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Reliability is a very important issue for power systems design and operation, and it has significant 

impact on safety and economy. Researches in this area are concerned on how to model and assess 

the reliability of the future power distribution systems including distributed generation. In this 

research, Markov model and distribution power flow analysis are utilized together to perform a 

practical and accurate reliability evaluation of the power distribution system including distributed 

generation. Three techniques of distribution power flow are presented and tested to evaluate their 

performance on a networked distribution system including distributed generation. These methods 

are the distribution load flow matrix method DLF, the enhanced Newton Raphson method ENR, 

and the Robust decoupled method RD. The Markov model is used to model the power 

distribution system. Based on the connectivity between the source and the loads, each state of the 

Markov model is either classified as (down state) or (up state). The power flow analysis is used to 

reclassify the states of the Markov model based on the system’s transfer capability. Then, Markov 

model is used to compute the load and system reliability indices. The study is implemented on the 

weakly meshed RBTS-bus2 system including DG. Five case studies are conducted to investigate 

the effect of the location and capacity of DG on the voltage profile and the reliability of the 

system. 
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  ملخص الرسالة

  
  

  عبدالرحمن محمد صافي السقاف :الاسم الكامل
  

  لنظام توزیع الطاقة الفعال باستخدام نموذج ماركوف وتحلیل تدفق الطاقةتقییم الموثوقیة  عنوان الرسالة:
  

  الھندسة الكھربائیة التخصص:
  

  ١٤٣٦صفر،  :تاریخ الدرجة العلمیة
  

  

  

الطاقة  شركات علىالكھرباء أصبحت واحدة من أكثر الخدمات الأساسیة والتي لا غنى عنھا في حیاتنا. لذا یجب 

. الموثوقیة ھي قضیة مھمة جدا لتصمیم أنظمة الطاقة موثوقیةالجودة والكھرباء مع مستوى مناسب من تولید 

على كیفیة تصمیم نموذج دائما  تركزموثوقیة ال. البحوث حول أثیر كبیر على السلامة والاقتصادوالتشغیل، ولھا ت

طریقة حساب سیتم دمج نموذج ماركوف مع  . في ھذا البحث،موثوقیةالكیفیة حساب مؤشرات على  لنظام الطاقة و

 لحساب تدفق الطاقةثلاثة أسالیب سیتم تقدیم  ایضالموثوقیة. للإجراء تقییم عملي ودقیق تدفق الطاقة لنظام التوزیع 

. ھذه الطرق ھي طریقة DG مع اضافة التولید الموزععلى نظام التوزیع الشبكي  مأدائھلتقییم  ھمالكھربائیة واختبار

DLF طریقة ،ENR ،طریقة و RD ف یتصنسیتم نظام التوزیع. ول نشاء نموذجلإ. یتم استخدام نموذج ماركوف

المصدر  على وجود ربط بین بناء )الة تشغیل(ح) أو حالة توقف( اإما باعتبارھكل حالھ من حالات النموذج 

الجھد  على القدرة على نقل بناء جدیدحالات من الیتم استخدام تحلیل تدفق الطاقة إلى إعادة تصنیف وسوالأحمال. 

نظام  . ویتم تنفیذ ھذه الدراسة علىموثوقیةالیتم استخدام نموذج ماركوف لحساب مؤشرات س. ثم الى جمیع الاحمال

RBTS-bus2 الشبكي مضافا الیھ التولید الموزع DG. وكمیة لدراسة تأثیر موقع  تحالاخمس  وسیتم دراسات

 موثوقیة النظام.على و لى الجھدع DG د الموزعالطاقة المولدة من التولی
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CHAPTER 1 

INTRODUCTION 

 

 

Electricity is one of the most important and Indispensable services, and because of the 

growing population every year, demands for this service are also growing. Due to the 

increasing demand, it is necessary that power systems provide satisfactory electrical 

energy with good and adequate reliability and quality. Reliability in general is the 

probability that a system would achieve its mission adequately. From a power system 

point of view, power reliability can be defined as the probability that power system 

would deliver electricity within accepted standards and amount to customers, and it 

relates to the absence of equipment outages and customer interruptions.  

Researches about reliability concentrate on how to model the power system with different 

configurations and operations, and how to evaluate and calculate the reliability indices. 

These interruptions could be momentary interruptions or sustained interruptions [1]. 

Momentary interruption is defined as single operations of interruption results in zero 

voltage for less than 5 minutes. Sustained interruption is an interruption within a period 

of 5 minutes or longer [2]. Reliability indices represent average values of the reliability 

characteristic for the system. There are two types of indices, load point indices and 

system indices [3]. Load point indices are calculated for each load point in the system, 

and they include failure rate (휆), repair rate (휇), annual availability (퐴), expected energy 
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not supplied (EENS), etc. System indices are computed for the entire system and they 

provide overall indication for the system reliability. System indices include system 

average interruption frequency index (SAIFI), system average interruption duration index 

(SAIDI), customer average interruption duration index (CAIDI), etc [4]. These indices are 

explained with more details in chapter 2 and chapter 4. 

In general, power system is composed of a generation system, transmission system, and 

distribution system [1]. In the past, electric utilities were paying more attention to the 

generation and transmission systems than the distribution system in reliability modelling 

and evaluation. That is because they are capital intensive, and their inadequacy can have 

severe economic consequences. Reliability assessment for a generation system can be 

performed by using one day in 10 years loss of load expectation criterion. Transmission 

system reliability is evaluated using sophisticated computer models [2]. Recently, the 

interest has been moving toward distribution systems. Statistics and analysis of 

customers' failures of most utilities indicate that the distribution system is the most 

effective element of reliability because of the radial nature of most distribution systems, 

the large number of components, and the sparsity of protection devices and switches. 

Therefore, improving distribution reliability is the key to improving customer reliability. 

Failure of the distribution components causes disconnection between the load points and 

the utility source, which results in service interruptions and lower level of reliability. In 

addition to the connectivity, transfer capability is another issue that can affect the 

reliability of distribution systems. Because distribution systems have a large number of 

nodes and load points, high power losses and drop voltages could occur through the 

system. Therefore, delivering an acceptable level of voltage and power to each load point 
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during the interruptions is a challenge and concern that affects the reliability of the 

system. In order to mitigate the influence of these two problems, tie switches can be 

connected between the lines of the distribution system to improve the connectivity 

between the source and the loads. Furthermore, when the distribution system is integrated 

with DGs and advanced control systems, the voltage profile and reliability will improve 

and it is called a Microgrid system. Microgrid is an active distribution network with DGs, 

power electronic interfaces, and control system that provides electricity to local area or 

customers [5]. In this research, the reliability of Microgrid system is evaluated based on 

the connectivity and transfer capability since they have large impacts on the reliability. 

DGs are included with different locations and capacities to study their influence on the 

reliability. 

 

1.1  Literature Review 

Reliability evaluation is categorized into two main techniques, analytical and simulation 

[6]. In the analytical technique, the system is represented by a mathematical model and 

reliability is evaluated by a mathematical equations applied to this model. However, 

simulation method, such as Monte Carlo simulation, assesses the reliability by simulating 

the actual system and its random behaviour [7]. Analytical technique is the most common 

because it is efficient and it provides the needed results whereas simulation technique 

requires a large amount of computing time. Huge efforts have been done in the area of 

assessing and evaluating the reliability of distribution system, and there are several 

methods for computing the reliability indices. 
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A direct method for reliability evaluation in transmission and distribution system was 

proposed in [8]. Three indices have been widely used to assess the reliability, frequency 

of failure, average duration of outage, and average total hours of outage in a year. The 

technique employed in [8] was the minimal cut set. After determining all minimal cut 

sets, the system was represented in a series-parallel configuration. Then, reliability 

indices were calculated easily by the series and parallel equations. This approach uses 

simple and general equations that do not involve complex conditions in practical systems. 

On the other hand, it considers only the failure rates without including successful states, 

which saves effort and time. 

An educational test system (RBTS) has been developed with overall power system 

reliability assessment in [9]. Main reliability indices in [9] were the failure rate, the 

average duration of failure, and the annual unavailability, which we called earlier the load 

point indices. System indices were also calculated for each bus in the system. Overall 

system evaluation incorporated the three functional zones of generation, transmission and 

distribution in the analysis. By using the approach in the literature, load point indices and 

system indices for the RBTS were obtained. The results of the evaluation showed that 

failures at distribution affect the overall system reliability. The RBTS system has been 

widely used in reliability studies ever since. 

In reference [10], a technique for evaluating a distribution system depending on a 

simplified network model and network-equivalent has been presented. The distribution 

system is divided into different parts or zones based on components’ reliability 

characteristics. The decomposition technique used in [10] provides an equivalent and 

simple system to the original that can be used in the reliability analysis. Since the 
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components in each zone have the same reliability characteristics, the number of 

components and calculations will be considerably reduced. The algorithm was applied in 

a RBTS-Bus 6 system. Compared to the conventional method, this has a fewer number of 

calculations and is as accurate as the conventional method. 

Reference [11] suggested a new method to analyze and assess the current reliability of an 

operating power system with an equivalent model based on the Markov chain. The 

Markov chain is a method used to evaluate reliability based on the probability of system 

states. The power system here is divided into three states, normal state, fault state, and 

risk state. The RBTS-Bus 6 system was used to test this approach. The calculation is 

done by the Monte Carlo simulation program. Calculations and results indicate that the 

proposed algorithm is efficient and practical. However, in large systems, the number of 

Markov states is huge and this is why simulation program is used instead of analytical 

method.   

Reduction and truncation techniques were proposed in [12] to overcome the problem of 

large number of components and states in Markov matrices. Number of components and 

states were considerably reduced without affecting the reliability evaluation. The Markov 

model was represented by system states and the transition probabilities between those 

states and then, it was used to evaluate the reliability of RBTS distribution system.  

In [13] a new approach of evaluating the reliability of a networked distribution system 

was developed. The evaluation was based on the connection between source and loads of 

the system by determining the minimal tie sets. Markov model was utilized with the 

reduction techniques to compute the reliability indices of the system. The study was 
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implemented on the RBTS system. The proposed method was effective and suitable for 

future distribution networks. One drawback in this approach, that reliability evaluation is 

depending on only one factor, which is the connectivity. 

In this thesis, Reliability of a Microgrid will be evaluated using Markov model and power 

flow analysis. Literature survey shows that Markov model is an effective tool for the 

reliability evaluation. All possible states of the system such as normal state and fault state 

can be described in Markov model. Another factor will be included in the reliability 

analysis in addition to the connectivity, which is the transfer capability. This will improve 

the accuracy of the reliability calculation. The states of Markov model will be classified 

as an (up state) or (down state) based on the connectivity between the source and loads. 

Then, power flow analysis will be used to reclassify the states based on the transfer 

capability of the voltage from the source to loads. 

 

1.2  Thesis Motivations  

Reliability is a very important issue for power systems design and operation, and it has 

significant impact on safety and economy. Life-saving services in hospitals, heating and 

cooling systems, emergency communications, certain transportations, and so many other 

essential services need electricity with high level of reliability. Any interruption in the 

electric power could result in sever safety and economic losses to utilities and customers. 

The Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) 

have conducted research about the cost of electricity outages, which is estimated to be 30 

to 400 billion dollars per year [14].  



7 
 

The basic function of the power system is to deliver reliable electricity to the customers. 

Since the distribution system has high influence on the reliability and it is connected 

directly to the end users, the reliability of the distribution side must be assessed to 

monitor the service and assure adequate level of reliability. For this reason, studying and 

analyzing the reliability of distribution system is considered as one of the most important 

areas in electrical power system. 

Because distribution system has a large number of nodes and load points, delivering an 

acceptable level of voltage and power to each load point is a concern that affects the 

reliability of the system. Microgrid can improve the voltage profile and hence, the 

reliability of the system because of the contribution of DGs. 

Therefore, due to the significance of the power reliability and its impacts on design, 

operation, economy, and safety of power system and customers, this thesis focuses on 

evaluating the reliability of Microgrid power system. Moreover, since the reliability has 

direct relation with the voltage profile of the system, the voltage profile and its impact on 

the reliability will be investigated in this thesis. Reliability indices for each load points 

and for the entire system will be computed to assess the reliability of the Microgrid.  

 

1.3  Thesis Objectives 

Power system reliability is an essential factor that affects service quality, economy, and 

safety for electric utilities and their planning and operation. The objectives of this thesis 

are as follows: 
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 Investigating several power flow techniques that designated for distribution 

systems, and testing them to evaluate their performance on a networked 

distribution system including distributed generation. Technique with the best 

performance will be used in reliability evaluation. 

 Modeling and evaluating the reliability of the Microgrid power system using 

Markov models. The study will be implemented on the RBTS-bus2 system [3]. 

MATLAB is used as the implementation platform. 

 Computing the load and system reliability indices based on the connectivity 

between the source and the loads, and based on the transfer capability between 

the main feeders. Power flow calculation will be involved to analyze the voltage 

profile of the system and its influence on the reliability.  

 Studying the impacts of distributed generators on the voltage profile and 

reliability. Different locations and capacities of distributed generators will be 

considered. 

 

1.4  Thesis Outline 

Chapter 1 starts with an introduction about the reliability and literaure review about 

reliability evaluation. Motivations and objectives of the thesis are also presented. In 

chapter 2 the concept of Markov model and how it can be used in reliability evaluation is 

explained. The equations to calculate load point indices and system indices are also 

stated. In chapter 3 distribution power flow techniques are presented and tested to be used 

in reliability evaluation. In chapter 4 Markov model and distribution power flow are used 
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to evaluate the reliability of the RBTS-bus2 system. Five case studies are conducted, and 

the results with comparisons among the cases are presented. In chapter 5 the conclusion 

of the thesis with some recommendations for future work are presented. 
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CHAPTER 2 

RELIABILITY ANALYSIS USING MARKOV MODEL 

 

 

Markov chains are used to model a sequence of discrete or continuous random variables 

that correspond to a set of system states. Markov approach can be applicable for a system 

with two features to simplify the process, a lack of memory and being stationary 

(homogeneous). Lack of memory means that the future states of a system depend only on 

the preceding state and are independent from all others in the past. Stationary means the 

probability of the transition from one state to another is constant at all times in the past 

and future. In order to satisfy these two conditions, exponential distribution must be used 

to describe the system behaviour since it has constant hazard rate. Markov with discrete 

space and time is known as a Markov chain, but when space is discrete and time is 

continuous it is known as a Markov process [15]. 

Markov model (MM) can be defined as a number of states ( S ) and a set of transition 

probabilities ( p ) that travel from one state to another in one step or in a specified time 

interval. The probabilities p can be arranged to form a ( P ) matrix as following  

푃 =

푝 푝 … 푝
푝 푝 … 푝

: : … :
푝 푝 … 푝

                                        (2.1) 

P is a matrix of probabilities that have values lie between 0 and 1, and the summation of 

each row in the matrix is equal 1 since each row represents a probability vector. The 
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diagonal 푝  is the probability that the system will stay in state i during a specified time or 

one transition. P-matrix is also known as stochastic transitional probability matrix. 

 

2.1  Discrete Markov Chains 

Assuming that we have a system with three discrete states, S1, S2 and S3, and 푝  is the 

probability of the transition from one state 푆  to another 푆 .  

푃 =
푝 푝 푝
푝 푝 푝
푝 푝 푝

                                           (2.2) 

The states and probabilities for this system can be represented by a state space diagram or 

state transition diagram as shown in figure 2.1.  

  

`  

Figure 2.1 State transition diagram for a three states model 

 

 

 

푝  

푝  푝  

푝  

푝  

푝  

푝  

푝  푝  

푆  푆  

푆  
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The initial probability distribution vector can be calculated as 

푝(0) = [푝 (0) 푝 (0) 푝 (0) … . 푝 (0)]                        (2.3) 

Then after one step, 푝(1) is calculated as 

푝(1) = 푝(0)푃 = [푝 (0) 푝 (0) 푝 (0) … . 푝 (0)] 푃                (2.4) 

After k steps 

푝(푘) = 푝(0)푃                                               (2.5) 

where 푃  is the 퐾  step transition matrix, 푃 = 푃푃푃 … . . 푃 (푘 푡푖푚푒푠). 

After infinite number of steps and when the probability of being in any state is 

independent of the initial probabilities, the system is called ergodic and has a limiting 

state probability vector ( 훼 ). The limiting state vector is the probability of being in state i 

after infinite number of steps and it can be calculated by 

훼푃 = 훼                                                       (2.6) 

where 훼 is a row of vectors as  

훼 = [훼 훼 훼 … . 훼 ]                                         (2.7) 

and the summation of all vectors is equal one.  

∑ 훼 = 1                                                   (2.8) 

 

2.2  Continuous Markov Processes 

If we have a system with n discrete state, 푆 , 푆 , … , 푆  and 휌  determines the transition 

from one state to another (rate of departure). 
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           푆         푆            .…       푆             
푆
푆
⋮

푆

휌 휌 … 휌
휌 휌 … 휌

: : … :
휌 휌 … 휌

                                             (2.9) 

 

Then, the probability P of transition from one state 푆  to another 푆  in the time interval 훥푡 

is given by 

푃 = 휌  훥푡                                             (2.10) 

And the probability of finding the system in 푆  at time (푡 + 훥푡) is 

푃 (푡 + ∆푡) = ∑ 휌 ∆푡푃 (푡) + [1 − ∑ 휌 ∆푡]푃 (푡)            (2.11) 

By simplifying this equation, we get 

푃 (푡 + ∆푡) − 푃 (푡)
∆푡 = 휌 푃 (푡) − [푃 (푡)] 휌                  (2.12) 

By taking the limit as ∆t goes to 0, (2.12) will be a first order differential equation.  

푃 = ∑ 휌 푃 (푡) − [푃 (푡)] ∑ 휌                         (2.14) 

This general equation can be written in matrix form with (i = 1, 2, … , n) as 
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Solving this differential equation with appropriate initial condition obtains the time 

dependent system state probabilities. 

P matrix can be obtained from the corresponding rates of departures matrix (2.9) as: 

푃 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡1 − ∑ j1 ∆푡 12 ∆푡 … n1 ∆푡

21 ∆푡 1 − ∑ j2 ∆푡 … n2 ∆푡

: : … :

1n ∆푡 2n ∆푡 … 1 − ∑ nj ∆푡⎦
⎥
⎥
⎥
⎥
⎥
⎤

          (2.16) 

∆푡 can be removed from the P matrix and hence it is not a stochastic matrix anymore 

because the matrix elements are transition rates but not probabilities. 

푃 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡1 − ∑ j1 12 … n1

21 1 − ∑ j2 … n2

: : … :

1n 2n … 1 − ∑ nj ⎦
⎥
⎥
⎥
⎥
⎥
⎤

                (2.17) 

 

2.3  Markov Model in Reliability Evaluation 

In power system, most components have only two possible states; up or down. The 

transition from the (up) state to (down) state is called the failure rate (λ), whereas the 

transition from the (down) state to (up) state is called the repair rate (µ). Figure 2.2 shows 

the two states model diagram or the binary model for repairable components. 
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Figure 2.2 Two states binary model 

 

where, 

푓푎푖푙푢푟푒 푟푎푡푒 휆 =
푁푢푚푏푒푟 표푓 푓푎푖푙푢푟푒푠
푇표푡푎푙 표푝푒푟푎푡푖표푛 푡푖푚푒

                                      (2.18) 

    

푟푒푝푎푖푟 푟푎푡푒  μ =  
푁푢푚푏푒푟 표푓 푟푒푝푎푖푟푠

푇표푡푎푙 푑푢푟푎푡푖표푛 표푓 푎푙푙 푟푒푝푎푖푟푠
                             (2.19) 

Let us consider a system with two components that are connected once in series and 

another in parallel as they are shown in figure 2.3 and 2.4 respectively.  λ1 and µ1 are the 

failure and repair rates of the first component and λ2 and µ2 are the same for the second. 

 

 

 

 

 

 

 

 

Up 퐷표푤푛

λ 

µ 

Component 1 Component 2 Input Output 

Component 1 

Component 2 

Input Output 

Figure 2.3 Simple system with two components connected in series 

Figure 2.4 Simple system with two components connected in parallel 
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The number of possible states for a binary system can be obtained by ( 2n ), where n is 

the number of components. In this case, the total number of states for the system is 22=4. 

In the series system, if a failure occurred in one of the components or both of them, the 

system will be down. The system will be up only when both components are up. On the 

other hand, parallel system is always up except for one case when both components are 

down. Table 2.1 shows the status and the output of both systems. 

 

Table 2.1 Possible states for both series and parallel systems 

State 
Number 

Binary 
Representation 

Component 
1 

Component 
2 

Series 
Output 

Parallel 
Output 

S1 11 up Up up up 
S2 10 up Down down up 
S3 01 down Up down up 
S4 00 down Down down down 

 

The departure rates ( 휌 ) matrix for both systems is given by  

휌 =

⎣
⎢
⎢
⎢
⎡

0 휌 휌 0

휌 0 0 휌

휌 0 0 휌

0 휌 휌 0 ⎦
⎥
⎥
⎥
⎤

                                      (2.20) 

By substituting failure and repair rates in the 휌-matrix we get   

휌 =

⎣
⎢
⎢
⎢
⎢
⎡

0 휆 휆 0

μ 0 0 휆

μ 0 0 휆

0 μ μ 0 ⎦
⎥
⎥
⎥
⎥
⎤

                                         (2.21) 

The state space diagram for the two systems in terms of transition rates is shown in figure 

2.5. 
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And the P matrix can be obtained by 

푃 =

⎣
⎢
⎢
⎢
⎢
⎡1 − (휆2 + 휆1) 휆2 휆1 0

μ2 1 − (μ2 + 휆1) 0 휆1

μ1 0 1 − (μ1 + 휆2) 휆2

0 μ1 μ2 1 − (μ1 + μ2)⎦
⎥
⎥
⎥
⎥
⎤

       (2.22) 

The state transition diagram in terms of the transition probabilities is shown in figure 2.6. 

By multiplying all elements in the P matrix by ∆t, we get the probabilities of the 

transition from one state to another. However, Diagonal elements in the P matrix 

represent the probability of being at the same state. 

 

푆  푆  

푆  푆  

휆  

휆  

휇  

휇  

휆  휆  휇  휇  

Figure 2.5 State space diagram in terms of transition rates 
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Figure 2.6 State space diagram in terms of transition 

 

From equation (2.15), the differential equations for the system state probabilities are 

given by 

⎣
⎢
⎢
⎡푝 (푡)
푝 (푡)
푝 (푡)
푝 (푡)⎦

⎥
⎥
⎤

=

⎣
⎢
⎢
⎡−(휆 + 휆 ) μ μ 0

휆 −(μ + 휆 ) 0 μ
휆 0 −(μ + 휆 ) μ
0 휆 휆 −(μ + μ )⎦

⎥
⎥
⎤

⎣
⎢
⎢
⎡
푝 (푡)
푝 (푡)
푝 (푡)
푝 (푡)⎦

⎥
⎥
⎤
  (2.23) 

The coefficient matrix of the Markov differential equations is called 푄-matrix, and hence 

the differential equations can be rewritten as 

⎣
⎢
⎢
⎡
푝 (푡)
푝 (푡)
푝 (푡)
푝 (푡)⎦

⎥
⎥
⎤

= 푄

푝 (푡)
푝 (푡)
푝 (푡)
푝 (푡)

                                          (2.24) 

Power system reliability can be evaluated using continuous Markov process. This can be 

done by solving the Markov differential equations for the system. After solving the 

differential equations, steady state probabilities can be calculated under the steady state 

condition, 

휆  ∆t 

휆  ∆t 

휇  ∆t 

휇  ∆t 

휆  ∆t 휆  ∆t 휇  ∆t 휇  ∆t 

1 − (휆2 + 휆1) ∆t 1 − (μ2 + 휆1) ∆t 

1 − (μ1 + μ2) ∆t 1 − (μ1 + 휆2)∆t 

푆  

푆  푆  

푆  
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푝 (푡) = 0 for i = 1, 2, … , n                                       (2.25) 

And with 



n

i
iP

1
1 , the Markov differential equations become 
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                       (2.26) 

The steady-state probabilities can be found by solving these algebraic equations. 

After finding the steady-state probabilities, load point reliability indices and system 

reliability indices can be calculated. 

 

2.4 Availability and Unavailability 

Availability of a system is the probability of this system to work, and unavailability is 

completely the opposite. Consider we have the system that represented by table 1. Then, 

steady state Markov equation can be formed as 

−(휆 + 휆 ) μ μ 0
휆 −(μ + 휆 ) 0 μ
휆 0 −(μ + 휆 ) μ
1 1 1 1

  

푃
푃
푃
푃

=  

0
0
0
1

          (2.27) 

By solving equation (2.27), system probabilities can be given by 

푃 =
μ μ

(휆 + μ )(휆 + μ )          푃 =
μ 휆

(휆 + μ )(휆 + μ ) 

(2.28) 

푃 =
μ 휆

(휆 + μ )(휆 + μ )           푃 =
휆 휆

(휆 + μ )(휆 + μ ) 
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If the two components of the system are connected in series, the system will work or be 

up when both components are up as in the first state in table 1. However, it will be down 

when any of them or both are down as in states 2, 3, and 4. Therefore, availability and 

unavailability are computed as 

Availability 퐴 = 푃           Unavailability  푈 = 푃 + 푃 + 푃               (2.29) 

Generally, availability and unavailability can be calculated by summing the steady state 

probabilities of the system 

퐴 = 푃 = 푃                   푈 = 푃 = 푃                     (2.30) 

 

2.5 Mean Time to Failure MTTF and Mean Time to Repair MTTR 

MTTF is the average time of operation before the system fails, whereas MTTR is the 

average time of failure before repairing the system. MTTF and MTTR can be found by 

calculating the fundamental matrix N as 

푁 = [퐼 − 푆]                                                  (2.31) 

where N generally represents the expected number of steps or time intervals to leave the 

transient states and enter the absorbing states, I is the identity matrix, and S is called the 

truncated or transition matrix. In transient state it is possible for the state to communicate 

with other states in both directions. However, in absorbing state there is only one way to 

communicate with that state and once the system enter that state it stays until a new 
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process is started. To calculate the MTTF, the failure states are considered as absorbing 

states and it can be given by 

푀푇푇퐹 = [퐼 − 푆 ]                                             (2.32) 

푆  is the transition matrix of the system after deleting all the failure or down states. If we 

have the system that represented by table 1, the transition matrix will be formed as 

푃 =

⎣
⎢
⎢
⎢
⎢
⎡1 − (휆2 + 휆1) 휆2 휆1 0

μ2 1 − μ2 + 휆1 0 휆1

μ1 0 1 − μ1 + 휆2 휆2

0 μ1 μ2 1 − μ1 + μ2 ⎦
⎥
⎥
⎥
⎥
⎤

       (2.33) 

In the case of series components, state 1 represents the up state, while states 2, 3, and 4 

represent the down states. To calculate MTTF, 푆  is found by deleting all the rows and 

coloumns of the down states from the P-matrix. 푆  is given by 

푆 = [1 − (휆 + 휆 )]                                         (2.34) 

By substituting (2.34) in (2.32), MTTF can be found as 

푀푇푇퐹 =  [[1] − [1 − (휆 + 휆 )]]                                  (2.35) 

and after mathematical simplification, 

푀푇푇퐹 =                                               (2.36) 

To find the MTTR, the up states are assumed to be the absorbing states, 

푀푇푇푅 = [퐼 − 푆 ]                                             (2.37) 
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where 푆  is the transition matrix after deleting all the up states. At the preceding 

example, 푆  is found by deleting all the rows and columns of the up states from the P-

matrix. 푆  is given by 

푆 =
1 − (μ + 휆 ) 0 휆

0 1 − (μ + 휆 ) 휆
μ μ 1 − (μ + μ )

                 (2.38) 

and by substituting (2.38) in (2.37), the MTTR becomes 

푀푇푇푅 =
μ + 휆 0 −휆

0 μ + 휆 −휆
−μ −μ μ + μ

                         (2.39) 

The inverse of the matrix is given as 

푀푇푇푅 =
(μ + μ )(μ + 휆 ) − 휆 μ 휆 μ 휆 (μ + 휆 )

μ 휆 (μ + μ )(μ + 휆 ) − 휆 μ 휆 (μ + 휆 )
μ (μ + 휆 ) μ (μ + 휆 ) (μ + 휆 )(μ + 휆 )

    (2.40) 

where 푑푒푡 = (휆 + μ )(휆 + μ )(μ + μ ) − 휆 μ (휆 + μ ) − 휆 μ (휆 + μ ).  

The MTTR for the system is the sum of one of the rows that represent the current state 

divided by the determination. The MTTR for the system to move from S2 to S1 is 

푀푇푇푅 = 
   ( )( ) ( )

( )( )( ) ( ) ( )
      (2.41) 

 

2.6  Frequency and Duration Interruptions 

There are other parameters or variables that it is important to compute in addition to the 

steady-state probabilities, such as passage time, residence time, and cycle time. The time 
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that would the system takes to transit from one state to another is called passage time. 

Residence time is the passage time from a current state to any other state. Cycle time is 

the time required to complete an (in) and a (not-in) cycle for a state. These three variables 

are continuous random variables and have expected values.  

The expected cycle time is equal to the sum of the residence time and the time between 

the residences. 

퐸[푇 ] = 퐸[푇 ] + 퐸[푇 ]                                      (2.42) 

In different words, it is also equal to the sum of the MTTF and MTTR. 

퐸[푇 ] = 푀푇푇퐹 + 푀푇푇푅                                      (2.43) 

The expected frequency for occurrence of any state is equal to the reciprocal of the cycle 

time for that state. 

푓 =
1

퐸[푇 ]                                                            (2.44) 

after substituting (2.42) in (2.44), 푓  is given as 

푓 =
1

퐸[푇 ] + 퐸[푇 ]                                                 (2.45) 

In term of MTTF and MTTR,  

푓 =  
1

푀푇푇퐹 + 푀푇푇푅                                               (2.46) 

By multiplying the frequency with 
퐸[푇 ]
퐸[푇 ] 

the frequency becomes 

푓 =
퐸[푇 ]
퐸[푇 ]

1
퐸[푇 ]                                                   (2.47) 



24 
 

Frequency of occurrence can be found in term of probability by 

푓 =  
푃

퐸[푇 ]                                                            (2.48) 

Where 푃  is the probability of being in state 푖. Since the expected residence time is equal 

to the MTTF, it can be given by 

퐸[푇 ] = [퐼 − 푆 ]                                           (2.49) 

And by deleting all the rows and columns of the absorbing states, 푆  becomes 

푆 =  1 − 휌                                               (2.50) 

where 휌  is the rate departure from state 푖 to state 푗. After subtituting (2.50) in (2.49), the 

expected residence time is 

퐸[푇 ] =  [1] − 1 − 휌                                 (2.51) 

and with mathematical simplification we get 

퐸[푇 ] = 휌                                                 (2.52) 

By substituting (2.52) in (2.48), the expected frequency can be computed as 

푓 = 푃 휌                                                      (2.53) 

Equation (2.53) shows that the expected frequency of state 푖 is equal to the probability of 

that state multiplied by the rates departure from the same state. In the previous example 
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of two components in series, the frequency of occurrence for state 1 can be calculated 

using (2.53), 

푓 = 푃 휌                                                     (2.54) 

By substituting 푃  from (2.28) and ∑ 휌   from (2.33) in (2.54), we get 

푓 =
μ μ

(휆 + μ )(휆 + μ ) (휆 + 휆 )                                (2.55) 

And by the same way, the frequency of occurrence for states 2, 3, and 4 are 

푓 =
μ 휆

(휆 + μ )(휆 + μ ) (μ + 휆 )                                 (2.56) 

푓 =
μ 휆

(휆 + μ )(휆 + μ ) (μ + 휆 )                                  (2.57) 

푓 =
휆 휆

(휆 + μ )(휆 + μ )
 (μ + μ )                                 (2.58) 

In power system, the theory of frequency of occurrence is used to find failure frequency 

of the system. Failure frequency is the frequency of occurrence from up state to down 

state and it is equal to the frequency of occurrence for the down states of the system. 

If the system has multiple down states, the rate departures for the down states need to be 

modified by excluding all the mutual transition between the failure states in order to 

calculate the failure frequencies. 

푓 = 푃 휌                                                         (2.59) 
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Where 휌  are the modified rates of departure. Then, the system failure frequency is given 

by summing the failure frequencies for all down states. 

푓 = 푓                                                (2.60) 

Where 풅 is the number of down states. The modified transition rates matrix for the same 

example of two components in series is given by removing all the mutual rates of 

departure between the down states (S2,S3, and S4). 

휌 =

⎣
⎢
⎢
⎢
⎡

0 휆 휆 0

μ 0 0 0

μ 0 0 0

0 0 0 0⎦
⎥
⎥
⎥
⎤

                                            (2.61) 

Using equation (2.60) the failure frequencies for the down states are 

푓 =
μ 휆

(휆 + μ )(휆 + μ ) (μ )                                         (2.62) 

푓 =
μ 휆

(휆 + μ )(휆 + μ ) (μ )                                          (2.63) 

푓 =
휆 휆

(휆 + μ )(휆 + μ ) (0)                                           (2.64) 

 

Then, the system failure frequency becomes 

푓 = 푓 +푓 + 푓 =
μ μ (휆 + 휆 )

(휆 + μ )(휆 + μ )                           (2.65) 
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2.7  Main Equations of Reliability Indices 

Availability, MTTF, and failure frequency are used to calculate the load point reliability 

indices and system reliability indices. Load point indices are computed for each load 

point in the system and they are as such: Average Interruption Duration (AID), Average 

Interruption Frequency (AIF), Frequency Duration (FD), and Energy Not Supplied (ENS). 

System indices are calculated for a group of load points or an entire system [1][4]. The 

most common system indices are: 

 System Average Interruption Frequency Index (SAIFI): 

 SAIFI measures the probability that average customer will experience an 

 interruption during a year. 

 System Average Interruption Duration Index (SAIDI): 

 SAIDI measures the total duration of interruption for average customer during a 

 year. 

 Customer Average Interruption Duration Index (CAIDI): 

 CAIDI measures the time to restore the service after an outage, or the duration for 

 average interruption.  

 Average Service Availability Index (ASAI) and Average Service Unavailability 

Index (ASUI): 

 ASAI is a measure of the overall reliability of the system. It measures the percent 

 of time that the average customer has a service during a year, whereas ASUI is 

 exactly the opposite. 

 Energy Not Supply (ENS) and Average Energy Not Supply (AENS): 
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ENS measures the energy not supplied to the system due to the interruption, and 

AENS measures the average energy not supplied to the average customer. 

Equations that required for calculation of all reliability indices are summarized in table 

2.2.  

Table 2.2 Main equations of reliability indices 

Index Equation Unit 
Load point indices 

Availability A=∑ 푃( )  - 

Unavailability 푈 = 1 − 퐴 - 

MTTF 푀푇푇퐹 (푆1) Y 

AIF 퐴퐼퐹 = 푓 f/y 

AID 퐴퐼퐷 = 푈 × 8760 h/y 

FD 퐹퐷 =
퐴퐼퐷
퐴퐼퐹

 h/f 

ENS 퐸푁푆 = 퐴퐼퐷 × 푃  MWh 

System indices 

SAIFI 푆퐴퐼퐹퐼 =  
∑ 퐴퐼퐹 푁

푁  f/c.y 

SAIDI 푆퐴퐼퐷퐼 =  
∑ 퐴퐼퐷 푁

푁  h/c.y 

CAIDI 퐶퐴퐼퐷퐼 =
푆퐴퐼퐷퐼
푆퐴퐼퐹퐼

 h/f 

ASAI 퐴푆퐴퐼 =
∑ 8760푁 − ∑ 퐴퐼퐷 푁

∑ 8760푁  - 

ASUI 퐴푆푈퐼 = 1 − 퐴푆퐴퐼 - 

ENS 퐸푁푆 = 퐴퐼퐷 푃  MWh/y 

AENS 퐴퐸푁푆 =
퐸푁푆
푁  MWh/c.y 

 

Where, 퐵 is the number of load point, 푁  is the number of interrupted customers, 푁  is 

the total number of customers, and 푃  is the average load power for each load point. 
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CHAPTER 3 

DISTRIBUTION POWER FLOW ANALYSIS 

 

 

Power flow analysis, also known as load flow, is one of the most important analyses in 

the power system. This analysis determines the steady state conditions of a power system 

for a set of specified power generations and load demand. Power flow analysis is 

essential for power planning, operation, economic scheduling, and exchange of power 

between utilities. Furthermore, it is necessary for other analyses such as fault analysis and 

stability. 

In power flow analysis each bus has four parameters, real power (P), reactive power (Q), 

voltage magnitude (V), and voltage angle (δ). Two of the parameters must be specified to 

calculate the others. There are three types of buses: a slack bus has two specified 

parameters, V and ∠훿 ; a generator bus has two specified parameters, P and V; and a load 

bus has two specified parameters, P and Q. Because of that, the generator bus is called   

P-V bus, and the load bus is called P-Q bus.  

Load flow calculation is usually carried out using the node voltage method. First, an 

admittance matrix for the system is formed. Then, linear algebraic equations in terms of 

node currents are derived. If node currents are known, node voltages can be calculated by 

the linear algebraic equation. However, in the power system this is not always the case. 

Powers are specified instead of currents, which results in complex nonlinear equations in 
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terms of system powers, called power flow equations. To calculate node voltages and the 

other parameters, power flow equations must be solved. The most common techniques 

used for load flow calculation are the iterative techniques, Gauss-Seidel, Newton-

Raphson, and Fast Decoupled [16].  

The preceding methods were developed to solve the power flow for transmission 

systems. However, in distribution systems, they may not work appropriately due to the 

special features of distribution systems [17]. These features can be summarized as 

followings: 

 Radial with sometimes weakly meshed structure. 

 High resistance to reactance (r/x) ratios. 

 Multiphase and unbalanced oriented. 

 Extremely large number of branches and nodes. 

Figure 3.1 shows a sample of small distribution system. 

  

 

Figure 3.1 Small distribution system 

 

 

1 2 3 4 5 

6 7 
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3.1  Power Flow Techniques for Distribution System 

Many power flow algorithms especially suited for distribution systems have been 

developed. A compensation-based method (forward/backward method) using a multi-port 

compensation technique and basic formulations of Kirchhoff's laws has been proposed in 

[18]. This method solves power flow for weakly meshed distribution systems. At the 

beginning, a meshed system was converted into a radial system by breaking the 

interconnected points, also known as break points. Then, the radial system was directly 

solved by Kirchhoff's voltage and current laws (KVL and KCL). Finally, the multi-port 

compensation method was used to calculate the breakpoint currents. The number of 

iteration is high due to calculation of breakpoint currents. As mentioned before, the 

forward/backward algorithm has two main steps. First, the backward sweep calculates 

branch currents starting from the last node toward the source. Second, the forward sweep 

calculates node voltages starting from the source toward the last node. In each iteration, 

voltages are updated in backward steps to calculate the branch current, and currents are 

updated in forward steps to calculate node voltages. The number of iterations here are 

high due to the calculation of breakpoint currents. 

A fast decoupled method using G-matrix (FDG) for the power flow of distribution 

systems, based on equivalent current injections with the first time to use the fast 

decoupled technique in distribution systems has been outlined in [19]. This method uses 

the Newton Raphson technique but with rectangular coordinates. The Jacobian matrix 

here is called G matrix. It is formed in terms of currents instead of powers. After deriving 

current equations, real and imaginary parts are separated into conductance (G) and 
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susceptance (B). The G matrix will be formed by the values of G and B of the distribution 

system, and it can be decoupled with certain assumptions. After several iterations, the 

power flow will be solved. The FDG method is sensitive to the r/x ratio. The r/x ratio 

must be multiplied by a factor between 0.5 and 1.5 to meet the technique requirement. 

However, the G matrix is constant and formed only once and hence consumes less time.   

A simple and efficient branch-to-node matrix based power flow (BNPF) for radial 

distribution systems has been presented in [20]. Key features for this method are that 

voltages for all nodes are calculated from the source voltage. A branch-to-node matrix is 

used to define the relation between branch current and node currents with no inversion of 

any matrices. This matrix is formed based on the topology and configuration of the 

system. Loads can be represented by any kind of models, constant power, constant 

impedance, constant admittance, or constant current. Load flow is carried out by 

calculating branch currents then computing branch voltages, and finally calculating bus 

voltages in terms of source voltage and branch voltages. 

A distribution power flow (DPF) technique with the objective to enhance the 

convergence rate by partially linearizing the power flow equations has been developed in 

[21]. Power equations here are linearized by eliminating the trigonometric part. 

Trigonometric terms are replaced with adopted variables (a) and (b). Power equations are 

linearized around operating points (a) and (b). The Jacobian matrix of linearization 

process will be formed and bus voltage will be solved. This method is insensitive to the 

resistance to reactance (r/x) ratio and applicable for large-scale distribution systems. On 

the other hand, forming, calculating, and inverting the Jacobian matrix provides 

complexity and is more time consuming. 
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A direct approach of DPF using bus injection to branch current matrix (BIBC) and branch 

current to bus voltage matrix (BCBV) has been obtained in [22]. The two matrices are 

obtained from the topological characteristics of distribution systems, and they represent 

the relationship among bus current injections, branch currents, and bus voltages. BIBC is 

used to calculate branch currents. BCBV is used to obtained difference voltages or drop 

voltages. Eventually, bus voltages are calculated in terms of difference voltages and 

source voltage. LU factorization, forming a Jacobian matrix, and matrix inversion are not 

needed in this method. It is applicable for large distribution systems and high r/x ratios. 

Therefore, this method is efficient, fast, and robust. 

A robust decoupled power flow technique has been presented in [23]. This method is 

based on line current flow in rectangular coordinates with elimination of the off-diagonal 

blocks of the Jacobian matrix. This elimination makes perfect decoupling of the problem, 

unlike FDG which is based on unrealistic assumptions. The algorithm of this method is 

the same as the FDG method. However, this technique proposes a constant 

transformation matrix. This transformation matrix is composed of two-sub diagonal 

matrices of cosine and sine of system admittance angles. By multiplying mismatched 

equations of the power system by the transformation matrices, the equation will be 

decoupled into two-sub equations for solving the power flow. This method is unaffected 

by the range of r/x ratio and provides a solution for large distribution systems. It is 

efficient, accurate, and robust. 

In this research, three techniques of DPF will be presented and tested in order to apply 

them in the reliability evaluation for RBTS system. These methods are distribution load 
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flow matrix method DLF, enhanced Newton Raphson method ENR, and Robust 

decoupled method RD. 

 

3.2  Distribution Load Flow Matrix Method (DLF) 

This method solves the DPF directly by using two matrices—bus injection to branch 

current matrix (BIBC) and branch current to bus voltage matrix (BCBV) [24]. BIBC and 

BCBV are formed based on the configuration of the system. BIBC and BCBV are 

utilized for branch currents and drop voltages calculation respectively. Multiplying those 

two matrices results in one matrix called distribution load flow matrix DLF. DLF is used 

in one step to compute bus voltages. 

 

 

The power distribution system in figure 3.2 is used as an example. At the beginning, we 

assume that all bus or node voltages are equal to the source node. Specified data in the 

distribution system are load active power (P) and reactive power (Q) for each bus. Node 

currents can be computed in terms of specified P and Q as 

퐼 = 
   (   )∗     

∗                                              (3.1) 

By applying Kirchhoff’s current law (KCL) to the distribution system, branch currents 

can be obtained in terms of node currents by the following equations: 

Figure 3.2 Sample distribution system 

1 2 3 4 

5 
퐵  

퐵  퐵  퐵  
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퐼 = 퐼 +  퐼 + 퐼 + 퐼                           (3.2) 

퐼 =  퐼 + 퐼  

퐼 =  퐼  

퐼 =  퐼  

The relation between branch currents and node currents in equation (3.2) can be 

expressed with the BIBC matrix as: 

퐼  
퐼
퐼
퐼

=  
1 1 1 1
0 1 1 0
0
0

0
0

1
0

0
1

 

퐼  
퐼
퐼
퐼

                             (3.3) 

By rewriting equation (3.3) in general expression as: 

퐼 = [퐵퐼퐵퐶] ∗  퐼                                         (3.4) 

The bus voltages can be calculated in terms of drop voltages by: 

푉 = 푉 − ( 퐼 ∗ 푍 ) =  푉 −  푉                                 (3.5) 

푉 = 푉 − ( 퐼 ∗ 푍 ) =  푉 − 푉  

푉 = 푉 − ( 퐼 ∗ 푍 ) =  푉 − 푉  

푉 = 푉 − ( 퐼 ∗ 푍 ) =  푉 − 푉  

The relation between branch currents and bus voltages in equations (3.5) can be 

expressed with the BCBV matrix as: 

푉  
푉
푉
푉

=  

푍 0 0 0
푍 푍 0 0
푍
푍

푍
0

푍
0

0    
푍

 

퐼  
퐼
퐼
퐼

                       (3.6) 

By rewriting equation (3.6) in general expression, we get: 

푉 = [퐵퐶퐵푉] ∗  퐼                                         (3.7) 

By substituting equation (3.4) in (3.7), we get: 
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푉 = [  퐷퐿퐹  ] ∗ 퐼                                           (3.8) 

where DLF is the distribution load flow matrix and equals [  퐷퐿퐹  ] = [퐵퐶퐵푉] ∗  [퐵퐼퐵퐶].  

퐷퐿퐹 =  

푍 푍                     푍                             푍
푍 푍 + 푍             푍 + 푍                          푍
푍
푍

푍 + 푍
푍            푍 + 푍 + 푍

푍        
             푍
푍 + 푍

 

At the end, bus voltages are computed by: 

푉 =  푉 − 푉                                           (3.9) 

After solving the voltages for all buses by equation (3.9), we check for convergence. If 

the solution is converged, we stop. Otherwise, we start the algorithm again iteratively 

until reaching the convergence. Figure 3.3 shows the algorithm for the DLF method. 

 

 

Figure 3.3 DLF method algorithm 
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3.3  Enhanced Newton Raphson Method (ENR) 

This method provides a solution for distribution load flow using the current-injection 

technique based on the Newton-Rapson method and rectangular coordinates [19]. The 

Jacobian matrix in ENR is called “G matrix,” and it is constant and formed for once 

unlike with the conventional Newton Raphson method. For the first time, decoupling can 

be applied to the DPF by assuming off-diagonal blocks of the G matrix to be zeros. 

For a distribution system with (n) number of buses, the specified node current can be 

calculated in terms of specified active power (P) and reactive power (Q) as: 

퐼 =    (   )∗     
∗                                             (3.10) 

Specified branch currents can be calculated as: 

퐼 = [퐶] ∗  퐼                                          (3.11) 

where C is a branch to bus matrix. 

Bus voltage will be represented in rectangular coordinates as: 

푉 =  푒 + 푗 푓                                                 (3.12) 

By substitute (3.10) and (3.12) in (3.11), equation (3.11) will be: 

퐼 = [퐶] ∗    (   )∗    
(  )∗                                     (3.13) 

Branch current can also be calculated in terms of branch admittance in rectangular 

coordinates. 

퐼 = [(푒 − 푒 ) + 푗(푓 − 푓 )] [퐺 − 퐵 ]                   (3.14) 
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where 푖 represents the buses in the system 푖=1,2,3,…, n. and 푗 represents the branches, 

푗=1,2,3,..., n-1. By separating the real and imaginary parts of equations (3.13) and (3.14), 

the Newton-Raphson solution for the load flow can be formulated as: 

퐽 퐽
퐽 퐽  ∆푒

∆푓 = 
∆퐼
∆퐼

                                  (3.15) 

Jacobians are calculated for once as: 

퐽 =  ( , ) = 퐺        퐽 =  ( , ) = −퐵 

퐽 =  ( , ) = 퐺           퐽 =  ( , ) = 퐵 

Current mismatches ∆퐼  and ∆퐼  are calculated using: 

∆퐼 = 푅푒( 퐼  ) − 푅푒( 퐼  )                             (3.16) 

∆퐼 = 퐼푚( 퐼  ) − 퐼푚( 퐼 ) 

Correction values ∆푒 and ∆푓 can be given by factorizing equation (3.15): 

∆푒
∆푓 =  퐺 −퐵

퐵 퐺   
∆퐼
∆퐼

                                (3.17) 

Finally, voltage magnitudes and angles, are computed and updated by: 

푒 = 푒 + ∆푒                                                (3.18) 

푓 = 푓 + ∆푓 

After computing 푒 and 푓 by equation (3.18), we check for convergence. If the solution 

is converged, we stop. Otherwise, we start the algorithm iteratively, except for the one-

time calculation equation, until reaching the convergence. Figure 3.4 shows the algorithm 

for the ENR method. 

The G matrix can be decoupled by assuming the off-diagonal blocks of G matrix to be 
zeros: 
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∆푒
∆푓 =  퐺 0

0 퐺   
∆퐼
∆퐼

                                    (3.19) 

Then ∆푒 and ∆푓 can be calculated as 

∆푒 = 퐺 ∆퐼                                                  (3.20) 

∆푓 = 퐺 ∆퐼  

A draw back for this assumption is that in large systems the solution may not converge. 

  

 

Figure 3.4 ENR method algorithm 
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3.4  Robust Decoupled Method (RD) 

The main idea in the robust decoupled method is to decouple the Newton Raphson 

equation into two sub-equations by a constant transformation matrix [23]. Multiplying the 

Jacobian matrix by the transformation matrix will result in zero off-diagonal blocks of 

Jacobian. Equation (3.15) is multiplied by the transformation matrix in order to decouple 

the equation.  

푇 푇
−푇 푇

퐽 퐽
퐽 퐽  

∆푒
∆푓 = 

푇 푇
−푇 푇

∆퐼
∆퐼

                   (3.28) 

푇  and 푇  are diagonal matrices of cosine and sine admittance angles, respectively. 

Equation (3.21) after decoupling will be represented as 

[푇][∆푒] = [∆퐼 _ ]                                             (3.22) 

[푇][∆푓] = [∆퐼 _ ] 

Sub-Jacobian matrix T is computed by 

[푇] =  [푇 ]  ( , ) + [푇 ]  ( , )                            (3.23) 

        =  [−푇 ]  ( , ) + [푇 ]  ( , ) 

∆퐼 _ , and ∆퐼 _  are calculated by 

∆퐼 = [푇 ] [∆퐼 ] + [푇 ] [∆퐼 ]                         (3.24) 

∆퐼 = [−푇 ] [∆퐼 ] + [푇 ] [∆퐼 ] 

Equation (3.23) is calculated for once as the Jacobian. Correction values ∆푒 and ∆푓 can 

be given by dividing equation (3.22) by [푇]. 

[∆푒] = [푇]   [∆퐼 _ ]                                          (3.25) 

[∆푓] = [푇]   [∆퐼 _ ] 
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And finally, voltage magnitudes and angles, are computed and updated by 

푒 = 푒 + ∆푒                                                (3.26) 

푓 = 푓 + ∆푓 

After computing 푒 and 푓 by equation (3.26), check for convergence, we keep updating 

the voltage magnitude and angles until reaching the convergence as can be shown in 

Figure 3.5. 

 

Figure 3.5 RD method algorithm 

 

3.5  Weakly Meshed Distribution Load Flow 

A distribution system has large number of feeders, load points connected to these feeders, 

and normally open tie switches. Tie switches are closed in contingency or when serving 

high-density loads. When some of the tie switches are closed, it leads to some loops in 
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the distribution system, and it will be in weakly mesh configuration rather than radial. 

This new configuration leads to losses reduction, voltage profile improvement, reliability 

and power quality enhancement. A simple weakly meshed distribution system is shown 

in Figure 3.6. 

The DLF method can be utilized here with few modifications. 

 

 

Figure 3.6 Small weakly meshed distribution system 

 

Figure 3.6 shows that a new branch ( 퐵5 ) is added to the system. The branch current 

퐼  is flowing through 퐵  from node 4 to node 5. 퐼  and 퐼  will be calculated 

as [25]: 

퐼  = 퐼 +  퐼                                       (3.27) 

퐼  = 퐼 −  퐼                                       (3.28) 

The DLF matrix will be modified as well. If a new branch is added from a bus 푖 to a bus 

푗, elements in the 푗  column are subtracted from the elements in the 푖  column in the 

existing DLF matrix and the results are filled in the new 푘 column and 푘  row of the 

DLF matrix. The diagonal element of the 푘  row and column is found by summing all 

the impedances of the branches which involved in forming the loop or ‘weakly mesh’.  

1 2 3 4 

5 
퐵  

퐵  퐵  퐵  
퐵  
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퐷퐿퐹 =

⎣
⎢
⎢
⎢
⎡

       

푍     푍            푍               푍          푍
푍
푍
푍

푍

   

푍
푍
푍

푍

     

푍
푍
푍

푍

      

푍
푍
푍

푍

      

푍
푍
푍

푍

   

⎦
⎥
⎥
⎥
⎤

 

After modifying the DLF matrix, Kron's reduction is applied to the new DLF matrix to 

make it the same dimension as before [11]: 

푍 = 푍 −
( ( )∗ ( ))

( )
                     (3.29) 

 

This technique is only applicable to DLF method because it depends on modifying the 

DLF matrix. 

 

3.6  Distribution Load Flow including Distribution Generation (DG) 

Distribution generation DG is a generation system that spreads through the distribution 

system for improving the service and the reliability. DG could be photovoltaic system, 

wind turbines, fuel cells, micro turbines, etc. The DG units have different operational 

modes [26]. They could supply a power with a predetermined amount of reactive power 

(fixed power factor). In this case, DG units are not controlling the voltage at the 

connection point. On the other hand, DG units could supply a power by controlling and 

regulating the voltage at the connection points. 
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If a DG unit generates a predetermined amount of power, the DG is modelled as a PQ bus 

and treated as a load bus with negative values for P and Q. However, when a DG unit 

regulates and controls the voltage at the connection point, the DG is modelled as a PV 

bus.  

In the case of PV, active DG power 푃  is specified, reactive DG power 푄  is initially 

set to zero, and the voltage at the P-V node is set to the desirable value. The DLF, ENR, 

or RD method can be utilized here with some adjustments. Branch currents will be 

calculated with: 

퐼 = [퐵퐼퐵퐶] ∗ ( 퐼 + 퐼  )                              (3.30) 

After computing the bus voltages, if |푉 −  푉  | ≤ error tolerance, the solution is 

converged. Otherwise, 푄  will be generated by PV node to maintain the voltage at the 

specified value. 푄  can be computed as: 

푄  = 푄  + 퐼푚( 푉  
   ∗       )                             (3.31) 

where 푖 is the number of the DG bus, 푉   is the set voltage at the DG bus, and 푉  is the 

calculated voltage at the DG bus. The algorithm for solving a DPF with the inclusion of 

the DG is the same as the three methods with considering equations (3.30) and (3.31). 

1 2 3 4 

5 
퐵  

퐵  퐵  퐵  

퐷퐺 

Figure 3.7 Small distribution system with distributed generation 
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3.7  Tests and Results 

Tests and simulations for the presented methods are conducted. Three methods, DLF, 

ENR, and RD, are tested on a radial 33-bus distribution system. Then, the DLF method is 

tested on weakly meshed 33-bus distribution system. Lastly, the DLF method is tested on 

weakly meshed 33-bus distribution system including a DG. Line and load data for the 

system are mentioned in [27]. The base data is 12.66 KV and 10 MW, and the 

convergence tolerance is 0.0001. MATLAB is used as the implementation platform. 

 

3.7.1  Radial Distribution System 

The preceding distribution load flow methods, DLF, ENR, and RD, were tested on radial 

33-bus [27] in order to assess their performance, accuracy, speed of calculation, 

robustness, and computational efficiency. Figure 3.8 shows the IEEE radial 33-bus 

system. 

Solution of the three methods, DLF, ENR, and RD for the radial 33-bus are shown in 

Table 3.1. The results in Table 3 show that all three methods provide the same solution. 

These results are identical to those of previous studies of DPF [28][29]. For DLF, ENR, 

and RD, the solution is converged after the same number of iterations, 4, so all the three 

methods have a good convergence. In terms of computational time, DLF comes first with 

46 ms, then ENR with 70 ms, and lastly RD with 80 ms. All three methods are accurate 

and efficient. However, DLF is simpler and faster than ENR and RD. Table 3.2 shows a 

comparison among all three methods. 
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Table 3.1 PF solution for 33-Bus system 

Bus no.  
DLF, ENR, and RD 

Bus no. 
DLF, ENR, and RD 

푉  δ  푉  δ  
1 1 0 18 0.9131 -0.4950 
2 0.9970 0.0145 19 0.9965 0.0037 
3 0.9829 0.0960 20 0.9929 -0.0633 
4 0.9755 0.1616 21 0.9922 -0.0827 
5 0.9681 0.2283 22 0.9916 -0.1030 
6 0.9497 0.1338 23 0.9794 0.0651 
7 0.9462 -0.0965 24 0.9727 -0.0237 
8 0.9413 -0.0604 25 0.9694 -0.0674 
9 0.9351 -0.1335 26 0.9477 0.1733 
10 0.9292 -0.1960 27 0.9452 0.2295 
11 0.9284 -0.1888 28 0.9337 0.3124 
12 0.9269 -0.1773 29 0.9255 0.3903 
13 0.9208 -0.2686 30 0.9220 0.4956 
14 0.9185 -0.3473 31 0.9178 0.4112 
15 0.9171 -0.3849 32 0.9169 0.3881 
16 0.9157 -0.4082 33 0.9166 0.3804 
17  0.9137 -0.4855    

  

10 9 8 7 6 4 3 5 2 1 11 

19 
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20 21 22 

23 25 24 

26 27 28 29 30 31 32 33 

Figure 3.8 33-Bus distribution system 
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Table 3.2 Comparison of the three DPF methods 

RD ENR DLF DPF methods 
Accurate accurate accurate Accuracy 

4 4 4 Number of iterations 
80 ms 70 ms 46 ms Computational time 

Inflexible inflexible flexible Flexibility 
Complex complex simple Complexity 

Insensitive insensitive insensitive Sensitivity to r/x ratio 
 

 

3.7.2  Weakly Meshed Distribution System 

The DLF method with the presented modification for a weakly meshed distribution 

system was tested on the 33-bus system having five loops [25] shown in Figure 3.9. The 

new mesh connections cause a reduction to the branch current values. This reduces the 

voltage drop and power losses, and improves the voltage profile. The obtained results 

from the power flow solution are identical to the results in [25] as shown in table 3.3. 

Convergence was reached after 3 iterations and 69 ms.  
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Figure 3.9 33-Bus distribution system with 5 closed tie lines 
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Table 3.3 PF solution for weakly meshed 33-Bus system 

Bus no. 
DLF method 

Bus no. 
DLF method 

푉  δ  푉  δ  
1 1  0 18 0.9521 -0.2327 
2 0.9971 0.0143 19 0.9954 -0.0003 
3 0.9861 0.0555 20 0.9813 -0.0845 
4 0.9822 0.0640 21 0.9774 -0.1340 
5 0.9785 0.0702 22 0.9749 -0.1863 
6 0.9698 -0.0387 23 0.9807 0.0464 
7  0.9689 -0.1416 24 0.9703 -0.0115 
8 0.9676 -0.1653 25 0.9632 -0.0233 
9 0.9633 -0.1955 26 0.9688 -0.0241 
10 0.9620 -0.2166 27 0.9674 -0.0031 
11 0.9618 -0.2161 28 0.9616 0.0077 
12 0.9617 -0.2173 29 0.9576 0.0275 
13 0.9588 -0.2314 30 0.9543 0.1408 
14 0.9579 -0.2494 31 0.9509 -0.0155 
15 0.9578 -0.2494 32 0.9502 -0.0504 
16 0.9561 -0.2396 33 0.9503 -0.0727 
17  0.9531 -0.2548    

 

The voltage profile is improved due to closing the tie lines and all bus voltages become 

within the limit of ± 5% of base voltage as shown in table 3.3. The improvement has a 

range of (-1.68%) to (+4.44%). Although voltages at bus 19-22 and 24-25 decrease with 

small percentage, they remain within the acceptable voltage limit. Figure 3.10 shows the 

improvement of voltage profile in percentage, due to the mesh connections. Red points in 

figure 3.10 indicate the voltage deterioration. 
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Figure 3.10 Voltage profile improvement due to mesh connections 

 

 

3.7.3  Weakly Meshed Distribution System with DGs 

The DLF method with the additional equations to include the distribution generation DG 

unit in the distribution system was tested on the 33-bus weakly meshed distribution 

system. Figure 3.11 shows a DG installed at bus 22 and generates 1000 KW. The DG is 

modelled as a PV bus with controlling the voltage at the connection point. The voltage at 

bus 22 is set at 1 pu. Table 3.4 shows the results of the DPF calculation. 
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Figure 3.11 33-Bus distribution system with DG 

 

Table 3.4 DPF solution for weakly meshed system and  DG 

Bus no. 
DLF method 

Bus no. 
DLF method 

푉  δ  푉  δ  
1 1 0 18 0.9627 -0.2897 
2 0.9980 -0.0011 19 0.9975 -0.0189 
3 0.9888 0.0147 20 0.9945 -0.1493 
4 0.9860 0.0095 21 0.9940 -0.1871 
5 0.9834 0.0014 22 1.0000 -0.1783 
6 0.9775 -0.1039 23 0.9839 0.0019 
7 0.9781 -0.1468 24 0.9745 -0.0596 
8 0.9789 -0.2174 25 0.9684 -0.0755 
9 0.9758 -0.2415 26 0.9763 -0.0882 
10 0.9756 -0.2561 27 0.9749 -0.0655 
11 0.9757 -0.2581 28 0.9686 -0.0532 
12 0.9759 -0.2639 29 0.9643 -0.0322 
13 0.9722 -0.2738 30 0.9613 0.0400 
14 0.9708 -0.2962 31 0.9586 -0.0758 
15 0.9703 -0.2960 32 0.9582 -0.1080 
16 0.9682 -0.2841 33 0.9586 -0.1246 
17  0.9641 -0.3126     
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The voltage profile is improved because of the mesh connections and DG connected to 

the system, where the DG generates 970 Kvar. This improvement extends from (-0.1%) 

to (+5.80%), and has only one bus voltage decreases by 0.1% at bus 25 as shown in 

figure 3.12. 

 

 

Figure 3.12 Voltage profile improvement due to 1000 KW DG 
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CHAPTER 4 

RELIABILITY EVALUATION USING MM & DPF 

 

 

In this research, the reliability of an active distribution system or Microgrid is evaluated 

using MM and DPF analysis. The reliability can be assessed by investigating the 

availability of the service at each load point of the system. To study the probability of the 

the availability of the system, two principles are utilized. First, examining the 

connections between the source and the loads. This can be achieved by considering all 

the scenarios or states of outages or faults in MM states. Second, using DPF to study the 

transfer capability and verify the quality of the voltage at each load points. Then, MM of 

the system will be used to calculate all the reliability indices. In order to proceed with the 

study, several procedures must be performed during the process. First, system reduction. 

Then, states classification using cut and tie sets. After that, prime numbers encoding to 

simplify the classification process. 

  

4.1 System Reduction 

In power system, most of components have only two possible states; up or down. The 

number of possible states for a binary system can be obtained by ( 2n ), where n is the 

number of components. Therefore, in large systems number of states can be extremely 
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large and difficult to deal with. To overcome this problem, several reductions are applied 

in this study [12]. These reductions are removing irrelevant load points, combining series 

and parallel components, removing irrelevant sections, and considering only the states of 

two possible failures at a time. 

After the reduction process, there will be a number of states that represent the MM of the 

power system. The states will be determined as either up or down based on the 

connectivity and transfer capability. Connectivity is investigated by finding tie and cut 

sets [4]. Tie sets represent the up states, and cut sets represent the down states. 

   

4.2 Cut and Tie Sets 

Networks connection is series, parallel, combination of both, or complex connection. The 

reliability of series and parallel systems can be evaluated using the approximate method, 

and network reduction method is used for the systems with the combination of series and 

parallel. However, the future power system is expected to have a complex connection 

network, and one of the techniques that can solve this type of networks, is to decompose 

the network into a group of subsystems or a set of components (line sets) and then 

determine the system reliability. These components sets are tie set, minimal tie set, cut 

set, and minimal cut set. They can be defined as follows [4]: 

1. Tie set: is any set of components that create a path between the source and the 

load. 

2. Minimal tie set: is a set of minimum components that create a path between the 

source and the load. 
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3. Cut set: is a set of components that have to fail to cut the path between the source 

and the load. 

4. Minimal cut set: is a set of minimum components that have to fail to cut the path 

between the source and the load. 

Figure 4.1 shows a sample of a complex system, which is called the bridge system, and 

figures 4.2 and 4.3 show the minimal tie sets and cut sets for the same system 

respectively. 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

In small systems, these sets of components can be determined by logical inspection. 

However, in large and complex systems the process is more difficult and complicated. 

Two methods will be used in this research to determine the tie and cut sets for large 
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Figure 4.3 Minimal cut sets 
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systems, the petri nets and prime encoding method [30]. The petri nets method is used to 

find the minimal tie sets by the following steps: 

1. Find A matrix and ∆푀 matrix in the the following equation, 

AP=ΔM                                                                 (4.1) 

where A is a connection matrix, P is a column vector for the firing count, M is a 

column vector of input – output vector (the change in marking). A = [aij] and aij 

= 1 if there is a connection between i and  j, and aij = 0 if there is not. M=mi  and 

mi= 1 for i = source or destination and mi = 0 otherwise. P=pi  and pi = 0 if the 

bus is not included in the path. 

2. If any column of A equals to ∆푀, it represents an Lth success path (L= 1). 

3. Mod-2 addition is used to add L columns starting from L = 2. If the addition 

equals ∆푀, the corresponding indices is a successful path of length L. This 

process is repeated for all possible L combinations.  

4. L is increased by 1, and steps 2 and 3 are repeated until L becomes equal to   N-1. 

where N = total number of columns in A or total number of sections in the system. 

 

4.3 Prime Number Encoding 

Another method used to determine the components sets are the prime encoding [30]. 

Each component or line in the system will have a prime number. Then, each set of lines 

that represents a tie or cut set will be identified by a unique ID number equals to the 

product of the prime numbers of those lines. The ID number can be decoded to restore 

the prime numbers of the lines. If a system consists of 14 lines, then the prime coding 
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number and ID numbers can be as shown in table 4.1 [30]. The 14 lines of the system are 

divided into two groups to avoid the extremely large ID numbers. 

After determining the minimal tie sets using the petri nets, and find all possible sets using 

prime numbers and ID numbers, the remaining sets can be found by dividing the ID 

numbers of the unknown sets by the ID numbers of the minimal tie sets. If the remaining 

of the division is equal zero, this means that this set is a tie set. After finding all the tie 

sets, the rest will be either a cut set or minimal cut set and they can be determined by the 

same process. 

 

Table 4.1 Prime and ID numbers for 14 lines system 

Line Prime Number  Line Prime Number Possible Set ID Number 

1 2 8 2 1 [2,0] 
2 3 9 3 1,2 [6,0] 
3 5 10 5 1,..,7 [510510, 0] 
4 7 11 7 8 [0,2] 
5 11 12 11 8,9 [0,6] 
6 13 13 13 8,..,14 [0, 510510] 
7 17 14 17 1,..,14 [510510,510510] 

 

4.4 Reliability Evaluation of RBTS-Bus 2 

This study will be implemented on the RBTS-bus 2 system shown in figure 4.4 [31]. 

Base voltage of this distribution system is 11 KV, and it has 22 load points and 36 feeders 

of three different types as shown in table 4.2. Customer type, number of customers, and 

average and peak load at each load point are shown in table 4.3. Failure rate, repair rate, 

and repair time for each component are shown in table 4.4. Table 4.5 shows transformers 

data. 
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Table 4.2 Feeder types of RBTS-bus 2 

Feeder type Length Feeder section number Impedance 
1 0.60 km 2  6  10  14  17  21  25  28  30  34 

0.14+j0.412 Ω/Km 2 0.75 km 1  4  7  9  12  16  19  22  24  27  29  32  35 
3 0.80 km 3  5  8  11  13  15  18  20  23  26  31  33  36 

 

Table 4.3 Customers data of RBTS-bus 2 

Number of 
load point Load points Customer 

type 
Average load 

(MW) 
Peak load 

(MW) 
Number of 
customers 

5 1-3  10  11 Residential 0.535 0.8668 210 
4 12  17-19 Residential 0.450 0.7291 200 
1 8 Small user 1.00 1.6279 1 
1 9 Small user 1.15 1.8721 1 
6 4  5  13  14  20  21 Gov. inst. 0.566 0.9167 1 
5 6  7  15  16  22 Commercial 0.454 0.7500 10 

Totals   12.291 20.00 1908 
 

Table 4.4 Component reliability data of RBTS-bus 2 

Component number 
Overhead Lines Underground Cables 

Failure rate 
(f/y) 

Repair 
rate (r/y) 

Repair 
Time (h) 

Failure 
rate (f/y) 

Repair 
rate (r/y) 

Repair 
Time (h) 

2  6  10  14  17  21 25  
28  30  34 0.03900 1752 5 0.024 292 30 

1  4  7  9  12  16  19 22  
24  27  29  32  35 0.04875 1752 5 0.030 292 30 

3  5  8  11  13  15 18  
20  23  26  31 33  36 0.05200 1752 5 0.032 292 30 

 
 
 

Table 4.5 Transformers reliability data of RBTS-bus 2 

Component 
number Type Failure 

Rate (f/y) 
Repair 

Rate (r/y) 
Repair 
time (h) 

Replacing 
Rate (r/y) 

Replacing 
time (h) 

37-56 Trans. 
11/0.415 0.015 43.8 200 876 10 
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Figure 4.4 Single line diagram for RBTS-BUS2 [31] 

 

In this study, the peak load will be considered in the power flow analysis with power 

factor of 0.9. The lines or components of the system will be assumed to be overhead 

lines. The reliability evaluation is going to be performed through the following steps: 

1. Reducing the number of components and states of the system by the reduction 

techniques. 
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2. Classifying the states of the system as an (up state) or (down state) by the cut and 

tie set method based on the connectivity between the source and the load. 

3. Reclassifying the states using the DPF analysis based on the transfer capacity and 

voltage profile. 

4. Using MM to calculate the reliability indices of the system. 

The steps are summarized in the flow chart shown in figure 4.5. 

Five case studies are conducted in this chapter. First, the weakly meshed RBTS-bus 2 

distribution system without DGs. The remaining four cases integrate DGs to the RBTS-

bus2 system with different capacities and locations. DGs are used to improve the voltage 

profile of the system, and therefore improve the reliability. Capacity and location of DGs 

are considered to study their influence on the voltage profile, and therefore on the 

reliability. 

 

4.5 Case Study 1: Weakly Meshed RBTS-Bus2 

In case study 1, the preceding steps are used to evaluate the reliability of the weakly mesh 

RBTS-bus 2 with closing the two tie links in the system. Main substation is supplying the 

system without any inclusion of DG.  
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Figure 4.5 Flow chart for the process of reliability evaluation 

 

Reduction Process 

1) Remove irrelevant load points 
2) Remove irrelevant lines 
3) Remove irrelevant sections 
4) Consider only two simultanous failures 

Reliability evaluation 
of 

RBTS-BUS2 

Classifying System's States 

(Based on the connectivity between the 
source and loads) 

Reclassifying System's States 

(Based on transfer capability of the system) 

Reliability Indices Calculation 

(Using MM to calculate load point indices 
and system indices) 

Reliability Indices 
 

1) Load point indices: 
A, U, AIF, MTTF, AID, FD,ENS. 

2) System indices: 
SAIFI, SAIDI, CAIDI, ASAI, ENS. 
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4.5.1  Reduction Process 

Figure 4.4 shows the line diagram of RBTS-bus2. It consists of two main sections, first 

one has the load points from 1-to-9, and the second one has the load points from 10-to-

22. The system has 56 components including the lines and transformers. Number of states 

before the reduction is 256 = 7.2058 × 1016, which is extremely large and difficult to deal 

with. 

Four levels of reduction can be applied to the RBTS-bus2 as mentioned in 4.1: 

1. Removing the irrelevant load points. If we considering the first load point (LP1), 

then all other load points are irrelevant and removed. 

2. Removing all lines that connected to the irrelevant load points except for the main 

line that connected directly to the source.  

3. Removing the irrelevant section. Since LP1 belongs to the first section, the entire 

second section is irrelevant and removed. 

4. After applying the preceding reductions, there will be 7 components instead of 56 

with respect to the LP1, and the number of states will be 27 = 128. This number of 

states is still large and it can be reduced by neglecting the states of more than two 

simultaneous failures since it is very unlikely to happen in power systems. Final 

number of states for LP1 after these four reductions is 29. This will be the case for 

all load points at section one, whereas in section two number of components will 

be 9 and number of states will be 46. Figure 4.6 and 4.7 shows the reduced system 

with respect to LP10 and LP1. 
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4.5.2 Classifying Process Based on Connectivity 

The states of the system are classified as an (up state) or (down state) according to the 

connectivity between the source and the load, using cut and tie set method. Tie sets 

represent the up states and cut sets represent the down states. First, each component is 

encoded with a prime number. In the case of LP1, the prime numbers for component 1-7 

are (2, 3, 5, 7, 11, 2, 3). Then, minimal tie sets are determined by the petri nets method, 

and every set is given an ID number. For instance, two minimal tie sets can be found for 

LP1. First set contains only components 1 and 2. However, it is not considered since the 

remaining five components are down and we assumed only 2 simultaneous failures can 

occur. The other minimal tie set contains components (6, 7, 5, 4, 3, 2). After that, the 

remaining sets are classified as tie set, cut set, and minimal cut set using the prime 
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after reduction 
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after reduction 
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number encoding method as explained in (4.2). The states for LP1 are shown in table 4.6, 

and the states for the remaining load points are found by the same method. All possible 

states or scenarios of two failures maximum are stated in table 12. At each state, 

components that have ones are up, and components that have zeros are down. The states 

are classified as (up) if they compose MTSs or TSs. On the other hand, if they form a 

MCSs or CSs, they are considered as (down states). 

 
 

Table 4.6 States classification of LP1 

State 
number 

Component number State 
classification 1 2 3 4 5 6 7 

1 0 0 1 1 1 1 1 CS 
2 0 1 0 1 1 1 1 MCS 
3 0 1 1 0 1 1 1 MCS 
4 0 1 1 1 0 1 1 MCS 
5 0 1 1 1 1 0 1 MCS 
6 0 1 1 1 1 1 0 MCS 
7 0 1 1 1 1 1 1 MTS 
8 1 0 0 1 1 1 1 CS 
9 1 0 1 0 1 1 1 CS 
10 1 0 1 1 0 1 1 CS 
11 1 0 1 1 1 0 1 CS 
12 1 0 1 1 1 1 0 CS 
13 1 0 1 1 1 1 1 MCS 
14 1 1 0 0 1 1 1 TS 
15 1 1 0 1 0 1 1 TS 
16 1 1 0 1 1 0 1 TS 
17 1 1 0 1 1 1 0 TS 
18 1 1 0 1 1 1 1 TS 
19 1 1 1 0 0 1 1 TS 
20 1 1 1 0 1 0 1 TS 
21 1 1 1 0 1 1 0 TS 
22 1 1 1 0 1 1 1 TS 
23 1 1 1 1 0 0 1 TS 
24 1 1 1 1 0 1 0 TS 
25 1 1 1 1 0 1 1 TS 
26 1 1 1 1 1 0 0 TS 
27 1 1 1 1 1 0 1 TS 
28 1 1 1 1 1 1 0 TS 
29 1 1 1 1 1 1 1 TS 
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4.5.3 Reclassifying Process Based on Transfer Capability 

System states of the RBTS-bus2 were determined depending on active paths between the 

source and the loads. In addition to the connectivity, voltage profile of the system at each 

scenario is considered in finding the system states in order to achieve a comprehensive 

and practical analysis of power reliability. DLF method that explained in chapter 3, is 

utilized here to investigate the voltage profile of the system. Figure 4.8 shows RBTS-

bus2 one-line diagram that used for power flow analysis.  

  

 
 

Figure 4.8 One line diagram RBTS-bus 2 
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DLF method finds the voltage at the distributed buses. However, to find the voltage at 

load point ends, additional equations are necessary. Current divider rule can provide a 

solution to find the voltage at each load point as shown in figure 4.9. 

 

 

 

 

 

퐼  and 퐼  are calculated by the current divider rule as: 

퐼 = 퐼  
푍

푍 + 푍                                                (4.2) 

퐼 = 퐼  
푍

푍 + 푍                                                 (4.3) 

Then, the voltage at each load point is calculated by: 

푉 = 푉 − ( 퐼 ∗  푍  )                                         (4.4) 

푉 = 푉 − ( 퐼 ∗  푍  )                                         (4.5) 

The preceding equations and DLF method are used to study the voltage profile of the 

system for the states of which the system is up to determine whether the system at those 

states has a voltage within the limit or not. If the voltage is under 0.95 pu or above 1.05 

pu according to (ANSI C84.1), the state of the system will change from up to down. This 

study is applied to all load points in the RBTS-bus2. Result of DPF for LP1 is shown in 

table 4.7.  

 
 
 

LP1 LP2 

Bus 2 

퐼  

퐼 퐼

Figure 4.9 Schematic of a current divider circuit 
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Table 4.7 DPF results for LP1 – case study 1 

State 
number 

State 
classification 

Voltage at 
LP1 

State after 
PF 

7 MTS 0.9302 ⬇ Down  ⬇ 
14 TS 0.9947 Up 
15 TS 0.9947 Up 
16 TS 0.9947 Up 
17 TS 0.9947 Up 
18 TS 0.9947 Up 
19 TS 0.9908 Up 
20 TS 0.9908 Up 
21 TS 0.9908 Up 
22 TS 0.9908 Up 
23 TS 0.9871 Up 
24 TS 0.9871 Up 
25 TS 0.9871 Up 
26 TS 0.9808 Up 
27 TS 0.9766 Up 
28 TS 0.9808 Up 
29 TS 0.9883 Up 

 
 

All the tested states in table 4.7 have a voltage within the limit at the connection point of 

LP 1, except for state number 7. It has a voltage less than the required standard, and so its 

state changed from up to down. At state 7, component 1 fails and it is isolated from the 

system as shown in figure 4.10. Only one main feeder (feeder 2) feeds the system after 

the isolation. This results in weak voltage at the end of the feeder. Voltage profile of the 

system for all load points in section one at state number 7 is illustrated in figure 4.11. 

At this scenario, LP1 – to – LP6 have a voltage below 0.95 pu due to the weak voltage at 

the end of the line. The red points in figure 4.11 indicate the voltages under the limit. On 

the other hand, the remained load points have a voltage within the limit. 
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Figure 4.10 RBTS-bus 2 Section-1 state 7 after isolation 

 

 

Figure 4.11 Voltage profile of RBTS-bus2 section 1 at state 7 

 

Each load point has different number of up states based on load point's location and 
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Shaded slots in the table represent the under voltages conditions. Based on the results of 

all load point, number of changed states from up to down at each load point is illustrated 

in figure 4.12. 

 

Table 4.8 DPF results for all load poits at section 1 – case study 1 

Up  
states 

Voltage (pu) 
LP1 LP2 

Voltage (pu) 
LP3 LP4 

Voltage (pu) 
LP5 LP6 

Voltage (pu)      
LP7 

Voltage (pu)    
LP8 

Voltage (pu)    
LP9 

1 0.9302    ⬇ 0.9528 0.9566 0.9629 0.9791 0.9678 
2 0.9947 0.9340   ⬇ 0.9707 0.9738 0.9834 0.9754 
3 0.9947 0.9528 0.9419   ⬇ 0.9835 0.9872 0.9822 
4 0.9947 0.9870 0.9707 0.9515 0.9929 0.9598 
5 0.9947 0.9870 0.9566 0.9738 0.9746 0.9754 
6 0.9947 0.9870 0.9707 0.9835 0.9834 0.9822 
7 0.9908 0.9870 0.9759 0.9629 0.9872 0.9678 
8 0.9908 0.9796 0.9759 0.9835 0.9929 0.9822 
9 0.9908 0.9796 0.9759 0.9738 0.9791 0.9754 
10 0.9908 0.9796 0.9576 0.9835 0.9872 0.9822 
11 0.9871 0.9673 0.9452    ⬇ 0.9531 0.9929 0.9472   ⬇ 
12 0.9871 0.9588 0.9576 0.9376   ⬇ 0.9834 0.9285   ⬇ 
13 0.9871 0.9673 0.9794 0.9531 0.9929 0.9472   ⬇ 
14 0.9808 0.9819  0.9804 0.9872 0.9801 
15 0.9766    0.9261   ⬇  
16 0.9808    0.9929  
17 0.9883    0.9860  
 

 

It is noticed from figure 4.12 that the further the load point located from the source, the 

more voltage violation occurs and the more state changes. When a fault takes place, the 

section that directly connected to the fault is isolated. This isolation could weaken the 

supplied voltage, especially when the network has high load rating and loads far from the 

source. In case study 2-5, this problem is overcome by installing DGs at different 

locations. 
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Figure 4.12 Changed states from up to down after the DPF 

 

4.5.4 Reliability calculation using MM 

After finding all the states for the system based on connectivity and transfer capability, 

MM is used to calculate reliability indices. As explained in chapter 2, transition matrix of 

the system is formed. Then, the Q matrix is found. After that, the Markov differential 

equation is solved to find all up and down probabilities. Lastly, load point indices and 

system reliability indices are computed by the equations in (2.7). Tables 4.9 and 4.10 

show the load point indices and system indices respectively. 
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shown in figures 4.12. On the other hand, highest availability is at LP8 and LP9. These 

load points have small users and connected directly to the main substation without any 
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transformers, which makes them have lower interruption duration and frequency 

duration. Figure 4.14 shows the AID and FD for all load points. AID measures the 

duration that the system is unavailable and it is directly related to the unavailability. AIF 

and MTTF are shown in figure 4.15. AIF measures the frequency of failing and it is 

related to the number of down states of the system. MTTF is approximately the reciprocal 

of the AIF. The ENS is also shown in figure 4.16. ENS is equal to the load power 

multiplied by the AID at each load point. Higher availability and MTTF indicate higher 

reliability. Higher unavailability, AID, FD, AIF, and ENS reflect lower reliability. 

 

Table 4.9 Load point reliability indices for all load points – case study 1 

Load 
Points A U MTTF 

(y) 
AIF 
(f/y) 

AID 
(h/y) 

FD 
 (h/f) 

ENS 
(MWh/y) 

1 0.999608 0.000392 9.732646 0.102710 3.437556 33.468668 1.839093 
2 0.999600 0.000400 8.639594 0.115704 3.502529 30.271531 1.873852 
3 0.999600 0.000400 4.319228 0.115713 3.502546 30.269130 1.873862 
4 0.999608 0.000392 4.865616 0.102719 3.437574 33.465659 1.945667 
5 0.999572 0.000428 3.039591 0.164438 3.746172 22.781622 2.120333 
6 0.999574 0.000426 3.100846 0.161190 3.729929 23.139951 1.693388 
7 0.999600 0.000400 8.638827 0.15712 3.502544 30.269506 1.590155 
8 0.999942 0.000058 9.925844 0.100744 0.503728 5.000072 0.503728 
9 0.999920 0.000080 7.155921 0.139734 0.698713 5.000132 0.803520 

10 0.999608 0.000393 9.732646 0.102710 3.437556 33.468668 1.839093 
11 0.999572 0.000428 6.079313 0.164430 3.746174 22.782840 2.004203 
12 0.999571 0.000429 5.961537 0.167678 3.762417 22.438353 1.693088 
13 0.999520 0.000480 1.957277 0.255377 4.200942 16.449931 2.377733 
14 0.999519 0.000481 1.932696 0.258625 4.217184 16.306144 2.386926 
15 0.999498 0.000502 1.698059 0.294357 4.395832 14.933670 1.995708 
16 0.999600 0.000400 8.639594 0.115704 3.502529 30.271531 1.590148 
17 0.999606 0.000394 9.434248 0.105958 3.453799 32.595864 1.554210 
18 0.999550 0.000450 2.457360 0.203408 3.941055 19.375081 1.773475 
19 0.999543 0.000457 2.309820 0.216401 4.006024 18.512041 1.802711 
20 0.999485 0.000515 1.576393 0.317087 4.509517 14.221717 2.552387 
21 0.999465 0.000535 1.416747 0.352813 4.688177 13.287985 2.653508 
22 0.999463 0.000537 1.403825 0.356061 4.704418 13.212399 2.135806 
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Table 4.10 System reliability indices – case study 1 

SAIFI 
(f/c.y) 

SAIDI 
(h/c.y) 

CAIDI 
(h/f) ASAI ASUI ENS 

(MWh/y) 
AENS 

(MWh/c.y) 

0.145218 3.647039 25.114154 0.999584 0.000416 40.602592 0.021280 
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Figure 4.13 Availability and unavailability - case study 1 

Figure 4.14 AID and FD - case study 1 
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Figure 4.15 AIF and MTTF - case study 1 

Figure 4.16 ENS - case study 1 
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4.5.5 Accuracy Improvement of Reliability Calculation 

In reference [31], reliability of the RBTS-bus2 was evaluated using MM. The number of 

components and states of the system were reduced by the same techniques used in this 

thesis. The states were identified based on the connectivity between the source and loads 

of the system. Then, the reliability indices were computed. The transfer capability of the 

voltage was not considered in [31]. Figure 4.17 shows a comparison between the 

availability of case study 1 and reference [31]. AIF of case study 1 and reference [31] is 

shown in figure 4.18. Table 4.11 shows a comparison between system reliability indices 

of case study 1 and reference [31]. 

 

 

Figure 4.17 Availability of case study 1 and reference [31]  

 

 

0.99940

0.99950

0.99960

0.99970

0.99980

0.99990

1.00000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Av
ai

la
bi

lit
y

Load points

case study 1

reference [31]



74 
 

 
Figure 4.18 AIF of case study 1 and reference [31] 

 

 

Table 4.11 System reliability indices of case study 1 and reference [31] 

 SAIFI (f/c.y) SAIDI (h/c.y) ASAI ENS 
(MWh/y) 

Case study 1 0.145218 3.647039 0.999584 40.602592 
Reference [31] 0.060928 3.225517 0.999632 33.371922 

Accuracy improvement of case study 1 58.04% 11.56% 0.005% 17.81% 
 

Figures 4.17 and 4.18 show that reference [31] provides higher values of availability and 

lower values of AIF than case study 1. Furthermore, computed ASAI in [31] is higher 

and computed SAIFI, SAIDI, and ENS are lower than case study 1. This indicates that 

reference [31] provides results of higher level of reliability. However, these calculations 

are not very accurate since they are based only on the factor of connectivity, without 

considering the impact of voltage violations on the reliability. Case study 1 has more 

accurate results due to the inclusion of transfer capability of the system in addition to the 

connectivity. The reliability in case study 1 is lower because of voltage violations. 
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4.6 Case Study 2: RBTS-Bus2 with PQ-DG at Bus 3 and 9 

After applying the DPF to the RBTS-bus2 system, a considerable number of states 

change from up to down as a result of weak supplied voltage as shown in figure 4.12. 

These changes affect the reliability of the system undesirably. DGs are used to improve 

the voltage profile of the system, and therefore improve the reliability. 

In case study 2, two DGs are used at the middle of the feeder 1 (bus 3) and feeder 3 (bus 

9) as shown in figure 4.19. DGs at this case are modeled as a PQ bus with fixed amount 

of power. They provide an active power of 200 KW and reactive power of 150 Kvar. 

 

4.6.1 Reclassifying Process Based on Transfer Capability  

The reduction and classification based on connectivity processes are the same as case 

study 1 because there is no any change in the topology of the system. However, after 

including two DGs, the DPF must be run again. The two DGs are modelled as P-Q units 

with producing power of 200 KW and 0.8 power factor. The DLF method with the 

equations for DG in chapter 3 is applied to the RBTS-bus 2 for all load points. Result of 

DPF for LP1 is shown in table 4.12. 
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Figure 4.19 One line diagram RBTS-bus 2 with two PQ-DGs – case study 2 

 

Table 4.12 shows that the voltage profile noticeably gets improved by the contribution of 

the DGs. Voltage at LP1 in state number 7 gets raised from 0.9302 pu to 0.9580 pu, and so 

its state changes from down to up. States number 19-29 also get enhanced, but they 

already are up states.  
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Table 4.12 DPF results for LP1 – case study 2 

State 
number 

State 
classification 

Voltage at 
LP1 before 

DG 

Voltage at 
LP1 after 

DG 

State after 
PF 

7 MTS 0.9302 0.9580 ⬆ UP    ⬆ 
14 TS 0.9947 0.9947 Up 
15 TS 0.9947 0.9947 Up 
16 TS 0.9947 0.9947 Up 
17 TS 0.9947 0.9947 Up 
18 TS 0.9947 0.9947 Up 
19 TS 0.9908 0.9965 ⬆ Up 
20 TS 0.9908 0.9965 ⬆ Up 
21 TS 0.9908 0.9965 ⬆ Up 
22 TS 0.9908 0.9965 ⬆ Up 
23 TS 0.9871 0.9929 ⬆ Up 
24 TS 0.9871 0.9929 ⬆ Up 
25 TS 0.9871 0.9929 ⬆ Up 
26 TS 0.9808 0.9869 ⬆ Up 
27 TS 0.9766 0.9828 ⬆ Up 
28 TS 0.9808 0.9869 ⬆ Up 
29 TS 0.9883 0.9922 ⬆ Up 

 

 

Figure 4.20 Voltage improvement at state 7 due to DGs – case study 2 

 

DPF is applied to all load point at case study 2 to obtain the system's voltages with the 

DGs. Figure 4.20 shows the improvement of voltage profile at state 7 in section 1. The 
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improvement has a range between 0.67% and 3.25%. The maximum improvement is at 

LP3 and LP4 since they are connected to bus 3 where the DG installed at section 1. Some 

states that were down as a result of weak voltage change now to up states due to the 

voltage enhancement. On the other hand, all other down states that based on connectivity 

remain down since the network structure has no modifications. Numbers of states that 

change from down to up due to the contribution of the DGs at case study 2 are given in 

figure 4.21. 

 

Figure 4.21 Changed states from down to up after DGs – case study 2 
 

4.6.2 Reliability calculation using MM 

Installing the DGs increases the number of up states for the system. Subsequently, the 

reliability of the system gets improved. MM is used again to calculate the load point 

indices and reliability system indices after updating the states of the system. Tables 4.13 

and 4.14 show the load point indices and system indices respectively. 
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Table 4.13 Load point reliability indices for all load points – case study 2 

Load 
Points A U MTTF 

(y) 
AIF 
(f/y) 

AID 
(h/y) 

FD 
 (h/f) 

ENS 
(MWh/y) 

1 0.999635 0.000365 18.511872 0.053993 3.193933 59.154812 1.708754 
2 0.999628 0.000372 14.920685 0.066988 3.258907 48.649451 1.743515 
3 0.999628 0.000372 14.919815 0.066995 3.258925 48.644594 1.743525 
4 0.999635 0.000365 18.510256 0.054000 3.193951 59.147416 1.807776 
5 0.999628 0.000372 14.919868 0.066996 3.258929 48.643473 1.844554 
6 0.999630 0.000370 15.680222 0.063748 3.242686 50.867610 1.472179 
7 0.999628 0.000372 14.920780 0.066994 3.258923 48.645267 1.479551 
8 0.999942 0.000058 9.925844 0.100744 0.503728 5.000072 0.503728 
9 0.999942 0.000058 9.924864 0.100752 0.503743 4.999813 0.579305 

10 0.999608 0.000392 9.732646 0.102710 3.437556 33.468668 1.839093 
11 0.999602 0.000398 4.443472 0.112472 3.486319 30.997327 1.865181 
12 0.999600 0.000400 4.318734 0.115720 3.502562 30.267536 1.576153 
13 0.999550 0.000450 4.914290 0.203408 3.941087 19.375237 2.230655 
14 0.999548 0.000452 4.837045 0.206657 3.957329 19.149299 2.239848 
15 0.999556 0.000444 2.580609 0.193680 3.892359 20.096899 1.767131 
16 0.999600 0.000400 8.639594 0.115704 3.502529 30.271531 1.590148 
17 0.999606 0.000394 9.434248 0.105958 3.453799 32.595864 1.554210 
18 0.999578 0.000422 6.462321 0.154685 3.697446 23.903119 1.663851 
19 0.999571 0.000429 5.961537 0.167678 3.762417 22.438353 1.693088 
20 0.999570 0.000430 5.960972 0.167691 3.762435 22.436765 2.129538 
21 0.999522 0.000478 1.982330 0.252140 4.184701 16.596763 2.368541 
22 0.999520 0.000480 1.957119 0.255388 4.200943 16.449285 1.907228 

 

Table 4.14 System reliability indices – case study 2 

SAIFI SAIDI CAIDI ASAI ASUI ENS 
(MWh/y) 

AENS 
(MWh/y) 

0.105649 3.449167 32.647380 0.999606 0.000394 37.307552 0.019553 
 

The availability and unavailability are shown in figure 4.22. The DGs improve the 

voltage profile of the system. As a result, the number of down states gets reduced and the 

reliability gets enhanced. Figure 4.23 shows the AID and FD. The AIF and MTTF are 

shown in figure 4.24. ENS is also shown in figure 4.25. 
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Figure 4.23 AID and FD - case study 2 
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Figure 4.22 Availability and unavailability - case study 2 
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Figure 4.24 AIF and MTTF - case study 2 

Figure 4.25 ENS - case study 2 
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4.7 Case Study 3: RBTS-Bus2 with PQ-DG at Bus 5 and 15 

In this case, two PQ-DGs with the same size as case study 2, are installed at different 

buses in order to study the effect of the location of DG on voltage profile and reliability. 

The DGs are located at the end of the feeder 1 (bus 5) and feeder 4 (bus 15) as shown in 

figure 4.26.  

 

 

Figure 4.26 One line diagram RBTS-bus 2 with two DGs – case study 3 
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4.7.1 Reclassifying Process Based on Transfer Capability  

Installing the DGs at the end of the line changes the shape of the voltage improvement. 

Table 4.15 shows the voltage magnitudes of LP1 before and after installing the DGs at 

bus 5 and 9. Although voltage profile gets improved at states 7 and 26-29, state 7 still 

down since the voltage remains below 0.95 pu. Figure 4.27 shows the voltage 

improvement at state 7 for all load points at section 1. The improvement extends from 

0.64% to 2.33%, which is less than case study 2 at this particular scenario. Maximum 

improvement occurs at LP7 since it is connected to bus 5. 

 

Table 4.15 DPF results for LP1 – case study 3 

State 
number 

State 
classification 

Voltage at 
LP1 before 

DG 

Voltage at 
LP1 after 

DG 

State after 
PF 

7 MTS 0.9302 0.9466 Down 
14 TS 0.9947 0.9947 Up 
15 TS 0.9947 0.9947 Up 
16 TS 0.9947 0.9947 Up 
17 TS 0.9947 0.9947 Up 
18 TS 0.9947 0.9947 Up 
19 TS 0.9908 0.9908 Up 
20 TS 0.9908 0.9908 Up 
21 TS 0.9908 0.9908 Up 
22 TS 0.9908 0.9908 Up 
23 TS 0.9871 0.9871 Up 
24 TS 0.9871 0.9871 Up 
25 TS 0.9871 0.9871 Up 
26 TS 0.9808 0.9871 ⬆ Up 
27 TS 0.9766 0.9831 ⬆ Up 
28 TS 0.9808 0.9871 ⬆ Up 
29 TS 0.9883 0.9907 ⬆ Up 
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Figure 4.27 Voltage improvement at state 7 due to DGs – case study 3 

 

At case study 3, DPF is applied to all load point to obtain the system's voltages, which 

leads to more accurate reliability assessment. The states of the system are updated after 

the DPF calculation. All states that have voltages within the limit are up. Otherwise, they 

are considered as down state. Figure 4.28 shows how many states change from down to 

up due to the integration with DGs. 

 
Figure 4.28 Changed states from down to up after DGs – case study 3 
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4.7.2 Reliability calculation using MM 

After updating the states of the system, the load point and reliability system indices are 

calculated as shown in table 4.16 and 4.17. 

 

Table 4.16 Load point reliability indices for all load points – case study 3 

Load 
Points A U MTTF 

(y) 
AIF 
(f/y) 

AID 
(h/y) 

FD 
 (h/f) 

ENS 
(MWh/y) 

1 0.999608 0.000392 9.732646 0.102710 3.437556 33.468668 1.839093 
2 0.999600 0.000400 8.639594 0.115704 3.502529 30.271531 1.873853 
3 0.999628 0.000372 14.919815 0.066995 3.258925 48.644594 1.743525 
4 0.999635 0.000365 18.510256 0.054000 3.193951 59.147416 1.807776 
5 0.999628 0.000372 14.919868 0.066996 3.258929 48.643473 1.844554 
6 0.999630 0.000370 15.680222 0.063748 3.242686 50.867610 1.472179 
7 0.999628 0.000372 14.920780 0.066994 3.258923 48.645267 1.479551 
8 0.999970 0.000030 19.225907 0.052011 0.260023 4.999400 0.260023 
9 0.999970 0.000030 19.223234 0.052017 0.260039 4.999108 0.299044 

10 0.999608 0.000392 9.732646 0.102710 3.437556 33.468668 1.839093 
11 0.999572 0.000428 6.079313 0.164430 3.746174 22.782840 2.004203 
12 0.999571 0.000429 5.961537 0.167678 3.762417 22.438353 1.693088 
13 0.999572 0.000428 3.039301 0.164440 3.746190 22.781470 2.120343 
14 0.999570 0.000430 2.980426 0.167689 3.762432 22.437031 2.129537 
15 0.999548 0.000452 2.418440 0.206670 3.957318 19.147978 1.796622 
16 0.999600 0.000400 8.639594 0.115703 3.502529 30.271531 1.590148 
17 0.999606 0.000394 9.434248 0.105958 3.453799 32.595864 1.554210 
18 0.999606 0.000394 9.432682 0.105974 3.453830 32.591432 1.554224 
19 0.999598 0.000402 8.402379 0.118968 3.518803 29.577835 1.583461 
20 0.999598 0.000402 8.401494 0.118978 3.518821 29.575511 1.991652 
21 0.999572 0.000428 3.039276 0.164451 3.746189 22.779915 2.120343 
22 0.999570 0.000430 2.980404 0.167700 3.762432 22.435529 1.708144 

 

Table 4.17 System reliability indices – case study 3 

SAIFI SAIDI CAIDI ASAI ASUI ENS 
(MWh/y) 

AENS 
(MWh/y) 

0.116771 3.504786 30.014170 0.999600 0.000400 36.304666 0.019028 
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In this case, the reliability get improved due to the DGs. However, the improvement is 

more at the end of the system. The reason for that, is the capacity and the location of the 

DGs. They are located at the end of the feeders, and the power capacity is not large 

enough to affect the entire system. Therefore, most of the impact occurs at the end of the 

lines. Figure 4.29 shows the Availability and Unavailability. The AID and FD are shown 

in figure 4.30. The AIF and MTTF are shown in figure 4.31. Figure 4.32 shows the ENS.  

 

 

Figure 4.29 Availability and unavailability - case study 3 
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Figure 4.30 AID and FD - case study 3 

Figure 4.31 AIF and MTTF - case study 3 
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4.8 Case Study 4: RBTS-Bus2 with PV-DG at Bus 3 and 9 

In case study 2 and 3, the DGs generate a constant power of 200 KW and 150 Kvar to 

enhance the power performance of the system. The factor of location was studied by 

installing the DGs in different buses. Size of DG is another essential factor that could 

affect the performance of the DG and power system. At this case, two DGs are included 

and modeled as a PV bus. One DG is installed at bus 3, and the other at bus 9 as shown in 

figure 4.33. The voltage at these buses is set to 1 pu, and the maximum generated active 

power is 800 kW to maintain the voltage at the desired value. 
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Figure 4.33 One line diagram RBTS-bus 2 with two DGs - case study 4 

 

4.8.1 Reclassifying Process Based on Transfer Capability  

In case study 4, two DGs are installed at buses 3 and 9 with controlling the voltage at 

these buses. To maintain the voltage of bus 3 and 9 at 1 pu, DGs must provide more 

power than the preceding cases. Generated active power is in the range of 800-400 kW 

based on the size of the system after isolation, while reactive power is changeable. Table 

4.18 shows the results of DPF for LP1 at case study 4. 

Number of states for LP1 that get improved is increased due to the enlarging the capacity 

of DGs. States 7 and 19-29 get raised above 0.99 pu as shown in table 4.18. The voltage 

of LP1 bus for all states is either 0.9947 pu or 0.9965 pu. That is because bus 2 is always 

connected to a bus with fixed voltage of 1 pu (either bus 1 or bus 3). 
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Table 4.18 DPF results for LP1 – case study 4 

State 
number 

State 
classification 

Voltage at 
LP1 before 

DG 

Voltage at 
LP1 after 

DG 

State after 
PF 

7 MTS 0.9302 0.9947 ⬆ UP    ⬆ 
14 TS 0.9947 0.9947 Up 
15 TS 0.9947 0.9947 Up 
16 TS 0.9947 0.9947 Up 
17 TS 0.9947 0.9947 Up 
18 TS 0.9947 0.9947 Up 
19 TS 0.9908 0.9965⬆ Up 
20 TS 0.9908 0.9965⬆ Up 
21 TS 0.9908 0.9965⬆ Up 
22 TS 0.9908 0.9965⬆ Up 
23 TS 0.9871 0.9965⬆ Up 
24 TS 0.9871 0.9965⬆ Up 
25 TS 0.9871 0.9965⬆ Up 
26 TS 0.9808 0.9965⬆ Up 
27 TS 0.9766 0.9965⬆ Up 
28 TS 0.9808 0.9965⬆ Up 
29 TS 0.9883 0.9965⬆ Up 

 

 

Figure 4.34 Voltage improvement at state 7 due to DGs – case study 4 

 

Figure 4.34 shows the improvement of the voltage for all load points at state 7 due to the 
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power (800 kW). Maximum voltage enhancement occurs at LP3 and LP4 by 7.55 %, 

whereas 1.56 % is the minimum improvement at LP8. 

Numbers of states that change from down to up at this case are more than case 2 and 3, 

due to the contribution of the PV-DGs. Figure 4.33 shows that only LP16 and LP17 at 

bus 6 have no changed state as a result of weak voltage improvement at this particular 

bus. The remained buses have enough improvement to affect the states positively. 

 

 

Figure 4.35 Changed states from down to up after DGs – case study 4 

 

4.8.2 Reliability calculation using MM 

All states of the system are updated in order to compute the reliability indices. MM with 

the updated states are used to find the load point and reliability system indices. The 

results of reliability calculation are given in table 4.19 and 4.20. 
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Table 4.19 Load point reliability indices for all load points – case study 4 

Load 
Points A U MTTF 

(y) 
AIF 
(f/y) 

AID 
(h/y) 

FD 
 (h/f) 

ENS 
(MWh/y) 

1 0.999635 0.000365 18.511872 0.053993 3.193933 59.154812 1.708754 
2 0.999628 0.000372 14.920685 0.066988 3.258907 48.649451 1.743515 
3 0.999628 0.000372 14.919815 0.066995 3.258925 48.644594 1.743525 
4 0.999635 0.000365 18.510256 0.054000 3.193951 59.147416 1.807776 
5 0.999627 0.000372 14.919868 0.066996 3.258929 48.643473 1.844554 
6 0.999630 0.000370 15.680222 0.063748 3.242686 50.867610 1.472179 
7 0.999628 0.000372 14.920780 0.066994 3.258923 48.645267 1.479551 
8 0.999970 0.000030 19.225907 0.052011 0.260023 4.999400 0.260023 
9 0.999970 0.000030 19.223234 0.052017 0.260039 4.999108 0.299044 

10 0.999635 0.000365 18.508791 0.053999 3.193947 59.148744 1.708762 
11 0.999630 0.000370 15.676278 0.063758 3.242712 50.859566 1.734851 
12 0.999628 0.000372 14.916235 0.067007 3.258956 48.636172 1.466530 
13 0.999608 0.000392 9.728745 0.102737 3.437624 33.460449 1.945695 
14 0.999606 0.000394 9.430544 0.105985 3.453867 32.588119 1.954889 
15 0.999613 0.000387 10.748163 0.092996 3.388901 36.441299 1.538561 
16 0.999600 0.000400 8.639594 0.115704 3.502529 30.271532 1.590148 
17 0.999606 0.000394 9.434248 0.105958 3.453799 32.595863 1.554210 
18 0.999606 0.000394 9.432682 0.105974 3.453830 32.591431 1.554224 
19 0.999598 0.000402 8.402379 0.118968 3.518803 29.577835 1.583461 
20 0.999628 0.000372 14.915746 0.067014 3.258973 48.631317 1.844579 
21 0.999608 0.000392 9.728605 0.102742 3.437631 33.458923 1.945699 
22 0.999606 0.000394 9.430420 0.105990 3.453874 32.586685 1.568059 

 

Table 4.20 System reliability indices – case study 4 

SAIFI SAIDI CAIDI ASAI ASUI ENS 
(MWh/y) 

AENS 
(MWh/y) 

0.078010 3.310942 42.442640 0.999622 0.000378 34.348590 0.018002 
 

Figure 4.36 shows the availability and unavailability. Increasing the capacity of the DGs 

leads to better improvement in voltage profile and reliability of the system. Figure 4.37 

shows the AID and FD. AIF and MTTF are shown in figure 4.38. The ENS is shown in 

figure 4.39. 
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Figure 4.37 AID and FD - case study 4 
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4.9  Case Study 5: RBTS-Bus2 With PV-DGs at Bus 5 and 15 

Two PV-DGs are integrated with the system as the previous case. However, they are 

installed at bus 5 and bus 15 to investigate the impact of location and size of DGs. Figure 

4.40 shows the RBTS-bus2 including the two DGs. 

 

Figure 4.40 One line diagram RBTS-bus 2 with two DGs – case study 5 
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29 is improved and as a result, all the states in table 4.21 are up. The improvement of the 

voltages at LP1 at this case is less than case 4 as shown in figure 4.41. That is because the 

DGs at this case are installed at the end of the lines, which makes the voltage 

improvement is more at the end of feeders, and less at the beginning. Improvement of 

voltage profile at LP1 extends from 1.88% to 6.82% as given in figure 4.41.  

 

Table 4.21 DPF results for LP1 – case study 5 

State 
number 

State 
classification 

Voltage at 
LP1 before 

DG 

Voltage at 
LP1 after 

DG 

State after 
PF 

7 MTS 0.9302 0.9781 ⬆ UP    ⬆ 
14 TS 0.9947 0.9947 Up 
15 TS 0.9947 0.9947 Up 
16 TS 0.9947 0.9947 Up 
17 TS 0.9947 0.9947 Up 
18 TS 0.9947 0.9947 Up 
19 TS 0.9908 0.9908 Up 
20 TS 0.9908 0.9908 Up 
21 TS 0.9908 0.9908 Up 
22 TS 0.9908 0.9908 Up 
23 TS 0.9871 0.9871 Up 
24 TS 0.9871 0.9871 Up 
25 TS 0.9871 0.9871 Up 
26 TS 0.9808 0.9931 ⬆ Up 
27 TS 0.9766 0.9930 ⬆ Up 
28 TS 0.9808 0.9931 ⬆ Up 
29 TS 0.9883 0.9931 ⬆ Up 

 

After applying the DPF to all load points, All the states that were down as a result of 

weak voltage are found to be changed to up states as given in figure 4.42. The DGs 

manage to eliminate all the voltage violations at the end of the lines since they located at 

bus 5 and 15. Furthermore, the generated power is high enough to improve the voltages at 
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the beginning of the lines. Therefore, all voltage violations at the system are fixed in this 

case, and all down states change to up states. 

 

 

Figure 4.41 Voltage improvement at state 7 due to DGs – case study 5 

 

 

Figure 4.42 Changed states from down to up after DGs – case study 5 
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4.9.2 Reliability calculation using MM 

After updating the states of the system, the load point and reliability system indices are 

calculated as shown in table 4.22 and 4.23. 

 

Table 4.22 Load point reliability indices for all load points – case study 5 

Load 
Points A U MTTF 

(y) 
AIF 
(f/y) 

AID 
(h/y) 

FD 
 (h/f) 

ENS 
(MWh/y) 

1 0.999635 0.000365 18.511872 0.053993 3.193933 59.154812 1.708754 
2 0.999628 0.000372 14.920685 0.066988 3.258907 48.649451 1.743515 
3 0.999628 0.000372 14.919815 0.066995 3.258925 48.644594 1.743525 
4 0.999635 0.000365 18.510256 0.054000 3.193951 59.147416 1.807776 
5 0.999628 0.000372 14.919868 0.066996 3.258929 48.643473 1.844554 
6 0.999630 0.000370 15.680222 0.063748 3.242686 50.867610 1.472179 
7 0.999628 0.000372 14.920780 0.066994 3.258923 48.645267 1.479551 
8 0.999970 0.000030 19.225907 0.052011 0.260023 4.999400 0.260023 
9 0.999970 0.000030 19.223234 0.052017 0.260039 4.999108 0.299044 

10 0.999635 0.000365 18.508791 0.053999 3.193947 59.148744 1.708762 
11 0.999630 0.000370 15.676278 0.063758 3.242712 50.859566 1.734851 
12 0.999628 0.000372 14.916235 0.067007 3.258956 48.636172 1.466530 
13 0.999630 0.000370 15.675134 0.063764 3.242727 50.854960 1.835384 
14 0.999628 0.000372 14.915216 0.067013 3.258971 48.631991 1.844577 
15 0.999635 0.000365 18.502919 0.054021 3.194003 59.125379 1.450077 
16 0.999630 0.000370 15.681351 0.063746 3.242681 50.869028 1.472177 
17 0.999635 0.000365 18.511643 0.054000 3.193950 59.147670 1.437277 
18 0.999635 0.000365 18.506855 0.054012 3.193981 59.134589 1.437292 
19 0.999628 0.000372 14.917729 0.067007 3.258956 48.636172 1.466530 
20 0.999628 0.000372 14.915745 0.067014 3.258973 48.631319 1.844579 
21 0.999630 0.000370 15.674903 0.063767 3.242734 50.852904 1.835387 
22 0.999628 0.000372 14.915027 0.067016 3.258978 48.630124 1.479576 

 

Table 4.23 System reliability indices – case study 5 

SAIFI SAIDI CAIDI ASAI ASUI ENS 
(MWh/y) 

AENS 
(MWh/y) 

0.060928 3.225517 52.939862 0.999632 0.000368 33.371922 0.017491 
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In case study 4, the DGs are located at the middle of the lines with higher power capacity. 

The enhancement of voltage and reliability is better than other cases. However, not all 

down states changed to up states, especially in the load points at the end of the feeders. 

There are still some voltage violations since those load points are located far from the 

main source. In case study 5, this issue is solved by installing the DGs at the end of the 

lines, with producing enough power to improve the voltage at all nodes and load points. 

The availability and unavailability are shown in Figure 4.43. The AID and FD are shown 

in Figure 4.44. Figure 4.45 shows the AIF and MTTF. Figure 4.46 shows the ENS. 
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Figure 4.44 AID and FD - case study 5 

Figure 4.45 AIF and MTTF - case study 5 
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4.10 Comparison Among The Case Studies 

Five case studies are conducted in this chapter. First case is the weakly meshed system 

without DGs. After that, two PQ-DGs are used at two different locations for each one. 

Firs location is bus 3 and 9. Second location, is bus 5 and 15. Then, two PV-DGs with 

higher power capacity are installed at the same locations as PQ-DGs. Comparisons are 

performed based on voltage profile, number of undervoltage states, load point reliability 

indices, and system reliability indices. 

Figures 4.47 and 4.48 show the voltage profile of RBTS-bus2 section 1 and 2 at state 7 

respectively for all cases. In case study 1, the system is fed only by the main substation of 

11 KV. This is why many voltage violations occur, especially at the end of the lines 

where the voltage is weaker. Installing the DGs of 200 KW at case 2 and 3 improves the 
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voltage profile up to certain limit, and eliminates some of the voltage violations. The 

voltage enhancement at case 2 is slightly better than case 3 at this particular scenario 

since the last has the DGs at the end of the lines 1 and 3 with no enough power to affect 

the entire system. At case 4 and 5, the capacity of DGs is increased to 800 kW and this 

improves the voltage much further. Case study 4 has better voltage at the beginning of the 

feeders than case 5, whereas the voltage at the end of the lines in case 5 is better.  

 
Figure 4.47 Voltage profile for all cases at state 7 section 1 

 
 
 

 
Figure 4.48 Voltage profile for all cases at state 7 section 2 
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Number of down states due to the transfer capability is directly related to the voltage 

violations. Figure 4.12 shows that largest number of down states are at the end of the 

feeders 3 and 4. Improving the system's voltage leads to eliminating those violations. 

Case study 1 has the maximum number of down states since there is no any DG 

integrated to the system. Therefore, down states in case 1 are considered as a percentage 

reference in figure 4.49 that shows the percentage of down states in all cases.  

 

 
Figure 4.49 Percentage of down states for all cases 
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installed at the end of feeders 1 and 3. All down states in section 1, and some at the end 

of feeder 3, change to up state in case 3. However, all voltage violations are eliminated, 

and all down states of all load points change to up states in case 5 due to the proper 

location of DGs and the high power capacity. 

Figure 4.50 shows the availability of all load points for all the cases. In case study 1, the 

availability at all load points is below 0.99996, except for LP8 and LP9, due to the 

maximum number of the down states. In case study 2, availability gets enhanced at the 

beginning of the lines. On the contrary, the availability at case study 3 is improved more 

at the end of the feeders. With enlarging the capacity of the DGs in case 4, the 

availability gets enhanced further. The availability reaches the best case scenario 

(maximum value) at case 5 when all voltage violations are eliminated. 

 

 
Figure 4.50 Availability of all case studies 
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AID for all case studies is shown in figure 4.51. Since it is directly proportional to the 

unavailability, higher values of AID indicate lower level of reliability. Case study 1 has 

the highest values of AID, while case study 5 has the lowest values of AID. 

 

 

Figure 4.51 AID of all case studies 
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Figure 4.52 AIF of all case studies 

 

Figure 4.53 and 4.54 show SAIFI and SAIDI respectively for all case studies. SAIFI 

provides the probability that an average customer experiences an interruption during a 

year, whereas SAIDI measures the total duration of interruption for average customer 

during a year. Therefore, SAIFI is related to the AIF, and SAIDI is related to the AID. 

  

 
Figure 4.53 SAIFI for all cases 
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Figure 4.54 SAIDI for all cases 
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Figure 4.55 CAIDI for all cases 

 

ASAI is shown in figure 4.56. ASAI provides the percent of time that average customer 

have a service during a year. Higher value of ASAI reflects better system reliability. Case 

study 3 has lower ASAI than case study 2 for the same reason that mentioned with SAIFI 

and SAIDI. Best ASAI is in case study 5, which represents best system reliability. On the 

other hand, case study 1 has the lowest ASAI and lowest level of reliability. 
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Figure 4.57 shows the ENS for all cases. ENS measures the energy that does not supply 

to the load points during the interruption duration. The ENS to the system is equal to the 

summation of ENS to each load point. When the system has high level of reliability and 

low AID, the ENS is reduced, and vice versa. 

 

 
Figure 4.57 ENS for all cases 
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CHAPTER 5 

CONCLUSIONS 

 

 

5.1  Conclusions 

In this research, Markov Model (MM) and Distribution Power Flow (DPF) are utilized to 

evaluate the power reliability of a Microgrid power system. Different methods of DPF are 

presented and tested to be used in the reliability assessment process. These methods are 

DLF method, ENR method, and RD method. DLF technique is the one used in reliability 

evaluation due to its simplicity, computational speed, and flexibility. The DPF analysis is 

included in order to provide more practical and accurate reliability indices by validating 

the voltage profile of the system in each state of the system. Markov process is used to 

model and evaluate the reliability of the distribution system. The states of the MM are 

classified based on connectivity between the source and the load points. The DPF is used 

to reclassify the states based on transfer capability of system from the source to the loads. 

The study is implemented on RBTS-bus2 system where five case studies are considered 

in this research. 

In case study 1, the reliability of the weakly meshed RBTS-bus 2 system is assessed 

without including any distributed generations. Two PQ-DGs with a power of 200 kW and 

0.8 PF are integrated to the system at bus 3 and bus 9 in case study 2. In case study 3, the 

locations of the PQ-DGs are connected to different locations to study the impact of the 
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DG’s location on the reliability indices. Two PV-DGs are installed instead of the PQ-

DGs at the same locations as case 2 with a power of 800 kW in case study 4. In case 

study 5, the two PV-DGs are integrated at bus 5 and 15 at the end of the feeders 1 and 4. 

The conclusions that can be drawn from the case studies are as follows, 

 The DPF provides more accurate analysis to the reliability by computing the 

voltage profile of the system. Voltage violations are considered as failures or 

down states in MM and they affect the reliability of the power system negatively. 

The comparison between the reliability calculations in case study 1 and [31] 

shows that considering the transfer capability provides additional accuracy to the 

reliability evaluation. 

 In case study 1, the voltage becomes gradually weaker as moving toward the end 

of feeders due to the large number of nodes and load points. Therefore, large 

number of down states due to the under-voltage conditions occurs and this results 

in lower level of reliability. Number of under-voltage states in case study 1 is 90 

states.  

 Integrating DGs to the power system with proper location and capacity improves 

the voltage profile of the system, which in turn reduces the number of down states 

due to the under-voltage conditions. In case studies 2-5, DGs are installed to the 

system and they improve the voltage profile. Number of down states due to the 

under-voltage conditions is reduced from 90 to 45 states in case 2, 28 states in 

case 3, 19 states in case 4, and zero states in case 5. 
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 Installing PV-DGs with an active power of 800 kW at bus 5 and 15 in RBTS-bus2 

system eliminates all the voltage violations in case study 5, and maintain the 

power reliability at best case scenario. 

 Optimal location for the DG, in order to enhance the voltage profile, is at the node 

with the largest number of voltage violations. Which in our system bus 15 that 

have 24 under-voltage states. The DG also must generate enough power to 

improve the voltage of the entire system. 

 The power reliability of the system is improved as the voltage profile raised and 

number of down states reduced. Therefore, the system has the highest level of 

reliability in case study 5 with ASAI of 0.99963 and ASUI of 0.00037, and the 

lowest value of reliability in case study 1 with ASAI of 0.99958 and ASUI of 

0.00042. 

 Low values of SAIFI and SAIDI reflects high level of reliability. A reduction in 

number and duration of interruptions results in a reduction in SAIFI and SAIDI. 

The system in case study 1 has SAIFI of 0.1452, and SAIDI of 3.6740. While in 

case study 5, the system has better SAIFI and SAIFI with 0.0609 and 3.2255 

respectively. 

 Low values of AIF, AID, FD, ENS and AENS indicate good reliability. They are 

lower in case 5, and higher in case 1 than any other case.   
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5.2  Future Work 

The following are recommendations for future work: 

 More complicated topologies of the RBTS-bus2 can be studied by connecting 

more than two tie links between the feeders. This will improve the connectivity 

between the source and the loads and therefore, improve the reliability further.  

 Modelling different types of renewable DG, such as Photovoltaic system and 

wind turbine, can be taken into consideration. The behavior of the natural 

resources can affect the output of the DGs, the voltage profile, and the reliability 

of the system. 

 The power distribution system can be presented in unbalanced system. 

Unbalanced power flow can be used to investigate the transfer capability of the 

unbalanced system. When a voltage violation or an outage occurs at only one or 

double phase, it may still be a connection to other loads with an acceptable 

voltage. This outage will affect the voltage profile and reliability differently than 

it does in balanced system. 

 The study can be implementing on the RBTS-bus4. It has 38 load points and 67 

components in addition to the transformers. Since it is larger system than RBTS-

bus2, the results can provide wider vision about the power reliability. 
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APPENDIX 

 

33-Bus system data 
 

 

Table 1 Load data and line data for 33-Bus system 

Node 
No. 

P 
(KW) 

Q 
(Kvar) 

Line 
No. 

Sending 
Node 

Receiving 
Node 

R 
(ohm Ω) 

X 
(ohm Ω) 

1 0 0 1 1 2 0.0922 0.0470 
2 100 60 2 2 3 0.4930 0.2511 
3 90 40 3 3 4 0.3660 0.1864 
4 120 80 4 4 5 0.3811 0.1941 
5 60 30 5 5 6 0.8190 0.7070 
6 60 20 6 6 7 0.1872 0.6188 
7 200 100 7 7 8 0.7114 0.2351 
8 200 100 8 8 9 1.0300 0.7400 
9 60 20 9 9 10 1.0440 0.7400 

10 60 20 10 10 11 0.1966 0.0650 
11 45 30 11 11 12 0.3744 0.1238 
12 60 35 12 12 13 1.4680 1.1550 
13 60 35 13 13 14 0.5416 0.7129 
14 120 80 14 14 15 0.5910 0.5260 
15 60 10 15 15 16 0.7463 0.5450 
16 60 20 16 16 17 1.2890 1.7210 
17 60 20 17 17 18 0.7320 0.5740 
18 90 40 18 2 19 0.1640 0.1565 
19 90 40 19 19 20 1.5042 1.3554 
20 90 40 20 20 21 0.4095 0.4784 
21 90 40 21 21 22 0.7089 0.9373 
22 90 40 22 3 23 0.4512 0.3083 
23 90 50 23 23 24 0.8980 0.7091 
24 420 200 24 24 25 0.8960 0.7011 
25 420 200 25 6 26 0.2030 0.1034 
26 60 25 26 26 27 0.2842 0.1447 
27 60 25 27 27 28 1.0590 0.9337 
28 60 20 28 28 29 0.8042 0.7006 
29 120 70 29 29 30 0.5075 0.2585 
30 200 600 30 30 31 0.9744 0.9630 
31 150 70 31 31 32 0.3105 0.3619 
32 210 100 32 32 33 0.3410 0.5302 
33 60 40 33     
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Table 2 Tie lines data for 33-Bus system 

Line No. Sending node Receiving node R (ohm Ω) X (ohm Ω) 
33 8 21 2 2 
34 9 15 2 2 
35 12 22 2 2 
36 18 33 0.5 0.5 
37 25 29 0.5 0.5 
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