the natural frequencies for a single microbeam configuration. The 

selected parameters of this actuator are shown in Table  4.1. Here, the same parameters were 

considered to reproduce the same results. A comparison between the two results for the 

fundamental natural frequency is shown in Figure  4.1, which shows excellent agreement. 

At zero voltage, the fundamental natural frequency will be the same as the fundamental natural 

frequency of the microbeam, as no load is applied. However, increasing the voltage slowly 

reduces the stiffness of the microbeams a little as well as the fundamental natural frequency, 

until it gets very close to the pull-in voltage, where a small increase in the voltage will result in a 

dramatic decrease in the fundamental frequency, which will result in a failure in the system at the 

pull-in voltage. 

0 5 10 15 20 25
12

14

16

18

20

22

24

26

V
DC

 (Volt)


n

1

 

 

Results of Younis, 2011

Obtained results



44 

 

4.2 Double-Microbeams Case 

4.2.1 Eigenvalue Problem Equation 

Recall equations ( 2.24) and ( 2.25), which represent the governing equations of motion for the 

model of double-microbeams actuators. In order to find the natural frequencies for the model, all 

of the time-dependent forces will be dropped from the two equations, which will lead to: 
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   
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 ( 4.8) 

In order to develop the ROM, the deflection of the lower and upper microbeams will be assumed 

as, respectively: 

 1 1
( , ) ( ) ( )

N

ii i
w x t P t x


  ( 4.9) 

 2 1
( , ) ( ) ( )

N

ii i
w x t Q t x


  ( 4.10) 

where: Pi (t) and Qi (t) are some unknown functions that are dependent on time and can be 

written as follows: Pi (t)=fi+μi (t) and Qi (t)=gi+νi (t), where fi and gi are the constants calculated 

in the static analysis and μi (t) and νi (t) are unknown functions that are dependent on time. 
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 Substituting equations ( 4.9) and ( 4.10) into equations ( 4.7) and ( 4.8) results in: 
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( 4.12) 

Expanding the two electrostatic force terms in equations ( 4.11) and ( 4.12) using a Taylor series 

expansion and assuming   ( ) and (  ( )    ( )) are very small around (0), respectively, and 

dropping the higher order terms of   ( ) and   ( ) gives: 
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 ( 4.13) 
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( 4.14) 

Following the same method for a single microbeam, plugging equations ( 4.13) and ( 4.14) into 

equations ( 4.11) and ( 4.12), then canceling all of the static terms, and then writing the resultant 

equation in matrix form gives: 

  (     ) ̅̇   (     )  ̅ ( 4.15) 

where:  ̅̇ and  ̅ have the form of , ̈   ̈   ̈   ̈   -  and [             - , respectively, and 

  (     ) is a matrix representing the coefficients multiplying  ̅̇. The natural frequencies and the 

mode shapes of the system can be obtained by taking the square root of the eigenvalues and 

evaluating the eigenvectors of     , respectively. So, this time the number of natural 

frequencies and the mode shapes obtained is double that of the number used in the assumed 

modes in the Galerkin expansion.  

4.2.2 Results 

The selected parameters are the same we assumed in the static analysis for the double-

microbeams, which is shown in Table  3.3 with the case of d1=d2. The natural frequencies were 

obtained by using three symmetric modes and were plotted versus the applied voltage as shown 
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in Figure ‎4.2. The obtained results indicate that all of the natural frequencies do not change with 

the applied voltage, with the exception of the fundamental. The fundamental natural frequency 

starts at its maximum position (when no electrical load is applied) and then decreases gradually 

with an increase in the applied voltage until it gets close to the pull-in voltage, at which point it 

drops sharply to zero. Also, it can be noted that each odd natural frequency, when paired with the 

consecutive one are the same, except for the fundamental frequency, especially at high voltages. 

 

Figure  4.2: Natural frequencies versus the applied voltage for double-microbeams 

A comparison between the fundamental natural frequencies among the three cases considered in 

the static section is shown in Figure  4.3. The results here seem to follow the static analysis 

outcomes, since in the case with the lowest pull-in voltage the fundamental frequency reaches 

zero first (when: d1>d2). Moreover, the other two cases reach the pull-in voltage at about the 

same value (23 Volt) and accordingly their fundamental natural frequency drops to zero or close 

to it. 
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Figure  4.3: The fundamental natural frequencies for three different cases 

The first and second coupled mode shapes for the case of d1=d2 at VDC = 2 Volt are presented in 

Figure  4.4 and Figure  4.5, respectively. The results show that for the first mode shape Ф1 the 

coupled modes (Ф11 and Ф12) are opposite to each other, sharing an out-of-phase motion. 

Conversely, for the second mode shape (Ф2) the two coupled modes (Ф21 and Ф22) have almost 

the same magnitude as the first in an absolute value and both of them share an in-phase-motion. 

 

Figure  4.4: The first coupled mode shape assuming VDC= 2 Volt 
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Figure  4.5: The second coupled mode shape assuming VDC= 2 Volt 
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CHAPTER 5: DYNAMIC ANALYSIS 

This chapter will discuss the dynamic analysis of single and double-microbeams based actuators 

by using two different approaches: Reduced-Order Modeling (ROM) and perturbation analysis. 

A comparison will be carried out for each method to validate both approaches. Finally, a 

parametric study will be done for the double-microbeams configuration to investigate some 

dynamical features for the micro-actuator. 

5.1 Single Microbeam Case 

5.1.1 Reduced-Order Modeling (ROM) 

Equation ( 2.22) represents the equation of motion of electrically actuated single microbeam 

based-actuator. In order to get the reduced-order model (ROM), the equation will be discretized 

using the Galerkin expansion. Therefore, the deflection for the microbeam will have the 

following form:  

 
1

( , ) ( ) ( )
N

ii i
w x t u t x


  ( 5.1) 

where    ( ) are the modal amplitudes which are functions of time that need to be evaluated. As 

in the static analysis, it is desirable to multiply equation ( 2.22) by (   )  . In fact, this will 

reduce the computational cost. Therefore, the resultant equation will be multiplied by   ( ) and 

then integrated from x=0 to x=1 to give: 
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     

   

 
 ( 5.2) 

5.1.2 Perturbation Analysis 

Younis et al. [34] discussed this technique in solving the deflection for a single microbeam 

based-actuator. The following method, which is the method of multiple scales by direct attack of 

the equation of motion, will be discussed in this section. The variable for the time scale and its 

derivatives are defined as follows: 

 
2

0 0 1 1 2 2

0 1 2

, ,      , ,      , ,T t D T t D T t D
T T T

 
  

     
  

  ( 5.3) 

Next, the damping coefficient c and the forcing amplitude ACV
 

are scaled so that their 

nonlinearity effect will be balanced in the modulation equations [34, 47]. Hence, 

 
2 ,c c       

3

AC AC ,V V  ( 5.4) 

where   is a bookkeeping parameter. 

We then seek a solution of the microbeam dynamic deflection in the following form: 
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 ( 5.5) 

 where sw is the static component of the microbeam deflection, and u is its dynamic component. 

Substituting equation ( 5.5) into equation ( 2.22) gives: 

  
4 2 24 2 2

2

14 4 2 2 2 2
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s s

s

w w V V tu u u u
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       

 
 
 

 ( 5.6) 

To deal with the nonlinearity of the electrical force, it is required to expand it around the 

microbeam deflection dynamic component (u). Also, the expression of  2( cos( ))DC ACV V t   can 

be approximated to 2 2 cos( )DC DC ACV V V t  , since, generally, in the resonant sensors

2 2 2cos( )AC DCV t V  . Assuming the aforementioned relations and canceling the static equation 

and small terms, while equating the coefficients of like powers of  , the following equations can 

be obtained:  

 Order 
1 : 

 1( ) 0u L  ( 5.7) 

 Order 
2 : 

 2 1 1 1

2 2
2 1

1 1 1 4
( ) ( , ) ,

( )

3
2 ( )

1
s

DC
s

s

u u u w u
V u

w u
w

 L  ( 5.8) 
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 Order 
3 : 
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6 4
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s

s s
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u u F T

w w
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 ( 5.9) 

where L  is a linear differential operator defined for any function (f ) by: 

2
2 2

0 1 1 3
( ) , ,

( )

2
( ) 2 ( ) 0

1
iv

s s s
DC

s

s

f f w w w f
V f

D f f Nf w
w

 L  

and where 2

2(1 )

DC AC

s

V V
F

w
. 

Assuming no possibility of internal resonances, the solutions of equation ( 5.7) is assumed to 

consist of only the directly excited fundamental modes,  x , since the indirectly excited modes 

will die out in the presence of damping. As a result, the solution of the dynamic component u1 

will be: 

  0 0

1 0 2 2 2( , , ) ( ) ( ) ,
i T i T

u x T T A T e A T e x
       ( 5.10) 

where 2( )A T  is a complex-valued function that is determined by imposing the solvability 

condition at the third order, equation ( 5.9). The over-bar denotes the complex conjugate, and   

and   x
 
are the natural frequency and corresponding eigenfunction of the directly excited 

modes, respectively. By substituting equation ( 5.10) into equation ( 5.7) we obtain: 
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1 1 3
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( , ) 2 ( , ) 0
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iv DC
s s s s
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V
w w N w w

w
 ( 5.11) 

In order to solve for the mode shape function ( )x , we propose to use the Galerkin-based 

discretization technique to solve the nonlinear eigenvalue problem (EVP), equation ( 5.11). 

Hence, we assume the following: 

 
1

( ) ( )
N

i i
i

x a x


   ( 5.12) 

Substituting equation ( 5.12) into equation ( 5.11), the resulting equation is then multiplied by 
j
, 

and the outcome equations are integrated from x=0 to x=1, which will give an eigenvalue 

problem. The mode shapes can be obtained by evaluating the eigenvectors of the resulting EVP, 

the number of modes is equal to the number of chosen modes in the ROM expansion. 

Next, the solution 1u  will be substituted in the second order equation (
2 ), which will give: 

 0 0
2

2 22 2( ) ( 2 ) ( )i T i T
u A e AA A e h x L  ( 5.13) 

where: 
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i

Assuming the particular solution of u2: 

 0 02 22 2
2 1 2 12i T i Tu A e AA A e  ( 5.15) 

where        are the solutions of the following boundary value problems: 

 1( ,2 ) ( )i iM h x  ( 5.16) 

 0j
 0j

  At x=0 and x=1 for  j=1 to 2 ( 5.17) 

where  is the Kronecker delta and M is a linear differential operator defined as: 

 

2
2 2

1 1 3

2
( , ) ( , ) 2 ( , )

(1 )

iv DC
s s s s

s

V
M w w N w w

w
 ( 5.18) 

Introducing the detuning parameter σ to describe the nearness of the excitation frequency Ω to 

the fundamental excited natural frequency 𝜔 as: 

   𝜔      ( 5.19) 

The solutions of the first and second order equations ( 5.10) and ( 5.15), respectively, are then 

substituted into equation ( 5.9), which will lead to: 
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 022

3( ) ( 2 ( ) ( ) ( ) )
i Ti T

u i A x ic x A x A A Fe e cc NST L  ( 5.20) 

where NST stands for the non-secular terms and the function χ is defined as: 
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 ( 5.21) 

Since we seek a solution for the second order approximation, there is no need to solve for u3. 

However, we need to impose the solvability condition to get A(T2). The solvability condition can 

be obtained by multiplying equation ( 5.20) by 0( )
i T

x e  and then integrating the result from 

x=0 to x=1, which will result in the following: 

 22
22 ( ) 8 0i Ti D A A SA A Fe  ( 5.22) 

where 
1

0

1

8 x
S dx

,

 

1
2

0

1

2 x
c dx

,

 

1

0x
F F dx  

A(T2) can be expressed in a polar form, such as: A=(1/2)a e
iβ

 , where a and β are the amplitude 

and phase of the microbeam deflection amplitude, respectively and they are real-valued 

functions. Equation ( 5.22) will lead to two equations after separating the real and imaginary 

parts. Letting (γ=σT2-β) the two equations are given as: 

 sin
F

a A  ( 5.23) 
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3

cos
Sa F

a a  ( 5.24) 

Since a and γ refer to fixed points they will be replaced by a0 and γ0, respectively; therefore their 

derivatives are equal to zero (i.e. a’= γ‘=0). The nonlinear equation governing the amplitude can 

be then obtained by squaring both sides of equations ( 5.23) and ( 5.24), adding them together, 

which will result in: 

 

2
2 2

2 2 0
0 2

Sa F
a  ( 5.25) 

5.1.3 Results 

We start by solving the nonlinear equation of motion assuming the ROM technique. For that, we 

solve for the coefficients ui(t) in equation ( 5.2) then substitute them back into equation ( 5.1). For 

the perturbation technique, starting by the first order, we solve equation ( 5.11) for function   x . 

Then, we substitute it in the second order equation ( 5.16) then solve for both functions 1( )x  

and 2 ( )x , respectively. After that, we solve for the amplitude from equation ( 5.25) and the 

phase from either equation ( 5.23) or ( 5.24). Finally, the deflection of the lower and upper 

microbeams can be numerically calculated using equation ( 5.5). 

Figure ‎5.1 shows a comparison between the obtained results for the normalized nonlinear 

resonance frequency with the literature [34]. The selected parameters are summarized in 

Table  5.1 for an applied DC voltage of VDC= 2 Volt, except for the first two points where VDC= 1 

Volt. As it can be seen, the obtained curves show excellent agreement with the literature.  
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Figure  5.1: Comparison of the obtained normalized nonlinear natural frequency with literature 

[34] for VDC= 2 Volt except for the first two points where VDC= 1 Volt 

Figure ‎5.2 shows a comparison between the ROM and the perturbation method. The selected 

parameters are shown in Table ‎5.1 with the difference in the quality factor, where it is assumed 

to be 1000. The applied DC and AC voltages were assumed as VDC=8 Volt and VAC=0.03 Volt, 

respectively. The obtained results are in good agreement among the two assumed methods. It can 

be noticed from the figure that in the presence of nonlinearity, the ROM is not capable in 

obtaining all of the branches. In the other hand, the perturbation method can perform this task 

and hence it is better to use it in the case of non-zero nonlinearity. 
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Figure  5.2: Comparison of the obtained deflection of the microbeam among the ROM and the 

perturbation method for VDC= 8 Volt and VAC=0.03 Volt 

 

Table  5.1: Assumed geometrical and material properties [34]  

Parameter Value Parameter Value 

Beam Length (L) 210 µm Effective Young„s Modulus (E) 151 GPa 

Beam Thickness (h) 1.5 µm Density (ρ) 2,332 kg/m
3
 

Beam Width (b) 100 µm Air Gap Width (D) 1.0 µm 

Axial Load ( ̂) 0.00011 Newton Quality factor (Q) 816.6 
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5.2 Double-Microbeams Case 

5.2.1 Reduced-Order Modeling (ROM) 

As with the single microbeam analysis, the ROM can be obtained by discretizing equations 

( 2.24) and ( 2.25) using the Galerkin expansion. Therefore, the deflection for the lower and upper 

microbeams will have the following forms, respectively: 

   (   )  ∑  ( )  ( )

 

   

 ( 5.26) 

   (   )  ∑  ( )  ( )

 

   

 ( 5.27) 

where    ( ) are the linear undamped mode shapes of a clamped-clamped micro-beam, which 

are orthogonal. As in the previous case of a single microbeam, equation ( 2.24) will be multiplied 

by (    )
  .

  
  
⁄       /

 

and equation ( 2.25) will be multiplied by .  
  
⁄       /

 

. After that, the 

outcome will be multiplied by   ( ) and then integrated from x=0 to x=1 to give the following 

equations: 
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 ( 5.29) 

5.2.2 Perturbation Analysis 

Numerical solutions of the ROM dynamical equations provide good results for low nonlinearity 

values. However, when tuning the system‟s geometrical parameters as well as the forcing 

amplitudes, one can increase the source of the nonlinearity, leading to nonlinear frequency 

responses which cannot be fully captured by ROM. As a result, perturbation theory was 

investigated to find the resonance of the double-microbeams especially for any high nonlinearity 

factors. The method of multiple scales was used by direct attack of the equations of motion [34, 

47]. So, the variable for the time scales and its derivatives were defined as follows:  
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 ( 5.30) 

Next, the damping coefficient c and the forcing amplitude ACV
 

were scaled so that their 

nonlinearity effect will be balanced in the modulation equations [34, 47]. Hence, 

 
2 ,c c       

3

AC AC ,V V  ( 5.31) 

where   is a bookkeeping parameter. 

We seek a solution for the lower and upper electrodes in the following form, respectively: 
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 ( 5.33) 

where 1sw  and 2sw  are the static components of the microbeams‟ deflection and u1 and u2 are 

their dynamic components for the lower and upper microbeams, respectively. Substituting 

equations ( 5.32) and ( 5.33) into equations ( 2.24) and ( 2.25) gives: 
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 
4 24 2 2

1 11 1 1 1

3 1 1 1 14 4 2 2 2

2 2

4 4

2
221 1

1 1 2 2

1

( , )

( cos( )) ( cos( ))

(1 )
( )

s s

s s

DC AC DC AC

s
s s

w wu u u u
c w u w u N

x x t t x x

V V t V V t

dw u
w u w u

d



 

    
         

     

   


 
 

 
 
 

 

 ( 5.34) 
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s s
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w wu u u u
c w u w u N
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V V t

d
w u w u

d





    
         

     

 

 

 
 
 

 

 
( 5.35) 

As in the single microbeam configuration, the electrical forces 
2

4

2

1 1

( cos( ))

(1 )

DC AC

s

V V t

w u

  

 
 and 

2

4

22
1 1 2 2

1

( cos( ))

( )

DC AC

s s

V V t

d
w u w u

d

  

   

 are expanded around (u1) and (u1-u2) using a Taylor-series expansion, 

respectively. Further, the expression of  2( cos( ))DC ACV V t   will be approximated as

2 2 cos( )DC DC ACV V V t  . Using the aforementioned expressions and canceling the static equations 

and neglecting all small terms while equating the coefficients of like powers of  , the following 

equations are obtained:  

For equation ( 5.34): 

 Order 
1 : 

 1 11 21 0( , )u u L  ( 5.36) 
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 Order 
2 : 

 

2 2 2 2 2

4 11 4 11 11 21 21

1 3 1 3 11 4 4

1 2 1 1 2

12 22 11 11 1 11

3 3 ( 2 )
( ) 2 ( )

1
( , ) , ,

( ) ( / )

DC DC

s

s s s

s

V u V u u u u
w u

w d d w w
u u u u w u L  ( 5.37) 

 Order 
3 : 
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2 2 3
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DC
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d
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d

F T F T

 ( 5.38) 

where 
1 L  is a linear differential operator defined for any two functions (f and g) by: 
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d d w w
 

 

 

 



65 

 

For equation ( 5.35): 

 Order 
1 :  

 2 11 21( , ) 0u u L  ( 5.39) 

 Order 
2 : 

 

2 2 2

4 11 11 21 21
2 12 22 3 2 21 21 3 21 2 21
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3 ( 2 )
( , ) ( , ) 2 ( , )
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 L  
( 5.40) 

 Order 
3 : 
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w w

 

( 5.41) 

where 
2  L  is a linear differential operator defined for any two functions (f and g) by: 
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Assuming no internal resonances scenarios, the solutions of equations ( 5.36) and ( 5.39) are 

assumed to consist of only the directly excited modes,  x , since the indirectly excited modes 

will die out in the presence of damping. As a result, the solution of the dynamic components u11 

and u21 of the lower and upper microbeams, respectively, are: 

  0 0

11 0 2 2 2 1( , , ) ( ) ( ) ,
i T i T

u x T T A T e A T e x
       ( 5.42) 

  0 0

21 0 2 2 2 2( , , ) ( ) ( ) ,
i T i T

u x T T A T e A T e x
       ( 5.43) 

where 2( )A T  is a complex-valued function that is determined by imposing the solvability 

condition at the third order, the over bar denotes the complex conjugate, and   and   x
 
are 

the natural frequency and corresponding eigenfunction of the directly excited modes, 

respectively. Here, the complex-valued function is considered to be the same for both 

microbeams, while the mode shapes will compensate for the resulting difference. This will help 

in obtaining the eigenvalue problem.  Substituting equations ( 5.42) and ( 5.43) into equations 

( 5.36) and ( 5.39) we obtain the following nonlinear coupled eigenvalue problem (EVP): 
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1 1 3 1 1 1 1 3 1 1 1

2 2
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321

1 2

1

2
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32
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1

( , ) 2 ( , )

2 2

(1 )
( ) ( )

2
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iv

s s s s

DC DC

s
s s

DC

s s

w w N w w

V V

dw
w w

d

V

d
w w

d

 ( 5.44) 
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2 2 2 2
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2 2 3 2 2 3 2

2 2
4 2 4 1

3 32 2
1 2 1 2

1 1

, ,

( ) ( )

( ) 2 ( )

2 2
0

s s s

iv
s

DC DC

s s s s

w w wN w

V V

d d
w w w w

d d

 ( 5.45) 

In order to solve for the coupled mode shapes 1 and 2  the eigenfunctions of the coupled EVP 

of equations ( 5.44) and ( 5.45), both functions are expanded assuming the Galerkin discretization 

method, as follows: 

 
1 1

1

( ) ( )
N

ii
i

x a x


   
( 5.46) 

 
2 2

1

( ) ( )
N

ii
i

x a x


   
( 5.47) 

Substituting equations ( 5.46) and ( 5.47) into equations ( 5.44) and ( 5.45), the resulting equations 

are then multiplied by 
j
, and the resulting equations are then integrated from x=0 to x=1. The 

coupled mode shapes can be then obtained by evaluating the eigenvectors of the resulting 

equations, where their number will be double that of the chosen number of modes. Next, the 

solutions 11u and 21u  will be substituted in the second order equations (
2 ), which will give: 

 0 0
1 12 22

2 22 2
1( , ) ( 2 ) ( )i T i T

u u A e AA A e h x L  ( 5.48) 
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ij

 0 0
12 22

2 22 2
2 2( , ) ( 2 ) ( )i T i T

u u A e AA A e h x  L  ( 5.49) 

where: 

 

1 1 1 1
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1 3 1 3 1 4
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1 1 1
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 ( 5.50) 
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s s

s

DC DC

s s s s

w

V

d
w w

d

x w

V V

d d
w w w w

d d

h

 ( 5.51) 

Assuming the particular solution of u12 and u22 as: 

 0 02 22 2

12 11 12 11( 2 )
i T i T

u A e AA A e  ( 5.52) 

 0 02 22 2

22 21 22 21( 2 )
i T i T

u A e AA A e  ( 5.53) 

where      are the solutions of the boundary value problems: 
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 1 1 1 1( ,2 ) ( )i iM h x  ( 5.54) 

 2 2 1 2( ,2 ) ( )i iM h x  ( 5.55) 

 

1 0j  1 0j  2 0j  2 0j  

At x=0 and x=1 for  j=1 to 2 

( 5.56) 

where  is the Kronecker delta operator and the two linear differential operators M1 and M2 are 

defined as: 

 

2

1 1 1 1 3 1 1 1 1 3 1 1 1

2 2 2

4 1 4 1 4 2

3
3 32 21

1 2 1 2

1 1

( , ) ( , ) 2 ( , )

2 2 2
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( ) ( )

iv

i i i s s i i s s i

DC i DC i DC i

s
s s s s

M w w N w w

V V V

d dw
w w w w

d d

 ( 5.57) 

 

2

2 2 2 2 3 2 2 2 2 3 2 2 2

2 2

4 1 4 2

3 32 2
1 2 1 2

1 1

( , ) ( , ) 2 ( , )

2 2

( ) ( )

iv

i i i s s i i s s i

DC i DC i

s s s s

M w w N w w

V V

d d
w w w w

d d

 ( 5.58) 

Introducing the detuning parameter σ1 and σ2 to describe the nearness of the excitation frequency 

Ω1 and Ω2 , respectively, to the fundamental natural frequency of the excited mode 𝜔 as: 
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    𝜔       ( 5.59) 

    𝜔       ( 5.60) 

The solutions of the first and second order are then substituted in equations ( 5.38) and ( 5.41), 

leading to: 
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( 5.61) 
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( 5.62) 

where NST stands for the non-secular terms and the functions χi are defined as: 
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 ( 5.63) 

 

2 3 2 2 21 2 22 3 2 2 21 2 22

2

4
3 2 2 21 22 3 2 2 2 1 114

2 1 1 2

1 12 1 21 1 22 2 11 2 12 2 21 2 22

2

4

( ) 2 ( ( , ) 2 ( , )) 2 ( ( , ) 2 ( , ))

6
2 ( , )( 2 ) 3 ( , ) (

(( ) )

2 2 2 2 )

12

((

s s s

DC
s

s s

DC

x w w w

V
w

d d w w
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( 3 3 )
) )s sd d w w

 ( 5.64) 

Hence, we need to eliminate the secular terms in equations ( 5.61) and ( 5.62) by seeking a 

particular solution free of secular terms in the form: 

   0

13 0 2 1 2( , , ) ,
i T

u x T T x T e


   ( 5.65) 

   0

23 0 2 2 2( , , ) ,
i T

u x T T x T e


   ( 5.66) 

Then, equations ( 5.65) and ( 5.66) are substituted into equations ( 5.61) and ( 5.62), which will 

give:  
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( 5.67) 
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( 5.68) 

Next, the coefficients of       in equations ( 5.67) and ( 5.68) will be equated. The resulting two 

equations will be then multiplied by two adjoints functions P(x) and Q(x), respectively, and then 

integrated by parts to transfer the derivatives from ϒ to the adjoints, leading to: 
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( 5.69) 



73 

 

 

3

3 2

1 112
2 2 2 2 2 200 0

11 1 1

2 2 2 2 2 2 20 0 00

11 1
2

2 2 2 2 2
00 0

(

2

, )( ) (

) ( ( s

iv

xx x

s s xx

s s
x

NQ NQ

NQ w

Qdx Q Q Q Q Q dx

w w Q Q Q dx

dx w Q w Q dx

2 2

2

2

1 1

2 2
00

2 21 1 1
4 1 4 2

2 2 3 3
0 0 0

2 2
1 2 1 2

1 1

1
2

2 2 2 2
0

(

(

, )

2 2
, ) ))

( 2 ( ) ( ) ( ) )

s

s

s
x

DC DC
s

x x x

s s s s

i T

x

w

w

Q w

V V
Q w dx Qdx Qdx

d d
w w w w

d d

i A x ic A x A A x F e Qdx

 

( 5.70) 

which then can be simplified as: 
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( 5.71) 
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 ( 5.72) 

By adding equations ( 5.71) and ( 5.72) and re-arranging the terms, we obtain: 

 

2

2 4

1 3 1 3

1

2

4

33

2

1 2

1

3 2

1

1 1 1 1
0

2
1

24

2 2 23
0

2

1 2

1

4

2

2
( 2 (

1

2
(

2 (

( , ) , )
( )

2
) ( , )

2
, )

DC

s

s

DC

s s

s

iv

s s s
x

ivDC

s s
x

s s

D

s

V
NP w

w

V

d
w w

d

NQ w

P
P P w w P P w

V QP
dx Q Q w w Q

d
w w

d

V
Q w

2

4

3

2

1 2

1

2

3

2

1 2

1

1

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1
1 2

1 1 0 1 1 1 1 2 2
0

2
)

(

2 2 2 (

[ , )( )

] [ , )

DC

s s

C

s s

s s

s s

s x s s

V

d
w w

d

Q P
dx

d
w w

d

NP NP

w w

P P P P w w P P

w P dx w P P w Q Q

1 2 2 2

1

3 2 3 3 2

1

2 2 2 2 2 2 0 2 2

1
2 1

2 2 2 2 2 2 0
0

1
2

1 2 1 2 1 2
0

1 2

(

2 2 2 (

, )( )] [

, )]

( 2 ( ) ( ) ( )

( ))

s s

s s x

s s s x

x

i T i T

NQ NQ

w w

Q Q w w Q Q

w Q dx w Q Q w

i A P Q ic A P Q A A P Q

F Pe F e Q P dx

 

( 5.73) 
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Finally, the two adjoints equations governing both functions P(x) and Q(x) can be written as: 
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( 5.75) 

which are the same as the first order equations (( 5.44) and ( 5.45)) so we call them self-adjoints 

equations. The solvability condition can be then obtained as: 
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 ( 5.76) 

Using Euler‟s formula for 1 2i T
e  and 2 2i T

e , then separating the real and imaginary parts of the 

solvability condition will give the following two coupled equations: 
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where: 
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By setting (σ1= σ2=σ), which will give (ϒ1= ϒ2=ϒ), squaring both sides of equations ( 5.77) and 

( 5.78), then adding the results, while remembering that (β’= σ- ϒ’), we get: 
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8 4

F F Fc
a z z a S S z z  ( 5.79) 

Since the quality factor is related to the damping coefficient (c) by: 

 
1 2( )

Q
c z z

 ( 5.80) 

it can be replaced in the solvability equation ( 5.79) to examine the effect of the quality factor on 

the system dynamics. 
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5.2.3 Results 

To solve for the coupled equations of motion of both the lower and upper microbeams using the 

ROM, it is necessary to solve for the unknown functions pi(t) and qi(t) in equations ( 5.28) and 

( 5.29) then substituting them back into equations ( 5.26) and ( 5.27), which will give the 

deflection of both microbeams. For the perturbation technique, we start first by scaling the first 

order coupled equations, equations ( 5.44) and ( 5.45) for both functions Ф1 and Ф2. Then, we 

substitute them into the second order equations, equations ( 5.54) and ( 5.55), to solve for the 

functions 11 , 12 , 21  and 22 . Then, we solve for the unknown dynamic amplitude from 

equation ( 5.79) and the phase from either equation ( 5.77) or ( 5.78). Finally, the deflection of the 

lower and upper microbeams can be calculated using equations ( 5.32) and ( 5.33), respectively. 

Since each two consecutive natural frequencies of this system are very close to each other, the 

equations of the perturbation will be solved twice for each one of those two, and then the 

deflections around the two natural frequencies for each microbeam will be added to give the 

resultant deflections of both microbeams. 

A comparison of the obtained results for the two above described methods for the case of double-

microbeams is shown in Figures 5.3-5.5. The selected parameters were the same as assumed in 

the static analysis (i.e. Table  3.3) with the only difference being the applied voltages, VDC=10 

Volt and VAC=0.5 Volt. In this present case, it can be seen from all figures that overall both 

assumed numerical methods are in good agreement for all different cases. While the perturbation 

analysis technique is less accurate than the ROM, it showed better global results in the presence 

of gross nonlinearity. It can predict all of the stable and unstable branches which the ROM is not 

capable of capturing. Also, it gives a better global and local dynamical picture about the 
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microsystem‟s behavior. Hence, the perturbation technique will be used in the following 

parametric study. 

 

    (a) 

 

      (b) 

Figure  5.3: Frequency response curve of the (a) upper microbeam and (b) lower microbeam and 

assuming both ROM and perturbation method for the case of d1=d2 
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    (a)

 

 

     (b) 

Figure  5.4: Frequency response curve of the (a) upper microbeam and (b) lower microbeam and 

assuming both ROM and perturbation method for the case of d1<d2
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     (a)

 

 

     (b) 

Figure  5.5: Frequency response curve of the (a) upper microbeam and (b) lower microbeam and 

assuming both ROM and perturbation method for the case of d1>d2 
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5.2.4 Parametric Study 

In order to investigate the effect of different physical and geometrical parameters on the 

dynamical amplitude of the double-microbeams based actuator, three different values were 

selected (low, medium and high) for each chosen parameter then the frequency response curve 

was generated for each microbeam to investigate the effects of each tuned parameter. The 

selected parameters are the length, the quality factor, and the DC and AC voltages. For all those 

cases, the depth of both air gaps are kept equal (d1=d2=1.25 μm) and the width (b) and height (h) 

for both microbeams are initially assumed to be 20 μm and 1.5 μm, respectively. The length (L) 

and the quality factor (Q) were equal to 210 μm and 50, respectively, for all the cases except 

when they are intentionally varied.    

a) Effect of the Microbeam Length (L) 

Figure  5.6 shows the amplitude versus the excitation frequency for three different lengths (210 

μm, 410 μm and 610 μm). From both figures, the significance of changing the length on the 

dynamical amplitude, even when small voltages were applied (i.e. VDC=2 Volt and VAC=0.1 

Volt), is clear. When the length is of a small value (L=210 μm), the two resonance peaks are very 

close to each other, which means that the applied voltages have a slight effect on the 

microstructure and so do not change its fundamental frequencies. However, when the value of 

the microbeam length is increased (L=410 and 610 μm), the distance between the two peaks 

becomes larger, meaning the fundamental frequency becomes lowered and the system is prone to 

experience a pull-in instability. Also, with a high value of the microbeam length, the nonlinearity 

becomes more dominant, producing a softening-type of behavior at the fundamental frequency 

for both microbeams. 
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                (a) 

 

             (b) 

Figure  5.6: Effect of the microbeam length (L) on the frequency response curve of the (a) lower 

microbeam and (b) upper microbeam for VDC= 2 Volt and VAC=0.1 Volt 
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b) Effect of the Quality Factor (Q) 

Figure ‎5.7 shows the amplitude versus the excitation frequency for three different quality factors 

(50, 150 and 500) at high DC and AC voltages (i.e. VDC=10 Volt and VAC=0.5 Volt). It can be 

noticed that there is no effect for the quality factor on the resonance locations, which is 

reasonable since increasing the quality factor will decrease the damping which has no effect on 

the natural frequencies.  However, the quality factor is shown to maximize the amplitude and 

with a high quality factor the nonlinearity becomes prominent (see hardening behavior in both 

figures). 

c) Effect of the DC Load (VDC) 

The effects of the applied DC voltage on the amplitude are shown in Figure ‎5.8. Three different 

voltages were selected, which are 5, 10 and 15 Volt. At a low DC voltage, the fundamental 

frequency is not affected by the applied voltage, so it is very close to its consecutive one. 

However, an increase in the value of the DC voltage causes the fundamental frequency to shift 

from its initial position, and hence the system gets closer and closer to the pull-in instability. 

Since the term of the applied AC voltage is small there is no presence for the nonlinearity. So, 

we would like to investigate the nonlinearity effect for the applied DC voltage at a high AC 

voltage. As it can be shown from Figure ‎5.9, by increasing the value of the applied AC voltage to 

5 Volt, the hardening-type nonlinearity appears at high values of the DC voltage. This indicates 

that the mid-plane stretching term is significant, since it is responsible for this nonlinearity. 
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     (a) 

 

       (b) 

Figure  5.7: Effect of the quality factor (Q) on the frequency response curve of the (a) lower 

microbeam and (b) upper microbeam for VDC= 10 Volt and VAC=0.5 Volt 
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(a)  

 

(b) 

Figure  5.8: Effect of the applied DC voltage (VDC) on the frequency response curve of the (a) 

lower microbeam and (b) upper microbeam for VAC= 0.1 Volt 
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(a) 

 

(b) 

Figure  5.9: Effect of the applied DC voltage (VDC) on the frequency response curve of the (a) 

lower microbeam and (b) upper microbeam for VAC= 5 Volt 
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d) Effect of the AC Load (VAC) 

 

(a) 

 

(b) 

Figure  5.10: Effect of the applied AC voltage (VAC) on the frequency response curve of the (a) 

lower microbeam and (b) upper microbeam for VDC= 2 Volt 
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Figure  5.10 shows the effect of the applied AC voltage on the amplitude. For this investigation, 

three different AC voltages were selected which are 5, 10 and 15 Volt. Unlike the DC voltage, 

the applied AC voltage has no effect on the natural frequencies, which is predictable since the 

dynamic loading has no effect on the natural frequencies. As shown in the figures, increasing the 

AC voltage increases the amplitude as well as produces a hardening type of nonlinearity. 
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CHAPTER 6: SUMMARY, CONCLUSIONS AND FUTURE 

WORK 

6.1 Summary 

This work concentrates on an investigation of the features of static and dynamic double clamped-

clamped microbeams. At the beginning of the work, the results of the related problems in single 

microbeam were produced. In a single microbeam, the obtained deflection at low voltage was 

low, so hitting the pull-in instability requires the consumption of much power and time. 

Then, the results of the static double-microbeams were obtained using ROM. In comparing the 

results with the single microbeam, it was shown that the double-microbeams configuration may 

provide high deflection in low voltages and reach the pull-in instability much faster in 

comparison with the single microbeam case. As a result, it requires a low actuation voltage, 

which will both save power, and reduce the switching time. 

The analysis of the eigenvalue problem was conducted for both single and double-microbeams. 

The results showed that for a single microbeam the natural frequencies are far from each other 

and only the fundamental frequency is affected by the load, which decreases with the applied 

load until reaching zero at the pull-in. For double-microbeams, when a similar geometry is used 

for both microbeams, each two natural frequencies are close to each other. However, only the 

fundamental frequency is affected by the applied DC load.  

For the analysis of the dynamics of double-microbeams, two methods were used which are ROM 

and the perturbation method. The comparison between the two methods showed that they are in 

good agreement. While the ROM is more accurate, it cannot capture all of the branches which 
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the perturbation is capable of, and so the perturbation method was used in generating the 

parametric study. 

6.2 Conclusions 

In conclusion, the use of double-microbeams configuration was shown to be useful for 

applications that require low actuation voltage and pull-in voltage, and large deflections. Two 

numerical methods were used to perform the dynamic analysis, which are perturbation analysis 

and ROM. The results showed that the outcomes of the two methods are in good agreement. 

Although, the ROM is more accurate in obtaining the behavior, it cannot capture all of the 

solution‟s branches, which the perturbation can perform, so the perturbation method is better in 

the nonlinearity zone.  

The effects of changing the air gap depths on the double-microbeams configuration revealed 

about interesting profiles. For example, both microbeams could be directed down to the fixed 

electrode or the upper microbeam could be directed down while the lower is up. Also, the pull-in 

voltage will differ between the cases, and it can be reached whether from the lower microbeam 

as it hits the fixed electrode, the lower microbeam as it sticks with the upper microbeam or the 

upper microbeam as it pulls toward the lower microbeam. 

Based on the dynamical parametric study, the effects of the parameters selection are significant 

on the resonance profiles. For example, increasing the length (L) is significant and will produce a 

softening nonlinearity; the quality factor (Q) will maximize the resonance profile; increasing the 

DC voltage (VDC) will shift the two resonance peaks away from each other, while producing a 

hardening-type nonlinearity at high AC voltage, and the AC voltage (VAC) will produce the 
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hardening nonlinearity. So, interesting features can be obtained by manipulating these 

parameters, which may have useful applications. 

6.3 Future Work 

The following are recommended as an extension for this work:  

 Use the concept of localization to explore the potential of using the double-microbeams 

configuration with an electrostatic force in designing a very sensitive mass sensor. 

 Solve for a multi-microbeams configuration and investigate its features and feasibility. 

 Use the arch-microbeams instead of the straight-microbeams and perform its static and 

dynamic analysis.
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