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THESIS ABSTRACT

NAME: Salihu Oladimeji Aliyu

TITLE OF STUDY: A New Approach To Arabic Sign Language Recognition

System

MAJOR FIELD: Electrical Engineering Department

DATE OF DEGREE: May, 2015

Sign language is important for facilitating communication between hearing im-

paired and the rest of the society. However, very few vocal people know sign lan-

guage. Therefore, there is a need to develop systems to translate between spoken

and sign languages automatically. The Arabic Sign Language (ArSL) has not wit-

nessed research attention as other international sign languages. Two approaches

have traditionally been used in the literature: image-based and glove-based systems.

Glove-based systems require the user to wear electronic instrument while perform-

ing the signs. The glove includes a number of sensors detecting different hand and

finger articulations. Image-based systems use camera(s) to acquire a sequence of

images of the signer. Each of the two approaches has its own disadvantages. The

glove-based method is not natural as the user must wear a cumbersome instrument

xiv



while the camera-based system requires specific background and environmental con-

ditions to achieve high accuracy. In this thesis, we propose a new approach for

ArSL recognition system which involves the use of the recently introduced device:

Leap Motion Controller (LMC). Data was collected by using a native adult signer,

for 100 isolated Arabic sign language words. Ten observations were collected for

each of the signs to give a total of 1000 observations. On this data set, 70% was

used for training and the rest for testing. A maximum recognition accuracy of

80.60% was achieved, on the test set, using a Gaussian Mixture Model (GMM)

based classifier.
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 ملخص الرسالة
 
 

 صالحو أولاديمجي عليو  :الاسم الكامل
 

 عربيةالشاار  الإلغة  لنظام ترجمةجديد  هاجمن :عنوان الرسالة
 

 هندسة كهربائية التخصص:
 

 م2015مايو,  :تاريخ الدرجة العلمية

 

لغة  عرفن يممن الناس قليل لكن لغة الإشارة هي مهمة لتسهيل التواصل بين ضعاف السمع وبقية أفراد المجتمع. و 
شهد لغة الإشارة تنطوقة ولغة الإشارة تلقائيا. لم ترجمة بين اللغة الملالإشارة. ولذلك، هناك حاجة إلى تطوير أنظمة ل

 نهجين . وقد جرت العادة على استخدامخرر غيرها من لغات الإشارة الافي الابحاث ك( اهتماما ArSLالعربية )
على  لتي تعتمدلنظم ا. االالكترونية والنظم القائمة على القفازات الصورتحليل ستندة إلى المالنظم : مختلفين للترجمة

لحساسات اضمن القفازات عدد من تت. الاشاراتأثناء تنفيذ  ةتتطلب من المستخدم ارتداء أداة الإلكترونيات قفاز ال
 تاميراكصور تستخدم  ليل التحمختلف مفاصل اليد والأصابع. النظم القائمة على حركة كشف عن الدقيقة لل

 المستخدمبر تجقفاز ال. كل من النهجين له سلبياته الخاصة. طريقة لمنفذ الاشاراتللحصول على سلسلة من الصور 
ددة لتحقي  يتطلب خرلفية وظروف بيئية مح تنظام الكاميرابينما مما يجعل الحركة غير طبيعية ارتداء أداة مرهقة  على 

دم جهاز لغة الاشارات العربية يستخفي هذه الأطروحة، نقترح نهجا جديدا لنظام التعرف على  درجة عالية من الدقة.
مائة مفردة من  (. وقد تم جمع بياناتLMC) Leap Motion Controllerتحكم تم تطويره مؤخررا يدعى 

اذج مفردة سبعة نمنماذج مختلفة من كل تم جمع عشرة اشخاص صم ممن لديهم خربرة بلغة الاشارة العربية. وقد 
 ٪80.60 دودبحتم التوصل إلى دقة تعرف نماذج التقييم في استخدمت لتطوير النظام والثلاثة الباقية للتقييم. و 

 Gaussian Mixture Model (GMM.)باستخدام 



CHAPTER 1

INTRODUCTION

1.1 Background

Sign language is the natural means of communication between the hearing im-

paired and the rest of the society. Statistics show that over 5% of the world

populations are hearing impaired [1]. The problem is that, very few vocal people

understand sign language. Hence, the need to develop systems capable of auto-

matically translating sign languages into words and sentences is becoming a ne-

cessity. In recent years, sign language recognition systems for American, British,

Indian, Chinese, Turkish, and many international sign languages have received

much attention as compared to the Arabic sign language. Therefore, in this work,

we will be focusing on the Arabic sign language recognition system. Up to date,

most developed systems for sign language recognition fall under one of two main

categories: glove-based and image-based approaches.

The glove-based approach requires signers to wear an electronic sensor glove.

1



The sensors track and detect hands and fingers motion. The drawback of this ap-

proach is that the signer has to wear a cumbersome instrument while performing

the signs [2]. Image-based approach uses image processing techniques to detect

and track hands and fingers, as well as facial expressions of the signer. A disadvan-

tage of this approach is that the segmentation of the hands and fingers requires

extensive computations. The signer may be required to wear colored gloves to

simplify the segmentation process. This approach is easier to the signer, however,

some restrictions on background and lighting may be needed for better recognition

accuracy [2].

In this thesis, we propose a completely new approach that eases the restrictions

and constraints of the two currently available approaches. In particular, we pro-

pose to use the recently introduced Leap Motion Controller (LMC) [3]. The LMC

detects and tracks hand and fingers motion while the sign is being performed. It

was introduced as means of interactivity with computers using natural movement

of hand and fingers for electronic games. It is finding application in wide areas

besides gaming. However, it has not been used for Arabic sign language recog-

nition before. Our first attempt of using the device for ArSLR at alphabet level

has been presented in [4, 5]. In this thesis, we extend the usage for recognition

of isolated words. We propose to use the LMC to acquire data for the hand and

fingers motion while the sign is performed. The LMC has been proven to have

0.7mm precision with regard to gesture-based user interface [6]. Considering its

high tracking precision, we propose to use the device as a backbone for Arabic

2



sign language recognition.

Unlike Micrsoft Kinect (MK) device which can detect motion in its active

range and provide information such as RGB, depth, and skeleton images among

others, the LMC focuses on hand and fingers tracking, and provides discrete data

of the object detected within its coverage. Similarly, complex computation are

not needed to extract features from the LMC as in the case of the MK device.

Therefore, we have used the device to collect data for the Arabic sign language

alphabets and 100 signs.

In addition to data acquisition, the proposed system includes a preprocessing

stage, a feature extraction stage, and a classification stage. Data collected from

signs performed by an adult native signer is used in this work. The developed

system relieves the signers from wearing cumbersome gloves and remove the back-

ground and lighting constraints which are limitations of the current approaches.

1.2 Problem Statement

Statistics shows that over 5% of the world population is hearing impaired [1].

To facilitate the communication between the hearing impaired and the rest of

society, the sign language is used. The problem is that most vocal people do not

understand sign language, hence, the need to develop electronic systems capable

of translating sign languages into text or spoken language. A typical advantage

of such system will be to install it in public places to aid communication. Several

systems have been proposed in the literature, though very few in the area of

3



Arabic Sign Language. The requirement of constant background lighting and

the wearing of cumbersomeness sensor-glove are among problems with current

approaches, hence, hindering its user acceptability. Therefore, the problem lies

in developing an Arabic Sign Language recognition system which will not require

the user to use cumbersome sensor instrument and will remove some constrains

in background lighting.

1.2.1 Thesis Objectives

The objectives of this thesis are:

� To develop a new approach to ArSLR that uses least restriction compared

to current methods.

� To test the proposed system over a medium size vocabulary set consisting

of 100 isolated word level signs.

� To investigate the most effective position for placing one or more LMCs and

method for combining data from LMCs.

1.3 Major Contributions

The major contributions of this research work include the following:

� Data collection of 10 samples each of 100 Arabic Sign Language words per-

formed by native deaf signer in the coverage area of the Leap Motion Con-

troller.
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� Development of algorithm for sign recognition from the data sets. Recog-

nition stage involves training using 70% of the data set and testing stages

using the rest of the data.

� Evaluating the performance of combining the data of two LMCs.

� Testing the developed setup on ArSL alphabet and isolated words.

1.4 Organization of Thesis

The rest of this thesis is organized as follows: In Chapter 2, we present a review

of different approaches and techniques which have been used in the literature for

ArSLR. First, we present a review on ArSLR using the image-based approach,

and using the sensor-based approach. This is followed by a review of Sign Lan-

guage Recognition (SLR) systems using LMC, MK devices, and finally, a review

of different techniques for multi-classifier fusion is presented. In Chapter 3, we

present the experimental setup and methodologies used for ArSLR. In Chapter

4, experimental results and discussions are presented in details. The results are

presented for several classifiers and various scenarios considered in this thesis. We

also present an alternative setup using the MK device. In Chapter 5, conclusion

of the thesis is given with some potential future research directions.
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CHAPTER 2

LITERATURE REVIEW

The image-based and the data glove have been the two traditional approaches

used in the literature. The first category requires the use of camera(s) to capture

signs performed by the signer. This is followed by segmenting the acquired images,

feature extraction etc. This approach has a drawback in that specific camera and

constant environmental background settings are required to achieve reasonable

accuracy. The second approach requires the signers to wear a cumbersome sensor

glove or a colored glove. The wearing of the color glove simplifies the task of

hand and finger segmentation. However, the drawback of this approach is that

the signer has to wear the sensors hardware along with the glove while performing

the signs [7].

In the following sections, a brief review of previous work is presented. Other

reviews presented in this chapter include sign language using the LMC, MK device

and review of classifier combination techniques.
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2.1 Image-Based Sign Language Recognition

System

Traditionally, there are three vocabulary levels of ArSLR systems: alphabets, iso-

lated words, and sentence level recognition. A typical image-based recognition

system consists of 5 stages: image acquisition, pre-processing, segmentation, fea-

ture extraction, and classification. In sections 2.1.1 and 2.1.2, a review on alphabet

and isolated words recognition systems for Arabic sign languages is presented.

2.1.1 Alphabets Sign Recognition

Under this scenario, the signer performs each letter separately. Mostly, letters are

represented by a static posture and the vocabulary size is limited. In this section,

several methods for image-based Arabic sign language alphabet recognition are

discussed. The alphabets used for Arabic sign language are displayed in Figure

2.1.
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Figure 2.1: Arabic Sign Language aphabets

Even though the Arabic alphabet only consists of 28 letters, the Arabic sign

language uses 39 signs. The eleven additional signs represent basic signs combining

two letters. For example, the two letters ”È@” are quite common in Arabic (similar

to the article ”the” in English). Therefore, most literature on ArSLR uses these

basic 39 signs.

In [8], Mohandes introduced an automatic recognition of the Arabic sign lan-

guage letters. For feature extraction, Hu’s moments are used. For classification,

the moment invariants are fed to support vector machines. A correct recognition

rate of 87% was achieved. Al-Jarrah and Halawani [9] developed a neuro-fuzzy

system. The main steps of the system include: image acquisition, filtering, seg-
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mentation, hand outline detection followed by feature extraction. Bare hands

were considered in the experiments achieving a recognition accuracy of 93.6%. In

[10], Al-Rousan and Hussain built an adaptive neuro-fuzzy inference system for

alphabet sign recognition. A colored glove was used to simplify segmentation and

geometric features were extracted from the hand region. The achieved recognition

accuracy was 95.5%.

Assaleh and Al-Rousan [11] used a polynomial classifier to recognize alphabet

signs. A glove with 6 different colors was used: 5 for fingertips and one for the

wrist region. Different geometric measures such as lengths and angles were used

as features. A recognition rate of about 93.4% was achieved on a database of

more than 200 samples representing 42 gestures. In [12], Maraqa and Abu-Zaiter

used recurrent neural networks for alphabet recognition. A database of 900 sam-

ples, covering 30 gestures performed by 2 signers, was used in their experiments.

Colored gloves similar to the ones in [11] were used in their experiments. The El-

man network achieved an accuracy rate of 89.7% while a fully recurrent network

improved the accuracy to 95.1%.

In [13], El-Bendary et al. developed a sign language recognition system for

the ArSL alphabets achieving an accuracy of 91.3%. In their system, images of

bare hands were processed. The input to the system is a set of features extracted

from a video of signs and the output is simple text. For each frame, the hand

outline is first extracted. Using a centroid point, the distances to the outline of the

hand covering 180 degrees are extracted as a 50 dimensional feature vector. These
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features are rotation, scale, and translation invariant. In the feature segmentation

stage, they assumed a small pause between letters. Such pauses are used to

separate the letter numbers and the related video frames. At the recognition

stage, a multilayer perceptron (MLP) neural network and a minimum distance

classifier (MDC) were used.

Hemayed and Hassanien [14] discussed an Arabic sign language alphabet recog-

nition system which converts signs into voice. The technique is much closer to real

life setup however; recognition is not performed in real time. The system focuses

on static and simple moving gestures. The inputs are color images of the gestures.

To extract the skin blobs, the Luma, blue-difference and red-difference Chroma

components (YCbCr) space was used. The Prewitt edge detector is used to ex-

tract the hand shape. To convert the image area into feature vectors, Principal

Component Analysis (PCA) is used with a K-Nearest Neighbor (KNN) Algorithm

in the classification stage. Naoum et al. [15] developed an image-based sign lan-

guage alphabet recognition system with an accuracy of 50% for naked hand, 75%

for hand with a red glove, 65% for hand with a black glove and 80% for hand with

a white glove. The system starts by finding histograms of the images. Profiles

extracted from such histograms are then used as input to a KNN classifier.

Arabic alphabet signs recognition is the simplest among all image-based ArSLR

approaches as the vocabulary size is limited and the signs are represented with

mostly static images. Such systems achieve high recognition rates of over 90%.

Note, however, alphabet signs are not commonly used in daily practice. Their
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use is limited to finger spelling of words without specific signs like proper names.

Much of the current research efforts have been put into developing systems that

focus on isolated words or even continuous sign recognition.

2.1.2 Isolated Signs Recognition

Contrary to alphabet sign recognition, word sign recognition techniques analyze

a sequence of images representing the entire sign, as shown in Figure 2.2, [16].

Figure 2.2: The image sequence of ”1”

In [17], Mohandes and Deriche used a Hidden Markov Model (HMM) to iden-

tify isolated Arabic signs from images. They used a dataset consisting of 500

samples representing 50 signs. A Gaussian skin color model was used to find the

signer’s face which is then taken as a reference for the hands movement. Two

colored gloves (orange and yellow) were used for the right and left hands for ease

of hand region segmentation as shown in Figure 2.3. A simple region growing

technique is used for hands segmentation. The recognition rate achieved over 50

signs was 98%. In [18], the same authors extended the work to cover a dataset of

300 signs achieving a recognition accuracy of 95%.
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Figure 2.3: The extracted right and left hand regions

Shanableh et al. developed a signer-independent system for isolated Arabic

signs [19]. They used segmented images of the hands extracted from colored

gloves. For feature extraction, they used zonal DCT coefficients, while KNN was

used for classification. The authors achieved a classification rate of 87% over a

vocabulary size of 23 signs. The same authors extended their work using HMM-

based classification [20, 21]. They introduced new video-based features where

motion is taken into account. The system achieved a recognition accuracy of

about 95%.

In [22], Youssif et al. developed an ArSLR system for isolated signs using

HMM. The regions of the palm and the fingers were modeled as ellipses and cir-

cles. They used a limited vocabulary size of 20 signs. With only 8 features they

were able to achieve an accuracy of 82.2% under glove free signer independent

mode. Zaki and Shaheen [23] presented a combination of appearance based fea-

tures. Kurtosis position was used to identify the articulation location, while PCA

was used to represent the hand region, and they used a motion code chain to

represent the hand movement. With a database of 50 signs, the system achieved

a recognition accuracy of about 90%.
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In [24], Samir and Aboul-Ela proposed a semantic-oriented approach. Natural

language processing rules are used to detect and correct errors from the classifi-

cation stage. The proposed approach was shown to enhance recognition accuracy

of ArSLR by around 20%. In [25], Elons et al. used a Pulse-Coupled Neural

Network (PCNN) for image features generation from two different viewing an-

gles. The features were evaluated using a fitness function to obtain a weighting

factor for each camera. The features derived from the two images were used to

obtain 3D optimized features. The dataset used in the experiment contains 50

isolated words and the achieved recognition accuracy was 96% for pose-invariant

restrictions with a tolerance of up to 90 degrees of freedom.

Elons in [26], proposed a Graphics Processing Unit (GPU) for real-time recog-

nition of Arabic Sign Language using Multi-level multiplicative neural networks

(MMNN). The system architecture depends on two layer of MMNN, where the

first layer determines the number of hands used by the signer, while second layer

performs the sign recognition. A maximum recognition rate of 83% was achieved

on 200 signs. In [27], Al-Rousan et al. developed a system which was able to per-

form automatic translations of dynamic signs. The proposed hierarchical system

divides signs into groups. For a given test sign, the group is first identified fol-

lowed by the sign recognition within that group. Twenty three geometric features

were used and tracked with an HMM classifier achieving a recognition accuracy

of 70.5% for user-independent mode and 92.5% for user-dependent mode.

Isolated word sign language recognition is more practical; however, it is much
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more complex than alphabet recognition. More importantly, word recognition

systems are required to deal with a sequence of images. The time component

in analyzing such a sequence of images is very important. Note also that the

vocabulary size for such systems can be very large. The challenge still remains

in dealing with signs that are separated by certain pauses between signs. It is

observed that the larger the vocabulary size, the less the accuracy becomes. For

Arabic sign language, the size of the vocabulary needed for practical situations

is still an open area for further research. In summary, the challenge for Arabic

sign language recognition system is to develop signer independent systems that

will deal with large vocabulary size suitable for practical deployment and will not

require the signer to wear glove nor require specific background settings.

2.2 Sensor-Based Sign Language Recognition

System

Sensor-based recognition methods process data acquired from gloves equipped

with sensors. The PowerGlove [28], DataGlove [29, 30], and CyberGlove [31],

have commonly been used for Arabic sign language recognition. These types of

gloves are shown in Figure 2.4.

14



(a) Power glove (b) Data glove

(c) Cyber glove

Figure 2.4: Types of glove

These gloves provide information on the position, rotation, movement, orien-

tation of the hand, and more importantly, finger bending. A large number of

features can be extracted from the data provided by the gloves. These features

can be used with a proper classifier to recognize the performed sign. In [32, 33],

Mohandes et al. used a cost effective off-the-shelf device to implement a robust

ArSLR system. Statistical features are extracted from the acquired signals and

used with an SVM classifier. With a database of 120 signs, the authors achieved

recognition accuracy of over 90%.

In [34], Assaleh et al. developed a low complexity classification system. The

glove used in their system had 5 bend sensors and a 3D accelerometer. From the

acquired data, a number of statistical parameters were estimated. A regression

technique was used to rank and select the most relevant features. The final list

of selected features was used with a KNN classifier. With a database of 10 signs

performed by 10 different signers, a recognition accuracy of 92.5% was achieved
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in signer-independent mode while this accuracy was 95.3% for signer-dependent

scenario. Ritchings et al. developed a computer-based system using the DataGlove

for teaching sign language [35]. Bend sensors and push button switches were used

to acquire 17 signals. The focus of the system was on assessing the ability of

trainees in replicating signs performed by an expert signer. The database used

covered 65 signs performed by four professional signers (teachers). The trainees

were able to duplicate the signs with an accuracy of 93%.

In [36], a first attempt of two-handed Arabic signs recognition was made. The

database consists of 20 samples from each of 100 two-handed signs performed

by two signers. Second order statistics from sub frames of the signs were used

as features. The length of the feature vector is then reduced using PCA. For

classification, the SVM was used achieving an accuracy of 99.6% with 100 signs.

In [37], Mohandes and Deriche used the Dempster-Shafer theory of evidence to

combine decisions from the CyberGlove, as shown in Figure 2.5, with 22 sensors

and the hand tracking system.

Figure 2.5: The CyberGlove system
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The authors showed that the fusion at the decision level outperforms the tra-

ditional feature based fusion. They started with some basic experiments using the

glove-based and the image-based systems independently. The image-based system

achieved an accuracy of 84.7% while the glove-based system achieved an accuracy

of 91.3%. The traditional feature based combination provided a maximum accu-

racy of 96.2% which was improved to 98.1% when fusion at the decision level is

performed.

2.3 Sign Language Recognition using LMC

In [4], we introduced the first attempt of using the Leap motion controller for Ara-

bic sign language recognition system. We started by evaluating the performance

of the device on 28 ArSL alphabets. Since then, other authors have attempted

to use the device for gesture recognition. In [38], the authors used Leap Motion

Controller on 50 different dynamic Arabic language signs performed by two differ-

ent signers. Temporal and spatial features were extracted from the Leap Motion

data and fed to an MLP classifier achieving recognition accuracy up to 88%. Two

sets of features were used: fingers position and fingers distances. Using fingers

positions gave an accuracy of 82% on 50 signs while fingers distances achieved an

accuracy of 88% on same data size.

In [39], the authors evaluated the suitability of the Leap Motion Controller for

application in Australian Sign Language recognition system. There experiment

revealed that, though the device can provides hand, finger movement tracking
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accurately, however, detection accuracy reduces when the hand is in position that

obstruct the device view. A typical example occurs when the hand is placed

perpendicular to the surface of the Leap device. The authors further conclude

that the LMC can be used to recognize basic signs, but not suitable to recognize

complex signs such as signs that involves face or body contact. Leap Motion

Controller have been used in combination with Surface Electromyography (SEMG)

to enhance gesture recognition rate [40].

In [41], Marin et al. proposed the used of Leap Motion Controller in combina-

tion with Microsoft Kinect for hand gesture recognition. Features based on finger-

tips positions and orientations were fed into a multi-class SVM classifier. In order

to improve the recognition rate, another set of features was extracted from the

Microsoft Kinect (MK) device and combined with the LMC. The complete feature

set was obtained by concatenation of the two set of features (V = [VLMC , VMK ]).

Where VLMC is the feature vector for LMC and VMK is the feature vector for

MK device. The set up was tested on American Manual Alphabet obtaining a

recognition rate of 91.3%, from combination of the two devices, with multi-class

SVM as classifier.

In [42], same authors used eight sets of features, four sets of features per

device, on two separate classifiers: multi-class SVM and Random Forest (RF).

The approach was tested on 10 different static gestures performed by 14 differ-

ent people. Each gesture was repeated 10 times giving a total of 1400 samples.

Different cases of combination of the different set of features from MK and LMC
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were experimented. A maximum accuracy of 96.5% was achieved with a feature

dimension of 435 (consisting of all features from MK and LMC) using SVM and

94.7% with RF classifier. On applying feature selection strategies to reduce the

feature dimension, obtained accuracy dropped. In [43], Karthick et al. proposed

a system for transforming Indian Sign Language to text using the Leap Motion

Controller. The system uses Dynamic Time Warping (DTW) and an Intelligent

Sense (IS) algorithm to convert hand gestures into appropriate text.

The LMC is unlike the MK device which can gives RGB, and depth image

of the signer. Since the introduction of the MK, the device has witnessed wide

spread application in different fields of study. Application using the device has

also extended to gesture recognition. In [44], Chai et al. proposed a sign language

recognition and translating system using depth and color images obtained from the

MK device. In their work, 3D motion trajectory of each sign language vocabulary

was aligned and matched between probe and gallery to get the recognized result.

They tested their approach on 239 Chinese SL words. Using two different ranking

approaches, they achieved recognition rates of 83.51% and 96.32%.

In [45], Agarwal and Thakur presented a sign language recognition system

which makes use of depth images that were captured using a Microsoft Kinect

camera. Using computer vision algorithms, they developed a characteristic depth

and motion profile for each sign language gesture. The feature matrix generated

was trained using a multi-class SVM classifier and the final results were com-

pared with existing techniques. Their work was based on recognizing Chinese
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Sign Language gestures for digits 0 − 9. Their experiments were conducted on

two data sets, each consisting of 47 video sequences with individual gestures and

sequences of multiple gestures. On the first data set, a recognition rate of 89.63%

was achieved with linear kernel classifier and 92.32% with RBF neural network

classifier. However, on the second data set, they achieved an accuracy of 77.59%

with linear kernel classifier and 90.83% with RBF classifier.

In [46], Geetha et al. proposed a dynamic gesture recognition system using

depth images obtained from MK device. They proposed a new trajectory based

feature extraction method using the concept of Axis of Least Inertia (ALI) for

global feature extraction. Other works where the MK device has been used include

[45, 47, 48, 49, 50, 51, 52, 53]. Similar to the LMC, the MK device through

its depth image can ease the issue of constant lighting background environment

required in image-based. However, the LMC has less computational complexity,

segmentation and the kind of feature extraction algorithms involve in MK are not

required.

2.4 Review on Decision Fusion Techniques

Issues such as missing data, insufficient data sample, and curse of dimensionality

etc, have led to the idea of decision combination from multiple sources. Decision

fusion or combination can be done at three different level: sensor data level, feature

and classifier decision level. On these three levels, several techniques have been

proposed in the literature for fusion of classifier ensembles. In [54], the authors
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considered the problems and issue regarding classifier fusion. The authors were

able to prove that despite advances in machine learning based on the concept of

support vectors, the conventional approach to classifier designs such as feature

selection, contextual classification and classifier fusion are still relevant to achieve

a reliable PR system.

In [55], Michael et al proposed a method based on majority voting approach.

The approach combines ensembles of classifiers using dynamic weighted consult-

and-vote for incremental learning of new class. The approach was an improvement

over a previously developed approach by the author, which suffers from inherent

”out-voting” problem in learning a new class. Voting weights were determined

by relative performance of each classifier on training data. In case a new class

is introduced, the approach learns it by allowing individual classifiers to consult

with each other to determine their voting weights for each of the test instance.

In multiple classifier fusion, individual classifiers either use the same representa-

tion of the input pattern or each uses its own representation of the input pattern

[56].

In [57], Kittler et al developed a common theoretical framework for combining

classifiers. In their work, they focus on ensembles which uses distinct pattern

representation of the input pattern. However, in [56], both cases were considered.

Starting from the Bayesian decision rule, the following combination rule were

developed: max, min, median, and majority voting rule.

assign Z −→ wj if P (wj|x1, ...,xN) = max
k
P (wk|x1, ...,xN), (2.1)
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where Z is the pattern to be classified, wj is the jth class, and xN is the feature

vector of dimension N . Experimental comparison carried out on these rules shows

that the sum rule outperformed other rules despite being developed under the

most restrictive assumptions. Another classifier fusion approach that has gain

widespread application is the Dempster-Shafer (D-S) theory of evidence developed

by Dempster and Shafer. The theory introduced the system of beliefs in the output

results which were not discussed in previous combination techniques [58], and it

gives meaningful reason for combination results obtained. It is finding wide use in

modeling uncertainty [37, 58, 59, 60]. The theory is based on three basic concepts:

basic belief assignment, belief function and plausibility. In this work, we have used

D-S theory, which is a classifier level combination, and feature level combination.

More details on D-S theory is presented in chapter 3.

2.5 Summary

In this chapter, we presented a review of previous works in ArSLR under the two

major approaches: Image based and Glove based. Previous works on alphabet

and isolated word level recognition system were reviewed. We also presented

review on emerging approaches which involve the use of LMC and MK device.

Finally, we presented review on some techniques which have popularly been used

for combination of classifier decision. In the next chapter, focus will be on our

experimental set up and methodologies used in this thesis.
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CHAPTER 3

METHODOLOGY AND

IMPLEMENTATION

This chapter presents the main contributions of the thesis. First, we present our

model for ArSLR using LMC(s), starting with single LMC model, followed by

using a two LMCs model. As previously stated in chapter 2, research in ArSLR

is divided into three categories: alphabet, isolated words and continuous sentence

recognition. Major focus is on recognition of isolated words, with extension to

sentences. The developed model in this thesis was tested on alphabet and isolated

sign word recognition. Figure 3.1 shows the system block diagram. It involves

the collection of data from the LMC(s), extraction of relevant features, training

of the classifier algorithm and sign recognition. The block diagram represents the

general idea of all the various setups discussed in this work. Sections 3.1 and 3.2

discuss the setup used for alphabet recognition using a single and two LMCs, while

section 3.3 discusses the more general case of isolated word signs. We will show
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also the importance of using 2 LMCs as single-LMC system can lead to erroneous

recognition given the detected between signs.

3.1 Alphabet Level Recognition using One LMC

The idea of using the LMC for ArSLR was first tested on 28 Arabic Sign Language

alphabets as a proof of concept. The steps involved are summarized in the block

diagram shown in Figure 3.1.

Figure 3.1: System block diagram

The LMC captures the hand motion as the sign is performed. Frames of data

are collected from which discriminative features are extracted and used for sign

recognition through machine learning techniques. In the following, each of the

items in the block diagram is discussed in more details.
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3.1.1 The Leap Motion Controller (LMC)

The LMC is an electronic device recently developed by Leap Motion Company

[61]. The device detects and tracks hand motion, fingers and finger-like objects

reporting discrete position, gestures and motion. It operates in a close proximity

with a rate of 200 frames per second [3]. The LMC field of view is an inverted

pyramid of about 8 cubic feet with center located on the device [62]. The device

has functional range which increase from approximately 25 to 600 mm above it [3].

The device uses two high precision cameras and three infrared LEDs to capture

information within its interaction range. However, it does not provide pictures

or cloud data of detected images. Its driver software processes the acquired data,

extracts position information using complex mathematics [62]. Figure 3.2 shows

schematic view of the LMC as well as a true picture of the device [6].
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(a) Schematic view of LMC

(b) The LMC

Figure 3.2: The LMC and its schematic
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3.1.2 The LMC Coordinate System

The Leap Motion system uses a right-handed Cartesian coordinate system, with

values reported in real-world millimeters. The center of the LMC serves as its

origin. The horizontal plane is the x-z plane, the x-axis runs parallel to the long

edge of the device, while the y-axis is vertical, with positive values increasing

upwards. Values of z-axis are positive and increases away from the computer

screen as shown in Figure 3.3) [3].

(a) LMC right-handed coordinate system.

(b) LMC setup.

Figure 3.3: LMC coordinate and PC setup

3.1.3 Motion Tracking

As the device detects hands and fingers in its field of view, it provides data updates

as frames of data. Each of these frames contains lists of the basic tracking data,

such as hands, fingers, as well as recognized gestures (if detected) and factors

describing the overall motion in its view. In the event of the LMC detecting a

hand(s), finger(s), or gesture(s), its driver software assigns to the detected object
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a unique ID tag. Provided the object remains within the LMC view, the tag ID

remains the same. In a situation where tracking is lost and regained, the software

may assign for it a new ID. Java program was written, using the NetBeans IDE,

to collect the motion tracking data. Figure 3.4 shows frames of motion tracking

data when the hand is being tracked.

Figure 3.4: Motion tracking data with LMC

Figure 3.4 shows the interface for collecting the hand motion data. As the sign is

performed, the hand data are displayed below as can be seen from the figure. In

addition, the data is automatically saved on the PC for further analysis.
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3.1.4 Data Collection for One LMC Setup

Our initial goal was to use the LMC with a machine learning algorithm to identify

hand gestures representing static images of letters used for Arabic language. With

the LMC software development kit (SDK) installed on the PC, the device was

connected to the PC and the Java program was executed to collect the hand data

from the LMC. The data collection was performed for the Arabic sign language

letters (ø



- @), shown in Figure 3.5, using one LMC setup. Note that some of the

references also considered hamza ”Z” as a letter for the alphabets, hence 29 letters

are considered.

Figure 3.5: Arabic sign letters (28 signs)

29



A single sample or observation is when each of the considered sign is performed

once in front of the LMC device. Each sample contains several frames depending

on how long the signer keep the hand in position. In our case, we have considered

10 frames per sample.

3.1.5 Feature Extraction and Analysis

As previously discussed, the LMC returns data in frames. Each frames consists of

different geometric parameters describing the motion of object in the LMC view.

Our data collection stage, based on the LMC SDK, returns twenty-three (23)

geometric parameters describing the hand motion in the field of view of the LMC.

In order to focus on relevant features for the classification stage, we carried out

a simple statistical analysis of these parameters. We estimated the mean of each

parameter across the 10 frames of each sample for the individual classes (signs).

For example, the mean value measure for the signs of letters

@ and H. are

plotted against sample number in Figures 3.6 and 3.7 respectively. The parameters

found not discriminative enough were ignored. For a parameter to have strong

discriminative power, it should have small within-class variance and large between-

class variance. The discriminative parameters were extracted as features for the

training and classification stage, while others were ignored. Examples of such

parameters (or characteristics) include the frame Id, the numbers of hand, the

tip velocity of the fingers etc. The frame Id is not an attribute of the hand, it’s

just a tracking tag attached to each frame of data, while the numbers of hand
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is constant in the case of sign letter recognition. Based on this initial analysis,

the following features, listed in the Table 3.1 were extracted. In total, 12 features

were extracted from each frame of data. See Appendix for image description of

these features.

Table 3.1: List of Features

Features Feature Name
1 Finger Length
2 Finger width
3 Average tip position along x-axis
4 Average tip position along y-axis
5 Average tip position along z-axis
6 Hand sphere radius
7 Palm position along x-axis
8 Palm position along y-axis
9 Palm position along z-axis
10 Hand pitch
11 Hand roll
12 Hand yaw
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Figure 3.6: The mean value (across the 10 frames) of the feature finger length for

each of the 10 samples of letter

@
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Figure 3.7: The mean value (across the 10 frames) of the feature finger length for

each of the 10 samples of letter H.
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The figures show that there are variations on the values of each feature related

to the same letter, though the variation is small. This is due to the fact that

usually people do not repeat a sign exactly the same manner making the classifi-

cation process a challenging task. A good feature should have small within class

variance and large between class variance. Similar to the finger length feature,

we estimated the mean values across the 10 frames of the remaining 11 features.

Similar figures to Figures 3.6 and 3.7 were obtained for other features. The mean

of each of the extracted features across the 100 frames (10 frames from each of

10 samples) of letters were also obtained and displayed in Figures 3.8 and 3.9. A

typical example on the discriminative power of the features is shown in Figure

3.10, using the hand roll feature for two class (letter

@ and H. ). From the decision

boundary shown in the figure, we can see how discriminative the roll feature can

be for two different classes (signs). It is obvious that classification could be more

complicated in the case of the entire 28 alphabets. Each tap of Figures 3.8 and

3.9 represents a feature according to Table 3.1. Also, the unit of the mean-axis of

Figures 3.6, 3.7, 3.8 and 3.9, is in mm.

3.1.6 Training and Classification

Based on the features discussed above, we compared the performance of two clas-

sifiers, namely, the Multilayer Perceptron (MLP) Neural Network (NN) classifier

and the Naive Bayes Classifier (NBC). Generally, no single machine learning al-

gorithm is appropriate to all PR problems. Since the dataset used here is new, we
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Figure 3.8: The mean value of each of the 12 features for letter

@
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Figure 3.9: The mean value of each of the 12 features for letter H.
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Figure 3.10: Hand roll feature for two classes (signs)

therefore propose to use a simple probabilistic classifier (NBC) as a baseline and

compared it against a neural network classifier (MLP). MLP and Radial Basis

Function (RBF) have much in common than most other NN learning algorithms.

The basic difference is in the way hidden units are combined from previous layers

in the network. In addition, MLP uses supervised learning approach for training,

while RBF uses unsupervised learning. Since the task here is completely super-

vised approach, we have chosen to use the MLP. The MLP and NBC are briefly

described below.

Multilayer Perceptron (MLP) Classifier

The MLP is an Artificial Neural Networks (ANN) based classifier. Our interest

in using ANN was largely motivated by the main advantage of such systems in

being able to mimic natural intelligence in learning from experience [63]. ANNs
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learn from examples by constructing an input-output mapping without explicit

derivation of the model equations. ANNs have been used in a broad range of ap-

plications including: pattern classification, function approximation, optimization,

prediction and automatic control, among others [64, 65]. The basic structure of

an artificial neural network consists of many interconnected identical simple pro-

cessing units called neurons as shown in Figure 3.11.

Figure 3.11: Basic Structure of multilayer neural network

Each connection to a neuron has an adjustable weight factor associated with it.

Every neuron in the network sums its weighted inputs to produce an internal

activity level given as:

ai =
n∑

j=1

wijxij − wio (3.1)

where wij is the weight of the connection from input j to neuron i, xij is the input

signal number j to neuron i and wio is the threshold associated with unit i. The

internal activity is passed through a nonlinear function ϕ to produce the output
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of the neuron yi, where:

yi = ϕ(ai) (3.2)

The weights of the connections are adjusted during the training process to achieve

the desired input/output relation of the network. A multilayer feed forward net-

work has its neurons organized into layers with no feedback or lateral connections.

Layers of neurons other than the output layer are called hidden layers. The in-

put signal propagates through the network in a forward direction, on a layer-by-

layer basis. The back propagation algorithm [63] is a supervised iterative training

method for multilayer feed forward nets with sigmoidal nonlinear threshold units.

It uses training data consisting of input-output pairs of vectors that characterizes

the problem. Using a generalized Least-Mean-Square algorithm, the back propa-

gation algorithm minimizes the mean square difference between the real network

output and the desired output [65]. The error function that the back propagation

algorithm minimizes is the average of the square difference between the output of

each neuron in the output layer and the desired output. The error function can

be expressed as:

E =
1

P

∑
p

∑
k

(dpk − opk)2 (3.3)

where p is the index of the P training pair of vectors, k is the index of elements

in the output vector, dpk is the kth element of the pth desired pattern vector, and

opk is the kth element of the output vector when pattern p is presented as input

to the network [66]. Minimizing the cost function represented by equation (3.3)

results in an updating rule to adjust the weights of the connections between the
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neurons. The weight adjustment of the connection between neuron i in layer m

and neuron j in layer m+ 1 can be expressed as:

∆wji = ηδjoi, i, j = 1, 2, ..., N, (3.4)

where N is the total number of units, i is the index of units in layer m, η is the

learning rate, oi is the output of unit i in the mth layer and δ is the change in

error term which is back propagated from the jth unit in layer m+ 1 defined by:

δj = [dj − oj]oj[1− oj]

= yj[1− yj]
∑
k

δkwkj

(3.5)

Neuron j is in a hidden layer and k is index of neurons in the layer (m + 2),

ahead of the layer of neuron j. The MLP discussed is a typical one with enhanced

version published throughout the last two decades. The basic MLP network has

a number of attractive features but its two main ones are its ability for general-

ization even in the presence of high noise power on the observations. Moreover, it

is fault tolerant; as the network keeps providing a good performance even when

a significant fraction of its neuron and interconnection fail. It is worth noting,

however, that The network has a number of limitations including high computa-

tional load, the problem of local minima, and scaling issues (i.e. from small to

large scale systems).
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Naive Bayes Classifier

To access the performance of the LMC and the extracted features across differ-

ent classifiers, we also implemented the Naive Bayesian (NB) classifier. The NB

classifier is a simple probabilistic classifier based on the famous Baye’s theorem

with the naive assumption of independence between every pair of features. The

Bayesian classification approach is based on quantifying the trade-offs between

various classification decisions using probabilities and the costs that accompany

such decisions [66]. There are different types of Naive Bayes Classifier: The

Gaussian, multinomial and the Bernoulli NB, among others. In multinomial NB,

feature vectors represent frequencies in which certain events were generated while

in Bernoulli NB, they are boolean in nature. These two cases does not apply to our

collected data, where features are continuous values associated with each class. In

addition, the histogram obtained for the different features can be approximated

as Gaussian distribution. Some of these histograms are shown in Figures 3.12 and

3.13. Similar plots were also obtained for other features. Our particular setup

consist of N features and K classes with N = 12 and K = 28. Given a class variable

yj (or just a given sign) and a given feature vector x1, ..., xN (12 features), the

Baye’s theorem states that:

P (yj|x1, ..., xN) =
P (x1, ...xN |yj)P (yj)

P (x1, ...xN)
(3.6)
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Figure 3.12: Histogram of feature ’hand palm position along x-axis’
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Figure 3.13: Histogram of feature ’hand roll’
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where j = 1, 2, ..., K. Using the Naive independence assumption among the fea-

tures, we can write:

P (xi|yj, x1, ..., xN) = P (xi|yj) (3.7)

where i = 1, ..., N , and j = 1, ..., K Hence,

P (yj|x1...xN) =

P (yj)
N∏
i=1

P (xi|yj)

P (x1, ..., xN)
(3.8)

since P (x1, ..., xN) is constant for a given input, we get:

P (yj|x1...xN) ∝ AP (yj)
N∏
i=1

P (xi|yj) (3.9)

where A is a scaling factor. From equation (3.9), for a given feature vector,

x = [x1, ..., xN ]T , the NB decision rule simply assigns x to class yk if:

P (yk)
N∏
i=1

P (xi|yk) > P (yj)
N∏
i=1

P (xi|yj) (3.10)

where j = 1, ...k, and k 6= j. If the classes have equal a priori probabilities, the

rule is simplified to:
N∏
i=1

(P (xi|yk) >
N∏
i=1

P (xi|yj) (3.11)

where j = 1, ...K, and k 6= j. When the independence criteria does not apply,

then we have the more general Bayesian classifier which uses the joint Gaussian

distribution to model the statistical behavior of the feature vector. Similar to
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the MLP, the NB classifier exhibits a number of advantages and limitations. In

particular, the NB classifier is fast to train and to classify. The algorithm is

insensitive to irrelevant features. It can handle real, discrete data, and streaming

data well. Its major disadvantage is the independence assumption, however, the

NBC can be very robust to violations of its independence assumption, and it has

been reported to perform well for many real world data sets [67]. In addition, it

requires large amount of data to properly model the distribution of the different

features under different classes.

The results obtained using one LMC setup are presented in Chapter 4. A

major challenge we are faced with is finger occlusion within the LMC field of

view. This affected substantially, the overall classification accuracy. As such, we

started investigating the use of a pair of LMCs to improve the robustness of the

whole system.

3.2 Alphabets Level Recognition using Two

LMCs

In this section, the concept of using two LMCs is presented. This was proposed

to give a combined view of the performed sign. The idea here is to place one

LMC in front of the signer and the other at the side of the signer. The setup is as

shown in Figure 3.14. Similar data collection process as presented in section 3.1

was carried out. However, in this case, we have used Linear Discriminant Analysis
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Figure 3.14: Experimental set up using two LMCs

(LDA) as a preprocessing stage to reduce redundancy in the feature domain. We

also used the LDA decompositionnin the classification stage with a basic euclidean

distance. We then compared the combination of feature sets from the two LMCs

and fusion of decisions at classifier level with that of evidence based fusion, namely

the Dempster-Shafer (D-S) theory of evidence. Figures 3.15 and 3.16 show the

two fusion approaches. This is followed by explanation of the LDA classifier and

Dempster-Shafer theory. As compared to other classifier fusion algorithms used

in the literature, D-S theory was chosen due to its wide spread application in

modeling uncertainty [37, 68].
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Figure 3.15: Feature level fusion
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Figure 3.16: Decision level Fusion
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3.2.1 Linear Discriminant Analysis

Linear Discriminant analysis is a very common statistical approach used in signal

processing, PR and other machine learning applications [69]. The basic principle

of LDA relies on projecting high dimension data onto a minimal possible dimension

space such that the data can achieve maximum separation among different classes

in the projected domain. Within-class scatter matrix, and between-class scatter

matrix are two popular measures used to describe separability of classes in a given

data set, where within-class scatter matrix is given by:

Sw =
M∑
j=1

N∑
i=1

(xj
i − µj)(x

j
i − µj)

T (3.12)

where xj
i is the ith sample vector of class j, µj is the mean vector of class j, M is

the total number of classes (i.e. 28 ArSL alphabets), and N is the total number

of samples in class j. Similarly, between-class scatter matrix is given by:

Sb =
M∑
j=1

(µj − µ)(µj − µ)T (3.13)

where µ represents vector-mean across all classes and µj is the mean vector for

class j. The essence of using these measures is in finding a linear transformation

which can maximize the inter-class variance, at the same time minimizing the

intra-class variance.
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3.2.2 Dempster-Shafer Theory of Evidence

The Dempster-Shafer (D-S) theory of evidence has been successfully introduced

as a robust approach for fusing information from different experts. In our case,

we use it to combine decisions from two different LMCs. The D-S theory is based

on the concept of beliefs [58]. The theory was first introduced by Shafer and

Dempster as a way to generalize Bayesian probability theory. It is commonly

known and referred to as the theory of evidence for belief functions. Recall that

in the case of Bayesian theory, the following equation must hold:

P (x|C1) + P (x|C2) + ...+ P (x|Cn) = 1 (3.14)

where x is a vector and the Cn’s represent a set of classes. The generalization of

equation (3.14) obtained using the D-S concept is written as:

P (x|C1) + P (x|C2) + ...+ P (x|Cn) + P (θ) = 1 (3.15)

where P (θ) represents the uncertainty; hence, this technique is commonly used

to model uncertainty. The theory is based on three basic concepts: basic belief

assignment, a belief function and plausibility. The basic belief assignment (bba)

serve as the basis of evidence theory from which belief function and plausibility

are computed. It allocates a value which lies between 0 and 1 to each variable

in subset (A) such that the bba value of the null set is 0 and the sum of the

bba values of all subsets is sum up to 1. Evidence is considered to be certain if
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m(.) = 1. In relation to this work, the posterior probabilities of classes obtained

from the two LMCs classifiers serve as the bba (i.e. m(.)) from which plausibility

and belief function are computed. The bba must satisfies the following conditions:

0 ≤ m(A) ≤ 1

m(∅) = 0∑
A∈P (X)

m(A) = 1

(3.16)

where P (X) is the power set of (X) and (A) is an element in the power set of

(X). Meanwhile, the belief function assigns a value [0, 1] to every non-empty

subset (B). Two interval bounds can be defined for every probability assignment.

The D-S theory represents the lower bound by belief function, which is evaluated

as the sum of all of the bba of the proper subsets of (B). The top limit of the

probability assignment is defined as plausibility. It is evaluated as the sum of all

posterior probabilities of the sets (B) which intersect with the set of interest in

set (A) [58].

Bel(A) =
∑
B⊂A

m(B) (3.17)

Pl(A) =
∑

B∩A 6=∅

m(B) (3.18)

where Bel represents the belief function and Pl represents the plausibility func-

tion. The combination rule expressed in equation (3.19) is used to combine all
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the evidence.

mn(A) =

∑
A1∩A2∩...∩An

m1(A1)m2(A2)...mn(An)

1−
∑

A1∩A2∩...∩An=∅
m1(A1)m2(A2)...mn(An)

(3.19)

Equation (3.19) represents the combination rule for n-pieces of evidence. In the

case of this work, n is two (i.e. decisions from the two LDA based classifiers). For

more details on the D-S theory of evidence, the reader is directed to

3.3 Recognition of Isolated Word Signs

In this section, the two-LMC set up presented in section 3.2 was used for the

recognition of 100 ArSL isolated words. The 100 words were drawn from the

Unified Arabic Sign Language Dictionary in the categories: family, colors, food,

religion, jobs, and title, etc. In what follows, we discuss the data collection stage,

the feature extraction stage and finally the classification stage.

3.3.1 Data Collection for Isolated Sign Words

We have used a native deaf signer to perform the required signs. Ten observations

of each sign were collected for 100 signs giving a total of 1000 observations. Each

observation contains several frames of data representing the detected hand orien-

tation. The number of frames in each observation depends largely on the length of

the sign word. In addition, the ability of the LMC device to detect the performed

sign also affects the numbers of frames that can be collected per observation. It
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was observed that the device can have difficulties detecting some of the performed

signs, especially signs that are performed close to the face or the head.

To solve some of the problems with difficult signs, the signer was required to

perform the sign repeatedly for a number of times ranging from two to five times.

Out of the 100 performed signs, LMC 1, which is the LMC in front of the signer,

detected 55 signs with 10 observations, while LMC 2, which is the LMC at the

right side of the signer, detected 79 signs with 10 observations each. In summary,

there were some signs which LMC 1 could detect while LMC 2 could not, and vice

versa. While there were several signs in which both LMCs detect easily, while

few cases where both LMCs fail to detect the signs. This was the motive behind

the idea of using multiple LMCs, since a single LMCs cannot do well in detecting

all signs. LMC 2 does well in detecting signs performed close to the signer face,

while LMC 1 is good in detecting signs that requires the signer to stretch out his

hand while performing the sign. Table 3.2 shows list of some of the ArSL words

performed by the native deaf signer.

Table 3.2: List of ArSL words

S/N List of signs
�
éJ
K. QªË@

�
èPA

�
�B


@

�
é

	
ªË

�
éÖ


ßA

�
¯

1 Family
�
éÊ


KA«

2 Green peas ZB 	PAK.

3 Twins 	
àAÓ


@ñ

�
K

4 Son 	áK. @

5 Engagement
�
éK. ñ¢

	
k

6 Death
�
èA

	
¯ð

7 Color 	
àñË

8 Five
�
é�Ô

	
g
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9 Golden ú


æ
.
ë

	
X

10 Jeweler 	
©


KA�

11 Interpreter Ñk.
Q�

�Ó

12 Sign language interpreter
�
èPA

�
�B


@

�
é

	
ªË Ñk.

Q�
�Ó

13 Teacher ÕÎªÓ

14 Chief of parliament 	
àAÖÏQ�. Ë @ ��



KP

15 Blacksmith X@Yg

16 dyer
	

¨AJ.�

17 Tailor  AJ

	

k

18 Pilot PAJ
£

19 Cook qJ.£

20 Banana 	PñÓ

21 Watermelon QÔg

@ qJ
¢�.

22 Cauliflower ¡J
�.
	
KQ

�
¯

23 Zucchini
�
é�ñ»

24 Garlic Ðñ
�
K

25 Bread
	Q�.

	
g

26 Milk I. J
Êg

27 Breakfast PA¢
	
¯B


@

28 Muslim ÕÎ�Ó

29 Allah é<Ë @

30 Messenger Èñ�P

31 Prophet Isah (AS) úæ�J
« ú


æ
.

	
JË @

32 Chapter of Quran 	
à

�
@Q

�
®Ë @ 	áÓ

�
èPñ�

33 Verse of Quran 	
à

�
@Q

�
®Ë @ 	áÓ

�
éK


�
@

34 Hajj i. mÌ'@

35 Lesser hajj
�
èQÒªË@

36 Ablution Zñ
	

�ð

37 Dry ablution ÕÔJ



�
JË @

38 Rubbing sock 	á�

	
®

	
mÌ'@ ú



Î« i�Ó

39 Nullification of prayer
�
èC�Ë@

�
HC¢J.Ó

40 Leader ÐAÓ@
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41 Orator I. J
¢
	

k

42 New year
�
é
	
J�Ë@ �


@P YJ
«

43 Church
�
é��


	
J»

44 Zero Q
	
®�

45 Four
�
éªK. P


@

46 Ten
�
èQå

�
�«

47 Thirty 	
àñ

�
KC

�
K

48 Forty 	
àñªK. P


@

49 Fifty 	
àñ�Ô

	
g

50 One hundred
�
é

KAÓ

51 Three hundred
�
é

KAÖ

�
ßC

�
K

52 Five hundred
�
é

KAÒ�Ô

	
g

53 Six hundred
�
é

KAÒ

�
J�

54 Seven hundred
�
é

JÓ ©J.�

55 Eight hundred
�
é

KAÖ

	
ßAÖ

�
ß

56 Nine hundred
�
é

KAÒª�

�
�

57 Ten Thousand
	

¬B
�
@

�
èQå

�
�«

58 One hundred thousand
	

Ë@
�
é

JÓ

59 One million 	
àñJ
ÊÓ

60 One billion PAJ
ÊÓ

61 Snake 	
àAJ.ª

�
K

62 Cable
�
éºª»

63 Bear H. X

64 Crocodile hA�Ö
�
ß

65 Shark �
�Q

�
®Ë@ ½ÖÞ�

66 Whale �
Hñk

67 Elephant ÉJ

	
¯

68 Gorilla CK
Pñ
	
«

69 Giraffe
�
é
	
¯ @P 	P

70 Falcon Q
�
®�

71 Eagle Qå�
	
�

72 Cock ½K
YË@
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73 Bee
�
éÊm�

	
'

74 Wall P@Yg.

75 Room
�
é
	
Q̄

	
«

76 Bedroom Ðñ
	
JË @

�
èQm.

k

77 Bed QK
Qå�

78 Bed spread QK
Qå�Ë @ PA
�

�
�
�
	
K @

79 Kitchen qJ.¢Ó

80 Gas stove 	PA
	
«

	
àQ

	
¯

81 Plate
�

�J.£

82 Glass cup 	
àAj.

	
J
	
¯

83 Freezer P 	QK
Q
	
¯ YÒm.

×

84 Dinning room ÐAª¢Ë@
�
é

	
Q̄

	
«

85 Plug ZAK. Qê» ��. A
�
¯

86 Table
�
éËðA£

87 Chair ú


æ�Q»

88 Carpet
�
èXAm.

��

89 Chandelier AK
Q
�
K

90 Television 	
àñK


	Q
	
®Ê

�
K

91 Video camera ñK
YJ

	
¯ @Q�
ÓA¿

92 Photo camera éJ

	
¯ @Q

	
«ñ

�
Kñ

	
¯ @Q�
ÓA¿

93 Long ÉK
ñ£

94 Guest room
	

¬ñJ

	

�Ë@
�
é
	
Q̄

	
«

95 Fan
�
èQ

	
jJ.Ó

96 Heater
�
è

A
	
¯YÓ

97 Key hA
�
J
	
®Ó

98 Air conditioner Z @ñë
	

J
ºÓ

99 Electricity ZAK. Qê»

100 Friday Sermon
�
éªÒm.

Ì'@
�
éJ.¢

	
k
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3.3.2 Feature Extraction

From the collected data, we collect over 24 attributes describing the hands orienta-

tion, these include the 12 features used in the alphabet level recognition. However,

not all are relevant to perform sign classification because the total number of col-

lected attributes varies with respect to the number of hands detected or involve in

performing the signs. It should be noted that some signs involve using two hands

while some signs involve a single hand. If the sign involves one hand, the right

hand is used. Similar analysis as previously discussed was carried out to select

the most discriminative features, from which we selected 16 as our feature vector

for sign classification. List of features are shown in Table 3.3.

Table 3.3: List of Features

S/N Feature Name
1 Translation probability
2 Finger length
3 Finger width
4 Average tip position along x-axis
5 Average tip position along y-axis
6 Average tip position along z-axis
7 Hand sphere radius
8 First hand palm position along x-axis
9 First hand palm position along y-axis
10 First hand palm position along z-axis
11 Second hand palm position along x-axis
12 Second hand palm position along y-axis
13 Second hand palm position along z-axis
14 Hand pitch
15 Hand roll
16 Hand yaw, etc.
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The histograms of some of these features are shown in Figures 3.17, 3.18 for

LMC 1.

Figure 3.17: Histogram of hand pitch from LMC 1, for the 100 signs
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Figure 3.18: Histogram of hand palm position along y-axis in LMC 1 for the 100
signs
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Similar histograms were obtained for the case of LMC 2 as shown in Figures

3.19 and 3.20.

Figure 3.19: Histogram of hand pitch from LMC 2, for the 100 signs
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Figure 3.20: Histogram of hand palm position along y-axis in LMC 2 for the 100
signs

From the observed histograms, we opted to use a Gaussian Mixture Model

(GMM) for representing the features statistical behaviour. Hence, a Baye’s clas-

sifier was used with the training phase based on the GMM.

3.3.3 Classification of Isolated Word Signs

Unlike the case of alphabet sign recognition where all consecutive frames obtained

for a particular sign represents the sign, frames obtained in the case of isolated

signs represent the different sequences involved for the performed sign. Conse-

quently, this makes the task of classification more challenging and different from

the case of alphabet recognition. Similar to previously discussed setup, we have

considered the shape of the histogram of features obtained to decide the distri-

bution type. From the histogram of features obtained, we used a GMM Baye’s
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classifier for classification of the 100 signs. A GMM is a parametric probabilistic

model represented by sum of weighted Gaussian component densities. GMMs have

been widely used as robust parametric statistical models for diverse applications

including biometric system, speech spectral features, etc [70].

The Gaussian Mixture Model

A Gaussian mixture consists of k different Gaussian distributions, with k being

specified by the user. Let x denote a given feature. Following is a univariate

Gaussian distribution:

g(x|µ, σ) =
1√

2πσ2
exp[−(x− µ)2

2σ2
] (3.20)

This distribution is generalized to the multiple variables case for a d-dimensional

vector x as:

g(x|µ,Σ) =
1

(2π)
d
2 |Σ| 12

exp[
−1

2
(x− µ)TΣ−1(x− µ)] (3.21)

where µ is the mean vector, and Σ is the d X d covariance matrix. The GMM

model uses multiple distributions of the function above. Given a particular

dataset, the task is to estimate (Σ,µ) and the weight (πk) of each distribution. In

the case of a single Gaussian, we can use the Maximum Likelihood (ML) principle

to estimate the mean vector and the covariance matrix. We start by taking the
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log of the Gaussian distribution in equation (3.21) to get:

lnP (x|µ,Σ) = −d
2

ln(2π)− 1

2
ln |Σ| − 1

2
(x− µ)TΣ−1(x− µ) (3.22)

Taking the derivative with respect to µ and Σ, and equating to zero we get:

∂ lnP (x|µ,Σ)

∂µ
= 0 (3.23)

∂ lnP (x|µ,Σ)

∂Σ
= 0 (3.24)

From equations (3.23) and (3.24), we can estimate µ and Σ using:

µ
ML

=
1

N

N∑
n=1

xn (3.25)

and

ΣML =
1

N

N∑
n=1

(xn −µML
)(xn −µML

)T (3.26)

where N is the number of data points (or observations). In the case of multiple

Gaussians mixture, we have:

P (x) =
K∑
k=1

πkg(x|µk,Σk) (3.27)

where K is the total number of Gaussian mixtures and g(x|µk,Σk) is the normal

multivariate Gaussian distribution for the kth Gaussian, πk is the weight for each
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of the mixture and satisfies the following conditions.

0 ≤ πk ≤ 1

K∑
k=1

πk = 1

(3.28)

Taking the log-likelihood of equation (3.27), we get:

lnP (x|µ,Σ, π) =
N∑

n=1

lnP (xn)

=
N∑

n=1

ln
K∑
k=1

πkg(xn|µk,Σk)

(3.29)

N is the number of data point. In this case, ML does not work as there is no

closed form solution for equation (3.29). Therefore, parameters can be estimated

using Expectation Maximization (EM) technique.

Expectation Maximization Algorithm

For a given dataset, the number of Gaussian components for optimal performance

is given by the user, while the missing weights can be thought of as prior proba-

bilities for the different components. For a given feature vector x, we can evaluate

the corresponding posterior probabilities called responsibilities. From Baye’s rule,

we define:

γk(x) = P (k|x)

=
P (k)P (x|k)

P (x)

=
πkg(x|µk,Σk)
K∑
j=1

πjg(x|µj,Σj)

(3.30)
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where γk is a latent variable and πk = Nk

N
, Nk is the effective number of points

assigned to cluster k.

EM algorithm is an iterative optimization technique which is operated locally to

find out the set of parameters in GMM distribution [71]. For K-Gaussian, we need

to estimate K-weights, K-set of means, which have the dimension of the data, and

K-set of covariance matrices. There are two steps involve in EM:

1. Estimation step:- for a given parameter values, we compute the expected

values of the latent variables.

2. Maximization step:- updates the parameter of the model based on the ob-

tained latent variable using ML method.

EM Algorithm for GMM

Given a Gaussian Mixture Model (GMM), the goal is to maximize the likelihood

function with respect to the parameters comprising the means and covariance of

the components and the mixing weights. The following steps are involve in finding

the parameters.

1. Initialize the means, covariance and mixing coefficients, and evaluation of

the log likelihood. Arbitrary set of values can be used as initial parameters.

2. E-step: estimate the responsibilities using the current parameter values as

in equation (3.30).

3. M-step: Re-estimate the parameters using the current responsibilities (using

equations (3.31), (3.32) and (3.33)).
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4. Evaluate the log-likelihood using equation (3.29), if there is no convergence,

return to step 2.

µj =

N∑
n=1

γj(xn)xn

N∑
n=1

γj(xn)

(3.31)

Σj =

N∑
n=1

γj(xn)(xn − µj)(xn − µj)
T

N∑
n=1

γj(xn)

(3.32)

πj =
1

N

N∑
n=1

γj(xn) (3.33)

Convergence is checked using some convergence criteria. For example, if the pa-

rameters do not change over a certain number of iteration or if the difference

between the current estimated parameters and the previous is below a certain

threshold, the algorithm can be considered to have converged. In our particular

case, an error threshold of 1x10−6 was used with a maximum allowable number

of iteration with which the error margin should be achieved. The algorithm is

exited if the error margin is not achieved after the maximum number of iteration

is reached.

GMM Bayes classifier

As discussed in section 3.3.1, each observation of a sign contains several frames

of data depending on the length of the sign. The frames represent the sequences

of the performed sign. Therefore, to recognize a sign, we need to compute the

probability that all the sequences of a particular test sample belong to a particular
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sign. First, using the GMM algorithm previously discussed, M models were built

using 70% of the data set, where M is the total number of signs available. The

M models are then used for testing as follows:

For a given observation o, which consist of sequences of frames for the performed

sign, the probability that the observation belongs to a particular sign is expressed

as:

P (Cj|o) = max
k

(logP (x1|Mk)× P (x2|Mk)× ...× P (xn|Mk)) (3.34)

Where Cjs are the different signs, k = 1, 2, 3...100, n is the total number of frames

in the observation, and j = 1, 2, 3, .., 100. P (xn|Mk) is given as:

P (xn|Mk) =
J∑

j=1

πjg(xn|µj
k,Σ

j
k) (3.35)

J is the total number of Gaussian mixtures used and g(xn|µk,Σk) for each of the

components is given by:

g(xn|µk,Σk) =
1

(2π)
d
2 |Σk|

1
2

exp[
−1

2
(xn − µk)TΣ−1k (xn − µk)], (3.36)

where d is the feature dimension which is 16 in our case.

To select the 70% training data from the data set, we selected, randomly, 7 obser-

vations out of 10 from each of the signs. To avoid fitting the data to a particular

set of testing observations, this was repeated for different numbers of runs, and

different number of Gaussian mixtures. The results for the experiments are dis-

cussed in the next chapter.
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3.4 Summary

In this chapter, we have presented three different experimental setups for recog-

nition of ArSL: single LMC set up for alphabet level, double LMC setup for

alphabet level and double LMC setup for recognition of isolated words. The dif-

ferent methods and algorithms used for analysis and classification were presented.

In the next chapter, results obtained from the different setups will be presented

and discussed.
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CHAPTER 4

RESULTS AND DISCUSSION

In this chapter, the results obtained for the various setups presented in chapter 3

are presented under the following three categories: recognition of 28 Arabic sign

language alphabets using a single LMC, recognition of 28 Arabic sign alphabets

using two LMCs and finally, recognition of isolated Arabic sign language words.

These categories are presented herewith.

4.1 Results of Alphabets Level Recognition us-

ing One LMC

As previously discussed in chapter 3, in our experimental setup, we started by

considering the Arabic alphabet signs. In this setup, the signs were performed

using one signer. The signer was asked to repeat each sign letter 10 times, making

a total of 280 observations. The training and testing of both the MLP and NBC

classifiers were carried out using cross validation.
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In particular, we used a 5 fold cross validation approach with final results av-

eraged over 5 runs. After acquiring the data from the LMC using NetBeans IDE

interface, the data consisting of all the features for different signs was exported

to WEKA machine learning software for classification. The WEKA package is an

open source data mining and machine learning software package implemented in

JAVA at the University of Waikato [72]. It was designed to make easy a quick

try-out, using existing methods on new datasets in a flexible ways [73].

With the cross validation procedure discussed above, we reached an overall recog-

nition accuracy of 95.5% with the NB classifier while the MLP provided an accu-

racy of 94.25%. The results are summarized in Table 4.1 for NBC, and Table 4.2

MLP classifiers respectively.

Table 4.1: Classification results of NBC

Correctly classified instances 2674, (95.5%)
Incorrectly classified instances 126, (4.5%)

Mean absolute error 0.003
Root mean squared error 0.05
Relative absolute error 4.81%

Root relative squared error 29.31%
Total number of instances 2800

Table 4.2: Classification results of MLP

Correctly classified instances 2639, (94.25%)
Incorrectly classified instances 161, (5.75%)

Mean absolute error 0.005
Root mean squared error 0.057
Relative absolute error 8.29%

Root relative squared error 30.45%
Total number of instances 2800
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We also show in Tables 4.3 and 4.4, the letters that were misclassified the

most. Actually, we can easily see from Figure 3.5 how the letter 	
� can be

interpreted as ¨ (see Figure 4.1). Similar comments can be made for h and p as

well as �
H and ¼.

(a) Alphabet ” 	
�”

(b) Alphabet ”¨”

Figure 4.1: Image showing typical misclassified alphabets

Table 4.3: Some of the misclassified letters from NBC

Actual letter Misclassification error (%) Misclassified as At the rate (%)

	
� 11 ¨ 100

¨ 26 	
� 76.9

	
¬ 13 ¨ 100

ø



13 Ð 84.6

� 8 ¨ 87.5
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Table 4.4: Some of the misclassified letters from MLP

Actual letter Misclassification error (%) Misclassified as At the rate (%)

�
H 28 �

H 25

�
H 28 ¼ 32.1

�
H 28 p 35.7

h 55 h. 32.7

h 55 p 36.4

The overall classification performance for both classifiers (NBC and MLP) is

shown form the confusion matrices in Figures 4.2 and 4.3, respectively.

Figure 4.2: Confusion matrix for NBC classifier

Figure 4.3: Confusion matrix for MLP classifier

While recognition accuracy has traditionally been used as a simple yet efficient

measure of performance, it does not reveal the full performance of classification
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algorithms. Consider, for example, the case of 2 classes: object present and object

absent (e.g, class A vs. class B). Assume that the database consists of 200 samples,

of which 160 are B and 40 are class A. If we assume that all samples are classified

as class B, then we have a classification accuracy of 80% which obviously does not

make sense. For this reason, among others, researchers especially those working

in medical area, tend to use a more comprehensive approach to describe accuracy,

namely the Receiver Operating Characteristic (ROC).

In signal processing, the ROC is obtained by varying a given threshold and

plotting the probability of detection (saying object present when it is in fact

present) vs. the probability of false alarm (saying object present when in fact

it is not). In practical diagnosis testing, the ROC basically plots the sensitivity

(or True Positive Rate) of a given test as a function of the specificity (or False

Positive Rate). For our experiment setup, we produced the ROC curve for each of

the letters using a one-class versus all approach. The ROC curves for a number of

letters using both the NB and the MLP classifiers are shown in Figures 4.4, 4.5,

4.6, 4.7 and 4.8, 4.9, 4.10, 4.11 respectively. The figures show that some letters ’

H. ’, ’¨’, and ’
	

¬’ produce excellent performance which is not the case for ’h’ and

’ �
H’. In the case of H. , the alphabet was 100% correctly classified, therefore, the

Area Under Curve (AUC) of the ROC plot in Figure 4.4 is 1. For cases where the

individual alphabets recognition accuracy is less than 100%, the ROC plots are

not as smooth as the case of H. and hence, AUC less than 1.
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Figure 4.4: NBC classifier ROC for letter H.

Figure 4.5: NBC classifier ROC for letter ¨
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Figure 4.6: NBC classifier ROC for letter
	

¬

Figure 4.7: NBC classifier ROC for letter È
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Figure 4.8: MLP classifier ROC for letter H.

Figure 4.9: MLP classifier ROC for letter �
H
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Figure 4.10: MLP classifier ROC for letter h

Figure 4.11: MLP classifier ROC for letter 	
�
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Similar ROC plots were obtained for other alphabets. We have selected the

ones shown here to show some cases of alphabets where the classifiers perform

well and cases where they performed below 100%. We also show in Figure 4.12,

the average ROC curve over the 28 letters. It is clear that NB classifier provides

a better ROC curve than the MLP. Actually, the average ROC area or AUC of

the NB classifier is 0.994 while it is 0.981 for the MLP classifier.
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(a) Average ROC for NBC

(b) Average ROC for MLP

Figure 4.12: Average ROC curve of MLP and NBC classifier
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The above results establish the proof of concept of using the LMC for ArSLR.

However, in this case, we observed challenging cases where we have finger occlusion

and hence, we further enhanced the system by considering two LMCs placed in a

perpendicular position with respect to each other.

4.2 Results of Alphabets Level Recognition us-

ing Two LMCs

In this section, results obtained from combining two LMCs (one in front and the

other at the side of the signer) are presented. We have used an LDA based clas-

sifier as well as D-S theory for fusion of decision from both LMCs. Any other

classifier which can output probability can also be used. We compared fusion

using D-S theory with feature level fusion (i.e. concatenating the two sets of 12

feature vector to form a 24 dimensional feature vector).

To test the algorithm, we started by splitting the available data (for all the al-

phabets) into 70% for training and the remaining 30% for testing. The test was

repeated 10 times with the training and test set randomly selected on each run

to avoid biasing to a particular test set. The results obtained from all the runs

were averaged to obtain the final accuracy which are in three categories: classi-

fication results from individual LMCs, result from fusion of features of the two

LMCs devices and results from fusion of classifiers using D-S theory. These three

categories are summarized in Table 4.5.
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Table 4.5: Summary of LDA classifier results

Runs LMC 1 (%) LMC 2 (%) Feature combination (%) D-S theory (%)

1 93.00 89.00 97.29 97.14
2 93.42 90.42 97.57 96.71
3 92.00 90.71 98.43 97.00
4 93.28 88.28 98.43 96.57
5 94.71 89.85 97.43 96.85
6 93.57 91.42 96.43 98.00
7 91.80 90.40 97.86 96.28
8 93.00 89.71 98.29 98.28
9 92.14 89.71 97.43 97.42
10 93.85 89.57 97.71 96.28

Average 93.08 89.91 97.69 97.05

From the 10 runs performed, the front LMC gave an average of 93.08% accuracy,

while the side LMC gave 89.91%. Combination of features from the two LMCs

gave an average of 97.69% accuracy while classifier level fusion using D-S theory

gave 97.05%. As can be seen from Table 4.5, classifier and feature level fusion of

evidence gave an improved recognition performance of the ArSLR system as com-

pared to the individual LMCs. Fusion at feature level misclassified 44 instances

while classifier level fusion misclassified 80 instances out of 2800 total instances.

Some of the misclassified letters are shown in Tables 4.6 and 4.7.

Table 4.6: Some of the misclassified letters from feature fusion

Actual letter Misclassified as Number of times

@ ¨ 8

h.
�

� 8

h p 4

¨ È 4

�
�

� 4
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Table 4.7: Some of the misclassified letters from classifier fusion

Actual letter Misclassified as Number of times

@ ¨ 4
	

  H. 8
�

� � 12

h. Ð 8

H.
�

� 4

By analyzing the misclassified signs, it was observed that most of the misclassified

signs are similar to the signs they are classified to. In addition, the results show

an improvement over using a single LMC unit. From results obtained so far, it

can be concluded that using two LMCs has advantage over one LMC. Therefore,

we proceed to use the two LMC model for recognition of isolated Arabic sign

language words.

4.3 Results of Isolated Word Sign Recognition

using Two LMCs

The case of isolated signs recognition is more challenging than static signs (al-

phabet level) where both LMC respond to all signs and all consecutive frames

represent the sign in the scene. Therefore, we propose a new recognition model

for this case. In what follows, we present the model used for classification, followed

by results obtained using the model.
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4.3.1 Recognition Model

As discussed in chapter 3, we have used GMM for the case of dynamic sign classi-

fication. To perform sign classification, we developed a recognition system based

on four classifiers model as shown in Figure 4.13. The model’s decisions are sum

up to form the final decision. The system works according to how well the LMCs

device can detect the performed signs. The decision on which model to use was

done by using three different thresholds, according to Figure 4.13. If LMC 1 has

the best performance in detecting the performed sign, we rely on LMC 1 classifier

for the final decision, likewise, if LMC 2 has the best performance in detecting

the performed sign, final decision is based on LMC 2. However, if both LMC

performed well on the sign, we combine evidences from the two LMCs to make

the final decision.
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Figure 4.13: Model flowchart
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From Figure 4.13, we have four classifier models, which are combined to form

the overall system. The models are selected based on the following parameters:

L1, L2, uth, lth, frdiff . L1 is the total number of frames in each observation

of LMC 1 data, likewise L2 for LMC 2. uth is upper limit threshold, while lth is

lower limit threshold. frdiff is used for the case where LMC 1 & 2 both detect

the performed sign, to know how much the number of frames in LMC 1 is more

than LMC 2, or vice versa. The following explain each of the model.

� Model 1: In this model, both LMC have sufficient data to make decision,

therefore, we combine decision from both LMC 1 and 2. To solve the issue

of different length of signs, we normalize signs to have equal length by down

sampling. Other condition that fall into this category is when uth > L1 > lth

& uth > L2 > lth.

� Model 2: Here, LMC 1 was able to track the sign, while LMC 2 did not

detect the sign or detect it with very few frames. Hence, we give decision

confidence to LMC 1 only. Other option included in this model is the case

where uth > L1 > lth & L2 < lth.

� Model 3: This model is the reverse case of model 2. LMC 2 is good in

detecting the sign while LMC 1 is not. Hence we give confidence to LMC 2.

Similarly, we have this condition uth > L2 > lth & L1 < lth in this category.

finally we have:

� Model 4: In this model, both LMCs tracked the performed signs with close

range of frames. Therefore, we implemented a weighted combination of LMC
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1 and 2. More weight is given to the LMC that has the highest number of

frames. We also have this condition L2 > uth & uth > L1 > lth under this

model.

Apart from these four cases, the sign is rejected, (i.e. system cannot decide).

The algorithm was motivated by the fact that different signs have different time

to perform the sign, hence, creating the possibility that some signs may have more

numbers of frames than the other. In addition, it was also observed that the LMC

respond to some signs with varying number of frames depending on how easy the

device could track the performed sign. This has to do with the tracking capability

of the LMC.

The proposed model in Figure 4.13 is not particular for the data set used in

this work. It can be used for any data set collected using two LMCs setup. In

future work, it will be used for other data set for the case of signer independent

recognition.

4.3.2 Results of Isolated Sign Words

The proposed model was applied on a data set of 100 signs, with 10 observations

per sign, obtained from two LMCs. The signs were performed by a native deaf

signer. Results are presented for different number of Gaussian mixtures, and

thresholds. Tables 4.8, 4.9, and 4.10 present results for case where uth = 10,

lth = 5 and frdiff = 30. We started by using uth = 10 because on average, each

of the observation contains 10 frames. Some signs have more than 10 frames per
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observation while some have less than 10. This is primarily due to variation in

time length taken to perform signs. Therefore, we will compare accuracies as we

go above uth = 10 and below it. In this case, LMC 1 detects 21 signs out of

Table 4.8: Classification accuracy using 3 mixtures

Runs LMC 1 (%) LMC 2 (%) Feature level combination (%) D-S Fusion (%)

1 14.00 30.00 69.00 63.67
2 15.00 32.00 69.67 64.33
3 17.67 32.00 70.67 65.33
4 15.00 31.33 67.67 64.67
5 15.67 32.33 70.33 66.33
6 18.00 31.67 71.33 66.67
7 16.33 29.00 67.33 63.67
8 17.33 30.00 73.33 69.00
9 17.33 31.33 73.33 69.00
10 15.33 33.67 70.33 66.33
11 16.00 31.33 69.33 64.33
12 16.33 32.00 71.00 66.67
13 17.00 33.00 76.00 71.33
14 18.00 28.33 72.33 67.00
15 14.67 29.67 65.33 61.67
16 15.67 31.67 68.67 65.00
17 19.00 31.00 70.00 64.67
18 17.67 30.00 69.00 66.00
19 15.33 35.00 71.33 67.00
20 16.67 31.67 72.00 66.67

Average 16.25 31.35 70.40 65.97

100, while LMC 2 detects 45 and both LMC responded to 34 signs. Performing

classification on these sets of data using the GMM model, we summarized results

obtained for 20 runs for 1 to 3 Gaussian mixtures in Tables 4.8, 4.9, and 4.10.
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Table 4.9: Classification accuracy using 2 mixtures

Runs LMC 1 (%) LMC 2 (%) Feature level combination (%) D-S Fusion (%)

1 17.00 30.67 73.67 68.67
2 18.00 32.00 75.33 70.33
3 17.67 36.67 80.00 74.33
4 17.00 34.00 74.33 70.00
5 17.67 35.67 78.00 73.33
6 19.00 35.00 80.33 76.00
7 17.33 33.67 77.33 72.33
8 17.00 33.33 75.00 69.67
9 18.00 35.67 78.33 73.67
10 18.33 35.00 79.67 74.33
11 18.33 35.33 79.00 73.67
12 16.67 31.00 73.00 68.67
13 17.00 35.00 76.33 71.33
14 17.67 33.67 75.67 70.67
15 17.00 32.00 72.67 68.33
16 16.67 34.33 76.33 71.33
17 17.67 31.67 75.00 70.33
18 16.00 33.00 75.00 70.33
19 17.00 32.67 74.67 69.33
20 17.33 35.00 76.33 71.33

Average 17.42 33.77 76.30 71.4

85



Table 4.10: Classification accuracy using 1 Gaussian

Runs LMC 1 (%) LMC 2 (%) Feature level combination (%) D-S Fusion (%)

1 19.33 34.33 79.33 74.00
2 18.67 33.33 80.33 74.67
3 18.67 35.33 81.33 76.67
4 17.67 35.00 80.33 75.00
5 18.67 35.67 81.33 75.33
6 19.00 33.67 79.33 74.33
7 19.33 35.00 80.00 75.00
8 19.67 33.00 81.00 75.33
9 17.00 36.00 80.00 74.33
10 18.33 36.00 80.00 75.00
11 18.67 31.67 76.00 71.00
12 19.33 37.67 82.00 77.33
13 18.00 35.67 80.67 75.33
14 18.33 32.33 78.33 73.67
15 18.33 36.33 83.00 77.33
16 18.33 35.33 81.00 75.33
17 18.33 35.67 81.33 76.00
18 18.33 37.00 82.00 77.00
19 19.67 35.33 84.00 78.00
20 18.67 34.00 81.00 76.67

Average 18.67 34.93 80.63 75.32
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There was no cases of rejected sign out of the 100 signs used in this case.

Obtained accuracies show the advantage of combining two LMCs, since a single

LMC cannot track all the one hundred signs. LMC 2, which is the LMC at the

right hand side performs better in tracking the performed signs because it is close

to the signer than the front LMC (i,e. LMC 1). In addition, it does well in

tracking signs performed close to the signer face than LMC 1. Misclassification

obtained for the presented cases of mixtures are shown in Tables 4.11, 4.12, and

4.13 respectively.

Table 4.11: Mostly misclassified signs obtained using 3 mixtures

Actual sign Misclassification error (%) Misclassified as At the rate (%)

Green Peas 50 Engineer 50.00
Jeweler 30 Banana 100.00
Pilot 35 Breakfast 85.71

Muslim 45 Breakfast 44.44
Television 36 Room 71.43

Table 4.12: Mostly misclassified signs obtained using 2 mixtures

Actual sign Misclassification error (%) Misclassified as At the rate (%)

Crocodile 35 Shark 57.14
Seven hundred 35 One hundred thousand 50.00

Fifty 20 Giraffe 100.00
Ten 35 One hundred thousand 85.71

Nine Hundred 40 Bedroom 50.00
Bed 40 Room 50.00

Bedspread 30 Oven 83.33
Chandelier 25 Bee 80.00

Chair 30 Kitchen 83.33
Cable 35 Air conditioner 100.00
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Table 4.13: Mostly misclassified signs obtained using 1 Gaussian

Actual sign Misclassification error (%) Misclassified as At the rate (%)

Tailor 25 Jewler 100.00
zucchini 40 Interpreter 62.50

One Million 30 Banana 66.67
Gorilla 35 One Million 71.43

Six hundred 30 Snake 100.00
Cock 40 Shark 62.50
Bear 40 Nullification of prayer 87.50
Hajj 35 Rubbing sock 57.14

Rubbing sock 40 Hajj 50.00
Cable 40 Air conditioner 87.5

Guest room 35 Heater 57.14

Sample image sequence for some of the misclassified signs are shown in Figures

4.14 and 4.15.

Figure 4.14: Sample image sequence for ’Tailor’

Figure 4.15: Sample image sequence for ’Jeweler’

The confusion matrices are also shown in Figures 4.16, 4.17, and 4.18.
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Figure 4.16: Confusion matrix for 3 mixtures

Figure 4.17: Confusion matrix for 2 mixtures

Figure 4.18: Confusion matrix for 1 mixture
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Choosing another set of thresholds, we obtained the results in Figures 4.14,

4.15 and 4.16. For the case of lth = 10, uth = 15, frdiff = 30, there were 15 cases

of unknown signs. Similarly for lth = 4, uth = 8, frdiff = 25, we have Tables

4.17, 4.18 and 4.19. For this case, we have 2 unknown cases. It should be noted

that all recognition accuracies presented were computed against the total number

of signs used (i.e. 100 signs).

Table 4.14: Classification accuracy using 3 mixtures

Runs LMC 1 (%) LMC 2 (%) Feature level combination (%) D-S Fusion (%)

1 7.33 20.00 57.67 57.67
2 6.33 17.67 55.33 55.33
3 7.67 18.33 58.00 58.00
4 7.00 17.33 57.33 57.33
5 6.67 17.00 57.33 57.33
6 7.33 18.67 58.00 58.00
7 8.33 16.67 55.33 55.33
8 7.00 17.33 54.00 54.00
9 7.00 19.00 56.00 56.00
10 6.67 16.33 54.00 54.00
11 6.67 15.67 52.33 52.33
12 6.67 18.00 57.67 57.67
13 7.00 17.00 55.33 55.33
14 7.00 17.67 55.00 55.00
15 6.33 15.67 54.33 54.33
16 6.00 17.33 56.00 56.00
17 6.00 16.00 53.33 53.33
18 6.67 15.33 53.67 53.67
19 7.67 17.00 60.00 60.00
20 5.33 18.00 55.67 55.67

Average 6.83 17.3 55.82 55.82
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Table 4.15: Classification accuracy using 2 mixtures

Runs LMC 1 (%) LMC 2 (%) Feature level combination (%) D-S Fusion (%)

1 8.00 18.67 62.00 62.00
2 7.67 18.00 59.00 59.00
3 6.67 17.00 57.67 57.67
4 8.00 17.67 59.67 59.67
5 8.00 18.67 58.67 58.67
6 7.67 19.00 59.33 59.33
7 7.67 18.33 62.67 62.67
8 8.33 17.33 63.00 63.00
9 7.00 18.00 62.00 62.00
10 8.00 18.33 60.33 60.33
11 8.00 18.33 62.00 62.00
12 8.33 17.67 60.67 60.67
13 7.00 17.67 59.00 59.00
14 8.33 18.67 61.33 61.33
15 7.67 18.00 59.33 59.33
16 8.67 18.67 63.67 63.67
17 8.00 18.00 60.33 60.33
18 8.67 16.67 60.00 60.00
19 9.00 18.67 61.33 61.33
20 7.67 16.33 60.67 60.67

Average 7.92 17.98 60.63 60.63
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Table 4.16: Classification accuracy using 1 Gaussian

Runs LMC 1 (%) LMC 2 (%) Feature level combination (%) D-S Fusion (%)

1 8.67 20.00 65.67 65.67
2 8.00 19.33 65.00 65.00
3 9.00 19.00 65.67 65.67
4 7.67 17.00 65.67 65.67
5 8.33 16.33 62.00 62.00
6 8.33 18.33 65.67 65.67
7 7.67 18.00 62.33 62.33
8 8.00 17.33 62.67 62.67
9 8.33 19.33 65.00 65.00
10 8.00 18.00 62.00 62.00
11 7.67 19.00 65.67 65.67
12 6.67 18.00 62.00 62.00
13 7.67 16.67 62.33 62.33
14 7.67 17.33 65.00 65.00
15 7.67 22.33 70.33 70.33
16 7.67 19.67 63.33 63.33
17 7.00 16.00 61.67 61.67
18 9.00 20.00 67.00 67.00
19 8.33 19.67 64.33 64.33
20 8.00 18.33 62.00 62.00

Average 7.97 18.48 64.27 64.27
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Table 4.17: Classification accuracy using 3 mixtures

Runs LMC 1 (%) LMC 2 (%) Feature level combination (%) D-S Fusion (%)

1 19.00 35.33 66.67 61.67
2 17.67 37.00 67.33 61.00
3 19.67 37.00 68.33 62.00
4 22.00 34.00 67.33 62.00
5 20.00 36.67 69.00 64.00
6 20.00 36.00 69.00 63.00
7 19.00 40.67 73.33 66.33
8 19.33 37.33 70.00 64.00
9 18.33 37.67 69.67 63.33
10 19.67 39.67 74.33 67.33
11 18.33 35.00 67.67 61.33
12 19.67 39.00 70.67 64.67
13 22.00 39.00 71.33 66.00
14 20.33 37.00 69.33 63.67
15 21.33 40.00 74.00 67.67
16 19.67 33.00 64.67 59.33
17 20.67 35.67 70.00 64.00
18 18.00 36.67 65.00 60.00
19 19.00 34.67 67.00 60.67
20 18.00 38.33 63.33 63.33

Average 19.58 36.98 69.18 63.27
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Table 4.18: Classification accuracy using 2 mixtures

Runs LMC 1 (%) LMC 2 (%) Feature level combination (%) D-S Fusion (%)

1 21.33 40.33 75.67 68.67
2 20.00 37.33 71.66 64.67
3 19.00 40.33 73.33 66.00
4 20.33 42.33 76.00 69.00
5 20.67 39.67 71.67 66.67
6 19.67 38.67 70.33 65.33
7 21.67 39.33 75.67 69.00
8 21.00 38.67 75.33 67.33
9 21.00 38.00 74.67 66.67
10 20.00 40.00 73.33 67.67
11 21.00 38.00 71.33 65.67
12 20.33 38.00 72.00 66.33
13 21.00 41.00 77.33 70.00
14 19.67 35.33 69.67 62.00
15 21.33 39.33 75.33 68.67
16 21.67 35.33 70.33 64.67
17 19.33 36.33 69.33 63.00
18 21.33 37.00 73.00 66.67
19 22.33 39.00 75.33 69.00
20 20.00 40.33 74.00 67.67

Average 20.63 38.72 73.27 66.73
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Table 4.19: Classification accuracy using 1 Gaussian

Runs LMC 1 (%) LMC 2 (%) Feature level combination (%) D-S Fusion (%)

1 22.33 43.33 81.67 73.67
2 23.67 35.33 73.33 66.00
3 22.00 40.33 78.00 70.67
4 22.33 40.67 77.67 70.67
5 21.33 41.67 77.67 71.00
6 22.33 41.67 79.33 72.33
7 23.67 40.67 79.00 72.67
8 23.33 40.67 80.00 72.33
9 22.00 42.33 79.67 72.67
10 21.67 40.67 77.33 69.33
11 24.00 39.00 78.33 70.67
12 24.33 38.67 77.00 70.00
13 23.00 41.67 80.00 72.33
14 23.33 39.00 76.67 70.33
15 22.67 38.00 76.67 69.33
16 20.67 39.00 75.00 68.00
17 23.67 43.00 82.33 74.33
18 22.67 42.00 79.33 72.67
19 24.00 43.67 81.33 75.33
20 20.67 39.67 76.00 68.67

Average 22.68 40.55 78.31 71.15
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4.4 Discussion

As previously discussed, the data set used for isolated word classification consists

of 10 observations per sign for 100 signs. Each of the observation contains several

frames of data representing the movement of the hand sign performed by the deaf

signer. Frames per observation varies depending on the length of time taken to

perform the sign. Therefore, we have used the algorithm presented in Figure 4.13

to manage this difference in frames per observation. We have also assumed GMM

for the data set. The optimal number of Gaussian Mixtures to be used in a data

set is still an open area of research [74]. Several approaches have been suggested,

such as the work of [75, 76, 74, 77]. Optimal mixtures to be used varies from

one area of application to the other. In this work, we experimented with 1 to 3

mixtures. Results obtained are shown in Tables 4.8, 4.9 and 4.10 for the case of

lth = 5, uth = 10, frdiff = 30, numbers of frames. The best result was obtained

for the case of k = 1. It was observed that recognition accuracy drops as the

number of mixtures increases. This revealed that the data best fit for the case

of a single Gaussian mixture. Similar trend was observed in all cases presented

(i.e. 1-Gaussian outperform 2 and 3 mixtures of Gaussian). This was expected

because most of the features histograms are unimodal except in few features like

the hand roll feature shown in Figures 4.19 and 4.20.
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Figure 4.19: Histogram of hand roll feature for LMC 1

Figure 4.20: Histogram of hand roll feature for LMC 2
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For convergence of GMM algorithm, we have used an error difference, between

consecutive iteration, of 1x10−6 which should be achieved within a particular

number of iterations. We started by using 100 iterations. We observed some cases

where the algorithm fails to converge after 100 iterations for 2 and 3 mixtures

of Gaussian. However, when we increased the number of iterations to 1000, the

algorithm was able to converge within this number of iteration. There was no

difference in the accuracies obtained for both cases of 100 and 1000 iterations,

hence, the obtained results are not biased to a particular number of iterations.

There is no issue of convergence with the case of 1-Gaussian and this case gave

us the best classification accuracy.

We also observed the performance accuracies as we increase or decrease the

thresholds related to number of frames in each observation. The threshold set

during training determines the number of undecided cases. The thresholds are set

according to the training data set. One major advantage of these thresholds is to

increase the confidence in making the final decision. For example, if both LMCs

detect the sign and LMC 1 has more data than LMC 2, exceeding a particular

threshold, final decision is taken from LMC 1, etc. Increasing the threshold,

increases the tendency of having more unknown cases. This, especially affects signs

which take short length of time to perform. So it is better to select a minimum

threshold where signs with short length will also be taken into consideration. On

the other hand, making the threshold too low, signs in which the LMC responded

with little number of frames are likely to be misclassified, hence reducing the
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recognition rate. This is obvious from results of Tables 4.10 and 4.19.

Comparing the two combination approaches used, it was generally observed

that simple concatenation of the two LMCs feature vectors outperforms the use

of D-S theory. The effect of the theory on the overall accuracy was not significant

since it is a function of the number of times both LMC detects the sign. In

addition, since features are geometric, combination of the two feature sets provide

more information (it provides us with two different view of the sign performed)

hence better accuracy. We also observed some cases where both combination

approaches gave the same results. In this case both method do not apply because

the cases of rejected signs. Hence, the results from the general case common to

both are outputted.

Generally, accuracies obtained by current approaches are highly influenced by

the use of color glove, constant light background settings, etc. However, results

obtained in this approach, though not yet up to accuracies of current approaches,

only requires the signer to perform the sign naturally. Moreover, our obtained

performance accuracy still compete closely with current approaches without the

need for the constrains in these approaches.

4.5 Observed Limitation of the LMC Device

During the data collection process using the LMC, the following limitation were

observed:

1. Sign can only be detected within the LMC interaction box (see Figure 4.21)
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which is limited in distance and less than the manufacturer specification.

Consequently, some signs were completely not detected by the LMC.

Figure 4.21: LMC interaction box

2. Signs performed beyond 25cm from the surface of the device are not de-

tected.

3. Poor finger tracking when fingers are placed close to each other (see Figure

4.22).

Figure 4.22: Inaccurate finger tracking when fingers are close to each other
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4. Partial tracking of signs:- Some signs are not completely tracked from begin-

ning to end of the signs, hence, making signs that are originally not similar

to look similar.

4.6 Arabic sign language recognition using the

Kinect

The setup for ArSLR using the Microsoft Kinect (MK) device consists of four (4)

stages: the MK device, data collection, feature extraction, and classification, as

shown in Figure 4.23.

Figure 4.23: ArSLR using MK device

Brief discussion on each of these blocks in Figure 4.23 are presented below:

4.6.1 Image Acquisition using the MK device

The ArSLR setup involves the use of the recently introduced Microsoft Kinect

(MK) for Windows. The MK device serves as the interface between the signer

and the machine learning algorithm. The MK device sensor shares many of the

core capabilities of the Kinect for Xbox 360 sensor. First, both devices contain

RGB camera that stores three-channel data at a 1280 x 960 resolution at 12 frames

per second or a 640 x 480 resolution at 30 frames per second. This instrument
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allows color images or video to be captured. Second, both devices contain an

infrared (IR) emitter, which emits infrared light beams, and an IR depth sensor,

which reads the IR beams reflected back to the sensor. The reflected beams are

converted into depth information, measuring the distance between an object and

the sensor and hence facilitating the capture of depth images. Third, both devices

also contain a 4-channel microphone array for capturing sound; the microphone

channels make it possible to record audio from a specific direction as well as to

identify the location of the sound source and the propagation direction of the

audio waves.

Finally, both devices also contain a three-axis accelerometer configured for a

2G range, where G is the acceleration due to gravity. It is possible to use the

accelerometer to determine the current orientation of the sensor. The MK device

also includes Near Mode, which enables the devices camera to see objects as close

as 40 centimeters in front of the sensor without losing accuracy or precision, with

smooth degradation out up to 3 meters [78]. The MK device is depicted in Figure

4.24 [48].

Figure 4.24: Microsoft Kinect for Windows
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The interaction space of the device is the area in front of its sensors where

the infrared and color sensors have an unblocked view of everything in front of

the sensors. The interaction space can be increased by adjusting the built-in tilt

motor. The tilt motor supports additional 27 degrees, as shown in Figure 4.25.

Using this device, RGB, depth, and skeletal images as well as audio data can be

acquired.

Figure 4.25: MK interaction space

As a way of comparison, we acquired RGB and videos for 40 Arabic Sign

Language dynamic isolated words using the Kinect sensor which was programmed

using MATLAB to capture 30 frames per seconds. Twenty samples of each letter

were collected for both RGB images, giving a total of 800 samples in total. Each

videos were converted back to frames to give images of sequences involved in

performing each of the signs. To avoid reduce computational complexity involved

in segmentation and feature extraction, samples were taken from the total frames

of the video. These samples were segmented to extract the hand region. Figures

4.26show a typical frame sequence for RGB image.
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Figure 4.26: Sample RGB for ArSL word ’Family’

4.6.2 Segmentation

From the sample images taken from each video, we segmented the acquired images

to isolate the region of the hand representing the performed sign. This is very

important especially to reduce the size of data in which the feature stage operates

on. To segment a sample image, first, the Gaussian skin color model algorithm

was used to extract skin portion of the image. This process leaves us with the face

and hand portion of the image. Then, this image is fed to another stage which

converts the image to binary image. Segmented image of Figure 4.26 is shown in

Figure 4.27.

Figure 4.27: Sample segmented image of sign ’Family’
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4.6.3 Feature Extraction and Classification

For feature extraction, we have used the Hu’s moment as presented in [79]. This

method of using the moment of the image was first developed by Hu and is of-

ten called Hu’s invariant moment. The method is characterized by invariance of

translation, rotation and scaling and has been successfully used in many fields.

The extracted features were fed into a multilayer neural network (presented in 3)

classifier.

For classification, the data was split into two 70% for training and the rest for

testing. An overall classification accuracy of 81.5% was obtained with 148 cases of

misclassification out of the 800 samples. The overall performance curve is shown

in Figure 4.28.
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Figure 4.28: Performance curve of the network
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The MK device has an advantage of being able to capture the entire body

unlike the LMC device which focus on the hand region. Thus, the MK device

will be able to take care of cases of signs where the LMC cannot detect. How-

ever, the performance of this approach reduces as the background lighting of the

environment reduce below a certain threshold.

4.7 Summary

Results were presented for recognition of 28 ArSL letters using single LMC and

two LMCs, recognition of isolated ArSL words using two LMC setup. For iso-

lated word recognition, we have used the GMM algorithm with EM. Results were

presented for a data set of 100 sign words. A maximum accuracy of 80.6% was

obtained. Confusion matrices and ROC plots were also shown to visualize the

performance of the classifier. As a way of comparison, we also presented ArSLR

using the MK device. To sum up, we observed advantages and disadvantages in

both devices. Future work will focus on having a combined setup for both devices

to take advantage of combining their strength. In the next chapter, we conclude

this work and give recommendation and possible future direction.
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CHAPTER 5

CONCLUSION AND FUTURE

WORK

5.1 Conclusion

In this thesis, a new approach to Arabic Sign Language recognition system have

been proposed. The approach does not require the signer to wear cumbersome

glove, neither does it require specific lighting background settings. It was tested

for recognition of 28 Arabic Sign Language alphabets, using single and double

LMCs, and recognition of 100 isolated signs. For a single LMC on 28 alphabets,

using Naive Baye’s classifier (NBC) we obtained 95.5% recognition accuracy, in

comparison with multilayer perceptron (MLP) which gives 94.25% accuracy. 126

instances, out of 2800, were misclassified by NBC while MLP misclassified 161

instances. For the case of two LMCs, The average accuracy (with fusion at features

level) of the signs recognition using the LDA classifier was about 97.7% while the
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accuracy of classifier fusion using D-S theory was about 97.1%. Analysis of the

misclassified signs (44 instances for feature level fusion and 80 for classifier level

fusion out of 2,800 instances) revealed that most of the misclassified letter signs

are similar to the signs they are classified to. On using the model for 100 isolated

signs, the two-LMC setup outperforms the use of a single LMC, where LMC 1

alone gave 18.67%, LMC2 alone gave 34.93%, and from fusion of two LMCs, we

have accuracy of 80.6%. We also observed that combination feature vectors from

the two LMCs gave better accuracy than using D-S theory.

In conclusion, we have developed a system for Arabic Sign Language recognition.

This approach, though accuracy obtained not yet up to current approaches, does

not require the signer to wear cumbersome glove nor requires specific lighting

background settings. Future work will concentrate on techniques to improving

the obtained accuracy and increasing the database of signs.

5.2 Future Work

From observation and problems encountered in this work, several research areas

for future work have been established. To achieve a robust system for Arabic Sign

Language recognition using the Leap Motion Controller, observed limitations and

challenges faced during the course of this thesis will need to be solved. Though

the accuracy obtained from this work is without the constrained faced with cur-

rent approaches, however, more work need to be done to improve the accuracy.

Therefore, the following are some suggestion for future work:
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1. Using the model in signer independent mode using data collected from three

or more signers

2. Combination of Leap Motion Controller and Microsoft Kinect sensor

3. Investigation of other set of features from the Leap Motion device

4. Limitation with LMC detection range and tracking performance will need

to be improved.

5. Future works will also include extending the model for recognition of full

Arabic Sign Language sentence.
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Appendix: Images describing features

Figure A.1: Hand palm posiion

Figure A.2: Hand tip position
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Figure A.3: Hand pitch, yaw and roll

Figure A.4: Hand sphere radius
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Figure A.5: Finger length

Figure A.6: Average finger width
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