

iii

�
� �

iv

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� Mojeeb Al-Rhman Ahmed Saleh Al-Khiaty

2015

v

DEDICATION

To the secret of my happiness and success,

my beloved family.

vi

ACKNOWLEDGMENTS

First, and foremost, all praise and thanks are due to Almighty Allah (SWT) for giving me

the health and patience to carry out this research.

I genuinely and deeply acknowledge with unlimited appreciation my thesis advisor Dr.

Moataz Ahmed for guiding me along the journey of this work. Without his guidance,

encouragement, support, assistance, and giant feedback, this work would not have been

real. I really cannot thank him enough.

Great thanks are also due to my thesis committee members Dr. Radwan Abdel-Aal, Dr.

Mohammad Alshayeb, Dr. Mahmoud Elish, and Dr. Farag Azzedin for their cooperation,

giant comments, and constructive criticism.

I owe a debt of gratitude to my dear parents, the gift of Allah to me. Their constant

support have made me into a better person. Words fall short in expressing my gratitude

towards them. A prayer is the simplest means I can repay them - May Allah (SWT) give

them good health and give me ample opportunity to be of service to them throughout my

life.

I am also greatly indebted to my beloved wife and kids for their support, patience, and for

bearing all the difficult times I have been facing along the course of this work.

I would also like to thank all my colleagues who supported me in many ways and who

have been like a second family to me here in KFUPM.

I acknowledge the support given by Hajjah University and by King Fahd University of

Petroleum and Minerals during the study of my PhD.

vii

TABLE OF CONTENTS

��������	
�� ��� �

�� ��� �

��� �� �

���������
��������������������������������������� ��� �

��� ��� �

�� �� �

������� ��	
 ��� �

���������������	����������������������������������� ��

��� � ������	
��� ��� ��������������������������������������� �

�� � ��
���
�����
����	��������������������������������� ��� ������������������������ �

��� � ����������
�� ��� �������������������������������� �

��� � ������
��
�!�������������������������������������� ��� �����������������������������������" �

��# � ������
��$������	���������������������������������� ��� ��������������������������������" �

��� � �������%�����&������������������������������������� ��� ���������������������������������' �

�� �� �

�� � ������	
��� ��� �������������������������������������� �

� � ������$��!��� ��� �������������������������������� �

�� � ���������
��� ��� ��������������������������������� �

�� � ��� ��� ����������������������������������� �

�# � ����(��)�������������*���	����+(�*,���������������� ��� ���������������������� �

viii

�� � -�� ��� �� �

�. � ��)����
��� ��� ��������������������������������� �

�" � /�����
�0���������+/0,����������������������������� ��� �������������������������������# �

�1 � ��	������0���������0���������+ 0,����������������� ��� ������������������������. �

��� �� �

��� � ������	
��� ��� �������������������������������������" �

�� � ������$������������2�%!!���	�����������$����������� ��� ���������������1 �

��� � ������$���������������
���3	����������������������� ��� ������������������������ �

����� � 4���
�����%�����!��+$������������,�����4�))����
��� +5���������,��������������������������������������� ����# �

���� � ���������5��� ��� ����������������������������� �

����� � ��������0!!���
��������0��������������������������� ��� ����������������. �

����� � ������0��	�!��������������������������������������� ��� �������������������������1 �

����# � 0���)�
����������������*���	����$������������������ ��� �������������1 �

��� � ���
����2���
���
���0�!�
�������������������������� ��� ����������������������������' �

����� � /���	�����6��)����
�������������������������������� ��� ��������������������������' �

���� � ������)�
�������)� �������������������������������� ��� ����������������������������' �

����� � 7��������$��)��
����������������������������������� ��� ������������������������������ �

��# � ��������2���
���
���0�!�
�������������������������� ��� ������������������������������ �

��� � 	����6�� ��� ������������������������������������" �

����������������	��������������������������������� �� �

��� � ������	
��� ��� �������������������������������������' �

�� � ������
��8	������������%�9�
����������������������� ��� ������������������������' �

��� � ���	���������:;��!���4��
��!����������������������� ��� ����������������������������� �

��� � ��	�����<����=������������������������������������ ��� �������������������������������# �

ix

����� � ��������������!	����������������������������������� ��� ��������������������������# �

���� � ��������6�0���������2�������$��!������������������ ��� ���������������� �

����� � ���������������
���������������������������������� ��� ������������������������. �

����� � � �������;��� ��� �����������������������������#� �

����# � <����������	��(������������������������������������ ��� ����������������������## �

����� � ������>�� ��� ����������������������������#� �

��# � 	����6�� ��� �����������������������������������#. �

������������������ ��������������������������� �� �

#�� � ������	
��� ��� ������������������������������������#" �

#� � ��������6�0�!�
����������������������������������� ��� ����������������������������������#1 �

#�� � ��������6������
���������������������������������� ��� �����������������������������������' �

#���� � *�;�
���?���� ��������6������
�+ �� ,�� ��������������������������������������� �

#��� � 0�����	���>� ��������6������
�+ ���� ,�� ��������������������������������������� �

#���� � %!��������>� ��������6������
�+ ���� ,�� �������������������������������������# �

#���� � ��������� ��������6������
�+ �� ,�� ��� �

#���# � ?������������ ��������6������
�+ ��� ,�� ����������������������������������� �

#�� � $����@��@$����� ��������6�������������������������� ��� ���������������������������������" �

#�#� ����� 	!!����)��������
��$����
�������������������� ��� ��������������������������1 �

#�� � 	����6�� ��� ������������������������������������1 �

��������!���	����������
��������������������������� ��"� �

��� � ������	
��� ��� ������������������������������������.' �

�� � <����� ����2�:������@��@:����������
��������������� ��� ��������������������.� �

���� � ���!�����/����6����
�����0���������+//��,���������� ��� ���������.� �

��� � 76�����&���/����6@/�����
����
�����0���������+//0�, ��� �����.� �

x

���� � 76�����&���/����6� ��	������0������������
�����0��� ������+/ 0�,�������������������������������������"� �

���� � 	����6��)�����<����� ��������
�������������������� ��� ������������������"# �

��� � �
���� ����2�%��@��@���6����
��������������������� ��� ��������������������"# �

��� � ������ ����2������	������
������������������������� ��� ��������������������������"1 �

��# � 	����6�� ��� �����������������������������������1� �

��������"���	���������	��������������������������� ��#� �

.�� � ������	
��� ��� ������������������������������������1 �

.� � ����
�$��
�!�������4�)����������������������������� ��� ���������������������������1 �

.�� � ��� ��� ��������������������������������1. �

.�� � <�� ��� ��������������������������������1. �

.���� � <���������� ���
����������������������������������� ��� ������������������������������1. �

.��� � ��������0�� ��� ��������������������������'' �

.�# � �
�� ��� ����������������������������'� �

.�� � ��)����
�����������!������������������������������� ��� �������������������������'. �

.���� � ��)����
����������	�������������������������������� ��� �����������������������'. �

.��� � ��)����
��������$��!������������������������������� ��� �����������������'. �

.���� � ��)����
�����������
�������6����������������@������ 6�� �����������'" �

.���� � ��)����
����������	�����
�������������������������� ��� ����������'1 �

.�. � 	����6�� ��� ����������������������������������'1 �

������������������������ ������������������������ ��� �

"�� � ������	
��� ��� ������������������������������������' �

"� � :;!����������%�9�
��������������������������������� ��� ������������������������������' �

"�� � 0

	��
6�����	������������������������������������� ��� �������������������������������# �

"�� � ����)��)�$��
�!������������������������������������ ��� �������������������������������� �

xi

"�# � :�!���
���A�� ��� ��������������������������. �

"�� � :�!���
������������������)�������������/�����
����� 	��/����6�/�����
���������������������������������� �������� �

"�. � :�!���
���5�����������)��������
������������������� ��� ������������������������� �

"�" � :�!���
������������������)�����$������������������� ���	����)�������)����
����������������������������# � �

"�1 � �����������5������6�������������������������������� ��� ���������������������������������.1 �

��������#�������������	��������������������������� �� �

1�� � <	�	���=��� ��� ����������������������������������"� �

�� �� �

��� ��#� �

xii

LIST OF TABLES

Table 1. Matching Approaches: Similarity Information Used .. 35�
Table 2. Merging Approaches... 38�
Table 3. Handling the Research Questions Throughout the Thesis’ Chapters 41�

Table 4. ES Matrix, Pair-wise Similarity Between M0’s Classes and M2’s Classes 50�
Table 5. MSM Matrix, the Matched Classes’ Similarity .. 51�
Table 6. Second Stage Similarity Matrix (GS Matrix) ... 52�
Table 7. MSM Matrix, the Matched Classes Similarity After 2nd Stage Matching 54�

Table 8. MSM Matrix, the Matched Classes Similarity After 3rd Stage Matching 54�
Table 9. Pearson Correlation Between Path Length and WuP Semantic Similarity

Measures .. 63�
Table 10. Lookup Table of Similarities between Relationships’ Ends in Class

Diagram.. 67�
Table 11. Weight Settings of the Compound Metrics ... 68�
Table 12. GA Parameters Settings .. 83�
Table 13. Pair-wise MSM Matrices of Models M0, M1, M2, and M3 95�

Table 14. Reference Model Preliminary Catalog (RMPC) ... 105�
Table 15. Perturbation Performed by the Instance Generator ... 112�
Table 16. Basic Statistics about the Case Studies ... 113�
Table 17. Empirical Investigation Roadmap .. 114�
Table 18. The Accuracy Obtained at Some Special Cases of the Weight Assignment,

Nsim Metric, Equation (11)... 120�
Table 19. The Accuracy Obtained at Some Special Cases of the Weight Assignment

for the Metrics NIS, NNHS, INHS, NINHS, Equation (12) through (15),
Case Study 1 .. 126�

Table 20. The Accuracy Obtained at Some Special Cases of the Weight Assignment
for the Metrics NIS, NNHS, INHS, NINHS, Equation (12) through (15),
Case Study 2 .. 128�

Table 21. The Accuracy Obtained at Some Special Cases of the Weight Assignment
for the Metrics NIS, NNHS, INHS, NINHS, Equation (12) through (15),
Case Study 3. ... 130�

Table 22. Low perturbation, Case Study 3 ... 131�
Table 23. Best Value Achieved by Traditional GA at Different Problem Sizes 139�

Table 24. Time Taken by Traditional GA and GGAM over 20000 Iterations at
Different Problem Sizes ... 139�

Table 25. Matching Time Taken by GGRM, GGAM, and GSAM Algorithms for
Each Pair of Models ... 151�

Table 26. Pair-wise Models’ Similarity between 6 Input Models 155�
Table 27. The Average Similarity of Each Model to the Other Models 155�
Table 28. Pair-wise Models’ Similarity After Removing M4 ... 155�

xiii

Table 29. Pair-wise Models’ Similarity After Removing M4 and M5 155�
Table 30. Optional Point Commonality, Case Study 3 ... 168�
Table 31. Reference Model Commonality, Case Study 3 ... 168�
Table 32. Optional Point Commonality, Case Study 1 ... 169�
Table 33. Reference Model Commonality, Case Study 1 ... 169�
Table 34. The Standard Deviation of the Reuse Ratio over the Different Runs 172�
Table 35. Optional Points Ratio Overhead at Different Size of the Reference Model,

Case Study 3 .. 175�
Table 36. Optional Points Ratio Overhead at Different Size of the Reference Model,

Case Study 1. ... 175�

xiv

LIST OF FIGURES

Figure 1. Input Models Representing Four Different Applications of Flight System 42�
Figure 2. Reference Model for the Simple Flight Booking System 44�
Figure 3. Reference Model Consolidation Framework ... 46�

Figure 4. Steps of the Second Stage Greedy Matching Algorithm 53�
Figure 5. Data Type Taxonomy .. 66�
Figure 6. SGRM Algorithm .. 73�
Figure 7. Pair-wise Element Similarity Matrix Between Classes of Two Models, M1

and M2 ... 73�
Figure 8. Matching Similarity Matrix between Classes of Two Models, SGRM

Algorithm ... 73�
Figure 9. GGRM Algorithm ... 74�
Figure 10. An Illustrative Example of the Proposed Greedy Matching Algorithm

(GGRM) ... 75�
Figure 11. Matching Similarity Matrix between Classes of Two Models, GGRM

Algorithm ... 76�
Figure 12. Genetic Crossover ... 83�
Figure 13. Second Stage Matching Algorithm ... 86�
Figure 14. An Illustrative Example of the Steps of the Third Stage Matching

Algorithm ... 90�
Figure 15. Selection of the First Pair for Merging .. 99�
Figure 16. First Phase Merging Steps ... 102�
Figure 17. Trace Matrix Showing Classes' Distribution over Different Instances,

Case Study 3. ... 113�
Figure 18. Pseudo Code of the Weight Calibration of the Constituents of NSim

Metric, Equation (11). ... 118�
Figure 19. Models’ Matching Accuracy at Different Weight Settings for the

Neighborhoods Similarity Metric NHS’ Constituents, Equation (11). 119�
Figure 20. Models’ Matching Accuracy at Different Weight Settings for the NINHS

Similarity Metric Constituents, Equation 12 through 15, Case Study 1 123�
Figure 21. Pseudo Code of the Weight Calibration of the Constituents of NINHS

Metric, Equation (15) .. 124�
Figure 22. Models’ Matching Accuracy at Different Weight Settings for the NINHS

Similarity Metric Constituents, Equation 12 through 15, Case Study 2 127�
Figure 23. Models’ Matching Accuracy at Different Weight Settings for the NINHS

Similarity Metric Constituents, Equation 12 through 15, Case Study 3 129�
Figure 24. Models’ Matching Accuracy at Different Weight Settings for the NINHS

Similarity Metric Constituents, Equation 15, Case Study 3 (Low
Perturbation) .. 132�

Figure 25. Synthetic Data Generator for ES Matrix ... 134�

xv

Figure 26. Example of the Simulated ES Matrix Generated by the Synthetic Data
Generator.. 136�

Figure 27. Traditional GA versus GGAM, the Convergence of the Fitness Function
to the Optimal Value. ... 138�

Figure 28. The Convergence of Hybridized GA versus Traditional GA in the First
200 Iterations, n=50 ... 139�

Figure 29. GA versus GGAM Algorithm, Matching Accuracy, Precision and Recall,
Case Study 1 .. 140�

Figure 30. Convergence Behavior of Traditional GA versus GGAM over the First
200 Iterations ... 141�

Figure 31. Matching Accuracy, Precision and Recall of GGRM, GGAM, and
GSAM, Case Study 1 ... 143�

Figure 32. Matching Accuracy, Precision and Recall of GGRM, GGAM, and
GSAM, Case Study 2 ... 144�

Figure 33. Matching Accuracy of GGRM, GGAM, and GSAM, Case Study 3 152�

Figure 34. Snapshots from the Reference Model Catalog, Case Study 0. 157�
Figure 35. Snapshots from the Reference Model Catalog, Case Study 2 158�
Figure 36. Reference Common Classes Evolution as More Instances Are Added to

the Reference, Case Study 3 .. 160�
Figure 37. Reference Common Classes Evolution as More Instances Added to the

Reference, Case Study 1 .. 161�
Figure 38. Optional Points Creation and Reuse During Generalization, Case Study 3 .. 163�
Figure 39. Optional Points Creation During Generalization, First Pair, Case Study 3 ... 164�
Figure 40. Optional Points versus Number of Instances in the Reference Model, Case

Study 3 ... 164�
Figure 41. Optional Points versus Number of Instances in the Reference Model, Case

Study 1 ... 164�
Figure 42. Number of Optional Points Added Due to the Generalization of a New

Instance versus the Size of the Reference Model, Case Study 3 165�
Figure 43. Number of Optional Points added Due to the Generalization of a New

Instance versus the Size of the Reference Model, Case Study 1 165�
Figure 44. Percentage of Single Instance Optional Points against the Number of

Instances in the Reference Model, Case Study 3 ... 166�
Figure 45. Percentage of Single Instance Optional Points against the Number of

Instances in the Reference Model, Case Study 1 ... 166�
Figure 46. Percentage of Multiple Instances Optional Points against the Number of

Instances in the Reference Model, Case Study 3 ... 167�
Figure 47. Percentage of Multiple Instances Optional Points against the Number of

Instances in the Reference Model, Case Study 1 ... 167�
Figure 48. Percentage of Optional Points at Different Commonality Values, CS3 169�

xvi

Figure 49. Percentage of Optional Points at Different Commonality Values, Case
Study 1 ... 170�

Figure 50. Average Reuse Ratio in a New Instance versus the Size of the Reference
Model, Case Study 3. ... 172�

Figure 51. Average Reuse Ratio in a New Instance versus the Size of the Reference
Model, Case Study 1. ... 172�

Figure 52. Attributes Added to the Reference Class Per New Instance, CS3. 173�

Figure 53. Methods Added to the Reference Class Per New Instance, Case Study 3 174�
Figure 54. Number of Optional Points Per Instance versus Reference Size, Case

Study 3 ... 176�
Figure 55. Number of Optional Points Per Instance versus Reference Size, Case

Study 1 ... 176�
Figure 56. The Ratio of Optional Points to the Optional Classes versus the Reference

Model Size, Case Study 3 .. 177�
Figure 57. The Ratio of Optional Points to the Optional Classes versus the Reference

Model Size, Case Study 1 .. 177�
Figure 58. The Ratio of Optional Points to the All Classes versus the Reference

Model Size, Case Study 3 .. 177�
Figure 59. The Ratio of Optional Points to the All Classes versus the Reference

Model Size, Case Study 1 .. 178�

xvii

LIST OF ABBREVIATIONS

GA : Genetic Algorithm

SGRM : Simple Greedy Matching Algorithm

GGAM : Greedy-Genetic Matching Algorithm

GGRM : Global Greedy Matching Algorithm

GSAM : Greedy-Simulated-Annealing Matching Algorithm

IS : Internal Similarity

INHS : Internal and Neighborhood Similarity

NHS : Neighborhood Similarity

NINHS : Name, Internal and Neighborhood Similarity

NIS : Name and Internal Similarity

NNHS : Name and Neighborhood Similarity

NS : Name Similarity

RM : Reference Model

RM : Reference Model Catalog

RMPC : Reference Model Preliminary Catalog.

UML :Unified Modeling Language

XMI :XML Metadata Interchange

xviii

ABSTRACT

Full Name : [MOJEEB AL-RHMAN AHMED SALEH AL-KHIATY]

Thesis Title : [Automatic Reference Model Development for Early Stage Artifacts

Reuse]

Major Field : [Computer Science and Engineering]

Date of Degree : [February 2015]

Software reuse has been regarded as the key strategy for overcoming the software crisis.

Reuse has great potential when systematically planned and managed to capitalize on the

commonalities that exist among the different applications within the same or similar

domains. Additionally, reuse of early-stage artifacts has great potential as compared to

later-stage artifacts reuse. However, using multiple models to achieve the reuse potential

across them is impractical and complex, especially, when models are of large size.

Early-stage reference models have been considered as good tools to allow reuse across

applications within the same domain. They can offer the reuse potential of the models

they consolidate and represent with manageable complexity. However, there has not been

enough research to address the problem of automatically consolidating a given set of

analysis (design) models representing different applications (instances) in a domain into a

reference model that represents the input models.

This thesis addresses this problem and offers an approach consisting of staged matching

and merging algorithms to identify commonalities and variabilities among input models,

and proposes a reference model accordingly. Our focus in this thesis is on the structural

models represented by class diagrams. We compared different heuristic algorithms

including genetic algorithms and simulated annealing in dealing with the complexity of

the matching and merging problems. We conducted a set of experiments using a number

of case studies. The experiments show that our approach is promising.

xix

����������	

�
��������: ��������	��
���������������

�������������: �������
������
���������
������������������������� 	���������
���� �
�	���!�"	����#�����

$������%	&��
.

�'����: ��(��)��&�������*����	�

��
	�����������+����: �������2015

� �������� 	�
�� ��� �������� �� �������� ���� ������ ������ ����� �� !"� #�$%&�%'� ������� ��(�#������ �!�)

� ������!'�� ��*�� +%�,	�-�'�,� ./�'�,� �-%�'�� 01� �%23�3'� .451�� 4�6�� ������7�� ����� �8�1� �3�# ���
� �9��

��)��:�;���3<�0��=��4�6���>#?���,��>'�@�;��'� �,��>��6�����/�;� A��6#�B�C ������)'� ��3<�������!'�

��C��'��:�;
'���>��6�3'����/�;
'��,�D8�E�'�������2�'��01. �F1�G'H�+'���1�<� �������7������������!'�������3%'

�4C��3'��01+',7� I����!'�� ���;#� ��C� ?,�� �� � ���#� ��H� �8�1� J3� ������ ��� ���3'�� �8�-'��� �K��?�/� ��� �H�

������!'�� �����3'�� �������������!'�� ��C�?,�� ������ �3'��4C��3'��01 .����7�� ���3'�� �8�-'��LMK����9N�'��

�'�OH�3��������0%)1�4�6���> � (#P ����
�� ��Q���R4>"'��	06'��#��������H�OH�3
'��C���!S��.

3'��OH�3
'�� �!�)#�!'�� �����3'� ��)������� ��3=��� ��� ��� ������7�� �����9����'� ���� ����+',7� � �>%C����01

�B�C�R���:�;��01�������T�;�"� �OH�3�� ���01��
���'�� ������7������� �!"��9�� #�0)� �3'��OH�3
'�����G'H,

������C�,�OH�3��0)��3'��OH�3
'���MK�436��B�C�RU#?����4>"#������-%��3'�,��S��63'���Q�
)'�'��G%#OH�3
.

'��G%#���3K�����9N�'���3'��OH�3@)V#�9'��>���7����)� ���2C�!'��4!/����01��'����3�K7�B�C��� �4�6���>8�
����-�S

��-
3'��OH�3
'��������3������0��#���#,�.

xx

B(!'���MK��� � ��C '���%C�������*?���� ��
35�� �� W4� ��;���-%��3'��OH�3
'����,�C�,�0)����OH�3��+'���>��� .

01���X�S�#�?�(� �B(!'���MK��K
���%23��������!'���3=�7��%��>'����
!'��OH�3�3�H�Y-'��O .�
3/�B�C ������?� 3�

����*?��� ���
��'������*?���'���>�1��3�R$%Z'�����!#��S�(������*?���, ["������)#�T��4��)�'��4����� 0�'

�>�%��$%&�'�,�OH�3
%'�I��'�,� � ��;3'�. � ' '�� ���� ��� ��!#�\?���'���%3) ����?���7�C�+%���K	������ �
3/�0�'�

���)��H�]�� 3'��4('����, ^,��.

1

1 CHAPTER 1

INTRODUCTION

1.1 Introduction

The ability to ship a new software product with high quality, within a short

timeframe, and with sustainable profit has been vital for software companies to keep up

with the new business opportunities [1-3]. These three important aspects of the software

development have been coined within the software engineering community as the

software crisis, which is the main motivation for the adoption of the engineering

approach, in the late 1960s, to the software development to make it an engineering

discipline [4].

Mature engineering disciplines have several handbooks that describe successful

solutions to known problems. This wealth of knowledge is the accumulative contributions

of dozens of top experts in the field. If software engineering is to become a mature

engineering discipline, successful practices must be systematically documented so that it

can be widely disseminated and reused [5].

Software reuse has been regarded as the key strategy for overcoming the software

crisis [4, 6-8]. It is the process of building new software systems by the use of

engineering knowledge or artifacts from existing systems rather than building software

systems from scratch [4, 8, 9]. As software engineering is becoming a mature engineering

discipline, successful practices must be systematically documented so that they can be

widely disseminated and reused [5]. Systematic software reuse is an effective way to

significantly improve software development [7, 9]. It reduces the risk of development

2

errors, leverages existing resources, transfers knowledge and experience from experts to

the novice, leads to reductions in software development cost and time, and promotes high

quality software. Additionally, reuse has great potential when systematically planned and

managed in the context of a specific domain, where application families share some

functionality [10, 11]. This common functionality, if managed appropriately, is the actual

reuse pay-off and the crucial factor to the reuse success [11-13]. Thus, the goal of

researchers with regard to software reuse is to come up with systematic procedures for

engineering new systems from existing assets [9, 13-15].

The notion of reuse is not new in the software development domain. Software

engineers have been reusing algorithms, code and other artifacts for long time. Hence the

problem is not the lack of software reuse, rather, it is the way the artifacts have been

being reused. Traditional software reuse practices are ad hoc [16], even at the model level

[17]. Under the pressure of constantly changing requirements entailed by the dynamic

business world, engineers are driven by the opportunistic thought of copy and modify

reuse [18], and thus, inevitably, find themselves dealing with large collections of models.

These models represent different versions across time, different applications in a domain,

different development concerns and so on [19]. Additionally, these models represent a

main source of knowledge which is captured from the minds of people involved. This

knowledge is re-practiced each time new software is created, yet, when comparing

software systems, we usually find 60% to 70% of a software product’s functionality is

common [20]. Thus, without effective reuse mechanism, it is possible to build a new

system from scratch, yet a similar situation has been built before. This results in

redundant artifacts, and thus redundant maintenance cost and time for the duplicated

3

artifacts. Thus, it is very much needed to have a systematic way to access and reuse

existing software models in an efficient way.

One approach with a great potential here is to consolidate these models into a single

model that unifies their commonality and explicate their variabilities. We require that

such single model must have the following properties [19]:

· It offers the reuse potential of the set of models it generalizes while keeping the

complexity at level of a single, yet more complicated*, model.

· Completeness: The model must be complete in the sense that if an element

appears in one of the source models, it must be represented in the merged model

as well.

· Minimum redundancy: Identical elements appearing in more than one instance

must be unified into a single element in the consolidated model.

· Traceability: each element in the reference model is traceable to its original

instance;

· Instantiate-ability: each input instance can be instantiated back from the reference

model.

· Information Representation: the representation of the reference model is

informative enough in such a way that it can guide the reuser about the common

analysis and design practices in the domain.

* The complexity comes from the need to handle and represent the variability among the different instances.

4

1.2 Technical Background and Motivation

As mentioned earlier, the notion of reuse is not new in the software development

domain. Software engineers have been reusing algorithms, data structures, and code

blocks (routines, components, libraries) since programming was started. The recognized

benefits of code reuse have encouraged its practice across the entire software

development life-cycle, starting with domain modeling through requirements

specification, software design, coding and testing, to maintenance and operation [21].

We refer to the first three types of artifacts (domain modeling, requirements specification,

and software design) as early-stage reusable artifacts while the rest are referred to as

later-stage reusable artifacts. Reuse at the level of early-stage artifacts has been

acknowledged to be more beneficial than reuse of later-stage artifacts [21, 22]. This is

due to the fact that in early-stage reuse, once a match is found, all related later stages

artifacts for the match can also be reused [22]. Additionally, the benefit of code level

reuse is limited due to the fact that the underlying software technology is moving so fast,

especially true in software projects with long time scales [23]. Moreover, it is generally

known that coding represents not more than 25% of the cost of system development [16].

Shifting the engineering focus during system development from late-stage artifacts

(i.e. code) to early-stage artifacts (i.e. models) is the aim of Model-Driven Development

[24] (MDD) ¾ a software development methodology which emphasizes the use of

models as the primary artifacts in the development process [25]. This implies that

software developers working within this paradigm should be able to automatically

generate software systems directly from models, without going through the step of

writing computer code (text-based). Thus, the goal of MDD is to migrate from a code-

5

centric approach towards a model-centric approach, thereby separating business logic

from implementation details and getting domain experts more directly involved in the

development process [26]. The level of abstraction, provided by MDD, per se, saves

substantial time and resources in production and delivery through: identifying and

resolving defects/errors early and thus reducing rework; downscaling the complexity

underlying software systems’ requirements, easing communication between stakeholders,

and reusing the early stages artifacts and knowledge in the subsequent stage

(construction) through an automated process [21, 22, 27].

As mentioned earlier, traditionally, software artifacts’ reuse along the software

development life cycle has been driven by the copy-and-modify thought. Object-oriented

design patterns [28] have been one of the most significant and successful ideas in

software developments that support the systematic reuse at the design level. They are the

vehicles that transfer design knowledge and experience from experts to the novice. One

of the basic goals of design patterns is to capture already proven and matured design

solutions, in the form of co-operating classes, so that addressing specific recurring design

problems does not always have to start from scratch. However, design patterns target

small-grained reuse, i.e. reuse at the micro-architecture level.

Software Product Line (SPL) is an emerging methodology that systematically

supports early stage artifacts’ reuse. It offers a strategic and promising approach for

architecture reuse (i.e. coarse-grained reuse) within a family of products [29]. It provides

an efficient mechanism for managing the commonalities and variabilities among a family

of products. Modeling commonalities and variabilities is a key concept in development

6

for reuse. SPL commonalities refer to artifacts that are part of each product of the product

line, whereas the SPL variabilities refer to artifacts that are specific to some products.

Synergizing the abstraction capability provided by the MDD with the variability

management capability of SPL engineering bears the potential benefits of both [30, 31].

However, unless we have enough understanding and experience of the market needs

about the underlying domain (or a similar domain), it is difficult to foresee what is

common and what is variable among a family of software products upfront, and thus it

becomes difficult, skeptical, and risky for the software development company to follow

the traditional (proactive) software product line approach [18, 32, 33]. Due to the

aforementioned issues, proactive product line approach (i.e. SPL first) is rarely used, and

usually dominated by reactive (i.e. extending existing SPL) or extractive (i.e. building

new SPL from multiple products) approaches. Therefore, when there is a collection of

similar software development artifacts the extractive (also called bottom-up) approach is

the most applicable to integrate these artifacts in a way that provide an efficient and

effective reuse environment [32].

1.3 The Research Problem

Software reuse has been regarded as a key to overcome the software crisis [4, 6-8].

Reuse of early-stage artifacts has a great potential as compared to later-stage artifacts

reuse [21, 22]. Additionally, reuse has great potential when systematically planned and

managed in the context of a specific domain, where application families share some

functionality. The theoretical reuse potential within the same domain can be up to 85%

[34, 35]. This reuse potential capitalizes on the commonalities that exist among the

different applications within the same or similar domains [12]. However, dealing with

7

multiple models to achieve the reuse potential across them is impractical and complex,

especially, when models are of large size. Reference models have been considered as

good tools for generalizing the domain practices, by capturing their commonalities and

differences, to allow reuse across applications within the same domain or across similar

domains.

Despite the considerable efforts that have been made by researchers towards building

a generic artifact out of a set of existing ones [18, 19, 33, 36-43], some notable challenges

still exist concerning the following building blocks of such a generalization process: 1)

the development of a solid similarity assessment mechanism that uses efficient

comparison algorithm and matching algorithm along with accurate similarity measures

for comparing the different artifacts and identifying their commonalities and variabilities

at different levels of granularity; 2) the development of an efficient consolidation

mechanism along with efficient algorithms to generalize the elements of the input models

into the reference model so that their commonalities are unified and variabilities are

explicated at different levels of granularity; 3) a scheme for representing the different

level of similarity between the input instances as an interface for bridging the gap

between the output from the matching algorithms and the input to the merging algorithms

bearing in mind that the software product line is thought of as background blue-prints; 4)

a scheme for reference models representation that preserves the necessary information

needed for tracing artifacts of a given reference model to their corresponding instances

and vice versa; 5) providing a tool support to automate the consolidation process

throughout all of its different stages.

8

Addressing the above mentioned challenges is expected to increase the opportunities

of early stages reuse, improve the developer productivity, guide the large-scale early

stages ruse of the software development artifacts, reduce maintenance cost, reduce

rework, and result in high quality product.

1.4 Research Scope

Typically, for each software system, there is a set of models that describe its

structural, behavioral, and functional perspectives. We focus in this work on the

structural perspective, modeled by the UML (Unified Modeling Language) class diagram.

Therefore, the word ‘model’ henceforth will refer to a UML class diagram at both the

analysis and design stages of software development.

UML class diagram is the most important static representation in object oriented

software projects [44]. It is the diagram that models the real world objects and the

relationships among them. It is also the diagram that model-to-code transformation tools

use first and foremost [44, 45].

1.5 Research Contributions

The main contributions of this thesis work are as follows:

• Conducting an extensive critical survey of: the existing approaches that have been

addressing the problem of consolidating a set of existing models to build a single

reference model; the information considered to assess the similarity and

differences between such models; the requirements that should be considered by

the comparison or merging algorithms or tools; fundamental challenges involved

in such a consolidation process.

9

• Proposing a staged consolidation framework for generalizing a set of analysis

(design) instances representing different applications in the domain into a

reference model. Within this framework we propose:

o staged comparison and matching algorithms for identifying the

commonality and variability among the set of instances to be generalized.

o a well-defined interface that define the output of matching algorithm and

the input to merging algorithms in terms of different similarity levels so

that the complexity of the consolidation problem can be broken down.

o staged merging algorithms for handling the commonality and the

variability among the set of instances to be generalized and at different

level of granularity.

• Proposing a representation mechanism for:

o representing the common, the variants, and the optional elements, among

the input models, in the reference model.

o allowing the elements in the reference model to be traced back to their

original instances.

o enabling the instantiation of original instances from the reference model.

o guiding the reuser about the most common practices in the domain.

• Developing a proof-of-concept Java-based tool for implementing the

consolidation framework with the following main properties:

o computing different similarity metrics with configurable weight settings.

o providing an implementation for five model matching algorithms.

o providing two XMI parser for two modeling tools: Altova and ArgoUML

10

o providing an implementation for the proposed merging algorithms

1.6 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 provides technical

background. Chapter 3 summarizes the related work. The conceptual description of the

solution framework, through an illustrative example, is presented in Chapter 4. Chapter 5

discusses model comparison and different similarity aspects. This is followed by the

staged model matching in Chapter 6. The staged merging is detailed in Chapter 7.

Empirical investigation of the proposed solution is discussed in Chapter 8. The thesis

findings and future directions are summarized in Chapter 9.

11

2 CHAPTER 2

PRELIMINARIES

2.1 Introduction

Models in software development allow engineers to downscale the complexity of the

software systems [46]. They are the developer means for reasoning about the

requirements, communicating with stakeholders, documenting the system to ease the

maintenance task, generating test cases, etc [42, 47].

As models have been promoted to primary artifacts in software development, an

efficient model management becomes a necessity [48, 49]. Global model management

operations involve, among others, model comparisons, model matching, and model

merging (also known as model consolidation) [50, 51].

Both model comparison and model matching are at the core of different model

management operations such as model evolution [43], consolidation [41], and retrieval.

An accurate identification of the similarity and differences between the elements of the

matched models leads to an accurate model matching, which, in turn, leads to better

model management.

The rest of this chapter provides background on the different concepts, techniques

and technologies used in this dissertation.

2.2 Model Comparisons

Model comparison is the task of assessing or quantifying the degree of the similarity

between the elements of the compared models [52, 53]. Crucial to an efficient similarity

12

assessment is to have a set of similarity metrics that considers the various aspects of the

compared models, thus their overlaps and differences are best quantified. Software

metrics are the software engineer means to quantify the similarity between the elements

of the compared models. In the context of the class diagram, a metric which measures the

similarity between two classes based on their names similarity is an example of such

metrics.

2.3 Model Matching

Model matching is the task of determining the correspondence between the elements

of the compared models [19, 54-57]. Within the context of our thesis we define model

matching between a pair of two models as the task of mapping each element in the

smaller model of the pair (model with fewer number of classes) into its most similar

element in the other model, given the similarity scores between the elements of the two

models as quantified by the similarity metrics. Accurate similarity assessment

(comparison) leads to accurate matching, and accurate matching leads to a duplication-

free merging [58].

Model matching task is time consuming due to the fact that finding the optimal match

between the elements of two models is a kind of combinatorial problem generally

referred to as graph matching problem [59]. Therefore, an efficient matching algorithm is

required to obviate the complexity of the brute-force method and meanwhile provide an

acceptable solution. One of the approaches is to make some plausible assumptions which

can be driven by utilizing the characteristics of the problem in hand. Alternative way is to

go with some heuristic based solutions, e.g. Genetic Algorithms.

13

Model matching techniques can be classified into exact model matching [43, 60] and

inexact model matching [33, 50, 61]. The exact model matching aims at finding a strict

correspondence between the two models to be matched, or between sub-sets of their

elements. This makes it so restrictive and impractical to the expected variations that may

exist among the elements of the matched models, and thus it usually fails to find feasible

solutions. Unlike the exact matching approaches, inexact matching is tolerant to the

variations that may exist between the elements of the matched models. This makes it

more practical and its result is more intuitive.

2.4 Model Merging

Model merging is the task of unifying information in the input models together while

keeping a single copy of matched elements [33]. It is a kind of many-to-one

transformation [62] with special requirements that are not generally required for a typical

many-to-one transformation [58], and thus not supported by the general transformation

tools. Within the context of our framework we state the task of our merging operator as

follows. Given, as input, a set of input models along with their pair-wise correspondence,

the aim of our merging task is to generate, as output, a single model, called reference

model, which unifies the overlaps and explicates the differences between the elements of

the input models.

2.5 The Unified Modeling Language (UML)

UML (Unified Modeling Language) [63] is a graphical language for visualizing,

specifying, constructing, and documenting the artifacts of a software systems. It is a de

facto standard for object-oriented modeling specified by the Object Management Group

14

(OMG) [64, 65] . Within the context of Model Driven Development (MDD), UML, along

with the Meta Object Facility (MOF) [66], provides a key foundation for OMG's Model-

Driven Architecture (MDA). UML provides a variety of diagrams for modeling different

aspects of software systems. For example, Use Case diagrams are used to model the

system functionality, Class diagrams are used to model the system structure, and

Statechart diagrams are used to model the system behavior [44].

2.6 XMI

XMI [67], which stands for Extensible Markup Language (XML) Metadata

Interchange, is an interchange format for metadata that is defined in terms of the MOF

standard [68]. Since UML is MOF-based meta-model, XMI can be used to represent and

store UML models in XML-based interchange format [69]. This allows UML modeling

tools, e.g. Altova [70], or repositories from different vendors to use XMI to exchange

UML models. Thus, XMI integrates three standards: MOF (OMG), UML (OMG), and

XML (W3C [71]).

2.7 Reference Models

Reference models are built to represent already existing practices or artifacts, and

thus serve as blueprints for developing others [72]. They also serve as recommendations

on how to solve a specific problem, means to access industry best practices, and

benchmarks against which design practices are compared and evaluated [8, 72, 73].

Reference models can be developed in different forms, such as reference architecture,

business process reference model, data reference model, etc [74]. The underlying

motivation for reference models is the development by reuse paradigm [74].

15

Additionally, reference models can enlighten people about design characteristics in

certain domain. Consequently, reference models enable practitioners to have a degree of

confidence that their activities begins on a solid foundation [72].

2.8 Genetic Algorithm (GA)

Genetic algorithm (GA) is a population based search heuristic that mimics the process

of natural selection. It has been used in the literature in different search-based problems,

e.g. Quadratic Assignment Problem [75], generating a sequence of cities for the known

combinatorial Traveling Salesman problem [76, 77], class diagram retrieval [78], graph

matching [79], etc. At the core of the GA algorithm is the idea of maintaining a

population of alternative global solutions to the search or the optimization problem in

hand. The objective of the algorithm is to maximize the payoff of candidate solutions in

the population against a cost function [80]. GA belongs to the larger class of evolutionary

computation, which generate solutions to optimization problems using techniques

inspired by natural evolution, such as selection (survival), crossover (recombination and

inheritance), and mutation (diversity).

The algorithm starts with a population of randomly generated solutions, called

individuals or chromosomes. Each chromosome represents a different candidate solution

in a population of solutions. Each candidate solution is evaluated against a fitness

function and assigned a fitness score. This fitness score is a measure of the goodness of

each solution in solving the problem at hand. The fitness function is always problem

dependent, for example, in a model matching problem it can be the reciprocal of the

matching error (minimization), the overall sum of the similarity scores (maximization), or

the number of elements passing the similarity threshold (maximization). The solutions of

16

the current population (also called current generation) evolve through what is called a

breeding cycle, which is the heart of the genetic algorithm. The breeding cycle consists of

three steps, selection, crossover, and mutation. In the selection step, solutions compete

for survival in the next generation through a selection mechanism. The chance of survival

is proportional to the fitness score of the solution. Typically fitter solutions are more

likely to be selected. The new population is then generated from the selected portion of

the current population through two genetic operators, viz. recombination (crossover) and

mutation. The former operator crosses a pair of solutions (called parents) to generate new

solutions (called offspring). It is supposed to exploit the current solution to find better

one [80, 81]. The later operator mutates the offspring to introduce a genetic diversity

between generations. It has traditionally considered as a simple search operator that helps

the algorithm to avoid being trapped in the local optima [82]. It is meant to help for the

exploration of the whole search space. The process of breeding new individuals from

current ones and evaluating them against the fitness function is repeated until the

termination condition is met.

The basic steps of GA can be sketched as the follows [81]:

1. Create an initial population of candidate solutions.

2. Compute the fitness values of each of these candidates.

3. Select candidates for new generations using some selection mechanism.

4. Make perturbation to each of these selected candidates using genetic

operators, e.g. crossover and mutation.

5. Repeat 2 through 4 until the termination condition is met.

17

2.9 Simulated Annealing Algorithm (SA)

Simulated Annealing (SA) algorithm [83] is a local search meta-heuristic algorithm

capable of escaping from local optima. The algorithm provides a probabilistic exploration

for the solutions’ search space. This probabilistic exploration of the solution space helps

the algorithm to avoid being trapped in the local optima [84]. SA has been used in the

literature in different search-based problems, e.g. graph isomorphism [85], generating a

sequence of cities for the known combinatorial Traveling Salesman problem [86], grid

scheduling [87], etc. It is so named because its behavior is simulating the annealing

process of solids in the thermodynamic system, where a crystalline solid is heated and

then allowed to cool very slowly until it achieves its most regular possible state (the

ground state), which results in a solid with superior structural integrity.

The algorithm starts with initial (generally random) solution, then in each of its

iteration it computes the objective function which indicates the quality of the new

solution (also called neighbor solution) as compared to the current solution. Better

solutions are always accepted while worse solution are probabilistically accepted. The

acceptance probability of the worse solution is generally high at the beginning to allow

for better exploration of the solution space, and thus escaping from getting trapped by the

local optima with the hope to find the global optima. However this probability is

decreasing over time until it reaches a point where the exploitation starts to outweigh the

exploration.

18

3 CHAPTER 3

LITERATURE REVIEW

3.1 Introduction

Historically, reuse in software started on the low-level technical assets, which is code.

In the 1960s and 1970s, the reuse focus was at the level of subroutines [29]. The

emergence of object-oriented approach, in 1980s, shifted reuse practice from libraries of

isolated functions to library of classes and cross-language blocks of code [88]. In 1990s,

the software reuse has been stepped to larger grain pieces, software components [88].

With the emergence of software product line (SPL) in the late 1990s, the software

reuse process has been promoted from ad hoc and opportunistic to systematic [29]. Being

a highly successful approach to strategic reuse, SPL have been widely adopted in the

industry and the academia following two main strategies [32]: forward engineering

(proactive) and reverse engineering (extractive). The proactive SPL approach emphasizes

the development of the core (common) assets first. Although the engineering practices of

this approach are straightforward and result in a sound product line architecture, the

identification of the common assets among the different variants of the system family

upfront requires a foreseeable horizon, which is seldom possible [32, 89, 90]. Therefore,

the very often, yet not straightforward, practice is to extract (reverse engineer) the

product line architecture from a set of legacy artifacts [89].

There are two architectural representations of the product line architecture [32]. The

first approach provides a generic architecture for the product line, which captures the

19

commonalities of the products family but ignores all the variabilities. In this approach,

each application starts with the generic architecture and adapts it as required.

The second approach, which is more desirable, explicitly captures both the

commonalities and variabilities of the products family. From the reuse perspective, the

first architectural representation targets reuse through specialization, as it captures the

reusable knowledge and practice at a high level of abstraction. Although the abstraction

level of knowledge captured by this representation promotes across domains reuse (for

domains that share similar characteristics) and provides a good starting point as compared

to developing a system without any reuse, it fails to capture any knowledge about the

variability in a family of products [91]. Moreover, this approach requires a significant

effort by experts for specialization [40]. The second architectural representation targets

reuse through customization, as it aims at capturing all possible solutions and at the level

of details that promotes “as-is” or direct reuse [91]. In this representation, the

commonalities among the different possible solutions (artifacts) are unified and

represented as common assets (core-assets) and the variabilities are explicitly modeled as

alternative (mutually exclusive) or optional assets. Modeling variability in software

systems has been acknowledged to be a necessity [46, 92, 93]. Variability contributes to

the success of reuse in the sense that variable artifacts are modeled to capture the

expected diversity in the requirements of the different products while supporting as-is

reuse [92].

3.2 Model Consolidation: Opportunities and Challenges

Both Software Product Line Engineering (SPLE) and Model Driven Development

(MDD) are emerging technologies that encourage software reuse. The former technology

20

supports reuse through providing an effective mechanism for reusing the common assets.

The later technology (i.e., MDD) supports reuse through different levels of abstraction

provided by the models at different stages of the development life cycle [32, 94].

Adopting the key activities of SPLE into MDD provides a systematic way to build, out of

a set of existing MDD models, a reusable reference model with the following benefits

[95-97]:

· It promotes the reuse practice of MDD models from ad hoc into systematic by

capitalizing on the commonalities and variabilities managements of an SPLE

to capture the commonalities and variabilities across MDD input models.

· MDD models will serve as a reference reusable assets, both horizontally (i.e.,

for similar products) and vertically (for later stage artifacts).

· Having a reference model that captures what is common and what is variable

across different analysis (design) experience instances in a domain will guide

the creation of new applications in that domain.

· MDD models become first-class reusable assets.

· The complexity of creating, maintaining, and evolving a set of similar artifacts

will be reduced to the simplicity of a single system.

· The reference model will capitalize on the combined reuse benefits of both

SPLE (such as strategic reuse, and commonalities and variabilities

managements) and MDD (such as reducing cognitive distance through

model’s abstraction) [4].

However, building a reusable reference model out of a set of existing individual

models is not a straightforward task and many issues should be taken to account [19, 37,

21

42, 98]. Among these issues are: assumptions about the input models; detecting the

commonality and variability among different models; modeling variability on the merged

model, explicating the nature of the relationship among the elements involved in the

merge process; the cohesiveness of the models to be merged; resolving lexical conflicts,

resolving structural conflicts; resolving semantic conflicts; resolving behavioral conflicts;

providing the ability to generate the originating individual models back from the merged

model, and others.

Different works in the literature have been addressing the problem of consolidating a

set of existing models to build a single generic model. Bernstein et al. [99] proposes a

data model on which the model management operations (matching, selection, merging,

and composition) are defined. In that data model, models and mappings are first class

elements. In their approach, a model is a set of objects. Every element in a model is

reachable from a root object using containment relationships. Mappings are models that

represent the relationships between models. Their work is an attempt with the ultimate

objective of establishing a framework for general-purpose model management operators

(including matching and merging). However, they highlighted a set of challenges that

needs to be tackled towards achieving this objective. Some of these challenges are related

to model representation, and the accuracy and the efficiency of both matching and

merging operators.

Kim et al. [100] present an approach of forward engineering and re-engineering

activities for building a software product line out of a set of related legacy systems in the

digital audio and video domain. They interleaved re-engineering activities with the main

(forward engineering) activities, where the reverse-engineering is used to extract the

22

candidates of core assets from the recovered architectural models while the forward

engineering incrementally applies the main activities of the development process to refine

these assets through analyzing the code and design documents of the legacy systems.

Based on their experience they list a set of guidelines to enhance the quality of the

constructed software product line and to evaluate the constructed reference architecture

against these guidelines.

Breivold et al. [89] provided structured migration methods to merge legacy systems to

product line architecture based on their industrial experience. In this work they list a set

of recommendations for the transition process from legacy systems to the product line.

This approach emphasizes the software architecture as a key to recovery of domain

concept and relations.

Brunet et al. [51] proposed a framework for research on model merging, in order to

be able to discuss and compare the many different approaches to model merging. They

propose a set of useful model management operators (merge, match, diff, split, and slice)

and specify the idealized algebraic properties of each operator. Using this framework,

different proposals can be compared.

Lutz et al. [37] provide insights into the process of how users compare and merge

visual models. The underlying question of their work is “How do software engineers

merge UML models?” Their main contribution is the use of qualitative theory to

demonstrate human model merging activities and the derived findings, as guidelines for

tool design. They claim that their findings can be applied to any graph-based, visual

models in software engineering. However, the focus in their work is the UML class

23

diagram. They also list a catalog of alternative ways to model the same or similar aspects,

in an attempt to show some of the difficulties involved in the similarity assessment and

the matching process which, in turn, hurt the accuracy of the merge process. The authors

also highlight some factors that should be considered when assessing the similarity

between models to be merged as well as a set of factors that should be considered by the

merging process.

Toward standardizing model merging expectations, Barrett et al. [98] commenced the

effort by assessing a set of representative merging tools. Their assessment on three

merging tools (IBM Rational Software Architect, IBM Rational Rose, Sparx Enterprise

Architect) to merge two versions of a simple class diagram showed that the tools “were

not up to the task” and their performance is “downright counterintuitive” even for trivial

models. Based on their findings they provide a set of recommendations for the tool

vendors. These recommendations are meant to improve conflict detection and resolution

mechanisms, and the accuracy of the merging tool.

Recently, Chechik et al. [19] differentiate three key model integration operators

(merging, weaving, and composition) and describe each operator along with its

applicability. Then they elaborate on the merge operator and the factors that one must

consider (like, the notation of input models, formalizing the notation, assumptions) in

defining a merge operator. They provide a set of criteria, such as completeness, non-

redundancy, minimality, totality, and soundness, for evaluating the merge operator. Then,

to show the generality and flexibility of their framework they provide a comparison

between two merge operators (called, algebraic merge and state machine merge).

24

The focus of the aforementioned work is mainly on discussing some methodologies,

lessons learned, guidelines, challenges, and requirements that should be considered by

any comparison or merging algorithm, or tool.

Other work in the literature directed their effort towards proposing and developing

different matching and/or merging algorithms and tools [18, 33, 41-43, 50, 55, 61, 101].

Some of these algorithms are specific to particular artifacts [41, 43] and/or specific

modeling languages [43] while some others are applicable to more than one type of

artifacts [39, 42] and/or more than one type of modeling language [41-43]. Additionally,

these works differ in the information they consider for matching and merging the

different artifacts. The following section (Section 3.3) provides a detailed comparison

among these different works.

3.3 Model Consolidation Techniques

Model integration in the general sense is about building a generic model out of a set

of input models [102]. Work in the literature about integration can be classified into three

approaches based on the intention of the integration process [19]:

· Merging a set of related models to build a generic artifact [18, 33, 36, 42, 43, 50, 103,

104]. The focus of the work in this direction is to merge the input models by unifying

their overlap while considering conflicts and variability among the different models.

Existing approaches differ in aspects such as the merging approaches used, handling

conflicts, modeling varibilities, etc. The goal is to provide better model management

such as managing evolution [31, 41, 43], managing uncertainty [36, 42], avoiding

redundancy, extra cost and/or targeting large-scale reuse [41, 50, 104], migration

25

towards product line from legacy artifacts [18, 33, 94, 100, 105, 106], and views

merging [42].�

· � omposing a set of autonomous, interacting models to form one model [46] [107,

108]. Here, the input models are treated as a black-box with interfaces to the outside

world and the composition is done by appropriately joining these interfaces. The goal

is to deal with issues like synchronization and concurrency.

· Weaving a set of cross-cutting concern models into a base system model [107-109].

Here, the Aspect-Oriented concept is applied, where cross-cutting concerns are

modeled as autonomous fragments and appropriately integrated into the base model.

The goal here is to provide better modularity which improves the maintainability of

models.

Since our focus here is the consolidation of a set of related models to build a general

reference model, i.e. merging, the last two approaches will not be considered further. As

mentioned earlier, creating a reference model out of a set of existing analysis (design)

models involves many issues. In the following subsections we elaborate on these issues

and show how they have been treated in the literature.

3.3.1 Detecting Overlaps (Commonalities) and Differences (Variations)

A fundamental operation towards efficient consolidation mechanisms is to have an

efficient detection mechanism to identify the commonalities and the variabilities among

the models to be merged. There are two main research streams in this area: (1) the

development of similarity measures (matchers) that adequately capture all the necessary

information about the models to be merged; and (2) the development of efficient

26

matching algorithms that use the similarity measures to identify identical, similar, and

different elements of the models to be merged.

� imilarity measures: there exist a number of similarity measures which can be

classified based on the information they capture (Universal Index [43], Name [33, 36, 41,

50, 104], structure [18, 33], layout [50], semantic or role [33, 36], and behavioral

[18]*[50]), the level of the abstraction (schema-level [55] and instance-level [18, 33, 36,

41, 43, 50, 104]), and the level of granularity (element-level [18, 33, 36, 41-43, 50, 104]

and structure-level [36, 41]).

Matching algorithms: Work in this direction can be classified into: Tree-based [110],

Heuristic-based [33, 78], Clustering [41] and iterative [43]. Also some matching

algorithms can be either exact match [43, 60, 111, 112] or approximate match [18, 33, 50,

61].

3.3.2 Modeling Variants

As mentioned earlier, models overlap in some elements and vary in others.

Overlapped elements are unified in the generic consolidated model while variants require

some mechanisms to track them, understand their differences, and to be synchronized

over time. Work in this direction can fall in two classes: (1) Modeling the variants within

a single consolidated model, which forms a super set capturing commonalities and

variations among the set of input models [18, 33, 36, 41-43, 50, 103, 104]; and (2)

Keeping the variants as separate model fragments [46] .

* Just a concept, no defined measure

27

Modeling the variants within a single consolidated model (also known as Negative or

Annotative variability): In this approach, the consolidated model is characterized by

incorporating variation points to distinguish the parts that are common to all variants

from those that are specific to certain variants. The idea is to minimize the effort of

developing and maintaining model variants by working on a single artifact ¾ the

consolidated model ¾ rather than on each variant separately, and then configure the

consolidated model via its variation points, so as to obtain one of its input variants when

needed. The key issue in this approach is how to represent the variation points. Various

approaches exist in literature: (1) using configurable nodes [74, 113]; (2) marking

elements with stereo-type or specific notations [18, 33, 36, 42, 50, 103]; (3) using aspect-

oriented principles [108, 114, 115], (4) Using feature model notation [33, 104], (5) using

abstraction [18], and (7) through ordered sequence of changes (_) applied to the original

model [41, 43], etc.

� odeling variants as separate model fragments (also known as Positive or

Compositional variability): in this approach variants are modeled as separate model

fragments with mechanisms to track their commonalities [46] .

3.3.3 Merging Approaches and Algorithms

Model merging is a mechanism of combining a collection of variants into a

consolidated single model. The goal of any merging algorithm is to combine the input

models in such a way that their overlaps are unified to minimize the redundancy among

the input models. Merging implies that a comparison of the corresponding elements has

been already performed, similarities have been assessed, and rationales for their further

treatment have been derived [37]. Work in this direction can be classified into two

28

approaches: (1) Bottom-Up-Top-Down approach [33, 36, 42, 43, 104]; (2) Bottom-Up

approach [18, 41, 50].

Bottom-Up-Top-Down merging: In this approach the merge is performed by the set union

of the elements in the input models (Bottom-Up). In other words all the elements in the

individual models are presented in the consolidated model. Additionally, it should be

possible to generate each one of the input models from the consolidated model (Top-

Down). For example, in [33] a Union-merge is proposed to construct the consolidated

model. Additionally, to allow the instantiation of each input model from the consolidated

model, a mapping function (s) is used to map each element in the input model Mi to its

corresponding element in merged model M, and a reverse mappings (s1 and s2) are used

to do the reverse (i.e. from M to Mi). In [43] merge is done through Delta, and

instantiation is done through the inverse of Delta. In [42], merge is done through disjoint-

set, and then refined using category-theoretic concepts like interconnection diagram and

an algebraic concept called colimit. To provide the ability to generate the input models

from the merged model, a detailed annotation mechanism (annotation-set) is used. In [41]

(scenario 1), although a mechanism is presented to evolve the reference model with the

aim to keep it with minimum distance from the variants, the variants need to be traced

directly to the evolved reference model. Additionally, in scenario 2, the variants are

clustered based on their frequency which compromises some of the variants, making

instantiating the exact original instance from the reference not possible.

Bottom-Up merging: In this approach the focus is only the merge (Bottom-Up) while

replaying the process downward is not considered or guaranteed. For example, in [18] the

29

merged model is refined to become more abstract using identity and similarity degree

threshold. However, no mechanism is provided in the backward direction.

In [41], the activities are clustered based on similarity of their relations with other

activities over the different variants. Furthermore, the order relation between two

activities to be clustered is determined by the relation that has the highest frequency in

the different variants. This results in ignoring less frequent ordered relation in the

consolidated model, making tracing the corresponding variant difficult.

3.3.4 Model Assumptions

One of the issues of models’ consolidation is the assumption made about the input

models. Different approaches differ in the assumption they make about the model, where

models are assumed to be: alternatives of the same system [36, 42, 50], multiple view

with the same parent node [104], related products [18, 33], and derived from original

model by a sequence of operations [41, 43].

3.3.5 Artifacts and Modeling Language Considered

Software development involves different artifacts that represent different system

perspectives at different level of granularity. The artifacts that are considered by the

different approaches are: Statechart only [33, 36, 50], class diagram only [43], statechart

and class diagram [18], class diagram and sequence diagram [39], feature model [104],

goal model and entity relationship diagram [42], process models (activity diagram) [41],

etc.

As per the modeling languages for representing the software development artifacts,

the matching and merging approaches can be applicable to more than one modeling

30

language [33, 36, 41-43, 50, 55, 112] while other approaches are specific to particular

modeling language [18, 104]. In the former approaches, models are often represented as

generic graphs. This representation makes the match/merge operator generic enough to be

applied to different modeling languages. However, these approaches make it difficult to

reason about the semantic properties of the merged model. Unlike the generic merge

operators, the specific merge operators (often represented as specific graphs) provide a

direct basis for reasoning about preservation of semantic properties during merge.

3.4 Matching: Technical Aspects

In this section we compare the different matching approaches in terms of the

information used in the analysis and assessment of the similarities and differences, as

well as the algorithms used for matching.

3.4.1 Granularity of Matching

Matching can be performed at various levels of granularity, e.g. element-level and

structure-level matching [116]. In the element-level matching, a match is to be found

between elements of a model and elements of another model [61]. Structure-level

matching, on the other hand, refers to matching a fragment of a model (combinations of

elements) with fragments of another model. A well-known example of the latter is the

detection of design patterns within the design models [117-119].

3.4.2 Identification of Similarities

Similarity between models can be assessed using different strategies and similarity

information. This similarity information can be classified into:

31

Identification of Typographic Name Similarities: This is a label-based (textual)

comparison of two names to decide whether they are the same or not. However, two

situations are common: 1) having two different elements with the identical names; 2)

having two identical elements with textually different labels. Therefore, considering only

typographic similarity to decide whether two elements are identical or not might lead to

wrong matching. Consequently, this strategy should be combined with other strategies to

get more accurate matching [33, 36, 104].

Identification of Lexical Name Similarities: Measures the similarity between name

labels based on their linguistic correlations. This can be done through two approaches: 1)

building a specific electronic synonym dictionary; 2) using one of the freely available

dictionaries like WordNet [120]. This can solve the second problem faced in the context

of the typographic similarity measure. However, the first problem is still present.

Identification of Layout Similarities: The main purpose of layout similarities is to

identify similar elements based on their relative positions. For example, in [104],

elements must be at the same level to be compared. Although, this measure is so

restrictive and may result in non-optimal matching, it is desirable in some situations.

Therefore, this strategy should be combined with other strategies to get more accurate

matching. In [33] all nodes and edges are rooted to the same root, thus layout is not

preserved. In [104], for the elements to be compared they must be in the same level and

share the same parent.

Identification of Semantic Similarities: The exact definition of semantic similarities

might be different from context to another, but, in general, the sense of this similarity

32

measure criterion is that elements are compared with respect to their roles, functionalities,

or their purpose. Identification of semantic similarities is the most frequently used

complex strategy.

Identification of Structural Similarities: With the structural similarity, elements are

compared based on their structural properties, such as their relationships to other

elements, the cardinality of fan-in and fan-out interactions with other elements, etc.

However, it is often that elements may have the same structural similarity, but different

functionality. Therefore, structural similarities were rarely identified explicitly; they were

often used to support the other strategies, especially semantic similarities [33].

Identification of Behavioral similarity: with behavioral similarity elements are

compared based on their execution semantics. Rubin and Chechik presented just the

concept in this regard without proposing any metrics [18].

Identification Universal Index similarity: In this strategy, elements are compared

based on a universal index. For example, in [43] elements are mapped based on universal

index.

3.4.3 Handling Conflicts

Conflicts in similarity assessment are common. For example, two identical classes

can be mapped to some other classes by different relationships. These conflicts need to be

investigated and resolved. Their resolution can be in different ways: modeling them as

alternatives (if different), merging them (if they are the same), introducing generalization

(if they are parts of missing whole), favoring one over the other, etc. Guided by [37], we

can list the following possible conflicts. These conflicts should be resolved in a way that

33

preserves their semantic and identity, meanwhile their representation in the merged

model is efficient.

Handling Name conflicts: Name conflict occurs when two design elements

representing the same underlying concept have different names in the input models. This

can be detected through other tests that are not based on name similarities. The element in

the merged model can be named randomly from the available names in the input model,

or using some preference mechanism.

Handling structural conflicts: Structural conflict occurs when two design elements

representing the same underlying concept have different structural properties. This can be

detected through other tests that are not based on structural similarities. Resolution can be

through some mechanisms like rule-based or frequency (voting).

Handling semantic conflicts: semantic conflict occurs when two design elements

representing the same underlying concept have different semantics. This can be detected

through other tests that are not based on semantic similarities. Resolution of this conflict

can be additive (maintaining both conflicting elements) [36], or compromised (using

some preference mechanism or rule-based) [104].

Handling layout conflicts: Layout conflict occurs when two design elements

representing the same underlying concept have different depth. This can be detected

through other tests that are not based on layout similarities. One way to handle such a

conflict is through generalization.

Handling behavioral conflicts: Behavioral conflict occurs when two design elements

representing the same underlying concept have different execution behavior. This can be

34

detected through other tests that are not based on behavioral similarities. One way to

handle such a conflict is through frequency, another way is through annotated branching

[18].

Handling missing (unmatched) conflicts: Missing conflicts occur when an element

exists in only one input model, but not in the others. Missing elements can be handled in

many ways. One way is to just add the elements that do not match in other models to the

consolidated model [36]. Another way for those elements is to be compromised through a

rule-based [104] or similarity-based [18] mechanism. A trade-off may result in a different

semantic representation in the merged model.

Handling Design conflicts: Design conflicts occur when the same concept is

modeled differently. For example, a system feature can be modeled differently in two

different models. Another example, the same feature can be modeled at different level of

details in the two different models. Third, a system feature can be modeled by one design

element in one model while distributed over different design elements in other model.

One way to handle such conflict is through three-way merging. Another way is through a

well-known optimal solution (e.g. design patterns) for such system feature.

Considering multiple system views: Software development involves a set of diagrams

to model different aspects of systems; for example, functional, structural, and behavioral

aspects. These diagrams should be consistent with each other and the information

available in one diagram should help in discovering the missing information in the other

diagram. Having a matching (merging) algorithm that considers the information available

in these different views of the system will make the result of match (merge) more

35

accurate. In this regard, work in the literature can be classified into those matching

(merging) mechanisms who consider only one view [50, 60, 61, 101, 111, 112], two

views (structural and behavioral) [18], and three views.

Similarity levels: Similarity levels refer to the number of levels to which the

similarity scoring is graded. It is the number of thresholds between grades plus one. For

example, in [18] there are two levels (identical, similar) while in [41] there is only one

similarity level (similar).

To recap, Table 1 summarizes and compares different approaches proposed in the

literature in terms of the similarity information used for matching software artifacts. Our

proposed metrics are indicated in the last row of the table.

Table 1. Matching Approaches: Similarity Information Used

T
yp

og
ra

ph
ic

 s
im

ila
rit

y

Le
xi

ca
l s

im
ila

rit
y

S
tr

uc
tu

ra
l s

im
ila

rit
y

S
em

an
tic

 (
R

ol
e)

 s
im

ila
rit

y

La
yo

ut
 S

im
ila

rit
y

B
eh

av
io

ra
l s

im
ila

rit
y

U
ni

ve
rs

al
 In

de
x

V
ie

w
s

co
ns

id
er

ed

M
at

ch
in

g
gr

an
ul

ar
ity

M
at

ch
in

g
A

bs
tr

ac
tio

n

T
oo

l s
up

po
rt

A
rt

ifa
ct

Fam12[36] � * ´ ´ ´ ´ ´ ´ 1 E/S I � State Machine
Ayd11[104] � * ´ ´ � � ´ ´ 1 E I ´ Feature model
Ala03[43] � � � � ´ ´ � * 1 E I ´ Class diagram
Nej07[50] � � ´ ´ � � ´ 1 E I � State Machine
Li11[41] � * ´ ´ ´ ´ ´ ´ 1 E/S I � Activity

Rub10[18]** ´ ´ � ! ´ � ´ 2 E I ´
Class + State
Machine

Rei10[39] � � � � ´ � ´ 3 E I � Class + Sequence
Our ´ � � � ´ ´ ´ 1 E I Class
 E

S
 I

Element
Structure
Instance of model

�
´
!

Property is supported
Property is not supported
Implied

*
?
**

Main measure
Under some conditions
Just conceptual

36

3.5 Merging : Technical Aspects

In this section we compare the different merging approaches based on the following

criteria:

Dealing with weak variants: Weak variants can be at fine-grained level (e.g., model

elements) or coarse-grained level (e.g., model variants). A variant is weak in the sense

that it has low preference value or weight under some evaluation mechanism. For

example, in [41] variants are weighted based on the number of instances that were

created from each one of them. Dealing with such variants can be through adding them to

the consolidated model [36, 43] or they can be compromised through some mechanism

[41, 104]

Noncritical Differences: Noncritical difference between the elements of the input

models can be either modeled as variants [36, 42, 50], or compromised by rule-based

mechanism [104], or based on threshold [18]. In the later approach weak elements might

not be represented in the consolidated model. This may make the instantiation of some

variants from the consolidated model difficult or even impossible.

Way of merge: Merge can be either two-way merge or three-way merge. A two-way

merge compares two models and merges them into a single model. A three-way merge,

on the other hand, requires access to a baseline model (or fragment) that serves as a

reference to both models.

Completeness: If an element appears in one of the source models, it must be

represented in the merged model as well. This is to ensure that information in the source

models is preserved in the consolidated model. This property is assured by some merge

37

algorithms [36, 42, 43, 50], but not assured by others [18, 104]. In [104], this property is

not assured, because when resolving the conflicts through some rules some variants

might be compromised, thus not represented in the merged model. In [18], reducing the

complexity of the merged model, through a reduction of similarity and identity threshold,

results in missing information about the source variants.

Non-redundancy: If an element appears in more than one source model, only one

copy of it is included in the merged model. For example, this property is assured in [18,

36, 42], but not in [43, 50, 104]. For example, in [43], redundancy comes from the fact

that identical elements with different IDs cannot be detected as identical, and thus more

than one copy of the same element can appear in the merged model. In [50], the

definition of the shared transition similarity is conservative. This may result in redundant

transitions.

Minimality: Merge must not introduce new information, which is neither present nor

implied by the source models. This property may be in contradiction with the conflict

resolution mechanism, where information may be added or deleted to resolve conflicts.

Totality: Merge can be performed for an arbitrary set of models. This property is of

particular importance if one wants to tolerate inconsistency between the source models.

For example, this property is assured in [36, 42, 50], but not in [41, 43]. For example, in

[43], this is not assured due to the fact that source models are assumed to be derived from

an original model by a sequence of changes.

Soundness: Merge must preserve the semantic properties of the models to be merged.

This property is assured in [36, 43, 50], but not in [18, 42, 104]. In [42, 104], this

38

property is not usually preserved as it depends on the rule of merging different level of

knowledge. In [18], the merge process is iterative, and in each iteration the merged model

gets more abstracted, resulting in losing more semantic information. In [50], the merge is

behavior-preserving. However, preserving the static semantic is not guaranteed.

To recap, Table 2 summarizes and compares different merging approaches proposed in

the literature.

Table 2. Merging Approaches

C
om

pl
et

en
es

s

T
ot

al
ity

T
ar

ge
tin

g
R

ef
er

en
ce

D
ea

lin
g

w
ith

 w
ea

k
va

ria
nt

s

U
nc

rit
ic

al
 D

iff
er

en
ce

s

In
st

an
tia

te
-a

bi
lit

y

P
ro

of
 o

f c
on

ce
pt

 to
ol

Fam12[36] � � ´ A A ´ �
Ayd11[104] ´ ´ ´ RB RB ´ ´
Ala03[43] � ´ ´ A A � ´
Sab06[42] � � ´ ´ A � �
Nej07[50] � � ´ ´ A � �
Rub10[18] ´ � � ´ M ´ ´
Li10[41] ´ ´ � RB M ´ �
Rei10[39] ´ � � RB M ´ �
Our � � � A A � �
Keys: �

´
*

Supported
Not Supported
Behavioral preserving

A
RB
M

Additive
Rule-Based
Metric threshold

3.6 Summary

As we have seen in this chapter, the task of building a reusable reference model out of

a set of input models is not a trivial task and many issues are involved. Models to be

consolidated needs to be cohesive enough, commonality and differences between their

elements must be accurately identified, conflicts must be resolved, and commonality and

differences must be explicated in a way that encourages as-is reuse. Different researches

tried to approach the problem, with different intentions, considering different types of

39

information, and using a variety of algorithms. However, there have not been enough

attention paid to address the problem of automatically consolidating a given a set of

analysis (design) models representing different applications (instances) in a domain into a

reference model that represents the input models and promotes as-is reuse. Most of the

works are entirely conceptual [18, 19, 37]. Others are directing the consolidation process

towards some specific goals like resolving conflicts [36], versioning [43], rather than

building a reusable reference model. Even those works who had the intention of the

reference [39, 41] they focus on building the core assets in the reference while

compromising the variants during merging. This will require an instantiation effort and

the involvement of the experts during the instantiation [92].

40

4 CHAPTER 4

PROPOSED FRAMEWORK

4.1 Introduction

This chapter gives a conceptual description of the proposed solution framework for

generalizing a set of input models into a reference model. Throughout the chapter we will

be focusing on the big picture of the framework rather than the finer-grained details,

which will be thoroughly presented in the following chapters. Section 4.2 lists our

research questions and objectives. To give a better understanding about the interaction of

its component, the framework is described through an illustrative example, which is

introduced in Section 4.3. The framework components are explained with the help of the

illustrative example in Section 4.4. The chapter is summarized in Section 4.5.

4.2 Research Questions and Objectives

The objective of this thesis is to develop a reference model that captures the

commonalities and variabilities across the different class analysis and design instances in

a domain, so that the consolidated model offers the reuse potential across the different

models while maintaining the complexity at the level of a single model.

Towards this objective, this thesis, specifically, addresses the following research

questions:

1. How can UML structural models be consolidated into a reference model that

represents them best?

2. What metrics are needed to identify commonalities and variabilities across

different input models?

41

3. What algorithms can be used for matching the elements across the input models?

4. How can the generalization algorithms handle the different similarity levels across

the input instances and at different level of granularity?

5. How can the commonality and the variability between the elements of the input

models be represented in the reference model at different level of granularity?

6. Does the reference model improve the opportunity of reuse?

Table 3. Handling the Research Questions throughout the Thesis’ Chapters

C
ha

pt
er

 1

C
ha

pt
er

 2

C
ha

pt
er

 3

C
ha

pt
er

 4

C
ha

pt
er

 5

C
ha

pt
er

 6

C
ha

pt
er

 7

Chapter8

S
ec

tio
n

 8
.5

S
ec

tio
n

 8
.6

S
ec

tio
n

 8
.7

S
ec

tio
n

 8
.8

Research Question 1 �
Research Question 2 � � � �
Research Question 3 � � � �
Research Question 4 � � �
Research Question 5 � � �
Research Question 6 � �

4.3 Illustrative Example Description

Figure 1 shows the class diagrams of four instances of a simplified flight booking

systems adopted from [44]. The models have been kept deliberately simple for clarity,

but we believe that they are sufficient enough to convey how the different components of

our proposed framework are applied to these instances to generate the reference model.

Being different instances within the same domain, they share commonalities and

maintain some differences among them. For example, inspecting the four instances we

find that all the models have a class called either “Airlines” or “Airways” representing

the same underlying concept or real world object (Airlines’ company).

42

(a) Model M0 (b) Model M1

(c) Model M2

(d) Model M3

Figure 1. Input Models Representing Four Different Applications of Flight System

The textual difference between the words “Airlines” and “Airways” should not make

the two words as dissimilar, because they carry the same meaning and refer to the same

underlying concept. However, looking deeper to “Airlines” or “Airways” class over the

four instances we can see some differences here and there. For example, considering the

class attributes and their data types, the attributes “name” and “address” are common in

all the instances. This is not the case with other attributes, e.g. “type” and “route”, which

show up in some instances but not in the others. Some other slight differences can also be

C0
0

C2
0

C6
0

C1
0

C5
0

C3
0

C4
0

C0
1 C1

1 C2
1

 1
7C

C4
1

C5
1

C6
1

C3
1

C2
2

C5
2

C3
2

C7
2

C4
2

C6
2

C0
2 C1

2 C0
3

C2
3 C1

3

C5
3

C3
3 C4

3

43

observed considering the class methods and their parameters*, and also when considering

the class neighborhood.

Commonality and differences between the instances can be at different level of

granularity (classes, relationships, attributes, methods, data types). Differences can be

classified as either variants or optionals. Variants represent the design differences for the

same underlying concept. It is present, with some design differences, in all the instances.

For example the class “Flight” of M2 (also of M3), modeled in M0 (also in M1) as two

classes “Scheduled Flight” and “Offered Flight”, reflecting the fact that they are two

variants representing the same underlying concept. However, the class “Terminal” exists

only in M1 and M2 but not in the other instances. Therefore, it is considered as optional.

The classes in the different models are labeled with the notation � �
� , where the

subscript x indicates the class index while the superscript y indicates the model index.

This notation will be used throughout the sequel to refer to the corresponding class.

Figure 2 depicts the reference model which is the targeted output of our framework.

In the reference model, common elements are unified, variants are represented as

alternatives under variation points (e.g. VP0), and optional are represented as different

options under the optional points (e.g. OP0).

* Methods parameters are not shown in the diagrams for the sake of making the diagrams simple to show
the big picture.

44

Figure 2. Reference Model for the Simple Flight Booking System

Legend:
<<x>> class index in the reference
<x:x:x:x> instance tag vector, 1 means that the element is present in the instance; 0 otherwise.
cc: Cx – Cy:i, a tag indicates that the relationship is between two common classes, Cx and Cy; i is the index of the relation between the

two classes.
cv: VPx.Vx.Cx– Cy:i, a tag indicates that the relationship is between two classes the common class Cy and the variant class Cx which

belongs to variant Vx in the variation point VPx.
co: OPx.Ox.Cx– Cy:i, a tag indicates that the relationship is between two classes the common class Cy and the variant class Cx which

belongs to variant Vx under the variation point VPx.
vo:VPx.Vx.Cx - OPy.Oy.Cy : i , a tag indicates that the relationship is between two classes the common class Cy and the variant class Cx

which belongs to variant Vx in the variation point VPx.
X*-VPx.Vx.Cx – X*, class Cx can be linked with any relation connected to the variation point VPx and have the exact sequence

“VPx.Vx.C x ” as part of its cv Tag. Used along with the instance Tag for tracing RM elements back to their original instances.
X*-OPx.Ox.Cx – X*,: class Cx can be linked with any relation connected to the optional point OPx and have the exact sequence

“OPx.Ox.Cx ” as part of its co Tag.
/ OR; e.g. Xx/y either Xx or Xy
. indicates hierarchy;

45

4.4 Solution Framework

Figure 3 depicts an exemplified framework of the proposed solution. Developing a

reference model out of a set of input models consists of the following sequence of

activities:

(1) Parsing the input models to extract their information.

(2) Assessing the degree of similarity between the input models, in pair-wise manner.

(3) Matching the most related elements of the input models, in pair-wise manner, so that

identical, similar, and dissimilar elements are identified.

(4) Filtering out unrelated models, so that the reference model is cohesive enough.

(5) Generalizing the input models by unifying their overlaps and explicating their

differences in a single reference model.

The aforementioned activities can be renamed, respectively, as parsing, comparison,

matching, filtering, and merging. Parsing and filtering are considered as preprocessing

activities performed at different phases in the framework and they are pre-requisites for

the activities following them. Comparison, matching, and merging are the three main

activities in the framework, where comparison is a pre-requisite for matching, and

matching is a pre-requisite for merging.

4.4.1 Parsing the Input Models

In this preprocessing task the input models, given as XMI files, are parsed to extract

their information. We developed a Java-based parser that takes the XMI file(s), as input,

and produces, as output, the model information to be used as input to the similarity

assessment algorithms, i.e. the comparison algorithm. The parser supports two visual

modeling tools, Altova and ArgoUML.

46

Figure 3. Reference Model Consolidation Framework

4.4.2 Similarity Assessment: Model Comparison

Given the models’ information for n input models, as produced by the parser, the

similarity between the classes of each pair of models, Mk and Mk+l (where 0̀ k < k +l ` n-

1), is assessed and represented as similarity scores in a two dimensional elements

similarity matrix, ES, whose entry ESi,j represents the similarity between the class ci of

model Mk (denoted as ci
k) and the class cj of model Mk+l (denoted as cj

k+l)*. Figure 3

depicts an example of the ES matrix as an output of the comparison stage and input to the

matching stage.

* Note that throughout the sequel we use the notation ci

k to refer to a class within a model , where the
superscript denotes the model index while the subscript denotes the class index

47

4.4.3 Staged Model Matching

During the matching, elements of each pair of models are mapped in pair-wise, based

on their similarity scores, so that elements representing the same underlying concepts

should be matched together. Due to the possible design difference that may exist between

any two models Mi and Mj, it is possible that an element from Mi, representing certain

domain concept, can be matched to either one or more elements from Mj, representing the

same domain concept. For Example, referring to Figure 1, the class “Flight” of M2 is

modeled as two classes (“Scheduled Flight” and “Offered Flight”) in M0. Since the one-

to-one matching will match the class “Flight” to only a single class from M0, this design

difference will not be fully captured, i.e. the class “Flight” will only be matched to either

the “Scheduled Flight” class or the “Offered Flight” class. Therefore we propose a 3-

stage matching mechanism.

Given the ES matrix as produced by the model comparison algorithm, the first stage

matching algorithm (detailed in 6.2) finds the best match between the elements (classes)

of the corresponding pair based on their similarity scores in the ES matrix. In this stage of

matching, each class in the smaller model (the one with less number of classes) is

matched exactly to one class in the other model of the pair. Genetic Algorithm (GA),

Simulated Annealing, and greedy heuristics, to be detailed later, are used to make this

match optimal. The optimality in this context means that each class in one model is

matched to its most similar class in the other model. The output of the matching

algorithm is the Matching Similarity Matrix, referred to in Figure 3 as MSM Matrix.

Those classes, not passing an arbitrary one-to-one similarity threshold, go through the

second-stage matching algorithm, detailed in Section 6.3, where a single class from

48

certain model (say Mi) can be matched to many classes in another model (say Mj).

Although in this stage a single class of one model of the pair can be matched to multiple

classes in another model, it does not capture the situation where multiple classes in one

model (representing certain domain concept) are matched to multiple classes in another

model (representing the same concept). Therefore a third stage similarity assessment is

proposed to handle such situations, where the residuals (classes not mapped yet) are to be

added to the most appropriate class group based on their contribution to the improvement

of the similarity scores. Detailed description about third stage similarity assessment

algorithm is given in Section 6.4. Since the matching in the second and the third stages

involves a group of classes matched to a single class or another group of classes, we refer

to such matching as a class-group matching.

Doing the matching in a staged way has threefold objective. First, it distributes the

search space of matching over the three stages. This will reduce the matching complexity.

Dealing with models representing instances within the same domain is expected to have

high commonality, and thus the matching of the majority of the elements will be done

within the first matching stage in a polynomial time, which is also followed by another

polynomial time matching stage. Therefore, only few residuals will be investigated in the

third stage, which is more complex, yet still polynomial. This is actually the gain of the

staged matching algorithm, i.e. reducing the time complexity through stage matching.

Second, the staged matching gives the ability to use the appropriate similarity metrics

and matching algorithms in accordance with the objective of each stage. For example, in

the first stage the focus is to find class-to-class match, i.e. in each pair of models (Mi, Mj)

each class in the smaller model (say Mi) will be matched to exactly one class in the

49

larger model (say Mj). This also means that the similarity between the classes to be

matched should be based on the information that characterizes a single class (e.g. class

name, class attributes and their data types, class methods and their signatures) rather than

a group of classes, which is the case in the second stage. Therefore, the neighborhood

information, despite its importance, may not add much to the similarity between the two

matched elements, especially if we consider its cost. This last statement, as will be

demonstrated by our empirical investigation, is especially true when the matched models

are within the same application domain. On the other hand, in the second stage, the

importance of the neighborhood information is emphasized, where the elements are

matched based on their internal characteristics (i.e. attributes along with their data types,

and methods along with their signatures) as well as their surroundings (i.e. neighbor

name, relation name, and relation type).

Third, since our ultimate goal is the consolidation of the input models to a single

reference model which unifies their commonalities and explicates their differences,

staged matching allows us to perform matching with an eye on merging activities, where

each matching activity can be aligned with an activity in the merging phase. For example,

in the first matching stage classes are matched on one-to-one basis. Highly similar classes

means that the two classes are almost identical. This means that they can be represented

as a single class in the reference model. The job of the merging algorithm then is to watch

for this commonality across all the pairs, and also to deal the lower granularity of

commonality and differences.

To explain the concept of the staged match with example, let Table 4 represent the ES

matrix between the classes of M0 and M2. Note that in the table we present the class

50

notation (Cx
y) as well as the class name. In the discussion sometimes we will use the class

notation rather than the class name unless it is necessary to mention the class name for

clarity.

Table 4. ES Matrix, Pair-wise Similarity Between M0’s Classes and M2’s Classes

 Model M2

A
irl

in
e

F
lig

ht

A
irp

or
t

R
es

er
va

tio
n

T
ra

ve
le

r

T
er

m
in

al

P
la

ne

G
at

e

 � 	

 � �

 �

 � �

 �

 � �

 � �

 � �

M
od

el
 M

0

Airway C0
0 ����� ����� ���� ����� ����� ��		� ���
� ���� �

Scheduled Flight C1
0 ����� ���	� ����� ����� ��	�� ���� ��	�� ��	
 �

Airdrome C2
0 ���� ��	
� ����� ���� ��	�� ����� ����� ��	� �

Reservation C3
0 ����� ���� ��	�� ��
�� ���� ��	�� ����� ��� �

Traveler C4
0 ����� ��		� ��		� ����� ����� ��	� ��	�� ���� �

Offered Flight C5
0 ����� ���� ����� ����� ���� ����� ��	�� ���� �

Airplane C6
0 ���	� ��	� ���
� ��	�� ���
� ���
� ��
�� ��	� �

When ES matrix has been given to the matching algorithm, it matched the classes as

depicted in MSM Matrix (Table 5). The similarity values of the matched classes are also

shown in MSM Matrix. As shown in the MSM matrix, some pairs are matched with high

similarity scores while others are matched with low similarity scores. For example, the

“Flight” class (C1
2) of M2 is matched to the “Scheduled Flight” class (C1

0) of M0 with a

similarity score of 0.52. This is relatively a low similarity score. We can also notice that

the “Gate” class (C7
2) of M2 is matched to the “Offered Flight” class (C5

0) of M0 with

similarity score of 0.37. The former match (i.e. C1
0 to C1

2) is partial while the later (i.e.

C5
0 to C7

2) is totally wrong match. This fact is reflected in the corresponding similarity

scores of the two matches. These two low scored matched pairs will be filtered out by the

first stage similarity threshold, as not appropriately matched, and they are passed to the

second matching stage.

51

Table 5. MSM Matrix, the Matched Classes’ Similarity

M0 classes C3
0 C6

0 C4
0 C2

0 C0
0 C1

0 C5
0

M2 classes C3
2 C6

2 C4
2 C2

2 C0
2 C1

2 C7
2

Sim. Score 0.97 0.97 0.84 0.83 0.85 0.52 0.37

In the second stage, those elements not passing the one-to-one similarity threshold, in

the first stage, need to be further investigated for potential similarity through more

complex matching process. In this stage a single class from certain model can be matched

to more than one class in another model. In particular, referring to our example, let S0 and

S2 be two subsets of classes in M0 and M2 not passing the first stage similarity threshold,

which is assumed to be usually high so that matched classes passing such a threshold will

be considered as highly similar (or, metaphorically, identical). Assuming a threshold of

0.80, then:

 S0={ C1
0, C5

0 }

and S2={ C1
2, C5

2, C7
2}.

As we can see here, the majority of the classes from the two matched models have

passed the first matching stage threshold. This means that majority of the matching has

been identified by the first stage matching algorithm and only few classes will be

considered by the second-stage matching algorithm.

When S0 and S2 are given to the second stage matching algorithm, it will re-evaluate

their similarity based on their neighborhood information and based on their internal

structure. Table 6 shows an exemplifier of the second stage similarity matrix, called

Group Similarity matrix (GS), between the classes of S0 and the classes of S2. Some

possible grouping is done by combining the information of more than one class into a

single similarity Class-Group. For example, referring to our example, it is clear from

52

Figure 1 that the two classes “Scheduled Flight” and “Offered Flight” of M0, combined,

have exactly the same neighborhood and similar internal structure (attributes and

operations) as the class “Flight” of M2. Therefore, when comparing the similarity of the

two classes, “Scheduled Flight” and “Offered Flight”, combined, against the class

“Flight”, we got a similarity score of 0.76. This is a high similarity as compared to the

similarities obtained when comparing each class alone against the class “Flight”, which

are 0.45 and 0.42 for the classes “Scheduled Flight” and “Offered Flight”, respectively. It

is worth mentioning here that for two classes to be combined, they must be adjacent to

each other. For example, the combination of the two classes “Flight” (C1
2) and

“Terminal” (C5
2) is not applicable (N/A).

Table 6. Second Stage Similarity Matrix (GS Matrix)

 M0 classes/class-groups

 C1
0 C5

0 {C1
0, C5

0}

M
2
cl

as
se

s/
cl

as
s-

gr
ou

ps

C1
2 0.45 0.42 0.76

C5
2 0.10 0.11 0.09

C7
2 0.31 0.46 0.27

{ C1
2, C7

2} 0.45 0.38 N/A

{ C1
2, C5

2} N/A N/A N/A

{ C5
2, C7

2} N/A N/A N/A

The GS matrix is given to the second stage matching algorithm, which is a greedy-

based algorithm whose steps are depicted and exemplified in Figure 4. The intuitive

assumption underlying this algorithm is that a pair of classes/class-groups with the

highest similarity values is the most relevant pair. Given the GS matrix between the

classes / class-groups of two models, the algorithm looks for the highest similarity score,

in the GS matrix, for which the corresponding pair of classes/class-groups are not

matched so far. Then the algorithm matches the corresponding classes/class-group and

53

marks them as matched, conditioning that their similarity score passes the second stage

matching threshold.

 Mj Classes

M
i c

la
ss

es
 C1 C2 C3 C4

C1 0.48 0.38 0.35 0.6

C2 0.57 0.5 0.55 0.89

C3 0.95 0.6 0.61 0.54

(a) Similarity matrix of two
models Mi and Mj

 Mj Classes

M
i c

la
ss

es
 C1 C2 C3 C4

C1 0.48 0.84 0.35 0.6

C2 0.57 0.5 0.55 0.89

C3 0.95 0.6 0.61 0.54

(b) C3 and C1 are matched
first, as they have the
highest similarity
compared to others.

 Mj Classes

M
i c

la
ss

es
 C1 C2 C3 C4

C1 0.48 0.38 0.35 0.6

C2 0.57 0.5 0.55 0.89

C3 0.95 0.6 0.61 0.54

(c) Then,C2 and C4 are
matched, as they have the
highest similarity among
the unmatched classes.

 Mj Classes

M
i c

la
ss

es
 C1 C2 C3 C4

C1 0.48 0.55 0.35 0.6

C2 0.57 0.5 0.55 0.89

C3 0.95 0.6 0.61 0.54

(d) Then,C1 and C2 are
matched, as they have the
highest similarity among
the unmatched classes.

Figure 4. Steps of the Second Stage Greedy Matching Algorithm

Referring to Table 6, and assuming a second stage matching threshold of 0.75, the

algorithm will match the class C1
2 with the class-group { C1

0, C5
0} as they have the

highest similarity value, which also passes the threshold. Since there is no more feasible

match (as there are no more unmatched classes in M0) the algorithm will terminate.

Informal steps of the second stage matching algorithm can be sketched as follows.

1. Evaluate the similarities of the unmatched elements.

2. Do the possible grouping and evaluate the class-groups similarities and

store them in GS Matrix.

3. Apply the greedy algorithm to select the highest GSi,j

4. If SGi,j satisfies the threshold then match the corresponding classes/class-

groups and mark them as matched and go to step 5; otherwise terminate

5. Repeat steps 1 to 4 until no more feasible match.

The formal description about the second stage comparison and matching algorithm

will be presented in the next chapters. It is worth mentioning here that those classes

passing the first similarity threshold are marked in the MSM matrix as highly similar,

54

denoted as “S”, while classes passing the second (and also the third) stage similarity

threshold will be marked as variants, denoted as “V”.

Therefore, the pair of class/class-group (C1
2, { C1

0, C5
0}) will be marked as variants, as

shown in the extended version of the MSM matrix (Table 7).

Table 7. MSM Matrix, the Matched Classes Similarity After 2nd Stage Matching

M0 classes C3
0 C6

0 C4
0 C2

0 C0
0 C0

{1,5} - -

M2 classes C3
2 C6

2 C4
2 C2

2 C0
2 C1

2 C5
2 C7

2

Sim. Score 0.97 0.97 0.84 0.83 0.85 0.76 - -

Sim. level S S S S S V ? ?

The third stage is an extension of the second stage, where each residual class from the

two matched models is considered for combining it with a class group for which the

similarity with the corresponding, already matched, group is improved. In our example,

C5
2 and C7

2 are the only residuals. Since C5
2 is not a neighbor of C1

2 it will not be

considered for combining with it. However, when combining C7
2 with C1

2 similarity

between the resulting class-group ({C1
2, C7

2}) and the class group {C1
0, C5

0} is evaluated

to 0.73 which is less than the similarity between the class-groups { C1
2} and {C1

0, C5
0}.

Therefore the class C7
2 as well as the class C5

2 are considered as unmatched, marked with

“U” in the MSM Matrix (Table 8).

Table 8. MSM Matrix, the Matched Classes Similarity After 3rd Stage Matching

M0 classes C3
0 C6

0 C4
0 C2

0 C0
0 C0

{1,5} - -

M2 classes C3
2 C6

2 C4
2 C2

2 C0
2 C1

2 C5
2 C7

2

Sim. Score 0.97 0.97 0.84 0.83 0.85 0.76 - -

Sim. level S S S S S V U U

4.4.4 MSM Matrix

The MSM matrix is the actual output of the 3-staged similarity assessment and

matching algorithms. It acts as an interface between the matching algorithms and the

55

merging algorithms. As we have seen, during the comparison and matching stages, the

models are matched pair-wise, and based on the similarity thresholds in each of the three

matching stages three levels of similarity among the matched elements of each pair of

models are considered. These similarity levels, are highly Similar (“S”), similar with

Variation (“V”), and Unmatched (“U”). The last row of MSM in Table 8 is depicting the

three similarity levels.

The commonalities and the variabilities between the models of each pair are

identified based on these levels of similarity, where elements with similarity level “S” are

considered as common, elements with similarity level “V” are considered as variants, and

elements with similarity level “U” are considered as optionals.

Having n input instances, the pair-wise matching among these instances will result in

������

 MSM matrices, one for each pair of models. Referring to our illustrative example,

the matching will produce
����

 = 6 MSM matrices to be used by the merging

algorithms.

4.4.5 Filtering out Unrelated Models

As shown in the framework (Figure 3), the next activity after the pair-wise matching

is to filter out unrelated models. The purpose of this preprocessing activity before starting

merging is to filter out those models that can render merging infeasible. Having unrelated

models consolidated to a generic reference model, hurts, in addition to other quality

aspects, the cohesiveness of the consolidated model. Additionally, according to

[121],“…it is worth considering the development of a family of systems when there is

more to be gained by analyzing the systems collectively rather than separately—that is,

when the systems have more features in common than features that distinguish them.”

56

Following such thought, models whose average similarity to the other models is less than

70% are excluded from being merged. We devised an algorithm to filter the unrelated

models, one model at a time; re-evaluating the average similarity of each model to the

others and filtering out the one with the lowest average not passing the threshold. The

filtering process is repeated until the average similarity of each of the remaining models

with other models is above the threshold.

4.4.6 Models’ Merging

The information collected and presented in each of the
������

 MSM matrices about

the matched elements of each pair of models should make building the reference model a

very smooth and straightforward procedure. The basic underlying process for our

proposed merging algorithm can be described, as follows. Common elements in the

reference model are those elements mutually have “S” similarity level across all the pairs

and they are represented by a single class in the reference model. Variants are modeled

through Variation Points (VP) which act as interfaces for their different variants.

Optional elements are modeled through Optional Points (OP) which act as interfaces for

the different optional elements. Each input model has a variant in each variation point,

but it is not necessarily for each optional point to have an optional element for each input

model.

Merging is performed in two phases. Each phase is implemented in a staged manner.

The focus of the first stage is to perform preliminary merging at the class level, producing

a reference model preliminary catalog (RMPC) in which all the common, variant, and

optional classes are identified across all the instances. The RMPC acts as a foundation for

57

the second phase in which the union merge is performed at the level of attributes,

methods, and relationships. The output of the second stage is the reference model catalog

(RMC), from which the reference model, exemplified in Figure 2, is produced. Detailed

description about the merging algorithms in both phases will be the focus of Chapter 7.

4.5 Summary

In this chapter we conceptually, with an illustrative example, stepped through the

different components of our proposed solution for building a reference model out of a set

of instances. The focus of the chapter was to draw the whole picture of the proposed

solution framework and provide the reader with the conceptual roadmap before diving

into the technical details which are the focus of the next chapters.

58

5 CHAPTER 5

SIMILARITY ASSESSMENT

5.1 Introduction

A fundamental operation towards efficient consolidation mechanisms is to have an

efficient identification mechanism to identify commonalities and differences among the

different instances to be merged. This identification task is time consuming and error-

prone, especially when we have a large number of instances and/or of large size. It is

error-prone due to the fact that these models, while representing similar functionalities,

are modeled independently by different developers, and thus inconsistency, design

differences, and intra-conflicts are expected. Therefore, their similarity and differences

must be accurately quantified to have an accurate identification. The task is time

consuming due to the fact that finding the similarity of two models is commonly referred

to as model matching which is a kind of graph matching problem known as combinatorial

problem [122]. Therefore, an efficient comparison algorithm is required to obviate this

complexity of the brute-force method and meanwhile provide near (if not) optimal

solution. In this chapter we will cover the first facet of the problem, i.e. the issues related

to the similarity metrics. The second facet of the problem, i.e. the complexity of the

matching algorithms, will be covered in the next chapter. This chapter is organized as

follows. In Section 5.2 we discuss the different similarity aspects related to model

comparison. Technical definitions for the similarity metrics are presented in Section 5.3.

Section 5.4 lists the class level metrics. Tool support for the model comparison is

outlined in Section 5.5 followed by the chapter summary in Section 5.6.

59

5.2 Similarity Aspects

As mentioned in the previous chapter, comparison is a pre-requisite for matching, and

matching is a pre-requisite for merging [123]. Model comparison is the task of assessing

or quantifying the degree of the similarity between the elements of the compared models

[52, 53]. Crucial to an efficient similarity assessment is to have a set of similarity metrics

that considers the various aspects of the compared models, thus their overlaps and

differences are best quantified. Toward this aim, we use three types of similarity

information: shallow lexical information (also called shallow semantic [124] or coarse-

grained [37]), internal information (also called deep semantic [124] or fine-grained [37]),

and neighborhood information. The shallow lexical information is used to measure the

lexical naming similarity between the compared elements (classes). The internal

information is used to measure the element’s properties (i.e., attributes) and behavior

(i.e., operations) similarity. The neighborhood information is used to measure the

similarity of the compared elements based on their structural relationships with their

neighbors.

Using either of this information individually to capture the similarity between the

elements of the compared models may not usually lead to an accurate assessment. For

example, two classes may have similar names, but they may totally have different

properties and behavior, and vice-versa [37]. Therefore, relying on the naming similarity

may not be enough to decide whether two classes are similar or not. Additionally, when

the models to be compared are within the same domain, we expect the lexical similarity

score between the names of the compared elements to reflect, to some extent, their real

60

similarity. However, this might not be the case when the compared models are across

domains, as each domain has its own ontology.

Similar argument can be said when relying only on the internal information. The

confounding effect of generic attributes (e.g. name and ID) and generic methods (e.g.

setters and getters) can misleadingly affect the accuracy of the metrics in capturing the

actual similarity between the elements of the compared models. This ultimately will lead

to a wrong match. This can also happen when relying only on the neighborhood

information, as two dissimilar classes from two different models may have similar, or

even identical, neighbors, and vice-versa.

Using a combination of these similarity information provides complementary insights

about the compared elements and allows us to consider different similarity aspects at the

same time, and thus it is expected to result in a more accurate assessment. However, one

of the main issues of the compound metrics is the weights assigned to each constituent of

the metric [125].

5.3 Similarity Metrics

The similarity between models is quantified using a set of similarity metrics. The

values of these metrics are computed based on the information collected from the

compared models. In all of the metrics, concepts (classes’ names, operations’ names,

attributes’ names, and names of the relations between classes) are compared based on

their semantic similarity (e.g. synonyms, hyponyms*) according to the WordNet [120] is–

a hierarchy of concepts. Relation types (as part of neighbor information) are compared

using the similarity information presented in Table 10, which is inspired from [45].

* e.g. tree (more specific) is a hyponym of plant (more general).

61

An alternative way for comparing two strings would be to use their edit distance, the

minimal cost of operations to be applied to one of the string in order to obtain the other

one. However, this approach is suitable for measuring similarity between strings that may

contain typos, acronyms, spelling mistakes, etc [126]. It does not help when comparing

two synonyms representing the same concept with different textual strings.

There are a number of measures proposed in the literature to measure the semantic

similarity between two concepts. Some of these measures are based on the notion of

information content [127] while others are based on the path length [128]. Content-based

measures are concerned with how specific a concept is in a given ontology while path-

length measures rely on the distance between two concepts counted as the number of

edges (or nodes) on the path linking the two concepts [129]. The former is influenced by

the corpus used. However, the later measures are independent of corpus statistics, and

thus uninfluenced by sparse data [130]. Path length between two concepts can be

measured in different ways. Some measures consider only the shortest path between the

two concepts while others scale this distance by the depth of the concepts in the hierarchy

[120]. The former approach is simple and successful in measuring the conceptual

distance between two concepts within the subsumption hierarchy of concepts. Its success

even more rationalized within a domain because of the relative homogeneity of the

concepts [131]. However, the proponent of the later approach argue that sibling concepts

deeper in a hierarchy appear to be more closely related to one another than those higher

up [128, 132]. Consequently, to take the advantages of both measures, our similarity

assessment is based on a composed semantic path-based measure that considers both the

local homogeneity as well as granularity of the concepts in the WordNet hierarchy of

62

concepts. More precisely, the composed measure we use is the mean of two of the path-

based measures supported by the WordNet: Path Length and Wu & Palmer, where:

Path Length (PL) between two concepts c1 and c2 is defined as the inverse of the

shortest path between the synsets of the two concepts.

Wu & Palmer (WuP) between two concepts c1 and c2 is defined as:

�������������

��� � ����� � ���� � �
��� � �
�������������
; where c3 is the Least Common Subsummer (LCS) of c1

and c2 in the hierarchy of concepts. Thus, our composed semantic path-based similarity

measure of two concepts, c1 and c2, can be defined as follows:

SSC(c1, c2) = (PL(c1, c2) + WuP(c1, c2)) / 2 (1)

The correlation coefficient between the two path based measures is shown in Table 9.

To avoid repetition, the following facts and definitions are applied in all the similarity

equations and functions presented in this section and the following section.

• The sum of all the weights presented in any equation is 1.

• The terms “similarity metric” or “similarity function” are exchange-ably used.

• All the similarity functions that find the similarity between two sets of elements

(classes, attributes, methods, etc) are injective (see definition 5.2).

• All the similarity metrics’ values, computed in all the equations, are within the

interval [0..1].

63

Table 9. Pearson Correlation Between Path Length and WuP Semantic Similarity Measures

Correlation coefficient Number of compared word-pairs P-value

0.78 20000 <0.0001

Definition 5.1: Let A and B be two sets that we want to evaluate the similarity of their

elements*. Let n and m be the number of elements in A and B, respectively. The pair-wise

Element Similarity matrix (ES) of A and B is a matrix of size n×m, where ESi,j represents

the similarity score between ai and bj; where ai Î A and bj Î B.

Definition 5.2: Let A and B be two sets that we want to find the best match between their

elements; let n and m be the number of elements in A and B, respectively, n ̀ m. Let f be

a mapping function from A to B. The mapping function f is said to be injective if it

matches each element in A to a distinct element in B. Symbolically,

" a, b Î A, f(a) = f(b) � a = b.

5.3.1 Lexical Name Similarity Metric (NS)

Lexical Name Similarity metric (NS) measures the similarity between the names of two

classes, C1 and C2, based on their semantic similarity as quantified by Equation (1):

NS (C1,C2) = SSC (Name(C1) , Name(C2)) (2)

5.3.2 Attributes’ Similarity Metric (ASim)

Attributes’ list Similarity metric (ASim) measures the similarity between two sets of

attributes, A1 and A2, of two classes C1 and C2, respectively, as follows:

ASim(C1, C2) =�� ! � " #$%&� #' � #� � �() * (
'+� , / (�
 ((3)

* Elements can be classes, methods, attributes, relationships, etc.

64

where ak Î A1 and al Î A2, |A1| ` |A2|. The similarity metric aSim(ak, al) between two

attributes is computed as a weighted similarity of their names’ similarity (NSim) and their

data types’ similarity (DTSim):

#$%&� #' � #� � �= wn × NSim� #' � #� � + wt × DTSim� #' � #� � , (4)

where wn and wt are weights assigned to the name similarity (NSim), and the data type

similarity (DTSim) respectively.

As mentioned earlier, similarity between attributes’ names is computed based on their

semantic similarity according to the WordNet is–a hierarchy of concepts, Equation (1).

However, the similarity between the data type of two attributes is computed as follows:

• If the compared data types are primitive data types their similarity is the

reciprocal of the shortest path between the two types according to the data type

taxonomy shown in Figure 5, which is adopted from [133] .

• If the compared data types are non-primitive data types their similarity is

computed according to Equation 1.

• If one of the compared data types is primitive data type while the other one is

non-primitive data type they are considered as totally dissimilar and hence their

similarity is 0.

 When computing the similarity between two primitive data types, the shortest path

is counted as the number of nodes between the two compared nodes, including the

compared nodes. More precisely the similarity between two primitive data types can be

computed as follows.

65

DTSim� #' � #� � =
�

-./0����1���2�3�0��4����5�6� � 78 � �7�2�5�6� � 79� �
. (5)

For example, referring to Figure 5, the similarity between “Char” data type and “Byte”

data type is 1/3 while the similarity between “Integer” data type and “Byte” data type is

1/4.

5.3.3 Operations’ Similarity Metric (OSim)

Operations’ list Similarity metric (OSim) measures the similarity between two lists of

operations, O1 and O2, of two classes C1 and C2, respectively, as follows:

OSim(C1, C2) = �� ! � " :$%&� : ' � : � �
(; * (
'+� ,<(=
 (� (6)

where : ' > = � and : � > =
 , (=� (? � (=
 (.

The similarity metric oSim(ok, ol) between two operations ok, and ol is computed as a

weighted similarity of their names’ similarity (NSim), parameters’ list similarity (PLSim),

and their return type similarity (RTSim):

:$%&� : ' � : � � �= wn×NSim� : ' � : � � + wpl×PLSim� : ' � : � � + wrt×RTSim� : ' � : � � , (7)

where wn , wpl, and wrt are weights assigned to the method’s name similarity (NSim),

parameter list similarity (PLSim), and returned type similarity (RTSim), respectively.

The parameter list similarity function (PLSim) computes the similarity between two

lists of parameters PL1 and PL2 of two methods o1 and o2, respectively, as follows:

PLSim� : � � :
 � = �� ! � " @$%&� @' � @� �
(AB* (
'+� ,<(CD
 (, (8)

where pk Î PL1 and pl Î PL2, |PL1| ̀ |PL2|. The similarity metric pSim(pk, pl) between two

parameters is computed in the same way aSim is computed (Section 5.3.2), i.e. as a

66

weighted similarity of parameters’ name similarity (NSim) and their data types’ similarity

(DTSim).

5.3.4 Internal Similarity Metric (IS)

Internal Similarity metric (IS) measures the internal similarity of two classes as a

weighted similarity of their attributes’ and their operations’ similarity.

IS (C1,C2) = wa × ASim(C1,C2) + wo × OSim(C1,C2), (9)

where wa and wo represent weights assigned to the attributes and operations similarity,

respectively.

Figure 5. Data Type Taxonomy

5.3.5 Neighborhood Similarity Metric (NHS)

Neighborhood Similarity metric (NHS) measures the neighborhood similarity of two

classes, C1 and C2, having two sets of neighbors N1 and N2, respectively, as follows:

 NHS (C1, C2) = Max[� " NSim� E' ,nl�
(N1(
k=1] / (N2(, (10)

where nk Î N1 and nl Î N2, |N1| ̀ |N2|.

Data Type

Atomic Type Composite Type Void

Structure

Number Collection

Boolean Byte Char

List

String Set Vector Real

Integer

67

The neighbor similarity NSim(nk,nl) between two neighbors nk and nl is measured as a

weighted similarity of the relation type similarity (rtSim), the relation name similarity

(rnSim), and the neighbor name similarity (nnSim):

NSim(nk,nl) = wnn× nnSim(nk,nl) + wrn× rnSim(nk,nl) + wrt × rtSim(nk,nl), (11)

where wnn represents the weight assigned to neighbor name similarity, wrn represents

the weight assigned to relationship name similarity, wrt represents the weight assigned to

relationship type similarity. As mentioned earlier (Section 5.2), the neighbor name

similarity and the relationship name similarity are evaluated based on the Wordnet

semantic similarity while the relation type similarity is evaluated based on the similarity

scores shown in Table 10, which is inspired from [45]. When evaluating the relation type

similarity we consider the similarity of the two ends of the relation.

Table 10. Lookup Table of Similarities between Relationships’ Ends in Class Diagram

 Relationship’s End

 OAS MAS OAG OCO GES GEC IRS IRC DES DEC RES REC NRE

R
el

at
io

ns
hi

p’
s

E
nd

OAS 1 0 0.89 0.89 0 0.55 0 0.33 0 0.55 0 0.23 0

MAS 0 1 0 0 0.55 0 0.33 0 0.55 0 0.23 0 0

OAG 0.89 0 1 0.89 0 0.55 0 0.33 0 0.55 0 0.23 0

OCO 0.89 0 0.89 1 0 0.55 0 0.33 0 0.55 0 0.23 0

GES 0 0.51 0 0 1 0 0.4 0 0.72 0 0.4 0 0

GEC 0.51 0 0.51 0.51 0 1 0 0.4 0 0.72 0 0.4 0

IRS 0 0 0 0 0.21 0 1 0 0.49 0 0.83 0 0

IRC 0 0 0 0 0 0.21 0 1 0 0.49 0 0.83 0

DES 0 0.51 0 0 0.72 0 0.68 0 1 0 0.79 0 0

DEC 0.51 0 0.51 0.51 0 0.72 0 0.68 0 1 0 0.79 0

RES 0 0.17 0 0 0.38 0 0.89 0 0.66 0 1 0 0

 REC 0.17 0 0.17 0.17 0 0.38 0 0.89 0.66 0 0 1 0

 NRE 0 0 0 0 0 0 0 0 0 0 0 0 1

OAS = Owned Association; MAS = Member Association; OAG = Owned Aggregation; OCO = Owned Composition;

GES = Generalization Supplier; GEC = Generalization Client; IRS = Interface Realization Supplier; IRC = Interface Realization

Client; DES=Dependency Supplier; DEC = Dependency Client; RES = Realization Supplier; REC = Realization Client; NRE = No

Relation End

68

5.4 Class-to-Class Similarity

Based on the metrics presented in Section 5.3, we investigate the computation of the

class similarity using seven similarity metrics: NS, IS, NHS, NIS, NNHS, INHS, and

NINHS. The first three are, respectively, defined in equations (2), (9), and (10). The last

four are defined as follows.

NIS(C1 , C2) = wn × NS (C1 , C2) + wi × IS (C1 , C2), (12)

NNHS(C1,C2) = wn × NS (C1 , C2) + wnh× NHS (C1 , C2), (13)

INHS(C1,C2) = wi × IS (C1,C2) + wnh × NHS (C1,C2), (14)

NINHS(C1,C2) = wn × NS (C1,C2) + wi × IS (C1,C2) + wnh × NHS (C1,C2), (15)

where, wn, wi and wnh are weights assigned to Name Similarity (NS), Internal Similarity

(IS), and Neighborhood Similarity (NHS), respectively.

Table 11. Weight Settings of the Compound Metrics

Equation Weight assignment How?

Eq. 4 Evenly Arbitrarily

Eq. 7 Arbitrary. Arbitrarily. wn=0.5; wpl=0.30; wrt=0.20.

Eq. 9 Adopted
Based on the complexity [124]. Wa=0.4;

wo=0.6;

Eq. 11 Calibrated Experimentally, see Section 8.5

Eq. 12 Calibrated Experimentally, see Section 8.5

Eq. 13 Calibrated Experimentally, see Section 8.5

Eq. 14 Calibrated Experimentally, see Section 8.5

Eq. 15 Experimentally Experimentally, see Section 8.5

Having a compound similarity metric as a combination of different other metrics entails

that each metric in the combination should be assigned a weight that allows for an

69

accurate similarity/dissimilarity assessment. Table 11 summarize the weight setting in the

different similarity. For the weights that are set experimentally, empirical experiments and

analysis are provided in Section 8.5.

5.5 Tool Support for Metrics Collection

We developed a Java-based tool that takes, as input, a set of class diagrams in XMI

format. The tool then parses the XMI files to extract the required similarity information

for the similarity metrics, and then the tool assesses the pair-wise similarity between the

classes of each pair of input models based on the different types of similarity metrics. For

each similarity metric used, the pair-wise similarity scores between the classes of each

pair of models is presented by the tool as a two dimensional similarity matrix, ES.

5.6 Summary

In this chapter we presented the similarity assessment framework in terms of the

similarity aspects and similarity metrics used for assessing the class diagrams similarity.

The focus of the chapter was to discuss the different similarity aspects and how to handle

them to improve the similarity assessment framework. The chapter also introduced

formal definitions for all the metrics used in our comparison framework. Additionally the

chapter presented the weight setting schemes for the compound metrics. Empirical

validation and analysis related to the comparison framework are presented in Section 8.5

of Chapter 8.

70

6 CHAPTER 6

MODEL MATCHING

6.1 Introduction

Within the context of our framework we define model matching between a pair of

two models as the task of mapping each element in the smaller model of the pair (model

with fewer number of classes) into its most similar element in the other model, given the

similarity scores between the elements of the two models as quantified by the similarity

metrics. Accurate similarity assessment (comparison) leads to accurate matching, and

accurate matching leads to a duplication-free merging [58].

Model matching task is time consuming due to the fact that finding the optimal match

between the elements of two models is a kind of combinatorial problem generally

referred to as graph matching problem [59]. Therefore, an efficient matching algorithm is

required to obviate the complexity of the brute-force method and meanwhile provide an

acceptable solution. One of the approaches is to make some plausible assumptions which

can be driven by utilizing the characteristics of the problem in hand. An alternative way

is to go with some heuristic based solutions.

It is crucial for an effective and efficient matching to have efficient matching

algorithms as well as good similarity metrics for quantifying the similarities of the

models to be matched. In the previous chapter (Chapter 5) we discussed different

similarity aspects and the different factors that lead to better similarity assessment

between the elements of the compared models. Our focus in this chapter is the matching

task and how to tackle its complexity. In other words, the chapter is centered around

71

different matching algorithms. The input to any matching algorithm is the pair-wise

similarity scores between the elements of the matched models, represented in ES matrix.

As mentioned in Chapter 4, a 3-stage matching mechanism have been proposed to

tackle the complexity of the matching. These stages are technically detailed in Sections

 6.2, 6.3, and 6.4.

6.2 First Stage: Element-to-Element Matching

Definition 6.1: Let M1 and M2 be two models, with n and m classes, respectively, where

n ` m; let ES be the pair-wise element similarity matrix of M1 and M2. The optimal

injective match is an injective match from M1 to M2 where each element in M1 is matched

to a distinct element in M2 with which it is the most similar.

Definitions 5.1 and 5.2 are also necessary for the presentation of the first stage

matching. The focus of this stage of our framework is to look for an optimal injective

match between each pair of models, given their ES matrix as an input. If we have a pair

of models Mi and Mj of n and m classes, respectively, with n ` m, the brute-force

algorithm to find the optimal match entails finding all possible injective matches between

Mi and Mj. Then the injective match with the highest similarity value is retained.

However, this requires exploring n! possible injective matches, resulting in an

exponential time complexity.

A trivial solution is to go with a simple greedy approach. Given a sequence of row

indices (representing classes of Mi) of ES matrix, the simple greedy matching algorithm

(SGRM), Figure 6, goes over the sequence row by row, matching each row element of Mi

to a column element of Mj with which it has the highest similarity score, ESi,j; if the

72

algorithm finds the column element corresponding to the highest similarity score as

already matched, it looks for the next highest available. This simple algorithm can find an

injective match between a pair of models. However, this match is not guaranteed to be

optimal. The sequence in which the rows are visited by the algorithm is a major factor in

getting the optimal match. For example, let Figure 7-(a) depict the similarity scores

between the elements of any two models, � �� (rows’ elements in the matrix) and

�
� (columns’ elements in the matrix). Assume, the algorithm visits the rows in an

increasing order of row indices, i.e. row 0, then row 1, and so on, until row 6, matching

the elements in a greedy-like manner. In particular, when row 0 (which represents the

similarity scores between the class � F
� of � �� and each class �� G

 of��
�) is visited before

row 2, the algorithm matches the class � F
� to the class � �

 , marking both �� F
� and �� �

 as

matched classes with a similarity score of 0.56. Then, when visiting row 2, � �

 is found to

be most similar to��

� , ES2,3 = 0.91. However, � �

 is already matched with�� F
� , with ES0,3 =

0.56, and thus cannot be re-matched with �

� . This is clearly an indication of wrong

match, and it results in another wrong match, as the algorithm will, enforcedly, matches

�

� to��

 , which in turn causes a third wrong match between � �
� and�� �

 , as � �
� would be

best matched to��

 . However, if the algorithm, during its execution, followed the

sequence of rows 1, 2, 3, 4, 6, 0, 5, Figure 7-(b), the optimal match would be obtained.

The matching similarity matrix corresponding to the ES matrix depicted in Figure 7-(a) is

shown in Figure 8.

As we have seen in the aforementioned demonstration, the SGRM algorithm lacks the

global view of the solution space. This short insight of the algorithm comes from the fact

that when the algorithm matches the elements of the two models, it cannot go beyond the

73

horizon of a single row. If the algorithm had a global view about the ES matrix when

matching �� H

 , it would not match �� H

 with �� F
� �.

Algorithm SGRM: Simple Greedy Matching Algorithm

Input: two dimensional matrix ES[n][m] where ES[i][j] represents the
similarity score between class Ci

1 of model M1 and class Cj

2 of
model M2, with n and m represent the number of classes in M1 and
M2, respectively;

 An sequence S of distinct integer numbers representing the row
indices in ES Matrix, |S| = min{m,n}.

Output: a two dimensional matrix MSM[3][min{m,n}], such tha t
MSM[0][j]and MSM[1][j] represent the indices of j th matched pair
of similar classes from M1 and M2 respectively, wit h MSM[2][j]
represent their similarity score.

1. for i ¬ 1 to |S| do
2. find I$ JK�' , where I$ JK�' L MNOP+	���Q�/ I$ JK�P such that � JK

� and � P

 are not

matched
3. Mark � JK

� and � '

 as matched.

4. end for
5. return MSM

Figure 6. SGRM Algorithm

 �� F

 �� R

 �� S

 �� H

 �� T

 �� U

 �� V

 �� W

 �� F

 �� R

 �� S

 �� H

 �� T

 �� U

 �� V

 �� W

�� F
� 0.36 0.29 0.46 0.56 0.44 0.54 0.45 0.35 �� F

� 0.36 0.29 0.46 0.56 0.44 0.54 0.45 0.35

�� R
� 1 0.26 0.32 0.42 0.34 0.34 0.32 0.33 �� R

� 1 0.26 0.32 0.42 0.34 0.34 0.32 0.33

�� S
� 0.28 0.21 0.32 0.91 0.60 0.34 0.34 0.25 �� S

� 0.28 0.21 0.32 0.91 0.60 0.34 0.34 0.25

�� H
� 0.34 0.28 0.51 0.58 0.89 0.46 0.62 0.39 �� H

� 0.34 0.28 0.51 0.58 0.89 0.46 0.62 0.39

�� T
� 0.34 0.27 0.5 0.54 0.46 0.90 0.4 0.68 �� T

� 0.34 0.27 0.5 0.54 0.46 0.90 0.4 0.68

�� U
� 0.44 0.3 0.44 0.53 0.57 0.48 0.40 0.41 �� U

� 0.44 0.3 0.44 0.53 0.57 0.48 0.40 0.41

�� �
� � 0.4 0.67 0.63 0.56 0.42 0.4 0.4 0.84 �� �

� � 0.4 0.67 0.63 0.56 0.42 0.4 0.4 0.84
� (a) Row sequence resulting in the shaded match

is: 0, 1, 2, 3, 4, 5, 6
(b) Row sequence resulting in the shaded match

is: 1, 2, 3, 4, 6, 0, 5

*Shaded numbers represent the similarity scores of matched elements;
*Numbers in bold represent the max in the row; when every bolded number is shaded, the match is optimal with zero error.

Figure 7. Pair-wise Element Similarity Matrix Between Classes of Two Models, M1 and M2

M1classes �� 	
� �� �

� ��

� �� �

� ��
� �� U

� �� V
� Over all Similarity

between M1 and M2 M2 classes �� �

 �� 	

 ��

 �� �

 �� �

 �� S

 �� W

Sim. Score 0.56 1 0.60 0.62 0.90 0.44 0.84 4.96/7 = 0.71

Figure 8. Matching Similarity Matrix between Classes of Two Models, SGRM Algorithm

74

In this work, we propose three polynomial time algorithms for model matching: a

Global Greedy algorithm (GGRM), detailed in Section 6.2.1, a hybridized Greedy-

Genetic algorithm (GGAM), detailed in section 6.2.2 and a hybridized Greedy-

Simulated-Annealing algorithm (GSAM), detailed in section 6.2.3 .

6.2.1 Proposed Greedy Matching Algorithm (GGRM)

The intuitive and the plausible assumption underlying this algorithm is that a pair of

classes with the highest similarity values represents the most relevant classes. Following

this assumption the GGRM algorithm, should find the optimal match between the classes

of two models in a polynomial time. The steps of the algorithm are listed in Figure 9 and

exemplified in Figure 10. Given the pair-wise element similarity matrix, ES, between the

classes of any two models, M1 and M2, the algorithm, in each of its steps, looks for the

highest similarity score, in the ES matrix, for which the corresponding classes are not

matched so far. Then the algorithm matches these classes and marks them as matched.

The algorithm repeats its steps until all the classes of the smaller model (i.e. model with

less number of classes) are matched.

Algorithm GGRM: Proposed Greedy Matching Algorithm

Input: two dimensional matrix ES[n][m], where ES[i][j] represents the
similarity score between class Ci

1 of model M1 and class Cj

2 of
model M2, with n and m are the number of classes in M1 an d M2,
respectively, and n � m;

Output: two dimensional matrix MSM[3][n], such that MSM[0][j]and
MSM[1][j] represent the indices of j th matched pair of similar
classes from M1 and M2 respectively, with MSM[2][j] represents
their similarity score.

1. While there is unmatched class in M1 do
2. find I$ '�� , I$ '�� L MNOX+	���Q��� YLZ�Q�&I$ X�P such that � X

� and � P

 are not

matched
3. Mark � '

� and � �

 as matched.

4. end for
5. return MSM

Figure 9. GGRM Algorithm

75

 �� 	

 �� �

 ��

 �� �

 ��

 �� �

 �� �

 �� �

 �� 	

 �� �

 ��

 �� �

 ��

 �� �

 �� �

 �� �

�� F
� 0.36 0.29 0.46 0.56 0.44 0.54 0.45 0.35 �� F

� 0.36 0.29 0.46 0.56 0.44 0.54 0.45 0.35

�� R
� 1 0.26 0.32 0.42 0.34 0.34 0.32 0.33 �� R

� 1 0.26 0.32 0.42 0.34 0.34 0.32 0.33

�� S
� 0.28 0.21 0.32 0.91 0.60 0.34 0.34 0.25 �� S

� 0.28 0.21 0.32 0.91 0.60 0.34 0.34 0.25

�� H
� 0.34 0.28 0.51 0.58 0.89 0.46 0.62 0.39 �� H

� 0.34 0.28 0.51 0.58 0.89 0.46 0.62 0.39

�� T
� 0.34 0.27 0.5 0.54 0.46 0.90 0.4 0.68 �� T

� 0.34 0.27 0.5 0.54 0.46 0.90 0.4 0.68

�� �
� 0.44 0.3 0.44 0.53 0.57 0.48 0.40 0.41 �� �

� 0.44 0.3 0.44 0.53 0.57 0.48 0.40 0.41

�� �
� � 0.4 0.67 0.63 0.56 0.42 0.4 0.4 0.84 � �� �

� � 0.4 0.67 0.63 0.56 0.42 0.4 0.4 0.84
� (a) pair-wise Element Similarity matrix (ES) of models

M1 and M2
(b) �� R

� and �� 	

 are matched first, as they have the

highest similarity compared to others.

 �� 	

 �� �

 ��

 �� �

 ��

 �� �

 �� �

 �� �

 �� 	

 �� �

 ��

 �� �

 ��

 �� �

 �� �

 �� �

�� 	
� 0.36 0.29 0.46 0.56 0.44 0.54 0.45 0.35 �� F

� 0.36 0.29 0.46 0.56 0.44 0.54 0.45 0.35

�� �
� 1 0.26 0.32 0.42 0.34 0.34 0.32 0.33 �� R

� 1 0.26 0.32 0.42 0.34 0.34 0.32 0.33

��

� 0.28 0.21 0.32 0.91 0.60 0.34 0.34 0.25 �� S

� 0.28 0.21 0.32 0.91 0.60 0.34 0.34 0.25

�� �
� 0.34 0.28 0.51 0.58 0.89 0.46 0.62 0.39 �� H

� 0.34 0.28 0.51 0.58 0.89 0.46 0.62 0.39

��
� 0.34 0.27 0.5 0.54 0.46 0.90 0.4 0.68 �� T

� 0.34 0.27 0.5 0.54 0.46 0.90 0.4 0.68

�� �
� 0.44 0.3 0.44 0.53 0.57 0.48 0.40 0.41 �� U

� 0.44 0.3 0.44 0.53 0.57 0.48 0.40 0.41

�� �
� � 0.4 0.67 0.63 0.56 0.42 0.4 0.4 0.84 � �� �

� � 0.4 0.67 0.63 0.56 0.42 0.4 0.4 0.84

 (c) ��

� and �� �

 are matched, as they have the highest
similarity among the unmatched classes.

� �(d) �
� �and �� �

 are matched, as they have the
highest similarity among the unmatched classes.

 �� 	

 �� �

 ��

 �� �

 ��

 �� �

 �� �

 �� �

 �� 	

 �� �

 ��

 �� �

 ��

 �� �

 �� �

 �� �

�� F
� 0.36 0.29 0.46 0.56 0.44 0.54 0.45 0.35 �� F

� 0.36 0.29 0.46 0.56 0.44 0.54 0.45 0.35

�� R
� 1 0.26 0.32 0.42 0.34 0.34 0.32 0.33 �� R

� 1 0.26 0.32 0.42 0.34 0.34 0.32 0.33

�� S
� 0.28 0.21 0.32 0.91 0.60 0.34 0.34 0.25 �� S

� 0.28 0.21 0.32 0.91 0.60 0.34 0.34 0.25

�� H
� 0.34 0.28 0.51 0.58 0.89 0.46 0.62 0.39 �� H

� 0.34 0.28 0.51 0.58 0.89 0.46 0.62 0.39

�� T
� 0.34 0.27 0.5 0.54 0.46 0.90 0.4 0.68 �� T

� 0.34 0.27 0.5 0.54 0.46 0.90 0.4 0.68

�� �
� 0.44 0.3 0.44 0.53 0.57 0.48 0.40 0.41 �� �

� 0.44 0.3 0.44 0.53 0.57 0.48 0.40 0.41

�� �
� � 0.4 0.67 0.63 0.56 0.42 0.4 0.4 0.84 � �� �

� � 0.4 0.67 0.63 0.56 0.42 0.4 0.4 0.84
� (e) � �

� �and ��

 are matched, as they have the highest

similarity among the unmatched classes.
(f) � �

� �and �� �

 are matched, as they have the

highest similarity among the unmatched classes.

 �� 	

 �� �

 ��

 �� �

 ��

 �� �

 �� �

 �� �

 �� 	

 �� �

 ��

 �� �

 ��

 �� �

 �� �

 �� �

�� 	
� 0.36 0.29 0.46 0.56 0.44 0.54 0.45 0.35 �� 	

� 0.36 0.29 0.46 0.56 0.44 0.54 0.45 0.35

�� �
� 1 0.26 0.32 0.42 0.34 0.34 0.32 0.33 �� �

� 1 0.26 0.32 0.42 0.34 0.34 0.32 0.33

��

� 0.28 0.21 0.32 0.91 0.60 0.34 0.34 0.25 ��

� 0.28 0.21 0.32 0.91 0.60 0.34 0.34 0.25

�� �
� 0.34 0.28 0.51 0.58 0.89 0.46 0.62 0.39 �� �

� 0.34 0.28 0.51 0.58 0.89 0.46 0.62 0.39

��
� 0.34 0.27 0.5 0.54 0.46 0.90 0.4 0.68 ��

� 0.34 0.27 0.5 0.54 0.46 0.90 0.4 0.68

�� �
� 0.44 0.3 0.44 0.53 0.57 0.48 0.40 0.41 �� �

� 0.44 0.3 0.44 0.53 0.57 0.48 0.40 0.41

�� �
� � 0.4 0.67 0.63 0.56 0.42 0.4 0.4 0.84 � �� �

� � 0.4 0.67 0.63 0.56 0.42 0.4 0.4 0.84
� (g) � 	

� �and ��

 are matched, as they have the highest

similarity among the unmatched classes.
(h) � �

� �and �� �

 are matched, as they have the

highest similarity among the unmatched classes.

Figure 10. An Illustrative Example of the Proposed Greedy Matching Algorithm (GGRM)

Figure 11 shows the matching similarity matrix as an output of the GGRM algorithm.

The time complexity of the algorithm is O(mn2) where n is the number of classes in the

smaller model and m is the number of classes in the larger model.

76

The particularity of our matching problem is what actually makes GGRM algorithm

works fine. In other words, the aforementioned assumption underlying this algorithm is

intuitive when looking for the most similar pairs of elements between the two models

(class level similarity). However, if our objective is to look for the maximum overall

similarity between the two models (model level similarity), as it is the case with many

optimization problems, e.g. job-assignment problem or travelling salesman problem, etc,

the GGRM algorithm may easily get trapped in the local optima. Therefore, a matching

algorithm with better global insight is needed.

Population-based techniques like Genetic Algorithms (GA) (see Section 2.8) provides

a better exploration for the solutions’ search space. This population-based exploration

helps the algorithm to avoid being trapped in the local optima which is an intrinsic

characteristic in the greedy algorithms [84]. Therefore, a Greedy-Genetic Matching

algorithm (GGAM), is proposed as another matching algorithm for model matching. The

use of more than one algorithm for model matching has twofold objective. First, the

result of each algorithm can be validated against the other ones. Second, in some

situations, the use of one of the algorithm is more rationalized than the use of the other.

M1classes �� �
� ��

� ��
� �� �

� �� V
� �� F

� �� U
� Over all Sim between

M1 and M2 M2 classes �� 	

 �� �

 �� �

 ��

 �� W

 �� S

 �� V

Sim. Score 1 0.91 0.90 0.89 0.84 0.46 0.40 5. 4/7 = 0.77

Figure 11. Matching Similarity Matrix between Classes of Two Models, GGRM Algorithm

6.2.2 Hybridized Greedy-Genetic Matching Algorithm (GGAM)

Traditional implementation of the GA algorithm involves an intrinsic randomness,

which can lead to problems in both the convergence and the performance of the

algorithm. It can also lead to invalid solutions in many problems. This encouraged the

77

researchers to hybridize the traditional form of the GA with some ideas of other

algorithms, with the objective to improve the quality and the convergence time of the

algorithm as well as the correctness of the solution. The hybridization can be adopted to

any building block of the algorithm. For example, in [75] some greedy ideas are adopted

to improve the generation of the initial population, the crossover operation, and the

mutation operation.

At any iteration during its evolution, the evolutionary algorithms, including GA,

usually work on a complete and valid solution [84]. If we terminate the algorithm at any

iteration we can still have a solution at hand. However, this solution may not be optimal.

The evolution process towards the (near-) optimal solution depends heavily on the

algorithm settings. For the GA algorithm, among these settings is the fitness function. For

example, when applying the GA for the known Travelling Salesman problem,

traditionally, the algorithm will generate a sequence of cities and the fitness function is the

summation of the distances between these cities, following the given sequence, in order. In

our matching problem, assume two models M1 and M2 with n1 and n2 number of classes,

respectively, where n1 a n2. The typical way to implement GA is to encode the candidate

solution (chromosome) as a one-dimensional array S of length n2, where the values of S

represent the classes of M1, as a permutation of distinct integers, 0 ` S[i] ` n1, while the

static indices, 0, 1, 2, …, i,…, n2 – 1, of S represent the classes of the model M2. The

indices of S can be visualized as a static chromosome while the values of S can be

visualized as a dynamic chromosome on which the GA operations are applied. The

matching is then performed in such a way that a class of M1 represented by the value S[i]

is matched to a class in model M2 represented by the index i. The fitness function of a

78

candidate solution is defined as the summation of the similarity scores between the pairs

of matched classes as quantified in the ES matrix, where the value S[i] is an index of a row

while the index i is an index of a column in the ES matrix. This approach has been

followed in many similar problems whose solutions are in the form of permutations of

integer numbers, e.g. [78, 134].

We propose an enhancement to the setting of the traditional approach as follows.

Instead of mapping the pairs of classes, class S[i] of M1 to the class i of M2, the matching

is performed in a greedy manner. Given a sequence of classes of one of the models, as

represented by the GA chromosome, which in turn represent row indices of the ES matrix,

a simple greedy algorithm (SGRM, Figure 6) goes over the sequence row by row,

matching each row element of M1 to a column element of M2 with which it has the highest

similarity score; if the algorithm finds the column element corresponding to the highest

similarity score as already matched, it looks for the next highest available. This

enhancement is assumed to make the algorithm converge faster to the optimal solution as

it avoids the randomness involved in the traditional implementation of the algorithm when

matching the elements and calculating the fitness score. The penalty is that the complexity

time of the matching step becomes O(n2), instead of O(n) in the traditional approach.

However, this increase in the complexity can be compensated by the fast convergence of

the enhanced algorithm. In other words the algorithm can converge to the (near-) optimal

solution in less number of iterations as compared to the traditional approach.

Adopting the hybridized Greed-Genetic algorithm (GGAM) to the matching problem

requires setting up some parameters and some adaptation of its building blocks to suite

the matching problem in hand. We discuss these settings as flows.

79

Problem formulation: In the beginning of this section we mentioned that algorithm

SGRM can find the optimal injective match if it follows an appropriate sequence of row

indices. However, as we mentioned, the complexity time of finding this sequence using

the brute-force approach is exponential. Therefore, our matching problem can be

reformulated as a search problem with the objective of finding the appropriate sequence

of row indices to be followed by SGRM, on the ES similarity matrix, in order to give us

the optimal injective match.

Chromosome encoding: Being centered around the evolution of the chromosome, the

first step in the genetic algorithm is to encode any potential solution into a form of a

chromosome so that the genetic concepts can be applied to it. Since our solution is a

sequence of row indices (in ES matrix), which, in turn, represents a sequence of indices

of classes of one of the models in the pair, each chromosome needs to represent a valid

sequence, in which no row index appears more than once. In the case when the two

models have the same number of classes, the length of the chromosome is equal to the

number of classes in any of the two models and the genes of the chromosomes represent

row indices. However, when the number of classes in the two models is not the same, the

length of the chromosome is equal to the number of classes in the smaller model, but the

genes in the chromosome can be in one of two cases. If they represent the indices of the

classes in the smaller model they are already a valid representation of a candidate

solution. If, however, they represent the indices of the classes in the larger model, some

indices will be truncated, as the number of indices is larger than the length of the

chromosome. Since the algorithm works on a population of solutions, and because each

initial solution is generated randomly, it is highly unlikely that different individuals will

80

miss the same index (indices). This means that, although some indices are missed out

from some of the candidate solutions they will show up in other ones, indicating their

existence over the generation. Moreover, the truncated indices will be kept in a pool with

which the mutation operator probabilistically performs swapping.

Initial solution: The initial population of solutions is generated randomly as a sequence

of integers representing the class indices in one of the pair of the matched models. We

develop a special generator to guarantee that each individual is a valid solution.

Fitness function: As previously mentioned, each candidate solution represents a

sequence of indices of the classes of one of the models in the pair. This sequence is given

to SGRM algorithm to follow in order to find the corresponding injective match. The sum

of the similarities between the matched elements in this injective match is used as fitness

function, the higher the sum the fitter the solution. Selecting the number of elements

passing the threshold would be another option as a fitness function, but one problem with

this is that if two elements (say x and y) in one model have the similarity scores 0.8 and

1.0, respectively, with an element z of another model, then the algorithm will not

differentiate between the two cases. In other words, if z is already matched with x for any

intermediate solution, changing the match to become between z and y may not change the

value of the fitness function (if this is the only change in the new solution), assuming that

the threshold is 0.8.

Using the error, in terms of the difference between the similarity scores of the

matched elements and the maximum values in the row or column, would be a third option

for the fitness function. However, the problem with this measure as a fitness function is

81

that the algorithm will try to minimize the error rather than looking for the most similar

elements. In other words, the algorithm will not differentiate between a current situation

where a match exists between two elements with low similarity score and 0 error, and a

better new match with high similarity score and 0 error. In fact it is possible to prefer the

former case over the later one if it will result in minimizing the overall error. This

situation is likely to happen when the number of elements in the two models are different.

Genetic operators: When applying the simple crossover and the mutation operators [135]

to any of the candidate solutions to our problem they do not work well as they may result

in invalid solution, i.e. some indices may be repeated while others are missed out.

Therefore these two operators need to be adapted in a certain way, so that they still mimic

the biological gene evolution. It is not just the uniqueness and the omission of the genes

(indices), rather, the crossover is supposed to preserve previous advances in the solutions

and incorporate them into future solutions [81]. On the other hand, the role of the

mutation operator is to introduce diversity in the population of the solutions, which is

needed to ensure an appropriate coverage of the solution space and thus prevent the

premature convergence of the whole population to sub-optimal solutions.

Crossover: Two common crossover operators can be used, Partially Mapped crossover

(PMX) [136] and Order crossover (OX) [84]. The PMX crossover operator builds an

offspring by choosing two cut-points in the two parents, copying the subsequences

between the cut points in the two parents into new two offsprings, one each, and then the

remaining indices are filled, position wise, from the other parent [84, 136].

82

The OX operator builds offspring by choosing a subsequence of one parent and

preserving the relative order of indices from the other parent. It capitalizes on the

importance of the relative order of the indices rather than their specific positions [84,

137]. Guided by recommendations in [80, 84, 138], we opt to use order crossover (OX)

operator. Figure 12 shows how the offspring is generated using OX operator. First, two

cut-points are selected randomly in the two parents, see Figure 12-b where the cut-points

are marked with dashed borders. Then, the subsequences between the cut points in the

two parents are copied into new two offsprings, one each, Figure 12-c. Then, the

remaining indices, starting after the second cut-point, are filled from the other parent, in

order, omitting those which already exist in the copied subsequence. The crossover

probability (also known as, crossover rate) pc controls the frequency in which the

crossover is applied. Too high crossover rate may result in over-exploitation of the

current individuals. As a result, new areas in the search space may not get explored. A

low crossover rate may delay the convergence to a promising region of the search space

[139]. Typical values of pc are in the range 0.5-1.0 [140, 141].

Mutation: Mutation is performed in two different ways. When the available sequence

is larger than the length of the chromosome (this happens when the compared models are

of different sizes), a pool representing the extra indices of the classes of the larger model

is maintained. Then the mutation is performed by a random selection of a position in the

chromosome and swapping its content probabilistically with an index selected randomly

from the pool or with another position selected randomly in the chromosome. The former

case (i.e. the selection from the pool) is a type of mutation generally referred to as

immigration [75]. If, however, no indices are maintained in the pool, the mutation is

83

performed by swapping the contents of two positions of the chromosome, selected

randomly. The mutation rate pm controls the frequency in which the mutation is applied.

High mutation rate renders the GA into random search algorithm. A very low mutation

rate results in not reaching the global optima. A small mutation rate less than 0.1 is

commonly recommended [140, 141].

Parent A 0 1 3 4 6 5 2 7 Randomly select

 two cut-points

Parent A 0 1 3 4 6 5 2 7

Parent B 6 2 4 7 0 1 5 3 Parent B 6 2 4 7 0 1 5 3

(a) Parents

(b) Two cut points are select

Offspring A 4 6 5 7 0 1 2 3 Offspring A 7 0 1

Offspring B 7 0 1 4 6 5 3 2 Offspring B 4 6 5

(d) copy the other genes from the
other parent

 (c) Genes within the cut-points
are swapped

Figure 12. Genetic Crossover

 To sum up, in our experiments the GA parameters are set, guided by the literature

recommendations, as shown in Table 12. Section 8.6 empirically investigate the

performance of the two algorithms over different problem sizes. The investigation clearly

shows the effectiveness of greedy idea in speeding up the convergence of the genetic

algorithm to the optimal solution.

Table 12. GA Parameters Settings

Population size 30

Number of generations 10000

Crossover rate 0.70

Mutation rate 0.10

Immigration rate 0.50 of mutation rate

Selection method Roulette wheel
Best half (50%)

84

6.2.3 Hybridized Greedy Simulated Annealing Matching Algorithm (GSAM)

In Section 2.9 we provided a brief background about the Simulated Annealing

algorithm (SA). In this section we introduce the Greedy-Simulated Annealing algorithm

(GSAM). To implement the GSAM algorithm within the context of our class diagram

matching we follow the same encoding scheme used in the GGAM algorithm, where the

solution is encoded as a sequence of distinct integers representing the classes in one of

the matched models. This sequence is traversed by the SGRM algorithm to find an

injective match with the classes of the other model. This is actually where the algorithm

is hybridized with the greedy idea. The objective function is computed as the sum of the

similarity scores as quantified in the ES matrix between the corresponding matched

elements of the two models. Solution which leads to higher similarity score than the

current one is always accepted. Worse solution is accepted probabilistically.

Using SA requires setting up some parameters, such as the cooling rate, initial

temperature, as well as defining the objective function so that the quality of the different

solutions can be compared. In our experiment the GSAM environment was set as follows.

The initial solution is generated as a random sequence of distinct integers representing

row elements’ indices in the ES matrix. Initial temperature (T), cooling rate, and

termination condition are set, guided by some recommendations in the literature [142,

143], into 1000, 0.01, 0.1, respectively. The acceptance probability (P) is calculated as

follows. P=Exp (F(Snew) – F(Scurrent)) / T, where F(Snew) is the objective function value of

the new solution; F(Scurrent) is the objective function value of the current solution.

Neighbor solution is generated by swapping the contents of two randomly selected

85

locations in current solution. The objective function is computed as the sum of the

similarity scores of the matched pairs of classes between the two models.

6.2.4 Summary of the First Stage Matching

The first stage matching algorithms emphasize on element to element (or one-to-one)

matching between the classes of the two matched models. The final optimal match may

contain elements that are matched just due to the injectivity property of the mapping

function despite their low similarity scores. These elements will be filtered out by the

first stage matching threshold filter.

6.3 Second Stage: One-to-Many Matching

Elements not passing the one-to-one similarity threshold, in the first stage, needs to

be further investigated for potential similarity through more complex similarity

assessment that can capture some of the design differences that was not able to be

captured by the first stage’s similarity assessment mechanism. The following definitions

are necessary for the presentation of the second stage algorithm.

Definition 6.2: A Class-group I, in a model Mk, denoted as��[\
' , represents those set of

classes in Mk modeling the same domain concept, where I represents the set of indices

indexing those classes in model Mk.

For example, in Figure 1 the two classes “Scheduled Flight” and “Offered Flight”, of M0

are representing the same concept which is modeled as a single class (Flight) in M2.

Therefore, the two classes, “Scheduled Flight” and “Offered Flight”, represent one class-

group.

86

Algorithm GMA: Group-Matching Algorithm

Input: Two fragments F1 and F2 as subsets of two differen t models M1 and M2 consisting of
n and m number of classes, respectively, with ��]

� Î F1 Í M1 and ��P

 Î F2 Í M2.

Output: A two dimensional matrix GSM[4][N-1], representing the best match between the
class-groups of M1 and M2,

1. for i ¬ 1 to n do

2. for j ¬ 1 to m do
3. IS[i][j] ¬ findInternalSim(��]

� , ��P

)

4. NHS[i][j] ¬ findNeighborhoodSim(��]
� , ��P

)
5. INHS[i][j] ¬ wi ×IS[i][j] + w nh×NHS[i][j]
6. end for
7. end for
8. done ¬ false
9. while not done do
10. //go row wise as follows
11. For each ��]

� in F1
12. find the most similar class �� '

 in F2
13. let yGroup= { �� ^

 } and xGroup= { ��]
� }

14. let simSofar= INHS [i][k]
15. for each �� G

 in F2, j _ k
16. if (�� G

 is a neighbor of elements in yGroup and adding �� G

 to yGroup will

improve its similarity with xGroup) then
17. yGroup ¬ yGroup È { �� G

 };
18. update simSofar
19. end if
20. end for
21. rowWiseSim[0][i] ¬ simSofar; rowWiseSim[1][i] ¬ i;
22. end for

//go column wise as follows
23. foreach �� G

 in F2
24. find the most similar class �� '

� in F1
25. let yGroup= { �� G

 } and xGroup={ �� ^
� }

26. let simSofar= INHS[k][j]
27. foreach ��]

� in F1, i _ k
28. if (��]

� is a neighbor of elements in xGroup and adding ��]
� to xGroup will

improve its similarity with yGroup) then
29. xGroup ¬ xGroup È { ��]

� };
30. update simSofar
31. end if
32. end for
33. colWiseSim[0][j] ¬ simSofar; colWiseSim[1][j] ¬ j;
34. end for
35. Sort (rowWiseSim, descending);
36. Sort (colWiseSim, descending)
37. if (rowWiseSim[0][0] � colWiseSim[0][0] and rowWiseSim[0][0] � threshold) then
38. Mark �� `abcdefgdh!�,!	,

� and the corresponding yGroup as matched classes, a dd them to
MSM, and remove them from F1 and F2, respectively.

39. elseif (colWiseSim[0][0] > rowWiseSim[0][0] and colWiseSim[0][0] � threshold) then
40. Mark �� iajcdefgdh!�,!	,

 and the corresponding xGroup as matched classes, a dd them to
MSM, and remove them from F2 and F1, respectively.

41. Else done=true
42. End if
43. End while
44. Return MSM

Figure 13. Second Stage Matching Algorithm

Definition 6.3: Let��[\
' be a class-group in a model�� ' , the neighborhood (NH) of ��[\

'

in model Mk is defined as the set of classes that have a direct relationship with any class

of��[\
' :

87

NH(�[\
')={ �P

' : �P
' Î Mk and �P

' has direct relationship with any class in ��[\
' }.

Definition 6.4: Let ��[\
' be a class-group in a model�� ' , the list of attributes (A) of ��[\

'

are defined as the collection of the attributes in all the classes involved in the class-

group��[\
' :

A(�[\
')={ a: a Î Ci, Ci is a class in �[\

' }.

Definition 6.5: Let ��[\
' be a class-group in a model�� ' , the list operations (O) of ��[\

'

are defined as the collection of the operations in all the classes involved in the class-

group��[\
' :

O(�[\
')={ o: o Î Ci, Ci is a class in �[\

' }.

In this stage a single element from certain model (say Mi) can be matched to more

than one element in another model (say Mj) based on a weighted combination of both

internal and neighborhood similarity values. In particular, let F1 and F2 be two subsets of

classes not passing the first stage similarity threshold and of size n and m, respectively.

Let�� X
� Î F1 Í M1 and �� P

 Î F2 Í M2, where M1 and M2 are two models consisting of n1

and n2 classes respectively. The algorithm first finds the similarity between each class �� X
�

from F1 (row elements) and each class �� P

 from F2 (column elements). Then, the

algorithm proceeds as follows. First it goes row-wise, starting at row 0, looking for�� P

that has the maximum similarity score with�� 	
� . This maximum similarity between �� 	

�

and �� P

 is considered as the best similarity so far, and thus a new class-group called��[kPl

is created with �� P

 is the first class in the class-group. The algorithm then tries to add the

88

other classes �� '

 , where k b j, to��[kPl

 one at a time, evaluating the similarity between

�� 	
� and ��[kP�'l

 after adding �� '

 ; if the similarity is improved the class �� '

 is included in

the class-group (��[kP�'l

) and the similarity so far is updated; otherwise the class �� '

 is

excluded from the class-group (��[kPl

), trying another class. The algorithm then proceeds

with the other rows in the same way, looking for�� P

 that has the maximum similarity

score with�� X
� , creating a new class-group��[kPl

 with a class �� P

 being the first class in the

class-group, adding to ��[kPl

 those classes that improve the similarity against�� X

� , and

updating the similarity scores accordingly. The similarity between each class �� X
� from F1

and the corresponding group ��[\

 of classes from F2 is saved in an array (called

rowWiseSim), sorted in descending order according to the similarity scores.

The algorithm then goes column-wise, in the same manner, starting at column 0,

looking for�� X
� that has the maximum similarity score with�� 	

 . This maximum similarity

between �� 	

 and �� X

� is considered as the best similarity so far, and the class �� X
� is added

as the first class in a class-group ��[kXl
� . The algorithm proceeds in the same way with the

other columns. The similarity between each class �� P

 from F2 and the corresponding

group of classes��[m
� from F1 is saved in an array (called colWiseSim), sorted in

descending order according to the similarity scores. Since the two arrays are sorted in

descending order, the maximum similarity in the two arrays will be either in

rowWiseSim[0] or in colWiseSim[0]. If the maximum is in rowWiseSim [0] and this

maximum satisfies the second stage threshold, the corresponding � X
� and ��[\

 are marked

89

as matched class-groups* and added to the similarity matrix of the matched classes of

models �� Rand�� S. Similarly, if the maximum is in colWiseSim[0] and this maximum

satisfies the second stage similarity threshold, the corresponding �� P

 and ��[m

� are marked

as matched class-groups and added to the similarity matrix of the matched elements of

models � Rand � S. The matched classes are removed from further consideration. The

algorithm repeats its steps until no further possible match. It is worth mentioning here

that for two classes to be combined, they must be adjacent to each other.

6.4 Third Stage: Residual Matching

In the second stage algorithm (Section 6.3) the focus is on the situation where a single

class in one model can be modeled as multiple classes in the other model, as they are

representing the same underlying concept. However, we may have a situation where the

same underlying concept can be modeled as multiple classes in the two models

considered in matching. This situation cannot be captured by the second stage matching

algorithm. Therefore we propose a third stage algorithm to handle such a situation. This

stage is an extension of the second stage. If we denote by R1 and R2 the set of residual

classes not passing the first and the second similarity threshold, where R1 Í M1 and R2 Í

M2, then the algorithm just improves the similarity of the class-groups formed in the

second stage by adding each class in R1 or R2 to the most suitable class-group, if possible,

based on the contribution of the added class to the similarity improvement between the

corresponding matched class-groups. In other words, if we designate nX�P
' as the similarity

improvement achieved when adding class � X
� (where � X

� Î R1) to the class-group �['
�

* When a single class is matched against a class-group we consider this class as a class-group of a single
class.

90

and/or the class � P

 (where � P

 Î R2) to the class-group��['

 , then the algorithm aims at

improving the similarity of the matched class-groups �['
� and �['

 by adding the classes

� X
� and/or � P

 to �['
� and/or �['

 , respectively, where nX�P
' is maximum.

Figure 14. An Illustrative Example of the Steps of the Third Stage Matching Algorithm

Figure 14, shows an illustrative example about how the third stage matching is

performed. Classes and class-groups are represented in boxes. The superscript represents

the model index to which the class or the class-group belongs. The subscript represents

the index of the class or the class-group within the model indexed by the superscript.

When the class index is -1, the box represents no class. This case demonstrates a situation

where we want to evaluate the similarity between two class-groups by adding a class to

one of the matched groups, but not both. Referring to Figure 12, the shaded boxes depict

the order of the process. As shown, the algorithm proceeds as follows. It starts with

adding�� ��
� into the class-group �[

� then it adds the class � �

 into the class-group �[

 ,

comparing the two class-groups and checking the similarity improvement. Then it

remove the class � �

 from the class-group �[

 and adds to it the class�� ��

 , evaluating its

similarity against �[
� , checking the similarity improvement and comparing it against the

R1, set of classes of model M1 not passing the first and the
second stages’ thresholds.

Class-groups�op q
R from M1

Matched with

Class groups�op r
S from M2

R2, set of classes of model M2 not passing the first and the
second stages’ thresholds.

Each class in R1 is added to the most appropriate class-group

Each class in R2 is added to the most appropriate class-group

� � �
� � �

� �
	
�

�[k� �� l
� �[k� �sl

� �[k
 l
�

�[k	 l

 �[k� �t l

 �[k
 l

� � �

 � �

 � �

 � ��

91

similarity improvement achieved when adding � �

 and the best is maintained.The

algorithm then remove the class � ��

 from the class-group �[

 and adds to it the

class�� �

 , evaluating its similarity again against �[

� , checking the similarity

improvement and comparing it against the best similarity improvement achieved so far

and the best is maintained. The class is added to the class-group for which it achieves the

best similarity improvement.

6.5 Summary

In this chapter we presented a staged matching framework consisting of three stages.

The focus of the first stage is one-to-one matching, where each class in the smaller model

is matched to a distinct class in the other model with which it is most similar. The focus

of the second stage is one-to-many matching, where, classes not passing the matching

threshold of the first stage are tried to be combined in class-groups and a feasibility of the

mach from a single class in one model to a group of classes in the other model is

investigated. The third stage is an extension of the second stage, which is meant to

capture many to many matching. Empirical investigation for the matching framework is

presented in Chapter 8.

92

7 CHAPTER 7

MODEL CONSOLIDATION

7.1 Introduction

Model merging is the task of unifying information in the input models together while

keeping a single copy of matched elements [33]. Within the context of our framework we

state the task of our merging operator as follows. Given, as input, a set of analysis

(design) instances along with their pair-wise similarity information, the aim of our

proposed merging algorithm is to generate, as output, an analysis (design) reference

model with the following properties: 1) it represents all the input instances

(completeness); 2) it must retain the granularity of the elements of the input instances; 3)

each element in the reference model is traceable to its original instance (traceability); 4)

each input instance can be instantiated back from the reference model (instantiation-

ability); 5) it offers the reuse potential of the instances it generalizes; 6) it can give some

guidance to the analyst about the best domain practices.

This chapter is organized as follows. In Section 7.2 we present some basic concepts

and definitions. The phased merging is introduced in Section 7.3 and detailed in Sections

 7.4 and 7.5. Section 7.6 discusses the reference model’s properties.

7.2 Basic Concepts and Definitions

As mentioned in Chapter 4, for each pair of input models the three-staged matching

algorithms produce, as output, the MSM matrix (Section 4.4.4) which maintains the

matching similarity information between the matched classes of the two models of the

pair, depicted as three similarity levels.

93

Definition 7.1: Let � X and�� P, 0 ` i < j ` n, be a pair of models whose elements are

matched by the 3-stage matching algorithms. The Matching Similarity Matrix (MSMi,j)

represents the similarity information of the matched elements of the pair � X and�� P at

three level of similarities, highly similar (S), similar with variation (V), and unmatched

(U), as identified by the 3-stage matching algorithms.

Table 13 shows the MSM matrices of each pair �� X�and�� P) of the four

models�� 	� ,� � , �
� , and � �� of Figure 1.

Definition 7.2: Let C��

' be a pair of models � � and��
 ; let � X

� and �P

 be two classes,

where�� X
� Î � � and��P

 Î �
 ; the matched classes � X
� and �P

 have the similarity level S

(highly similar) if their similarity score satisfies the similarity threshold defined in the

first matching stage.

Example: referring to Table 13-(a), classes � 	
	 and � 	

� are highly similar classes, given

that the similarity threshold defined for the first matching stage is 0.8; similarly the

classes � �
	 and�� �

� .

Definition 7.3: Let C��

' be a pair of models � � and��
 ; let �[\

� and �[m

 be two class-

groups, where��[\
� Î � � and��[m

 Î �
 ; the matched class-groups �[\
� and �[m

 have the

similarity level V (similar with variation) if their similarity score satisfies the similarity

threshold defined in the second matching stage, but it did not satisfy the similarity

threshold defined in the first matching stage.

94

Example: referring to Table 13-(b), class-group��[k���l
	 , which consists of two classes (� �

	

and�� �
) has similarity level S with matched class-group �[k�l

 which consists of just one

class (� �

).

Definition 7.4: If two classes�� X
� Î � � and�� P

 Î �
 have similarity level S in the MSM

matrix, they represent instances of the same conceptual class C.

Example: referring to Table 13-(a), classes � �
	 and � �

� are instances of the same

conceptual class Reservation, see Figure 1.

Definition 7.5: If two class-groups ��[\
� Î � � and ��[m

 Î �
 have similarity level “V” in

the MSM matrix, they represent different variants of the same conceptual class C.

Example: referring to Table 13-(b), class-group��[k���l
	 has similarity level V with the

class-group ��[k�l

 , which are both instances of the conceptual class Flight, see Figure 1.

The commonalities and the variabilities between the models of each pair are identified

based on the levels of similarity identified between the matched classes, where classes

mutually identified across all the MSMs with similarity level S are modeled as common,

elements mutually identified across all MSMs with similarity level S and/or V are

modeled as variants, and elements with similarity level U are modeled as optional.

Definition 7.6: Let�� 	
	 , � �

� , Q, � �
� be the instances of a conceptual class C in models � 	 ,

� � , …, � � ; these instances are modeled as a common class C in the reference model if

they mutually have the similarity level S in all pairs of matched models.

95

Table 13. Pair-wise MSM Matrices of Models M0, M1, M2, and M3

M0 classes C3
0 C6

0 C2
0 C0

0 C4
0 C5

0 C1
0 -

M1 classes C3
1 C7

1 C2
1 C0

1 C4
1 C5

1 C1
1 C6

1
Sim. Score 0.92 1 0.91 0.94 0.84 0.90 0.87
Sim. level S S S S S S S U

(a) MSM matrix of pair M0 & M1

M0 classes C3
0 C6

0 C2
0 C0

0 C4
0 C0

{1,5} -

M2 classes C3
2 C6

2 C2
2 C0

2 C4
2 C1

2 C5
2 C7

2

Sim. Score 0.99 0.99 0.86 0.81 0.85 0.76 -

Sim. level S S S S S V U U

(b) MSM matrix of pair M0 & M2

M0 classes C3
0 C6

0 C2
0 C0

0 C4
0 C0

{1,5}
M3 classes C3

3 C5
3 C2

3 C0
3 C4

3 C3
1

Sim. Score 0.94 0.99 0.85 0.96 0.85 0.78
Sim. level S S S S S V

(c) MSM matrix of pair M0 & M3

M1 classes C6
1 C7

1 C2
1 C3

1 C4
1 C0

1 C1
{1,5} -

M2 classes C5
2 C6

2 C2
2 C3

2 C4
2 C0

2 C1
2 C7

2
Sim. Score 1 0.99 0.94 0.91 0.82 0.83 0.75
Sim. level S S S S S S V U

(d) MSM matrix of pair M1 & M2

M1 classes C7
1 C4

1 C3
1 C0

1 C2
1 C{1,5}

1 C6
1

M3 classes C5
3 C4

3 C3
3 C0

3 C2
3 C3

1 -
Sim. Score 0.99 0.84 0.87 0.90 0.89 0.85
Sim. level S S S S S V U

(e) MSM matrix of pair M1 & M3

M2 classes C6
2 C3

2 C4
2 C0

2 C1
2 C2

2 C5
2 C7

2
M3 classes C5

3 C3
3 C4

3 C0
3 C1

3 C2
3 - -

Sim. Score 1.0 0.94 0.90 0.86 0.81 0.95
Sim. level S S S S S S U U

(f) MSM matrix of pair M2 & M3

Example: referring to Table 13-(a-f), classes�� 	
	 , �� 	

� , �� 	

 , and �� 	

� are kind of classes

modeled as a common class in the reference model, as they are mutually highly similar

(S) in all pairs of matched models.

96

Definition 7.7: Let the class-groups ��[
	 , �[�

� , Q, �[�
� be the instances of a conceptual

class C in each of the models � 	 , � � , …, � � , respectively; then, these instances are

generalized as variants in the reference model, with a variation point, if they consistently

and mutually have the similarity level S or V in all pairs of matched models, with at least

one pair having the similarity level V.

Example: referring to Table 13-(b), class-group��[k���l
	 Î � 	 is similar (V) to the class-

group��[k�l

 Î �
 , therefore, they represent two different variants in the reference model,

under the same variation point. On the other hand, �� �

 Î �
 has “S” similarity level with

the class �� �
� Î � � , indicating that they are common within the corresponding pair and

thus they will be modeled as the same variant in the reference model.

The basic underlying process for our proposed merging algorithm can be described,

as follows. Common elements in the reference model are those elements mutually have

“S” similarity level across all the pairs and they are represented by a single class in the

reference model. Variants are modeled through Variation Points (VP) which act as

interfaces for their different variants. Identical (highly similar) variants under the

variation point are unified. Optional elements are modeled through Optional Points (OP)

which act as interfaces for the different optional elements. Identical (highly similar)

optionals under the optional point are unified. Each input model has a variant in each

variation point, but it is not necessarily for each optional point to have an optional

element for each input model.

97

7.3 Phased Merging

As mentioned in Section 4.4.6, merging is performed in two phases. Each phase is

implemented in a staged manner. The focus of the first phase is to perform preliminary

merging at the class level, producing a reference model preliminary catalog (RMPC) in

which all the common, variant, and optional classes are identified across all the instances.

The RMPC acts as a foundation for the second phase in which the union merge is

perform at the level of attributes, methods, and relationships. The output of the second

stage is the reference model catalog (RMC), from which the reference model,

exemplified in Figure 2, is produced. Detailed description of the merging algorithms in

both phases will be the focus of next two sections.

7.4 First Phase Merging

The first merging phase is preceded by a preprocessing mechanism through which

some models will be filtered out, as not candidate for merge, while the rest are passed

through to be consolidated in the reference model. Given n input models, candidate for

merge, the first phase merging algorithm works on
������

�MSM matrices, representing the

matched elements similarity information in pair-wise manner. The merging starts by

selecting one pair of models (say Mi and Mj) from those models candidate for merge and

then merging them to create an initial reference model. Then the other models are merged

to the reference model one at a time.

7.4.1 First Pair Selection

The first pair of models to be merged can be selected in many different ways. They

can be selected randomly, based on the model sequence number as given by the tool

when reading XMI file (model with smallest number is selected first), or based on their

98

similarity/dissimilarity to the other models as depicted in Figure 15. The merging

algorithm should be deterministic, apart from the selection method adopted. However, as

described in Section 7.4.2, the algorithm when performing merging has only a local view

about the ultimate similarity level of the element in the reference model. In other words,

an element could be found as common among the first set of merged models, but when

the algorithm proceeds in merging the other models it may find that this element has the

similarity level “V” (requiring modeling it as variant) or “U” (requiring modeling it as

optional) in one of the MSM matrices. This will result in reconstructing the reference

model during merging, which requires extra processing time. Similarly, an element could

be found as variant among the first set of merged models, but when the algorithm

proceeds in merging the other models it finds that this element has the similarity level

“U” in one of the MSM matrices, requiring modeling it as optional in the reference

model. This lack of the global view can be even worse with the elements to be modeled

as optionals. Let us assume that a class � �
' of model � ' is represented as two classes (� �

�

and��

�) in another model � � and has no similar class(es) in a third model � / . Let us

assume that the algorithm selects � � and � / to be generalized first. The algorithm will

finds the similarity level of both � �
� and �

� as “U”, for they exist in � � but not in � / .

Thus, the two classes will be modeled as optional under two different optional points.

Later on, when the algorithm merges � ' , it realizes that the similarity information

between the classes of � � and � ' indicates that the two classes � �
� and �

� , combined, are

representing a variant of the class � �
' . This means that the two classes � �

� and �

� need to

be modeled as one optional variant under a single optional point instead of modeling

99

them as two optionals under two different optional points as happening when merging � �

and � / . Thus, the two optional points needs to be merged into one optional point.

Figure 15. Selection of the First Pair for Merging

Alternatively, if the first pair of models to be generalized is selected based on the

following.

· Minimizing the number of elements of similarity level “S”. Thus, we minimize

changing common to variant or to optional during merging, as any common

element must have a similarity level of “S” in any pair of models.

· Minimizing the number of elements of similarity level “U”. Thus we minimize

merging more than one optional point into one as the case demonstrated above.

· Maximizing the number of elements of similarity level “V”. This criteria has

twofold advantage: it minimizes changing common into variant. It also helps

giving a better view about ultimate representation of the optional elements in the

reference model (maximizing common will not help for this advantage).

Following this last approach the selection score (SS) for each pair of models (� X and

� P) can be calculated from the following formula:

100

SS(� X, � P)=
�

-�J�
u

-�v�

- � v � �-�J�
u

�

- K� w� �- x�w�
 , (16)

where y�$� is the number of matched elements between � X and � P�with similarity level

“S”, y�z� is the number of matched elements between � X and � P�with similarity level

“V”, y X� { � is the number of unmatched elements (similarity level “U”) in model � X, and

yP� { � is the number of unmatched elements in model � P.

7.4.2 Merging Algorithm

When the first pair of models is selected, the corresponding MSM matrix is retrieved

and traversed by the consolidation algorithm as a consolidation guide to model the

commonalities and variabilities in the reference model. Any classes with similarity level

“S” in such a matrix are modeled as common classes in the reference model. A variation

point is created in the reference model for each pair of matched class-groups with “V”

similarity level; and each class-group in the pair is added as a different variant under that

variation point. As per the classes that are marked as “U” in MSM matrix, they are

temporally ignored if they are more than one class for certain model, to be considered

later on and modeled as optional points. The reason for ignoring them can be reputed to

the lack of information about these classes in the other models. For example, if two

classes of certain model are found to be unmatched in the MSM matrix when merging the

corresponding model(s), we do not know enough information about these classes, as they

may represent two different conceptual classes or they may just represent one conceptual

class. In the former case they need to be modeled under two different optional points in

the reference model while in the later case they are modeled as just one option under one

optional point. This information will not be clear until we get clear view about them from

the other models. This case of an ambiguity happens mainly when the unmatched classes

101

for certain model are more than one. However, the case should be clear when the model

has just one unmatched class. In this case an optional point is created. Then under this

optional point the unmatched class is added as an optional class for the corresponding

model.

After the first two models are merged to create an initial version of the reference

model, the other models are merged to the reference model one at a time. The next model

can be selected randomly or based on its similarity to the those models already merged in

the reference model.

To make the idea of creating an initial version of the reference model clear we

demonstrate it through a simple example. Assume that � 	 and � � are selected as the first

pair to be merged. In Figure 16, the first column shows how our proposed algorithm

merges the first two selected models, �� 	 and � � , whose MSM matrix is given in Table

13-(a). As shown in Figure 16, the merge of �� 	 and � � results in: seven classes modeled

as common; no variants; and one unmatched class modeled as first optional point. The

common classes are represented in the common matrix, which is depicted at the first

column of Figure 16 with its rows represent the models and its columns represent the

matched classes. Classes in the same column mutually have S similarity level in all the

models already merged, and thus will be represented by just one single class in the

reference model*.

* Each model instance that is merged in the reference model must have a class in each column of the
common matrix and it must have S similarity level with all the classes in the column.

102

Figure 16. First Phase Merging Steps

For the unmatched class � �
�� , a new optional point (OP0) is created and the class is

modeled as an optional class for model �� � ¾ represented as o1-6, with “1” indicates the

index of the optional and “6” indicates the index of the optional class in the original

instance (that is in�� �)*.

After the first pair is merged to create an initial version of the reference model, the

next model (say ��
 in our example) is selected and merged with the reference model as

follows. First, the MSM matrix, representing the matched elements between the selected

model and one of the models already in the reference model (say��), is retrieved and its

similarity information is checked against the similarity information in the reference

model. In particular, the similarity matrix, MSM0,2, depicted in Table 13-(b), which

represents the similarity of the matched elements between�� 	 and��
 , is retrieved and its

* Any optional point can optionally have classes from any instance model.

103

similarity information is compared against the similarity information of the reference

model, which is depicted in the first column of Figure 16. The existence of�� 	

information in both MSM0,2 and the reference model similarity information acts as a tracer

or a facilitator between the two pieces of information and thus resulting in a smooth way

for modeling the commonality and variability when the new model is to be merged with

the reference model. The role played by such a linkage can be summarized as follows.

The Common matrix maintains the original indices of the common elements for each

model merged so far to the reference model. The indices of the common elements

corresponding to the linking model (��)* are traced in the MSM0,2 matrix. The aim is to

ensure that each element of�� 	 , which is modeled as common in the reference model, has

a matched element in ��
 and the two matched elements are identified as highly similar

in MSM0,2. If this is satisfied for each common element, nothing is done except that the

indices of ��
 classes corresponding to the common elements are copied to the row of ��

in the Common matrix. If, however, a common element of �� 	 is identified as not highly

similar to its matched element of ��
 � then action will be taken appropriately as will be

detailed in the following. Referring to Table 13 and Figure 16, the classes � 	
	 , � �

	 , �

	 ,

� �
	 ,��

	 , � �
	 and � �

	 of�� 	 are modeled as common in the reference model. However, when

tracing these classes in MSM0,2, the classes {� �
	 , � �

	 } are found to be matched, as a class-

group, to the class � �

 with the similarity level “V”. This indicates that the class-group

�[k���l
	 and the class � �

 needs to be represented as variants in the reference model.

Therefore, a new variation point,�zC	 , is created in the reference model with two variants.

The first variant represents �[k���l
	 and �[k���l

� of M0 and M1, respectively, while the

* Any model already merged in the reference could be a linking model.

104

second variant represents�� �

 of M2. This means that classes represented by the first

variants need not to be in the common matrix any more, thus the corresponding columns

are removed from the common matrix. This situation represents a case where the

reference model classes can change from one similarity level (common) to another

(variants), during merging, as more instances are exposed to the algorithm. As per the

classes � �

 and � �

 the algorithm will detect (by searching the optional points in the

reference model) that � �

 has “S” similarity level with the class � �

� (of model M1), which is

modeled as optional under the optional point OP0. Therefore the algorithm will model � �

as the same optional variant under the optional point OP0. However, the class � �

 has

neither “S” similarity level nor “V” similarity level with any class in the reference model.

Therefore, a new optional point (OP1) is created and the class � �

 is modeled as an

optional class under OP1.

The algorithm then proceed to generalize the next model (M3) in the same manner as

the case with M2. After retrieving the MSM matrix corresponding to M0 and M3, the

algorithm will start by cross-checking the common elements between the reference model

and the new model with the help of the linking model (M0) and the matching similarity

matrix MSM0,3 of the new model (M3) and the linking model (M0). Then the algorithm

cross-checks the variants between the reference model and the new model. During the

generalization of M3, the algorithm will find that the classes � �
� and � �

� of M3 have, as one

class-group, “V” similarity level with the class � �
	 of M0. The algorithm will start

searching for the class � �
	 of M0 in the common classes of M0 in the reference to check

whether � �
	 is a common class in the reference or not. If it finds that � �

	 is a common

class, a new variation point is created and all the corresponding classes of the other

105

models, in the same column of � �
	 , are modeled (along with � �

) as one variant under the

new variation point while the corresponding matching class/class-group of the new model

is modeled as another variant. In the case where the � �
	 is not common in the reference

the variation points are searched. If � �
	 exists under any variation point VPp then the

variants under that variation point are searched with the hope of finding highly similar

variant to the class/class-group of the new model. If this variant exists the new

class/class-group is linked with such a variant. If, however, no such a variant exists, the

new class/class-group is modeled as a new variant under the variation point VPp. In our

case the class � �
	 exists under the variation point VP0 and it has “S” similarity level to the

class � �
� of M1, which is modeled as the second variant, v2-1, under VP0. Therefore the

class � �
	 is modeled as a second variant under the variation point VP0. No optional classes

exists for M3.

Searching the variation or the optional points is very efficient as it will just search the

entries corresponding to the linking model in the variation point matrix, which has a

linear complexity time, i.e. O((zC(), in the worst case.

Table 14. Reference Model Preliminary Catalog (RMPC)

 Common
VPs OPs
VP0 OP0 OP1

M 0 C3 C6 C4 C2 C0 V2-{ C1:C5} - -

M 1 C3 C7 C4 C2 C0 V2-{ C1:C5} o1-C6 -

M 2 C3 C6 C4 C2 C0 V1-C1 o1-C5 o1-C7

M 3 C3 C5 C4 C2 C0 V1-C1 -

RM C0 C1 C2 C3 C4 - - -

106

Table 14, represents the Reference Model Preliminary Catalog (RMPC), which

summarizes the common, variant, and optional classes of our hypothetical example (

Figure 1).

In summary, as the output of the matching algorithms are the MSM matrices, which

identify what is common and what is variant between each pair of the input models, the

output of the first merging phase algorithm is the RMPC, which generalizes the matching

similarity information in all the MSM matrices.

7.5 Second Phase Merging

In the first merging phase, all the instances of the same class across the input

instances are generalized into a single class in the reference model if they mutually have

the similarity level S. However, since the matching is performed based on a threshold

similarity, highly similar classes does not mean that they are identical. Some differences

may exist at the attribute, operation, or relationship level. Since our goal is to maintain

the granularity of variability and commonality at the finer grained granularity, we

propose a second phase merging algorithm to handle such a generalization. Based on the

RMPC, the actual catalog of the reference is built as follows. For each column j in the

common part of RMPC a reference class Cj
r is created. Then all the attributes and the

methods of the corresponding class of model M0 are copied to Cj
r. Next, the

corresponding classes of the other models sharing the same column are generalized one at

a time, using union merging. Attributes (or methods) that exist in the classes of some

instances but not in the others are tagged with a binary vector (called instance tag) in

which the presence of 1 in the ith location of the vector indicates the existence of the

attribute in the corresponding class of the instance i, 0 indicates otherwise. Variant and

107

optional classes are generalized in the same way. Similarly, the relationships between the

classes are generalized using union merging. The reference model built from this catalog

is depicted in Figure 2.

7.6 Reference Model Properties

In Chapter 1, we listed a set of properties that characterize our proposed reference

model. In the following we discuss how the reference model achieves these properties.

7.6.1 Reference Model Reuse

The reuse potential of the reference, as compared to the reuse from a single instance,

is discussed in Section 8.8 (Experiment 6) .

7.6.2 Reference Model Completeness

As indicated in Chapter 1, reference model completeness means that if an element

appears in one of the source models, it must be represented in the reference model as

well. This simply means that information in the source models must not be compromised

during merging. Our staged merging algorithms perform merging at different level of

granularity. At the class level, i.e. first merging phase, common classes are unified while

variants are explicated through variation or optional points. Variation points allow us to

maintain the different alternatives so that they are not compromised. Optional points

allow us to maintain those classes that exist in some models but not in the others. Doing

so, our proposed representation of reference model preserves the design differences

among the different input instances. The second phase merging algorithm allows us to

maintain all the necessary information at finer grained of granularity. For example,

although a class in the reference model has a single name, while representing many

instances, the names of the classes in the different instances are maintained in the

108

reference class as aliases. Also the information at the level of attributes, methods, or

relationships are maintained in the reference. Each common attribute across the different

instances is maintained as a single attribute with no tag, indicating that it is present in

every instance. Attribute that is common to some instances but not to others or specific to

a certain instance is tagged with the instance tag which signifies the instances it

represents. Same thing can be said about methods and relationships.

7.6.3 Reference Model Traceability and Instantiate-ability

The representation of the proposed reference model allows each instance to be

instantiated back from the reference model. Common classes are part of every instance.

Common (non-tagged) attributes or methods are part of every instantiated class.

Referring to Figure 2, a relationship with a variant tag prefixed with “cc” means that it is

between two common classes. Some relationships are prefixed with “cc”, but they are not

part of every instance. Hence, instance tag indicates which instance a relationship

represents. Variation points represents an abstraction between the different variants and

the other classes in the model. Variation points and the optional points are not part of the

instantiated instance. They are removed and the relationships connected directly with the

corresponding variants with the help of both the instance tag and the variant tag. For

example, in the reference model presented in Figure 2, the class “Plane” is connected to

the variation point VP0 with an association relationship named “assigned to”, with an

instance tag <1:1:1:1> and variant tag “cv: c1-VP0.v1/2.c8/10:0”. The instance tag

indicates that this relation presents in all instances. The prefix “cv” in the variant tag

indicates that the relationship is between a common class and a variant class. The

common class is “c1” and the variant class is under the variation point VP0. It can be

109

“c8”, as variant “v1”, or it can be “c10” as variant “v2”. Let us assume we want to

instantiate instance 2 ¾ instances are numbered from 0 to n-1. Then, looking at the

variant classes under the variation point VP0, we can see that from the instance tag

labeling the relationships connecting the variation points with its variants, the class

“Flight” is the corresponding class. Tracing the corresponding variant tag x*-

VP0.v1.c8:x*, we find it matches to one alternative “cv:c1-VP0.v1/2.c8/10:0” in the

variant tag “cv: c1-VP0.v1/2.c8/10:0”. Therefore, the class “Plane” has an “assigned to”

association relationship with the class “Flight” in instance 2.

7.6.4 Reference Model Reuse Recommendations

The instance vector annotating the reference model elements, while helping in tracing

the elements back to their original instances, can serve as an indicator for the

commonality of each element across the individual instances generalized by the

reference. This commonality will guide the reuser about the common analysis and design

practices in the domain.

7.7 Summary

In this chapter we presented a phased merging framework consisting of two phases.

The focus of the first phase is to perform preliminary merging at the class level,

producing the reference model preliminary catalog in which all the common, variant, and

optional classes are identified across all the instances. The focus of the second phase is to

perform merging at the finer level of granularity, i.e. at the level of attributes, methods,

and relationships, producing the reference model catalog. Empirical investigation for the

merging algorithms is presented in Chapter 8.

110

8 CHAPTER 8

EMPIRICAL ANALYSIS

8.1 Introduction

In this chapter we empirically validate the proposed staged consolidation framework.

The chapter is organized as follows. Section 8.2 introduces the experimental objects used

in our empirical investigation along with our empirical investigation road map. In Section

 8.3 we present the matching accuracy measures used. The proof of concept tool is

presented in Section 8.4. The weight calibration experiments are discussed in Section 8.5.

In Section 8.6, we compare the performance of the proposed greedy GA matching

algorithm (GGAM) against the traditional GA. We validate the comparison framework

along with the matching algorithms in Section 8.7. Empirical investigation of the

reference model generalization is presented in Section 8.8.

8.2 Experimental Objects

The experimental objects for our empirical investigation need to be constrained to the

objective of our work, the generalization of a set of models, representing different

instances within a domain or similar domains, into a reference model that unifies their

overlaps and explicates their differences. Therefore, the criterion of the instances suitable

for our experiments is that models need to be realistic enough to manifest the best

practices in both the industry and the academia, so that the theoretical reuse potential can

be obtained and consequently the potential of our approach will be realized. Finding large

mature data set available for research at the model level is difficult. Finding multiple

mature model instances representing different variants of an application within a domain

is exceedingly difficult. Therefore, the potential of our approach will be shown through a

111

couple of experiments, each is targeting certain facet. The following case studies are

going to be used as our experimental objects.

Case Study 0 (CS0): This case study represents different variations of a simple flight

booking system adopted from [44]. The variations were inspired from the different design

alternatives introduced by the author while explaining the UML practice in modeling the

structural view of the software system. It is used throughout the thesis as a hypothetical

example to demonstrate interaction of the different components of the solution

framework.

Case Study 1 (CS1): This case study represents within a domain class diagrams reversed

engineered from an open source system, ezmorph*, consisting of 12 releases. To allow for

differences between the reversed engineered class diagrams of the different releases, we

picked 5 non-consecutive releases (0.8, 0.9, 1.0, 1.0.4, and 1.0.6) of this system.

Case Study 2 (CS2): This case study, borrowed from [144], represents across domain

class diagrams consisting of four class diagrams with similar structures (as they represent

the admission systems) but in different ontologies (Computer Repair Shop, Hospital

registration, Student Admission, and Admission in a General Institution). The structural

similarity between the diagrams is very high, representing the reuse potential that should

be reflected in the proposed reference model.

Case Study 3 (CS3): This case study consists of multiple instances instantiated by

introducing different types of perturbation to an original model. The original model is

borrowed from Case Study 1, consisting of 50 classes. The perturbations by the instance

* ����������	
���	�������	���
�������	�������	
����	 �
��	�

112

generator are applied at different level of granularity (classes, relationships, attributes,

methods, and data types). Table 15 shows the different types of perturbations applied to

the original model to generate the different instances.

Table 15. Perturbation Performed by the Instance Generator

To allow for differences between the instances the perturbation operations are applied

probabilistically. Tow parameters are used by the generator, perturbation probability (pp)

and percentage of changes (pc). The pp parameter represents the probability by which

certain type of perturbation will be applied whereas the pc parameter represents the

magnitude of such perturbation. For example, for the type of change removeAttributes,

setting the pp parameter into 0.50 and the pc into 20% means that attributes will be

Class level perturbation pp pc

renameClass Changing class name by perturbing their names with some
prefix or suffix added from a predefined set of names.

0.50 NA

removeClass Removing a class from the original model. 0.80 NA

Attributes perturbation

pertAttributesList Adding an attribute to a class from a predefined sets of
attributes along with their data type.

Changing the data type of the attribute

1.0 25%-30%

removeAttributes Removing an attribute from a class 1.0 25%-30%

Operations list perturbation

pertOperationsList Adding an operations to a class from a predefined sets of
operations along with their returns types and parameters.

Adding parameter to the operation

Changing the return type of the operation

1.0 25%-30%

removeOperation Removing an operation from a class 1.0 25%-30%

Relationships perturbation

pertRelationship Adding relationships between two classes.

Changing the relationship type between two classes.

Changing the relationship’s name between two classes.

0.15 NA

removeRelation Removing a relationship from the original model. 0.15 NA

113

removed from the class, by the instance generator, with a probability of 0.50, and the

number of removed attributes is 20% of the number of attributes of the class. It is worth

mentioning that when applying some perturbation, undesirable situations may happen.

For example, removeClass perturbation may result in splitting the class diagram into

fragments. Similar thing can happen when removing some relationships. For such

situations preventive actions are taken to not perform that perturbations. In other words,

if removing the class and its relationships will result in splitting the class diagram into

two or more fragments, that class will not be removed. Figure 17 shows a trace matrix of

the classes’ distribution over the different instances generated. The first line shows the

class index in the original (source) model. Shaded boxes represent the classes which exist

in the source model, but removed, by removeClass perturbation operation, from the

corresponding instance.

Figure 17. Trace Matrix Showing Classes' Distribution over Different Instances, Case Study 3.

Table 16. Basic Statistics about the Case Studies

Number of class
diagrams

Number of pairs

Number of classes in
the largest model

Number of classes in
the smallest model

Case Study 0 4 6 8 6

Case Study 1 5 10 71 49

Case Study 2 4 6 10 10

Case Study 3 5 10 32 29

114

Table 16 provides basic statistics about the four case studies. Table 17 summarizes

our empirical investigation road map. It shows, for each experiment, the dataset used, and

the objective of the experiment.

Table 17. Empirical Investigation Roadmap

Experiment Objective Dataset used

Experiment 1 Setting the neighborhood weights within and

across domains.

One pair (two models), selected from

Case Study 2.

Experiment 2 Setting the name, internal, and neighborhood

weights for equations 12 through 15.

Showing the limitation of the single measure

through 0 weight assignment for the other 2

measures.

One pair (two models) selected from

Case Study 1.

One pair (two models) selected from

Case Study 2.

One pair (two models) selected from

Case Study 3.

Experiment 3 Evaluating the performance of the traditional

genetic algorithm versus the performance of the

greedy genetic algorithm.

Synthetic data.

Case Study 1.

Experiment 4 Evaluating the accuracy of the different

similarity metrics against the three matching

algorithms presented in the first matching stage:

GGRM; GGAM; and GSAM.

Case Study 1 (within domain).

Case Study 2 (across domain).

Case Study 3 (within domain).

Experiment 5 To show that the unrelated models will be

filtered out and the reference will be built based

on the majority of the instances .

Evaluating the merging algorithms.

Mixing 2 instances from Case Study 0

with 4 instances from Case Study 2.

Case Study 0 (Hypothetical Example).

Case Study 2 (across domain).

Experiment 6 Evaluating the merging algorithms.

Evaluating the reference reuse.

Case Study 1 (within domain).

Case Study 3 (random instances).

115

8.3 Accuracy Measures

From the matching prospective, an accurate similarity assessment should result in an

accurate matching, i.e., a matching with zero false positive and zero false negative rates.

In other words, elements correctly matched by the matching algorithm should have been

assigned high similarity scores by the similarity metric, so that they can pass

matched/unmatched threshold, to be counted as true positives. However, elements

incorrectly matched by the algorithm, due to injectivity (Definition 5.2), should have been

assigned low similarity scores by the similarity metric so that they can be counted as true

negatives, because of their low similarity values.

The accuracy of the similarity metrics and the matching algorithms are evaluated in

terms of the matching precision, recall, and accuracy. It is a general problem that

evaluating the accuracy of the matching depends heavily on the particular matching goal

[54, 145, 146]. Within the context of the goal of this work, we will consider all pairs more

similar than certain threshold to be matched, and all pairs less similar to be not matched

[147]. Therefore we can define the three measures as follows. Let TP be the number of

true positives (i.e. number of pairs of classes, correctly matched, with similarity score

above or equal to the matching threshold), TN be the number of true negatives (i.e. the

number of classes in each model that are correctly unmatched, or are matched, incorrectly,

due to injectivety, but with low similarity score), FP be the number of false positives (i.e.

number of pairs of classes incorrectly matched with similarity score above or equal to the

matching threshold), FN be the number of false negative (i.e. the number of pairs of

classes incorrectly unmatched, or matched correctly with low similarity score), then:

 (17)

116

 (18)

 (19)

8.4 Proof of Concept Tool

We developed a proof of concept java-based tool to implement the different

algorithms presented in our framework and to show the applicability of our proposed

solution and its potential. The tool receives as input a set of class diagrams in XMI (XML

Metadata Interchange) format. The tool can then perform the following tasks.

� Parssing the XMI files as produced by two modeling tools: Altova and ArgoUML.

� Computing different similarity metrics with configurable weight settings. Currently

the tool supports the metrics presented in Chaper 5. Other new metrics can be

defined, coded, added, and called as seprate functions. The input to the similarity

metric function is the information of a pair of compared classes or models, i.e. two

versions are implemented for each similarity function. The output is either a single

real value, represinting degree of similarity of a pair of classes, or a matrix of real

values, represinting the pair-wise degree of similarity between the classes of the

compared pair of models. To interface with the WordNet database we adopted, with

some modefication, an open source package, ws4j [148].

� Matching the elements of the input models in a pair-wise manner. For element to

element matching, the tool provides an implementation for five model matching

algorithms: Simple Greedy Matching algorithm (SGRM), Globl Greedy (GGRM)

Matching algorithm, traditional Genetic Matching algorithm (GA), Greedy Genetic

Matching algorithm (GGAM), and Greedy Simulated Annealing Matching

117

algorithm (GSAM). For the second and third stages the tool implements the

algorithms described in Section 6.3 & 6.4.

� Consolidating the models to build the reference model. Filtering is a preprocessing

step performed by the tool to filter out unrelated models. The filtering is performed

by the tool as discribed in Section 4.4.5 and shown experimintally in Section 8.8

(Experment 5). Then, the tool in the first phase of merging produces the the

Reference Model Preliminary Catalog (RMPC), which identifies the commonality

and variability across the merged models at the class level, as described in Section

 7.4. Then it goes for the second phase of merging, i.e. the merge of methods,

attributes, and relationships.

8.5 Empirical Weights Investigation

In this experiment, we investigate different weight assignments for the constituents of

the different compound metrics used for assessing the similarity between the elements of

the compared models. We run different types of experiments for setting the values of the

weight coefficients of the constituents of the compound metrics, Equations 11 through

15.

Experiment 1: Setting neighborhood similarity weights

Objective: To select the most appropriate weights for the different constituents (metrics)

of the similarity metric NSim, Equation (11), so that each class in a certain model will be

matched to the most similar class in the other model, based on the NHS similarity metric.

Methodology: The experiment was conducted according to the pseudo code in Figure 18.

A pair of models is randomly selected from Case Study 2. Certain matching threshold is

118

defined. For each weight assignment, the similarity score for each pair of classes from the

two models is computed, and the injective match from each class in the smaller model to

its most similar, unmatched, class in the other model is found. The resulting match is

evaluated in terms of the matching accuracy, Equation (19).

Pick a pair of models Mi and Mj

for wnn¬ 0.0 to 1.0 step 0.05

for wrn ¬ 0.0 to 1.0 – wnn step 0.05){

wrt ¬ 1.0 - (wnn+wrn);

find NHS between the classes of models Mi and Mj based on
wnn, wrn , wrt weights and store the similarity scores in ES
matrix;

evaluate the matching accuracy between the classes of the
models Mi and Mj ;

end for

end for

Figure 18. Pseudo Code of the Weight Calibration of the Constituents of NSim Metric, Equation (11).

Figure 19 shows the obtained matching accuracy for different weight settings at

different matching thresholds (0.70, 0.75, 0.80). The different experiments of the weight

settings label the x-axis while y-axis values represent the values of the weight coefficients

(wnn, wrn, wrt) along with the matching accuracy. We use the decimal point style for the

accuracy, rather than percentage (%), to be in the same scale of the weights. We use the

Microsoft Excel Line Chart type, which allows us to draw the trends of the accuracy

versus the weight values over the different experiments of weight settings. The data series

(weight coefficients & accuracy) in the diagrams are sorted increasingly by the accuracy.

As we can see, the general trend in the three figures, Figure 19-(a) through Figure 19-(c),

is that high accuracy was obtained when the weights assigned to both the neighbor name

(wnn) and the relation name (wrn) are low as compared to higher weight values assigned to

119

the relation type (wrt). The reverse is also true, as the low accuracy was obtained when wrt

has low weights as compared to higher weights assignment to wnn.

(a) 70% matching threshold

(b) 75% matching threshold

(c) 80% matching threshold

(d) Average of a,b, and c

Figure 19. Models’ Matching Accuracy at Different Weight Settings for the Neighborhoods Similarity Metric
NHS’ Constituents, Equation (11).

120

Table 18. The Accuracy Obtained at Some Special Cases of the Weight Assignment, Nsim Metric, Equation (11)

wnn wrn wrt
 Matching threshold comments
 0.70 0.75 0.80 .85

0 0 1 0.40 0.40 0.40 0.40 This reflects the importance of the other
contributors, as using the relation type
alone achieves only 40% accuracy over
the different thresholds.

0 1 0 0.40 0.40 0.40 0.40 This reflects the importance of the other
contributors, as using the relation name
alone achieves only 40% accuracy over
the different thresholds.

1 0 0 0.20 0.20 0.10 0 Relying on the neighbor name alone,
across ontolgies, resulted in 100% loss in
the accuracy at higher threshold.

0 0.50 0.5 0.80 0.80 0.60 0.60 The absence of the neighbor name
caused a loss of 40% in the accuracy, at
higher threshold .

0.33 0.33 0.33 0.90 0.90 0.90 0.20 Even distribution of the weights resulted
in a very poor accuracy at higher
threshold.

0.50 0 0.50 1 0.60 0.30 0.20 The absence of the relation name caused
a loss of 80% in the accuracy at higher
threshold.

0.50 0.50 0 0.80 0.40 0.20 0.10 The absence of the relation type caused a
loss of 90% in the accuracy at higher
threshold

0 0.05-0.60 0.40-0.95 0.80 - - - Best accuracy obtained and the
corresponding weight ranges when using
only relation name and relation type. As
we can see here that as threshold goes up
(from 0.7 up to 0.85) the range of
weights which gives us high accuracy is
getting smaller.

0 0.05-0.50 0.50-0.95 - 0.80 - -

0 0.10-0.40 0.60-0.90 - - 0.80 -

0 0.05-0.25 0.75-0.95 - - - 0.80

0.05-0.60 0 0.40-0.95 1 - - - Best accuracy obtained and the
corresponding weight ranges when using
only neighbor name and relation type.
The absence of the relation name does
not affect the accuracy.

0.05-0.50 0 0.50-0.95 - 1 - -

0.05-0.30 0 0.70-0.95 - - 1 -

0.05-0.25 0 0.75-0.95 - - - 1

0.05-0.50 0.50-0.95 0 0.80 - - - Best accuracy obtained and the
corresponding weight ranges when using
only neighbor name and relation name. 0.05-0.40 0.60-0.95 0 - 0.80 - -

0.05-0.30 0.70-0.95 0 - - 0.80 -

0.05-0.25 0.75-0.95 0 - - - 0.80

0.05-0.50 0.05-0.55 0.40-0.90 1 - - - Best accuracy obtained and the
corresponding weight ranges when all
constituents have nonzero weights. 0.05-0.40 0.05-0.45 0.50-0.90 - 1 - -

0.05-0.30 0.05-0.35 0.60-0.90 - - 1 -

0.05-0.25 0.05-0.25 0.70-0.90 - - - 1

Note: All the weights assignment is subject to the condition that the summation of all the weights is 1.

121

Figure 19 (d) shows the average accuracy over the different matching thresholds for

the same point of weight settings. Table 18 shows some weights’ values that reflect some

special cases, like even distribution of the weights; the absence of one constituent; the

situation where only one constituent is used; and the situation where the best accuracy

was obtained. As it is clear from Figure 19, and summarized by Table 18, that when the

three constituents of Equation (11) are assigned even weights we got a high accuracy of

0.90 at 0.70, 0.75, and 0.80 matching threshold, but when the matching threshold was

increased from 0.80 to 0.85 the accuracy was drastically decreased into 0.2. This can be

attributed to the fact that across domains the lexical similarity between the names of the

matched classes is low, resulting in a similarity lower than the threshold (increasing the

number of false negative), which in turn results in decreasing the accuracy. At the case of

relying on a single component of NSim, the best accuracy of 40% was obtained with the

relation type (wrt=1). This means that 60% of the accuracy was lost because of the

absence of the other components (wnn=0, wrn=0). This is a clear evidence about the

importance of the other constituents of NSim. The situation is not that worst with the

absence of one component as the best accuracy of 100% was obtained with the absence

of the relation name. However, the absence of one of the other two, i.e. wnn=0 or wrt=0,

results in a loss of 20% in the accuracy.

When all the three constituents are present (i.e. all have nonzero values for the weight

coefficients), an accuracy of 100% can be obtained at ranges of weights shown at the end

of Table 18. It is clear from Figure 19 and the last rows in Table 18 that we can still get a

100% accuracy at higher matching thresholds. However, the range of the weight

assignments for the three constituents is getting smaller as the matching threshold is

122

getting higher. Bearing in mind the expected variations among the similar elements, the

very high threshold may be so restrictive, resulting in an increase in the false negatives.

In other words, having a high matching threshold can cause some similar classes, with

some variation, to be identified as dissimilar, because the small variation between them

render their similarity value to not pass the very high threshold. On the other hand,

having a low matching threshold can result in high false positives. That is to say, having a

low threshold can cause some dissimilar classes, with low similarity values, to be

identified as similar. Therefore, we opt to adopt a reasonable threshold of 0.80 for our

further experiments. For this threshold, the ranges of the weights which result in a 100%

accuracy are: wnn Î {0.05, 0.10, .., 0.30}; wrnÎ {0.05, 0.10, …, 0.35}; wrt Î

{0.65,0.70,…,0.90}. Taking the median within each set (conditioning that wnn+ wrn+

wrt=1) we can suggest the following weight settings: wnn= 0.15; wrn= 0.15; wrt=0.70.

Experiment 2: Setting class similarity weights

Objective: To select the most appropriate weights for the different constituents of the

similarity metrics NIS,NNHS, INHS, NINHS, Equation 12 through 15, so that each class

in a certain model will be matched to the most similar class in the other model.

Experimental Objects: For this experiment we use Case studies 1, 2, and 3, to see how

the weights will be calibrated over the different datasets.

123

(a) 70% matching threshold

(b) 75% matching threshold

(c) 80% matching threshold

(d) Average of a,b, and c

Figure 20. Models’ Matching Accuracy at Different Weight Settings for the NINHS Similarity Metric
Constituents, Equation 12 through 15, Case Study 1

Methodology: The experiment was conducted as follows. For each case study, a pair of

two models was randomly selected. For each threshold, the weights were assigned

124

according to the pseudo code in Figure 21. For each weight assignment, the similarity

score for each pair of classes from the two models is computed, and the injective match

from each class in the smaller model to its most similar, unmatched, class in the other

model is found. The resulting match is evaluated in terms of the matching accuracy,

Equation (19). It is easily to notice that Equations (12) through (14) are special cases

from an Equation (15), where the weight coefficient for the missed constituent is zero.

Therefore, the weight calibration experiments for the metric NINHS (Equation (15)) cover

the weight settings for the four compound metrics, NIS, NNHS, INHS, and NINHS.

Pick a pair of models Mi and Mj

for wn¬ 0.0 to 1.0 step 0.05

for wi ¬ 0.0 to 1.0 – wn step 0.05){

wnh¬ 1.0 - (wn+wi);

find NINHS between the classes of models Mi and Mj based on wn, wi , wnh

weights and store the similarity scores in ES matrix;

evaluate the matching accuracy between the classes of the m odels Mi

and Mj ;

end for

 end for

Figure 21. Pseudo Code of the Weight Calibration of the Constituents of NINHS Metric, Equation (15)

Figure 20 shows the obtained matching accuracy at different weight settings for the

NINHS constituents for Case Study 1 (within domain class diagrams). The different

experiments of the weight settings label the x-axis while y-axis values represent the

values of the weight coefficients (wn, wi, wnh) along with the matching accuracy. The data

series (y-axis variables) in the charts are sorted by the values of the neighborhood weight

coefficient, wnh, increasingly. The reason for doing so is solely that it gives a clear view

about the trend of the accuracy against each weight coefficient, as compared to sorting

them by the accuracy, which is the case in Figure 19. As it is clear from the four figures

125

(Figure 20-(a) through Figure 20-(d)) that the drops in the accuracy happen when the

weight assigned to the class name is 0, (i.e. when wn=0). Since we opt to set the matching

threshold to 0.80 in our further experiments of matching, and since the trend is the same

at the different matching thresholds, Figure 20-(a) through Figure 20-(d), and for the sake

of conciseness, our discussion will focus in Figure 20-(c) which is not far from other

figures (i.e. Figure 20-(b) through Figure 20-(d)).

It is clear from Figure 20-(c) that when wn is assigned any weight value (wn a 0.05,

such that wn+ wi + wnh=1) we usually get high matching accuracy between the classes of

the matched class diagrams. The highest matching accuracy of 100% was obtained at

different weight values, e.g. {wn= 0.10; wi= 0.50; wnh=0.40}, {wn= 0.75; wi= 0.15;

wnh=0.10} or {wn= 0.55; wi= 0.15; wnh=0.30}. The worst accuracy of 39.4% was obtained

at the weight settings wn= 0.0; wi= 0.0; wnh=1.0. Table 19 summarizes some special cases

of the weight assignment for the coefficients of Equations (12) through (15).

Figure 22 depicts the weights calibration and the corresponding accuracy across

domains (Case Study 2) for equations (12) through (15). Special cases of these weight

assignments are summarized in Table 20. As it is clear from the four figures (Figure 22

(a) through Figure 22 (d)) the drops in the accuracy happen when the weight assigned to

the class name is high (0.40<wn� 1.0, such that wn+ wi + wnh=1). When wn is assigned low

weight values (0̀wn� 0.25), we usually get high matching accuracy between the classes

of the matched class diagrams. The highest matching accuracy of 100% was obtained at

the weight values: wn= {0.0, 0.05, 0.1, 0.15}; wiÎ {0.0,0.05, …, 0.65}; and wnh Î {0.55,

0.60,.. ,1.0}; such that wn+ wi + wnh=1 . The worst matching accuracy of 10% was

obtained at the weight settings wn= 0.50; wi= 0.0; wnh=0.50.

126

Table 19. The Accuracy Obtained at Some Special Cases of the Weight Assignment for the Metrics NIS, NNHS,
INHS, NINHS, Equation (12) through (15), Case Study 1

wn wi wnh
 Accuracy comments

0 0 1 39.4% This reflects the importance of the other
contributors, as using the neighborhood
information alone (NHS metric) achieves only
39.4% accuracy over the different thresholds.

0 1 0 65% Relying on the internal information alone (IS
metric) achieves only 65% accuracy over the
different thresholds.

1 0 0 97% Relying on the class name alone (NS metric),
within domain, resulted in 97% accuracy. This
can be understood as the lexical naming similarity
between classes of multiple releases is expected to
be high.

0 0.50 0.50 72% The absence of the class name caused a loss of
28% in the accuracy.

0.50 0 0.50 97% The absence of the internal information caused a
loss of 3% in the accuracy.

0.50 0.50 0 99% The absence of the neighborhood information
with even weight assignment of the other weight
coefficients caused just a loss of 1% in the
accuracy.

0.33 0.33 0.33 98% Even distribution of the weights for all the weight
coefficients resulted in an accuracy of 98%.

0 0.15 0.85 72.8% Best accuracy obtained and the corresponding
weight ranges when Wn = 0. The absence of the
class name caused a loss of 27.2% in the
accuracy. This situation represent the best weight
settings for INHS metric, Equation (14).

{0.1, 0.25,
0.4, 0.6,
0.75}

0 {0.1, 0.25,
0.4, 0.6,
0.75}

 99% Best accuracy obtained and the corresponding
weights when Wi = 0. The absence of the internal
information caused unnoticeable loss in the
accuracy. This situation represent the best weight
settings for NNHS metric, Equation (13).

0.10 0.90 0 99% Best accuracy obtained and the corresponding
weight ranges when Wnh = 0. The absence of the
neighborhood information caused unnoticeable
loss in the accuracy. This situation represent the
best weight settings for NIS metric, Equation
(12).

{0.10, 0.20,
0.25, 0.55,
0.75}

{0.15, 0.25,
0.30, 50}

{0.05, 0.10,
0.15, 030,
040, 045}

 100% Best accuracy obtained and the corresponding
weights when all constituents have nonzero
weights. This situation represents the best weight
settings for NINHS metric, Equation (15).

127

(a) 70% matching threshold

(b) 75% matching threshold

(c) 80% matching threshold

(d) Average of a, b, and c

Figure 22. Models’ Matching Accuracy at Different Weight Settings for the NINHS Similarity Metric

Constituents, Equation 12 through 15, Case Study 2

128

Table 20. The Accuracy Obtained at Some Special Cases of the Weight Assignment for the Metrics NIS, NNHS,
INHS, NINHS, Equation (12) through (15), Case Study 2

wn wi wnh
 Accuracy comments

0 0 1 100% This reflects the importance of the neighborhood
information across domains, as using the
neighborhood information alone (NHS metric)
achieves 100% accuracy.

0 1 0 50% Relying on the internal information alone (IS
metric) achieves only 50% accuracy.

1 0 0 25% Relying on the class name alone (NS metric),
across domains, reported an accuracy of 25%.

0 0.50 0.50 100% The absence of the class name information with
even weight assignment of the other weight
coefficients does not cause any loss in the
accuracy.

0.50 0 0.50 10% The absence of the internal information with even
weight assignment of the other weight
coefficients caused a loss of 90% in the accuracy.

0.50 0.50 0 20% The absence of the neighborhood information
with even weight assignment of the other weight
coefficients caused a loss of 80% in the accuracy.

0.33 0.33 0.33 40% Even distribution of the weights for all the weight
coefficients caused a loss of 80% in the accuracy.

0 0.05-0.65 0.35-0.95 100% Best accuracy obtained and the corresponding
weight ranges when Wn = 0. The absence of the
class name result in no accuracy loss. This
situation represents the best weight settings for
INHS metric, Equation (14).

0.05 0 0.95 100% Best accuracy obtained and the corresponding
weights when Wi = 0. The absence of the internal
information caused no accuracy loss. This
situation represent the best weight settings for
NNHS metric, Equation (13).

0.05-0.30 0.70-0.95 0 100% Best accuracy obtained and the corresponding
weight ranges when Wnh = 0. The absence of the
neighborhood information caused unnoticeable
loss in the accuracy. This situation represent the
best weight settings for Equation (14).

{0.05, 0.10,
0.15}

0.05-0.55 0.40-0.90 100% Best accuracy obtained and the corresponding
weights when all constituents have nonzero
weights.

Figure 23 depicts the weights calibration and the corresponding accuracy based on

Case Study 3, for equations (12) through (15). Special cases of these weight

assignments are summarized in Table 21.

129

(a) 70% matching threshold

(b) 75% matching threshold

(c) 80% matching threshold

(d) Average of a, b, and c

Figure 23. Models’ Matching Accuracy at Different Weight Settings for the NINHS Similarity Metric
Constituents, Equation 12 through 15, Case Study 3

130

Table 21. The Accuracy Obtained at Some Special Cases of the Weight Assignment for the Metrics NIS, NNHS,
INHS, NINHS, Equation (12) through (15), Case Study 3.

wn wi wnh
 Accuracy comments

0 0 1 32.2% This reflects the importance of the other
contributors, as using the neighborhood
information alone (metric NHS) achieves only
32.2% accuracy over the different thresholds.

0 1 0 42.4% Relying on the internal information alone (metric
IS) achieves only 42.4% accuracy over the
different thresholds.

1 0 0 86.4% Relying on the class name alone (metric NHS),
within domain, resulted in 86.4% accuracy.

0 0.50 0.50 30.5 The absence of the class name information with
even weight assignment of the other weight
coefficients caused a loss of 69.5% in the accuracy.

0.50 0 0.50 52.5% The absence of the internal information with even
weight assignment of the other weight coefficients
caused a loss of 47.5% in the accuracy.

0.50 0.50 0 76.3% The absence of the neighborhood information with
even weight assignment of the other weight
coefficients caused just a loss of 23.7% in the
accuracy.

0.33 0.33 0.33 55% Even distribution of the weights for all the weight
coefficients resulted in an accuracy of 55%.

0 0.80-0.95 0.05-0.20 40.7% Best accuracy obtained and the corresponding
weight ranges when Wn = 0. The absence of the
class name caused a loss of 27% in the accuracy.
This situation represent the best weight settings for
INHS metric, Equation (14).

0.95 0 0.05 84.7% Best accuracy obtained and the corresponding
weights when Wi = 0. The absence of the internal
information caused unnoticeable loss in the
accuracy. This situation represent the best weight
settings for, NNHS metric, Equation (13).

0.85 0.15 0 86.4% Best accuracy obtained and the corresponding
weight ranges when Wnh = 0. The absence of the
neighborhood information caused unnoticeable
loss in the accuracy. This situation represent the
best weight settings for NIS metric, Equation (12).

0.75-0.90 0.05-0.20 0.05 86.4% Best accuracy obtained and the corresponding
weights when all constituents have nonzero
weights. This situation represent the best weight
settings for NINHS metric, Equation (15).

As it is clear from the four figures (Figure 23-(a) through Figure 23-(d)), the trend is

generally similar to the situation with Case Study 1, Figure 20. High accuracy is achieved

when wn is assigned high values, against low values assigned to wnh. On the other, When

131

wn is assigned low values we get low accuracy. Table 21 provides concise comments

about different weight assignments. As we can see, with Case study 3, and under the

perturbation settings in Table 15, we did not obtain a 100% accuracy. The reason can be

explained as follows. Assume a class A in model Ma was identical to a class B in the other

model Mb (i.e. A and B are generated from the same class in the original model). Assume

the perturbation has been applied to the two classes according to perturbation settings in

Table 15. Assume a third class C in Mj generated from a different class in the original

model. It is possible that, due to the high perturbation, the class A becomes more similar

to C than it is to B, after perturbation. This will result in a miss, as our measure for

reporting the accuracy is based on tracing the matched classes back to their original class

to report weather the match is correct or not.

We modified the perturbation as shown in Table 22. Then, we rerun the experiment

and the results at 0.80 threshold is shown in are shown in Figure 24. The best accuracy of

100% is achieved at the weight values: wn= {0.65, 0.70,…, 0.90}; wiÎ {0.10,0.15, …,

0.25}; and wnh Î {0.0, 0.05,.. ,0.15}; such that wn+ wi + wnh=1.

Table 22. Low perturbation, Case Study 3

Perturbation type pp pc

renameClass 0.20 NA

removeClass 0.80 NA

pertAttributesList 0.50 20%-25%

removeAttributes 0.50 20%-25%

pertOperationsList 0.50 20%-25%

removeOperation 0.50 20%-25%

pertRelationship 0.10 NA

removeRelation 0.10 NA

132

Figure 24. Models’ Matching Accuracy at Different Weight Settings for the NINHS Similarity Metric
Constituents, Equation 15, Case Study 3 (Low Perturbation)

To sum up, we can say that within a domain lexical information has more and

recognized importance than the structural one. However, across domains structural

information are more effective. The following section will validate our outcomes of

experiment 1 and 2.

8.6 Empirical Investigation of Traditional Genetic versus Greedy Genetic

To compare the implementations of the traditional genetic (GA) and the hybridized

greedy genetic algorithm (GGAM), we ran a couple of experiments as follows.

Experiment 3: Evaluating the performance of the traditional versus the greedy-

genetic algorithms.

Experimental objective: To show the effect of the hybridization on the algorithm

convergence.

Experimental objects: Due to the common problem of real data scarcity, and since we

want to investigate the two algorithms under different problem sizes, the two algorithms

are first investigated using synthetic data. Then they are investigated using Case Study 1.

The synthetic data generator has been designed in such a way that it adheres to the theory

of the problem domain [149] as well as our intuition about the problem. In other words,

133

in software engineering literature, the theoretical reuse potential within a domain can be

up to 85% (65% as domain specific and 20% as domain independent) [34]. Accordingly,

we devised an algorithm to generate data where the simulated similarity is within the

theoretical potential. In other words, the generator generates a two dimensional matrix,

which simulates the similarity scores between the elements of a pair of two models,

where the randomly generated scores reflect the fact that an element of a certain model is

dissimilar (has low similarity score) to all elements in the other model except one or two

elements at most (high similarity score). Java code for the synthetic data generator is

shown in Figure 25, and an example of the generated matrix, which simulate the element

similarity matrix ES, is depicted in Figure 25, with problem size n=10.

Methodology: the experiments were run over different problem sizes (n = 10, 20, 30, 40,

50, and 100). The accuracy of the two algorithms is reported in term of the value of the

fitness function and its closeness to the theoretical value. The fitness function is

computed as the summation of the scores of the mapped elements, i.e., " I$ X�P
���
X+	 , where

i represents the index of the row element, j represents the index of the column element

mapped to i; ESi,j is the simulated similarity score between i and j; and n simulates the

number of classes in the two mapped models. We also reported the run time of the two

algorithms at different problem sizes. The two algorithms ran under settings mentioned in

Table 12, except the number of iterations which we set here, for the purpose of this

experiments, to be 20,000 iterations, and for all the problem sizes.

Results and analysis: Figure 27 shows the convergence of the fitness function, to the

theoretical value, for both the traditional genetic (right side of the figure) and the greedy

genetic (left side of the figure) over different problem sizes. The theoretical value is the

134

sum of highest values in each row of the simulated ES matrix. In all the figures (Figure

27-(a) through Figure 27-(l)) the x-axis represents the different generations of the

solution while y-axis represents the values of the fitness function.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

static void generateRandSimMat (double a[][], int row, int col)

{

 int randSim;

 double rand;

 for (int i=0;i<a.length;i++){

 // select random column element

 randSim=(int)(Math.random()*col);

 for (int j=0;j<a[0].length;j++){

 // generate a random number to simulate the similarity score

 // between element i and element j

 a[i][j]=Math.random();

 // simulate dissimilarity by making the score smaller

 a[i][j]=a[i][j]*a[i][j];

 // simulate high similarity by imposing high score for 75% of

 // row elements each with randomly selec ted column element

 if (j==randSim && a[i][j]<0.9 && Math.r andom()<=0.75){

 while((rand=Math.random())<0.9);

 a[i][j]=rand;

 }

 }

 }

 }

Figure 25. Synthetic Data Generator for ES Matrix

The following can be noticed from Figure 27-(a) through Figure 27-(l).

1- At low problem size (n=10), the two algorithms show almost equivalent

convergence, yet, GGAM converges faster (in earlier iterations) than does the

traditional GA, and with slightly higher value for the fitness function. However,

none of the two algorithms reaches the theoretical value. The reason could be due

to maintaining the injectivity. For example, referring to the simulated ES matrix in

135

Figure 26, the best solution is shown as bolded numbers, where the row elements

are mapped to the corresponding column elements with best fitness value of

(0.952 + 0.974 + 0.911 + 0.900 + 0.920 + 0.982 + 0.253 + 0.214 + 0.984 + 0.852

= 7.92). The value 0.253, which simulates the similarity between the 7th row

element (i=6) and the 3rd column element (j=4), is not the highest in its

corresponding row, as the highest value is 0.778, but the algorithm enforcedly (to

maintain injectivity) maps the 7th row element with the 3rd column element in

favor of maximizing the overall fitness value. Similar thing can be said about the

value 0.214. This difference between the highest values and the best option to go

with by the algorithm can be the main cause for not getting to the theoretical

fitness value. Other possible reason could be the fact that the algorithm could not

converge to the optimal solution.

2- As the problem size is getting larger, the difference in the convergence between the

two algorithms becomes clear, where GGAM converges faster (i.e., in earlier

iterations) to the theoretical value while the traditional GA still needs more

iterations to converge to the same value obtained by GGAM.

3- Time wise,

136

4- Table 23 shows the best values achieved by the traditional GA, up to 20000

iteration. The table also shows the corresponding time to achieve these values as

taken by the two algorithms. It could be better to measure the time taken by the

two algorithms to the best value achieved by either of the two algorithms, which is

usually achieved by the GGAM across the different problem sizes. However,

looking at Figure 25, we can see that the convergence of the traditional GA to the

best values achieved by the GGAM cannot be figured out. In other words, we do

not know how many iterations, beyond 20000 iterations, the traditional GA

requires to converge to the best values achieved by the GGAM. As per the penalty

that might be encountered due to the hybridization, in the case the algorithms will

converge over the same numbers of iterations, Table 24 shows the time taken by

the two algorithms over 20000 iterations, and across the different problem sizes.

5- The fluctuation in the range of the current solution, obtained by the two

algorithms, over the different generations, at different problem sizes, shows the

contribution of the greedy idea to limit the randomness involved in the traditional

GA. Figure 28 shows the convergence behavior of the two algorithms over the first

200 iterations at a problem size of 50.

 j elements
0 1 2 3 4 5 6 7 8 9

i e
le

m
en

ts

0 0.222 0.241 0.130 0.097 0.121 0.211 0.671 0.267 0.952 0.759

1 0.313 0.373 0.656 0.170 0.002 0.974 0.726 0.327 0.127 0.705

2 0.626 0.570 0.650 0.375 0.801 0.344 0.204 0.911 0.741 0.720

3 0.741 0.185 0.459 0.048 0.900 0.002 0.002 0.114 0.162 0.829

4 0.302 0.920 0.000 0.303 0.334 0.001 0.000 0.039 0.782 0.281

5 0.204 0.395 0.622 0.982 0.601 0.125 0.656 0.795 0.503 0.684

6 0.778 0.608 0.253 0.026 0.442 0.393 0.081 0.140 0.081 0.000

7 0.162 0.071 0.025 0.134 0.392 0.076 0.214 0.012 0.036 0.338

8 0.606 0.435 0.593 0.064 0.673 0.032 0.527 0.805 0.747 0.984

137

9 0.852 0.032 0.107 0.565 0.553 0.316 0.001 0.530 0.291 0.618

Figure 26. Example of the Simulated ES Matrix Generated by the Synthetic Data Generator

Figure 29 compares the performance of the traditional genetic against the greedy

genetic in terms of the matching accuracy using real data, Case Study 1. The figure

shows the results of two implementations of the traditional genetic. The first

implementation shows the matching accuracy of the GA when the algorithm use only

Roulette Wheel (RW) as a selection method. The second shows the matching accuracy of

the GA when the algorithm maintain best 50% individuals to the next generation while

selecting the other 50% using Roulette Wheel. The worst performance among the three

algorithms was obtained when the Roulette Wheel method alone was used as a selection

method. Maintaining the top 50% of the solutions while selecting the other 50% using the

RW method improved the accuracy significantly. Again as it is the case in Figure 27 the

GGAM is the superior among the three algorithms.

(a) Performance of GGAM, n=10

(b) Performance of traditional GA, n=10

138

(c) Performance of GGAM, n=20 (d) Performance of traditional GA, n=20

(e) Performance of GGAM, n=30

(f) Performance of traditional GA, n=30

(g) Performance of GGAM, n=40

(h) Performance of traditional GA, n=40

(i) Performance of GGAM, n=50

(j) Performance of traditional GA, n=50

(k) Performance of GGAM, n=100

(l) Performance of traditional GA, n=100

Figure 27. Traditional GA versus GGAM, the Convergence of the Fitness Function to the Optimal Value.

139

Table 23. Best Value Achieved by Traditional GA at Different Problem Sizes

Problem Size

10 20 30 40 50 100

Best value achieved by the traditional GA. 8.96 16.02 23.23 31.04 38.65 73.85

Time in milli-second
By traditional GA 5572 8706 14835 18261 10008 16678

By GGAM 10 1 1 2 4 20

Table 24. Time Taken by Traditional GA and GGAM over 20000 Iterations at Different Problem Sizes

Problem Size

10 20 30 40 50 100

Time in seconds
By traditional GA 13 16.2 16.8 18.7 18.8 27.0

By GGAM 20 27.0 46.1 76.7 118 477.5

(a) Convergence of GGAM in the first 200 iterations.

(b) Convergence of traditional GA in the first 200
iterations.

Figure 28. The Convergence of Hybridized GA versus Traditional GA in the First 200 Iterations, n=50

Figure 30 shows the convergence behavior of the three algorithms over the first 200

iterations. It also confirms the results obtained in Figure 28, where GGAM converges to

the optimal solution after around 70 iterations, while the two traditional GA algorithms

are still far behind.

140

Figure 29. GA versus GGAM Algorithm, Matching Accuracy, Precision and Recall, Case Study 1

141

Figure 30. Convergence Behavior of Traditional GA versus GGAM over the First 200 Iterations

8.7 Empirical Validation of the Matching

In this section we investigate the performance of three different algorithms, GGRM,

GGAM, and GSAM, respectively presented in Sections 6.2.1, 6.2.2, and 6.2.3, for

matching UML class diagrams based on their lexical, internal, neighborhood similarity,

and a combination of them. The performance of the metrics has been investigated and

compared over 7 class level similarity metrics (5.3 and 5.4) and under both equal and

calibrated weight settings for the compound metrics.

Experiment 4: Evaluating the matching algorithms against the similarity metrics.

Experimental objectives: Our validation of the matching algorithms has multifold

objectives. First, it validates the findings of the experiments conducted in the comparison

phase regarding weight calibration of the compound metrics. Second, it compares the

performance of the different matching algorithms, across the different metrics, under

equal and calibrated weight settings, and using within and across domains experimental

142

objects. Third, it provides an insights for the further activities in our consolidation

framework.

Methodology: For each pair of models in each case study, and for each similarity metric,

the three matching algorithms were run under equal (even) and calibrated weight settings.

The matching threshold were set into 0.80. For the calibrated weight settings, the weights

for the compound metrics were set as shown in Table 11, where the calibrated weights

are set to the weights that give the best accuracy as suggested by the weight calibration

experiments. The matching accuracy and time are reported and compared for the three

algorithms.

Experimental objects: Case study 1, 2.

Results and analysis:

Figure 31 and Figure 32 show the matching accuracy as measured by the thee different

accuracy measures, accuracy (at the top of the figures), precision (the second row in the

figures), and recall (at the bottom of the figures). The figures also show the matching

accuracy under both Equal weight assignment (left side of the figures) versus Calibrated

weight assignment (right side of the figures) of the compound metrics. From these figures

we can notice the following.

143

(a) Equal weight (b) Calibrated weights

(c) Equal weight (d) Calibrated weights

(e) Equal weight (f) Calibrated weights

Figure 31. Matching Accuracy, Precision and Recall of GGRM, GGAM, and GSAM, Case Study 1

144

(a) Equal weight (b) Calibrated weights

(c) Equal weights (d) Calibrated weights

(e) Equal weights (f) Calibrated weights

Figure 32. Matching Accuracy, Precision and Recall of GGRM, GGAM, and GSAM, Case Study 2

1. Metrics performance (lexical versus structural): as it is clear from Figure 31, in

Case Study 1, and under both even and calibrated weight assignments, the high

precision, recall, and accuracy are achieved when the NS metric is present, either

as a single metric or as part of a combination with other metrics. This is not

surprising, for the matched models are within the same domain where the high

145

lexical naming similarity is expected. The worst accuracy is obtained with the

structural based metric, i.e. NHS metric. This poor performance of NHS can be

explained as follows. Looking at the corresponding precision results, Figure 31-

(c), we can see that NHS shows relatively low precession, which indicates a high

false positive rate (see Equation (17)), which, in turn, indicates that some

dissimilar classes may have similar neighborhoods. This similarity in the

neighborhood may result in identical similarity values for dissimilar classes,

which represents a confusion for the matching algorithm, which ultimately results

in a poor accuracy.

The situation is different with Case Study 2 (Figure 32), where the structural-

based metric, NHS, is the superior. This is due to the fact that models across

different domains (which is the case in Case Study 2) have different ontologies,

and thus relying on the lexical based metric (i.e. NS or IS) only may not capture

their real similarity, even if they are structurally similar.

Also, under the even weight assignment, it is clear from the two figures that while

the NS metric is dominating the compound metrics (NIS, NNHS, and NINHS) in

Case study 1 toward increasing the true positives (hence increasing the values of

the three accuracy measures), its domination in Case study 2 is toward increasing

the false negatives (hence decreasing the recall and accuracy). This is why the

superiority of NHS in Case Study 2 is not reflected that much in the compound

metrics NNHS and NINHS, under the even weight assignment, but it is clearly

reflected under the calibrated weight assignment for the four metrics where the

146

NHS metric is present either as a single metric or as part of a combination with

other metrics.

2. Metrics performance (single versus combined information): the inconsistent

performance of the two metrics, NS and NHS, across the two case studies, showed

the limitations and the short insight of those metrics. The metrics are based on

limited source of information, as the former metric is only based on the lexical

naming information while the later is based on the neighborhood information

alone. The IS metric, which is based on the internal information of the class,

shows almost consistent performance across the two case studies and under both

even and calibrated weight assignment. However it is performance is limited in

terms of the accuracy.

As per the four metrics (NIS, NNHS, INHS, NINHS), which are based on more

than one type of similarity information, the results show that across the two case

studies, the two compound metrics NNHS and NINHS reported high and

consistent accuracy under the calibrated weight assignment. However, the

performance of the two metrics NIS and INHS is not consistent across the two

case studies. In Case Study 1 the INHS metric showed an accuracy of around

75%, under the calibrated weight assignment for its constituents (see Figure 31-

(b)). This is relatively low accuracy as compared to its reported accuracy in Case

Study 2 (100%), see Figure 32-(b). The reason for the low accuracy reported in

Case Study 1 can be attributed to the fact that the confounding effect of the

generic methods or attributes, or of the empty methods’ list or attributes’ list, if

comes together with the similarity of the neighborhood for some classes, can lead

147

to increasing the false positives (hence decreasing the precision and accuracy).

This reason can be witnessed by the corresponding precision result which

indicates relatively high false positives.

As per NIS, the metric is based on two lexical metrics, NS and IS. The lexical

similarity across domains (which is the situation in Case Study 2) is expected to

be low, leading to a decrease in the accuracy. However, under the calibrated

weight assignment, both metrics, NIS and INHS, are performing better than their

constituents, across the two case studies. This shows the importance of

considering different aspects of similarity information.

3. Weight Calibration of the compound metrics: When comparing the matching

accuracy under equal versus calibrated weight assignments of the constituents of

the compound metrics, the results do report an improvement in the matching

accuracy. However, as shown in the two figures, this improvement may vary from

a metric to another, and from a case study to another. It is clear from Figure 32

that, under the equal weight assignment, the low accuracy was obtained with the

compound metrics NIS, NNHS, and NINHS. The NS metric is one of the

constituents in each of these metrics. Thus, under the equal weight assignment the

NS metric dominates the three compound metrics toward increasing the false

negative. This last claim can be observed if we look at the result of the accuracy

measure (Figure 32-(a)) in the light of the both the precision (Figure 32-(c)) and

recall (Figure 32-(e)). Since the recall for these three metrics is low, under the

even weight assignment, it means that the false negatives reported by these

metrics is high, see Equation (18). The high false negative rate, companied with

148

low false positives, is an indication that high rate of the matched classes could not

pass the matching threshold, which can happen due to the low similarity scores.

Under the calibrated weight assignments of the constituents of the compound

metrics, the undesirable domination of the NS is controlled and each constituent is

assigned a weight that makes its contribution best towards decreasing the false

negatives and false positives, and hence increasing precision, recall, and accuracy.

This is clearly depicted in the matching accuracy result reported under the

calibrated weight assignment, the right hand side of Figure 32, where the

matching precision and accuracy show high improvement over the results

obtained under the equal weight assignment for the three compound metrics. This

improvement resulted in an accuracy of 100% for the 3 compound metrics

(NNHS, INHS, and NINHS). However, the max accuracy we obtain for the NIS

metric was around 81%. This emphasizes the importance of structural information

for similarity assessment across domains, as we obtained only limited accuracy

even under the calibrated weights.

This is similar to what happens with INHS metric in Case Study 1, as the best

accuracy obtained when not including the class name similarity is around 75%,

which emphasizes the importance of the class name information for the similarity

assessment within the domain

In Case Study 1, the improvement in the matching accuracy achieved under the

calibrated weights of the constituents of the compound metrics was not that much

over the accuracy reported under the equal weight assignment. Under the

calibrated weight, the compound metric NHS reported an accuracy of 10% higher

149

than its reported accuracy under the equal weight assignment for its constituents.

However, even with this improvement, its performance is still limited within the

domain, as explained earlier. For the metrics NIS, NNHS, and NINHS, only little

improvement is achieved and this can be explained as follows. Referring to Figure

20-(c), we can see that when the wn (the weight coefficient of NS metric) is

assigned any non-zero weight, we usually get high accuracy with slight difference

from a non-zero assignment to another. This is due to the domination of the NS

metric under any non-zero weight for its weight coefficient, as explained earlier.

Additionally, the performance of IS and INHS shows improvement under the

calibrated weight as compared to their performance under the equal weights for

their constituents. However, these two metrics are missing the lexical naming

similarity of the class which is important source of similarity information within

the domain. This is why their accuracy is still limited even under equal weight

assignment.

4. Performance of the matching algorithms: the performance of the three algorithms

(GGRM, GGAM, and GSAM) was evaluated over the different metrics and

across the two case studies in terms of both the matching accuracy and time. As

shown in Figure 31 and Figure 32, the three algorithms reported competitive

performance against each other in terms of precision, recall and accuracy. We

cannot claim absolute winner, but if we count the number of times where each

algorithm is performing better than the others, we can say that in Case Study 1

GGAM is performing slightly better than both GGRM and GSAM. However, the

difference in the accuracy between the different algorithms is within 1% to 3%.

150

It is worth recalling here that the matching problem has two facets, the accuracy

of the similarity assessment and the complexity the matching algorithm. For

example, the NS metric in Figure 32-(a) reported a low accuracy of around 15%.

In the light of the recall (Figure 32-(e)) and the principles of the GGRM

algorithm*, it is clear that the problem of this low accuracy is coming from the

metric facet of the problem, which reported low similarity values (not able to pass

the threshold). On the other hand, the problem with IS metric is different. It is

coming from both metric facet and algorithm facet. The metric problem can be

inferred from the precision results which indicates relatively low precision, which

in turn indicates relatively high false positives. The high false positives means

that high similarity values were assigned for dissimilar classes making the wrong

match able to pass the threshold. This misleading similarity values can be due to

confounding effect of generic attributes and methods, where the similarity

assessment of two different, but internally identical, classes in a model against

other classes in the other model can lead to identical similarity values for the IS

metric. If these identical values are encountered by the matching algorithms as the

highest values, the algorithm will do matching with the first value it encounters,

and the first to be encounter may differ from an algorithm to other algorithm. This

may result in a performance difference among the different algorithms. This is

again emphasizing the importance of an accurate similarity assessment.

Time wise, Table 25 shows the average run time, with the standard deviation, of

the three algorithms against different size of the ES matrix. It is clear from the

* Greedy approach usually struggles for high values

151

table that the algorithms do report great differences in their running time. The

GGRM algorithm is deterministic, simple, straightforward, and the final solution

is produced in a single cycle. Solutions of GSAM and GGAM go over different

optimization cycles (generations), making the running time proportional to the

number of generations. Additionally, GGAM is a population based algorithm,

which means that in each generation it works with many solutions at the same

time. This is expected to increase the iteration run time in proportion with the

population size. This is why the highest run time was reported by the GGAM and

the lowest run time was reported by the GGRM.

Figure 33 also compares the matching accuracy of the three different algorithms,

across the different similarity metrics, using the artificial (generated) data, with

perturbation settings as indicated in Table 22. The results confirms to the above

discussion.

Table 25. Matching Time Taken by GGRM, GGAM, and GSAM Algorithms for Each Pair of Models

 M0M1 M0M2 M0M3 M0M4 M1M2 M1M3 M1M4 M2M3 M2M4 M3M4
Time, in Seconds,
taken by GGRM

Avg. 0.001 0.002 0.002 0.001 0.003 0.002 0.002 0.003 0.003 0.003
Std. 0.001 0.002 0.002 0.002 0.006 0.002 0.002 0.003 0.003 0.001

Time, in Seconds,
taken by GGAM

Avg. 0.949 0.972 0.977 1.133 1.239 1.176 1.187 2.314 2.193 2.229
Std. 1.061 1.117 1.112 1.271 1.352 1.347 1.298 2.558 2.446 2.581

Time, in Seconds,
taken by GSAM

Avg. 34.521 34.310 34.303 38.346 42.565 41.031 40.871 75.765 76.354 76.935
Std. 36.754 38.653 38.574 43.487 46.606 44.478 44.668 83.105 84.994 85.62

Size of ES matrix 49 x 53 49 x 71 49 x 71 49 x 67 53 x 71 53 x 71 53 x 67 71 x 71 71 x 67 71 x 67

To sum up, the evidences reported from our different experiments for element to

element matching suggest the following findings:

(a) Relying on a single metric may not usually lead to an accurate match between

the elements of two models.

152

(a) Equal weight (b) Calibrated weights

(c) Equal weights (d) Calibrated weights

(e) Equal weights (f) Calibrated weights

Figure 33. Matching Accuracy of GGRM, GGAM, and GSAM, Case Study 3

(b) The weights assigned to the individual metrics, constituting a compound

metric, is crucial in calibrating the actual contribution of each constituent.

(c) Metrics based on multiple source of information showed better overall

accuracy than do those with single source of information, under the

153

appropriate weight assignment which makes the contribution of each source of

information more convenient based on the context of measurement.

(d) The competitive performance of the three matching algorithms over the

different metrics, in terms of the accuracy, can be considered as group voting

about the soundness or the limitation of the metrics’ performance; and it can

also be considered as validation mechanism for the matching performance of

the algorithms themselves; additionally, it makes the selection of one over the

other as context based choice.

8.8 Empirical Investigation of the Consolidation and the Ruse of the

Reference Model

This investigation has a twofold objective. First, it provides a proof of concept for the

proposed staged merging algorithms. Second, we investigate the overhead and the reuse

potential provided by the reference model over different points of time. The investigation

was conducted as follows.

Experiment 5: Building the reference model

Experimental objectives: This experiment has twofold objective: 1) to validate the

merging algorithms for building the reference model given the pair-wise matching

similarity matrices MSMs, 2) to show that the unrelated models will be filtered out and

the reference will be built based on the majority of the instances.

Experimental objects: Case Study 0, and Case Study 2.

Methodology: Six input instances are given as input models. Four of these instances are

coming from Case Study 0, and two instances are coming from case study 2. The pair-

154

wise similarity between the elements of each pair of models was evaluated. Weights are

set guided by the findings of Experiments 2 and 3 (Section 8.5). The matching was

performed to produce the MSM matrix for each pair of input models. Using the similarity

information in the MSM matrices, unrelated models are filtered first as explained in

Section 4.4.5. Then the remaining models are generalized, as described in Sections 7.4 &

 7.5, to build the reference model.

Table 26, shows the pair-wise models’ similarity. As shown in the table, the low

similarity values in the last two columns indicate the dissimilarity between the two

models M4 and M5 with each of the other models, M0 through M3. To filter out the

unrelated models, the tool computes the average similarity of each model to the others

(see Table 27), and the model with the lowest average similarity under a threshold of

70% will be filtered out. Despite the high similarity between M4 and M5, the average

similarity of each one of them with the other models is lower than the average similarity

of any one of the other models. Since M4 has the lowest average similarity with the other

models, it is filtered out, and the average similarity of each model with the others is

recomputed for the remaining models, without M4. Table 28, shows the average similarity

of each model with the other models, after filtering out M4. As we can see, in this table,

the average similarity of each of the models M0 through M3 to the others increased,

signifying that the models become more cohesive after removing M4. On the other hand,

the average similarity of M5 (the most similar one to M4) with the other models decreased

after filtering out M4, signifying its heterogeneity to the other models in the set, and its

homogeneity with the already filtered model (i.e. M4).

155

Table 26. Pair-wise Models’ Similarity between 6 Input Models

 �� � � �� � � �� � � �� � � �� � � �� �
��� � 1 0.85 0.76 0.9 0.22 0.28
��� � 1 0.84 0.83 0.15 0.14
��� � 1 0.77 0.13 0.13
��� � 1 0.15 0.14
��� � 1 0.87
��� � 1

Table 27. The Average Similarity of Each Model to the Other Models

 Model �� � � �� � � �� � � �� � � � � � � �� �

 Avg. Similarity to
other models

��� � � ��� � � ���� � � ��� � � ���� � � ���� �

Table 28. Pair-wise Models’ Similarity After Removing M4

 Model �� � � �� � � �� � � �� � � � � �

 Avg. Similarity to
other models

���� � � ��� � � ��� � � �� � � ���� �

Table 29. Pair-wise Models’ Similarity After Removing M4 and M5

 Model �� � � �� � � �� � � � � �

 Avg. Similarity to
other models

0.84 0.84 0.79 0.83

Table 29 shows the average similarity of each of the models M0 through M3 to the

others after filtering out M4 and M5. Again, as shown in the table, removing model M5

from the set makes the remaining models more cohesive and the average similarity of

each one of them to the others increased. Also, the average similarity of each model to

the others becomes more than the filtering threshold, which means no more filtering, and

the algorithm will go ahead to generalize all the four remaining models to build the

reference.

156

Snapshots of the reference model catalog for models of Case Study 0 is shown in

Figure 34. As demonstrated in the catalog, class names are kept as aliases, for the sake of

instantiation, and the name for the reference class can be chosen in different ways. It can

be the most frequent name among instance classes, the least common concepts, or simply

any of the names appearing in one of the generalized instances. We opted to go with the

last option. The figure also shows that, attributes (also methods) that appears in some

instances but not in the others are tagged with a victor indicating in which instance(s) this

attribute shows up (marked with 1) and in which it does not (marked with 0). We call this

victor an instance tag. The length of the instance tag depends on the number of

generalized instances, which may make it too long if the number of instances is large in

the reference. However, the algorithm can be configured in such a way that if the number

of instances reach a certain number, a percentage of the attribute frequency over the

different instances will be shown instead. Attributes (also methods) that are not tagged

with the instance tag means that they are common among all the instances represented by

that class. Relationships are also tagged by an instance tag indicating the occurrence of

the relationship at the different instances generalized by the reference model.

Relationships with variation points are indicated in the relation instance tag by the letter

“v” while the letter “c” indicates that the relationship is between two common classes.

The letter “o” in the instance tag indicates that the relationship is with an optional class.

Snapshots of the reference model catalog for models of Case Study 2 is shown in Figure

35.

157

Figure 34. Snapshots from the Reference Model Catalog, Case Study 0.

158

Figure 35. Snapshots from the Reference Model Catalog, Case Study 2

159

Experiment 6: Reference reuse.

Experimental objective: This experiment has twofold objective. First, it provides more

validation for the merging algorithms for building the reference model, given the pair-

wise matching similarity matrices MSMs. Second, it shows the evolution of the reference

model along with its reuse potential.

Experimental objects: Case Study 1, which consists of 5 models, and Case Study 3,

which consists of 10 input models generated by the instance generator as described in 8.2,

with perturbation parameters as depicted in Table 22.

Methodology: The generalization is performed as described in Experiment 5. Because of

the randomness involved in both the instances generation and the selection process when

generalizing the models, the experiment results are repeated over five runs.

Results and analysis:

Results show that Case Study 1 and Case Study 3 share similar patterns. To make the

analysis smooth and concise, our discussion will be mainly focusing on the results

reported based on Case Study 3. Should there be something special about Case Study 1,

we will mention it explicitly. Otherwise, the corresponding figures and tables of the

results reported based on Case Study 1 should be sufficient to show the trends with

regard to Case Study 1 in the light of the discussion about Case study 3.

Figure 17 shows the trace matrix of class distribution over the different 10 generated

instances, numbered from 0 to 9, for one run, out of five runs, representing Case Study 3.

As we can see in this figure, some classes are present in all the instances, some exist in

some instances but not in the others, while other classes show up only in one instance.

160

Figure 36 shows the number of reference common classes in the reference model as

new instances are added to the reference. As we can see in this figure, as new instances

are added to the reference, the number of common classes decreases. This is expected,

because the common class (according to Definition 7.6) must represent all the instances

consolidated in the reference so far. If a common class in the reference model does not

have a commonality with a class in the new instance the similarity level of the common

class is changed by the merging algorithm from common into optional. Hence, the

number of common classes in the reference model is monotonically a decreasing function

of the number of instances added to the reference model. Figure 37 shows the same trend

with regard to Case Study 1.

Figure 36. Reference Common Classes Evolution as More Instances Are Added to the Reference, Case Study 3

161

Figure 37. Reference Common Classes Evolution as More Instances Added to the Reference, Case Study 1

Figure 38 shows optional points creation, evolution, and reuse as input models are

generalized to the reference model. The figure shows a snapshot (colored in different

grayscales for demonstration purpose) of the reference model optional points after 10

instances have been generalized. A trace for this run showed that the models were

generalized in the order of M7 and M8 first, then M2, M0, M1, M6, M9, M3, M5, M4, in order,

one at a time. Optional points shaded in dark gray (e.g. OP0) are created due to the

appearance of classes, in a new generalized instance, that have no commonality with any

optional class in the reference. These classes are also shaded in the figure in dark gray, to

demonstrate that the corresponding optional points are created due to these optional

classes. Optional points created due to the similarity level conversion (e.g. from common

to optional) are shaded in gray, e.g. OP14. The optional class in the new instance

generalized under an existing optional point is shaded in light gray, e.g. optional class

o1-7 in the column M0. Following this tracing guide, we can see that 14 optional points

were created when generalizing the first pair, i.e. M7 and M8. The reason is that M7 and

M8 are the first pair, randomly picked by the algorithm, to be generalized. Any optional

class in one of them means that it does not exist in the other, otherwise it would not be an

162

optional. Therefore, an optional point is created for each optional class. Since the

algorithm found that 6 classes exist in M7 but not in M8, and 8 classes exist in M8 but not

in M7, the algorithm created 14 optional points, one for each optional class. Figure 39

shows a prior version of the optional points in the reference model, when only two

instances (M7 and M8) are in the reference.

When generalizing model M2, the algorithm found that 5 classes of model M2 have

commonality with five optional classes in the reference. Hence each class of the five

classes is generalized under the corresponding optional point, shaded in the figure as

light-gray. The algorithm also found that four of the common classes in the reference

does not exist in M2, which entailed changing their similarity level into optional. This is

why the algorithm created the optional points OP14 through OP17, shaded in gray.

Additionally, 4 classes of M2 have no commonality with any class in the reference,

resulting in a creation of 4 more optional points (OP18 through OP21). Thus, the total

number of optional points created due to the generalization of M2 is 8. Hence, the Total

number of optional points in the reference after generalizing M2 becomes 14+8=22

optional points.

163

Figure 38. Optional Points Creation and Reuse During Generalization, Case Study 3

Optional points creation rate

Figure 40 shows the number of optional points in the reference model against the

number of instances in the reference (i.e. against the reference size). As shown in the

figure, the number of optional points in the reference model is monotonically increasing

function of the number of instances added to the reference model. This is due to the fact

that the new instance is likely to have some classes with no similarity to any class in the

reference model, especially when the reference has less number of instances. However, as

it is clear from the figure that as the reference has more instances, the number of optional

points in the reference become almost stable and the increase in this number, if any, is

slow. The reason is that as the number of instances in the reference model becomes

164

larger, most (if not all) of the classes of the new generalized model will have

commonality with either a common or an optional class in the reference model.

Figure 39. Optional Points Creation During Generalization, First Pair, Case Study 3

Figure 40. Optional Points versus Number of Instances in the Reference Model, Case Study 3

Figure 41. Optional Points versus Number of Instances in the Reference Model, Case Study 1

165

The results in Figure 40 is confirmed by the results in Figure 42, which show the

number of optional points added due to the generalization of a new instances versus the

size of the reference model. As it is clear in this figure, when there is no or few instances

in the reference model the creation rate of the optional points is high.

Figure 42. Number of Optional Points Added Due to the Generalization of a New Instance versus the Size of the
Reference Model, Case Study 3

Figure 43. Number of Optional Points added Due to the Generalization of a New Instance versus the Size of the
Reference Model, Case Study 1

Figure 44 also shows that when the reference model has less number of instances,

high percentage of the optional points represents only a single instance. However, as the

reference gets more instances, this percentage decreases into a low value.

Simultaneously, the percentage of optional points generalizing more than one instance

goes in the other direction of the scale, see Figure 46. This is again due to the fact that

166

when the reference model has less number of instances the new instance is likely to have

some classes with no similarity to any class in the reference model, which results in

creating new optional points, which in turn results in increasing the percentage of the

single instance optional points. However, when the number of instances in the reference

model becomes larger, most of the classes of the new generalized model will have

commonality with either a common or an optional class in the reference model. The latter

case results in increasing the percentage of optional points generalizing more than one

instance.

Figure 44. Percentage of Single Instance Optional Points against the Number of Instances in the Reference
Model, Case Study 3

Figure 45. Percentage of Single Instance Optional Points against the Number of Instances in the Reference
Model, Case Study 1

167

Figure 46. Percentage of Multiple Instances Optional Points against the Number of Instances in the Reference
Model, Case Study 3

Figure 47. Percentage of Multiple Instances Optional Points against the Number of Instances in the Reference
Model, Case Study 1

Reference model commonality and reuse

In the context of the software product line, commonality is a key metric that indicates

reuse payoff of a feature across the SPL [150]. According to the Software Engineering

Institute [151], the commonality CF of a feature F is computed as follows.

� | L
} A~ }

�
 ,

where } C| } is the number of products within the SPL that use the feature, and n is the

total number of products in the SPL. The metric values are between 0 and 1.

168

We adopted and redefined this metric to measure the reuse potential of the classes

within the reference model as follows.

The commonality CC of a common class is defined as:

� • L
} \€ }

�
 ,

the commonality CVP of a variation point is defined as:

� vA L
} \ •‚ }

�
 ,

and the commonality COP of an optional point is defined as:

� ;A L
} \ ƒ‚ }

�
 ,

where } „• } , is the number of instances sharing the common class, } „vA } is the

number of instances sharing the variation point, } „;A } is the number of instances sharing

the optional point, and n is the total number of instances in the reference model.

Table 30. Optional Point Commonality, Case Study 3

 Run0 Run1 Run2 Run3 Run4 Avg.

Avg. 0.42 0.41 0.43 0.45 0.39 0.42

Max 0.90

0.70

0.80

0.90

0.80

0.82

Min 0.10

0.10

0.10

0.10

0.10

0.10

Std. 0.20

0.17

0.19

0.19

0.18

0.19

Table 31. Reference Model Commonality, Case Study 3

 Run0

Run1

Run2

Run3

Run4

Avg.

Avg. 0.71 0.70 0.72 0.72 0.70 0.71

According to Definitions 7.6 and 7.7 in Chapter 7, both the common classes and the

variation points are shared by all the instances in the reference, making their

169

commonality ratios � • and � vA usually 1. The situation is not the same with the optional

points. Thus, Table 30 shows the average, the maximum, the minimum, and the standard

deviation of the � ;A for the optional points in the reference model with 10 generalized

instances. An average of 0.42 means that, in average, an optional point in the reference

model is shared by 4 to 5 instances

Table 32. Optional Point Commonality, Case Study 1

 Run0 Run1 Run2 Run3 Run4 Avg.

Avg. 0.57 0.57 0.57 0.57 0.57 0.57
Max 0.80 0.80 0.80 0.80 0.80 0.80
Min 0.40 0.40 0.40 0.40 0.40 0.40
Std. 0.13 0.13 0.13 0.13 0.13 0.13

Table 33. Reference Model Commonality, Case Study 1

 Run0

Run1

Run2

Run3

Run4

Avg.

Avg. 0.79

0.79

0.79

0.79

0.79

0.79

The commonality of the reference, shown in

Table 31, is computed as the average of � • , � vA , and � ;A .

Figure 48. Percentage of Optional Points at Different Commonality Values, CS3

170

Figure 49. Percentage of Optional Points at Different Commonality Values, Case Study 1

Although Table 30 can tell us the basic statistics about the optional points

commonality, it does not tell us for example what is the percentage of optional points

having the average, the maximum, and the minimum commonality values, of the overall

optional points. Further insight to this is given in Figure 48 (also Figure 49 for Case

Study 1), which shows the percentage of optional points at different commonality values.

As we can see in the Pie chart, around 41% of the optional points have their COP value

around the average commonality value (i.e. shared by either 4 instances or 5 instances),

around 6% of the optional points have their COP value around the minimum commonality

value (i.e. generalize only one instance), and around 6% of the optional points have their

COP value around the maximum commonality value (i.e. shared by either 8 instances or 9

instances). This is an indicator of the reuse opportunity in the reference model, for around

94% of the optional points are shared by more than one instance. Higher commonality

ratio was obtained for Case Study 1 see Figure 49 along with Table 32 and

Table 33.

Figure 50 shows the average reuse ratio achieved from the reference model, with

regard to the new generalized instance, as compared the reuse ratio achieved from the

171

best single instance or achieved commonly from all the generalized instances, at different

sizes of the reference model. The figure shows three curves representing the reuse ratio

achieved from the whole reference model (indicated in the figure as “Multiple”), the

reuse ratio achieved from the common part of the reference (indicated in the figure as

“All”), and the best reuse ratio achieved from a single instance (indicated in the figure as

“Single”). As it is clear from the figure that the reuse ratio offered by the reference model

is higher than the best reuse ratio offered from a single instance alone, at different size of

the reference model. Additionally, as more instances are generalized to the reference, the

reuse ratio offered by the reference increases, where it goes from 80%, when the

reference has just two instances, until it reaches 100%, when the number of instances in

the reference reaches 8 instances. However, the best reuse ratio achieved from a single

instance is between 72% (when the reference has two instances) and 82% (when the

reference has 9 instances). The increase in the reuse ratio versus the size of the reference

model reflects the motivation and the rationale behind the consolidation process.

Moreover, the big difference between the reuse ratio achieve by the reference as a whole

and the reuse ratio achieved from the common part in the reference shows clearly the

reuse potential involved in the variable part of the reference model. This also justifies the

overhead encountered due to managing the variability in the reference and it signifies its

importance.

The results in Figure 51 show a situation when one of the models generalized in the

reference is a superset of the others, which is the case of the models in Case Study 1. In

this case the reuse potential offered by the reference is equivalent to that offered by the

superset instance. However, the figure also validates two things. First, it provides a

172

validation for our merging algorithms. Second, it emphasizes the reuse potential offered

by modeling the variability in the reference, as compared to generalizing what is only

common. Moreover, though building a reference for multiple releases is beneficial for

versioning management, we do not target reuse potential of the reference model to be

achieved from generalizing multiple releases.

Figure 50. Average Reuse Ratio in a New Instance versus the Size of the Reference Model, Case Study 3.

Figure 51. Average Reuse Ratio in a New Instance versus the Size of the Reference Model, Case Study 1.

Table 34. The Standard Deviation of the Reuse Ratio over the Different Runs

 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9
Multiple 0.033 0.031 0.036 0.030 0.027 0.032 0.012 0.000
Single 0.037 0.045 0.035 0.010 0.029 0.042 0.027 0.020
Common 0.050 0.022 0.029 0.012 0.049 0.040 0.034 0.053

173

Table 34 shows the corresponding standard deviation for five runs averaged in Figure

50. The low standard deviation values indicates that the behavior in the five runs is very

close to its average.

Attributes and methods reuse

The improvement in the attributes or methods’ reuse as the reference model gets more

instances can be measured in terms of the average number of attributes or methods added

per class when a new instance is generalized. Figure 52 and Figure 53 respectively show

the average number of attributes and methods added to the reference class, due to the

generalization of a class of a new instance, against the size of the reference model. As

indicated in the figure, this number is decreasing as the reference gets more instances.

This indicates the improvement in the reuse offered by the reference at the level of

attributes and methods.

Figure 52. Attributes Added to the Reference Class Per New Instance, CS3.

174

Figure 53. Methods Added to the Reference Class Per New Instance, Case Study 3

Variability overhead

Both variation points and optional points are meant to model the variability among

the different models generalized by the reference model. They are additional elements

that were not exist in the input models. This means that one can look at them as an

overhead. However, this overhead can be justified when these elements represent an

abstraction of many instances. For example, in the case of optional point, an optional

point can represent a single instance or it can represent n-1 instances, where n is the

number of instances generalized by the reference. These are two extremes. In the former

case the overhead ratio is 1 (i.e. 100%) while in the later case it is 1/(n-1). We can define

the overhead ratio OHOP of an optional point OP as follows:

=…;A L
�

\ ƒ‚
 ,

where „;A is the number of instances generalized by OP.

Similarly we can define the overhead ratio OHVP of a variation point VP as:

175

=…vA L
�

\ •‚
 ,

where „vA is the number of instances generalized by VP.

The value of „vA is usually n for all the variation points, whereas the value of „;A

varies from an optional point to another optional point. Therefore, the overhead ratio of

any variation point is 1/n while the overhead ratio of an optional point varies between 1

and 1/(n-1).

Table 35 and

Table 36 show the average overhead ratio of optional points at different size for

multiple runs, for both Case Study 3 and Case Study 1, respectively. It is clear from the

two tables that as n increase the ratio overhead decrease.

Table 35. Optional Points Ratio Overhead at Different Size of the Reference Model, Case Study 3

 Run0 Run1 Run2 Run3 Run4 Avg.

n=2 1.00 1.00 1.00 1.00 1.00 1.00
n=5 0.64 0.55 0.57 0.55 0.59 0.58
n=10 0.31 0.33 0.31 0.29 0.33 0.31

Table 36. Optional Points Ratio Overhead at Different Size of the Reference Model, Case Study 1.

 Run0

Run1

Run2

Run3

Run4

Avg.

n=2 1.00 1.00 1.00 1.00 1.00 1.00
n=4 0.48 0.58 0.41 0.58 0.48 0.50
n=5 0.37 0.37 0.37 0.37 0.37 0.37

Figure 54 shows the number of optional points per instance generalized in the

reference so far. If we consider the optional points as an overhead or a cost encountered

for modeling the variability in the reference, the figure shows that this overhead is

176

decreasing as more instances are added to the reference. As shown in the figure, at the

beginning, when the reference has few number of instances the number of optional points

can go higher as new instances are generalized to the reference. However, as the

reference gets more instances this number starts to go down. The former situation can be

attributed to two reasons. First, when the reference has few instances, the generalization

of an additional instance may results in converting the similarity level of some common

classes into optional ones, resulting in an increase in the number of optional points.

Second, when the reference has few instances, the diversity among the different instances

has not been adequately captured by the reference so far, resulting in a creation of

additional optional points to handle the new optional classes introduced by the new

instance.

Figure 54. Number of Optional Points Per Instance versus Reference Size, Case Study 3

177

Figure 55. Number of Optional Points Per Instance versus Reference Size, Case Study 1

Figure 56. The Ratio of Optional Points to the Optional Classes versus the Reference Model Size, Case Study 3

Figure 57. The Ratio of Optional Points to the Optional Classes versus the Reference Model Size, Case Study 1

178

Figure 58. The Ratio of Optional Points to the All Classes versus the Reference Model Size, Case Study 3

Figure 56 and Figure 58 respectively show the ratio of the total number of optional

points to the total number of optional classes, and to the total number of all classes

generalized to the reference versus the number of instances in the reference. Both figures

confirm that as the reference gets more instances the overhead ratio of the optional points

gets smaller and smaller.

Figure 59. The Ratio of Optional Points to the All Classes versus the Reference Model Size, Case Study 1

To sum up, the results showed that the reference model does offer better reuse ratio

than does the best single instance. Modeling variability in the reference, while improving

the reuse ratio significantly, has some incurred overhead. However, this overhead is

179

reasonably acceptable and it gets lower and lower as more instances are generalized into

the reference model.

180

8.9 Threats to Validity

In this section we point out the threats to construct, internal, external, and conclusion

validity of our study.

Construct Validity Threats: these types of threats are related to the relationships

between theory and the observed findings. In other words, these types of threats can be

present when the treatment does not reflect the construct of the cause, or that the outcome

does not reflect the construct of the effect [152]. In this regard we can point out a threat

related to the similarity metrics used for evaluating the similarity between the elements of

the input models. Although the similarity was evaluated based on three different types of

similarity information (lexical naming, operations’ signature, attributes with their data

types, neighborhood information), cooperatively measuring different similarity aspects,

and despite the fact that the weights for the different constituents were assigned

experimentally, and adding to this the fact that class diagram is considered as the most

important artifact in software project development, we still think that other similarity

information, such as information from other views, needs to be considered in our future

agenda.

Internal Validity Threats: these threats are related to the causal relationship between

treatment and outcome [152]. In this regard we can point out two threats. The first threat

is concerning the metrics used to evaluate the similarity between the elements of the input

models. We do realize that under the confounding effects resulting from the generic

attributes or operations, the similarity assessment metrics may not capture the actual

similarity between the elements of the matched models and hence may result in a wrong

match, which in turn, lead to a wrong consolidation. Nonetheless, the high value of the

181

similarity threshold as well as the use of combined similarity measures along with the

weight calibration procedure is almost obviating this threat. The second threat is

concerning the lack of real data. While we used a structured, carefully designed, and

clearly described random instances’ generator that generates different instances from a

real world source, the generated instances may lack properties found in real-world

instances.

External Validity Threats: these threats are related to the generalization of the

observed findings [152]. In this regard two threats can be pointed out. The first threat is

concerning the size of our experimental objects. Although the models we used are of

reasonable sizes, we do realize that future investigating of our approach with data of

larger sizes is required to confirm its generalization and draw stronger conclusions. The

second threat is concerning the generalization of the weight settings experiments’

findings. Although we did weight calibration using different case studies, we still think

that further validations with different systems are needed to confirm the generalization of

our findings and draw stronger conclusions.

Conclusion validity threats: these threats are related to the general relationship

between treatment and outcome [152]. In this regard we can point out a threat concerning

the scalability of the third stage of the matching. However, dealing with models

representing instances within the same domain is expected to have high commonality,

and thus the matching of the majority of the elements will be done within the first

matching stage in polynomial time, which is also followed by another polynomial time

matching stage. Therefore, only few residuals will be investigated in the third stage. This

182

is actually the gain of the staged matching algorithm, i.e. reducing the time complexity

through stage matching.

183

9 CHAPTER 9

CONCLUSION AND FUTURE WORK

In this work we proposed a solution framework for generalizing a set of models,

representing different applications within a domain or similar domains, into a reference

model with the purpose of improving the reuse of early stage artifacts. The rational

underlying our work is that the reuse potential of multiple models can be offered under

the complexity of a single model, i.e. the reference model, which unifies the commonality

and explicates the variability of the different models it generalizes. The reference model

while offering the ruse potential of multiple models, it reduces the complexity of the

multiple models into the level of the complexity of a single model.

The proposed solution involves three main activities, model comparison, model

matching, and model merging. To tackle the complexity of the problem, we proposed

staged matching and merging algorithms.

Our main findings can be summarized as follows.

· Model comparison and similarity.

o The proposed compound similarity metric for quantifying the degree of

similarity between the elements of the input models reported high accuracy

under the appropriate weight assignment.

· Matching algorithms.

o The proposed matching algorithms reported high matching accuracy over the

different experimental objects, given accurate similarity values.

184

· Reference model generalization and reuse.

o The proposed generalization algorithms capture the commonality and

variability at different level of granularity.

o Reuse can be significantly improved through the reference model as

compared to the reuse from a single instance.

o While maintaining the variability among the different input instances in the

reference model involves some overhead, it significantly improves the overall

reuse of the reference model, as compared to the reuse offered by the

common part of the reference. Additionally this incurred overhead gets

minimized as more instances are consolidated into the reference.

9.1 Future work

Directions for future work related to the contribution of this thesis can be outlined in

the following.

� Reporting the efficiency and the effectiveness of the proposed approach based on

industrial data sets, when available.

� In this work the focus was on a structural view of the software system. Two future

directions can be identified here:

1. The adoption of the proposed framework for the other views.

2. Improving the proposed framework to consider the multi-views.

185

References
[1] H. P. Breivold, S. Larsson, and R. Land, "Migrating Industrial Systems towards

Software Product Lines: Experiences and Observations through Case Studies,"
presented at Proceedings of Euromicro SEAA’08, Washington, DC, USA, 2008.

[2] Y.-f. Lu and Y.-f. Yin, "A New Constructive Cost Model for Software Testing
Project Management," in The 19th International Conference on Industrial
Engineering and Engineering Management, E. Qi, J. Shen, and R. Dou, Eds.:
Springer Berlin Heidelberg, 2013, pp. 545-556.

[3] M. Nogueira and R. Machado, "Importance of Risk Process in Management
Software Projects in Small Companies," in Advances in Production Management
Systems. Innovative and Knowledge-Based Production Management in a Global-
Local World, vol. 439, IFIP Advances in Information and Communication
Technology, B. Grabot, B. Vallespir, S. Gomes, A. Bouras, and D. Kiritsis, Eds.:
Springer Berlin Heidelberg, 2014, pp. 358-365.

[4] C. W. Krueger, "Software reuse," ACM Computing Surveys (CSUR), vol. 24, pp.
131–183, 1992.

[5] B. Tekinerdogan and M. Aksit, "A Comparative Analysis of Software
Engineering with Mature Engineering Disciplines Using a Problem-Solving
Perspective," in Modern Software Engineering Concepts and Practices: Advanced
Approaches, A. H. D. a. V. Biçer, Ed. New York: IGI Global, 2011, pp. 1-18.

[6] Gartner Group, "Software Reuse Report," Stanford 1995.
[7] M. Jha and L. O'Brien, "A comparison of software reuse in software development

communities " presented at Software Engineering (MySEC), 2011 5th Malaysian
Conference, Johor Bahru, 2011.

[8] D. C. Rine and N. Nada, "Three empirical studies of a software reuse reference
model," Software: Practice and Experience, vol. 30, pp. 685-722, 2000.

[9] W. Frakes, "Systematic software reuse: a paradigm shift," presented at
Proceedings of 1994 3rd International Conference on Software Reuse, 1994.

[10] S. E. de Almeida, "RiDE: The RiSE Process for Domain Engineering," in
Computer Science. RECIFE: Universidade Federal de Pernambuco, 2007, pp.
278.

[11] W. B. Frakes and S. Isoda, "Success factors of systematic reuse," Software, IEEE,
vol. 11, pp. 14 - 19, 1994.

[12] R. D. Banker, R. J. Kauffman, and D. Zweig, "Repository evaluation of software
reuse," Software Engineering, IEEE Transactions on, vol. 19, pp. 379-389, 1993.

[13] M. Morisio, M. Ezran, and C. Tully, "Success and failure factors in software
reuse," Software Engineering, IEEE Transactions on, vol. 28, pp. 340-357, 2002.

[14] R. J. Leach, Software Reuse: Methods, Models, Costs: AfterMath, 2012.
[15] M. Petre and D. Damian, "Methodology and culture: drivers of mediocrity in

software engineering?," presented at Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2014.

[16] M. Ezran, M. Morisio, and C. Tully, Practical software reuse: Springer, 2002.
[17] R. Salay, S. Wang, and V. Suen, Managing related models in vehicle control

software development: Springer, 2012.

186

[18] J. Rubin and M. Chechik, "From Products to Product Lines Using Model
Matching and Refactoring," presented at In: Proc. of SPLC Wrksp, 2010.

[19] M. Chechik, S. Nejati, and M. Sabetzadeh, "A Relationship-Based Approach to
Model Integration," Innovations in Systems and Software Engineering, vol. 8, pp.
3-18, 2012.

[20] W. Tracz, Software Reuse: Emerging Technology. New York: IEEE Press, 1988.
[21] J. L. Cybulski, "Introduction to Software Reuse," University of Melbourne,

Melbourne, Australia 1996.
[22] M. Ahmed, "Towards the Development of Integrated Reuse Environments for

UML Artifacts," presented at in ICSEA 2011 : The Sixth International
Conference on Software Engineering Advances, 2011.

[23] J.-M. Goff, Z. Kovacs, N. Baker, R. Brooks, and R. McClatchey, "A Component
Based Approach to Scientific Workflow Management." GENEVA, Switzerland,
2001.

[24] B. Selic, "The Pragmatics of Model-driven Development," Software, IEEE, vol.
20, pp. 19-25, 2003.

[25] R. France and B. Rumpe, "Model-driven development of complex software: A
research roadmap," presented at FOSE '07, Future of Software Engineering, 2007.

[26] O. Bech, "A Multi-Layer Modelling Environment for Diagram Predicate
Framework in Eclipse," Master's Thesis 2011.

[27] T. Stahl and M. Volter, Model-Driven Software Development: Wiley Publishing,
2006.

[28] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: elements of
reusable object-oriented software: Pearson Education, 1994.

[29] L. Northrop, "Software Product Lines: Reuse That Makes Business Sense," in
Software Engineering Institute (SEI), 2007.

[30] K. Czarnecki, M. Antkiewicz, C. H. P. Kim, S. Lau, and K. Pietroszek, "Model-
Driven Software Product Lines," presented at OOPSLA’05, San Diego,
California, 2005.

[31] A. Pleuss, G. Botterweck, D. Dhungana, A. Polzer, and S. Kowalewski, "Model-
driven support for product line evolution on feature level," Journal of Systems and
Software, vol. 85, pp. 2261–2274, 2012.

[32] H. Gomaa, Designing Software Product Lines with UML: From Use Cases to
Pattern-Based Software Architectures: Addison-Wesley, 2004.

[33] J. Rubin and M. Chechik, "Combining Related Products into Product Lines," in
the 15th international conference on Fundamental Approaches to Software
Engineering (FASE'12), vol. 7212: Lecture Notes in Computer Science, 2012, pp.
285-300.

[34] J. S. Poulin, "Measuring software reuse: principles, practices, and economic
models," 1997.

[35] M. Smolárová and P. Návrat, "Software reuse: Principles, patterns, prospects,"
CIT. Journal of computing and information technology, vol. 5, pp. 33-49, 1997.

[36] M. Famelis, R. Salay, and M. Chechik, "Partial models: Towards modeling and
reasoning with uncertainty," presented at Software Engineering (ICSE), 2012 34th
International Conference on., 2012.

187

[37] R. Lutz, D. Wurfel, and S. Diehl, "How Humans merge UML-Models," presented
at In Proc. of the International Symposium on Empirical Software Engineering
and Measurement, Banff, Alberta, Canada, 2011.

[38] Y. Xue, "Reengineering legacy software products into software product line based
on automatic variability analysis," presented at ICSE '11 Proceedings of the 33rd
International Conference on Software Engineering, 2011.

[39] I. Reinhartz-Berger, "Towards automatization of domain modeling," Data &
Knowledge Engineering, vol. 69, pp. 491–515, 2010.

[40] T. Han, S. Purao, and V. C. Storey, "Generating large-scale repositories of
reusable artifacts for conceptual design of information systems," Decision
Support Systems, vol. 45, pp. 665–680, 2008.

[41] C. Li, M. Reichert, and A. Wombacher, "Mining business process variants:
Challenges, scenarios, algorithms," Data & Knowledge Engineering, vol. 70, pp.
409-434, 2011.

[42] M. Sabetzadeh and S. Easterbrook, "View merging in the presence of
incompleteness and inconsistency," vol. 11, pp. 174–193, 2006.

[43] M. Alanen and I. Porres, "Difference and Union of Models," in UML 2003 - The
Unified Modeling Language, vol. 2863 LNCS, 2003, pp. 2-17.

[44] P. Roques, UML in practice: the art of modeling software systems demonstrated
through worked examples and solutions: Wiley, 2006.

[45] K. Robles, A. Fraga, J. Morato, and J. Llorens, "Towards an ontology-based
retrieval of UML Class Diagrams," Information and Software Technology, vol.
54, pp. 72-86, 2012.

[46] S. Apel, F. Janda, S. Trujillo, and C. Kästner, "Model superimposition in software
product lines," in Theory and Practice of Model Transformations: Springer, 2009,
pp. 4-19.

[47] P. Mohagheghi, V. Dehlen, and T. Neple, "Definitions and approaches to model
quality in model-based software development–A review of literature,"
Information and Software Technology, vol. 51, pp. 1646-1669, 2009.

[48] T. Levendovszky, B. Rumpe, B. Schätz, and J. Sprinkle, "9 Model Evolution and
Management," in Model-Based Engineering of Embedded Real-Time Systems:
Springer, 2010, pp. 241-270.

[49] T. Clark and P.-A. Muller, "Exploiting model driven technology: a tale of two
startups," Software & Systems Modeling, vol. 11, pp. 481-493, 2012.

[50] S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook, and P. Zave, "Matching
and merging of Statechart specifications," in the 29th International Conference on
Software Engineering (ICSE’07) Minneapolis, MN, USA: IEEE Computer
Society, 2007, pp. 54–64.

[51] G. Brunet, M. Chechik, S. Easterbrook, N. Nejati, N. Niu, and M. Sabetzadeh, "A
manifesto for model merging," presented at Workshop on Global Integrated
Model Management (GaMMa’06) co-located with ICSE’06,, 2006.

[52] Y. Lin, J. Zhang, and J. Gray, "Model comparison: A key challenge for
transformation testing and version control in model driven software
development," presented at OOPSLA Workshop on Best Practices for Model-
Driven Software Development, 2004.

188

[53] M. Brambilla, J. Cabot, and M. Wimmer, "Model-driven software engineering in
practice," Synthesis Lectures on Software Engineering, vol. 1, pp. 1-182, 2012.

[54] S. Melnik, H. Garcia-Molina, and E. Rahm, "Similarity flooding: A versatile
graph matching algorithm and its application to schema matching," presented at
Proc. 18th ICDE Conf.(Best Student Paper award), 2002.

[55] R. Pottinger and P. Bernstein, "Merging models based on given correspondences,"
presented at In Proceedings of 29th International Conference on Very Large Data
Bases, 2003.

[56] D. S. Kolovos, D. Di Ruscio, A. Pierantonio, and R. F. Paige, "Different models
for model matching: An analysis of approaches to support model differencing," in
ICSE Workshop on Comparison and Versioning of Software Models: IEEE, 2009,
pp. 1-6.

[57] M. Amstel, M. Brand, Z. Protic, and T. Verhoeff, "Model-Driven Software
Engineering," in Automation in Warehouse Development, R. Hamberg and J.
Verriet, Eds.: Informs 5521 Research Park DR, Suite 200, Catonsville, MD 21228
USA, 2012, pp. 53.

[58] D. S. Kolovos, R. F. Paige, and F. A. Polack, "Merging models with the epsilon
merging language (EML)," in Model Driven Engineering Languages and
Systems: Springer, 2006, pp. 215-229.

[59] Y. Lin, J. Gray, and F. Jouault, "DSMDiff: a differentiation tool for domain-
specific models," European Journal of Information Systems, vol. 16, pp. 349-361,
2007.

[60] U. Kelter, J. Wehren, and J. Niere, "A Generic Difference Algorithm for UML
Models," presented at In Software Engineering, Essen, 2005.

[61] Z. Xing and E. Stroulia, "UMLDiff: An algorithm for object-oriented design
differencing," in the 20th IEEE/ACM International Conference on Automated
Software Engineering (ASE ’05) ACM, New York, NY, USA, 2005, pp. 54–65.

[62] L. Montrieux, M. Wermelinger, and Y. Yu, "Challenges in model-based evolution
and merging of access control policies," presented at Proceedings of the 12th
International Workshop on Principles of Software Evolution and the 7th annual
ERCIM Workshop on Software Evolution, 2011.

[63] http://www.uml.org/.
[64] http://www.omg.org/.
[65] S. Roh, K. Kim, and T. Jeon, "Architecture modeling language based on UML2.

0," presented at Software Engineering Conference, 2004. 11th Asia-Pacific, 2004.
[66] http://www.omg.org/mof/.
[67] http://www.omg.org/spec/XMI/.
[68] T. J. Grose, G. C. Doney, and S. A. Brodsky, Mastering Xmi: Java Programming

with Xmi, XML and UML, vol. 21: John Wiley & Sons, 2002.
[69] J. Kovse and T. Härder, "Generic XMI-based UML model transformations," in

Object-oriented information systems: Springer, 2002, pp. 192-198.
[70] www.altova.com.
[71] http://www.w3.org/.
[72] P. O'Leary and I. Richardson, "Process reference model construction:

implementing an evolutionary multi-method research approach," Software, IET,
vol. 6, pp. 423-430, 2012.

189

[73] I. Sommerville, "Software engineering—9th ed. p. cm," McGraw-Hill Companies
Inc., New York, 2011.

[74] M. Rosemann and W. M. P. van der Aalst, "A Configurable Reference Modeling
Language," Information Systems, vol. 23, pp. 1-23, 2007.

[75] R. K. Ahuja, J. B. Orlin, and A. Tiwari, "A greedy genetic algorithm for the
quadratic assignment problem," Computers & Operations Research, vol. 27, pp.
917-934, 2000.

[76] P. Larranaga, C. M. H. Kuijpers, R. H. Murga, I. Inza, and S. Dizdarevic,
"Genetic algorithms for the travelling salesman problem: A review of
representations and operators," Artificial Intelligence Review, vol. 13, pp. 129-
170, 1999.

[77] S. Roy, "Genetic algorithm based approach to solve travelling salesman problem
with one point crossover operator," International Journal Of Computers &
Technology, vol. 10, pp. 1393-1400, 2013.

[78] H. O. Salami and M. A. Ahmed, "A Framework for Class Diagram Retrieval
Using Genetic Algorithm," in the 24th Int. Conf. on Software Engineering and
Knowledge Engineering SEKE'12, 2012, pp. 737-740.

[79] A. D. Cross, R. C. Wilson, and E. R. Hancock, "Inexact graph matching using
genetic search," Pattern Recognition, vol. 30, pp. 953-970, 1997.

[80] J. Brownlee, Clever algorithms: nature-inspired programming recipes: Jason
Brownlee, 2011.

[81] J. H. Holland, Adaptation in natural and artificial systems: An introductory
analysis with applications to biology, control, and artificial intelligence: U
Michigan Press, 1975.

[82] X. Yan, W. Luo, W. Li, W. Chen, C. Zhang, and H. Liu, "An Improved Genetic
Algorithm and Its Application in Classification," International Journal of
Computer Science Issues (IJCSI), vol. 10, 2013.

[83] S. Kirkpatrick and M. Vecchi, "Optimization by simmulated annealing," science,
vol. 220, pp. 671-680, 1983.

[84] Z. Michalewicz and D. B. Fogel, How to solve it: Modern Heuristics. New York::
Springer, 2000.

[85] G. Xiutang and Z. Kai, "Simulated annealing algorithm for detecting graph
isomorphism," Journal of Systems Engineering and Electronics, vol. 19, pp.
1047-1052, 2008.

[86] M. Malek, M. Guruswamy, M. Pandya, and H. Owens, "Serial and parallel
simulated annealing and tabu search algorithms for the traveling salesman
problem," Annals of Operations Research, vol. 21, pp. 59-84, 1989.

[87] S. Fidanova, "Simulated annealing for grid scheduling problem," presented at
Modern Computing, 2006. JVA'06. IEEE John Vincent Atanasoff 2006
International Symposium on, 2006.

[88] J. Bergey, P. Clements, S. Cohen, P. Donohoe, L. Jones, B. Krut, L. Northrop, S.
Tilley, D. Smith, and J. Withey, "DoD Product Line Practice," Software
Engineering Institute, Carnegie Mellon University, Pittsburgh 1998.

[89] H. P. Breivold, S. Larsson, and R. Land, "Migrating Industrial Systems towards
Software Product Lines: Experiences and Observations through Case Studies,"
presented at In Euromicro SEAA’08 Proceedings, Washington, DC, USA, 2008.

190

[90] M. Acher, P. Collet, P. Lahire, and R. France, "Managing Multiple Software
Product Lines Using Merging Techniques," University of Nice Sophia Antipolis,
I3S CNRS, Sophia Antipolis, France 2010.

[91] I. Reinhartz-Berger, P. Soffer, and A. Sturm, "A Domain Engineering Approach
to Specifying and Applying Reference Models," presented at Workshop
Enterprise Modelling and Information Systems Architectures, 2005.

[92] M. Sinnema and S. Deelstra, "Classifying variability modeling techniques,"
Information and Software Technology, vol. 49, pp. 717–739, 2007.

[93] L. Chen, M. Babar, and N. Ali, "Variability management in software product
lines: a systematic review," presented at SPLC '09 Proceedings of the 13th
International Software Product Line Conference, 2009.

[94] S. D. Kim and H. G. Min, "DREAM: a practical product line engineering using
model driven architecture," presented at ICITA '05 Proceedings of the Third
International Conference on Information Technology and Applications
(ICITA'05), 2005.

[95] C. W. Krueger and B. Bakal, "Leveraging the Model Driven Development and
Software Product Line Engineering Synergy for Success," IBM, White paper 5
May 2008 2008.

[96] I. Groher, H. Papajewski, and M. Voelter, "Integrating model-driven development
and software product line engineering," presented at In Eclipse Modeling
Symposium, Ludwigsburg, Germany, 2007.

[97] I. Groher and M. Voelter, "Expressing feature-based variability in structural
models," in Workshop on Managing Variability for Software Product Lines, 2007.

[98] S. Barrett, P. Chalin, and G. Butler, "Model merging falls short of software
engineering needs," presented at 2nd Workshop on Model-Driven Software
Evolution, MoDSE ’08, 2008.

[99] P. Bernstein, H. Halevy, and R. Pottinger, "A vision for management of complex
models," ACM Sigmod Record, vol. 29, pp. 55-63, 2000.

[100] K. Kim, H. Kim, and W. Kim, "Building Software Product Line from the Legacy
Systems: Experience in the Digital Audio and Video Domain," presented at in
Proceedings of the 11th International Software Product Line Conference
(SPLC’07), 2007.

[101] K. Bogdanov and N. Walkinshaw, "Computing the structural difference between
state-based models.," in Reverse Engineering, 2009. WCRE'09. 16th Working
Conference on: IEEE, 2009, pp. 177-186.

[102] A. M. Geoffrion, "Integrated Modeling Systems," Computer Science in
Economics and Management, vol. 2, pp. 3-15, 1989.

[103] T. Ziadi, L. Helouet, and J.-M. Jezequel, "Towards a UML Pro�le for Software
Product Lines," presented at in Product Familiy Engineering (PFE), Siena, Italy,
2003.

[104] E. A. Aydin, H. Oguztuzun, A. H. Dogru, and A. S. Karatas, "Merging multi-view
feature models by local rules," presented at 9th International Conference on
Software, 2011.

[105] J. Bayer, J.-F. Girard, M. Wurthner, J.-M. DeBaud, and M. Apel, "Transitioning
Legacy Assets to a Product Line Architecture," presented at 7th ACM SIGSOFT

191

International Symposium on Foundations of Software Engineering (FSE’99),
Toulouse, 1999.

[106] S. Ferber, J. Haag, and J. Savolainen, "Feature Interaction and Dependencies:
Modeling Features for Reengineering a Legacy Product Line," presented at in
Proceedings of the Second International Conference on Software Product Lines
(SPLC’02), 2002.

[107] F. Fleurey, B. Baudry, R. France, and G. S., "A Generic Approach for Automatic
Model Composition," presented at Models in Software Engineering, 2008.

[108] N. Noda and T. Kishi, "Aspect-Oriented Modeling for Variability Management,"
presented at In SPLC '08: Proceedings of the 2008 12th InternationalSoftware
roduct Line Conference, Washington, DC, USA, 2008.

[109] B. Morin, J. Klein, O. Barais, and J. M. Jezequel, "A generic weaver for
supporting product lines," presented at In: Early Aspects Workshop at ICSE,
Leipzig, Germany 2008.

[110] P. Selonen and M. Kettunen, "Metamodel-Based Inference of Inter-Model
Correspondence," presented at The 11th European Conference on Software
Maintenance and Reengineering, 2007. CSMR '07. , 2007.

[111] U. Kelter and M. Schmidt, "Comparing State Machines," presented at in
Proceedings of the 2008 International Workshop on Comparison and Versioning
of Software Models (CVSM’08), 2008.

[112] A. Mehra, J. Grundy, and J. Hosking, "A generic approach to supporting diagram
differencing and merging for collaborative design," presented at In ASE ’05:
Proceedings of the 20th IEEE/ACM international Conference on Automated
software engineering, 2005.

[113] A. Hallerbach, T. Bauer, and M. Reichert, "Capturing Variability in Business
Process Models: The Provop Approach," Journal of Software Maintenance and
Evolution: Research and Practice, vol. 22, pp. 519-546, 2010.

[114] M. Voelter and I. Groher, "Product Line Implementation using Aspect-Oriented
and Model-Driven Software Development," presented at in SPLC, Washington,
DC, USA, 2007.

[115] M. Acher, P. Collet, and R. France, "Composing Feature Models," presented at
2nd International Conference on Software Language Engineering (SLE’09), 2009.

[116] E. Rahm and P. A. Bernstein, "A survey of approaches to automatic schema
matching," The VLDB Journal, vol. 10, pp. 334-350, 2001.

[117] N. Bouassida and H. Ben-Abdallah, "Pattern and spoiled pattern detection through
an information retrieval approach," Journal of Emerging Technologies in Web
Intelligence, vol. 2, pp. 167-175, 2010.

[118] C. Bouhours, H. Leblanc, C. Percebois, and T. Millan, "Detection of Generic
Micro-architectures on Models," presented at The Second International
Conferences on Pervasive Patterns and Applications(PATTERNS 2010), 2010.

[119] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T. Halkidis, "Design
Pattern Detection Using Similarity Scoring," IEEE Transactions on Software
Engineering, vol. 32, pp. 896-909, 2006.

[120] T. Pedersen, S. Patwardhan, and J. Michelizzi, "WordNet:: Similarity: measuring
the relatedness of concepts," in the 19th National Conference on Artificial

192

Intelligence. Stroudsburg, PA, USA: Association for Computational Linguistics,
2004, pp. 38-41

[121] D. Parnas, "Designing Software for Ease of Extension and Contraction," IEEE
Transactions on Software Engineering, vol. 5, pp. 128–138, 1979.

[122] H. Bunke, P. Foggia, C. Guidobaldi, C. Sansone, and M. Vento, "A Comparison
of Algorithms for Maximum Common Subgraph on Randomly Connected
Graphs," Lecture Notes in Computer Science vol. 2396, pp. 123-132 2002.

[123] D. S. Kolovos, "Establishing correspondences between models with the epsilon
comparison language," in Model Driven Architecture-Foundations and
Applications: Springer, 2009, pp. 146-157.

[124] R. A. Rufai, "New structural similarity metrics for UML models," in Computer
Science. Dhahran: King Fahd University of Petroleum & Minerals, 2003.

[125] M. A.-R. Al-Khiaty and M. Ahmed, "Similarity Assessment of UML Class
Diagrams using a Greedy Algorithm," in The 18th International Computer
Science and Engineering Conference (ICSEC2014). Khon Kaen, Thailand: IEEE,
2014, pp. 243-248.

[126] M. Keshavarz and Y.-H. Lee, "Ontology matching by using ConceptNet," in the
Asia Pacific Industrial Engineering & Management Systems, 2012, pp. 1917-
1925.

[127] P. Resnik, "Using information Content to evaluate semantic similarity in a
taxonomy," in the 14th international joint conference on Artificial intelligence,
vol. 1, 1995, pp. 448-453.

[128] Z. Wu and M. Palmer, "Verb semantics and lexical selection," in the 32nd Annual
Meeting of the Association for Computational Linguistics, 1994, pp. 133-138.

[129] V. Cross and X. Hu, "Using semantic similarity in ontology alignment," in the
Sixth International Workshop on Ontology Matching (collocated with ISWC-
2011), 2011, pp. 61-72.

[130] S. Patwardhan, "Incorporating dictionary and corpus information into a context
vector measure of semantic relatedness," University of Minnesota, 2003.

[131] A. Budanitsky and G. Hirst, "Evaluating wordnet-based measures of lexical
semantic relatedness," Computational Linguistics, vol. 32, pp. 13-47, 2006.

[132] M. J. Sussna, "Text Retrieval Using Inference in Semantic Metanetworks." San
Diego: University of California, 1997.

[133] P. J. d. S. Gomes, "A case-based approach to software design," 2004.
[134] E. Ozcan and C. K. Mohan, "Partial shape matching using genetic algorithms,"

Pattern Recognition Letters, vol. 18, pp. 987-992, 1997.
[135] S. Sivanandam and S. Deepa, Introduction to genetic algorithms: Springer, 2007.
[136] D. E. Goldberg and R. Lingle Jr, "AllelesLociand the Traveling Salesman

Problem," presented at Proceedings of the 1st international conference on genetic
algorithms, 1985.

[137] L. Davis, "Applying adaptive algorithms to epistatic domains," presented at
IJCAI, 1985.

[138] K. Deep and H. M. Adane, "New Variations of Order Crossover for Travelling
Salesman Problem," International Journal of Combinatorial Optimization
Problems and Informatics, vol. 2, pp. 2-13, 2010.

193

[139] M. Aurnhammer and K. Tonnies, "A genetic algorithm for automated horizon
correlation across faults in seismic images," Evolutionary Computation, IEEE
Transactions on, vol. 9, pp. 201-210, 2005.

[140] E. Elbeltagi, T. Hegazy, and D. Grierson, "Comparison among five evolutionary-
based optimization algorithms," Advanced engineering informatics, vol. 19, pp.
43-53, 2005.

[141] M. Srinivas and L. M. Patnaik, "Adaptive probabilities of crossover and mutation
in genetic algorithms," Systems, Man and Cybernetics, IEEE Transactions on,
vol. 24, pp. 656-667, 1994.

[142] S. Kirkpatrick, "Optimization by simulated annealing: Quantitative studies,"
Journal of statistical physics, vol. 34, pp. 975-986, 1984.

[143] D. Henderson, S. H. Jacobson, and A. W. Johnson, "The theory and practice of
simulated annealing," in Handbook of metaheuristics: Springer, 2003, pp. 287-
319.

[144] E. B. Fernandez and X. Yuan, "Semantic analysis patterns," in Conceptual
Modeling—ER 2000: Springer, 2000, pp. 183-195.

[145] W.-S. Li and C. Clifton, "SEMINT: A tool for identifying attribute
correspondences in heterogeneous databases using neural networks," Data &
Knowledge Engineering, vol. 33, pp. 49-84, 2000.

[146] H.-H. Do, S. Melnik, and E. Rahm, "Comparison of schema matching
evaluations," in Web, Web-Services, and Database Systems: Springer, 2003, pp.
221-237.

[147] M. Bilenko, R. Mooney, W. Cohen, P. Ravikumar, and S. Fienberg, "Adaptive
name matching in information integration," IEEE Intelligent Systems, vol. 18, pp.
16-23, 2003.

[148] https://code.google.com/p/ws4j.
[149] J. Eno and C. W. Thompson, "Generating Synthetic Data to Match Data Mining

Patterns," Internet Computing, IEEE, vol. 12, pp. 78-82, 2008.
[150] R. Heradio-Gil, D. Fernandez-Amoros, J. A. Cerrada, and C. Cerrada,

"Supporting commonality-based analysis of software product lines," IET
software, vol. 5, pp. 496-509, 2011.

[151] P. C. Clements, J. D. McGregor, and S. G. Cohen, "The structured intuitive model
for product line economics (SIMPLE)," DTIC Document 2005.

[152] C. Wohlin, P. Runeson, M. Host, C. Ohlsson, B. Regnell, and A. Wesslén,
"Experimentation in Software Engineering: an Introduction," 2000.

194

Vitae

Name :MOJEEB AL-RHMAN AHMED SALEH AL-KHIATY

Nationality :Yemeni

Date of Birth :01-01-1976.

Email :alkhiaty@gmail.com

Address : 14, Alwahdah Street, Sana’a,Yemen.

Academic Background : Al-Khiaty received his Bachelor of Science (BS) degree

with honors in Mathematics/Computer from Sana’a University, Yemen, in June 1999. He

obtained his Master of Science (MS) degree in Computer Science from King Fahd

University of Petroleum and Minerals (KFUPM) in June 2009. Prior to attending

KFUPM, he worked as a full time lecturer from September 2000 to Jun 2004 in Sana’a

University (Mathematics Department). He joined KFUPM as a full time student to pursue

the PhD degree in September 2009. He received his PhD degree in Computer Science and

Engineering from KFUPM in February 2015.

During the study of his PhD, Al-Khiaty has published several articles in high quality

journals. He has also attended and delivered research papers to good quality international

conferences. Additionally, Al-Khiaty has participated in several scientific conferences

organized for higher education students in KSA. His research interests include Software

Engineering and Soft Computing.

