

II

iii

© Amjad Abu Hassan

2015

iv

Dedication

To my Parents

For their LOVE

v

ACKNOWLEDGMENTS

In the name of Allah, the Most Gracious, the Most Merciful

First and foremost, Alhamdulillah All praise to Almighty Allah, who gave me the power

to accomplish my master’s degree.

I acknowledge King Fahd University of Petroleum & Minerals for supporting this research.

All appreciation to my advisor; Dr. Mohammad Alshayeb, who helped me and encouraged

me during my thesis journey; he was a teacher, a friend, and a brother. I wish to thank my

dissertation committee members, Dr. Mahmood Niazi, and Dr. Sajjad Mahmood, for their

help and support.

Finally, I wish to express my gratitude to my family members for their prayers and

patience. I would also like to thank all my KFUPM colleagues, who provided me the

encouragement in dealing with difficult times during the thesis journey.

vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... V

TABLE OF CONTENTS ... VI

LIST OF TABLES .. XI

LIST OF FIGURES ... XIII

LIST OF ABBREVIATIONS ... XVI

ABSTRACT .. XVIII

الرسالة ملخص ... XIX

CHAPTER 1 INTRODUCTION ... 1

1.1 Motivation .. 2

1.2 Research Objectives .. 3

1.3 Contributions .. 3

1.4 The Outline ... 4

CHAPTER 2 BACKGROUND .. 5

2.1 Unified Modeling Language (UML) .. 5

2.1.1 Structural View ... 6

2.1.2 Behavioral View ... 7

2.1.3 Functional View .. 8

2.2 UML Class Diagram ... 8

2.2.1 Classes .. 9

2.2.2 Class Diagram Relationships ... 9

2.2.3 Association classes ... 11

vii

2.3 UML Use Case Diagram ... 11

2.3.1 Use Cases ... 12

2.3.2 Actors ... 12

2.3.3 System Boundaries ... 12

2.3.4 Use Case Diagram Relationships ... 12

2.4 UML Sequence Diagram .. 13

2.4.1 Participant .. 14

2.4.2 Time ... 14

2.4.3 Messages .. 14

2.4.4 Notes .. 15

2.4.5 Messages Type ... 15

CHAPTER 3 LITERATURE REVIEW ... 17

3.1 Stability ... 17

3.1.1 Architecture Level Metrics .. 17

3.1.2 Class Level Metrics ... 20

3.1.3 System Level Metrics .. 23

3.2 Similarity ... 26

3.3 Summary... 28

CHAPTER 4 RESEARCH METHODOLOGY .. 33

4.1 Analysis ... 35

4.2 Evaluation ... 36

4.3 Propose the Metrics .. 36

CHAPTER 5 STRUCTURAL STABILITY ... 37

5.1 Assessment ... 37

viii

5.1.1 Classifiers ... 38

5.1.2 Comments .. 39

5.1.3 Packages ... 39

5.1.4 Dependency Relationship ... 40

5.1.5 Association Relationship .. 43

5.1.6 Aggregation Relationship ... 46

5.1.7 Composition Relationship... 49

5.1.8 Inheritance Relationship .. 52

5.1.9 Realization Relationship ... 54

5.1.10 Association classes ... 57

5.1.11 The Selected UML Class Diagram Identifier .. 59

5.1.12 Summary ... 59

5.2 Terminology and Formalism .. 60

5.3 Structural Stability Metric ... 61

5.3.1 Example .. 65

CHAPTER 6 FUNCTIONAL STABILITY .. 68

6.1 Assessment ... 68

6.1.1 Actor .. 68

6.1.2 Use Case ... 69

6.1.3 System Boundaries ... 71

6.1.4 Actor Relationships .. 71

6.1.5 Generalization Relationship ... 74

6.1.6 Include Relationship ... 76

6.1.7 Extend Relationship .. 78

6.1.8 The Selected UML Use Case Diagram Identifier .. 80

ix

6.1.9 Summary .. 81

6.2 Terminology and Formalism .. 81

6.3 Functional Stability Metric .. 83

6.3.1 Example .. 88

CHAPTER 7 BEHAVIORAL STABILITY ... 91

7.1 Assessment ... 91

7.1.1 Participant .. 91

7.1.2 Stereotypes .. 93

7.1.3 Messages .. 94

7.1.4 A synchronous message ... 96

7.1.5 An asynchronous message.. 97

7.1.6 A return message ... 98

7.1.7 Creation Message & Destruction Message ... 99

7.1.8 Notes, Activation Bars, and Actors ... 101

7.1.9 Time ... 101

7.1.10 The Selected UML Sequence Diagram Identifier... 102

7.2 Terminology and Formalism .. 104

7.3 Behavioral Stability Metric .. 106

7.3.1 Example .. 111

CHAPTER 8 THEORETICAL VALIDATION .. 113

8.1 Structural Stability Metric Validation .. 116

8.2 Functional Stability Metric Validation ... 118

8.3 Behavioral Stability Metric Validation ... 120

CHAPTER 9 CASE STUDIES ... 123

x

9.1 Case Study 1: ATM .. 123

9.2 Case Study 2: SCM ... 141

9.3 Case Study 3: ORA ... 151

9.4 Case Study 4: O-RED System ... 158

9.5 Case Study 5: HOSS System ... 163

9.6 Case Study 6: ESAP System.. 170

CHAPTER 10 CONCLUSION AND FUTURE WORK .. 176

10.1 Conclusion and Thesis Contribution.. 176

10.2 Future work .. 177

10.3 Threats to Validity .. 178

REFERENCES.. 179

VITAE ... 183

xi

LIST OF TABLES

Table 1 Stability Survey Summary ... 29

Table 2 Similarity Techniques Summary ... 32

Table 3 Dependency Relationship Possible Changes .. 42

Table 4 Association Relationship Possible Changes .. 45

Table 5 Aggregation Relationship Possible Changes .. 48

Table 6 Composition Relationship Possible Changes .. 50

Table 7 Inheritance Relationship Possible Changes .. 53

Table 8 Realization Relationship Possible Changes .. 56

Table 9 Association Class Possible Changes .. 58

Table 10 Each Classifier Properties ... 66

Table 11 Changes From version i to version i+1 .. 67

Table 12 Possible Use Case Changes ... 70

Table 13 Possible Actor-Use case Relationships Changes ... 73

Table 14 Possible Actor-Actor Relationships Changes .. 74

Table 15 Generlization Relationship Possible changes ... 75

Table 16 Include Relationship Possible changes ... 77

Table 17 Extend Relationship Possible changes .. 80

Table 18 Use Case Sample Diagrams Properties .. 88

Table 19 Use Case Sample Changes From version i to version i+1 89

Table 20 Possible Identifier Changes .. 104

Table 21 All Messages Property for the Sequnce Sample Diagrams 111

Table 22 Changes From version 1 to version 2 in Sequnce Sample Diagrams 112

Table 23 ATM Case Study Summary ... 124

Table 24 ATM Class Diagrams Comparison .. 127

Table 25 ATM Class Diagram Comparison Results ... 129

Table 26 ATMStartUp Sequence Diagrams Comparison .. 133

Table 27 ATMStartUp Sequence Diagrams Comparison Results 134

Table 28 Deposit Sequence Diagrams Comparison .. 136

Table 29 Deposit Sequence Diagrams Comparison Results .. 137

Table 30 Withdrawal Sequence Diagrams Comparison ... 139

Table 31 Withdrawal Sequence Diagrams Results ... 140

Table 32 SCM Case Study Summary .. 141

Table 33 SCM Class Diagrams Comparison ... 143

Table 34 SCM Class Diagrams Comparison Results .. 144

Table 35 Purchase Sequence Diagram Comparison ... 146

Table 36 Purchase Sequence Diagram Comparison Results ... 146

xii

Table 37 Replenish Sequence Diagram Comparison ... 148

Table 38 Replenish Sequence Diagram Comparison Results .. 148

Table 39 Source Sequence Diagram Comparison ... 150

Table 40 Source Sequence Diagram Comparison Results ... 150

Table 41 ORA Use Case Diagram Comparison .. 154

Table 42 ORA Class Diagram Comparison Results .. 156

Table 43 O-RED Class Diagram Comparison ... 161

Table 44 O-RED Class Diagram Comparison Results ... 162

Table 45 HOSS Use Case Diagram Comparison .. 166

Table 46 HOSS Use Case Diagram Comparison Results .. 168

Table 47 ESAP Use Case Diagram Comparison ... 173

Table 48 ESAP Use Case Diagram Comparison Results .. 175

xiii

LIST OF FIGURES

Figure 1 Hierarchical Classification of UML Diagrams [6] .. 6

Figure 2 Class Diagram Relationships ... 11

Figure 3 Use Case Diagram Relationships... 13

Figure 4 Sequence Diagram Sample ... 14

Figure 5 Research Methodology ... 34

Figure 6 Class Diagram Sample... 37

Figure 7 Detailed version of the class in class diagram .. 38

Figure 8 Four different ways of showing a class using UML notation 39

Figure 9 Class Diagram Dependency Relationship .. 40

Figure 10 Sample Code of Dependency Relationship .. 41

Figure 11 Class Diagram Association Relationship ... 44

Figure 12 Sample Code of Association Relationship ... 44

Figure 13 Class Diagram Aggregation Relationship ... 47

Figure 14 Sample Code of Aggregation Relationship ... 47

Figure 15 Class Diagram Composition Relationship ... 49

Figure 16 Composition Relationship Implementation Code ... 50

Figure 17 Class Diagram Inheritance Relationship ... 52

Figure 18 Inheritance Relationship Implementation Code ... 52

Figure 19 Class Diagram Realization Relationship .. 55

Figure 20 Realization Implementation Code ... 55

Figure 21 Association Class in Class Diagram ... 57

Figure 22 Association Class Implementation Code ... 58

Figure 23 Structural Stability Computation Steps ... 63

Figure 24 Classifier Type Changes ... 64

Figure 25 Classifier Relationships Changes ... 64

Figure 26 Class Diagram Sample version i .. 66

Figure 27 Class Diagram Sample version i+1 .. 66

Figure 28 Sample Use Case with Extension Point ... 70

Figure 29 Sample Actor-Actor Relationship .. 72

Figure 30 Sample Actor Use Case Relationship ... 73

Figure 31 Use Case Generalization ... 75

Figure 32 Use Case Inclusion Sample .. 77

Figure 33 Use Case Extend Relationship Sample .. 79

Figure 34 Functional Stability Computation Steps .. 85

Figure 35 Use case Type Changes ... 85

Figure 36 Use Case Relationship Changes .. 86

xiv

Figure 37 Actor Relationships Changes ... 86

Figure 38 Use Case Sample version i ... 88

Figure 39 Use Case Sample version i+1 ... 88

Figure 40 General Description of Participant .. 92

Figure 41 Sequence Diagram Participants .. 93

Figure 42 General Description of Message ... 95

Figure 43 Message Arguments ... 95

Figure 44 Synchronous Message ... 96

Figure 45 Implementation Code of Synchronous Message... 97

Figure 46 An Asynchronous Message ... 97

Figure 47 Implementation Code of an Asynchronous Message 98

Figure 48 Return Message .. 99

Figure 49 Creation Message ... 100

Figure 50 Destruction Message .. 100

Figure 51 Implementation Code of Creation Message ... 101

Figure 52 Behavioral Stability Computation Steps ... 108

Figure 53 Message Receiver Changes ... 108

Figure 54 Message Caller Changes ... 109

Figure 55 Message Type Changes ... 109

Figure 56 Message Order Changes ... 109

Figure 57 Sequence Diagram Sample version i ... 111

Figure 58 Sequence Diagram Sample version i+1 ... 111

Figure 59 ATM Class Diagram version 1 ... 125

Figure 60 ATM Class Diagram v .. 126

Figure 61 ATMStartUp Sequence Diagram version 2 ... 131

Figure 62 ATMStartUp Sequence Diagram version 2 ... 132

Figure 63 Deposit Sequence Diagram version 1 ... 135

Figure 64 Deposit Sequence Diagram version 2 ... 135

Figure 65 Withdrawal Sequence Diagram version 1... 138

Figure 66 Withdrawal Sequence Diagram version 2... 138

Figure 67 SCM Class Diagram version 1 .. 142

Figure 68 SCM Class Diagram version 2 .. 142

Figure 69 Purchase Sequence Diagram version 1 ... 145

Figure 70 Purchase Sequence Diagram version 2 ... 145

Figure 71 Replenish Sequence Diagram version 1 .. 147

Figure 72 Replenish Sequence Diagram version 2 .. 147

Figure 73 Source Sequence Diagram version 1 ... 149

Figure 74 Source Sequence Diagram version 2 ... 149

xv

Figure 75 ORA Use Case Diagram version 1 ... 152

Figure 76 ORA Use Case Diagram version 2 ... 153

Figure 77 O-RED Class Diagram version 1... 159

Figure 78 O-RED Class Diagram version 2... 160

Figure 79 HOSS Use Case Diagram version 1 .. 164

Figure 80 HOSS Use Case Diagram version 2 .. 165

Figure 81 ESAP Use Case Diagram version 1 .. 171

Figure 82 ESAP Use Case Diagram version 2 .. 172

xvi

LIST OF ABBREVIATIONS

C : Classifier

CT : Classifier Type

NC : Number of Classifiers

Ch : Change

UCC : Unchanged in Classifier

NUP : Number of Unique Properties

CR : Classifier Relationships

NUCR : Number of Unique Classifier Relationships

SS : Structural Stability

U : Use Case

A : Actor

NUUP : Number of Unique Use Case Properties

NUAR : Number of Unique Actor Relationship

UN : Use Case Name

AN : Actor Name

NU : Number of Use Cases

xvii

NA : Number of Actors

UCU : Unchanged in Use case

UCA : Unchanged in Actor

FS : Functional Stability

UT : Use Case Type

UR : Use Case Relationship

P : Participant

MN : Message Name

MR : Message Receiver

MC : Message Caller

MT : Message Type

MO : Message Order

NM : Number of Messages

UCM : Unchanged in Messages

NMP : Number of Message Properties

BS : Behavioral Stability

xviii

ABSTRACT

Full Name : Amjad Abu Hassan

Thesis Title : TOWARDS THE DEFINITION OF SOFTWARE MODEL

STABILITY METRICS

Major Field : Software Engineering

Date of Degree : May 2015

Software metrics have become an essential part of software development due to their

importance in reducing cost, effort, and time during the development phase. Many metrics

have been proposed to assess different software quality attributes; stability is one of these

attributes. A number of software stability metrics have been proposed at class, architecture

and system levels. However, mostly, these metrics have targeted the source code.

The objective of this research is to propose software stability metrics at a model level for

the UML class diagram, UML use case diagram, and UML sequence diagram. These three

diagrams represent the most common diagrams in the three UML views: the structural, the

functional, and the behavioral. In this research, we introduced a new assessment approach

called the Client Master Approach to skip duplication. The assessment methodology we

followed for tracking changes is: analysis of each UML diagram, applying the client master

approach, and getting the change possibilities. Based on the assessment process, a new

suite of metric was proposed; a metric for the UML class diagram, a metric for UML use

case diagram, and a metric for the UML sequence diagram. Validation of the proposed

metrics suite was performed, theoretically and empirically. Theoretically, using the metric-

evaluation framework. We apply our metrics on six different case studies that represent

multi UML diagrams.

xix

 ملخص الرسالة

 نامجد ابو حسا : الاسم الكامل

 تعريف مقاييس لثباتية نماذج البرمجيات : عنوان الرسالة

 هندسة برمجيات : التخصص

 2015مايو : تاريخ الدرجة العلمية

مقاييس البرمجيات اصبحت جزء مهم في عملية تطوير البرمجيات نظرا لاهميتها في تقليل التكلفة والجهد والوقت

اللازم لعملية التطوير. العديد من المقاييس تم استحداثها لقياس مدى كفائة البرامج . الثباتية هي واحدة من خصائص

. لكن معظمها صفوفوالة النظام والهيكلية لعديد من المقاييس لقياس ثباتيتم انشاء االبرمجيات التي يمكن قياسها وتقييمها.

 لقياس ذلك على مستوى الكود.كان موجها

وهذه UMLالبرمجيات المسمى س لقياس الثباتية على مستوى نماذجالهدف من هذه البحث هو انشاء مجموعة مقايي

اذج هي المستخدمة غالبا لتمثيل اي برنامج وهي تمثل . هذه النم Use Caseو Sequenceو Classج هي النماذ

 ثلاتة اتجاهات مختلفة وهي اتجاه الهيكلية واتجاه الوظيفية واتجاه السلوك.

تغيرات . هدفها التخلص من احتساب الوالسيديم النماذج , سميت منهجية الخادم تم تقديم منهجية جديدة لتقي في هذه البحث

ج ثم ذيم الذي اتبعناه يبدا بتحليل النمامن العلاقات. اجراء عملية التقي مرة خاصة في العناصر التي لها كثيراكثر من

اييس في النهاية تم استحداث مق , وبعد ذلك نحصل على كل التغيرات الممكنة في النموذج. تطبيق منهجة الخادم والسيد

 .وتم التحقق من هذه المقاييس نظريا وعمليا Use Caseو Sequenceو Classجديدة لكل من

1

1 CHAPTER 1

INTRODUCTION

Software metrics are units of measurements that are useful for measuring quality, performance,

debugging, management, and estimating costs [1]. The collected measurements give an overview

about the software project, and show a clear image about the current situations, which help in

making quantitative/qualitative decisions during the software lifecycle.

Software systems are becoming more and more sophisticated. Writing newer versions has become

complex due to stakeholders’ changing demands, thus the maintainability is essential as it is a

costly process. ISO 9126 characterizes maintainability with four sub-characteristics, one of which

is stability.

Mitigating the evolved changes is very important for software developers in order to stabilize a

system and preserve its design. Therefore, the need of stability measurements is very important.

Many software metrics have been proposed to cover this area. Most of these metrics have been

introduced to assess the stability at the code level. However, little research has been done to

measure stability at the models level.

In this research, we propose a metrics suite that addresses model stability. We will cover three

UML diagrams. These three diagrams represent the three main views of UML diagrams, which

are: the class diagram that represents the structural view, the sequence diagram that represents the

behavioral view, and the use case diagram that represents the functional view [2].

2

1.1 Motivation

Stability is an important quality attribute in software development, which gives an overall

assessment of the software system, ISO 9126 defines many quality characteristics and sub-

characteristics that need a huge number of metrics to cover these attributes. ISO 9126 has six main

characteristics: functionality, reliability, usability, efficiency, maintainability, and portability.

Maintainability consists of four sub-characteristics, one of which is stability.

Maintenance emerged from the volatility of requirements, and the increasing change demands

from customers and stockholders; this affects the software system. Development has to keep up

with requirement changes, as well as other implementation issues like technologies and different

platforms; the software should be designed to accommodate these changes.

Stability, is defined by Daskalantonakis [3] as “a method of quantitatively determining the extent

to which a software process, product, or project possesses a certain attribute”. Azuma et al. [4],

defines the metric as "a quantitative scale and method which can be used to determine the value a

feature takes for a specific software product". In our assessment, we will measure the amount of

unchanged in the UML diagrams.

Stability plays a main role in indicating and evaluating the maintenance process, its effort and cost.

Unstable software may lead to high cost and effort of maintenance, user dissatisfaction, poor

deliverables quality and other issues.

Measuring stability, especially at the design level, provides an early estimation of the project and

thus an early judgment about the software status and the next movements toward enhancing

performance, the development process, and mitigating the changes.

3

The literature shows that all studies focus on assessing code stability; therefore, due to the lack of

stability metrics at the model level, we plan to propose a suite of stability metrics that covers

different UML views.

1.2 Research Objectives

The objective of this research is to propose a metrics suite that measures the stability of different

UML models. We will select one diagram from each UML view, namely:

 Class Diagram: this diagram describes the structure of a system, by showing the system's

classes, their attributes, variables, methods, and the relationships among objects.

 Sequence Diagram: a sequence diagram is the interaction diagram that represents the

sequence of messages exchanging between objects to implement a specific scenario.

 Use Case Diagram: a use case diagram is used to represent system functionality. Use cases

describe the interaction between customers and the system, by providing a graphical

representation of what the system exactly does.

1.3 Contributions

The deliverables and contributions of this research are:

 Stability Metrics Survey: this classifies a wide range of existing software stability

metrics, which focus on object-oriented diagrams metrics (class, sequence, and use case).

The survey will cover all the characteristics and properties for those metrics.

4

 Similarity Metrics Survey: this covers a wide range of existing software similarity

metrics, which focus on object-oriented diagram metrics (class, sequence, and use case).

The survey will illustrate all techniques and approaches that have been used in similarity

assessment.

 Structural Stability Metric: this proposes a metric to assess the UML class diagram’s

stability that covers all structural properties.

 Functional Stability Metric: this proposes a metric to assess the UML use case diagram’s

stability that covers all functional properties.

 Behavioral Stability Metric: this proposes a metric to assess the UML sequence

diagram’s stability that covers all behavioral properties.

1.4 The Outline

The rest of this thesis is structured as follows: Chapter 2 presents a the background for the UML

and its main views, and explains the selected diagrams, the UML class diagram, the UML use case

diagram, and the UML sequence diagram. Chapter 3 surveys the proposed stability metrics and

the similarity metrics. Chapter 4 presents the research methodology through assessment. Chapter

5 introduces the structural metric that is proposed for the UML class diagram. Chapter 6 discusses

the functionality metric that is proposed for the UML use case diagram. Chapter 7 introduces the

behavioral stability metrics for the sequence diagram. Chapter 8 contains the theoretical and

validation of the structural stability metric, the functional stability metric and the behavioral

stability metric. Chapter 9 presents the case studies. Chapter 10 discusses the conclusion and the

future work.

5

2 CHAPTER 2

BACKGROUND

This chapter introduces a background of some of the concepts used in this research. The

background highlights the different UML models that have been selected.

2.1 Unified Modeling Language (UML)

Unified Modeling language (UML) is a standard notation for the modeling language. UML enables

developers to visualize software systems artifacts. The objective of UML is to provide a standard

way to visualize the system design. It was appeared in the early nineties by Grady Booch, Ivar

Jacobson and James Rumbaugh, and later in 1997 the Object Management Group (OMG) adopted

UML as Object-Oriented design and analysis language.

Since that OMG developed and enhanced the UML, many versions have been released; the last

one is UML 2.5, which is still under construction. Nevertheless, in our research we will use the

stable and most used version, the UML 2, which has become the standard industry modeling

language.

The Object Management Group (OMG) defines UML as:

“The Unified Modeling Language (UML) is a graphical language for visualizing, specifying,

constructing, and documenting the artifacts of a software-intensive system.” [5]

6

UML is used to represent the three main views of the systems: structural, functional and

behavioral. Each view can be represented by different UML diagrams, as in Figure 1.

Figure 1 Hierarchical Classification of UML Diagrams [6]

2.1.1 Structural View

Structure diagrams describe the static aspects of the system. They are used extensively in

documenting the software architecture of software systems. Objects and classes are the basic

7

building elements in an object-oriented design. These elements represent the system concepts,

which include abstract and implementation concepts. The structural view has different diagrams

used to capture the physical organization of the system elements.

UML has the following seven types of structural diagrams. A class diagram is the most commonly

used one. The list of all UML structure diagrams is:

 Class Diagram.

 Package Diagram.

 Deployment Diagram.

 Component Diagram.

 Composite Structure Diagram.

 Object Diagram.

 Profile Diagram.

2.1.2 Behavioral View

Behavioral diagrams describe the behavior, dynamic features and methods of the modelled

structural objects of the systems. A sequence diagram is the almost commonly used diagram to

model the behavior of the system. UML models applicable to this view include:

 Sequence Diagram.

 Timing Diagram.

 State Machine Diagram.

 Communication Diagram.

8

 Interaction Overview Diagram.

2.1.3 Functional View

Functional diagrams describe the systems from a user’s perspective. They show how the system is

supposed to work by describing the system functionality from the user’s perspective. A use case

diagram is the commonly used diagram to model system functionality. It is one of the diagrams

we selected from the functional view to measure its stability. The list of all UML functional

diagrams is:

 Use Case Diagram.

 Activity Diagram.

2.2 UML Class Diagram

Class diagrams are the most popular and most common UML diagrams. They are used to capture

the static relationships of the object-oriented systems and represent its structural view. A class

diagram comprises a set of classes that represent the core of any object-oriented system. It also

consists of different types of relationships used to connect classes together.

A class diagram consists of two main parts: the classes, and the relationships between these classes.

Each part has its own properties and types. Classes are identified by name, and have an access

level, a set of variables and methods. Variables have a name, access level and data type. Methods

have a name, access level, return type, and parameters which also have their own properties.

The second part, is the relationships, which have different types: dependency, aggregation,

composition, inheritance, realization, and association.

9

2.2.1 Classes

Class diagram classes consist of a set of objects that share attributes and methods. Classes are

represented by a rectangle that has three parts. The first part contains the class name. The second

part contains the attributes, their names, visibility, and data types. The third part contains the

operations, their names, signature, visibility, and return type.

2.2.2 Class Diagram Relationships

Relationships allow classes to interact: there are different types of relationships with different

purposes and strengths. By strength we mean the level of dependency on of two classes involved

in this relationship. There are six main relationships, shown in Figure 2:

 Dependency Relationship

Dependency between two classes which represented by a dotted line arrow, declares that

one class (target class) depends upon another class (source class). The relationship means

that the target class needs information from the source class.

 Association Relationship

An association between two classes, represented by a solid line, declares that objects of

each class depend upon the objects of the other class. Association means that a class will

actually contain a reference to an object, or objects, of the other class in the form of an

attribute.

 Aggregation Relationship

10

Aggregation between two classes, represented by an empty diamond, declares that one

class (whole- a class with the diamond edge) is an aggregate of the other class (part)

objects. Aggregation is a stronger version of association, thus it is a one-way association.

 Composition Relationship

Composition between two classes, represented by a filled diamond, declares one class

(whole-a class with the diamond edge) is composing the other class (part) objects.

Composition is a stronger version of aggregation. In this relationship, the part class lifetime

depends on the whole class lifetime.

 Inheritance Relationship

Inheritance or generalization is a relationship between a class (super) and a subclass. In

this relation the subclass inherits the parent class structure. Inheritance between two

classes, represented by an empty triangle arrowhead, means that one class is a type of

another one.

 Realization Relationship

Realization between two classes, represented by a black triangle arrowhead, means that

one class realizes another one.

11

Figure 2 Class Diagram Relationships

2.2.3 Association classes

These classes are new classes; they can be introduced by the association itself. Association classes

are particularly useful in complex cases. They are used when a class is linked to two classes

because those two classes have a relationship with each other.

2.3 UML Use Case Diagram

Use case diagrams represent a system’s functionality; they are used to model a functional

requirement. Use case was introduced by Jacobson [7] and later added to the UML group by OMG.

They describe the system's requirements from the user’s point of view, by identifying the system

deliverables to the users [8]. Use case diagrams mainly consist of the use cases that represent the

functionality, and the actors who invoke these functionalities.

12

2.3.1 Use Cases

The use cases are used to describe a specific object-oriented system functionality. The use case

name itself is used as a description of functionality. There are two ways for use case representations

in UML. One way is by using an oval; the other way is by using a classifier notation.

2.3.2 Actors

The actor is the one who initiates the use case. Actors have different ways of being drawn. One

way uses a stick man figure. Also, classifier notation can be used to represent the actor. The actor

can have relationships with another actor or with use cases.

2.3.3 System Boundaries

A system's boundaries are used to contain all system functionality (use cases). Anything else

should be modeled out of the system as an actor. The boundaries are represented by a simple

rectangle.

2.3.4 Use Case Diagram Relationships

Relationships allow use cases to interact. There are three main relationships, as shown in Figure

3:

 Use Case Generalization

Use case generalization is like inheritance in class diagrams. It is typically used to describe

high level functionality, without going into details.

 Use Case Inclusion

13

Use case inclusion is used to share functionality by grouping several use cases to include a

common one. However, this general use case is not complete on its own.

 Use Case Extension

A use case extension is used in the case of inserting, a further functionality to the base use

case. This is done if conditions are met. In this case the original use case has to be complete

on its own. Usually the extending use case has a smaller scope.

Figure 3 Use Case Diagram Relationships

2.4 UML Sequence Diagram

The sequence diagrams are a graphical representation of the control flow. They are particularly

useful for describing executions that involve several classes. A sequence diagram is used to capture

order of interactions between different system parts, and describes which interaction will occur if

a particular event is triggered. It also shows different information about the system interactions.

A sequence diagram is made up of a collection of participants, lifelines, and messages.

14

Figure 4 Sequence Diagram Sample

2.4.1 Participant

Each participant has a corresponding lifeline, a solid vertical line. The lifeline indicates the

classifier location in the sequence. From Figure 4, A represents a sequence participant.

2.4.2 Time

What we need from the time here is the sequence diagram’s interactions order. Time starts at the

top of the sequence diagram and then progresses down in the sequence diagram.

2.4.3 Messages

Messages are the sequence diagram’s building blocks. They represent the interaction points. The

interaction happens when a participant sends a message to another participant. Messages are

15

expressed as an arrow from the Message Caller to the Message Receiver. They have no specific

direction; they can be right to left, left to right, or from and to the same Message Caller.

2.4.4 Notes

Notes are used to describe the diagrams, and hold some information about them, like local

variables’ names, the values, and can state invariant information.

2.4.5 Messages Type

A sequence diagram has five types, and each type has its own meaning, shown in Figure 4:

 Synchronous messages

A synchronous message is used in a waiting case, when the Message Caller waits for the

return values after the invocation of the Message Receiver. This can be implemented in the

code as a simple method invocation.

 Asynchronous messages

In this type, when the message is invoked, the Message Caller does not wait for the message

invocation to return; it moves on with the rest of the interaction's steps. This means that the

Message Caller will invoke a message on the Message Receiver and the Message Caller

will be busy invoking further messages before the original message returns. It can be named

as a "fire and forget" message.

 Return messages

16

The return message is an optional piece of notation that can be used at the end of an

activation bar to show that the control flow of the activation returns to the participant that

passed the original message.

 A participant creation message & a participant destruction message

Participants do not necessarily live for the entire duration of a sequence diagram's

interaction. Participants can be created and destroyed according to the messages that are

being passed.

17

3 CHAPTER 3

LITERATURE REVIEW

This section introduces a survey on software stability and similarity, at the design and code levels.

The literature highlights the existing proposed metrics used to evaluate software stability, and the

techniques used to assess software similarity.

3.1 Stability

This section presents a survey of existing stability metrics that are distributed on three levels:

architecture, class, and system.

3.1.1 Architecture Level Metrics

Sethi et al. [9] devised a metrics suite to measure software modularity and stability at the

architecture level; the new metrics suite takes into consideration the environmental conditions.

Sethi et al. proposed the Decision Volatility metric to assess decisions that may be affected by the

environmental conditions (Envr Impact). The metric’s value indicates the amount of change on the

software; more changes lead to more impact on the stability.

Molesini et al. [10] analyzed aspect-oriented composition mechanism’s influence on a modules

architectural stability. The authors investigated to what extent aspect-oriented architectures are

stable when the change occurs, and they found that Aspect-Oriented (AO) architecture is more

18

stable when a change targeted a crosscutting concern. They used a conventional set of metrics to

quantify change propagation in AO architecture. These metrics depend on collecting a number of

components that had been added or changed, the connectors that had been added or changed, and

the number of point cuts that had been added or changed.

Tonu et al. [11] introduced the architectural stability approach. This approach makes use of metrics

and combines retrospective and predictive evaluation. The retrospective approach evaluates

architectural perspectives of stability by analyzing the successive releases of a software system,

while predictive evaluation checks the potential changes. The metric-based approach has been used

to make a late evaluation by extracting the architecture from the source code first, and then

applying retrospective and predictive analyses.

Jazayeri [12] evaluated structural stability using retrospective analysis. It is done by applying three

kinds of retrospective analysis: 1) analysis using basic measurements like the number of modules

changed, module size …etc., 2) by indicating the coupling among system modules, and 3) one by

mapping out system evolution using color visualization.

Bansiya [13] calculated the extent of change between two software versions. He presented a

methodology to assess framework architecture stability by using an Object-Oriented (OO) metrics

suite that evaluates framework structural characteristics. These characteristics are: design size (in

number of classes), number of class hierarchies, number of multiple inheritances, number of single

inheritances, average depth of class inheritance hierarchies, average width of class inheritance

hierarchies, number of parents, number of methods, and class coupling. After computing these

characteristics’ metric values, the extent-of-change is identified by normalizing these values with

respect to earlier versions’ values, and calculating the difference between aggregate-change values,

19

between subsequent releases and the version i release. The aggregate-change is the sum of all

characteristics’ values in the same version. The extent-of-change values indicate that the higher

the value the more unstable the system is.

Haohai et al. [14] used Bansiya’s [13] approach. In addition they proposed another six metrics and

followed the same evaluation procedure: These metrics are: the average number of additional

operations, average number of stereotypes, number of abstract meta-classes, average number of

well-formed rules, number of concrete meta-classes, and the number of meta-classes which have

no parent and no child in the meta-model.

Mattsson and J. Bosch [15] also used the same methodology presented by Bansiya [13], but they

applied it on a different suite of metrics.

Moataz et al. [16] introduced a way for measuring architectural stability by defining a release’s

similarity to the base version. They proposed two similarity metrics, Shallow Semantic Similarity

Metric (SSSM) and Relationship-Based Similarity Metric (RBSM); hence, greater similarity leads

towards better stability. SSSM computes the average similarity between two pairs of classes by

comparing successive releases’ architecture with the base version architecture. The RBSM

similarity measurements are based on comparing the existing inheritance relationships among two

models classes.

Hassan [17] proposed a metrics suite to measure architecture stability, which are the inter-package

and intra-package set of metrics. The interpackage set of metrics considers the connections

between elements of two different packages. Intra-package metrics consider the connections

between elements in the same package. Metric calculation depends on an element’s change

indication. These change possibilities are: modification, no change, addition, and deletion.

20

Aversano et al. [18] defined two metrics, CDI, and CCI, to assess the architecture stability. Core

Design Instability (CDI) is used to indicate the changes that affect the core architecture. It is

computed as follows:

CDI = (b+c)/m, where,

m: number of packages that belong to the extended core of release N,

b: number of new packages that are added to the extended core,

c: sum of packages that belong to extended core N, and which do not belong to extended core N+1.

Core Calls Instability (CCI) was proposed to evaluate the package’s interactions change. It is

calculated as follows:

CCI=(x+y)/z, where,

 z: the total number of calls between packages that belong to the extended core of release N,

x: the total number of new calls between packages that belong to the extended core of release N+1,

y: the total number of calls between packages of the extended core of release N and which are not

present in the extended core of the release N+1 after the executed changes.

3.1.2 Class Level Metrics

Grosser et al. [19] proposed a metric to assess class stability based on case-based reasoning (CBR).

The authors used CBR to identify quality challenges, and evaluate them using several metrics

related to four categories, which are complexity, inheritance, cohesion, and coupling. The

21

evaluation results are then compared to other nearest known software items in order to predict the

stability.

Grosser et al. [20] included another factor called stress, which results from a primary change in

the requirements. The stress factor is computed at the class level between two software versions.

Rapu et al. [21] presented an approach that depends on historical information to detect class

problems, such as God Classes, and Data Classes. Rapu et al. indicated that the class is stable if

there is no difference in measurements between version i − 1 and version i. The authors did not

take into account the class changing size; they considered the class to be changed if a method was

added or removed.

Li et al. [22] introduced three metrics, which are: Class Implementation Instability (CII), System

Design Instability (SDI), and System Implementation Instability (SII) to assess Object-Oriented

(OO) stability at the implementation level. CII was introduced to measure changes from design N

to design N + 1 during object-oriented implementation at the class level. The preceding is

computed by calculating the percentage of LOC changes between the two versions.

Alshayeb et al. [23] proposed a Class Stability Metric (CSM) to assess stability at the class level.

The authors selected eight different class properties to evaluate stability. These properties are: the

class access-level, the class interface name, the method access-level, the inherited class name, the

method signature, the class variable, the class variable access-level, and the method body.

CSM follows property change (addition, deletion, modification, and unchanged) between the two

versions i +1 and i, if there is no change then the class is stable. Later on, Alshayeb [24] introduced

a minor modification to the CSM by considering the changes between the n+1 and n versions,

instead of the base version.

22

Elish and Rine [25] investigated process-related and product-related indicators that affect

structural stability measures. Elish and Rine selected several metrics suites to gather data about

version i of the software and used these data to predict structural stability in version i+1. Elish and

Rine measured stability from two perspectives. The first perspective considered how much of the

base design structure remained unchanged, while the second perspective considered how long the

structure remained invariant. Sixteen metrics were proposed to define the number of classes that

were modified, added, deleted, and unchanged. In addition, they are used to specify the relationship

types of the classes, which can be generalization, aggregation, dependency or association.

Mattsson and Bosch [26] introduced a relative-extent-of-change metric and used Bansiya’s [13]

stability assessment method in order to evaluate software systems. They used different sets of

metrics suites to evaluate structural, functional, and relational characteristics.

Elish and Rine [27] investigated the relationship between the C&K metrics [28] and the logical

stability. Their investigation found a good correlation between CBO and RFC metrics with logical

stability. They also found a negative coloration of WMC, DIT, CBO, RFC, and LCOM metrics

with logical stability, and no correlation in the NOC case. Elish and Rine used an algorithm to

compute the program’s logical stability. The algorithm applies all potential class level changes to

the other design classes and calculates the ratio of the number of times the class is impacted by the

total number of possible changes. Class level changes are: Data type, Delete, Scope (protected to

private), Scope (public to private), Scope (public to protected), and Return data type. For class

methods: Delete, Scope (protected to private), Scope (public to protected), and Scope (public to

private).

23

3.1.3 System Level Metrics

System Implementation Instability (SII), mentioned earlier, was proposed by Li et al. [22] to

measure changes from design N to design N + 1 during object-oriented system implementation.

SII is computed by calculating the percentage of LOC changes between two versions in the entire

system.

Raemaekers et al. [29] proposed four metrics to evaluate implementation and public interface in

order to indicate library stability. These four metrics are: Weighted Number of Removed Methods

(WRM), which is used as a measure for interface stability; the Amount of Change in Existing

Methods (CEM), which indicates the amount of change in existing methods; Ratio of Change in

New to Old Methods (RCNO), which indicates the amount achieved of work, and Percentage of

New Methods (PNM), which computes the percentage of the new added methods.

Kelly [30] investigated software systems in order to indicate the systems that have been maintained

actively. Kelly proposed a method for inspecting such systems by using stability as an indicator of

the design characteristics that affect the maintainability. The author used different metrics to assess

design characteristics, and to find the difference between two software versions. These metrics

are: total number of common blocks (CB), total lines of code (LOC), total number of common

block variables (VAR), and total number of modules (MOD).

Yau and Collofello [31] measured program and module logical stability. The logical stability is a

measure of the change impact of a module to the other modules in the program. The authors

calculated the logical ripple effect of a primitive modification to a program.

Their formula depends on computing the modification probability that equals one divided by the

number of variable definitions in the module, and the sum of McCabe's Cyclomatic number.

24

Li et al. [22] proposed the System Design Instability (SDI), specified for assessing Object-

Oriented (OO) at the implementation level. SDI is used to capture changes of software design by

measuring the percentage of change from design N to design N+1. SDI considers: change

percentage of newly added classes, classes with changed names, and deleted classes.

SDI is computed as follows:

SDI = [(a + b + c)/m] × 100, where:

a: change in classes’ name,

b: added classes,

c: deleted classes,

m: number of classes in design N.

The SDI value is greater than or equal to zero, where zero means that the design is stable.

Later, Alshayeb and Li [32] redefined SDI considering a fourth aspect of changes, which is the

percentage of change in inheritance hierarchy. The new formula is computed as follows:

SDI = [(a + b + c + d)/m] × 100, where,

d represents change in inheritance hierarchy.

Olague et al. [33] introduced the SDIe metric by recasting the System Design Instability (SDI)

proposed by Li et al. SDIe is based on maximum system entropy, and considers some different

aspects of input which are: the added classes, the deleted classes, changed classes, and the

unchanged classes. The Entropy-based SDI metric (SDIe) is computed as follows:

25

j: the total number of categories of SDIe, which has four categories: added, deleted, changed,

unchanged.

Ci: the classes’ count in category i, and N represents the total number of system classes.

Martin and Martin [34] proposed a metric to evaluate the components’ stability based on the total

number of dependencies that enter or leave the component. It is computed as follows:

Instability = (Ce) / (Ca + Ce), where,

Ca: the total number of classes in other components that depend upon classes within the

component,

Ce: the total number of classes in other components that the classes in the component depend upon.

The metric values range from 0 to 1; 0 indicates that the component is stable. Thus the system will

be stable if the maximum number of components is stable.

Table 1 provides an overview of the surveyed metrics. The first column shows the reference. The

second column lists the metrics assessment level (class, system, or architecture). The third column

presents the artifact used to compute the metrics. The fourth column shows the number of

properties used in calculation. The fifth column is the validation techniques. The last column

shows a brief description of the metric.

26

3.2 Similarity

Mayrand et al. [35] used several metrics to compare functions in order to identify duplication and

cloning level, based on computing four points: name, layout, expressions, and control flow.

Patenaude et al. [36] extended the Bell Canada Datrix tool [35] to find Java clones. The authors

used several complexity metrics to evaluate methods; methods that have similar metrics values are

clones.

Kontogiannis et al. [37] introduced two techniques for clone detection. In the first technique, they

selected five well-known metric suites that capture code information and applied them on the two

code fragments to compare their values.

In the second technique, they used dynamic programming (DP) to compare two code segments to

compute what is called distance, based on insertion, deletion, and operation comparison.

Balazinska et al. [38] applied a similar method in their similar methods classifier (SMC) tool. The

authors represented the code in abstract syntax tree (AST) and performed code segmentation, and

then they applied dynamic programming (DP).

Qiu et al. [39] introduced a metric to assess software similarity by quantifying the nodes and edges

of the class diagrams. The authors calculated software similarity by computing structural similarity

and property similarity. First, they constructed class diagrams from the source code. The class is

represented by node, and the relationship is represented by edge, where the authors assign weight

to edges based on coupling metrics. Finally, the similarity between the nodes and edges is

computed using the iterative method.

27

Krinke [40] extracted a program dependency graph from the source code, and detected the

similarities between the subgraphs using the iterative approach. The nodes represent the

expressions and the statements, while data dependencies are represented by edges.

Liu et al. [41] proposed a plagiarism detector based on a program dependency graph (PDG).

Johnson [42] used fingerprinting to find matches in source code text. Fingerprinting methodology

converts a substring of the code to hash, where each two code segment’s hash values are matched.

Li et al. [43] introduced the CP-Miner tool, which is a token-based tool used to find copy and paste

in source code. The token-based tool finds the similar sequences that appear in the same order in

the code using repeated subsequence data mining.

This literature presents many metrics that have been used to compute software similarity and code

clones. The surveyed literatures declared five main techniques to measure software similarity.

These techniques were distinguished using the analysis methodology. The five techniques are:

Text-based approach, which depends on natural language processing to find a repeated fingerprint

to use in code segments matching.

Token-based approach, which converts the source code into a sequence of tokens, and then scans

them for repeated subsequences.

Tree-based approach, which transforms the source code program into an abstract syntax tree (AST)

and uses tree-matching to find similar sub-trees.

Graph-based approach, which extracts a program dependency graph from the source code and

detects sub graphs’ similarities using the iterative approach.

28

Metric-based approach, which applies a number of metrics on the code, where they are used to

compare different code segments.

Table 2 provides a high-level overview of the surveyed techniques, tools, and metrics. The first

column shows the citation(s), while the second column shows the used approach and the last

column shows a brief description of the citation.

3.3 Summary

Table 1 summarizes the investigated stability metrics and reveals that no metrics exist to measure

the software model’s stability. Metrics are used to evaluate code stability. Assessment covers three

levels, which are the architecture, the class, and the system.

Most of the surveyed metrics were validated either empirically or theoretically; they were validated

empirically using case studies or experiments. However, few of them were validated theoretically.

Table 2 shows the different techniques used to evaluate the similarity between software systems,

which are: text-based approach, token-based approach, tree-based approach, graph-based

approach, and metric-based approach.

This literature presents many metrics that are used to assess software stability. We noticed that the

main metrics focus on assessing code stability.

The surveyed approaches from literature show that no research investigated measuring stability

for individual design models. Therefore, the objective of this research is to propose a set of metrics

to measure the stability of UML class, sequence, use case, and the integrated model.

29

Table 1 Stability Survey Summary

Reference Metric

Level

Artifact Language

Independ

ent

Set of

properties

or metrics

Validation Metric Description

Grosser et al.

[19]

Class Code Yes 22 old

metrics

Experimental Evaluating stability using several metrics

related to the four categories: coupling,

cohesion, inheritance and complexity

Grosser et al.

[20]

Class Code Yes 14 old

metrics

Experimental Evaluating stability using several metrics

related to the four categories: coupling,

cohesion, inheritance and complexity

Rapu et al.

[21]

Class Code Yes 9 old

metrics

Case Study Checks if class is stable or not

Li et al. [22] Class Code Yes 1 property Theoretical

&

Experimental

Calculates the percentage of LOC changes

between two versions

Alshayeb et

al. [23],

Alshayeb

[24]

Class Code Yes 8 properties Theoretical

&

Experimental

CSM metric follows the change in properties

(addition, deletion, modification, and

unchanged) between two versions

Elish and

Rine [25]

Class Code Yes 17 new

metrics and

16 old

metrics

Case Study Investigates product-related and process-

related indicators that affect structural stability

measures

Li et al. [22] System Code Yes 1 property Theoretical

&

Experimental

Calculates the percentage of LOC changes

between two versions

30

Raemaekers

et al. [29]

System Code Yes 4 properties Experimental Indicates library stability, by calculating

stability of implementation and public

interface of the library

Kelly [30] System Code Yes 4 properties Case Study Computes stability by finding the difference

between two software versions

Yau and

Collofello

[31]

System Code Yes 2 properties Theoretical

& Case

Study

Computes the modification probability

Sethi et al.

[9]

Architecture Code Yes 6 properties Case Study Calculates stability by taking into

consideration the environmental conditions

Molesini et

al. [10]

Architecture Code Yes 5 properties Experimental Quantifies change propagation in AO

architecture

Tonu et al.

[11]

Architecture Code Yes 4 old

metrics

Experimental Combines retrospective and predictive

evaluation

Jazayeri [12] Architecture Code Yes 3 properties Case Study Evaluates structural stability using

retrospective analysis

Mattsson and

Bosch [26]

Class UML Yes 20 old

metrics

Case Study Introduces relative-extent-of-change

Elish and

Rine [27]

Class UML Yes 10

properties

Experimental Computes the logical stability

Li et al. [22],

Alshayeb and

Li [32],

Olague et al.

[33]

System UML Yes 1 property Theoretical

&

Experimental

Capture changes of software design by

measuring the percentage of changes from

design N to design N+1

31

Martin and

Martin [34]

System UML Yes 1 property - Measures the component stability based on

dependencies

Bansiya [13] Architecture UML Yes 9 old

metrics

Case Study Introduces a methodology to assess framework

architecture stability based on extent-of-

change

Ma et al. [14] Architecture UML Yes 6 old

metrics

Experimental Uses Bansiya [13] methodology

Mattsson and

Bosch [15]

Architecture UML Yes 20 old

metrics

Experimental Uses Bansiya [13] methodology

Moataz et al.

[16]

Architecture UML Yes 2 properties Case Study Measures stability by defining the similarity of

the releases to the base version.

Hassan [17] Architecture UML Yes 20 property Theoretical

&

Experimental

Measures stability using the inter-package and

intra-package metrics

Aversano et

al. [18]

Architecture UML Yes 6 properties - Proposes CDI and CCI metrics to assess

architecture stability

The

proposed

Metric

Class

Diagram

UML Yes 9

properties

 Theoretical

& Case

Study

Propose Structural Stability metric to

assess UML class diagram

The

proposed

Metric

Sequence

Diagram

UML Yes 7

properties

Theoretical

& Case

Study

Propose Functional Stability metric to

assess UML sequence diagram

The

proposed

Metric

Use Case

Diagram

UML Yes 9

properties

Theoretical

& Case

Study

Propose Behavioral Stability metric to

assess UML use case diagram

32

Table 2 Similarity Techniques Summary

Reference Techniques Metric

Extraction Level

Metric Description

Qiu et al. [39] Tree-based Code Constructs class diagram, and use iterative method to

compute similarities

Krinke [40] Graph-based Code Uses program dependency graph to detect similarities

Mayrand et al. [35] Metrics-based Code Identifies software functions clone level

Patenaude et al. [36] Metrics-based Code Identifies software method clones

Kontogiannis et al. [37] Metrics-based Code Detects clones using structure based metrics and dynamic

programming (DP) techniques

Balazinska et al. [38] Tree-based Code Uses dynamic programming (DP) on abstract syntax tree

(AST)

Liu et al. [41] Graph-based Code Uses program dependency graph to detect plagiarism

Johnson [42] Text-based Code Fingerprints to find matches in source code text

Lu et al. [43] Token-based Code Finds copy and paste in source code

33

4 CHAPTER 4

RESEARCH METHODOLOGY

This chapter presents the methodology used to analyze and assess the UML diagrams’ stability.

According to the used definition of the stability, we are looking to compute the unchanged

percentage of the UML diagrams. However, considering whether it is this part or that part of the

UML which is changed is not that easy. On UML diagram elements, the decision process we use

to select which element is changed is dependent on the relationships with other elements; therefore

we need to analyze each element and detect the parts that are affected by the external ones. The

measurement process of UML diagrams is done through three main steps: the analysis, the

evaluation, and the proposal of a metric. Figure 5 shows the assessment methodology.

34

Figure 5 Research Methodology

35

4.1 Analysis

The analysis is the first part of the assessment methodology. The purpose of this part is to identify

the three UML diagrams, the UML class diagram, the UML use case diagram, and the UML

sequence diagram. Then we select each UML diagram elements for the next steps, and, in addition,

we select an identifier for each one.

First, we collect all the available information about each UML diagram by identifying all the

elements of the UML class diagram, the UML use case diagram, and the UML sequence diagram,

as well as the shapes of each element and the purpose behind that element.

Then we select the ones that serve the diagram’s purpose and skip the ones that do not offer any

meaningful information. We will track all changes of the selected elements. The selection is based

on:

 Serving the meaning of the UML diagram.

 No optional elements.

For example, in the UML class diagram, there is an element called comment. This element doesn’t

provide any structural meaning, so we are going to skip it. We identify the element’s meaning in

order to decide whether we have to include them in our assessment or not.

The last step in the analysis is selecting the UML diagram identifier. This identifier enables us to

track the changes from one version to another. It is the identifier of the elements which we are

going to compare.

36

4.2 Evaluation

Then we apply our assessment approach called the Client Master Approach. This approach is

used to precisely track changes in relationships.

One of the main issues in following changes is avoiding computing the changes more than once,

especially when the element has many relationships. This approach is used to indicate the Client

side and the Master side of the relationship. The client element is the one that depends upon others,

and will be affected by them. The master element is a standalone element and is not affected by

others. The purpose behind this approach is to avoid duplication or counting change twice. The

change counts for the client element.

For example, in the UML class diagram, if we take two classifiers A and B with an inheritance

relationship, B inherits A. If this relationship is changed or deleted, for example, what is the real

effect that happened, and which classifier is changed and which one is unchanged? Based on our

approach, B represents the client side of the relationship, and A is the master one. So if the deletion

happened than B is the affected element, and change is counted for it. A remains unchanged.

Based on this approach, we get all possible change combinations and detect which UML diagram

element is changed, and which one remains unchanged.

4.3 Propose the Metrics

Next, we propose a metric for the UML class diagram, the UML use case diagram, and the UML

sequence diagram. This is based on the assessment results, and the selected identifier for each one

of them. To measure a UML diagram stability we handled each element’s property separately and

looked for the change that happened to the base version.

37

5 CHAPTER 5

STRUCTURAL STABILITY

This chapter explains the evaluation and assessment of the UML class diagram, and presents its

structural stability metric.

5.1 Assessment

A class diagram is made up of a collection of classifiers and the relationships among them. We

will apply the Client Master Approach to track changes. The classifier name will be used as the

identifier. A class diagram is used to express the system structure; therefore we need to track all

changes that may have any effect on the structure.

Figure 6 Class Diagram Sample

38

5.1.1 Classifiers

Figure 7 shows an example of a classifier with the detailed design. As we mentioned earlier, there

are three blocks: classifier name, attributes, and operations. A classifier is identified by its name.

The name is the inference of the classifier existence. If version i has class name A, then in the next

version there will only be two cases; either the class still exists or it is removed. We do not capture

the change in the class name. Renaming is not counted, because we cannot make sure that the class

is renamed. The process to ensure that is to look into the methods and the attributes to determine

if the classifier remains unchanged, or at least has the most attributes and methods. This process

is not offered; next we will explain why that is.

Usually designers use class as a word, and not classifier. But here we use classifiers as a general

word, because we deal with two types of them: the usual class and the interface. We are tracking

a classifier type’s change, so in order to avoid misunderstanding we chose to use classifier as a

word.

Figure 7 Detailed version of the class in class diagram

Methods, variables, and parameters can give us more details about the system. However, the

detailed version of the classifiers in the class diagram is not always available. The second and third

parts of the classifier are optional sections, as shown in Figure 8. System designers can hide these

39

sections. If these sections are not shown, it does not necessarily imply that they are empty, but that

the diagram is perhaps easier to understand with that information hidden. Thus, we cannot ensure

that these parts are hidden or do not exist at all. Therefore, we are going to skip them to be

consistent with all diagram elements. We will not track the changes that may happen to these

properties.

Figure 8 Four different ways of showing a class using UML notation

5.1.2 Comments

Comment shapes are used to annotate class diagrams. Comment shapes exist only on the diagram

surface; they do not represent any structure and do not add any meaning to the class diagram. From

its name it is just a comment to describe a class diagram and cannot exist in the code. There is no

need to evaluate them, as they do not have any effect on the class diagram.

5.1.3 Packages

Grouping classifiers in packages gives the meaning of the organization. Packages exist to manage

the large systems by dividing them into a group of classifiers. Usually package classifiers represent

a specific part of the system. But this does not mean there is a change in class diagram structure

before and after using packages. For example, in Figure 6, moving the Seminar classifier from the

40

Seminars package to the User package will not change the class diagram structure. Therefore there

is no need to evaluate the classifier according to the package name. And when we are going to

compute class diagram stability, we will deal with package content normally, as if there are no

packages.

5.1.4 Dependency Relationship

Dependency relationship declares that one classifier depends upon another classifier. Figure 9

shows a sample diagram of a dependency relationship. The classifier MenuItem and the classifier

OrderItem have a dependency relationship, if an object of one classifier might use an object of

another classifier in the method definition. In this case, OrderItem uses MenuItem objects. The

sample shows that the client classifier in this relationship is OrderItem, because it depends on

MenuItem. And the master classifier here is MenuItem. MenuItem is a standalone classifier and

does not depend on any other classifiers. Hence any change that may happen to the MenuItem will

have a direct effect on OrderItem.

Note: in a dependency relationship, the client classifier is the one that depends on the other

classifier.

Figure 9 Class Diagram Dependency Relationship

41

Figure 10 explains how we can convert this type of relationship into a code. The code shows that

MenuItem is Master because it is a standalone classifier. OrderItem uses MenuItem as a method

parameter, as a method return type, or as a local variable. So it is a client in this case.

Class MenuItem{

}

Class OrderItem{

Void method1(MenuItem parameter1){

}

MenuItem method2(){

}

void method3(){

MenuItem variable1;

}

}

Figure 10 Sample Code of Dependency Relationship

Table 3 shows all possible changes that may happen to the dependency relationship and their

influence. The most affected one is classifier B, in almost all cases. According to the approach, A

is the master and B is the client. A will be affected if it is changed to depend on B, and this happen

in cases of a dependency relationship, an association relationship, if it aggregates or composes B’s

objects, or inherits or realizes B.

42

For B, and because it is a client side, it is affected if any change happens to A, such as if A is

deleted or renamed, the relationship is deleted, or the relationship is changed to any type or any

direction.

Table 3 Dependency Relationship Possible Changes

Change Type The Affected

Classifiers

Justification

Rename classifier A Classifier B A will be counted as a new classifier

because of renaming; therefore B will

depend on the new classifier.

Delete classifier A
Classifier B B depends on A, so because of deletion, the

relationship will be deleted, and B will not

depend on A.

Rename classifier B
- A does not depend on any classifier, so the

renaming of B will have no effect on A.

Delete classifier B
- A does not depend on any classifier, so the

deletion of B will have no effect on A.

Delete Relationship
Classifier B A does not depend on B; however B

depends on A. Therefore, because of this

deletion, B will not depend on A.

Classifier A,

Classifier B

A does not depend on any classifier;

however B depends on A. Because of the

change, this is reversed.

Classifier A,

Classifier B

A does not depend on any classifier; it will

be changed to use B’s objects. In turn, B

will use A’s objects.

Classifier A,

Classifier B

A does not depend on any classifier; it will

be changed to use B’s objects. B will not

depend on A.

Classifier B A does not depend on B; however, B

depends on A, and it will be changed to use

A’s objects.

43

Classifier A,

Classifier B

A does not depend on any classifier; it will

be changed to use B’s objects. B will not

depend on A.

Classifier B A does not depend on B. However, B

depends on A, and it will be changed to use

A’s objects.

Classifier B A does not depend on B. However, B

depends on A, and it will be changed to

inherit A.

Classifier A,

Classifier B

A does not depend on any classifier; it will

be changed to inherit B. B will be changed

to realize A.

Classifier A,

Classifier B

A will be changed to an interface. B will be

changed to realize A

Classifier A,

Classifier B

A does not depend on any classifier; it will

be changed to realize B. B will be changed

to an interface.

5.1.5 Association Relationship

An association relationship declares that objects of each classifier depend upon the objects of the

other. Figure 11 shows a sample diagram of an association relationship. The classifier Order and

the classifier Customer have an association relationship, if an object of one classifier might use an

object of another classifier as a variable. In an association relationship case, the two classifiers are

clients and masters at the same time. Order is a Master because Customer uses its objects. It is a

Client because it depends on Customer classifier objects. The same reasoning applies to the

Customer. Any change that may happen to the Order will have a direct effect on the Customer,

and vice versa.

44

Note: in an association relationship, the two classifiers are clients and masters at the same time.

Figure 11 Class Diagram Association Relationship

Figure 12 explains how we can convert this type of relationship into a code. Classifiers have a

reference to an object of the other classifiers as attributes.

public class Order {

 private Customer[] var1;

}

public class Customer {

 private Order[] var1;

}

Figure 12 Sample Code of Association Relationship

Table 4 shows all change possibilities of this relationship and their influence. We can notice that

the change of one classifier will affect the other, but the change that may happen to the relationship

will affect the two classifiers.

Based on the approach, the two classifiers are clients. A will be affected if the relationship is

changed to a dependency, an inheritance or realization, and if B aggregates or composes A’s

objects. B will be affected if the relationship is changed to dependency, inheritance, or realization,

and if A aggregates or composes its objects.

45

Table 4 Association Relationship Possible Changes

Change Type The Affected

Classifiers

Justification

Rename classifier A Classifier B A will be counted as a new classifier

because of renaming. Therefore B will use a

new classifier’s objects.

Delete classifier A Classifier B B is using A’s objects, so because of

deletion, the relationship will be deleted,

and B will not use A’s objects.

Rename classifier B Classifier A B will be counted as a new classifier

because of renaming; therefore A will use a

new classifier’s objects.

Delete classifier B Classifier A A is using B’s objects, so because of

deletion, the relationship will be deleted,

and A will not use B’s object.

Delete Relationship Classifier A,

Classifier B

A does not depend on B; however B

depends on A. Therefore, because of this

deletion, B will not depend on A.

Classifier A,

Classifier B

A is using B’s objects, but it will not use

them after the change. B will be changed to

depend on A.

Classifier A,

Classifier B

B is using A’s objects, but it will not use

them after the change. A will be changed to

depend on B.

Classifier B A will remain using B’s objects; however, B

is changed, and it will not use A’s objects.

Classifier A B will remain using A’s objects; however,

A is changed, and it will not use B’s

objects.

Classifier B A will remain using B’s objects; however, B

is changed, and it will not use A’s objects.

Classifier A B will remain using A’s objects; however,

A is changed, and it will not use B’s

objects.

Classifier A,

Classifier B

A is using B’s objects, but it will not use

them after the change. However, B is using

A’s objects, and it will be changed to inherit

A.

46

Classifier A,

Classifier B

B is using A’s objects, but it will not use

them after the change. However, A is using

B’s objects, and it will be changed to inherit

B.

Classifier A,

Classifier B

A is using B’s objects, but it will not use

them after the change. However, B is using

A’s objects, and it will be changed to realize

A.

Classifier A,

Classifier B

B is using A’s objects, but it will be

changed to an interface. However, A is

using B’s objects, and it will be changed to

realize B.

Classifier A,

Classifier B

A will be changed to use C’s objects, while

B will not use A’s objects.

5.1.6 Aggregation Relationship

An aggregation relationship declares that one classifier (a classifier with the diamond edge) is

aggregated by the other objects. Figure 13 shows a sample diagram of an aggregation relationship.

Classifier Car and classifier Wheel have an aggregation relationship if an object of Car aggregates

an object of Wheel. Based on the Client Master Approach, classifier Car (whole) is the client, and

classifier Wheel (part) is the master. Car is the client because it uses Wheel objects. Wheel is a

master class, because it does not depend on Car. The existence of Wheel does not depend on the

classifier Car. So if any change were happen to the Wheel, this would affect the Car.

Note: in an aggregation relationship the client classifier is the one that aggregates the other object;

the other classifier is the master.

47

Figure 13 Class Diagram Aggregation Relationship

Figure 14 explains how we can convert this type of relationship into a code. Classifier Car objects

aggregate classifier Wheel objects; in other words, Car owns Wheel objects. This is a one-way

association so that the implementation code is like the implementation code of the association

relationship.

public class Car {

 private wheel[] var1;

}

public class Wheel {

}

Figure 14 Sample Code of Aggregation Relationship

Table 5 shows all change possibilities of this relationship and their influence. According to the

approach, A is the client, and B is the master. A will be affected in all change possibilities except

that the relationship is changed to composition.

For B, and because it is in a master role, it is affected in the case that it uses A’s objects. This

happens if the relationship is changed to a dependency, an inheritance, or realizations, and it

aggregates or composes A’s objects.

48

Table 5 Aggregation Relationship Possible Changes

Change Type The Affected

Classifiers

Justification

Rename classifier A - B is not depending on A, so renaming A

will not affect B,

Delete classifier A - B is not depending on A; therefore,

deleting A will not affect B.

Rename classifier B Classifier A B will be counted as a new classifier

because of renaming. Therefore, A will use

a new classifier’s objects.

Delete classifier B Classifier A A is using B’s objects, so because of

deletion, the relationship will be deleted,

and A will not use B’s objects.

Delete Relationship Classifier A B does not depend on A. However, A

depends on B; therefore, because of this

deletion, A will not depend on B.

Classifier A,

Classifier B

A is using B’s objects, but it will not use

them after the change. B will be changed to

depend on A.

Classifier A A is using B’s objects, but it will not use

them after the change. No change happens

to B; it still be a standalone.

Classifier B A will remain using B’s objects; however

B is changed, and it will use A’s objects.

Classifier A,

Classifier B

A depends on B; however B is not

depending on A. Therefore, because of the

change, this is reversed.

- A will remain using B’s objects; B will

remain without any change.

Classifier A,

Classifier B

A depends on B; however B is not

depending on A. Therefore, because of the

change, this is reversed.

Classifier A,

Classifier B

A is using B’s objects, but it will not use

them after the change. However, B is not

using A’s objects, and it will be changed to

inherit A.

49

Classifier A A is using B’s objects, but it will be

changed to inherit B after the change.

However, B is not using A’s objects, so it

will remain without any change.

Classifier A,

Classifier B

A is using B’s objects, but it will changed

to an interface. However, B is not using

A’s objects, and it will be changed to

realize A.

Classifier A,

Classifier B

B is using A’s objects, but it will changed

to an interface. However, A is not using

B’s objects, and it will be changed to

realize B.

5.1.7 Composition Relationship

Composition declares that one classifier (a classifier with the diamond edge) composes the other

objects. A composition is a stronger version of aggregation. Figure 15 shows a sample diagram of

a composition relationship. Classifier Person and classifier Hand have a composition relationship,

if Person aggregates the Hand object, and Hand objects cannot be aggregated by other classifiers

than Person objects. The two classifiers are clients in this case. Person (whole classifier) is a client

because it uses Hand objects. Also, Hand (part classifier) is a client classifier because its existence

depends on Person. The Hand is actually part of Person itself and will not usually be shared with

other parts of the class diagram. So if Person is deleted, then its corresponding parts are also

deleted. Any change happening to one of them would affect the other one.

Note: in a composition relationship, the two classifiers are clients and masters at the same time.

Figure 15 Class Diagram Composition Relationship

50

Figure 16 explains how we can convert this type of relationships into a code, the same as an

aggregation relationship. The main difference in this case is that Hand’s existence depends on

Person’s existence. It is also a one-way association, so that the implementation code is like the

implementation code of the association relationship.

public class Person {

 private Hand[] var1;

}

public class Hand {

}

Figure 16 Composition Relationship Implementation Code

Table 6 tracks all possible changes of this relationship. Based on the client master approach. A is

the client, and B is the master. A will be affected in all change possibilities except that the

relationship is changed to aggregation. For B, and because it is in a master role, it is affected in the

case that it uses A’s objects. This happens if the relationship is changed to a dependency,

inheritance, or realizations, and aggregates or composes A’s objects.

Table 6 Composition Relationship Possible Changes

Change Type The Affected

Classifiers

Justification

Rename classifier A - B is not depending on A, so renaming A will

not affect B

Delete classifier A Classifier B

Deleted

B is not depending on A. However, B’s

existence depends on A; therefore deleting A

will lead to B’s deletion.

Rename classifier B Classifier A B will be counted as a new classifier because

of renaming; therefore A will use a new

classifier’s objects.

51

Delete classifier B Classifier A A is using B’s objects, so because of

deletion, the relationship will be deleted, and

A will not use B’s objects.

Delete Relationship Classifier A,

Classifier B

Deleted

A is using B’s objects, so because of

deletion, A will not use B’s objects.

However, B’s existence depends on A,

therefore deleting A will lead to B’s deletion.

Classifier A,

Classifier B

A is using B’s objects, but it will not use

them after the change. B will be changed to

depend on A.

Classifier A A is using B’s objects, but it will not use

them after the change. No change happens to

B; it is still a standalone.

Classifier B A will remain using B’s objects; however B

is changed, and it will use A’s objects.

- A will remain using B’s objects; B will

remain without any change.

Classifier A,

Classifier B

A depends on B; however, B is not

depending on A. Therefore, because of the

change, this is reversed.

Classifier A,

Classifier B

A depends on B; however B is not depending

on A. Therefore, because of the change, this

is reversed.

Classifier A,

Classifier B

A is using B’s objects, but it will not use

them after the change. However, B is not

using A’s objects, and it will be changed to

inherit A.

Classifier A A is using B’s objects, but it will changed to

inherit B after the change. However, B is not

using A’s objects, so it will remain without

any change,

Classifier A,

Classifier B

A is using B’s objects, but it will changed to

an interface. However, B is not using A’s

objects, and it will be changed to realize A.

Classifier A,

Classifier B

B is using A’s objects, but it will changed to

an interface. However, A is not using B’s

objects, and it will be changed to realize B.

52

5.1.8 Inheritance Relationship

An inheritance relationship means that one classifier is a type of another one. Figure 17 shows a

sample diagram of an inheritance relationship. The Person classifier and the Student classifier have

an inheritance relationship, if one classifier is a type of the other. Based on the Client Master

Approach, Person is the master classifier, and Student is the client. The Student is a client classifier,

because it is depend on Person. Therefore, if any change happens to the Person classifier, this

might affect the Student.

Note: in an inheritance relationship, the super classifier is the master, and the sub-classifier is the

client.

Figure 17 Class Diagram Inheritance Relationship

Figure 18 explains how we can transform this type of relationships into a code. Student extends

class Person. In other words, Student is a type of Person and inherits all its attributes and methods

that are declared.

public class Person {

}

public class Student extends Person{

}

Figure 18 Inheritance Relationship Implementation Code

53

Table 7 shows all change possibilities of this relationship and their influence. According to the

approach, A is the master and B is the client. A will be affected if it is changed to depend on B,

and this happens in cases of a dependency relationship or an association relationship, aggregates

or composes B’s objects, or inherits or realizes B. For B, and because it is in a client role, it is

affected if any kind of changes happen.

Table 7 Inheritance Relationship Possible Changes

Change Type The Affected

Classifiers

Justification

Rename classifier A Classifier B A will be counted as a new classifier

because of renaming; therefore B will

inherit a new classifier.

Delete classifier A Classifier B B is inheriting A, so because of deletion, the

relationship will be deleted, and B will not

inherit A.

Rename classifier B - A does not depend on any classifier, so the

renaming of B have no effect on A

Delete classifier B - A does not depend on any classifier, so the

deletion of B will have no effect on A.

Delete Relationship Classifier B A does not depend on B; however B is

inheriting A. Therefore, because of this

deletion, B will not inherit A.

Classifier B A does not depend on any classifier;

however B is inheriting A. Because of the

change, B will depend on A.

Classifier A,

Classifier B

A does not depend on any classifier, but it

will be changed to depend on B. After the

change B will not inherit A.

Classifier A,

Classifier B

A does not depend on any classifier, but it

will be changed to use B’s objects. B will be

changed to use A’s objects.

Classifier A,

Classifier B

A does not depend on any classifier, but it

will be changed to use B’s objects.

However, B will not inherit A.

54

Classifier B A does not depend on any classifier. B will

be changed to use A’s objects.

Classifier A,

Classifier B

A does not depend on any classifier, but it

will be changed to use B’s objects.

However, B will not inherit A.

Classifier B A does not depend on any classifier. B will

be changed to use A’s objects.

Classifier A,

Classifier B

A will be changed to inherit B. B will not

inherit any classifier.

Classifier A,

Classifier B

A will be changed to an interface. B will be

changed to realize A.

Classifier A,

Classifier B

A does not inherit any classifier, but it will

be changed to realize B. B will be changed

to an interface.

5.1.9 Realization Relationship

A realization relationship means that one classifier is realized by another one. Figure 19 shows a

sample diagram of a realization relationship. Classifier Service and classifier Customer have a

realization relationship, if one classifier has implemented the other classifier’s methods. Using the

Client Master Approach, the master classifier is the one that others realize (a classifier with an

arrowhead), which is called the interface classifier. The other one is the client. Any change

happening to the master classifier would affect the other one. In our sample, Service is the master,

and Customer is the client. Customer is a client because it realizes the Service classifier. So if any

change happens to the Service, this might affect the Customer.

Note: in a realization relationship, the client classifier is the one that realizes the other object. The

other one is the master.

55

Figure 19 Class Diagram Realization Relationship

Figure 20 explains how we can convert this type of relationships into a code. Service implements

the Customer. In other words Service implements all the methods that are declared in the Customer

classifier.

public class Service {

}

public class Customer implements Service{

}

Figure 20 Realization Implementation Code

Table 8 shows all change possibilities of this relationship and their influence. Based on the

approach, A is the master and B is the client. A will be affected if it is changed to depend on B,

and this happens in cases of a dependency relationship, or an association relationship, aggregates

or composes B’s objects, or inherits or realizes B. B it is affected if any kind of change is

happening.

56

Table 8 Realization Relationship Possible Changes

Change Type The Affected

Classifiers

Justification

Rename classifier A Classifier B A will be counted as a new classifier because

of renaming. Therefore B will realize a new

classifier.

Delete classifier A Classifier B B realizes A, so because of deletion, the

relationship will be deleted, and B will not

realize A.

Rename classifier B - A does not depend on any classifier, so the

renaming of B will have no effect on A

Delete classifier B - A does not depend on any classifier, so the

deletion of B will have no effect on A

Delete Relationship Classifier B A does not depend on B; however B realizes

A. Therefore, because of this deletion, B will

not realize A.

Classifier B A does not depend on any classifier;

however B realizes A. Because of the

change, B will depend on A.

Classifier A,

Classifier B

A does not depend on any classifier, but it

will be changed to depend on B. After the

change B will not realize A.

Classifier A,

Classifier B

A does not depend on any classifier, but it

will be changed to use B’s objects. B will be

changed to use A’s objects.

Classifier A,

Classifier B

A does not depend on any classifier, but it

will be changed to use B’s objects. However,

B will not realize A.

Classifier B A does not depend on any classifier. B will

be changed to use A’s objects.

Classifier A,

Classifier B

A does not depend on any classifier, but it

will be changed to use B’s objects. However,

B will not realize A.

Classifier B A does not depend on any classifier. B will

be changed to use A’s objects.

57

Classifier A,

Classifier B

B will be changed to inherit A. A will be

changed to a class.

Classifier A,

Classifier B

A does not inherit any classifier, but it will

be changed to inherit B. B will not inherit

any classifier.

Classifier A,

Classifier B

B will be changed to an interface. A will be

changed to realize B.

5.1.10 Association classes

These classes are new classes. They can be introduced by the association itself. Association classes

are particularly useful in complex cases when you want to show that a class is related to two

classifiers because those two classifiers have a relationship with each other. In Figure 21, the

association relationship between Student and Course results in an association relationship with a

set of objects in classifier Enrollment. Based on the approach, Student and Course are still master

and clients at the same time. For the new classifier it is also a client and a master, Student and

Course used it, and its existence depends on the relationship.

Note: in association classes, all the partners are clients and masters at the same time.

Figure 21 Association Class in Class Diagram

58

Figure 22 explains how we can transform this type of relationship into a code. Classifiers have a

reference to an object of the other classifier as an attribute.

public class Student {

 private Course[] var1;

 private Enrollment[] var2;

}

public class Enrollment {

}

public class Course {

 private Enrollment [] var1;

}

Figure 22 Association Class Implementation Code

Table 9 shows all change possibilities of this relationship and their influence. Classifier A is

affected by this type of relationships if B is changed, deleted or renamed. And if an association

class is emerging. B is affected in the case of, delete A, or delete C, or an association class is

emerging.

Table 9 Association Class Possible Changes

Change Type The Affected

Classifiers

Justification

Rename classifier A - A will be counted as a new classifier because

of renaming. However, B does not depend on

any classifier.

Delete classifier A Classifier B,

Classifier C

Deleted

B is using A’s objects, so because of deletion,

the relationship will be deleted, and B will not

use A’s objects. C also depends on the

relationship, so it will be counted as deleted.

59

Rename classifier B Class A B will be counted as a new classifier because

of renaming; therefore A will use a new

classifier’s objects.

Delete classifier B Classifier A,

Classifier C

Deleted

A is using B’s objects, so because of deletion,

the relationship will be deleted, and A will not

use B’s objects. C also depends on the

relationship, so it will be counted as deleted.

Classifier B A will use B’s objects, and B will use A’s

objects.

5.1.11 The Selected UML Class Diagram Identifier

Here we selected the classifier name as an identifier, as it is the most appropriate property. The

possible changes in the identifier are deletion and renaming. Renaming, as we mentioned earlier,

cannot be detected. So we will deal with the unchanged aspect only.

5.1.12 Summary

The following are the list of all selected elements and attributes, which we are going to evaluate

and track their unchanged:

 Classifiers name.

 Classifiers type.

 Dependency relationship.

 Association relationship.

 Aggregation relationship.

 Composition relationship.

 Inheritance relationship.

 Realization relationship.

60

5.2 Terminology and Formalism

In this section we will identify the terminology and formalism used during stability computation.

Definition 1 (CLASSIFIER). Let the class diagram classifiers be denoted by C. The same

classifier can have different versions based on different class diagram versions. Let Ci denote the

classifier C in the class diagram version i, where i ɛ [1.n].

Definition 2 (CLASSIFIER PROPERTIES). Let P(Ci) denote the set of all properties of the

classifier C in the class diagram version i.

Definition 3 (CLASSIFIER TYPE). Let the classifier type in the class diagram be denoted by

CT. The same classifier can have different values based on different class diagram versions.

Definition 4 (NUMBER OF CLASSIFIERS OF CLASS DIAGRAM BASE VERSION). Let

NC represent the number of classifiers in the class diagram base version.

Definition 5 (CLASSIFIER PROPERTIES CHANGE). Let changes that may happen to any

classifier be denoted by Ch. Ch represents any change in classifier properties from the class

diagram base version to any other class diagram version.

Definition 6 (CLASSIFIER CHANGES)

CC is the percentage of class diagram classifier changes.

Definition 7 (NUMBER OF UNIQUE PROPERTIES). The classifier in the class diagram has

different properties. These properties represent the classifier type and its classifier relationships

with other classifiers. Let the number of unique properties be denoted by NUP.

Definition 8 (CLASSIFIER RELATIONSHIPS).

61

Let classifier relationships be denoted by CR.

Definition 9 (NUMBER OF UNIQUE CLASSIFIER RELATIONSHIPS). Let the number of

unique classifier relationships in the class diagram classifier be denoted by NUCR.

Definition 10 (STRUCTURAL STABILITY)

SS is the percentage of structural stability.

5.3 Structural Stability Metric

To measure class diagram stability we handled each classifier property separately and looked for

the change in the base version. Figure 23 summarize the computation steps. The measurement of

the class diagram stability is done through the following steps:

1. Develop a property change metric, a metric that measures the changes of each classifier

property. Property change is computed according to Figure 24, and Figure 25, which

illustrates classifier type changes and classifier relationship changes.

2. Count the summation of all property change metrics and divide them by the number of

classifier unique properties, Equation 4.1. Unique properties are the number of unique

classifier relationships plus one (one denoted for classifier type). Dividing by the number

of unique classifier properties will normalize the classifier changes result to be between

zero and one. One means all classifier properties have been changed from the i version to

the i+1 version.

3. Get the summation all the classifiers change metrics and divide them by the number of

class diagram base version classifiers. Dividing by the number of base version classifiers

62

will normalize the result to be between zero and one. One means all class diagram

classifiers have been changed from the i version to the i+1 version.

4. The overall class diagram stability metric is computed using Equation 4.2. The final value

is also normalized. Zero means all classifiers have been changed from version i to version

i+1. Thus, version i+1 is unstable. On the other hand, one means nothing has been changed.

Therefore, version i+1 is completely stable.

63

Figure 23 Structural Stability Computation Steps

To count the changes that may happen to the classifier properties we have to check first if the

classifier is still in version i+1 or not. This is done using the selected identifier. If the identifier

were deleted, then the classifier change value will be the maximum value, one. Otherwise, we will

compute each classifier property change according to Figure 24 and Figure 25.

64

Figure 24 represents classifier type changes. Zero means the classifier type remains unchanged.

One means that the classifier type is changed, either from class to interface, or from interface to

class.

𝐶ℎ(CT) = {
0, 𝐶𝑙𝑎𝑠𝑠 𝑇𝑦𝑝𝑒 𝐶ℎ𝑎𝑛𝑔𝑒𝑑
1, 𝐶𝑙𝑎𝑠𝑠 𝑇𝑦𝑝𝑒 𝑈𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑

Figure 24 Classifier Type Changes

Figure 25 represents classifier relationship changes. The change counts as one in two cases: if the

relationship is deleted or if it is changed to another type. The change will be zero if the relationship

remains unchanged.

𝐶ℎ(CR) = {

0, 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 𝐷𝑒𝑙𝑒𝑡𝑒𝑑
0, 𝐶ℎ𝑎𝑛𝑔𝑒 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 𝑇𝑦𝑝𝑒
1, 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 𝑈𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑

Figure 25 Classifier Relationships Changes

𝑈𝐶𝐶 =
𝐶ℎ(𝐶𝑇(𝑖,𝑖+1))+∑ 𝐶ℎ(𝐶𝑅(𝑖,𝑖+1))

𝑁𝑈𝐶𝑅

𝐶𝑅=1

𝑁𝑈𝑃
 4.1

UCC is an abbreviation for Unchanged in Classifier. This metric computes the unchanged of each

classifier, which equals the summation of classifier type changes and all relationship changes over

the number of unique properties.

NUCR is the abbreviation for the Number of Unique Classifier Relationships in the class diagram

classifier.

65

CR is the abbreviation for Classifier Relationship.

CT is the abbreviation for Classifier Type.

NUP is the abbreviation for Number of Unique Properties. NUP = (NUCR + 1), where 1 represents

the classifier type

i: a class diagram version

𝑆𝑆(𝑖 + 1) =
∑ 𝑈𝐶𝐶(𝐶)

𝑁𝐶

𝐶=1

𝑁𝐶
 4.2

SS is an abbreviation for Structural Stability. This metric computes the stability of the class

diagram, which equals the summation all classifiers’ change over the number of base version

classifiers, and the value is subtracted from one.

C is the abbreviation for Classifier.

CC is the abbreviation for Classifier Change.

NC is the abbreviation for Number of Classifiers in the base version.

The following example shows the steps to measure class diagram stability.

5.3.1 Example

Figure 26 shows version i of a sample class diagram, and Figure 27 shows version i+1 of the same

sample of a class diagram.

66

Figure 26 Class Diagram Sample version i

Figure 27 Class Diagram Sample version i+1

Table 10 shows the each classifier properties for each version. Table 11 shows the calculation of

all the unchanged from sample class diagram version i to sample class diagram version i+1.

Table 10 Each Classifier Properties

Identifier Properties version i Data version i+1 Data

Person Classifier Type Class Class

Relationships Address-Association -

Address Classifier Type Class Deleted

Relationships with Person-Association

Professor Classifier Type Class Class

Relationships Person-Inheritance Person-Inheritance

- Faculty-Inheritance

Student Classifier Type Class Class

Relationships Person-Inheritance Person-Inheritance

Seminar Classifier Type Class Class

Relationships Professor-Aggregation

Student-Aggregation

Professor-Composition

Student-Aggregation

67

Course-Association

SeminarEnrollment-

Association

Course-Association

-

Course Classifier Type Class Class

Relationships Seminar-Association Seminar-Association

EnrollmentS

eminar

Classifier Type Class Class

Relationships Seminar-Association Seminar-Composition

Table 11 Changes From version i to version i+1

Identifier Changes No. of

Unique

Properties

Unchanged

Value

Unchange

d Average

Person Address-Association DELETED 2 1 0.5

Address CLASSIFIER DELETED 2 0 0

Professor - 3 2 0.6

Student - 2 2 1

Seminar Professor[Aggregation =>

Composition]
SeminarEnrollment-Association

DELETED

5 3 0.6

Course - 2 2 1

Enrollmen

tSeminar

Seminar[Association =>

Composition]

2 1 0.5

𝑆𝑆(𝑖 + 1) =
0.5 + 0 + 0.6 + 1 + 0.6 + 1 + 0.5

7

𝑆𝑆(𝑖 + 1) = 0.6

The 0.6 means that version i+1 of the sample class diagram’s stability is 60%; in other words

version i+1 kept 60% of the version i structure, elements, and attributes. Sixty percent of classifiers

and relationships remain in the next version.

68

6 CHAPTER 6

FUNCTIONAL STABILITY

This chapter presents the evaluation and assessment of the UML use case diagram, and presents

its functional stability metric.

6.1 Assessment

The use case diagram is made up of a collection of actors, use cases, and relationships between

and among them. Like the class diagram, we will apply the Client Master Approach to track

changes. We will use either the actor name or the use case name as the identifier in the use case

diagram.

A use case diagram is used to represent system functionality; therefore, we have to track all the

properties that may affect the functionality of the system.

6.1.1 Actor

The actor is a part of the system functionality. It is the one which initiates the use case. An actor

doesn't need to be a human user; any external system element outside of the use case may trigger

the use case. The actor is not always used to trigger use case (send data); it can receive data also.

The actor can have a relationship with another actor or with a use case. We selected the actor name

as one of the identifiers.

69

From the actor information, only its name is involved in change assessment. The actor

representation part is neglected; it does not have any functionality meaning. We can identify the

actor by its name only, so that if the actor name is changed, we cannot recognize the original one.

In this case we deal with the actor by considering that it is deleted and a new actor is emerging.

6.1.2 Use Case

Use case is used to represent the functionality of the system. It describes what a system does, but

it does not specify how it does it. Use case typically represents a major piece of functionality; it is

a description of a set of sequential actions, including variants that a system performs to yield an

observable result to an actor.

Figure 28 shows a sample use case. The information that can be provided by the use case is the

use case name, and the use case type. The use case name is used as a description of a functionality.

In the sample, the use case name RentACar indicates a specific system functionality, which is a

car rental. For the type, we mean whether it has an extension point or is just a normal use case. A

use case with an extension point is used when the use case is extending another one. In the sample

we have an extension1 that shows the extension information with other use cases.

These two parts, the use case name and the use case type, are involved in the use case diagram

assessment. We use the use case name as an identifier in comparison. Any change in the name

cannot be recognized. For example, in our sample if the name is changed to CarRental, there are

no indicators that they were the same functionality. So again we do not look at renaming, we deal

with use case as either being added or deleted. We cannot ensure that the use case has been

renamed.

70

Use case can be represented by different shapes; however, this representation is neglected and does

not provide any functionality meaning.

Figure 28 Sample Use Case with Extension Point

Table 12 shows the possible changes with the new relationships. A or B is affected if they included

another use case, extend another use case, or use another use case as a general one.

Table 12 Possible Use Case Changes

Change Type The Affected

Use Cases

Justification

A includes B Use Case A A will be changed to depend B. B is a

standalone use case.

B includes A Use Case B B will be changed to depend on A. A is a

standalone use case.

A is an extension to B Use Case B A is a standalone. Therefore, because of the

relationship, an extension point emerges in

B.

B is an extension to A Use Case A B is standalone. Therefore, because of the

relationship, an extension point emerges in

A.

A is a generalization of B Use Case B B will be changed to depend on A. A is

complete on its own.

B is a generalization of A Use Case A A will be changed to depend on B. B is

complete on its own.

A is an association Actor - Use case A will not be changed.

71

6.1.3 System Boundaries

The use of the system boundaries is for the purposes of organization only. The boundaries are

represented in a generic sense using a simple rectangle, with the name of the system at the top.

Whether the designer decides to use it when he is designing the system or not will not change any

system functionality. Therefore we are going to exclude it from our assessment.

6.1.4 Actor Relationships

The actor has two kinds of relationships, and one is a relationship with another actor as shown in

Figure 29. The second, main one, is the relationship with the use cases, shown in Figure 30.

Actors can be generalized like many other classifiers. Actor generalization is typically used to pull

out common requirements from several different actors to simplify modeling. Generalization is

attained by creating a generic actor to capture the common functionality, and then specialized to

identify the unique needs of each actor. The relationship can be represented by drawing a solid

line, with a closed arrow pointing from the specialized actor to the base actor. In Figure 29,

Administrator represents the master side of this relationship; any change which happens to this

actor it will affect the DBAdministrator, which is a client in this relationship. The possible changes

that may happen in this case are the deletion of the actor Administrator, or the deletion of the

relationship itself. These changes will have a direct effect on the DBAdministrator actor. Another

possible change is the deletion of the existing relationship, where a reverse relationship will

emerge instead. In this case both actors are affected by this change.

Note: in an actor-actor relationship, the general actor is the master one, and the specialized actor

is the client one.

72

Figure 29 Sample Actor-Actor Relationship

The second relationship is with the use cases. The actor can be associated with one or more use

cases. This relationship is represented by a solid line. A relationship between an actor and a use

case indicates that the actor initiates the use case, or the use case provides the actor with results,

or both. Figure 30 shows a sample relationship between an actor and a use case. In this relationship,

both the Driver actor and RentACar use case are clients. For the RentACar use case, it represents

a client role because its initiation is based on the actor, so changing the actor to another one will

lead to a different functional meaning.

For the actor, as we mentioned earlier, the actor can be used to send data or receive data. However,

sometimes we cannot ensure what the case is exactly, but as we have to consider the case when it

receives data, we have to involve it in the assessment; this is why the actor represents a client role

in this relationship.

Usually use cases are depicted in a standard way in drawing and reading, which is from left to

right. The actors initiating use cases are on the left and actors that receive use case results are on

the right. However, depending on the model or level of complexity, it may make sense to group

actors differently. So we cannot rely on this tradition, it is not mandatory and depends on the

system. Thus we cannot differentiate between the imitating actors and receiving actors. Therefore,

we will deal with all actors as if they were clients when they communicate with use cases.

73

Note: in the actor use case relationship the use case and the actor are Clients.

Figure 30 Sample Actor Use Case Relationship

Table 13, Table 14 shows all the possible changes in the actor-use case relationships, and actor-

actor relationships. Using the client master approach, the Actor and A are clients. A will be affected

if the actor is changed to another one, or deleted, or the relationship itself is deleted. The Actor is

affected if A is changed to another use case, or it is deleted, or if it is generalized to another actor.

Table 13 Possible Actor-Use case Relationships Changes

Change Type The Affected

Entity

Justification

Change use case A to another one Actor Use case A will be counted as

deleted; the Actor will depend on a

new Use Case

Change the Actor to another one Use Case A A will depend on a new Actor

because the Actor will be counted

as deleted.

Delete use case A Actor When the use case is deleted, the

Actor will depend on a new use

case

Delete the Actor Use Case A A will depend on a new Actor

because of deletion.

Delete the relationship Use Case A,

Actor

A will not depend on an Actor;

An Actor will not depend on A.

74

Table 14 Possible Actor-Actor Relationships Changes

Change Type The Affected

Entity

Justification

Delete relationship Actor2 Actor1 does not depend on Actor2;

however Actor2 depends on Actor1.

Therefore, because of this deletion,

Actor2 will not depend on Actor1.

Actor1,

Actor2

Actor1 does not depend on any

classifier; however, Actor2 depends

on Actor1. Because of the change,

this is reversed.

6.1.5 Generalization Relationship

A generalization relationship is used to express higher level functionality. The use case

generalization can be represented using a solid line, with a closed arrow pointing from the

specialized use case to the base use case. Figure 31 shows a sample diagram of this relationship.

The use case Authentication represents the generic use case, while the use case EmailLogin

represents a specialization of the use case Authentication. Even with the generalization, we are still

talking about the system functionality, not an implementation, and hence the two use cases- the

generic one and the specialized one- are involved the assessment. The generalization can also be

called inheritance.

From the sample use case Authentication represents the master side of the relationship, because it

contains general steps that can be used by the inherit use case. Now, if we want to access use case

EmailLogin, we have to use the use case Authentication steps, because every step in the general

use case Authentication must occur in the specialized use case EmailLogin. Therefore the use case

EmailLogin represents the client side of the relationship.

Note: in a use case generalization relationship, the generic use case is the master one, and the

specialization use case is the client one.

75

Figure 31 Use Case Generalization

The possible changes that may happen to the generalization relationship are shown in Table 15.

Based on the approach, A is the master side of the relationship, and B is the client one. A will be

affected if the relationship is changed to extend or include, whatever its direction. B is affected in

all cases, except the case that is included A.

Table 15 Generlization Relationship Possible changes

Change Type The Affected

Use Cases

Justification

Change use case A to another

one

Use Case B A will be counted as a deleted use case;

therefore B will depend on a new. one

Change use case B to another

one

- A does not depend on any classifier, so

the deletion of B will have no effect on

A

Delete use case A Use Case B B will be counted as a deleted use case.

However, A is a standalone use case.

Delete use case B - A does not depend on any classifier, so

the deletion of B will have no effect on

A.

Delete Relationship Use Case B A does not depend on any use case.

However, B does, so because of the

change it will not depend on any use

case.

- A does not depend on any use case, and

will remain the same after the change. B

remains the same; it depends on A.

76

Use Case A,

Use Case B

A does not depend on any use case, but

it will be changed to depend on B. B

will be changed from depending on A to

a standalone use case.

Use Case A,

Use Case B

A will be changed to have an extension

point. B’s existence is dependent on A.

Use Case A,

Use Case B

A does not depend on any use case, but

it will be changed to depend on B. B

will be changed to have an extension

point.

Use Case A,

Use Case B

A does not depend on any use case;

however, B depends on A. Because of

the change, this is reversed.

6.1.6 Include Relationship

An include relationship is used in the case of creating a shared and common functionality. The

purpose of this action is behavior modularization, making them more manageable. The use case

inclusion is represented using a dashed line, with an open arrow (dependency) pointing from the

base use case to the included use case. The line is labeled with the keyword include. Figure 32

shows a sample diagram of the include relationship. Use case OrderAMeal represents the including

use case, while use case Pay represents the included use case. An include relationship means that

the behavior in the additional use case (Pay) is inserted into the behavior of the base use case

(OrderAMeal).

From the sample, the OrderAMeal use case represents the client side of this relationship. In order

to access or perform OrderAMeal we have to perform use case Pay, because OrderAMeal is not

complete on its own. In other words, OrderAMeal depends and needs Pay. However, use case Pay

can be complete, and can be accessed without the need of use case OrderAMeal; Pay represents

the master side of this relationship.

77

Note: in an include relationship, the master is the including use case, and the client is the

included use case.

Figure 32 Use Case Inclusion Sample

The possible changes that may happen to the include relationship are shown in Table 16. According

to the approach, A is the client side of the relationship, and B is the master. A will be affected if

the relationship changes to any other type. B affected in all cases except in the case that A is used

as a general use case.

Table 16 Include Relationship Possible changes

Change Type The Affected

Use Cases

Justification

Change use case A to another

one

- A will be counted as a deleted use case.

However, B is a standalone use case.

Change use case B to another

one

Use Case A B will be counted as a deleted use case;

therefore A will depend on a new one.

Delete use case A - A will be a deleted use case. However, B

is a standalone use case

Delete use case B Use Case A A depends on B, so the deletion of B will

have effect on A. A will not depend on

any use case.

Delete Relationship Use Case A A depends on B, so the deletion of the

relationship will have an effect on A. A

will not depend on any use case.

Use Case A,

Use Case B

B does not depend on any use case;

however A depends on B. Because of the

change, this is reversed.

78

Use Case A,

Use Case B

B does not depend on any use case, but it

will be changed to depend on A. A will

be changed to have an extension point.

Use Case A,

Use Case B

B will be changed to have an extension

point. A’s existence is dependent on B.

- B does not depend on any use case, and

remains the same after the change. A

remains the same; it depends on B.

Use Case A,

Use Case B

B does not depend on any use case, but it

will be changed to depend on A. A will

be changed from depending on B to

being a standalone use case.

6.1.7 Extend Relationship

An extend relationship is used to plug in additional functionality to the base use case. It defines

that instances of a use case may be added with some additional functionality to an extended use

case. Use case extension is represented using a dashed line, with an open arrow (a dependency)

pointing from the extension use case to the base use case. The line is labeled with the keyword

extend. Figure 33 shows a sample diagram of the extend relationship. ViewAccountDetailes

expresses the extended use case, while ViewHistory expresses the extending use case. The

relationship in this example indicates that the ViewHistory inserts additional action sequences into

the ViewAccountDetailes sequence. This allows ViewHistory to continue the activity sequence of

ViewAccountDetailes when the appropriate extension point is reached in the ViewAccountDetailes,

and the extension condition is fulfilled. In other words, a ViewHistory use case continues the

functionality of a ViewAccountDetailes use case

Accordingly, ViewAccountDetailes is an independent use case, hence it has to describe the master

role of the relationship; however there is a point we cannot overlook, which is the extension point.

79

An extension point is a specification of some point in the use case where an extension use case can

plug in and add functionality. UML doesn't have a particular syntax for extension points; they are

typically freeform text. The extension point is introduced to the ViewAccountDetailes because of

the extend relationship. In this case the owner and the controller of this relationship is ViewHistory.

This happens in the case of deletion of the ViewHistory. Deletion of a ViewHistory will have a

direct effect on ViewAccountDetailes by removing the extension point. Therefore, the

ViewAccountDetailes is a client in this relationship despite its independence.

The second part of this relationship is the extending use case, the ViewHistory use case. It

represents another client side of the relationship. ViewHistory is not necessarily meaningful by

itself, so if specific conditions are met in use case ViewAccountDetailes, then ViewHistory is

performed. The performance of ViewHistory is dependent on ViewAccountDetailes.

Note: in the extension relationship, the two use cases are clients.

Figure 33 Use Case Extend Relationship Sample

The possible changes that may happen to the include relationship are shown in Table 17. Based

on the approach, A and B are clients. A will be affected if something happens to B or to the

relationship. B is affected in all cases.

80

Table 17 Extend Relationship Possible changes

Change Type The Affected

Use Cases

Justification

Change use case A to another

one

- A will be counted as a deleted use case.

However, B is not affected.

Change use case B to another

one

Use Case A B will be counted as a deleted use case;

therefore A’s extension point will be

deleted.

Delete use case A Use Case B A will be a deleted use case. However,

B’s existence depends on A.

Delete use case B Use Case A A has an extension point because of B, so

the deletion of B will have effect on A. A

will not have an extension point.

Delete Relationship Use Case A,

Use Case B

B’s existence depends on A, so the

deletion of the relationship will lead to

the deletion of B. Therefore, A will not

have an extension point.

Use Case A,

Use Case B

A will be changed to have no extension

point. B will depend on A.

Use Case A,

Use Case B

A will be changed to have no extension

point. It will depend on B. In addition, B

will be a standalone use case.

Use Case A,

Use Case B

B will be changed to have an extension

point. A’s existence is dependent on B.

Use Case A,

Use Case B

A will be changed to have no extension

point. B will depend on A.

Use Case A,

Use Case B

A will be changed to have no extension

point. It will depend on B. In addition, B

will be a standalone use case.

6.1.8 The Selected UML Use Case Diagram Identifier

The selected identifier here has two main parts, and each part is complete by its own. We have two

identifiers. The first identifier is relevant to the use case, which is the use case name. The other

identifier is relevant to the actor, which is the actor name. There is separation of the two identifiers

because each one identifies a different entity. The possible changes in the identifier are deletion

and renaming. Because we cannot detect renaming we will deal with unchanged only.

81

6.1.9 Summary

The following are the list of all selected elements and attributes, which we are going to evaluate

and track their unchanged:

 Actor name.

 Use case name.

 Use case types.

 Actor-actor relationship.

 Actor-use case relationship.

 Generalization relationship.

 Include relationship.

 Extend relationship.

6.2 Terminology and Formalism

This section provides the terminology and formalism of the functional stability metric.

Definition 1 (USE CASE). Let the use case diagram use case be denoted by U. The same use case

can have different versions based on different use case diagram versions. Let Ui denote the use

case U in use case diagram version i where i ɛ [1.n].

Definition 2 (ACTOR). Let the use case diagram actor be denoted by A. The same actor can have

different versions based on different use case diagram versions. Let Ai denote the actor A in use

case diagram version i, where i ɛ [1.n].

82

Definition 3 (IDENTIFIER). Let the use case diagram identifier be denoted by ID. The identifier

can be either a use case or an actor.

Definition 4 (IDENTIFIER PROPERTIES). Let P(IDi) denote the set of all properties of the

identifier ID in use case diagram version i.

Definition 5 (NUMBER OF USE CASE PROPERTIES). Let NUUP denote the number of all

unique properties of the use case U in use case diagram version i and the version we use for

comparison.

Definition 6 (USE CASE NAME). Let the use case name in the use case diagram be denoted by

UN. The same use case can have only one specific name, which is whatever the use case diagram

version is. Otherwise we will consider it as a different use case, because the use case renaming is

indefinable.

Definition 7 (USE CASE TYPE). Let the use case type in the use case diagram be denoted by

UT.

Definition 8 (ACTOR NAME). Let the actor name in the use case diagram be denoted by AN.

The same actor can have only one specific name, which is whatever the use case diagram version

is. Otherwise we will consider it as a different actor, because actors renaming is indefinable.

Definition 9 (NUMBER OF USE CASES IN USE CASE DIAGRAM BASE VERSION). Let

NU represent the number of use cases in the use case diagram base version.

Definition 10 (NUMBER OF ACTORS IN USE CASE DIAGRAM BASE VERSION). Let

NA represent the number of actors in the use case diagram base version.

83

Definition 11 (NUMBER OF ACTOR RELATIONSHIP). Let NUAR denote the number of all

unique relationships of actor A in use case diagram version i and the version we use for

comparison.

Definition 12 (IDENTIFIER PROPERTIES CHANGE). Let change that may happen to any

identifier be denoted by Ch. Ch represents any change in identifier properties from the use case

diagram base version to any other use case diagram version.

Definition 13 (USE CASE UNCHANGED)

UCU is the percentage of unchanged in the use case.

Definition 14 (ACTOR UNCHANGED)

UCA is the percentage of unchanged in the actor.

Definition 15 (FUNCTIONALITY STABILITY)

FS is the percentage of the functional stability, which represents the use case diagram stability.

6.3 Functional Stability Metric

Figure 34 summarizes the computation steps. The measure of the use case diagram stability is done

through the following steps:

1. Develop a property change metric for each actor, and each use case. This metric is used to

measure the changes of each actor and use cases properties. The unchanged are computed

according to Figure 35 and Figure 36, which show use case type changes and use case

relationship changes respectively. Figure 37 shows actor relationship changes.

84

2. Get each use case unchanged, which equals the summation of all use case changes over the

number of the use case unique properties (NUUP), Equation 5.1. Dividing by the number

of properties will normalize the sum of the use case changes result to be between zero and

one. One means all use case diagram use cases have been changed from the i version to the

i+1 version.

3. Get each actor unchanged, which equals the summation of all actor changes over the

number of the actor unique relationships (NUAR), Equation 5.2. Dividing by the number

of relationships will normalize the sum of the actor changes result to be between zero and

one. One means all use case diagram actors have been changed from the i version to the

i+1 version.

4. Compute the summation of all use cases and actor change metrics over the summation of

NU and NA. Dividing by NU + NA will normalize the summation of use cases and actors

change result to be between zero and one. One means all use case diagram elements have

been changed from the i version to the i+1 version.

5. The overall use case diagram stability metric is computed using Equation 5.3. This final

value is also normalized. Zero means all elements have been changed from version i to

version i+1. Thus, version i+1 is unstable. On the other hand, one means nothing has been

changed. Therefore, version i+1 is completely stable.

To count the changes that may happen to the use cases and actors we have to check first if the use

case and actors is still in version i+1 or not. If the use case or the actor were deleted, then the

change value will be the maximum value, one. The check process is done based on the UN and

AN. And then, after confirming the identifier, we will compute each use case and actor change

according to Figure 35, Figure 36, and Figure 37.

85

Figure 34 Functional Stability Computation Steps

Figure 35 represents use case type changes. Zero means the use case type remains unchanged. One

means that the use case type is changed, either from use case to use case with an extension or from

use case with an extension to use case.

𝐶ℎ(UT) = {
0, 𝑈𝑠𝑒 𝑐𝑎𝑠𝑒 𝑇𝑦𝑝𝑒 𝐶ℎ𝑎𝑛𝑔𝑒𝑑
1, 𝑈𝑠𝑒 𝑐𝑎𝑠𝑒 𝑇𝑦𝑝𝑒 𝑈𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑

Figure 35 Use case Type Changes

Figure 36 represents use case relationships changes. The change counts as one if the relationship

is changed. Change will be zero if the relationship remains unchanged.

86

𝐶ℎ(UR) = {

0, 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 𝐷𝑒𝑙𝑒𝑡𝑒𝑑

0, 𝐶ℎ𝑎𝑛𝑔𝑒 in 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 𝑇𝑦𝑝𝑒

1, 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 𝑈𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑

Figure 36 Use Case Relationship Changes

Figure 37 represents actor relationships changes. The change counts as one if the relationship is

changed. Change will be zero if the relationship remains unchanged.

𝐶ℎ(AR) = {

0, 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 𝐷𝑒𝑙𝑒𝑡𝑒𝑑

0, 𝐶ℎ𝑎𝑛𝑔𝑒 in 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 𝑇𝑦𝑝𝑒

1, 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 𝑈𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑

Figure 37 Actor Relationships Changes

𝑈𝐶𝑈 =
𝐶ℎ(𝑈𝑇(𝑖,𝑖+1)) + ∑ 𝐶ℎ(𝑈𝑅(𝑖,𝑖+1))

𝑁𝑈𝑈𝑅

𝑅=1

𝑁𝑈𝑈𝑃
 5.1

UCU is the abbreviation for Use Case Unchange. This metric computes the unchanged of each use

case, which equals the summation of use case type changes and all use case relationship changes

over the number of use case properties.

Ch is the abbreviation for Changes in use case types and use case relationships

UR is the abbreviation for Use case Relationship

UT is the abbreviation for Use case Type. NUUP is the abbreviation for Number of Unique Use

case Properties.

i : a use case diagram version

𝑈𝐶𝐴 =
∑ 𝐶ℎ(𝐴𝑅(𝑖,𝑖+1))

𝑁𝑈𝐴𝑅

𝑅=1

𝑁𝑈𝐴𝑅
 5.2

87

UCU is the abbreviation for Unchanged in Actor. This metric computes the unchanged of each

actor, which equals the summation of actor type changes and all actor relationship changes over

the number of actor relationships.

Ch is the abbreviation for Changes in actor relationships

AR is the abbreviation for Actor Relationship

NUAR is the abbreviation for Number of Unique Actor Relationships.

R is the abbreviation for Relationship.

i: a use case diagram version

𝐹𝑆(𝑖 + 1) =
∑ 𝑈𝐶𝑈(𝑈)𝑁𝑈

𝑈=1 +∑ 𝑈𝐶𝐴(𝐴)𝑁𝐴
𝐴=1

𝑁𝑈+𝑁𝐴
 5.3

FS is the abbreviation for Functional Stability. This metric computes the stability of the use case

diagram, which equals the summation all identifiers’ changes subtracted from one.

U is the abbreviation for Use case.

UCU the is abbreviation for Unchanged in Use case.

A is the abbreviation for Actor

UCU is the abbreviation for Unchanged in Actor.

NU is the abbreviation for Number of Use cases in use case diagram version i.

NA is the abbreviation for Number of Actors in use case diagram version i.

88

i is the abbreviation for a use case diagram version

The following example shows the steps to measure sequence diagram stability.

6.3.1 Example

Figure 38 shows version i of a sample use case diagram, and Figure 39 shows version i+1 of the

same sample of the use case diagram.

Figure 38 Use Case Sample version i

Figure 39 Use Case Sample version i+1

Table 18 shows all properties for each version, and Table 19 shows all the changes calculation

from sample use case diagram version i to sample use case diagram version i+1.

Table 18 Use Case Sample Diagrams Properties

Identifier Properties version i Data version i+1 Data

Create New

Personal

Wiki

Identifier Type Use case with extension

point

Use Case

Relationships Check Identity -Include Check Identity -Include

89

System

Admin

Identifier Type Actor Actor

Relationships Create New Personal Wiki –

Association

Create New Personal Wiki –

Association

Record

Application

Failure

Identifier Type Use Case Deleted

Relationships Create New Personal Wiki-

Extend

Create New Blog Account-

Extend

Check

Identity

Identifier Type Use Case Use Case

Relationships - -

Blog

Admin

Identifier Type Actor Actor

Relationships System Admin –

Generalization

Create New Blog Account -

Association

-

Create New Blog Account -

Association

Create New

Blog

Account

Identifier Type Use case with extension

point

Use Case

Relationships Check Identity -Include Check Identity -Include

Table 19 Use Case Sample Changes From version i to version i+1

Identifier Changes No. of

Unique

Properties

Unchanged

Value

Unchanged

Average

Create New

Personal

Wiki

Use case with extension point => Use

Case

2 1 0.5

System

Admin

- 2 2 1

Record

Application

Failure

IDENTIFIER DELETED 3 0 0

Check

Identity

- 1 1 1

Blog

Admin

System Admin – Generalization

DELETED

3 2 0.66

Create New

Blog

Account

Use case with extension point => Use

Case

2 1 0.5

90

𝐹𝑆(𝑖 + 1) =
0.5 + 1 + 0 + 1 + 0.66 + 0.5

6

𝐹𝑆(𝑖 + 1) = 0.61

The 0.61 means that version i+1 of the sample use case diagram’s stability is 61%; in other words,

version i+1 kept 61% of version i's functionality, elements, and attributes. Sixty-one percent of

use cases, actors, and relationships remain in the next version.

91

7 CHAPTER 7

BEHAVIORAL STABILITY

This chapter provides the analysis and assessment of the UML sequence diagram and introduces

the behavioral stability metric.

7.1 Assessment

A sequence diagram is made up of a collection of participants, lifelines, and messages. Change

tracking in the sequence diagram will be based on, and relies on, the messages.

For the sequence diagram, we will apply the client and master approach in a different way. This

situation is a bit different from the UML class diagram and UML use case diagram; here we are

dealing with message invoking only and we assess each message separately. This point will be

clarified in the following sections.

7.1.1 Participant

Participants are the system parts that interact with each other during the sequence and each one

has a corresponding lifeline. Participants on a sequence diagram can be named in a number of

different ways. Figure 40 shows the general description of the participant.

The first part of the name is the object name, which specifies the name of the instance involved in

the interaction. In addition, this part has another attribute-the selector- that identifies which

particular instance in a multivalued element is used. The selector is an optional part of the name.

92

If no object is mentioned in the sequence diagram it means that either no object is required, or that

an object without any particular name suffices. An object name and the selector are not always

available. This kind of information about the participant may be unspecified during the design

process, so we are not going to count any change that may happen to them.

The second part consists of the class name and the decomposition. The class name represents one

of the identifier parts. The decomposition is used to point to another interaction diagram that shows

details of how this participant processes the message it receives. Thus, it is an optional part, so we

are going to ignore it.

From the participant information, only the class name is involved in change assessment. Other

parts are neglected, due to the optionality or the absence of its information. We are dealing with

the mandatory fields of the participants, such as participant A in Figure 41. We can identify the

class by its name only, so that if the class name is changed we cannot recognize the original one.

Hence, we deal with this case by considering that the class is deleted and a new class has emerged.

Object_name [selector] : class_name ref decomposition

Figure 40 General Description of Participant

Figure 41 shows a sample of a sequence diagram participant. Classifier A calls message1 from the

classifier B. In this sample A represents the client side of the relation, because it calls message1

that belongs to B, which means that any changes that may happen to this method or to B will affect

A. B represents the master side of the relationship, because it does not depend on A.

93

The possible changes here include changing the classifier A to another one. This will not affect

classifier B; as we mentioned earlier, B is a master classifier in this relationship. Changing the B

to another one has an effect on A. The type of change on B that we are able to recognize here is

the deletion of B, because classifiers’ renaming recognition is not identifiable. The deletion of B

means that, message1 is a completely different message than the original one; thus there is a change

in \s behavior.

By change participant to another one we mean that it is changing in participant name only, because

the only information we have about the participant is its name.

Figure 41 Sequence Diagram Participants

7.1.2 Stereotypes

Stereotypes are used to describe a specific property that a classifier has, which we cannot show in

the standard UML classifier. There are three main stereotypes which can be used in sequence

diagrams, namely [44, 45]:

 Entity: used to represent behavior related to the system data.

 Boundary: represents the elements that usually interact with the system actors. Boundaries

are called the front-end elements.

94

 Controller: these elements serve as a median between entities and controllers. The

controller manages the interaction flow.

We will involve the stereotypes in our assessment, by treating them as if they were usual

participants.

7.1.3 Messages

An interaction in a sequence diagram occurs when one participant decides to send a message to

another participant, as shown in Figure 41, where A sends a message to B.

Messages are the heart of the sequence diagram, as they are used to represent the behavior of the

systems. Sometimes they are called events, which refer to any point in an interaction where

something occurs. We will use the term message because it is the one used by software designers.

Messages on a sequence diagram are specified using an arrow from the participant that wants to

pass the message (Message Caller), to the participant that receives the message (Message

Receiver). Messages can flow in whatever direction makes sense for the required interaction: from

left to right, right to left, or even back to the Message Caller itself.

Figure 42 shows the message signature format, which consists of four parts. The attribute, which

is used to store the return value of this message, is an optional part. The second part is the message

name. The message name is chosen to be the other half of the identifier. The third part of the

message signature is the arguments, Figure 43 shows its format. We can specify any number of

different arguments on a message, with each separated by a comma. The last part is the return type,

which states what the return value from the message will be.

95

attribute = message_name (arguments) : return_type

Figure 42 General Description of Message

<name>:<class>

Figure 43 Message Arguments

The format elements that can be used for a particular message will depend on the information

known about a particular message at any given time. For example, message1 in Figure 41, does

not indicate that the message clearly has no argument, or return values, but it is the only available

information about it. It means that, for now, no further information is known. From that, in order

to be consistent and unified with all messages we will involve only the message name information

in the stability assessment.

Triggering a message may result in one or more messages being sent by the receiving participant.

Those resulting messages are said to be nested within the triggering message, and there can be any

number of nested messages and any number of levels on the sequence diagram.

There are five different message types, differentiated based on the message arrow. Each message

has its own meaning. For example, the Message Caller may choose to wait for a message to return

before carrying on with its work. Or it may choose to just send the message to the Message

Receiver without waiting for any return as a form of "fire and forget" message.

96

7.1.4 A synchronous message

A synchronous message declares that the Message Caller waits for the Message Receiver to return

from the message invocation. This can be implemented in the code as a simple method invocation.

Figure 44 shows a sample diagram of a synchronous message, where the figure shows that a

classifier A is the client, and classifier B is the master.

Figure 44 Synchronous Message

Figure 45 explains how we can convert this type of message into a code using a simple method

invocation. The MessageReceiver which represents participant B in our situation, is in the master

role of the relationship because it is a standalone participant and does not depend upon participant

A. The MessageCaller, which represents A in our situation, is on the client side of the relationship.

It depends on B. Any change that may happen to B will have a direct effect on A.

public class MessageReceiver{

 public void foo(){

 }

}

97

public class MessageCaller{

 private MessageReceiver messageReceiver;

 public doSomething(String[] args){

 this.messageReceiver.foo();

 }

}

Figure 45 Implementation Code of Synchronous Message

7.1.5 An asynchronous message

It is not always the case that interactions are happening one after the other. Interactions can happen

at the same point in time, and this is what an asynchronous message is about. An asynchronous

message declares that Message Caller invokes a message and does not wait for the message

invocation to return before carrying on with the rest of the interaction's steps. This means that the

Message Caller will invoke a message on the Message Receiver and the Message Caller will be

busy invoking further messages before the original message returns, as shown in Figure 46. The

figure shows that participant A is the client, and participant B is the master.

Figure 46 An Asynchronous Message

98

Figure 47 and Figure 45 explain how we can convert this type of message into a code using threads.

The MessageReceiver, which represents participant B in our situation, is on the master side of the

relationship because it is a standalone and does not depend upon A. The MessageCaller, which

represents participant A in our situation, is on the client side of the relationship. It depends on B.

Any change that may happen to B will have a direct effect on A.

public class MessageReceiver implements Runable {

 public void operation1() {

 Thread fooWorker = new Thread(this);

 fooWorker.start();

 }

 public void run() {

 }

}

public class MessageCaller

{

 private MessageReceiver messageReceiver;

 public void doSomething(String[] args) {

 this.messageReceiver.operation1();

 }

}

Figure 47 Implementation Code of an Asynchronous Message

7.1.6 A return message

The return message, shown in Figure 48, is used at the end of an activation bar. The control flow

of the activation is returned to the participant that passed the original message. In code, a return is

like reaching the end of the method or calling a return statement. Return messages are an optional

notation; their use will make the sequence diagram too busy, so there is no need to show them.

However, in synchronous message invocation there is an implied return arrow on the activation

99

bars that are invoked. We will skip this type of message, and we will not involve it in our

assessment.

Figure 48 Return Message

7.1.7 Creation Message & Destruction Message

Participants do not necessarily live for the entire duration of a sequence diagram's interaction.

Participants can be created and destroyed according to the messages that are being passed, as

shown in Figure 49 and Figure 50. A creation message is used to create objects during interactions,

while a destruction message is used to delete objects during interactions.

100

Figure 49 Creation Message

Figure 50 Destruction Message

Figure 51 shows the implementation code of creation message. For the destruction message, we

do not always have an explicit destroy method, for example in Java. Showing it on the sequence

diagram does not make sense. What happens in Java is that after having finished executing the

doSomething method, the MessageReceiver object will be marked for destruction; after that the

garbage collector will implicitly handle the destruction. Thus, in this case there is no need for

additional destruction messages.

However, our metric is not focusing only on Java. We are trying to figure out a comprehensive

metric that can be applied to whatever the design implementation language may be. In these two

types of messages, participant A is the master and participant B is the client. The MessageReceiver,

which represents B, is on the client side of the relationship because its existence depends upon A.

The MessageCaller, which represents A, is on the master side of the relationship because it controls

B’s existence. Any change that may happen to A will have a direct effect on B.

101

public class MessageReceiver {

}

public class MessageCaller {

 public void doSomething() {

 MessageReceiver messageReceiver = new MessageReceiver();

 }

}

Figure 51 Implementation Code of Creation Message

7.1.8 Notes, Activation Bars, and Actors

Notes are used to help in associate interactions within elements, place local variable names and

values, and place the state invariant information. It is used to describe some information about the

diagram. Notes are not used to represent any behavioral states of the diagram. We will skip them.

An activation bar can be shown at the sending and receiving ends of a message. It indicates that

the sending participant is active while it sends the message and that the receiving participant is

actively doing something after the message has been received. The activation bars are optional, so

we will skip them too.

The sequence diagram initiator is a user; a simple label at the top is used rather than a rectangle,

and it is the one which initiates the first message. A actor name will be involved in the assessment

process.

7.1.9 Time

Sequence diagrams are primarily about the ordering of the interactions between participants. The

order that interactions are placed down the diagram indicates the order in which those interactions

will take place in time. Time on a sequence diagram is all about ordering, not duration. However,

102

the time at which an interaction occurs is indicated on a sequence diagram by where it is placed

vertically on the diagram. The amount of vertical space the interaction takes up has nothing to do

with the duration of time that the interaction will take. We will take the order into our

consideration.

7.1.10 The Selected UML Sequence Diagram Identifier

The message represents the identifier in the sequence diagram. In Figure 50, the message is the

core of the interaction between participant A and participant B. The client and master approach

that we follow to track changes and avoid assessment duplication will be applied in a different way

in the sequence diagram. The messages are the main part of the interactions, so we linked the

changes to them directly. First, from the previous evaluation of the participant’s relationships,

there are no connected participants which are masters and clients at the same time. Each time, one

of the participants is a client and the other is a master. So whichever is the client and master, if the

message type changes then we have to count the change once. And because we chose the message

as the identifier, we will count it for the message that connects the two participants.

A second point in selecting the message as an identifier, is the message order. The sequence

diagrams are used to represent the system behavior and to show how the interactions really act.

Interactions and order of messages is very important in defining the system’s behavior. And,

because the order is a message property, we cannot assign the order for the participants. So this is

another reason to select the message as the identifier in the sequence diagram. However, in the

end, we are tracking the changes of the system behavior, not the changes in the participants

103

themselves, despite that any change in them reflects on the message properties. So we will focus

the messages and their properties’ changes only.

The selected identifier is the message name. However, message names cannot be used as an

identifier alone. We may have different participants, but with the same message name. So we chose

another property beside the name, which is the message receiver. In fact the message receiver here

represents the participant which owns the message.

We identified five properties for each message:

 Message Name: the invoked message name.

 Message Receiver: the participant which owns the method. We consider the message as

being a new one if the message receiver is changed, despite having the same name. Some

participants may have the same message name, so we cannot specify the original message

from its name only.

 Message Caller: the participant which initiates the message.

 Message Type: we consider four types: synchronous, asynchronous, creation, and

destruction. In the case of a return message, we do not consider it because it is an optional

message. As we mentioned above, this will represent the client/master changes.

 Message Order: we assign a number to every message to indicate its order in the execution

process. The base message will have the order number zero.

The changes that may happen to the identifier are shown in Table 20. This table is just to show

which parts are affected by a specific change. However, this table will not affect the way we

compute the stability. As we mentioned earlier, we connect the changes with the messages.

104

Table 20 Possible Identifier Changes

Element Change Type The Affected Classes

Message Caller Change the class to another one One of identifier properties

changed

Deleted Identifier is deleted

Message Receiver Change the class to another one Identifier is deleted

Deleted Identifier is deleted

Message Type

Asynchronous

Synchronous Message Receiver

Creation Message Caller, Message

Receiver

Destruction Message Caller, Message

Receiver

Message Type

Synchronous

Asynchronous Message Receiver

Creation Message Caller, Message

Receiver

Destruction Message Caller, Message

Receiver

Message Type

Creation

Asynchronous Message Caller, Message

Receiver

Synchronous Message Caller, Message

Receiver

Destruction Message Caller, Message

Receiver

Message Type

Destruction

Asynchronous Message Caller, Message

Receiver

Synchronous Message Caller, Message

Receiver

Creation Message Caller, Message

Receiver

Message Order The Order -

7.2 Terminology and Formalism

This section provides the terminology and formalism of the behavioral stability metric.

Definition 1 (PARTICIPANT). Let the sequence diagram participants be denoted by P. The same

participants can have different versions based on different sequence diagram versions. Let Pi

denote the participants P in sequence diagram version i, where i ɛ [1.n].

105

Definition 2 (MESSAGE PROPERTIES). Let P(Mi) denote the set of all properties of the

message M in sequence diagram version i.

Definition 3 (MESSAGE NAME). Let the message name in the sequence diagram be denoted by

MN. The same message can have only one specific name, whatever the sequence diagram version

is. Otherwise we will consider it to be a different message because the message renaming is

indefinable.

Definition 4 (MESSAGE RECEIVER). Let the message receiver in the sequence diagram be

denoted by MR. The same message can have only one specific receiver, whatever the sequence

diagram version is. Otherwise we will compute it as a different message.

Definition 5 (MESSAGE CALLER). Let the message classer in the sequence diagram be denoted

by MC. The same message can have different values based on different sequence diagram versions.

Definition 6 (MESSAGE TYPE). Let the message type in the sequence diagram be denoted by

MT. The same message can have different values based on different sequence diagram versions.

Definition 7 (MESSAGE ORDER). Let the message order in the sequence diagram be denoted

by MO. The same message can have different values based on different sequence diagram versions.

Definition 8 (NUMBER OF MESSAGES OF SEQUENCE DIAGRAM BASE VERSION).

Let NM represent the number of sequence diagram base version messages.

Definition 9 (MESSAGE PROPERTIES CHANGE). Let the change that may happen to any

message be denoted by Ch. Ch represents any change in message properties from the sequence

diagram base version to any other sequence diagram version.

Definition 10 (MESSAGE CHANGES)

106

MC is the percentage of sequence diagram message changes.

Definition 11 (NUMBER OF MESSAGE PROPERTIES). Messages in a sequence diagram

have a fixed number of properties, which is three. These properties are: message caller, message

type, and message order. We skipped message receiver because we are tracking the changes of the

other three. Let the number of message properties be denoted by NMP.

Definition 12 (BEHAVIORAL STABILITY)

BS is the percentage of behavioral stability, which represents the sequence diagram stability.

7.3 Behavioral Stability Metric

We will handle each message property separately and look at the change of the base version. Figure

52 summarizes the computation steps. The measurement of the sequence diagram stability is done

through the following steps:

1. Develop a property change metric, which is a metric to measure the unchanged of each

message property. Property change is computed according to Figure 54, Figure 55, and

Figure 56 and which show message caller changes, message type changes, and message

order changes respectively.

2. Get the summation of all property changes metrics and divide it by the number of message

properties, Equation 6.1. There are three message properties. Dividing by the number of

message properties will normalize the message changes result to be between zero and one.

One means all message properties have been fully changed from the i version to the i+1

version.

107

3. Compute the sum of all messages change metrics and divide it by the number of sequence

diagram base version messages. Dividing by the number of base version messages will

normalize the sum of messages change result to be between zero and one. One means all

sequence diagram messages have been changed from the i version to the i+1 version.

4. The overall sequence diagram stability metric is computed using Equation 6.2. This final

value is also normalized. Zero means all messages have been changed from the version i

to the version i+1. Thus, the version i+1 is unstable. On the other hand, one means nothing

has been changed. Therefore, version i+1 is completely stable.

To count the changes that may happen to the message properties we have to check first if the

message is still in version i+1 or not. If the message was deleted, then the message change

value will be the maximum value, one. So first we have to check if our message is still in the

next version, and this is done based on the name. After that, we have to check the second part

of the message identifier, which is the message receiver. Figure 53 shows the possible changes

in the message receiver. The message receiver represents one of the message identifier parts.

If any change may be happening to it, then we consider the message as another message. So if

this property is changed, then the message is fully unstable. After confirming the message we

will compute each property change according to Figure 54, Figure 24, and Figure 56.

108

Figure 52 Behavioral Stability Computation Steps

𝐶ℎ(MR) = {
0, 𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝐶ℎ𝑎𝑛𝑔𝑒𝑑
1, 𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑈𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑

Figure 53 Message Receiver Changes

109

Figure 54 represents message caller changes. Zero means the message caller remains unchanged.

One means that the message caller is changed.

𝐶ℎ(MC) = {
0, 𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝐶𝑎𝑙𝑙𝑒𝑟 𝐶ℎ𝑎𝑛𝑔𝑒𝑑
1, 𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝐶𝑎𝑙𝑙𝑒𝑟 𝑈𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑

Figure 54 Message Caller Changes

Figure 55 represents message type changes. Zero means the message type remains unchanged.

One means that the message type is changed. The four possible changes are: asynchronous,

synchronous, creation, and destruction.

𝐶ℎ(MT) = {
0, 𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝑇𝑦𝑝𝑒 𝐶ℎ𝑎𝑛𝑔𝑒𝑑
1, 𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝑇𝑦𝑝𝑒 𝑈𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑

Figure 55 Message Type Changes

Figure 56 represents message order changes. Zero means the message order remains unchanged.

One means that the message order is changed.

𝐶ℎ(MO) = {
0, 𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝑂𝑟𝑑𝑒𝑟 𝐶ℎ𝑎𝑛𝑔𝑒𝑑
1, 𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝑂𝑟𝑑𝑒𝑟 𝑈𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑

Figure 56 Message Order Changes

𝑈𝐶𝑀 =
𝐶ℎ(𝑀𝐶(𝑖,𝑖+1))+ 𝐶ℎ(𝑀𝑇(𝑖,𝑖+1))+ 𝐶ℎ(𝑀𝑂(𝑖,𝑖+1))

𝑁𝑀𝑃
 6.1

UCM is the abbreviation for Unchanged in Messages. This metric computes the unchanged of each

message, which equals the summation of the message caller changes, message type changes, and

message order changes over the number of message properties.

110

UCM is the abbreviation for Unchanged in Messages.

Ch is the abbreviation for Changes in message caller, type, and order.

MC is the abbreviation for Message Caller.

MT is the abbreviation for Message Type.

MO is the abbreviation for Message Order.

NMP is the abbreviation for Number of Message Properties (three); message properties are

classified by the caller, type, and order.

i is the abbreviation for a sequence diagram version.

𝐵𝑆(𝑖 + 1) =
∑ 𝑈𝐶𝑀 (𝑀)

𝑁𝑀

𝑀=1

𝑁𝑀
 6.2

BS is the abbreviation for Behavioral Stability. This metric computes the stability of the sequence

diagram, which equals the summation all messages changes subtracted from one.

UCM is the abbreviation for Unchanged in Messages.

M is the abbreviation for Message.

NM is the abbreviation for Number of Messages in the sequence diagram version i.

i is the abbreviation for a sequence diagram version.

The following example shows the steps to measure sequence diagram stability.

111

7.3.1 Example

Figure 57 shows version i of a sample sequence diagram, and Figure 58 shows version i+1 of the

same sample of a sequence diagram.

Figure 57 Sequence Diagram Sample version i

Figure 58 Sequence Diagram Sample version i+1

Table 21 shows all message properties for each version. Table 22 shows all the changes calculation

from sample sequence diagram version i to sample sequence diagram version i+1.

Table 21 All Messages Property for the Sequnce Sample Diagrams

Identifier Properties version i Data version i+1 Data

viewResult

Message Receiver ResultsView ResultsView

Message Caller Actor Actor

Message Type Synchronous Synchronous

Message Order 1 1

getTagResult

Message Receiver Results Results

Message Caller ResultsView ResultsView

Message Type Synchronous Asynchronous

Message Order 2 3

displayResult Message Receiver ResultsTableView ResultsTableView

112

Message Caller ResultsView ResultsView

Message Type Synchronous Asynchronous

Message Order 3 2

render Message Receiver ResultsView ResultsView

Message Caller ResultsView ResultsView

Message Type Synchronous Synchronous

Message Order 4 4

Table 22 Changes From version 1 to version 2 in Sequnce Sample Diagrams

Identifier Changes No. of

Properties

Unchanged

Value

Unchanged

Average

viewResult

- 3 3 1

getTagResult

Synchronous => Asynchronous

2 => 3

3 1 0.33

displayResult Synchronous => Asynchronous

3 => 2

3 1 0.33

render - 3 3 1

𝐵𝑆(𝑖 + 1) =
1 + 0.33 + 0.33 + 1

4

𝐵𝑆(𝑖 + 1) = 0.66

The 0.66 means that version i+1 of the sample sequence diagram’s stability is 66%.In other words,

version i+1 kept 66% of version i‘s behavior, elements, and attributes. Sixty-six percent of

participants, messages, and relationships remain in the next version.

113

8 CHAPTER 8

THEORETICAL VALIDATION

In this chapter, we are going to validate our metrics suite theoretically.

Our proposed metrics aim to capture information about the system stability. Introducing any kind

of measurements needs a proper validation, so it must have a scientific basis [46]. Therefore the

metrics validation, whether theoretical or empirical, is not a purely objective exercise [47]. The

basic question whenever you propose a metric is whether the measure captures the attribute it

claims to depict. Accepting a product measure is the process of guaranteeing that the measure of

the claimed attribute is a fitting numerical characterization by demonstrating that the

representation condition is satisfied [48]. In other words, the theoretical validation confirms that

the measure does not abuse any essential properties of the measurement elements [49].

Several frameworks are proposed to validate software metrics. Briand et al [50] proposed a

framework to validate cohesion metrics. Weyuker [51] introduced a framework to validate

complexity metrics. However, no frameworks were found specifically to validate stability metrics.

Therefore we used a standard metrics validation frameworks, Kitchenham's framework, in order

to validate our metrics theoretically.

Kitchenham et al. introduced the metric-evaluation framework [52] to validate software metrics.

They define various properties that a theoretically valid software metric should have. They

identified a set of theoretical criteria that must be satisfied in order to propose a valid measure.

The metric-evaluation framework consists of five models: unit definition model, attribute

114

relationship model, instrumentation model, measurement protocol model, and entity population

model.

For a Unit definition model, a unit is defined for all measures, including ratio, scale, nominal, and

ordinal. There are four types of the unit definition model: reference to a wider theory model,

reference to a standard model, reference to a model involving several attributes model, and

reference to conversion from another unit model. A metric has a valid unit if the used units are an

appropriate means of measuring the attribute.

Reference to a standard determines a metric unit based on an application domain standard.

Reference to a wider theory defines the unit for a metric based on the way in which an attribute is

observed in a particular entity. Reference to conversion from another unit sets a metric unit by

converting from a known unit.

Reference to a model defines the unit of a composite metric by combining the units of the

individual metrics involved.

The Instrumentation model defines the method used to perform the measurements. The

instrumentation model is closely related to the unit definition. It has two types: the direct

representational model and the indirect theory-based model. A metric has a valid instrument if the

underlying measurement instrument is valid and adjusted properly.

An attribute is may be composed of other attributes, so the attribute relationship model is used

to define the relationships among these attributes. There are two types of attribute relationship

models, namely the definition model and predictive model.

115

The definition model is used to define a multi-dimensional attribute, while, the predictive model

is used in the prediction of a specific attribute value based on other values.

The Measurement protocol model is concerned with how to measure an attribute consistently on

a particular entity. The measurement protocol model’s aim is to make a measure independent of

the environment and the measurer. A metric has a valid protocol if a widely accepted measurement

protocol is used.

The Entity population model sets the normal values of a metric.

Kitchenham et al. introduced four properties which every metric must satisfy in order to be

theoretically valid. These properties are:

1. “For an attribute to be measurable, it must allow different entities to be distinguished from

one another”. This means, there must be a two entities with different measurement values.

2. “A valid measure must obey the Representation Condition”. For example, in our case, if

we have two entities and the first entity is less than the other entity in terms of selected

properties, then the stability of the first entity must be less than the second one.

3. “Each unit of an attribute contributing to a valid measure is equivalent”. This means that

the entities that are measured alongside each other are equivalent [53].

4. “Different entities can have the same attribute value (within the limits of measurement

error)”.

116

8.1 Structural Stability Metric Validation

Our proposed metric for measuring class diagram stability have the following parameters:

 The entity is the class diagram being analyzed.

 The attribute measured is the stability.

 The unit is the percentage.

 The data scale is an interval.

The SS (Structural Stability) conforms to Kitchenham’s properties as follows:

Property 1:

Suppose we have two versions of a system, version i and version j where (j > i). Assume we have

two classes, a class C1i in release i, and a corresponding class version C1j in release j. Let us

assume another two classes, a class C2i in release i, and a corresponding class version C2j in

release j. Suppose the C1i class has P1 properties, which are a1, a2, . . . , an and b1, b2, . . , bx (x

<= n), where the set of properties has remained unchanged between the two releases, release i and

release j. As well, suppose the C2i class has P1 properties, which are c1, c2, . . . , cn and d1, d2, .

. . , dy (y <= n)a set of properties has remained unchanged between the two releases, release i and

release j. When x / P1 ≠ y / P1, then Stability (C1) ≠ Stability (C2).

Property 2:

Suppose we have two versions of a system, version i and version j where (j > i). Assume we have

two classes, a class C1i in release i, and a corresponding class version C1j in release j. Let us

assume another two classes, a class C2i in release i, and a corresponding class version C2j in

117

release j. Suppose the C1i class has P1 properties, which are a1, a2, . . . , an and b1, b2, . . . , bx (x

<= n) a set of properties has remained unchanged between the two releases, release i and release

j. As well, suppose the C2i class has P1 properties, which are c1, c2, . . . , cn and d1, d2, . . . , dy

(y <= n) a set of properties has remained unchanged between the two releases, release i and release

j. When x / P1 > y / P1, then Stability (C1) > Stability (C2).

Property 3:

Suppose we have two versions of a system, version i and version j where (j > i). Assume we have

two classes, a class C1i in release i, and a corresponding class version C1j in release j. Let us

assume another two classes, a class C2i in release i, and a corresponding class version C2j in

release j. Suppose the C1i class has P1 properties, which are a1, a2, . . . , an and b1, b2, . . . , bx (x

< n) a set of properties has remained unchanged between the two releases, release i and release j.

As well, suppose the C2i class has P1 properties, which are a1, a2, . . . , an and b1, b2, . . . , b(x+1)

(x < n) a set of properties has remained unchanged between the two releases, release i and release

j. Then Stability (C2) = Stability (C1) + 1/P1.

Property 4:

Suppose we have two versions of a system, version i and version j where (j > i). Assume we have

two classes, a class C1i in release i, and a corresponding class version C1j in release j. Let us

assume another two classes, a class C2i in release i, and a corresponding class version C2j in

release j. Suppose the C1i class has P1 properties, which are a1, a2, . . . , an and b1, b2, . . . , bx (x

118

<= n) a set of properties has remained unchanged between the two releases, release i and release

j. As well, suppose the C2i class has P1 properties, which are a1, a2, . . . , an and b1, b2, . . . , bx

(x <= n) a set of properties has remained unchanged between the two releases, release i and release

j. Then Stability (C1) = Stability (C2).

8.2 Functional Stability Metric Validation

Our proposed metric for measuring use case diagram stability has the following parameters:

 The entity is the use case diagram being analyzed.

 The attribute measured is the stability.

 The unit is the percentage.

 The data scale is an interval.

The FS (Functional Stability) conforms to Kitchenham’s properties as follows:

Property 1:

Suppose we have two versions of a system, version i and version j where (j > i). Assume we have

two identifiers, an identifier ID1i in release i, and a corresponding identifier version ID1j in release

j. Let us assume another two identifiers, an identifier ID2i in release i, and a corresponding

identifier version ID2j in release j. Suppose the identifier ID1i has P1 properties, which are a1,

a2, . . . , an and b1, b2, . . . , bx (x <= n) a set of properties has remained unchanged between the

two releases, release i and release j. As well, suppose the identifier ID2i has P1 properties, which

are c1, c2, . . . , cn and d1, d2, . . . , dy (y <= n) a set of properties has remained unchanged between

the two releases, release i and release j. When x / P1 ≠ y / P1, then Stability (ID1) ≠ Stability (ID2).

119

Property 2:

Suppose we have two versions of a system, version i and version j where (j > i). Assume we have

two identifiers, an identifier ID1i in release i, and a corresponding identifier version ID1j in release

j. Let us assume another two identifiers, an identifier ID2i in release i, and a corresponding

identifier version ID2j in release j. Suppose the identifier ID1i has P1 properties, which are a1, a2,

. . . , an and b1, b2, . . . , bx (x <= n) a set of properties has remained unchanged between the two

releases, release i and release j. As well, suppose the ID2i class has P1 properties, which are c1,

c2, . . . , cn and d1, d2, . . . , dy (y <= n) a set of properties has remained unchanged between the

two releases, release i and release j. When x / P1 > y / P1, then Stability (ID1) > Stability (ID2).

Property 3:

Suppose we have two versions of a system, version i and version j where (j > i). Assume we have

two identifiers, an identifier ID1i in release i, and a corresponding identifier version ID1j in release

j. Let us assume another two identifiers, an identifier ID2i in release i, and a corresponding

identifier version ID2j in release j. Suppose the identifier ID1i has P1 properties, which are a1, a2,

. . . , an and b1, b2, . . . , bx (x < n) a set of properties has remained unchanged between the two

releases, release i and release j. As well, suppose the identifier ID2i has P1 properties, which are

a1, a2, . . . , an and b1, b2, . . . , b(x+1) (x < n) a set of properties has remained unchanged between

the two releases, release i and release j. Then Stability (ID2) = Stability (ID1) + 1/P1.

120

Property 4:

Suppose we have two versions of a system, version i and version j where (j > i). Assume we have

two identifiers, an identifier ID1i in release i, and a corresponding identifier version ID1j in release

j. Let us assume another two identifiers, a identifier ID2i in release i, and a corresponding identifier

version ID2j in release j. Suppose the identifier ID1i has P1 properties, which are a1, a2, . . . , an

and b1, b2, . . . , bx (x <= n) a set of properties has remained unchanged between the two releases,

release i and release j. As well, suppose the identifier ID2i has P1 properties, which are a1, a2, . .

. , an and b1, b2, . . . , bx (x <= n) a set of properties has remained unchanged between the two

releases, release i and release j. Then Stability (ID1) = Stability (ID2).

8.3 Behavioral Stability Metric Validation

Our proposed metric for measuring sequence diagram stability has the following parameters:

 The entity is the sequence diagram being analyzed.

 The attribute measured is the stability.

 The unit is the percentage.

 The data scale is an interval.

The BS (Behavioral Stability) conforms to Kitchenham’s properties as follows:

Property 1:

Suppose we have two versions of a system, version i and version j where (j > i). Assume we have

two messages, a message M1i in release i, and a corresponding message version M1j in release j.

Let us assume another two messages, a message M2i in release i, and a corresponding message

121

version M2j in release j. Suppose the M1i class has the properties a1, a2, a3 and M1j has the

properties b1, b2, b3, with x (x<=3) and properties have remained unchanged between the two

releases, release i and release j. As well, suppose the M2i class has the properties c1, c2, c3 and

M2j has the properties d1, d2, d3 with y (y<=3), and properties have remained unchanged between

the two releases, release i and release j. When x / 3 ≠ y / 3, then Stability (M1) ≠ Stability (M2).

Property 2:

Suppose we have two versions of a system, version i and version j where (j > i). Assume we have

two messages, a message M1i in release i, and a corresponding message version M1j in release j.

Let us assume another two messages, a message M2i in release i, and a corresponding message

version M2j in release j. Suppose the M1i class has the properties a1, a2, a3 and M1j has the

properties b1, b2, b3, with x (x<=3) properties have remained unchanged between the two releases,

release i and release j. As well, suppose the M2i class has the properties c1, c2, c3 and M2j has the

properties d1, d2, d3 with y (y<=3) properties have remained unchanged between the two releases,

release i and release j. When / 3 > y / 3, then Stability (M1) > Stability (M2).

Property 3:

Suppose we have two versions of a system, version i and version j where (j > i). Assume we have

two messages, a message M1i in release i, and a corresponding message version M1j in release j.

Let us assume another two messages, a message M2i in release i, and a corresponding message

version M2j in release j. Suppose the M1i class has the properties a1, a2, a3 and M1j has the

122

properties b1, b2, b3, with x (x<3), and properties have remained unchanged between the two

releases, release i and release j. As well, suppose the M2i class has the properties a1, a2, a3 and

M2j has the properties b1, b2, b3 with x+1and properties have remained unchanged between the

two releases, release i and release j. When and x / 3 > y / 3, then Stability (M2) = Stability (M1) +

1/3.

Property 4:

Suppose we have two versions of a system, version i and version j where (j > i). Assume we have

two messages, a message M1i in release i, and a corresponding message version M1j in release j.

Let us assume another two messages, a message M2i in release i, and a corresponding message

version M2j in release j. Suppose the M1i class has the properties a1, a2, a3 and M1j has the

properties b1, b2, b3, with x (x<=3) properties have remained unchanged between the two releases,

release i and release j. As well, suppose the M2i class has the properties a1, a2, a3 and M2j has the

properties b1, b2, b3 with x(x<=3) properties have remained unchanged between the two releases,

release i and release j. Then Stability (M1) = Stability (M2).

123

9 CHAPTER 9

CASE STUDIES

In this chapter, we describe the case studies.

We selected case studies in our experiment from two groups. The first group is published case

studies, and we have selected three different case studies. The other group consists of student

projects. These projects were designed by undergraduate students as a senior project conducted at

King Fahd University of Petroleum and Minerals, and another three projects were selected from

the best of these.

Before starting the experiment, we created a second version from each UML diagram. Our creation

of the diagram takes into consideration the most likely changes that can be introduced without

affecting the core of the original one. Next, we perform our experiment manually because we do

not have a tool that helps in conducting our experiment. The next sections show all the case studies

in detail.

9.1 Case Study 1: ATM

Automated Teller Machine (ATM) is a well-known case study [54]. The customer inserts his card,

enters a PIN and then can perform transactions, such as withdrawal and deposit, before a receipt

is issued by the ATM at the end of all the transactions. We used its class diagram and sequence

diagrams. For the sequence diagram we selected three diagrams, and the average number of

messages is seven. Table 23 shows the ATM experimental summary.

124

Figure 59 and Figure 60 shows ATM class diagram version 1 and version 2 respectively. Table 24

displays the comparison, and Table 25 shows the computation results. Sixty-nine percent of

version 1 of the class diagram remains in version 2.

 Figure 61 and Figure 62 show the first version and second version of the ATMStartUp sequence

diagram respectively. The comparison is described in Table 26. The second version of the sequence

diagram kept 76% of the first version, as shown in the Table 27 computations.

Figure 63 and Figure 64 show the Deposit sequence diagram, version 1 and version 2, respectively.

The comparison is shown in Table 28. Eighty-three percent of the first version remains in the

second one, as shown in the Table 29 computations.

Figure 65 and Figure 66 shows the first version and second version of the Withdrawal sequence

diagram respectively. The comparison is described at Table 30. The second version of the sequence

diagram kept 62% of the first one as, shown in the Table 31 computations.

Table 23 ATM Case Study Summary

Diagram Type System Name Stability

Class Diagram ATM 0.694

Sequence Diagram ATMStartUp 0.761

Sequence Diagram Deposit 0.833

Sequence Diagram Withdrawal 0.62

125

Figure 59 ATM Class Diagram version 1

126

Figure 60 ATM Class Diagram v

127

Table 24 ATM Class Diagrams Comparison

Classifier Name
Version 1 Version 2

Classifier Type Classifier Relationships Classifier Type Classifier Relationships

Savings Class Account-INH Class Account-INH

Account
Class Customer-ASO Interface -

 Transaction-ASO Transaction-ASO

Transaction Interface
Account-ASO

Interface
Account-ASO

 Check-ASO

Withdrawal Class Transaction-INH Class Transaction-INH

Chequing Class Account-INH Class Account-REA

Transfer Class Transaction-INH Class Transaction-REA

Customer Class
Account-ASO

Class
Account-INH

Bank-ASO Bank-AGG

Bank Class

Customer-ASO

Class

-

Transaction-REA Transaction-REA

ATM-AGG ATM-ASO

Inquiry Class Transaction-INH DELETED

Deposit Class Transaction-INH Class Transaction-INH

128

Display Class - DELETED

ATM Class

Display-AGG

Class

Show-AGG

CashDispenser-AGG CashDispenser-AGG

Receipt-AGG Receipt-AGG

EnvelopeAcceptor-AGG EnvelopeAcceptor-AGG

CardReader-AGG CardReader-AGG

OperatorPanel-AGG OperatorPanel-COM

KeyPad-AGG KeyPad-AGG

KeyPad Class - Class -

CashDispenser Class - Class -

OperatorPanel Class - Class -

Receipt Class - Class -

EnvelopeAcceptor Class - Class -

CardReader Class - Class -

129

Table 25 ATM Class Diagram Comparison Results

Classifier Name Changes From version 1 to version 2 Number Of

Changes

Number Of

Unique Pairs

Changes /

Unique

Savings - 0 2 0

Account Class => Interface 2 3 0.666

Customer-ASO => DELETED

Transaction Check-ASO => NEW 1 3 0.333

Withdrawal - 0 2 0

Chequing Account-INH => Account-REA 1 2 0.5

Transfer Transaction-INH => Transaction-REA 1 2 0.5

Customer Account-ASO => Account-INH 2 3 0.666

Bank-ASO => Bank-AGG

Bank Customer-ASO => DELETED 2 4 0.5

ATM-AGG => ATM-ASO

Inquiry DELETED FULL FULL 1

Deposit - 0 2 0

Display DELETED FULL FULL 1

ATM Display-AGG => Deleted 3 9 0.333

Show-AGG => NEW

OperatorPanel-AGG => OperatorPanel-COM

KeyPad - 0 1 0

CashDispenser - 0 1 0

130

OperatorPanel - 0 1 0

Receipt - 0 1 0

EnvelopeAcceptor - 0 1 0

CardReader - 0 1 0

SUM 5.5

Instability 0.305

Stability 0.695

131

Figure 61 ATMStartUp Sequence Diagram version 2

132

Figure 62 ATMStartUp Sequence Diagram version 2

133

Table 26 ATMStartUp Sequence Diagrams Comparison

The Identifier Properties

Message Name Message

Receiver

Message Caller Message Type Message Order

version 1 version 2 version 1 version 2 version

1

version

2
teurnON OperationPanel Operator Operator Synchronous Synchronous 1 1

notifyATM ATM OperationPanel OperationPanel Synchronous Synchronous 2 2

getATMStatus OperationPanel ATM ATM Synchronous Asynchronous 3 3

requestDollarAccount Display DELETED in version 2

initializeATM ATM ATM ATM Synchronous Asynchronous 5 4

setInitialCash ATM ATM ATM Synchronous Synchronous 6 6

getATMAmount OperationPanel OperationPanel OperationPanel Synchronous Synchronous 7 7

134

Table 27 ATMStartUp Sequence Diagrams Comparison Results

Message Name Message Receiver Changes Changes/NMP

teurnON Bank 0 0

notifyATM Deposit 0 0

getATMStatus Deposit 1 0.333

requestDollarAccount Account FULL 1

initializeATM Account 1 0.333

setInitialCash EnvelopeAcceptor 0 0

getATMAmount OperationPanel 0 0

Sum 1.666

Instability 0.238

Stability 0.762

135

Figure 63 Deposit Sequence Diagram version 1

Figure 64 Deposit Sequence Diagram version 2

136

Table 28 Deposit Sequence Diagrams Comparison

The Identifier Properties

Message Name Message Receiver Message Caller Message Type Message Order

version 1 version

2

version 1 version 2 version

1

version

2

sendServiceRequest Bank ATM ATM Synchronous Synchronous 1 1

doTransaction Deposit Bank Bank Synchronous Synchronous 2 3

validatePIN Deposit Deposit Deposit Synchronous Synchronous 3 2

getBalance Account Deposit Deposit Synchronous Asynchronous 4 4

setBalance Account Deposit Deposit Synchronous Synchronous 5 5

acceptEnvelope EnvelopeAcceptor Bank Bank Synchronous Synchronous 6 6

137

Table 29 Deposit Sequence Diagrams Comparison Results

Message Name Message Receiver Changes Changes / NMP

sendServiceRequest Bank 0 0

doTransaction Deposit 1 0.333

validatePIN Deposit 1 0.333

getBalance Account 1 0.333

setBalance Account 0 0

acceptEnvelope EnvelopeAcceptor 0 0

Sum 1

Instability 0.167

Stability 0.833

138

Figure 65 Withdrawal Sequence Diagram version 1

Figure 66 Withdrawal Sequence Diagram version 2

139

Table 30 Withdrawal Sequence Diagrams Comparison

The Identifier Properties

Message Name Message Receiver Message Caller Message Type Message Order

version 1 version 2 version 1 version 2 version

1

version

2

sendServiceRequest Bank ATM ATM Synchronous Synchronous 1 1

doTransaction Withdrawal Bank Bank Synchronous Synchronous 2 4

validatePIN Withdrawal Withdrawal Withdrawal Synchronous Synchronous 3 2

getBalance Account Withdrawal Withdrawal Synchronous Synchronous 4 5

setBalance Account Withdrawal Withdrawal Synchronous Synchronous 5 6

sendServiceRequest Bank Account Account Synchronous Synchronous 6 7

dispenseCash CashDispenser DELETED in version 2

140

Table 31 Withdrawal Sequence Diagrams Results

Message Name Message Receiver Changes Changes / NMP

sendServiceRequest Bank 0 0

doTransaction Withdrawal 1 0.333

validatePIN Withdrawal 1 0.333

getBalance Account 1 0.333

setBalance Account 1 0.333

sendServiceRequest Bank 1 0.333

dispenseCash CashDispenser FULL 1

Sum 2.666

Instability 0.38

Stability 0.62

141

9.2 Case Study 2: SCM

Supply chain management (SCM) application [55], we selected the Retailer subsystem. The

Retailer’s purpose is to present a Web service for a third party system. We used the class diagram

and the existing sequence diagrams. The class diagram consists of nine classifiers. For the

sequence diagram we selected three diagrams, and the average number of messages is three. Table

32 shows the experimental summary. Figure 67 and Figure 68 show the Retailer class diagram

version 1 and version 2, respectively. Table 33 displays the comparison, and Table 34 shows the

computation results. Sixty-six percent of version 1 of the class diagram remains in version 2.

Figure 69 and Figure 70 shows the first version and the second version of the Purchase sequence

diagram respectively. The comparison is described in Table 35. The second version of the sequence

diagram kept 76% of the first one, as shown in the Table 36 computations. Figure 71 and Figure

72 show the Replenish sequence diagram version 1 and version 2 respectively. The comparison is

shown in Table 37. 44% of the first version is remaining at the second one as shown Table 38

computations. Figure 73 and Figure 74 shows the first version and the second version of Source

sequence diagram, respectively. The comparison is described at Table 39. The second version of

the sequence diagram kept 66% of the first one as shown in the Table 40 computations.

Table 32 SCM Case Study Summary

Diagram Type System Name Stability

Class Diagram Retailer 0.462

Sequence Diagram Purchase 0.666

Sequence Diagram Replenish 0.444

Sequence Diagram Source 0.666

142

Figure 67 SCM Class Diagram version 1

Figure 68 SCM Class Diagram version 2

143

Table 33 SCM Class Diagrams Comparison

Classifier Name Version 1 Version 2

Classifier Type Classifier Relationships Classifier Type Classifier Relationships

Manufacturer Class Product-ASO Class -

- LeadingManufacturer-ASO

Catalog Class CatalogItem-COM Class CatalogItem-AGG

Catalog Item Class Product-ASO Class Product-ASO

Product Class CatalogItem-ASO Class CatalogItem-ASO

Inventory-ASO Inventory-ASO

Manufacturer-ASO Manufacturer-INH

PartsOrderItem-ASO PartsOrderItem-AGG

WareHouse-ASO WareHouse-ASO

Inventory Class Product-ASO DELETED

WareHouse-ASO

Customer Reference Class PurchaseOrder-ASO DELETED

Purchase Order Class CustomerReference-ASO Class -

PartsOrderItem-COM PartsOrderItem-AGG

- CustomerData-ASO

Parts Order Item Class Product-ASO Class -

WareHouse-ASO WareHouse-ASO

WareHouse Class Inventory-ASO Class -

Product-ASO Product-ASO

PartsOrderItem-ASO PartsOrderItem-ASO

144

Table 34 SCM Class Diagrams Comparison Results

Classifier Name Changes From version 1 to version 2 Number Of

Changes

Number Of

Unique Pairs

Changes /

Unique

Manufacturer Product-ASO => DELETED 2 3 0.666

LeadingManufacturer-ASO => NEW

Catalog CatalogItem-COM => CatalogItem-AGG 1 2 0.5

Catalog Item - 0 2 0

Product Manufacturer-ASO => Manufacturer-INH 2 6 0.333

PartsOrderItem-ASO => PartsOrderItem-AGG

Inventory DELETED FULL FULL 1

Customer Reference DELETED FULL FULL 1

Purchase Order CustomerReference-ASO => DELETED 3 4 0.75

PartsOrderItem-COM => PartsOrderItem-AGG

CustomerData-ASO => NEW

Parts Order Item Product-ASO => DELETED 1 3 0.333

WareHouse Inventory-ASO => DELETED 1 4 0.25

SUM 4.833

Instability 0.537

Stability 0.463

145

Figure 69 Purchase Sequence Diagram version 1

Figure 70 Purchase Sequence Diagram version 2

146

Table 35 Purchase Sequence Diagram Comparison

The Identifier Properties

Message Name Message Receiver Message Caller Message Type Message Order

version 1 version 2 version 1 version 2 version 1 version 2

getCatalogRequest Retailer Consumer Consumer Asynchronous Synchronous 1 1

submitOrderRequest Retailer Consumer Consumer Asynchronous Synchronous 2 2

Table 36 Purchase Sequence Diagram Comparison Results

Message Name Message Receiver Changes Changes / NMP

getCatalogRequest Retailer 1 0.333

submitOrderRequest Retailer 1 0.333

Sum 0.666

Instability 0.333

Stability 0.667

147

Figure 71 Replenish Sequence Diagram version 1

Figure 72 Replenish Sequence Diagram version 2

148

Table 37 Replenish Sequence Diagram Comparison

The Identifier Properties

Message Name Message Receiver Message Caller Message Type Message Order

version 1 version 2 version 1 version 2 version 1 version 2

POSubmit Manufacturer Warehouse Warehouse Asynchronous Synchronous 1 1

SNSubmit Warehouse Callback Manufacturer Manufacturer Asynchronous Synchronous 2 3

ProcessPOFault Warehouse Callback Manufacturer Manufacturer Asynchronous Synchronous 3 2

Table 38 Replenish Sequence Diagram Comparison Results

Message Name Message Receiver Changes Changes / NMP

POSubmit Manufacturer 1 0.333

SNSubmit Warehouse Callback 2 0.666

ProcessPOFault Warehouse Callback 2 0.666

Sum 1.666

Instability 0.555

Stability 0.445

149

Figure 73 Source Sequence Diagram version 1

Figure 74 Source Sequence Diagram version 2

150

Table 39 Source Sequence Diagram Comparison

The Identifier Properties

Message Name Message

Receiver

Message Caller Message Type Message Order

version 1 version 2 version 1 version 2 version 1 version 2

ShipGoodsRequest Warehouse Retailer Retailer Asynchronous Asynchronous 1 1

ShipGoodsRequest Warehouse Retailer Retailer Asynchronous Asynchronous 2 2

ShipGoodsRequest Warehouse DELETED in version 2

Table 40 Source Sequence Diagram Comparison Results

Message Name Message Receiver Changes Changes / NMP

ShipGoodsRequest Warehouse 0 0

ShipGoodsRequest Warehouse 0 0

ShipGoodsRequest Warehouse Full 1

Sum 1

Instability 0.333

Stability 0.667

151

9.3 Case Study 3: ORA

For the On Road Assistance (ORA) [56], we used the use case diagram. The diagram contains 13

use cases and five different actors.

Figure 75 and Figure 76 show Retailer use case diagram version 1 and version 2, respectively.

Table 41 displays the comparison, and Table 42 shows the computation results. Seventy-eight

percent of use case version 1 remains in version 2.

152

Figure 75 ORA Use Case Diagram version 1

153

Figure 76 ORA Use Case Diagram version 2

154

Table 41 ORA Use Case Diagram Comparison

Identifier Name Version 1 Version 2

Identifier Type Identifier Relationships Identifier Type Identifier Relationships

Bank DELETED - Change the name to Sponsor

ChangeServices Use Case Bank-ASO Use Case -

 - RequestVechicleRepair-EX

 - Sponsor-ASO

DiscoverServices Use Case with

Extension Point

FindLocalServies-INC Use Case with

Extension Point

FindLocalServies-INC

FindLocalServies Use Case - Use Case -

FindRemoteServices Use Case ServiceCentre-ASO Use Case ServiceCentre-ASO

DiscoverServices-EX DiscoverServices-EX

ServiceCentre Actor FindRemoteServices-ASO Actor FindRemoteServices-ASO

Driver Actor RequestVechicleRepair-ASO Actor RequestVechicleRepair-ASO

CancelVechicleRepair-ASO CancelVechicleRepair-ASO

RequestVechicleRepair Use Case ChangeServices-INC Use Case with

Extension Point

-

DiscoverServices-INC DiscoverServices-INC

GetGPSData-INC -

OrderTwoTruck-INC OrderTwoTruck-INC

OrderGrage-INC OrderGrage-INC

155

RentACar-INC RentACar-INC

CancelVechicleRepair Use Case with

Extension Point

Driver-ASO Use Case with

Extension Point

Driver-ASO

- CancellationForm-INC

GetGPSData Use Case GPS-ASO Use Case GPS-ASO

- RequestVechicleRepair-EX

GPS Actor GetGPSData-ASO Actor GetGPSData-ASO

OrderTwoTruck DELETED - Change the name to OderTractor

OrderGrage Use Case RoadAssistance-ASO Use Case RoadAssistance-ASO

RentACar Use Case RoadAssistance-ASO Use Case RoadAssistance-ASO

CancelTwoTruck Use Case RoadAssistance-ASO Use Case RoadAssistance-ASO

CancelVechicleRepair-EX CancelVechicleRepair-EX

CancelGrage Use Case RoadAssistance-ASO Use Case RoadAssistance-ASO

CancelVechicleRepair-EX CancelVechicleRepair-EX

CancelCarRental Use Case RoadAssistance-ASO Use Case RoadAssistance-ASO

CancelVechicleRepair-EX CancelVechicleRepair-EX

RoadAssistance Actor OrderTwoTruck-ASO Actor OrderTwoTruck-ASO

OrderGrage-ASO OrderGrage-ASO

RentACar-ASO RentACar-ASO

CancelTwoTruck-ASO CancelTwoTruck-ASO

CancelGrage-ASO CancelGrage-ASO

CancelCarRental-ASO CancelCarRental-ASO

156

Table 42 ORA Class Diagram Comparison Results

Identifier Name Changes From version 1 to version 2 Number Of

Changes

Number Of

Unique Pairs

Changes/Unique

Bank DELETED FULL - 1

ChangeServices Bank-ASO => DELETED 3 4 0.75

RequestVechicleRepair-EX => NEW

Sponsor-ASO => NEW

DiscoverServices - 0 - 0

FindLocalServies - 0 - 0

FindRemoteServices - 0 - 0

ServiceCentre - 0 - 0

Driver - 0 - 0

RequestVechicleRepai

r

Use Case => Use Case with Extension Point 3 7 0.428

ChangeServices-INC => DELETED

GetGPSData-INC => DELETED

CancelVechicleRepair CancellationForm-INC => NEW 1 3 0.333

GetGPSData RequestVechicleRepair-EX => NEW 1 3 0.333

157

GPS - 0 - 0

OrderTwoTruck DELETED FULL - 1

OrderGrage - 0 - 0

RentACar - 0 - 0

CancelTwoTruck - 0 - 0

CancelGrage - 0 - 0

CancelCarRental - 0 - 0

RoadAssistance - 0 - 0

SUM 3.845

Instability 0.214

Stability 0.786

158

9.4 Case Study 4: O-RED System

The Online Real Estate Directory (O-RED) provides an online directory of the Real Estate offers

to serve the end user. We used the user management class diagram, which contains 11 classifiers.

Figure 77 and Figure 78 show Retailer class diagram version 1 and version 2, respectively. Table

43 displays the comparison, and Table 44 shows the computation results. Seventy-one percent of

version 1 of the class diagram remains in version 2.

159

Figure 77 O-RED Class Diagram version 1

160

Figure 78 O-RED Class Diagram version 2

161

Table 43 O-RED Class Diagram Comparison

Classifier Name Version 1 Version 2

Classifier

Type

Classifier Relationships Classifier

Type

Classifier Relationships

MailBox Class Message-ASO DELETED

UnavailableProperty-AGG

Message Class MailBox-ASO DELETED

UnavailableProperty Class RegisteredUser-AGG Class RegisteredUser-AGG

RealEstateOffice-ASO -

RegisteredUser Class User-INH Class User-INH

User Class MailBox-COM Class -

User_Interface-AGG User_Interface-AGG

UnregisteredUser_Interface-

AGG

UnregisteredUser_Interface-AGG

Administrator Class User-INH Class User-INH

Administrator_Interface-AGG Administrator_Interface-COM

Administrator_Interface Interface - Interface -

User_Interface Interface - Interface -

UnregisteredUser_Interface Interface - Interface -

RealEstateOffice Class User-INH Class User-INH

UnavailableProperty-ASO -

RealEstateOffice_Interface-

AGG

RealEstateOffice_Interface-AGG

RealEstateOffice_Interface Interface - Interface -

162

Table 44 O-RED Class Diagram Comparison Results

Classifier Name Changes From version 1 to version 2 Number Of

Changes

Number

Of Unique

Pairs

Changes /

Unique

MailBox DELETED FULL FULL 1

Message DELETED FULL FULL 1

UnavailableProperty RealEstateOffice-ASO => DELETED 1 3 0.333

RegisteredUser - 0 - 0

User MailBox-COM => DELETED 1 4 0.25

Administrator Administrator_Interface-AGG =>

Administrator_Interface-COM

1 3 0.333

Administrator_Interface - 0 - 0

User_Interface - 0 - 0

UnregisteredUser_Interface - 0 - 0

RealEstateOffice UnavailableProperty-ASO => UnavailableProperty-AGG 1 4 0.25

RealEstateOffice_Interface - 0 - 0

SUM 3.16

Instability 0.287

Stability 0.713

163

9.5 Case Study 5: HOSS System

The Hajj Online Services System (HOSS)is an online service of Hajj management. We used the

use case diagram of the Communication Management Subsystem. It contains nine use cases and

three actors.

Figure 79 and Figure 80 show Retailer use case diagram version 1 and version 2, respectively.

Table 45 displays the comparison, and Table 46 shows the computation results. Fifty-three percent

of version 1 of the use case diagram remains in version 2.

164

Figure 79 HOSS Use Case Diagram version 1

165

Figure 80 HOSS Use Case Diagram version 2

166

Table 45 HOSS Use Case Diagram Comparison

Identifier Name Version 1 Version 2

Identifier Type Identifier Relationships Identifier Type Identifier Relationships

Administrator Actor Delete message-ASO Actor -

View message-ASO View message-ASO

Receive message-ASO Receive message-ASO

Reply to message-ASO Reply to message-ASO

Send message-ASO Send message-ASO

SMS Messaging-ASO -

- Manage messages -ASO

- Remove Message - ASO

Delete message DELETED - Change the name to Remove Message

View message Use Case Administrator-ASO Use Case Administrator-ASO

 Pilgrim-ASO Pilgrim-ASO

 Agency supervisor-ASO Agency supervisor-ASO

 Email Messaging-EX -

 - SMS Messaging-EX

Receive message Use Case Administrator-ASO Use Case Administrator-ASO

Pilgrim-ASO Pilgrim-ASO

Agency supervisor-ASO Agency supervisor-ASO

Email Messaging-EX -

- SMS Messaging-EX

Reply to message Use Case Administrator-ASO Use Case Administrator-ASO

Pilgrim-ASO Pilgrim-ASO

Agency supervisor-ASO Agency supervisor-ASO

Email Messaging-EX -

- SMS Messaging-EX

Send message Use Case Administrator-ASO Use Case Administrator-ASO

Pilgrim-ASO Pilgrim-ASO

167

Agency supervisor-ASO Agency supervisor-ASO

Email Messaging-EX -

- SMS Messaging-EX

Pilgrim Actor Delete message-ASO Actor -

View message-ASO View message-ASO

Receive message-ASO Receive message-ASO

Reply to message-ASO Reply to message-ASO

Send message-ASO Send message-ASO

- Delete All - ASO

- Remove Message - ASO

Agency supervisor Actor Delete message-ASO Actor -

View message-ASO View message-ASO

Receive message-ASO Receive message-ASO

Reply to message-ASO Reply to message-ASO

Send message-ASO Send message-ASO

Send message via system-ASO Send message via system-ASO

- Delete All - ASO

- Remove Message - ASO

SMS Messaging Use Case with

Extension Point

Administrator-ASO Use Case with

Extension Point

Administrator-ASO

Providing communication

services-EX

-

Email Messaging Use Case with

Extension Point

Providing communication

services-EX

Use Case with

Extension Point

-

Send message via

system
DELETED

Providing

communication services
DELETED

168

Table 46 HOSS Use Case Diagram Comparison Results

Identifier Name Changes From version 1 to version 2 Number Of

Changes

Number Of

Unique Pairs

Changes

/Unique

Administrator Delete message-ASO => DELETED 4 9 0.444

SMS Messaging-ASO => DELETED

Manage messages -ASO => NEW

Remove Message - ASO => NEW

Delete message DELETED FULL - 1

View message Email Messaging-EX => DELETED 2 6 0.333

SMS Messaging-EX => NEW

Receive message Email Messaging-EX => DELETED 2 6 0.333

SMS Messaging-EX => NEW

Reply to message Email Messaging-EX => DELETED 2 6 0.333

SMS Messaging-EX => NEW

Send message Email Messaging-EX => DELETED 2 6 0.333

SMS Messaging-EX => NEW

Pilgrim Delete message-ASO => DELETED 3 8 0.375

Delete All - ASO => NEW

Remove Message - ASO => NEW

Agency supervisor Delete message-ASO => DELETED 3 9 0.333

Delete All - ASO => NEW

169

Remove Message - ASO => NEW

SMS Messaging Providing communication services-EX => DELETED 1 3 0

Email Messaging Providing communication services-EX => DELETED 1 2 0.5

Send message via system DELETED FULL - 1

Providing communication

services
DELETED FULL - 1

 SUM 5.541

Instability 0.462

Stability 0.538

170

9.6 Case Study 6: ESAP System

The Electronic Students’ Academic Portfolio, (ESAP), is an application used to help the DAD

department to achieve their goals and do their work more efficiently with less paper work. We

used the existing use case diagram that consists of 13 use cases and two actors.

Figure 81 and Figure 82 show Retailer use case diagram version 1 and version 2, respectively.

Table 47 displays the comparison, and Table 48 shows the computation results. Sixty-one percent

of version 1 of the use case diagram remains in version 2.

171

Figure 81 ESAP Use Case Diagram version 1

172

Figure 82 ESAP Use Case Diagram version 2

173

Table 47 ESAP Use Case Diagram Comparison

Identifier Name
Version 1 Version 2

Identifier Type Identifier Relationships Identifier Type Identifier Relationships

Delete Category Item Use Case View Category Item - EX Use Case View Category Item - EX

Update Category Item
Use Case with

Extension Point

View Category Item - EX

Use Case

View Category Item - EX

-
Attach File to Category Item -

INC

Attach File to Category

Item
Use Case

Update Category Item - EX
Use Case

-

Add New Category Item - EX -

Add New Category Item

Use Case with

Extension Point
View Category - EX

Use Case

View Category - EX

 -
Attach File to Category Item -

INC

Download Category

Item Attachment
Use Case View Category Item - EX Use Case -

View Category Item
Use Case with

Extension Point

View Category - EX
Use Case with

Extension Point

View Category - EX

-
Download Category Item

Attachment - INC

View Category
Use Case with

Extension Point

Portfolio Owner - ASO Use Case with

Extension Point

Portfolio Owner - ASO

- Advisor - ASO

Update Category Use Case View Category - EX Use Case View Category - EX

Delete Category Use Case View Category - EX Use Case View Category - EX

Delete Category Item

Attachment
Use Case View Category Item - EX Use Case View Category Item - EX

Add Comment on

Category Item
DELETED - Change the name to Add Comment

174

Add New Category Use Case View Category Item - EX Use Case View Category Item - EX

Generate Portfolio

Instance
DELETED

Advisor Actor

Add Comment on Category

Item - EX

Actor

-

- View Category - ASO

- Add Comment - ASO

Portfolio Owner Actor

Add Comment on Category

Item - EX

Actor

-

View Category - EX View Category - EX

Generate Portfolio Instance -

EX
-

- Add Comment - ASO

175

Table 48 ESAP Use Case Diagram Comparison Results

Identifier Name Changes From version 1 to version 2 Number

Of

Changes

Number

Of Unique

Pairs

Changes /

Unique

Delete Category Item - 0 - 0

Update Category Item Attach File to Category Item - INC => NEW 1 3 0.333

Attach File to Category Item Update Category Item - EX => DELETED 2 3 0.666

Add New Category Item - EX => DELETED

Add New Category Item Attach File to Category Item - INC => NEW 1 3 0.333

Download Category Item

Attachment

View Category Item - EX => DELETED 1 2 0.5

View Category Item Download Category Item Attachment - INC => NEW 1 3 0.333

View Category Advisor - ASO => NEW 1 3 0.333

Update Category - 0 - 0

Delete Category - 0 - 0

Delete Category Item

Attachment

- 0 - 0

Add Comment on Category Item DELETED FULL - 1

Add New Category - 0 - 0

Generate Portfolio Instance DELETED FULL - 1

Advisor Add Comment on Category Item - EX => DELETED 3 4 0.75

View Category - ASO => NEW

Add Comment - EX => NEW

Portfolio Owner Add Comment on Category Item - EX => DELETED 3 5 0.6

Generate Portfolio Instance - EX => DELETED

Add Comment - EX => NEW

SUM 5.85

Instability 0.39

Stability 0.61

176

10 CHAPTER 10

CONCLUSION AND FUTURE WORK

In this chapter, we summarize our research and suggest some ideas for future work.

10.1 Conclusion and Thesis Contribution

The purpose of our research is to propose a suite of metrics that measures the stability of UML

class diagrams, UML use case diagrams, and UML sequence diagrams. We performed a

comprehensive survey on the proposed stability metrics, which shows that UML diagrams are not

yet covered. The existing stability metrics target the source-code, and few of them have been

validated theoretically.

The research methodology we followed to propose this suite of metrics starts with UML diagrams

analysis. We identified all UML diagram elements, and selected a set of them to compute their

unchanged values. The selection of these elements was based on two things; first, the elements

that are not optional, and second, the elements must serve the meaning of the UML diagram. Then

we selected an identifier in order to compare UML diagram versions. The identifier contains the

minimum information that can be used to recognize the corresponding partner in the next UML

diagram version so that we can make a correct comparison.

The UML diagrams are full of relationships; therefore, in order to avoid counting the changes more

than once we proposed the Client Master approach. The Client Master approach is used to

determine which side of the relationship is the client and which one is the master; the changes in

177

the relationship will be counted as being on the client side. Then we check all possible changes

that may happen to any selected element in each UML diagram.

Finally we introduced our metrics suite to compute the unchanged properties in each UML

diagram. These metrics are: the structural stability (SS) metric to measure UML class diagrams,

the functional stability (FS) metric to measure UML use case diagrams, and the behavioral stability

(BS) metric to measure UML sequence diagrams.

All metrics have been theoretically validated using the properties outlined by Kitchenham et al.

We also applied our metrics on six different case studies, which are: Automated Teller Machine

(ATM), Supply Chain Management (SCM), On Road Assistance (ORA), Online Real Estate

Directory (O-RED), Hajj Online Services System (HOSS), and Electronic Students’ Academic

Portfolio (ESAP).

10.2 Future work

The following are some directions for future research:

 Provide a tool to compute the metrics suite. We need a tool that helps to perform the

experiments easily and precisely.

 Empirically validate the proposed metrics, and correlate them with the maintenance

process.

 In the research, we consider the elements that have been renamed as having been deleted,

so we need to consider these elements without counting them as fully changed.

 UML sequence diagram fragments and constrains are not covered, so we need to extend

the sequence diagram metric to consider them.

178

10.3 Threats to Validity

There are some threats that may affect the validity of the results. First, because there is no available

tool to perform the experiment, we did it manually, which may have introduced errors as it is a

human process. However, we verified the manual results more than once to overcome this threat.

Another possible threat is that the experiments were done on small size projects; the use of large

size projects may provide more confidence on the results.

Finally, the proposed metrics have not been empirically validated due to the lack of the UML

diagrams’ data, a correlation with the proposed metrics’ values and defects may provide more

confidence on the applicability of these proposed metrics. We plan to run such a validation once

the data is available.

179

References

[1] W. Li, "Software product metrics," Potentials, IEEE, vol. 18, pp. 24-27, 1999.

[2] OMG, "OMG Unified Modeling LanguageTM (OMG UML), Superstructure," ed.

[3] M. K. Daskalantonakis, "A practical view of software measurement and implementation

experiences within Motorola," Software Engineering, IEEE Transactions on, vol. 18, pp.

998-1010, 1992.

[4] M. Azuma, T. Komiyama, T. Miyake, S. Sakurai, A. Yamada, and T. Yonezawa, "Panel:

the model and metrics for software quality evaluation report of the Japanese National

Working Group," in Computer Software and Applications Conference, 1990. COMPSAC

90. Proceedings., Fourteenth Annual International, 1990, pp. 64-69.

[5] OMG, "UML 2.0," Object Management Group, 2005.

[6] M. Misbhauddin, "Towards An Integrated Metamodel Based Approach to Software

Refactoring," Dissertation/Thesis, ProQuest, UMI Dissertations Publishing, 2012.

[7] I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard, "Object-oriented software

engineering: a use case driven approach," 1992.

[8] D. Pilone and N. Pitman, UML 2.0: in a nutshell. US: O'Reilly, 2005.

[9] K. Sethi, Y. Cai, S. Wong, A. Garcia, and C. Sant'Anna, "From retrospect to prospect:

Assessing modularity and stability from software architecture," in Joint Working

IEEE/IFIP Conference on Software Architecture, 2009 European Conference on

Software Architecture. WICSA/ECSA 2009, 2009, pp. 269-272.

[10] A. Molesini, A. Garcia, C. von Flach Garcia Chavez, and T. V. Batista, "Stability

assessment of aspect-oriented software architectures: A quantitative study," Journal of

Systems and Software, vol. 83, pp. 711-722, 2010/05// 2010.

[11] S. A. Tonu, A. Ashkan, and L. Tahvildari, "Evaluating architectural stability using a

metric-based approach," in Proceedings of the 10th European Conference on Software

Maintenance and Reengineering, 2006. CSMR 2006, 2006, pp. 10-pp.-270.

[12] M. Jazayeri, "On Architectural Stability and Evolution," in Reliable Software

Technologies — Ada-Europe 2002, J. Blieberger and A. Strohmeier, Eds., ed: Springer

Berlin Heidelberg, 2002, pp. 13-23.

[13] J. Bansiya, "Evaluating Framework Architecture Structural Stability," ACM Comput.

Surv., vol. 32, 2000/03// 2000.

[14] H. Ma, W. Shao, L. Zhang, Z. Ma, and Y. Jiang, "Applying OO Metrics to Assess UML

Meta-models," in «UML» 2004 — The Unified Modeling Language. Modeling

Languages and Applications, T. Baar, A. Strohmeier, A. Moreira, and S. J. Mellor, Eds.,

ed: Springer Berlin Heidelberg, 2004, pp. 12-26.

[15] M. Mattsson and J. Bosch, "Characterizing stability in evolving frameworks," in

Proceedings of Technology of Object-Oriented Languages and Systems, 1999, 1999, pp.

118-130.

[16] A. Moataz, R. Raimi, A. Jarallah, and K. Sohel, "Measuring architectural stability in

object oriented software," King Fahad University of Petroleum and Minerals, Dhahran,

2003 2003.

180

[17] Y. S. Hassan, "Measuring software architectural stability using retrospective analysis,"

M.S., King Fahd University of Petroleum and Minerals (Saudi Arabia), Saudi Arabia,

2007.

[18] L. Aversano, M. Molfetta, and M. Tortorella, "Evaluating architecture stability of

software projects," in 2013 20th Working Conference on Reverse Engineering (WCRE),

2013, pp. 417-424.

[19] D. Grosser, H. A. Sahraoui, and P. Valtchev, "Predicting software stability using case-

based reasoning," in 17th IEEE International Conference on Automated Software

Engineering, 2002. Proceedings. ASE 2002, 2002, pp. 295-298.

[20] D. Grosser, H. A. Sahraoui, and P. Valtchev, "An analogy-based approach for predicting

design stability of Java classes," in Software Metrics Symposium, 2003. Proceedings.

Ninth International, 2003, pp. 252-262.

[21] D. Rapu, S. Ducasse, T. Girba, and R. Marinescu, "Using history information to improve

design flaws detection," in Eighth European Conference on Software Maintenance and

Reengineering, 2004. CSMR 2004. Proceedings, 2004, pp. 223-232.

[22] W. Li, L. Etzkorn, C. Davis, and J. Talburt, "An empirical study of object-oriented

system evolution," Information and Software Technology, vol. 42, pp. 373-381,

2000/04/15/ 2000.

[23] M. Alshayeb, M. Naji, M. O. Elish, and J. Al-Ghamdi, "Towards measuring object-

oriented class stability," IET Software, vol. 5, pp. 415-424, 2011/08// 2011.

[24] M. Alshayeb, "On the relationship of class stability and maintainability," IET Software,

vol. 7, pp. 339-347, 2013/12// 2013.

[25] M. O. Elish and D. Rine, "Indicators of Structural Stability of Object-Oriented Designs:

A Case Study," in Software Engineering Workshop, 2005. 29th Annual IEEE/NASA,

2005, pp. 183-192.

[26] M. Mattsson and J. Bosch, "Stability assessment of evolving industrial object-oriented

frameworks," Journal of Software Maintenance: Research and Practice, vol. 12, pp. 79-

102, 2000/03/01/ 2000.

[27] M. O. Elish and D. Rine, "Investigation of metrics for object-oriented design logical

stability," in Seventh European Conference on Software Maintenance and Reengineering,

2003. Proceedings, 2003, pp. 193-200.

[28] S. R. Chidamber and C. F. Kemerer, "A metrics suite for object oriented design," IEEE

Transactions on Software Engineering, vol. 20, pp. 476-493, 1994/06// 1994.

[29] S. Raemaekers, A. van Deursen, and J. Visser, "Measuring software library stability

through historical version analysis," in 2012 28th IEEE International Conference on

Software Maintenance (ICSM), 2012, pp. 378-387.

[30] D. Kelly, "A study of design characteristics in evolving software using stability as a

criterion," IEEE Transactions on Software Engineering, vol. 32, pp. 315-329, 2006/05//

2006.

[31] S. S. Yau and J. S. Collofello, "Some Stability Measures for Software Maintenance,"

IEEE Transactions on Software Engineering, vol. SE-6, pp. 545-552, 1980/11// 1980.

[32] M. Alshayeb and W. Li, "An Empirical Study of System Design Instability Metric and

Design Evolution in an Agile Software Process," J. Syst. Softw., vol. 74, pp. 269-274,

2005/02// 2005.

181

[33] H. M. Olague, L. H. Etzkorn, W. Li, and G. Cox, "Assessing design instability in iterative

(agile) object-oriented projects," Journal of Software Maintenance and Evolution:

Research and Practice, vol. 18, pp. 237-266, 2006/07/01/ 2006.

[34] R. C. Martin and M. Martin, Agile Principles, Patterns, and Practices in C#.

[35] J. Mayrand, C. Leblanc, and E. Merlo, "Experiment on the Automatic Detection of

Function Clones in a Software System Using Metrics," 1996.

[36] J. F. Patenaude, E. Merlo, M. Dagenais, and B. Lague, "Extending software quality

assessment techniques to Java systems," in Seventh International Workshop on Program

Comprehension, 1999. Proceedings, 1999, pp. 49-56.

[37] K. A. Kontogiannis, R. Demori, E. Merlo, M. Galler, and M. Bernstein, "Pattern

matching for clone and concept detection," Automated Software Engineering, vol. 3, pp.

77-108, 1996/06/01/ 1996.

[38] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K. Kontogiannis, "Measuring

clone based reengineering opportunities," in Software Metrics Symposium, 1999.

Proceedings. Sixth International, 1999, pp. 292-303.

[39] D. H. Qiu, H. Li, and J. L. Sun, "Measuring software similarity based on structure and

property of class diagram," in 2013 Sixth International Conference on Advanced

Computational Intelligence (ICACI), 2013, pp. 75-80.

[40] J. Krinke, "Identifying similar code with program dependence graphs," in Eighth

Working Conference on Reverse Engineering, 2001. Proceedings, 2001, pp. 301-309.

[41] C. Liu, C. Chen, J. Han, and P. S. Yu, "GPLAG: Detection of Software Plagiarism by

Program Dependence Graph Analysis," 2006, pp. 872-881.

[42] J. H. Johnson, "Identifying Redundancy in Source Code Using Fingerprints," 1993, pp.

171-183.

[43] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, "CP-Miner: Finding Copy-Paste and Related

Bugs in Large-Scale Software Code," IEEE Trans. Softw. Eng., vol. 32, pp. 176-192,

2006/03// 2006.

[44] R. Hennicker and N. Koch, "Systematic design of Web applications with UML," in

Unified modeling language, ed: IGI Publishing, 2001, pp. 1-20.

[45] S. Berner, M. Glinz, and S. Joos, "A classification of stereotypes for object-oriented

modeling languages," presented at the Proceedings of the 2nd international conference on

The unified modeling language: beyond the standard, Fort Collins, CO, USA, 1999.

[46] L. Briand, K. El Emam, and S. Morasca, "Theoretical and empirical validation of

software product measures," International Software Engineering Research Network,

Technical Report ISERN-95-03, 1995.

[47] K. El-Emam, "A methodology for validating software product metrics," 2000.

[48] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and Practical Approach:

PWS Publishing Co., 1998.

[49] K. Srinivasan and T. Devi, "Software Metrics Validation Methodologies in Software

Engineering," ed: IJSEA, 2014.

[50] L. C. Briand, J. W. Daly, and J. Wust, "A unified framework for cohesion measurement

in object-oriented systems," in Software Metrics Symposium, 1997. Proceedings., Fourth

International, 1997, pp. 43-53.

[51] E. J. Weyuker, "Evaluating software complexity measures," Software Engineering, IEEE

Transactions on, vol. 14, pp. 1357-1365, 1988.

182

[52] B. Kitchenham, S. L. Pfleeger, and N. Fenton, "Towards a Framework for Software

Measurement Validation," IEEE Trans. Softw. Eng., vol. 21, pp. 929-944, 1995.

[53] L. Maciaszek, C. González-Pérez, and S. Jablonski, Evaluation of Novel Approaches to

Software Engineering: 3rd and 4th International Conferences, ENASE 2008/2009,

Funchal, Madeira, Portugal, May 4-7, 2008 / Milan, Italy, May 9-10, 2009. Revised

Selected Papers vol. 69. Berlin, Heidelberg: Springer, 2010.

[54] L. C. Briand, Y. Labiche, and L. O'Sullivan, "Impact analysis and change management of

UML models," in Software Maintenance, 2003. ICSM 2003. Proceedings. International

Conference on, 2003, pp. 256-265.

[55] M. Chapman, M. Goodner, B. Lund, B. McKee, and R. Rekasius, "Supply Chain

Management Sample Application Architecture," Web Services Interoperability

Organization, 2003.

[56] N. Koch, "Automotive case study: UML specification of on road assistance scenario,"

Technical Report 1, FAST2007.

183

Vitae

Name : Amjad Abu Hassan

Nationality : Palestine

Date of Birth :10/9/1987

 Email : eng.abuhassan@gmail.com

Address : Yatta, Hebron, Palestine

Academic Background :Amjad Abu Hassan completed his Bachelors degree in computer

systems engineering from Palestine Polytechnic University in January 2011. Since that he

worked at Exalt technologies until he joined King Fahd University of Petroleum and

Minerals in February 2013.

	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	ABSTRACT
	ملخص الرسالة
	1 CHAPTER 1 INTRODUCTION
	1.1 Motivation
	1.2 Research Objectives
	1.3 Contributions
	1.4 The Outline

	2 CHAPTER 2 BACKGROUND
	2.1 Unified Modeling Language (UML)
	2.1.1 Structural View
	2.1.2 Behavioral View
	2.1.3 Functional View
	2.2 UML Class Diagram
	2.2.1 Classes
	2.2.2 Class Diagram Relationships
	2.2.3 Association classes
	2.3 UML Use Case Diagram
	2.3.1 Use Cases
	2.3.2 Actors
	2.3.3 System Boundaries
	2.3.4 Use Case Diagram Relationships
	2.4 UML Sequence Diagram
	2.4.1 Participant
	2.4.2 Time
	2.4.3 Messages
	2.4.4 Notes
	2.4.5 Messages Type

	3 CHAPTER 3 LITERATURE REVIEW
	3.1 Stability
	3.1.1 Architecture Level Metrics
	3.1.2 Class Level Metrics
	3.1.3 System Level Metrics
	3.2 Similarity
	3.3 Summary

	4 CHAPTER 4 RESEARCH METHODOLOGY
	4.1 Analysis
	4.2 Evaluation
	4.3 Propose the Metrics

	5 CHAPTER 5 STRUCTURAL STABILITY
	5.1 Assessment
	5.1.1 Classifiers
	5.1.2 Comments
	5.1.3 Packages
	5.1.4 Dependency Relationship
	5.1.5 Association Relationship
	5.1.6 Aggregation Relationship
	5.1.7 Composition Relationship
	5.1.8 Inheritance Relationship
	5.1.9 Realization Relationship
	5.1.10 Association classes
	5.1.11 The Selected UML Class Diagram Identifier
	5.1.12 Summary
	5.2 Terminology and Formalism
	5.3 Structural Stability Metric
	5.3.1 Example

	6 CHAPTER 6 FUNCTIONAL STABILITY
	6.1 Assessment
	6.1.1 Actor
	6.1.2 Use Case
	6.1.3 System Boundaries
	6.1.4 Actor Relationships
	6.1.5 Generalization Relationship
	6.1.6 Include Relationship
	6.1.7 Extend Relationship
	6.1.8 The Selected UML Use Case Diagram Identifier
	6.1.9 Summary
	6.2 Terminology and Formalism
	6.3 Functional Stability Metric
	6.3.1 Example

	7 CHAPTER 7 BEHAVIORAL STABILITY
	7.1 Assessment
	7.1.1 Participant
	7.1.2 Stereotypes
	7.1.3 Messages
	7.1.4 A synchronous message
	7.1.5 An asynchronous message
	7.1.6 A return message
	7.1.7 Creation Message & Destruction Message
	7.1.8 Notes, Activation Bars, and Actors
	7.1.9 Time
	7.1.10 The Selected UML Sequence Diagram Identifier
	7.2 Terminology and Formalism
	7.3 Behavioral Stability Metric
	7.3.1 Example

	8 CHAPTER 8 THEORETICAL VALIDATION
	8.1 Structural Stability Metric Validation
	8.2 Functional Stability Metric Validation
	8.3 Behavioral Stability Metric Validation

	9 CHAPTER 9 CASE STUDIES
	9.1 Case Study 1: ATM
	9.2 Case Study 2: SCM
	9.3 Case Study 3: ORA
	9.4 Case Study 4: O-RED System
	9.5 Case Study 5: HOSS System
	9.6 Case Study 6: ESAP System

	10 CHAPTER 10 CONCLUSION AND FUTURE WORK
	10.1 Conclusion and Thesis Contribution
	10.2 Future work
	10.3 Threats to Validity

	References
	Vitae

