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Recent development in Graphic Processing Units (GPUs) has opened a new chal-

lenge in harnessing their computing power as a new general-purpose computing

paradigm with its CUDA parallel programming. However, porting applications

to CUDA remains a challenge to average programmers. In this thesis work we

have developed a restructuring software compiler (RT-CUDA) with best possible

kernel optimizations to bridge the gap between high-level languages and the ma-

chine dependent CUDA environment. RT-CUDA is based upon a set of compiler

optimizations. RT-CUDA takes a C-like program and convert it into an optimized

CUDA kernel with user directives in a configuration file for guiding the compiler.

While the invocation of external libraries is not possible with OpenACC com-

mercial compiler, RT-CUDA allows transparent invocation of the most optimized

xvi



external math libraries like cuSparse and cuBLAS. For this, RT-CUDA uses in-

terfacing APIs, error handling interpretation, and user transparent programming.

This enables efficient design of linear algebra solvers (LAS). Evaluation of RT-

CUDA has been performed on Tesla K20c GPU with a variety of basic linear al-

gebra operators (M+, MM, MV, VV, etc.) as well as the programming of solvers

of systems of linear equations like Jacobi and Conjugate Gradient. We obtained

significant speedup over other compilers like OpenACC and GPGPU compilers.

RT-CUDA facilitates the design of efficient parallel software for developing paral-

lel simulators (reservoir simulators, molecular dynamics, etc.) which are critical

for Oil & Gas industry in KSA. We expect RT-CUDA to be needed by many KSA

industries dealing with science and engineering simulation on massively parallel

computers like NVIDIA GPUs.
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 ملخص الرسالة

 

  اياز الحسن خان :الاسم الكامل

  CUDAأداة برمجية لإعادة هيكلة الشيفرة البرمجية الخاصة بلغة  ،RT-CUDA  عنوان الرسالة:

 علوم وهندسة الحاسب الآلي التخصص:

 4102ديسمبر   :تاريخ الدرجة العلمية

 العامة التطبيقات ذو للحواسب جذكنمو الحوسبة قوة تسخير في جديدا تحديا فتحت قد الرسوميات معالجة وحدات في الأخيرة التطورات

 هذه فيي. العاد للمبرمج تحديا يبقى CUDA باستخدام البرامج كتابة ، لكن. CUDAة بها الخاص المتوازية البرمجة لغة باستخدام

 عالية البرمجة لغات بين الفجوة لسد للنواة الممكنة التحسينات أفضل مع (RT-CUDA) تأهيلها معاد مفسرة برمجية طورناة ، الرسال

. المفسر في التحسينات مـن مجموعة على RT-CUDAد يعتما. عليه تعمل التي الآلة طبيعة على تعتمد التي CUDA وبيئة المستوى

 المستخدم توجيهات بالاعتبار الأخذ مع محسنة CUDA نواة إلى C بلغة مثلا والمكتوبة العادية البرامج بتحويل RT-CUDA يقوم

 الـ أفضل واستخدام باستدعاء RT-CUDA يسمح ، OpenACC مع مستحيلا libraries استدعاء يعتبر بينماو .المفسر لإرشاد

libraries مثل للرياضيات الخارجية cuSparse و  cuBLAS.ذلك لأجل ، RT-CUDA بعض يستخدم API’s للتواصل ، 

 .فعال بشكل الخطي الجبر لحل أدوات تصميم مـن يمكّن بدوره والذي للمستخدم وشفافة واضحة ببرمجة أيضا ويسمح الأخطاء معالجة

 ,M+, MM) مثل الخطي الجبر عمليات مـن متنوعة مجموعة مع Tesla K20 الرسوميات معالج باستخدام RT-CUDA تقييم تم

MV, VV)  مثل الخطية المعادلات مـن نظام لحل أدوات برمجة وأيضا وغيرها Jacobi و Conjugate Gradient. وفي 

-RT يقوم أيضا.  GPGPU ومفسر  OpenACC بمفسر مقارنة جدا كبير بشكل السرعة في زيادة على حصلنا لقد الحقيقة

CUDA وغيرها الجزيئية الديناميكية ، النفط آبار محاكاةل ) مث متوازية محاكاة برامج لتطوير المتوازية البرمجيات تصميم بتسهيل 

-RT على كبير طلب هناك يكون أن نتوقع نحن .السعودية العربية المملكة في والغاز النفط صناعة في جدا مهمة تطبيقات تعتبر تيوال

CUDA الكثيفة المتوازية الحاسب أجهزة على والهندسية العملية التطبيقات محاكاة مع تتعامل التي السعودية في الصناعة مجالات مـن 

 .NVIDIAص بـ الخا الرسوميات معالجات مثل

 



CHAPTER 1

INTRODUCTION

1.1 Motivation

Massively parallel computing has obtained prominence through advances in im-

plementing massive multithreading and recent improvements in its programming.

Recent development in Graphic Processing Units (GPUs) has opened a new chal-

lenge in harnessing their computing power as a new general purpose computing

paradigm. Strong implications are expected on computational science and engi-

neering, especially in the area of discrete numerical simulation.

Modern GPUs use multiple streaming multiprocessors (SMs) with potentially

hundreds of cores, fast context switching, and high memory bandwidth to toler-

ate ever-increasing latencies to main memory by overlapping long-latency loads in

stalled threads with useful computation in other threads. The Compute Unified

Device Architecture (CUDA) is a simple C-like interface proposed for program-

ming NVIDIA GPUs. However, porting applications to CUDA remains a challenge
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to average programmers. CUDA places on the programmer the burden of packag-

ing GPU code in separate functions, of explicitly managing data transfer between

the host and GPU memories, and of manually optimizing the utilization of the

GPU memory.

In this research, we proposed a design and implementation of a software tool

for restructuring a C-like program into an optimized CUDA program. Such a re-

structuring tool greatly simplifies programming for the best performance of GPU

which contributes to the spreading of the use of GPU supercomputing applica-

tions, scientific computing, and more generally the applications of information

technology. This research builds sufficient know-how and state-of-the-art tools

for the efficient programming of GPUs that stimulate a long-term interest in the

research and development of programming massively parallel computers and their

applications especially in the Oil and Gas industry. Specifically, the research out-

comes serve the graduate research program and the industry in the kingdom of

Saudi Arabia.

1.2 Thesis Contribution

This thesis makes the following contribution:

� We have explored the GPU architecture and CUDA programming framework

to utilize GPU devices for general purpose computing

� We have presented a review of several numerical algorithm implementa-

tions, code transformations to enhance CUDA kernel performance, CUDA
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kernel optimizations, performance models, auto-tuning frameworks, micro-

benchmarking of GPU devices

� We have presented a detailed study about the execution model, program-

ming, and synchronization mechanisms of latest GPU architectures includ-

ing Fermi and Kepler

� We have presented an analysis of the existing GPGPU frameworks/com-

pilers including CUDA-lite, hiCUDA, OpenMPC, PGI, OpenACC, HMPP,

R-Stream, and CUDA-CHiLL

� We have Proposed a Restructuring Tool Algorithm (RTA-CUDA) to gener-

ate an optimized CUDA parallel program from a given sequential C program

based on the identified GPU constraints for maximum performance such that

the memory usage (global memory and shared memory), number of blocks,

and number of threads per block

� We have developed a Parameter Tuning Algorithm to find an optimal set

of CUDA kernel parameters generated by RTA-CUDA to establish the rela-

tionships between the influencing parameters

� We have presented the design and implementation of a Restructuring Tool

(RT-CUDA) based on RTA-CUDA with an additional set of API functions to

call highly optimized library routines for dense and sparse matrices (cuBLAS

and cuSPARSE) and synchronization primitives for inter-block synchroniza-

tion
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� We have presented a performance evaluation of the tool using basic linear

algebra operations including a set of routines from Lapack BLAS bench-

mark suite, Jacobi iterative solver with different inter-block synchronization

primitives, and various dense/sparse matrix operations

1.3 Thesis Organization

The rest of the dissertation is organized as follows: Chapter 2 presents a re-

view of several numerical algorithms implementations, code transformations to

enhance CUDA kernel performance, CUDA kernel optimizations, performance

models, auto-tuning frameworks, micro-benchmarking of GPU devices. Chapter

3 presents a detailed study about the execution model, programming, and syn-

chronization mechanisms of latest GPU architectures including Fermi and Kepler.

Chapter 4 presents an exploration of automatic optimizations for CUDA program-

ming including a 3-step algorithm that has been proposed to tune the CUDA

kernel parameters and enhance GPU resource utilization. We have also explored

several CUDA kernel optimizations with some categorizations. It also presents a

detailed analysis of the existing GPGPU frameworks/compilers including CUDA-

lite, hiCUDA, OpenMPC, PGI, OpenACC, HMPP, R-Stream, and CUDA-CHiLL.

Based on the analysis of kernel optimizations and existing GPGPU frameworks,

RT-CUDA design specifications have been presented. Chapter 5 presents a review

and selection of compiler framework for RT-CUDA implementations, a Restruc-

turing Tool Algorithm (RTA-CUDA) to generate an optimized CUDA parallel
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program from a given sequential C program, a Parameter Tuning Algorithm to

find an optimal set of CUDA kernel parameters generated by RTA-CUDA, design

and implementation of Restructuring Tool (RT-CUDA) with the user manual and

code examples. Chapter 6 discusses the performance evaluation of the tool that

has been performed using basic linear algebra operations including Lapack BLAS

benchmark, Jacobi iterative solver with different inter-block synchronization prim-

itives, dense and sparse matrix operations. At the end, Chapter 7 summarizes this

dissertation and highlights some possible enhancements in RT-CUDA.
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CHAPTER 2

LITERATURE REVIEW

Performance study of general-purpose GPU programming have been reported [1]

for applications such as SRAD structured grid, back-propagation unstructured

grid, data encryptions standard, NeedlemanWunsch dynamic programming, and

k-means data mining. Impressive speedups ranging from 2.9 to 35 for the above

applications have been achieved over single threaded programs.

Although tremendous success has been achieved in numerical applications,

some limitations have also been reported when the available parallelism is semi-

static where the inherent parallelism is irregular. A CUDA implementation for the

gravitational N-body simulations using GPU is reported [2]. The GPU performs

force calculation and updating, while the host CPU performs the predictor, correc-

tor, and integration steps. Implementation is based on two direct N-body integra-

tion codes, using the 4th order predictor-corrector Hermite integrator with block

time-steps, and one Barnes-Hut tree-code, which uses a second order leapfrog in-

tegration. The above implementation merely maps the computation of pair-wise
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particle interactions onto the GPU which makes the time-consuming updating of

the neighbor lists on the CPU a bottleneck since synchronization and frequent

data transfer between host CPU and GPU can often be problematic for GPGPU

implementations.

In the following sections, we have introduced recent developments re-

garding numerical algorithms implementation, automatic code transformations,

CUDA kernel optimizations, performance modeling, auto-tuning, and micro-

benchmarking.

2.1 Numerical Algorithms Implementations

Dumitrescu et. al [3] have implemented fast matrix multiplication algorithms

Strassen [4] and Winograd [5] on MIMD distributed memory architectures of ring

and torus topologies; a generalization to a hyper-torus is also given. Complex-

ity and efficiency are analyzed and good asymptotic behaviour is proved. The

presented parallel implementations of fast matrix multiplication algorithms on

MIMD architectures are proven to be faster than standard parallel algorithms, on

ring or on torus topologies. Speed improvement becomes for matrix dimensions of

200 (about 10% faster) and, for sufficiently big n, measured timings are close to

the theoretical predicted values, that is 30% when the local sequential method is

the same; when sequential methods are different (fast sequential for fast parallel,

standard sequential for standard parallel) maximal measured speed growth was

75% for n = 2048; this latter result is consistent with the one reported by Bailey
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[6], for the same matrix dimension (in another context, a Cray-2 supercomputer),

i.e. 101%, but with 35% of this improvement due to other causes. However, a

disadvantage of these parallel fast algorithms is the fixed number of processors,

while standard algorithms can be easily customized. The parallel mixed algorithm

(MixT), more flexible from this point of view, is good only for standard sequen-

tial method. All proposed algorithms can be efficient on dedicated hardware.

On a configurable topology, such as the supernode, these algorithms require a

smaller number of processors for the same speed (compared with standard ones),

an advantage in a multiuser environment. Authors conclude that fast matrix

multiplication algorithms cannot be ignored, on MIMD computers as well as on

SIMD computers. They can bring, by themselves, a considerable speed-up of

applications, that is more important than the implied implementation difficulties.

Li et. al [7] provide efficient single-precision and integer GPU implementations

of Strassens algorithm as well as of Winograds variant. On an NVIDIA C1060

GPU, a speedup of 32% - 35% is obtained for Strassens 4-level implementation

and 33% - 36% for Winograds variant relative to the sgemm (integer version of

sgemm) code in CUBLAS 3.0 when multiplying 16384 x 16384 matrices. The

maximum numerical error for the single-precision implementations is about 2 or-

ders of magnitude higher than those for sgemm when n = 16384 and is zero for

the integer implementations.

Generalized sparse matrix-matrix multiplication is a key primitive for many

high performance graph algorithms as well as some linear solvers such as multi-
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grid. Buluç et. al [8] present the first parallel algorithms that achieve increasing

speedups for an unbounded number of processors. The algorithms are based on

two-dimensional block distribution of sparse matrices where serial sections use a

novel hypersparse kernel for scalability. They give a state-of-the-art MPI imple-

mentation of one of the algorithms. Experiments show scaling up to thousands of

processors on a variety of test scenarios.

The Sparse Matrix-Vector product (SpMV) is a key operation in engineering

and scientific computing. Methods for efficiently implementing it in parallel are

critical to the performance of many applications. Modern Graphics Processing

Units (GPUs) coupled with the advent of general purpose programming environ-

ments like NVIDIAs CUDA, have gained interest as a viable architecture for data-

parallel general purpose computations. Most of the SpMV implementations using

CUDA based on common sparse matrix format have already appeared. Among

them, the performance of implementation based on ELLPACK-R format is the

best. However, in this implementation, when the maximum number of nonzeros

per row does substantially differ from the average, thread is suffering from load

imbalance. A new matrix storage format called ELLPACK-RP [9] has been pro-

posed, which combines ELLPACK-R format with JAD format, and implements

the SpMV using CUDA based on it. The result proves that it can decrease the

load imbalance and improve the SpMV performance efficiently.

A blocked sparse matrix-vector multiplication for NVIDIA GPUs [10] has been

implemented. The implementation is faster on matrices having many high fill-ratio
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blocks but slower on matrices with low number of non-zero elements per row.

2.2 Exploration of Code Transformations for

Enhancing Performance of CUDA Kernels

CUDA programming requires an expert level understanding of the memory hierar-

chy and execution model to reach peak performance. Even for experts, rewriting

a program to exploit the architecture in achieving high speedups can be tedious

and error prone. Several high-level interfaces [11, 12, 13] have been proposed to

perform code translation to generate CUDA programs with less burden to the

programmers. Most execution of a scientific program is spent on loops. Compiler

analysis and compiler optimizations have been proposed to make the execution of

loops faster. In the following we review the proposed approaches.

CUDA-lite [11] is an experimental enhancement to CUDA that allows pro-

grammers to deal only with global memory with transformations to leverage the

complex memory hierarchy. A set of annotations describing certain properties

of the data structures and code regions designated for GPU execution are pro-

posed. The tool analyze the code along with these annotations and determine if

the memory bandwidth can be conserved and latency can be reduced by utilizing

any special memory types and/or by massaging memory access patterns. Upon

detection of an opportunity, CUDA-lite performs the transformations and code

insertions needed. CUDA-lite is designed as a source-to-source translator. The
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output is CUDA code with explicit memory-type declarations and data transfers

for a particular GPU. The major transformations performed by CUDA-lite are as

follows:

1. Inserting shared memory variables

2. Performing loop tiling

3. Generating memory coalesced loads and/or stores

4. Replacing the original global memory accesses with accesses to the corre-

sponding data in shared memory

Authors claim the tool produces code with performance comparable to hand-coded

versions.

A framework for source-to-source translation of standard OpenMP applica-

tions into CUDA-based code is proposed [12]. It has two phases: (1) a compile-

time optimization techniques (OpenMP Stream Optimizer), and (2) OpenMP to

GPGPU translation system (O2G baseline translator with CUDA optimizer). The

OpenMP Stream optimizer takes as input a standard OpenMP program (CPU-

oriented) and applies following high-level optimization techniques: parallel loop-

swap and loop-collapsing, to generate and optimized OpenMP program for GPG-

PUs. The translation is done with the following steps:

1. It first identifies the potential kernel regions based on the defined interpre-

tation of OpenMP constructs and directives.
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2. Transform the identified kernel regions into separate kernel functions. At

this stage, it performs both work partitioning and data mapping. For

work partitioning, the compiler calculates the maximum number of threads

needed for each work-sharing sub-region contained in the kernel region and

then it calculates the number of blocks using default thread block size pro-

vided as a command line option. For data mapping, the compiler uses the

OpenMP data sharing rules and do the mapping as follows:

(a) Shared data are mapped to global memory

(b) Threadprivate data are replicated and allocated on global memory for

each thread

(c) Private data are mapped to register banks assigned for each thread

After translation, it performs following CUDA optimizations:

1. Caching of frequently accessed global data: the compiler performs the req-

uisite data flow analysis to identify temporal locality of global data, based

on that it loaded frequently accessed global data into fast memory spaces

such as register and shared memory.

2. Memory transpose for threadprivate array: this matrix transpose changes

intra-thread array access patterns from row-wise to column-wise, so that

adjacent threads can access adjacent data, as needed for coalesced accesses.

3. Memory transfer reduction: the compiler performs data flow analysis for

each kernel and removes unnecessary data transfers between CPU and GPU.
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For performance evaluations, it uses two important kernels (JACOBI and SP-

MUL) and two NAS OpenMP Parallel Benchmarks (EP and CG). Experimental

results show that the described translator and compile-time optimizations work

well on both regular (Jacobi and EP) and irregular (SPMUL and CG) applica-

tions, leading to performance improvements of up to 50x over the un-optimized

translation (up to 328x over serial on a CPU). The work can be extended to

include automatic tuning of optimizations to exploit shared memory and other

special memory units more aggressively.

A high-level directive-based compiler (hiCUDA) [13] is proposed to ease the

task of writing CUDA programs. The compiler translates a hiCUDA program to

a CUDA program using a computation model to identify code regions that are

intended to be executed on the GPU and a data model in which programmers

allocate and de-allocate memory on the GPU and move data between the host

memory and the GPU memory. The hiCUDA compiler, built around Open64

(version 4.1), consists of following three components:

1. The GNU 3 front-end, which is extended from the one in Open64.

2. A compiler pass that lowers hiCUDA directives, which uses several existing

modules in Open64, such as data flow analysis, inter-procedural analysis

and array specification analysis.

3. The CUDA code generator, which is extended from the C code generator in

Open64.

Evaluation of five CUDA benchmarks (MM, CP, SAD, TPACF, RPES) shows
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that the provided simplicity and flexibility come at no expense to performance

as execution times is within 2% of that of the hand-written CUDA version. The

work can be extended to include the following within hiCUDA compiler:

� Automatic transformations of standard loops that is required before insert-

ing hiCUDA directives.

� Data dependence analysis to validate the partitioning scheme of kernel com-

putation and detect non-optimized memory access patterns.

� Delegate the work of inserting hiCUDA data directives to the compiler,

which can determine an optimal data placement strategy using various data

analyses.

A source-to-source compiler transformation (CUDA-CHiLL) [14] aims at al-

leviating the need for understanding memory hierarchy and execution model in

writing optimized CUDA programs. It proposes a source-to-source transforma-

tion based on the polyhedral program transformation and ChiLLframework which

is capable of composing transformations while preserving the correctness of the

program at each step. It focuses on loop tiling, data copy, and unrolling. The

authors claims that optimizing the BLAS library routines yields results compara-

ble to hand-tuned versions in some cases and outperforming hand-tuned in other

cases.

CUDA-ChiLL is not providing fully-automatic transformations as it is based

on the transformation recipe interface which is a script that needs to be written

by the programmer to instruct the compiler about how to do the transformations
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which is also an extra burden on the programming side. Alternatively, the better

approach is to provide some compile time pragmas like CUDA-Lite and hiCUDA

which the programmer can just insert into the existing un-optimized code.

A dynamic instrumentation infrastructure [15] for PTX programs has been im-

plemented that procedurally transforms kernels and manages related data struc-

tures. The performing instrumentation within the GPU Ocelot dynamic compiler

infrastructure provides unique capabilities not available to other profiling and in-

strumentation toolchains for GPU computing. To demonstrate the utility of this

instrumentation capability, three example scenarios has been used: (1) perform-

ing workload characterization accelerated by a GPU, (2) providing load imbalance

information for use by a resource allocator, and (3) providing compute utilization

feedback to be used on-line by a simulated process scheduler that might be found

in a hypervisor. Additionally, both (1) the compilation overheads of performing

dynamic compilation and (2) the increases in runtimes when executing instru-

mented kernels have been measured. On average, compilation overheads due to

instrumentation consisted of 69% of the time needed to parse a kernel module, in

the case of the Parboil benchmark suite. Slowdowns for instrumenting each basic

block ranged from 1.5x to 5.5x, with the largest slowdowns attributed to kernels

with large numbers of short, compute-bound blocks.

A novel optimizing compiler [16] for general pur-pose computation on graphics

processing units (GPGPU) has been developed. It addresses two major challenges

of developing high performance GPGPU programs: effective utilization of GPU
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memory hierarchy and judicious management of parallelism. The input to the

compiler is a nave GPU kernel function, which is functionally correct but without

any consideration for performance optimization. The compiler analyzes the code,

identifies its memory access patterns, and generates both the optimized kernel

and the kernel invocation parameters. The optimization process includes vector-

ization and memory coalescing for memory bandwidth enhancement, tiling and

unrolling for data reuse and parallelism management, and thread block remapping

or address-offset insertion for partition-camping elimination. The experiments on

a set of scientific and media processing algorithms show that the optimized code

achieves very high performance, either superior or very close to the highly fine-

tuned library, NVIDIA CUBLAS 2.2, and up to 128 times speedups over the naive

versions. Another distinguishing feature of the compiler is the understandability

of the optimized code, which is useful for performance analysis and algorithm

refinement.

JCUDA [17], a programming interface, has been proposed for Java program-

mers to invoke CUDA kernels. Using this interface, programmers can write Java

codes that directly call CUDA kernels, and delegate the responsibility of gen-

erating the Java-CUDA bridge codes and host-device data transfer calls to the

compiler. Preliminary performance results show that this interface can deliver

significant performance improvements to Java programmers.
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2.3 Exploration of Optimizations for Enhancing

Performance of CUDA Kernels

Programming issues for many-core architectures has been studied [18] and pro-

posed the optimization strategies on following architectures:

� IBM Cyclops 64, a many-core chip architecture

� Many-core Graphics Processing Unit

It first presents a model for performance estimation of parallel FFT algo-

rithm for abstract many-core architecture. This model is based on a cost function

having three components: memory accesses, computation, and synchronization.

Secondly, it presents a framework for fine-grained task-based execution. It pro-

vides effective hardware utilization by proper load balancing. On multi-GPU

systems, it achieves near linear speedup, good dynamic load balancing and sig-

nificant performance improvement over standard CUDA API. The framework has

to be implemented at operating system level to perform the scheduling of tasks

from host to device.

Optimizing programs using the Vector blocking techniques [19] over hybrid

architectures (multicore and GPU) proved to be useful for improving performance

of the matrix multiply routine (GEMM). Orders of magnitude acceleration is

reported compared to multicore without GPU accelerators when architecture and

algorithm-specific optimizations are used for implementing dense linear algebra

solvers such as the MAGMA library [20]. A three-step optimization is proposed
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for the QR factorization [21]. QR is factorized as a sequence of tasks with chosen

granularity. The kernel for each task is designed. Finally, static scheduling is used

when a priori knowledge is available. Otherwise, dynamic scheduling is used by

managing data availability and coherency. The reported performance is very close

to that obtained using Linear Programming with some limited portability. The

implementation complements kernels already available in the MAGMA library.

For more details the reader may refer to [22] for the architecture and programming

of GPUs.

Ryoo et. al [23] shows the complexity involved in optimizing applications

for GeForce 8800 GTX using CUDA and one relatively simple methodology for

reducing the workload involved in the optimization process. They show how

optimizations interact with the architecture in complex ways, initially prompting

an inspection of the entire configuration space to find the optimal configuration.

Even for a seemingly simple application such as matrix multiplication, the optimal

configuration can be unexpected. They also present metrics derived from static

code that capture the first-order factors of performance and demonstrate how

these metrics can be used to prune many optimization configurations, down to

those that lie on a Pareto-optimal curve. This reduces the optimization space by

as much as 98%.

Nath et. al [24] present an improved matrix-matrix multiplication routine

(GEMM) in the MAGMA BLAS library that targets the Fermi GPUs. They show

how to modify the previous MAGMA GEMM kernels in order to make a more
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efficient use of the Fermis new architectural features, most notably their extended

memory hierarchy and sizes. The improved kernels run at up to 300 GFlop/s

in double and up to 600 GFlop/s in single precision arithmetic (on a C2050),

which is 58% of the theoretical peak. The improved kernels have been compared

with the currently available in CUBLAS 3.1. Further, they show the effect of the

new kernels on higher level dense linear algebra (DLA) routines such as the one-

sided matrix factorizations, and compare their performances with corresponding,

currently available routines running on homogeneous multicore systems.

Nath et. al [25] also present a new algorithm for optimizing the Symmetric

Matrix Vector Product (SYMV) kernel on GPUs. The optimized SYMV in single

precision brings up to a 7x speed up compared to the CUBLAS 4.0 NVIDIA

library on the GTX 280 GPU. This SYMV kernel tuned for Fermi C2050 is 4.5x

faster than CUBLAS 4.0 in single precision and 2x faster than CUBLAS 4.0 in

double precision. Moreover, the techniques used and described in the paper are

general enough to be of interest for developing high-performance GPU kernels

beyond the particular case of SYMV.

Zein and Rendell [26] has explored the effect of these different options on the

performance of a routine that evaluated sparse matrix vector products. They

have proposed a process for analysing performance and selecting the subset of

implementations that perform best. The potential for mapping sparse matrix

attributes to optimal CUDA sparse matrix vector product implementation has

also been discussed.
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An optimized version of Sparse Matrix Vector (SpMV) Multiplication [27] has

been implemented on NVIDIA GPUs using CUDA. The three optimizations has

been performed that include: (1) optimized CSR storage format, (2) optimized

threads mapping, and (3) avoiding divergence judgment. The evaluation has been

done on GeForce 9600 GTX, connect to Windows xp 64-bit system. In compar-

ison with NVIDIA’s SpMV library and NVIDIA’s CUDDPA library, the results

show that optimizing sparse matrix-vector multiplication on CUDA achieves bet-

ter performance than other SpMV implementations.

Another optimization of SpMV multiplication [28] has been proposed based

on matrix bandwidth/profile reduction techniques. Computational time required

to access dense vector is decoupled from SpMV computation. By reducing the

matrix profile, the time required to access dense vector is reduced by 17% (for SP)

and 24% (for DP). Reduced matrix bandwidth enables column index information

compression with shorter formats, resulting in a 17% (for SP) and 10% (for DP)

execution time reduction for accessing matrix data under ELLPACK format. The

overall speedup for SpMV is 16% and 12.6% for the whole matrix test suite. The

proposed optimization can be combined with other SpMV optimizations such as

register blocking.

An improvied compressed sparse row storage (ICSR) [29] used to settle the

problem of the global memory alignment in the vector kernel on Graphics pro-

cessing Unit (GPU) is given. The experiments on matrices with different sizes

demonstrate that the vector kernel with ICSR storage format could improve the
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performance by 5%-30% for SpMV comparing with vector kernel with CSR, es-

pecially for the largescale unstructured sparse matrix-vector product, the effect is

more obvious.

An optimization scheme [30] has been proposed for a sparse matrix parallel

iteration algorithm on a hybrid multi-core parallel system consisting of CPU and

GPU. The scheme carries out performance improvement in two ways i.e. the multi-

level storage structure and the memory access mode of CUDA. Experimental

results show that the parallel algorithm on hybrid multi-core system can gain

higher performance than the original linear Jacobi iteration algorithm on CPU.

In addition, the optimization scheme is effective and feasible.

2.4 Performance Modeling Approaches

An analytical model [31] to estimate the execution cycles of parallel applications

on GPU architectures has been proposed. It is based on following two metrics:

� MWP (Memory Warp Parallelism) represents the maximum number of

warps per SM that can access the memory simultaneously during the time

period from right after the SM processor executes a memory instruction from

one warp until all the memory requests from the same warp are serviced. It

is determined by the memory bandwidth, memory bank parallelism and the

number of running warps per SM.

� CWP (Computation Warp Parallelism) represents the number of warps that

the SM processor can execute during one memory warp waiting period plus
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one. A value one is added to include the warp itself that is waiting for mem-

ory values that is CWP is always greater than or equal to 1. Unlike arith-

metic intensity, CWP also considers timing information. CWP is mainly

used to decide whether the total execution time is dominated by computa-

tion cost or memory access cost. When CWP is greater than MWP, the

execution cost is dominated by memory access cost. However, when MWP

is greater than CWP, the execution cost is dominated by computation cost.

Evaluation shows that the geometric mean of absolute error of the proposed ana-

lytical model on micro-benchmarks is 5.4% and on GPU computing applications

is 13.3%.

An analytical model [32] to predict the performance of general-purpose ap-

plications on a GPU architecture has been presented. The model is designed

to provide performance information to an auto-tuning compiler and assist it in

narrowing down the search to the more promising implementations. It can also

be incorporated into a tool to help programmers better assess the performance

bottlenecks in their code. To identify the performance bottlenecks accurately, an

abstract interpretation (work flow graph) of a GPU kernel has been introduced

based on which the execution time of a GPU kernel has been estimated. The

proposed model captures full system complexity and shows high accuracy in pre-

dicting the performance trends of different optimized kernel implementations. The

performance model has been validated for matrix multiply, prefix sum scan, FFT,

and sparse matrix-vector benchmarks. The evaluation shows that there is good
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agreement between predicted and observed performance rankings for the various

tuning versions of these kernels and that the model captures the effect of all major

performance factors for GPU architecture.

An integrated analytical and profile-based CUDA performance modeling ap-

proach [33] to accurately predict the kernel execution times of sparse matrix-vector

multiplication for CSR, ELL, COO, and HYB SpMV CUDA kernels has been

proposed. Based on the experiments conducted on a collection of 8 widely-used

testing matrices on NVIDIA Tesla C2050, the execution times predicted by the

model match the measured execution times of NVIDIAs SpMV implementations

very well. Specifically, for 29 out of 32 test cases, the performance differences are

under or around 7%. For the rest 3 test cases, the differences are between 8% and

10%. For CSR, ELL, COO, and HYB SpMV kernels, the differences are 4.2%,

5.2%, 1.0%, and 5.7% on the average, respectively.

2.5 Auto-Tuning

Software tuning of high-performance kernels [34] for GPUs is critical for efficiently

running linear solver algorithms such as the Basic Linear Algebra Subprograms

(BLAS) kernels.

Cui et. al [35] discuss about their experiences in improving the performance

of GEMM (both single and double precision) on Fermi architecture using CUDA,

and how the new features of Fermi such as cache affect performance. It is found

that the addition of cache in GPU on one hand helps the processers take ad-
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vantage of data locality occurred in runtime but on the other hand renders the

dependency of performance on algorithmic parameters less predictable. Auto-

tuning then becomes a useful technique to address this issue. Their auto-tuned

SGEMM and DGEMM reach 563 GFlops and 253 GFlops respectively on Tesla

C2050. The design and implementation entirely use CUDA and C and have not

benefited from tuning at the level of binary code.

Guo and Wang present an auto-tuning framework that can automatically com-

pute and select CUDA parameters for SpMV to obtain the optimal performance

on specific GPUs. The framework is evaluated on two NVIDIA GPU platforms:

GeForce 9500 GTX and GeForce GTX 295.

Kamil et. al [36] presents a stencil auto-tuning framework that significantly

advances programmer productivity by automatically converting a straightforward

Fortran 95 stencil expression to tuned implementations in Fortran, C, or CUDA,

thus allowing performance portability across diverse computer architectures, in-

cluding the AMD Barcelona, Intel Nehalem, Sun Victoria Falls, and the latest

NVIDIA GPUs. Results show that the generalized methodology delivers signifi-

cant performance gains of up to 22x speedup over the reference serial implementa-

tion. Overall they demonstrate that such domain-specific auto-tuners hold enor-

mous promise for architectural efficiency, programmer productivity, performance

portability, and algorithmic adaptability on existing and emerging multicore sys-

tems.

Li et. al [37] describe some GPU GEMM auto-tuning optimization techniques
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that allow programmers to keep up with changing hardware by rapidly reusing,

rather than reinventing, the existing ideas. Auto-tuning is a very practical solution

where in addition to getting an easy portability, one can often get substantial

speedups even on current GPUs (e.g. up to 27% in certain cases for both single

and double precision GEMMs on the GTX 280).

Kurzak et. al [38] present a methodology for producing matrix multiplication

kernels tuned for a specific architecture, through a canonical process of heuristic

autotuning, based on generation of multiple code variants and selecting the fastest

ones through benchmarking. It also is the authors belief that the process can be

easily generalized to other types of workloads, including more complex kernels

and more bandwidth-bound kernels. In principle, this should be the case as long

as the code can be parameterized and its properties, such as demand for registers

and shared memory, expressed as functions of the parameters.

2.6 Micro-Benchmarking

Wong et. al [39] develops a microbenchmark suite and measure the CUDA-visible

architectural characteristics of the Nvidia GT200 (GTX280) GPU. Various undis-

closed characteristics of the processing elements and the memory hierarchies are

measured. This analysis exposes undocumented features that impact program

performance and correctness. These measurements can be useful for improving

performance optimization, analysis, and modeling on this architecture and offer

additional insight on the decisions made in developing this GPU. The results vali-
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dated some of the hardware characteristics presented in the CUDA Programming

Guide [40], but also revealed the presence of some undocumented hardware struc-

tures such as mechanisms for control flow and caching and TLB hierarchies. In

addition, in some cases the findings deviated from the documented characteristics

(e.g., texture and constant caches).

Recent development in Graphic Processing Units (GPUs) has opened a new

challenge in harnessing their computing power as a new general purpose comput-

ing paradigm. Strong implications are expected on computational science and

engineering, especially in the area of discrete numerical simulation [41]. Modern

GPUs use multiple streaming multiprocessors (SMs) with potentially hundreds

of cores, fast context switching, and high memory bandwidth to tolerate ever-

increasing latencies to main memory by overlapping long-latency loads in stalled

threads with useful computation in other threads [42]. The Compute Unified De-

vice Architecture (CUDA) is a simple C-like interface proposed for programming

NVIDIA GPUs. However, porting applications to CUDA remains a challenge to

average programmers. CUDA places on the programmer the burden of packaging

GPU code in separate functions, of explicitly managing data transfer between the

host and GPU memories, and of manually optimizing the utilization of the GPU

memory [13]. So, in order to efficiently utilize the GPU resources, implementa-

tions showed be done with detailed understanding of the underlying architecture

and CUDA kernel optimizations that is very tedious even for expert program-

mers and requires sufficient programming efforts as shows in the literature review
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above. This motivates us for the design and implementation of a software tool for

restructuring a C-like program into an optimized CUDA program. Such a restruc-

turing tool greatly simplifies programming for the best performance of GPU which

contributes to the spreading of the use of GPU supercomputing applications, sci-

entific computing, and more generally the applications of information technology.

This research builds sufficient know-how and state-of-the-art tools for the efficient

programming of GPUs that stimulate a long-term interest in the research and

development of programming massively parallel computers and their applications

especially in the Oil and Gas industry. Specifically, the research outcomes serve

the graduate research program and the industry in the kingdom of Saudi Arabia.
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CHAPTER 3

GATHERED DETAILED

INFORMATION AND

ANALYSIS OF RECENT GPU

AND CUDA

Originally, GPUs were designed for graphics-based applications. With the elimi-

nation of key architecture limitations, GPUs have evolved to become more widely

used for general-purpose computation. GPU consists of array of highly threaded

streaming multiprocessor (SM) that has a number of streaming processors (SP).

The number of execution units and CUDA cores depends on the architecture class

of the GPU device. The most commonly used architectures in use today are Fermi

[43] and Kepler [44].
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3.1 GPU Architectures

3.1.1 Fermi Architecture

Fermi GPU has been developed with a completely new approach to design to create

the world’s first computational GPU. Following are some of the key improvements

in Fermi since the original G80 and GT200 GPU architectures:

� Improve Double Precision Performance: while single precision floating

point performance was on the order of ten times the performance of desktop

CPUs, some GPU computing applications desired more double precision

performance as well.

� ECC support: ECC allows GPU computing users to safely deploy large

numbers of GPUs in datacenter installations, and also ensure data-sensitive

applications like medical imaging and financial options pricing are protected

from memory errors.

� True Cache Hierarchy: some parallel algorithms were unable to use the

GPU’s shared memory, and users requested a true cache architecture to aid

them.

� More Shared Memory: many CUDA programmers requested more than

16 KB of SM shared memory to speed up their applications.

� Faster Context Switching: users requested faster context switches

between application programs and faster graphics and compute inter-
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operation.

� Faster Atomic Operations: users requested faster read-modify-write

atomic operations for their parallel algorithms.

With these requests in mind, a processor has been designed that greatly in-

creases raw compute horsepower, and through architectural innovations, also offers

dramatically increased programmability and compute efficiency. The key archi-

tectural highlights of Fermi are:

� Third Generation Streaming Multiprocessor (SM)

– 32 CUDA cores per SM, 4x over GT200

– 8x the peak double precision floating point performance over GT200

– Dual Warp Scheduler simultaneously schedules and dispatches instruc-

tions from two independent warps

– 64 KB of RAM with a configurable partitioning of shared memory and

L1 cache

� Second Generation Parallel Thread Execution ISA

– Unified Address Space with Full C++ Support

– Optimized for OpenCL and DirectCompute

– Full IEEE 754-2008 32-bit and 64-bit precision

– Full 32-bit integer path with 64-bit extensions

– Memory access instructions to support transition to 64-bit addressing

30



– Improved Performance through Predication

� Improved Memory Subsystem

– NVIDIA Parallel DataCacheTM hierarchy with Configurable L1 and

Unified L2 Caches

– First GPU with ECC memory support

– Greatly improved atomic memory operation performance

� NVIDIA GigaThreadTM Engine

– 10x faster application context switching

– Concurrent kernel execution

– Out of Order thread block execution

– Dual overlapped memory transfer engines

The first Fermi based GPU, implemented with 3.0 billion transistors, features

up to 512 CUDA cores. A CUDA core executes a floating point or integer in-

struction per clock for a thread. The 512 CUDA cores are organized in 16 SMs of

32 cores each. The GPU has six 64-bit memory partitions, for a 384-bit memory

interface, supporting up to a total of 6 GB of GDDR5 DRAM memory. A host

interface connects the GPU to the CPU via PCI-Express. The GigaThread global

scheduler distributes thread blocks to SM thread schedulers.
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Figure 3.1: Fermi GPU Device Block Diagram

512 High Performance CUDA cores

Each SM (see Figure 3.2) features 32 CUDA processors - a fourfold increase over

prior SM designs. Each CUDA processor has a fully pipelined integer arithmetic

logic unit (ALU) and floating point unit (FPU). Prior GPUs used IEEE 754-1985

floating point arithmetic. The Fermi architecture implements the new IEEE 754-

2008 floating-point standard, providing the fused multiply-add (FMA) instruction

for both single and double precision arithmetic. FMA improves over a multiply-

add (MAD) instruction by doing the multiplication and addition with a single final

rounding step, with no loss of precision in the addition. FMA is more accurate

than performing the operations separately. GT200 implemented double precision

FMA.

In GT200, the integer ALU was limited to 24-bit precision for multiply op-

erations; as a result, multi-instruction emulation sequences were required for in-
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Figure 3.2: Fermi SM Architecture

teger arithmetic. In Fermi, the newly designed integer ALU supports full 32-

bit precision for all instructions, consistent with standard programming language

requirements. The integer ALU is also optimized to efficiently support 64-bit

and extended precision operations. Various instructions are supported, including

Boolean, shift, move, compare, convert, bit-field extract, bit-reverse insert, and

population count.

16 Load/Store Units

Each SM has 16 load/store units, allowing source and destination addresses to be

calculated for sixteen threads per clock. Supporting units load and store the data

at each address to cache or DRAM.
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Four Special Function Units

Special Function Units (SFUs) execute transcendental instructions such as sin,

cosine, reciprocal, and square root. Each SFU executes one instruction per thread,

per clock; a warp executes over eight clocks. The SFU pipeline is decoupled from

the dispatch unit, allowing the dispatch unit to issue to other execution units

while the SFU is occupied.

Designed for Double Precision

Double precision arithmetic is at the heart of HPC applications such as linear

algebra, numerical simulation, and quantum chemistry. The Fermi architecture

has been specifically designed to offer unprecedented performance in double pre-

cision; up to 16 double precision fused multiply-add operations can be performed

per SM, per clock, a dramatic improvement over the GT200 architecture.

Dual Warp Scheduler

The SM schedules threads in groups of 32 parallel threads called warps. Each

SM features two warp schedulers and two instruction dispatch units (see Figure

3.3), allowing two warps to be issued and executed concurrently. Fermi’s dual

warp scheduler selects two warps, and issues one instruction from each warp to

a group of sixteen cores, sixteen load/store units, or four SFUs. Because warps

execute independently, Fermi’s scheduler does not need to check for dependencies

from within the instruction stream. Using this elegant model of dual-issue, Fermi

achieves near peak hardware performance.

34



Figure 3.3: Fermi GPU Warp Scheduling Mechanism

Most instructions can be dual issued; two integer instructions, two floating

instructions, or a mix of integer, floating point, load, store, and SFU instructions

can be issued concurrently. Double precision instructions do not support dual

dispatch with any other operation.

64 KB Configurable Shared Memory and L1 Cache

One of the key architectural innovations that greatly improved both the pro-

grammability and performance of GPU applications is on-chip shared memory.

Shared memory enables threads within the same thread block to cooperate, facil-

itates extensive reuse of on-chip data, and greatly reduces off-chip traffic. Shared

memory is a key enabler for many high-performance CUDA applications.

G80 and GT200 have 16 KB of shared memory per SM. In the Fermi archi-

tecture, each SM has 64 KB of on-chip memory that can be configured as 48 KB

of Shared memory with 16 KB of L1 cache or as 16 KB of Shared memory with

48 KB of L1 cache.

For existing applications that make extensive use of Shared memory, tripling
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the amount of Shared memory yields significant performance improvements, espe-

cially for problems that are bandwidth constrained. For existing applications that

use Shared memory as software managed cache, code can be streamlined to take

advantage of the hardware caching system, while still having access to at least 16

KB of shared memory for explicit thread cooperation. Best of all, applications

that do not use Shared memory automatically benefit from the L1 cache, allowing

high performance CUDA programs to be built with minimum time and effort.

3.1.2 Kepler Architecture

NVIDIA’s Kepler GPU architecture simplifies parallel programs development and

revolutionize high performance computing. With more processing power in com-

parison to old generations of GPU devices, it solves the world’s most difficult

computing problems. Kepler GPU introduced new methods for parallel program

optimizations and increased parallel workload execution on the GPU.

Comprising 7.1 billion transistors, Kepler GK110 is not only the fastest, but

also the most architecturally complex microprocessor ever built. Adding many

new innovative features focused on compute performance, GK110 was designed to

be a parallel processing powerhouse for Tesla® and the HPC market.

Kepler GK110 will provide over 1 TFlop of double precision throughput with

greater than 80% DGEMM efficiency versus 60-65% on the prior Fermi architec-

ture.

In addition to greatly improved performance, the Kepler architecture offers a
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huge leap forward in power efficiency, delivering up to 3x the performance per

watt of Fermi.

The following new features in Kepler GK110 enable increased GPU utiliza-

tion, simplify parallel program design, and aid in the deployment of GPUs across

the spectrum of compute environments ranging from personal workstations to

supercomputers:

� Dynamic Parallelism: adds the capability for the GPU to generate new

work for itself, synchronize on results, and control the scheduling of that

work via dedicated, accelerated hardware paths, all without involving the

CPU. By providing the flexibility to adapt to the amount and form of par-

allelism through the course of a program’s execution, programmers can ex-

pose more varied kinds of parallel work and make the most efficient use the

GPU as a computation evolves. This capability allows less-structured, more

complex tasks to run easily and effectively, enabling larger portions of an

application to run entirely on the GPU. In addition, programs are easier to

create, and the CPU is freed for other tasks.

� Hyper-Q: enables multiple CPU cores to launch work on a single GPU

simultaneously, thereby dramatically increasing GPU utilization and signif-

icantly reducing CPU idle times. Hyper-Q increases the total number of

connections (work queues) between the host and the GK110 GPU by allow-

ing 32 simultaneous, hardware-managed connections (compared to the single

connection available with Fermi). Hyper-Q is a flexible solution that allows
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separate connections from multiple CUDA streams, from multiple Message

Passing Interface (MPI) processes, or even from multiple threads within a

process. Applications that previously encountered false serialization across

tasks, thereby limiting achieved GPU utilization, can see up to dramatic

performance increase without changing any existing code.

� Grid Management Unit: Enabling Dynamic Parallelism requires an ad-

vanced, flexible grid management and dispatch control system. The new

GK110 Grid Management Unit (GMU) manages and prioritizes grids to be

executed on the GPU. The GMU can pause the dispatch of new grids and

queue pending and suspended grids until they are ready to execute, provid-

ing the flexibility to enable powerful runtimes, such as Dynamic Parallelism.

The GMU ensures both CPU and GPU generated workloads are properly

managed and dispatched.

� NVIDIA GPUDirect�: a capability that enables GPUs within a single

computer, or GPUs in different servers located across a network, to directly

exchange data without needing to go to CPU/system memory. The RDMA

feature in GPUDirect allows third party devices such as SSDs, NICs, and IB

adapters to directly access memory on multiple GPUs within the same sys-

tem, significantly decreasing the latency of MPI send and receive messages

to/from GPU memory. It also reduces demands on system memory band-

width and frees the GPU DMA engines for use by other CUDA tasks. Kepler

GK110 also supports other GPUDirect features including Peer-to-Peer and
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GPUDirect for Video

A full Kepler GK110 implementation includes 15 SMX units and six 64-bit

memory controllers. Different products will use different configurations of GK110.

For example, some products may deploy 13 or 14 SMXs. Key features of the

architecture that will be discussed below in more depth include:

� The new SMX processor architecture

� An enhanced memory subsystem, offering additional caching capabilities,

more bandwidth at each level of the hierarchy, and a fully redesigned and

substantially faster DRAM I/O implementation.

� Hardware support throughout the design to enable new programming model

capabilities

Figure 3.4: Kepler GPU Device Block Diagram
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Streaming Multiprocessor (SMX) Architecture

Kepler GK110’s new SMX introduces several architectural innovations that make

it not only the most powerful multiprocessor we’ve built, but also the most pro-

grammable and power-efficient.

Figure 3.5: Kepler SM Architecture

SMX Processing Core Architecture

Each of the Kepler GK110 SMX units feature 192 single-precision CUDA cores,

and each core has fully pipelined floating-point and integer arithmetic logic units.

In addition to these, Kepler GPU significantly increases the double precision per-

formance which is one of the major application performance consideration in high

performance computing applications. Kepler GPUs included 8x the number of

SFUs (Special Function Units) in comparison to Fermi GPU that significantly

improves the fast approximate transcendental operations.
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The chip area design of the Kepler targets performance per watt and many

optimizations have been made to benefit for both area and power. One of the

power optimization is to use a larger number of processing cores that are running

at a less power-hungry GPU clock.

Quad Warp Scheduler

With 4 warp schedulers and 8 instruction dispatch units, Kepler allows four warps

with two independent instructions per warp to be dispatched per GPU cycle.

Unlike Fermi, the instruction pair can included both single and double precision

instructions.

New ISA Encoding: 255 Registers per Thread

Each thread in kepler can access four times more registers up to 255 registers

per thread. This reduces register spilling and gives substantial speedups in terms

of application performance. For example, QCD (Quantum ChromoDynamics)

application in QUDA library gains performance increases up to 5.3x by utilizing

more registers per thread and reduced register spilling to local memory.

Shuffle Instruction

Kepler introduces a new set of shuffle instructions to share data within a warp

which was previously done by using shared memory only with separate load/store

operations. Using shuffle instructions, threads within a warp can read values

from other threads in the warp in all possible permutations. Figure 3.6 shows
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the different shuffle subsets available as CUDA intrinsics including indexed, next-

thread (up and down), and butterfly style permutations transfers among threads

in a warp.

Shuffle instructions perform store-and-load operations in a single step that

obtains significant performance improvement over shared memory. It also reduces

the required amount of shared memory per thread block.

Figure 3.6: Kepler Shuffle Instructions

Atomic Operations

Read and write on shared data structures by parallel threads can cause race

condition in results. This can be avoided by using atomic memory operations on

shared data structures such as add, min, max and compare-and-swap are some of

the examples of atomic operations. Each thread performs read, modify and write

in these operations on a shared data without interruption by other threads. Most

common uses of atomic operations are in parallel sort, reduction, and building

data structures in parallel without using locks to avoid thread serialization.

Atomic operation throughput on Kepler GK110 is substantially improved com-

pared to the Fermi generation. Atomic operation throughput to a common address
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is improved by 9x, to one operation per clock. Atomic operation throughput to

independent addresses is also significantly accelerated and logic to handle address

conflicts has been made more efficient. Atomic operations can often be processed

at rates similar to generic load operations. This speed increase makes atomics fast

enough to use frequently within kernel inner loops, eliminating explicit reduction

passes that were previously required to consolidate results.

Kepler GK110 also introduces additional native support for 64-bit atomic op-

erations. In addition to atomicAdd, atomicCAS, and atomicExch (supported by

Fermi and Kepler GK104), GK110 supports native:

� atomicMin

� atomicMax

� atomicAnd

� atomicOr

� atomicXor

Other atomic operations which are not supported natively (for example 64-

bit floating point atomics) may be emulated using the compare-and-swap (CAS)

instruction.

Texture Improvements

The GPU’s dedicated hardware Texture units are a valuable resource for compute

programs with a need to sample or filter image data. The texture throughput in

43



Kepler is significantly increased compared to Fermi each SMX unit contains 16

texture filtering units, a 4x increase vs the Fermi GF110 SM.

In addition, Kepler changes the way texture state is managed. In the Fermi

generation, for the GPU to reference a texture, it had to be assigned a “slot” in

a fixed-size binding table prior to grid launch. The number of slots in that table

ultimately limits how many unique textures a program can read from at run time.

Ultimately, a program was limited to accessing only 128 simultaneous textures in

Fermi.

With bindless textures in Kepler, the additional step of using slots isn’t neces-

sary: texture state is now saved as an object in memory and the hardware fetches

these state objects on demand, making binding tables obsolete. This effectively

eliminates any limits on the number of unique textures that can be referenced by

a compute program. Instead, programs can map textures at any time and pass

texture handles around as they would any other pointer.

Kepler Memory Subsystem L1, L2, ECC

Kepler’s memory hierarchy (see Figure 3.7) is organized similarly to Fermi. The

Kepler architecture supports a unified memory request path for loads and stores,

with an L1 cache per SMX multiprocessor. Kepler GK110 also enables compiler-

directed use of an additional new cache for read-only data, as described below.
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Figure 3.7: Kepler Memory Hierarchy

64 KB Configurable Shared Memory and L1 Cache

In the Kepler GK110 architecture, as in the previous generation Fermi architec-

ture, each SMX has 64 KB of on-chip memory that can be configured as 48 KB

of Shared memory with 16 KB of L1 cache, or as 16 KB of shared memory with

48 KB of L1 cache. Kepler now allows for additional flexibility in configuring the

allocation of shared memory and L1 cache by permitting a 32KB / 32KB split

between shared memory and L1 cache. To support the increased throughput of

each SMX unit, the shared memory bandwidth for 64b and larger load operations

is also doubled compared to the Fermi SM, to 256B per core clock.

48KB ReadOnly Data Cache

In addition to the L1 cache, Kepler introduces a 48KB cache for data that is

known to be read-only for the duration of the function. In the Fermi generation,

this cache was accessible only by the Texture unit. Expert programmers often

found it advantageous to load data through this path explicitly by mapping their

data as textures, but this approach had many limitations.
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In Kepler, in addition to significantly increasing the capacity of this cache along

with the texture horsepower increase, we decided to make the cache directly acces-

sible to the SM for general load operations. Use of the read-only path is beneficial

because it takes both load and working set footprint off of the Shared/L1 cache

path. In addition, the Read-Only Data Cache’s higher tag bandwidth supports

full speed unaligned memory access patterns among other scenarios.

Use of this path is managed automatically by the compiler - access to any

variable or data structure that is known to be constant through programmer use

of the C99-standard “const restrict” keyword will be tagged by the compiler to

be loaded through the Constant Data Cache.

Improved L2 Cache

The Kepler GK110 GPU features 1536KB of dedicated L2 cache memory, double

the amount of L2 available in the Fermi architecture. The L2 cache is the primary

point of data unification between the SMX units, servicing all load, store, and

texture requests and providing efficient, high speed data sharing across the GPU.

The L2 cache on Kepler offers up to 2x of the bandwidth per clock available in

Fermi. Algorithms for which data addresses are not known beforehand, such as

physics solvers, ray tracing, and sparse matrix multiplication especially benefit

from the cache hierarchy. Filter and convolution kernels that require multiple

SMs to read the same data also benefit.
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Memory Protection Support

Like Fermi, Kepler’s register files, shared memories, L1 cache, L2 cache and

DRAM memory are protected by a Single-Error Correct Double-Error Detect

(SECDED) ECC code. In addition, the Read-Only Data Cache supports single-

error correction through a parity check; in the event of a parity error, the cache

unit automatically invalidates the failed line, forcing a read of the correct data

from L2.

ECC checkbit fetches from DRAM necessarily consume some amount of

DRAM bandwidth, which results in a performance difference between ECC-

enabled and ECC-disabled operation, especially on memory bandwidth-sensitive

applications. Kepler GK110 implements several optimizations to ECC checkbit

fetch handling based on Fermi experience. As a result, the ECC on-vs-off per-

formance delta has been reduced by an average of 66%, as measured across our

internal compute application test suite.

Dynamic Parallelism

In a hybrid CPU-GPU system, enabling a larger amount of parallel code in an

application to run efficiently and entirely within the GPU improves scalability

and performance as GPUs increase in perf/watt. To accelerate these additional

parallel portions of the application, GPUs must support more varied types of

parallel workloads.

Dynamic Parallelism is a new feature introduced with Kepler GK110 that
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allows the GPU to generate new work for itself, synchronize on results, and control

the scheduling of that work via dedicated, accelerated hardware paths, all without

involving the CPU.

Fermi was very good at processing large parallel data structures when the scale

and parameters of the problem were known at kernel launch time. All work was

launched from the host CPU, would run to completion, and return a result back

to the CPU. The result would then be used as part of the final solution, or would

be analyzed by the CPU which would then send additional requests back to the

GPU for additional processing.

In Kepler GK110 any kernel can launch another kernel, and can create the nec-

essary streams, events and manage the dependencies needed to process additional

work without the need for host CPU interaction. This architectural innovation

makes it easier for developers to create and optimize recursive and data-dependent

execution patterns, and allows more of a program to be run directly on GPU. The

system CPU can then be freed up for additional tasks, or the system could be

configured with a less powerful CPU to carry out the same workload. Figure

3.8 shows the advantage of dynamic parallelism in kepler in comparison of Fermi

repetitive kernel invocation.

Dynamic Parallelism allows more varieties of parallel algorithms to be imple-

mented on the GPU, including nested loops with differing amounts of parallelism,

parallel teams of serial control-task threads, or simple serial control code offloaded

to the GPU in order to promote data-locality with the parallel portion of the ap-
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Figure 3.8: Fermi and Kepler Recursive Kernel Invocation Comparison

plication.

Because a kernel has the ability to launch additional workloads based on inter-

mediate, on-GPU results, programmers can now intelligently load-balance work

to focus the bulk of their resources on the areas of the problem that either require

the most processing power or are most relevant to the solution.

Hyper Q

Hyper Q increases the total number of connections (work queues) between the

host and CUDA Work Distributor (CWD) logic in the GPU by allowing 32 si-

multaneous, hardware - managed connections (compared to the single connection

available with Fermi). Hyper - Q is a flexible solution that allows connections

from multiple CUDA streams, from multiple Message Passing Interface (MPI)

processes, or even from multiple threads within a process. Application that pre-

viously encountered false serialization across tasks, thereby limiting GPU utiliza-

tion, can see up to a 32x performance increase without changing any existing

code.
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Each CUDA stream is managed within its own hardware work queue (see Fig-

ure 3.9), inter-stream dependencies are optimized, and operations in one stream

will no longer block other streams, enabling streams to execute concurrently with-

out needing to specifically tailor the launch order to eliminate possible false de-

pendencies.

Figure 3.9: Multiple Stream Execution in both Fermi and Kepler

Grid Management Unit - Efficiently Keeping the GPU Utilized

New features in Kepler GK110, such as the ability for CUDA kernels to launch

work directly on the GPU with Dynamic Parallelism, required that the CPU-to-

GPU workflow in Kepler offer increased functionality over the Fermi design. On

Fermi, a grid of thread blocks would be launched by the CPU and would always run

to completion, creating a simple unidirectional flow of work from the host to the

SMs via the CUDA Work Distributor (CWD) unit. Kepler GK110 was designed

to improve the CPU-to-GPU workflow by allowing the GPU to efficiently manage

both CPU- and CUDA-created workloads. Figure 3.10 shows the workflows for

both Fermi and Kepler.
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Figure 3.10: Fermi and Kepler Workflow

We discussed the ability of the Kepler GK110 GPU to allow kernels to launch

work directly on the GPU, and it’s important to understand the changes made in

the Kepler GK110 architecture to facilitate these new functions. In Kepler, a grid

can be launched from the CPU just as was the case with Fermi, however new grids

can also be created programmatically by CUDA within the Kepler SMX unit. To

manage both CUDA-created and host-originated grids, a new Grid Management

Unit (GMU) was introduced in Kepler GK110. This control unit manages and

prioritizes grids that are passed into the CWD to be sent to the SMX units for

execution.

The CWD in Kepler holds grids that are ready to dispatch, and it is able

to dispatch 32 active grids, which is double the capacity of the Fermi CWD. The
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Kepler CWD communicates with the GMU via a bi-directional link that allows the

GMU to pause the dispatch of new grids and to hold pending and suspended grids

until needed. The GMU also has a direct connection to the Kepler SMX units to

permit grids that launch additional work on the GPU via Dynamic Parallelism to

send the new work back to GMU to be prioritized and dispatched. If the kernel

that dispatched the additional workload pauses, the GMU will hold it inactive

until the dependent work has completed.

NVIDIA GPUDirect�

When working with a large amount of data, increasing the data throughput and

reducing latency is vital to increasing compute performance. Kepler GK110 sup-

ports the RDMA feature in NVIDIA GPUDirect, which is designed to improve

performance by allowing direct access to GPU memory by third-party devices such

as IB adapters, NICs, and SSDs. When using CUDA 5.0, GPUDirect provides

the following important features:

� Direct memory access (DMA) between NIC and GPU without the need for

CPU-side data buffering.

� Significantly improved MPISend/MPIRecv efficiency between GPU and

other nodes in a network.

� Eliminates CPU bandwidth and latency bottlenecks

� Works with variety of third-party network, capture, and storage devices
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Applications like reverse time migration (used in seismic imaging for oil & gas

exploration) distribute the large imaging data across several GPUs. Hundreds

of GPUs must collaborate to crunch the data, often communicating intermediate

results. GPUDirect (see Figure 3.11) enables much higher aggregate bandwidth

for this GPU-to-GPU communication scenario within a server and across servers

with the P2P and RDMA features.

Kepler GK110 also supports other GPUDirect features such as Peer-to-Peer

and GPUDirect for Video.

Figure 3.11: Kepler GPUDirect

3.2 GPU Execution Model

Figure 3.2 shows the block diagram of SM in Fermi and Figure 3.5 shows the

block diagram of SM in Kepler. GM is linked to the GPU device through a very

large data path of 320-bits wide. Through such a bus width, ten consecutive 32-

bits (4 bytes) words can be fetched from global memory in a single cycle. The

on-chip memory resource includes register files (64K or more per SM, see Table
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3.1), shared memory (48KB or more per SM). To hide the long off-chip memory

access latency, a high number of threads are supported to run concurrently. The

threads are grouped in blocks which will be scheduled to SMs dynamically on

the availability of each SM. These threads follow the single-program multiple-

data (SPMD) program execution model. Within a block, threads are grouped

in 32-threads instruction called warps, where each warp is being executed in the

single-instruction multiple-data (SIMD) manner. A warp takes multiple cycles

for computation instructions due to the limited number of functional units (SPs)

within SM.

Feature Quadro FX 7000 Tesla K20c
GPU Architecture Fermi Kepler

CUDA Driver / Runtime Version 5.0 / 5.0 5.5 / 5.5
CUDA Capability 2.0 3.5

Global Memory Size 4096 Mbytes 4800 Mbytes
Total CUDA Cores 16 (SM) x 32 (SP/SM) = 512 13 (SM) x 192 (SP/SM) = 2496

Shared Memory Size 49152 bytes 49152 bytes
Max Thread / SM 1536 2048

Max Thread / Block 1024 1024
Threads/Warp 32 32

Max Warps / SM 48 64
Max Thread Blocks / SM 8 16

32-bit Registers / SM 32768 65536
Max Registers / Thread 63 255

Hyper - Q No Yes
Dynamic Parallelism No Yes

Table 3.1: GPU Specifications

Figure 3.12 shows the execution hierarchy of a typical kernel function on a

device. Each kernel initiates a set of blocks defined by the programmer as grid

dimension with number of threads to be executed within each block while invoking

the device kernel function. Now, the block scheduler dynamically schedules each

thread block to one SM based on the availability of resources within SM while
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individual threads will be distributed among multiple SPs within the SM. An SM

can handle at most 16 blocks at a time. Also, the possible number of concurrent

blocks per SM depends on the number of warps per block, number of registers per

block, and the shared memory usage per block.

Figure 3.12: Kernel Execution Hierarchy

The number of simultaneous blocks are dependent upon shared memory, num-

ber of registers per block and warp per block. Fine-grained, data-parallel threads

are the fundamental means of parallel execution. When a kernel is invoked, grid of

threads is launched. Each thread that executes the kernel is given a unique thread

ID. Threads in each block cooperate with each other and have access to shared

memory, the cooperation between threads in different blocks are not possible.

GM is partitioned into segments of size equal to 32, 64 or 128 bytes and aligned
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to this size. The elements in one segment can be accessed by a single memory

transaction. By considering the largest segment size of 128 bytes and also the

data path of 512 bits, the compiler issues a single load/store instruction for 16

consecutive elements accessed by 16-threads (half warp) to reduce the number of

memory transactions of global memory. So, the performance of memory transfers

can incredibly be improved through the use of coalesced global memory accesses

that is accessing a regular pattern of consecutive elements by a half warp (16

threads) based on some conditions. Therefore, if SPs are kept busy executing

through warp switching then the whole transfer between GM and ShM is hidden

by some execution which implies that the parallel program time does not account

for such an expensive memory transfer. Since, shared memory is very small in size

so we have to perform some loop transformation such as loop tiling, a mechanism

to adjust loop execution to match with underlying machine or memory system,

to make the availability of enough data for the active warp per SM.

Coalesced Global Memory Accesses

Global memory is the slowest memory on the GPU. When one begins to work

with GPGPU, the parallel processing benefits can be incredibly beneficial, if you

know how to work with coalesced memory accesses that is accessing a bank of

memory by all threads in a group in one cycle. In order to achieve the most

possible speedup, programmer has to incorporate the following in writing CUDA

kernels:

1. Thinking about the computation in a data parallel fashion.
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2. Transferring working data into the shared memory.

3. Scrutinizing how the code performs global memory accesses.

The reasons for the above considerations are that the shared memory is so

much faster at reading and writing than global memory, and the memory mod-

ule in modern GPUs can perform concurrent reads to sequential global memory

positions for an entire thread group.

Conditions to achieve coalesced access

The simultaneous global memory accesses by each thread of a half-warp (16

threads) during the execution of a single read or write instruction will be coa-

lesced into a single access if:

� The size of the memory element accessed by each thread is either 4, 8, or

16 bytes

� The elements form a contiguous block of memory

� The N th element is accessed by the N th thread in the half-warp, does not

affect if any thread in between not accessing the global memory that is

divergent warp.

� The address of the first element is aligned to 16 times the element’s size

If any of the above condition is not satisfied then memory access will not be

coalesced, increases memory accesses instead of single access. Figure 3.13 and
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Figure 3.14, shows the two of the possible coalesced memory accesses satisfying

the above conditions.

Figure 3.13: Coalesced Float Memory Access

Figure 3.14: Coalesced Float Memory Access (divergent warp)

Figure 3.15-Figure 3.18 shows the access patterns which fails the mechanism

of memory coalescing.

Figure 3.15: Non-Sequential Float Memory Access

3.3 Synchronization within SM and across SMs

GPUs are typically mapped well only to data-parallel or task-parallel applications

which require relatively minimal communication between streaming multiproces-
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Figure 3.16: Misaligned Starting Address

Figure 3.17: Non-Contiguous Float Memory Access

sors (SMs) on the GPU during their execution [45, 46, 47]. This tendency is

essentially due to the lack of support for communication between SMs. Thread

blocks cannot communicate through the per-SM shared memory. Although, such

communication can take place through the GPU’s global memory that needs

barrier synchronization over SMs in order to complete the communication task

between SMs. On the other hand, CUDA provides a synchronization function

syncthreads() to synchronize the execution of different threads within a block.

This is due to the fact that threads within a block are executed by the same SMs

Figure 3.18: Non-Coalesced Float3 Memory Access
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which can access same block of shared memory and execute same instructions.

To alleviate inter-block communication problem, CPU-based synchronization

algorithms are proposed. Such an algorithm handles inter-block GPU communica-

tion by launching the kernel many times [48, 49]. This approach incurs significant

overhead [50]. To eliminate this overhead, there are many synchronization al-

gorithms (lock-based) implemented using global memory and atomic operations

where a mutually exclusive (mutex) variable controls the execution of different

blocks on SMs. Once a block finishes its computation on an SM, it atomically

increments a mutex variable. Only after all thread blocks finish their computa-

tion the mutex variable will be equal to the target value and the barrier complete.

However, atomic operations pose a fundamental parallelization problem. If mul-

tiple threads are required to perform the atomic operation at the same time, they

are serialized, since only one thread is able to perform the operation and oth-

ers must wait. To overcome this problem, lock-free synchronization methods are

proposed. These algorithms utilize arrays of variables instead of using a single

mutex variable and eliminate the need for different blocks to contend for the sin-

gle mutex variable. By eliminating the single mutex variable, the need for atomic

addition is removed. Using these methods, some threads (usually the first thread)

from each block control the execution of the synchronization code in different

blocks while the intra-block synchronization is accomplished by synchronizing the

threads within the block with the existing barrier function syncthreads().

Following sections explain some of the inter-block synchronization mechanisms
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found in literature. These approaches can be classified into three categories: (1)

CPU-based synchronization, (2) Lock-based synchronization and (3) lock-free syn-

chronization.

3.3.1 CPU-based synchronization

This is the simplest approach recommended by NVIDIA [51] for inter-block syn-

chronization by exiting and re-entering the kernel that is considered as an implicit

synchronization. This is done by dividing the kernel into multiple kernels based

on the requirements of inter-block synchronization among the instructions. Figure

3.19 shows the flowchart of the CPU-based synchronization.

Figure 3.19: CPU Based Synchronization

3.3.2 Lock-based Synchronization

Lock-based synchronization approaches use atomic operations on global variables

defined in the global memory. We have explored two versions for lock-based

synchronization. The first version (Lock-based-v1) is explained in [52]. This
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approach allows only one block to continue while the other blocks terminates.

So, this approach can be useful in only one - level reduction in which only one

block will do the second iteration of reduction and related problems. While for

applications such as tree reduction and Jacobi iterative solver requires all blocks to

continue with the multiple iterations for which this approach is applicable. On the

other hand, the second version (Lock-based-v2) which is proposed in [50] allows

all blocks to continue. The basic idea of the two versions are shown in Figure 3.20

and Figure 3.21. When all threads of a block finish their work, the first thread

of each block atomically increments the global variable gMutex and then checks

its value. In Figure 3.20, the last block increments gMutex will continue while

others terminate. However, in Figure 3.21 all blocks will wait until the value of the

gMutex becomes equal kxN where k is the iteration number and N is the number

of blocks. Once gMutex becomes equal to k x N than all blocks will continue to

next iteration.

Figure 3.20: Lock-Based-V1 Synchronization
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Figure 3.21: Lock-Based-V2 Synchronization

3.3.3 Lock-free Synchronization

In lock-free synchronization, each block uses one or more global variables to co-

ordinate the synchronization requests from various blocks. We have explored two

versions for lock-free synchronization. The first one (Lock-free-v1) is based on the

work in [53] while the second (Lock-free-v2) is based on the work in [50]. Figure

3.22 and Figure 3.23 show the main idea in these versions. The first approach

(Figure 3.22) uses only one array named Ain for synchronization. The first thread

of each block increments its corresponding location in Ain array. After that it

continuously checks whether others’ location of Ain have been set to k where k is

the iteration number. When it finds all locations are set to k, the threads block

continue their work. The second approach (Figure 3.23) uses two arrays, named

Ain and Aout, of length N for synchronization. When all threads of a block finish

their work, the first thread of each block increments its location in the Ain array.

Then, the first N threads of the first block in parallel check whether all blocks have

written to their corresponding location in the Ain array. If so, these N threads
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write in parallel to the Aout array to inform other threads that the threads of this

block have reached the synchronization point. Meanwhile, the first thread of each

block continuously checks its location in the Aout array until the value is set to

k.

Figure 3.22: Lock-Free-V1 Synchronization

Figure 3.23: Lock-Free-V2 Synchronization
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3.4 CUDA Programming Framework and Com-

piler

GPUs are designed as numerical computing engines, and they will not perform

well on some tasks on which CPUs are designed to perform well. So, the most

applications will use both CPUs and GPUs, executing the sequential parts on the

CPU and numerically intensive parts on the GPUs. This is why the CUDA (Com-

pute Unified Device Architecture) programming model is designed to support joint

CPU/GPU execution of an application.

CUDA is a parallel computing platform designed by NVIDIA for graphics pro-

cessor units (GPUs). A CUDA program is a unified source code encompassing

both the host and the device code. It consists of one or more phases that are

executed on either the host (CPU) or a device that is a GPU. The phases that

exhibit rich amount of data parallelism are implemented in the device code. The

NVIDIA C compiler (nvcc) separates the two during the compilation process. The

host code is straight ANSI C code; it is further compiled with the host’s standard

C compilers and runs as an ordinary CPU process. The device code is written

using ANSI C extended with keywords for labeling data-parallel functions, called

kernels, and their associated data structures [22]. Table 3.2 and Table 3.3 lists the

different functions and variable declarations within the CUDA Program respec-

tively. The device code is typically further compiled by the nvcc and executed on

a GPU device.

In CUDA memory model [22], threads can access data in private local memory,
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Function Declaration Executed on Only Callable from
device float DeviceFunc() Device Device
global void KernelFunc() Device Host

host float HostFun() Host Host

Table 3.2: CUDA Function Declarations

Memory Scope Lifetime
local int LocalVar; Local Thread Thread

shared int SharedVar; Shared Block Block
int GlobalVar; Global Grid Application

constant int Con-stantVar; Constant Grid Application

Table 3.3: CUDA Device Variable Declarations

shared memory and global memory. The threads also have access to texture and

constant memory. The shared memory is the only memory that is on-chip memory;

this memory is visible to all threads within a block. The global memory is off-chip

memory and can be accessed by the host and all threads. The local memory is

the maximum memory allocated per thread. Table 3.4 summarizes the memory

hierarchy in the GPU. A CUDA program that implemented in the device code

exhibits rich amount of data parallelism. Invoking the kernel will launch a grid of

blocks, group of threads. The dimension of the grid and the number of threads in

a block can be determined by the programmer.

Memory Location Cache Accessibility Scope
Global Off Chip No R/W CPU + All threads
Texture Off Chip Yes R CPU + All threads

Constant Off Chip Yes R CPU + All threads
Shared On Chip - R/W All threads (in a block)
Local Off Chip No R/W Per Thread

Register On Chip No R/W Per Thread
Data Cache (Kepler Only) On Chip - R All blocks in SM

Table 3.4: GPU Memory Hierarchy

The CUDA programming model assumes that the CUDA threads execute on a
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physically separate device that operates as a coprocessor to the host running the

C program, it also assumes that both host and device maintain their own memory

space in DRAM, referred to as host memory and device memory. Therefore, a

program manages the global, constant and texture memory spaces visible to ker-

nels through calls to the CUDA runtime. This includes device memory allocation

and deallocation as well as data transfer between host and device memory.

At its core, CUDA provides three key abstractions:

� A hierarchy of thread groups

� Shared memories

� Barrier synchronization

Figure 3.24: Block Assignment to Different Cores (Automatic Scalability)

These abstractions provide fine-grained data parallelism and thread paral-

lelism, nested within coarse-grained data parallelism and task parallelism. They
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guide the programmer to partition the problem into coarse sub-problems that can

be solved independently in parallel by blocks of threads, and each sub-problem

into finer pieces that can be solved cooperatively in parallel by all threads within

the block. This decomposition preserves language expressivity by allowing threads

to cooperate when solving each sub-problem, and at the same time enables auto-

matic scalability. Indeed, each block of threads can be scheduled on any of the

available processor cores, in any order, concurrently or sequentially, so that a com-

piled CUDA program can execute on any number of processor cores as illustrated

by Figure 3.24 (Courtesy: NVIDIA), and only the runtime system needs to know

the physical processor count.

3.5 CUDA APIs

CUDA C extends C by allowing the programmer to define C functions, called

kernels, that, when called, are executed N times in parallel by N different CUDA

threads, as opposed to only once like regular C functions.

A kernel is defined using the global declaration specifier and the number of

CUDA threads that execute that kernel for a given kernel call is specified using

a new <<< ... >>> execution configuration syntax. Each thread that executes

the kernel is given a unique thread ID that is accessible within the kernel through

the built-in threadIdx variable.

For convenience, threadIdx is a 3-component vector, so that threads can be

identified using a one-dimensional, two-dimensional, or three-dimensional thread
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index, forming a one-dimensional, two-dimensional, or three-dimensional thread

block. This provides a natural way to invoke computation across the elements in

a domain such as a vector, matrix, or volume.

The index of a thread and its thread ID relate to each other in a straightforward

way: For a one-dimensional block, they are the same; for a two-dimensional block

of size (Dx, Dy), the thread ID of a thread of index (x, y) is (x + y Dx); for a

three-dimensional block of size (Dx, Dy, Dz), the thread ID of a thread of index

(x, y, z) is (x + y Dx + z Dx Dy).

There is a limit to the number of threads per block, since all threads of a block

are expected to reside on the same processor core and must share the limited

memory resources of that core. On Quadro FX7000 (Fermi) and Tesla K20c

(Kepler) GPUs, a thread block may contain up to 1024 threads.

However, a kernel can be executed by multiple equally-shaped thread blocks,

so that the total number of threads is equal to the number of threads per block

times the number of blocks.

Blocks are organized into a one-dimensional or two-dimensional grid of thread

blocks as illustrated by Figure 3.25 (Courtesy: NVIDIA). The number of thread

blocks in a grid is usually dictated by the size of the data being processed or

the number of processors in the system, which it can greatly exceed. Each block

within the grid can be identified by a one-dimensional or two-dimensional index

accessible within the kernel through the built-in blockIdx variable. The dimension

of the thread block is accessible within the kernel through the built-in blockDim
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variable.

Threads within a block can cooperate by sharing data through some shared

memory and by synchronizing their execution to coordinate memory accesses.

More precisely, one can specify synchronization points in the kernel by calling the

syncthreads() intrinsic function; syncthreads() acts as a barrier at which all

threads in the block must wait before any is allowed to proceed.

Figure 3.25: Gird of Thread Blocks

3.6 Profiling and Debugging

Debugging in software systems is a methodological process of finding errors in a

system. It is intuitive that the complexity of the process of debugging a system

increases with the complexity of the system being debugged. Debugging parallel

and multi-threaded software in general is considered to be more complex than

debugging single threaded software; as the execution of the program may not be
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consistent.

The key challenges while programming accelerators can be summarized as

follows:

� Coordinating CPU code + device code

� Understanding what is going on in each kernel

� Exceptions

� Understanding memory usage

� Understanding performance characteristics

This section surveys available products that are suitable overcoming these

challenges on GPUs: these products are used for debugging and analyzing the

performance of many-core programs.

Debuggers are concerned with finding causes and use cases that could cause

incorrectness in expected program output and behavior.

A typical work-flow for working with efficient parallel programs is to have an

optimization phase:

� Look at how well new code behaves

� Use available toolsets:

– Debugger:

* Allinea DDT

* Totalview
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– Performance analysis tools:

* Vampir

� Profiling:

– Collect aggregated information (time, counts, ...)

– Global or per process/thread

� Tracing:

– Save individual event records with precise timestamps per pro-

cess/thread

– Add event specific information represented as Timeline

The following sections list some of these tools that are suitable for working

with Nvidia accelerators.

3.6.1 Allinea DDT

Allinea DDT provides application developers with a single tool that can debug

hybrid CUDA, OpenMP and MPI applications on a single workstation or GPU

cluster [54]. It is comprehensive and scalable resource for debugging CPU and

GPU threads on the same screen.

Key Features

� Languages supported:
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– NVIDIA CUDA

– OpenACC Directives

– HMPP from Caps-Enterprise

– PGI Accelerator

– CRAY compiler

� Debugging GPU and CPU

– Browse source, examine variables, control processes and threads

– View all threads in parallel stack view with click for thread selection

– Set breakpoints or stop on kernel launch

– Control CUDA warps

– DDT displays variables using Smart Highlighting for CUDA storage

classes

Built in to natively support the programming environment

� Full MPI support - view GPU and CPU threads simultaneously over many

nodes

Educational License

The Allinea DDT CUDA Education pack has been designed to save people time

whether they are:

� already teaching a course in parallel programming via CUDA, which should

include dynamic debugging;
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� developing a course in parallel programming via CUDA; or

� Just starting to think about developing a course in parallel programming

via CUDA.

The pack includes:

1. Licence pack

� Eleven Workstation CUDA scalar licences valid until 31st July 2014

2. Resources given

� Introduction to Allinea Software

� PGI white paper (by Allinea Software)

� Debugging CUDA white paper (by Allinea Software)

� CUDA-GDB paper (by NVIDIA)

� Manycore systems white paper (by Allinea Software and CAPS) Sug-

gested reading list

� Pre-recorded webinar: ”Allinea DDT and CUDA: Develop new efficient

software”

3. Teaching material

� Lecture - Introduction to CUDA debugging

� Hands-on training, which includes walkthrough examples and exercises

� Sample programs
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4. Coming soon : In addition to above, the following will launched shortly and

provided to all subscribers at no extra charge:

� Assignment questions

� Project suggestions

� Exam questions

� Quiz questions

Process Groups

With DDT, the user can change the debugger to focus on a single process or group

of processes. The user then can step through the code, setting breakpoints only

for a given process. If Focus on current Group is chosen then the entire group of

processes will advance when stepping forward in a program and a breakpoint will

be set for all processes in a group.

Figure 3.26: DDT Process Groups

Similary, when Focus on current Thread is chosen, then all actions are for an

OpenMP thread. DDT doesn’t allow to create a thread group. However, one can

click the Step Threads Together box to make all threads to move together inside
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a parallel region. In the image shown above 3.26, this box is grayed out simply

because the code is not an OpenMP code.

Parallel Stack View

Parallel stack view is a feature which should help users debug at high concurrencies

which allows the user to see the position of all processors in a code at the same

time from the main window. A program is displayed as a branching tree with the

number and location of each processor at each point. Instead of clicking through

windows to determine where each processor has stopped, the Parallel Stack View

presents a quick overview which easily allows users to identify stray processes.

Users can also create sub-groups of processors from a branch of the tree by right

clicking on the branch. A new group will appear in the Process Group Window

at the top of the GUI.

Figure 3.27: DDT Stack View
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Figure 3.28: DDT Memory Usage

Memory usage can be analysed

3.6.2 TotalView Debugger

TotalView is a dynamic source code and memory debugger for C, C++ and FOR-

TRAN applications. TotalView for CUDA allows Linux X86-64 users to debug

both the CPU and GPU code in CUDA applications, using familiar TotalView

GUI methods.

Key Features

� Single step operation advances all of the GPU hardwre threads in the same

warp

� Also advance the execution of more than one warp.

� Newly, it Supports OpenACC directives

� Debugging host and device code in the same session

� CUDA running directly on Tesla or Fermi hardware
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� Linux and GPU device thread visibility

� Full visibility to the hierarchical device, block, and thread memory

� Navigating device threads by logical and device coordinates

� CUDA function calls, host pinned memory regions and CUDA contexts

� Handling CUDA functions inline and on the stack

� Command line interface (CLI) commands for CUDA functions

� Applications that use multiple NVIDIA devices at the same time

� MPI applications on CUDA-accelerated clusters

Memory debugger features

Memory Debugger:

� Streamlined

� Collaborative

� Shows Memory errors

� Memory status

� Memory leaks

� Buffer overflows

� MPI memory debugging
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� Remote memory debugging

Figure 3.29 shows a typical view of the total view debugger.

Figure 3.29: Total View Debugger

3.6.3 Vampir toolset

As debuggers main purpose is usually finding errors that cause application incor-

rectness; performance analysis tools have the main concern of finding opportuni-

ties of enhancing the performance of an application; or, stated in another way, to

find the spots that are hindering the parallel program from reaching its full speed

potential. This section lists some tools that are concerned with this purpose on

Nvidia accelerators.

Vampir software gives the user the ability of visual performance analysis.

While vampirTrace’s goal is for instrumentation and measurement.

VampirTrace performance monitor gives detailed insight into the runtime be-

havior of accelerators. This enables an extensive performance analysis and opti-

mization of hybrid programs written in CUDA, OpenCL, and PyCUDA. Vampir-
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Trace is capable of tracing GPU accelerated applications and generates exact time

stamps for all GPU related events. The information can be used to generate quick

profiles or can also be graphically analyzed using Vampir. Vampir allows inter-

active navigation (zooming, moving) through the timelines of the execution of a

parallel application annotated with a lot of statistics like time consumed, number

of invocations, messages statistics, performance counter support, etc. The latest

addition also allows capturing of GPU performance counters.

Key features

� locate load imbalances and understand what the application is actually doing

� Integration into the build process by supplied compiler wrappers

� GPU performance counter support via CUDA Performance Tools Interface

(CUPTI)

� parallel analysis engine to support interactive trace analysis

� Hierarchical process folding in the master timeline.

� Introduction of combinable peer-to-peer communication metrics in the per-

formance radar.

� Pre-selection of processes or threads prior to loading performance data.
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Work flow examples

Vampire trace traces both CUDA single threaded applications and multithreaded

that uses multi GPUs. A typical workflow is as follows:

1. Instrument the application using VampirTrace

2. Run application with an appropriate test-set

Should only run for a few minutes

3. Analyze the trace file with Vampir GUI in the level of detail that is wished.

4. Analyze usage of GPU using Vampir trace:

Interaction with CPU

Kernel activity and GPU related metrics

5. GPU streams displayed as: CUDA[device:stream] process:thread

As an example : the following figures show how this program traces commu-

nication and computation activities for both single threaded and multithreaded

applications.
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CHAPTER 4

ANALYSIS OF COMPILER

RESTRUCTURING AND

OPTIMIZATIONS

4.1 Exploration of Automatic Optimization for

CUDA Programming

We proposed a CUDA kernel restructuring algorithm, a general strategy to achieve

maximum possible performance by better utilization of the machine. In CUDA,

the worker threads are identified by thread ID and being organized by blocks

which are identified by block ID. This identification is used in a kernel to define

a mapping of computations to threads (workers). The proposed restructuring

algorithm aimed at generating efficient CUDA kernels. It is based on the three

key concepts that are explained in detail in following subsections.
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4.1.1 Tiling

In CUDA the programmer has to explicitly transfer data from slow low-level

Global Memory (GM) which is visible by all SMs to a fast high-level shared

memory (ShM) within each SM. Tiling the code is to account for the small ShM

capacity. The execution style is based on transferring small amount of data fol-

lowed by data processing. While transforming the code, it is required to perform

proper calculation of effective address of array elements (results) based on the

workers identifiers which are the block ID and thread ID. It is required to design

an algorithm/mechanism that can be used to apply loop tiling on any CUDA

program with proper memory hierarchy optimizations. Tiling is guided by the

following steps:

1. Identification of proper tile size to be stored in shared memory based on the

limited capacity of ShM per kernel block.

2. Loop transformations and proper identification of range of outer and inner

loops.

3. Effective address calculations of the array elements to be accessed within

the loop iterations (see section 4.1.2).

4. Boundary check for avoiding the out of bound array index access.

5. Synchronization among loading of data into ShM, execution of operations,

and storing the results back into GM.
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4.1.2 Coalesced Global Memory Access

In this section, the objective is to restructure the code so that at each warp

execution access to GM is done according to a coalesced access pattern to amortize

the excessive access cost. Fetching a group of data elements which are stored

in distinct memories (coalesced access) is critical to amortize the high cost of

accessing GM compared to the speed of the logic. The key idea is to determine

all possible mapping.

In CUDA a 1-D kernel having NW threads is represented as a set of N blocks

each has W elements. To assign some work to each individual thread, each kernel

thread is identified by the block b to which it belongs to and some offset t, i.e.

thid = b.W + t or as a vector thid = (b, t)N,W ,where 0 ≤ b ≤ N − 1 and 0 ≤ t ≤

W −1. Suppose we have a 2-D array of U.V computation results which are stored

using row-major scheme as U rows and V columns, the address of the element

in row r and column c is EA = (r, c)U,V = r.U + c, where 0 ≤ r ≤ U − 1 and

0 ≤ c ≤ V − 1. Assigning a thread (worker) to compute a result requires defining

a mapping from the thread IDs onto the results so that when the SPMD program

is run, each thread uses its own ID in the code to determine the result that it

must compute. The mapping of threads IDs onto the result address admits a few

possible mapping solutions for EA = (r, c)u,v as computes:

1. EA = ((b, t)N,W , c)U,V — N ×W = U , each thread has one loop to compute

V results, no coalesced access

2. EA = (r, (b, t)N,W )U,V — N×W = V , each thread has to compute U results,
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coalesced access

3. EA = ((b, t′)N,W , (b′, t)N,W )U,V — N × W ′ = U and N ′ × W = V , each

thread has two loops (denoted by ’) to computes (U × V )/(N ×W ) results,

coalesced access

4. EA = ((b′, t)N ′,W, (b, t′)N,W )U,V — N ′ ×W = U and N ×W ′ = V , each

thread has two loops (denoted by ’) to computes (U × V )/(W ×N) results,

coalesced access

Note that a coalesced access takes place only when the offset, or second com-

ponent of EA, is mapped to the thread index, i.e. identified by offset t. The

reason is that warps are formed by successive thread IDs for any dimension, i.e.

according to row major organization. Table 4.1 shows the possible mappings of

CUDA for 1-D and 2-D kernels (blocks and threads) to a 2-D array of results of size

space N ×W with corresponding tile size (upper parameter) and coalesced (Yes)

or non-coalesced (No) accesses. Similar approach is used for higher dimension

kernels.

For example, assume a 2-D(U,U) array res() of results, and T × T as being

the tile size. Let’s use a 1D kernel defined by thid = (b, t)N,W . For 1-D kernel,

we may use the solution shown in the third row of Table 4.1. The corresponding

constraints leads to N=U/T blocks and each block has each W=T threads. The

effective address of a result res() is EA=(b*T+t’)*U+b’*T+t. Each kernel thread

consists of a double nested loop, the outer loop (t’: U/T iterations) and inner

loop (b’: T iterations). It is clear that access is coalesced because t is in the least
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1D Kernel 2D Kernel
thid = b.W + t = (b, t)N,W |0 ≤ b ≤ N − 1 thid = (bx.Wx + tx, by.Wy + ty)

and 0 ≤ t ≤ W − 1 = ((bx, tx)Nx,Wx , (by, ty)Ny ,Wy)—
EA = (r, c)U,V = r.U + c, 0 ≤ bx ≤ Nx− 1, 0 ≤ by ≤ Ny − 1

0 ≤ r ≤ U − 1 and 0 ≤ c ≤ V − 1 0 ≤ tx ≤ Wx− 1, 0 ≤ ty ≤ Wy − 1
EA = (r, c)U,V = r.U + c, 0 ≤ r ≤ U − 1

Note: X’ is a local loop within the thread and 0 ≤ c ≤ V − 1
((b, t)N,W , c)U,V U ((bx, tx)Nx,Wx , (by, ty)Ny ,Wy) 1

N.W=U No Nx.Wx=U, Ny.Wy=V No
(r, (b, t)N,W )U,V V ((by, ty)Ny ,Wy , (bx, tx)Nx,Wx) 1

N.W=V Yes Nx.Wx=U, Ny.Wy=V Yes
((b, t′)N,W , (b′, t)N,W )U,V (U.V)/(N.W) ((by, tx)Ny ,Wx , (bx, ty)Nx,Wy) 1

N.W’=U Yes Ny.Wx=U, Nx.Wy=V No
((b′, t)N,W , (b, t′)N,W )U,V (U.V)/(N.W) ((bx, ty)Nx,Wy , (by, tx)Ny ,Wx) 1

N’.W=U No Nx.Wy=U, Ny.Wx=V Yes

Table 4.1: Possible 1-D and 2-D Kernel mapping to a 2-D Array of results

significant position.

4.1.3 Resource Optimization

Within each SM, ShM is partitioned among active blocks which are assigned to

SM for simultaneous execution. Therefore the tile sizes must be selected such

that the tile data locality that must be loaded into ShM does not constrain the

maximum number of active blocks which can be assigned to an SM at a time.

The block size must be chosen less than or equal to tile size such that each

thread in a block loads one or more elements of a tile into ShM. This will reduce

instruction fetch and processing overhead of load instruction since the device

perform one instruction fetch for a block of threads which is in SIMT manner.

On the other hand, too large block sizes must be avoided limiting the number

of active blocks per SM due to large number of warps per block. The number of

active warps must be no less than the maximum warps per SM (for full occupancy)
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in any given SM to avoid limiting the number of active threads per SM. Active

Blocks can be calculated using equation 4.1.

Active Blocks = min

[
min

(⌈
Warp Per SM

Warp Per Block

⌉
,Max. Blocks per SM

)
min

(⌈
Shared Memory Per SM

Shared Memory Per Block

⌉
,Max. Blocks per SM

)
]
(4.1)

Here,

Warps Per Block =
Threads Per Block

Threads Per Warp
(4.2)

Shared Memory Per Block = Tile Size × Data Element Size

× Number of Data Elements to load for one result (4.3)

Warps Per Block =
256

32
= 8

Shared Memory Per Block = 256 × 4 × 2 = 2048

Active Blocks = min

[
min

[⌈ 32
8

⌉
, 8
]

min
[⌈ 16384

2048

⌉
, 8
]
]

= min

[
min

[
4, 8
]

min
[
8, 8
]
]

= min

[
4

8

]
= 4

Active Kernel Blocks Per SM(AKBPSM) =
TotalKernelBlocks

TotalSMs
(4.4)

Here, Total Kernel Blocks = Application Space Size/Tile Size

S − Cycles =
Active Blocks × Threads Per Block

SPs per SM
(4.5)

For example, if Threads per Block is 256, Tile Size is 256, Data Element Size is
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4 bytes, and Number of Data Elements to load for one result is 2, then the Active

Blocks is 4. Suppose Warps Per SM is 32, Shared Memory Per SM is 16384, and

Max. Blocks Per SM is 8. Therefore the number of active blocks that can be

handled by an SM at a given time can be calculated using eq. 4.1.

To expose to peak performance, the application threads must be massively

and uniformly spread over the SMs so that the only performance saturation comes

from mapping the application to the GPU. Furthermore, peak performance will be

expected because all the SM and SPs are involved in the execution. Since, there

are two levels of kernel block and threads scheduling in the device. The blocks

are first scheduled to be executed on each SM and then each SM schedules the

individual threads within a block to multiple SPs within the SM based on selecting

one warp at a time. The repetitions due to first scheduling can be analysed as

average kernel blocks per SM and the repetitions due to second scheduling as small

cycles (S-Cycles) which occur due to limited number of SPs (Thread Processors)

that can execute one thread at a time.

These repetitions should satisfy the following conditions to achieve peak per-

formance:

1. Both AKBPSM and S-Cycles should be greater than or equal to 1.

2. S-Cycles should be an integer value to balance the threads among multiple

SPs.

3. S-Cycles should be as large as possible.

4. AKBPSM should be the least possible to minimize serialization.
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4.1.4 Proposed CUDA Restructuring Algorithm

The proposed restructuring tool algorithm (RTA) converts a C source loop into

an optimized CUDA Kernel. RTA carry out loop tiling (Section 4.1.1), complex

address transformation to implement coalesced global memory access (Section

4.1.2), and a set up the kernel parameters based on solving the resource constraints

equations (Section 4.1.3). The proposed RTA restructuring algorithm is based on

the following steps:

Step 1- Kernel dimension and thread granule size

1. Kernel Dimension: map kernel dimension to the dimension of the compu-

tation. Implement the kernel with parametric number of blocks and number

of threads in a block.

2. Thread Granule Size: If for each result [Comp./Comm.=1/s ¿ Threshold]

then each thread is assigned one result, i.e. size of kernel is identical to size

of results, else each thread computes s results (size of kernel is 1/s the size

of result), where Comp. is time to compute a result and Comm. is time to

fetch operands for a result.

Step 2-Loop Tiling and Coalesced Access

1. Symbolic Tiling: Tile the resulting loop (or loops) by generating all pos-

sible tiled loop arrangements.

2. Tiled Solutions: Select one or more tiled arrangements.
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3. Coalesced Access: swap Addresses for getting thread identifier in LSB

position, e.g. successive threads in a warp access successive memory banks.

Step 3- Resource Optimization

1. Kernel, Block, and Tile Sizes: Compute the best possible combination

of Threads per block (TPB) and the Tile Size (TS) to get the optimal

distribution of blocks and threads among SMs and SPs respectively. We

need to generate all possible TPB and TS, and their respective Warps Per

Block (WPB) and Shared Memory Per Block (ShMPB) using the eqs. (4.2

and 4.3).

2. Active Blocks: Identify Active Blocks using eq. 4.1 for each of the com-

bination of TPB and TS

3. S-Cycle: Calculate S-Cycles for each of the combinations using eq. 4.5 and

select the combinations that have the maximum value.

4. Kernel Block / SM: Calculate AKBPSM for the selected combinations

and the one that has the minimum value of AKBPSM will give the best

performance.

In section 4.1.7, we present an example for converting a C loop into an opti-

mized CUDA Kernel.
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4.1.5 Algorithm Complexity

In general, the proposed algorithm follows 3 simple steps to convert a C source

loop into an optimized CUDA kernel.

In step 1 of the algorithm, the mapping of the largest array dimension (Nc), in

the computation, to the kernel dimension (Nk) is basically O(1) except when Nc

exceeds 3 (largest kernel dimension) in which case it becomes O(Nc/3) as Nc/3

different kernels must be created for the computation. Similarly, if the condition

in the thread granule size is not satisfied, a few results (s) are bundled in one

thread and k steps are needed to check for the new thread coalesced memory

access, in total O(k ∗Nc/3) steps are needed.

In step 2, typically N x D possible tiled loop arrangements can be created

where N is the possible tile sizes and D is the array dimension that needs to be

partitioned in tiles. But this can be reduced to focus one a subset of tiled loop

arrangements. After finding the required loop arrangements the array addresses

can be converted into coalesced access in I steps where I is the number of non-

coalesced array addresses within the tiled loop.

In step 3, finding the optimal values of TPB and TS takes a brute-force ap-

proach to search over all the possible combination of TPB and TS. The program-

mer has to compute M x N records of calculated parameters as identified in step

3 of section 4.1.4 where M is the possible values of TPB and N is the possible

values of TS. So, the overall algorithm complexity is O(M x N).
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4.1.6 Proof of Correctness

The correctness of the results of each converted application using the algorithm are

guaranteed by comparing with the results of serial version of each application on

CPU using the subset of the problem sizes. The result showed that our conversions

produce correct resultant values. We have also trace the resultant matrix indices

with the mapping of block and thread ids which are also found to be corrected.

4.1.7 Example

In this section, we will show the working steps of writing a matrix multiplication

application from the sequential code (Code Listing 4.1, for N x N matrices) to

optimized CUDA kernel.

Step 1: a 2-D kernel dimension is selected to match with problem dimension

where each thread is mapped to computing one result. Due to the limited data

locality and few arithmetic operations in the statement, each thread will compute

one resultant element C[i][j].

Listing 4.1: Matrix Multiplication Sequential Code

void matrix_multiply(float **C, float **B, float **A, int

N)

{

for(int i=0; i < N; i++)

for(int j=0; j < N; j++){

C[i][j] = 0;

for(int k=0; k < N; k++)

C[i][j] += A[i][k] * B[k][j];

}

}
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Step 2: Code Listing 4.2 shows the tiled version of Code Listing 4.1 by using

general strategy of loop tiling for uniprocessors that is split each loop of a nested

loop-set into a pair of adjacent loops in the loop nest, with the outer loop (tiling

loop) traversing tiles (blocks), and the inner loop (intra-tile loop) covering the

iteration points within the tile. Code Listing 4.3 shows the corresponding CUDA

kernel implementation using 2D blocks and threads that maps the outer four loops

of Code Listing 4.2 to the blocks and threads dimensions in Code Listing 4.3. At

this stage, accessing to matrix C and B are satisfying the mappings of coalesced

memory access as shows in second row of 2D kernel mappings in Table 4.1 while

access to matrix A is not coalesced.

Code Listing 4.4 shows the modified kernel to perform coalesced loads of matrix

A and B using shared memory and coalesced stores to the resultant matrix C. The

thread identifier is used as a linear index so that successive threads in a warp will

access neighbouring memory modules. Here, we are assuming the same dimensions

for thread blocks and matrix tiles. We also need to add barrier synchronization

among threads of the same block using syncthreads() between tiles load and

compute statement within the traversal of all tiles of matrices A and B. Also a

barrier is required before storing the resultant tile of matrix C due to difference

in the traversal order of load/store and computation statements.

Step 3: For Tesla C2070 using the resource optimization strategy as explained

in section 4.1.3, we found optimal values for threads per block and tile sizes as

TPB = 32 * 16 512 and TS = 32 * 64 = 2048. Code Listing 4.5 shows the modified
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kernel of Code Listing 4.4 to handle the case of TPB < TS, for this we need to

add loop for each load, compute and store statement to correctly load the whole

tile, compute the results, and store the whole resultant tile to the destination.

Listing 4.2: Matrix Multiplication Tiled Version

void tiled_matrix_multiply(float **C, float **B, float **

A, int N)

{

for(int by=0; by < N; by+= TILE_Y)

for(int bx=0; bx < N; bx+= TILE_X)

for(int ty=0; ty < TILE_Y; ty++)

for(int tx=0; tx < TILE_X; tx++)

for(int bk=0; bk < N; bk+= TILE_X)

for(int k=0; k < TILE_X; k++)

C[by+ty][bx+tx] = A[by+ty][bk

+k] * B[bk+k][bx+tx];

}

Listing 4.3: Matrix Multiplication CUDA Kernel

__global__ void

tiled_matrix_multiply(float *C, float *B, float *A, int N

)

{

int by = blockIdx.y * TILE_Y;

int bx = blockIdx.x * TILE_X;

int ty = threadIdx.y;

int tx = threadIdx.x;

for(int bk=0; bk < N; bk+= TILE_X)

for(int k=0; k < TILE_X; k++)

C[(by + ty) * N + bx + tx] = A[(by + ty) * N

+ bk + k]

* B[(bk + k) * N

+ bx + tx];

}

Listing 4.4: CUDA Kernel with Coalesced Memory Access

__global__ void coalesced_matrix_multiply(float *C,

float *B, float *A, int N)

97



{

int by = blockIdx.y * TILE_Y;

int bx = blockIdx.x * TILE_X;

int ty = threadIdx.y;

int tx = threadIdx.x;

float Csub =0;

__shared__ float As[TILE_Y ][ TILE_X ];

__shared__ float Bs[TILE_X ][ TILE_X ];

for(int bk=0; bk < N; bk+= TILE_X){

As[ty][tx] = A[(by + ty) * N + bk + tx];

Bs[ty][tx] = B[(bk + ty) * N + bx + tx];

__syncthreads ();

for(int k=0; k < TILE_X; k++)

Csub += As[ty][k] * Bs[k][tx];

}

__syncthreads ();

C[(by + ty) * N + bx + tx] = Csub;

}

Listing 4.5: Optimized CUDA Kernel

__global__ void gen_coalesced_matrix_multiply(float *C,

float *B, float *A, int N)

{

int by = blockIdx.y * TILE_Y;

int bx = blockIdx.x * TILE_X;

int ty = threadIdx.y;

int tx = threadIdx.x;

float Csub[TILE_Y/BLOCK_Y ];

__shared__ float As[TILE_Y ][ TILE_X ];

__shared__ float Bs[TILE_X ][ TILE_X ];

for(int bk=0; bk < N; bk+= TILE_X){

for(int i=0; i < TILE_Y/BLOCK_Y; i++){

As[ty + i * BLOCK_Y ][tx] = A[(by + ty + i *

BLOCK_Y) * N + bk + tx];

}

for(int i=0; i < TILE_X/BLOCK_Y; i++){

Bs[ty + i * BLOCK_Y ][tx] = B[(bk + ty + i *

BLOCK_Y) * N + bx + tx];

}

__syncthreads ();

for(int i=0; i < TILE_Y/BLOCK_Y; i++)

for(int k=0; k < TILE_X; k++)

Csub[i] += As[ty + i * BLOCK_Y ][k] * Bs[k

][tx];

}
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__syncthreads ();

for(int i=0; i < TILE_Y/BLOCK_Y; i++)

C[(by + ty + i * BLOCK_Y) * N + bx + tx] = Csub[i

];

}

4.1.8 Performance Evaluation

Non-Coalesced Vs. Coalesced Global Memory Access

Figure 4.1: Matrix Multiplication using Shared Memory with (a) Non-Coalesced
Global Memory Access and (b) Coalesced Global Memory Access

Figure 4.1 shows the GPU throughput (GFLOPS) of two 2D kernel mapping

solutions for the matrix multiply. These solutions correspond to a tiled loop with

and without coalesced GM access which are illustrated in the 2nd columns of Table

4.1: Possible 1-D and 2-D Kernel mapping to a 2-D Array results at the 2nd (No)

and 3rd (Yes) rows, respectively. According to the solution (3rd row), a tile is

first loaded into ShM from GM using a coalesced access and do the computations
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while data is in ShM. As in coalesced global memory access, threads in half warp

(16 threads) access consecutive memory locations in one cycle so reducing the

memory accesses by an ideal factor of 94%.The above solution allows reducing the

program execution time by 87.87%.

Even with no coalesced GM memory access, copying a tile from GM onto ShM

before execution is faster (about 22%) than loading the SM registers directly from

GM. Figure 4.2 shows the corresponding throughput (GFLOPS). This reduction

in time is due to the data re-use in shared memory. So, it is highly recommended

to do tiling with the use of shared memory when the application needs to re-use

the data among different loop iterations:

LG→R : Data Loading to Registers directly from Global Memory

LG→ShM→R : Data Loading to Registers from Global Memory via Shared Memory with data re − use

LG→R > LG→ShM→R

Block Sizes Comparison

We refer to Resource Optimization described in Section 4.1.3. Increasing the

number of threads per block may decrease the performance due to restriction in

the concurrent number of blocks per SM which reduces SM capacity utilization.

A 256-thread block (option 1) has 8 warps each has 32 threads. Thus each SM

will be assigned 4 blocks at a time. While a 484-thread block (option 2) has 16

warps leading each SM to be assigned 2 blocks at a time. Comparing the above two
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Figure 4.2: Matrix Multiplication using Computations with (a) Global Memory
and (b) Shared Memory

options, it is clear that option 1 provides larger S-cycles and smaller AKBPSM.

Here, option 1 represents a case for the best possible resource utilization. Figure

4.3 shows the GPU throughput (GFLOPS) for both options in which the solution

corresponding to option 1 is more than 5 times faster than that corresponding to

option 2.

4.1.9 Application Results Comparison

Matrix Multiplication

We have analysed the structure of matrix multiplication kernels using CUDALite

[11] approach and NVIDIA SDK approach [22]. Both of these implementations

used arbitrary values for defining threads per block (TPB) and tile size (TS) which

are not optimal values in terms of resource optimization as we have explained in
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Figure 4.3: Matrix Multiplication using only global memory with different number
of threads per block (a) 16 x 16 = 256 threads/block and (b) 22 x 22 = 484
threads/block

section 4.1.3. In CUDALite, each thread work on the entire row of the tile resulting

in very few threads per block (TPB = 32 as shown in Table 4.2 that only 1 warp

per block) which is not sufficient to hide latency of the global memory transfers.

Also, in CUDALite, a tile allocation is also done for results which causes large

shared memory usage per thread block that restricts the number of Active Blocks

(AB = 1, see Table 4.2, can be calculated using eq. 4.1) that highly reduces the

S-Cycles to 1. In NVIDIA SDK approach, 2D thread blocks of 16 x 16 dimensions

is defined with same tile sizes so each thread work on one element of each tile

but these values produces large number of average kernel blocks per SM which

causes increased overhead of blocks allocation and thus limited performance. The

optimal value of TPB and TS for Tesla C2070 GPU are 512 and 2048 respectively

as proposed by our restructuring algorithm and gives the minimum execution time
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in comparison of the other approaches.

Tesla C2070 (N = 2048 x 2048)
TPB TS AB TKB S-Cycles AKBPSM Exec. Time

Restructuring Algorithm 512 2048 3 2048 48 146.2857143 2.4486
NVIDIA SDK 256 256 6 16384 48 1170.285714 2.6268

CUDALite 32 1024 1 4096 1 292.5714286 21.2396

Table 4.2: Parameters comparison of different implementations of Matrix Multi-
plication

Furthermore, we have applied our resource optimization technique as explained

in section 4.1.3 on Volkov matrix multiplication algorithm [19] and also on matrix

multiplication kernel generated by GPGPU compiler [16]. In both cases, our

restructuring algorithm selects optimal values of TPB and TS. Table 4.3 shows the

results of application of resource optimization on Volkov matrix multiplication and

Table 4.4 shows the application of resource optimization on matrix multiplication

kernel by GPGPU compiler.

Quadro FX 7000 (N = 4096 x 4096)
TPB TS AB TKB S-Cycles AKBPSM Exec. Time

Restructuring Algorithm 256 4096 4 4096 32 256 0.2520
Volkov-MM 64 1024 8 16384 16 1024 0.2609

Table 4.3: Parameters comparison of Volkov MM implementations

Tesla C2070 (N = 2048 x 2048)
TPB TS AB TKB S-Cycles AKBPSM Exec. Time

Restructuring Algorithm 256 1024 3 4096 24 292.5714286 0.5561
GPGPU Compiler - MM 256 256 3 16384 24 1170.285714 0.5585

Table 4.4: Parameters comparison of matrix multiplication kernel generated by
GPGPU

Matrix Scaling

We have also analysed the matrix scaling kernel shown as an example in CUDALite

[11] paper. We have found similar problems of limited number of active blocks due
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to large shared memory usage and also large number of average kernel blocks per

SM due to small number of threads per blocks as explained in the previous section

4.1.3 in the case of matrix multiplication. The optimal value of TPB and TS for

Tesla C2070 GPU are 512 and 4096 respectively as proposed by our restructuring

algorithm (see Table 4.5) and gives the minimum execution time in comparison

of the CUDALite approach.

Tesla C2070 (N = 2048 x 2048)
TPB TS AB TKB S-Cycles AKBPSM Exec. Time

Restructuring Algorithm 512 4096 3 1024 48 73.14285714 0.0014
CUDALite 32 1024 1 4096 1 292.5714286 0.0096

Table 4.5: Parameters comparison of different implementations of Matrix Scaling

Matrix Transpose

NVIDIA provides optimized kernels of matrix transpose by analysing the archi-

tectures of shared memory and global memory. In these optimizations, tiles are

allocated in shared memory in such a way that the access to the shared memory

by different threads at the same time should be free from shared memory bank

conflicts. Furthermore, access to global memory by concurrent thread blocks will

be done in different partitions of global memory to load the tile from the source

matrix and store the tile into transposed matrix. We have applied our resource

optimization strategy to two different matrix transpose kernels as provided in

NVIDIA SDK. TPB = 512 is obtained as an optimal value for threads per block

that maximize S-Cycles (see Table 4.6 and 4.7) and hence minimize the execution

time in comparison of the defined parameters in NVIDIA documentation.
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Quadro FX 7000 (N = 2048 x 2048)
TPB TS AB TKB S-Cycles AKBPSM Exec. Time

Restructuring Algorithm 512 1024 3 4096 48 256 0.0776
NVIDIA SDK 256 1024 5 4096 40 256 0.1084

Table 4.6: Parameters comparison of Matrix Transpose kernels with no shared
memory bank conflicts

Quadro FX 7000 (N = 2048 x 2048)
TPB TS AB TKB S-Cycles AKBPSM Exec. Time

Restructuring Algorithm 512 1024 3 4096 48 256 0.0800
NVIDIA SDK 256 1024 5 4096 40 256 0.1234

Table 4.7: Parameters comparison of Matrix Transpose kernels with diagonal tiles
mapping to blocks to avoid partition camping

Matrix Vector Multiplication

We have also applied our resource optimization technique as explained in section

4.1.3 on matrix vector multiplication kernel generated by GPGPU compiler [16].

In this case also, our restructuring algorithm selects optimal values of TPB and

TS. Table 4.8 shows the results of application of resource optimization on matrix

vector multiplication kernel by GPGPU compiler.

Quadro FX 7000 (N = 2048 x 2048)
TPB TS AB TKB S-Cycles AKBPSM Exec. Time

Restructuring Algorithm 64 256 8 65536 16 4096 0.0008
GPGPU Compiler - MV 16 256 8 65536 4 4096 0.0012

Table 4.8: Parameters comparison of matrix-vector multiplication kernel gener-
ated by GPGPU compiler

4.2 CUDA Kernel Optimizations

CUDA kernel can be optimized in many possible ways with good understand-

ing of the needs of the application. NVIDIA suggests a cyclic process namely

APOD (Asses, Parallelize, Optimize, Deploy) [55] to help application developers
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Type Optimization

Manual

Vectorization
Texture Fetching

Coalesced Global Memory Access
Kepler Shuffle Instructions

User Driven

Loop Collapsing
Thread / Thread-Block Merge

Parallel Loop Swap
Strip Mining

Bank Conflict Free Shared Memory Access
Using Read Only Data Cache

Compiler
Common Sub-Expression Elimination

Loop Invariant Code Motion
Loop Unrolling

Table 4.9: CUDA Kernel Optimizations Categorizations

to rapidly identify the portions of their code that would most readily benefit from

GPU acceleration, rapidly realize that benefit, and begin leveraging the resulting

speedups in production as early as possible. Using APOD, a programmer can

apply and test the optimization strategies incrementally as they are learned. Op-

timizations can be applied at various levels, from overlapping data transfers with

computation all the way down to fine-tuning floating-point operation sequences.

We have explored several optimizations that can be categorized into three

classes based on their application:

1. Manual: This set of optimizations can only be applied by the programmer

himself through manual code analysis and modifications.

2. User Driven: This set of optimizations can be applied by an automatic

process/compiler providing few hints from the programmer.

3. Compiler: This set of optimizations is already applied within the current
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cuda compiler (nvcc) and applied automatically.

Table 4.9 categorizes these optimizations into different types.

4.2.1 Manual Optimizations

Vectorization improves the bandwidth utilization by using one of the vector

data types such as float2, float4, float8 in CUDA as structs with some special

data alignment [56, 57]. Global memory transactions in GPU are aligned to 128

bytes even if the actual data load is less than 128 bytes. So, if a specific thread

within a warp performs 8 loads of float data type with sequence of load instruc-

tions then the GPU perform 8 different memory transactions. On the other hand,

if a float8 type is used and perform single float8 load operation then it can be done

by only one global memory transaction. So, to improve global memory bandwidth

utilization, the programmer should use vector data types in the case when con-

secutive data loads are not aligned to 128 bytes. Texture Fetching utilized the

texture memory that is a read-only portion of memory in device memory (DRAM)

that has been cached (off-chip cache) on access [57, 56]. It has been accessible

by all threads and host. It is optimized for 2D spatial locality, so threads of the

same warp that read texture addresses that are close together achieve best perfor-

mance. Texture references that are bound to CUDA arrays can be written to via

surface-write operations by binding a surface to the same underlying CUDA array

storage. Reading from a texture while writing to its underlying global memory

array in the same kernel launch should be avoided because the texture caches are
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read-only and are not invalidated when the associated global memory is modified.

So, texture fetches from addresses that have been written via global stores in the

same kernel call returned undefined data. The data in texture can consist of 1,

2, or 4 elements of any of the following types: 1) Signed or unsigned 8, 16, or

32-bit integers, 2) 16-bit floating point values, and 3) 32-bit floating point values.

Arrays declared in texture memory can be used in kernels by invoking texture in-

trinsic provided in CUDA such as tex1D(), tex2D(), and tex3D() for 1D, 2D, and

3D CUDA arrays respectively. Before invoking a kernel that uses texture mem-

ory, the texture must be bound to a CUDA array or device memory by calling

cudaBindTexture(), cudaBindTexture2D(), or cudaBindTexturetoArray(). Coa-

lesced Global Memory Access refers to combining multiple memory accesses

into a single transaction [58]. Global memory is the slowest memory on the GPU.

Simultaneous global memory accesses by each thread of a half-warp (16 threads)

during the execution of a single read and write instruction are coalesced into a

single access. This is achieved based on the following conditions: 1) the size of

the memory element accessed by each thread is either 4, 8, or 16 bytes, 2) the

elements to be accessed form a contiguous block of memory, 3) the N th element is

accessed by the N th thread in the half-warp, does not affect if any thread in be-

tween not accessing the global memory that is divergent warp, and 4) the address

of the first element is aligned to 16 times the element’s size. Kepler’s Shuffle

Instructions perform data exchange between threads within a warp [59]. It is

more faster than the use of shared memory. This feature allows the threads of a
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warp to exchange data with each other directly without going through shared (or

global) memory. So, this can present an attractive way for applications to rapidly

interchange data among threads. There are four variants of shuffle instructions

in CUDA that are shfl(), shfl up(), shfl down(), and shfl xor(). Shuffle in-

structions can be used to free up shared memory to be used for other data or to

increase warp occupancy and to perform warp-synchronous optimizations (remov-

ing syncthreads()). All the shfl() intrinsics take an optional width parameter

which permits sub-division of the warp into segments. For example, to exchange

data between 4 groups of 8 lanes in a SIMD manner. If width is less than 32 then

each subsection of the warp behaves as a separate entity with a starting logical

lane ID of 0. A thread may only exchange data with others in its own subsection.

Width must have a value which is a power of 2 so that the warp can be subdivided

equally; results are undefined if width is not a power of 2, or is a number greater

than warpSize.

4.2.2 User Driven Optimizations

Loop Collapsing is a technique to transform some nested loops into a single-

nested loop to reduce loop overhead and improve runtime performance [60] specifi-

cally for irregular applications such as sparse matrix vector multiplication (spMV).

Such applications pose challenges in achieving high performance on GPU programs

because stream architectures are optimized for regular program patterns. It im-

proves the performance of the application in three ways: 1) the amount of parallel
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work (the number of iterations, to be executed by GPU threads) is increased 2)

inter-thread locality is increased 3) control flow divergence is eliminated, such that

adjacent threads can be executed concurrently in an SIMD manner [12]. Thread

and Thread-Block Merging enhance the data sharing among thread blocks

to reduce the number of global memory accesses [16, 61]. Thread-Block Merge

determines the workload for each thread block while Thread Merge decides the

workload for each thread. If data sharing among neighbouring blocks is due to a

global to shared memory (G2S) access, Thread-Block Merge should be preferred

to better utilization of the shared memory. When data sharing is from a global to

register (G2R) access, Thread Merge from neighbouring blocks should be preferred

due to the reuse of registers. If there are many G2R accesses, which lead to data

sharing among different thread blocks, the register file is not large enough to hold

all of the reused data. In this case, Thread-Block Merge should be used and shared

memory variables should be introduced to hold the shared data. In addition, if

a block does not have enough threads, Thread-Block Merge instead of Thread

Merge should also be used to increase the number of threads in a block even if

there is no data sharing. Thread Merge achieves the effects of loop unrolling.

It combines several threads’ workload into one thread (combining N neighbour-

ing blocks along column direction into one). By doing this, they can share not

only shared memory but also the registers in the register file. Furthermore, some

control flow statements and address computation can be reused, thereby further

reducing the overall instruction count. The limitation is that an increased work-
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load typically requires a higher number of registers, which may reduce the number

of active threads that can fit in the hardware. Parallel Loop Swap is used to

improve the performance of regular data accesses in nested loops [62, 12]. It uses

to transform non-continuous memory accesses within the loop nest to a continu-

ous memory access which is a candidate for the coalesced global memory access

optimization. Strip Mining splits a loop into two nested loops [63, 64, 65, 19].

The outer loop has stride equal to the strip size and the inner loop has strides

of the original loop within a strip. This technique is also used in loop tiling. In

loop tiling or loop blocking, loops are also interchanged after performing strip

mining to improve the locality of memory references that is why loop tiling is also

called strip-mine-and-interchange. Bank Conflict Free Shared Memory Ac-

cess improves performance by reordering the data into shared memory such that

the memory addresses requested by the consecutive threads in a half-warp should

be mapped to different memory banks of shared memory [66]. Shared memory

banks are organized such that successive 32-bit words are assigned to successive

banks and the bandwidth is 32 bits per bank per clock cycle. In GPUs, the warp

size is 32 threads and the number of banks is 16. So, a shared memory request for

a warp is split into one request for the first half of the warp and one request for

the second half of the warp. However, no bank conflict occurs if only one memory

location per bank is accessed by a half warp of threads. Using Read-Only Data

Cache, introduced in Kepler in addition to L1 cache, can benefit the performance

of bandwidth-limited kernels [67, 59]. This is the same cache used by the texture
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pipeline via a standard pointer without the need to bind a texture beforehand and

without the sizing limitations of standard textures. This feature is automatically

enabled and managed by the compiler, access to any variable or data structure

that is known to be constant through programmer use of the C99-standard “const

restrict ” keyword tagged by the compiler to be loaded through constant data

cache.

4.2.3 Compiler Optimizations

Common Sub-Expression Elimination is a compiler optimization technique

that searches for instances of identical expressions, evaluates to the same value,

and replace them with a single variable holding the computed value [68, 69]. It

enhances the application performance by reducing the number of floating point

operations. In CUDA, common sub-expression elimination can be used to avoid

redundant calculations for the initial address of an array. Loop Invariant Code

Motion (also called hoisting or scalar promotion) is a compiler optimization that

has been performed automatically [70, 46]. Loop invariant code is a set of state-

ments or expressions within the body of a loop that can be moved outside of the

body without affecting the semantics of the program. It makes loops faster by re-

ducing the amount of code that executes in each iteration of the loop. The CUDA

C compiler automatically applies this optimization technique to the PTX code.

Loop Unrolling is a compiler optimization technique that is applied for the

known trip counts at the compile time either by using the constants or templating
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the kernel [71]. NVIDIA compiler also provides a directive ’#pragma unroll’ to

explicitly activate the loop unrolling on a particular loop.

4.3 Analysis of GPGPU Framework

Not surprisingly, there is a growing research for reducing the difficulty of program-

ming GPU devices [72, 73, 74]. Even though the programming model of Compute

Unied Device Architecture (CUDA) offer a more programmer friendly interface ,

programming GPUs is still considered error-prone and complex, in comparison to

programming CPUs with standing parallel programming models, such as OpenMP

[75]. Most recently, quite a few directive-based GPU programming models have

been proposed from both the research community (hiCUDA [13], OpenMPC [76]

, etc.) and industry (PGI Accelerator [77], HMPP , R-Stream [78], OpenACC,

OpenMP for Accelerators [79], etc.). On the surface, these models appear to offer

different levels of abstraction, and expected programming effort for code restruc-

turing and optimization. Following are the details of optimizations that have been

implemented in some of the tools for GPU programming found in literature.

4.3.1 CUDA-lite

The high burden of correctly exploiting the architecture of memory hierarchy for

performance gains in GPUs; motivated [11] to introduce CUDA-lite. It takes as

input a näıve CUDA code that treats the memory as a single entity instead of

a hierarchical one. The näıve CUDA code could be annotated with proposed
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extensions to maximize the efficiency of the transformation.

CUDA-lite does not affect parallelization decisions. It only operates under

the state of how the program got parallelized. CUDA-Lite performs the following

transformations:

� Inserts shared memory variables

� Performs loop tiling

� Generates memory coalesced loads and/or stores

Replaces global memory accesses by corresponding shared memory ones

4.3.2 hiCUDA

hiCUDA [13] is a directive based language for programming NVIDIA GPUs.

hiCUDA stands for high-level CUDA. The authors intended an abstraction that

closely matches CUDA model. They wanted a CUDA with a new and simpler

directives set.

hiCUDA’s goal is not to automate optimizations, rather it is to make it easier

for the programmer to program CUDA, for example it provides simple directives to

ease data transfers between CPU and GPU. The programming model of hiCUDA

still depends on explicit optimizations by the programmer, such as utilizing shared

memory or constant memory.

hiCuda does very few implicit optimizations. Namely it tries to minimize the

size of shared memory used based on the life time of shared memory variables.
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Also they restrict the distribution strategy for loops over threads to be cyclic for

memory coalescing purpose.

4.3.3 OpenMPC (OpenMP to GPGPU)

[76] had proposed a set of directives to be considered along with OpenMP direc-

tives [79]. Their work would translate such annotated code into CUDA.

OpenMPC does the following types of compiler optimizations for GPU memory

access:

1. Techniques to optimize data movement between CPU and GPU. The authors

developed two types of inter-procedural dataflow analysis to accomplish the

following:

(a) Overriding transfers to GPU global memory when the global memory

already have up to date values of relevant variables

(b) Overriding transfers to CPU from GPU memory if the relevant value

wasn’t used in the CPU part before it is written.

2. Techniques to enhance inter-thread locality

(a) Parallel loop swap

(b) Loop collapsing

OpenMPC also does optimizations via auto tuning. The auto tuner is a pro-

totype that the authors built to automatically analyze the program and optional

user settings.
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4.3.4 PGI

The PGI Accelerator programming model [77] is a directive-based model target-

ing general hardware accelerators, even though it currently supports only CUDA

GPUs. The PGI model allows very high-level abstraction similar to OpenMP; at

the minimum level, the user just has to specify regions, called Accelerator Com-

pute Regions, where loops will be compiled into accelerator kernels. The user

can do this by inserting directives into the host program without any additional

modication on the original code structures; all the other details, such as actual

accelerator kernel-code generation, accelerator initialization, data transfers amid

a host and an accelerator, or startup and shutdown of an accelerator, are handled

by the PGI Accelerator compiler. The PGI model also allows users to provide

additional information to the compilers, such as specification of accelerator’s lo-

cal data region, bounds of accessed arrays, guidance on mapping of loops onto

an accelerator, and so on. The PGI Accelerator directives can be categorized

as two types: directives for managing parallelism and those for managing data.

The directives for parallelism guide types of parallelism to execute loops, and the

ones for data deal with data traffic between the host and the accelerator. One

good feature in the PGI Accelerator model is the data region. The data region

sets boundaries where data are moved between the host and the accelerator; if a

single data region encloses many compute regions, the compute regions can reuse

the data already allocated on the accelerator. This can dramatically reduce the

overhead of data movement and is important for optimized performance.
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4.3.5 OpenACC

OpenACC, which is initiated by a consortium of CAPS, CRAY, PGI, and

NVIDIA, is the first standardization effort toward a directive-based, general ac-

celerator programming model portable across device types and compiler vendors.

[80] tested the PGI version of OpenACC.

Like PGI Accelerator, OpenACC has two types of directives: directives for

managing parallelism and directives for managing data. However, the OpenACC

directives are further extended to express additional features not available in the

PGI Accelerator model.

4.3.6 HMPP

HMPP [81] is another directive-based, GPU programming model targeting both

CUDA and OpenCL. It also provides very high-level abstraction on GPU pro-

gramming, similar to PGI Accelerator.

HMPP model is based on the concept of codelets, functions that can be re-

motely executed on hardware accelerators like GPUs. Because the codelet is a

base unit containing computations to be offloaded to GPUs, porting existing ap-

plications using HMPP often requires manual modication of code structures, such

as outlining of a code region or re-factoring existing functions. For optimized data

management, HMPP uses the concept of a group of codelets.

By grouping a set of codelets, data in the GPU memory can be shared among

different codelets, without any additional data transfers between CPU and GPU.
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Combining the codelet grouping with HMPP advanced load/delegated store di-

rectives allows the same data-transfer optimizations as the data region in the PGI

model. One unique feature in the HMPP model is that the same codelet can be

optimized differently depending on its call sites.

4.3.7 R-Stream

R-Stream [78] is a high-level, architecture-independent programming model that

is based on the polyhedral model [82]. It targets various architectures, such as

STI Cell, SMP with OpenMP directives, Tilera, and CUDA GPUs.

R-stream performs affine scheduling to transform the code into both fine-

grained and coarse grained parallelism. They choose not to enable multi-buffering

since in GPUs, latency hiding is done automatically by hardware scheduler.

For global memory coalescing, in current implementation, the authors choose

to not perform data layout transformations on an array residing in device memory

(because they need to be carefully considered). They perform data re-layouts on

transferred local copies of the arrays, at the time of the transfer. This mechanism

can easily be extended to handle re-layouts in device memory at the time of copy

from host to device memory.

They also transfer imperfect loop nests into perfect ones via loop interchange,

strip-mining and fusion.

They also perform shared memory promotion and tiling. They perform tiling

via a communication generation phase when there is a need to explicitly transfer
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data between different memories.

For enhanced memory utilization, privatization is performed so that each

thread writes to its own variables.

Loop fusion and unrolling is done to reduce control overhead. Other techniques

mentioned in paper are loop fission, loop interchange and strip-mining and data

permutation, but it is not clear from the paper whether they apply them and in

what context.

4.3.8 CUDA-CHiLL

CUDA-CHiLL accepts a collection of commands that is called a transformation

recipe or a transformation strategy. This collection of commands provides a much

more abstract level than CHiLL [14]. The Proposed high level transformations

may be accompanied by low level CHiLL commands. Thus, each recipe is an indi-

vidual strategy for modifying the code structure. Every line within a transforma-

tion recipe describes a transformation to be applied to the input code. Typically,

CUDA-CHiLL abstractions combine many CHiLL commands in a single high-level

command.

Although CUDA-CHiLL depends on command based transformations com-

mands, applying these transformations still needs some optimization heuristics.

For memory hierarchy optimizations, the authors used adaptations from [83].

The following list summarizes the performance heuristics implemented in

CUDA-CHiLL:
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� Dependencies and Parallelization: the authors permute the loops in

the nest so that any loop carrying dependence is within a thread or a thread

block. In the latter case, thread synchronization must be inserted. Loops

representing blocks should not carry dependencies, as this would require

costly global synchronization. Different levels of sub-loops within a loop

nest can be parallelized as long as they use the same thread block size and

proper synchronization are inserted.

� Global Memory Coalescing: All data is initially copied into global mem-

ory. Therefore, the authors select a loop order such that the x dimension for

the thread index is linearly accessing the bulk of its data in global memory,

resulting in coalesced access. If global memory coalescing is not possible

due to interference with another array accessed in a different order, an array

that is reused across threads may be copied by different threads into shared

memory in a coalesced order, and accessed directly from shared memory.

� Shared Memory and Bank Conflicts: Data shared across threads, either

as a result of the global memory access coalescing optimization above, or

through significant inherent reuse, are placed in shared memory. Shared

memory accesses need to avoid bank conflicts along the thread index,

and two-dimensional arrays that are loaded into shared memory linearly

along one dimension and accessed linearly in another dimension will require

padding of one of the dimensions to avoid shared memory bank conflicts.

� Maximize Reuse in Registers: Registers provide low latency storage
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local to a thread, and data that are reused within a thread can benefit

by being placed in registers. Due to the large register file size, tile sizes

for register tiling are also good candidates for partitioning the computation

across streaming multiprocessors, thus avoiding an additional level of tiling

and overhead.

The authors also suggested using an auto-tuning framework to choose among

resulting codes from various possibilities of parameters.

To understand the level of abstraction that each programming model/com-

piler provides, Table 4.10 summarizes the features and optimization approaches

acquired in these compilers. Here, Explicit means that the feature is enabled by

some user provided hints to the compiler, Implicit indicates that the compiler au-

tomatically handles the feature without user intervention, Indirect shows that the

users can manually control the compiler to use the feature, and Imp-dep means

that the feature is implementation dependent. The table shows that R-Stream

provides the highest level of abstraction in comparison to other models/compilers

found in literature as most of the features are handled implicitly in R-Stream. It

also shows that hiCUDA and CUDA-CHiLL provide the lowest level of abstraction

among other tools as the programmer has to control most of the features explic-

itly. However, lower level of abstraction may be beneficial in some cases that allow

enough control over various optimizations and features specific to the underlying

GPU architecture to achieve optimal performance. On the other hand, high level

of abstraction sometimes limits the application coverage of the tool. RT-CUDA
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provides the same level of abstraction as R-Stream but also provides user-defined

configurations to control various optimizations and features of the underlying GPU

architecture to explore the effects of different kernel optimizations.

Features CUDA-lite hiCUDA OpenMPC PGI OpenACC HMPP R-Stream CUDA-CHiLL RT-CUDA
Code regions to be offloaded None Structured blocks Structured blocks Loops Structured blocks Loops Loops Loops Structured blocks

Loop Mapping None Parallel Parallel Parallel Vector Parallel Vector Parallel Parallel Explicit Parallel

Data Management
GPU memory allocation and free

None Explicit Explicit/Implicit Explicit/Implicit Explicit/Implicit Explicit/Implicit Implicit Explicit Implicit
Data movement between CPU and GPU

Compiler Optimizations
Loop Transformations Explicit - Explicit Implicit

Imp-dep
Explicit

Implicit Explicit
Explicit/Implicit

Data Management Optimizations Implicit Implicit Explicit/Implicit Explicit/Implicit Explicit/Implicit Implicit

GPU-specific features
Thread Batching

Implicit Explicit Explicit/Implicit Indirect/Implicit
Indirect/Implicit Explicit/Implicit Explicit/Implicit Explicit Implicit

Utilization of special memories Indirect/Imp-dep Explicit Implicit None Indirect/Explicit

Table 4.10: Summary of Features and Optimizations in Different Tools

4.4 RT-CUDA Design Specifications

To target the complex nature of the GPU architecture, programs often have to

go through profound transformations. GPUs featured a massive number of active

threads running in a machine that is primarily designed to process applications

with abundant data parallelism. RT-CUDA is a software tool to integrate complex

loop transformations for parallelism and flexible data movement to fully utilize

the GPU architecture features that most impact performance. Decomposing the

computational space is required to match the levels of parallelism on the GPU

in addition to explicitly being aware of the two levels of parallelism of the GPU

represented by the two grid dimensions and three block dimensions. The device

memory is an explicit large flat memory with very small caches at the compute

modules without cache coherence. To hide the latency of global memory fetches,

some data may need to be copied to shared memory or registers. Synchronization
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across thread blocks is needed for many iterative solvers. The optimal optimiza-

tion strategy may not be the obvious one, so various different versions of the

program may need to be tested and evaluated using an auto-tuning procedure.

The ability of invocation of optimized external Libraries offers substantial perfor-

mance advantages over regular code translation. Following are the list of various

optimization specifications that require programming efforts to assist the compiler

in generating an efficient CUDA program that utilizes the GPU features in an ef-

fective manner to achieve best possible application performance. Figure 4.4 shows

the RT-CUDA code transformation strategy to handle each of these optimization

specifications, see Chapter 5 for code transformation details.

Input/Output GPU Memory Allocation

� Allocating memory for GPU input and output

� Explicit transfer of data between host (CPU) and device (GPU)

Computation Partitioning and Decomposition

� Nested loop computation and iteration space partitioning to match the GPU

index space dimensions with two levels of parallelism that block-level and

thread-level

� Parallel computations construction by subdividing the iteration space of a

loop into blocks or tiles with a fixed maximum size to fit in the cache/shared

memory
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� Setting the optimal shape and size of the tile to take advantage of the

target GPU memory architecture, maximizing reuse while maintaining a

data footprint that meets memory capacity constraints

� De-constructing an iteration space into a control loop and tile loop. Also,

perform related transformations such as array transformation, loop parti-

tioning, and prefetching using shared memory

� Mapping threads to results (thread granularity), block organization and

dimension, kernel organization and dimension

Locality optimizations and Datacopy Transformations

� Loop transformations that target the efficient use of the deep memory hier-

archy such as copy of data into lower-latency portions of the GPU memory

hierarchy as compared to global memory with the objectives of balancing

thread computation time versus data transfer time

� Explicit copy of threads shared data in shared memory within the SM to

get benefit from reuse and low-latency accesses from concurrently running

threads

� Use of special portions of GM that are constant and texture memories to

hide the high latency of GM fetches by utilizing constant and texture caches

respectively

� Efficient utilization of large size of the register file (16K, 32K, or 64K register
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per SM depending on the GPU architecture) to exploit significant reuse

within a thread

� The shared memory and the register bank in a SM are dynamically parti-

tioned among the active thread blocks running on SM. Therefore, register

and shared memory usages per thread block can be a limiting factor pre-

venting full utilization of execution resources.

Parallel Memory Bandwidth

� GM is organized as a 16-module parallel memory. According to the inter-

leaved storage scheme neighboring data elements are stored in contiguous

parallel memories. Threads within the same warp should be mapped to ac-

cess data that lies in distinct storages in the device memory so that multiple

thread warp accesses are coalesced whenever possible in global memory

� Data accesses in shared memory by different threads in a warp are serialized

if the data located in the same bank of memory. To avoid this serialization,

threads within the same warp should be mapped to access data that lies

in distinct memory banks to maximize data volume under the same access

latency

� Data access requests to global memory could be reordered in parallel by

multiple channels and banks. However, the memory bandwidth is efficiently

utilized when the accesses to the memory channels are balanced, without

congested channels
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Optimization of Architectural Parameters

� The parameters are the number of results computed per thread, number

of threads per block, number of blocks per kernel, and kernel dimension.

Searching the optimal combination of parameters is based on determining

their scope and searching the best combination by using analysis and auto-

tuning

� Computing resource management and machine occupancy is subject to a

complex set of constraints

Use of automatic compiler optimization and/or

programmer-guided optimization

� Guide the compiler for applying specific optimizations to a scope of code

such loop unrolling, kepler’s data cache utilization, common-sub expression

elimination, and etc.

Synchronization across SMs

� Synchronization across blocks is not supported directly in hardware, and is

costly and must be avoided unless absolutely required for program correct-

ness

� a low-cost barrier intra-block call permits synchronization between threads

within a block
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� CUDA model does not support global synchronization mechanisms

� Synchronization across thread blocks can be accomplished only by returning

from a kernel call, after which all threads executing the kernel function are

guaranteed to be finished, and global memory data modified by threads in

different thread blocks are guaranteed to be globally visible

Invocation of Optimized external Libraries

� Some external libraries have been optimized at lower level programming and

may deliver substantial performance advantages over regular code optimiza-

tions

� NVIDIA cuBLAS library is optimized for dense linear algebra, while cuS-

PARSE is its counterpart for sparse arrays

� Library details are hidden from the user

� Efficient invocation of external libraries require full understanding of its

parameters and related implementation logic to select proper values for each

parameter
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Figure 4.4: RT-CUDA Code Transformation Strategy
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CHAPTER 5

CODE TRANSFORMATION

5.1 Review and Selection of Compiler Frame-

work

The design and implementation of a compiler is not a trivial task, it requires

tremendous amount of work and significant amount of patience to deal with de-

veloping quirks and hints in productions codes. Given the speed of the evolution

of new computer architectures specifically in the field of High Performance Com-

puting (HPC) and the amount of new languages that are being developed, a

significant amount of development and effort would be required to design ad-hoc

compilers to cover specific languages or to extend language features such as code

optimizations.
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5.1.1 YaCF

YaCF [84], Yet another Compiler Framework, is a compiler framework designed

to create source to source translators, code analysis tools, or just to teach com-

piler technology without the need of learning large pieces of code. It has been

developed in Python by taking advantage of its introspection capabilities and

inherent code flexibility to ease the writing of source transformations or manipu-

lations. Using a set of widely known object oriented patterns, implementing code

transformations in YaCF is only a matter of writing a few lines of code. Several

sub-classes, modules and packages have been included within YaCF to solve par-

ticular problems within source-to-source (StS) code translations. Following are

the key characteristics of the framework:

� A flexible parser: to explore several different annotation schemes, lan-

guage extensions and idioms, it provides a flexible front end where such

modifications could be done efficiently.

� Portability: it is possible to use the compiler on several different platforms,

from laptops to clusters. In addition, different users, such as students or

collaborators, will be able to use it without having to invest too much time

and energy in learning how to use it. The compiler is easily movable from

one machine to another and it has been written in a common and portable

language.

� Debuggability: the user will be able to run the StS process step by step

or be able to show what each phase is doing at any given point. One of the
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potential uses of this compilation framework is to teach compiler technology,

thus it an added feature to review or stop any process of the translation, so

the user can easily see what is going on. As such, the inclusion of a graphical

visualization of the Abstract Syntax Tree (AST) at any given moment would

be a plus

� Simplicity: powerful but simple object oriented approach.

The main objective of YaCF is to develop StS transformations. It gener-

ates the intermediate representation of the original source code in the form of

an augmented syntax tree (AST). A Symbol Table (ST) is used for information

to augment the AST. YaCF components have been grouped together into three

packages: FRONTEND, MIDDLEEND and BACKEND, through which the In-

ternal Representation (IR) of YaCF is used. Figure 5.1 illustrates the overall StS

transformation process.

Figure 5.1: Overall translation workflow executed by a typical YaCF driver

YaCF parses the input source to generate an IR (Front End Process), per-

forms the transformations (Middle End Process) and un-parsed (or re-written)
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the modified IR once again into the input language (Back End Process).

The code translation can be splitted into two separate steps implemented in

two class hierarchies:

1. Filter:searching for a particular pattern or idiom in the code.

2. Mutator: applying the desired transformation on the nodes matching the

criteria.

Complex transformations are performed using several nested Filters and Mu-

tators that are grouped together into a Runner class with source storage facilities

and code templates.

Examples:

Listing 5.1: A simple implementation of a Filter that will iterate through all the

declarations of a given

class ExampleFilter(GenericFilterVisitor):

""" Returns the first node matching the example node

"""

def __init__(self):

def condition(node):

if type(node) == c99_ast.Decl:

return True

return False

super(ExampleFilter , self).__init__(condition_func =

condition)

Listing 5.2: A more complex example of Filter where only those declarations inside

a particular function
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class ExampleFilter(GenericFilterVisitor):

""" Returns the first node matching the example node

"""

def __init__(self):

self._inside_foo = False

def condition(node):

if type(node) == c99_ast.Decl \

and self._inside_foo = True:

return True

return False

super(ExampleFilter , self).__init__(condition_func =

condition)

def visit_FuncDef(self ,node):

if node.name == "foo":

self._inside_foo = True

self.generic_visit(node.body)

self._inside_foo = False

Listing 5.3: Example of a Mutator that will apply a transformation to all decla-

rations within a subtree

class ExampleMutator(AbstractMutator):

""" Apply a mutation

"""

def filter(self , ast):

def is_decl:

if type(node) == c_ast.Decl:

return True

return False

return DeclFilter(ast , condition_func = is_decl)

def mutatorFunction(self , ast):

# .... do something here with the matching node

return ast

5.1.2 ANTLR

ANTLR [85] is a powerful parser generator that can be used to read, process,

execute, or translate structured text or binary file. It can be used to build all

sorts of languages, tools, and frameworks. Several commercial tools have been
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developed based on ANTLR such as Twitter search for query parsing, data ware-

house and analysis systems for Hadoop, SQL Developer IDE and its migration

tools in Oracle, and the NetBeans IDE parser for C++. From a formal language

description called a grammar, ANTLR generates a parser for that language that

can automatically build parse trees, which are data structures representing how

a grammar matches the input. ANTLR also automatically generates tree walkers

that you can use to visit the nodes of those trees to execute application-specific

code.

Implementing Language in ANTLR

To implement a language, an application has to be built that reads sentences and

reacts appropriately to the phrases and input symbols it discover. A language is

a set of valid sentences, a sentence is made up of phrases, a phrase is made up

of subphrases and vocabulary symbols. To react appropriately, the interpreter or

translator has to recognize all of the valid sentences, phrases and subphrases of

a particular language. Recognizing a phrase means we can identify the various

components and can differentiate it from other phrases. After recognition, the

application can perform a suitable operation for transformation/translation. Pro-

grams that recognize languages are called parsers or syntax analyzers. A grammar

is just a set of rules, each one expressing the structure of a phrase. The ANTLR

tool translates grammars to parsers that look remarkably similar to what an ex-

perienced programmer might build by hand. Grammars themselves follow the

syntax of a language optimized for specifying other languages.
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Parsing is done in two separate stages (as shown in Figure 5.2) that simulates

the working of a human brain to read text:

1. Lexical Analysis: the process of grouping characters into words or symbols

(tokens) is called lexical analysis or simply tokenizing. The program that

tokenizes the input is called a lexer. It can group related tokens into token

classes, or token types, such as INT (integers), ID (identifiers), FLOAT

(floating-point numbers), and so on. The lexer groups vocabulary symbols

into types when the parser cares only about the type, not the individual

symbols. Tokens consist of at least two pieces of information: the token

type (identifying the lexical structure) and the text matched for that token

by the lexer.

2. Parsing: the second stage is the actual parser and feeds off of the generated

tokens to recognize the sentence structure. By default, ANTLR generated

parsers build a data structure called a parse tree or syntax tree that records

how the parser recognized the structure of the input sentence and its com-

ponent phrases.

Figure 5.2: Parsing Stages
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The interior nodes of the parse tree are phrase names that group and identify

their children. The root node is the most abstract phrase name, in this case

stat (short for “statement”). The leaves of a parse tree are always the input

tokens. By producing a parse tree, a parser delivers a handy data structure to the

rest of the application that contains complete information about how the parser

grouped the symbols into phrases. Trees are easy to process in subsequent steps

and are well understood by programmers. Better yet, the parser can generate

parse trees automatically. By operating off parse trees, multiple applications that

need to recognize the same language can reuse a single parser. The other choice

is to embed application-specific code snippets directly into the grammar, which is

what parser generators have done traditionally.

Parse trees are also useful for translations that require multiple passes (tree

walks) because of computation dependencies where one stage needs information

from a previous stage. In other cases, an application is just a heck of a lot easier

to code and test in multiple stages because it’s so complex. Rather than re-parse

the input characters for each stage, we can just walk the parse tree multiple times,

which is much more efficient.

Building Language Applications using Parse Trees

To make a language application, we have to execute some appropriate code for

each input phrase or subphrase. The easiest way to do that is to operate on the

parse tree created automatically by the parser. The nice thing about operating on

the tree is that we’re back in familiar Java territory. There’s no further ANTLR
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syntax to learn in order to build an application.

As explained in the previous section, lexers process characters and pass tokens

to the parser, which in turn checks syntax and creates a parse tree. The corre-

sponding ANTLR classes are CharStream, Lexer, Token, Parser, and ParseTree.

The “pipe” connecting the lexer and parser is called a TokenStream. The diagram

below illustrates how objects of these types connect to each other in memory.

These ANTLR data structures share as much data as possible to reduce mem-

ory requirements. The diagram shows that leaf (token) nodes in the parse tree

are containers that point at tokens in the token stream. The tokens record start

and stop character indexes into the CharStream, rather than making copies of

substrings. There are no tokens associated with whitespace characters (indexes 2
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and 4) since we can assume our lexer tosses out whitespace.

The figure also shows ParseTree subclasses RuleNode and TerminalNode that

correspond to subtree roots and leaf nodes. RuleNode has familiar methods such

as getChild() and getParent(), but RuleNode isn’t specific to a particular gram-

mar. To better support access to the elements within specific nodes, ANTLR

generates a RuleNode subclass for each rule. The following figure shows the spe-

cific classes of the subtree roots for an assignment statement example, which are

StatContext, AssignContext, and ExprContext:

These are called context objects because they record everything we know about

the recognition of a phrase by a rule. Each context object knows the start and

stop tokens for the recognized phrase and provides access to all of the elements

of that phrase. For example, AssignContext provides methods ID() and expr() to

access the identifier node and expression subtree.

Given this description of the concrete types, one could write code by hand
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to perform a depth-first walk of the tree. Typical operations are things such as

computing results, updating data structures, or generating output. Rather than

writing the same tree-walking boilerplate code over again for each application,

though, the tree-walking mechanisms can be used that ANTLR generates auto-

matically.

Parse-Tree Listeners and Visitors

ANTLR provides support for two tree-walking mechanisms in its runtime library.

By default, ANTLR generates a parse-tree listener interface that responds to

events triggered by the built-in tree walker. The listeners themselves are exactly

like SAX document handler objects for XML parsers. SAX listeners receive no-

tification of events like startDocument() and endDocument(). The methods in a

listener are just callbacks that are used to respond to a checkbox click in a GUI

application.

Parse-Tree Listeners

To walk a tree and trigger calls into a listener, ANTLR’s runtime provides class

ParseTreeWalker. To make a language application, a ParseTreeListener imple-

mentation can be built containing application-specific code that typically calls

into a larger surrounding application.

ANTLR generates a ParseTreeListener subclass specific to each grammar with

enter and exit methods for each rule. As the walker encounters the node for

rule assign, for example, it triggers enterAssign() and passes it the AssignContext
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parse-tree node. After the walker visits all children of the assign node, it triggers

exitAssign(). The tree diagram shown below shows ParseTreeWalker performing

a depth-first walk, represented by the thick dashed line.

It also identifies where in the walk ParseTreeWalker calls the enter and exit

methods for rule assign. (The other listener calls aren’t shown.)

And the diagram in Figure 5.3 shows the complete sequence of calls made to

the listener by ParseTreeWalker for an statement tree.

The beauty of the listener mechanism is that it’s all automatic. Programmers

don’t have to write a parse-tree walker, and the listener methods don’t have to

explicitly visit their children.

Parse-Tree Visitors

In addition to parse-tree listener, ANTLR generates a visitor interface from a

grammar with a visit method per rule to control the walk itself. Here’s the familiar

visitor pattern operating on the parse tree:
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Figure 5.3: ParseTreeWalker call sequence

The thick dashed line shows a depth-first walk of the parse tree. The thin

dashed lines indicate the method call sequence among the visitor methods. To

initiate a walk of the tree, the application-specific code would create a visitor

implementation and call visit().

Listing 5.4: Parse Tree Visitor Example

ParseTree tree = ... ; // tree is result of parsing

MyVisitor v = new MyVisitor ();

v.visit(tree);

ANTLR’s visitor support code would then call visitStat() upon seeing the
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root node. From there, the visitStat() implementation would call visit() with the

children as arguments to continue the walk. Or, visitMethod() could explicitly

call visitAssign(), and so on.

5.1.3 Framework Selection

Both YaCF and ANTLR provides a complete functionality to write new compilers

and translators. We have found ANTLR more convenient to use for our proposed

code transformation. The selection of ANTLR is based on the following reasons:

� ANTLR generates lexer and parser based on standard grammar in Java

which is easy to understand and modify. While YaCF produces its own

internal representation that have to be used for code transformations.

� ANTLR parser generates a parse tree based on the standard grammar and

provides classes to traverse the parse tree. So, the parse tree generated

through ANTLR can be modified based on the required code transforma-

tions. While YaCF generates an Aug-mented Syntax Tree (AST) based on

the own internal representation which cannot be modified directly.

� ANTLR provides methods for entry and exit of each parse tree node that

can be overridden to implement code transformations by using standard Java

APIs and code structures. While YaCF provides the concept of Filter and

Mutator classes to search the pattern and implement code transformations

by using a specific code structure and local API functions.
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� In general, ANTLR provides a generic and easy to understand framework

to implement code transformations in standard Java language while YaCF

has its own class structures to implement the code transformation that need

to be learnt by the programmer to use the framework.

5.2 RTA-CUDA Description

RTA-CUDA (Restructuring Tool Algorithm for CUDA) has been developed to be

implemented in a source-to-source transformation tool to convert a standard C

function (input) containing computational loops into an optimized CUDA kernel

(output) based on some user-defined variables. The algorithm consists of the

following steps as shown in Fig. 5.4:

5.2.1 C-Loop Optimizations (Loop Collapsing)

Merge the nested loops if they are independent and calculate array indices based

on the new loop variable. For example, if i and j are two independent loops such

that i = [0 to N] and j = [0 to N]. The new loop index (idx) will be equal to [0 to

N * N] and i, j will be the quotient and remainder of the division of idx with N

respectively such that ’i’ represents row of the matrix and ’j’ represents column

of the matrix. So, instead of two nested loops, we will have now one main loop.
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Figure 5.4: Restructuring Tool Algorithm

5.2.2 Array Transformation (nD → 1D)

In GPUs, device memory can be allocated only as linear memory so CUDA arrays

are restricted to be allocated as 1D arrays while standard C language supports

multi-dimensional arrays. In this step, all the multi-dimensional array accesses in

the expressions are converted to linear array representations. For example, C[i][j]

will be represented as C[i * N + j] where N is the width of the array.
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5.2.3 Loop Partitioning

Partition the main loop among all cuda threads. This obtains task distribution

among all cuda threads based on its block id and thread id. Fig. 5.5 shows

the task distribution among 4 cuda blocks with 4 threads per block. Each cuda

thread identifies its working element of the resultant array using the block id and

thread id within the cuda thread block. At this stage, each thread is mapped to

one element of the resultant array. So, the loop is replaced by the statements to

calculate the loop index to generate a Näıve CUDA Kernel.

Figure 5.5: Task Distribution among all threads

5.2.4 CUDA Kernel Optimizations

In this step, each of the generated Näıve CUDA Kernel is transformed into a

Parameterized CUDA Kernel after applying a set of optimizations as shown in

Fig. 5.6.

Block Merging

At this stage, each thread block is mapped to one block of resultant matrix/vector.

Each thread within the block calculates one element of the resultant. To increase

the thread granularity, each thread block can be mapped to multiple resultant

blocks vertically. The number of blocks to be merged is defined as an input
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Figure 5.6: CUDA Kernel Optimizations in RTA-CUDA

parameter and the optimal value of block merging can be obtained after running

the parameter tuning algorithm as explained in section 5.2.5. Fig. 5.7 shows the

task distribution among 2 cuda blocks with 4 threads per block after merging 2

resultant blocks that is each thread calculates two resultant elements at the same

offset in consecutive resultant blocks. This is done by the following steps:

1. Convert the resultant variable into an array stored in local memory to com-

pute the multiple elements simultaneously in a pipelined fashion

2. Replace the first index of resultant matrix with the increment of loop index

m where m defines the number of elements to be calculated by each thread

3. Replace the resultant variable into array with loop index m

4. Update row index calculations with multiple of number of blocks to be

merged
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Figure 5.7: Task Distribution among all threads with block merging applied

Prefetching using Shared Memory

To effectively use the shared memory and do coalesced access in global memory.

The matrices in the loop that are going to be access by each thread in row-major

can be tiled and loaded into shared memory with coalesced access. This is done

by the following steps:

1. Declare shared variable for the tile of the given matrix to load the tiled rows

of the number of blocks merged in the previous step

2. Load the tile of the given matrix into shared memory by accessing the tiled

rows in a coalesced manner such that each thread of the block access the

consecutive elements in the same row

3. Add barrier to synchronize all threads ( syncthreads()) after loading the

tile

4. Replace array access in the loop with the shared tile

5. Add barrier to synchronize all threads ( syncthreads()) after calculating the

tile

6. Load the tile next consecutive tile of the given matrix into shared memory

to be used in the computation of next iteration
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7. Add barrier to synchronize all threads ( syncthreads()) after calculating the

tile

8. Modify the main loop to traverse all tiles of the given matrix

9. Calculate the remaining tile loaded in the last iteration.

10. unroll the loops to load and calculate the tile.

Figure 5.8: Task Distribution among all threads with block skewing applied

Block Skewing

To increase the thread access locality, each thread block can be mapped to multiple

resultant blocks horizontally. The number of blocks to be skewed is defined as

an input parameter and the optimal value of block skewing can be obtained after

running the parameter tuning algorithm as explained in section 5.2.5. Fig. 5.8

shows the task distribution among 2 cuda blocks with 4 threads per block after

skewing 2 resultant blocks that is each thread calculates two resultant elements at

the consecutive offset in the resultant blocks. This is done by the following steps:

1. Convert the resultant variable into a matrix stored in local memory to hold

the results of merged and skewed elements
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2. Replace the second index of resultant matrix with the increment of loop

variable n where n defines the number of elements skewed in a resultant

block

3. Add second dimension of the resultant variable with loop index n

4. Update column index calculations with multiple of number of blocks to be

skewed

Remove Redundant Array Access in Loop Body

At this stage, check for repeated load access of array elements within the newly

created merged and skewed loops (m and n) in sections 5.2.4 and 5.2.4. If such

an access is detected then replace it with local variable and move the loading of

this element prior to the loop.

These steps generate a parameterized CUDA kernel with three parameters

that are BLOCKSIZE (number of threads per block), MERGE LEVEL (number

of blocks to be merged), and SKEW LEVEL (number of blocks to be skewed). The

optimal values of these parameters can be obtained using the parameter tuning

algorithm as explained in the following section 5.2.5.
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5.2.5 Parameters Tuning Algorithm

Algorithm 1 Parameters Tuning Algorithm
findOptimalParameters(N, CC)

Parameters:

N = Total Number of Elements in the Resultant Matrix

CC = Compute Capability of GPU Device

Constants and Keywords:

params = Structure of GPU Parameters

minBS = Minimum BLOCKSIZE, maxBS = Maximum BLOCKSIZE

minML = Minimum MERGE LEVEL, maxML = Maximum MERGE LEVEL

minSL = Minimum SKEW LEVEL, maxSL = Maximum SKEW LEVEL

KB = Kernel Blocks

RPT = Registers Per Thread

ShM = Shared Memory Per Block

RPB = Registers Per Block

WPB = Warps Per Block

ABW = Active Blocks Limit based on WPB

ABShM = Active Blocks Limit based on ShM

ABR = Active Blocks Limit based on RPB

CompleteParamsList = Structure Array for all Possible Kernel Parameters

CandidateParamsList = Structure Array for Candidate Kernel Parameters

OptimalParams = Structure for final Optimal Kernel Parameters

Algorithm:

1: Load params for compute capability of CC
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2: for bs=minBS to maxBS Step *2 do

3: if N mod bs 6= 0 then

4: continue

5: end if

6: for ml=minML to maxML Step *2 do

7: for sl=minSL to maxSL Step *2 do

8: KB = INT(N/bs/ml/sl)

9: if KB = 0 then

10: continue

11: end if

12: Compile the kernel only to determine the required RPT and ShM

13: RPB = ROUND(RPT x bs, params.RegisterAllocationUnitSize)

14: WPB = CEILING(bs/params.ThreadsPerWarp)

15: ABW = FLOOR(params.WarpsPerSM/WPB)

16: ABShM = FLOOR(params.MaxSharedMemoryPerBlock/ShM)

17: ABR = FLOOR(params.RegisterFileSize/RPB)

18: Add < bs,ml, sl, ABW,ABShM,ABR > into CompleteParam-

sList

19: end for

20: end for

21: end for
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22: for all p in CompleteParamsList do

23: if p.ABW > 0 and p.ABShM > 0 and p.ABR > 0 then

24: Add p into CandidateParamsList

25: end if

26: end for

27: mintime = 0

28: for all p in CandidateParamsList do

29: Execute the kernel with BLOCKSIZE=p.bs, MERGE LEVEL=p.ml,

SKEW LEVEL=p.sl

30: determine execution time (ktime) of the kernel

31: if ktime > 0 and (mintime = 0 or mintime > ktime) then

32: mintime = ktime

33: OptimalParams = p

34: end if

35: end for

Algorithm 1 determines the optimal parameters (BLOCKSIZE, MERGE LEVEL,

and SKEW LEVEL) for the generated parametric CUDA kernel. The size of cuda

grid will be determined by dividing the total number of elements in the resultant

array with the product of all three parameters.

The algorithm evaluates the generated parametric kernel with various possible

combinations of BLOCKSIZE, MERGE LEVEL and SKEW LEVEL. The prun-

ing of the list of possible parameters is used at three levels to reduce the repeated
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compilation and execution of the kernel. The three levels of pruning are as follows:

1. Array Block Level: This will skip those values of BLOCKSIZE which does

not equally distribute the number of resultant elements among all threads

(see step 3).

2. Kernel Block Level: This will skip those values of MERGE LEVEL and

SKEW LEVEL which does not distributed the number of resultant elements

among all kernel blocks (see step 9).

3. Active Block Level: This will skip those combinations of parameters

which requires more than the available resources such as number of registers,

shared memory and number of threads per SM (see step 31).

The algorithm takes kernel source file, number of resultant elements (N) and

GPU Compute Capability (CC) for the target GPU device. It first loads the pa-

rameters for the given compute capability such as Register Allocation Unit Size,

Threads Per Warp, Warps Per SM, Maximum Shared Memory Per Block, Regis-

ter File Size, and etc (see step 1). It then loop over all possible combination of

BLOCKSIZE, MERGE LEVEL, and SKEW LEVEL limiting to the range given

by user with appropriate pruning (Array Block Level and Kernel Block Level) of

the parameters as explained above. For each combination, it compiles the kernel

with ptx information to determine the required number of Registers Per Thread

(RPT) and Shared Memory (ShM) per block (see step 12). Then, calculate and

store the restricted number of Active Blocks by Warp (ABW), Active Blocks by
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Shared Memory (ABShM), and Active Blocks by Registers (ABR) into a struc-

tured list (CompleteParamsList) (see steps 13 - 18). Then, it performs parameters

pruning at Active Block Level and generate a list of possible optimal parameters

(CandidateParamsList) (see steps 22 - 26). Finally, it execute the kernel for each

combination of parameters in CandidateParamsList and determine the final op-

timal parameters (OptimalParams) that gives the minimum execution time (see

steps 28 - 1).

5.3 RT-CUDA Design

Figure 5.9: Restructuring tool design

RT-CUDA is a source-to-source transformation tool that is capable to convert

a standard C-Program (input) into an Optimized CUDA Program (output). The

overall transformation is driven by some user-defined directives and API function
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calls provided in the tool with automatic kernel optimizations. The user is also

able to include/exclude any of the optimizations available in the transformations.

The tool follows the steps as shown in Fig. 5.9 to generate an Optimized CUDA

Program.

1. Pre-Processing: In this step, the source program is partitioned into a DAG

(Dynamic Acyclic Graph) of loops identified as candidate CUDA kernels to

be executed on GPU while separating the set of scalar segments that will

be executed on host. Data dependence among the loops is enforced in the

generated code. By examining the DAG, loops that are data independent

can be merged together to reduce the exit/entry of kernels, copying data

between Global Memory (GM) and Shared Memory (ShM), and to reduce

loop overhead.

2. RTA-CUDA: This step will take each of the functions generated in the

pre-processing step based on the loops identified as candidate CUDA kernels

and apply RTA-CUDA algorithm as explained in section 5.2 to generate the

optimized CUDA kernels.

3. Final Code Generation: At the end, generate the optimized CUDA pro-

gram including all the optimized CUDA kernels obtained in RTA-CUDA

step.

In addition to this, RT-CUDA also provides the functionality of calling external

library functions such CUBLAS and cuSparse for some of the dense and sparse
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matrix operations respectively. These can be included by calling a related API

function defined in the tool. Table 5.1 shows the list of available functions.

API Function Data Precision Matrix Operation
RTdSMM Single

Dense-Dense Matrix Multiplication
RTdDMM Double
RTdSMV Single

Dense-Dense Matrix Vector Multiplication
RTdDMV Double
RTdSMT Single

Dense Matrix Transposition
RTdDMT Double
RTdSVV Single

Dense-Dense Vector Multiplication
RTdDVV Double

RTdSDOT Single
Dot Product of Two Dense Vectors

RTdDDOT Double
RTspSMM Single

Sparse-Sparse Matrix Multiplication
RTspDMM Double
RTspdSMM Single

Sparse-Dense Matrix Multiplication
RTspdDMM Double
RTspdSMV Single

Sparse-Dense Matrix Vector Multiplication
RTspdDMV Double

Table 5.1: Available API Functions in RT-CUDA for Dense and Sparse Matrix
Operations

Figure 5.10: CPU-based Synchronization

RT-CUDA also supports inter-block synchronization in three ways:

1. CPU Synchronization: This is the simplest approach recommended by

Nvidia [51] for inter-block synchronization by exiting and re-entering the

kernel that is considered as an implicit synchronization. This is done by

defining separate CUDA kernels for each of the dependent loops and calling

them in sequence from host. Fig. 5.10 shows the flowchart of the CPU-based
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Figure 5.11: Lock-free Synchronization

synchronization.

2. Lock-Free Synchronization: This synchronization primitive is based on

the work in [50]. Fig. 5.11 shows the main idea of the lock-free synchro-

nization. It uses two arrays, named Ain and Aout, of length N for syn-

chronization. When all threads of a block finish their work, the first thread

of each block increments its location in the Ain array. Then, the first N

threads of the first block in parallel check whether all blocks have written to

their corresponding location in the Ain array. If so, these N threads write in

parallel to the Aout array to inform other threads that the threads of this

block have reached the synchronization point. Meanwhile, the first thread

of each block continuously checks its location in the Aout array until the
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Figure 5.12: Relaxed Synchronization

value is set to k where k is the iteration number.

3. Relaxed Synchronization: We have developed a new synchronization

primitive that can be useful in implementing iterative solvers with block

dependencies among each iterations. Fig. 5.12 shows the flowchart of the

relaxed synchronization. This approach overlaps the computation of two

consecutive iterations. After completion of iteration ’k’, each block start

the computation of the iteration ’k+1’ using the completed blocks of de-

pendent array by the previous iteration. Each block updates its designated
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element in presence vector ’P’ in global memory with the iteration number

at the end of each iteration. So for the next iteration, it will call the re-

laxed synchronization primitive that will check the presence vector for the

completed blocks of the previous iteration and return a work vector ’W’

and the number of completed blocks ’bnum’ that can be used to start the

computation of the next iteration using the completed blocks of the previous

iteration. The presence vector will be first loaded into shared memory from

global memory with coalesced access to reduce global memory loads.

5.4 RT-CUDA Implementation

To implement RT-CUDA transformations, we have used an innovative approach of

source-to-source transformation of a computer program, will be helpful in fast de-

velopment of source code translators to convert programs written in one language

into another program in another language. Using ANTLR, a parser is generated

based on a defined grammar, which describes a parse tree that consists of all

possible nodes (rules) with their entry and exit. The parser takes a source code

(S) and generates its corresponding parse tree PT(S). Also the parser produces a

generated parse tree walker which traverses PT(S) and applies the grammar rules.

To carry out the code transformation, a Parse Tree Walker traverses PT(S) with

overloaded Listener class instance. The method in the listener class modifies the

nodes or add/delete payloads. An event method for adding space after every type

specifier is implemented so the parse tree can be generated from the transformed
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code by updating the spaces with the new transformation. Modifying the parse

tree is much easier than putting actions into the grammar because every grammar

has different structure and needs to be understood completely before putting ac-

tions into it. While, in our approach the modification is done at the tree structure,

which is commonly used data structure in programming languages and known to

every programmer.

The method of code transformation includes following steps, as shown in Fig.

5.13:

1. Parser Generator: In this initial step, a parser code is generated based on

the given C grammar (see Appendix A) using ANTLR providing functions

for enter and exit of all possible nodes in a parse tree for the grammar. This

also generates a Parse Tree Walker class that can traverse a parse tree of

any given code following the rules in the grammar. The Parse Tree Walker

raise related node events at the entry and exit of a particular node in the

parse tree.

2. Parse Tree Generation: the parser takes the source code to be trans-

formed as input and creates a parse tree.

3. Parse Tree Traversal: A Listener class is implemented for the generated

parse tree with overloaded events from the base listener of Parse Tree Walker.

Traverse the parse tree using Parse Tree Walker with overloaded Listener

class instance. This calls the related event at each node entry and exit of

the parse tree.
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4. Transformations: implement the event methods defined in the Listener

class to perform the code transformations of RT-CUDA by modifying the

related node payload or add/delete node payloads. In addition to the re-

quired transformations, an event method for variable type specifier needs to

be implemented to add a space after every type specifier so the parse tree

can be generated from the transformed code (see Appendix B and C).

5. Code Generation: at the end, final payload of the modified parse tree is

used to produce the formatted code for better readability. This generates

the final transformed CUDA code.

Figure 5.13: RT-CUDA Implementation Strategy Based on ANTLR Compiler
Framework
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5.5 RT-CUDA API Definitions

5.5.1 RTAPIInit()

Syntax

void RTAPIInit()

Description

This functions initialized the embedded library and creates a handle to an opaque

structure, defined within the api, holding the embedded library context. It al-

locates hardware resources on the host and device and must be called prior to

making any other API function calls. Because RTAPIInit allocates some internal

resources and the release of those resources by calling RTAPIFinalize will implic-

itly call cudaDeviceSynchronize, it is recommended to minimize the number of

RTAPIInit/RTAPIFinalize occurrences.

5.5.2 RTAPIFinalize()

Syntax

void RTAPIFinalize()

Description

This function releases hardware resources used by the embedded library. This

function is usually the last call in the sequence of other API function calls. Be-
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cause RTAPIInit allocates some internal resources and the release of those re-

sources by calling RTAPIFinalize will implicitly call cudaDeviceSynchronize, it is

recommended to minimize the number of RTAPIInit/RTAPIFinalize occurrences.

5.5.3 RTdSMM()

Syntax

void RTdSMM(float *C, const float *A, const float *B, int m, int n, int k)

Description

This function performs the single-precision matrix-matrix multiplication: C =

A× B, where A, B and C are dense matrices with dimensions m x k, k x n, and

m x n respectively.

5.5.4 RTdDMM()

Syntax

void RTdDMM(double *C, const double *A, const double *B, int m, int n, int k)

Description

This function performs the double-precision matrix-matrix multiplication: C =

A× B, where A, B and C are dense matrices with dimensions m x k, k x n, and

m x n respectively.

163



5.5.5 RTdSMV()

Syntax

void RTdSMV(float *C, const float *A, const float *B, int m, int n)

Description

This function performs the single-precision matrix-vector multiplication: C =

A × B, where A is a m x n dense matrix, B and C are dense vectors of length n

and m respectively.

5.5.6 RTdDMV()

Syntax

void RTdDMV(double *C, const double *A, const double *B, int m, int n)

Description

This function performs the double-precision matrix-vector multiplication: C =

A × B, where A is a m x n dense matrix, B and C are dense vectors of length n

and m respectively.

5.5.7 RTdSMT()

Syntax

void RTdSMT(float *C, const float *A, int m, int n)
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Description

This function performs the single-precision out-of-place matrix transposition:

C = AT , where A and C are dense matrices with dimensions n x m and m x

n respectively.

5.5.8 RTdDMT()

Syntax

void RTdDMT(double *C, const double *A, int m, int n)

Description

This function performs the double-precision out-of-place matrix transposition:

C = AT , where A and C are dense matrices with dimensions n x m and m x

n respectively.

5.5.9 RTdSVV()

Syntax

void RTdSVV(float *C, const float *A, int m, const float *B, int n)

Description

This function performs the single-precision vector-vector multiplication: C =

AT ×B, where A and B are dense vectors with dimensions m and n respectively,

C is a dense matrix with dimension m x n.
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5.5.10 RTdDVV()

Syntax

void RTdDVV(double *C, const double *A, int m, const double *B, int n)

Description

This function performs the double-precision vector-vector multiplication: C =

AT ×B, where A and B are dense vectors with dimensions m and n respectively,

C is a dense matrix with dimension m x n.

5.5.11 RTdSDOT()

Syntax

void RTdSDOT(const float *C, const float *A, int n, float *r)

Description

This function computes the single-precision dot product of vectors A and C. Hence,

the result (r) is
∑m

i=1C[i]× A[i], where A and C are dense vectors of length m.

5.5.12 RTdDDOT()

Syntax

void RTdDDOT(const double *C, const double *A, int n, double *r)
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Description

This function computes the double-precision dot product of vectors A and C.

Hence, the result (r) is
∑m

i=1C[i]× A[i], where A and C are dense vectors of

length m.

5.5.13 RTspSArrayCreate()

Syntax

void RTspSArrayCreate(float *A, RTspSArray *array, int m, int n)

Description

This function creates single-precision sparse matrix representation defined as RT-

spSArray structure from a dense matrix A with dimension m x n. RTspSArray

is a row-major single-precision linear addressing array structure to store sparse

matrix containing three arrays for row indices, column indices, and values of the

matrix. It also includes the count of non-zero elements in the matrix.

5.5.14 RTspDArrayCreate()

Syntax

void RTspDArrayCreate(double *A, RTspDArray *array, int m, int n)
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Description

This function creates double-precision sparse matrix representation defined as

RTspDArray structure from a dense matrix A with dimension m x n. RTspDArray

is a row-major double-precision linear addressing array structure to store sparse

matrix containing three arrays for row indices, column indices, and values of the

matrix. It also includes the count of non-zero elements in the matrix.

5.5.15 RTspSArrayLoadFromFile()

Syntax

void RTspSArrayLoadFromFile(char *filename, RTspSArray *array)

Description

This function reads a market matrix file (filename) and store into a single-precision

sparse matrix representation defined as RTspSArray structure. RTspSArray is a

row-major single-precision linear addressing array structure to store sparse matrix

containing three arrays for row indices, column indices, and values of the matrix.

It also includes the count of non-zero elements in the matrix.

5.5.16 RTspDArrayLoadFromFile()

Syntax

void RTspDArrayLoadFromFile(char *filename, RTspDArray *array)
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Description

This function reads a market matrix file (filename) and store into a double-

precision sparse matrix representation defined as RTspDArray structure. RTsp-

DArray is a row-major double-precision linear addressing array structure to store

sparse matrix containing three arrays for row indices, column indices, and values

of the matrix. It also includes the count of non-zero elements in the matrix.

5.5.17 RTspSMM()

Syntax

void RTspSMM(RTspSArray *C, const RTspSArray *A, const RTspSArray *B,

int m, int n, int k, int format=RTCSR)

Description

This function performs the single-precision matrix-matrix multiplication: C =

A×B, where A, B and C are sparse matrices (defined as RTspSArray structure)

with dimensions m x k, k x n, and m x n respectively. format identifies the

sparse matrix format (default=csr, only csr format is supported in this version)

to be used by the function for computations. RTspSArray is a row-major single-

precision linear addressing array structure to store sparse matrix containing three

arrays for row indices, column indices, and values of the matrix. It also includes

the count of non-zero elements in the matrix.
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5.5.18 RTspDMM()

Syntax

void RTspDMM(RTspDArray *C, const RTspDArray *A, const RTspDArray *B,

int m, int n, int k, int format=RTCSR)

Description

This function performs the double-precision matrix-matrix multiplication: C =

A×B, where A, B and C are sparse matrices (defined as RTspDArray structure)

with dimensions m x k, k x n, and m x n respectively. format identifies the

sparse matrix format (default=csr, only csr format is supported in this version)

to be used by the function for computations. RTspDArray is a row-major double-

precision linear addressing array structure to store sparse matrix containing three

arrays for row indices, column indices, and values of the matrix. It also includes

the count of non-zero elements in the matrix.

5.5.19 RTspdSMM()

Syntax

void RTspdSMM(float *C, const RTspSArray *A, const float *B, int m, int n, int

k, int format=RTCSR)
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Description

This function performs the single-precision matrix-matrix multiplication: C =

A × B, where A is a sparse matrix (defined as RTspSArray structure) with di-

mension m x k and B, C are dense matrices with dimensions k x n, and m x n

respectively. format identifies the sparse matrix format (default=csr, csr and bsr

formats are supported in this version) to be used by the function for computations.

RTspSArray is a row-major single-precision linear addressing array structure to

store sparse matrix containing three arrays for row indices, column indices, and

values of the matrix. It also includes the count of non-zero elements in the matrix.

5.5.20 RTspdDMM()

Syntax

void RTspdDMM(double *C, const RTspDArray *A, const double *B, int m, int

n, int k, int format=RTCSR)

Description

This function performs the double-precision matrix-matrix multiplication: C =

A × B, where A is a sparse matrix (defined as RTspSArray structure) with di-

mension m x k and B, C are dense matrices with dimensions k x n, and m x n

respectively. format identifies the sparse matrix format (default=csr, csr and bsr

formats is supported in this version) to be used by the function for computations.

RTspDArray is a row-major double-precision linear addressing array structure to
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store sparse matrix containing three arrays for row indices, column indices, and

values of the matrix. It also includes the count of non-zero elements in the matrix.

5.5.21 RTspSMV()

Syntax

void RTspSMV(float *C, const RTspSArray *A, const float *B, int m, int n, int

format=RTHYB)

Description

This function performs the single-precision matrix-vector multiplication: C =

A × B, where A is a m x n sparse matrix (defined as RTspSArray structure),

B and C are dense vectors of length n and m respectively. format identifies the

sparse matrix format (default=hyb, csr, bsr, and hyb formats are supported in

this version) to be used by the function for computations. RTspSArray is a row-

major single-precision linear addressing array structure to store sparse matrix

containing three arrays for row indices, column indices, and values of the matrix.

It also includes the count of non-zero elements in the matrix.

5.5.22 RTspDMV()

Syntax

void RTspDMV(float *C, const RTspDArray *A, const float *B, int m, int n, int

format=RTHYB)
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Description

This function performs the double-precision matrix-vector multiplication: C =

A × B, where A is a m x n sparse matrix (defined as RTspDArray structure),

B and C are dense vectors of length n and m respectively. format identifies the

sparse matrix format (default=hyb, csr, bsr, and hyb formats are supported in

this version) to be used by the function for computations. RTspDArray is a row-

major double-precision linear addressing array structure to store sparse matrix

containing three arrays for row indices, column indices, and values of the matrix.

It also includes the count of non-zero elements in the matrix.

5.5.23 RTspSArrayDestroy()

Syntax

void RTspSArrayDestroy(RTspSArray *array)

Description

This function de-allocates single-precision sparse matrix representation defined

as RTspSArray structure. RTspSArray is a row-major single-precision linear ad-

dressing array structure to store sparse matrix containing three arrays for row

indices, column indices, and values of the matrix. It also includes the count of

non-zero elements in the matrix.
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5.5.24 RTspDArrayDestroy()

Syntax

void RTspDArrayDestroy(RTspDArray *array)

Description

This function de-allocates double-precision sparse matrix representation defined

as RTspDArray structure. RTspDArray is a row-major double-precision linear

addressing array structure to store sparse matrix containing three arrays for row

indices, column indices, and values of the matrix. It also includes the count of

non-zero elements in the matrix.

5.6 RT-CUDA Package README

5.6.1 RT-CUDA Installation and Setup

Pre-Requisites

� Java JDK/JRE 1.7 or later, it can be downloaded from the following link:

(www.oracle.com/technetwork/java/javase/downloads/index.html)

� NVIDIA CUDA Toolkit, it can be downloaded from the following link:

(https://developer.nvidia.com/cuda-toolkit)

Package Extraction

To extract RT-CUDA package, run the following command:
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unzip RTCUDACompiler.zip

5.6.2 RT-CUDA Usage

Input

RT-CUDA compiler requires following files to be created in src folder:

� kernel.c: This file contains the C function that needs to be converted as

CUDA kernel to run on GPU device. The function should follow the ANSI

C standard with required parameters and no return type. This function

implements the C-Loop structure to be partitioned among multiple CUDA

blocks and threads to compute the required results. Following is the syntax

of the function definition:

void func name(type param, ...){ < functionbody > }

� main.c: This file contains the C main function that implements the user

input, data allocation, initialization, function call (defined in kernel.c), and

output of the program following the ANSI C standard. All the arrays that

are going to be used by the kernel function should be allocated dynami-

cally using C malloc() function. To run the kernel on a particular GPU

device, user should use the function cudaSetDevice(GPU ID) before calling

the kernel function where GPU ID is the id of the GPU device available in

the system.

� config.txt: This file contains the configurations for different parameters
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used by the compiler for optimizations and final code generation. Following

are the list of parameters that need to be defined in configuration:

– LOOP COLLAPSING: Enabled(1)/Disabled(0) loop collapsing op-

timization. It is only applicable to the kernel with 2D resultant matrix

and having two nested loops in the computations.

– BLOCK SKEW: Enabled(1)/Disabled(0) block skewing optimiza-

tion. It is only applicable to the kernel with 2D resultant matrix.

It increases the thread access locality by merging multiple resultant

blocks horizontally to one thread block.

– PREFETCHING: Enabled(1)/Disabled(0) prefetching optimization.

It is only applicable to the kernel having 2D matrix in the computation

that need to be tiled to store in shared memory.

– PREFETCHED ARRAYS: List of array variables that need to be

tiled. This is only applied if PREFETCHING is enabled.

– NON PREFETCHED ARRAYS: List of array variables that

should be ignored for tiling. This is only applied if PREFTECHING is

enabled.

– DATA TYPE: It defines the data type of the arrays in the computa-

tion and resultant that need to be stored in GPU memory.

– KERNEL NAMES: List of function names that need to be converted

as CUDA kernels that are defined in kernel.c file.
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– 2DMATRIX: It is set to 1 for 2D resultant matrix and 0 for 1D.

– ROW DIM: This is the leading dimension of the matrices used in

computation.

– MAX BLOCKSIZE: Upper bound of BLOCKSIZE to be analyzed

by RT-CUDA Parameter Tunner. This should be less than or equal to

the maxmimum possible thread block size of the underlying GPU com-

pute capability. To check all possible block size based on the underlying

GPU architecture automatically, set this value to 0.

– MAX MERGE LEVEL: Upper bound of MERGE LEVEL to be

analyzed by RT-CUDA Parameter Tunner. This should be less than

or equal to the MAX BLOCKSIZE.

– MAX SKEW LEVEL: Upper bound of SKEW LEVEL to be ana-

lyzed by RT-CUDA Parameter Tunner. This should be less than or

equal to the MAX BLOCKSIZE.

– MIN BLOCKSIZE: Lower bound of BLOCKSIZE to be analyzed by

RT-CUDA Parameter Tunner. This should be greater than or equal to

1 and less than or equal to the MAX BLOCKSIZE.

– MIN MERGE LEVEL: Lower bound of MERGE LEVEL to be an-

alyzed by RT-CUDA Parameter Tunner. This should be greater than

or equal to 1 and less than or equal to the MAX MERGE LEVEL.

– MIN SKEW LEVEL: Lower bound of SKEW LEVEL to be ana-

lyzed by RT-CUDA Parameter Tunner. This should be greater than
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or equal to 1 and less than or equal to the MAX SKEW LEVEL.

Following is an example of a configuration file:

LOOP COLLAPSING=1

BLOCK SKEW=1

PREFETCHING=0

PREFETCHED ARRAYS=A

NON PREFETCHED ARRAYS=B

DATA TYPE=float

KERNEL NAMES=matrix scale

2DMATRIX=1

ROW DIM=N

MAX BLOCKSIZE=0

MAX MERGE LEVEL=8

MAX SKEW LEVEL=2

MIN BLOCKSIZE=32

MIN MERGE LEVEL=1

MIN SKEW LEVEL=1

Execution

To run the compiler from the command line, go to the dist folder and type the

following:
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java -jar RTCUDATranslator.jar

Output

RT-CUDA generates following files in the output folder:

� kernel.cu: This file contains the converted CUDA kernels.

� main.cu: This file contains the main program that calls CUDA kernels.

� Header Files: The compiler generates three header files params.h, and

rcuda.h that are included in the main.cu.

� Makefile: For compilation with make program, it generates Makefile and

the dependent findcudalib.mk files.

5.7 RT-CUDA Examples

We have applied RT-CUDA on the following applications that served for testing

RT-CUDA over linear algebra operators:

1. Matrix-Matrix Multiplication: multiplying two matrices

2. Dense Matrix Operators using RT-CUDA API: perform Matrix-Matrix

Multiplication, Matrix-Vector Multiplication, Matrix Transpose, and Inner

Product (Vector-Vector Multiplication) by calling RT-CUDA API functions

to invoke related CUBLAS library routines
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3. Sparse-Matrix Operators using RT-CUDA API: perform Matrix-Matrix

Multiplication, Matrix-Vector Multiplication, Matrix Transpose, and Inner

Product (Vector-Vector Multiplication) by calling RT-CUDA API functions

to invoke related cuSPARSE library routines

4. Matrix Scaling: multiplying a matrix with a scalar

5. Matrix Addition: addition of two matrices

6. Demosaic: a digital image process used to reconstruct a full color image

from the incomplete color samples. This is also called CFA (Color Filter

Array) interpolation or color reconstruction

7. Histogram: calculate an estimate of the probability distribution of a contin-

uous variable

8. Matrix-Vector Multiplication: multiplying a matrix by a vector

9. Vector-Vector Multiplication: inner product of two vectors

10. AXPY: addition of a vector with an another scaled vector

Following sections show the applications 1, 2, and 3. See Appendix E for the

implementation of applications 4, 5, 6, 7, 8, 9, and 10.

5.7.1 Matrix-Matrix Multiplication

Inputs
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Listing 5.5: kernel.c

void matrix_mul(float *C, float * restrict A, float *

restrict B, int N)

{

float sum =0.0;

for(int i=0; i < N; i++)

for(int j=0; j < N; j++){

for(int k=0; k < N; k++){

float b = B[k][j];

sum += A[i][k] * b;

}

C[i][j] = sum;

}

}

Listing 5.6: main.c

int main(int argc , char *argv [])

{

int N = 1024;

int GPU = 0;

if(argc > 1)

N = atoi(argv [1]);

if(argc > 2)

GPU = atoi(argv [2]);

cudaSetDevice(GPU);

float *A, *B, *C;

int memsize = N * N * sizeof(float);

A = (float *) malloc(memsize);

B = (float *) malloc(memsize);

C = (float *) malloc(memsize);

matrix_mul(C, A, B, N);

free(A);

free(B);

free(C);

exit (0);

}
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Listing 5.7: config.txt

LOOP_COLLAPSING =1

BLOCK_SKEW =0

PREFETCHING =1

PREFETCHED_ARRAYS=A

NON_PREFETCHED_ARRAYS=B

DATA_TYPE=float

KERNEL_NAMES=matrix_mul

2DMATRIX =1

ROW_DIM=N

MAX_BLOCKSIZE =0

MAX_MERGE_LEVEL =0

MAX_SKEW_LEVEL =0

MIN_BLOCKSIZE =32

MIN_MERGE_LEVEL =1

MIN_SKEW_LEVEL =1

Outputs

Listing 5.8: kernel.cu

__global__ void matrix_mul(float *C, float * __restrict__

A, float * __restrict__ B, int N)

{

float sum[MERGE_LEVEL ];

for(int i=0; i < MERGE_LEVEL; i++)

sum[i] = 0.0;

int tid = threadIdx.x;

int bid = blockIdx.x;

int ij = bid * BLOCKSIZE + tid;

int i = (ij / N) * MERGE_LEVEL;

int j = ij % N;

__shared__ float As[MERGE_LEVEL ][ BLOCKSIZE ];

int k=0;

for(int m=0; m < MERGE_LEVEL; m++)

As[m][tid] = A[(i+m) * N + k + tid];

__syncthreads ();

for(k = 0; k < N-BLOCKSIZE; k+= BLOCKSIZE){

for(int t=0; t < BLOCKSIZE; t++){
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float b = B[(k+t) * N + j];

for(int m = 0; m < MERGE_LEVEL; m

++)

sum[m] += As[m][t] * b;

}

__syncthreads ();

for(int m = 0; m < MERGE_LEVEL; m++)

As[m][tid] = A[(i+m) * N + (k+

BLOCKSIZE) + tid];

__syncthreads ();

}

for(int t=0; t < BLOCKSIZE; t++){

float b = B[(k+t) * N + j];

for(int m = 0; m < MERGE_LEVEL; m++)

sum[m] += As[m][t] * b;

}

for(int m = 0; m < MERGE_LEVEL; m++)

C[(i + m) * N + j] = sum[m];

}

Listing 5.9: main.cu

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <math.h>

#include <time.h>

#include <cuda.h>

void checkCudaError(const char *msg)

{

cudaError_t err = cudaGetLastError ();

if(cudaSuccess != err){

printf("%s(%i) : CUDA error : %s : (%d) %

s\n", __FILE__ , __LINE__ , msg , (int)

err , cudaGetErrorString(err));

exit (-1);

}

}

#include "params.h"

#include "rcuda.h"

#include "kernel.cu"

int main(int argc ,char *argv []){

int N=1024;

int GPU=0;

if(argc >1)N=atoi(argv [1]);
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if(argc >2) GPU=atoi(argv [2]);

cudaSetDevice (GPU);

float *A,*B,*C;

int memsize=N*N*sizeof(float );

cudaMallocManaged (&A,memsize);

cudaMallocManaged (&B,memsize);

cudaMallocManaged (&C,memsize);

dim3 threads(BLOCKSIZE ,1);

dim3 grid(N*N/BLOCKSIZE/MERGE_LEVEL/SKEW_LEVEL ,1)

;

matrix_mul <<<grid ,threads >>>(C,A,B,N);

cudaDeviceSynchronize ();

cudaFree (A);

cudaFree (B);

cudaFree (C);

cudaThreadExit ();

}

Listing 5.10: params.h

#define BLOCKSIZE 64

#define MERGE_LEVEL 16

#define SKEW_LEVEL 1

5.7.2 Dense Matrix Operators using RT-CUDA API

Inputs

Listing 5.11: main.c

int main(int argc , char *argv [])

{

int N = 1024;

int GPU = 0;

if(argc > 1)

N = atoi(argv [1]);

if(argc > 2)
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GPU = atoi(argv [2]);

cudaSetDevice(GPU);

float *C, *A, *B, *X, *Y;

int memsize = N * N * sizeof(float);

int memsizevec = N * sizeof(float);

C = (float *) malloc(memsize);

A = (float *) malloc(memsize);

B = (float *) malloc(memsize);

X = (float *) malloc(memsizevec);

Y = (float *) malloc(memsizevec);

RTAPIInit ();

RTdSMM(C, A, B, N, N, N);

RTdSMV(Y, A, X, N, N);

RTdSMT(C, A, N, N);

RTdSVV(C, X, Y, N);

float result;

RTdSDOT(X, Y, N, &result);

RTAPIFinalize ();

free(C);

free(A);

free(B);

free(X);

free(Y);

exit (0);

}

Outputs

Listing 5.12: main.cu

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <math.h>

#include <time.h>

#include <cuda.h>

void checkCudaError(const char *msg)

{

185



cudaError_t err = cudaGetLastError ();

if(cudaSuccess != err){

printf("%s(%i) : CUDA error : %s : (%d) %

s\n", __FILE__ , __LINE__ , msg , (int)

err , cudaGetErrorString(err));

exit (-1);

}

}

#include "params.h"

#include "rcuda.h"

#include "kernel.cu"

int main(int argc , char *argv [])

{

int N = 1024;

int GPU = 0;

if(argc > 1)

N = atoi(argv [1]);

if(argc > 2)

GPU = atoi(argv [2]);

cudaSetDevice(GPU);

float *C, *A, *B, *X, *Y;

int memsize = N * N * sizeof(float);

int memsizevec = N * sizeof(float);

cudaMallocManaged (&C,memsize);

cudaMallocManaged (&A,memsize);

cudaMallocManaged (&B,memsize);

cudaMallocManaged (&X,memsizevec);

cudaMallocManaged (&Y,memsizevec);

RTAPIInit ();

RTdSMM(C, A, B, N, N, N);

RTdSMV(Y, A, X, N, N);

RTdSMT(C, A, N, N);

RTdSVV(C, X, Y, N);

float result;

RTdSDOT(X, Y, N, &result);

RTAPIFinalize ();

cudaFree(C);

cudaFree(A);

cudaFree(B);

cudaFree(X);

cudaFree(Y);
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cudaThreadExit ();

}

5.7.3 Sparse Matrix Operators using RT-CUDA API

Inputs

Listing 5.13: main.c

int main(int argc , char *argv [])

{

int N = 1024;

int GPU = 0;

if(argc > 1)

N = atoi(argv [1]);

if(argc > 2)

GPU = atoi(argv [2]);

cudaSetDevice(GPU);

float *DC , *X, *Y;

int memsize = N * N * sizeof(float);

int memsizevec = N * sizeof(float);

X = (float *) malloc(memsizevec);

Y = (float *) malloc(memsizevec);

DC = (float *) malloc(memsize);

RTAPIInit ();

RTspSArray *A, *B, *C;

RTspSArrayLoadFromFile(argv[1], A);

RTspSArrayLoadFromFile(argv[1], B);

RTspSArrayCreate(DC , C, N, N);

RTspSMM(C, A, B, N, N, N);

RTspdSMM(C, A, B, N, N, N);

RTspdSMM(C, A, B, N, N, N, RTBSR);

RTspSMV(Y, A, X, N, N);

RTspSMV(Y, A, X, N, N, RTBSR);

RTspSMV(Y, A, X, N, N, RTCSR);

RTspSArrayDestroy(A);

RTspSArrayDestroy(B);

RTspSArrayDestroy(C);
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RTAPIFinalize ();

free(X);

free(Y);

free(DC);

exit (0);

}

Outputs

Listing 5.14: main.cu

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <math.h>

#include <time.h>

#include <cuda.h>

void checkCudaError(const char *msg)

{

cudaError_t err = cudaGetLastError ();

if(cudaSuccess != err){

printf("%s(%i) : CUDA error : %s : (%d) %

s\n", __FILE__ , __LINE__ , msg , (int)

err , cudaGetErrorString(err));

exit (-1);

}

}

#include "params.h"

#include "rcuda.h"

#include "kernel.cu"

int main(int argc , char *argv [])

{

int N = 1024;

int GPU = 0;

if(argc > 1)

N = atoi(argv [1]);

if(argc > 2)

GPU = atoi(argv [2]);

cudaSetDevice(GPU);

float *DC , *X, *Y;
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int memsize = N * N * sizeof(float);

int memsizevec = N * sizeof(float);

cudaMallocManaged (&X,memsizevec);

cudaMallocManaged (&Y,memsizevec);

cudaMallocManaged (&DC,memsize);

RTAPIInit ();

RTspSArray *A, *B, *C;

RTspSArrayLoadFromFile(argv[1], A);

RTspSArrayLoadFromFile(argv[1], B);

RTspSArrayCreate(DC , C, N, N);

RTspSMM(C, A, B, N, N, N);

RTspdSMM(C, A, B, N, N, N);

RTspdSMM(C, A, B, N, N, N, RTBSR);

RTspSMV(Y, A, X, N, N);

RTspSMV(Y, A, X, N, N, RTBSR);

RTspSMV(Y, A, X, N, N, RTCSR);

RTspSArrayDestroy(A);

RTspSArrayDestroy(B);

RTspSArrayDestroy(C);

RTAPIFinalize ();

cudaFree(X);

cudaFree(Y);

cudaFree(DC);

cudaThreadExit ();

}

189



CHAPTER 6

PERFORMANCE

EVALUATION OF THE

RESTRUCTURING TOOL

We have run our experiments on Tesla K20c GPU (see Table-3.1 for specifica-

tions) with various applications including Demosaic, Histogram, Matrix Addition

(Madd), Matrix Multiplication (MM), Matrix Vector Multiplication (MV), and

Vector Vector Multiplication (VV). We have compared the implementations us-

ing RTA-CUDA with CUBLAS, GPGPU compiler, and OpenACC (PGI compiler)

implementations. We have also evaluated the different inter-block synchronization

primitives provided in the tool to be used in Jacobi Iterative Solver. Furthermore,

the effects of calling external library functions for basic linear algebra operations

and sparse matrices have also been evaluated. The correctness of the results of

each converted application using RT-CUDA are guaranteed by comparing with
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the results of serial version of each application on CPU using the subset of the

problem sizes. The result showed that our conversions produce correct resultant

values. We have also trace the resultant matrix indices with the mapping of block

and thread ids which are also found to be corrected.

6.1 Evaluation of Basic Linear Algebra Opera-

tions

This section shows the evaluation of the tool using a set of operators in LA-

PACK benchmark suite for basic linear algebra operations including Madd,

MM, MV, and VV applications to compare with CUBLAS, GPGPU compiler,

and OpenACC (PGI compiler). All four kernels are generated by the tool

using RTA-CUDA algorithm as explained in section 5.2 and applied differ-

ent set of transformations/optimizations according to the specific code struc-

ture of each application. Table 6.1 shows the applied transformations/op-

timizations for each application, the table also shows the optimal parame-

ters (<BLOCKSIZE,MERGE LEVEL,SKEW LEVEL>) for each application ob-

tained through parameter tuning algorithm (Algorithm 1). The comparisons for

different applications and tools have been shown with appropriate space size (N)

for each application to show the execution times in a particular range.

Fig. 6.1 shows the execution time in seconds of different applications using

CUBLAS and RTA-CUDA. The comparisons have been performed using following
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Transformations/Optimizations Madd MM MV VV
Loop Collapsing

√ √ √

Array Transformations
√ √ √ √

Loop Partitioning
√ √ √ √

Block Merging
√ √

Block Skewing
√

Prefetching using Shared Memory
√ √

Remove Redundant Array Access
√ √

Read-Only Data Cache
√ √ √ √

Optimal Parameters < 128, 1, 2 > < 64, 16, 1 > < 64, 1, 1 > < 256, 32, 1 >

Table 6.1: Code Transformation Summary for Each Application

Figure 6.1: Comparing CUBLAS and RTA-CUDA with different applications

CUBLAS functions:

� cublasSgeam for Madd

� cublasSgemm for MM and VV

� cublasSgemv for MV

The results show that RTA-CUDA obtained better performance for Madd and

VV. But, for complex applications such as MM and MV, CUBLAS still has signif-

icant performance advantage over RTA-CUDA. This is because cublasSgemm and

cublasSgemv functions have been developed with complex kernel optimizations

at very low level of coding by hand while at this stage, we are focusing on high
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level CUDA kernel optimizations. However, with the proposed high level kernel

optimizations, RTA-CUDA outperforms CUBLAS with 45% improvement in case

of Madd and 2% improvement in case of VV.

Figure 6.2: Comparing GPGPU Compiler and RTA-CUDA with different appli-
cations

Fig. 6.2 shows the execution time in seconds of different applications using

GPGPU compiler and RTA-CUDA. The results show that RTA-CUDA outper-

forms GPGPU compiler with 17% improvement in case of Demosaic, 30% improve-

ment in case of MM, 99% improvement in case of MV and 50% improvement in

case of VV. Also, MV implementation in GPGPU compiler gives value errors in

case of large space size while RTA-CUDA generates correct values with any space

size. So, the optimizations proposed in GPGPU compiler is not likely to be use-

ful in kepler family of GPUs where RTA-CUDA’s optimizations obtained better

performance.

Fig. 6.3 shows the execution time in seconds of different applications using
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Figure 6.3: Comparing OpenACC (PGI Compiler) and RTA-CUDA with different
applications

OpenACC implementation in PGI compiler and RTA-CUDA. The results show

that RTA-CUDA outperforms OpenACC implementation of PGI compiler with

37% improvement in case of Demosaic, 97% improvement in case of Histogram,

42% improvement in case of Madd, and 99% improvement in case of MM and

approx similar performance in case of VV and MV.

6.2 Evaluation of Inter-Block Synchronization

Primitives

This section shows the evaluation of inter-block synchronization primitives pro-

vided in the tool. The execution time of three variants of block Jacobi iterative

solver have been calculated and compared: 1) Synchronous Jacobi (SJ), 2) Asyn-

chronous Jacobi (AJ), and 3) Relaxed Jacobi (RJ).
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Figure 6.4: Performance comparison of Single-Precision SJ, AJ, and RJ with
different array dimensions

Fig. 6.4 shows the execution time in seconds of SJ, AJ, and RJ implemen-

tations with different array dimensions using 128 (maximum concurrent threads

blocks possible for these implementations) number of blocks and single-precision

floating point operations. Here, SJ implementation shows a little overhead of

synchronization among each iteration and reduces with the increase in the array

dimension that for N=16384 with 128 thread blocks the synchronization overhead

is just about 1.5% over AJ implementation. RJ implementation further obtained

little improvement over SJ implementation that is about 1% reduction in exe-

cution time than SJ implementation except the case of N=4096 where RJ im-

provement is about 6%. This shows that all thread blocks complete its execution

with little difference in time as the tasks among each thread block is distributed

equally. Relaxed synchronization approach is expected to give more performance

improvement if the tasks are not evenly distributed among thread blocks on GPU
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architectures. To analyze the behaviour of RJ in case of unbalanced thread blocks

execution, we have performed an experiment of a näıve block-row partitioning in

sparse matrix-vector operation used in an iterative solver (such as Sparse Jacobi

with MV), which causes some load unbalancing over the iteration space. Fig. 6.5

shows the execution time in seconds of SJ and RJ with unbalanced thread blocks.

Here, RJ obtained about 8% performance improvement in terms of execution time

over SJ implementation.

Figure 6.5: Performance comparison of Sparse Jacobi with MV

Fig. 6.6 shows the execution time in seconds of SJ, AJ, and RJ implementa-

tions with different array dimensions using 64 number of blocks (optimal number

of thread blocks for these implementations) and double-precision floating point

operations. Here, SJ implementation shows a high overhead of synchronization

among each iteration that is for N=16384 the synchronization overhead is about

12% over AJ implementation. RJ implementation is shown performance improve-
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ment of about 4% over SJ implementation. RJ also shows increasing trend in

terms of performance improvement over SJ with the increase in the array dimen-

sion.

Figure 6.6: Performance comparison of Double Precision SJ, AJ, and RJ with
different array dimensions

6.3 Effects of Calling External CUBLAS Func-

tions

As shown in section 6.1, in most of the cases CUBLAS library functions obtained

the highest performance in comparison to RT-CUDA and other tools. This is be-

cause CUBLAS functions have been developed with complex kernel optimizations

at very low level of coding by hand. To get the benefit of the existing optimized

CUDA libraries, we have provided a feature of calling external library functions

as an optimization within the tool.
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This section shows the performance evaluation of RT-CUDA using CUBLAS

functons as an optimization instead of using RTA-CUDA algorithm. We applied

the tool on Matrix Multiplication (MM), Matrix Vector Multiplication (MV),

Matrix Transpose (MT), and Vector Vector Multiplication (VV). The execution

time of each application has been compared with GPGPU compiler and PGI

OpenACC compiler implementations.

RT-CUDA enables transparent invocation of the most optimized external math

libraries like cuBLAS and cuSparse libraries. It provides interfacing APIs, error

handling interpretation, and user transparent programming. Fig. 6.7 shows the

coding comparison of MV by directly using cuBLAS library and simplified invo-

cation of the library using RT-CUDA APIs. It reduces the programming efforts of

about 93% in terms of lines of code and hides complex parameters selection by the

programmers while giving similar performance in terms of execution time. Fig.

6.8 shows normalized execution time of MM and MV operations using CUBLAS

library and RT-CUDA API.

Table 6.2 shows the execution time in milliseconds of RT-CUDA, GPGPU com-

piler and PGI OpenACC implementations of different applications with different

array dimensions. The results show that RT-CUDA significantly outperforms

both GPGPU and PGI OpenACC implementations. It obtained performance im-

provements in terms of execution time of up to 80%, 100%, 4%, and 56% for MM,

MV, MT, and VV respectively over GPGPU compiler with N=4096. It obtained

performance improvements of up to 100%, 33%, 78%, and 70% for MM, MV, MT,
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Figure 6.7: Code snipped of MV using cuBLAS library (left) and RT-CUDA API
(right)

and VV respectively over PGI OpenACC implementations with N=4096.

Matrix Multiplication Matrix Vector Multiplication Matrix Transpose Vector Vector Multiplication

N RT-CUDA GPGPU OpenACC RT-CUDA GPGPU OpenACC RT-CUDA GPGPU OpenACC RT-CUDA GPGPU OpenACC
256 0.05 0.14 6.19 0.01 0.99 0.05 0.01 0.01 0.05 0.01 0.01 0.12
512 0.20 0.70 38.59 0.01 7.72 0.06 0.02 0.02 0.10 0.01 0.01 0.20
1024 1.10 3.80 542.95 0.04 80.93 0.10 0.07 0.06 0.30 0.03 0.07 0.37
2048 7.12 31.96 5361.62 0.14 659.42 0.21 0.25 0.25 1.11 0.11 0.26 0.71
4096 52.32 258.83 41468.49 0.51 5760.39 0.76 0.97 1.01 4.36 0.44 0.99 1.45

Table 6.2: Comparing RT-CUDA with GPGPU compiler and PGI OpenACC
compiler using different applications

6.4 Effects of Sparse Matrix Operations using

CUDA Sparse Library Routines

We have evaluated various sparse matrix formats available in cuSparse library

for Sparse-Sparse Matrix Multiplication (spMM), Sparse-Dense Matrix Multipli-
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Figure 6.8: Normalized Execution Time of MM (left) and MV (right) using
cuBLAS library and RT-CUDA API

cation (spdMM), and Sparse-Dense Matrix Vector Multiplication (spdMV) (see

Example 5.7.3 for evaluation of different storage formats using RT-CUDA API).

The objective of these evaluations is to access the performance of various matrix

operators and storage schemes available in cuSparse library to select the best stor-

ages as standard in RT-CUDA. The evaluation results show that the sparse matrix

multiplication (both spMM and spdMM) is only profitable in terms of memory

allocations but not for execution time for computations as the dense matrix mul-

tiplication in CUBLAS is highly optimized and provide the best performance

independent on the sparsity (percentage of number of zeros in the matrix) of the

matrix. Whereas, in case of matrix-vector multiplication (spdMV), the sparse

implementations obtain better performance both in terms of memory allocations

and execution time in comparison to dense implementation.

Table 6.3 shows the memory allocations in MB for the sparse matrix in Dense,

CSR, BSR (with 256 x 256 block dimensions), and HYB formats. Here, CSR

and HYB formats show minimum memory requirements for matrix storage that is
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N Dense CSR BSR HYB
1024 4 1 4 2
2048 16 4 16 6
4096 64 14 64 17
8192 256 51 257 54

Table 6.3: Matrix Storage Requirements in Different Formats with 90% Sparsity

about 50-80% less than the dense and BSR formats. Table 6.4 shows the execution

time in seconds for the computations of spMM, spdMM, and spdMV in Dense,

CSR, BSR (with 256 x 256 block dimensions), and HYB formats. For matrix

multiplication, sparse operations show significant overhead of computations due

to irregular memory access patterns of the randomly initialized sparse matrices.

For matrix-vector multiplication, sparse operations obtained the speedup of about

4 and 2.5 over dense operations for N=8192 in CSR and HYB formats respectively.

Furthermore, spdMV in CSR format is more efficient in terms of performance for

N <= 13312 and spdMV in HYB format obtained more speedup for N >= 14336

as shown in Fig. 6.9.

Dense Sparse
CSR BSR HYB

N MM MV spMM spdMM spdMV spdMM spdMV spdMV
1024 0.00117 0.00019 0.00865 0.00258 0.00013 0.01508 0.00156 0.00010
2048 0.00729 0.00026 0.04826 0.01831 0.00017 0.10783 0.00293 0.00014
4096 0.05251 0.00073 0.38818 0.17090 0.00013 0.84739 0.00622 0.00049
8192 0.41254 0.00176 3.17630 1.54086 0.00044 6.73315 0.01231 0.00072

Table 6.4: Execution time in seconds for different applications with available
sparse formats in cuSparse library
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Figure 6.9: Execution time in seconds of spdMV with CSR and HYB matrix
formats

6.5 Generation of API Functions for Efficient

Calling of cuSparse Library Routines

Since CSR and HYB sparse matrix formats have shown optimized storages (section

6.4), we decided to use them as implicit storage schemes in RT-CUDA. We have

implemented API functions to call cuSparse library routines with CSR matrix

format for spMM and spdMM operations, and with HYB matrix format for spdMV

operation. Tables 6.5 show the execution time in seconds for all three operations

spMM, spdMM, and spdMV implemented in RT-CUDA with different matrix

sparsity for N=10240.

Furthermore, RT-CUDA provides ability to load standard sparse matrices

available in a matrix market file format (an ASCII-based file format designed

to facilitate the exchange of matrix data) [86] into a sparse matrix structure to
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Single-Precision Double-Precision
Sparsity spMM spdMM spdMV spMM spdMM spdMV

25% 382.7293 20.0087 0.0062 577.9461 33.6707 0.0072
50% 152.2969 13.9083 0.0042 230.9889 22.6241 0.0049
75% 36.6174 7.1978 0.0021 55.1729 11.4095 0.0023
90% 6.2449 3.0196 0.0009 9.0411 4.6379 0.0010

Table 6.5: Execution time in seconds for spMM, spdMM, and spdMV implemented
in RT-CUDA for N=10240

Matrix Plot Dimension Non-
Zeros

Sparsity

bcsstm13 2003 11973 99.70%

cavity10 2597 76367 98.87%

cavity17 4562 138187 99.34%

cdde1 961 4681 99.49%

coater1 1348 19457 98.93%

Table 6.6: Properties of the Sparse Matrices

be used in RT-CUDA API functions for sparse matrix operations (see Example

5.7.3). We have evaluated the sparse operations of RT-CUDA using various stan-

dard sparse matrices in the domain of computational fluid dynamics available in

the repository of University of Florida [87] and extracted from the real appli-

cations. Table 6.6 shows the properties of these matrices. All of the selected

matrices has about 99% sparsity and are bend diagonal in nature. Fig. 6.10

shows the obtained speedup of RTspDMM, RTspdDMM, and RTspdDMV API

functions of RT-CUDA (see Table 5.1 for details) over Dense equivalent operation.

For RTspDMM, the sparse operation obtained more speedup if the non-zero ele-
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ments are closed to diagonal as in the case of matrices cavity17 and cdde1 while

in the case of bcsstm13, cavity10, and coater1 the speedup is relatively less due

to scattered non-zero elements. For RTspdMM, the obtained speedup is seem to

be dependent on the sparsity of the matrix. The matrices having more sparsity

show more speedup than the matrices having less sparsity. For RTspdMV, the

sparse operation obtained more speedup if the non-zero elements are closed to di-

agonal but with large dimension as in the case of cavity17 but the speedup drops

significantly for small dimension as in the case of cdde1.

Figure 6.10: Speedup of sparse MM and MV operations in RT-CUDA over Dense
operations
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CHAPTER 7

CONCLUSION AND FUTURE

WORK

Modern GPUs use multiple streaming multiprocessors (SMs) with potentially hun-

dreds of cores, fast context switching, and high memory bandwidth to tolerate

ever-increasing latencies to main memory by overlapping long-latency loads in

stalled threads with useful computation in other threads. The Compute Unified

Device Architecture (CUDA) is a simple C-like interface proposed for program-

ming NVIDIA GPUs. However, porting applications to CUDA remains a challenge

to average programmers. CUDA places on the programmer the burden of packag-

ing GPU code in separate functions, of explicitly managing data transfer between

the host and GPU memories, and of manually optimizing the utilization of the

GPU resources.

In this work, we have explored the GPU architecture and CUDA program-

ming framework to utilize GPU devices for general purpose computing. We have
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reviewed several numerical algorithms implementations, code transformations to

enhance CUDA kernel performance, CUDA kernel optimizations, performance

models, auto-tuning frameworks, micro-benchmarking of GPU devices (see Chap-

ter 2). We have studied in detail about the execution model, programming, and

synchronization mechanisms of latest GPU architectures including Fermi and Ke-

pler (see Chapter 3).

Based on the study of GPU architectures, CUDA programming framework,

and various kernel optimizations, a 3-step algorithm has been proposed to tune

the CUDA kernel parameters and enhance GPU resource utilization (see Section

4.1). A detailed analysis of the existing GPGPU frameworks/compilers have been

presented (see Section 4.3) including CUDA-lite, hiCUDA, OpenMPC, PGI, Ope-

nACC, HMPP, R-Stream, and CUDA-CHiLL.

A Restructuring Tool Algorithm (RTA-CUDA) has also been presented to gen-

erate an optimized CUDA parallel program from a given sequential C program

(see Section 5.2). The algorithm generates a parametric CUDA kernel with three

parameters that are BLOCK SIZE, MERGE LEVEL, and SKEW LEVEL. A pa-

rameter tuning algorithm has also been presented to find an optimal set of CUDA

kernel parameters generated by RTA-CUDA (see Section 5.2.5). Based on RTA-

CUDA and the parametric tuning algorithm, a Restructuring Tool (RT-CUDA)

has been developed with an additional set of API functions to call highly opti-

mized library routines for dense and sparse matrices (cuBLAS and cuSPARSE)

and synchronization primitives for inter-block synchronization (see Section 5.3).
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RT-CUDA is a software compiler with best possible kernel optimizations to bridge

the gap between high-level languages machine dependent CUDA and GPUs. RT-

CUDA enables transparent invocation of the most optimized external math li-

braries like cuSparse, and cuBLAS. RT-CUDA facilitates the design of efficient

parallel software for developing parallel simulators (reservoir simulators, molecu-

lar dynamics, etc.) which are critical for Aramco and Oil and Gas industry in

KSA.

Performance evaluation of the tool has been performed using basic linear al-

gebra operations including Lapack BLAS benchmark, Jacobi iterative solver with

different inter-block synchronization primitives, dense and sparse matrix opera-

tions (see Chapter 6). RT-CUDA obtained significant speedup over other compil-

ers like PGI OpenACC implementation and GPGPU compiler. Testing of the tool

has been performed by some graduate students based on a set of 10 testing cases

(see Appendix 7) with progressive difficulties ranging from simple vector matrix

operations to full solver of linear system of equations.

The RT-CUDA implementation currently supports single kernel conversion at

a time that can be enhanced to provide support for multiple kernels development

in a single run that ease the development of complex programs. Also, it can be

extended to add support for kernel specific configurations and auto-tuning. Some

new optimizations can be implemented targeting emerging GPU architectures such

as Maxwell. Futhermore, additional API functions can be added from cuBLAS

and cuSparse libraries with different sparse matrix formats.
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Appendix A

ANTLR C Grammar

Listing 1: C Grammar

grammar C_RCUDA;

primaryExpression

: Identifier

| Constant

| StringLiteral+

| ’(’ expression ’)’

| genericSelection

| ’__extension__ ’? ’(’ compoundStatement ’)’ //

Blocks (GCC extension)

| ’__builtin_va_arg ’ ’(’ unaryExpression ’,’

typeName ’)’

| ’__builtin_offsetof ’ ’(’ typeName ’,’

unaryExpression ’)’

;

genericSelection

: ’_Generic ’ ’(’ assignmentExpression ’,’

genericAssocList ’)’

;

genericAssocList

: genericAssociation

| genericAssocList ’,’ genericAssociation

;

genericAssociation

: typeName ’:’ assignmentExpression

| ’default ’ ’:’ assignmentExpression

;

postfixExpression

: primaryExpression

| postfixExpression ’[’ expression ’]’

| postfixExpression ’(’ argumentExpressionList? ’)’

| postfixExpression ’.’ Identifier
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| postfixExpression ’->’ Identifier

| postfixExpression ’++’

| postfixExpression ’--’

| ’(’ typeName ’)’ ’{’ initializerList ’}’

| ’(’ typeName ’)’ ’{’ initializerList ’,’ ’}’

| ’__extension__ ’ ’(’ typeName ’)’ ’{’

initializerList ’}’

| ’__extension__ ’ ’(’ typeName ’)’ ’{’

initializerList ’,’ ’}’

;

argumentExpressionList

: assignmentExpression

| argumentExpressionList ’,’ assignmentExpression

;

unaryExpression

: postfixExpression

| ’++’ unaryExpression

| ’--’ unaryExpression

| unaryOperator castExpression

| ’sizeof ’ unaryExpression

| ’sizeof ’ ’(’ typeName ’)’

| ’_Alignof ’ ’(’ typeName ’)’

| ’&&’ Identifier // GCC extension address of label

;

unaryOperator

: ’&’ | ’*’ | ’+’ | ’-’ | ’~’ | ’!’

;

castExpression

: unaryExpression

| ’(’ typeName ’)’ castExpression

| ’__extension__ ’ ’(’ typeName ’)’ castExpression

;

multiplicativeExpression

: castExpression

| multiplicativeExpression ’*’ castExpression

| multiplicativeExpression ’/’ castExpression

| multiplicativeExpression ’%’ castExpression

;

additiveExpression

: multiplicativeExpression

| additiveExpression ’+’ multiplicativeExpression
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| additiveExpression ’-’ multiplicativeExpression

;

shiftExpression

: additiveExpression

| shiftExpression ’<<’ additiveExpression

| shiftExpression ’>>’ additiveExpression

;

relationalExpression

: shiftExpression

| relationalExpression ’<’ shiftExpression

| relationalExpression ’>’ shiftExpression

| relationalExpression ’<=’ shiftExpression

| relationalExpression ’>=’ shiftExpression

;

equalityExpression

: relationalExpression

| equalityExpression ’==’ relationalExpression

| equalityExpression ’!=’ relationalExpression

;

andExpression

: equalityExpression

| andExpression ’&’ equalityExpression

;

exclusiveOrExpression

: andExpression

| exclusiveOrExpression ’^’ andExpression

;

inclusiveOrExpression

: exclusiveOrExpression

| inclusiveOrExpression ’|’ exclusiveOrExpression

;

logicalAndExpression

: inclusiveOrExpression

| logicalAndExpression ’&&’ inclusiveOrExpression

;

logicalOrExpression

: logicalAndExpression

| logicalOrExpression ’||’ logicalAndExpression

;
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conditionalExpression

: logicalOrExpression (’?’ expression ’:’

conditionalExpression)?

;

assignmentExpression

: conditionalExpression

| unaryExpression assignmentOperator

assignmentExpression

;

assignmentOperator

: ’=’ | ’*=’ | ’/=’ | ’%=’ | ’+=’ | ’-=’ | ’<<=’ |

’>>=’ | ’&=’ | ’^=’ | ’|=’

;

expression

: assignmentExpression

| expression ’,’ assignmentExpression

;

constantExpression

: conditionalExpression

;

declaration

: declarationSpecifiers initDeclaratorList? ’;’

| staticAssertDeclaration

;

declarationSpecifiers

: declarationSpecifier+

;

declarationSpecifiers2

: declarationSpecifier+

;

declarationSpecifier

: storageClassSpecifier

| typeSpecifier

| typeQualifier

| functionSpecifier

| alignmentSpecifier

;

214



initDeclaratorList

: initDeclarator

| initDeclaratorList ’,’ initDeclarator

;

initDeclarator

: declarator

| declarator ’=’ initializer

;

storageClassSpecifier

: ’typedef ’

| ’extern ’

| ’static ’

| ’_Thread_local ’

| ’auto’

| ’register ’

;

typeSpecifier

: (’void’

| ’char’

| ’short ’

| ’int’

| ’long’

| ’float ’

| ’double ’

| ’signed ’

| ’unsigned ’

| ’_Bool ’

| ’_Complex ’

| ’__m128 ’

| ’__m128d ’

| ’__m128i ’)

| ’__extension__ ’ ’(’ (’__m128 ’ | ’__m128d ’ | ’

__m128i ’) ’)’

| atomicTypeSpecifier

| structOrUnionSpecifier

| enumSpecifier

| typedefName

| ’__typeof__ ’ ’(’ constantExpression ’)’ // GCC

extension

| ’dim3’

;

structOrUnionSpecifier

: structOrUnion Identifier? ’{’
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structDeclarationList ’}’

| structOrUnion Identifier

;

structOrUnion

: ’struct ’

| ’union ’

;

structDeclarationList

: structDeclaration

| structDeclarationList structDeclaration

;

structDeclaration

: specifierQualifierList structDeclaratorList? ’;’

| staticAssertDeclaration

;

specifierQualifierList

: typeSpecifier specifierQualifierList?

| typeQualifier specifierQualifierList?

;

structDeclaratorList

: structDeclarator

| structDeclaratorList ’,’ structDeclarator

;

structDeclarator

: declarator

| declarator? ’:’ constantExpression

;

enumSpecifier

: ’enum’ Identifier? ’{’ enumeratorList ’}’

| ’enum’ Identifier? ’{’ enumeratorList ’,’ ’}’

| ’enum’ Identifier

;

enumeratorList

: enumerator

| enumeratorList ’,’ enumerator

;

enumerator

: enumerationConstant
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| enumerationConstant ’=’ constantExpression

;

enumerationConstant

: Identifier

;

atomicTypeSpecifier

: ’_Atomic ’ ’(’ typeName ’)’

;

typeQualifier

: ’const ’

| ’restrict ’

| ’__restrict__ ’

| ’volatile ’

| ’_Atomic ’

;

functionSpecifier

: (’inline ’

| ’_Noreturn ’

| ’__inline__ ’ // GCC extension

| ’__stdcall ’)

| gccAttributeSpecifier

| ’__declspec ’ ’(’ Identifier ’)’

;

alignmentSpecifier

: ’_Alignas ’ ’(’ typeName ’)’

| ’_Alignas ’ ’(’ constantExpression ’)’

;

declarator

: pointer? directDeclarator gccDeclaratorExtension*

;

directDeclarator

: Identifier

| ’(’ declarator ’)’

| directDeclarator ’[’ typeQualifierList?

assignmentExpression? ’]’

| directDeclarator ’[’ ’static ’ typeQualifierList?

assignmentExpression ’]’

| directDeclarator ’[’ typeQualifierList ’static ’

assignmentExpression ’]’

| directDeclarator ’[’ typeQualifierList? ’*’ ’]’
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| directDeclarator ’(’ parameterTypeList ’)’

| directDeclarator ’(’ identifierList? ’)’

;

gccDeclaratorExtension

: ’__asm ’ ’(’ StringLiteral+ ’)’

| gccAttributeSpecifier

;

gccAttributeSpecifier

: ’__attribute__ ’ ’(’ ’(’ gccAttributeList ’)’ ’)’

;

gccAttributeList

: gccAttribute (’,’ gccAttribute)*

| // empty

;

gccAttribute

: ~(’,’ | ’(’ | ’)’) // relaxed def for "identifier

or reserved word"

(’(’ argumentExpressionList? ’)’)?

| // empty

;

nestedParenthesesBlock

: ( ~(’(’ | ’)’)

| ’(’ nestedParenthesesBlock ’)’

)*

;

pointer

: ’*’ typeQualifierList?

| ’*’ typeQualifierList? pointer

| ’^’ typeQualifierList? // Blocks language

extension

| ’^’ typeQualifierList? pointer // Blocks language

extension

;

typeQualifierList

: typeQualifier

| typeQualifierList typeQualifier

;

parameterTypeList

: parameterList
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| parameterList ’,’ ’...’

;

parameterList

: parameterDeclaration

| parameterList ’,’ parameterDeclaration

;

parameterDeclaration

: declarationSpecifiers declarator

| declarationSpecifiers2 abstractDeclarator?

;

identifierList

: Identifier

| identifierList ’,’ Identifier

;

typeName

: specifierQualifierList abstractDeclarator?

;

abstractDeclarator

: pointer

| pointer? directAbstractDeclarator

gccDeclaratorExtension*

;

directAbstractDeclarator

: ’(’ abstractDeclarator ’)’ gccDeclaratorExtension

*

| ’[’ typeQualifierList? assignmentExpression? ’]’

| ’[’ ’static ’ typeQualifierList?

assignmentExpression ’]’

| ’[’ typeQualifierList ’static ’

assignmentExpression ’]’

| ’[’ ’*’ ’]’

| ’(’ parameterTypeList? ’)’ gccDeclaratorExtension

*

| directAbstractDeclarator ’[’ typeQualifierList?

assignmentExpression? ’]’

| directAbstractDeclarator ’[’ ’static ’

typeQualifierList? assignmentExpression ’]’

| directAbstractDeclarator ’[’ typeQualifierList ’

static ’ assignmentExpression ’]’

| directAbstractDeclarator ’[’ ’*’ ’]’

| directAbstractDeclarator ’(’ parameterTypeList? ’
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)’ gccDeclaratorExtension*

;

typedefName

: Identifier

;

initializer

: assignmentExpression

| ’{’ initializerList ’}’

| ’{’ initializerList ’,’ ’}’

;

initializerList

: designation? initializer

| initializerList ’,’ designation? initializer

;

designation

: designatorList ’=’

;

designatorList

: designator

| designatorList designator

;

designator

: ’[’ constantExpression ’]’

| ’.’ Identifier

;

staticAssertDeclaration

: ’_Static_assert ’ ’(’ constantExpression ’,’

StringLiteral+ ’)’ ’;’

;

statement

: labeledStatement

| compoundStatement

| expressionStatement

| selectionStatement

| iterationStatement

| jumpStatement

| dim3Statement

| cudaKernelInvocation

| (’__asm ’ | ’__asm__ ’) (’volatile ’ | ’__volatile__
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’) ’(’ (logicalOrExpression (’,’

logicalOrExpression)*)? (’:’ (logicalOrExpression

(’,’ logicalOrExpression)*)?)* ’)’ ’;’

;

dim3Statement

: typeSpecifier Identifier expression ’;’

;

labeledStatement

: Identifier ’:’ statement

| ’case’ constantExpression ’:’ statement

| ’default ’ ’:’ statement

;

compoundStatement

: ’{’ blockItemList? ’}’

;

blockItemList

: blockItem

| blockItemList blockItem

;

blockItem

: declaration

| statement

;

expressionStatement

: expression? ’;’

;

selectionStatement

: ’if’ ’(’ expression ’)’ statement (’else’

statement)?

| ’switch ’ ’(’ expression ’)’ statement

;

iterationStatement

: ’while ’ ’(’ expression ’)’ statement

| ’do’ statement ’while ’ ’(’ expression ’)’ ’;’

| ’for’ ’(’ expression? ’;’ expression? ’;’

expression? ’)’ statement

| ’for’ ’(’ declaration expression? ’;’ expression?

’)’ statement

;
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jumpStatement

: ’goto’ Identifier ’;’

| ’continue ’ ’;’

| ’break ’ ’;’

| ’return ’ expression? ’;’

| ’goto’ unaryExpression ’;’ // GCC extension

;

compilationUnit

: translationUnit? EOF

;

translationUnit

: externalDeclaration

| translationUnit externalDeclaration

;

externalDeclaration

: functionDefinition

| declaration

| ’;’ // stray ;

;

functionDefinition

: declarationSpecifiers? declarator declarationList

? compoundStatement

;

declarationList

: declaration

| declarationList declaration

;

cudaKernelInvocation

: primaryExpression ’<<<’ expression ’>>>’ ’(’

expression? ’)’ ’;’

;

Auto : ’auto’;

Break : ’break ’;

Case : ’case’;

Char : ’char’;

Const : ’const ’;

Continue : ’continue ’;

Default : ’default ’;

Do : ’do’;
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Double : ’double ’;

Else : ’else’;

Enum : ’enum’;

Extern : ’extern ’;

Float : ’float ’;

For : ’for’;

Goto : ’goto’;

If : ’if’;

Inline : ’inline ’;

Int : ’int’;

Long : ’long’;

Register : ’register ’;

Restrict : ’restrict ’;

CUDARestrict : ’__restrict__ ’;

Return : ’return ’;

Short : ’short ’;

Signed : ’signed ’;

Sizeof : ’sizeof ’;

Static : ’static ’;

Struct : ’struct ’;

Switch : ’switch ’;

Typedef : ’typedef ’;

Union : ’union ’;

Unsigned : ’unsigned ’;

Void : ’void’;

Volatile : ’volatile ’;

While : ’while ’;

Dim3 : ’dim3’;

Alignas : ’_Alignas ’;

Alignof : ’_Alignof ’;

Atomic : ’_Atomic ’;

Bool : ’_Bool ’;

Complex : ’_Complex ’;

Generic : ’_Generic ’;

Imaginary : ’_Imaginary ’;

Noreturn : ’_Noreturn ’;

StaticAssert : ’_Static_assert ’;

ThreadLocal : ’_Thread_local ’;

LeftParen : ’(’;

RightParen : ’)’;

LeftBracket : ’[’;

RightBracket : ’]’;

LeftBrace : ’{’;

RightBrace : ’}’;
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Less : ’<’;

LessEqual : ’<=’;

Greater : ’>’;

GreaterEqual : ’>=’;

LeftShift : ’<<’;

RightShift : ’>>’;

Plus : ’+’;

PlusPlus : ’++’;

Minus : ’-’;

MinusMinus : ’--’;

Star : ’*’;

Div : ’/’;

Mod : ’%’;

And : ’&’;

Or : ’|’;

AndAnd : ’&&’;

OrOr : ’||’;

Caret : ’^’;

Not : ’!’;

Tilde : ’~’;

Question : ’?’;

Colon : ’:’;

Semi : ’;’;

Comma : ’,’;

Assign : ’=’;

StarAssign : ’*=’;

DivAssign : ’/=’;

ModAssign : ’%=’;

PlusAssign : ’+=’;

MinusAssign : ’-=’;

LeftShiftAssign : ’<<=’;

RightShiftAssign : ’>>=’;

AndAssign : ’&=’;

XorAssign : ’^=’;

OrAssign : ’|=’;

CUDAFunctionCallInit : ’<<<’;

CUDAFunctionCallEnd : ’>>>’;

Equal : ’==’;

NotEqual : ’!=’;

Arrow : ’->’;

Dot : ’.’;
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Ellipsis : ’...’;

Identifier

: IdentifierNondigit

( IdentifierNondigit

| Digit

)*

;

fragment

IdentifierNondigit

: Nondigit

| UniversalCharacterName

;

fragment

Nondigit

: [a-zA-Z_]

;

fragment

Digit

: [0-9]

;

fragment

UniversalCharacterName

: ’\\u’ HexQuad

| ’\\U’ HexQuad HexQuad

;

fragment

HexQuad

: HexadecimalDigit HexadecimalDigit

HexadecimalDigit HexadecimalDigit

;

Constant

: IntegerConstant

| FloatingConstant

| CharacterConstant

;

fragment

IntegerConstant

: DecimalConstant IntegerSuffix?

| OctalConstant IntegerSuffix?
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| HexadecimalConstant IntegerSuffix?

;

fragment

DecimalConstant

: NonzeroDigit Digit*

;

fragment

OctalConstant

: ’0’ OctalDigit*

;

fragment

HexadecimalConstant

: HexadecimalPrefix HexadecimalDigit+

;

fragment

HexadecimalPrefix

: ’0’ [xX]

;

fragment

NonzeroDigit

: [1-9]

;

fragment

OctalDigit

: [0-7]

;

fragment

HexadecimalDigit

: [0-9a-fA-F]

;

fragment

IntegerSuffix

: UnsignedSuffix LongSuffix?

| UnsignedSuffix LongLongSuffix

| LongSuffix UnsignedSuffix?

| LongLongSuffix UnsignedSuffix?

;

fragment
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UnsignedSuffix

: [uU]

;

fragment

LongSuffix

: [lL]

;

fragment

LongLongSuffix

: ’ll’ | ’LL’

;

fragment

FloatingConstant

: DecimalFloatingConstant

| HexadecimalFloatingConstant

;

fragment

DecimalFloatingConstant

: FractionalConstant ExponentPart? FloatingSuffix?

| DigitSequence ExponentPart FloatingSuffix?

;

fragment

HexadecimalFloatingConstant

: HexadecimalPrefix HexadecimalFractionalConstant

BinaryExponentPart FloatingSuffix?

| HexadecimalPrefix HexadecimalDigitSequence

BinaryExponentPart FloatingSuffix?

;

fragment

FractionalConstant

: DigitSequence? ’.’ DigitSequence

| DigitSequence ’.’

;

fragment

ExponentPart

: ’e’ Sign? DigitSequence

| ’E’ Sign? DigitSequence

;

fragment
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Sign

: ’+’ | ’-’

;

fragment

DigitSequence

: Digit+

;

fragment

HexadecimalFractionalConstant

: HexadecimalDigitSequence? ’.’

HexadecimalDigitSequence

| HexadecimalDigitSequence ’.’

;

fragment

BinaryExponentPart

: ’p’ Sign? DigitSequence

| ’P’ Sign? DigitSequence

;

fragment

HexadecimalDigitSequence

: HexadecimalDigit+

;

fragment

FloatingSuffix

: ’f’ | ’l’ | ’F’ | ’L’

;

fragment

CharacterConstant

: ’\’’ CCharSequence ’\’’

| ’L\’’ CCharSequence ’\’’

| ’u\’’ CCharSequence ’\’’

| ’U\’’ CCharSequence ’\’’

;

fragment

CCharSequence

: CChar+

;

fragment

CChar
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: ~[’\\\r\n]

| EscapeSequence

;

fragment

EscapeSequence

: SimpleEscapeSequence

| OctalEscapeSequence

| HexadecimalEscapeSequence

| UniversalCharacterName

;

fragment

SimpleEscapeSequence

: ’\\’ [’"?abfnrtv \\]

;

fragment

OctalEscapeSequence

: ’\\’ OctalDigit

| ’\\’ OctalDigit OctalDigit

| ’\\’ OctalDigit OctalDigit OctalDigit

;

fragment

HexadecimalEscapeSequence

: ’\\x’ HexadecimalDigit+

;

StringLiteral

: EncodingPrefix? ’"’ SCharSequence? ’"’

;

fragment

EncodingPrefix

: ’u8’

| ’u’

| ’U’

| ’L’

;

fragment

SCharSequence

: SChar+

;

fragment
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SChar

: ~["\\\r\n]

| EscapeSequence

;

LineDirective

: ’#’ Whitespace? DecimalConstant Whitespace?

StringLiteral ~[\r\n]*

-> skip

;

PragmaDirective

: ’#’ Whitespace? ’pragma ’ Whitespace ~[\r\n]*

-> skip

;

Whitespace

: [ \t]+

-> skip

;

Newline

: ( ’\r’ ’\n’?

| ’\n’

)

-> skip

;

BlockComment

: ’/*’ .*? ’*/’

-> skip

;

LineComment

: ’//’ ~[\r\n]*

-> skip

;
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Appendix B

RT-CUDA Transformations

Listing 2: GlobalValues.java

public class GlobalValues {

static int loopCount =0;

static boolean nestLoopFound = false;

static String BlockMergeIndex = "";

static boolean enteredExpressionStatement = false;

static ArrayList <String >

BlockMergeIndexLValueIdentifier = new ArrayList

<>();

static boolean applyBlockSkew = false;

static String BlockSkewIndex = "";

static ArrayList <String >

BlockSkewIndexLValueIdentifier = new ArrayList <>()

;

static boolean applyPrefetching = false;

static ArrayList <String > prefetchedArrayIdentifiers =

new ArrayList <>();

static ArrayList <String >

nonPrefetchedArrayIdentifiers = new ArrayList <>();

static String typeSpecifier = "float";

static boolean sharedMemoryDeclared = false;

static String prefetchingLoopIndex = "";

static String prefetchingArrayExpression = "";

static String nonPrefetchingArrayExpression = "";

static String lastLoopIndex = "";

static int prefetchingLoopLineNumber = 0;

static boolean prefetechedLoopEntered = false;

static boolean prefetchedArrayExpressionFound = false

;

static boolean nonPrefetchedArrayExpressionFound =

false;

static boolean applyLoopCollapsing = true;

static ArrayList <String > kernelNameList = new

ArrayList <>();

static boolean _2DMatrix = false;

static String rowDim = "N";

static int tabCount = 0;
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static boolean iterationStatment = false;

static ArrayList <Integer > endIterationDecs = new

ArrayList <>();

public static ArrayList <Integer > getEndIterationDecs

() {

return endIterationDecs;

}

public static void setEndIterationDecs(int

endIterationDecs) {

GlobalValues.endIterationDecs.add(

endIterationDecs);

}

public static boolean isIterationStatment () {

return iterationStatment;

}

public static void setIterationStatment(boolean

iterationStatment) {

GlobalValues.iterationStatment =

iterationStatment;

}

public static int getTabCount () {

return tabCount;

}

public static void setTabCount(int tabCount) {

GlobalValues.tabCount = tabCount;

}

public static void incTabCount () {

GlobalValues.tabCount ++;

}

public static void decTabCount () {

GlobalValues.tabCount --;

}

public static String getRowDim () {

return rowDim;

}

public static void setRowDim(String rowDim) {

GlobalValues.rowDim = rowDim;

}
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public static boolean is2DMatrix () {

return _2DMatrix;

}

public static void set2DMatrix(boolean _2DMatrix) {

GlobalValues._2DMatrix = _2DMatrix;

}

public static ArrayList <String > getKernelNameList () {

return kernelNameList;

}

public static void setKernelNameList(String

kernelName) {

GlobalValues.kernelNameList.add(kernelName);

}

public static boolean isApplyLoopCollapsing () {

return applyLoopCollapsing;

}

public static void setApplyLoopCollapsing(boolean

applyLoopCollapsing) {

GlobalValues.applyLoopCollapsing =

applyLoopCollapsing;

}

public static boolean

isNonPrefetchedArrayExpressionFound () {

return nonPrefetchedArrayExpressionFound;

}

public static void

setNonPrefetchedArrayExpressionFound(boolean

nonPrefetchedArrayExpressionFound) {

GlobalValues.nonPrefetchedArrayExpressionFound =

nonPrefetchedArrayExpressionFound;

}

public static ArrayList <String >

getNonPrefetchedArrayIdentifiers () {

return nonPrefetchedArrayIdentifiers;

}

public static void setNonPrefetchedArrayIdentifiers(

String nonPrefetchedArrayIdentifiers) {
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GlobalValues.nonPrefetchedArrayIdentifiers.add(

nonPrefetchedArrayIdentifiers);

}

public static String getNonPrefetchingArrayExpression

() {

return nonPrefetchingArrayExpression;

}

public static void setNonPrefetchingArrayExpression(

String nonPrefetchingArrayExpression) {

GlobalValues.nonPrefetchingArrayExpression =

nonPrefetchingArrayExpression;

}

public static boolean

isPrefetchedArrayExpressionFound () {

return prefetchedArrayExpressionFound;

}

public static void setPrefetchedArrayExpressionFound(

boolean prefetchedArrayExpressionFound) {

GlobalValues.prefetchedArrayExpressionFound =

prefetchedArrayExpressionFound;

}

public static boolean isPrefetechedLoopEntered () {

return prefetechedLoopEntered;

}

public static void setPrefetechedLoopEntered(boolean

prefetechedLoopEntered) {

GlobalValues.prefetechedLoopEntered =

prefetechedLoopEntered;

}

public static int getPrefetchingLoopLineNumber () {

return prefetchingLoopLineNumber;

}

public static void setPrefetchingLoopLineNumber(int

prefetchingLoopLineNumber) {

GlobalValues.prefetchingLoopLineNumber =

prefetchingLoopLineNumber;

}

public static String getLastLoopIndex () {
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return lastLoopIndex;

}

public static void setLastLoopIndex(String

loopIndices) {

GlobalValues.lastLoopIndex = loopIndices;

}

public static String getPrefetchingArrayExpression ()

{

return prefetchingArrayExpression;

}

public static void setPrefetchingArrayExpression(

String prefetchingArrayExpression) {

GlobalValues.prefetchingArrayExpression =

prefetchingArrayExpression;

}

public static String getPrefetchingLoopIndex () {

return prefetchingLoopIndex;

}

public static void setPrefetchingLoopIndex(String

prefetchingLoopIndex) {

GlobalValues.prefetchingLoopIndex =

prefetchingLoopIndex;

}

public static boolean isSharedMemoryDeclared () {

return sharedMemoryDeclared;

}

public static void setSharedMemoryDeclared(boolean

sharedMemoryDeclared) {

GlobalValues.sharedMemoryDeclared =

sharedMemoryDeclared;

}

public static String getTypeSpecifier () {

return typeSpecifier;

}

public static void setTypeSpecifier(String

typeSpecifier) {

GlobalValues.typeSpecifier = typeSpecifier;
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}

public static ArrayList <String >

getPrefetchedArrayIdentifiers () {

return prefetchedArrayIdentifiers;

}

public static void setPrefetchedArrayIdentifiers(

String prefetchedArrayIdentifiers) {

GlobalValues.prefetchedArrayIdentifiers.add(

prefetchedArrayIdentifiers);

}

public static boolean isApplyPrefetching () {

return applyPrefetching;

}

public static void setApplyPrefetching(boolean

applyPrefetching) {

GlobalValues.applyPrefetching = applyPrefetching;

}

public static boolean isApplyBlockSkew () {

return applyBlockSkew;

}

public static void setApplyBlockSkew(boolean

applyBlockSkew) {

GlobalValues.applyBlockSkew = applyBlockSkew;

}

public static String getBlockSkewIndex () {

return BlockSkewIndex;

}

public static void setBlockSkewIndex(String

BlockSkewIndex) {

GlobalValues.BlockSkewIndex = BlockSkewIndex;

}

public static ArrayList <String >

getBlockSkewIndexLValueIdentifier () {

return BlockSkewIndexLValueIdentifier;

}

public static void setBlockSkewIndexLValueIdentifier(

String BlockSkewIndexLValueIdentifier) {
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GlobalValues.BlockSkewIndexLValueIdentifier.add(

BlockSkewIndexLValueIdentifier);

}

public static ArrayList <String >

getBlockMergeIndexLValueIdentifier () {

return BlockMergeIndexLValueIdentifier;

}

public static void setBlockMergeIndexLValueIdentifier

(String BlockMergeIndexLValueIdentifier) {

GlobalValues.BlockMergeIndexLValueIdentifier.add(

BlockMergeIndexLValueIdentifier);

}

public static boolean isEnteredExpressionStatement ()

{

return enteredExpressionStatement;

}

public static void setEnteredExpressionStatement(

boolean enteredExpressionStatement) {

GlobalValues.enteredExpressionStatement =

enteredExpressionStatement;

}

public static String getBlockMergeIndex () {

return BlockMergeIndex;

}

public static void setBlockMergeIndex(String

BlockMergeIndex) {

GlobalValues.BlockMergeIndex = BlockMergeIndex;

}

public static boolean isNestLoopFound () {

return nestLoopFound;

}

public static void setNestLoopFound(boolean

nestLoopFound) {

GlobalValues.nestLoopFound = nestLoopFound;

}

static IterationStatementContext firstLoop = null;

public static IterationStatementContext getFirstLoop

() {
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return firstLoop;

}

public static void setFirstLoop(

IterationStatementContext firstLoop) {

GlobalValues.firstLoop = firstLoop;

}

public static int getLoopCount () {

return loopCount;

}

public static void setLoopCount(int loopCount) {

GlobalValues.loopCount = loopCount;

}

public static void incrementLoopCount (){

loopCount ++;

}

public static void decrementLoopCount (){

loopCount --;

}

public static void resetLoopCount (){

setLoopCount (0);

}

}

Listing 3: LoopCollapsingListener.java

public class LoopCollapsingListener extends

C_RCUDABaseListener{

Override public void enterIterationStatement(NotNull

C_RCUDAParser.IterationStatementContext ctx) {

GlobalValues.incrementLoopCount ();

int loop_count = GlobalValues.getLoopCount ();

switch(loop_count){

case 1:

GlobalValues.setFirstLoop(ctx);

break;

case 2:

GlobalValues.setNestLoopFound(true);

C_RCUDAParser.

IterationStatementContext

first_loop = GlobalValues.

getFirstLoop ();
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first_loop.removeLastChild ();

System.out.println(first_loop.getText

());

for(int i=0; i < ctx.getChildCount ();

i++){

if(ctx.getChild(i).getClass ().

getSimpleName ().equals("

StatementContext")){

String first_dec = first_loop

.declaration ().

initDeclaratorList ().

initDeclarator ().

declarator ().getText ();

String second_dec = ctx.

declaration ().

initDeclaratorList ().

initDeclarator ().

declarator ().getText ();

String dec = first_dec +

second_dec;

String first_limit =

first_loop.expression (0).

assignmentExpression ().

conditionalExpression ().

logicalOrExpression ().

logicalAndExpression ().

inclusiveOrExpression ().

exclusiveOrExpression ().

andExpression ().

equalityExpression ().

relationalExpression ().

shiftExpression ().

additiveExpression ().

multiplicativeExpression ()

.castExpression ().

unaryExpression ().

postfixExpression ().

primaryExpression ().

getText ();

String second_limit = ctx.

expression (0).

assignmentExpression ().

conditionalExpression ().

logicalOrExpression ().

logicalAndExpression ().

inclusiveOrExpression ().

exclusiveOrExpression ().

239



andExpression ().

equalityExpression ().

relationalExpression ().

shiftExpression ().

additiveExpression ().

multiplicativeExpression ()

.castExpression ().

unaryExpression ().

postfixExpression ().

primaryExpression ().

getText ();

String limit = first_limit +

"*" + second_limit;

first_loop.declaration ().

initDeclaratorList ().

initDeclarator ().

declarator ().

removeLastChild ();

first_loop.declaration ().

initDeclaratorList ().

initDeclarator ().

declarator ().addChild(new

CommonToken (0, dec));

first_loop.expression (0).

assignmentExpression ().

conditionalExpression ().

logicalOrExpression ().

logicalAndExpression ().

inclusiveOrExpression ().

exclusiveOrExpression ().

andExpression ().

equalityExpression ().

relationalExpression ().

relationalExpression ().

shiftExpression ().

additiveExpression ().

multiplicativeExpression ()

.castExpression ().

unaryExpression ().

postfixExpression ().

primaryExpression ().

removeLastChild ();

first_loop.expression (0).

assignmentExpression ().

conditionalExpression ().

logicalOrExpression ().

logicalAndExpression ().
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inclusiveOrExpression ().

exclusiveOrExpression ().

andExpression ().

equalityExpression ().

relationalExpression ().

relationalExpression ().

shiftExpression ().

additiveExpression ().

multiplicativeExpression ()

.castExpression ().

unaryExpression ().

postfixExpression ().

primaryExpression ().

addChild(new CommonToken

(0, dec));

first_loop.expression (1).

assignmentExpression ().

conditionalExpression ().

logicalOrExpression ().

logicalAndExpression ().

inclusiveOrExpression ().

exclusiveOrExpression ().

andExpression ().

equalityExpression ().

relationalExpression ().

shiftExpression ().

additiveExpression ().

multiplicativeExpression ()

.castExpression ().

unaryExpression ().

postfixExpression ().

postfixExpression ().

primaryExpression ().

removeLastChild ();

first_loop.expression (1).

assignmentExpression ().

conditionalExpression ().

logicalOrExpression ().

logicalAndExpression ().

inclusiveOrExpression ().

exclusiveOrExpression ().

andExpression ().

equalityExpression ().

relationalExpression ().

shiftExpression ().

additiveExpression ().

multiplicativeExpression ()
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.castExpression ().

unaryExpression ().

postfixExpression ().

postfixExpression ().

primaryExpression ().

addChild(new CommonToken

(0, dec));

first_loop.expression (0).

assignmentExpression ().

conditionalExpression ().

logicalOrExpression ().

logicalAndExpression ().

inclusiveOrExpression ().

exclusiveOrExpression ().

andExpression ().

equalityExpression ().

relationalExpression ().

shiftExpression ().

additiveExpression ().

multiplicativeExpression ()

.castExpression ().

unaryExpression ().

postfixExpression ().

primaryExpression ().

removeLastChild ();

first_loop.expression (0).

assignmentExpression ().

conditionalExpression ().

logicalOrExpression ().

logicalAndExpression ().

inclusiveOrExpression ().

exclusiveOrExpression ().

andExpression ().

equalityExpression ().

relationalExpression ().

shiftExpression ().

additiveExpression ().

multiplicativeExpression ()

.castExpression ().

unaryExpression ().

postfixExpression ().

primaryExpression ().

addChild(new CommonToken

(0, limit));

String s1 = "int " +

first_dec + "=(" + dec + "

/" + first_limit + ")*
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MERGE_LEVEL;";

GlobalValues.

setBlockMergeIndex(

first_dec);

String s2 = "";

if(GlobalValues.

isApplyBlockSkew ()){

s2 = "int " + second_dec

+ "=(" + dec + "%" +

second_limit + ")*

SKEW_LEVEL;";

GlobalValues.

setBlockSkewIndex(

second_dec);

}

else

s2 = "int " + second_dec

+ "=(" + dec + "%" +

second_limit + ");";

first_loop.addChild(new

TerminalNodeImpl(new

CommonToken (0, "{")));

first_loop.addChild(new

TerminalNodeImpl(new

CommonToken (0, s1+s2)));

first_loop.addChild ((

RuleContext)ctx.getChild(i

).getPayload ());

first_loop.addChild(new

TerminalNodeImpl(new

CommonToken (0, "}")));

}

}

break;

}

}

Override public void exitIterationStatement(NotNull

C_RCUDAParser.IterationStatementContext ctx) {

GlobalValues.decrementLoopCount ();

}

Override public void exitTypeSpecifier(NotNull

C_RCUDAParser.TypeSpecifierContext ctx){

ctx.addChild(new CommonToken(ctx.

getChildCount (), " "));

}
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}

Listing 4: ArrayTransformationListener.java

public class ArrayTransformationListener extends

C_RCUDABaseListener {

Override public void enterUnaryExpression(NotNull

C_RCUDAParser.UnaryExpressionContext ctx){

String expr = ctx.getText ();

if(expr.contains("][")){

String strs[] = expr.split("\\[");

// transformed array creation , DIM is the

dimension of each matrix assuming square

matrices of same dimensions

String texpr = strs [0] + "[(" + strs [1]. split

("]")[0] + ")*" + GlobalValues.getRowDim ()

+ "+(" + strs [2]. split("]")[0] + ")]";

ctx.removeLastChild ();

ctx.addChild(new TerminalNodeImpl(new

CommonToken (0, texpr)));

}

}

Override public void exitTypeSpecifier(NotNull C_RCUDAParser

.TypeSpecifierContext ctx){

ctx.addChild(new CommonToken(ctx.getChildCount (),

" "));

}

}

Listing 5: LoopPartitioning.java

public class LoopPartitioning extends C_RCUDABaseListener

{

Override public void enterIterationStatement(NotNull

C_RCUDAParser.IterationStatementContext ctx) {

GlobalValues.incrementLoopCount ();

if(GlobalValues.getLoopCount () == 1){

String dec = ctx.declaration ().

initDeclaratorList ().initDeclarator ().

declarator ().getText ();

String tid = "int tid=threadIdx.x;";

String bid = "int bid=blockIdx.x;";

String index;
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if(GlobalValues.isNestLoopFound ())

index = "int " + dec + "=bid*BLOCKSIZE+

tid;";

else{

index = "int " + dec + "=(bid*BLOCKSIZE+

tid)*MERGE_LEVEL;";

GlobalValues.setBlockMergeIndex(dec);

}

RuleContext r = (RuleContext)ctx.getChild(ctx

.getChildCount () -1).getPayload ();

StatementContext p = (StatementContext)ctx.

getParent ();

p.removeLastChild ();

p.addChild(new TerminalNodeImpl(new

CommonToken (0,tid)));

p.addChild(new TerminalNodeImpl(new

CommonToken (1,bid)));

p.addChild(new TerminalNodeImpl(new

CommonToken (2,index)));

p.addChild(r);

}

}

Override public void exitIterationStatement(NotNull

C_RCUDAParser.IterationStatementContext ctx) {

GlobalValues.decrementLoopCount ();

}

Override public void exitTypeSpecifier(NotNull C_RCUDAParser

.TypeSpecifierContext ctx){

ctx.addChild(new CommonToken(ctx.getChildCount (),

" "));

}

Override public void enterPrimaryExpression(NotNull

C_RCUDAParser.PrimaryExpressionContext ctx){

if(ctx.getText ().equals(GlobalValues.

getBlockMergeIndex ())){

ParserRuleContext p = ctx.getParent ();

while (!(p.getClass ().getSimpleName ().equals("

AssignmentExpressionContext") && p.

getChildCount () > 1)){

p = p.getParent ();

if(p == null) return;

}

String operator = p.getChild (1).getText ();
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while(!p.getClass ().getSimpleName ().equals("

ExpressionStatementContext")){

p = p.getParent ();

}

GlobalValues.

setBlockMergeIndexLValueIdentifier(p.

getText ().substring(0, p.getText ().indexOf

(operator)));

}

if(GlobalValues.isApplyBlockSkew () && ctx.getText

().equals(GlobalValues.getBlockSkewIndex ())){

ParserRuleContext p = ctx.getParent ();

while (!(p.getClass ().getSimpleName ().equals("

AssignmentExpressionContext") && p.

getChildCount () > 1)){

p = p.getParent ();

if(p == null) return;

}

String operator = p.getChild (1).getText ();

while(!p.getClass ().getSimpleName ().equals("

ExpressionStatementContext")){

p = p.getParent ();

}

GlobalValues.

setBlockSkewIndexLValueIdentifier(p.

getText ().substring(0, p.getText ().indexOf

(operator)));

}

}

Override public void exitFunctionDefinition(NotNull

C_RCUDAParser.FunctionDefinitionContext ctx) {

String funcDef = ctx.getText ();

String rc = ctx.getText ();

for(int i=0; i < ctx.getChildCount (); i++){

ctx.removeLastChild ();

}

ctx.removeLastChild ();

ctx.addChild(new CommonToken (0, "__global__ "

));

ctx.addChild(new CommonToken (0, rc));

}

}
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Listing 6: BlockMerging.java

public class BlockMerging extends C_RCUDABaseListener {

Override public void enterPrimaryExpression(NotNull

C_RCUDAParser.PrimaryExpressionContext ctx){

if(ctx.getText ().equals(GlobalValues.

getBlockMergeIndex ())){

ctx.removeLastChild ();

ctx.addChild(new CommonToken (0, "("+

GlobalValues.getBlockMergeIndex ()+"+m)"));

GlobalValues.setEnteredExpressionStatement(

true);

}

boolean lValueFound = false;

ArrayList <String > lValueList = GlobalValues.

getBlockMergeIndexLValueIdentifier ();

for(int i=0; i < lValueList.size(); i++)

if(ctx.getText ().equals(lValueList.get(i)))

lValueFound = true;

if(lValueFound){

String lvalue = ctx.getText ();

ctx.removeLastChild ();

ctx.addChild(new TerminalNodeImpl(new

CommonToken (0, lvalue+"[m]")));

ParserRuleContext p = ctx.getParent ();

while (!(p.getClass ().getSimpleName ().equals("

AssignmentExpressionContext") && p.

getChildCount () == 3))

p = p.getParent ();

boolean uniTree = true;

p = (ParserRuleContext)p.getChild (2);

while(p != null){

if(p.getChildCount () > 1){

uniTree = false;

break;

}

try{

p = (ParserRuleContext)p.getChild (0);

}

catch(ClassCastException e){

break;

}

}

if(uniTree){
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p = ctx.getParent ();

while(!p.getClass ().getSimpleName ().

equals("StatementContext"))

p = p.getParent ();

String temp = p.getText ();

p.removeLastChild ();

p.addChild(new TerminalNodeImpl(new

CommonToken (0, "for(int m=0; m <

MERGE_LEVEL; m++)")));

p.addChild(new TerminalNodeImpl(new

CommonToken (0, temp)));

GlobalValues.

setEnteredExpressionStatement(false);

}

}

}

Override public void exitTypeSpecifier(NotNull C_RCUDAParser

.TypeSpecifierContext ctx){

ctx.addChild(new CommonToken(ctx.getChildCount (),

" "));

}

Override public void exitExpressionStatement(NotNull

C_RCUDAParser.ExpressionStatementContext ctx) {

if(GlobalValues.isEnteredExpressionStatement ()){

StatementContext p = (StatementContext)

ctx.getParent ();

String child = p.getChild (0).getText ();

p.removeLastChild ();

p.addChild(new TerminalNodeImpl(new

CommonToken (0, "for(int m=0;m<

MERGE_LEVEL;m++)")));

p.addChild(new TerminalNodeImpl(new

CommonToken (1, child)));

GlobalValues.

setEnteredExpressionStatement(false);

}

}

Override public void enterDirectDeclarator(NotNull

C_RCUDAParser.DirectDeclaratorContext ctx) {

boolean lValueFound = false;

ArrayList <String > lValueList = GlobalValues.

getBlockMergeIndexLValueIdentifier ();

for(int i=0; i < lValueList.size(); i++)
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if(ctx.getText ().equals(lValueList.get(i)))

lValueFound = true;

if(lValueFound){

String lvalue = ctx.getText ();

ParserRuleContext p = ctx.getParent ();

while(!p.getClass ().getSimpleName ().equals("

InitDeclaratorContext"))

p = p.getParent ();

int childs = p.getChildCount ();

for(int i=0; i < childs; i++){

p.removeLastChild ();

}

p.addChild(new TerminalNodeImpl(new

CommonToken (0, lvalue+"[MERGE_LEVEL]")));

for(int i=1; i < childs; i++)

p.addChild(new TerminalNodeImpl(new

CommonToken(i, "")));

}

}

Override public void enterTypedefName(NotNull C_RCUDAParser.

TypedefNameContext ctx) {

boolean lValueFound = false;

ArrayList <String > lValueList = GlobalValues.

getBlockMergeIndexLValueIdentifier ();

for(int i=0; i < lValueList.size(); i++)

if(ctx.getText ().equals(lValueList.get(i)))

lValueFound = true;

if(lValueFound){

ctx.addChild(new TerminalNodeImpl(new

CommonToken (0, "[MERGE_LEVEL]")));

}

}

}

Listing 7: BlockSkewing.java

public class BlockSkewing extends C_RCUDABaseListener {

Override public void exitTypeSpecifier(NotNull C_RCUDAParser

.TypeSpecifierContext ctx){

ctx.addChild(new CommonToken(ctx.getChildCount (),

" "));

}

Override public void enterPrimaryExpression(NotNull

C_RCUDAParser.PrimaryExpressionContext ctx){
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if(ctx.getText ().equals(GlobalValues.

getBlockSkewIndex ())){

ctx.removeLastChild ();

ctx.addChild(new CommonToken (0, "("+

GlobalValues.getBlockSkewIndex ()+"+n)"));

GlobalValues.setEnteredExpressionStatement(

true);

}

boolean lValueFound = false;

ArrayList <String > lValueList = GlobalValues.

getBlockSkewIndexLValueIdentifier ();

for(int i=0; i < lValueList.size(); i++)

if(ctx.getText ().equals(lValueList.get(i)))

lValueFound = true;

if(lValueFound){

String lvalue = ctx.getText ();

ctx.removeLastChild ();

ctx.addChild(new TerminalNodeImpl(new

CommonToken (0, lvalue+"[n]")));

ParserRuleContext p = ctx.getParent ();

while (!(p.getClass ().getSimpleName ().equals("

AssignmentExpressionContext") && p.

getChildCount () == 3))

p = p.getParent ();

boolean uniTree = true;

p = (ParserRuleContext)p.getChild (2);

while(p != null){

if(p.getChildCount () > 1){

uniTree = false;

break;

}

try{

p = (ParserRuleContext)p.getChild (0);

}

catch(ClassCastException e){

break;

}

}

if(uniTree){

p = ctx.getParent ();

while(!p.getClass ().getSimpleName ().

equals("StatementContext"))

p = p.getParent ();

String temp = p.getText ();
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p.removeLastChild ();

p.addChild(new TerminalNodeImpl(new

CommonToken (0, "for(int n=0; n <

SKEW_LEVEL; n++)")));

p.addChild(new TerminalNodeImpl(new

CommonToken (0, temp)));

}

}

}

Override public void exitExpressionStatement(NotNull

C_RCUDAParser.ExpressionStatementContext ctx) {

if(GlobalValues.isEnteredExpressionStatement ()){

C_RCUDAParser.StatementContext p = (

C_RCUDAParser.StatementContext)ctx.

getParent ();

String child = p.getChild (0).getText ();

p.removeLastChild ();

p.addChild(new TerminalNodeImpl(new

CommonToken (0, "for(int n=0;n<

SKEW_LEVEL;n++)")));

p.addChild(new TerminalNodeImpl(new

CommonToken (1, child)));

GlobalValues.

setEnteredExpressionStatement(false);

}

}

Override public void enterDirectDeclarator(NotNull

C_RCUDAParser.DirectDeclaratorContext ctx) {

boolean lValueFound = false;

boolean sameMergeLValue = false;

ArrayList <String > lValueList = GlobalValues.

getBlockSkewIndexLValueIdentifier ();

for(int i=0; i < lValueList.size(); i++)

if(ctx.getText ().equals(lValueList.get(i)))

lValueFound = true;

ArrayList <String > mlValueList = GlobalValues.

getBlockMergeIndexLValueIdentifier ();

for(int i=0; i < mlValueList.size(); i++)

if(ctx.getText ().equals(mlValueList.get(i)))

sameMergeLValue = true;

if(lValueFound){

if(sameMergeLValue){

ctx.addChild(new TerminalNodeImpl(new

CommonToken (0, "[SKEW_LEVEL]")));

251



}

else{

String lvalue = ctx.getText ();

ParserRuleContext p = ctx.getParent ();

while(!p.getClass ().getSimpleName ().

equals("InitDeclaratorContext"))

p = p.getParent ();

int childs = p.getChildCount ();

for(int i=0; i < childs; i++){

p.removeLastChild ();

}

p.addChild(new TerminalNodeImpl(new

CommonToken (0, lvalue+"[SKEW_LEVEL]"))

);

for(int i=1; i < childs; i++)

p.addChild(new TerminalNodeImpl(new

CommonToken(i, "")));

}

}

}

Override public void enterTypedefName(NotNull C_RCUDAParser.

TypedefNameContext ctx) {

boolean lValueFound = false;

ArrayList <String > lValueList = GlobalValues.

getBlockSkewIndexLValueIdentifier ();

for(int i=0; i < lValueList.size(); i++)

if(ctx.getText ().equals(lValueList.get(i)))

lValueFound = true;

if(lValueFound){

ctx.addChild(new TerminalNodeImpl(new

CommonToken (0, "[SKEW_LEVEL]")));

}

}

}

Listing 8: PrefetchingPhase1.java

public class PrefetchingPhase1 extends

C_RCUDABaseListener {

Override public void exitTypeSpecifier(NotNull C_RCUDAParser

.TypeSpecifierContext ctx){

ctx.addChild(new CommonToken(ctx.getChildCount (),

" "));

}
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Override public void exitFunctionDefinition(NotNull

C_RCUDAParser.FunctionDefinitionContext ctx) {

int splitIndex = ctx.getText ().indexOf("{");

String temp1 = ctx.getText ().substring(0,

splitIndex +1);

String temp2 = ctx.getText ().substring(splitIndex

+1);

for(int i=0; i < ctx.getChildCount (); i++)

ctx.removeLastChild ();

ctx.removeLastChild ();

ctx.addChild(new TerminalNodeImpl(new CommonToken

(0, temp1)));

ArrayList <String > prefetchedIds = GlobalValues.

getPrefetchedArrayIdentifiers ();

for(int i=0; i<prefetchedIds.size(); i++)

ctx.addChild(new TerminalNodeImpl(new

CommonToken (0, "__shared__ " +

GlobalValues.getTypeSpecifier () + " " +

prefetchedIds.get(i) + "s[MERGE_LEVEL ][

BLOCKSIZE ];")));

ctx.addChild(new TerminalNodeImpl(new CommonToken

(0, temp2)));

}

Override public void enterPrimaryExpression(NotNull

C_RCUDAParser.PrimaryExpressionContext ctx) {

if(GlobalValues.getPrefetchedArrayIdentifiers

().contains(ctx.getText ())){

ParserRuleContext p = ctx.getParent ();

while(p != null && !p.getClass ().

getSimpleName ().equals("

MultiplicativeExpressionContext"))

p = p.getParent ();

String prefetchExp = p.getText ().split("]

")[0] + "+tid]";

GlobalValues.

setPrefetchingArrayExpression(

prefetchExp);

GlobalValues.setPrefetchingLoopIndex(

GlobalValues.getLastLoopIndex ());
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p.removeLastChild ();

p.addChild(new TerminalNodeImpl(new

CommonToken (0, ctx.getText ()+"s[m][t]"

)));

}

else if(GlobalValues.

getNonPrefetchedArrayIdentifiers ().

contains(ctx.getText ())){

ParserRuleContext p = ctx.getParent ();

while(p != null && !p.getClass ().

getSimpleName ().equals("

UnaryExpressionContext"))

p = p.getParent ();

String nonPrefetchExp = p.getText ();

GlobalValues.

setNonPrefetchingArrayExpression(

nonPrefetchExp);

}

}

Override public void enterIterationStatement(NotNull

C_RCUDAParser.IterationStatementContext ctx) {

String loopIndex = ctx.declaration ().

initDeclaratorList ().initDeclarator ().

declarator ().getText ();

if(! loopIndex.equals("m")){

GlobalValues.setLastLoopIndex(loopIndex);

GlobalValues.setPrefetchingLoopLineNumber

(ctx.start.getStartIndex ());

}

}

Override public void exitIterationStatement(NotNull

C_RCUDAParser.IterationStatementContext ctx) {

String loopIndex = ctx.declaration ().

initDeclaratorList ().initDeclarator ().

declarator ().getText ();

if(! loopIndex.equals("m")){

GlobalValues.setLastLoopIndex("");

}

}

}
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Listing 9: PrefetchingPhase2.java

public class PrefetchingPhase2 extends

C_RCUDABaseListener {

Override public void enterIterationStatement(NotNull

C_RCUDAParser.IterationStatementContext ctx) {

String loopDecVar = ctx.declaration ().

initDeclaratorList ().initDeclarator ().

declarator ().getText ();

if(loopDecVar.equals(GlobalValues.

getPrefetchingLoopIndex ())){

System.out.println("prefetching loop found");

System.out.println(ctx.getText ());

String prefetching_loop = "for(int m=0;m<

MERGE_LEVEL;m++){";

prefetching_loop += GlobalValues.

getPrefetchedArrayIdentifiers ().get(0) + "

s[m][tid]=" + GlobalValues.

getPrefetchingArrayExpression () + ";";

prefetching_loop += "}__syncthreads ();";

String loop = "int " + loopDecVar + ";" +

prefetching_loop;

loop += "for(" + loopDecVar + "=0;" +

loopDecVar + "<w-BLOCKSIZE;" + loopDecVar

+ "+= BLOCKSIZE){";

String tloop = "for(int t=0; t < BLOCKSIZE; t

++)";

RuleContext loopbodyctx = (RuleContext)ctx.

getChild(ctx.getChildCount () -1).getPayload

();

ParserRuleContext p = ctx.getParent ();

p.removeLastChild ();

p.addChild(new TerminalNodeImpl(new

CommonToken (0, loop+tloop)));

p.addChild(loopbodyctx);

p.addChild(new TerminalNodeImpl(new

CommonToken (0, "__syncthreads ();")));

p.addChild(new TerminalNodeImpl(new

CommonToken (0, prefetching_loop)));

p.addChild(new TerminalNodeImpl(new

CommonToken (0, "}")));

p.addChild(new TerminalNodeImpl(new

CommonToken (0, tloop)));

p.addChild(loopbodyctx);

}

}
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Override public void exitTypeSpecifier(NotNull C_RCUDAParser

.TypeSpecifierContext ctx){

ctx.addChild(new CommonToken(ctx.getChildCount (),

" "));

}

}

Listing 10: PrefetchingPhase3.java

public class PrefetchingPhase3 extends

C_RCUDABaseListener {

Override public void exitTypeSpecifier(NotNull C_RCUDAParser

.TypeSpecifierContext ctx){

ctx.addChild(new CommonToken(ctx.getChildCount (),

" "));

}

Override public void enterIterationStatement(NotNull

C_RCUDAParser.IterationStatementContext ctx) {

String loopIndex;

if(ctx.declaration () != null)

loopIndex = ctx.declaration ().

initDeclaratorList ().initDeclarator ().

declarator ().getText ();

else{

String assignExp = ctx.expression (0).getText

();

String assignOp = ctx.expression (0).

assignmentExpression ().assignmentOperator

().getText ();

loopIndex = assignExp.substring (0, assignExp.

indexOf(assignOp));

}

if(loopIndex.equals(GlobalValues.

getPrefetchingLoopIndex ())){

GlobalValues.setPrefetechedLoopEntered(true);

}

}

Override public void exitIterationStatement(NotNull

C_RCUDAParser.IterationStatementContext ctx) {

String loopIndex;

if(ctx.declaration () != null)

loopIndex = ctx.declaration ().

initDeclaratorList ().initDeclarator ().

declarator ().getText ();
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else{

String assignExp = ctx.expression (0).getText

();

String assignOp = ctx.expression (0).

assignmentExpression ().assignmentOperator

().getText ();

loopIndex = assignExp.substring (0, assignExp.

indexOf(assignOp));

}

if(loopIndex.equals(GlobalValues.

getPrefetchingLoopIndex ())){

GlobalValues.setPrefetechedLoopEntered(false)

;

}

}

Override public void
enterMultiplicativeExpression(NotNull C_RCUDAParser
.MultiplicativeExpressionContext ctx) {

if(ctx.getText ().equals(GlobalValues.

getPrefetchingArrayExpression ()))

GlobalValues.

setPrefetchedArrayExpressionFound(true

);

}

Override public void
exitMultiplicativeExpression(NotNull C_RCUDAParser.
MultiplicativeExpressionContext ctx) {

if(ctx.getText ().equals(GlobalValues.

getPrefetchingArrayExpression ()))

GlobalValues.

setPrefetchedArrayExpressionFound(

false);

}

Override public void enterUnaryExpression(NotNull

C_RCUDAParser.UnaryExpressionContext ctx) {

if(ctx.getText ().equals(GlobalValues.

getNonPrefetchingArrayExpression ()))

GlobalValues.

setNonPrefetchedArrayExpressionFound(

true);

}

Override public void exitUnaryExpression(NotNull

C_RCUDAParser.UnaryExpressionContext ctx) {

if(ctx.getText ().equals(GlobalValues.
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getNonPrefetchingArrayExpression ()))

GlobalValues.

setNonPrefetchedArrayExpressionFound(

false);

}

Override public void enterPrimaryExpression(NotNull

C_RCUDAParser.PrimaryExpressionContext ctx) {

if(GlobalValues.isPrefetechedLoopEntered () &&

GlobalValues.isPrefetchedArrayExpressionFound

() && ctx.getText ().equals(GlobalValues.

getPrefetchingLoopIndex ())){

ctx.removeLastChild ();

ctx.addChild(new TerminalNodeImpl(new

CommonToken (0, GlobalValues.

getPrefetchingLoopIndex ()+"+BLOCKSIZE")));

}

else if(/* GlobalValues.isPrefetechedLoopEntered ()

&&*/ GlobalValues.

isNonPrefetchedArrayExpressionFound () && ctx.

getText ().equals(GlobalValues.

getPrefetchingLoopIndex ())){

ctx.removeLastChild ();

ctx.addChild(new TerminalNodeImpl(new

CommonToken (0, GlobalValues.

getPrefetchingLoopIndex ()+"+t")));

}

}

}

Listing 11: RemoveRedundantArrayAccess.java

public class RemoveRedundantArrayAccess extends

C_RCUDABaseListener {

Override public void exitTypeSpecifier(NotNull C_RCUDAParser

.TypeSpecifierContext ctx){

ctx.addChild(new CommonToken(ctx.getChildCount (),

" "));

}

Override public void enterIterationStatement(NotNull

C_RCUDAParser.IterationStatementContext ctx) {

String loopDecVar = ctx.declaration ().

initDeclaratorList ().initDeclarator ().

declarator ().getText ();

GlobalValues.setLastLoopIndex(loopDecVar);
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}

Override public void exitIterationStatement(NotNull

C_RCUDAParser.IterationStatementContext ctx) {

GlobalValues.setLastLoopIndex("");

}

}

Listing 12: ApplyRestrictClause.java

public class ApplyRestrictClause extends rcudaantlrparser

.C_RCUDABaseListener {

Override public void
exitParameterDeclaration(NotNull C_RCUDAParser.
ParameterDeclarationContext ctx) {

if(ctx.getText ().contains("restrict")){

String temp = ctx.getText ();

for(int i=0; i < ctx.getChildCount (); i

++)

ctx.removeLastChild ();

ctx.removeLastChild ();

String resstr = "restrict";

temp = temp.substring(0, temp.indexOf(

resstr) -1) + " const* __restrict__ " +

temp.substring(temp.indexOf(resstr)+

resstr.length ());

ctx.addChild(new CommonToken (0, temp));

}

}

Override public void exitTypeSpecifier(NotNull C_RCUDAParser

.TypeSpecifierContext ctx){

ctx.addChild(new CommonToken(ctx.getChildCount (),

" "));

}

}

Listing 13: CodeFormatter.java

public class CodeFormatter extends C_RCUDABaseListener {

Override public void
exitExpressionStatement(NotNull C_RCUDAParser.
ExpressionStatementContext ctx) {

String text = "\n";
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for(int i=0; i<GlobalValues.getTabCount (); i

++)

text += "\t";

ctx.addChild(new TerminalNodeImpl(new

CommonToken (0, text)));

}

Override public void exitBlockItem(NotNull

C_RCUDAParser.BlockItemContext ctx) {

String text = "\n";

for(int i=0; i<GlobalValues.getTabCount (); i

++)

text += "\t";

ctx.addChild(new TerminalNodeImpl(new

CommonToken (0, text)));

}

Override public void exitTypeSpecifier(NotNull C_RCUDAParser

.TypeSpecifierContext ctx){

ctx.addChild(new CommonToken(ctx.getChildCount (),

" "));

}

Override public void exitTypeQualifier(NotNull C_RCUDAParser

.TypeQualifierContext ctx){

ctx.addChild(new CommonToken(ctx.getChildCount (),

" "));

}

Override public void
visitTerminal(NotNull TerminalNode node) {
String text = node.getText ();

if(text.equals("{"))

GlobalValues.incTabCount ();

if(text.equals("}"))

GlobalValues.decTabCount ();

}

Override public void enterIterationStatement(NotNull

C_RCUDAParser.IterationStatementContext ctx) {

GlobalValues.setIterationStatment(true);

GlobalValues.incTabCount ();

RuleContext temp = (RuleContext)ctx.getChild(

ctx.getChildCount () -1).getPayload ();

ctx.removeLastChild ();

String text = "\n";

for(int i=0; i<GlobalValues.getTabCount (); i

++)

260



text += "\t";

ctx.addChild(new TerminalNodeImpl(new

CommonToken (0, text)));

ctx.addChild(temp);

}

Override public void exitIterationStatement(NotNull

C_RCUDAParser.IterationStatementContext ctx) {

GlobalValues.setIterationStatment(false);

GlobalValues.decTabCount ();

}

Override public void enterStatement(NotNull

C_RCUDAParser.StatementContext ctx) {

GlobalValues.setIterationStatment(false);

}

}

Listing 14: MainFile.java

public class MainFile extends C_RCUDABaseListener {

Override public void
enterAssignmentExpression(NotNull C_RCUDAParser.
AssignmentExpressionContext ctx) {

if(ctx.getText ().contains("malloc")){

String sttext = ctx.getText ();

String lvalue = sttext.substring(0,

sttext.indexOf("=")).trim();

String malloc_str = sttext.substring(

sttext.indexOf("malloc")+6);

for(int i=0; i < ctx.getChildCount (); i

++)

ctx.removeLastChild ();

ctx.removeLastChild ();

ctx.addChild(new TerminalNodeImpl(new

CommonToken (0, "cudaMallocManaged (&" +

lvalue + "," + malloc_str.substring(

malloc_str.indexOf("(")+1))));

}

}

Override public void exitTypedefName(NotNull

C_RCUDAParser.TypedefNameContext ctx) {

if(ctx.getText ().equals("free")){

ctx.removeLastChild ();
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ctx.addChild(new TerminalNodeImpl(new

CommonToken (0, "cudaFree")));

}

}

Override public void exitTypeSpecifier(NotNull C_RCUDAParser

.TypeSpecifierContext ctx){

ctx.addChild(new CommonToken(ctx.getChildCount (),

" "));

}

Override public void enterPrimaryExpression(NotNull

C_RCUDAParser.PrimaryExpressionContext ctx) {

if(GlobalValues.getKernelNameList ().contains(

ctx.getText ())){

String kname = ctx.getText ();

ctx.removeLastChild ();

if(GlobalValues.is2DMatrix ())

ctx.addChild(new TerminalNodeImpl(new

CommonToken (0, "dim3 threads(

BLOCKSIZE ,1);dim3 grid(N*N/

BLOCKSIZE/MERGE_LEVEL/SKEW_LEVEL

,1);")));

else

ctx.addChild(new TerminalNodeImpl(new

CommonToken (0, "dim3 threads(

BLOCKSIZE ,1);dim3 grid(N/BLOCKSIZE

/MERGE_LEVEL/SKEW_LEVEL ,1);")));

ctx.addChild(new TerminalNodeImpl(new

CommonToken (0, kname+"<<<grid , threads

>>>")));

ParserRuleContext p = ctx.getParent ();

while (!(p.getClass ().getSimpleName ().

equals("StatementContext"))){

p = p.getParent ();

if(p == null) return;

}

p.addChild(new TerminalNodeImpl(new

CommonToken (0, "cudaDeviceSynchronize

();")));

}

}

Override public void
exitExpressionStatement(NotNull C_RCUDAParser.
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ExpressionStatementContext ctx) {

if(ctx.getText ().startsWith("exit(")){

for(int i=0; i < ctx.getChildCount (); i

++)

ctx.removeLastChild ();

ctx.removeLastChild ();

ctx.addChild(new TerminalNodeImpl(new

CommonToken (0, "cudaThreadExit ();")));

}

}

}

Listing 15: RCUDATranslator.java

public class RCUDATranslator {

public static void main(String [] args) {

GlobalValues.setLoopCount (0);

try{

FileReader fr = new FileReader(System.

getProperty("user.dir") + "/src/config.txt

");

BufferedReader br = new BufferedReader(fr);

String temp;

while((temp = br.readLine ()) != null){

String lvalue = temp.substring(0, temp.

indexOf("="));

String rvalue = temp.substring(temp.

indexOf("=")+1);

switch(lvalue){

case "LOOP_COLLAPSING":

if(rvalue.equals("1"))

GlobalValues.

setApplyLoopCollapsing(

true);

else

GlobalValues.

setApplyLoopCollapsing(

false);

break;

case "BLOCK_SKEW":

if(rvalue.equals("1"))

GlobalValues.

setApplyBlockSkew(true);

else

GlobalValues.
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setApplyBlockSkew(false);

break;

case "PREFETCHING":

if(rvalue.equals("1"))

GlobalValues.

setApplyPrefetching(true);

else

GlobalValues.

setApplyPrefetching(false)

;

break;

case "PREFETCHED_ARRAYS":

String pstr[] = rvalue.split(",")

;

for(int i=0; i < pstr.length; i

++)

GlobalValues.

setPrefetchedArrayIdentifiers

(pstr[i]);

break;

case "NON_PREFETCHED_ARRAYS":

String npstr [] = rvalue.split(","

);

for(int i=0; i < npstr.length; i

++)

GlobalValues.

setNonPrefetchedArrayIdentifiers

(npstr[i]);

break;

case "DATA_TYPE":

GlobalValues.setTypeSpecifier(

rvalue);

break;

case "KERNEL_NAMES":

String kstr[] = rvalue.split(",")

;

for(int i=0; i < kstr.length; i

++)

GlobalValues.

setKernelNameList(kstr[i])

;

break;

case "2DMATRIX":

if(rvalue.equals("1"))

GlobalValues.set2DMatrix(true

);

else
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GlobalValues.set2DMatrix(

false);

break;

case "ROW_DIM":

GlobalValues.setRowDim(rvalue);

}

}

br.close ();

fr.close ();

ANTLRInputStream input = new

ANTLRFileStream(System.getProperty("

user.dir") + "/src/kernel.c");

C_RCUDALexer lexer = new C_RCUDALexer(

input);

CommonTokenStream tokens = new

CommonTokenStream(lexer);

C_RCUDAParser parser = new C_RCUDAParser(

tokens);

parser.setBuildParseTree(true);

ParserRuleContext tree = parser.

functionDefinition ();

String output = "";

// Applying Loop Collapsing

if(GlobalValues.isApplyLoopCollapsing ()){

ParseTreeWalker.DEFAULT.walk(new

LoopCollapsingListener (), tree);

output = tree.getText ();

if(GlobalValues.getLoopCount () == 0

&& GlobalValues.isNestLoopFound ())

{

System.out.println("Loop

collapsing applied");

}

System.out.println(output);

// Applying Array Transformations 2D

-> 1D

input = new ANTLRInputStream(new

ByteArrayInputStream(output.

getBytes ()));

lexer = new C_RCUDALexer(input);

tokens = new CommonTokenStream(lexer)

;

parser = new C_RCUDAParser(tokens);
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parser.setBuildParseTree(true);

tree = parser.functionDefinition ();

}

ParseTreeWalker.DEFAULT.walk(new

ArrayTransformationListener (), tree);

output = tree.getText ();

System.out.println("Array transformation

applied");

System.out.println(output);

// Applying Loop Partitioning (Naive CUDA

Kernel)

input = new ANTLRInputStream(new

ByteArrayInputStream(output.getBytes ()

));

lexer = new C_RCUDALexer(input);

tokens = new CommonTokenStream(lexer);

parser = new C_RCUDAParser(tokens);

parser.setBuildParseTree(true);

tree = parser.functionDefinition ();

ParseTreeWalker.DEFAULT.walk(new

LoopPartitioning (), tree);

output = tree.getText ();

System.out.println("Loop partitioning

applied");

System.out.println(output);

// Applying Block Merging

input = new ANTLRInputStream(new

ByteArrayInputStream(output.getBytes ()

));

lexer = new C_RCUDALexer(input);

tokens = new CommonTokenStream(lexer);

parser = new C_RCUDAParser(tokens);

parser.setBuildParseTree(true);

tree = parser.functionDefinition ();

ParseTreeWalker.DEFAULT.walk(new

BlockMerging (), tree);

output = tree.getText ();

System.out.println("Block merging applied

");

System.out.println(output);

266



// Applying Block Skewing

if(GlobalValues.isApplyBlockSkew ()){

input = new ANTLRInputStream(new

ByteArrayInputStream(output.

getBytes ()));

lexer = new C_RCUDALexer(input);

tokens = new CommonTokenStream(lexer)

;

parser = new C_RCUDAParser(tokens);

parser.setBuildParseTree(true);

tree = parser.functionDefinition ();

ParseTreeWalker.DEFAULT.walk(new

BlockSkewing (), tree);

output = tree.getText ();

System.out.println("Block skewing

applied");

System.out.println(output);

}

// Applying Prefetching

if(GlobalValues.isApplyPrefetching ()){

input = new ANTLRInputStream(new

ByteArrayInputStream(output.

getBytes ()));

lexer = new C_RCUDALexer(input);

tokens = new CommonTokenStream(lexer)

;

parser = new C_RCUDAParser(tokens);

parser.setBuildParseTree(true);

tree = parser.functionDefinition ();

ParseTreeWalker.DEFAULT.walk(new

PrefetchingPhase1 (), tree);

output = tree.getText ();

System.out.println("Prefetching phase

1 applied");

System.out.println(GlobalValues.

getPrefetchingArrayExpression ());

System.out.println(GlobalValues.

getPrefetchingLoopIndex ());

System.out.println(output);

input = new ANTLRInputStream(new

ByteArrayInputStream(output.

getBytes ()));
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lexer = new C_RCUDALexer(input);

tokens = new CommonTokenStream(lexer)

;

parser = new C_RCUDAParser(tokens);

parser.setBuildParseTree(true);

tree = parser.functionDefinition ();

ParseTreeWalker.DEFAULT.walk(new

PrefetchingPhase2 (), tree);

output = tree.getText ();

System.out.println("Prefetching phase

2 applied");

System.out.println(output);

input = new ANTLRInputStream(new

ByteArrayInputStream(output.

getBytes ()));

lexer = new C_RCUDALexer(input);

tokens = new CommonTokenStream(lexer)

;

parser = new C_RCUDAParser(tokens);

parser.setBuildParseTree(true);

tree = parser.functionDefinition ();

ParseTreeWalker.DEFAULT.walk(new

PrefetchingPhase3 (), tree);

output = tree.getText ();

System.out.println("Prefetching phase

3 applied");

System.out.println(output);

}

//Apply Restict Clause for Data Cache

input = new ANTLRInputStream(new

ByteArrayInputStream(output.getBytes ()

));

lexer = new C_RCUDALexer(input);

tokens = new CommonTokenStream(lexer);

parser = new C_RCUDAParser(tokens);

parser.setBuildParseTree(true);

tree = parser.functionDefinition ();

ParseTreeWalker.DEFAULT.walk(new

ApplyRestrictClause (), tree);

output = tree.getText ();

System.out.println("Restict clause
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applied");

System.out.println(output);

// Formatting Kernel File Output

input = new ANTLRInputStream(new

ByteArrayInputStream(output.getBytes ()

));

lexer = new C_RCUDALexer(input);

tokens = new CommonTokenStream(lexer);

parser = new C_RCUDAParser(tokens);

parser.setBuildParseTree(true);

tree = parser.functionDefinition ();

ParseTreeWalker.DEFAULT.walk(new

CodeFormatter (), tree);

output = tree.getText ();

int i=0;

i = output.indexOf("{", i)+1;

String tabs = "";

while(i > 0){

tabs += "\t";

output = output.substring(0, i) + "\n

" + tabs + output.substring(i);

i = output.indexOf("{", i)+1;

}

i=0;

i = output.indexOf("}", i);

while(i > 0){

output = output.substring(0, i-1) +

output.substring(i);

i = output.indexOf("}", i+1);

}

System.out.println("Kernel File Formatted

");

System.out.println(output);

File output_dir = new File(System.

getProperty("user.dir") + "/output");

if(! output_dir.exists ())

output_dir.mkdir ();

PrintWriter kfile = new PrintWriter(

System.getProperty("user.dir") + "/

output/kernel.cu");
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kfile.println(output);

kfile.close();

// Creating Main File

input = new ANTLRFileStream(System.

getProperty("user.dir") + "/src/main.c

");

lexer = new C_RCUDALexer(input);

tokens = new CommonTokenStream(lexer);

parser = new C_RCUDAParser(tokens);

parser.setBuildParseTree(true);

tree = parser.functionDefinition ();

ParseTreeWalker.DEFAULT.walk(new MainFile

(), tree);

output = tree.getText ();

System.out.println("Main File Created");

System.out.println(output);

// Formatting Kernel File Output

input = new ANTLRInputStream(new

ByteArrayInputStream(output.getBytes ()

));

lexer = new C_RCUDALexer(input);

tokens = new CommonTokenStream(lexer);

parser = new C_RCUDAParser(tokens);

parser.setBuildParseTree(true);

tree = parser.functionDefinition ();

ParseTreeWalker.DEFAULT.walk(new

CodeFormatter (), tree);

output = tree.getText ();

i=0;

i = output.indexOf("{", i)+1;

tabs = "";

while(i > 0){

tabs += "\t";

output = output.substring(0, i) + "\n

" + tabs + output.substring(i);

i = output.indexOf("{", i)+1;

}

i=0;

i = output.indexOf("}", i);

while(i > 0){

output = output.substring(0, i-1) +

output.substring(i);
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i = output.indexOf("}", i+1);

}

System.out.println("Main File Formatted")

;

System.out.println(output);

PrintWriter mainfile = new PrintWriter(

System.getProperty("user.dir") + "/

output/main.cu");

mainfile.println("#include <stdlib.h>");

mainfile.println("#include <stdio.h>");

mainfile.println("#include <string.h>");

mainfile.println("#include <math.h>");

mainfile.println("#include <time.h>");

mainfile.println("#include <cuda.h>");

mainfile.println("void checkCudaError(

const char *msg)\n" +

"{\n" +

" cudaError_t

err =

cudaGetLastError ()

;\n" +

" if(

cudaSuccess != err

){\n" +

"

printf (\"%s(%i) :

CUDA error : %s :

(%d) %s\\n\",

__FILE__ , __LINE__

, msg , (int)err ,

cudaGetErrorString

(err));\n" +

" exit

(-1);\n" +

" }\n" +

"}");

mainfile.println("#include \" params.h\"")

;

mainfile.println("#include \" rcudacublas.

h\"");

mainfile.println("#include \" kernel.cu\""

);

mainfile.println(output);

mainfile.close ();

PrintWriter paramfile = new PrintWriter(
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System.getProperty("user.dir") + "/

output/params.h");

paramfile.println("#define BLOCKSIZE 32")

;

paramfile.println("#define MERGE_LEVEL 1"

);

paramfile.println("#define SKEW_LEVEL 1")

;

paramfile.close ();

Path headerpath = FileSystems.getDefault

().getPath(System.getProperty("user.

dir") + "/output/rcudacublas.h");

InputStream in = RCUDATranslator.class.

getClassLoader ().getResourceAsStream("

rcudaapi/rcudacublas.h");

Files.copy(in , headerpath ,

StandardCopyOption.REPLACE_EXISTING);

headerpath = FileSystems.getDefault ().

getPath(System.getProperty("user.dir")

+ "/output/Makefile");

in = RCUDATranslator.class.getClassLoader

().getResourceAsStream("rcudaapi/

Makefile");

Files.copy(in , headerpath ,

StandardCopyOption.REPLACE_EXISTING);

headerpath = FileSystems.getDefault ().

getPath(System.getProperty("user.dir")

+ "/output/findcudalib.mk");

in = RCUDATranslator.class.getClassLoader

().getResourceAsStream("rcudaapi/

findcudalib.mk");

Files.copy(in , headerpath ,

StandardCopyOption.REPLACE_EXISTING);

System.out.println("RCUDA Parameter

Tuning");

Optimizer opt = new Optimizer ();

ArrayList <CalculatedValues > parameters;

int N = 1024;

int GPU = 0;

double cc = 3.5;

Runtime rt = Runtime.getRuntime ();

String filespath = "./";

272



if(args.length >= 1)

GPU = Integer.parseInt(args [0]);

if(args.length >= 2)

filespath = args [1];

Scanner s = new Scanner(System.in);

System.out.print("Enter N: ");

N = s.nextInt ();

System.out.print("Enter Compute

Capability: ");

cc = s.nextDouble ();

parameters = opt.findOptimalParameters(N,

cc , filespath);

File f = new File(filespath + "params.h")

;

double min_time = 0.0;

String base_cmd="make -f output/Makefile"

;

for(int ii=0; ii < parameters.size(); ii

++){

int bs = parameters.get(ii).

getBlockSize ();

int ml = parameters.get(ii).

getMergeLevel ();

int sl = parameters.get(ii).

getSkewLevel ();

FileWriter w = new FileWriter(f);

w.write("#define BLOCKSIZE " + bs + "

\n#define MERGE_LEVEL " + ml + "\n

#define SKEW_LEVEL " + sl + "\n");

w.flush();

w.close();

System.out.println("Running config =

(" + bs + "," + ml + "," + sl + ")

");

String cmd = base_cmd;

System.out.println(cmd);

Process pr = rt.exec(cmd);

BufferedReader inputt = new

BufferedReader(new

InputStreamReader(pr.

getInputStream ()));
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String line = null;

while ((line = inputt.readLine ()) !=

null)

System.out.println(line);

cmd = filespath + "main " + GPU;

System.out.println(cmd);

pr = rt.exec(cmd);

inputt.close ();

inputt = null;

inputt = new BufferedReader(new

InputStreamReader(pr.

getInputStream ()));

line = null;

line = inputt.readLine ();

System.out.println("time = " + line);

if(line == null)

continue;

if(Double.parseDouble(line) > 0 && (

min_time == 0.0 || min_time >

Double.parseDouble(line))){

min_time = Double.parseDouble(

line);

System.out.println("min time = "

+ min_time);

OptimalValues.setBlockSize(bs);

OptimalValues.setMergeLevel(ml);

OptimalValues.setSkewLevel(sl);

}

}

System.out.println("Optimal Block Size =

" + OptimalValues.getBlockSize ());

System.out.println("Optimal Merge Level =

" + OptimalValues.getMergeLevel ());

System.out.println("Optimal Skew Level =

" + OptimalValues.getSkewLevel ());

FileWriter w = new FileWriter(f);

w.write("#define BLOCKSIZE " +
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OptimalValues.getBlockSize () + "\n#

define MERGE_LEVEL " + OptimalValues.

getMergeLevel () + "\n#define

SKEW_LEVEL " + OptimalValues.

getSkewLevel () + "\n");

w.flush();

w.close();

}

catch(IOException e){

System.out.println(e.getMessage ());

}

}

}
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Appendix C

RT-CUDA Parameter Tuning

Listing 16: CalculatedValues.java

public class CalculatedValues {

private int BlockSize;

private int MergeLevel;

private int SkewLevel;

private int ActiveBlocksByWarps;

private int ActiveBlocksBySharedMemory;

private int ActiveBlocksByRegisters;

public CalculatedValues(int bs , int ml , int sl , int

abw , int abs , int abr) {

BlockSize = bs;

MergeLevel = ml;

SkewLevel = sl;

ActiveBlocksByWarps = abw;

ActiveBlocksBySharedMemory = abs;

ActiveBlocksByRegisters = abr;

}

public int getBlockSize () {

return BlockSize;

}

public int getMergeLevel () {

return MergeLevel;

}

public int getSkewLevel () {

return SkewLevel;

}

public int getActiveBlocksByWarps () {

return ActiveBlocksByWarps;

}

public int getActiveBlocksBySharedMemory () {

return ActiveBlocksBySharedMemory;
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}

public int getActiveBlocksByRegisters () {

return ActiveBlocksByRegisters;

}

}

Listing 17: GPUData.java

public class GPUData {

ArrayList <GPUDataParameters > gparameters;

GPUDataParameters param;

public GPUData () {

gparameters = new ArrayList <GPUDataParameters >();

param = new GPUDataParameters ();

param.setComputeCapability (1.0);

param.setSM_Version("sm_10");

param.setThreadPerWarp (32);

param.setWarpsPerSM (24);

param.setThreadsPerSM (768);

param.setThreadBlocksPerSM (8);

param.setMaxSharedMemoryPerSM (16384);

param.setRegisterFileSize (8192);

param.setRegisterAllocationUnitSize (256);

param.setAllocationGranularity("block");

param.setMaxRegistersPerThread (124);

param.setSharedMemoryAllocationUnitSize (512);

param.setWarpAllocationGranularity (2);

param.setMaxThreadBlockSize (512);

addParameters(param);

param = new GPUDataParameters ();

param.setComputeCapability (1.1);

param.setSM_Version("sm_11");

param.setThreadPerWarp (32);

param.setWarpsPerSM (24);

param.setThreadsPerSM (768);

param.setThreadBlocksPerSM (8);

param.setMaxSharedMemoryPerSM (16384);

param.setRegisterFileSize (8192);

param.setRegisterAllocationUnitSize (256);

param.setAllocationGranularity("block");

param.setMaxRegistersPerThread (124);

param.setSharedMemoryAllocationUnitSize (512);

param.setWarpAllocationGranularity (2);

param.setMaxThreadBlockSize (512);
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addParameters(param);

param = new GPUDataParameters ();

param.setComputeCapability (1.2);

param.setSM_Version("sm_12");

param.setThreadPerWarp (32);

param.setWarpsPerSM (32);

param.setThreadsPerSM (1024);

param.setThreadBlocksPerSM (8);

param.setMaxSharedMemoryPerSM (16384);

param.setRegisterFileSize (16384);

param.setRegisterAllocationUnitSize (512);

param.setAllocationGranularity("block");

param.setMaxRegistersPerThread (124);

param.setSharedMemoryAllocationUnitSize (512);

param.setWarpAllocationGranularity (2);

param.setMaxThreadBlockSize (512);

addParameters(param);

param = new GPUDataParameters ();

param.setComputeCapability (1.3);

param.setSM_Version("sm_13");

param.setThreadPerWarp (32);

param.setWarpsPerSM (32);

param.setThreadsPerSM (1024);

param.setThreadBlocksPerSM (8);

param.setMaxSharedMemoryPerSM (16384);

param.setRegisterFileSize (16384);

param.setRegisterAllocationUnitSize (512);

param.setAllocationGranularity("block");

param.setMaxRegistersPerThread (124);

param.setSharedMemoryAllocationUnitSize (512);

param.setWarpAllocationGranularity (2);

param.setMaxThreadBlockSize (512);

addParameters(param);

param = new GPUDataParameters ();

param.setComputeCapability (2.0);

param.setSM_Version("sm_20");

param.setThreadPerWarp (32);

param.setWarpsPerSM (48);

param.setThreadsPerSM (1536);

param.setThreadBlocksPerSM (8);

param.setMaxSharedMemoryPerSM (49152);

param.setRegisterFileSize (32768);

param.setRegisterAllocationUnitSize (128);

param.setAllocationGranularity("warp");

param.setMaxRegistersPerThread (63);

param.setSharedMemoryAllocationUnitSize (128);

param.setWarpAllocationGranularity (2);
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param.setMaxThreadBlockSize (1024);

addParameters(param);

param = new GPUDataParameters ();

param.setComputeCapability (2.1);

param.setSM_Version("sm_21");

param.setThreadPerWarp (32);

param.setWarpsPerSM (48);

param.setThreadsPerSM (1536);

param.setThreadBlocksPerSM (8);

param.setMaxSharedMemoryPerSM (49152);

param.setRegisterFileSize (32768);

param.setRegisterAllocationUnitSize (128);

param.setAllocationGranularity("warp");

param.setMaxRegistersPerThread (63);

param.setSharedMemoryAllocationUnitSize (128);

param.setWarpAllocationGranularity (2);

param.setMaxThreadBlockSize (1024);

addParameters(param);

param = new GPUDataParameters ();

param.setComputeCapability (3.0);

param.setSM_Version("sm_30");

param.setThreadPerWarp (32);

param.setWarpsPerSM (64);

param.setThreadsPerSM (2048);

param.setThreadBlocksPerSM (16);

param.setMaxSharedMemoryPerSM (49152);

param.setRegisterFileSize (65536);

param.setRegisterAllocationUnitSize (256);

param.setAllocationGranularity("warp");

param.setMaxRegistersPerThread (63);

param.setSharedMemoryAllocationUnitSize (256);

param.setWarpAllocationGranularity (4);

param.setMaxThreadBlockSize (1024);

addParameters(param);

param = new GPUDataParameters ();

param.setComputeCapability (3.5);

param.setSM_Version("sm_35");

param.setThreadPerWarp (32);

param.setWarpsPerSM (64);

param.setThreadsPerSM (2048);

param.setThreadBlocksPerSM (16);

param.setMaxSharedMemoryPerSM (49152);

param.setRegisterFileSize (65536);

param.setRegisterAllocationUnitSize (256);

param.setAllocationGranularity("warp");

param.setMaxRegistersPerThread (255);

param.setSharedMemoryAllocationUnitSize (256);
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param.setWarpAllocationGranularity (4);

param.setMaxThreadBlockSize (1024);

addParameters(param);

}

private void addParameters(GPUDataParameters p){

gparameters.add(p);

}

public GPUDataParameters findParameters(double

ComputeCapability){

GPUDataParameters r = null;

int i;

for(i=0; i < gparameters.size(); i++){

r = gparameters.get(i);

if(r.getComputeCapability () ==

ComputeCapability) break;

}

if(i == gparameters.size()){

System.out.println("Compute Capability not

found , returning default");

r = gparameters.get(0);

}

return r;

}

}

Listing 18: GPUDataParameters.java

public class GPUDataParameters {

private double ComputeCapability;

private String SM_Version;

private int ThreadPerWarp;

private int WarpsPerSM;

private int ThreadsPerSM;

private int ThreadBlocksPerSM;

private int MaxSharedMemoryPerSM;

private int RegisterFileSize;

private int RegisterAllocationUnitSize;

private String AllocationGranularity;

private int MaxRegistersPerThread;

private int SharedMemoryAllocationUnitSize;

private int WarpAllocationGranularity;

private int MaxThreadBlockSize;

public double getComputeCapability () {
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return ComputeCapability;

}

public void setComputeCapability(double

ComputeCapability) {

this.ComputeCapability = ComputeCapability;

}

public String getSM_Version () {

return SM_Version;

}

public void setSM_Version(String SM_Version) {

this.SM_Version = SM_Version;

}

public int getThreadPerWarp () {

return ThreadPerWarp;

}

public void setThreadPerWarp(int ThreadPerWarp) {

this.ThreadPerWarp = ThreadPerWarp;

}

public int getWarpsPerSM () {

return WarpsPerSM;

}

public void setWarpsPerSM(int WarpsPerSM) {

this.WarpsPerSM = WarpsPerSM;

}

public int getThreadsPerSM () {

return ThreadsPerSM;

}

public void setThreadsPerSM(int ThreadsPerSM) {

this.ThreadsPerSM = ThreadsPerSM;

}

public int getThreadBlocksPerSM () {

return ThreadBlocksPerSM;

}

public void setThreadBlocksPerSM(int

ThreadBlocksPerSM) {

this.ThreadBlocksPerSM = ThreadBlocksPerSM;
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}

public int getMaxSharedMemoryPerSM () {

return MaxSharedMemoryPerSM;

}

public void setMaxSharedMemoryPerSM(int

MaxSharedMemoryPerSM) {

this.MaxSharedMemoryPerSM = MaxSharedMemoryPerSM;

}

public int getRegisterFileSize () {

return RegisterFileSize;

}

public void setRegisterFileSize(int RegisterFileSize)

{

this.RegisterFileSize = RegisterFileSize;

}

public int getRegisterAllocationUnitSize () {

return RegisterAllocationUnitSize;

}

public void setRegisterAllocationUnitSize(int

RegisterAllocationUnitSize) {

this.RegisterAllocationUnitSize =

RegisterAllocationUnitSize;

}

public String getAllocationGranularity () {

return AllocationGranularity;

}

public void setAllocationGranularity(String

AllocationGranularity) {

this.AllocationGranularity =

AllocationGranularity;

}

public int getMaxRegistersPerThread () {

return MaxRegistersPerThread;

}

public void setMaxRegistersPerThread(int

MaxRegistersPerThread) {

this.MaxRegistersPerThread =
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MaxRegistersPerThread;

}

public int getSharedMemoryAllocationUnitSize () {

return SharedMemoryAllocationUnitSize;

}

public void setSharedMemoryAllocationUnitSize(int

SharedMemoryAllocationUnitSize) {

this.SharedMemoryAllocationUnitSize =

SharedMemoryAllocationUnitSize;

}

public int getWarpAllocationGranularity () {

return WarpAllocationGranularity;

}

public void setWarpAllocationGranularity(int

WarpAllocationGranularity) {

this.WarpAllocationGranularity =

WarpAllocationGranularity;

}

public int getMaxThreadBlockSize () {

return MaxThreadBlockSize;

}

public void setMaxThreadBlockSize(int

MaxThreadBlockSize) {

this.MaxThreadBlockSize = MaxThreadBlockSize;

}

}

Listing 19: OptimalValues.java

public class OptimalValues {

private static int BlockSize = 0;

private static int MergeLevel = 0;

private static int SkewLevel = 0;

public static int getMergeLevel () {

return MergeLevel;

}

public static void setMergeLevel(int MergeLevel) {
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OptimalValues.MergeLevel = MergeLevel;

}

public static int getBlockSize () {

return BlockSize;

}

public static void setBlockSize(int BlockSize) {

OptimalValues.BlockSize = BlockSize;

}

public static int getSkewLevel () {

return SkewLevel;

}

public static void setSkewLevel(int SkewLevel) {

OptimalValues.SkewLevel = SkewLevel;

}

}

Listing 20: Optimizer.java

public class Optimizer {

private GPUData gdata;

public Optimizer (){

gdata = new GPUData ();

}

public ArrayList <CalculatedValues > generateParameters

(int N, double ComputeCapability , String path){

ArrayList <CalculatedValues > cv = new ArrayList <

CalculatedValues >();

String base_cmd="";

int maxBlockSize =0;

int maxMergeLevel =0;

int maxSkewLevel =0;

int minBlockSize =32;

int minMergeLevel =1;

int minSkewLevel =1;

try{

base_cmd = "make -f " + path + "Makefile main

.o";

File fc = new File(path + "../ src/config.txt"

);

BufferedReader reader = new BufferedReader(
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new FileReader(fc));

String line=null;

while((line=reader.readLine ()) != null){

String params [] = line.split("=");

if(params.length >= 1){

if(params [0]. contains("MAX_BLOCKSIZE"

))

maxBlockSize = Integer.parseInt(

params [1]);

else if(params [0]. contains("

MAX_MERGE_LEVEL"))

maxMergeLevel = Integer.parseInt(

params [1]);

else if(params [0]. contains("

MAX_SKEW_LEVEL"))

maxSkewLevel = Integer.parseInt(

params [1]);

else if(params [0]. contains("

MIN_BLOCKSIZE"))

minBlockSize = Integer.parseInt(

params [1]);

else if(params [0]. contains("

MIN_MERGE_LEVEL"))

minMergeLevel = Integer.parseInt(

params [1]);

else if(params [0]. contains("

MIN_SKEW_LEVEL"))

minSkewLevel = Integer.parseInt(

params [1]);

}

}

}

catch(IOException e){

System.out.println(e.getMessage ());

}

System.out.println("Max Block Size = " +

maxBlockSize);

System.out.println("Max Merge Level = " +

maxMergeLevel);

System.out.println("Max Skew Level = " +

maxSkewLevel);

System.out.println("Min Block Size = " +

minBlockSize);

System.out.println("Min Merge Level = " +

minMergeLevel);
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System.out.println("Min Skew Level = " +

minSkewLevel);

if(maxBlockSize == 0)

maxBlockSize = gdata.findParameters(

ComputeCapability).getMaxThreadBlockSize ()

;

for(int bs=minBlockSize; bs <= maxBlockSize; bs

*=2){

if(N % bs != 0)

continue;

int m_limit=bs;

if(maxMergeLevel > 0)

m_limit = maxMergeLevel;

for(int ml=minMergeLevel; ml <= m_limit; ml

*=2){

int s_limit=bs;

if(maxSkewLevel > 0)

s_limit = maxSkewLevel;

for(int sl=minSkewLevel; sl <= s_limit;

sl*=2){

int KernelBlocks = N/bs/ml/sl;

if(KernelBlocks == 0)

continue;

try{

File f = new File(path + "params.

h");

FileWriter w = new FileWriter(f);

w.write("#define BLOCKSIZE " + bs

+ "\n#define MERGE_LEVEL " +

ml + "\n#define SKEW_LEVEL " +

sl + "\n");

w.flush ();

w.close ();

int ShM = 1;

int RPT = 1;

System.out.println("Testing

config = (" + bs + "," + ml +

"," + sl + ")");

String cmd = base_cmd;

System.out.println(cmd);

Runtime rt = Runtime.getRuntime ()

;
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Process pr = rt.exec(cmd);

String line = null;

BufferedReader input1 = new

BufferedReader(new

InputStreamReader(pr.

getInputStream ()));

String ptx_info = "";

while ((line = input1.readLine ())

!= null){

System.out.println(line);

if(line.contains("ptxas"))

ptx_info = line;

}

if(ptx_info.isEmpty ()){

BufferedReader input = new

BufferedReader(new

InputStreamReader(pr.

getErrorStream ()));

while ((line = input.readLine

()) != null){

System.out.println(line);

if(line.contains("ptxas")

)

ptx_info = line;

}

}

String strs[] = ptx_info.split(":

");

ptx_info = strs[strs.length -1].

trim();

strs = ptx_info.split(",");

String registersString = strs [0];

String sharedMemoryString = strs

[1];

RPT = Integer.parseInt(

registersString.split(" ")[1])

;

sharedMemoryString =

sharedMemoryString.trim();

if(sharedMemoryString.contains("

smem"))

ShM = Integer.parseInt(

sharedMemoryString.split("

")[0]);
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else

ShM = 1;

int r = (RPT * bs) / gdata.

findParameters(

ComputeCapability).

getRegisterAllocationUnitSize

() + 1;

int RPB = r * gdata.

findParameters(

ComputeCapability).

getRegisterAllocationUnitSize

();

int WarpsPerBlock = (int)Math.

ceil(( double)bs / (double)

gdata.findParameters(

ComputeCapability).

getThreadPerWarp ());

int ActiveBlocksByWarps = (int)

Math.floor(gdata.

findParameters(

ComputeCapability).

getWarpsPerSM () /

WarpsPerBlock);

int ActiveBlocksByShM = (int)Math

.floor(gdata.findParameters(

ComputeCapability).

getMaxSharedMemoryPerSM () /

ShM);

int ActiveBlocksByRegisters = (

int)Math.floor(gdata.

findParameters(

ComputeCapability).

getRegisterFileSize () / RPB);

cv.add(new CalculatedValues(bs ,

ml , sl , ActiveBlocksByWarps ,

ActiveBlocksByShM ,

ActiveBlocksByRegisters));

}

catch(IOException e){System.out.

println(e.getMessage ());}

}

}

}
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return cv;

}

public ArrayList <CalculatedValues >

findOptimalParameters(int N, double

ComputeCapability , String path){

ArrayList <CalculatedValues > parameterValues =

generateParameters(N, ComputeCapability , path)

;

ArrayList <CalculatedValues > optimalParameters =

new ArrayList <CalculatedValues >();

System.out.println("Generated Parameters Count =

" + parameterValues.size());

for(int i=0; i < parameterValues.size(); i++)

if(parameterValues.get(i).

getActiveBlocksByWarps () > 0 &&

parameterValues.get(i).

getActiveBlocksBySharedMemory () > 0 &&

parameterValues.get(i).

getActiveBlocksByRegisters () > 0)

optimalParameters.add(parameterValues.get

(i));

System.out.println("Optimal Parameters Count = "

+ optimalParameters.size());

return optimalParameters;

}

}

289



Appendix D

RT-CUDA API

Listing 21: rcudacublas.h

#include <cublas_v2.h>

void RTdSMM(float *C, const float *A, const float *B, int

m, int n, int k){

cublasStatus_t status;

cublasHandle_t handle;

status = cublasCreate (& handle);

switch(status){

case CUBLAS_STATUS_SUCCESS:

break;

case CUBLAS_STATUS_NOT_INITIALIZED:

printf("RTdSMM error: the CUDA Runtime

Initialization Failed");

exit (1);

break;

case CUBLAS_STATUS_ALLOC_FAILED:

printf("RtdSMM error: the resources could not

be allocated");

exit (1);

break;

}

const float alpha = 1.0;

const float beta = 0.0;

status = cublasSgemm(handle , CUBLAS_OP_N , CUBLAS_OP_N

, m, n, k, &alpha , B, k, A, m, &beta , C, m);

switch(status){

case CUBLAS_STATUS_SUCCESS:

break;

case CUBLAS_STATUS_NOT_INITIALIZED:

printf("RTdSMM error: the library was not

initialized");

exit (1);

break;

case CUBLAS_STATUS_INVALID_VALUE:
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printf("RTdSMM error: the parameters m,n,k<0"

);

exit (1);

break;

case CUBLAS_STATUS_ARCH_MISMATCH:

printf("RTdSMM error: the device does not

support double -precision");

exit (1);

break;

case CUBLAS_STATUS_EXECUTION_FAILED:

printf("RTdSMM error: the function failed to

launch on the GPU");

exit (1);

break;

}

status = cublasDestroy(handle);

switch(status){

case CUBLAS_STATUS_SUCCESS:

break;

case CUBLAS_STATUS_NOT_INITIALIZED:

printf("RTdSMM error: the library was not

initialized");

exit (1);

break;

}

}

void RTdDMM(double *C, const double *A, const double *B,

int m, int n, int k){

cublasStatus_t status;

cublasHandle_t handle;

status = cublasCreate (& handle);

switch(status){

case CUBLAS_STATUS_SUCCESS:

break;

case CUBLAS_STATUS_NOT_INITIALIZED:

printf("RTdDMM error: the CUDA Runtime

Initialization Failed");

exit (1);

break;

case CUBLAS_STATUS_ALLOC_FAILED:

printf("RtdDMM error: the resources could not

be allocated");

exit (1);

break;

}
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const double alpha = 1.0;

const double beta = 0.0;

status = cublasDgemm(handle , CUBLAS_OP_N , CUBLAS_OP_N

, m, n, k, &alpha , B, k, A, m, &beta , C, m);

switch(status){

case CUBLAS_STATUS_SUCCESS:

break;

case CUBLAS_STATUS_NOT_INITIALIZED:

printf("RTdDMM error: the library was not

initialized");

exit (1);

break;

case CUBLAS_STATUS_INVALID_VALUE:

printf("RTdDMM error: the parameters m,n,k<0"

);

exit (1);

break;

case CUBLAS_STATUS_ARCH_MISMATCH:

printf("RTdDMM error: the device does not

support double -precision");

exit (1);

break;

case CUBLAS_STATUS_EXECUTION_FAILED:

printf("RTdDMM error: the function failed to

launch on the GPU");

exit (1);

break;

}

status = cublasDestroy(handle);

switch(status){

case CUBLAS_STATUS_SUCCESS:

break;

case CUBLAS_STATUS_NOT_INITIALIZED:

printf("RTdDMM error: the library was not

initialized");

exit (1);

break;

}

}

void RTdSMV(float *C, const float *A, const float *B, int

m, int n){

cublasStatus_t status;

cublasHandle_t handle;

status = cublasCreate (& handle);
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switch(status){

case CUBLAS_STATUS_SUCCESS:

break;

case CUBLAS_STATUS_NOT_INITIALIZED:

printf("RTdSMV error: the CUDA Runtime

Initialization Failed");

exit (1);

break;

case CUBLAS_STATUS_ALLOC_FAILED:

printf("RtdSMV error: the resources could not

be allocated");

exit (1);

break;

}

const float alpha = 1.0;

const float beta = 0.0;

status = cublasSgemv(handle , CUBLAS_OP_T , m, n, &

alpha , A, m, B, 1, &beta , C, 1);

switch(status){

case CUBLAS_STATUS_SUCCESS:

break;

case CUBLAS_STATUS_NOT_INITIALIZED:

printf("RTdSMV error: the library was not

initialized");

exit (1);

break;

case CUBLAS_STATUS_INVALID_VALUE:

printf("RTdSMV error: the parameters m,n<0 or

incx ,incy=0");

exit (1);

break;

case CUBLAS_STATUS_ARCH_MISMATCH:

printf("RTdSMV error: the device does not

support double -precision");

exit (1);

break;

case CUBLAS_STATUS_EXECUTION_FAILED:

printf("RTdSMV error: the function failed to

launch on the GPU");

exit (1);

break;

}

status = cublasDestroy(handle);

switch(status){

case CUBLAS_STATUS_SUCCESS:
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break;

case CUBLAS_STATUS_NOT_INITIALIZED:

printf("RTdSMV error: the library was not

initialized");

exit (1);

break;

}

}

void RTdDMV(double *C, const double *A, const double *B,

int m, int n){

cublasStatus_t status;

cublasHandle_t handle;

status = cublasCreate (& handle);

switch(status){

case CUBLAS_STATUS_SUCCESS:

break;

case CUBLAS_STATUS_NOT_INITIALIZED:

printf("RTdDMV error: the CUDA Runtime

Initialization Failed");

exit (1);

break;

case CUBLAS_STATUS_ALLOC_FAILED:

printf("RtdDMV error: the resources could not

be allocated");

exit (1);

break;

}

const double alpha = 1.0;

const double beta = 0.0;

status = cublasDgemv(handle , CUBLAS_OP_T , m, n, &

alpha , A, m, B, 1, &beta , C, 1);

switch(status){

case CUBLAS_STATUS_SUCCESS:

break;

case CUBLAS_STATUS_NOT_INITIALIZED:

printf("RTdDMV error: the library was not

initialized");

exit (1);

break;

case CUBLAS_STATUS_INVALID_VALUE:

printf("RTdDMV error: the parameters m,n<0 or

incx ,incy=0");

exit (1);

break;

case CUBLAS_STATUS_ARCH_MISMATCH:
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printf("RTdDMV error: the device does not

support double -precision");

exit (1);

break;

case CUBLAS_STATUS_EXECUTION_FAILED:

printf("RTdDMV error: the function failed to

launch on the GPU");

exit (1);

break;

}

status = cublasDestroy(handle);

switch(status){

case CUBLAS_STATUS_SUCCESS:

break;

case CUBLAS_STATUS_NOT_INITIALIZED:

printf("RTdDMV error: the library was not

initialized");

exit (1);

break;

}

}

void RTdSMT(float *C, const float *A, int m, int n){

cublasStatus_t status;

cublasHandle_t handle;

status = cublasCreate (& handle);

switch(status){

case CUBLAS_STATUS_SUCCESS:

break;

case CUBLAS_STATUS_NOT_INITIALIZED:

printf("RTdSMT error: the CUDA Runtime

Initialization Failed");

exit (1);

break;

case CUBLAS_STATUS_ALLOC_FAILED:

printf("RtdSMT error: the resources could not

be allocated");

exit (1);

break;

}

const float alpha = 1.0;

const float beta = 0.0;

status = cublasSgeam(handle , CUBLAS_OP_T , CUBLAS_OP_N

, m, n, &alpha , A, m, &beta , A, m, C, m);

switch(status){
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case CUBLAS_STATUS_SUCCESS:

break;

case CUBLAS_STATUS_NOT_INITIALIZED:

printf("RTdSMT error: the library was not

initialized");

exit (1);

break;

case CUBLAS_STATUS_INVALID_VALUE:

printf("RTdSMT error: the parameters m,n<0,

alpha ,beta=NULL or improper settings of in

-place mode");

exit (1);

break;

case CUBLAS_STATUS_ARCH_MISMATCH:

printf("RTdSMT error: the device does not

support double -precision");

exit (1);

break;

case CUBLAS_STATUS_EXECUTION_FAILED:

printf("RTdSMT error: the function failed to

launch on the GPU");

exit (1);

break;

}

status = cublasDestroy(handle);

switch(status){

case CUBLAS_STATUS_SUCCESS:

break;

case CUBLAS_STATUS_NOT_INITIALIZED:

printf("RTdSMT error: the library was not

initialized");

exit (1);

break;

}

}

void RTdDMT(double *C, const double *A, int m, int n){

cublasStatus_t status;

cublasHandle_t handle;

status = cublasCreate (& handle);

switch(status){

case CUBLAS_STATUS_SUCCESS:

break;

case CUBLAS_STATUS_NOT_INITIALIZED:

printf("RTdDMT error: the CUDA Runtime

Initialization Failed");
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exit (1);

break;

case CUBLAS_STATUS_ALLOC_FAILED:

printf("RtdDMT error: the resources could not

be allocated");

exit (1);

break;

}

const double alpha = 1.0;

const double beta = 0.0;

status = cublasDgeam(handle , CUBLAS_OP_T , CUBLAS_OP_N

, m, n, &alpha , A, m, &beta , A, m, C, m);

switch(status){

case CUBLAS_STATUS_SUCCESS:

break;

case CUBLAS_STATUS_NOT_INITIALIZED:

printf("RTdDMT error: the library was not

initialized");

exit (1);

break;

case CUBLAS_STATUS_INVALID_VALUE:

printf("RTdDMT error: the parameters m,n<0,

alpha ,beta=NULL or improper settings of in

-place mode");

exit (1);

break;

case CUBLAS_STATUS_ARCH_MISMATCH:

printf("RTdDMT error: the device does not

support double -precision");

exit (1);

break;

case CUBLAS_STATUS_EXECUTION_FAILED:

printf("RTdDMT error: the function failed to

launch on the GPU");

exit (1);

break;

}

status = cublasDestroy(handle);

switch(status){

case CUBLAS_STATUS_SUCCESS:

break;

case CUBLAS_STATUS_NOT_INITIALIZED:

printf("RTdDMT error: the library was not

initialized");

exit (1);
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break;

}

}

void RTdSVV(float *C, const float *A, int m, const float

*B, int n){

cublasStatus_t status;

cublasHandle_t handle;

status = cublasCreate (& handle);

switch(status){

case CUBLAS_STATUS_SUCCESS:

break;

case CUBLAS_STATUS_NOT_INITIALIZED:

printf("RTdSVV error: the CUDA Runtime

Initialization Failed");

exit (1);

break;

case CUBLAS_STATUS_ALLOC_FAILED:

printf("RtdSVV error: the resources could not

be allocated");

exit (1);

break;

}

const float alpha = 1.0;

const float beta = 0.0;

status = cublasSgemm(handle , CUBLAS_OP_N , CUBLAS_OP_T

, m, n, 1, &alpha , A, m, B, n, &beta , C, m);

switch(status){

case CUBLAS_STATUS_SUCCESS:

break;

case CUBLAS_STATUS_NOT_INITIALIZED:

printf("RTdSVV error: the library was not

initialized");

exit (1);

break;

case CUBLAS_STATUS_INVALID_VALUE:

printf("RTdSVV error: the parameters m,n,k<0"

);

exit (1);

break;

case CUBLAS_STATUS_ARCH_MISMATCH:

printf("RTdSVV error: the device does not

support double -precision");

exit (1);

break;

case CUBLAS_STATUS_EXECUTION_FAILED:
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printf("RTdSVV error: the function failed to

launch on the GPU");

exit (1);

break;

}

status = cublasDestroy(handle);

switch(status){

case CUBLAS_STATUS_SUCCESS:

break;

case CUBLAS_STATUS_NOT_INITIALIZED:

printf("RTdSVV error: the library was not

initialized");

exit (1);

break;

}

}

void RTdDVV(double *C, const double *A, int m, const

double *B, int n){

cublasStatus_t status;

cublasHandle_t handle;

status = cublasCreate (& handle);

switch(status){

case CUBLAS_STATUS_SUCCESS:

break;

case CUBLAS_STATUS_NOT_INITIALIZED:

printf("RTdDVV error: the CUDA Runtime

Initialization Failed");

exit (1);

break;

case CUBLAS_STATUS_ALLOC_FAILED:

printf("RtdDVV error: the resources could not

be allocated");

exit (1);

break;

}

const double alpha = 1.0;

const double beta = 0.0;

status = cublasDgemm(handle , CUBLAS_OP_N , CUBLAS_OP_T

, m, n, 1, &alpha , A, m, B, n, &beta , C, m);

switch(status){

case CUBLAS_STATUS_SUCCESS:

break;

case CUBLAS_STATUS_NOT_INITIALIZED:

printf("RTdDVV error: the library was not
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initialized");

exit (1);

break;

case CUBLAS_STATUS_INVALID_VALUE:

printf("RTdDVV error: the parameters m,n,k<0"

);

exit (1);

break;

case CUBLAS_STATUS_ARCH_MISMATCH:

printf("RTdDVV error: the device does not

support double -precision");

exit (1);

break;

case CUBLAS_STATUS_EXECUTION_FAILED:

printf("RTdDVV error: the function failed to

launch on the GPU");

exit (1);

break;

}

status = cublasDestroy(handle);

switch(status){

case CUBLAS_STATUS_SUCCESS:

break;

case CUBLAS_STATUS_NOT_INITIALIZED:

printf("RTdDVV error: the library was not

initialized");

exit (1);

break;

}

}
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Appendix E

RT-CUDA Examples

Matrix Scaling

Inputs

Listing 22: kernel.c

void matrix_scale(float *C, float * restrict A, int scale

, int N)

{

for(int i=0; i < N; i++){

for(int j=0; j < N; j++)

C[i][j] = scale * A[i][j];

}

}

Listing 23: main.c

int main(int argc , char *argv [])

{

int N = 1024;

int GPU = 0;

if(argc > 1)

N = atoi(argv [1]);

if(argc > 2)

GPU = atoi(argv [2]);

cudaSetDevice(GPU);

float *A, *C;

int memsize = N * N * sizeof(float);

A = (float *) malloc(memsize);

C = (float *) malloc(memsize);
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A[0] = 1;

matrix_scale(C, A, 3.0, N);

printf("A[0] = %f, C[0] = %f\n", A[0], C[0]);

printf("End of Program\n");

free(A);

free(C);

exit (0);

}

Listing 24: config.txt

LOOP_COLLAPSING =1

BLOCK_SKEW =1

PREFETCHING =0

PREFETCHED_ARRAYS=A

NON_PREFETCHED_ARRAYS=B

DATA_TYPE=float

KERNEL_NAMES=matrix_scale

2DMATRIX =1

ROW_DIM=N

MAX_BLOCKSIZE =0

MAX_MERGE_LEVEL =8

MAX_SKEW_LEVEL =2

MIN_BLOCKSIZE =32

MIN_MERGE_LEVEL =1

MIN_SKEW_LEVEL =1

Outputs

Listing 25: kernel.cu

__global__ void matrix_scale(float *C,float const *

__restrict__ A,int scale ,int N){

int tid=threadIdx.x;

int bid=blockIdx.x;

int ij=bid*BLOCKSIZE+tid;

{
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int i=(ij/N)*MERGE_LEVEL;

int j=(ij%N)*SKEW_LEVEL;

for(int m=0;m<MERGE_LEVEL;m++)

for(int n=0;n<SKEW_LEVEL;n++)

C[((i+m))*N+((j+n))]=

scale*A[((i+m))*N+((j+

n))];

}

}

Listing 26: main.cu

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <math.h>

#include <time.h>

#include <cuda.h>

void checkCudaError(const char *msg)

{

cudaError_t err = cudaGetLastError ();

if(cudaSuccess != err){

printf("%s(%i) : CUDA error : %s : (%d) %

s\n", __FILE__ , __LINE__ , msg , (int)

err , cudaGetErrorString(err));

exit (-1);

}

}

#include "params.h"

#include "rcudacublas.h"

#include "kernel.cu"

int main(int argc ,char *argv []){

int N=1024;

int GPU=0;

if(argc >1)N=atoi(argv [1]);

if(argc >2) GPU=atoi(argv [2]);

cudaSetDevice (GPU);

float *A,*C;

int memsize=N*N*sizeof(float );

cudaMallocManaged (&A,memsize);

cudaMallocManaged (&C,memsize);
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A[0]=1;

dim3 threads(BLOCKSIZE ,1);

dim3 grid(N*N/BLOCKSIZE/MERGE_LEVEL/SKEW_LEVEL ,1)

;

matrix_scale <<<grid ,threads >>>(C,A,3.0,N);

cudaDeviceSynchronize ();

printf("A[0] = %f, C[0] = %f\n",A[0],C[0]);

printf("End of Program\n");

cudaFree (A);

cudaFree (C);

cudaThreadExit ();

}

Listing 27: params.h

#define BLOCKSIZE 32

#define MERGE_LEVEL 1

#define SKEW_LEVEL 1

Listing 28: Makefile

# OS Name (Linux or Darwin)

OSUPPER = $(shell uname -s 2>/dev/null | tr "[:lower :]" "

[: upper:]")

OSLOWER = $(shell uname -s 2>/dev/null | tr "[:upper :]" "

[: lower:]")

# Flags to detect 32-bit or 64-bit OS platform

OS_SIZE = $(shell uname -m | sed -e "s/i.86/32/" -e "s/

x86_64 /64/" -e "s/armv7l /32/")

OS_ARCH = $(shell uname -m | sed -e "s/i386/i686/")

# These flags will override any settings

ifeq ($(i386) ,1)

OS_SIZE = 32

OS_ARCH = i686

endif

ifeq ($(x86_64) ,1)
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OS_SIZE = 64

OS_ARCH = x86_64

endif

ifeq ($(ARMv7) ,1)

OS_SIZE = 32

OS_ARCH = armv7l

endif

# Flags to detect either a Linux system (linux) or Mac

OSX (darwin)

DARWIN = $(strip $(findstring DARWIN , $(OSUPPER)))

include ./ findcudalib.mk

# Location of the CUDA Toolkit binaries and libraries

CUDA_PATH ?= /usr/local/cuda -6.5

CUDA_INC_PATH ?= $(CUDA_PATH)/include

CUDA_BIN_PATH ?= $(CUDA_PATH)/bin

ifneq ($(DARWIN) ,)

CUDA_LIB_PATH ?= $(CUDA_PATH)/lib

else

ifeq ($(OS_SIZE) ,32)

CUDA_LIB_PATH ?= $(CUDA_PATH)/lib

else

CUDA_LIB_PATH ?= $(CUDA_PATH)/lib64

endif

endif

# Common binaries

GCC ?= g++

NVCC := $(CUDA_BIN_PATH)/nvcc -ccbin $(GCC)

# Extra user flags

EXTRA_NVCCFLAGS ?=

EXTRA_LDFLAGS ?=

# CUDA code generation flags

ifneq ($(OS_ARCH),armv7l)

GENCODE_SM10 :=

#-gencode arch=compute_10 ,code=sm_10

endif

GENCODE_SM20 :=

#-gencode arch=compute_20 ,code=sm_20

GENCODE_SM30 := -gencode arch=compute_30 ,code=sm_30 -

gencode arch=compute_35 ,code=\"sm_35 ,compute_35 \"

GENCODE_FLAGS := $(GENCODE_SM10) $(GENCODE_SM20) $(
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GENCODE_SM30)

# OS-specific build flags

ifneq ($(DARWIN) ,)

LDFLAGS := -Xlinker -rpath $(CUDA_LIB_PATH) -L$(

CUDA_LIB_PATH) -lcudart

CCFLAGS := -arch $(OS_ARCH)

else

LDFLAGS := -L$(CUDA_LIB_PATH) $(CUDALINK) -

lcudart

ifeq ($(OS_ARCH),armv7l)

ifeq ($(abi),gnueabi)

CCFLAGS += -mfloat -abi=softfp

else

# default to gnueabihf

override abi := gnueabihf

LDFLAGS += -Xlinker --dynamic -linker =/lib/ld -

linux -armhf.so.3

CCFLAGS += -mfloat -abi=hard

endif

else

ifeq ($(OS_SIZE) ,32)

CCFLAGS := -m32

else

CCFLAGS := -m64

endif

endif

endif

ifeq ($(ARMv7) ,1)

ifneq ($(TARGET_FS) ,)

LDFLAGS += -Xlinker -rpath -link=$(TARGET_FS)/lib

endif

endif

# OS-architecture specific flags

ifeq ($(OS_SIZE) ,32)

NVCCFLAGS := -m32

ifeq ($(ARMv7) ,1)

NVCCFLAGS += -target -cpu -arch ARM

endif

else

NVCCFLAGS := -m64

endif

# Debug build flags

ifeq ($(dbg) ,1)
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CCFLAGS += -g

NVCCFLAGS += -g -G

TARGET := debug

else

TARGET := release

endif

# Common includes and paths for CUDA

INCLUDES := -I$(CUDA_INC_PATH) -I. -I.. -I../../

common/inc -I/usr/local/cuda_sdk -4.2/C/common/inc

# Target rules

all: build

build: main

main.o: main.cu kernel.cu params.h

$(NVCC) $(NVCCFLAGS) $(EXTRA_NVCCFLAGS) $(

GENCODE_FLAGS) $(INCLUDES) -Xptxas -v -o $ -c
< main : main.o(GCC) (CCFLAGS)− o $+ $(LDFLAGS) $(
EXTRA_LDFLAGS) -lcublas -lcusparse

run: build

./main

clean:

rm -f main main.o

rm -rf ./main

clobber: clean

Matrix Addition

Inputs

Listing 29: kernel.c

void matrix_add(float *C, float * restrict A, float *

restrict B, int N)

{

for(int i=0; i < N; i++){

for(int j=0; j < N; j++)
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C[i][j] = A[i][j] + B[i][j];

}

}

Listing 30: main.c

int main(int argc , char *argv [])

{

int N = 1024;

int GPU = 0;

if(argc > 1)

N = atoi(argv [1]);

if(argc > 2)

GPU = atoi(argv [2]);

cudaSetDevice(GPU);

float *A, *B, *C;

int memsize = N * N * sizeof(float);

A = (float *) malloc(memsize);

B = (float *) malloc(memsize);

C = (float *) malloc(memsize);

matrix_add(C, A, B, N);

free(A);

free(B);

free(C);

exit (0);

}

Listing 31: config.txt

LOOP_COLLAPSING =1

BLOCK_SKEW =1

PREFETCHING =0

PREFETCHED_ARRAYS=A

NON_PREFETCHED_ARRAYS=B

DATA_TYPE=float

KERNEL_NAMES=matrix_add

2DMATRIX =1

ROW_DIM=N
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MAX_BLOCKSIZE =0

MAX_MERGE_LEVEL =0

MAX_SKEW_LEVEL =0

MIN_BLOCKSIZE =32

MIN_MERGE_LEVEL =1

MIN_SKEW_LEVEL =1

Outputs

Listing 32: kernel.cu

__global__ void matrix_add(float *C, float * __restrict__

A, float * __restrict__ B, int N)

{

int tid = threadIdx.x;

int bid = blockIdx.x;

int ij = bid * BLOCKSIZE + tid;

int i = (ij / n) * MERGE_LEVEL;

int j = (ij % n) * SKEW_LEVEL;

for(int s=0; s < SKEW_LEVEL; s++)

for(int m=0; m < MERGE_LEVEL; m++)

C[(i + m) * n + j + s] = A[(i + m) * n +

j + s] + B[(i + m) * n + j + s];

}

Listing 33: main.cu

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <math.h>

#include <time.h>

#include <cuda.h>

void checkCudaError(const char *msg)

{

cudaError_t err = cudaGetLastError ();

if(cudaSuccess != err){

printf("%s(%i) : CUDA error : %s : (%d) %

s\n", __FILE__ , __LINE__ , msg , (int)

err , cudaGetErrorString(err));

exit (-1);

}
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}

#include "params.h"

#include "rcuda.h"

#include "kernel.cu"

int main(int argc ,char *argv []){

int N=1024;

int GPU=0;

if(argc >1)N=atoi(argv [1]);

if(argc >2) GPU=atoi(argv [2]);

cudaSetDevice (GPU);

float *A,*B,*C;

int memsize=N*N*sizeof(float );

cudaMallocManaged (&A,memsize);

cudaMallocManaged (&B,memsize);

cudaMallocManaged (&C,memsize);

dim3 threads(BLOCKSIZE ,1);

dim3 grid(N*N/BLOCKSIZE/MERGE_LEVEL/SKEW_LEVEL ,1)

;

matrix_add <<<grid ,threads >>>(C,A,B,N);

cudaDeviceSynchronize ();

cudaFree (A);

cudaFree (B);

cudaFree (C);

cudaThreadExit ();

}

Listing 34: params.h

#define BLOCKSIZE 128

#define MERGE_LEVEL 1

#define SKEW_LEVEL 2

Demosaic

Inputs
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Listing 35: kernel.c

void demosaic(float *r_G , float * restrict GPU_G , int N)

{

for (int i = 0; i < N-16; ++i){

for (int j = 0; j < N-16; ++j) {

r_G[i*(N-16)+j] = GPU_G[(i -1+15)*N+j

+15]*0.25

+ GPU_G [(i+15)*N+j

-1+15]*0.25

+ GPU_G [(i+15)*N+j+15]

+ GPU_G [(i+15)*N+j

+1+15]*0.25

+ GPU_G [(i+1+15)*N+j

+15]*0.25;

}

}

}

Listing 36: main.c

int main(int argc , char *argv [])

{

int N = 1024;

int GPU = 0;

if(argc > 1)

N = atoi(argv [1]);

if(argc > 2)

GPU = atoi(argv [2]);

cudaSetDevice(GPU);

float *A, *C;

int memsizeA = (N+16) * (N+16) * sizeof(float);

int memsizeC = N * N * sizeof(float);

A = (float *) malloc(memsizeA);

C = (float *) malloc(memsizeC);

demosaic(C, A, N);

free(A);

free(C);

exit (0);

}
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Listing 37: config.txt

LOOP_COLLAPSING =1

BLOCK_SKEW =1

PREFETCHING =0

PREFETCHED_ARRAYS=A

NON_PREFETCHED_ARRAYS=B

DATA_TYPE=float

KERNEL_NAMES=demosaic

2DMATRIX =1

ROW_DIM=N

MAX_BLOCKSIZE =0

MAX_MERGE_LEVEL =0

MAX_SKEW_LEVEL =0

MIN_BLOCKSIZE =32

MIN_MERGE_LEVEL =1

MIN_SKEW_LEVEL =1

Outputs

Listing 38: kernel.cu

__global__ void demosaic(float *r_G , float * __restrict__

GPU_G , int N)

{

int tid = threadIdx.x;

int bid = blockIdx.x;

int ij = bid * BLOCKSIZE + tid;

int i = (ij / (N-16)) * MERGE_LEVEL;

int j = (ij % (N-16)) * SKEW_LEVEL;

for(int s=0; s < SKEW_LEVEL; s++)

for(int m=0; m < MERGE_LEVEL; m++)

r_G[(i + m)*(N-16)+j+s] = GPU_G [((i+m) -1+15)*

N+j+15+s]*0.25 + GPU_G [((i+m)+15)*N+j

-1+15+s]*0.25 + GPU_G [((i+m)+15)*N+j+15+s]

+ GPU_G [((i+m)+15)*N+j+1+15+s]*0.25 +

GPU_G [((i+m)+1+15)*N+j+15+s]*0.25;

}
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Listing 39: main.cu

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <math.h>

#include <time.h>

#include <cuda.h>

void checkCudaError(const char *msg)

{

cudaError_t err = cudaGetLastError ();

if(cudaSuccess != err){

printf("%s(%i) : CUDA error : %s : (%d) %

s\n", __FILE__ , __LINE__ , msg , (int)

err , cudaGetErrorString(err));

exit (-1);

}

}

#include "params.h"

#include "rcuda.h"

#include "kernel.cu"

int main(int argc ,char *argv []){

int N=1024;

int GPU=0;

if(argc >1)N=atoi(argv [1]);

if(argc >2) GPU=atoi(argv [2]);

cudaSetDevice (GPU);

float *A,*C;

int memsizeA = (N+16) * (N+16) * sizeof(float);

int memsizeC = N * N * sizeof(float);

cudaMallocManaged (&A,memsizeA);

cudaMallocManaged (&C,memsizeC);

dim3 threads(BLOCKSIZE ,1);

dim3 grid(N*N/BLOCKSIZE/MERGE_LEVEL/SKEW_LEVEL ,1)

;

demosaic <<<grid ,threads >>>(C,A,N);

cudaDeviceSynchronize ();

cudaFree (A);

cudaFree (C);

cudaThreadExit ();

}
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Listing 40: params.h

#define BLOCKSIZE 128

#define MERGE_LEVEL 8

#define SKEW_LEVEL 1

Histogram

Inputs

Listing 41: kernel.c

void histogram(int* histogram , int * restrict A, int N)

{

for(i = 0;i<N;i++){

for(j = 0;j<N;j++){

int b;

b = A[i][j];

histogram[b] = histogram[b] + 1;

}

}

}

Listing 42: main.c

int main(int argc , char *argv [])

{

int N = 1024;

int GPU = 0;

if(argc > 1)

N = atoi(argv [1]);

if(argc > 2)

GPU = atoi(argv [2]);

cudaSetDevice(GPU);

int *A, *C;

int memsizeA = N * N * sizeof(int);

int memsizeC = N * sizeof(int);

A = (int *) malloc(memsizeA);
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C = (int *) malloc(memsizeC);

histogram(C, A, N);

free(A);

free(C);

exit (0);

}

Listing 43: config.txt

LOOP_COLLAPSING =1

BLOCK_SKEW =1

PREFETCHING =0

PREFETCHED_ARRAYS=A

NON_PREFETCHED_ARRAYS=B

DATA_TYPE=float

KERNEL_NAMES=histogram

2DMATRIX =1

ROW_DIM=N

MAX_BLOCKSIZE =0

MAX_MERGE_LEVEL =0

MAX_SKEW_LEVEL =0

MIN_BLOCKSIZE =32

MIN_MERGE_LEVEL =1

MIN_SKEW_LEVEL =1

Outputs

Listing 44: kernel.cu

__global__ void histogram(int *histogram , int *

__restrict__ a, int N)

{

int tid = threadIdx.x;

int bid = blockIdx.x;

int ij = bid * BLOCKSIZE + tid;

int i = (ij / N) * MERGE_LEVEL;

int j = (ij % N) * SKEW_LEVEL;

int b;

for(int s=0; s < SKEW_LEVEL; s++)
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for(int m=0; m < MERGE_LEVEL; m++){

b = abs((int)a[(i+m) * N + j + s]);

atomicAdd (& histogram[b],1);

}

}

Listing 45: main.cu

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <math.h>

#include <time.h>

#include <cuda.h>

void checkCudaError(const char *msg)

{

cudaError_t err = cudaGetLastError ();

if(cudaSuccess != err){

printf("%s(%i) : CUDA error : %s : (%d) %

s\n", __FILE__ , __LINE__ , msg , (int)

err , cudaGetErrorString(err));

exit (-1);

}

}

#include "params.h"

#include "rcuda.h"

#include "kernel.cu"

int main(int argc ,char *argv []){

int N=1024;

int GPU=0;

if(argc >1)N=atoi(argv [1]);

if(argc >2) GPU=atoi(argv [2]);

cudaSetDevice (GPU);

int *A,*C;

int memsizeA = N * N * sizeof(int);

int memsizeC = N * sizeof(int);

cudaMallocManaged (&A,memsizeA);

cudaMallocManaged (&C,memsizeC);

dim3 threads(BLOCKSIZE ,1);

dim3 grid(N*N/BLOCKSIZE/MERGE_LEVEL/SKEW_LEVEL ,1)

;

histogram <<<grid ,threads >>>(C,A,N);
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cudaDeviceSynchronize ();

cudaFree (A);

cudaFree (C);

cudaThreadExit ();

}

Listing 46: params.h

#define BLOCKSIZE 128

#define MERGE_LEVEL 2

#define SKEW_LEVEL 16

Matrix-Vector Multiplication

Inputs

Listing 47: kernel.c

void matrix_mv(float *C, float * restrict A, float *

restrict B, int N)

{

float sum =0.0;

for(int i=0; i < N; i++){

for(int k=0; k < N; k++)

sum += A[i][k] * B[k];

C[i] = sum;

}

}

Listing 48: main.c

int main(int argc , char *argv [])

{

int N = 1024;

int GPU = 0;

if(argc > 1)

N = atoi(argv [1]);

if(argc > 2)
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GPU = atoi(argv [2]);

cudaSetDevice(GPU);

float *A, *B, *C;

int memsize = N * N * sizeof(float);

int memsizevec = N * sizeof(float);

A = (float *) malloc(memsize);

B = (float *) malloc(memsizevec);

C = (float *) malloc(memsizevec);

matrix_mv(C, A, B, N);

free(A);

free(B);

free(C);

exit (0);

}

Listing 49: config.txt

LOOP_COLLAPSING =0

BLOCK_SKEW =0

PREFETCHING =1

PREFETCHED_ARRAYS=A

NON_PREFETCHED_ARRAYS=B

DATA_TYPE=float

KERNEL_NAMES=matrix_mv

2DMATRIX =0

ROW_DIM=N

MAX_BLOCKSIZE =0

MAX_MERGE_LEVEL =0

MAX_SKEW_LEVEL =0

MIN_BLOCKSIZE =32

MIN_MERGE_LEVEL =1

MIN_SKEW_LEVEL =1

Outputs

Listing 50: kernel.cu
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__global__ void matrix_mv(float *C, float * __restrict__

A, float * __restrict__ B, int N)

{

__shared__ float As[MERGE_LEVEL ][ BLOCKSIZE ];

float sum[MERGE_LEVEL ];

for(int i=0; i < MERGE_LEVEL; i++)

sum[i] = 0.0;

int tid=threadIdx.x;

int bid=blockIdx.x;

int i=(bid*BLOCKSIZE+tid)*MERGE_LEVEL;

int k ;

for(int m=0;m<MERGE_LEVEL;m++){

As[m][tid]=A[((i+m))*N+(k)+tid];

}

__syncthreads ();

for(k=0;k<N-BLOCKSIZE;k+= BLOCKSIZE){

for(int t=0;t<BLOCKSIZE;t++){

float b=B[k+t];

for(int m=0;m<MERGE_LEVEL;m++)

sum[m]+=As[m][t]*b;

}

__syncthreads ();

for(int m=0;m<MERGE_LEVEL;m++){

As[m][tid]=A[((i+m))*N+(k+BLOCKSIZE)+tid];

}

__syncthreads ();

}

for(int t=0;t<BLOCKSIZE;t++){

float b=B[k+t];

for(int m=0;m<MERGE_LEVEL;m++)

sum[m]+=As[m][t]*b;

}

for(int m=0;m<MERGE_LEVEL;m++)

C[(i+m)]=sum[m];

}

Listing 51: main.cu

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <math.h>

#include <time.h>

#include <cuda.h>
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void checkCudaError(const char *msg)

{

cudaError_t err = cudaGetLastError ();

if(cudaSuccess != err){

printf("%s(%i) : CUDA error : %s : (%d) %

s\n", __FILE__ , __LINE__ , msg , (int)

err , cudaGetErrorString(err));

exit (-1);

}

}

#include "params.h"

#include "rcuda.h"

#include "kernel.cu"

int main(int argc ,char *argv []){

int N=1024;

int GPU=0;

if(argc >1)N=atoi(argv [1]);

if(argc >2) GPU=atoi(argv [2]);

cudaSetDevice (GPU);

float *A,*B,*C;

int memsize=N*N*sizeof(float );

int memsizevec=N*sizeof(float );

cudaMallocManaged (&A,memsize);

cudaMallocManaged (&B,memsizevec);

cudaMallocManaged (&C,memsizevec);

dim3 threads(BLOCKSIZE ,1);

dim3 grid(N/BLOCKSIZE/MERGE_LEVEL/SKEW_LEVEL ,1);

matrix_mv <<<grid ,threads >>>(C,A,B,N);

cudaDeviceSynchronize ();

cudaFree (A);

cudaFree (B);

cudaFree (C);

cudaThreadExit ();

}

Listing 52: params.h

#define BLOCKSIZE 64

#define MERGE_LEVEL 1

#define SKEW_LEVEL 1
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Vector-Vector Multiplication

Inputs

Listing 53: kernel.c

void matrix_vv(float *C, float * restrict A, float *

restrict B, int N)

{

for(int i=0; i < N; i++)

for(int j=0; j < N; j++)

C[i][j] = A[i] * B[j];

}

Listing 54: main.c

int main(int argc , char *argv [])

{

int N = 1024;

int GPU = 0;

if(argc > 1)

N = atoi(argv [1]);

if(argc > 2)

GPU = atoi(argv [2]);

cudaSetDevice(GPU);

float *A, *B, *C;

int memsize = N * N * sizeof(float);

int memsizevec = N * sizeof(float);

A = (float *) malloc(memsizevec);

B = (float *) malloc(memsizevec);

C = (float *) malloc(memsize);

matrix_vv(C, A, B, N);

free(A);

free(B);

free(C);

exit (0);

}
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Listing 55: config.txt

LOOP_COLLAPSING =1

BLOCK_SKEW =1

PREFETCHING =0

PREFETCHED_ARRAYS=A

NON_PREFETCHED_ARRAYS=B

DATA_TYPE=float

KERNEL_NAMES=matrix_vv

2DMATRIX =1

ROW_DIM=N

MAX_BLOCKSIZE =0

MAX_MERGE_LEVEL =0

MAX_SKEW_LEVEL =0

MIN_BLOCKSIZE =32

MIN_MERGE_LEVEL =1

MIN_SKEW_LEVEL =1

Outputs

Listing 56: kernel.cu

__global__ void matrix_vv(float *C, float * __restrict__

A, float * __restrict__ B, int N)

{

int tid=threadIdx.x;

int bid=blockIdx.x;

int ij=bid*BLOCKSIZE+tid;

int i=(ij/N)*MERGE_LEVEL;

int j=(ij%N)*SKEW_LEVEL;

for(int n=0;n<SKEW_LEVEL;n++){

float b=B[(j+n)];

for(int m=0;m<MERGE_LEVEL;m++)

C[((i+m))*N+((j+n))]=A[(i+m)]*b;

}

}

Listing 57: main.cu

#include <stdlib.h>

#include <stdio.h>
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#include <string.h>

#include <math.h>

#include <time.h>

#include <cuda.h>

void checkCudaError(const char *msg)

{

cudaError_t err = cudaGetLastError ();

if(cudaSuccess != err){

printf("%s(%i) : CUDA error : %s : (%d) %

s\n", __FILE__ , __LINE__ , msg , (int)

err , cudaGetErrorString(err));

exit (-1);

}

}

#include "params.h"

#include "rcuda.h"

#include "kernel.cu"

int main(int argc ,char *argv []){

int N=1024;

int GPU=0;

if(argc >1)N=atoi(argv [1]);

if(argc >2) GPU=atoi(argv [2]);

cudaSetDevice (GPU);

float *A,*B,*C;

int memsize=N*N*sizeof(float );

int memsizevec=N*sizeof(float );

cudaMallocManaged (&A,memsizevec);

cudaMallocManaged (&B,memsizevec);

cudaMallocManaged (&C,memsize);

dim3 threads(BLOCKSIZE ,1);

dim3 grid(N*N/BLOCKSIZE/MERGE_LEVEL/SKEW_LEVEL ,1)

;

matrix_vv <<<grid ,threads >>>(C,A,B,N);

cudaDeviceSynchronize ();

cudaFree (A);

cudaFree (B);

cudaFree (C);

cudaThreadExit ();

}
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Listing 58: params.h

#define BLOCKSIZE 256

#define MERGE_LEVEL 32

#define SKEW_LEVEL 1

AXPY

Inputs

Listing 59: kernel.c

void axpy(double *C, double * restrict A, double alpha ,

int N)

{

for(int i=0; i < N; i++)

C[i] = C[i] + alpha * A[i];

}

Listing 60: main.c

int main(int argc , char *argv [])

{

int N = 1024;

int GPU = 0;

if(argc > 1)

N = atoi(argv [1]);

if(argc > 2)

GPU = atoi(argv [2]);

cudaSetDevice(GPU);

double *A, *B, *C;

int memsize = N * sizeof(double);

A = (double *) malloc(memsize);

C = (double *) malloc(memsize);

axpy(C, A, 3.0, N);

free(A);
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free(C);

exit (0);

}

Listing 61: config.txt

LOOP_COLLAPSING =0

BLOCK_SKEW =0

PREFETCHING =0

PREFETCHED_ARRAYS=A

NON_PREFETCHED_ARRAYS=B

DATA_TYPE=double

KERNEL_NAMES=axpy

2DMATRIX =0

ROW_DIM=N

MAX_BLOCKSIZE =0

MAX_MERGE_LEVEL =0

MAX_SKEW_LEVEL =0

MIN_BLOCKSIZE =32

MIN_MERGE_LEVEL =1

MIN_SKEW_LEVEL =1

Outputs

Listing 62: kernel.cu

__global__ void axpy(double *C,double const *__restrict__

A,double alpha ,int N){

int tid=threadIdx.x;

int bid=blockIdx.x;

int i=(bid*BLOCKSIZE+tid)*MERGE_LEVEL;

for(int m=0;m<MERGE_LEVEL;m++)

C[(i+m)]=C[(i+m)]+ alpha*A[(i+m)];

}

Listing 63: main.cu

#include <stdlib.h>

#include <stdio.h>

#include <string.h>
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#include <math.h>

#include <time.h>

#include <cuda.h>

void checkCudaError(const char *msg)

{

cudaError_t err = cudaGetLastError ();

if(cudaSuccess != err){

printf("%s(%i) : CUDA error : %s : (%d) %

s\n", __FILE__ , __LINE__ , msg , (int)

err , cudaGetErrorString(err));

exit (-1);

}

}

#include "params.h"

#include "rcuda.h"

#include "kernel.cu"

int main(int argc ,char *argv []){

int N=1024;

int GPU=0;

if(argc >1)N=atoi(argv [1]);

if(argc >2) GPU=atoi(argv [2]);

cudaSetDevice (GPU);

double *A,*C;

int memsize=N*sizeof(double);

cudaMallocManaged (&A,memsize);

cudaMallocManaged (&C,memsize);

dim3 threads(BLOCKSIZE ,1);

dim3 grid(N/BLOCKSIZE/MERGE_LEVEL/SKEW_LEVEL ,1);

axpy <<<grid ,threads >>>(C,A,3.0,N);

cudaDeviceSynchronize ();

cudaFree (A);

cudaFree (C);

cudaThreadExit ();

}

Listing 64: params.h

#define BLOCKSIZE 128

#define MERGE_LEVEL 1

#define SKEW_LEVEL 1
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Jacobi Iteration

Inputs

Listing 65: kernel.c

void jacobi(double *NX , double * restrict A, double *

restrict X, double * restrict B, int N)

{

double a;

double sum;

for(int i=0; i < N; i++){

a = A[i][i];

sum = -a * X[i];

for(int j=0; j < N; j++)

sum += A[i][j] * X[j];

NX[i] = (B[i] - sum)/a;

}

}

Listing 66: main.c

int main(int argc , char *argv [])

{

int N = 1024;

int GPU = 0;

if(argc > 1)

N = atoi(argv [1]);

if(argc > 2)

GPU = atoi(argv [2]);

cudaSetDevice(GPU);

double *A, *B, *X, *NX;

int memsize = N * N * sizeof(double);

int memsizevec = N * sizeof(double);

A = (double *) malloc(memsize);

X = (double *) malloc(memsizevec);

NX = (double *) malloc(memsizevec);

B = (double *) malloc(memsizevec);

for(int iter =0; iter < 100; iter ++){

jacobi(NX , A, X, B, N);
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jacobi(X, A, NX , B, N);

}

free(A);

free(B);

free(X);

free(NX);

exit (0);

}

Listing 67: config.txt

LOOP_COLLAPSING =0

BLOCK_SKEW =0

PREFETCHING =1

PREFETCHED_ARRAYS=A

NON_PREFETCHED_ARRAYS=B,X,NX

DATA_TYPE=double

KERNEL_NAMES=jacobi

2DMATRIX =0

ROW_DIM=N

MAX_BLOCKSIZE =0

MAX_MERGE_LEVEL =0

MAX_SKEW_LEVEL =1

MIN_BLOCKSIZE =32

MIN_MERGE_LEVEL =1

MIN_SKEW_LEVEL =1

Outputs

Listing 68: kernel.cu

__global__ void jacobi(double *NX,double const *

__restrict__ A,double const *__restrict__ X,double

const *__restrict__ B,int N){

__shared__ double As[MERGE_LEVEL ][ BLOCKSIZE ];

double sum[MERGE_LEVEL ];

int tid=threadIdx.x;

int bid=blockIdx.x;

int i=(bid*BLOCKSIZE+tid)*MERGE_LEVEL;

{
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for(int m=0;m<MERGE_LEVEL;m++){

a[m] = A[i][i];

sum[m]=-a[m]*X[(i+m)];

}

int j ;

for(int m=0;m<MERGE_LEVEL;m++)

{

As[m][tid]=A[((i+m))*N+(j)+tid];

}

__syncthreads ();

for(j=0;j<N-BLOCKSIZE;j+= BLOCKSIZE)

{

for(int t=0;t<BLOCKSIZE;t

++)

for(int m=0;m<

MERGE_LEVEL;m

++)

sum[m]+=

As[m][

t]*X[j

];

__syncthreads ();

for(int m=0;m<MERGE_LEVEL

;m++)

{

As[m][tid]=A[((i+

m))*N+(j+

BLOCKSIZE)+tid

];

}

__syncthreads ();

}

for(int t=0;t<BLOCKSIZE;t++)

for(int m=0;m<MERGE_LEVEL;m++)

sum[m]+=As[m][t]*X[j];

for(int m=0;m<MERGE_LEVEL;m++)

NX[(i+m)]=(B[(i+m)]-sum[m])/a[m];

}
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}

Listing 69: main.cu

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <math.h>

#include <time.h>

#include <cuda.h>

void checkCudaError(const char *msg)

{

cudaError_t err = cudaGetLastError ();

if(cudaSuccess != err){

printf("%s(%i) : CUDA error : %s : (%d) %

s\n", __FILE__ , __LINE__ , msg , (int)

err , cudaGetErrorString(err));

exit (-1);

}

}

#include "params.h"

#include "rcuda.h"

#include "kernel.cu"

int main(int argc ,char *argv []){

int N=1024;

int GPU=0;

if(argc >1)N=atoi(argv [1]);

if(argc >2) GPU=atoi(argv [2]);

cudaSetDevice (GPU);

double *A,*B,*NX ,*X;

int memsize=N*N*sizeof(double);

int memsizevec=N*sizeof(double);

cudaMallocManaged (&A,memsize);

cudaMallocManaged (&B,memsizevec);

cudaMallocManaged (&X,memsizevec);

cudaMallocManaged (&NX,memsizevec);

dim3 threads(BLOCKSIZE ,1);

dim3 grid(N/BLOCKSIZE/MERGE_LEVEL/SKEW_LEVEL ,1);

for(int iter =0; iter <100; i++){

jacobi <<<grid ,threads >>>(NX ,A,X,B,N);

cudaDeviceSynchronize ();

jacobi <<<grid ,threads >>>(X,A,NX ,B,N);
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cudaDeviceSynchronize ();

}

cudaFree (A);

cudaFree (B);

cudaFree (X);

cudaFree (NX);

cudaThreadExit ();

}

Listing 70: params.h

#define BLOCKSIZE 1024

#define MERGE_LEVEL 1

#define SKEW_LEVEL 1

Conjugate Gradient using RT-CUDA API

Inputs

Listing 71: kernel.c

void sub(float *C, float * restrict A, float * restrict B

, int N)

{

for(int i=0; i<N; i++)

C[i] = A[i] - B[i];

}

void copy(float *C, float * restrict A, int N)

{

for(int i=0; i<N; i++)

C[i] = A[i];

}

void scaleadd(float *C, float * restrict A, int N, float

alpha)

{

for(int i=0; i<N; i++)

C[i] += alpha * A[i];

}
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void scalesub(float *C, float * restrict A, int N, float

alpha)

{

for(int i=0; i<N; i++)

C[i] -= alpha * A[i];

}

void scaleaddstore(float *C, float * restrict A, float *

restrict B, int N, float alpha)

{

for(int i=0; i<N; i++)

C[i] = alpha * A[i] + B[i];

}

Listing 72: main.c

int main(int argc , char *argv [])

{

int N = 1024;

int GPU = 0;

if(argc > 1)

N = atoi(argv [1]);

if(argc > 2)

GPU = atoi(argv [2]);

cudaSetDevice(GPU);

float *B, *X, *P, *R, *AP;

int memsize = N * N * sizeof(float);

int memsizevec = N * sizeof(float);

X = (float *) malloc(memsizevec);

B = (float *) malloc(memsizevec);

P = (float *) malloc(memsizevec);

R = (float *) malloc(memsizevec);

AP = (float *) malloc(memsizevec);

RTspSArray *A;

RTspSArrayLoadFromFile(argv[1], A);

RTspSMV(R, A, X, N, N);

sub(R, B, R, N);

copy(P, R, N);

for(int k=0; k < 100; k++){

float rr;
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float pp;

RTdSDOT(R, R, N, &rr);

RTspSMV(AP , A, P, N, N);

RTdSDOT(P, AP , N, &pp);

float alpha = rr / pp;

scaleadd(X, P, N, alpha);

scalesub(R, AP, N, alpha);

float rrn;

RTdSDOT(R, R, N, &rrn);

if(rrn < 1e-10) break;

float beta = rrn / rr;

scaleaddstore(P, P, R, N, beta);

}

free(A);

free(B);

free(X);

free(P);

free(R);

free(AP);

exit (0);

}

Listing 73: config.txt

LOOP_COLLAPSING =0

BLOCK_SKEW =0

PREFETCHING =0

PREFETCHED_ARRAYS=A

NON_PREFETCHED_ARRAYS=B,X,NX

DATA_TYPE=float

KERNEL_NAMES=sub ,copy ,scaleadd ,scalesub ,scaleaddstore

2DMATRIX =0

ROW_DIM=N

MAX_BLOCKSIZE =0

MAX_MERGE_LEVEL =0

MAX_SKEW_LEVEL =1

MIN_BLOCKSIZE =32

MIN_MERGE_LEVEL =1

MIN_SKEW_LEVEL =1

Outputs
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Listing 74: kernel.cu

__global__ void sub(float *C,float const *__restrict__ A,

float const *__restrict__ B,int N){

int tid=threadIdx.x;

int bid=blockIdx.x;

int i=(bid*blockDim.x+tid)*MERGE_LEVEL;

for(int m=0;m<MERGE_LEVEL;m++)

C[(i+m)]=A[(i+m)]-B[(i+m)];

}

__global__ void copy(float *C,float const *__restrict__ A

,int N){

int tid=threadIdx.x;

int bid=blockIdx.x;

int i=(bid*blockDim.x+tid)*MERGE_LEVEL;

for(int m=0;m<MERGE_LEVEL;m++)

C[(i+m)]=A[(i+m)];

}

__global__ void scaleadd(float *C,float const *

__restrict__ A,int N,float alpha){

int tid=threadIdx.x;

int bid=blockIdx.x;

int i=(bid*blockDim.x+tid)*MERGE_LEVEL;

for(int m=0;m<MERGE_LEVEL;m++)

C[(i+m)]+= alpha*A[(i+m)];

}

__global__ void scalesub(float *C,float const *

__restrict__ A,int N,float alpha){

int tid=threadIdx.x;

int bid=blockIdx.x;

int i=(bid*blockDim.x+tid)*MERGE_LEVEL;

for(int m=0;m<MERGE_LEVEL;m++)

C[(i+m)]-=alpha*A[(i+m)];

}

__global__ void scaleaddstore(float *C,float const *

__restrict__ A,float const *__restrict__ B,int N,float

alpha){

int tid=threadIdx.x;

int bid=blockIdx.x;
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int i=(bid*blockDim.x+tid)*MERGE_LEVEL;

for(int m=0;m<MERGE_LEVEL;m++)

C[(i+m)]= alpha*A[(i+m)]+B[(i+m)];

}

Listing 75: main.cu

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <math.h>

#include <time.h>

#include <cuda.h>

void checkCudaError(const char *msg)

{

cudaError_t err = cudaGetLastError ();

if(cudaSuccess != err){

printf("%s(%i) : CUDA error : %s : (%d) %

s\n", __FILE__ , __LINE__ , msg , (int)

err , cudaGetErrorString(err));

exit (-1);

}

}

#include "params.h"

#include "rcuda.h"

#include "kernel.cu"

int main(int argc , char *argv [])

{

int N = 1024;

int GPU = 0;

if(argc > 1)

N = atoi(argv [1]);

if(argc > 2)

GPU = atoi(argv [2]);

cudaSetDevice(GPU);

float *B, *X, *P, *R, *AP;

int memsize = N * N * sizeof(float);

int memsizevec = N * sizeof(float);

cudaMallocManaged (&X,memsizevec);

cudaMallocManaged (&B,memsizevec);

cudaMallocManaged (&P,memsizevec);

cudaMallocManaged (&R,memsizevec);
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cudaMallocManaged (&AP,memsizevec);

RTspSArray *A;

RTspSArrayLoadFromFile(argv[1], A);

dim3 threads(BLOCKSIZE , 1)

dim3 grid(N/BLOCKSIZE/MERGE_LEVEL ,SKEW_LEVEL , 1);

RTspSMV(R, A, X, N, N);

sub <<<grid ,threads >>>(R, B, R, N);

cudaDeviceSynchronize ();

copy <<<grid ,threads >>>(P, R, N);

cudaDeviceSynchronize ();

for(int k=0; k < 100; k++){

float rr;

float pp;

RTdSDOT(R, R, N, &rr);

RTspSMV(AP , A, P, N, N);

RTdSDOT(P, AP , N, &pp);

float alpha = rr / pp;

scaleadd <<<grid ,threads >>>(X, P, N, alpha);

cudaDeviceSynchronize ();

scalesub <<<grid ,threads >>>(R, AP , N, alpha);

cudaDeviceSynchronize ();

float rrn;

RTdSDOT(R, R, N, &rrn);

if(rrn < 1e-10) break;

float beta = rrn / rr;

scaleaddstore <<<grid ,threads >>>(P, P, R, N, beta)

;

cudaDeviceSynchronize ();

}

cudaFree(A);

cudaFree(B);

cudaFree(X);

cudaFree(P);

cudaFree(R);

cudaFree(AP);

cudaThreadExit ();

}

Listing 76: params.h

#define BLOCKSIZE 512
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#define MERGE_LEVEL 1

#define SKEW_LEVEL 1
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Appendix F

RT-CUDA Third Party Evaluation

We assigned different applications to a set of four MS/PhD students to ana-

lyze and evaluate the compilation, execution, and performance of RT-CUDA as

a course assignment. The objective of the assignment is to analyze, experiment,

and test RT-CUDA as a newly developed compiler to convert a C-like program

into an optimized CUDA program with user directives in a configuration file for

guiding the compiler. The tests have been performed using a set of numerical

applications including:

1. Scaling Matrix (sM)

2. Matrix Addition (MAdd)

3. Demosaic

4. Histogram

5. Matrix-matrix multiplication (MM)

6. Matrix-vector multiplication (MV)

7. Vector-vector multiplication inner product (VV)

8. AXPY

9. Jacobi iterative solver
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10. Conjugate Gradient (CG)

The students are assigned the following applications:

� Student 1: sM, MAdd, Demosaic

� Student 2: Histogram and Matrix-matrix multiplication (MM)

� Student 3: AXPY and Jacobi iterative solver

� Student 4: Vector inner product (VV) and Conjugate Gradient (CG)

For each assigned application, the assignment consists of writing student anal-

ysis on the following three aspects:

(a) Familiarity with RT-CUDA environment: source code in C, compiler

transformation, and, configuration file, compiling process, CUDA generated

code, and run-time data of CUDA generated programs. Write about your

own comments of the source code (if any), configuration file, and the way

the compiler is running, and generated CUDA code.

(b) Analysis and Inspection of the generated CUDA code: For each

application, carry out the following:

� Inspect the configuration file and try linking its information with the

nature of the application as a user hint to guide the compiler.

� Inspect the CUDA generated code. For this student tries to (1) identify

the mapping of the thread to the result (Th→ result), (2) find whether

tilting is used or not and how it is deciding on the tile size, (3) find if
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coalesced access is granted, (4) find whether data is copied from GM

into ShM prior to computation, (5) your analysis of your choice.

� Carry out some slight modification of the source code and study its

effect on the generated CUDA code. We may lightly change the com-

puted equation as above. The student is expected to inspect the CUDA

generated code, compare with the original CUDA before the change,

try to track changes and analyse the code change whether this is a

logical change or not, does this seems to be optimized or not. For

example, multiply a result by some constant c such as the equation

sum=sum+x(i) is changed to sum=sum+x(i)*c. Observe the gener-

ated code: is it sum=sum+x(i)*c or sum=sum+x(i) and later sum

= sum*c! Try your own checking for simple optimizations that may

impact the generated code. For each application, write down your ex-

periments showing the original code, modified code and your inspection

and analysis of the generated code.

(c) Run-time Analysis of Scalability: Analysis of problem scalability based

on run time data:

� For each application, compile the C source code after inspection of

the configuration file, and obtains the corresponding RT-CUDA code.

Run the code on GPU and collect the execution time (ET(N)). Vary

the problem size as N, 1.4N, 1.8N, 2N , and 2.4N for some reasonable

value of N while avoiding small values and too large values. Plot the
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execution time versus the problem size. The student is expected to

show the ET plots versus problem size and provide careful comments

on the scalability of ET(N). Is the plotted data scales in way accord-

ing to the arithmetic complexity of the problem! For example, if the

arithmetic complexity of the problem is O(N2), then ET(2N) must be

>= 4*ET(N).

� Carry out some slight modification of the source code and study its

effect (execution time scalability) on the run time performance of the

generated code, i.e. another test is to modify the C coding at the

computed equation. For example, instead of using a vector V we may

use 2V and see the impact on performance. The student is expected to

show the ET plots versus problem size and link this to the ET of the

original problem (before the change) and try see the impact (scalability)

of the change by observing the plots.

Author’s comments are also included in bold box with blue/bold text under

each reported issue.
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Student 1: sM, MAdd, Demosaic 

a. Familiarity with RT-CUDA environment. source code in C, compiler transformation, and, 

configuration file, compiling process, CUDA generated code, and run-time data of CUDA 

generated programs. Write about your own comments of the source code (if any), 

configuration file, and the way the compiler is running, and generated CUDA code. 

- Comments on source code in C: 

1. Matrix Scale: 

matrix_scale(C, A, 3.0, N)  it's better to make the scale with own variable. Not hard 

coded. So it will be more readable 

eg: float scale = 3.0; matrix_scale(C, A, scale, N) 

It depends on the user input, whatever parameters are provided by user it will be converted as 

is. 

2. Matrix Add: - 

3. Demosaic:  

In this code: 

r_G[i*(N-16)+j] = GPU_G[(i-1+15)*N+j+15]*0.25+ GPU_G[(i+15)*N+j-

1+15]*0.25+ GPU_G[(i+15)*N+j+15]+ GPU_G[(i+15)*N+j+1+15]*0.25+ 

GPU_G[(i+1+15)*N+j+15]*0.25; 

Is it correct to put the multiplier as 0.25 or it should be 0.2? 

This is the application requirement to use 0.25 as multiplier 

4. General: 

- cudaSetDevice(GPU); set which cuda device will we use. 

This depends on the user whether he want to use specific GPU device or the default. 
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- The matrix_scale is invoked by using the number of threads for each blok is 

BLOCKSIZE (one dimensional) and the number of block in grid is 

N*N/BLOCKSIZE/MERGE_LEVEL/SKEW_LEVEL 

This is true. The tool uses one dimensional thread blocks and blocks grid only as it applies loop 

collapsing to merge two nested loops into a single loop. But, the number of grid to be initialized 

depends on the total number of elements in the array for computations which is NxN 

distributed among all threads based on thread block size (BLOCKSIZE) and thread 

granularity (MERGE_LEVEL and SKEW_LEVEL) 

- cudaMallocManaged creates a pool of managed memory that is shared 

between the CPU and GPU, bridging the CPU-GPU divide. Managed memory 

is accessible to both the CPU and GPU using a single pointer. The key is that 

the system automatically migrates data allocated in Unified Memory between 

host and device so that it looks like CPU memory to code running on the CPU, 

and like GPU memory to code running on the GPU. 

 

It's really simplified the code for memory transfer between CPU and GPU 

Yes, this is the reason that we use this in RT-CUDA. 

- cudaDeviceSynchronize will blocks until the device has completed all 

preceding requested tasks. 

This is the recommended method in CUDA Programming best practices. 
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- Configuration File:  

1. I found that the suggested configuration is correct, but in some configuration it didn’t 

configure well. For example, PREFETCHING=0 but the configuration still put 

PREFETCHED_ARRAYS=A & NON_PREFETCHED_ARRAYS=B, we should put 

this out. 

RT-CUDA ignores other two parameters if PREFETCHING=0. But, these are mandatory in 

the case of PREFETCHING=1. So, these cannot be removed in the configuration. From the 

user point of view, we are planning to provide a graphical user interface in future for the 

configuration and there this will be avoided. 

2. And I also tried to change the DATA_TYPE=float to int, but it doesn’t give me any 

error. Should it affects something? 

Same as the above comment in (1). 

- Compiling process:  

1. Display warning in several places:  

rcuda.h(605): warning: variable "ret_code" was set but never used 

rcuda.h: In function ‘void RTspSArrayLoadFromFile(char*, RTspSArray*)’: 

rcuda.h:596:106: warning: format ‘%lg’ expects argument of type ‘double*’, but 

argument 5 has type ‘float*’ [-Wformat=] 

Maybe it’s better to fix this. 

This has been fixed in v2.3. 

2. While checking for best configuration, I saw the timer only check once. And this 

value will really varied based on current state machine. I think the result of best 

configuration could be wrong because sometimes even for the best configuration if 

executed several times, the result could be lower than other configuration. So we need 
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to figure out how to measure the time to determine the best configuration. Maybe we 

could use average execution time. 

RT-CUDA uses the average kernel execution times for determining the optimal kernel 

parameters. So, in order to get stable results, the user can run the target function in main.c for 

multiple times using loop which will then converted as is by RT-CUDA. 

- Run-time data of CUDA generated program: 

1. Matrix scale: 

7.55e-04s 

time = 7.55E-4s 

Optimal Block Size = 32 

Optimal Merge Level = 1 

Optimal Skew Level = 1 

2. Matrix add: 

1.40e-03s 

time = 0.0014s 

Optimal Block Size = 32 

Optimal Merge Level = 1 

Optimal Skew Level = 1 

3. Demosaic: (with new kernel from Ayaz, now it’s working) 

Optimal Block Size = 1024 

Optimal Merge Level = 1 

Optimal Skew Level = 1 

b. Analysis and Inspection of the generated CUDA code. For each application, carry out the 

following:   
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a. Inspect the configuration file and try linking its information with the nature of the 

application as a user hint to guide the compiler. 

Changing the LOOP_COLLAPSING and BLOCK_SKEW: 

Result: 

if LOOP_COLLAPSING is equals to 0 (disabled) in two nested loop, the code will not be 

compiled. That's why the result is like this: 

time = 0.0 

Optimal Block Size = 0 

Optimal Merge Level = 0 

Optimal Skew Level = 0 

Some of the parameters are depended. If LOOP_COLLAPSING is disabled then 2DMATRIX 

should also be disabled. Then, it will compile and run correctly. It has been checked now in 

v2.3 of RT-CUDA. 

- If BLOCK_SKEW disabled, shows correct code in kernel.cu, but wrong code in main.cu. 

Original code: 

dim3 grid(N*N/BLOCKSIZE/MERGE_LEVEL/SKEW_LEVEL,1); 

Code after corrected: 

dim3 grid(N*N/BLOCKSIZE/MERGE_LEVEL,1); 

It is correct in both cases as the value for BLOCK_SKEW will be equal to 1 if it is disabled. 

Fixed in RT-CUDA v2.3. 

- If BLOCK_SKEW disabled, for this case it will speedup the execution time by: 0.80/0.14 

Is there any difference in generated parameters? It may be due to the different state of the 

underlying machine. In order to get stable results, the user can run the target function in 

main.c for multiple times using loop which will then converted as is by RT-CUDA. 
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- On Demosaic, the best configuration block is 1024. If I changed it to 1048, the result is 

not correct, but also didn’t give me error report. 

This is configuration error, block size cannot be > 1024. RT-CUDA will add error handling 

after kernel call to check for such errors. Fixed in RT-CUDA v2.3. 

b. Inspect the CUDA generated code. For this student tries to (1) identify the mapping of 

the thread to the result (Th → result), (2) find whether tilting is used or not and how it is 

deciding on the tile size, (3) find if coalesced access is granted, (4) find whether data is 

copied from GM into ShM prior to computation, (5) your analysis of your choice. 

(1) each thread responsible for MERGE_LEVEL*SKEW_LEVEL elements. And the 

mapping of result like this:  

RESULT[((i+m))*N+((j+n))] = scale*SOURCE[((i+m))*N+((j+n))] 

Correct. 

(2) Titling is used by size MERGE_LEVEL*SKEW_LEVEL 

Wrong. Tiling is used by size MERGE_LEVEL * BLOCK_SIZE 

(3) The access is coallesced, they take consecutive row by using j+n 

(4) No, the code is only using General Memory, because no __shared__ variable defined. 

c. Carry out some slight modification: 

__global__ void matrix_scale(float *C,float const *__restrict__ A,int scale,int N){ 

 int tid=threadIdx.x; 

 int bid=blockIdx.x; 

 int ij=bid*BLOCKSIZE+tid; 

 { 

  int i=(ij/N)*MERGE_LEVEL; 

  int j=(ij%N); 

  for(int m=0;m<MERGE_LEVEL;m++) 
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   C[((i+m))*N+(j)]=scale*A[((i+m))*N+(j)]; 

    

 } 

} 

code without skew will speedup the execution time by: 0.80/0.14 

And also I'm trying to add the scale with number of c, and the code converting is correct. 

__global__ void matrix_scale(float *C,float const *__restrict__ A,int scale,int N){ 

 int c=2; 

 int tid=threadIdx.x; 

 int bid=blockIdx.x; 

 int ij=bid*BLOCKSIZE+tid; 

 { 

  int i=(ij/N)*MERGE_LEVEL; 

  int j=(ij%N); 

  for(int m=0;m<MERGE_LEVEL;m++) 

   C[((i+m))*N+(j)]=scale*A[((i+m))*N+(j)]+c; 

 } 

} 

c. Run-time Analysis of Scalability. Analysis of problem scalability based on run time data: 

a. For each application, compile the C source code after inspection of the configuration 

file, and obtains the corresponding RT-CUDA code. Run the code on GPU and collect 

the execution time (ET(N)). Vary the problem size as N, 1.4N, 1.8N, 2N , and 2.4N 

for some reasonable value of N while avoiding small values and too large values. Plot 

the execution time versus the problem size. The student is expected to show the ET 

plots versus problem size and provide careful comments on the scalability of ET(N). 



349 

 

Is the plotted data scales in way according to the arithmetic complexity of the 

problem! For example, if the arithmetic complexity of the problem is O(N^2), then 

ET(2N) must be >= 4*ET(N). 

Matrix Scale: 

 

Arithmetic complexity is O(N^2) so the ET of (2N) must be >=4*ET(N) 

and this result shows that the scalability is good. That the result is near to 4*ET(N) for 

each problem size.  

Matrix add: 

 

Scalability: arithmetic complexity is O(N^2) so the ET of (2N) must be >=4*ET(N) 
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and this result shows that the scalability is good. That the result is also near to 

4*ET(N) for each problem size.  

Demosaic: 

 

Scalability: arithmetic complexity is O(N^2) so the ET of (2N) must be >=4*ET(N) 

and this result shows that the scalability is good. That the result is also near to 

4*ET(N) for each problem size.  

b. Carry out some slight modification of the source code and study its effect (execution 

time scalability) on the run time performance of the generated code, i.e. another test is 

to modify the C coding at the computed equation. For example, instead of using a 

vector V we may use 2V and see the impact on performance. The student is expected 

to show the ET plots versus problem size and link this to the ET of the original 

problem (before the change) and try see the impact (scalability) of the change by 

observing the plots. 

After trying to change the code, the time is still the same. So I tried to check if the 

code give the correct result with this code: 

for(i=0;i<N;i++){ 

  for(j=0;i<N;j++){ 
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   if (C[i*N] != (3.0*A[i*N])) 

   { 

    error = 1; 

    break; 

   } 

  } 

  if (error) 

  { 

   break; 

  } 

 } 

 printf("testing\n"); 

 if (error) 

 { 

  printf("Result is not correct!\n"); 

 }else{ 

  printf("Result is correct.\n"); 

 } 

And turns out the result is correct. 
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Student 2: Histogram and Matrix-matrix multiplication (MM) 

1. Histogram outputs 

- Some comments on the output kernel 

A. Each thread workS in some elements of the matrix A and that partition is determined by 

SKEW_LEVEL and MERGE_LEVEL variables. 

Correct. 

 

B. Access to the matrix is coalesced. 

C. There is problem here is not taken in the consideration which is the accessing to the critical region.  

In other words, some threads will access to the same position of matrix A and at the end maybe the 

wrong result will be produced. To solve this problem it is important to make the threads access 

sequentially to that critical region. This compiler needs to be modified to add atomic function to 

handle this issue. 

Good point raised. Atomic functions to be included in the future release of RT-CUDA. 

 

Performance Evaluation 

In figure (1), the X-axis represents the execution time and the Y-axis represents the size of the 

histogram matrix. Blue line represents the execution time versus the size of the matrix when we 

discard the atomic addition in the critical region. In the other hand, the red line represents that time 

when we used atomic addition. It is clear when we allow the threads to access the same bin 

sequentially to get the correct result, then the time will increase. 
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Figure (1) Execution time with consideration atomic addition and without 

Also from the figure (1) it is clear that this kernel scale well. 

This is because atomicAdd will serialize threads that are accessing the same array index that 

depends on the data. 

Now we will make some modification on source code and see the impact of the scalability when we 

compare these results with the original one. Figure (2.a ) is the original source code and (2.b) is the 

modified source code. The modification here just is increase the number of operations. Here we 

divide the value b by 2. Definitely the result will be wrong but here we don’t care about that. We 

need only know the impact of that operation on the scalability  

 

                   a. Before modification                                                        b. After modification  

Figure (2): The histogram kernel before and after modification 
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The parameters which produced after modification compared before those modification as follow: 

1. Before 

#define BLOCKSIZE 32 

#define MERGE_LEVEL 1 

#define SKEW_LEVEL 1 

2. After 

#define BLOCKSIZE 32 

#define MERGE_LEVEL 1 

#define SKEW_LEVEL 2 

This change is not due to the modification. It is due to the different state of the underlying 

machine. In order to get stable results, the user can run the target function in main.c for 

multiple times using loop which will then converted as is by RT-CUDA. 

 

Figure (3) shows the execution time versus the size of matrix respect to two cases (before and after 

modification)[Note: The logarithmic function applied on the values after modification because they 

are large and that make the values before modification as they were zero in the plotting ]. It is clear 

from the figure that the simple modification consumes a lot of time to be executed because the value 

of b was not being stored in the share to enable us use it again but it is stored in the memory and then 

we need to access to it from there and this take time. This large increasing in the execution time 

makes the kernel not scalable. 

 

 

 

 

 

 

Figure (3): The Execution time of histogram kernel before and after modification 
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This change is not due to the modification. It is due to the incorrect optimal parameters due to 

different state of the underlying machine as stated in the above reponse. In order to get stable 

results, the user can run the target function in main.c for multiple times using loop which will 

then converted as is by RT-CUDA. 

 

2. Matrix-Matrix Multiplication (MM) outputs 

- Some comments on the output kernel 

A. Each thread work on block of the result matrix and the size of that block depends on 

MERGE_LEVEL and BLOCK_SIZE variables, where MERGE_LEVEL determines how many 

columns in that block but the number of the rows in that block is determined by BLOCK_SIZE. 

Correct. 

 

B. The matrix A is divided to tiles and the shared memory is used to store those tiles of matrix A. 

Correct. 

 

C. matrix B is accessed from the GM and it wasn’t being tiled. To optimize this output, the compiler 

needs to be modified also to tile the matrix be to decrease the overhead. 

Currently RT-CUDA supports tiling on any one matrix. It is need to be done in future releases 

of RT-CUDA. 

 

Performance Evaluation: 

In this experiment I want to test the scalability of MM kernel using different sizes of the used 

matrices.  

Figure (4,5) show the execution time for MM multiplication when different sizes are used. I used 

1024, 1536, 1844, 2048, and 2458 this is as if it N, 1.4N, 1.8N, 2N, and 2.4N. 
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Figure (4): The Execution time of MM kernel for different matrix size. 

In figure (4) it is clear that the execution time is zero when some sizes are used but if we check these 

size values we will fine that these values are not multiple of 32 (Warp size). That means there is a 

limit in the software and we can only work with N which is multiple of 32 (Size of warp). To proof 

this, in figure (5) I did another experiment since all the values are multiple of 32. 

This is correct. In order to use matrices which are not multiple of 32, we need to use padding 

rows/columns in the original matrix with zeros. Alternatively, user the use RT-CUDA API 

functions for such matrices. 

 

 

 

 

 

 

 

 

Figure (5): The Execution time of MM kernel for different matrix size . 
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Table (1) shows the exact values of execution time of MM multiplication kernel, since the figure (5) 

depends on these values. Here we show this table to verify if the execution time of size 2N is larger 

than eight times of execution time of N (i.e. is ET(2N) >= 8*ET(N)?). 

From the table, it is clear that ET(2N) >= 8*ET(N)). Also it is clear that when N goes largely up then 

the relation will be ET(2N) >> = 4*ET(N)) 

N ET 

1024 0.847904 

2048 3.532864 

4096 23.973152 

8192 185.398819 

Table (1): Execution time (ET) against size of matrix for MM Mult. kernel 

Now we will check if the produced parameters given in params.h file is optimal value or no. 

To verify that, we will change the BLOCK_SIZE to 32, 128, 256 and 1024. Then at each case we use 

different size for N as 1024, 2048, 4096, and 8192. Table (2) shows the execution time against 

different size of in when the BLOCK-SIZE varies. It is clear from the table that no big difference 

when 128, 256, 512, or 1024 threads/block/ (Excluding 32 threads/block which give highest 

execution time) are used but the best one is when 1024 thread/block is used. It is worthy to mention 

that the value of BLOCK-SIZE in the params.h produced after compiling was 512. That mean this 

value is not the optimal value.  

Tabel (2) 

N 

32 

threads/block 

128 

threads/block 

256 

threads/block 

512 

threads/block 

1024 

threads/block 

1024 0.960896 0.78368 0.850368 0.847904 0.034 

2048 4.811584 3.6368 3.445408 3.532864 3.316 

4096 26.511072 24.681408 24.009312 23.973152 23.585 
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8192 203.913025 187.436386 184.410782 185.398819 184.997 

 

It is due to the incorrect optimal parameters due to different state of the underlying machine as 

stated in the above response. In order to get stable results, the user can run the target function 

in main.c for multiple times using loop which will then converted as is by RT-CUDA. 

 

Figure  (6) shows the plotting of the values in table (2) and it is clear that no big difference when 128, 

256, 512, or 1024 threads per block with respect to the execution time but this time is large when 32 

thread/block is used. 

 

 

 

 

 

Now we will make some modification of the source code (C code) of the MM multiplication 

to see the how the output will be modified and then to test the scalability of the kernel by comparing 

the execution time before and after modification. Figures 7.a &7.b show the source c code before and 

after modification respectively.  
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Figure (7.a) : MM multi. before modifi.                      Figure (7.a) : MM multi. after modifi.                               

The parameters which produced after modification (params.h) compared before those modification 

as follow: 

1. Before 

#define BLOCKSIZE 512 

#define MERGE_LEVEL 4 

#define SKEW_LEVEL 215 

2. After 

#define BLOCKSIZE 32 

#define MERGE_LEVEL 1 

#define SKEW_LEVEL 32 

This seems to be incorrect argument as SKEW_LEVEL cannot be equal to 215 because RT-

CUDA evaluate SKEW_LEVEL as multiple of 2. 

 

Table (3) show the execution time of kernel before and after modification. It is clear that a simple 

modification on source kernel give us big difference respect to time execution of the output kernel  

Table (3) 

N 

Before 

modification After modification 

1024 0.847904 23.275 

2048 3.532864 182.065 



360 

 

4096 23.973152 1431.377 

8192 185.398819 11302.358 

 

The reason behind this sudden increasing is the values of the parameters produced in params.h 

Now manually we will change those parameters to see the effete on the execution time. 

The parameters will change to be as follow: 

#define BLOCKSIZE 512 

#define MERGE_LEVEL 4 

#define SKEW_LEVEL 215 

Actually these parameters are the same those produced before modification. 

As it shown in the table (4), fourth column (Named “After modification (with different parameters)” ) 

shows the execution time of the kernel after modification but here also after  parameters are changed 

manually. It is clear that there is big difference comparing with the execution time shown in third 

column (when the original parameters produced by the compiler are used) and this means that the 

compiler did not give us the optimal values for the those parameters. 

N Before modification After modification 

After modification (with 

different parameters) 

1024 0.847904 23.275 1.056096 

2048 3.532864 182.065 6.749216 

4096 23.973152 1431.377 53.990143 

8192 185.398819 11302.358 424.355377 

Again, it is due to the incorrect optimal parameters due to different state of the underlying 

machine as stated in the above response. In order to get stable results, the user can run the 

target function in main.c for multiple times using loop which will then converted as is by RT-

CUDA. 
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Student 3: AXPY and Jacobi iterative solver 

Analysis and Inspection of the generated CUDA code 

AXPY: 

a. Inspect the configuration file and try linking its information with the nature of 

the application as a user hint to guide the compiler. 

 

1) LOOP_COLLAPSING and 

BLOCK_SKEW and 2DMATRIX all are 

equal zero (0) because kernel has 1D 

resultant. Furthermore the value of 

PREFETCHING = 0 because the kernel 

has NO 2D matrix in the computation. 

2) Only the A matrix need to be pre fetched. 

3) MAX_BLOCKSIZE, and 

MAX_MERGE_LEVEL are equal to zero, 

this will allow the compiler to check all 

possibilities and select the best values for 

the BLOCK_SIZE and MERGE_LEVEL 

parameters 

AXPY config file  

b. Inspect the CUDA generated code: 

(1) Identify the mapping of the thread to the result (Th  result),  

Since the parameter MERGE_LEVEL has the value 1, each thread th 

computes one element in the final result, i.e., thread Th(Bid , Tid) computes 

the value at  Bid*BLOCKSIZE+Tid in the final result vector C. 
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(2) Find whether tilting is used or not and how it is deciding on the tile size. 

Yes, the two vectors A and C is tiled into tiles of size BLOCKSIZE. Threads 

within a block are computing partial result of one tile. 

Wrong. This is not tiled as this problem is 1D and tiling only works with 2D using 

prefetching enabled. 

(3) find if coalesced access is granted, 

Since consecutive threads within a block are accessing consecutive elements 

in the global memory, coalesced access is not granted. 

Incorrect Answer. If consecutive threads within a block are accessing consecutive 

elements then the coalesced access is guaranteed. 

(4) Find whether data is copied from GM into ShM prior to computation. 

No, data are copied from GM into ShM. All computations are performed in 

the global memory 

Correct. There is no sharing of data so no shared memory usage required. Although, it 

will use data cache. 

c. Carry out some slight modification of the source code and study its effect on the 

generated CUDA code: 

Modification on the C code: 

 
 

AXPY AXPY after modification 
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Results of this modification on the generated CUDA code 

  

Generated AXPY original CUDA kernel Generated AXPY CUDA kernel after modification 

This modification affects the parameters as the following:  

  

Generated AXPY params file Generated AXPY params file after modification 

After modified the c code, the resultant CUDA code is modified consequentially, the 

compiler selects different optimal values for both BLOKSIZE and SKEW_LEVEL 

The change in parameters here may be due to the increased number of floating point 

operations or different state of underlying machine. In order to get stable results, the 

user can run the target function in main.c for multiple times using loop which will then 

converted as is by RT-CUDA. 

Run-time Analysis of Scalability. Analysis of problem scalability based on run time 

data: 

a. For each application, compile the C source code after inspection of the 

configuration file, and obtains the corresponding RT-CUDA code. Run the code 

on GPU and collect the execution time (ET(N)). Vary the problem size as N, 

1.4N, 1.8N, 2N , and 2.4N for some reasonable value of N while avoiding small 

values and too large values. Plot the execution time versus the problem size. 
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The student is expected to show the ET plots versus problem size and provide 

careful comments on the scalability of ET(N). Is the plotted data scales in way 

according to the arithmetic complexity of the problem! For example, if the 

arithmetic complexity of the problem is O(N^2), then ET(2N) must be >= 

4*ET(N). 

AXPY Results 

 

AXPY 

N Time 

1024 0.0256 

1536 0.026624 

1844 0.028096 

2048 0.029856 

2458 0.03648 

The complexity of AXPY is O (N). However, when the size N is duplicated (from 1024 

to 2048) the execution time increased by around 16%. This indicates that the parameters 

is well tuned therefore, incrementing the size has little effect on the execution time.  

This little increase is just due to the overhead of thread blocks (TB) scheduling not 

actuallu the increase in N. As per the optimal parameters, for N=1024 the TB=2 while 

for N=2048 the TB=4 which still not fully utilize the GPU resources. 

b. Carry out some slight modification of the source code and study its effect 

(execution time scalability) on the run time performance of the generated code, 

i.e. another test is to modify the C coding at the computed equation. For 

example, instead of using a vector V we may use 2V and see the impact on 
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performance. The student is expected to show the ET plots versus problem size 

and link this to the ET of the original problem (before the change) and try see 

the impact (scalability) of the change by observing the plots. 

Modified AXPY Results 

 

Modified AXPY 

N Time 

1024 0.027776 

1536 0.028256 

1844 0.0352 

2048 0.037088 

2458 0.040192 

The slightly modification on the original code has insignificant change in the execution 

time comparing with the original code, this indicates that the compiler selects suitable 

parameters to handle the modification on the code 

JACOBI: 

a. Inspect the configuration file and try linking its information with the nature of 

the application as a user hint to guide the compiler. 



166 
 

 

1) LOOP_COLLAPSING and 

BLOCK_SKEW and 2DMATRIX all are 

equal zero (0) because kernel has 1D 

resultant.  

2) The PREFETCHING = 1 because the 

kernel has 2D matrix in the computation.  

3) Only the A matrix need to be pre fetched. 

4) MAX_BLOCKSIZE, and 

MAX_MERGE_LEVEL= 0 this will 

allow the compiler to check all possibilities 

and select the best values for the 

BLOCK_SIZE and MERGE_LEVEL 

parameters 

JACOBI config file  

b. Inspect the CUDA generated code: 

(1) Identify the mapping of the thread to the result (Th  result),  

Since the parameter MERGE_LEVE has the value 1, each thread th 

computes one element in the final result, i.e., thread Th(Bid , Tid) computes 

the value at  Bid*BLOCKSIZE+Tid in the final result vector NX. 

(2) Find whether tilting is used or not and how it is deciding on the tile size. 

Yes, the matrix A is tiled into tiles of size BLOCKSIZE * BLOCKSIZE. 

Threads within a block are cooperating reading the elements from the tile in 

global memory to shared memory (each thread reads one element within 

the tile) and computing the partial sum in the shared memory.  
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Wrong. A is tiled by MERGE_LEVEL * BLOCK_SIZE 

(3) Find if coalesced access is granted, 

Coalesced access is not granted, because consecutive threads within a block 

are accessing non-consecutive elements in the global memory. 

Incorrect Answer. Here, consecutive threads within a block are accessing consecutive 

elements in GM while loading the tile from GM to ShM. 

(4) Find whether data is copied from GM into ShM prior to computation. 

Yes, data are copied from GM into ShM prior to computation. The kernel 

defines a shared matrix named As and copies data from the tile into it. 

a. Carry out some slight modification of the source code and study its effect on the 

generated CUDA code: 

  

Jacobi Jacobi After modification 
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Results of this modification on the generated CUDA code 

 

 

Generated Jacobi original CUDA kernel Generated Jacobi CUDA kernel after modification 

 

  

Generated Jacobi params file Generated Jacobi params file after modification 

The modification on the code has no effect on the parameters for Jacobi solver 

Run-time Analysis of Scalability. Analysis of problem scalability based on run time 

data: 

Jacobi Results: 

Jacobi 

N time 

1024 17.71606 

1536 50.73251 

1844 61.60954 

2048 68.81725 

2458 87.46851 
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For Jacobi solver, when the size N is duplicated (from 1024 to 2048) the execution 

ET(2N) becomes around 4*ET(N). This indicates that the generated code is scaled well 

with the problem size.  

Modified Jacobi Results: 

 

Modified Jacobi 

N Time 

1024 17.14266 

1536 51.25802 

1844 61.09395 

2048 68.65597 

2458 87.74966 

The slightly modification on the original code for Jacobi solver has insignificant change 

in the execution time comparing with the original code, this indicates that the 

parameters are chosen well by the compiler to handle the modification on the code. 
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Student 4: Vector inner product (VV) and Conjugate Gradient (CG) 

Q1 

1. This part is related to Vector-vector multiplication inner product (VV) 

a.  Here is the main.c code as input  

  

Here is the kernel as input 

 

And here is the config file  
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Here is the output files  
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Here is the kernel file  
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And here is the param.h 

 

And here some snapshot after running for different values of N. (I tired N = 1023 but it 

didn’t work) 

This is correct. In order to use matrices which are not multiple of 32, we need to use padding 

rows/columns in the original matrix with zeros. Alternatively, user the use RT-CUDA API functions for such 

matrices. 

b.  At VV there is no need to prefetching as the operation will done once then the result 

will store back, so prefetching is set to zero. 2DMatrix is enabled to 1 because one of 

vectors must be transposed. 

int tid=threadIdx.x; 

 int bid=blockIdx.x; 

 int ij=bid*BLOCKSIZE+tid; 

 { 

  int i=(ij/N)*MERGE_LEVEL; 

  int j=(ij%N)*SKEW_LEVEL; 

  for(int m=0;m<MERGE_LEVEL;m++) 
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   for(int n=0;n<SKEW_LEVEL;n++) 

    C[((i+m))*N+((j+n))]=A[(i+m)]*B[(j+n)]; 

Here the code of the kernel so it is taking the merge level as 128 while the skew is one 

and the block size is 1024, sure the code here get use of the coalesced. 

Here the grid is (blocksize,threadID), I relative and affected by merge size and j is relative to skew which 

is one here the tiling used as block in one dimension 128 * 1 . Yes there is copying of data and there is a 

synchronization point 

 

I multiply the element by 5 here .. it is shown in kernel the effect of this is very slightly,,, and the generated 

code is perfect here and I also try to divided the result by 5 as shown ,, and the result looks like perfect.  
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Here it is considered as two loops and shows a good result get benefits from data locality (alittle affect 

from less than 1 to above  1 a little  ),, but every one of the equation considered to be in one loop even it 

could be written in one loop. 

 

 

This one when N = 512 
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When N = 1024 

 

When N = 1792 
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When N = 2048 which is 2N 

 

Here N = 2560 as it is from original N 2.5 N
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Here N = 4096

 

a. Run-time Analysis of Scalability. Analysis of problem scalability based on run time data: 

a. F 
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b. Here the graph shows. The effect of changing the size of N, also the approximation of the 

time for Later values of n depending on the value of N = 512, and 4 times it for the 

preceding ones when it is applicable. 

Q2 

Because the kernel here has 5 functions. We have to call every one alone, we get these 

numbers 256,1,1 64,1,1 256,1,1 32,1,1 and 64,1,1. But when calling the original file we must use one 

parameters of them, I tried to combine them as Ayaz told me but I still have error message even 

though I tried the entire possible situation. 

These are not the errors. These are just warning messages by the nvidia compilers which can be ignored. 
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I will include a process of one kernel. And the combined file for all the kernels 
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Main.c 

 

The kernel 

 

The config file   
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Here is the main . cu generated 

 

Here is the kernel.cu and then param.h 
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As final result multiple kernels has a lot of difficulty and manual work to do. 

This is correct that converting programs containing multiple functions may have some difficulties for the 

user to merge. This functionality will be added in future release of RT-CUDA. 
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