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Software reuse has been regarded as the key stfategvercoming the software crisis.
Reuse has great potential when systematically pldamd managed to capitalize on the
commonalities that exist among the different agians within the same or similar
domains. Additionally, reuse of early-stage artdalsas great potential as compared to
later-stage artifacts reuse. However, using metipbdels to achieve the reuse potential
across them is impractical and complex, especiadhen models are of large size.

Early-stage reference models have been considerg@l tools to allow reuse across
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CHAPTER 1
INTRODUCTION

1.1 Introduction

The ability to ship a new software product with tiguality, within a short
timeframe, and with sustainable profit has beeal ¥ar software companies to keep up
with the new business opportunities [1-3]. Thesedghimportant aspects of the software
development have been coined within the softwargineering community as the
software crisis,which is the main motivation for the adoption ofetkengineering
approach, in the late 1960s, to the software dewedmt to make it an engineering

discipline [4].

Mature engineering disciplines have several hanklbabat describe successful
solutions to known problems. This wealth of knovgeds the accumulative contributions
of dozens of top experts in the field. If softwamegineering is to become a mature
engineering discipline, successful practices massystematically documented so that it

can be widely disseminated and reused [5].

Software reusdias been regarded as the key strategy for ovengpthe software
crisis [4, 6-8]. It is the process of building nesoftware systems by the use of
engineering knowledge or artifacts from existingteyns rather than building software
systems from scratch [4, 8, 9]. As software engingds becoming a mature engineering
discipline, successful practices must be systemdgtidocumented so that they can be
widely disseminated and reused [Systematic software reuse an effective way to

significantly improve software development [7, §].reduces the risk of development
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errors, leverages existing resources, transfergvlatige and experience from experts to
the novice, leads to reductions in software devekt cost and time, and promotes high
quality software. Additionally, reuse has greatgmbial when systematically planned and
managed in the context of a specific domain, wregplication families share some
functionality [10, 11]. This common functionalitif,managed appropriately, is the actual
reuse pay-off and the crucial factor to the reuseceass [11-13]. Thus, thgoal of

researchers with regard to software reuse is toecomwith systematic procedures for

engineering new systems from existing assets [4,513

The notion of reuse is not new in the software tgweent domain. Software
engineers have been reusing algorithms, code dmd attifacts for long time. Hence the
problem is not the lack of software reuse, ratiteis the way the artifacts have been
being reused. Traditional software reuse practcesad hoc [16], even at the model level
[17]. Under the pressure of constantly changingiireqnents entailed by the dynamic
business world, engineers are driven by the oppwtic thought of copy and modify
reuse [18], and thus, inevitably, find themselvealishg with large collections of models.
These models represent different versions across tlifferent applications in a domain,
different development concerns and so on [19]. Aoldally, these models represent a
main source of knowledge which is captured from riiads of people involved. This
knowledge is re-practiced each time new softwarereated, yet, when comparing
software systems, we usually find 60% to 70% obfiweare product’s functionality is
common [20]. Thus, without effective reuse mechanig is possible to build a new
system from scratch, yet a similar situation hagsnbéuilt before. This results in

redundant artifacts, and thus redundant maintenanse and time for the duplicated



artifacts. Thus, it is very much needed to haveysiesnatic way to access and reuse

existing software models in an efficient way.

One approach with a great potential here is to @afete these models into a single
model that unifies their commonality and explic#teir variabilities. We require that

such single model must have the following propsri®]:

It offers the reuse potential of the set of modetgeneralizes while keeping the
complexity at level of a single, yet more complézht model.

CompletenessThe model must beompletein the sense that if an element
appears in one of the source models, it must beesepted in the merged model
as well.

Minimum redundancyldentical elements appearing in more than onéaite
must be unified into a single element in the candsdéd model.

Traceability each element in the reference model is tracetablags original
instance;

Instantiate-ability each input instance can be instantiated back frmmweference
model.

Information Representationthe representation of the reference model is
informative enough in such a way that it can gulte reuser about the common

analysis and design practices in the domain.

" The complexity comes from the need to handle apdesent the variability among the different insem
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1.2 Technical Background and Motivation

As mentioned earlier, the notion of reuse is not e the software development
domain. Software engineers have been reusing #igmj data structures, and code
blocks (routines, components, libraries) since mogning was started. The recognized
benefits of code reuse have encouraged its pradim®ss the entire software
development life-cycle, starting withdomain modeling through requirements
specification software designcoding andtesting to maintenanceand operation [21].
We refer to the first three types of artifaaleifrain modelingrequirements specification
and software designas early-stagereusable artifacts while the rest are referreégo
later-stage reusable artifacts. Reuse at the level of eadgestartifacts has been
acknowledged to be more beneficial than reuse tef-ltage artifacts [21, 22]. This is
due to the fact that in early-stage reuse, onceatchms found, all related later stages
artifacts for the match can also be reused [22[dith@hally, the benefit of code level
reuse is limited due to the fact that the unded\software technology is moving so fast,
especially true in software projects with long tiswales [23]. Moreover, it is generally

known that coding represents not more than 25%etost of system development [16].

Shifting the engineering focus during system degwelent from late-stage artifacts
(i.e. code) to early-stage artifacts (i.e. modeshe aim ofModel-Driven Development
[24] (MDD) % a software development methodology which emphasthe use of
models as the primary artifacts in the developmamicess [25]. This implies that
software developers working within this paradignowd be able to automatically
generate software systems directly from modelshout going through the step of

writing computer code (text-based). Thus, the gdaIDD is to migrate from a code-

4



centric approach towards a model-centric appro#tereby separating business logic
from implementation details and getting domain etgpenore directly involved in the
development process [26]. The level of abstractimoyvided by MDD, per se, saves
substantial time and resources in production aniivetg through: identifying and
resolving defects/errors early and thus reducingork; downscaling the complexity
underlying software systems’ requirements, easarmgrounication between stakeholders,
and reusing the early stages artifacts and knowledy the subsequent stage

(construction) through an automated process [2127P

As mentioned earlier, traditionally, software atifs’ reuse along the software
development life cycle has been driven by the capg-modify thought. Object-oriented
design patterns [28] have been one of the mostifisignt and successful ideas in
software developments that support the systematiser at the design level. They are the
vehicles that transfer design knowledge and expeeidrom experts to the novice. One
of the basic goals of design patterns is to capélmeady proven and matured design
solutions, in the form of co-operating classesthsd addressing specific recurring design
problems does not always have to start from scrddwever, design patterns target

small-grained reuse, i.e. reuse at the micro-acthite level.

Software Product Line (SPL) is an emerging methoglpl that systematically
supports early stage artifacts’ reuse. It offerstrategic and promising approach for
architecture reuse (i.e. coarse-grained reusejmattiamily of products [29]. It provides
an efficient mechanism for managing the commoralieind variabilities among a family

of products. Modeling commonalities and variat®htiis a key concept in development



for reuse. SPL commonalities refer to artifacts dra part of each product of the product

line, whereas the SPL variabilities refer to aditathat are specific to some products.

Synergizing the abstraction capability provided thgy MDD with the variability
management capability of SPL engineering beargpthential benefits of both [30, 31].
However, unless we have enough understanding apdrierce of the market needs
about the underlying domain (or a similar domaih)is difficult to foresee what is
common and what is variable among a family of safevproducts upfront, and thus it
becomes difficult, skeptical, and risky for the taafre development company to follow
the traditional (proactive) software product linppeoach [18, 32, 33]. Due to the
aforementioned issues, proactive product line aggrdi.e. SPL first) is rarely used, and
usually dominated by reactive (i.e. extending @xgstSPL) or extractive (i.e. building
new SPL from multiple products) approaches. Theegfavhen there is a collection of
similar software development artifacts the extraci{jalso called bottom-up) approach is
the most applicable to integrate these artifacta iway that provide an efficient and

effective reuse environment [32].

1.3 The Research Problem

Software reuse has been regarded as a key to overttee software crisis [4, 6-8].
Reuse of early-stage artifacts has a great potesgizompared to later-stage artifacts
reuse [21, 22]. Additionally, reuse has great pidénvhen systematically planned and
managed in the context of a specific domain, wregplication families share some
functionality. The theoretical reuse potential witlthe same domain can be up to 85%
[34, 35]. This reuse potential capitalizes on tleenmonalities that exist among the

different applications within the same or similantains [12]. However, dealing with
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multiple models to achieve the reuse potential @ctbem is impractical and complex,
especially, when models are of large size. Referanodels have been considered as
good tools for generalizing the domain practicegscapturing their commonalities and
differences, to allow reuse across applicationsiwithe same domain or across similar

domains.

Despite the considerable efforts that have beererbgidesearchers towards building
a generic artifact out of a set of existing one 19, 33, 36-43], some notable challenges
still exist concerning the following building bloglof such a generalization process: 1)
the development of asolid similarity assessment mechanisthat uses efficient
comparison algorithmand matching algorithmalong with accuratsimilarity measures
for comparing the different artifacts and identifyitheir commonalities and variabilities
at different levels of granularity; 2) the develaggm of an efficientconsolidation
mechanisnalong with efficient algorithms to generalize #dlements of the input models
into the reference model so that their commonaliaee unified and variabilities are
explicated at different levels of granularity; 3)seheme for representing the different
level of similarity between the input instances as interface for bridging the gap
between the output from the matching algorithmsthednput to the merging algorithms
bearing in mind that the software product linehigught of as background blue-prints; 4)
a scheme foreference modelsepresentation that preserves the necessary infioma
needed for tracing artifacts of a given referen@eeh to their corresponding instances
and vice versa; 5) providing a tool support to endte the consolidation process

throughout all of its different stages.



Addressing the above mentioned challenges is eagdotincrease the opportunities
of early stages reuse, improve the developer ptodiyc guide the large-scale early
stages ruse of the software development artifaglduce maintenance cost, reduce

rework, and result in high quality product.

1.4 Research Scope

Typically, for each software system, there is a sktmodels that describe its
structural, behavioral, and functional perspectivdge focus in this work on the
structural perspective, modeled by the UML (Unifdddeling Language) class diagram.
Therefore, the word ‘model’ henceforth will refer & UML class diagram at both the

analysis and design stages of software development.

UML class diagram is the most important static espntation in object oriented
software projects [44]. It is the diagram that niedine real world objects and the
relationships among them. It is also the diagraat thodel-to-code transformation tools

use first and foremost [44, 45].

1.5 Research Contributions

The main contributions of this thesis work aredivs:

» Conducting an extensive critical survey of: thesérg approaches that have been
addressing the problem of consolidating a set adtieg models to build a single
reference model; the information considered to ssssthe similarity and
differences between such models; the requireméatsshould be considered by
the comparison or merging algorithms or tools; ameéntal challenges involved

in such a consolidation process.



* Proposing a staged consolidation framework for gdizeng a set of analysis

(design) instances representing different appboati in the domain into a

reference model. Within this framework we propose:

o

staged comparison and matching algorithms for itiemg the
commonality and variability among the set of ins&sto be generalized.
a well-defined interface that define the output@dtching algorithm and
the input to merging algorithms in terms of differesimilarity levels so
that the complexity of the consolidation problem b& broken down.
staged merging algorithms for handling the commbnaénd the
variability among the set of instances to be gdizedh and at different

level of granularity.

* Proposing a representation mechanism for:

o

o

o

representing the common, the variants, and thewogtielements, among
the input models, in the reference model.

allowing the elements in the reference model taraeed back to their
original instances.

enabling the instantiation of original instancesirthe reference model.

guiding the reuser about the most common practicdee domain.

* Developing a proof-of-concept Java-based tool fanplementing the

consolidation framework with the following main perties:

o

o

computing different similarity metrics with configable weight settings.

providing an implementation for five model matchedgorithms.

o providing two XMI parser for two modeling tools:tAl/a and ArgoUML



o providing an implementation for the proposed meggitgorithms

1.6 Thesis Organization

The rest of the thesis is organized as follows. pi#ra2 provides technical
background. Chapter 3 summarizes the related widr&. conceptual description of the
solution framework, through an illustrative exampgepresented in Chapter 4. Chapter 5
discusses model comparison and different similaagpects. This is followed by the
staged model matching in Chapter 6. The staged ingerig detailed in Chapter 7.
Empirical investigation of the proposed solutiondiscussed in Chapter 8. The thesis

findings and future directions are summarized iatér 9.
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CHAPTER 2
PRELIMINARIES

2.1 Introduction

Models in software development allow engineersdwiiscale the complexity of the
software systems [46]. They are the developer meansreasoning about the
requirements, communicating with stakeholders, dwmnting the system to ease the

maintenance task, generating test cases, etcT42, 4

As models have been promoted to primary artifastsaftware development, an
efficient model management becomes a necessity4dB,Global model management
operations involve, among others, model comparisongdel matching, and model

merging (also known as model consolidation) [5(, 51

Both model comparison and model matching are atctre of different model
management operations such as model evolution géBisolidation [41], and retrieval.
An accurate identification of the similarity andfdrences between the elements of the
matched models leads to an accurate model matchihigh, in turn, leads to better

model management.

The rest of this chapter provides background ondifferent concepts, techniques

and technologies used in this dissertation.

2.2 Model Comparisons

Model comparison is the task of assessing or giyargi the degree of the similarity

between the elements of the compared models [§2Cs8cial to an efficient similarity
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assessment is to have a set of similarity methas ¢onsiders the various aspects of the
compared models, thus their overlaps and differerme best quantified. Software
metrics are the software engineer means to quathtgfysimilarity between the elements
of the compared models. In the context of the dlE@gram, a metric which measures the
similarity between two classes based on their nasmegarity is an example of such

metrics.

2.3 Model Matching

Model matchings the task of determining the correspondence &&tvthe elements
of the compared models [19, 54-57]. Within the eahtof our thesis we define model
matching between a pair of two models as the tdskapping each element in the
smaller model of the pair (model with fewer numioérclasses) into its most similar
element in the other model, given the similaritpres between the elements of the two
models as quantified by the similarity metrics. A@te similarity assessment
(comparison) leads to accurate matching, and atxunatching leads to a duplication-

free merging [58].

Model matching task is time consuming due to ttoe flaat finding the optimal match
between the elements of two models is a kind of ipatorial problem generally
referred to as graph matching problem [59]. Therefan efficient matching algorithm is
required to obviate the complexity of the brutestomethod and meanwhile provide an
acceptable solution. One of the approaches is termame plausible assumptions which
can be driven by utilizing the characteristicshe# problem in hand. Alternative way is to

go with some heuristic based solutions, e.g. Gedgorithms.

12



Model matching techniques can be classified intacexodel matching [43, 60] and
inexact model matching [33, 50, 61]. The exact rhaodgtching aims at finding a strict
correspondence between the two models to be matdreldetween sub-sets of their
elements. This makes it so restrictive and impcatto the expected variations that may
exist among the elements of the matched modelsthargdit usually fails to find feasible
solutions. Unlike the exact matching approacheexant matching is tolerant to the
variations that may exist between the elementshefrhatched models. This makes it

more practical and its result is more intuitive.

2.4 Model Merging

Model merging is the task of unifying informatiamthe input models together while
keeping a single copy of matched elements [33].islta kind of many-to-one
transformation [62] with special requirements thia not generally required for a typical
many-to-one transformation [58], and thus not sujgobby the general transformation
tools. Within the context of our framework we stéte task of our merging operator as
follows. Given, as input, a set of input modelsnglavith their pair-wise correspondence,
the aim of our merging task is to generate, asuiugp single model, called reference
model, which unifies the overlaps and explicatesdifferences between the elements of

the input models.

2.5 The Unified Modeling Language (UML)
UML (Unified Modeling Language) [63] is a graphicknguage for visualizing,
specifying, constructing, and documenting the actg of a software systems. It is a de

facto standard for object-oriented modeling spedifoy the Object Management Group

13



(OMG) [64, 65] . Within the context of Model Drivédevelopment (MDD), UML, along
with the Meta Object Facility (MOF) [66], provideskey foundation for OMG's Model-
Driven Architecture (MDA). UML provides a varietyf diagrams for modeling different
aspects of software systems. For example, Use @Giaggams are used to model the
system functionality, Class diagrams are used talendhe system structure, and

Statechart diagrams are used to model the systhavioe [44].

2.6 XMl

XMI [67], which stands for Extensible Markup Langea (XML) Metadata
Interchange, is an interchange format for metatiedtiis defined in terms of the MOF
standard [68]. Since UML is MOF-based meta-mod&ll Xan be used to represent and
store UML models in XML-based interchange formaf][6This allows UML modeling
tools, e.g. Altova [70], or repositories from diéat vendors to use XMI to exchange
UML models. Thus, XMl integrates three standard®M(OMG), UML (OMG), and

XML (W3C [71]).

2.7 Reference Models

Reference models are built to represent alreadstiegi practices or artifacts, and
thus serve as blueprints for developing others.[TBgy also serve as recommendations
on how to solve a specific problem, means to acaedsstry best practices, and
benchmarks against which design practices are cmupand evaluated [8, 72, 73].
Reference models can be developed in different $osnch as reference architecture,
business process reference model, data referenaklmetc [74]. The underlying

motivation for reference models is the developmdiyt reuse paradigm [74].
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Additionally, reference models can enlighten peopl®ut design characteristics in
certain domain. Consequently, reference modelslemahctitioners to have a degree of

confidence that their activities begins on a stdighdation [72].

2.8 Genetic Algorithm (GA)

Genetic algorithm (GA) is a population based seamlristic that mimics the process
of natural selection. It has been used in theditee in different search-based problems,
e.g. Quadratic Assignment Problem [75], generasirggquence of cities for the known
combinatorial Traveling Salesman problem [76, €fdss diagram retrieval [78], graph
matching [79], etc. At the core of the GA algoriths the idea of maintaining a
population of alternative global solutions to treaish or the optimization problem in
hand. The objective of the algorithm is to maximize payoff of candidate solutions in
the population against a cost function [80]. GAdoejs to the larger class of evolutionary
computation, which generate solutions to optim@atiproblems using techniques
inspired by natural evolution, such as selectiamyisal), crossover (recombination and

inheritance), and mutation (diversity).

The algorithm starts with a population of randonggnerated solutions, called
individuals or chromosomes. Each chromosome reptesedifferent candidate solution
in a population of solutions. Each candidate sofutis evaluated against a fitness
function and assigned a fitness score. This fitsesse is a measure of the goodness of
each solution in solving the problem at hand. Titee$s function is always problem
dependent, for example, in a model matching probiteoan be the reciprocal of the
matching error (minimization), the overall sum loé tsimilarity scores (maximization), or

the number of elements passing the similarity thols (maximization). The solutions of
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the current population (also called current gemamatevolve through what is called a
breeding cycle, which is the heart of the gendgorthm. The breeding cycle consists of
three steps, selection, crossover, and mutatiomhdnselection step, solutions compete
for survival in the next generation through a siecmechanism. The chance of survival
is proportional to the fithess score of the solutidypically fitter solutions are more
likely to be selected. The new population is thenegated from the selected portion of
the current population through two genetic opesteiz. recombination (crossover) and
mutation. The former operator crosses a pair aftsmis (called parents) to generate new
solutions (called offspring). It is supposed to lexpthe current solution to find better
one [80, 81]. The later operator mutates the affigpto introduce a genetic diversity
between generations. It has traditionally considex® a simple search operator that helps
the algorithm to avoid being trapped in the logalima [82]. It is meant to help for the
exploration of the whole search space. The prooédseeding new individuals from
current ones and evaluating them against the ftrfeaction is repeated until the

termination condition is met.
The basic steps of GA can be sketched as the fol[8%i:

1. Create an initial population of candidate solutions

2. Compute the fitness values of each of these catedida

3. Select candidates for new generations using soleetism mechanism.

4. Make perturbation to each of these selected catedidaising genetic
operators, e.g. crossover and mutation.

5. Repeat 2 through 4 until the termination condii®met.
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2.9 Simulated Annealing Algorithm (SA)

Simulated Annealing (SA) algorithm [83] is a los@arch meta-heuristic algorithm
capable of escaping from local optima. The algarmiffrovides a probabilistic exploration
for the solutions’ search space. This probabilistiploration of the solution space helps
the algorithm to avoid being trapped in the locplima [84]. SA has been used in the
literature in different search-based problems, grgph isomorphism [85], generating a
sequence of cities for the known combinatorial €eng Salesman problem [86], grid
scheduling [87], etc. It is so named because itsaWer is simulating the annealing
process of solids in the thermodynamic system, &/aecrystalline solid is heated and
then allowed to cool very slowly until it achievés most regular possible state (the

ground state), which results in a solid with supestructural integrity.

The algorithm starts with initial (generally randpmsolution, then in each of its
iteration it computes the objective function whicidicates the quality of th@ew
solution (also callecheighbor solution) as compared to thmurrent solution. Better
solutions are always accepted while worse soluéian probabilistically accepted. The
acceptance probability of the worse solution isegally high at the beginning to allow
for better exploration of the solution space, dngstescaping from getting trapped by the
local optima with the hope to find the global opimHowever this probability is
decreasing over time until it reaches a point whieeeexploitation starts to outweigh the

exploration.
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CHAPTER 3
!LITERATURE REVIEW

3.1 Introduction

Historically, reuse in software started on the lewel technical assets, which is code.
In the 1960s and 1970s, the reuse focus was atetle of subroutines [29]. The
emergence of object-oriented approach, in 1980#edireuse practice from libraries of
isolated functions to library of classes and cilasguage blocks of code [88]. In 1990s,

the software reuse has been stepped to larger geaas, software components [88].

With the emergence of software product line (SRL}he late 1990s, the software
reuse process has been promoted from ad hoc amdtopistic to systematic [29]. Being
a highly successful approach to strategic reuseé, [&®e been widely adopted in the
industry and the academia following two main sgas [32]: forward engineering
(proactive) and reverse engineering (extractivag proactive SPL approach emphasizes
the development of the core (common) assets Attough the engineering practices of
this approach are straightforward and result inoand product line architecture, the
identification of the common assets among the wiffe variants of the system family
upfront requires a foreseeable horizon, which ides® possible [32, 89, 90]. Therefore,
the very often, yet not straightforward, practiseto extract (reverse engineer) the

product line architecture from a set of legacyfacts [89].

There are two architectural representations ofptioeluct line architecture [32]. The

first approach provides a generic architecturetlf@ product line, which captures the
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commonalities of the products family but ignorelstiaé variabilities. In this approach,

each application starts with the generic architecéund adapts it as required.

The second approach, which is more desirable, @ttplicaptures both the
commonalities and variabilities of the products ifgmFrom the reuse perspective, the
first architectural representation targets reuseuifjh specialization, as it captures the
reusable knowledge and practice at a high levelbstraction. Although the abstraction
level of knowledge captured by this representaposmotes across domains reuse (for
domains that share similar characteristics) anglipes a good starting point as compared
to developing a system without any reuse, it feslapture any knowledge about the
variability in a family of products [91]. Moreovethis approach requires a significant
effort by experts for specialization [40]. The sedarchitectural representation targets
reuse through customization, as it aims at capgualhpossible solutions and at the level
of details that promotes “as-is” or direct reusel][9In this representation, the
commonalities among the different possible soldiofartifacts) are unified and
represented as common assets (core-assets) avariddalities are explicitly modeled as
alternative (mutually exclusive) or optional assé#odeling variability in software
systems has been acknowledged to be a necessjt93463]. Variability contributes to
the success of reuse in the sense that variabfactst are modeled to capture the
expected diversity in the requirements of the d#ifé products while supporting as-is

reuse [92].

3.2 Model Consolidation: Opportunities and Challenges

Both Software Product Line Engineering (SPLE) andd®l Driven Development

(MDD) are emerging technologies that encouragenso# reuse. The former technology
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supports reuse through providing an effective meisma for reusing the common assets.

The later technology (i.e., MDD) supports reusetigh different levels of abstraction

provided by the models at different stages of tlewetbpment life cycle [32, 94].

Adopting the key activities of SPLE into MDD proessia systematic way to build, out of

a set of existing MDD models, a reusable referanoelel with the following benefits

[95-97]:

It promotes the reuse practice of MDD models frahhac into systematic by
capitalizing on the commonalities and variabilitreanagements of an SPLE
to capture the commonalities and variabilities as®IDD input models.

MDD models will serve as a reference reusable sasbeth horizontally (i.e.,
for similar products) and vertically (for later geartifacts).

Having a reference model that captures what is comand what is variable
across different analysis (design) experience megs in a domain will guide
the creation of new applications in that domain.

MDD models become first-class reusable assets.

The complexity of creating, maintaining, and evotya set of similar artifacts
will be reduced to the simplicity of a single syste

The reference model will capitalize on the combimedse benefits of both
SPLE (such as strategic reuse, and commonalitied wariabilities
managements) and MDD (such as reducing cognitistamite through

model’s abstraction) [4].

However, building a reusable reference model out cfet of existing individual

models is not a straightforward task and many ssteuld be taken to account [19, 37,
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42, 98]. Among these issues are: assumptions aheuinput models; detecting the
commonality and variability among different modetspdeling variability on the merged
model, explicating the nature of the relationshipoag the elements involved in the
merge process; the cohesiveness of the models meebged; resolving lexical conflicts,
resolving structural conflicts; resolving semartonflicts; resolving behavioral conflicts;
providing the ability to generate the originatimglividual models back from the merged

model, and others.

Different works in the literature have been addresghe problem of consolidating a
set of existing models to build a single genericdeloBernstein et al. [99] proposes a
data model on which the model management operafimasching, selection, merging,
and composition) are defined. In that data modeldels and mappings are first class
elements. In their approach, a model is a set gctdh Every element in a model is
reachable from a root object using containmentiogahips. Mappings are models that
represent the relationships between models. Theik g an attempt with the ultimate
objective of establishing a framework for generatgmse model management operators
(including matching and merging). However, theyhfighted a set of challenges that
needs to be tackled towards achieving this objec®ome of these challenges are related
to model representation, and the accuracy and fi@eacy of both matching and

merging operators.

Kim et al. [100] present an approach of forward ieegring and re-engineering
activities for building a software product line afta set of related legacy systems in the
digital audio and video domain. They interleavegmgineering activities with the main
(forward engineering) activities, where the revessgineering is used to extract the
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candidates of core assets from the recovered acthial models while the forward

engineering incrementally applies the main actsgitof the development process to refine
these assets through analyzing the code and ddsicgnments of the legacy systems.
Based on their experience they list a set of gindslto enhance the quality of the
constructed software product line and to evaluaéedonstructed reference architecture

against these guidelines.

Breivold et al.[89] provided structured migration methods to mdeggcy systems to
product line architecture based on their induseiglerience. In this work they list a set
of recommendations for the transition process ftegacy systems to the product line.
This approach emphasizes the software architecsra key to recovery of domain

concept and relations.

Brunet et al. [51] proposed a framework for reseas model merging, in order to
be able to discuss and compare the many diffeqgmtoaches to model merging. They
propose a set of useful model management oper@@ige, match, diff, spligndslice
and specify the idealized algebraic properties asfheoperator. Using this framework,

different proposals can be compared.

Lutz et al. [37] provide insights into the procedshow users compare and merge
visual models. The underlying question of their kves “How do software engineers
merge UML models? Their main contribution is the use of qualitatitheory to
demonstrate human model merging activities andd#éreved findings, as guidelines for
tool design. They claim that their findings can dggplied to any graph-based, visual

models in software engineering. However, the focusheir work is the UML class
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diagram. They also list a catalog of alternativeysvio model the same or similar aspects,
in an attempt to show some of the difficulties ilweal in the similarity assessment and
the matching process which, in turn, hurt the aacyiof the merge process. The authors
also highlight some factors that should be consudlenvhen assessing the similarity
between models to be merged as well as a set wiréaihat should be considered by the

merging process.

Toward standardizing model merging expectationsteBaet al. [98] commenced the
effort by assessing a set of representative merghots. Their assessment on three
merging tools (IBM Rational Software Architect, IBRational Rose, Sparx Enterprise
Architect) to merge two versions of a simple cldeggram showed that the tool&ére
not up to the taskand their performance isdownright counterintuitiveeven for trivial
models. Based on their findings they provide a afetecommendations for the tool
vendors. These recommendations are meant to immawiéict detection and resolution

mechanisms, and the accuracy of the merging tool.

Recently, Chechik et al. [19] differentiate threeykmodel integration operators
(merging, weaving, and composition) and describeheaperator along with its
applicability. Then they elaborate on the mergerafpe and the factors that one must
consider (like, the notation of input models, foliziag the notation, assumptions) in
defining a merge operator. They provide a set @éra, such as completeness, non-
redundancy, minimality, totality, and soundness giealuating the merge operator. Then,
to show the generality and flexibility of their fn@work they provide a comparison

between two merge operators (called, algebraic enang state machine merge).
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The focus of the aforementioned work is mainly @stdssing some methodologies,
lessons learned, guidelines, challenges, and egeimts that should be considered by

any comparison or merging algorithm, or tool.

Other work in the literature directed their efftotvards proposing and developing
different matching and/or merging algorithms anolsd18, 33, 41-43, 50, 55, 61, 101].
Some of these algorithms are specific to particaldifacts [41, 43] and/or specific
modeling languages [43] while some others are eplple to more than one type of
artifacts [39, 42] and/or more than one type of eliod) language [41-43]. Additionally,
these works differ in the information they consider matching and merging the
different artifacts. The following section (SectiB) provides a detailed comparison

among these different works.

3.3 Model Consolidation Techniques

Model integration in the general sense is abouting a generic model out of a set
of input models [102]. Work in the literature abatiegration can be classified into three

approaches based on the intention of the integrgtiocess [19]:

Merginga set of related models to build a generic artifa8t 33, 36, 42, 43, 50, 103,
104]. The focus of the work in this direction isn@rge the input models by unifying
their overlap while considering conflicts and varidy among the different models.
Existing approaches differ in aspects such as thgimg approaches used, handling
conflicts, modeling varibilities, etc. The goaltes provide better model management
such as managing evolution [31, 41, 43], managincetainty [36, 42], avoiding

redundancy, extra cost and/or targeting large-soalise [41, 50, 104], migration
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towards product line from legacy artifacts [18, 3@, 100, 105, 106], and views
merging [42].

omposinga set of autonomous, interacting models to form owelel [46] [107,
108]. Here, the input models are treated as a Hlagkwith interfaces to the outside
world and the composition is done by appropriajeiying these interfaces. The goal
is to deal with issues like synchronization andatorency.
Weavinga set of cross-cutting concern models into a bgstes model [107-109].
Here, the Aspect-Oriented concept is applied, wheness-cutting concerns are
modeled as autonomous fragments and appropriatidgrated into the base model.
The goal here is to provide better modularity whitiproves the maintainability of

models.

Since our focus here is the consolidation of soéeglated models to build a general

reference model, i.e. merging, the last two apgreaavill not be considered further. As

mentioned earlier, creating a reference model éwt set of existing analysis (design)

models involves many issues. In the following sebsas we elaborate on these issues

and show how they have been treated in the litexatu

3.3.1 Detecting Overlaps (Commonalities) and Difference@/ariations)

A fundamental operation towards efficient consdlma mechanisms is to have an

efficient detection mechanism to identify the conmadies and the variabilities among

the models to be merged. There are two main rdsestreams in this area: (1) the

development okimilarity measuregmatchers) that adequately capture all the negessa

information about the models to be merged; and t{@&) development of efficient
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matching algorithmghat use the similarity measures to identify gl similar, and

different elements of the models to be merged.

imilarity measures there exist a number of similarity measures whoam be
classified based on the information they captuna\{rsal Index [43], Name [33, 36, 41,
50, 104], structure [18, 33], layout [50], semantic role [33, 36], and behavioral
[18]'[50]), the level of the abstraction (schema-les][and instance-level [18, 33, 36,
41, 43, 50, 104]), and the level of granularitye(eént-level [18, 33, 36, 41-43, 50, 104]

and structure-level [36, 41]).

Matching algorithmsWork in this direction can be classified into: &#eased [110],
Heuristic-based [33, 78], Clustering [41] and itema [43]. Also some matching
algorithms can be either exact match [43, 60, 112] or approximate match [18, 33, 50,

61].

3.3.2 Modeling Variants

As mentioned earlier, models overlap in some elésmmaeand vary in others.
Overlapped elements are unified in the generic@ateted model while variants require
some mechanisms to track them, understand thderelifces, and to be synchronized
over time. Work in this direction can fall in twéasses: (1) Modeling the variants within
a single consolidated model, which forms a supércs@turing commonalities and
variations among the set of input models [18, 33, 41-43, 50, 103, 104]; and (2)

Keeping the variants as separate model fragme6is [4

" Just a concept, no defined measure
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Modeling the variants within a single consolidateddel (also known as Negative or
Annotative variability) In this approach, the consolidated model is attarezed by
incorporating variation points to distinguish tharfs that are common to all variants
from those that are specific to certain variantse Tdea is to minimize the effort of
developing and maintaining model variants by wagkion a single artifac#. the
consolidated mode¥a rather than on each variant separately, and tloafigtire the
consolidated model via its variation points, sdaebtain one of its input variants when
needed. The key issue in this approach is howpresent the variation points. Various
approaches exist in literature: (1) using confipleanodes [74, 113]; (2) marking
elements with stereo-type or specific notations B® 36, 42, 50, 103]; (3) using aspect-
oriented principles [108, 114, 115], (4) Using teatmodel notation [33, 104], (5) using
abstraction [18], and (7) through ordered sequefahanges () applied to the original

model [41, 43], etc.

odeling variants as separate model fragments (aksmwn as Positive or
Compositional variability) in this approach variants are modeled as sepanaigel

fragments with mechanisms to track their commoieslif46] .

3.3.3 Merging Approaches and Algorithms

Model merging is a mechanism of combining a coitectof variants into a
consolidated single model. The goal of any mergifgprithm is to combine the input
models in such a way that their overlaps are whifeeminimize the redundancy among
the input models. Merging implies that a comparisbthe corresponding elements has
been already performed, similarities have beensasse and rationales for their further

treatment have been derived [37]. Work in this diom can be classified into two
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approaches: (1) Bottom-Up-Top-Down approach [33,488 43, 104]; (2) Bottom-Up

approach [18, 41, 50].

Bottom-Up-Top-Down mergingn this approach the merge is performed by theis®n

of the elements in the input models (Bottom-Up)other words all the elements in the
individual models are presented in the consolidatexdiel. Additionally, it should be
possible to generate each one of the input modeia the consolidated model (Top-
Down). For example, in [33] a Union-merge is praggbdo construct the consolidated
model. Additionally, to allow the instantiation e&ch input model from the consolidated
model, a mapping functiors) is used to map each element in the input modebNts
corresponding element in merged model M, and arseveappingss(y ands,) are used
to do the reverse (i.e. frovl to M;). In [43] merge is done through Delta, and
instantiation is done through the inverse of Ddhg42], merge is done through disjoint-
set, and then refined using category-theoretic eptsclike interconnection diagram and
an algebraic concept calledlimit. To provide the ability to generate the input nisde
from the merged model, a detailed annotation mashafannotation-set) is used. In [41]
(scenario 1), although a mechanism is presenteydtve the reference model with the
aim to keep it with minimum distance from the vatg& the variants need to be traced
directly to the evolved reference model. Additidpaln scenario 2, the variants are
clustered based on their frequency which comprasngsEme of the variants, making

instantiating the exact original instance from taference not possible.

Bottom-Up mergingIn this approach the focus is only the merge t{@otUp) while

replaying the process downward is not considereguaranteed. For example, in [18] the
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merged model is refined to become more abstracigusientity and similarity degree

threshold. However, no mechanism is provided inbidekward direction.

In [41], the activities are clustered based on lsinty of their relations with other
activities over the different variants. FurthermotbBe order relation between two
activities to be clustered is determined by thatieh that has the highest frequency in
the different variants. This results in ignoringsdefrequent ordered relation in the

consolidated model, making tracing the correspansariant difficult.

3.3.4 Model Assumptions

One of the issues of models’ consolidation is teeuaption made about the input
models. Different approaches differ in the assuompthey make about the model, where
models are assumed to be: alternatives of the sgstem [36, 42, 50], multiple view
with the same parent node [104], related produt8 B3], and derived from original

model by a sequence of operations [41, 43].

3.3.5 Artifacts and Modeling Language Considered

Software development involves different artifackatt represent different system
perspectives at different level of granularity. Téifacts that are considered by the
different approaches are: Statechart only [33,586, class diagram only [43], statechart
and class diagram [18], class diagram and sequiiageam [39], feature model [104],
goal model and entity relationship diagram [42hqass models (activity diagram) [41],

etc.

As per the modeling languages for representingstifavare development artifacts,

the matching and merging approaches can be aplditcabmore than one modeling
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language [33, 36, 41-43, 50, 55, 112] while othgpraaches are specific to particular
modeling language [18, 104]. In the former appreactimodels are often represented as
generic graphs. This representation makes the vnagéche operator generic enough to be
applied to different modeling languages. Howevieest approaches make it difficult to
reason about the semantic properties of the mengedel. Unlike the generic merge
operators, the specific merge operators (oftenesgmted as specific graphs) provide a

direct basis for reasoning about preservation wfasgic properties during merge.

3.4 Matching: Technical Aspects
In this section we compare the different matchimgpraaches in terms of the
information used in the analysis and assessmettieoSimilarities and differences, as

well as the algorithms used for matching.

3.4.1 Granularity of Matching

Matching can be performed at various levels of gianty, e.g. element-level and
structure-level matching [116]. In the element-lemeatching, a match is to be found
between elements of a model and elements of anotimetel [61]. Structure-level
matching, on the other hand, refers to matchingagnient of a model (combinations of
elements) with fragments of another model. A welbkn example of the latter is the

detection of design patterns within the design neofdd 7-119].

3.4.2 Identification of Similarities
Similarity between models can be assessed usifigrefitt strategies and similarity

information. This similarity information can be skified into:
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Identification of Typographic Name SimilaritiesThis is a label-based (textual)
comparison of two names to decide whether theytlaeesame or not. However, two
situations are common: 1) having two different edats with the identical names; 2)
having two identical elements with textually di#et labels. Therefore, considering only
typographic similarity to decide whether two eletseare identical or not might lead to
wrong matching. Consequently, this strategy shbeldombined with other strategies to

get more accurate matching [33, 36, 104].

Identification of Lexical Name Similarities Measures the similarity between name
labels based on their linguistic correlations. Tdas be done through two approaches: 1)
building a specific electronic synonym dictiona); using one of the freely available
dictionaries like WordNet [120]. This can solve gecond problem faced in the context

of the typographic similarity measure. However, firg problem is still present.

Identification of Layout Similarities The main purpose of layout similarities is to
identify similar elements based on their relativesipons. For example, in [104],
elements must be at the same level to be comp@igdough, this measure is so
restrictive and may result in non-optimal matchiigis desirable in some situations.
Therefore, this strategy should be combined witieptstrategies to get more accurate
matching. In [33] all nodes and edges are rootethéosame root, thus layout is not
preserved. In [104], for the elements to be congéney must be in the same level and

share the same parent.

Identification of Semantic SimilaritiesThe exact definition of semantic similarities

might be different from context to another, but,general, the sense of this similarity
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measure criterion is that elements are compardudne#ipect to their roles, functionalities,
or their purpose. ldentification of semantic simtlas is the most frequently used

complex strategy.

Identification of Structural Similarities With the structural similarity, elements are
compared based on their structural properties, saghtheir relationships to other
elements, the cardinality of fan-in and fan-outerattions with other elements, etc.
However, it is often that elements may have theesatructural similarity, but different
functionality. Therefore, structural similaritieseve rarely identified explicitly; they were

often used to support the other strategies, edpes@anantic similarities [33].

Identification of Behavioral similarity with behavioral similarity elements are
compared based on their execution semantics. Raith Chechik presented just the

concept in this regard without proposing any met[i@].

Identification Universal Index similarity: In this strategy, elements are compared
based on a universal index. For example, in [48ineints are mapped based on universal

index.

3.4.3 Handling Conflicts

Conflicts in similarity assessment are common. &mmple, two identical classes
can be mapped to some other classes by differkatioreships. These conflicts need to be
investigated and resolved. Their resolution cannbdifferent ways: modeling them as
alternatives (if different), merging them (if thaye the same), introducing generalization
(if they are parts of missing whole), favoring aneer the other, etc. Guided by [37], we

can list the following possible conflicts. Thesanfliwts should be resolved in a way that
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preserves their semantic and identity, meanwhildr thepresentation in the merged

model is efficient.

Handling Name conflicts Name conflict occurs when two design elements
representing the same underlying concept haverdiffenames in the input models. This
can be detected through other tests that are setlan name similarities. The element in
the merged model can be named randomly from thigabl@a names in the input model,

or using some preference mechanism.

Handling structural conflicts Structural conflict occurs when two design elements
representing the same underlying concept haverdiftestructural properties. This can be
detected through other tests that are not basetrwctural similarities. Resolution can be

through some mechanisms like rule-based or frequ@mting).

Handling semantic conflicts semantic conflict occurs when two design elements
representing the same underlying concept haverdiftesemantics. This can be detected
through other tests that are not based on semsintitarities. Resolution of this conflict
can be additive (maintaining both conflicting elens® [36], or compromised (using

some preference mechanism or rule-based) [104].

Handling layout conflicts Layout conflict occurs when two design elements
representing the same underlying concept haverediffedepth. This can be detected
through other tests that are not based on layonitagities. One way to handle such a

conflict is through generalization.

Handling behavioral conflicts Behavioral conflict occurs when two design elements

representing the same underlying concept haverdiffeexecution behavior. This can be
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detected through other tests that are not basedebavioral similarities. One way to
handle such a conflict is through frequency, anotey is through annotated branching

[18].

Handling missing (unmatched) conflictsMissing conflicts occur when an element
exists in only one input model, but not in the othéissing elements can be handled in
many ways. One way is to just add the elementsdibatot match in other models to the
consolidated model [36]. Another way for those edata is to be compromised through a
rule-based [104] or similarity-based [18] mechanigntrade-off may result in a different

semantic representation in the merged model.

Handling Design conflicts Design conflicts occur when the same concept is
modeled differently. For example, a system feattae be modeled differently in two
different models. Another example, the same featarebe modeled at different level of
details in the two different models. Third, a systeeature can be modeled by one design
element in one model while distributed over différeesign elements in other model.
One way to handle such conflict is through threg-weerging. Another way is through a

well-known optimal solution (e.g. design patterfte)such system feature.

Considering multiple system viewSoftware development involves a set of diagrams
to model different aspects of systems; for exaniplectional, structural, and behavioral
aspects. These diagrams should be consistent waith ether and the information
available in one diagram should help in discovethng missing information in the other
diagram. Having a matching (merging) algorithm ttatsiders the information available

in these different views of the system will make tresult of match (merge) more
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accurate. In this regard, work in the literaturen d#e classified into those matching
(merging) mechanisms who consider only one view, @0, 61, 101, 111, 112], two

views (structural and behavioral) [18], and threaws.

Similarity levels Similarity levels refer to the number of levels which the
similarity scoring is graded. It is the number lofeisholds between grades plus one. For
example, in [18] there are two levels (identicahikar) while in [41] there is only one

similarity level (similar).

To recap, Table 1 summarizes and compares diffapptoaches proposed in the
literature in terms of the similarity informatiorsed for matching software artifacts. Our

proposed metrics are indicated in the last rovheftable.

Table 1. Matching Approaches: Similarity Information Used
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3.5 Merging : Technical Aspects

In this section we compare the different mergingrapches based on the following

criteria:

Dealing with weak variantsWeak variants can be at fine-grained level (extpdel
elements) or coarse-grained level (e.g., modelu#s). A variant is weak in the sense
that it has low preference value or weight undemescevaluation mechanism. For
example, in [41] variants are weighted based onrhmber of instances that were
created from each one of them. Dealing with suctamés can be through adding them to
the consolidated model [36, 43] or they can be comgsed through some mechanism

[41, 104]

Noncritical Differences Noncritical difference between the elements & thput
models can be either modeled as variants [36, @R,d compromised by rule-based
mechanism [104], or based on threshold [18]. Inléiber approach weak elements might
not be represented in the consolidated model. iftaig make the instantiation of some

variants from the consolidated model difficult @ea impossible.

Way of mergeMerge can be either two-way merge or three-way mefgtwo-way
merge compares two models and merges them intogégesnodel. A three-way merge,
on the other hand, requires access to a baselim®Infor fragment) that serves as a

reference to both models.

Completeness If an element appears in one of the source modelsjust be
represented in the merged model as well. This engure that information in the source

models is preserved in the consolidated model. property is assured by some merge
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algorithms [36, 42, 43, 50], but not assured byerl18, 104]. In [104], this property is
not assured, because when resolving the conflietsugh some rules some variants
might be compromised, thus not represented in teyad model. In [18], reducing the
complexity of the merged model, through a reductibsimilarity and identity threshold,

results in missing information about the sourceards.

Non-redundancy If an element appears in more than one source Inodl one
copy of it is included in the merged model. Forrapée, this property is assured in [18,
36, 42], but not in [43, 50, 104]. For example [48], redundancy comes from the fact
that identical elements with different IDs cannetdetected as identical, and thus more
than one copy of the same element can appear inmgrged model. In [50], the
definition of the shared transition similarity isreservative. This may result in redundant

transitions.

Minimality: Merge must not introduce new information, whicmeésther present nor
implied by the source models. This property mayirbeontradiction with the conflict

resolution mechanism, where information may be dddeleleted to resolve conflicts.

Totality: Merge can be performed for an arbitrary set of nedehis property is of
particular importance if one wants to tolerate imgietency between the source models.
For example, this property is assured in [36, 4%, but not in [41, 43]. For example, in
[43], this is not assured due to the fact that @®unodels are assumed to be derived from

an original model by a sequence of changes.

SoundnessMerge must preserve the semantic properties afibiels to be merged.

This property is assured in [36, 43, 50], but not[18, 42, 104]. In [42, 104], this
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property is not usually preserved as it dependsherrule of merging different level of
knowledge. In [18], the merge process is iteratare] in each iteration the merged model
gets more abstracted, resulting in losing more séimanformation. In [50], the merge is

behavior-preserving. However, preserving the st#ioantic is not guaranteed.

To recap, Table 2 summarizes and compares diffenenging approaches proposed in

the literature.

Table 2. Merging Approaches
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3.6  Summary

As we have seen in this chapter, the task of mgl@i reusable reference model out of
a set of input models is not a trivial task and ynasues are involved. Models to be
consolidated needs to be cohesive enough, comnymald differences between their
elements must be accurately identified, conflictssibe resolved, and commonality and
differences must be explicated in a way that erages as-is reuse. Different researches

tried to approach the problem, with different inttens, considering different types of
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information, and using a variety of algorithms. Hmwer, there have not been enough
attention paid to address the problem of automigtiensolidating a given a set of
analysis (design) models representing differentiegions (instances) in a domain into a
reference model that represents the input modelspaommotes as-is reuse. Most of the
works are entirely conceptual [18, 19, 37]. Othemes directing the consolidation process
towards some specific goals like resolving cordli€86], versioning [43], rather than
building a reusable reference model. Even thoseksvarho had the intention of the
reference [39, 41] they focus on building the cassets in the reference while
compromising the variants during merging. This wéjuire an instantiation effort and

the involvement of the experts during the instdiara[92].
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CHAPTER 4
PROPOSED FRAMEWORK

4.1 Introduction

This chapter gives a conceptual description ofpgteposed solution framework for
generalizing a set of input models into a referanoéel. Throughout the chapter we will
be focusing on the big picture of the frameworkeatthan the finer-grained details,
which will be thoroughly presented in the followirchapters. Sectiod.2 lists our
research questions and objectives. To give a betigerstanding about the interaction of
its component, the framework is described throughillastrative example, which is
introduced in Sectiod.3. The framework components are explained wighhiblp of the

illustrative example in Sectioh4. The chapter is summarized in Sectddn

4.2 Research Questions and Objectives

The objective of this thesis is to develop a rafeee model that captures the
commonalities and variabilities across the différdass analysis and design instances in
a domain, so that the consolidated model offersrélise potential across the different
models while maintaining the complexity at the lesfea single model.

Towards this objective, this thesis, specificaladdresses the following research
guestions:

1. How can UML structural models be consolidated iatoeference model that

represents them best?

2. What metrics are needed to identify commonalitiesl aariabilities across

different input models?
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3. What algorithms can be used for matching the elésreeross the input models?

4. How can the generalization algorithms handle tlfferdint similarity levels across
the input instances and at different level of gtanty?

5. How can the commonality and the variability betwélea elements of the input
models be represented in the reference modelfatetift level of granularity?

6. Does the reference model improve the opportunityeose?

Table 3. Handling the Research Questions throughouhe Thesis’ Chapters
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4.3 lllustrative Example Description

Figure 1 showghe class diagrams dbur instances of a simplified flight booking
systemsadopted from [44]. The models have been kept deltbly simple for clarity,
but we believe that they are sufficient enoughdovey how the different components of
our proposed framework are applied to these instatwgenerate the reference model.

Being different instances within the same domahgytshare commonalities and
maintain some differences among them. For exammpecting the four instances we
find that all the models have a class called eitiAénines” or “Airways” representing

the same underlying concept or real world objedatlifes’ company).
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Figure 1. Input Models Representing Four DifferentApplications of Flight System

The textual difference between the words “Airlin@sid “Airways” should not make
the two words as dissimilar, because they carrystttee meaning and refer to the same
underlying concept. However, looking deeper to liAgs” or “Airways” class over the
four instances we can see some differences heréhanel For example, considering the
class attributes and their data types, the atgbtiname” and “address” are common in
all the instances. This is not the case with o#teibutes, e.g. “type” and “route”, which

show up in some instances but not in the othensieSather slight differences can also be
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observed considering the class methods and theinyegers, and also when considering
the class neighborhood.

Commonality and differences between the instanees e at different level of
granularity (classes, relationships, attributesthods, data types). Differences can be
classified as either variants or optionals. Vagampresent the design differences for the
same underlying concept. It is present, with soesgh differences, in all the instances.
For example the class “Flight” dfl; (also ofM3), modeled inMp (also inM;) as two
classes “Scheduled Flight” and “Offered Flight”fleeting the fact that they are two
variants representing the same underlying con¢épiever, the class “Terminal” exists
only in M; andM; but not in the other instances. Therefore, ibisstdered as optional.

The classes in the different models are labeledh whe notation , where the
subscriptx indicates the class index while the supersgriptdicates the model index.
This notation will be used throughout the sequekter to the corresponding class.

Figure 2depicts the reference model which is the targetgdud of our framework.

In the reference model, common elements are unifiediants are represented as
alternatives under variation points (e\Mf0), and optional are represented as different

options under the optional points (eQf0 ).

" Methods parameters are not shown in the diagrantsé sake of making the diagrams simple to show
the big picture.
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<<x>>class index in the reference
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belongs to varian¥x under the variation poirdPx.
vo:VPx.Vx.Cx - OPy.Oy.Cy : i, a tag indicates that the relationship is between classes theommon clas€y and thevariant clasx
which belongs to variantx in the variation pointPx.
X*-VPx.Vx.Cx — X*, class Cx can be linked with any relation connetbettie variation point VPx and have the exact saga
“VPx.Vx.C x " as part of its cv Tag. Used along fwthe instance Tag for tracing RM elements badke@ original instances.
X*-OPx.0x.Cx — X*,: class Cx can be linked with any relation corteddo the optional point OPx and have the exapiasce
“OPx.0Ox.Cx " as part of its co Tag.
| OR; e.gXxly either Xx or Xy
. indicates hierarchy

Figure 2. Reference Model for the Simple Flight Boking System
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4.4 Solution Framework

Figure 3 depicts an exemplified framework of thegmsed solution. Developing a
reference model out of a set of input models ctmsid the following sequence of
activities:

(1) Parsing the input models to extract their informadti

(2) Assessing the degree of similarity between thetinpadels, in pair-wise manner.

(3) Matching the most related elements of the inputefsdn pair-wise manner, so that
identical, similar, and dissimilar elements arentifesd.

(4) Filtering out unrelated models, so that the refeeemodel is cohesive enough.

(5) Generalizing the input models by unifying their daps and explicating their
differences in a single reference model.

The aforementioned activities can be renamed, oéispéy, as parsing, comparison,
matching, filtering, and merging. Parsing and filig are considered as preprocessing
activities performed at different phases in theneavork and they are pre-requisites for
the activities following them. Comparison, matchimgnd merging are the three main
activities in the framework, where comparison igr@-requisite for matching, and

matching is a pre-requisite for merging.

4.4.1 Parsing the Input Models

In this preprocessing task the input models, gaeXMI files, are parsed to extract
their information. We developed a Java-based painsertakes the XMl file(s), as input,
and produces, as output, the model information géoubed as input to the similarity
assessment algorithms, i.e. the comparison algoritfhe parser supports two visual

modeling tools, Altova and ArgoUML.
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Figure 3. Reference Model Consolidation Framework

4.4.2 Similarity Assessment: Model Comparison

Given the models’ information fan input models, as produced by the parser, the
similarity between the classes of each pair of ngd4 andMy. (where 0 k<k+l * n-
1), is assessed and represented as similarity ssdore two dimensional elements
similarity matrix, ES whose entrjeS; represents the similarity between the clgssf

k", Figure 3

model My (denoted as*) and the class; of model My (denoted ag;
depicts an example of tlES matrix as an output of the comparison stage apditito the

matching stage.

" Note that throughout the sequel we use the netatfoto refer to a class within a modekhere the
superscript denotes the model index while the siydistenotes the class index
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4.4.3 Staged Model Matching

During the matching, elements of each pair of modet mapped in pair-wise, based
on their similarity scores, so that elements regmgsg the same underlying concepts
should be matched together. Due to the possibigrdsgference that may exist between
any two modeldV; andM;, it is possible that an element fravh, representing certain
domain concept, can be matched to either one oe glements frony;, representing the
same domain concept. For Example, referring to réidy the class “Flight” oM, is
modeled as two classes (“Scheduled Flight” and é@fdl Flight”) inMo. Since the one-
to-one matching will match the class “Flight” tolpm@ single class frorVl, this design
difference will not be fully captured, i.e. the £ta'Flight” will only be matched to either
the “Scheduled Flight” class or the “Offered Fligltass. Therefore we propose a 3-

stage matching mechanism.

Given theES matrix as produced by the model comparison algaritthe first stage
matching algorithm (detailed in 6.2) finds the to@sitch between the elements (classes)
of the corresponding pair based on their similssttgres in th&Smatrix. In this stage of
matching, each class in the smaller model (the witk less number of classes) is
matched exactly to one class in the other modehefpair. Genetic Algorithm (GA),
Simulated Annealing, and greedy heuristics, to eeited later, are used to make this
match optimal. The optimality in this context meahat each class in one model is
matched to its most similar class in the other rhodé@e output of the matching

algorithm is the Matching Similarity Matrix, refext to in Figure8 asMSM Matrix.

Those classes, not passing an arbitrary one-tasiomé&rity threshold, go through the
second-stage matching algorithm, detailed in Sed8i@®, where a single class from
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certain model (sayV;) can be matched to many classes in another meagiN;).
Although in this stage a single class of one made¢he pair can be matched to multiple
classes in another model, it does not captureithat®n where multiple classes in one
model (representing certain domain concept) aremedtto multiple classes in another
model (representing the same concept). Therefdheréh stage similarity assessment is
proposed to handle such situations, where theualsidclasses not mapped yet) are to be
added to the most appropriate class group baséadeancontribution to the improvement
of the similarity scores. Detailed description abthird stage similarity assessment
algorithm is given in Section 6.4. Since the matghn the second and the third stages
involves a group of classes matched to a singksada another group of classes, we refer

to such matching as a class-group matching.

Doing the matching in a staged way has threefoig@ative. First, it distributes the
search space of matching over the three stageswilhreduce the matching complexity.
Dealing with models representing instances withie $ame domain is expected to have
high commonality, and thus the matching of the migjof the elements will be done
within the first matching stage in a polynomial énwhich is also followed by another
polynomial time matching stage. Therefore, only fesiduals will be investigated in the
third stage, which is more complex, yet still paymal. This is actually the gain of the

staged matching algorithm, i.e. reducing the timmglexity through stage matching.

Second, the staged matching gives the ability &thie appropriate similarity metrics
and matching algorithms in accordance with the abje of each stage. For example, in
the first stage the focus is to find class-to-clastch, i.e. in each pair of modeld;( M;)

each class in the smaller model (9dy) will be matched to exactly one class in the
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larger model (sayM;). This also means that the similarity between ¢lesses to be
matched should be based on the information thatactexizes a single class (e.g. class
name, class attributes and their data types, ol@tlsods and their signatures) rather than
a group of classes, which is the case in the sestagk. Therefore, the neighborhood
information, despite its importance, may not adcimto the similarity between the two
matched elements, especially if we consider itd.cobkis last statement, as will be
demonstrated by our empirical investigation, iseesgly true when the matched models
are within the same application domain. On the rottend, in the second stage, the
importance of the neighborhood information is engited, where the elements are
matched based on their internal characteristies #ktributes along with their data types,
and methods along with their signatures) as welthes surroundings (i.e. neighbor

name, relation name, and relation type).

Third, since our ultimate goal is the consolidatiminthe input models to a single
reference model which unifies their commonalitiesd eexplicates their differences,
staged matching allows us to perform matching @&itreye on merging activities, where
each matching activity can be aligned with an agtim the merging phase. For example,
in the first matching stage classes are matchesherto-one basis. Highly similar classes
means that the two classes are almost identic&. mikans that they can be represented
as a single class in the reference model. Thefjtireomerging algorithm then is to watch
for this commonality across all the pairs, and aisodeal the lower granularity of

commonality and differences.

To explain the concept of the staged match withrgte, let Table 4 represent tBS

matrix between the classes M and M,. Note that in the table we present the class
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notation €.’) as well as the class name. In the discussion taoe® we will use the class

notation rather than the class name unless itésssary to mention the class name for

clarity.
Table 4.ES Matrix, Pair-wise Similarity Between My's Classes andVl,’s Classes
ModelM,
c
il
[} - s g % .g o
= = g 2 8 £ g8 £
< [ < x = s o O
Airway Co
Scheduled Flight  C,°
o Airdrome cP
=
T Reservation (o
S Traveler ce
Offered Flight Cs
Airplane Ce

WhenES matrix has been given to the matching algorithtrmatched the classes as
depicted inMSM Matrix (Table 5). The similarity values of the rla¢d classes are also
shown inMSM Matrix. As shown in th&/ISM matrix, some pairs are matched with high
similarity scores while others are matched with lewnilarity scores. For example, the
“Flight” class C.%) of M, is matched to the “Scheduled Flight” cla€s% of Mo with a
similarity score of 0.52. This is relatively a I@imilarity scoreWe can also notice that
the “Gate” class@;°) of M, is matched to the “Offered Flight” class{) of My with
similarity score of 0.37. The former match (i&° to C,?) is partial while the later (i.e.
Cs’ to C;%) is totally wrong match. This fact is reflectedtire corresponding similarity
scores of the two matches. These two low scoredhadtpairs will be filtered out by the
first stage similarity threshold, as not approglatmatched, and they are passed to the

second matching stage.

50



Table 5. MSM Matrix, the Matched Classes’ Similarity

Moclasse ¢ co cl c? c c cs
M, classe /2 Ce2 C2 ok C C? o
Sim. Scor  0.97 0.97 0.84 0.83 0.85 0.52 0.37

In the second stage, those elements not passirand-one similarity threshold, in
the first stage, need to be further investigated dotential similarity through more
complex matching process. In this stage a singlesdrom certain mode&n be matched
to more than one class in another model. In pdaticeeferring to our example, I& and
S be two subsets of classesMig andM; not passing the first stage similarity threshold,
which is assumed to be usually high so that matches$es passing such a threshold will
be considered as highly similar (or, metaphorigatigntical). Assuming a threshold of

0.80, then:

S={ C° Cs°}
andS,={ C/%, Cs*, C/3.

As we can see here, the majority of the classesn tiee two matched models have
passed the first matching stage threshold. Thisnm#aat majority of the matching has
been identified by the first stage matching aldontand only few classes will be
considered by the second-stage matching algorithm.

WhenS and$S; are given to the second stage matching algorithwl re-evaluate
their similarity based on their neighborhood infatian and based on their internal
structure. Table &hows an exemplifier of the second stage similamitgtrix, called
Group Similarity matrix GS, between the classes & and the classes &. Some
possible grouping is done by combining the infoioratof more than one class into a

single similarity Class-Group.For example, referring to our example, it is cléam
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Figure 1 that the two classes “Scheduled Flightl &ffered Flight” of My, combined,
have exactly the same neighborhood and similarrnatestructure (attributes and
operations) as the class “Flight” bf,. Therefore, when comparing the similarity of the
two classes, “Scheduled Flight” and “Offered Flightombined, against the class
“Flight”, we got a similarity score of 0.76. This a high similarity as compared to the
similarities obtained when comparing each classalagainst the class “Flight”, which
are 0.45 and 0.42 for the classes “Scheduled Flagid “Offered Flight”, respectively. It
is worth mentioning here that for two classes tacbmbined, they must be adjacent to
each other. For example, the combination of the wtlasses “Flight” ¢,°) and

“Terminal” (C5°) is not applicable (N/A).

Table 6. Second Stage Similarity Matrix (GS Matrix)

Mg classes/class-groups

G’ G {C Cs}
% C/’ 0.45 0.42 0.76
;" Cs? 0.10 0.11 0.09
é’ C7 0.31 0.46 0.27
g (CZCA 0.45 0.38 N/A
§ {CZCH N/A N/A N/A
s T {CZCh N/A N/A N/A

The GS matrix is given to the second stage matching &lyor which is a greedy-
based algorithm whose steps are depicted and eimtipgh Figure 4. The intuitive
assumption underlying this algorithm is that a paiirclasses/class-groups with the
highest similarity values is the most relevant p&iven theGS matrix between the
classes / class-groups of two models, the algoritioks for the highest similarity score,
in the GS matrix, for which the corresponding pair of clagskass-groups are not

matched so far. Then the algorithm matches theespanding classes/class-group and
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marks them as matched, conditioning that theirlanty score passes the second stage

matching threshold.

M; Classes M; Classes M; Classes M; Classes
o Cl |[C2 |[C3|C4 " Cl [C2 |c3 | c4 " C2 |C3 [C4 @ C2 |C3
Q
g C1 048[0:38/0.35/0.6 @lc1 |0.48/0.84/0.3506 | #[c1 [0.480.38|0.35 0.6 % |C1 ]0.48/0.55/0.35/0.6
© C2 |0.57|0.5 |0.55/0.89 % C2 |0.57/0.5 |0.55/|0.89 3 C2 |057/05 |0.55/0.89 © 0.57(0.5 |0.55/0.89
= |c3 |o9so.6 [061054] =[c3 Jo.95[0.6 [0.61[054] =[es7Tpeslo6 losilosa| - 0.95[0.6 |0.61/0.54

(@) Similarity matrix of two (b) C3 and C1 are matched () Then,C2 and C4 are (d Then,Cl and C2 are
modelsM; andM; first, as they have the matched, as they have the matched, as they have the
highest similarity highest similarity among highest similarity among
compared to others. the unmatched classes. the unmatched classes.

Figure 4. Steps of the Second Stage Greedy Matchisdgorithm

Referring to Table 6, and assuming a second stagehing threshold of 0.75, the
algorithm will match the clas€:® with the class-group {:°, Cs%} as they have the
highest similarity value, which also passes thedhold. Since there is no more feasible
match (as there are no more unmatched clasdég) ithe algorithm will terminate.

Informal steps of the second stage matching algoritan be sketched as follows.

1. Evaluate the similarities of the unmatched elements

2. Do the possible grouping and evaluate the classpgraimilarities and
store them irGSMatrix.

3. Apply the greedy algorithm to select the higheS;

4. If SG; satisfies the threshold then match the correspgndmsses/class-
groups and mark them as matched and go to stepérvwose terminate

5. Repeat steps 1 to 4 until no more feasible match.

The formal description about the second stage casgyaand matching algorithm
will be presented in the next chapters. It is wartantioning here that those classes

passing the first similarity threshold are markadthe MSM matrix as highly similar,
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denoted as “S”, while classes passing the secomd &so the third) stage similarity
threshold will be marked as variants, denoted &s “V
Therefore, the pair of class/class-groag,({c,’, c.%}) will be marked as variants, as

shown in the extended version of &M matrix (Table 7).

Table 7. MSM Matrix, the Matched Classes SimilarityAfter 2" Stage Matching

Moclasses ¢ C® C° C° G Chs - -

Myclasses C2 C& C2 GC2 C2 GC° G GCf
Sim. Score 097 097 084 083 0.85 0.76 - -
Sim. level S S S S S \Y ? ?

The third stage is an extension of the second stagere each residual class from the
two matched models is considered for combining ithva class group for which the
similarity with the corresponding, already matchghup is improved. In our example,
Cs” and C/2 arethe only residuals. Sinc€s® is not a neighbor of;? it will not be
considered for combining with it. However, when dning C,* with C;? similarity
between the resulting class-grouc{}, C;%) and the class groupd,’, Cs%} is evaluated
to 0.73 which is less than the similarity betwelea ¢lass-groups €% and {C,°, Cs%}.
Therefore the clags;* as well as the clad’are considered as unmatched, marked with

“U” in the MSM Matrix (Table 8).

Table 8. MSM Matrix, the Matched Classes SimilarityAfter 3" Stage Matching

Moclasses C G2 C° C° ¢Cf Chg - -

M,classes c2 Cc& C2 GC?2 C? GC° GC& GCf

Sim. Score 097 0.97 084 0.83 0.85 0.76 - -
Sim. level S S S S S VvV U U

4.4.4 MSM Matrix

The MSM matrix is the actual output of the 3-staged sintjjaassessment and
matching algorithms. It acts as an interface betwid® matching algorithms and the
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merging algorithms. As we have seen, during thepaseon and matching stages, the
models are matched pair-wise, and based on théasiyithresholds in each of the three
matching stages three levels of similarity among iatched elements of each pair of
models are considered. These similarity levels, tagaly Similar (“S’), similar with
Variation (*V”), and Unmatched*U”). The last row oMSMin Table 8is depictingthe
three similarity levels.

The commonalities and the variabilities between thedels of each pair are
identified based on these levels of similarity, vehelements with similarity level “S” are
considered asommon elements with similarity level “V” are consideradvariants and
elements with similarity level “U” are consideresiagptionals

Havingn input instances, the pair-wise matching amongethestances will result in

—— MSM matrices, one for each pair of models. Referrongur illustrative example,

the matching will produce—— = 6 MSM matrices to be used by the merging

algorithms.

4.4.5 Filtering out Unrelated Models

As shown in the framework (Figure 3), the next\agtiafter the pair-wise matching
is to filter out unrelated models. The purposehid preprocessing activity before starting
merging is to filter out those models that can eenderging infeasible. Having unrelated
models consolidated to a generic reference modetshin addition to other quality
aspects, the cohesiveness of the consolidated mdetiditionally, according to
[121]...it is worth considering the development of a fgmof systems when there is
more to be gained by analyzing the systems colldgtrather than separately—that is,

when the systems have more features in commonfélatures that distinguish them.
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Following such thought, models whose average siityiléo the other models is less than
70% are excluded from being merged. We devisedlgoritom to filter the unrelated
models, one model at a time; re-evaluating the ageesimilarity of each model to the
others and filtering out the one with the loweserage not passing the threshold. The
filtering process is repeated until the averagalarity of each of the remaining models

with other models is above the threshold.

4.4.6 Models’ Merging
The information collected and presented in eacthe—— MSM matrices about

the matched elements of each pair of models shuake building the reference model a
very smooth and straightforward procedure. The cbhasiderlying process for our
proposed merging algorithm can be described, dewsl Common elements in the
reference model are those elements mutually haVsifi8larity level across all the pairs
and they are represented by a single class inefleeence model. Variants are modeled
through Variation Points (VP) which act as intedscfor their different variants.
Optional elements are modeled through Optional Bq@P) which act as interfaces for
the different optional elements. Each input moded b variant in each variation point,
but it is not necessarily for each optional pomhave an optional element for each input

model.

Merging is performed in two phases. Each phasepemented in a staged manner.
The focus of the first stage is to perform preliamynmerging at the class level, producing
a reference model preliminary catalog (RMPC) inalhall the common, variant, and

optional classes are identified across all theamsts. The RMPC acts as a foundation for
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the second phase in which the union merge is puaddrat the level of attributes,
methods, and relationships. The output of the stetege is the reference model catalog
(RMC), from which the reference model, exemplifiadrigure 2, is produced. Detailed

description about the merging algorithms in botag@s will be the focus of Chapter 7.

4.5 Summary

In this chapter we conceptually, with an illustvatiexample, stepped through the
different components of our proposed solution faitding a reference model out of a set
of instances. The focus of the chapter was to drevwhole picture of the proposed
solution framework and provide the reader with te@ceptual roadmap before diving

into the technical details which are the focushefmext chapters.
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CHAPTER 5
SIMILARITY ASSESSMENT

5.1 Introduction

A fundamental operation towards efficient consdlma mechanisms is to have an
efficient identification mechanism to identify coromalities and differences among the
different instances to be merged. This identifmattask is time consuming and error-
prone, especially when we have a large number sihiites and/or of large size. It is
error-prone due to the fact that these models,em@presenting similar functionalities,
are modeled independently by different developars] thus inconsistency, design
differences, and intra-conflicts are expect€éderefore, their similarity and differences
must be accurately quantified to have an accurdémtification. The task is time
consuming due to the fact that finding the similaaf two models is commonly referred
to as model matching which is a kind of graph miaigiproblem known as combinatorial
problem [122]. Therefore, an efficient comparisdgodathm is required to obviate this
complexity of the brute-force method and meanwlgtevide near (if not) optimal
solution. In this chapter we will cover the firsicet of the problem, i.e. the issues related
to the similarity metrics. The second facet of ghveblem, i.e. the complexity of the
matching algorithms, will be covered in the nexapter. This chapter is organized as
follows. In Section5.2 we discuss the different similarity aspectsatesl to model
comparison. Technical definitions for the similgnihetrics are presented in Sect@3.
Section 5.4 lists the class level metrics. Tool support foe model comparison is

outlined in Sectiorb.5 followed by the chapter summary in Sectod.
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5.2 Similarity Aspects

As mentioned in the previous chapter, comparis@pse-requisite for matching, and
matching is a pre-requisite for merging [123]. Mbdemparison is the task of assessing
or quantifying the degree of the similarity betweba elements of the compared models
[52, 53].Crucial to an efficient similarity assessment ihi&ve a set of similarity metrics
that considers the various aspects of the comparedels, thus their overlaps and
differences are best quantified. Toward this aing use three types of similarity
information: shallow lexical information (also cadl shallow semantic [124] or coarse-
grained [37]), internal information (also calledepesemantic [124] or fine-grained [37]),
and neighborhood information. The shallow lexigdbrmation is used to measure the
lexical naming similarity between the compared eeta (classes). The internal
information is used to measure the element’'s ptegse(i.e., attributes) and behavior
(i.e., operations) similarity. The neighborhood ommhation is used to measure the
similarity of the compared elements based on th&uctural relationships with their

neighbors.

Using either of this information individually to piure the similarity between the
elements of the compared models may not usually teaan accurate assessment. For
example, two classes may have similar names, ey thay totally have different
properties and behavior, and vice-versa [37]. Tioeee relying on the naming similarity
may not be enough to decide whether two classesimitar or not. Additionally, when
the models to be compared are within the same domaes expect the lexical similarity

score between the names of the compared elemengfldot, to some extent, their real
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similarity. However, this might not be the case wtke compared models are across

domains, as each domain has its own ontology.

Similar argument can be said when relying only be internal information. The
confounding effect of generic attributes (e.g. naane ID) and generic methods (e.qg.
setters and getters) can misleadingly affect tleeiracy of the metrics in capturing the
actual similarity between the elements of the caegbanodels. This ultimately will lead
to a wrong match. This can also happen when relynty on the neighborhood
information, as two dissimilar classes from twofetiént models may have similar, or

even identical, neighbors, and vice-versa.

Using a combination of these similarity informatiprovides complementary insights
about the compared elements and allows us to aanditferent similarity aspects at the
same time, and thus it is expected to result imeenaccurate assessment. However, one
of the main issues of the compound metrics is tBghis assigned to each constituent of

the metric [125].

5.3 Similarity Metrics

The similarity between models is quantified usinged of similarity metrics. The
values of these metrics are computed based onnfleemation collected from the
compared models. In all of the metrics, conceplasées’ names, operations’ nhames,
attributes’ names, and names of the relations letvwadasses) are compared based on
their semantic similarity (e.g. synonyms, hyponynascording to the WordNet [12@

a hierarchy of concepts. Relation types (as partefimbor information) are compared

using the similarity information presented in Tab@ which is inspired from [45].

" e.g.tree (more specific) is a hyponym of plant (moraagal).
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An alternative way for comparing two strings woublel to use their edit distance, the
minimal cost of operations to be applied to on¢hef string in order to obtain the other
one. However, this approach is suitable for meagwsimilarity between strings that may
contain typos, acronyms, spelling mistakes, et6].1R does not help when comparing

two synonyms representing the same concept witbrdiit textual strings.

There are a number of measures proposed in thatlite to measure the semantic
similarity between two concepts. Some of these nreasare based on the notion of
information content [127] while others are basedhl@path length [128]. Content-based
measures are concerned with how specific a corisdépta given ontology while path-
length measures rely on the distance between tweepts counted as the number of
edges (or nodes) on the path linking the two corscg29]. The former is influenced by
the corpus used. However, the later measures dep@mdent of corpus statistics, and
thus uninfluenced by sparse data [130]. Path lergitween two concepts can be
measured in different ways. Some measures congidgrthe shortest path between the
two concepts while others scale this distance byd#pth of the concepts in the hierarchy
[120]. The former approach is simple and successfumeasuring the conceptual
distance between two concepts within the subsumtierarchy of concepts. Its success
even more rationalized within a domain becausehef relative homogeneity of the
concepts [131]. However, the proponent of the lafgroach argue that sibling concepts
deeper in a hierarchy appear to be more closedye@lto one another than those higher
up [128, 132]. Consequently, to take the advantaelsoth measures, our similarity
assessment is based on a composed semantic pathshaasure that considers both the

local homogeneity as well as granularity of the agpts in the WordNet hierarchy of
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concepts. More precisely, the composed measuresevésuthemeanof two of the path-

based measures supported by the WordRath LengthandWu & Palmer where:

Path Length (PL) between two concepts andc; is defined as the inverse of the

shortest path between the synsets of the two ctscep

Wu & Palma (WuP between two conceptss; and c; is defined as:

; wherecs is the Least Common Subsumme€§ of ¢;

andc; in the hierarchy of concepts. Thus, our composedastic path-based similarity

measure of two conceptsg,andc,, can be defined as follows:
SS(c, ¢;) = (PL(cy, ¢2) + WURCy, ©2) / 2 (1)
The correlation coefficient between the two patbdobmeasures is shown in Table 9.

To avoid repetition, the following facts and defiiomns are applied in all the similarity

equations and functions presented in this sectidrtlze following section.

The sum of all the weights presented in any equadid..
* The terms “similarity metric” or “similarity funabin” are exchange-ably used.

» All the similarity functions that find the similayi between two sets of elements

(classes, attributes, methods, etc) are injectige (lefinition 5.2).

» All the similarity metrics’ values, computed in #fle equations, are within the

interval [0..1].
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Table 9. Pearson Correlation Between Path Length ahWuP Semantic Similarity Measures

Correlation coefficient Number of compared wordrpa P-value
0.78 20000 <0.0001

Definition 5.1: Let A andB be two sets that we want to evaluate the simylarittheir
elements Letn andm be the number of elementsArandB, respectively. Theair-wise
Element Similarity matrix(ES) of A andBis a matrix of sizexxm, whereESj represents

the similarity score between andb;; wherea;T A andb1 B.

Definition 5.2: Let A andB be two sets that we want to find the best matdtvdxen their
elements; lebh andm be the number of elementsAnandB, respectivelyn ™ m. Letf be
a mapping function fronA to B. The mapping functiori is said to benjective if it

matches each elementAto a distinct element iB. Symbolically,
"a bl Af(a=flb) a=bh.

5.3.1 Lexical Name Similarity Metric (NS)
Lexical Name Similarity metricNS measures the similarity between the names of two

classesC; andC,, based on their semantic similarity as quantiigdquation (1):
NS(C1,Cy) = SSC( NaméC;), NamégCy) ) )]
5.3.2 Attributes’ Similarity Metric ( ASim)

Attributes’ list Similarity metric ASim) measures the similarity between two sets of

attributes A; andA,, of two classe€; andC,, respectively, as follows:

ASIM(C, Cy = ! "V Cusweas # ,/( ( (3)

" Elements can be classes, methods, attributesipredhips, etc.
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wherea, 1 A; anda 1 Ay A~ A The similarity metricaSim(a,, a ) between two
attributes is computed as a weighted similarityhefr names’ similarityNSin) and their

data types’ similarity@TSin):

#P%&H # =wW,x NSim# # +wxDTSim# # , 4

wherew, andw; are weights assigned to the name similafd®i(r), and the data type

similarity (DTSim) respectively.

As mentioned earlier, similarity between attributesmes is computed based on their
semantic similarity according to the WordNsta hierarchy of concepts, Equation (1).

However, the similarity between the data type af #attributes is computed as follows:

* If the compared data types are primitive data typhesr similarity is the
reciprocal of the shortest path between the twedygccording to the data type

taxonomy shown in Figure 5, which is adopted fra/33] .

» If the compared data types are non-primitive dgfzed their similarity is

computed according to Equation 1.

* If one of the compared data types is primitive dgfee while the other one is
non-primitive data type they are considered adlyadéssimilar and hence their

similarity is O.

When computing the similarity between two primgtigata types, the shortest path
is counted as the number of nodes between the bmmpared nodes, including the
compared nodes. More precisely the similarity betwsvo primitive data types can be

computed as follows.
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DTSim# # =70 1 2304 56 7g 7256 79 (5)

For example, referring to Figure 5, the similabgtween “Char” data type and “Byte”
data type is 1/3 while the similarity between “jg€’ data type and “Byte” data type is

1/4.

5.3.3 Operations’ Similarity Metric ( OSim)
Operations’ list Similarity metric@Sin) measures the similarity between two lists of

operationsQ; andO,, of two classe€; andC,, respectively, as follows:
oSimMC, C)= ! "5 lgns:. <= ( (6)
where:. >= and: >= ,(=(? (= (.

The similarity metric oSim(@ o ) between two operatior®, ando, is computed as a
weighted similarity of their names’ similaritiN§in), parameters’ list similarityRLSin),
and their return type similarityR(T Sin):
$%& 1 =wWexNSim:. @ +wpXPLSIim:. :  +wWgXRTSim:. : (7)
where w , wp, andw,; are weights assigned to the method’s name sityil@\iSin),

parameter list similarityRLSin), and returned type similaritiRTSin), respectively.

The parameter list similarity functionPLSim) computes the similarity between two

lists of parameterBL; andPL, of two method®, ando,, respectively, as follows:
CL w (AB«(
PLSim: : = ! v @$%& @ ,<(CD(, (8)

wherep PLyandp1 PLy, PLy" |PLy|. The similarity metrigpSin{py, pi ) between two

parameters is computed in the same \a&mis computed (Section 5.3.2), i.e. as a
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weighted similarity of parameters’ name similaiiySim) and their data types’ similarity

(DTSin).

5.3.4 Internal Similarity Metric ( 1S)
Internal Similarity metric IS) measures the internal similarity of two classesaa
weighted similarity of their attributes’ and thejperations’ similarity.

IS (C1,C2) =W, X ASIM(C1,Cy) + W, X OSIn(Cy,Cy), 9)

wherew, andw, represent weights assigned to the attributes pedations similarity,

respectively.

Data Type

| Atomic Type | Void | Composite Type|
I I

| Char || Number || Boolean || Byte | | Collection | | Structure |

I I
I I I |
| String | | Set | | Vector| | List |

Figure 5. Data Type Taxonomy

5.3.5 Neighborhood Similarity Metric (NHS)

Neighborhood Similarity metricNHS measures the neighborhood similarity of two

classesC; andC,, having two sets of neighbadrg andN,, respectively, as follows:
NHS(Cy, C) =Max " MINSImE ,n 1/ (Ny, (10)

wheren 0 NpandnT N, [Ni|~ N
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The neighbor similaritfNSim(ni,n;) between two neighborg andn, is measured as a
weighted similarity of the relation type similarifytSim), the relation name similarity

(rnSim), and the neighbor name similaritynSin):
NSinm{(nK,N) = WX NNSingng,n) + WX rSim(ng,ny) + wye X rtSim(ng,ny), (11)

wherew,, represents the weight assigned to neighbor namiasty w;, represents
the weight assigned to relationship name similavity represents the weight assigned to
relationship type similarity. As mentioned earli@ection 5.2), the neighbor name
similarity and the relationship name similarity asgaluated based on the Wordnet
semantic similarity while the relation type simitgiris evaluated based on the similarity
scores shown in Table 10, which is inspired fro®).[AVhen evaluating the relation type

similarity we consider the similarity of the twod=nof the relation.

Table 10. Lookup Table of Similarities between Rel#onships’ Ends in Class Diagram

Relationship’s End
OAS MAS OAG OcCO GES GEC IRS IRC DES DEC RES REC NRE

OAS 1 0 0.89 0.89 0 0.55 0 0.33 0 0.55 0 0.23 0
MAS 0 1 0 0 0.55 0 0.33 0 0.55 0 0.23 0 0
OAG 0.89 0 1 0.89 0 0.55 0 0.33 0 0.55 0 0.23 0
B OCOo 0.89 0 0.89 1 0 0.55 0 0.33 0 0.55 0 0.23 0
I:E_ GES 0 0.51 0 0 1 0 0.4 0 0.72 0 0.4 0 0
é GEC 0.51 0 0.51 0.51 0 1 0 0.4 0 0.72 0 0.4 0
% IRS 0 0 0 0 0.21 0 1 0 0.49 0 0.83 0 0
& IRC 0 0 0 0 0 0.21 0 1 0 0.49 0 0.83 0
DES 0 0.51 0 0 0.72 0 0.68 0 1 0 0.79 0 0
DEC 0.51 0 0.51 0.51 0 0.72 0 0.68 0 1 0 0.79 0
RES 0 0.17 0 0 0.38 0 0.89 0 0.66 0 1 0 0
REC 0.17 0 0.17 0.17 0 0.38 0 0.89 0.66 0 0 1 0
NRE 0 0 0 0 0 0 0 0 0 0 0 0 1

OAS = Owned AssociatiolYIAS = Member AssociatiorDAG = Owned Aggregatior@CO = Owned Composition;

GES = Generalization SupplieGEC = Generalization ClientRS = Interface Realization SupplidRC = Interface Realization
Client; DES=Dependency SupplieBEC = Dependency ClienRES = Realization SupplieREC = Realization ClientNRE = No
Relation End
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5.4 Class-to-Class Similarity

Based on the metrics presented in Section 5.3nwestigate the computation of the
class similarity using seven similarity metriddS IS, NHS NIS NNHS INHS and
NINHS The first three are, respectively, defined inatuns (2), (9), and (10). The last

four are defined as follows.

NIS(C1, Cz) = Wnx NS(C1, C) + Wi x IS (Cy, C), (12)
NNHSC1,C2) = Wnx NS(Cy, Cp) +Wanx NHS(C1, Co), (13)
INHS(C1,C;) = Wi X IS (C1,C) + Wanx NHS(C1,Co), (14)
NINHS(C1,Ca) = Wi x NS(C1,Cy) + W, X IS (C1,C2) + Wanx NHS(C,C), (15)

where,w,, wi andw,p are weights assigned to Name Similarijg(, Internal Similarity

(1S), and Neighborhood SimilaritiNHS), respectively.

Table 11. Weight Settings of the Compound Metrics

Equation| Weight assignment How?

Eq. 4 Evenly Arbitrarily

Eq. 7 Arbitrary. Arbitrarilyw,=0.5; w,=0.30;w,=0.20.

Eq. 9 Adopted Based on the complexity [124),=0.4;
Wo=0.6;

Eqg. 11 Calibrated Experimentally, see Sec8dn

Eqg. 12 Calibrated Experimentally, see Sectiéh5

Eq. 13 Calibrated Experimentally, see Secti@b

Eqg. 14 Calibrated Experimentally, see Sectiéh5

Eq. 15 Experimentally Experimentally, see Sectihb

Having a compound similarity metric as a combirmatid different other metrics entails

that each metric in the combination should be assiga weight that allows for an
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accurate similarity/dissimilarity assessmdrdble 11 summarize the weight setting in the
different similarity. For the weights that are sgperimentally, empirical experiments and

analysis are provided in Section 8.5.

5.5 Tool Support for Metrics Collection

We developed a Java-based tool that takes, as, iapét of class diagrams in XMI
format. The tool then parses the XMl files to egtrthe required similarity information
for the similarity metrics, and then the tool asgssthe pair-wise similarity between the
classes of each pair of input models based oniffezaht types of similarity metrics. For
each similarity metric used, the pair-wise simthascores between the classes of each

pair of models is presented by the tool as a twedsional similarity matrixzS

5.6 Summary

In this chapter we presented the similarity assessnramework in terms of the
similarity aspects and similarity metrics used dssessing the class diagrams similarity.
The focus of the chapter was to discuss the diftesgnilarity aspects and how to handle
them to improve the similarity assessment framewdike chapter also introduced
formal definitions for all the metrics used in @mamparison framework. Additionally the
chapter presented the weight setting schemes frctmpound metrics. Empirical
validation and analysis related to the comparisaméwork are presented in Section 8.5

of Chapter 8.
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CHAPTER 6
MODEL MATCHING

6.1 Introduction

Within the context of our framework we define modehtching between a pair of
two models as the task of mapping each elemertersinaller model of the pair (model
with fewer number of classes) into its most simésment in the other model, given the
similarity scores between the elements of the tvealets as quantified by the similarity
metrics. Accurate similarity assessment (compajideads to accurate matching, and

accurate matching leads to a duplication-free mergH8].

Model matching task is time consuming due to ttoe flaat finding the optimal match
between the elements of two models is a kind of oatorial problem generally
referred to as graph matching problem [59]. Therefan efficient matching algorithm is
required to obviate the complexity of the bruteceomethod and meanwhile provide an
acceptable solution. One of the approaches is t@rmame plausible assumptions which
can be driven by utilizing the characteristics lué problem in hand. An alternative way

is to go with some heuristic based solutions.

It is crucial for an effective and efficient matobi to have efficient matching
algorithms as well as good similarity metrics fanagtifying the similarities of the
models to be matched. In the previous chapter (t8hap) we discussed different
similarity aspects and the different factors thead to better similarity assessment
between the elements of the compared models. @usfm this chapter is the matching

task and how to tackle its complexity. In other dgyrthe chapter is centered around
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different matching algorithms. The input to any amittg algorithm is the pair-wise

similarity scores between the elements of the neatechodels, representedt$ matrix.

As mentioned in Chapter 4, a 3-stage matching nmsfmahave been proposed to
tackle the complexity of the matching. These stagestechnically detailed in Sections

6.2, 6.3, and 6.4.

6.2 First Stage: Element-to-Element Matching

Definition 6.1: Let M; andM, be two models, witim andm classes, respectively, where
n "~ m; let ES be the pair-wise element similarity matrix B, and M,. The optimal
injective match is an injective match frdvh to M, where each element M; is matched

to a distinct element iM, with which it is the most similar.

Definitions 5.1 and 5.2 are also necessary for ghesentation of the first stage
matching. The focus of this stage of our framewisrko look for an optimal injective
match between each pair of models, given tB&matrix as an input. If we have a pair
of modelsM; and M; of n and m classes, respectively, with = m, the brute-force
algorithm to find the optimal match entails findiath possible injective matches between
M; and M;. Then the injective match with the highest siniijarvalue is retained.
However, this requires exploring! possible injective matches, resulting in an

exponential time complexity.

A trivial solution is to go with a simple greedypapach. Given a sequence of row
indices (representing classesMy) of ES matrix, the simple greedy matching algorithm
(SGRM), Figure 6, goes over the sequence row by naatching each row element df

to a column element d¥}; with which it has the highest similarity scoies;; if the
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algorithm finds the column element correspondingthte highest similarity score as
already matched, it looks for the next highestlaée. This simple algorithm can find an
injective match between a pair of models. Howetlds match is not guaranteed to be
optimal. The sequence in which the rows are viditedhe algorithm is a major factor in
getting the optimal match. For example, let Figiréa) depict the similarity scores
between the elements of any two models,(rows’ elements in the matrix) and
(columns’ elements in the matrix). Assume, the mllgm visits the rows in an
increasing order of row indices, i.e. row 0, thewrl, and so on, until row, Gnatching
the elements in a greedy-like manner. In particuMren row O (which represents the

similarity scores between the clagsof and each classg of ) is visited before

row 2, the algorithm matches the clagsto the class , marking both - and  as
matched classes with a similarity score of 0.56&nTtwhen visiting row 2, is found to
be most similar to , ES 3= 0.91. However, is already matched with, with ES 3=
0.56, and thus cannot be re-matched with This is clearly an indication of wrong
match, and it results in another wrong match, asatgorithm will, enforcedly, matches
to , which in turn causes a third wrong match betweeand , as would be
best matched to . However, if the algorithm, during its executiofgllowed the
sequence of rows 1, 2, 3, 4, 6, 0, 5, Figure 7#f®,optimal match would be obtained.
The matching similarity matrix corresponding to E®@matrix depicted in Figure 7-(a) is

shown in Figure 8.

As we have seen in the aforementioned demonstraierSGRM algorithm lacks the
global view of the solution space. This short ihsigf the algorithm comes from the fact

that when the algorithm matches the elements ofwbemnodels, it cannot go beyond the
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horizon of a single row. If the algorithm had algdbview about th€eS matrix when

matching , it would not match , with .

Algorithm  SGRM: Simple Greedy Matching Algorithm

Input:  two dimensional matrix ESn][m] where ESJi][j] represents the
similarity score between class C' of model M1 and class qz of
model M2, with n and m represent the number of classes in M1 and

M2, respectively;

An sequence S of distinct integer numbers representing the row
indices in ES Matrix, |S| = min{m,n}.

Output: a two dimensional matrix MSM[3][min{m,n}], such tha t
MSM[O0][jJand MSM[1][j] represent the indices of j " matched pair
of similar classes from M1 and M2 respectively, wit h MSM[2][j]

represent their similarity score.

1. fori 7 1to|S|do
2. find 1$,.,where 1$;. L MN@. o, I$;psuch that jand  p are not
matched
3. Mark ;. and . as matched.
4. end for
5. return MSM
Figure 6. SGRM Algorithm
E R S H T U V W F R S H T U V W
¢ |0.36/0.29| 0.46| 0.56| 0.44| 0.54| 0.45| 0.35 ¢ (0.360.29|0.46| 0.56| 0.44]| 0.54| 0.45| 0.35
r| 1 |0.26/0.32|0.42|0.34| 0.34| 0.32| 0.33 r | 1/0.26/0.32/0.42|0.34| 0.34| 0.32| 0.33
5 0.28/0.21|0.32| 0.91| 0.60| 0.34| 0.34|0.25 s 10.280.21)0.32| 0.91| 0.60| 0.34| 0.34/0.25
H 0.34|0.28|0.51| 0.58| 0.89| 0.46| 0.62| 0.39 y (0.340.28/0.51] 0.58/0.89]| 0.46| 0.62| 0.39
T 0.34/0.27] 0.5] 0.54/ 046/ 0.90| 04 | 0.68 . |0.340.27| 0.5]0.54/0.46/0.90| 0.4 | 0.68
U 0.44| 0.3 {0.44|0.53|0.57(0.48| 0.40| 0.41 U 0.44 0.3 |10.44/0.53|0.57|{0.48|0.40| 0.41
0.4 10.67|0.63|0.56/0.42| 04| 0.4|0.84 0.4|0.67|/0.63|0.56/0.42| 0.4 | 0.4 |0.84
(a) Row sequence resulting in the shaded mat (b) Row sequence resulting in the shaded match
is:0,1,2,3,4,5,6 is:1,2,3,4,6,0,5

*Shaded numbers represent the similarity scoresatéinad elements;
*Numbers inbold represent the max in the row; when every boldedber is shaded, the match is optimal with zerorerro

Figure 7. Pair-wise Element Similarity Matrix Between Classes of Two Models, M1 and M2

M,classes U v Over all Similarity
M, classes s " betweerM; andM,
Sim. Score  0.56 1 0.60 062 090 044 084 4.96/7 =0.71

Figure 8. Matching Similarity Matrix between Classes of Two Models, SGRM Algorithm
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In this work, we propose three polynomial time aipons for model matching: a
Global Greedy algorithm (GGRM), detailed in Secti6r2.1, a hybridized Greedy-
Genetic algorithm (GGAM), detailed in section @.2and a hybridized Greedy-

Simulated-Annealing algorithm (GSAM), detailed acton 6.2.3 .

6.2.1 Proposed Greedy Matching Algorithm (GGRM)

The intuitive and the plausible assumption undedythis algorithm is that a pair of
classes with the highest similarity values represéme most relevant classes. Following
this assumption the GGRElgorithm, should find the optimal match betweea thasses
of two models in a polynomial time. The steps & #igorithm are listed in Figure 9 and
exemplified in Figure 10. Given the pair-wise etrhsimilarity matrix ES,between the
classes of any two modelsl; andM,, the algorithm, in each of its steps, looks for the
highest similarity score, in thES matrix, for which the corresponding classes are no
matched so far. Then the algorithm matches theseses and marks them as matched.
The algorithm repeats its steps until all the dassf the smaller model (i.e. model with

less number of classes) are matched.

Algorithm  GGRM: Proposed Greedy Matching Algorithm

Input: two dimensional matrix ESn][m], where ESJi][j] represents the
similarity score between class C' of model M1 and class C’ of
model M2, with n and m are the number of classes in M1 an d M2,
respectively, and n m;

Output: two dimensional matrix MSM[3][n], such that MSM[O] jland
MSMI1][j] represent the indices of | " matched pair of similar
classes from M1 and M2 respectively, with MSMI[2][j] represents

their similarity score.

1. While there is unmatched class in M1 do

2. find 1$. , 1$. L MNQ, g vyLzQ&l$ xpsuch that xand p are not
matched

3. Mark . and as matched.

4. end for

5. return MSM

Figure 9. GGRM Algorithm
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£ |0.36/0.29| 0.46| 0.56| 0.44| 0.54| 0.45| 0.35 £ |0.36/0.29| 0.46| 0.56| 0.44| 0.54| 0.45| 0.35

r | 1 |0.26/0.32/0.42| 0.34| 0.34| 0.32| 0.33 r| 1 |0.26/0.32/0.42/0.34|0.34/0.32]0.33

¢ |0.28/0.21{0.32]0.91) 0.60| 0.34| 0.34/0.25 5 |0-28/0.21)0.32/ 0.91]0.60| 0.34| 0.34(0.25

. |0.34/0.28/0.51]0.58/ 0.89) 0.46| 0.62| 0.39 4 | 0.-34/0.28| 0.51] 0.58| 0.89| 0.46| 0.62| 0.39

_1./0.34/0.27| 0.5 ]0.54/0.46| 0.90| 0.4 |0.68 +10.34/0.27| 0.5|0.54|0.46|0.90| 0.4 | 0.68

0.44| 0.3]0.44/0.53/ 0.57| 0.48/ 0.40| 0.41 0.44| 0.30.44/0.53/0.57(0.48/0.40| 0.41

______ 0.4 |0.67/0.63/0.56/0.42| 0.4 | 0.4 |0.84 0.4 10.67|0.63/0.56(0.42| 0.4 | 0.4 |0.84

(a) pair-wise Element Similarity matrix® of models (b) rand are matched first, as they have

M; andM, highest similarity compared to others.

0.36/0.29| 0.46(0.56| 0.44| 0.54| 0.45| 0.35 £ | 0.36/0.29| 0.46| 0.56| 0.44| 0.54| 0.45| 0.35

1 |0.26/0.32|0.42|0.34| 0.34| 0.32| 0.33 1 [0.26/0.32/0.42|0.34|/0.34/0.32|0.33

_____ 0.28/0.21|0.32{0.91| 0.60| 0.34| 0.34(0.25 0.28/0.21]/0.32/0.91| 0.60{ 0.34| 0.34|0.25

______ 0.34/0.28|/0.51|{0.58| 0.89| 0.46| 0.62| 0.39 4 | 0.34/0.28| 0.51] 0.58| 0.89| 0.46| 0.62| 0.39

______ 0.34/0.27| 0.5]0.54/0.46/0.90| 0.4 | 0.68| . |0.34/0.27| 0.5|0.54{0.46/0.90 0.4 |0.68

______ 0.44| 0.3]0.44/0.53/ 0.57| 0.48/0.40| 0.41 u |0-44] 0.3]0.44/0.53/0.57|0.48/0.40| 0.41

0.4 |0.67/0.63/0.56/0.42| 0.4 | 0.4 |0.84 0.4 10.67|0.63/0.56(0.42| 0.4 | 0.4 |0.84

(c) and  are matched, as they have the hig (d) and are matched, as they have
similarity among the unmatched classes. highest similarity among the unmatched classes.

£ 0.36{0.29/0.46/ 0.56| 0.44| 0.54] 0.45| 0.35 r | 0.36/0.29]| 0.46| 0.56| 0.44| 0.54| 0.45| 0.35

1 |0.26/0.32/0.42|0.34| 0.34| 0.32|0.33 1 |0.26/0.32/0.42|0.34/0.34/0.32|0.33

> 0.28/0.21/0.32/0.91| 0.60| 0.34| 0.34(0.25 0.28/0.21]/0.32/0.91| 0.60{ 0.34| 0.34/0.25

~ ,.|0.34]0.28]0.51 0.58|0.89| 0.46| 0.62[ 0.39 0.34[0.28/0.51] 0.58]0.89| 0.46 0.62 0.39

0.34/0.27| 0.5 ({0.54| 0.46| 0.90| 0.4 | 0.68 0.34/0.27| 0.5 |0.54|/0.46/0.90| 0.4 |0.68

_____ 0.44| 0.3]0.44|/0.53/ 0.57| 0.48/ 0.40| 0.41 0.44| 0.30.44/0.53/0.57(0.48/0.40| 0.41

______ 0.4 |0.67/0.63/0.56/0.42| 0.4 | 0.4 |0.84 0.4 {0.67|0.63/0.56(/0.42| 0.4 | 0.4 |0.84

() and  are matched, as they have the hig (f) and are matched, as they have
similarity among the unmatched classes. highest similarity among the unmatched classes.

0.36/0.29|0.46| 0.56| 0.44| 0.54| 0.45| 0.35 0.36/0.29/ 0.46| 0.56| 0.44|0.54| 0.45| 0.35

_____ 1 |0.26/0.32/0.42|0.34| 0.34| 0.32|0.33 1 |0.26/0.32/0.42|0.34/0.34/0.32|0.33

~<]0.28]0.21/0.32]0.91/ 0.60| 0.34] 0.34[0.25 0.28/0.21]0.32[0.91/ 0.60| 0.34[ 0.34/0.25

<1 0.34[0.28]0.51 0.58] 0.89] 0.46| 0.62] 0.39 0.34/0.28| 0.51[ 0.58| 0.89] 0.46/ 0.62[ 0.39

<1 0.34[0.27| 0.5 [0.54] 0.46]0.90| 0.4 [0.68 0.34/0.27| 0.5 [0.54]0.46]0.90| 0.4 [0.68

_____ 0.44| 0.3]0.44|/0.53| 0.57| 0.48/ 0.40| 0.41 0.44| 0.3 0.44/0.53/0.57/0.48/0.40 0.41

_____ 0.4 |0.67|/0.63/0.56/0.42| 0.4 | 0.4 |0.84 0.4 10.67|0.63/0.56(/0.42| 0.4 | 0.4 |0.84

(@ and are matched, as they have the hig (h) and are matched, as they have
similarity among the unmatched clas highest similarity among the unmatched classes.

Figure 10. An lllustrative Example of the Proposedsreedy Matching Algorithm (GGRM)

Figure 11 shows the matching similarity matrix asoatput of the GGRM algorithm.
The time complexity of the algorithm ®&(mrf) wheren is the number of classes in the

smaller model anth is the number of classes in the larger model.
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The particularity of our matching problem is whatually makes GGRM algorithm
works fine. In other words, the aforementioned agsgtion underlying this algorithm is
intuitive when looking for the most similar pair§ @lements between the two models
(class level similarity). However, if our objective to look for the maximum overall
similarity between the two models (model level $amiy), as it is the case with many
optimization problems, e.g. job-assignment probtentravelling salesman problem, etc,
the GGRM algorithm may easily get trapped in thealamptima. Therefore, a matching

algorithm with better global insight is needed.

Population-based techniques like Genetic Algoritli®a) (see Section 2.8) provides
a better exploration for the solutions’ search spddis population-based exploration
helps the algorithm to avoid being trapped in tbeal optima which is an intrinsic
characteristic in the greedy algorithms [84]. There, a Greedy-Genetic Matching
algorithm (GGAM), is proposed as another matchilggrithm for model matching. The
use of more than one algorithm for model matchiag twofold objective. First, the
result of each algorithm can be validated agaihst ¢ther ones. Second, in some

situations, the use of one of the algorithm is matemnalized than the use of the other.

Msclasse v F U Over all Sim between
M, classe W s v M; andM,
Sim. Scorc 1 091 09 089 084 046 0.40 5.4/7=0.77

Figure 11. Matching Similarity Matrix between Clas®s ofTwo Models, GGRM Algorithm

6.2.2 Hybridized Greedy-Genetic Matching Algorithm (GGAM)

Traditional implementation of the GA algorithm idves an intrinsic randomness,
which can lead to problems in both the convergeand the performance of the

algorithm. It can also lead to invalid solutionsnrany problems. This encouraged the
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researchers to hybridize the traditional form oé t8A with some ideas of other

algorithms, with the objective to improve the gtyakand the convergence time of the
algorithm as well as the correctness of the satutithe hybridization can be adopted to
any building block of the algorithm. For example,[T5] some greedy ideas are adopted
to improve the generation of the initial populatidhe crossover operation, and the

mutation operation.

At any iteration during its evolution, the evolutary algorithms, including GA,
usually work on a complete and valid solution [8#)we terminate the algorithm at any
iteration we can still have a solution at hand. ldeer, this solution may not be optimal.
The evolution process towards the (near-) optin@ut®n depends heavily on the
algorithm settings. For the GA algorithm, amongstheettings is the fithess function. For
example, when applying the GA for the known Tramgll Salesman problem,
traditionally, the algorithm will generate a seqcewf cities and the fitness function is the
summation of the distances between these citidbepiog the given sequence, in order. In
our matching problem, assume two moddisand M, with n; andn, number of classes,
respectively, where; a np. The typical way to implement GA is to encode thadidate
solution (chromosome) as a one-dimensional a&ray lengthn,, where the values &
represent the classes Mf, as a permutation of distinct integers, &i] ~ ny, while the
static indices, 0, 1, 2, ..i,..., ;p _1, of Srepresent the classes of the molligl The
indices of S can be visualized as a static chromosome whilevdlees ofS can be
visualized as a dynamic chromosome on which the dpArations are applied. The
matching is then performed in such a way that ssctdM; represented by the val$H]

is matched to a class in modd} represented by the indéxThe fitness function of a
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candidate solution is defined as the summatiomefsimilarity scores between the pairs
of matched classes as quantified inE&matrix, where the valufi] is an index of a row
while the indexi is an index of a column in thES matrix. This approach has been
followed in many similar problems whose solutioms a the form of permutations of

integer numbers, e.g. [78, 134].

We propose an enhancement to the setting of tltitior@al approach as follows.
Instead of mapping the pairs of classes, cigof M; to the class of M,, the matching
is performed in a greedy manner. Given a sequehctasses of one of the models, as
represented by the GA chromosome, which in turnessmt row indices of tHeS matrix,
a simple greedy algorithm (SGRM, Figur¢ goes over the sequence row by row,
matching each row element lgi; to a column element &fl, with which it has the highest
similarity score; if the algorithm finds the colunetement corresponding to the highest
similarity score as already matched, it looks fbe tnext highest available. This
enhancement is assumed to make the algorithm cgavaster to the optimal solution as
it avoids the randomness involved in the traditiomglementation of the algorithm when
matching the elements and calculating the fithesses The penalty is that the complexity
time of the matching step becom@gn?), instead ofO(n) in the traditional approach.
However, this increase in the complexity can be memsated by the fast convergence of
the enhanced algorithm. In other words the algorittan converge to the (near-) optimal

solution in less number of iterations as compandti¢ traditional approach.

Adopting the hybridized Greed-Genetic algorithm @ to the matching problem
requires setting up some parameters and some &dapdd its building blocks to suite

the matching problem in hand. We discuss thesmgstas flows.
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Problem formulation In the beginning of this section we mentioned thkgorithm
SGRM can find the optimal injective match if it fmvs an appropriate sequence of row
indices. However, as we mentioned, the complexie tof finding this sequence using
the brute-force approach is exponential. Therefang; matching problem can be
reformulated as a search problem with the objeaiviéinding the appropriate sequence
of row indices to be followed by SGRM, on t&BS similarity matrix, in order to give us

the optimal injective match.

Chromosome encodingBeing centered around the evolution of the chrommesothe
first step in the genetic algorithm is to encodg potential solution into a form of a
chromosome so that the genetic concepts can béedgpl it. Since our solution is a
sequence of row indices (EBS matrix), which, in turn, represents a sequencmdites

of classes of one of the models in the pair, edatbhrsosome needs to represent a valid
sequence, in which no row index appears more theoe.oln the case when the two
models have the same number of classes, the lefdgtte chromosome is equal to the
number of classes in any of the two models andyémes of the chromosomes represent
row indices. However, when the number of classdkertwo models is not the same, the
length of the chromosome is equal to the numbetasfses in the smaller model, but the
genes in the chromosome can be in one of two cHsab®y represent the indices of the
classes in the smaller model they are already & vapresentation of a candidate
solution. If, however, they represent the indicéshe classes in the larger model, some
indices will be truncated, as the number of indicedarger than the length of the
chromosome. Since the algorithm works on a poparadif solutions, and because each

initial solution is generated randomly, it is highinlikely that different individuals will
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miss the same index (indices). This means thdipadfh some indices are missed out
from some of the candidate solutions they will shapvin other ones, indicating their
existence over the generation. Moreover, the tigncamdices will be kept in a pool with

which the mutation operator probabilistically perfs swapping.

Initial solution: The initial population of solutions is generateddamly as a sequence
of integers representing the class indices in dngae pair of the matched models. We

develop a special generator to guarantee thatiadohdual is a valid solution.

Fitness function: As previously mentioned, each candidate solutiopregents a
sequence of indices of the classes of one of thgetaan the pair. This sequence is given
to SGRM algorithm to follow in order to find thercesponding injective match. The sum
of the similarities between the matched elementkiginjective match is used as fitness
function, the higher the sum the fitter the solnti&electing the number of elements
passing the threshold would be another optionfasess function, but one problem with
this is that if two elements (say x and y) in onedel have the similarity scores 0.8 and
1.0, respectively, with an element z of another ehothen the algorithm will not
differentiate between the two cases. In other wdfdsis already matched with x for any
intermediate solution, changing the match to becbeteeen z and y may not change the
value of the fitness function (if this is the omlyange in the new solution), assuming that

the threshold is 0.8.

Using the error, in terms of the difference betwdka similarity scores of the
matched elements and the maximum values in theoraelumn, would be a third option

for the fitness function. However, the problem wiitis measure as a fitness function is
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that the algorithm will try to minimize the errcather than looking for the most similar
elements. In other words, the algorithm will ndfefientiate between eurrent situation
where a match exists between two elements withdiomarity score and 0 error, and a
better new match with high similarity score andrde In fact it is possible to prefer the
former case over the later one if it will result mminimizing the overall error. This

situation is likely to happen when the number eh@tnts in the two models are different.

Genetic operatorsWhen applying the simple crossover and the mutadperators [135]

to any of the candidate solutions to our probleayttio not work well as they may result
in invalid solution, i.e. some indices may be reépdawhile others are missed out.
Therefore these two operators need to be adaptdentain way, so that they still mimic
the biological gene evolution. It is not just th@queness and the omission of the genes
(indices), rather, the crossover is supposed teepve previous advances in the solutions
and incorporate them into future solutions [81]. @e other hand, the role of the
mutation operator is to introduce diversity in {hepulation of the solutions, which is
needed to ensure an appropriate coverage of theicolspace and thus prevent the

premature convergence of the whole population beaatimal solutions.

Crossover Two common crossover operators can be used,afParilapped crossover

(PMX) [136] and Order crossover (OX) [84]. The PMXossover operator builds an
offspring by choosing two cut-points in the two guatis, copying the subsequences
between the cut points in the two parents into tveavoffsprings, one each, and then the

remaining indices are filled, position wise, fronetother parent [84, 136].
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The OX operator builds offspring by choosing a sgoence of one parent and
preserving the relative order of indices from theo parent. It capitalizes on the
importance of the relative order of the indicesheatthan their specific positions [84,
137]. Guided by recommendations in [80, 84, 138}, apt to use order crossover (OX)
operator. Figure 12 shows how the offspring is gateel using OX operator. First, two
cut-points are selected randomly in the two paresgs Figure 12-b where the cut-points
are marked with dashed borders. Then, the subsegsidretween the cut points in the
two parents are copied into new two offsprings, @aeh, Figure 12-c. Then, the
remaining indices, starting after the second cutipare filled from the other parent, in
order, omitting those which already exist in thepied subsequence. The crossover
probability (also known as, crossover ragg) controls the frequency in which the
crossover is applied. Too high crossover rate nmesult in over-exploitation of the
current individuals. As a result, new areas in dbarch space may not get explored. A
low crossover rate may delay the convergence tmmiging region of the search space

[139]. Typical values of are in the range 0.5-1.0 [140, 141].

Mutation: Mutation is performed in two different ways. Whitie available sequence
is larger than the length of the chromosome (thigplens when the compared models are
of different sizes), a pool representing the eitdaces of the classes of the larger model
is maintained. Then the mutation is performed bgralom selection of a position in the
chromosome and swapping its content probabiligyicaith an index selected randomly
from the pool or with another position selectedd@nly in the chromosome. The former
case (i.e. the selection from the pool) is a typanatation generally referred to as

immigration [75]. If, however, no indices are maintained i® ghool, the mutation is
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performed by swapping the contents of two positiohsthe chromosome, selected
randomly. The mutation ragg, controls the frequency in which the mutation iplagal.
High mutation rate renders the GA into random geatgorithm. A very low mutation
rate results in not reaching the global optima.mak mutation rate less than 0.1 is

commonly recommended [140, 141].

Parent A ‘0 ‘1 |3 ‘4 ‘6 ‘5 ‘2 |7 ‘ Randomly select Parent A |O |1 ‘34 ‘6 |52 ‘7|

Parent B ‘6‘2|4‘7‘0‘1‘5 |3‘twocut-points Parent B |6|2‘4;7‘0|1;5‘3|

(a) Parents (b) Two cut points are select
Offspring A ‘4 ‘6 ‘5 |7 |o |1 |2 |3 ‘ Offspring A Illﬂll
4—
Offspring B ‘7 ‘O ‘1 |4 |6 |5 |3 |2‘ Offspring B Illﬁll

(d) copy the other genes from t (c) Genes within the cut-points
other parer are swapec

Figure 12. Genetic Crossover
To sum up, in our experiments the GA parametezssat, guided by the literature
recommendations, as shown in Table 12. Section eBirically investigate the
performance of the two algorithms over differertlgem sizes. The investigation clearly
shows the effectiveness of greedy idea in speedmghe convergence of the genetic

algorithm to the optimal solution.

Table 12. GA Parameters Settings

Population size 30

Number of generations 10000

Crossover rate 0.70

Mutation rate 0.10

Immigration rate 0.50 of mutation rate
Selection method Roulette wheel

Best half (50%)
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6.2.3 Hybridized Greedy Simulated Annealing Matching Algaithm (GSAM)
In Section2.9 we provided a brief background about the SitedlaAnnealing

algorithm (SA). In this section we introduce thee€dy-Simulated Annealing algorithm
(GSAM). To implement the GSAM algorithm within tle®ntext of our class diagram
matching we follow the same encoding scheme uséideitGGAM algorithm, where the
solution is encoded as a sequence of distinct énsegepresenting the classes in one of
the matched models. This sequence is traversechdySGRM algorithm to find an
injective match with the classes of the other modhbls is actually where the algorithm
is hybridized with the greedy idea. The objectivadtion is computed as the sum of the
similarity scores as quantified in tHeS matrix between the corresponding matched
elements of the two models. Solution which leadsigher similarity score than the

current one is always accepted. Worse solutioode@ed probabilistically.

Using SA requires setting up some parameters, sschhe cooling rate, initial
temperature, as well as defining the objective fiomcso that the quality of the different
solutions can be compared. In our experiment thaNs8nvironment was set as follows.
The initial solution is generated as a random secgi®f distinct integers representing
row elements’ indices in th&S matrix. Initial temperatureT), cooling rate, and
termination condition are set, guided by some regnendations in the literature [142,
143], into 1000, 0.01, 0.1, respectively. The ataepe probability ®) is calculated as
follows. P=EXp ( F(Siew) — F(Surren)) / T, WhereF(S,ew) is the objective function value of
the new solution;F(Suren) iS the objective function value of the currentiusion.

Neighbor solution is generated by swapping the emust of two randomly selected
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locations in current solution. The objective funatiis computed as the sum of the

similarity scores of the matched pairs of classts/ben the two models.

6.2.4 Summary of the First Stage Matching

The first stage matching algorithms emphasize emeht to element (or one-to-one)
matching between the classes of the two matcheceisio@ihe final optimal match may
contain elements that are matched just due to rjeetivity property of the mapping
function despite their low similarity scores. Thedements will be filtered out by the

first stage matching threshold filter.

6.3 Second Stage: One-to-Many Matching

Elements not passing the one-to-one similaritysiiodd, in the first stage, needs to
be further investigated for potential similarity rdhgh more complex similarity
assessment that can capture some of the desigretdiffes that was not able to be
captured by the first stage’s similarity assessmegthanism. The following definitions

are necessary for the presentation of the secage stgorithm.

Definition 6.2: A Class-grougd, in a modelM,, denoted ag | , represents those set of
classes iVl modeling the same domain concept, whierepresents the set of indices

indexing those classes in modé.

For example, in Figure 1 the two classes “Schedhlght” and “Offered Flight”, oMy
are representing the same concept which is modeded single class (Flight) il,.

Therefore, the two classes, “Scheduled Flight” ‘@fiered Flight”, represent one class-

group.
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Algorithm

GMA: Group-Matching Algorithm

Input:

Two fragments F1 and F2 as subsets of two differen
n and m number of classes, respectively, with

t models M1 and M2 consisting of
T F1 1 Mland

ol F2 1 M2.

Output: A two dimensional matrix GSM[4][N-1], representing the best match between the
class-groups of M1 and M2,

1. for i ' 1ton do

2. for j ' 1tom do

3. IS[i10] =1 findinternalSim( 1 p)

4. NHSTi][i] —1 findNeighborhoodSim( 1 p)

5. INHS[I[] = wxIS[l[]+w ,xNHS[][]

6. end for

7. end for

8. done 7 fyi5e

9. while notdone do

10. //go row wise as follows

11. Foreach ;| inFl1

12. find the most similar class - inF2

13. let yGroup= { ~} and xGroup= { 1}

14. let simSofar= INHS [i][k]

15. for each cinF2,j _k

16. if ( ¢ is a neighbor of elements in yGroup and adding ¢ to yGroup will

improve its similarity with xGroup) then

17. yGroup 71 yGroup E { g}

18. update simSofar

19. end if

20. end for

21. rowWiseSim[O0][i] =1 simSofar; rowWiseSim[1][i] =

22. end for

/lgo column wise as follows

23. foreach ginF2

24, find the most similar class - inF1

25. let yGroup= { &} and xGroup={ ~}

26. let simSofar= INHS[K][j]

27. foreach | inFL1,i _k

28. if ( 1 is a neighbor of elements in xGroup and adding ; to xGroup will

improve its similarity with yGroup) then

29, xGroup 71 xGroup E { }

30. update simSofar

31. end if

32. end for

33. colWiseSim[0][j] =1 simSofar; colWiseSim[1][j] =g

34. end for

35. Sort (rowWiseSim, descending);

36. Sort (colWiseSim, descending)

37. if (rowWiseSim[0][0] colWiseSim[0][0] and rowWiseSim[0][0] threshold) then

38. Mark  apcdergant,  @nd the corresponding yGroup as matched classes, a dd them to

MSM, and remove them from F1 and F2, respectively.
39. elseif  (colWiseSim[0][0] > rowWiseSim[0][0] and colWiseSim[0][0] threshold) then
40. Mark  jjcdergan 1,  @nd the corresponding XGroup as matched classes, a dd them to
MSM, and remove them from F2 and F1, respectively.

41. Else done=true

42. End if

43. End while

44, Return MSM

Figure 13. Second Stage Matching Algorithm

Definition 6.3: Let [ | be a class-group in a model, the neighborhood\H) of [ |

in modelMy is defined as the set of classes that have atdektionship with any class

of [ \:
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NH([ \)={ p: p1 Myand , has direct relationship with any class [n, }.

Definition 6.4: Let [ | be a class-group in a model, the list of attributes4) of [ |

are defined as the collection of the attributesalinthe classes involved in the class-

group [ :
A([ \)={a:al C,Ciisaclassin \}.

Definition 6.5: Let [ | be a class-group in a model, the list operationsQ) of [ |

are defined as the collection of the operationslirthe classes involved in the class-

group [ \:
O([ )={o:0l C,Ciisaclassin |}

In this stage a single element from certain modaly ;) can be matched to more
than one element in another model ($4Yy based on a weighted combination of both
internal and neighborhood similarity values. Intgatar, letF; andF, be two subsets of
classes not passing the first stage similaritysthoéd and of size andm, respectively.
Let T F1i Myand p1 Foi M, whereM; andM; are two models consisting of
andn; classes respectively. The algorithm first finds similarity between each clasg
from F1 (row elements) and each clasg from F, (column elements). Then, the
algorithm proceeds as follows. First it goes rovgayistarting at row 0, looking fog
that has the maximum similarity score with. This maximum similarity between

and p is considered as the best similarity so far, &g & new class-group calléd,p

is created with , is the first class in the class-group. The algonithen tries to add the
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other classes . , wherek b j, to [ ,p One at a time, evaluating the similarity between
and [ p after adding . ; if the similarity is improved the class is included in
the class-group ( p) and the similarity so far is updated; otherwise tlass . is
excluded from the class-groud (p), trying another class. The algorithm then proseed
with the other rows in the same way, looking ferthat has the maximum similarity
score with y, creating a new class-groyp ,p; with a class p being the first class in the
class-group, adding to[ .p, those classes that improve the similarity agaigstand

updating the similarity scores accordingly. Theikinty between each class, fromF1
and the corresponding groud , of classes fromF2 is saved in an array (called

rowWiseSin sorted in descending order according to thelaiity scores.

The algorithm then goes column-wise, in the saman®ag starting at column 0,
looking for 4 that has the maximum similarity score with. This maximum similarity
between and  is considered as the best similarity so far, &eddass y is added

as the first class in a class-groyp,x; The algorithm proceeds in the same way with the
other columns. The similarity between each clagsfrom F2 and the corresponding

group of classe$ ,, from F1 is saved in an array (callecblWiseSiy sorted in

descending order according to the similarity scof#ace the two arrays are sorted in
descending order, the maximum similarity in the taoays will be either in
rowWiseSiff®] or in colWiseSirf0]. If the maximum is inrowWiseSim[0] and this

maximum satisfies the second stage threshold,dtresponding x and [ |, are marked
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as matched class-groupand added to the similarity matrix of the matclakses of
models rand <. Similarly, if the maximum is ircolWiseSirf0] and this maximum
satisfies the second stage similarity thresholel ctirresponding, and [ , are marked
as matched class-groups and added to the similadtyix of the matched elements of
models rand . The matched classes are removed from furtherideradion. The
algorithm repeats its steps until no further pdssibatch. It is worth mentioning here

that for two classes to be combined, they mustdpecant to each other.

6.4 Third Stage: Residual Matching

In the second stage algorithm (Section 6.3) tlsedas on the situation where a single
class in one model can be modeled as multiple etass the other model, as they are
representing the same underlying concept. Howevennay have a situation where the
same underlying concept can be modeled as multfdsses in the two models
considered in matching. This situation cannot hgwad by the second stage matching
algorithm. Therefore we propose a third stage #@lgorto handle such a situation. This
stage is an extension of the second stage. If wetdebyR; andR; the set of residual
classes not passing the first and the second sityitareshold, wher&®; I M; andR, |
M,, then the algorithm just improves the similarity tbe class-groups formed in the
second stage by adding each clag’;inr R; to the most suitable class-group, if possible,
based on the contribution of the added class tcsitindarity improvement between the

corresponding matched class-groups. In other wairds designate, pas the similarity

improvement achieved when adding class (where I R;) to the class-groud -

" When a single class is matched against a clasgsgwe consider this class as a class-group ofglesin
class.
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and/or the classp (where 1 Ry) to the class-group . , then the algorithm aims at

improving the similarity of the matched class-greyp. and [ - by adding the classes

x and/or p to [ . and/or[ ., respectively, wheray pis maximum.

__________________________________________________

1R1, set of classes of model M1 not passing the dinst the
J 1second stages’ thresholds.

Each class in R1 is added to the most appropriass-group

Lo |0 wal |« | Class-groupsp § from M;

Matched with

Class groupsp; from M,

Each class in R2 is added to the most appropriass-group

ER2, set of classes of model M2 not passing the dinst the
'second stages’ thresholds.

Figure 14. An lllustrative Example of the Steps ofhe Third Stage Matching Algorithm

Figure 14, shows an illustrative example about hbe third stage matching is
performed. Classes and class-groups are represenbectes. The superscript represents
the model index to which the class or the classqgroelongs. The subscript represents
the index of the class or the class-group withia thodel indexed by the superscript.
When the class index is -1, the box representdass.cThis case demonstrates a situation
where we want to evaluate the similarity betweea thass-groups by adding a class to
one of the matched groups, but not both. Refetanigigure 12, the shaded boxes depict
the order of the process. As shown, the algorithotgeds as follows. It starts with
adding into the class-groud then it adds the class into the class-groug
comparing the two class-groups and checking thelasity improvement. Then it
remove the class from the class-groug and adds to it the class , evaluating its

similarity against[ , checking the similarity improvement and compaiiinggainst the

90



similarity improvement achieved when adding and the best is maintained.The
algorithm then remove the class from the class-group[ and adds to it the
class , evaluating its similarity again againsf , checking the similarity
improvement and comparing it against the best antyl improvement achieved so far
and the best is maintained. The class is addduktolass-group for which it achieves the

best similarity improvement.

6.5 Summary

In this chapter we presented a staged matchingefreork consisting of three stages.
The focus of the first stage is one-to-one matchivitgere each class in the smaller model
is matched to a distinct class in the other mod#i which it is most similar. The focus
of the second stage is one-to-many matching, wiatasses not passing the matching
threshold of the first stage are tried to be combim class-groups and a feasibility of the
mach from a single class in one model to a grouglasses in the other model is
investigated. The third stage is an extension ef ghcond stage, which is meant to
capture many to many matching. Empirical investagafor the matching framework is

presented in Chapter 8.
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CHAPTER 7
MODEL CONSOLIDATION

7.1 Introduction

Model merging is the task of unifying informatiam the input models together while
keeping a single copy of matched elements [33]hWWithe context of our framework we
state the task of our merging operator as follo@aien, as input, a set of analysis
(design) instances along with their pair-wise samiy information, the aim of our
proposed merging algorithm is to generate, as outu analysis (design) reference
model with the following properties: 1) it repretenall the input instances
(completeness); 2) it must retain the granularftthe elements of the input instances; 3)
each element in the reference model is traceahis triginal instance (traceability); 4)
each input instance can be instantiated back fieenréference model (instantiation-
ability); 5) it offers the reuse potential of thesiances it generalizes; 6) it can give some
guidance to the analyst about the best domainipesct

This chapter is organized as follows. In Sectioh wWe present some basic concepts
and definitions. The phased merging is introduce8ection 7.3 and detailed in Sections

7.4 and 7.5. Section 7.6 discusses the refemmockel’'s properties.

7.2 Basic Concepts and Definitions

As mentioned in Chapter 4, for each pair of inputdels the three-staged matching
algorithms produce, as output, thdSM matrix (Section 4.4.4) which maintains the
matching similarity information between the matcletasses of the two models of the

pair, depicted as three similarity levels.
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Definition 7.1: Let yxand p, 0" i <] n, be a pair of models whose elements are
matched by the 3-stage matching algorithms. ThecMiag Similarity Matrix MSM)
represents the similarity information of the mattleements of the pairx and p at
three level of similaritieshighly similar (S), similar with variation (V), andunmatched

(U), as identified by the 3-stage matching algonish

Table 13 shows theMSM matrices of each pair yand p) of the four

models , , ,and of Figure 1.

Definition 7.2: Let C  be a pair of models and ; let y and , be two classes,
where I and 1 ; the matched classeg and p, have the similarity level S

(highly similar) if their similarity score satisfies the similagrithreshold defined in the

first matching stage.

Example referring to Table 13-(a), classes and are highly similar classes, given
that the similarity threshold defined for the finstatching stage is 0.8; similarly the

classes and

Definition 7.3: Let C be a pair of models and ;let [ \ and [ ., be two class-
groups, wherg | 1 and[ | ;the matched class-groudgs, and [ ., have the

similarity level V (similar with variation) if their similarity score satisfies the similarit
threshold defined in the second matching stage,itbdtd not satisfy the similarity

threshold defined in the first matching stage.
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Example referring to Table 13-(b), class-grodp, | , which consists of two classes (
and ) has similarity level S with matched class-groug,, which consists of just one

class ().

Definition 7.4: If two classesyl  and pI  have similarity levelS in theMSM

matrix, they represemstancesof the same conceptual cla8s

Example referring to Table 13-(a), classes and are instances of the same

conceptual class Reservation, see Figure 1.

Definition 7.5: If two class-groups[ T and [ have similarity level “V” in

theMSM matrix, they represent different variants of taeme conceptual class

Example: referring to Table 13-(b), class-grodp, , has similarity level V with the

class-group [ ,, which are both instances of the conceptual d¢fight, see Figure 1.

The commonalities and the variabilities betweennttoglels of each pair are identified
based on the levels of similarity identified betweabe matched classes, where classes
mutually identified across all the MSMs with sinmitg level S are modeled as common,
elements mutually identified across all MSMs witimitarity level S and/orV are
modeled as variants, and elements with similaetyelU are modeled as optional.
Definition 7.6: Let , ,Q, be the instances of a conceptual class models

) ; these instances are modeled asrmmonclassC in the reference model if

they mutually have the similarity lev8lin all pairs of matched models.
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Table 13. Pair-wise MSM Matrices of Models M0, M1M2, and M3

Moclasses ¢ ¢ ¢c? ¢ ¢ ¢ ¢° -

Myclasses c;! Cctf Ct Gt Cf G Ccr C

Sim. Score 0.92 1 091 094 084 090 0.87

Sim. level s S S S S S S U
(@) MSM matrix of pairMy & M,

Moclasses c C° C° G° C° Clhus -
Maclasses C2 C2 C2 C2 C2 C’ Cs° C’
Sim. Score 099 099 0.86 0.81 0.85 0.76 -
Sim. level S S S S S \V/ §] U

(b) MSM matrix of pairMgy & M,

Moclasses c C° C° G C° Chs
Msclasses ¢ ¢ Cc°® ¢Cc° CB C%
Sim. Score 0.94 0.99 0.85 096 0.85 0.78
Sim. level S S S S S \%

(c) MSM matrix of pairMy & M3

Miclasses ¢! ct ' c! C! Gt Cluy -
M;classes C.2 C2 C2 G2 C2 C? C’ CF
Sim. Score 1 099 094 091 0.82 0.83 0.75
Sim. level s S S S S S \% U

(d) MSM matrix of pairM; & M,

Miclasses c;! C! C!' G' GC' Cug' GCd
Msclasses ¢ ¢c° C° Cc° C°B C3 -
Sim. Score 099 0.84 0.87 090 0.89 0.85
Sim. level s S S S S Vv u

(e) MSM matrix of pairM; & M3

Myclasses C22 G2 C2 C2 C2 G Cs’ C/
Msclasses ¢ ¢® ¢ ¢ ¢ G2 - -
Sim. Score 1.0 094 0.90 0.86 081 0.95

Sim. level S S S S S S U U

(f) MSM matrix of pairM, & M3

Example: referring to Table 13-(a-f), classes, , , and are kind of classes
modeled as a common class in the reference mosi¢hey are mutually highly similar

(S) in all pairs of matched models.
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Definition 7.7: Let the class-groupd , [ ,Q, [ be the instances of a conceptual
classC in each of the models , , ..., , respectively; then, these instances are
generalized agariantsin the reference model, with a variation pointhiéy consistently

and mutually have the similarity levBlor V in all pairs of matched models, with at least

one pair having the similarity lev¥l.

Example referring to Table 13-(b), class-grodp, | 1 is similar (V) to the class-
group [ 1 , therefore, they represent two different variantghe reference model,

under the same variation point. On the other hand,  has “S” similarity level with
the class 1 , indicating that they are common within the copasding pair and

thus they will be modeled as the same varianterréfierence model.

The basic underlying process for our proposed mgrgigorithm can be described,
as follows. Common elements in the reference madelthose elements mutually have
“S” similarity level across all the pairs and thane represented by a single class in the
reference model. Variants are modeled through YanaPoints (VP) which act as
interfaces for their different variants. Identic@lighly similar) variants under the
variation point are unified. Optional elements aredeled through Optional Points (OP)
which act as interfaces for the different optioetéments. Identical (highly similar)
optionals under the optional point are unified. lEagput model has a variant in each
variation point, but it is not necessarily for eagptional point to have an optional

element for each input model.
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7.3 Phased Merging

As mentioned in Section 4.4.6, merging is perfanmetwo phases. Each phase is
implemented in a staged manner. The focus of tisé fihase is to perform preliminary
merging at the class level, producing a referenodahpreliminary catalog (RMPC) in
which all the common, variant, and optional classesidentified across all the instances.
The RMPC acts as a foundation for the second phasehich the union merge is
perform at the level of attributes, methods, andti@ships. The output of the second
stage is the reference model catalog (RMC), fromiclwhthe reference model,
exemplified in Figure 2, is produced. Detailed dgdion of the merging algorithms in

both phases will be the focus of next two sections.

7.4 First Phase Merging

The first merging phase is preceded by a preprowgssechanism through which
some models will be filtered out, as not candidatemerge, while the rest are passed

through to be consolidated in the reference ma@alen n input models, candidate for
merge, the first phase merging algorithm works-ea— MSM matrices, representing the

matched elements similarity information in pair-@ismanner. The merging starts by
selecting one pair of models (skly andM;) from those models candidate for merge and
then merging them to create an initial referencel@horhen the other models are merged

to the reference model one at a time.

7.4.1 First Pair Selection

The first pair of models to be merged can be setett many different ways. They
can be selected randomly, based on the model seguammber as given by the tool

when reading XMl file (model with smallest numberselected first), or based on their
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similarity/dissimilarity to the other models as d#pd in Figure 15. The merging
algorithm should be deterministic, apart from tb&stion method adopted. However, as
described in Section 7.4.the algorithm when performing merging has onlpeal view
about the ultimate similarity level of the eleménthe reference model. In other words,
an element could be found as common among thesktsof merged models, but when
the algorithm proceeds in merging the other modetsay find that this element has the
similarity level “V” (requiring modeling it as vaant) or “U” (requiring modeling it as
optional) in one of the MSM matrices. This will v#sin reconstructing the reference
model during merging, which requires extra progggsime. Similarly, an element could
be found as variant among the first set of mergedtiefs, but when the algorithm
proceeds in merging the other models it finds thet element has the similarity level
“U” in one of the MSM matrices, requiring modelingas optional in the reference
model. This lack of the global view can be evenseowith the elements to be modeled
as optionals. Let us assume that a classf model . is represented as two classes (
and ) in another model and has no similar class(es) in a third model. Let us
assume that the algorithm selectsand , to be generalized first. The algorithm will
finds the similarity level of both and as “U”, for they exist in but notin , .
Thus, the two classes will be modeled as optiomaleu two different optional points.
Later on, when the algorithm merges, it realizes that the similarity information
between the classes of and . indicates that the two classesand , combined, are
representing a variant of the class. This means that the two classesand need to

be modeled as one optional variant under a singt®mal point instead of modeling
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them as two optionals under two different optignaints as happening when merging

and , . Thus, the two optional points needs to be mengidone optional point.

1. Get the overall pair-wise Similarity
2. Get the average similarity of each

Overall pair wise models similarity matrix model to the others
MO M M2 M2 Average similarity of each model to the others

Mo
.62 L.70 7> AvgSIm(MO)  AvgSim(M1) AvgSim(M2)  AvgSim(M3)
M1
LiiD LD 0.75 077 0.73 0.70
M2 0.71

3. Get the mean of the averaged
similarity for each pair.
Pyj= (AvgSim(M,;) + AvgSim(M,) )/ 2

Weighted pair wise Similarity Average similarity of each pair to the
Matrix others
Mo M1 M2 M3 4. Getthe Mo M1 M2 M3
average
Mo 079 072 074 © MO 076 074 073

M3

M 0.80 069 M1 075 0.74
M2 0.72 M2 0.72
M3 M3

Figure 15. Selection of the First Pair for Merging

Alternatively, if the first pair of models to be mpralized is selected based on the

following.

Minimizing the number of elements of similarity &Vv'S”. Thus, we minimize
changing common to variant or to optional duringrgngg, as any common
element must have a similarity level of “S” in gogir of models.

Minimizing the number of elements of similarity &v'U”. Thus we minimize
merging more than one optional point into one ascse demonstrated above.
Maximizing the number of elements of similarity é&V'V”. This criteria has
twofold advantage: it minimizes changing commoro ingariant. It also helps
giving a better view about ultimate representatibthe optional elements in the

reference model (maximizing common will not help lois advantage).

Following this last approach the selection sc&$§ {or each pair of models (x and

p) can be calculated from the following formula:
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SS( X P):-J u - i u ) (16)

v -J - KW - W

wherey $ is the number of matched elements betwegmand pwith similarity level
“S”, yz is the number of matched elements betwegrand pwith similarity level
“V", yx{ Isthe number of unmatched elements (similarieléU”) in model  and

yp { is the number of unmatched elements in mogel

7.4.2 Merging Algorithm

When the first pair of models is selected, the espondingVISM matrix is retrieved
and traversed by the consolidation algorithm asomsalidation guide to model the
commonalities and variabilities in the referencedaloAny classes with similarity level
“S” in such a matrix are modeled as common classé%e reference model. A variation
point is created in the reference model for eadh gfamatched class-groups with “V”
similarity level; and each class-group in the paiadded as a different variant under that
variation point. As per the classes that are makedU” in MSM matrix, they are
temporally ignored if they are more than one classcertain model, to be considered
later on and modeled as optional points. The re&soignoring them can be reputed to
the lack of information about these classes indtieer models. For example, if two
classes of certain model are found to be unmatechdde MSM matrix when merging the
corresponding model(s), we do not know enough médion about these classes, as they
may represent two different conceptual classebeay may just represent one conceptual
class. In the former case they need to be modeiddruwo different optional points in
the reference model while in the later case theynawdeled as just one option under one
optional point. This information will not be cleantil we get clear view about them from
the other models. This case of an ambiguity happsaialy when the unmatched classes
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for certain model are more than one. However, #se should be clear when the model
has just one unmatched class. In this case annaptpmint is created. Then under this
optional point the unmatched class is added aspéional class for the corresponding

model.

After the first two models are merged to createiratial version of the reference
model, the other models are merged to the refemsmoakel one at a time. The next model
can be selected randomly or based on its similtoithe those models already merged in

the reference model.

To make the idea of creating an initial versiontioé reference model clear we
demonstrate it through a simple example. Assunte thand  are selected as the first
pair to be merged. In Figure 16, the first colunmovgs how our proposed algorithm
merges the first two selected models, and , whoseMSM matrix is given in Table
13-(a). As shown in Figure 16, the merge of and  results in'severclasses modeled
ascommon no variants andone unmatchedclass modeled as first optional point. The
common classes are represented in the common methixh is depicted at the first
column of Figure 16 with its rows represent the sisdand its columns represent the
matched classes. Classes in the same column nmhgale S similarity level in all the
models already merged, and thus will be represehtegust one single class in the

reference model

" Each model instance that is merged in the referemadel must have a class in each column of the
common matrix and it must have S similarity levéhaall the classes in the column.
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Generalizing First Pair MO & M1 * Generalizing M2 with Reference * Generzlizing M3 with Reference
Common * Retrieve the MSM of M0 and M2 * Retrive the MSM of MO and M3
MO 3 & 2 0 4 5 1 * Check Common matrix against MSM matrix of MO, M2 1 * Check Common matrix against MSM matrix of MO, M3
M1 3 T 1 0 4 5 1 Common Common
M2 = = = = = Mo 3 6 2 o 4 1 {5 (] 3 [ 2 o 4
M3 = = = = = = = M1 3 7 2 0 4 1 {5 M1 3 7 2 0 4
common elements between MO and M1 M2 3 ] 2 0 4 1 M2 3 5 2 o 4
M3 = = = = = - i - M3 3 (1] 2 0 4
Variation Points [VP) Variant is detected between M0 and M2
MO * Change common to Variant * Check Variation Points against MSM Matrix of MO, M3
M1 *® Creat New variation Point
M2 Variation Points (VP)
M3 Variation Points (VP) VPO
No variants between the elements of M0 and M1 VPO Mo V1-15
MO V1-1:5 M1
Optional Points (OP) M1 V115 M2
QPo M2 V2l M3 va:l
MO M3 =
M1 o0l-6 Optional Points (OP)
M2 Reomve from common OF0 0Pl
M3 Common Mo = =
One Optional peoint is created for the class 6 of M1 MO 3 6 2 0 4 = = M1 o0l-6 =
M1 3 7 2 '] 4 = = M2 01-5 : ol-7
“Pick next Madel M2 3 6 2 '] 4 = = M3 = =
*Retraive its MSM matrix with any model in the ref. M3
*Say with MO Merged So Far
Merged So Far Optional Points [(OF)
oP0__OF1
MO
M1 ol-6
M2 0l5 | 017
M3
Merged So Far
o 1 2

Figure 16. First Phase Merging Steps

For the unmatched class, a new optional pointdP,) is created and the class is
modeled as an optional class for model3srepresented as; ., with “1” indicates the
index of the optional and “6” indicates the indeixtloe optional class in the original

instance (thatisin ).

After the first pair is merged to create an initi@rsion of the reference model, the
next model (say in our example) is selected and merged with tfereace model as
follows. First, theMSM matrix, representing the matched elements betwlezselected
model and one of the models already in the referemadel (say ), is retrieved and its
similarity information is checked against the samiy information in the reference
model. In particular, the similarity matritMSM, ,, depicted in Table 13-(b), which

represents the similarity of the matched elemeatedéen and |, is retrieved and its

" Any optional point can optionally have classesrfrany instance model.
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similarity information is compared against the $amty information of the reference
model, which is depicted in the first column of kiig 16. The existence of
information in bothMSM, ;and the reference model similarity information agtsa tracer
or a facilitator between the two pieces of inforimatand thus resulting in a smooth way
for modeling the commonality and variability whéretnew model is to be merged with
the reference model. The role played by such atiekcan be summarized as follows.
The Common matrix maintains the original indicestlté common elements for each
model merged so far to the reference model. Thécesdof the common elements
corresponding to the linking model ()" are traced in th®1SMy, matrix. The aim is to
ensure that each element of, which is modeled as common in the reference mddel

a matched element in and the two matched elements are identified aslyhgjmilar

in MSMy . If this is satisfied for each common elementhiad is done except that the
indices of classes corresponding to the common elements predcto the row of

in the Common matrix. If, however, a common elenent is identified as not highly
similar to its matched element of then action will be taken appropriately as will be
detailed in the following. Referring to Table 13dakigure 16, the classes, ,

, , and of are modeled as common in the reference model. Henvevhen
tracing these classes MiSM, ,, the classes {, } are found to be matched, as a class-
group, to the class with the similarity level “V”. This indicates thahe class-group
[ « | and the class needs to be represented as variants in the reteremodel.
Therefore, a new variation poiiC , is created in the reference model with two vdgan

The first variant represent§ , | and [ , ; of Mgy and My, respectively while the

" Any model already merged in the reference could heking model.
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second variant represents of M,. This means that classes represented by the first
variants need not to be in the common matrix anyemihus the corresponding columns
are removed from the common matrix. This situatiepresents a case where the
reference model classes can change from one siyilavel (common) to another
(variants), during merging, as more instances aposed to the algorithm. As per the
classes and the algorithm will detect (by searching the opébmoints in the
reference model) that has “S” similarity level with the class (of modelM,), which is
modeled as optional under the optional p@®0. Therefore the algorithm will model

as the same optional variant under the optionahtgdP0O. However, the class has
neither “S” similarity level nor “V” similarity leel with any class in the reference model.
Therefore, a new optional poinOP1) is created and the class is modeled as an

optional class undedp;.

The algorithm then proceed to generalize the needeh(Ms) in the same manner as
the case withM,. After retrieving theMSM matrix corresponding td/l, and M3, the
algorithm will start by cross-checking the commdengents between the reference model
and the new model with the help of the linking nmodé,) and the matching similarity
matrix MSM, ; of the new modelNl3) and the linking modelMy). Then the algorithm
cross-checks the variants between the referencelnaodl the new model. During the
generalization oMj3, thealgorithm will find that the classes and of M3have, as one
class-group, “V” similarity level with the class of My The algorithm will start
searching for the class of My in the common classes M in the reference to check
whether is a common class in the reference or not. Ifndd that is a common

class, a new variation point is created and all abresponding classes of the other
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models, in the same column of, are modeled (along with ) as one variant under the
new variation point while the corresponding matghtfass/class-group of the new model
is modeled as another variant. In the case where ths not common in the reference
the variation points are searched. If exists under any variation poiMP, then the
variants under that variation point are searcheti tie hope of finding highly similar
variant to the class/class-group of the new modfelthis variant exists the new
class/class-group is linked with such a varianthtfwever, no such a variant exists, the
new class/class-group is modeled as a new variagruhe variation poiP,. In our
case the class exists under the variation poi®, and it has “S” similarity level to the
class of My, which is modeled as the second variant, v2-1euN@,. Therefore the
class is modeled as a second variant under the varigam VP,. No optional classes

exists forMs.

Searching the variation or the optional pointsasyefficient as it will just search the
entries corresponding to the linking model in tregiation point matrix, which has a

linear complexity time, i.e. @C(), in the worst case.

Table 14. Reference Model Preliminary Catalog (RMPL

e VPs OPs
VPq OPR, OP,
Mo C |G| C | C| G V2-{C;:Cs} - -
M, C |G| C | C| G V2-{C:Cs} 01Cg -
M, C |G| C | C| G V1-C, 01Cs 0l1-C;
M3 C |G| C | G| G V1-C, >
RM C |C| C | C| C - - -
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Table 14, represents the Reference Model Prelimir@@atalog (RMPC), which
summarizes the common, variant, and optional ctaséeour hypothetical example (

Figure 1).

In summary, as the output of the matching algorgrare theM'SM matrices, which
identify what is common and what is variant betweeanh pair of the input models, the
output of the first merging phase algorithm is RMPC, which generalizes the matching

similarity information in all the\'SM matrices.

7.5 Second Phase Merging

In the first merging phase, all the instances &f #ame class across the input
instances are generalized into a single classamdference model if they mutually have
the similarity levelS. However, since the matching is performed base@ dmreshold
similarity, highly similar classes does not meaat ttmey are identical. Some differences
may exist at the attribute, operation, or relatiopdevel. Since our goal is to maintain
the granularity of variability and commonality dtet finer grained granularity, we
propose a second phase merging algorithm to haodle a generalization. Based on the
RMPC, the actual catalog of the reference is laslfollows. For each colunjnin the
common part of RMPC a reference cl&sis created. Then all the attributes and the
methods of the corresponding class of moti®) are copied toC{. Next, the
corresponding classes of the other models shanmgame column are generalized one at
a time, using union merging. Attributes (or methothat exist in the classes of some
instances but not in the others are tagged witlnaryp vector (called instance tag) in
which the presence of 1 in ti8 location of the vector indicates the existencethef

attribute in the corresponding class of the insan® indicates otherwise. Variant and
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optional classes are generalized in the same waylagy, the relationships between the
classes are generalized using union merging. Tieeerece model built from this catalog

is depicted in Figure 2.

7.6 Reference Model Properties

In Chapter 1, we listed a set of properties tharatterize our proposed reference

model. In the following we discuss how the refeeenmdel achieves these properties.

7.6.1 Reference Model Reuse

The reuse potential of the reference, as comparéketreuse from a single instance,

is discussed in Sectidh8 (Experiment 6) .

7.6.2 Reference Model Completeness

As indicated in Chapter 1, reference model compkte means that if an element
appears in one of the source models, it must beesepted in the reference model as
well. This simply means that information in the sumodels must not be compromised
during merging. Our staged merging algorithms penfanerging at different level of
granularity. At the class level, i.e. first mergipgase, common classes are unified while
variants are explicated through variation or omigpoints. Variation points allow us to
maintain the different alternatives so that theg aot compromised. Optional points
allow us to maintain those classes that exist mesmodels but not in the others. Doing
so, our proposed representation of reference mprederves the design differences
among the different input instances. The secondemaerging algorithm allows us to
maintain all the necessary information at finerirggd of granularity. For example,
although a class in the reference model has aesingime, while representing many

instances, the names of the classes in the diffarmtances are maintained in the
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reference class as aliases. Also the informatiothatlevel of attributes, methods, or
relationships are maintained in the reference. Eachmon attribute across the different
instances is maintained as a single attribute withtag, indicating that it is present in
every instance. Attribute that is common to sonstainces but not to others or specific to
a certain instance is tagged with the instance viaich signifies the instances it

represents. Same thing can be said about methdd®lationships.

7.6.3 Reference Model Traceability and Instantiate-ability

The representation of the proposed reference malli@ivs each instance to be
instantiated back from the reference model. Comulasses are part of every instance.
Common (non-tagged) attributes or methods are pérevery instantiated class.
Referring to Figure 2a relationship with a variant tag prefixed witltt*eneans that it is
between two common classes. Some relationshipsrafieed with “cc”, but they are not
part of every instance. Hence, instance tag ineécavhich instance a relationship
represents. Variation points represents an abgtrabetween the different variants and
the other classes in the model. Variation points thie optional points are not part of the
instantiated instance. They are removed and tlagioekhips connected directly with the
corresponding variants with the help of both thstance tag and the variant tag. For
example, in the reference model presented in Figuthe class “Plane” is connected to
the variation point VPO with an association relasioip named “assigned to”, with an
instance tag <1:1:1:1> and variant tag “cv: cl-WR(R2.c8/10:0". The instance tag
indicates that this relation presents in all ins&mn The prefix “cv” in the variant tag
indicates that the relationship is between a commass and a variant class. The

common class is “cl” and the variant class is urbervariation point VPO. It can be
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“c8”, as variant “v1”, or it can be “cl0” as vartafv2”. Let us assume we want to
instantiate instance 2 instances are numbered from Ortd. Then, looking at the
variant classes under the variation point VPO, e see that from the instance tag
labeling the relationships connecting the variatmrints with its variants, the class
“Flight” is the corresponding class. Tracing therresponding variant tag x*-
VPO.v1.c8:x*, we find it matches to one alternatite ©1 VPO.vH2c846" in the
variant tag “cv: c1-VP0.v1/2.c8/10:0". Thereforbetclass “Plane” has an “assigned to”

association relationship with the class “Flight'imstance 2.

7.6.4 Reference Model Reuse Recommendations

The instance vector annotating the reference maldelents, while helping in tracing
the elements back to their original instances, samnve as an indicator for the
commonality of each element across the individustances generalized by the
reference. This commonality will guide the reudeowt the common analysis and design

practices in the domain.

7.7 Summary

In this chapter we presented a phased merging fwankeconsisting of two phases.
The focus of the first phase is to perform prelianin merging at the class level,
producing the reference model preliminary catatowhich all the common, variant, and
optional classes are identified across all theams#s. The focus of the second phase is to
perform merging at the finer level of granularitg. at the level of attributes, methods,
and relationships, producing the reference modal@g. Empirical investigation for the

merging algorithms is presented in Chapter 8.
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CHAPTER 8
EMPIRICAL ANALYSIS

8.1 Introduction

In this chapter we empirically validate the progbséaged consolidation framework.
The chapter is organized as follows. SecBdahintroduces the experimental objects used
in our empirical investigation along with our emeal investigation road map. In Section
8.3 we present the matching accuracy measures U$ed.proof of concept tool is
presented in Sectid®i4. The weight calibration experiments are disedss Sectior8.5.

In Section8.6, we compare the performance of the proposeddgré&SA matching
algorithm (GGAM) against the traditional GA. We idalte the comparison framework
along with the matching algorithms in Secti®/. Empirical investigation of the

reference model generalization is presented ini@e8t8.

8.2 Experimental Objects

The experimental objects for our empirical investiign need to be constrained to the
objective of our work,the generalization of a set of models, representifterent
instances within a domain or similar domains, iatgeference model that unifies their
overlaps and explicates their differencéberefore, the criterion of the instances suéabl
for our experiments is that models need to be séalenough to manifest the best
practices in both the industry and the academighabthe theoretical reuse potential can
be obtained and consequently the potential of ppraach will be realized. Finding large
mature data set available for research at the miedel is difficult. Finding multiple
mature model instances representing different mggiaf an application within a domain

is exceedingly difficult. Therefore, the potentdlour approach will be shown through a
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couple of experiments, each is targeting certagetfaThe following case studies are

going to be used as our experimental objects.

Case Study 0 (CSO)This case study represents different variationa gfimple flight
booking system adopted from [44]. The variationsenaspired from the different design
alternatives introduced by the author while expfegrthe UML practice in modeling the
structural view of the software system. It is uiaughout the thesis as a hypothetical
example to demonstrate interaction of the differenimponents of the solution

framework.

Case Study 1 (CS1)This case study represents within a domain aaggams reversed
engineered from an open source system, ezmaephsisting of 12 releases. To allow for
differences between the reversed engineered clageaths of the different releases, we

picked 5 non-consecutive releases (0.8, 0.9, 1004 1and 1.0.6) of this system.

Case Study 2 (CS2)This case study, borrowed from [144], repres@u®ss domain
class diagrams consisting of four class diagrantls similar structures (as they represent
the admission systems) but in different ontologi€®mputer Repair Shop, Hospital
registration, Student Admission, and Admission iGeneral Institution). The structural
similarity between the diagrams is very high, reprging the reuse potential that should

be reflected in the proposed reference model.

Case Study 3 (CS3)This case study consists of multiple instancesaimtiated by
introducing different types of perturbation to amgmal model. The original model is

borrowed from Case Study 1, consisting of 50 ckas$he perturbations by the instance
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generator are applied at different level of grantyaclasses, relationships, attributes,

methods, and data types). Tablestbws the different types of perturbations appted

the original model to generate the different instam

Table 15. Perturbation Performed by the Instance Geerator

Class level perturbation

pp

pc

renameClass

Changing class name by perturbing their names saithe
prefix or suffix added from a predefined set of mam

0.50

NA

removeClass

Removing a class from the original model.

0.80

NA

Attributes perturbation

pertAttributesList

Adding an attribute to a class from a predefingd sé
attributes along with their data type.

Changing the data type of the attribute

1.0

25%-30%

removeAttributes

Removing an attribute from a class

1.0

25%-30%

Operations list perturbation

pertOperationsList

Adding an operations to a class from a predefimts of
operations along with their returns types and patars.

Adding parameter to the operation

Changing the return type of the operation

1.0

25%-30%

removeOperation

Removing an operation from a class

1.0

25%-30%

Relationships perturbation

pertRelationship

Adding relationships between two classes.
Changing the relationship type between two classes.

Changing the relationship’s name between two ctasse

0.15

NA

removeRelation

Removing a relationship from the original model.

1.

NA

To allow for differences between the instancespiérturbation operations are applied

probabilistically. Tow parameters are used by theegator, perturbation probabilityp)

and percentage of changex’)( The pp parameter represents the probability by which

certain type of perturbation will be applied wherghe pc parameter represents the

magnitude of such perturbation. For example, fer tfype of changeemoveAttributes,

setting thepp parameter into 0.50 and thpe into 20% means that attributes will be
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removed from the class, by the instance generatitin, a probability of 0.50, and the
number of removed attributes is 20% of the numbbettoibutes of the class. It is worth
mentioning that when applying some perturbatiordesirable situations may happen.
For exampleremoveClaserturbation may result in splitting the classgdén into
fragments. Similar thing can happen when removioges relationships. For such
situations preventive actions are taken to notgoerfthat perturbations. In other words,
if removing the class and its relationships wikkult in splitting the class diagram into
two or more fragments, that class will not be reetbwigure 17 shows a trace matrix of
the classes’ distribution over the different instes generated. The first line shows the
class index in the original (source) model. Shau@cks represent the classes which exist
in the source model, but removed, lmoveClassperturbation operation, from the

corresponding instance.

Source 0 1 2 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 4B 43
Instance 0 | O 1 2 3 4i 5. B 7 8 9 10; 11 12 13 14! 15 16 17; 18! 19 20: 21 22, 23 24; 35 26
Instance 1| 0; 1 2 3 4 5. 6 7. 8 9i 10 11 1213 14 15161 17; 181 19; 20! 21; 22! 23 2435 26; 27! 28 29
Instance2 | 0 1 2 3 4 5 i 7. 8 9 10 11112 13 14,15 16 17 18, 19i 20: 21 221 23 241 25 26 27, 28
Instance3 | 0! 1 2 3 ai 5i 6 7 8 9 10i 11 12 13 14! 15! 16 17! 18 13 20i 21 22 23; 24 25 26! 27
Instanced | Di 1 2 3 4i 5 B 7 8 9 10; 11} 12 13 14} 15 16 17 18 19} 20; 21§ 22 23 24} 35! 26 27 28 29. 30! 31
Instance 5| 0; 1 20 3 4t 5 6: 7 8 910 11!12; 13! 14; 15! 16 17 18! 19 20; 211 22; 23 24 25 26; 27 28! 29; 30¢ 31; 32
Instance6 | 0 1i 2, 3 a; 5 6 7. 8 9 10 11112 13 141 15 16 17, 18! 19! 20 21 22, 23i 24 25 26, 27 28
Instance 7| 0! 1 2! 3 4 5 g 7 8 g 10i 11} 12 13! 14; 15' 16; 17} 18 18; 20! 21; 22 23 24 25
Instance 8 | 0: 1 2 3 a; B 6 7 B 9 10 11 12 13} 14 15! 16 17; 18! 19! 20 21; 22{ 253 24: 25 26i 27} 28: 29 30 31 32i 33
Instance®| 0; 1i 2. 3 4 50 6 7P 8 9110 11 12/ 13 14! 15 16 17;18{ 19 20; 21 22 23 24125 26{ 27! 28 29

Figure 17. Trace Matrix Showing Classes' Distributbn over Different Instances, Case Study 3.

Table 16. Basic Statistics about the Case Studies

Number of class Number of pairs  Number of classes Number of classes

diagrams the largest model  the smallest model
Case Study 0 4 6 8 6
Case Study 1 5 10 71 49
Case Study 2 4 6 10 10
Case Study 3 5 10 32 29
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Table 16 provides basic statistics about the f@asecstudies. Table 17 summarizes
our empirical investigation road map. It shows,dach experiment, the dataset used, and

the objective of the experiment.

Table 17. Empirical Investigation Roadmap

Experiment

Objective

Dataset used

Experiment 1

Setting the neighborhood weights within

across domains.

One pair (two models)selected fror
Case Study 2.

Experiment 2

Setting the name, internal, and neighbortf

weights for equations 12 through 15.

Showing the limitation of the single meas
through O weight assignment for the othe

measures.

One pair (two models) selected fr
Case Study 1.

One pair (two models) selected fr
Case Study 2.

One pair (two models) selected fr
Case Study 3.

Experiment 3

Evaluating the performance dhe traditionz
genetic algorithm versus the performance o

greedy genetic algorithm.

Synthetic data.

Case Study 1.

Experiment 4

the differn

similarity metrics against the three match

Evaluating the accuracy of

GGRM; GGAM; and GSAM.

algorithms presented in the first matching stage

€ase Study 1 (within domain).
Case Study 2 (across domain).

Case Study 3 (within domain).

Experiment 5

To show that the unrelated models will
filtered out and the reference will be built bg

on the majority of the instances .

Evaluating the merging algorithms.

Mixing 2 instances from Case Stud

with 4 instances from Case Study 2.

Case Study 2 (across domain).

Experiment 6

Evaluating the merging algorithms.

Evaluating the reference reuse.

Case Study 1 (within domain).

Case Study 3 (random instances).

Case Study 0 (Hypothetical Example).

y O
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8.3 Accuracy Measures

From the matching prospective, an accurate sirtyl@assessment should result in an
accurate matching, i.e., a matching with zero falssitive and zero false negative rates.
In other words, elements correctly matched by tla¢ching algorithm should have been
assigned high similarity scores by the similarityetric, so that they can pass
matched/unmatched threshold, to be counted as fnsi#tives. However, elements
incorrectly matched by the algorithm, due to injett (Definition 5.2), should have been
assigned low similarity scores by the similaritytriteso that they can be counted as true

negatives, because of their low similarity values.

The accuracy of the similarity metrics and the rigig algorithms are evaluated in
terms of the matchingrecision recall, and accuracy It is a general problem that
evaluating the accuracy of the matching dependsillgean the particular matching goal
[54, 145, 146]. Within the context of the goal listwork, we will consider all pairs more
similar than certain threshold to be matched, dhgdaars less similar to be not matched
[147]. Therefore we can define the three measwsdslpws. LetTP be the number of
true positives (i.e. number of pairs of classesremtly matched, with similarity score
above or equal to the matching threshold), be the number of true negatives (i.e. the
number of classes in each model that are corrantlyatched, or are matched, incorrectly,
due to injectivety, but with low similarity scord)P be the number of false positives (i.e.
number of pairs of classes incorrectly matched witthilarity score above or equal to the
matching threshold)FN be the number of false negative (i.e. the numidegpairs of

classes incorrectly unmatched, or matched corraatlylow similarity score), then:

TP

e _
Precision (%)= 100 x TP 1 FP (17)
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TP

0, = S
Recall (%)= 100 x TP+ EN (18)

TP+ 1IN

AT
Accuracy (%)= 100 x TP+ TN+ FP + FN (19)

8.4 Proof of Concept Tool

We developed a proof of concept java-based toolimiplement the different
algorithms presented in our framework and to shbev dpplicability of our proposed
solution and its potential. The tool receives gmitra set of class diagrams in XMI (XML

Metadata Interchange) format. The tool can thefopmrthe following tasks.

Parssing the XMl files as produced by two modetows: Altova and ArgoUML.

Computing different similarity metrics with conficable weight settings. Currently

the tool supports the metrics presented in Chapedtber new metrics can be
defined, coded, added, and called as seprate dmsctiThe input to the similarity

metric function is the information of a pair of cpared classes or models, i.e. two
versions are implemented for each similarity fumctiThe output is either a single
real value, represinting degree of similarity gbair of classes, or a matrix of real
values, represinting the pair-wise degree of shitylebetween the classes of the
compared pair of models. To interface with the \ietlddatabase we adopted, with

some modefication, an open source package, ws8].[14

Matching the elements of the input models in a-pgse manner. For element to
element matching, the tool provides an implememtafor five model matching
algorithms: Simple Greedy Matching algorithm (SGRIG&GJobl Greedy (GGRM)
Matching algorithm, traditional Genetic Matchingyatithm (GA), Greedy Genetic

Matching algorithm (GGAM), and Greedy Simulated Aaling Matching
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algorithm (GSAM). For the second and third stages tool implements the

algorithms described in Section 6.3 & 6.4.

Consolidating the models to build the reference ehodiltering is a preprocessing
step performed by the tool to filter out unrelateddels. The filtering is performed
by the tool as discribed in Section 4.4.5 and shewxperimintally in Section 8.8
(Experment 5). Then, the tool in the first phasenuérging produces the the
Reference Model Preliminary Catalog (RMPC), whidentifies the commonality
and variability across the merged models at thesdievel, as described in Section
7.4. Then it goes for the second phase of merdgieg,the merge of methods,

attributes, and relationships.

8.5 Empirical Weights Investigation

In this experiment, we investigate different weigbsignments for the constituents of
the different compound metrics used for assess$iagimilarity between the elements of
the compared models. We run different types of arpnts for setting the values of the
weight coefficients of the constituents of the cannpd metrics, Equations 11 through

15.

Experiment 1: Setting neighborhood similarity weighs

Objective To select the most appropriate weights for tHigedint constituents (metrics)
of the similarity metridNSim Equation (11), so that each class in a certaidehwill be

matched to the most similar class in the other mddesed on thBIHSsimilarity metric.

Methodology:The experiment was conducted according to the mseade in Figure 18.

A pair of models is randomly selected from Casal$t2 Certain matching threshold is
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defined. For each weight assignment, the similattyre for each pair of classes from the
two models is computed, and the injective matcmfeach class in the smaller model to
its most similar, unmatched, class in the other ehasl found. The resulting match is

evaluated in terms of the matching accuracy, Eqoafil9).

Pick a pair of models Mand M
for w,-0.0 to 1.0 step 0.05
for w,-0.0to1l.0- w,, step 0.05){
w,—-1.0-(  w,tw,);

find NHSbetween the classes of models Mand M based on
w,., W, w, weights and store the similarity scores in ES
matrix;

evaluate the matching accuracy between the classes of the
models M and M;

end for
end for

Figure 18. Pseudo Code of the Weight Calibration ahe Constituents ofNSim Metric, Equation (11).

Figure 19 shows the obtained matching accuracyditferent weight settings at
different matching thresholds (0.70, 0.75, 0.80)e Tifferent experiments of the weight
settings label thg-axiswhile y-axisvalues represent the values of the weight coefiisi
(Wnn, Wrn, W) along with the matching accuracy. We use therdacpoint style for the
accuracy, rather than percentage (%), to be irsdéin@e scale of the weights. We use the
Microsoft ExcelLine Chart type, which allows us to draw the trends of theuaacy
versus the weight values over the different expenits of weight settings. The data series
(weight coefficients & accuracy) in the diagrame aorted increasingly by the accuracy.
As we can see, the general trend in the threedggigure 19-(a) through Figure 19-(c),
is that high accuracy was obtained when the weigbsggned to both the neighbor name

(Wnn) and the relation namev,) are low as compared to higher weight values assligo
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the relation typew). The reverse is also true, as the low accuracsyoktained whemw

has low weights as compared to higher weights assgt towy,.

----------- Neighbor Name Weight (wnn) — Relation Name Weight (wrm) — Relation Type Weight (wrt) seeeseees ACCUTACY

ANYe L AT
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(d) Average of a,b, and c

Figure 19. Models’ Matching Accuracy at Different Weight Settings for the Neighborhoods Similarity Metic
NHS’ Constituents, Equation (11).

119



Table 18. The Accuracy Obtained at Some Special Gasof the Weight AssignmentNsim Metric, Equation (11)

Matching threshold

comments

Wan Wen Wht 0.70 0.75 0.80 .85

0 0 1 0.40 0.40 0.40 0.40 This reflects the importance of the ot
contributors, as using the relation t
alone achieves only 40% accuracy ¢
the different thresholds.

0 1 0 040 0.40 0.40 0.40 This reflects the importance of the ot
contributors, as using the relation ne
alone achieves only 40% accuracy ¢
the different thresholds.

1 0 0 0.20 0.20 0.10 0 Relying on the neighbor name alo
acrosontolgies, resulted in 100% loss
the accuracy at higher threshold.

0 0.50 0.5 0.80 0.80 0.60 0.60 The absence of the neighbor ne
caused a loss of 40% in the accurac'
higher threshold .

0.33 0.33 0.33 0.90 0.90 090 0.20 Evendistribution of the weights result
in a very poor accuracy at higl
threshold.

0.50 0 050 1 0.60 0.30 0.20 The absence of the relation name ca
a loss of 80% in the accuracy at hig
threshold.

0.50 0.50 0 0.80 0.40 0.20 0.10 Theabsence of the relation type causi
loss of 90% in the accuracy at hig
threshold

0 0.05-0.60 0.40-0.95 0.80 - - - Best accuracy obtained and
corresponding weight ranges when u

0 0.05-0.50 0.50-0.95 - 080 - . only relation name and relation typ&s

0 0.10-0.40 0.60-0.90 - - 080 - we can see here that as threshold goes up
(from 0.7 up to 0.85)the range c

0 0.05-0.25 0.75-0.95 - - - 080  weights which givesis high accuracy
getting smaller.

0.05-0.60 0 0.40-095 1 - - - Best accuracy obtained and
corresponding weight ranges when u:

0.05-0.50 0 0.50-095 - 1 . . only neighbor name and relation type.

0.05-0.30 0 0.70-095 - - 1 - The absence of the relation name ¢
not affect the accuracy.

0.05-0.25 0 0.75-0.95 - - - 1

0.05-0.50 0.50-0.95 0 080 - - - Best accuracy obtained and
corresponding weight ranges when u

0.05-0.40 0.60-0.95 0 - 080 - ) only neighbor name and relation name.

0.05-0.30 0.70-0.95 0 - - 0.80 -

0.05-0.25 0.75-0.95 0 - - - 0.80

0.05-0.50 0.05-0.55 0.40-0.90 1 - - - Best accuracy obtained and
corresponding weight ranges wheil

0.05-0.40 0.05-0.45 0.50-0.90 - 1 ) ) constituents have nonzero weights.

0.05-0.30 0.05-0.35 0.60-0.90 - - 1 -

0.05-0.25 0.05-0.25 0.70-0.90 - - - 1

Note:  All the weights assignment is subject to the dtmad that the summation of all the weights is 1.
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Figure 19 (d) shows the average accuracy over iffexeht matching thresholds for
the same point of weight settings. Table 18 shawsesweights’ values that reflect some
special cases, like even distribution of the wedglthe absence of one constituent; the
situation where only one constituent is used; d®ldituation where the best accuracy
was obtained. As it is clear from Figure 19, anthswarized by Table 18, that when the
three constituents of Equation (11) are assigned eights we got a high accuracy of
0.90 at 0.70, 0.75, and 0.80 matching threshold,when the matching threshold was
increased from 0.80 to 0.85 the accuracy was dedtidecreased into 0.2. This can be
attributed to the fact that across domains thecsimilarity between the names of the
matched classes is low, resulting in a similardyeér than the threshold (increasing the
number of false negative), which in turn resultsl@creasing the accuracy. At the case of
relying on a single component NfSim the best accuracy of 40% was obtained with the
relation type W:=1). This means that 60% of the accuracy was lesabse of the
absence of the other components£0, w,,=0). This is a clear evidence about the
importance of the other constituents M&im The situation is not that worst with the
absence of one component as the best accuracy0ét Was obtained with the absence
of the relation name. However, the absence of drtheoother two, i.ew,=0 orw;=0,

results in a loss of 20% in the accuracy.

When all the three constituents are present (i.ease nonzero values for the weight
coefficients), an accuracy of 100% can be obtaatednges of weights shown at the end
of Table 18. It is clear from Figure 19 and the fasvs in Table 18 that we can still get a
100% accuracy at higher matching thresholds. Howetlee range of the weight

assignments for the three constituents is gettingller as the matching threshold is
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getting higher. Bearing in mind the expected varet among the similar elements, the
very high threshold may be so restrictive, resgliim an increase in the false negatives.
In other words, having a high matching threshold cause some similar classes, with
some variation, to be identified as dissimilar, d&aese the small variation between them
render their similarity value to not pass the vargh threshold. On the other hand,
having a low matching threshold can result in Hegke positives. That is to say, having a
low threshold can cause some dissimilar classet) low similarity values, to be
identified as similar. Therefore, we opt to adoptasonable threshold of 0.80 for our
further experiments. For this threshold, the rargfaéte weights which result in a 100%
accuracy are:w,, 1 {0.05, 0.10, .., 0.30};wql {0.05, 0.10, ..., 0.35};wy 1
{0.65,0.70,...,0.90}. Taking the median within eaolt fconditioning thatwn,+ W+

wit=1) we can suggest the following weight settingg= 0.15;w;,= 0.15;w;=0.70.

Experiment 2: Setting class similarity weights

Objective To select the most appropriate weights for tHéeint constituents of the
similarity metricsNIS,NNHS, INHS, NINHEquation 12 through 15, so that each class

in a certain model will be matched to the most kintlass in the other model.

Experimental ObjectsFor this experiment we use Case studies 1, 23amd see how

the weights will be calibrated over the differeatakets.

122



----------- Name weight (wn) Internal weight (wi) ««+------ Neighborhood weight (wnh) Accuracy
5
2
=3
5
E
(& 70% matching threshold
----------- Name weight (wn) Internal weight (wi) ««+------ Neighborhood weight (wnh) Accuracy
5
2
=3
5
E
(b) 75% matching threshold
G Name weight (wn) Internal weight (wi) e Neighborhood weight (wnh) Accuracy
!
<
2
5
E
Weight settings
(c) 80% matching threshold
Name weight (wn) Internal weight (wi)
5
g
H
<
]
%
E
Weight settings

(d) Average of a,b, and ¢

Figure 20. Models’ Matching Accuracy at Different Weight Settings for theNINHS Similarity Metric
Constituents, Equation 12 through 15, Case Study 1

Methodology: The experiment was conducted as follows. For easle study, a pair of

two models was randomly selected. For each thrdshbe weights were assigned
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according to the pseudo code in Figure 21. For eamight assignment, the similarity
score for each pair of classes from the two modet®mputed, and the injective match
from each class in the smaller model to its masiilar, unmatched, class in the other
model is found. The resulting match is evaluatedeirms of the matching accuracy,
Equation (19). It is easily to notice that Equasio (12) through (14) are special cases
from an Equation (15), where the weight coeffititar the missed constituent is zero.
Therefore, the weight calibration experiments & tetricNINHS (Equation (15)) cover

the weight settings for the four compound metidti§ NNHS INHS, andNINHS

Pick a pair of models Mand M
for w—-0.0 to 1.0 step 0.05
for w-0.0t01.0- w, step 0.05){
W= 1.0-( wtw);
find  NINHS between the classes of models Mand M basedon w,w,w,
weights and store the similarity scores in ES matrix;
evaluate the matching accuracy between the classes of the m odels M
and M;
end for
end for

Figure 21. Pseudo Code of the Weight Calibration ahe Constituents ofNINHS Metric, Equation (15)

Figure 20 shows the obtained matching accuracyffareht weight settings for the
NINHS constituents for Case Study 1 (within domain cldegrams). The different
experiments of the weight settings label thaxis while y-axis values represent the
values of the weight coefficienta/{, wi, w,,) along with the matching accuracy. The data
series (y-axis variables) in the charts are sdriethe values of the neighborhood weight
coefficient,wy, increasingly. The reason for doing so is solaBt it gives a clear view
about the trend of the accuracy against each weigéfficient, as compared to sorting

them by the accuracy, which is the case in Fig@eAs it is clear from the four figures
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(Figure 20-(a) through Figure 20-(d)) that the draop the accuracy happen when the
weight assigned to the class name is 0, (i.e. whef). Since we opt to set the matching
threshold to 0.80 in our further experiments of chatg, and since the trend is the same
at the different matching thresholds, Figure 20t{@pugh Figure 20-(d), and for the sake
of conciseness, our discussion will focus in Fig@ée(c) which is not far from other

figures (i.e. Figure 20-(b) through Figure 20-(d)).

It is clear from Figure 20-(c) that whew, is assigned any weight value,(a 0.05,
such thawn. W + wyr=1) we usually get high matching accuracy betwéenctasses of
the matched class diagrams. The highest matchiogracy of 100% was obtained at
different weight values, e.g.w{= 0.10; wi= 0.50; w,=0.40}, {w,= 0.75; wi= 0.15;
Wnh=0.10} or {wy= 0.55;w;= 0.15;w,,=0.30}. The worst accuracy of 39.4% was obtained
at the weight settings,= 0.0;wi= 0.0;w,=1.0. Table 19 summarizes some special cases

of the weight assignment for the coefficients oti&pns (12) through (15).

Figure 22 depicts the weights calibration and tberasponding accuracy across
domains (Case Study 2) for equations (12) thro@@h). Special cases of these weight
assignments are summarized in Table 20. As iteardrom the four figures (Figure 22
(a) through Figure 22 (d)) the drops in the acoutzappen when the weight assigned to
the class name is high (04, 1.0, such thaiv,+ W + Wh=1). Whenw, is assigned low
weight values (Ow, 0.25), we usually get high matching accuracy betwbe classes
of the matched class diagrams. The highest matagogracy of 100% was obtained at
the weight valuesw,= {0.0, 0.05, 0.1, 0.15}wi {0.0,0.05, ..., 0.65}; andv., T {0.55,
0.60,.. ,1.0}; such thatv,+ w + w,,=1 . The worst matching accuracy of 10% was

obtained at the weight settingg= 0.50;w;= 0.0;w,=0.50.
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Table 19. The Accuracy Obtained at Some Special Gasof the Weight Assignment for the MetricNIS, NNHS,
INHS, NINHS, Equation (12) through (15), Case Study 1

comments

This reflects the importance of the ot
contributors, as using the neighborhoos
information alone NJHS metric) achieves onl
39.4% accuracy over the different thresholds.

Relying on the internal information alonéS(
metric) achieves only 65 accuracy over tt
different thresholds.

Relying on the class name alonHS( metric)
within domain, resulted in 97% accurachhis
can be understood as the lexical naming simil
between classes of multiple releases is expec
be high.

The absence of the clamame caused a loss
28% in the accuracy.

The absence of the internal informaticaused
loss of 3% in the accuracy.

The absence of theeighborhood informatic
with even weight assignment of the other we
coefficients caused just a loss of6lin the
accuracy.

Even distribution of the weighfsr all the weigh
coefficients resulted in an accuracy of 98%.

Best accuracy obtained and the correspor
weight ranges whelVn= 0. The absence of t
class name caused a loss of 24.2n the
accuracy.This situation represent the best we
settings foiINHS metric, Equation (14).

Best accuracy obtained and tlwerrespondin
weights wherWi= 0. The absence of the inter
information caused unnoticeable loss in
accuracy.This situation represent the best we
settings foNNHSmetric, Equation (13).

Best accuracy obtained and tlwerrespondin
weight ranges wheWwnh= 0. The absence of t
neighborhood information caused unnotice
loss in the accuracylhis situation represent t
best weight settings foNIS metric, Equatior
(12).

Accuracy
Wh Wi Whh
0 0 1 39.4%
0 1 0 65%
1 0 0 97%
0 0.50 0.50 2%

0.50 0 0.50 97%

0.50 0.50 0 99%

0.33 0.33 0.33 98%

0 0.15 0.85 72.8%
{0.1, 0.25, 0 {0.1, 0.25, 99%
0.4, 0.6 0.4, 0.6
0.75} 0.75}

0.10 0.90 0 99%
{0.10, 0.20, {0.15, 0.25, {0.05, 0.10, 100%
0.25, 0.55, 0.30,50} 0.15, 030,

0.75} 040, 045}

Best accuracy obtained and the correspor
weights when all constituents have nonz
weights.This situation represents the best we
settings foNINHSmetric, Equation (15).
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Figure 22. Models’ Matching Accuracy at Different Weight Settings for theNINHS Similarity Metric
Constituents, Equation 12 through 15, Case Study 2
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Table 20. The Accuracy Obtained at Some Special Gasof the Weight Assignment for the MetricNIS, NNHS,
INHS, NINHS, Equation (12) through (15), Case Study 2

Accuracy comments

Wh Wi Whh

0 0 1 100% This reflects the importance of timeighborhoo:
information across domainsas using th
neighborhood information aloneNKHS metric)
achieves 100% accuracy.

0 1 0 50%  Relying on the internal information alonéS(
metric) achieves only 50% accuracy.

1 0 0 25% Relying on the class name alonHS( metric)
across domains, reported an accuracy of 25%.

0 0.50 0.50 100% The absence of the class nam®rmation with
even weight assignment of the other we
coefficients does not cause any loss the
accuracy.

0.50 0 0.50 10%  The absence of the internal informatieith ever

weight assignment of the other wei
coefficients caused a loss of 90% in the accuracy.
0.50 0.50 0 20%  The absence of the neighborhood informa
with even weight assignment of the other we
coefficients caused a loss of 80% in the accuracy.

0.33 0.33 0.33 40%  Even distribution of the weights for all the wei
coefficients caused a loss of 80% in the accuracy.
0 0.05-0.65 0.35-0.95 100% Best accuracy obtained and the correspor

weight ranges whelivn= 0. The absence of t
class name result in no accuracy lo3sis
situation representthe best weight settings 1
INHS metric, Equation (14).

0.05 0 0.95 100% Best accuracy obtained and the correspor
weights wherWi = 0. The absence of the inter
information caused no accuracy los3his
situation represent the best weight settings for
NNHSmetric, Equation (13).

0.05-0.30 0.70-0.95 0 100% Best accuracy obtained and the correspor
weight ranges wheWnh= 0. The absence of t
neighborhood information caused unnotice
loss in the accuracy. This situation represen
best weight settings for Equation (14).

{0.05, 0.10, 0.05-0.55 0.40-0.90 100% Best accuracy obtained and the correspor
0.15} weights when all constituents have non:
weights.

Figure 23 depicts the weights calibration and tbeesponding accuracy based on
Case Study 3, for equations (12) through (15)ectp cases of these weight

assignments are summarized in Table 21.
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Figure 23. Models’ Matching Accuracy at Different Weight Settings for theNINHS Similarity Metric

Constituents, Equation 12 through 15, Case Study 3
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Table 21. The Accuracy Obtained at Some Special Gasof the Weight Assignment for the MetricNIS, NNHS,
INHS, NINHS, Equation (12) through (15), Case Study 3.

Accuracy comments
Wh Wi Whh

0 0 1 32.2% This reflects the importance of the ot
contributors, as using the neighborh
information alone (metricNHS achieves onl
32.2% accuracy over the different thresholds.

0 1 0 42.4% Relying on the internal information alorfmetric
IS) achieves only 42.4% accuracy over
different thresholds.

1 0 0 86.4% Relying on the class name alone (metNElS),
within domain, resulted in 86.4% accuracy.
0 0.50 0.50 30.5 The absence of the class namé&rmation with

even weight assignment of the other we
coefficients caused a loss of 69.5% in the accuracy

0.50 0 0.50 52.5% The absence of the internal informatiaith ever
weight assignment of the other weight coefficit
caused a loss of 47.5% in the accuracy.

0.50 0.50 0 76.3% The absence of the neighborhood information
even weight assignment of the other we
coefficients caused just a loss of 23.7% in

accuracy.

0.33 0.33 0.33 55% Even distribution of the weights for all the wei
coefficients resulted in an accuracy of 55%.

0 0.80-0.95 0.05-0.20 40.7% Best accuracy obtained and the correspor

weight ranges whelvn = 0. The absence of t
class name caused a loss of 27% in the acct
This situation represent the best weight settiogs f
INHS metric, Equation (14).

0.95 0 0.05 84.7% Best accuracy obtained and the correspor
weights whenwi = 0. The absence of the inter
information caused unnoticeable loss in
accuracy. This situation represent the best wi
settings forNNHSmetric, Equation (13).

0.85 0.15 0 86.4% Best accuracy obtained and the correspor
weight ranges whekVnh= 0. The absence of t
neighborhood information caused unnotice.
loss in the accuracy. This situation represen
best weight settings foMlS metric, Equation (12).

0.75-0.90 0.05-0.20 0.05 86.4% Best accuracy obtained and ttcorrespondin
weights when all constituents have non:
weights. This situation represent the best we
settings foNINHS metric, Equation (15).

As it is clear from the four figures (Figure 23-thjough Figure 23-(d)), the trend is
generally similar to the situation with Case Stddyigure 20. High accuracy is achieved

whenw, is assigned high values, against low values asdigmw,,. On the other, When
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W, is assigned low values we get low accuracy. T@dlgorovides concise comments
about different weight assignments. As we can séd, Case study 3, and under the
perturbation settings in Table 15, we did not ab&il00% accuracy. The reason can be
explained as follows. Assume a cl@ss modelM, was identical to a clagsin the other
modelMy (i.e. A and B are generated from the same clasioriginal model ). Assume
the perturbation has been applied to the two ctagseording to perturbation settings in
Table 15. Assume a third cla€sin M; generated from a different class in the original
model. It is possible that, due to the high petidn, the clas& becomes more similar
to C than it is toB, after perturbation. This will result in a miss, @sr measure for
reporting the accuracy is based on tracing the meatclasses back to their original class

to report weather the match is correct or not.

We modified the perturbation as shown in Table #&n, we rerun the experiment
and the results at 0.80 threshold is shown in laogva in Figure 24. The best accuracy of
100% is achieved at the weight valueg= {0.65, 0.70,..., 0.90}wi {0.10,0.15, ...,

0.25}; andw,, I {0.0, 0.05,.. ,0.15}; such that,. W + wnr=1.

Table 22. Low perturbation, Case Study 3

Perturbation type pp pc
renameClass 0.20 NA
removeClass 0.80 NA
pertAttributesList 0.50 20%-25%
removeAttributes 0.50 20%-25%
pertOperationsList 0.50 20%-25%
removeQOperation 0.50 20%-25%
pertRelationship 0.10 NA
removeRelation 0.10 NA
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Figure 24. Models’ Matching Accuracy at Different Weight Settings for theNINHS Similarity Metric
Constituents, Equation 15, Case Study 3 (Low Pertbation)

To sum up, we can say that within a domain lexicébrmation has more and
recognized importance than the structural one. Weweacross domains structural
information are more effective. The following sectiwill validate our outcomes of

experiment 1 and 2.

8.6 Empirical Investigation of Traditional Genetic versus Greedy Genetic

To compare the implementations of the traditioreiegic (GA) and the hybridized

greedy genetic algorithm (GGAM), we ran a couplexgeriments as follows.

Experiment 3: Evaluating the performance of the tralitional versus the greedy-

genetic algorithms.

Experimental objective To show the effect of the hybridization on the caithm

convergence.

Experimental objectsDue to the common problem of real data scarehd since we

want to investigate the two algorithms under déferproblem sizes, the two algorithms
are first investigated using synthetic data. Theytare investigated using Case Study 1.
The synthetic data generator has been designedimasway that it adheres to the theory

of the problem domain [149] as well as our intuit@bout the problem. In other words,
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in software engineering literature, the theoretrealse potential within a domain can be
up to 85% (65% as domain specific and 20% as domdependent) [34]. Accordingly,
we devised an algorithm to generate data wheresithelated similarity is within the
theoretical potential. In other words, the genergenerates a two dimensional matrix,
which simulates the similarity scores between tlments of a pair of two models,
where the randomly generated scores reflect thetiatan element of a certain model is
dissimilar (has low similarity score) to all elenieim the other model except one or two
elements at most (high similarity score). Java cfmlethe synthetic data generator is
shown in Figure 25, and an example of the generagdx, which simulate the element

similarity matrixES,is depicted in Figure 25, with problem sizl0.

Methodology the experiments were run over different probleresia = 10, 20, 30, 40,
50, and 100). The accuracy of the two algorithmseported in term of the value of the
fitness function and its closeness to the theakti@lue. The fithess function is
computed as the summation of the scores of the etbplements, i.e”,x, 1$ x p Where

i represents the index of the row elemgngpresents the index of the column element
mapped ta; ES; is the simulated similarity score betweeandj, andn simulates the
number of classes in the two mapped models. Werafsarted the run time of the two
algorithms at different problem sizes. The two alpons ran under settings mentioned in
Table 12, except the number of iterations which seeé here, for the purpose of this

experiments, to be 20,000 iterations, and fortedlgroblem sizes.

Results and analysisFigure 27 shows the convergence of the fitnesstion, to the
theoretical value, for both the traditional genétight side of the figure) and the greedy
genetic (left side of the figure) over differenbpltem sizes. The theoretical value is the
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sum of highest values in each row of the simul&&dnatrix. In all the figures (Figure
27-(a) through Figure 27-(1)) the x-axis represetits different generations of the

solution while y-axis represents the values offitmess function.

1. static void generateRandSimMat (double a[][], int row, int col)

2. |

3 int randSim;

4. double rand;

5. for (int i=0;i<a.length;i++){

6 /I select random column element

7 randSim=(int)(Math.random()*col);

8

9 for (int j=0;j<a[0].length;j++){

10. /I generate a random number to simulate the similarity score
11. // between element i and element j

12. afi][j]=Math.random();

13. /I simulate dissimilarity by making the score smaller

14. afij[]=afi{il*afigl;

15.

16. // simulate high similarity by imposing high score for 75% of
17. /I row elements each with randomly selec ted column element
18. if (j==randSim && a[i][j]<0.9 && Math.r andom()<=0.75){
19. while((rand=Math.random())<0.9);

20. a[i][j]=rand;

21. }

22. }

23. }

24. '}

25.

Figure 25. Synthetic Data Generator for ES Matrix

The following can be noticed from Figure 27-(a)otngh Figure 27-(1).

1- At low problem size f=10), the two algorithms show almost equivalent
convergence, yet, GGAM converges faster (in eaitenations) than does the
traditional GA, and with slightly higher value ftiwe fithess function. However,
none of the two algorithms reaches the theoretighle. The reason could be due

to maintaining the injectivity. For example, refag to the simulate&Smatrix in
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Figure 26, the best solution is shown as boldedbaus) where the row elements
are mapped to the corresponding column elements kst fithess value of
(0.952 + 0.974 + 0.911 + 0.900 + 0.920 + 0.982253+ 0.214+ 0.984 + 0.852
= 7.92). The value 0.253, which simulates the siritif between the "7 row
element i=6) and the § column elementj€4), is not the highest in its
corresponding row, as the highest value is 0.7dBthe algorithm enforcedly (to
maintain injectivity) maps the™7row element with the '3 column element in
favor of maximizing the overall fitness value. Semithing can be said about the
value 0.214. This difference between the highektegaand the best option to go
with by the algorithm can be the main cause for getting to the theoretical
fitness value. Other possible reason could beabethat the algorithm could not
converge to the optimal solution.

2- As the problem size is getting larger, the diffe®m the convergence between the
two algorithms becomes clear, where GGAM converigeser (i.e., in earlier
iterations) to the theoretical value while the ifiadal GA still needs more
iterations to converge to the same value obtaiyeGGAM.

3- Time wise,
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4- Table 23 shows the best values achieved by the traditi@al up to 20000
iteration. The table also shows the correspondimg to achieve these values as
taken by the two algorithms. It could be bettemteasure the time taken by the
two algorithms to the best value achieved by eitfighe two algorithms, which is
usually achieved by the GGAM across the differerdbfem sizes. However,
looking at Figure 25, we can see that the convexgen the traditional GA to the
best values achieved by the GGAM cannot be figungd In other words, we do
not know how many iterations, beyond 20000 iterstjothe traditional GA
requires to converge to the best values achievatddb®GAM. As per the penalty
that might be encountered due to the hybridizationhe case the algorithms will
converge over the same numbers of iterations, T2délshows the time taken by
the two algorithms over 20000 iterations, and atbe different problem sizes.

5- The fluctuation in the range of the current solutimbtained by the two
algorithms, over the different generations, ated#ht problem sizes, shows the
contribution of the greedy idea to limit the randwss involved in the traditional
GA. Figure 28 shows the convergence behavior oftleealgorithms over the first

200 iterations at a problem size of 50.

j elements
0 1 2 3 4 5 6 7 8 9

0.222 0.241 0.130 0.097 0.121 0.211 0.671 0.26/952 0.759
0.313 0.373 0.656 0.170 0.0020.974 0.726 0.327 0.127 0.70
0.626 0.570 0.650 0.375 0.801 0.344 0.204.911 0.741 0.720
0.741 0.185 0.459 0.0480.900 0.002 0.002 0.114 0.162 0.829
0.302 0.920 0.000 0.303 0.334 0.001 0.000 0.039 0.782 0.p81
0.204 0.395 0.622 0.982 0.601 0.125 0.656 0.795 0.503 0.684

0.778 0.608 0.253 0.026 0.442 0.393 0.081 0.140 0.081 0.000
0.162 0.071 0.025 0.134 0.392 0.07®.214 0.012 0.036 0.33§
0.606 0.435 0.593 0.064 0.673 0.032 0.527 0.8057470 0.984

OT

i elements
0o N o o WDN RO
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| 9 0852 0032 0107 0565 0553 0316 0.001 0530 0.291 180]6

Figure 26. Example of the Simulated ES Matrix Geneated by the Synthetic Data Generator

Figure 29 compares the performance of the traditigenetic against the greedy
genetic in terms of the matching accuracy using data, Case Study 1. The figure
shows the results of two implementations of thediti@nal genetic. The first
implementation shows the matching accuracy of thevihen the algorithm use only
Roulette Wheel (RW) as a selection method. Thersksbows the matching accuracy of
the GA when the algorithm maintain best 50% indrail$ to the next generation while
selecting the other 50% using Roulette Wheel. Thestyperformance among the three
algorithms was obtained when the Roulette Wheehatealone was used as a selection
method. Maintaining the top 50% of the solutionslevkelecting the other 50% using the
RW method improved the accuracy significantly. Agas it is the case in Figure 27 the

GGAM is the superior among the three algorithms.

(a) Performance of GGAM, n=10 (b) Performance of traditional GA, n=10
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(c) Performance of GGAM, n=20 (d) Performance aflitional GA, n=20

(e) Performance of GGAM, n=30 (f) Performance of traditional GA, n=30
(9) Performance of GGAM, n=40 (h) Performance of traditional GA, n=40
(i) Performance of GGAM, n=50 () Performance of traditional GA, n=50
(k) Performance of GGAM, n=100 () Performance of traditional GA, n=100

Figure 27. Traditional GA versus GGAM, the Convergeace of the Fitness Function to the Optimal Value.
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Table 23. Best Value Achieved by Traditional GA aDifferent Problem Sizes

Problem Size
10 20 30 40 50 100

Best value achieved by the traditional GA. 8.96 026. 23.23 31.04 38.65 73.84

By traditional GA 5572 8706 14835 18261 10008 16678
Time in milli-second

By GGAM 10 1 1 2 4 20

Table 24. Time Taken by Traditional GA and GGAM ove 20000 Iterations at Different Problem Sizes

Problem Size
10 20 30 40 50 100
By traditional GA 13 16.2 16.8 18.7 18.8 27.0
Time in seconds
By GGAM 20 27.0 46.1 76.7 118 477.5

(a) Convergence of GGAM in the first 200 iterations (b) Convergence of traditional GAn the first 20(
iterations.

Figure 28. The Convergence of Hybridized GA versugraditional GA in the First 200 Iterations, n=50

Figure 30 shows the convergence behavior of theethigorithms over the first 200
iterations. It also confirms the results obtainedrigure 28, where GGAM converges to
the optimal solution after around 70 iterations,levtthe two traditional GA algorithms

are still far behind.
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Figure 29. GA versus GGAM Algorithm, Matching Accuracy, Precision and Recall, Case Study 1
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Figure 30. Convergence Behavior of Traditional GA ersus GGAM over the First 200 Iterations

8.7 Empirical Validation of the Matching

In this section we investigate the performancehoée different algorithms, GGRM,
GGAM, and GSAM, respectively presented in Secti@.1, 6.2.2, and 6.2.3, for
matching UML class diagrams based on their lexicagrnal, neighborhood similarity,
and a combination of them. The performance of tietrios has been investigated and
compared over 7 class level similarity metrics3(&nd 5.4) and under both equal and

calibrated weight settings for the compound metrics

Experiment 4: Evaluating the matching algorithms aginst the similarity metrics.

Experimental objectives Our validation of the matching algorithms has ik

objectives. First, it validates the findings of #ageriments conducted in the comparison
phase regarding weight calibration of the compouoretrics. Second, it compares the
performance of the different matching algorithmetoas the different metrics, under

equal and calibrated weight settings, and usingiwiand across domains experimental
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objects. Third, it provides an insights for thetlfigr activities in our consolidation

framework.

Methodology For each pair of models in each case study, anddoln similarity metric,

the three matching algorithms were run under ef@wn) and calibrated weight settings.
The matching threshold were set into 0.80. Forctidibrated weight settings, the weights
for the compound metrics were set as shown in Tablevhere the calibrated weights
are set to the weights that give the best accuaacyuggested by the weight calibration
experiments. The matching accuracy and time arertegh and compared for the three

algorithms.

Experimental objectsCase study 1, 2.

Results and analysis:

Figure 31 and Figure 32 show the matching accuascgneasured by the thee different
accuracy measures, accuracy (at the top of theefsyuprecision (the second row in the
figures), and recall (at the bottom of the figureB)e figures also show the matching
accuracy under both Equal weight assignment (id& of the figures) versus Calibrated
weight assignment (right side of the figures) & dompound metrics. From these figures

we can notice the following.
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(a) Equal weight (b) calibrated weights

(c) Equal weight (d) calibrated weights

(e) Equal weight (f) calibrated weights

Figure 31. Matching Accuracy, Precision and Recablf GGRM, GGAM, and GSAM, Case Study 1
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(a) Equal weight (b) Calibrated weights

(c) Equal weights (d) calibrated weights

(e) Equal weights (f) calibrated weights

Figure 32. Matching Accuracy, Precision and Recabtf GGRM, GGAM, and GSAM, Case Study 2

1. Metrics performancélexical versus structural)as it is clear from Figure 31, in
Case Study 1, and under both even and calibratéghtvassignments, the high
precision, recall, and accuracy are achieved wheN& metric is present, either
as a single metric or as part of a combination wither metrics. This is not

surprising, for the matched models are within thens domain where the high
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lexical naming similarity is expected. The worst@aacy is obtained with the
structural based metric, i.8lHS metric. This poor performance dfHS can be
explained as follows. Looking at the correspondinegcision results, Figure 31-
(c), we can see th&tHS shows relatively low precession, which indicatdsgh
false positive rate (see Equation (17)), which,tunn, indicates that some
dissimilar classes may have similar neighborhootisis similarity in the
neighborhood may result in identical similarity was for dissimilar classes,
which represents a confusion for the matching @lgor, which ultimately results

in a poor accuracy.

The situation is different with Case Study 2 (Feg82), where the structural-
based metricNHS is the superior. This is due to the fact that el®dicross
different domains (which is the case in Case Stidiave different ontologies,
and thus relying on the lexical based metric (N&.or IS) only may not capture

their real similarity, even if they are structuyasimilar.

Also, under the even weight assignment, it is cle@n the two figures that while
the NS metric is dominating the compound metritH§ NNHS andNINHS in
Case study 1 toward increasing the true positiieade increasing the values of
the three accuracy measures), its domination ire Gagly 2 is toward increasing
the false negatives (hence decreasing the recdllaaouracy). This is why the
superiority ofNHS in Case Study 2 is not reflected that much indbmpound
metricsNNHS and NINHS under the even weight assignment, but it is btear

reflected under the calibrated weight assignmenthe four metrics where the
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NHS metric is present either as a single metric opas$ of a combination with

other metrics.

. Metrics performance(single versus combined informationthe inconsistent
performance of the two metriddSandNHS across the two case studies, showed
the limitations and the short insight of those mstrThe metrics are based on
limited source of information, as the former meigconly based on the lexical
naming information while the later is based on tleghborhood information
alone. ThelS metric, which is based on the internal informatiminthe class,
shows almost consistent performance across theése studies and under both
even and calibrated weight assignment. Howeves fierformance is limited in

terms of the accuracy.

As per the four metricsNIS, NNHS, INHS, NINHSwhich are based on more
than one type of similarity information, the resuthow that across the two case
studies, the two compound metriéddNHS and NINHS reported high and
consistent accuracy under the calibrated weighigasgent. However, the
performance of the two metriddlS and INHS is not consistent across the two
case studies. In Case Study 1 tNeS metric showed an accuracy of around
75%, under the calibrated weight assignment focatsstituents (see Figure 31-
(b)). This is relatively low accuracy as comparedts$ reported accuracy in Case
Study 2 (100%), see Figure 32-(b). The reasonHerlow accuracy reported in
Case Study 1 can be attributed to the fact thatcthrdounding effect of the
generic methods or attributes, or of the empty odgthlist or attributes’ list, if

comes together with the similarity of the neightwarti for some classes, can lead
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to increasing the false positives (hence decreatsiagorecision and accuracy).
This reason can be witnessed by the correspondiegision result which

indicates relatively high false positives.

As perNIS the metric is based on two lexical metribkS and IS. The lexical
similarity across domains (which is the situationdase Study 2) is expected to
be low, leading to a decrease in the accuracy. Meweunder the calibrated
weight assignment, both metridd|S and INHS, are performing better than their
constituents, across the two case studies. Thisvshine importance of

considering different aspects of similarity infortoa.

. Weight Calibration of the compound metricd&hen comparing the matching
accuracy under equal versus calibrated weight assgts of the constituents of
the compound metrics, the results do report an orgment in the matching
accuracy. However, as shown in the two figures, ithprovement may vary from
a metric to another, and from a case study to @&nothis clear from Figure 32
that, under the equal weight assignment, the losuracy was obtained with the
compound metricaNIS NNHS and NINHS The NS metric is one of the
constituents in each of these metrics. Thus, utigeequal weight assignment the
NS metric dominates the three compound metrics towacdeasing the false
negative. This last claim can be observed if wé labthe result of the accuracy
measure (Figure 32-(a)) in the light of the botéa ginecision (Figure 32-(c)) and
recall (Figure 32-(e)). Since the recall for théseee metrics is low, under the
even weight assignment, it means that the falseativeg reported by these
metrics is high, see Equation (18). The high falegative rate, companied with
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low false positives, is an indication that higheraf the matched classes could not
pass the matching threshold, which can happen ateetlow similarity scores.
Under the calibrated weight assignments of the tdoesits of the compound
metrics, the undesirable domination of t#®8is controlled and each constituent is
assigned a weight that makes its contribution b@strds decreasing the false
negatives and false positives, and hence incre@seaision, recall, and accuracy.
This is clearly depicted in the matching accuraegult reported under the
calibrated weight assignment, the right hand sifleFigure 32, where the
matching precision and accuracy show high improvemaver the results
obtained under the equal weight assignment fotltte®® compound metrics. This
improvement resulted in an accuracy of 100% for h&ompound metrics
(NNHS INHS andNINHS. However, the max accuracy we obtain for MI&
metric was around 81%. This emphasizes the impostahstructural information
for similarity assessment across domains, as wairaa only limited accuracy
even under the calibrated weights.

This is similar to what happens withNlHS metric in Case Study 1, as the best
accuracy obtained when not including the class naiméarity is around 75%,
which emphasizes the importance of the class nafoemation for the similarity
assessment within the domain

In Case Study 1, the improvement in the matchirgui@cy achieved under the
calibrated weights of the constituents of the conmagbmetrics was not that much
over the accuracy reported under the equal weigisigament. Under the

calibrated weight, the compound metN&éISreported an accuracy of 10% higher
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than its reported accuracy under the equal weigkigament for its constituents.
However, even with this improvement, its performaie still limited within the
domain, as explained earlier. For the methid§ NNHS andNINHS only little
improvement is achieved and this can be explaisddlbws. Referring to Figure
20-(c), we can see that when thg (the weight coefficient oNS metric) is
assigned any non-zero weight, we usually get hagluracy with slight difference
from a non-zero assignment to another. This istdude domination of th&lS
metric under any non-zero weight for its weightftioent, as explained earlier.
Additionally, the performance dfS and INHS shows improvement under the
calibrated weight as compared to their performamuger the equal weights for
their constituents. However, these two metrics rarssing the lexical naming
similarity of the class which is important soufesimilarity information within
the domain. This is why their accuracy is still iiead even under equal weight
assignment.

. Performance of the matching algorithntke performance of the three algorithms
(GGRM, GGAM, and GSAM) was evaluated over the ddfeé metrics and
across the two case studies in terms of both thehimg accuracy and time. As
shown in Figure 31 and Figure 32, the three algord reported competitive
performance against each other in terms of pregigiecall and accuracy. We
cannot claim absolute winner, but if we count thenber of times where each
algorithm is performing better than the others,cae say that in Case Study 1
GGAM is performing slightly better than both GGRMdaGSAM. However, the

difference in the accuracy between the differegpathms is within 1% to 3%.
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It is worth recalling here that the matching problbas two facets, the accuracy
of the similarity assessment and the complexity thmetching algorithm. For
example, theNSmetric in Figure 32-(a) reported a low accuracyfund 15%.
In the light of the recall (Figure 32-(e)) and tpeinciples of the GGRM
algorithm, it is clear that the problem of this low accurasycoming from the
metric facet of the problem, which reported low itanity values (not able to pass
the threshold). On the other hand, the problem ¥g8timetric is different. It is
coming from both metric facet and algorithm facBte metric problem can be
inferred from the precision results which indicatelatively low precision, which
in turn indicates relatively high false positivdhe high false positives means
that high similarity values were assigned for diskir classes making the wrong
match able to pass the threshold. This misleadimgasity values can be due to
confounding effect of generic attributes and meshodhere the similarity
assessment of two different, but internally ideadticlasses in a model against
other classes in the other model can lead to ic&nsimilarity values for théS
metric. If these identical values are encounterethb matching algorithms as the
highest values, the algorithm will do matching wiltie first value it encounters,
and the first to be encounter may differ from agoathm to other algorithm. This
may result in a performance difference among tlierént algorithms. This is

again emphasizing the importance of an accuratgaesity assessment.

Time wise, Table 25 shows the average run time) Wié standard deviation, of

the three algorithms against different size of B&matrix. It is clear from the

" Greedy approach usually struggles for high values
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table that the algorithms do report great diffeemna their running time. The

GGRM algorithm is deterministic, simple, straigmtfard, and the final solution

is produced in a single cycle. Solutions of GSAMI &8GAM go over different

optimization cycles (generations), making the ragntime proportional to the

number of generations. Additionally, GGAM is a ptgtion based algorithm,

which means that in each generation it works widmynsolutions at the same

time. This is expected to increase the iteratiam time in proportion with the

population size. This is why the highest run timesweported by the GGAM and

the lowest run time was reported by the GGRM.

Figure 33 also compares the matching accuracy efthinee different algorithms,

across the different similarity metrics, using thetificial (generated) data, with

perturbation settings as indicated in Table 22. Tésults confirms to the above

discussion.

Table 25. Matching Time Taken by GGRM, GGAM, and GRM Algorithms for Each Pair of Models

MoM;  MoMz  MgMs MMy MMy MiMs MaMy MoMs MM, MMy
Time, in Second:Avg.  0.001 0.002 0.002 0.001 0.003 0.002 0.002 0.003 0.003 0.003
taken by GGRM Std. 0.001 0.002 0.002 0.002 0.006 0.002 0.002 0.003 0.003 0.001
Time, in Second:Avg. 0949 0972 0977 1133 1239 1176 1.187 2314 2193 2229
taken by GGAM Std. 1.061 1117 1112 1271 1352 1347 1.298 2558 2.446 2.581
Time, in Second:Avg. 34521 34.310 34.303 38.346 42.565 41.031 40.871 75.765 76.354 76.935
taken by GSAM Std.  36.754 38.653 38.574 43.487 46.606 44.478 44.668 83.105 84.994 85.62
Size ofESmatrix 49 x53 49x71 49x71 49x67 53x71 53x71 53x67 71x71 71x67 71X67

To sum up, the evidences reported from our diffeeperiments

element matching suggest the following findings:

for element to

(a) Relying on a single metric may not usually léa@n accurate match between

the elements of two models.
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(a) Equal weight (b) Calibrated weights

(c) Equal weights (d) calibrated weights

(e) Equal weights (f) calibrated weights

Figure 33. Matching Accuracy of GGRM, GGAM, and GSAM, Case Study 3

(b) The weights assigned to the individual metricsnstituting a compound

metric, is crucial in calibrating the actual cobtrion of each constituent.

(c) Metrics based on multiple source of informatishowed better overall

accuracy than do those with single source of in&drom, under the
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appropriate weight assignment which makes the itoriton of each source of

information more convenient based on the context@fsurement.

(d) The competitive performance of the three matghalgorithms over the
different metrics, in terms of the accuracy, carcbesidered as group voting
about the soundness or the limitation of the m&tperformance; and it can
also be considered as validation mechanism fontaihing performance of
the algorithms themselves; additionally, it makes $election of one over the

other as context based choice.

8.8 Empirical Investigation of the Consolidation and the Ruse of the
Reference Model

This investigation has a twofold objective. Firsfprovides a proof of concept for the
proposed staged merging algorithms. Second, wesiigade the overhead and the reuse
potential provided by the reference model overedéht points of time. The investigation

was conducted as follows.

Experiment 5: Building the reference model

Experimental objectives This experiment has twofold objective: 1) to vatel the

merging algorithms for building the reference modglen the pair-wise matching
similarity matricesMSMs, 2) to show that the unrelated models will beefdd out and

the reference will be built based on the majorityhe instances.

Experimental objectsCase Study 0, and Case Study 2.

Methodology Six input instances are given as input models. Bbdhese instances are

coming from Case Study 0, and two instances arangpfnom case study 2. The pair-
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wise similarity between the elements of each pamodels was evaluated. Weights are
set guided by the findings of Experiments 2 andS8cfion8.5). The matching was
performed to produce thHdSM matrix for each pair of input models. Using thaigrity
information in theMSM matrices, unrelated models are filtered first a&planed in
Section4.4.5. Then the remaining models are generalizedeacribed in Sectiorns4 &

7.5, to build the reference model.

Table 26, shows the pair-wise models’ similaritys shown in the table, the low
similarity values in the last two columns indicdtee dissimilarity between the two
modelsM, and Ms with each of the other modeld), throughMs. To filter out the
unrelated models, the tool computes the averagaasity of each model to the others
(see Table 27), and the model with the lowest @esimilarity under a threshold of
70% will be filtered out. Despite the high simitgribetweenM, and Ms, the average
similarity of each one of them with the other madisl lower than the average similarity
of any one of the other models. Sirfdghas the lowest average similarity with the other
models, it is filtered out, and the average sintaof each model with the others is
recomputed for the remaining models, withbt Table 28, shows the average similarity
of each model with the other models, after filtgroutM,. As we can see, in this table,
the average similarity of each of the mod®s through M3 to the others increased,
signifying that the models become more cohesiver aémovingM,. On the other hand,
the average similarity d¥ls (the most similar one tdl,) with the other models decreased
after filtering outM,, signifying its heterogeneity to the other modelghe set, and its

homogeneity with the already filtered model (My).
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Table 26. Pair-wise Models’ Similarity between 6 Iput Models

1 0.85 0.76 0.9 0.22 0.28
1 0.84 0.83 0.15 0.14
1 0.77 0.1z 0.1z
1 0.1f 0.14
1 0.87
1

Table 27. The Average Similarity of Each Model tolie Other Models

Model

Avg. Similarity to
other models

Table 28. Pair-wise Models’ Similarity After Removing My

Model

Avg. Similarity to
other models

Table 29. Pair-wise Models’ Similarity After Removing Myand Ms

Model

Avg. Similarity to 0.84 0.84 0.79 0.83
other models

Table 29 shows the average similarity of each efniodelsMy throughM3; to the
others after filtering ouM, andMs. Again, as shown in the table, removing molligl
from the set makes the remaining models more cobesid the average similarity of
each one of them to the others increased. AlsoaWleeage similarity of each model to
the others becomes more than the filtering threshehich means no more filtering, and

the algorithm will go ahead to generalize all tloeirf remaining models to build the

reference.
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Snapshots of the reference model catalog for moafefSase Study 0 is shown in
Figure 34. As demonstrated in the catalog, classesaare kept as aliases, for the sake of
instantiation, and the name for the reference dagsbe chosen in different ways. It can
be the most frequent name among instance claggelgast common concepts, or simply
any of the names appearing in one of the genedaliances. We opted to go with the
last option. The figure also shows that, attribuEso methods) that appears in some
instances but not in the others are tagged witlctanvindicating in which instance(s) this
attribute shows up (marked with 1) and in whictides not (marked with 0). We call this
victor an instance tag. The length of the instatmg depends on the number of
generalized instances, which may make it too lériga number of instances is large in
the reference. However, the algorithm can be candd in such a way that if the number
of instances reach a certain number, a percenthgleeoattribute frequency over the
different instances will be shown instead. Attrdmi(also methods) that are not tagged
with the instance tag means that they are commamngrall the instances represented by
that class. Relationships are also tagged by danos tag indicating the occurrence of
the relationship at the different instances germmydl by the reference model.
Relationships with variation points are indicatadhe relation instance tag by the letter
“v” while the letter “c” indicates that the relatiship is between two common classes.
The letter “0” in the instance tag indicates threg telationship is with an optional class.
Snapshots of the reference model catalog for madeBase Study 2 is shown in Figure

35.
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Figure 34. Snapshots from the Reference Model Catad, Case Study 0.
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Figure 35. Snapshots from the Reference Model Catal, Case Study 2
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Experiment 6: Reference reuse.
Experimental objective This experiment has twofold objective. First, ibyides more

validation for the merging algorithms for buildinige reference model, given the pair-
wise matching similarity matricddSMs. Second, it shows the evolution of the reference

model along with its reuse potential.

Experimental objects:Case Study 1, which consists of 5 models, and Gasdy 3,
which consists of 10 input models generated byrib@nce generator as described in 8.2,

with perturbation parameters as depicted in TaBle 2

Methodology The generalization is performed as described ineErpent 5. Because of
the randomness involved in both the instances génarand the selection process when
generalizing the models, the experiment resultsepeated over five runs.

Results and analysis
Results show that Case Study 1 and Case Studyr@ sinailar patterns. To make the

analysis smooth and concise, our discussion willm@enly focusing on the results
reported based on Case Study 3. Should there betlsiomgp special about Case Study 1,
we will mention it explicitly. Otherwise, the cosggonding figures and tables of the
results reported based on Case Study 1 should ffieiesut to show the trends with

regard to Case Study 1 in the light of the disarssibout Case study 3.

Figure 17 shows the trace matrix of class distidrubver the different 10 generated
instances, numbered from O to 9, for one run, dé@ive runs, representing Case Study 3.
As we can see in this figure, some classes arempras all the instances, some exist in

some instances but not in the others, while otleesses show up only in one instance.
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Figure 36 shows the number of reference commorsetam the reference model as
new instances are added to the reference. As wesamim this figure, as new instances
are added to the reference, the number of comnmassets decreases. This is expected,
because the common class (according to Definitié) must represent all the instances
consolidated in the reference so far. If a commlasscin the reference model does not
have a commonality with a class in the new instaheesimilarity level of the common
class is changed by the merging algorithm from comnmto optional. Hence, the
number of common classes in the reference modebi®tonically a decreasing function
of the number of instances added to the refereragemFigure 37 shows the same trend

with regard to Case Study 1.

Figure 36. Reference Common Classes Evolution as Molnstances Are Added to the Reference, Case StuBy
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Figure 37. Reference Common Classes Evolution as kolnstances Added to the Reference, Case Study 1

Figure 38 shows optional points creation, evolytiand reuse as input models are
generalized to the reference model. The figure shawsnapshot (colored in different
grayscales for demonstration purpose) of the raéerenodel optional points after 10
instances have been generalized. A trace for tlns showed that the models were
generalized in the order df; andMs first, thenM,, Mo, M1, Mg, Mg, M3, Ms, My, in order,
one at a time. Optional points shadedderk gray (e.g. OPQ) are created due to the
appearance of classes, in a new generalized irstdrat have no commonality with any
optional class in the reference. These classeslsweshaded in the figure in dark gray, to
demonstrate that the corresponding optional poanés created due to these optional
classes. Optional points created due to the sirtyilevel conversion (e.g. from common
to optional) are shaded igray, e.g. OP14. The optional class in the new instance
generalized under an existing optional point isdgldainlight gray, e.g. optional class
01-7 in the column M Following this tracing guide, we can see thatopional points
were created when generalizing the first pair, Me.andMsg. The reason is thail; and
Mg are the first pair, randomly picked by the aldurit to be generalized. Any optional

class in one of them means that it does not axigta other, otherwise it would not be an
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optional. Therefore, an optional point is created €ach optional class. Since the
algorithm found that 6 classes existvMia but not inMg, and 8 classes exist Mg but not

in My, the algorithm created 14 optional points, onedach optional class. Figure 39
shows a prior version of the optional points in tieéerence model, when only two

instancesNl; andMg) are in the reference.

When generalizing modé\l,, the algorithm found that 5 classes of mokliglhave
commonality with five optional classes in the refaze. Hence each class of the five
classes is generalized under the correspondingragitipoint, shaded in the figure as
light-gray. The algorithm also found that four dletcommon classes in the reference
does not exist iM,, which entailed changing their similarity levetanoptional. This is
why the algorithm created the optional poir@, through OP;7;, shaded in gray.
Additionally, 4 classes oM, have no commonality with any class in the refeegnc
resulting in a creation of 4 more optional poin®P(s throughOP;; ). Thus, the total
number of optional points created due to the géizaten of M, is 8. Hence, the Total
number of optional points in the reference aftenegelizing M, becomes 14+8=22

optional points.
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Figure 38. Optional Points Creation and Reuse Durig Generalization, Case Study 3

Optional points creation rate

Figure 40shows the number of optional points in the refeeentodel against the
number of instances in the reference (i.e. agdhmstreference size). As shown in the
figure, the number of optional points in the refer® model is monotonically increasing
function of the number of instances added to tifiereace model. This is due to the fact
that the new instance is likely to have some ckagath no similarity to any class in the
reference model, especially when the referencédsasnumber of instances. However, as
it is clear from the figure that as the referenas more instances, the number of optional
points in the reference become almost stable amdntdrease in this number, if any, is

slow. The reason is that as the number of instantdhe reference model becomes
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larger, most (if not all) of the classes of the neeneralized model will have

commonality with either a common or an optionakslan the reference model.

Figure 39. Optional Points Creation During Generalzation, First Pair, Case Study 3

Figure 40. Optional Points versus Number of Instanes in the Reference Model, Case Study 3

Figure 41. Optional Points versus Number of Instanes in the Reference Model, Case Study 1
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The results in Figure 40 is confirmed by the resudt Figure 42, which show the
number of optional points added due to the germatatin of a new instances versus the
size of the reference model. As it is clear in filgare, when there is no or few instances

in the reference model the creation rate of theopt points is high.

Figure 42. Number of Optional Points Added Due totie Generalization of a New Instance versus the Sipéthe
Reference Model, Case Study 3

Figure 43. Number of Optional Points added Due tohie Generalization of a New Instance versus the Sinéthe
Reference Model, Case Study 1

Figure 44 also shows that when the reference mioaelless number of instances,
high percentage of the optional points represenlg @ single instance. However, as the
reference gets more instances, this percentageeas®s into a low value.
Simultaneously, the percentage of optional poirgsegalizing more than one instance

goes in the other direction of the scale, see Eidifx. This is again due to the fact that
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when the reference model has less number of ins¢athe new instance is likely to have
some classes with no similarity to any class in réerence model, which results in
creating new optional points, which in turn resulisincreasing the percentage of the
single instance optional points. However, whenrthimber of instances in the reference
model becomes larger, most of the classes of the generalized model will have

commonality with either a common or an optionaksla the reference model. The latter

case results in increasing the percentage of agtipoints generalizing more than one

instance.

Figure 44. Percentage of Single Instance Optionabkhts against the Number of Instances in the Refenee
Model, Case Study 3

Figure 45. Percentage of Single Instance Optionabihts against the Number of Instances in the Refenee
Model, Case Study 1
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Figure 46. Percentage of Multiple Instances OptiorldPoints against the Number of Instances in the Refence
Model, Case Study 3

Figure 47. Percentage of Multiple Instances OptiorldPoints against the Number of Instances in the Refence
Model, Case Study 1

Reference model commonality and reuse

In the context of the software product line, comaliy is a key metric that indicates
reuse payoff of a feature across the SPL [150].0Ading to the Software Engineering

Institute [151], the commonalit@r of a featurd- is computed as follows.

Where}q } is the number of products within the SPL that teefeature, and is the

total number of products in the SPL. The metriciealare between 0 and 1.
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We adopted and redefined this metric to measuredhse potential of the classes

within the reference model as follows.

The commonalityCc of a common class is defined as:

the commonalityCypof a variation point is defined as:

.}
vAL’_1

and the commonalit€opof an optional point is defined as:

L Ny 3

where},.}, is the number of instances sharing the commosscla,s} is the

number of instances sharing the variation pdinj, } is the number of instances sharing

the optional point, and is the total number of instances in the referanodel.

Table 30. Optional Point Commonality, Case Study 3

RunO Runl Run2 Run3 Run4 Avg.
Avg. 0.42 0.41 0.43 0.45 0.39 0.42
Max 0.90 0.70 0.80 0.90 0.80 0.82
Min 0.10 0.10 0.10 0.10 0.10 0.10
Std. 0.20 0.17 0.19 0.19 0.18 0.19

Table 31. Reference Model Commonality, Case Study 3

RunO Runl Run2 Run3 Run4 Avg.
Avg. 0.71 0.70 0.72 0.72 0.70 0.71

According to Definitions 7.6 and 7.7 in Chapteibdth the common classes and the

variation points are shared by all the instancestha reference, making their
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commonality ratios. and ., usually 1. The situation is not the same withap&onal
points. Thus, Table 30 shows the average, the maxinthe minimum, and the standard
deviation of the ., for the optional points in the reference modelhwiD generalized
instances. An average of 0.42 means that, in ageragoptional point in the reference

model is shared by 4 to 5 instances

Table 32. Optional Point Commonality, Case Study 1

RunO Runl Run2 Run3 Run4 Avg.
Avg. 0.57 0.57 0.57 0.57 0.57 0.57
Max 0.80 0.80 0.80 0.80 0.80 0.80
Min 0.40 0.40 0.40 0.40 0.40 0.40
Std. 0.13 0.13 0.13 0.13 0.13 0.13

Table 33. Reference Model Commonality, Case Study 1

RunO Runl Run2 Run3 Run4 Avg.
Avg. 0.79 0.79 0.79 0.79 0.79 0.79

The commonality of the reference, shown in

Tabless, is computed as the average of ,, and .4 .

Figure 48. Percentage of Optional Points at Differ® Commonality Values, CS3
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Figure 49. Percentage of Optional Points at Diffemr# Commonality Values, Case Study 1

Although Table 30 can tell us the basic statistaisout the optional points
commonality, it does not tell us for example whathe percentage of optional points
having the average, the maximum, and the minimumneonality values, of the overall
optional points. Further insight to this is given Figure 48 (also Figure 49 for Case
Study 1), which shows the percentage of optionaitpat different commonality values.
As we can see in the Pie chart, around 41% of gt®mal points have thelCop value
around the average commonality value (i.e. shayedither 4 instances or 5 instances),
around 6% of the optional points have th@#r value around the minimum commonality
value (i.e. generalize only one instance), andraddi®o of the optional points have their
Cop value around the maximum commonality value (ib@red by either 8 instances or 9
instances). This is an indicator of the reuse apdty in the reference model, for around
94% of the optional points are shared by more tham instance. Higher commonality

ratio was obtained for Case Study 1 see Figurdatavith Table 32 and

Tabless.

Figure 50 shows the average reuse ratio achiewed the reference model, with

regard to the new generalized instance, as compheedeuse ratio achieved from the
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best single instance or achieved commonly fronthallgeneralized instances, at different
sizes of the reference model. The figure showsetlbtgves representing the reuse ratio
achieved from the whole reference model (indicatedhe figure as “Multiple”), the
reuse ratio achieved from the common part of tliereace (indicated in the figure as
“All”), and the best reuse ratio achieved from agé instance (indicated in the figure as
“Single”). As it is clear from the figure that theuse ratio offered by the reference model
is higher than the best reuse ratio offered frosingle instance alone, at different size of
the reference model. Additionally, as more instarae generalized to the reference, the
reuse ratio offered by the reference increasesrevitegoes from 80%, when the
reference has just two instances, until it read@®3¥o, when the number of instances in
the reference reaches 8 instances. However, thedese ratio achieved from a single
instance is between 72% (when the reference hasirtstances) and 82% (when the
reference has 9 instances). The increase in tlse ratio versus the size of the reference
model reflects the motivation and the rationale iti@hthe consolidation process.
Moreover, the big difference between the reuse i@thieve by the reference as a whole
and the reuse ratio achieved from the common pathe reference shows clearly the
reuse potential involved in the variable part & teference model. This also justifies the
overhead encountered due to managing the variabilithe reference and it signifies its

importance.

The results in Figure 51 show a situation when @inthe models generalized in the
reference is a superset of the others, which ic#ise of the models in Case Study 1. In
this case the reuse potential offered by the rateres equivalent to that offered by the

superset instance. However, the figure also vaglawvo things. First, it provides a
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validation for our merging algorithms. Second,nphasizes the reuse potential offered
by modeling the variability in the reference, asnpared to generalizing what is only
common. Moreover, though building a reference faidtiple releases is beneficial for

versioning management, we do not target reuse talteri the reference model to be

achieved from generalizing multiple releases.

Figure 50. Average Reuse Ratio in a New Instancerges the Size of the Reference Model, Case Study 3.

Figure 51. Average Reuse Ratio in a New Instancerges the Size of the Reference Model, Case Study 1.

Table 34. The Standard Deviation of the Reuse Ratiover the Different Runs

n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9
Multiple 0.033 0.031 0.036 0.030 0.027 0.032 0.012 0.000
Single 0.037 0.045 0.035 0.010 0.029 0.042 0.027 0.020

Common 0.050 0.022 0.029 0.012 0.049 0.040 0.034 0.053
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Table 34 shows the corresponding standard devitiofive runs averaged in Figure
50. The low standard deviation values indicates tti@ behavior in the five runs is very

close to its average.

Attributes and methods reuse
The improvement in the attributes or methods’ reassthe reference model gets more

instances can be measured in terms of the averagber of attributes or methods added
per class when a new instance is generalized. &ig2irand Figure 53 respectively show
the average number of attributes and methods atidéae reference class, due to the
generalization of a class of a new instance, agdessize of the reference model. As
indicated in the figure, this number is decreasasgthe reference gets more instances.
This indicates the improvement in the reuse offdogdthe reference at the level of

attributes and methods.

Figure 52. Attributes Added to the Reference ClasBer New Instance, CS3.
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Figure 53. Methods Added to the Reference Class PHiew Instance, Case Study 3

Variability overhead

Both variation points and optional points are meanmodel the variability among
the different models generalized by the referenoeleh They are additional elements
that were not exist in the input models. This metiad one can look at them as an
overhead. However, this overhead can be justifib@rwthese elements represent an
abstraction of many instances. For example, incdme of optional point, an optional
point can represent a single instance or it camesgmtn-1 instances, whera is the
number of instances generalized by the referenicesd are two extremes. In the former
case the overhead ratio is 1 (i.e. 100%) whildnenlater case it is 1{1). We can define

the overhead rati®Hop of an optional poinOP as follows:

where,.» is the number of instances generalized#y

Similarly we can define the overhead rafiblp of a variation poinVP as:
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.va L T
where,,» is the number of instances generalized/By

The value of,,4 is usuallyn for all the variation points, whereas the value, Qf
varies from an optional point to another optionainp. Therefore, the overhead ratio of

any variation point is B/ while the overhead ratio of an optional point garbetween 1

and 1/(n-1).
Table 35 and

Table 36 show the average overhead ratio of optional poattgifferent size for

multiple runs, for both Case Study 3 and Case Sfydgspectively. It is clear from the

two tables that as increase the ratio overhead decrease.

Table 35. Optional Points Ratio Overhead at Differat Size of the Reference Model, Case Study 3

Run0 Runl Run2 Run3 Run4 Avg.
n=2 1.00 1.00 1.00 1.00 1.00 1.00
n=5 0.64 0.55 0.57 0.55 0.59 0.58
n=10 0.31 0.33 0.31 0.29 0.33 0.31

Table 36. Optional Points Ratio Overhead at Differet Size of the Reference Model, Case Study 1.

RunO Runl Run2 Run3 Run4 Avg.
n=2 1.00 1.00 1.00 1.00 1.00 1.00
n=4 0.48 0.58 0.41 0.58 0.48 0.50
n=5 0.37 0.37 0.37 0.37 0.37 0.37

Figure 54 shows the number of optional points per instanceegdized in the
reference so far. If we consider the optional e an overhead or a cost encountered

for modeling the variability in the reference, thgure shows that this overhead is
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decreasing as more instances are added to theme&erAs shown in the figure, at the
beginning, when the reference has few number ¢dmees the number of optional points
can go higher as new instances are generalizedheordference. However, as the
reference gets more instances this number stags ttown. The former situation can be
attributed to two reasons. First, when the refezemas few instances, the generalization
of an additional instance may results in convertimg similarity level of some common

classes into optional ones, resulting in an ineeasthe number of optional points.

Second, when the reference has few instancesjueesitly among the different instances
has not been adequately captured by the referemdars resulting in a creation of

additional optional points to handle the new opionlasses introduced by the new

instance.

Figure 54. Number of Optional Points Per Instance ersus Reference Size, Case Study 3
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Figure 55. Number of Optional Points Per Instance @rsus Reference Size, Case Study 1

Figure 56. The Ratio of Optional Points to the Optinal Classes versus the Reference Model Size, C&sady 3

Figure 57. The Ratio of Optional Points to the Optinal Classes versus the Reference Model Size, C&sedy 1
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Figure 58. The Ratio of Optional Points to the AllClasses versus the Reference Model Size, Case St@dy

Figure 56 and Figure 58 respectively show the ratithe total number of optional
points to the total number of optional classes, amdhe total number of all classes
generalized to the reference versus the numberstdnces in the reference. Both figures
confirm that as the reference gets more instarieesyerhead ratio of the optional points

gets smaller and smaller.

Figure 59. The Ratio of Optional Points to the AllClasses versus the Reference Model Size, Case Stady

To sum up, the results showed that the referenadehdoes offer better reuse ratio
than does the best single instance. Modeling viditialn the reference, while improving

the reuse ratio significantly, has some incurreérbgad. However, this overhead is
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reasonably acceptable and it gets lower and lowena@re instances are generalized into

the reference model.
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8.9 Threats to Validity

In this section we point out the threats to cortsfrinternal, external, and conclusion

validity of our study.

Construct Validity Threatsthese types of threats are related to the relstips
between theory and the observed findings. In otwds, these types of threats can be
present when the treatment does not reflect thetagst of the cause, or that the outcome
does not reflect the construct of the effect [132]this regard we can point out a threat
related to the similarity metrics used for evalngtihe similarity between the elements of
the input models. Although the similarity was edéd based on three different types of
similarity information (lexical naming, operationsignature, attributes with their data
types, neighborhood information), cooperatively sugang different similarity aspects,
and despite the fact that the weights for the dbfie constituents were assigned
experimentally, and adding to this the fact thaissldiagram is considered as the most
important artifact in software project developmengt still think that other similarity
information, such as information from other viewegds to be considered in our future

agenda.

Internal Validity Threatsthese threats are related to the causal relétiprizetween
treatment and outcome [152]. In this regard wemaint out two threats. The first threat
is concerning the metrics used to evaluate thdagiityi between the elements of the input
models. We do realize that under the confoundirfgcts resulting from the generic
attributes or operations, the similarity assessnmeetrics may not capture the actual
similarity between the elements of the matched risoded hence may result in a wrong

match, which in turn, lead to a wrong consolidatiblonetheless, the high value of the
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similarity threshold as well as the use of combisedilarity measures along with the
weight calibration procedure is almost obviatingstlthreat. The second threat is
concerning the lack of real data. While we usedractired, carefully designed, and
clearly described random instances’ generator gbatrates different instances from a
real world source, the generated instances may paokerties found in real-world

instances.

External Validity Threatsthese threats are related to the generalizatioth®
observed findings [152]. In this regard two threeds be pointed out. The first threat is
concerning the size of our experimental objectsh&lgh the models we used are of
reasonable sizes, we do realize that future inyatstig of our approach with data of
larger sizes is required to confirm its general@atind draw stronger conclusions. The
second threat is concerning the generalization hef Wweight settings experiments’
findings. Although we did weight calibration usidgferent case studies, we still think
that further validations with different systems aseded to confirm the generalization of

our findings and draw stronger conclusions.

Conclusion validity threatsthese threats are related to the general rekdtipn
between treatment and outcome [152]. In this regaradan point out a threat concerning
the scalability of the third stage of the matchindpwever, dealing with models
representing instances within the same domain jea®rd to have high commonality,
and thus the matching of the majority of the eletmenill be done within the first
matching stage in polynomial time, which is alstiolwed by another polynomial time

matching stage. Therefore, only few residuals bellinvestigated in the third stage. This
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is actually the gain of the staged matching albariti.e. reducing the time complexity

through stage matching.
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CHAPTER 9
CONCLUSION AND FUTURE WORK

In this work we proposed a solution framework f@ngralizing a set of models,
representing different applications within a domarnsimilar domains, into a reference
model with the purpose of improving the reuse aflyeatage artifacts. The rational
underlying our work is that the reuse potentiahufltiple models can be offered under
the complexity of a single model, i.e. the refeeentwdel, which unifies the commonality
and explicates the variability of the different retlit generalizes. The reference model
while offering the ruse potential of multiple moslelt reduces the complexity of the

multiple models into the level of the complexityasingle model.

The proposed solution involves three main actigjtienodel comparison, model
matching, and model merging. To tackle the compjeaf the problem, we proposed

staged matching and merging algorithms.
Our main findings can be summarized as follows.

Model comparison and similarity.

o The proposed compound similarity metric for quasmiy the degree of
similarity between the elements of the input mode|sorted high accuracy
under the appropriate weight assignment.

Matching algorithms.

o The proposed matching algorithms reported high hiagcaccuracy over the

different experimental objects, given accurate lsirnty values.
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Reference model generalization and reuse.

o The proposed generalization algorithms capture thenmonality and
variability at different level of granularity.

o Reuse can be significantly improved through theeresice model as
compared to the reuse from a single instance.

o While maintaining the variability among the diffatenput instances in the
reference model involves some overhead, it sigamifily improves the overall
reuse of the reference model, as compared to theereffered by the
common part of the reference. Additionally this unmed overhead gets

minimized as more instances are consolidated h#adference.

9.1 Future work

Directions for future work related to the contriiout of this thesis can be outlined in

the following.

Reporting the efficiency and the effectivenesshef proposed approach based on
industrial data sets, when available.
In this work the focus was on a structural vieviledf software system. Two future
directions can be identified here:

1. The adoption of the proposed framework for the oth@ws.

2. Improving the proposed framework to consider thdtimmews.
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