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 ملخص الرسالة
 

 أيندى باباجيدى اوديتون  :الاسم الكامل
 

 تحكم متأقلم متين لنظام أتمتى الكترو هيدروليكى بهدف الأضطرابات وعدم الثبات فى المتغيرات: عنوان الرسالة
 

 هندسة نظم وتحكم: التخصص
 

 2015فبراير : تاريخ الدرجة العلمية
 

 
طروحة تناقش التحكم فى عمود لنظام أتمتى هيدروليكى تستند الى عدم ثبات فى قيم العناصر هذة الا

متحكم التراجع المتين المقترح يضمن تتبع الخطأ حول . بالأضافة الى أضرابات محدودة و غير معروفة

ر ربح ثابت الأول عنص. ثلاثة مخططات سوف تقترح. حدود محددة تؤدى لأتزان النظام فى الدورة المغلقة

لتحسين هذا . يصل الى دقة تتبع مقبولة مع حالة ثبات الخطأ بحدود المليميتر لكن مع تذبذب فى إشارة الدخل

كلا من المتحكمين يضمنان الثبات ضد الأضرابات . السلوك تم اقتراح متحكم مع ثابت ربح متغير مع الوقت

راقب عالى مصمم بإستخدام نهج متحكم متراجع ثابت ربح م. و المتغيرات العشوائية فى النظام المتحرك

اداء قياسى أستخدم لتحديد الخطأ . أخيرا تحكم متأقلم تراجعى متين سيصمم. لتقيم حالات النظام الغير مقاسة

مراقب الحالة أستخدم أيضا لتقييم حالات النظام باستخدام المتحكم . التتبعى بين أصل الدخل وخرج النظام

المقترح المتأقلم المتين التراجعى يضمن انتظام حدود تتبع الخطأ التى تؤدى لأتزان النظام المتحكم . المتأقلم

 . فى الدورة المغلقة



CHAPTER 1

INTRODUCTION

Electro-hydraulic servo systems (EHSS) are ubiquitous in the industries due to

their inherent ability to deliver fast and power responses. They have been found

useful in many industrial applications ranging from aerospace to manufacturing.

EHSS also find applications in safety critical missions such as flight control. More-

over, this type of system is an integral part of the equipment called the vibroseis

used for soil testing in Seismic applications [2]. The efficiency of the vibroseis

depends greatly on the ability of the vibrator to synchronously generate repeated

ground-force sweep over a broad range of frequency [1]. The ground and baseplate

of the vibrator has the configuration shown in Fig. 1.1.

The notion of using vibroseis method in seismic data acquisition is to radiate

To servo valve stage

Baseplate

Reaction

Mass

Controller

Ground

Figure 1.1: Vibrator-ground schematic

a theoretically prescribed frequency modulated signal into the earth. The the-
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oretical sweep can easily be created using electronic generator and transformed

into oscillations of the baseplate. Typically, the transformation is done using the

hydraulic supply and servo-valve [3]. Due to low rigidity of the vibrator baseplate

and the surface unevenness, the contact stiffness between the ground and the

baseplate varies greatly. Fig. 1.2 emphasizes the detailed steps in the survey [4].

Consequently, the variation in the contact stiffness yields a nonlinear and unpre-

dictable distortion of the original sweep signal. A cross section of the vibrator in

contact with the ground is shown in Fig. 1.3.

In order to mitigate the discrepancy between the theoretical sweep (the input

Determine peak reaction mass displacement for a reaction mass

of a seismic vibrator in the frequency domain

Using the determined peak reaction mass displacement for the reaction mass of the seismic

vibrator to design a sweep with enhanced low frequency content to be produced

by the seismic vibrator for vibroseis acquisition

Using the seismic vibrator to inject the designed sweep into the ground

Analyzing received vibrational signal.

Figure 1.2: Seismic survey process

to the system) and the actual motion of the baseplate (output of the vibroseis

system), a sophisticated vibrator control system has to be employed. It has been

established in [3] that displacement is a better feature of the baseplate motion that

represents the seismic signal entering the earth over its counterpart, the ground

force. One of the many advantages of using displacement as the source signature is

its measurability unlike the ground force that has to be estimated with significant
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and unknown uncertainty [3].

Figure 1.3: A cross-section of a deployed vibrator

1.1 Motivation

The primary motivation behind this work is to design a control strategy for EHSS

that can be implemented on a vibroseis. The model of the servovalve used in

this thesis, describes the fluid flow without neglecting the occurrence of leakage

due to fabrication imperfections. Owing to the fact that the system’s model is

highly nonlinear, the control design for these type of system is never trivial. Due

to the nature of applications this system is used for, the model is susceptible to

parameter variations, component failures and disturbances. Hence, robust control

laws are generally opted for.

One of the major drawbacks of all state-feedback control methodologies is that

the feedback is dependent on the states of the system under control. Practically,

availability of the states measurements may be inconceivable because sometimes
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either the measurements are impossible or are possible, but too expensive [5]. In

the case of electrohydraulic servo systems, measuring the differential pressure is a

costly task and requires high technology procedure to avoid additional leakage [6].

To circumvent around this problem, a robust adaptive observer that can estimate

states is required. Subsequently, the estimated states from the observer can be

used to compute the control signal. For the sake of simplicity, the observer is

designed separately from the controller.

1.2 Thesis Objectives

In this thesis, an adaptive backstepping-based robust controller is proposed that

guarantees a uniformly ultimately bounded tracking error leading to a practical

stability of the closed loop system. This thesis is structured in three folds. First,

we propose a constant gain backstepping-based robust controller that can achieve

a good tracking accuracy with a steady state error in the millimeter range, but

induces control input oscillations in transient. To improve on such undesired be-

havior, a second controller with time varying gain is proposed. Both controllers

assure robustness against perturbations and uncertainties in the dynamics of the

system. The results of these two aforementioned proposed controllers are bench-

marked with a recently proposed sliding mode controllers with discontinuous sur-

faces. Secondly, an observer was constructed to estimate the states of the system

that are not available.

Furthermore, a robust adaptive output feedback control based on backstepping

4



technique is proposed that adapts to parameter changes and external disturbance.

Finally, the stability analysis of all the aforementioned controllers is proved using

the Lyapunov approach.

1.3 Thesis Outline

• Chapter 2 presents the literature about the modeling and control of the

EHSS model that will be used throughout this thesis..

• Chapter 3 gives the notation, basic kinematics and Dynamical Equations of

the Electrohydraulic servo valve.

• Chapter 4 presents both the constant-gain and time-varying gain controller

design based on the backstepping method and the simulation results. Also

in this section, the results of the controllers are benchmarked with other

recent controllers in the literature.

• Chapter 5 presents the observer design for the EHSS and the simulation

results.

• Chapter 6 presents the robust adaptive feedback control and observer design

based on backstepping technique and the simulation results as well.

• Chapter 7 concludes the thesis .
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CHAPTER 2

LITERATURE REVIEW

All the applications mentioned in the introduction however, demand an extremely

high precision position control of the spool valve. Due to the fluid inflow and

outflow in the servo valve, friction on the actuators, as well as the moving part of

the valve, the dynamics of these systems are highly nonlinear. Also, phenomena

such as entrapment of air inside the hydraulic valve, parameters variations (due

to temperature changes), unknown model errors and perturbations all contribute

to the challenges faced in various attempts to control such systems. This type

of system exhibits a high degree of nonlinearity and non-differentiability due to

inherent characteristics such as leakage, friction and the fluid flow in and out of

the valve [7].

2.1 Modeling of Electrohydraulic Servo System

An accurate model of the electrohydraulic system is necessary to implement

various control strategies for high precision position control. System identification

6



is used in [8] to model the electro-hydraulic actuator servo system dynamics

using a linear model approximation. The advantage of this method is that an

apriori knowledge of the system is not necessarily required. Also in [9], Hao et

al. use the simulative data and theory to model the main spool flow field of the

servo valve.

The importance of friction effects in modeling an hydraulic servo system

cannot be over-emphasized since, friction is an inherent feature of all machine

incorporating parts with relative motion [10]. By considering all the difficulties

involved in accurately modeling the friction, authors in [11] presented a LuGre

model-based adaptive control scheme which gives a better estimation of the

friction, good disturbance rejection and general robustness to uncertainties in

parameters.

In [12], authors implemented a novel variable structure controller which

lumps both the friction and load as external disturbances. System model

identification coupled with an adaptive Fuzzy PID control can also be used

to obtain a more accurate model and controller for the electro-hydraulic

servo system [13]. The most accurate model used in this work incorporates

leakages in the servo valve and nonlinear friction compensation at the load end [6].
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2.2 Control of Electrohydraulic Servo System

Despite the high level of nonlinearities involved in the dynamics of electro-

hydraulic servo systems, linear control theory and concepts are often used to

simplify the complexity involved in the control analysis. In [14], system’s lin-

earization around an operating condition followed by pole placement methods

were used to control the system. Susceptibility to poor performance is one of the

major drawbacks of the closed-loop system whenever the system strays from the

desired operating condition due parameter changes.

In addition, linear control design methods cannot guarantee the same perfor-

mance of the closed loop control system all over the operating range [15]. In order

to improve the precision and robustness of a linear PID, a feedback-feedforward

iterative learning controller was developed in [11]. The feedforward part of the

controller aims at improving the precision while the feedback makes the closed-

loop system more robust.

Auto-disturbance rejection and feedback controller was used for position con-

trol of an electro-hydraulic system with both internal and external disturbances

[16]. Also a nonlinear adaptive feedback linearization position control with load

disturbance rejection and friction compensation was proposed in order to mitigate

the effect of external load variation and coulomb friction [17].

Artificial intelligent (AI) approaches are also used for nonlinear friction com-

pensation. In [10], a neuro-fuzzy approach which is based on support vector

machine friction compensation. This technique was used to enhance the position

8



tracking and also to reduce the high steady state error and overshoot problems

which tend to surface whenever there is nonlinearity in the friction. Dynamic par-

ticle swarm optimization (DPSO) based algorithm has also been used to improve

the precision of position control [18].

In an attempt to compensate for the negative effects of fluid leakage across a

faulty actuator piston seal, a fractional order controller based on micro artificial

bee colony (ABC) algorithm was developed by authors to control a servo-hydraulic

position system. Non-model based adaptive control scheme with high tracking ac-

curacy even in the presence of disturbance, parameter variations and uncertain

nonlinearities was developed. The controller works well even without any apriori

knowledge of the model of the system [15].

In [6,19,20], sliding mode techniques are employed in controlling the position

of the hydraulic servo. The results by these authors show a high precision in posi-

tion tracking even when the plant is subjected to external disturbance. Adaptive

sliding mode approach was used in [21] to mitigate the effect of uncertainties in

the system. One of the shortcomings of implementing sliding mode controller is

that the control law is discontinuous, and due to the rapid switching, there are

tendencies to observe phenomena such as input discontinuity and fast chattering.

Backstepping is a design strategy that employs a recursive approach in formu-

lating the control law [22] and it is often used for designing stabilizing controls

for some class of dynamical nonlinear systems. This method is developed by in-

serting new variables that depends on the state variables, controlling parameters

9



and the stabilizing functions. The essence of this stabilizing function is to redress

any nonlinearity that can impede the stability of the system. Due to the recursive

nature of the control design, formulation of the controller generally starts with a

well known stable system. Subsequently, virtual controllers are employed to help

stabilize the outer subsystems progressively. The process of using the virtual con-

trollers in the stabilization of the subsystem continues until the external control

is accessible. In fact, it has been shown that backstepping technique can be used

to force nonlinear systems to behave like a linear system transformed into a new

set of coordinates [23].

One of the numerous advantages of using backstepping technique in designing

a controller is its ability to avoid useful nonlinearity cancelation. The objective of

backstepping gravitates towards stabilization and tracking in contrast with its cor-

responding feedback linearization method. Furthermore, backstepping approach

has been found to relax matching conditions on perturbations. This helps facili-

tate controller designs for perturbed nonlinear system even if the perturbation is

nowhere around the equation containing the input.

Backstepping method is generally used for tracking and regulation problems

[22]. Authors in [24] use backstepping based neural adaptive technique to control

the velocity of the electro hydraulic system subject to internal friction, flow non-

linearity and noise. Combination of 3 different types of controllers were used to

stabilize the system.

Most importantly, electrohydraulic system’s parameters are subject to variation

10



due to temperature rise. For instance, bulk modulus viscous friction coefficients

are prone to variation due to temperature fluctuations. Owing to the fact that

backstepping controller design relies on actual system’s parameters, the need arises

to design a controller that adapts to these changes.

To overcome the problem of variation in parameters, authors in [25–27] em-

ployed adaptive control schemes. In controlling electro-hydraulic systems, adap-

tive schemes suffer a serious setback if the uncertain parameter is the supply

pressure difference which happens to appear in a square-root in the dynamics of

the system. This setback is because traditional adaptive schemes demand the

system to be linear in uncertain parameters. Lyapunov approach was used in [2]

to design an enhanced feedback linearization-based controller for electro-hydraulic

servo systems with supply pressure uncertainties/changes.

In [28], an adaptive position control of an electrohydraulic system with vari-

ations in supply pressure is proposed. The gradient method based on the aug-

mented error is used to estimate the unknown parameters and the control was

able to achieve a closed loop stability. Position control has also been tackled us-

ing indirect adaptive backstepping technique and the influences aside chattering

and saturation effects of the tuning parameters of the error dynamics. A part of

the dynamics of the hydraulic system was considered a norm-bounded uncertainty

in [29,30] and two backstepping based adaptive controllers that force the tracking

error converges to zero are designed.

Each of these aforementioned controllers has its inherent weakness, for in-
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stance in sliding mode control, the control law is discontinuous, and fast switching

(chattering) is possible. For the feedback linearization, the linearization becomes

incorrect and create unstable closed loop system, if there is parameter changes

present in the system. For the backstepping technique, it is easier to find a Lya-

punov function and the feedback can easily be formulated if all state variables

are measurable. A nonlinear observer can be used to estimate the immeasurable

states and parameter variations can be easily dealt with by . Based on this, we

developed an adaptive nonlinear output feedback control for the electrohydraulic

system that overcomes all the disadvantages using nonlinear adaptive backstep-

ping techniques.
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CHAPTER 3

NOTATION AND BASIC KINEMATICS OF

ELECTRO HYDRAULIC SERVO VALVE

The fundamental step in dynamic system analysis, design and control is obtaining

a mathematical model. The general dynamics and kinematics equations for EHSS

are presented in this section. As earlier mentioned in the introductory part of this

work, one of the key applications of EHSS is the vibrator system used in seismic

data acquisition. The schematic of the hydraulic seismic vibrator is as shown

in Fig. 3.1. The flow of hydraulic fluid is supplied by the variable displacement

pressure-compensated piston pump which is driven by the engine in Fig. (3.1).

Particles that enter the system through hose interior or seals are removed through

the use of filters [31]. The flow through the servo valve drives the reaction mass

(MR) upward thereby generating a reaction force that is applied to a piston that

is coupled to the earth with the help of the baseplate (MB). Simultaneously, the

fluid in the upper chamber of the piston leaves through the lower chamber back

into the servo-valve and subsequently back into the pump.

All the flow losses as a result of leakage are compensated for with the help

13



Figure 3.1: Basic circuit of a hydraulic seismic vibrator.

of the charge pump. In order to maintain a good contact between the baseplate

and the load (earth) while is dynamically driven, a hold-down system is used.

The system pressure is maintained using the accumulators whenever transient

flow occurs. These accumulators must be placed very close to the servo valve to

effectively damp all the transient effect [31].

The passage of the spool valve system is analogous to a transmission line in the

electrical sense where the hydraulic flow is like the current and the pressure is like

the voltage as depicted in Fig. 3.2 below. Using similar analogy, a capacitor repre-

sents the combined effect of the fluid compressibility and passage compressibility,

an inductor is seen as the mass of the fluid and the resistance as the passage flow

resistance.
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Figure 3.2: Basic circuit of a hydraulic seismic vibrator.

3.1 Model of a spool Valve Controlled Piston

Pistons are referred to as linear hydraulic actuation devices. Depending on what

controls the actuation devices, they can be categorized into either pump controlled

or valve controlled [32]. In this section of the thesis, we focus on the valve-

controlled pistons.

m

kl

b

m0

x2 , x3

S

P1 , V1 P2 , V2

u

Pr Ps

Figure 3.3: Electro-hydraulic System
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Symbol Definition

V1 volume of the forward chamber (includes valve, connecting hose and piston), m3

V2 volume of the return chamber (includes valve, connecting hose and piston), m3

V10 initial volume of forward chamber, m3

V20 initial volume of return chamber,m3

S1,S2 piston surface area of each side, m2

xp piston position relative to the middle of the stroke, m

lp full stroke length of the piston, m

v velocity of the piston, m/s

mo mass of the piston

m mass of the load, kg

i input current, mA

kl Load spring gradient, N/m

b viscous damping coefficient, Ns/m

k flow gain constant, Ns/m

Ps,Pr supply and return pressure, Nm−2

Ps,Pr pressures in upper and lower chambers, Nm−2

Table 3.1: Nomenclature

The dynamics of the EHSS depicted in Fig. 3.3 can be represented by the set of

ordinary nonlinear differential [32] in Eq. (3.1). The spool consists of a four-way

spool valve, supplying a double effect linear cylinder with a double rodded piston.

The piston exerts a force on a load modeled by a mass, spring and a sliding viscous

friction.

dP1

dt
= B

Vo+Sxp
(Q1(i, P1)− S1v),

dP2

dt
= B

Vo−Sxp (Q2(i, P2)− S2v),

dv
dt

= 1
m+m0

(S1P1 − S2P2 − bv − kl(xp − xpo)),

dxp
dt

= v + d(t).

(3.1)
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with

Q1(i, P1) =


ki
√
Ps − P1 + α

1+γi
(Ps − P1)− α

1+γi
(P1 − Pr), if i ≥ 0

ki
√
P1 − Pr + α

1−γi(Ps − P1)− α
1−γi(P1 − Pr), if i < 0

Q2(i, P2) =


−ki√P2 − Pr + α

1+γi
(Ps − P2)− α

1+γi
(P2 − Pr), if i ≥ 0

−ki√Ps − P2 + α
1−γi(Ps − P2)− α

1−γi(P1 − Pr), if i < 0

For symmetric piston, S1 = S2 = S and by setting m + m0 = mt, then the third

equation in Eq. (3.1) can be simplified to:

mt
dv
dt

= S(P1 − P2)− bv − kl(xp − xpo), (3.2)

and also, choosing,

PL = P1 − P2,

QL = Q1−Q2

2

(3.3)

After thorough manipulations of these equations, QL is then given as

QL = S dxp
dt

+ V0
2B

d
dt

(P1 − P2) + Sxp
2B

d
dt

(P1 + P2) (3.4)

Also,

P1 = Ps+Pr+PL

2
,

P2 = Ps+Pr−PL

2

(3.5)
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Again, for simplicity, we can make Vt = 2Vo, where Vt is the total volume of the

cylinder. Then,

QL = Sv + Vt
4B

dPL

dt
(3.6)

Q1(i, P1) and Q2(i, P2) can then be expressed in terms of QL as given in below:

QL =


ki
2

√
Ps − P1 +

√
P2 − Pr − α

1+γi
PL, if i ≥ 0

ki
2

√
Ps − P1 +

√
P2 − Pr − α

1+γi
PL, ifi < 0

Inserting the values P1 and P2 into the equation of QL above yields:

QL = ki

√
Ps−Pr−sign(i)PL

2
− α

1+γ|i|PL
(3.7)

Therefore, the overall system model is as given in (5.4)

dPL

dt
= 4B

Vt
(ki

√
Ps − Pr − sign(i)PL − α

1+γ|i|PL − Sv),

dv
dt

= 1
mt

(SPL − bv − kl(xp − xpo)),

dxp
dt

= v + d(t).

(3.8)

18



3.2 Electrohydraulic Servo Valve Dynamic

Equations

The jack in a hydraulic system consists of a four-way spool valve supplying a

double effect linear cylinder with a double rodded piston. The piston drives a

load modeled by mass, spring and a sliding viscous friction.

The electro-hydraulic system subjected to parameters uncertainty and external

disturbance at the level of the output can be modeled by the dynamics [6] given

in Eq. (3.9) and as depicted in Figure 3.3: Choosing PL = x1, v = x2, xp = x3

and i = u, we have

ẋ1 = 4B
Vt

(ku
√
Pd − sign(u)x1 − αx1

1+γ|u| − Sx2),

ẋ2 = 1
mt

(Sx1 − bx2 − βx3),

ẋ3 = x2 + d(t).

(3.9)

where β = (kl + ∆ kl).
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CHAPTER 4

BACKSTEPPING BASED CONTROLLER

DESIGN

In this section, control design is presented based on nonlinear backstepping

method for electro hydraulic servo system subject to bounded disturbance and

parameter uncertainties. As mentioned earlier, one key feature of the backstep-

ping technique in designing a controller is its ability to avoid useful nonlinearity

cancelation. The objective of employing backstepping method gravitates towards

the stabilization and tracking in contrast with its corresponding feedback lin-

earization method. Furthermore, backstepping approach has been found to relax

matching conditions on perturbations. This helps facilitate controller designs for

perturbed nonlinear system even if the perturbation is nowhere around the equa-

tion containing the input.

Considering the EHSS modeled by the dynamics [6] given in Eq. (4.1) below:

ẋ1 = 4B
Vt

(ku
√
Pd − sign(u)x1 − αx1

1+γ|u| − Sx2),

ẋ2 = 1
mt

(Sx1 − bx2 − βx3),

ẋ3 = x2 + d(t).

(4.1)
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where β = (kl + ∆ kl). The following assumptions hold:

Assumption 4.1 1. d(t) is an unknown but bounded disturbance with |d(t)|<

dmax.

2. ∆kl is unknown and bounded with |∆kl|< ∆kmaxl .

3. The dynamic of the spool-valve is assumed fast enough so it can be ignored

in the dynamic model.

4. The states of the system are available.

5. Reference input(r(t)) is a known continuously differentiable bounded trajec-

tory.

As earlier mentioned, the nonlinearities with respect to the input ”u” in the

dynamics of the system make it an intricate task in trying to control the output of

the system. We are able to circumvent this challenge by designing a backstepping

based controller that will drive the position of the rod to a desired reference ”r(t)”.

Remark 4.1 One should note that u > 0 is equivalent to the spool valve moving to

the right allowing x1 < 0. Likewise, u < 0 is equivalent to the spool valve moving

to the left prompting x1 > 0. Therefore, sign(u) = −sign(x1) and consequently,√
Pd − sign(u)x1 =

√
Pd + |x1| and thus

√
Pd − sign(u)x1 is always a nonzero

real valued function.

In order to use the backstepping method to design the controller, a re-indexing

of the states variables is needed to transform the system into its standard strict
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feedback form. Let

ξ1 = x3,

ξ2 = x2,

ξ3 = x1.

(4.2)

The dynamics of the transformed system is then given below in Eq. (4.3)

ξ̇1 = ξ2 + d(t),

ξ̇2 = 1
mt

(Sξ3 − bξ2 − βξ1),

ξ̇3 = 4B
Vt

(ku
√
Pd − sign(u)ξ3 − αξ3

1+γ|u| − Sξ2).

(4.3)

Let

e1 = ξ1 − r,

e2 = ξ2 − ṙ,

e3 = f(ξ)− r̈,

(4.4)

where f(ξ) = ξ̇2.

Then, the error dynamics satisfies

ė1 = e2 + d,

ė2 = e3,

ė3 = (∂f(ξ)
∂ξ

)T ξ̇ − ...
r .

(4.5)
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The rest of this section presents two controller designs using the backstepping ap-

proach. The first controller employs a constant feedback gain while in the second

controller, the gain of the feedback is modified to a time-varying exponential func-

tion. The controller with the time-varying feedback is then benchmarked with one

of the recent method in the literature which utilizes sliding mode control method

with discontinuous sliding surfaces. The schematic of the proposed controller is

as shown in Figure 4.1.

Figure 4.1: Closed-loop controller scheme

4.1 Controller Design with a Constant Gain

Let λc and ko be constant design parameters ≥ 1,

u = mtVt
4SBk1kmin(

√
Pd−ξ3,

√
Pd+ξ3)

υ (4.6)

υ = −ko(α1e1 + α2e2 + α3e3)− (dmax|c1|+|f1|+|f2|) (4.7)
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where

g(u) = 4Bk
Vt

√
Pd − sign(u)ξ3, (4.8)

c1 = λc + 3
2
− β

λ4cmt
, (4.9)

f1 = e2 + λce1 + (λc + 3
2
)e2 + (1 +

λc+
λ3c
2

λ4c
)e3

+ −β(e2+ṙ)
mtλ4c

− bmt(e3−r̈)+b2(e2+ṙ)+bβ(e1+r)

m2
tλ

4
c

− b(e2+ṙ)+β(e1+r)

m2
tλ

4
c

− S2

mtλ4c
(e2 + ṙ)− 1

λ4c

...
r

(4.10)

f2 =
−αS(

mt(e3−r̈)
S

+
b(e2+ṙ)+β(e1+r)

S
)

λ4cmt

(4.11)

α1 = 3
2

+ λc, , α2 = 1 + 1
λ3c

+ 1
2λc
, α3 = 1

λ4c
. (4.12)

Theorem 4.1 The system with kinematic model (4.3) and controller (4.6)-(4.12)

is practically stable and the solution of the error dynamic (4.5) is globally uni-

formly ultimately bounded with ultimate bound satisfying the following condition

|(α1e1 + α2e2 + α3e3)2 + λc
2
e2

1 + (e2 + λce1)2|≤
√

( 1
2λc

+ 1
2λ5c

)d2
max

Proof. We use the following Lyapunov function candidate

V1 = 1
2
e2

1, (4.13)
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Calculating the derivative of V (x) along the trajectories of the perturbed EHSS,

we obtain

V̇1 = −λce2
1 + e1(e2 + λce1) + e1d.

V̇1 ≤ −λce2
1 + e1(e2 + λce1) + 1

2λc
d2 + λc

2
e2

1,

≤ −λc
2
e2

1 + 1
2λc
d2 + e1(e2 + λce1).

(4.14)

we have used the Young’s inequality (also sometimes called the PeterPaul inequal-

ity) with λc > 0

e1d ≤ |e1||d| ≤ 1
2λc
d2 + λc

2
e2

1
(4.15)

Let V2 = 1
2λ4c

(e2 + λce1)2, then

V̇2 = 1
λ4c

(e2 + λce1)(e3 + λc(e2 + d)) (4.16)

Therefore,

(4.17)V̇1 + V̇2 ≤ −λc
2
e2

1 + 1
2λc
d2 + 1

λ4c
(e2 + λce1)[e3 + λce2 + λ4

ce1 + λcd]

But,

1
λ3c

(e2 + λce1)d ≤ 1
λ3c
|d||e2 + λce1|,

≤ 1
λ3c

[ 1
2λ2c
d2 + λ2c

2
(e2 + λce1)2]

(4.18)

25



Inserting Eq. (4.18) into Eq. (4.17), we have

V̇1 + V̇2 ≤ −λc
2
e2

1 + ( 1
2λc

+ 1
2λ5c

)d2 + (e2 +λce1)[ 1
λ4c

(e3 +λce2 +λ4
ce1) + λ2c

2
(e2 +λce1)].

(4.19)

V̇1 + V̇2 ≤ −λc
2
e2

1 + ( 1
2λc

+ 1
2λ5c

)d2 − (e2 + λce1)2 + (e2 + λce1)[α1e1 + α2e2 + α3e3]

(4.20)

Choosing V3 = 1
2
(α1e1 + α2e2 + α3e3)2, then,

V̇ = V̇1 + V̇2 + V̇3

≤ −λc
2
e2

1 + ( 1
2λc

+ 1
2λ5c

)d2 − (e2 + λce1)2 + (e2 + λce1)[α1e1 + α2e2 + α3e3]

+ (α1e1 + α2e2 + α3e3)[α1ė1 + α2ė2 + α3ė3]
(4.21)

(4.22)V̇ ≤ −λc
2
e2

1 + ( 1
2λc

+ 1
2λ5c

)d2 − (e2 + λce1)2

+ (α1e1 + α2e2 + α3e3)[e2 + λce1 + α1ė1 + α2ė2 + α3ė3]

(4.23)
V̇ ≤ −λc

2
e2

1 + ( 1
2λc

+ 1
2λ5c

)d2 − (e2 + λce1)2

+ (α1e1 + α2e2 + α3e3)[g(u).u+ f1(e) + c1d+ f2
1+γ|u| ]

After algebraic manipulation of Eq. (4.23) and considering that:

1
1+γ|u| ≤ 1; (4.24)

(4.25)c1d(α1e1 + α2e2 + α3e3) ≤ dmax| c1|| α1e1 + α2e2 + α3e3|

(4.26)(α1e1 + α2e2 + α3e3)f2 ≤ | f2|| α1e1 + α2e2 + α3e3|

then,

(4.27)V̇ ≤ −λc
2
e2

1 + ( 1
2λc

+ 1
2λ5c

)d2 − (e2 + λce1)2 + (α1e1 + α2e2 + α3e3)g(u).u

+ | α1e1 + α2e2 + α3e3|(dmax| c1|+ | f1|+ | f2|)
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Therefore,

(4.28)V̇ ≤ −λc
2
e2

1 − (e2 + λce1)2 − (α1e1 + α2e2 + α3e3)2 + ( 1
2λc

+ 1
2λ5c

)d2
max

The right-hand side of the foregoing inequality is not negative because of the

disturbance and uncertainty terms. Near the origin where ei, for i = 1, 2, 3, is

almost zero V̇ > 0 pushing the trajectories away from 0.

However,

(4.29)
V̇ ≥ 0
⇒ λc

2
e2

1 + (e2 + λce1)2 + (α1e1 + α2e2 + α3e3)2

≥ ( 1
2λc

+ 1
2λ5c

)d2
max

Hence, if we start within the set defined by ei, (i = 1, 2, 3) such that V3 =

(α1e1 + α2e2 + α3e3)2 > ( 1
2λc

+ 1
2λ5c

)d2
max, then V̇ < 0 and the solution will remain

in that set for all future time.

Remark 4.2 The design parameter λc should be selected as big as possible to

make decrease the ultimate bound in the tracking error dynamic. The larger is λ

the more oscillatory is the transient and higher is the control input. In order, to

allow λ to take large values and avoid transient problems, one should allow λ to

be function of time rather than a constant. In the next section, the design of the

controller for such case is presented.

4.2 Controller Design with a Time-Varying Gain

In this section, we will design a backstepping-based controller and allow the

Young’s inequality parameter λ to be function of time. The objective is to al-
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Figure 4.2: Backstepping controller with constant feedback gain, using constant
reference (r = 20cm) and under constant disturbance (d(t) = 0.1)

low λ to take large values while avoiding transient performance issues. Define

λ = λmax(1− exp(−ε1t))

and

λ̇ = −ε1λ+ ε1λmax

λ(0) ≥ ε1λmax

(4.30)
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Figure 4.3: Backstepping controller with constant feedback gain, using constant
reference (r = 20cm) and under sinusoidal disturbance (d(t) = 0.1sin(t))

Let,
(4.31)u = mtVt

4SBkmin(
√
Pd−ξ3,

√
Pd+ξ3)

υ

and,

υ = −ko(α1e1 + α2e2 + α1e2)− (|c2|+|f3|+|f4|) (4.32)
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Figure 4.4: Backstepping controller with constant feedback gain, using sinusoidal
reference (r = 0.05sin(t)m) and under constant disturbance (d(t) = 0.1)

where

f3 = e2 + λe1 + (1 + ε1λmax + 1
2
λ4 + ε1

2
λmaxλ+ λ)e2 − 1

m2
t
b(S(mt

S
(e3 − r̈)

+ (1 + λ+ ε1λ
3 + ε1

2
λmax)e3 − 1

mt
β(e2 + ṙ)

+ 1
S

(b(e2 + ṙ) + β(e1 + r)))− b(e2 + ṙ)− β(e(1) + r))− S2

mt
(e2 + ṙ)

− ...
r + (2λ3(−ε1λ+ ε1λmax) + ε1

2
λmax(−ε1λ+ ε1λmax)− ε1λ+ ε1λmax)e1

+ (−ε1λ+ ε1λmax + 3
2
λ2(−ε1λ+ ε1λmax))e2;

(4.33)
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Figure 4.5: Backstepping controller with constant feedback gain, using sinusoidal
reference (r = 0.05(sin(t) + sin(2t) + sin(3t))m) and under constant disturbance
(d(t) = 0.1)

f4 = −αS
mt

(mt

S
(e3 − ṙ) + 1

S
(b(e2 + ṙ) + β(e1 + r))) (4.34)

c2 = − β
mt

+ 1 + ε1λmax + 1
2
λ4 + ε1

2
λmaxλ+ λ (4.35)
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α1 = 1 + ε1λmax + λ+ 1
2

+ ε1
2
λmaxλ+ λ4

2
,

α2 = 1 + λ+ λ3

2
+ ε1

2
λmax,

α3 = 1

Theorem 4.2 Let λ(t) as defined in (4.30), with 0 < ε1 ≤ 1 and λmax > 0

two real design parameters, the system with kinematic model (4.3) and controller

(4.38)-(4.46) is practically stable and the solution of the error dynamic (4.5) is

globally uniformly ultimately bounded with ultimate bound satisfying the following

condition |(α1e1 + α2e2 + α3e3)2 + (−λ
2

+ ε1
2
λmax)e

2
1 + (e2 + λe1)2|≤

√
1
λ
d2
max

Proof.

V1 = 1
2
e2

1,

V̇1 = −λe2
1 + e1(e2 + λe1) + e1d

(4.36)

Using Young’s inequality,

e1d ≤ |e1||d| ≤ 1
2λ
d2 + λ

2
e2

1
(4.37)

V̇1 ≤ −λ
2
e2

1 + 1
2λ
d2 + e1(e2 + λe1) (4.38)

Let V2 = 1
2
(e2 + λe1)2, then

V̇2 = (e2 + λe1)(e3 + λ(e2 + d) + λ̇e1)

= (e2 + λe1)[e3 + λ(e2 + d) + e1(−ε1 + ε1λmax)]

(4.39)
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(4.40)V̇2 = (e2 + λe1)(e3 + ε1λmaxe1 + λe2) + λd(e2 + λe1)− ελ(e2 + λe1)e1

Owing to Young’s inequality, one can write

(4.41)λd(e2 + λe1) ≤ d2

2λ
+ λ3

2
(e2 + λe1)2

and
(4.42)−ε1λ(e2 + λe1)e1 ≤ ε1

2
λmaxe

2
1 + ε1

2
λmax(e2 + λe1)2

Therefore,

(4.43)
V̇2 ≤ (e2 + λe1)[e3 + ε1λmaxe1 + λe2)

+ λ3

2
(e2 + λe1) + ε

2
λmax(e2 + λe1)]

+ ε1
2
λmaxe

2
1 + d2

2λ

and,

(4.44)V̇1 + V̇2 ≤ (−λ
2

+ ε1
2
λmax)e

2
1 + 1

λ
d2 + (e2 + λe1)[e3 + λe2 + e1 + ε1λmaxe1

+ λe2 + λ3

2
(e2 + λe1) + ε1

2
λmax(e2 + λe1)]

(4.45)V̇1 + V̇2 ≤ (−λ
2

+ ε1
2
λmax)e

2
1 + 1

λ
d2− (e2 +λe1)2 +(e2 +λe1)[α1e1 +α2e2 +e3]

Let V3 = 1
2
(α1e1 + α2e2 + α3e3)2, then

(4.46)
V̇ = V̇1 + V̇2 + V̇3

≤ (−λ
2

+ ε1
2
λmax)e

2
1 + 1

λ
d2 − (e2 + λe1)2

+ (α1e1 + α2e2 + e3) ((e2 + λe1) + (α1ė1 + α2ė2 + ė3 + α̇1e1 + α̇2e2))

(4.47)V̇ ≤ (−λ
2

+ ε1
2
λmax)e

2
1 + 1

λ
d2 − (e2 + λe1)2

+ (α1e1 + α2e2 + e3)[α1e2 + λe1 + ė1 + α2ė2 + ė3 + α̇1e1 + α̇2e2]

Eq. (4.40) can be written in the form given in Eq. (4.41)

(4.48)
V̇ ≤ (−λ

2
+ ε1

2
λmax)e

2
1 + 1

λ
d2 − (e2 + λe1)2

+ (α1e1 + α2e2 + e3)[g(u).u+ f3(e) + c2d+ f4
1+γ|u| ]

33



Taking into account that:

1
1+γ|u| ≤ 1; (4.49)

(4.50)c2d(α1e1 + α2e2 + α3e3) ≤ dmax| c2|| α1e1 + α2e2 + α3e3|

(4.51)(α1e1 + α2e2 + α3e3)f4 ≤ | f4|| α1e1 + α2e2 + α3e3|

(4.52)V̇ ≤ (−λ
2

+ ε1
2
λmax)e

2
1 + 1

λ
d2 − (e2 + λe1)2 + (α1e1 + α2e2 + α3e3)g(u).u

+ | α1e1 + α2e2 + α3e3|(dmax| c2|+ | f3|+ | f4|)

Manipulating Eq. (4.49) - (4.52), leads to

(4.53)V̇ ≤ (−λ
2

+ ε1
2
λmax)e

2
1 − (e2 + λe1)2 − (α1e1 + α2e2 + α3e3)2 + 1

λ
d2
max

The proof is complete.

4.3 Controller Design using Sliding Mode Con-

trol with Discontinuous Surface

In an attempt to benchmark the backstepping based controller using time varying

feedback gain with a sliding mode controller (SMC), we took the controller devel-

oped in [6]. The authors formulated the controller using two discontinuous sliding

surfaces. The surfaces and the controller are given in the Eq. (4.54)- (4.56).

4.3.1 Controller Design using Classical Sliding Surface

The sliding surface was chosen such that the system behaves asymptotically stable

when it is confined to the surface. The chosen sliding surface is given in Eq. (4.55)
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Figure 4.6: Backstepping controller with time-varying feedback gain, using con-
stant reference (r=0.2m) and under constant disturbance (d(t) = 0.1)

and the control law is thus given as in Eq. (4.56). Given that:

C2 = 2λt − b,

C3 = λ2mt − kl
(4.54)
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Figure 4.7: Backstepping controller with time-varying feedback gain, using con-
stant reference(r = 0.3m) and under constant disturbance(d(t) = 0.1)

Then the sliding surface (σ(x)) is

σ(x) = Sx1 + C2x2 + C3(x3 − x3ref )− klx3ref ; (4.55)
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Figure 4.8: Backstepping controller with time-varying feedback gain, for sinusoidal
reference (r = 0.05(sin(t))m) and under constant disturbance (d(t) = 0.1)

The control law (u(x)) is

u(x) =


−W sign(σ(x))−C2

mt
(Sx1−bx2−klx3)+(

4BS2

Vt
−C3)x2

4BSk
Vt

√
Pd−x1

, if u ≥ 0

−W sign(σ(x))−C2

mt
(Sx1−bx2−klx3)+(

4BS2

Vt
−C3)x2

4BSk
Vt

√
Pd+x1

, if u < 0

(4.56)
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Figure 4.9: Backstepping Controller with time-varying feedback gain, using sum
of sinusoids reference(r = 0.05(sin(t) + sin(2t) + sin(3t)))m) and under constant
disturbance (d(t) = 0.1)

4.3.2 Controller Design with Discontinuous Surface

In order to improve the efficiency of the controller using classical sliding surface

in the foregoing subsection, two discontinuous sliding surfaces are proposed by

the authors in [6]. Choosing W = 107, W1 = 100, W2 = 0.15 & W3 = 20, the

following surfaces will be achieved. The sliding surfaces (σ1(x)) and (σ(x)) are
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Figure 4.10: Backstepping controller for reference (0.05sin(2πft)m) with sweep
frequency f=5 Hz

given as follows.

σ1(x2, x3) = x2 +W3(x3 − x3ref ) +W2sign(x3 − x3ref ),

σ(x) = Sx1 + (mtW3 +mtW2δ(x3 − x3ref )− b)x2 − klx3 +mtW1sign(σ1(x2, x3))

(4.57)
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Figure 4.11: Backstepping controller for reference (0.05sin(2πft)m) with sweep
frequency f=10 Hz

Here, the control law (u(x)) is

u(x) =


−W sign(σ(x))−mtW1δ(σ1(x))+(

4BSα
Vt

+
bS
mt
−SW4)x1+(

4BS2

Vt
− b2

mt
+kl+bW3)x2+(klW3+

bkl
mt

)x3

4BSk
Vt

√
Pd−x1

, if u ≥ 0

−W sign(σ(x))−mtW1δ(σ1(x))+(
4BSα
Vt

+
bS
mt
−SW4)x1+(

4BS2

Vt
− b2

mt
+kl+bW3)x2+(klW3+

bkl
mt

)x3

4BSk
Vt

√
Pd+x1

, if u < 0

(4.58)
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Figure 4.12: Backstepping controller for reference (0.05sin(2πft)m) with sweep
frequency f=15 Hz

4.4 Results and Discussion

The numerical values for the parameters used in the simulation are given in Table

4.1. Figures (4.2), (4.3), (4.4) and (4.5) illustrates the response of the system

when λ = 20 using the constant gain controller in Eq. (4.6) under a constant

external disturbance. Oscillations of the control input as well as the position are

clearly visible. Also, it can easily be observed that time of convergence of the
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Figure 4.13: Backstepping controller for reference (0.05sin(2πft)m) with sweep
frequency f=17 Hz

position to a steady state value is considerably much especially for applications

that require fast responses. This is in contrast with time varying λ, in Figures

(4.16), (4.15), (4.8) and (4.9) where the control is smooth and achieves excellent

tracking performances. In Figures (4.16) and (4.15), the parameters λmax and ε1

are adjusted to 35 and 0.9 respectively in order to increase both the convergence

time and the tracking accuracy. The control easily achieved the desired reference.

The results from Figures (4.8) and (4.9) demonstrate the excellent tracking for
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Figure 4.14: SMC under constant disturbance[d(t) = 0.1]

a sinusoidal reference input. The control provides a quick convergence of the

tracking error to a neighborhood of the origin. It is apparent from Figure (4.17)

that both the SMC and Backstepping Controller with time-varying Feedback Gain

are very robust against uncertainties and unknown but bounded disturbance. It

can be remarked from figure (4.15) that both controllers achieve a good tracking

accuracy however, a closer look evidently show that there is chattering in closed-

loop system response using the SMC. Besides, the control signal is not smooth
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Figure 4.15: SMC and Backstepping controller with time-varying feedback gain,
using constant reference (r = 0.2m) and under constant disturbance (d(t) = 0.1)

when compared with the Backstepping Controller with time-varying Feedback

Gain. In figure (4.16), when the reference input is r = 0.3m, the SMC has a

considerable steady state tracking error unlike the backstepping controller which,

forces its tracking error to a small neighborhood of zero. Figures (4.10), (4.11),

(4.12) and (4.13) correspond to the response of the system to sinusoidal reference

(0.05sin(2πft)m with sweep frequencies f=5, 10, 15 and 17 Hz respectively. It

must be remarked that λ(t) has to be fast enough in order to enable the system’s
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Figure 4.16: SMC and Backstepping controller with time-varying feedback gain,
using constant reference (r = 0.3m) and under Constant disturbance(d(t) = 0.1)

output track a higher frequency reference signals. Tuning ε1 to a value of 3,

increases the speed of the control signal and the close loop system is fast enough

to achieve a reference with sweep frequency up to 17 Hz.
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Figure 4.17: SMC and Backstepping controller with time-varying feedback gain,
using constant reference (r = 0.3m) and under time-varying disturbance (d(t) =
0.3sin(t))

Parameters Value Units

B 2.2× 109 Pa

Vt 1× 10−3 m3

γ 8571 s−1

α 4.1816× 10−12 m3s−1Pa−1

k 5.12× 10−5 m3s−1A−1Pa1/2

Ps 300× 105 Pa

Pr 1× 105 Pa

S 1.5× 10−3 m2

b 590 kg/s

kl 12500 N/m

∆kl 2500 N/m

mt 70 kg

Table 4.1: Numerical value for simulations
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CHAPTER 5

OBSERVER DESIGN

The criticality of observer design cannot be exaggerated. Aside the fact that

observer reduces the cost of installing sensors, it is also used to monitor the con-

ditions of the system under control and sometimes used in high fault-tolerant

applications where sensors are prone to unexpected failure. Some years back, the

observer design for nonlinear systems was implemented by using the Luenberger

observer design on the linearized version of the system. However, the presence of

inherent nonlinearity, friction and deadband make the linearization approach not

efficient [33, 34]. A nonlinear observer can be used to estimate the immeasurable

states and parameter variations can be easily dealt with by implementing an adap-

tive strategy that estimates the system’s parameters online. In the later chapter,

an adaptive nonlinear output feedback control for the EHSS will be developed to

overcome the problems of variation in parameters.

One of the major drawbacks of all state-feedback control methodologies is that

the feedback is dependent on the states of the system under control. In general,

accessibility to all the state variables is most times not satisfied and only few of the

states are measurable. Practically, availability of the states measurements may
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be inconceivable because sometimes either the measurements are impossible or

are possible, but too expensive [5]. One way to obtain the nonmeasurable states

is to construct an auxiliary system [32]. The role of the auxiliary system is to

estimate the missing states knowing only the output of the real system. Feedback

control laws can then be formulated using the states estimated by the auxiliary

system called the state observer. The real system can intuitively be stabilized if it

is ascertained that the estimated states can asymptotically converge to real states

which, is not the case most times.

One of the reasons why the stabilization through state observer is not a trivial

task is that, the conditions under which stabilizing feedback and observer can be

separately designed to obtain an estimated-state feedback control law. In fact,

this can easily be tagged as a separation principle problem. It must be remarked

that the separation principle was well studied in [35] and it was shown that if the

control law is continuously differentiable, the same control law formulated from

the observed states will also stabilize the real system. Also, [36] generalized the

work in [35] by neglecting the differentiability assumptions and focused on con-

tinuous control law. In our case, measuring the differential pressure (∆P = ξ3) of

electro hydraulic system is a costly task and requires high technology procedure

to avoid additional leakage [6]. To circumvent this problem, we propose in this

section to design a backstepping-based based observer that may estimate the re-

quired states and subsequently use them to regulate the position of the rod. The

schematic of the observer design is depicted in Figure 5.1
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Figure 5.1: Controller using estimated states

5.1 Backstepping based Observer Design

The dynamics of the transformed system is then given in Eq. (5.1)

ξ̇1 = ξ2 + d(t),

ξ̇2 = 1
mt

(Sξ3 − bξ2 − βξ1),

ξ̇3 = 4B
Vt

(ku
√
Pd − sign(u)ξ3 − αξ3

1+γ|u| − Sξ2).

(5.1)

The system in Eq. (5.1) can be put in the form :

ξ̇ = f(ξ) + g(ξ)u, y = h(ξ) (5.2)

where f(ξ),g(ξ) and h(ξ) are sufficiently smooth in domain D ⊂ Rn.

The relative degree(r) of the system is 3

ẏ = ∂h
∂ξ

[f(ξ + g(ξ)u)] = Lfh(ξ) + Lgh(ξ)u (5.3)
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In order to check for the observability of our system, we defined observability

matrix as given below:

l(ξ0, u
∗) =


h(ξ)

Lfh(ξ)

L2
fh(ξ)

 =


ξ1

ξ2 + d

Sξ3−bξ2−(kl+∆kl)
mt

 (5.4)

O(ξ0, u
∗) = ∂l(ξ0,u∗)

∂ξ
=


1 0 0

0 1 0

−kl+∆kl
mt

− b
mt

S
mt

 (5.5)

Since O(ξ0, u
∗) is of full rank, the system is locally observable. Now, considering

the following observer model:

ż1 =z2 + L1(ξ1 − z1),

ż2 = 1
mt

(Sz3 − bz2 − klz1) + L2(e1 − ξ1),

ż3 =4B
Vt

(ku
√
Pd − sign(u)z3 − αz3

1+γ|u| − Sz2)

+ L3(ξ1 − z1).

(5.6)

where z1, z2 and z3 are the states of the observer.

Let the error and the error dynamics be defined as follows:

e1 = ξ1 − z1, e2 = ξ2 − z2, e3 = ξ3 − z3. (5.7)
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ė1 =e2 + d− L1e1,

ė2 = 1
mt

(Se3 − be2 − kle1 −∆klξ1)− L2(e1 − ξ1),

ė3 =4Bku
Vt

((
√
Pd − sign(u)ξ3 −

√
Pd − sign(u)z3)

− αe3
1+γ|u| − Se2)− L3e1.

(5.8)

Let

α1 = 1 + kl
mt

+ L2, (5.9)

α2 = 1− b
mt
, (5.10)

α3 = S
mt
. (5.11)

and

g(u, ξ, z) = 4Bku
Vt

(
√
Pd − sign(u)ξ3

−
√
Pd − sign(u)z3),

(5.12)

c2 = 1− kl
mt
− L2

(5.13)

f6 = −4αSBk
mtVt

e3
(5.14)

f7 = −1− b
mt

mt
ξ1

(5.15)
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L3 =mt

S
(α1e1 + α2e2 + α3e3 + [dmax|c2|

+ ∆kl|f7|+ |f6|+ |g(u, ξ, z)| sup
t≥0
|u|])

(5.16)

Theorem 5.1 The system with observer model Eq. (5.6) or equivalently (5.8)

with parameters L1 >>
λ0
2

, L2 = ∆kl
mt

, and let L3 given by equation(5.16) with

(5.9)-(5.15) is practically stable and the solution of the state estimation error is

globally uniformly ultimately bounded.

Proof. In order to prove the stability of the error dynamics, we chose the

following Lyapunov candidates:

V1 = 1
2
e2

1,

V̇1 = e1e2 − L1e
2
1 + e1d.

(5.17)

V̇1 ≤ (−L1 + λo
2

)e2
1 + 1

2λo
d2 + e1e2, (5.18)

where L1 >>
λo
2

.

Choosing also,

V2 = 1
2
e2

2, (5.19)

V̇2 = e2( 1
mt

(Se3 − be2 − kle1)− 1
mt

∆klξ1 − L2(e1 − ξ1)). (5.20)
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V̇1 + V̇2 ≤(−L1 + λo
2

)e2
1 + 1

2λo
d2 + e2( 1

mt
(Se3 − be2 − kle1)

− L2e1 + ξ1(L2 − 1
mt

∆kl) + e1).

(5.21)

To nullify the effect of ∆kl and ξ1, we choose L2 = ∆kl
mt

. Therefore,

V̇1 + V̇2 ≤(−L1 + λo
2

)e2
1 + 1

2λo
d2 − e2

2

+ e2( 1
mt

(Se3 − be2 − kle1)− L2e1 + e1 + e2).

(5.22)

Putting Eq. (5.22) in a compact form, we have:

V̇1 + V̇2 ≤(−L1 + λo
2

)e2
1 + 1

2λo
d2 − e2

2

+ e2(α1e1 + α2e2 + α3e3).

(5.23)

with

α1 = 1 + kl
mt

+ L2,

α2 = 1− b
mt
,

α3 = S
mt
.

Choosing V3 = 1
2
(α1e1 + α2e2 + α3e3)2, then,

V̇ =V̇1 + V̇2 + V̇3
(5.24)
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V̇ ≤(−L1 + λo
2

)e2
1 + 1

2λo
d2 − e2

2

+ e2[α1e1 + α2e2 + α3e3]

+ (α1e1 + α2e2 + α3e3)[α1ė1 + α2ė2 + α3ė3]

(5.25)

V̇ ≤(−L1 + λo
2

)e2
1 + 1

2λo
d2 − e2

2

+ (α1e1 + α2e2 + α3e3)[g(u, ξ, z).u− S
mt
L3

+ c2d+ f6
1+γ|u| + f7∆kl]

(5.26)

Considering that:

1
1+γ|u| ≤ 1; (5.27)

(5.28)c2d(α1e1 + α2e2 + α3e3) ≤ dmax| c1|| α1e1 + α2e2 + α3e3|

(5.29)f7∆kl(α1e1 + α2e2 + α3e3) ≤ ∆kl| f7|| α1e1 + α2e2 + α3e3|

(5.30)(α1e1 + α2e2 + α3e3)f6 ≤ | f6|| α1e1 + α2e2 + α3e3|

(α1e1 + α2e2 + α3e3)g(u, ξ, z)u(t) ≤ | g(u, ξ, z)|| α1e1 + α2e2 + α3e3| sup
t≥0
|u|

(5.31)

then,

V̇ ≤(−L1 + λo
2

)e2
1 + 1

2λo
d2 − e2

2

− S
mt

(α1e1 + α2e2 + α3e3)L3 + |α1e1

+ α2e2 + α3e3|(dmax|c2|

+ ∆kl|f7|+ |f6|+ |g(u, ξ, z)| sup
t≥0
|u|)

(5.32)

54



To ensure V̇ ≤ 0, L3 can be selected as follows:

L3 =mt

S
(α1e1 + α2e2 + α3e3 + [dmax|c2|

+ ∆kl|f7|+ |f6|+ |g(u, ξ, z)| sup
t≥0
|u|])

(5.33)

Using equations (5.27 - 5.31),

V̇ ≤(−L1 + λo
2

)e2
1 + 1

2λo
d2 − e2

2

− (α1e1 + α2e2 + α3e3)2

(5.34)

Figure 5.2: Behavior of the observer and hydraulic servo system using a constant
feedback gain (λ) and under a constant disturbance
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Figure 5.3: Behavior of the observer and hydraulic servo system under a sinusoidal
disturbance using a constant feedback gain (λ)

Remark 5.1 It can be remarked that the tracking error is globally uniformly ul-

timately bounded with ultimate bound satisfying the following condition |(−L1 +

λo
2

)e2
1 + e2

2 + (α1e1 + α2e2 + α3e3)2|≤ 1
2λo
d2. The parameter λo is also a design

parameter introduced in Young’s inequality during the proof of stability of the

state-observer. Such parameter should be selected as big as possible to decrease

the ultimate bound in the tracking error dynamic. The larger is λo the more os-

cillatory is the transient and higher in the control input. In order, to allow λo to

take large values and avoid transient problems, one may attempt to select λo to be

function of time rather than a constant. In such case, the design becomes more

complicated and separation between the control and the observer is no longer valid.
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Figure 5.4: Behavior of the observer and hydraulic servo system under a constant
disturbance using a constant feedback gain (λ). Reference(r = 10sin(t) cm)

5.2 Results and Discussion

Figure (5.2) shows the performance of the observer. It can be seen that the control

easily achieves the desired reference and the observer estimates the states of the

system under constant external disturbance with a steady state error converging

to a small neighborhood of the origin. When the disturbance is assumed to be

time varying (d(t) = 0.3sin(t)) as shown in Figure (5.3), the output of the closed

loop system still tracks the reference with small steady state oscillations due to

the large amplitude of the sinusoidal external disturbance. Figures (5.4) and (5.5)

demonstrate the excellent tracking of sinusoidal reference for both the system and

the observer under a constant external disturbance (d(t) = 0.1). Even though the

observer estimates the position with a very small estimation error in the steady
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Figure 5.5: Behavior of the observer and hydraulic servo system under a constant
disturbance using a constant feedback gain (λ). Reference(r = 10sin(t))cm)

state however, there is a considerable estimation error in the case of the differential

pressure. It is also apparent in Figures (5.6) and (5.7) that the control provides

a quick convergence of the tracking error to a neighborhood of the origin even

when the reference is changed to sum of sinusoids. Whereas, the estimation error

is very small for the position, just as observed for sinusoidal reference in Figure

(5.4)
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Figure 5.6: Behavior of the observer and hydraulic servo system under a constant
disturbance using a constant feedback gain (λ). Reference(r = 0.05(sin(t) +
sin(2t) + sin(3t))m)

Figure 5.7: Behavior of the observer and hydraulic servo system under a constant
disturbance using a constant feedback gain (λ). Reference(r = 0.05(sin(t) +
sin(2t) + sin(3t))m)
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CHAPTER 6

ROBUST ADAPTIVE CONTROL DESIGN

Most importantly, EHSS parameters are subject to variation due to temperature

rise. For instance, the coefficients such as bulk modulus and viscous friction are

prone to variation due to temperature fluctuations. And owing to the fact that

backstepping controller design relies on actual system’s parameters, the need arises

to design a controller that has the capability of adapting to these changes.

To overcome the problem of variation in parameters, adaptive control schemes

are generally employed. In controlling EHSS, adaptive schemes suffer a serious

setback if the uncertain parameter is the supply pressure difference which hap-

pens to appear in a square-root in the dynamics of the system. This setback is

because traditional adaptive schemes demand the system to be linear in uncertain

parameters.

In this chapter, we present a backstepping based adaptive technique that is ro-

bust to uncertainties in the system’s parameters and external disturbance. First,

we assume the parameters of the load (that is β) and frictional coefficient(b) is

unknown but linear and has to be estimated by the adaptive scheme. In the

other case, we proposed adaptive scheme that assumes that β and b are nonlinear
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Figure 6.1: Adaptive Control Scheme

function. The schematic of the proposed backstepping based adaptive strategy is

shown in Figure 6.1 below

Case 1 Recall Eq. (6.1), and choosing: A = 4BSk
mtVt

and m(t) =
√
Pd − sign(u)x1,

then the error dynamics satisfy

ė1 = e2 + d,

ė2 = e3,

ė3 = bβ
m2

t
ξ1 + (−β

mt
+ b2

m2
t
− 4BS2

mtVt
)ξ2 + (− bS

m2
t
− 4BSα

mtVt(1+γ|u|))ξ3

− β
mt
d− ...

r + Am(t)u.

(6.1)

Let, θd = β
mt

and

θ1 = bβ
m2

t
, θ2 = −β

mt
+ b2

m2
t
− 4BS2

mtVt
, θ3 = − bS

m2
t
− 4BSα

mtVt(1+γ|u|) .
(6.2)
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Eq.(6.60) can then be transformed into,

ė1 = e2 + d,

ė2 = e3,

ė3 = θT ξ − θdd(t)− ...
r + Am(t)u.

(6.3)

where, A is a known constant and θ is an unknown parameter vector containing

θ1, θ2 and θ3. θd is unknown parameter associated with the disturbance in the

error dynamics. ξ is a state vector comprising of ξ1, ξ2 and ξ3. Now, the goal is

designing an adaptive feedback such that

lim
t→∞
|ξ1 − r(t)| ≤ δ (6.4)

where, δ is a sufficiently small positive number. The design task is to make δ as

small as possible and at the same time ensuring a control law that is smooth. The

following gives the synopsis of the control design schemes.

Theorem 6.1 Let us denote

h(e) = α1e1 + α2e2 + α3e3,

g(e, ξ) = λe1 + (1 + α1)e2 + α2e3

(6.5)
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and let the adaptation law be given as

˙̂
θd = γα3|h(e)|µ

˙̂
θ = γα3|h(e)|ξ

(6.6)

and let the adaptive feedback be given as

u = mtVt
4α3SBkα

[
|g(e, ξ)|+|α1 + α3θ̂d|dmax + φ(ξ, θ̂)− koh(e)

]
(6.7)

where, α = min(
√
Pd − ξ3,

√
Pd + ξ3), θ̃ = θ − θ̂, supt≥0|d(t)| = dmax, φ(ξ, θ̂) =

α3[|θ̂T ξ|+ supt≥0|
...
r |] and λ > 0 is a design parameter

Then, EHSS under the adaptive feedback control law given in (6.7) is practically

stable and the solution of the error dynamic (6.1) is globally uniformly ultimately

bounded with ultimate bound satisfying the following condition |λc
2
e2

1+(e2+λce1)2+

(α1e1 + α2e2 + α3e3)2|≤
√

( 1
2λ

+ 1
2λ5

)d2
max

Proof. Choosing the lyapunov candidate function as:

V1 = 1
2
e2

1, (6.8)

Calculating the derivative of V (x) along the trajectories of the perturbed system,

we obtain

V̇1 = −λe2
1 + e1(e2 + λe1) + e1d.

V̇1 ≤ −λe2
1 + e1(e2 + λe1) + 1

2λ
d2 + λ

2
e2

1 ≤ −λ
2
e2

1 + 1
2λ
d2 + e1(e2 + λe1).

(6.9)
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again using the Young’s inequality with λ > 0 [37];

e1d ≤ |e1||d| ≤ 1
2λ
d2 + λ

2
e2

1
(6.10)

Let V2 = 1
2λ4

(e2 + λe1)2, then

V̇2 = 1
λ4

(e2 + λe1)(e3 + λ(e2 + d)) (6.11)

Therefore,

V̇1 + V̇2 ≤ −λ
2
e2

1 + 1
2λ
d2 + 1

λ4
(e2 + λe1)[e3 + λe2 + λ4e1 + λd] (6.12)

But,

1
λ3

(e2 + λe1)d ≤ 1
λ3
|d||e2 + λe1| ≤ 1

λ3
[ 1
2λ2
d2 + λ2

2
(e2 + λe1)2] (6.13)

Inserting Eq. (6.13) into Eq. (6.12), we have

V̇1 + V̇2 ≤ −λ
2
e2

1 + ( 1
2λ

+ 1
2λ5

)d2 + (e2 + λe1)[ 1
λ4

(e3 + λe2 + λ4e1) + λ2

2
(e2 + λe1)].

(6.14)

V̇1 + V̇2 ≤ −λ
2
e2

1 + ( 1
2λ

+ 1
2λ5

)d2 − (e2 + λe1)2 + (e2 + λe1)[α1e1 + α2e2 + α3e3]

(6.15)

64



Choosing V3 = 1
2
(α1e1 + α2e2 + α3e3)2, then,

V̇1 + V̇2 + V̇3 ≤− λ
2
e2

1 + ( 1
2λ

+ 1
2λ5

)d2 − (e2 + λe1)2 + (e2 + λe1)[α1e1 + α2e2 + α3e3]

+ (α1e1 + α2e2 + α3e3)[α1ė1 + α2ė2 + α3ė3]

(6.16)

V̇1 + V̇2 + V̇3 ≤− λ
2
e2

1 + ( 1
2λ

+ 1
2λ5

)d2 − (e2 + λe1)2 + (α1e1 + α2e2 + α3e3)[e2 + λe1

+ α1(e2 + d) + α2e3 + α3(θ̃T ξ + θ̂T ξ − θ̃dd− θ̂dd− ...
r + Am(t)u)]

(6.17)

V̇1 + V̇2 + V̇3 ≤ −λ
2
e2

1 + ( 1
2λ

+ 1
2λ5

)d2 − (e2 + λe1)2

+ (α1e1 + α2e2 + α3e3)[λe1 + (1 + α1)e2 + (α1 − α3θ̂d)d

− α3θ̃d+ α3θ̃
T ξ + α3θ̂

T ξ − α3
...
r + α3Am(t)u)]

(6.18)

In order to minimize the parametric error, the last candidate is thus chosen as:

V4 = 1
2γ
θ̃T θ̃T + 1

2γ
θ̃d

2 (6.19)

Now,

V̇ = V̇1 + V̇2 + V̇3 + V̇4
(6.20)
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Therefore, the derivative of the lyapunov function is thus given:

V̇ ≤ −λ
2
e2

1 + ( 1
2λ

+ 1
2λ5

)d2 − (e2 + λe1)2 + (α1e1 + α2e2 + α3e3)[λe1 + (1 + α1)e2

+ (α1 − α3θ̂d)d− α3θ̃d+ α3θ̃
T ξ + α3θ̂

T ξ − α3
...
r + α3Am(t)u)]− 1

γ
θ̃T

˙̂
θ − 1

γ
θ̃d

˙̂
θd

(6.21)

V̇ ≤− λ
2
e2

1 + ( 1
2λ

+ 1
2λ5

)d2 − (e2 + λe1)2 − h(e)[g(e, ξ) + (α1 − α3θ̂d)d+ α3θ̂
T ξ

− α3
...
r + α3Am(t)u] + (−α3h(e)d− 1

γ

˙̂
θd)θ̃d + θ̃T (α3h(e)ξ − 1

γ

˙̂
θ)

(6.22)

Since the following bounds hold,

h(e) ≤ |h(e)g(e, ξ)| ≤ |h(e)||g(e, ξ)| (6.23)

h(e)φ(ξ, θ̂) ≤ φ(ξ, θ̂)|h(e)| (6.24)

h(e)(α1 − α3θ̂d)d(t) ≤ |h(e)||α1 − α3θ̂d| sup
t≥0
|d(t)| ≤ |h(e)||α1 − α3θ̂d|dmax (6.25)

By consequence, it is inferred that,

V̇ ≤ −λ
2
e2

1 + ( 1
2λ

+ 1
2λ5

)d2 − (e2 + λe1)2 − h(e)[g(e, ξ) + |α1 − α3θ̂d|dmax + φ(ξ, θ̂)

+ α3Am(t)u)] + (−α3h(e)d− 1
γ

˙̂
θd)θ̃d + θ̃T (α3h(e)ξ − 1

γ

˙̂
θ)

(6.26)

In order to ensure a uniformly ultimately bounded tracking error, we set the adap-

66



tation laws as given in (6.6) Finally,

V̇ ≤ −λ
2
e2

1 + ( 1
2λ

+ 1
2λ5

)d2 − (e2 + λe1)2 − (α1e1 + α2e2 + α3e3)2 (6.27)

This ends the proof. The external perturbation is bounded whatever the adaptive

feedback applied and it must be remarked that the boundedness of θ̂ and θ̂d was not

addressed in this development. Boundedness of the estimated parameters can be

easily achieved by modifying the adaptation law given in (6.6).

6.1 Results Discussion

It must be noted that the proposed adaptive design does not involve the differen-

tiation of m(t) which, is an indication that the scheme can handle the effects of

various types of slowly time-varying m(t) and d(t). The problem we solved is a

robust adaptive control issue. Using a constant trajectory as seen in Figure (6.18),

the adaptive control given in Eq. (6.7) accomplishes a bounded error tracking even

in the presence of input nonlinearity, parameter uncertainties and unknown but

bounded disturbance. The tracking error depicted in Figure (6.3) is reasonably

small and can further be reduced by the choice of λ and ε. It must be noted that

λ is a design parameter and can be used to reduce the bound of the external dis-

turbance. However, ε has to be chosen sufficiently small and its choice is neither

dependent on system’s parameters nor the bound of the disturbance. Also from

Figure (6.18), it can easily be observed that there is a keen compromise between
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Figure 6.2: Behavior of the hydraulic servo system under a constant disturbance,
Reference(r = 30 cm)

the smoothness of the adaptive control law and the tracking error which, consti-

tutes the main trait of most adaptive strategy. In a nutshell, the proposed solution

is robust against parameter uncertainties and disturbance if the ultimate bound

satisfies the condition (α1e1 +α2e2 +α3e3) ≤
√

( 1
2λc

+ 1
2λ5c

)dmax. Figures (6.19,6.5)

demonstrate the excellent tracking for a sinusoidal reference input whereas, Fig-

ures (6.5,6.20) depict excellent tracking accuracy when the reference is changed

to sum of sinusoids. Even though there is a big tracking error in the transient,
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Figure 6.3: The error plots

the error converges to the neighborhood of the origin at the steady states. This

phenomenon depicts how robust the adaptive controller is.

6.2 High-Gain Adaptive Observer Design

A nonlinear observer can be used to estimate the immeasurable states and pa-

rameter variations can be easily dealt with using adaptive strategy to estimate

the system’s parameters online. Based on this, we developed an adaptive non-

linear output feedback control for the EHSS that overcomes all these challenges.

The schematic of the proposed adaptive output feedback strategy is shown in

Figure 6.8 Now, considering the following observer model:
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Figure 6.4: Behavior of the hydraulic servo system under a constant disturbance,
Reference(r = 10sin(t)cm)

˙̂
ξ1 =ξ̂2 + L1(ξ1 − ξ̂),

˙̂
ξ2 = 1

mt
(Sξ̂3 − bξ̂2 − klξ̂1) + L2(breveξ1 − ξ1),

˙̂
ξ3 =4B

Vt
(ku

√
Pd − sign(u)ξ̂3 − αξ̂3

1+γ|u| − Sξ̂2)

+ L3(ξ1 − ξ̂1).

(6.28)

Let the error and the error dynamics be defined as follows:

ξ̆1 = ξ1 − ξ̂1, ξ̆2 = ξ2 − ξ̂2, ξ̆3 = ξ3 − ξ̂3. (6.29)
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Figure 6.5: The error using Reference(r = 10sin(t)cm)

˙̆
ξ1 =ξ̆2 + d(t) + L1ξ̆1,

˙̆
ξ2 = 1

mt
(Sξ̆3 − bξ̆2 − θξ1 − klξ̂1)− L2(ξ̆1 − ξ1),

˙̆
ξ3 =4B

Vt
(ku

√
Pd − sign(u)ξ3 − αξ̆3

1+γ|u| − Sξ̆2)

− 4B
Vt

(ku

√
Pd − sign(u)ξ̂3)− L3ξ̆1.

(6.30)

Let

α1 = 1−mtL2, (6.31)

α2 = 1− b
mt
, (6.32)

α3 = S
mt
. (6.33)

θ̃ = θ − θ̂ (6.34)

µ = sup
t≥0
|d(t)|, (6.35)
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Figure 6.6: Behavior of the hydraulic servo system under a constant disturbance,
Reference(r = 0.05(sin(t) + sin(2t) + sin(3t))m

P (ξ̆, ξ̂, ξ) = ( kl
mt
L1 − α1L1)ξ̆1 + (1 + α1 − α2

mt
b− α2L2 − 4α3BS

Vt
)ξ̆2

+ (α2S
mt

)ξ̆3 − α2kl
mt
ξ̂1 + kl

mt
ξ̂2 + α2L2ξ1

h(ξ̆, z) = α1ξ̆1 + α2ξ̆2 + α3ξ̆3 − kl
mt
ξ̂1,

(6.36)

and

L3 = 1
α3

(h(ξ̆, ξ̂) + |P (ξ̆, ξ̂)|+ α1µ+ α2

mt
|θ̂|+ 4α3αB

Vt
|ξ̆3|

+ 4α3Bk
Vt
|g(u, ξ, ξ̂)| sup

t≥0
|u|])

(6.37)

Theorem 6.2 The system with observer model Eq. (6.28) or equivalently (6.30)

with parameters L1 >> λ0
2

, L2 = θ̂
m2

t
, and let L3 given by equation(6.37) with

(6.31)-(6.36) is practically stable and the solution of the state estimation error is

globally uniformly ultimately bounded.
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Figure 6.7: The error using Reference(r = 0.05(sin(t) + sin(2t) + sin(3t))m)

Proof. In order to prove the stability of the error dynamics, we chose the

following lyapunov candidates:

V1 = 1
2
ξ̆2

1 ,

V̇1 = ξ̆1ξ̆2 − L1ξ̆
2
1 + ξ̆1d.

(6.38)

V̇1 ≤ (−L1 + λo
2

)ξ̆2
1 + 1

2λo
d2 + ξ̆1ξ̆2, (6.39)

where L1 >>
λo
2

.

Choosing also,

V2 = 1
2
ξ̆2

2 , (6.40)
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+
-

r(t)

ξ̇(t) = Aξ(t) +Bf(ξ, u, t) + g(y, u)

y = Cξ(t)

Parametric Adaptive Laws

Adaptive Feedback

e1e2

y(t)

θ̂, θ̂d

u

˙̂
θd = γ1α3h(e)dmax

˙̂
θ = γ2α3|h(e)|ξ

u = mtVt

4α3SBkαv

v = g(e, ξ) + (α1 − α3θ̂d)dmax + φ(ξ, θ̂)

v

State Observer

+L(y − Cξ̂)

˙̂
ξ = Aξ̂ + f(ξ̂, u)

ξ̂

u

~e

~e

d
dt

d
dt

1
s

Figure 6.8: Schematic of Adaptive Output Feedback Control.

V̇2 = ξ̆2( 1
mt

(Sξ̆3 − bξ̆2 − θξ1 − klξ̂1)− L2(ξ̆1 − ξ1)). (6.41)

V̇1 + V̇2 ≤(−L1 + λo
2

)ξ̆2
1 + 1

2λo
d2 + ξ̆2( S

mt
ξ̆3 − b

mt
ξ̆2 − θ

mt
ξ1

− kl
mt
ξ̂1 −mtL2(ξ̆1 − ξ1))

(6.42)

V̇1 + V̇2 ≤(−L1 + λo
2

)ξ̆2
1 + 1

2λo
d2 + ξ̆2( S

mt
ξ̆3 − b

mt
ξ̆2 − θ̂

mt
ξ1

− θ̃
mt
ξ1 − kl

mt
ξ̂ −mtL2(ξ̆1 − ξ1))

(6.43)

V̇1 + V̇2 ≤(−L1 + λo
2

)ξ̆2
1 + 1

2λo
d2 − ξ̆2

2 − θ̃[ ξ1ξ̆2mt
]

+ ξ̆2(ξ̆1 + (1− b
mt

)ξ̆2 + S
mt
ξ̆3 − θ̂

mt
ξ1

− kl
mt
θ̂1 −mtL2(ξ̆1 − ξ1))

(6.44)
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Putting Eq. (6.44) in a compact form and choosing L2 = θ̂
m2

t
, we have:

V̇1 + V̇2 ≤(−L1 + λo
2

)ξ̆2
1 + 1

2λo
d2 − ξ̆2

2

+ ξ̆2(α1ξ̆1 + α2ξ̆2 + α3ξ̆3 − kl
mt
ξ̂1).

(6.45)

Choosing V3 = 1
2
(α1ξ̆1 + α2ξ̆2 + α3ξ̆3 − kl

mt
ξ̆1)2 + 1

2γ1
θ̃2, then,

V̇ =V̇1 + V̇2 + V̇3
(6.46)

V̇ ≤(−L1 + λo
2

)ξ̆2
1 + 1

2λo
d2 − ξ̆2

2 + θ̃[− 1
γ1

˙̂
θ − ξ1

mt
ξ̆2]

+ ξ̆2[α1ξ̆1 + α2ξ̆2 + α3ξ̆3]

+ (α1ξ̆1 + α2ξ̆2 + α3ξ̆3 − kl
mt
ξ̂1)[α1

˙̆
ξ1 + α2

˙̆
ξ2 + α3

˙̆
ξ3 − kl

mt

˙̂
ξ1]

(6.47)

V̇ ≤(−L1 + λo
2

)ξ̆2
1 + 1

2λo
d2 − ξ̆2

2 + θ̃[− 1
γ1

˙̂
θ − ξ1

mt
ξ̆2]

+ (α1ξ̆1 + α2ξ̆2 + α3ξ̆3 − kl
mt
z1)[ξ̆2 + α1

˙̆
ξ1 + α2

˙̆
ξ2 + α3

˙̆
ξ3 − kl

mt

˙̂
ξ1]

(6.48)

V̇ ≤(−L1 + λo
2

)ξ̆2
1 + 1

2λo
d2 − ξ̆2

2 + θ̃[− 1
γ1

˙̂
θ − ξ1

mt
ξ̆2 − α2

mt
ξ1h(ξ̆, ξ̂)]

+ h(ξ̆, ξ̂)(P (ξ̆, ξ̂) + α1d− α2

mt
θ̂ξ1 − 4α3αB

Vt(1+γ|u|) ξ̆3

+ 4α3Bk
Vt

g(u, ξ, ξ̂).u)− S
mt
L3ξ̆1h(ξ̆, ξ̂)

(6.49)

Considering that:

1
1+γ|u| ≤ 1; (6.50)

(6.51)α1h(ξ̆, ξ̂)d(t) ≤ α1| h(ξ̆, ξ̂)|µ
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(6.52)P (ξ̆, ξ̂)h(ξ̆, ξ̂) ≤ | P (ξ̆, ξ̂)|| h(ξ̆, ξ̂)|

(6.53)α2

mt
θ̂ξ1h(ξ̆, ξ̂) ≤ α2

mt
| h(ξ̆, ξ̂)||θ̂||ξ1|

(6.54)4α3Bk
Vt(1+γ|u|) ξ̆3 ≤ 4α3Bk

Vt
|ξ̆3|

4α3Bk
Vt

h(ξ̆, ξ̂)g(u, ξ, ξ̂)u(t) ≤ 4α3Bk
Vt
| g(u, ξ, ξ̂)||h(ξ̆, ξ̂)| sup

t≥0
|u| (6.55)

then, To ensure V̇ ≤ 0, L3 is selected as given in (6.37) and also using equations

(6.21 - 6.50),

V̇ ≤(−L1 + λo
2

)ξ̆2
1 + 1

2λo
d2 − ξ̆2

2

− (α1ξ̆1 + α2ξ̆2 + α3ξ̆3 − kl
mt
ξ̂1)2

(6.56)

Remark 6.1 This is similar to the remark in Chapter 5. The parameter λo is a

design parameter introduced in Young’s inequality during the proof of stability of

the state-observer. Such parameter should be selected as big as possible to make

decrease the ultimate bound in the tracking error dynamic. The larger is λo the

more oscillatory is the transient and higher in the control input.

6.3 Simulation Results for the High-Gain Adap-

tive Observer Design

The parameters in Table 6.2 are used for simulating the results of Figures (6.9-

6.16).
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Design parameter Value

Design parameter ε 0.0001

Adaptation Gain γ1 8

Table 6.1: Numerical value for simulating the high gain adaptive observer

Figure 6.9: Behavior of the observer and hydraulic servo system under a constant
disturbance using a constant feedback gain (λ). Reference(r = 0.3m)

Figure 6.10: Estimation error when r = 0.3m
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Figure 6.11: Behavior of the observer and hydraulic servo system under a constant
disturbance using a constant feedback gain (λ). Reference(r = 10sin(t)cm)

Figure 6.12: Estimation error when r = 10sin(t)cm
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Figure 6.13: Tracking error when r = 10sin(t)cm

6.3.1 Results Discussion

Figures (6.9) and (6.10) show the performance of the observer and the estimation

error respectively. It can be seen that the control easily achieves the desired refer-

ence and the observer estimates the states of the system under constant external

disturbance with a steady state error converging to a small neighborhood of the

origin. When the reference was changed to sinusoidal trajectories as shown in

Figure (6.14) respectively, the output of the closed loop system still tracks the

reference with small steady state bias due to the large amplitude external distur-

bance as shown in (6.16). Also, it was observed that the estimated parameters

were fairly accurate despite the parametric uncertainties and external disturbance.

Case 2 We also considered a scenario whereby a more complicated vibrator-

ground model can result due to the non-ideal contact stiffness that exists at the
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Figure 6.14: Behavior of the observer and hydraulic servo system under a constant
disturbance using a constant feedback gain (λ). Reference(r = 0.05(sin(t) +
sin(2t) + sin(3t))m)

boundary interaction between the vibrator’s baseplate and ground as depicted in

Fig. 6.17. In order to achieve this, we replaced β and b as given in Eq. (6.57)

β = γ1ξ
2
1 + γ2ξ

2
2 + γ3ξ

2
3 = θTφ(ξ)

b = b0 + ∆f(ξ, b0)

(6.57)

where ∆f(ξ, b0) is unknown but bounded nonlinear function that satisfies
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Figure 6.15: Estimation error when (r = 0.05(sin(t) + sin(2t) + sin(3t))m)

Eq. (6.58)

sup
t≥0
|∆f(ξ, b0)|≤ Fmax (6.58)

ė1 = e2 + d,

ė2 = e3,

ė3 = b0
m2

t
θTφ(ξ)ξ1 + (− 1

mt
θTφ(ξ) +

b20
m2

t
− 4BS2

mtVt
)ξ2 + (− b0S

m2
t
− 4BSα

mtVt(1+γ|u|))ξ3

+ ∆f(ξ,b0)

m2
t

θTφ(ξ)ξ1 + ( 1
mt

(2b0∆f(ξ, b0) + ∆f 2(ξ, b0)))ξ2 − ( S
mt

∆f(ξ, b0))ξ3

− θTd φ(ξ)d(t)− ...
r + Am(t)u.

(6.59)

where, θTd φ(ξ) = β
mt
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Figure 6.16: Tracking error when (r = 0.05(sin(t) + sin(2t) + sin(3t)))m

Let,

∆F1 = ∆f(ξ,b0)

m2
t
≤ Fmax

∆F2 = 1
m2

t
(2b0∆f(ξ, b0) + ∆f 2(ξ, b0)) ≤ F 3

max

∆F3 = S
mt

∆f(ξ, b0) ≤ Fmax

(6.60)

Now, the error dynamics are given as:

ė1 = e2 + d,

ė2 = e3,

ė3 = b0
m2

t
θTφ(ξ)ξ1 + (− 1

mt
θTφ(ξ) +

b20
m2

t
− 4BS2

mtVt
)ξ2 + (− b0S

m2
t
− 4BSα

mtVt(1+γ|u|))ξ3

+ ∆F1θ
Tφ(ξ)ξ1 + ∆F2ξ2 −∆F3ξ3 − θTd φ(ξ)d(t)− ...

r + Am(t)u.

(6.61)
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Figure 6.17: A more detailed vibrator-ground model prototype [1].

Now, to prove the boundedness of the error dynamics, we again choose the lya-

punov functions as follows:

V1 = 1
2
e2

1, (6.62)

Calculating the derivative of V (x) along the trajectories of the perturbed system,

we obtain

V̇1 = −λe2
1 + e1(e2 + λe1) + e1d.

V̇1 ≤ −λe2
1 + e1(e2 + λe1) + 1

2λ
d2 + λ

2
e2

1 ≤ −λ
2
e2

1 + 1
2λ
d2 + e1(e2 + λe1).

(6.63)
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again using the Young’s inequality with λ > 0;

e1d ≤ |e1||d| ≤ 1
2λ
d2 + λ

2
e2

1
(6.64)

Let V2 = 1
2λ4

(e2 + λe1)2, then

V̇2 = 1
λ4

(e2 + λe1)(e3 + λ(e2 + d)) (6.65)

Therefore,

V̇1 + V̇2 ≤ −λ
2
e2

1 + 1
2λ
d2 + 1

λ4
(e2 + λe1)[e3 + λe2 + λ4e1 + λd] (6.66)

But,

1
λ3

(e2 + λe1)d ≤ 1
λ3
|d||e2 + λe1| ≤ 1

λ3
[ 1
2λ2
d2 + λ2

2
(e2 + λe1)2] (6.67)

Inserting Eq. (6.67) into Eq. (6.66), we have

V̇1 + V̇2 ≤ −λ
2
e2

1 + ( 1
2λ

+ 1
2λ5

)d2 + (e2 + λe1)[ 1
λ4

(e3 + λe2 + λ4e1) + λ2

2
(e2 + λe1)].

(6.68)

V̇1 + V̇2 ≤ −λ
2
e2

1 + ( 1
2λ

+ 1
2λ5

)d2 − (e2 + λe1)2 + (e2 + λe1)[α1e1 + α2e2 + α3e3]

(6.69)
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Choosing V3 = 1
2
(α1e1 + α2e2 + α3e3)2, then,

V̇1 + V̇2 + V̇3 ≤− λ
2
e2

1 + ( 1
2λ

+ 1
2λ5

)d2 − (e2 + λe1)2 + (e2 + λe1)[α1e1 + α2e2 + α3e3]

+ (α1e1 + α2e2 + α3e3)[α1ė1 + α2ė2 + α3ė3]

(6.70)

where,

α1 = 3
2

+ λ,

α2 = 1 + 1
λ3

+ 1
2λ
, (6.71)

α3 = 1
λ4
.

V̇1 + V̇2 + V̇3 ≤− λ
2
e2

1 + ( 1
2λ

+ 1
2λ5

)d2 − (e2 + λe1)2

+ (α1e1 + α2e2 + α3e3)[e2 + λe1 + α1(e2 + d) + α2e3 + α3( b0
m2

t
θTφ(ξ)ξ1

+ (− 1
mt
θTφ(ξ) +

b20
m2

t
− 4BS2

mtVt
)ξ2 + (− b0S

m2
t
− 4BSα

mtVt(1+γ|u|))ξ3 + ∆F1θ
Tφ(ξ)ξ1

+ ∆F2ξ2 −∆F3ξ3 − θTd φ(ξ)d(t)− ...
r + Am(t)u)]

(6.72)

Setting,

h(e) = α1e1 + α2e2 + α3e3

g(e, ξ) = e2 + λe1 + α1e2 + α2e3 + α3(
b20
m2

t
− 4BS2

mtVt
)ξ2 + b0S

mt
ξ3

(6.73)
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Now,

V̇1 + V̇2 + V̇3 ≤− λ
2
e2

1 + ( 1
2λ

+ 1
2λ5

)d2 − (e2 + λe1)2 + (α1e1 + α2e2 + α3e3)[g(e, ξ)

+ α3
α3b0
m2

t
θTφ(ξ)ξ1 + (− α3

mt
θTφ(ξ)ξ2 − 4BSαα3

mtVt(1+γ|u|))ξ3 + α1d+ α3∆F1θ
Tφ(ξ)ξ1

+ α3∆F2ξ2 − α3∆F3ξ3 − α3θ
T
d φ(ξ)d(t)− α3

...
r + α3Am(t)u]

(6.74)

Let A1 = α3b0
m2

t
, A2 = α3

mt
and A3 = 4BSαα3

mtVt

V̇1 + V̇2 + V̇3 ≤− λ
2
e2

1 + ( 1
2λ

+ 1
2λ5

)d2 − (e2 + λe1)2 + (α1e1 + α2e2 + α3e3)[g(e, ξ)

+ A1θ
Tφ(ξ)ξ1 − A2θ

Tφ(ξ)ξ2 − A3

1+γ|u|)ξ3 + α1d+ α3∆F1θ
Tφ(ξ)ξ1

+ α3∆F2ξ2 − α3∆F3ξ3 − α3θ
T
d φ(ξ)d(t)− α3

...
r + α3Am(t)u]

(6.75)

Since, θ̃ = θ − θ̂

V̇1 + V̇2 + V̇3 ≤− λ
2
e2

1 + ( 1
2λ

+ 1
2λ5

)d2 − (e2 + λe1)2 + (α1e1 + α2e2 + α3e3)[g(e, ξ)

+ A1θ̃
Tφ(ξ)ξ1 + A1θ̂

Tφ(ξ)ξ1 − A2θ̃
Tφ(ξ)ξ2 − A2θ̂

Tφ(ξ)ξ2 − A3

1+γ|u|)ξ3 + α1d

+ α3∆F1θ̃
Tφ(ξ)ξ1 + α3∆F1θ̂

Tφ(ξ)ξ1 + α3∆F2ξ2 − α3∆F3ξ3 − α3θ̃
T
d φ(ξ)d(t)

− α3θ̂
T
d φ(ξ)d(t)− α3

...
r + α3Am(t)u]

(6.76)
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Let V4 = 1
2γ1
θ̃T θ̃T + 1

2γ2
θ̃d

2

V̇ = V̇1 + V̇2 + V̇3 + V̇4
(6.77)

Therefore, the derivative of the lyapunov function is thus given:

V̇ ≤ −λ
2
e2

1 + ( 1
2λ

+ 1
2λ5

)d2 − (e2 + λe1)2 + (α1e1 + α2e2 + α3e3)[g(e, ξ)

+ A1θ̃
Tφ(ξ)ξ1 + A1θ̂

Tφ(ξ)ξ1 − A2θ̃
Tφ(ξ)ξ2 − A2θ̂

Tφ(ξ)ξ2 − A3

1+γ|u|)ξ3 + α1d+ α3∆F1θ̃
Tφ(ξ)ξ1

+ α3∆F1θ̂
Tφ(ξ)ξ1 + α3∆F2ξ2 − α3∆F3ξ3 − α3θ̃

T
d φ(ξ)d(t)− α3θ̂

T
d φ(ξ)d(t)− α3

...
r + α3Am(t)u]

− 1
γ1
θ̃T

˙̂
θ − 1

γ2
θ̃d

˙̂
θd

(6.78)

In order to annihilate the parametric error, the update laws are chosen as given

in Eq. (6.79)

˙̂
θ = γ1(A1h(e)φ(ξ)ξ1 − A2h(e)φ(ξ)ξ2 + α3Fmax|ξ1|φ(ξ))

˙̂
θd = −γ2α3φ(ξ)dmax

(6.79)

The following bounds hold given that Fmax = supt≥0|∆F1| and dmax = supt≥0|d(t)|,

Φ(ξ, θ̂) = A1|θ̂Tφ(ξ)||ξ1|+A2|θ̂Tφ(ξ)||ξ2|+α3Fmax|θ̂Tφ(ξ)||ξ1|+α3 sup
t≥0
|...r |

≥ A1θ̂
Tφ(ξ)ξ1 − A2θ̂

Tφ(ξ)ξ2 + α3∆F1θ̂
Tφ(ξ)ξ1 + α3

...
r

(6.80)
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α3h(e)∆F2ξ2 ≤ α3|h(e)|sup
t≥0
|∆F2||ξ2|≤ α3|h(e)||ξ2|F 3

max
(6.81)

α3h(e)∆F3ξ3 ≤ α3|h(e)|sup
t≥0
|∆F3||ξ3|≤ α3|h(e)||ξ3|Fmax

A3h(e)
1+γ|u|ξ3 ≤ A3|h(e)||ξ3|

(6.82)

To ensure a uniformly ultimately bounded tracking error, we choose ”u” as:

u = ( mtVt
4α3SBkmin(

√
Pd−ξ3,

√
Pd+ξ3

)v (6.83)

where,

v = |g(e, ξ)|+|α1 + α3θ̂
T
d φ(ξ)|dmax + Φ(ξ, θ̂) + α3|ξ3|Fmax + α3|ξ2|F 3

max − koh(e)

(6.84)

Ultimately,

V̇ ≤ −λ
2
e2

1 + ( 1
2λ

+ 1
2λ5

)d2 − (e2 + λe1)2 − (α1e1 + α2e2 + α3e3)2 (6.85)

6.4 Results and Discussion

The numerical values for the parameters used in the simulation are given in Table

6.2. It must be noted that the proposed adaptive design does not involve the dif-

ferentiation of m(t) which, is an indication that the scheme can handle the effects

of various types of slowly time-varying m(t) and d(t). The problem we solved

is a robust adaptive control issue. Using a constant trajectory as seen in Fig-
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Parameters Value Units Parameters Value Units

B 2.2× 109 Pa Pr 1× 105 Pa

Vt 1× 10−3 m3 S 1.5× 10−3 m2

γ 8571 s−1 b 590 kg/s

∆kl 2500 N/m kl 12500 N/m

Ps 300× 105 Pa mt 70 kg

k 5.12× 10−9 m3s−1A−1Pa1/2 α 4.1816× 10−12 m3s−1Pa−1

Table 6.2: Numerical values for simulations

ure (6.18), the adaptive control given in Eq. (6.7) accomplishes a bounded error

tracking even in the presence of input nonlinearity, parameter uncertainties and

unknown but bounded disturbance. The tracking error depicted in Figure (6.18

b) is reasonably small and can further be reduced by the choice of λ and ε. It must

be noted that λ is a design parameter and can be used to reduce the bound of the

external disturbance. However, ε has to be chosen sufficiently small and its choice

is neither dependent on system’s parameters nor the bound of the disturbance.

Also from Figure (6.18), it can easily be observed that there is a keen compro-

mise between the smoothness of the adaptive control law and the tracking error,

which constitutes the main trait of most adaptive strategy. In a nutshell, the pro-

posed solution is robust against parameter uncertainties and disturbance if the

ultimate bound satisfies the condition (α1e1 + α2e2 + α3e3) ≤
√

( 1
2λc

+ 1
2λ5c

)dmax.

Figure (6.19) demonstrate the excellent tracking for a sinusoidal reference input

whereas, Figure (6.20) depict excellent tracking accuracy when the reference is

changed to sum of sinusoids. Figure (6.21) presents the case when non-ideal con-

tact stiffness exists at the boundary interaction between the vibrator’s baseplate
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(a) (b)

Figure 6.18: Behavior of the hydraulic servo system with r = 30cm

(a) (b)

Figure 6.19: Behavior of the hydraulic servo system with r = 10sin(t)cm

and ground and β is replaced by a nonlinear function of the states to better make

the vibrator-ground model more complicated. Even though there is a big tracking

error in the transient, the error converges to the neighborhood of the origin at the

steady states. This phenomenon depicts how robust the adaptive controller is.
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(a) (b)

Figure 6.20: Behavior of the hydraulic servo system r = 0.05(sin(t) + sin(2t) +
sin(3t))m

91



0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

Time (s)

P
o

si
tio

n
 (

m
)

0 2 4 6 8 10 12 14 16 18 20
−0.4

−0.2

0

0.2

Time (s)

V
e

lo
ci

ty
 (

m
/s

)

0 2 4 6 8 10 12 14 16 18 20

−40

−20

0

Time (s)

∆
P

re
ss

u
re

(B
a

r)

0 2 4 6 8 10 12 14 16 18 20

−200

−100

0

Time (s)

In
p

u
t 
(m

A
)

(a) r = 0.3m

0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

Time (s)

P
o

si
tio

n
 (

m
)

 

 

Reference input
z

1

0 2 4 6 8 10 12 14 16 18 20
−0.4

−0.2

0

0.2

Time (s)

V
e

lo
ci

ty
 (

m
/s

)

0 2 4 6 8 10 12 14 16 18 20
−1

0

1
x 10

5

Time (s)

∆
P

re
ss

u
re

(N
/m

2
)

0 2 4 6 8 10 12 14 16 18 20
−50

0

50

Time (s)
In

p
u

t 
(m

A
)

(b) r = 0.1sin(t)m

0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

Time (s)

P
o

si
tio

n
 (

m
)

 

 
Reference input
z

1

0 2 4 6 8 10 12 14 16 18 20
−0.4

−0.2

0

0.2

Time (s)

V
e

lo
ci

ty
 (

m
/s

)

0 2 4 6 8 10 12 14 16 18 20
−2

0

2
x 10

5

Time (s)

∆
P

re
ss

u
re

(N
/m

2
)

0 2 4 6 8 10 12 14 16 18 20

−100

0

100

Time (s)

In
p

u
t 
(m

A
)

(c) r = 0.05(sin(t) + sin(2t) + sin(3t))m

Figure 6.21: Behavior of the perturbed hydraulic servo system under an adaptive
control with time-varying gain.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this thesis, backstepping-based controller was developed for hydraulic servo

system subject to uncertain parameters and unknown but bounded disturbance.

The work is basically organized in three main folds. In the first part, both constant

and time varying gain controller were developed using backstepping technique

while, the second part dealt with constructing state observer to estimate the states

of the system. Lastly, an adaptive controller is developed to handle parameter

variations.

7.1 Conclusions

The mathematical model of the electro-hydraulic system used in this thesis re-

flects the real behavior of the system. The model takes into consideration leak-

ages which were most times neglected in theoretical analysis. Having employed a

proper model for the system, we proposed a backstepping-based robust adaptive

controller for the hydraulic servo system rod subject to uncertainty in parameters

and to an unknown but bounded disturbance. The controller compasses a design

parameter that can be tuned to ensure close convergence of the tracking error to

93



a vicinity of zero. By using lyapunov approach with the assumptions that all the

states are measurable, the controller is practically stable and the tracking error is

globally uniformly ultimately bounded. Also, we studied the problem of stabiliza-

tion using estimated states by constructing a high gain observer to estimate the

unavailable states and subsequent use the estimates in the feedback. We again

showed that under mild conditions, the stabilizing controller built using estimated

states will also stabilize the system is question. Hence, the EHSS is observable if

we only measure the displacement of the piston. Finally, we overcame the prob-

lem of variation in parameters by using a backstepping based adaptive control

schemes that is robust to uncertainties in the system’s parameters and external

disturbance.

7.2 Future works

The design of a high observer pose a number of open issues. First, the construc-

tion of this observer is based on the exact knowledge of system’s parameters and

this limits its area of application. In the event of any parameter changes, its

performance deteriorates. Choosing high gain to attenuate the effect of paramet-

ric uncertainties may lead to large estimation errors due to noise and jumps in

measured signal. Secondly, if there is parameter mismatch in nominal model and

actual system, then the observer with fixed parameters can lead to large transient

state estimation errors. Solving this problem with an adaptive observer will be a

welcome idea. Lastly, developing control laws for the system in order to handle
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frequency sweeps higher than 17 Hz will be a very interesting problem.
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