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THESIS ABSTRACT
NAME: HASHIM ABDELLAH HASHIM MOHAMED

TITLE OF STUDY: Improved Robust Adaptive Control of High-order Nonlin-

ear Systems with Guaranteed Performance

MAJOR FIELD: SYSTEMS AND CONTROL ENGINEERING

DATE OF DEGREE: DECEMBER 2014

This thesis presents fuzzy-L1 adaptive controller and Model Reference Adaptive

Control (MRAC) with Prescribed Performance Function (PPF) as two adaptive

approaches for high nonlinear systems as two original contribution to the litera-

ture. Firstly, L1 adaptive controller has a structure that allows decoupling between

robustness and adaption owing to the use of a low pass filter with adjustable gain

in the feedback loop. The trade-off between performance and robustness is a key

factor in the tuning of the filter’s parameters. In fuzzy-L1 adaptive controller, we

consider the class of strictly proper low pass filters with fixed structure but with

the feedback gain as the only tunable parameter. A practical new fuzzy based ap-

proach for the tuning of the feedback filter of L1 adaptive controller is proposed.

The fuzzy controller is optimally tuned using Particle Swarm Optimization (PSO)

to minimize the tracking error and the control signal range. The main function

xv



of the fuzzy logic controller is the on-line tuning of the feedback gain of the fil-

ter. Secondly, an adaptive control of multi-input multi-output uncertain high-order

nonlinear system capable of guaranteeing a predetermined prescribed performance

is presented as MRAC with PPF. In this work, prescribed performance is defined

in terms of the tracking error converging to a smaller residual set at a rate no less

than a predefined value and exhibiting a maximum overshoot/undershoot less than

a sufficiently small fixed constant. The key step in such approach is to transform

the constrained system into an equivalent unconstrained one through an adequate

transformation of the output error. This will show that the robust stabilization of

the transformed error, guaranties the stability and convergence of the constrained

tracking error within the set of time varying constraints representing the perfor-

mance limits. Finally, simulations are presented to illustrate the simplicity, the

performance and the robustness of each new technique.
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CHAPTER 1

INTRODUCTION

1.1 Introduction And Motivation

The presence of uncertainties, nonlinearities, disturbances and lack in the precise

modeling of nonlinear systems are common problems in dynamical applications.

Over the last few decades, adaptive control has been developed to tackle the fore-

going problems by providing fast adaption and ensure robustness. In this work,

L1 adaptive controller will be discussed briefly from different perspectives for

different systems structures. L1 adaptive controller has been inspired originally

from MRAC. Improving the feedback filter of L1 adaptive control will enhance the

performance of the controller and the robustness margin. Fuzzy filter will be pro-

posed for L1 adaptive controller in order to ensure fast closed loop dynamics with

increasing the robustness margin. Neuro adaptive control with prescribed perfor-

mance function will be investigated. Robust Model Reference Adaptive Control

(MRAC) with Prescribed Performance Function (PPF) will be proposed to tackle

problems of neuro-adaptive control and comparing the controller performance ver-

sus L1 adaptive controller. Robust adaptive observer will be implemented with
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L1 adaptive controller in order to check the performance of the controller in case

of inaccessible states. These controllers will be applied on high nonlinear systems

including Unmanned Vehicle Systems (UVS).

1.2 Possible Applications of The Outcomes

Unmanned Vehicle Systems (UVS) are important for different areas nowadays be-

cause they can be controlled and operated remotely without human interference.

UVS is a research key because of the increase in demand of remote sensing and

control in wide range of applications such as scientific surveys, traffic surveillance,

transportation aids, and inspection in addition to operation in harsh environ-

ments. UVS have various configurations, characteristics, shapes and sizes which

will be reflected on system dynamics. The development in miniaturization of

UVS offers high potential effort for small size and low cost of UVS compared to

manned applications especially in certain applications. Rapid growing of UVS

comes with promising future because of its size, cost, construction simplicity and

maneuverability.

UVS can be classified into two categories either remotely control vehicles, or

autonomous vehicles. Each of these categories includes different types of UVS such

as: Unmanned Aerial Vehicles, Underwater Vehicles, Unmanned Surface Vehicle,

Unmanned Spacecraft and Unmanned Grounded Vehicle. Importance of UVS

relies on performance and mission targets. Generally, each type is considered as a

mechanical rigid body with different equations of motion. The majority of UVS
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can be represented by nonlinear dynamics. The dynamic of UVS have their own

features as affine nonlinear systems with normal coupling or with strong coupling.

Usually, the controller is required to drive the system to the desired trajectory with

smooth transition and fast response. Smooth transition in both control signal and

output response will contribute in protecting the life cycle of system rotors and

other parts in the UVS.

Developing UVS in the absence of the operator is costly in the controller

complexity for tracking and vision. The controller is demanded to overcome many

drawbacks, starting with stabilizing the system, driving the system to the desired

trajectory in the shortest possible time, adapt against any variations of system

dynamics and finally be robust against any disturbances. All these requirements

ended up making the control design as an important issue and an interested subject

to be investigated.

In order to design a controller for UVS, accurate models are needed to reflect

system dynamics either by precise modeling or real time identification. UVS have

a framework of rigid body dynamics and can be described by a set of differential

equations using Euler-Lagrange. The definition of exact model is a struggling

problem because nominal model is usually defined under certain operating condi-

tions with neglecting any uncertainties and disturbances that may exist during the

control process. Classical controller will not be sufficient due to nonexact model

represented by presence of uncertainties and/or disturbances. Other types of con-

trollers have to be considered in order to overcome classical controller drawbacks.

3



In the literature, several control design approaches have been adopted for

Euler-Lagrange systems like adaptive control, nonlinear control, robust control

and so forth. The weakness of many control approaches resides in defining the

appropriate model for nonlinearity cancellation. In nonlinear control, it is often

difficult to use the approximated nonlinear Euler-Lagrange equations of the sys-

tem without adding a robustifing term to ensure system operation in the stability

region. Including a robustifing term in the control law introduces discontinuity

and chattering on the control signal. On the other hand, estimation of system

nonlinearities normally experienced with discontinuity or singularity in the esti-

mation process which may take the system out of the stability region.

1.3 Contribution to The Literature

In our work, two robust adaptive control approaches will be proposed for high

nonlinear systems with guaranteed performance. Firstly, A fuzzy logic feedback

filter will be designed for L1 adaptive controller mainly to improve the tracking

capability and reduce the control signal range. The trade off between robustness

range and fast closed loop dynamics will be averted and the proposed controller

will contribute in solving this major problem. Next, robust MRAC-PPF will

be proposed to tackle limitations of robust neuro-adaptive control with PPF.

Also, it will be compared versus L1 adaptive control to highlight merits of the

new controller. The controller will be studied on affine and not-affine systems.

Finally, the performance of L1 adaptive controller with adaptive observers will be

4



examined on Single-Input Single-Output (SISO) and Multi-Input Multi-Output

(MIMO) systems.

The main features of the L1 adaptive controller are:

• Estimating the system to be controlled.

• For linear and nonlinear case without strong coupling, procedures consist

of estimating uncertainties of the states, unmodelled input parameters and

disturbances. For nonlinear case with strong coupling and/or unmatched

uncertainties, it has same previous estimation process in addition to the

estimate of unmatched part.

• The control law is based on Lyapunov function with compact set for previous

item will be computed numerically.

The main features of robust neuro adaptive control with PPF are:

• Assign the prescribed function.

• Derive the transformed error.

• Estimating nonlinearities by neural network.

• Computing the control signal based on Lyapunov function.

1.3.1 Thesis Objectives and Contribution

This thesis contributes to literature on several routs all aiming at improving

L1 adaptive controller in terms of adaptation and robustness. Therefore, there

are several problems to be considered in this thesis:
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1. We design a stabilizing controller based on fuzzy-L1 adaptive controller and

examine the controller performance for nonlinear systems.

2. We design a stabilizing controller based on MRAC with PPF and examine

the controller performance for nonlinear systems.

3. We compare fuzzy-L1 adaptive controller to L1 adaptive controller.

4. We compare MRAC to PPF versus neuro adaptive conrol with PPF and

L1 adaptive controller.

5. Furthermore, we develop and implement adaptive observer with L1 adaptive

control for nonlinear systems.

1.4 Methodologies

Developing thesis objective as mentioned in the previous section will go through

several steps as following

1. Different UVS and nonlinear models have to be addressed as equation of

motions.

2. Reproduce recent results upon literature of L1 adaptive control for nonlinear

systems including UVS.

3. Reproduce recent results upon the literature on robust neuro adaptive con-

trol with prescribed performance function for nonlinear systems.
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4. Formulate fuzzy-L1 adaptive controller and validate the new controller as-

suming complete unknown of nonlinear dynamics.

5. Formulate MRAC with PPF and validate the new controller assuming com-

plete unknown of nonlinear dynamics.

6. Evaluating the performance of the controller by benchmarking the results

to results in the literatures.

7. Develop and implement adaptive observer with L1 adaptive controller and

benchmarking the results to results of L1 adaptive controller with accessible

states.

1.5 Thesis Organization

The thesis is organized as the following

Chapter 1 includes introduction of the main work, motivation, thesis objective,

methodology and finally thesis organization.

Chapter 2 includes literature review of different control methods especially adap-

tive control for nonlinear systems. Literature review presents last research activi-

ties on L1 adaptive control. Literature review of adaptive control with prescribed

performance presents the main research activities over the last few years. Litera-

ture review of observer design shows the main research activities on this field.
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Chapter 3 includes L1 adaptive controller for uncertain SISO systems, for un-

certain MIMO systems and for MIMO systems in the presence of unmatched non-

linear uncertainties with strong coupling. Stability analysis, problem formulation

and simulations will be validated for all foregoing cases.

Chapter 4 includes a brief review of L1 adaptive controller. It proposes a design

of fuzzy logic control to tune the feedback filter of L1 adaptive controller. PSO is

presented to design the output membership function of FLC. The controller will

be examined on highly nonlinear system.

Chapter 5 includes robust neuro adaptive controller for strict feedback MIMO

system with PPF mainly functioned to capture the idea of PPF in addition to

evaluate its performance by reproducing recent papers.

Chapter 6 proposes a design of MRAC with PPF for high uncertain nonlinear

systems. L1 adaptive controller and neuro-adaptive control with PPF are compared

to the proposed controller.

Chapter 7 presents robust adaptive observer with L1 adaptive controller for

highly nonlinear systems with complete unknown dynamics.

Chapter 8 concludes the work and suggests possible future works.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter summarizes the research activities of L1 adaptive controller and

adaptive control with PPF on different nonlinear systems with complete unknown

dynamics. The first section include an introduction. The second section presents

literature review of various control methods of UVS and a literature review of

adaptive control techniques. The main contribution of this work is developed.

Section three presents a brief review on L1 adaptive control including the main

recent research activities. The fourth section is a review on adaptive control with

PPF including including main research activities and recent works. Section five

presents a study review on observer design. The last section is a conclusion.

2.2 Feedback Control of UVS

Adaptive control emerged in order to tackle time variant uncertainties, unmodeled

dynamics and disturbances. Over the last few decades, various types of adaptive
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control has been proposed and modified to manipulate with aforementioned prob-

lems such as self-tuning regulators [1–4], gain scheduling [5–7], model reference

adaptive control system [8–11] and adaptive neuro fuzzy control system [12–14].

In the recent few years, new adaptive control techniques were proposed rely on

previous methods in terms of stability criteria and control law formulation. Im-

mersion and Invariance adaptive control which is based on system immersion and

manifold invariance was developed in order to reduce the control law and to ensure

the asymptotic stability of the system [15–18]. Robust adaptive control with pre-

scribed performance function mainly developed to force the error to start within

large set and end within pre-assigned small set [19–21]. L1 adaptive control was

developed to guarantee boundedness of transient and steady state performance

in the absence knowledge of system nonlinearities, uncertainties and any distur-

bance [22–24].

UVS control had been studied by many researchers trying to find a solution for

improving the transient response and tracking trajectory. Sliding mode control

for twin rotor MIMO system has been proposed in [25, 26] where fuzzy control

in [25] and adaptive rule technique in [26] were used to cancel nonlinearities. Both

techniques applied integral sliding mode for the vertical part with robust behavior

against parameters variations and they showed great results. However, it has some

intrinsic limitations due to design complexity, chattering on the sliding surface

and manipulation of the controller only with strict feedback systems. Feedback

linearization with sliding mode control for quadrotor has been implemented in [27]
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and for micro unmanned automated vehicle was studied in [28]. Limitations of

feedback linearization is that the model should be in the strict feedback form

and full knowledge of nonlinear model should be valid. In addition, uncertainties

in model parameters should be within specific range. Backstepping control for

quadrotor developed with neural nets mainly to estimate system dynamics in [29].

Chattering in the control signal and complexity of developing control law are

limitations of backstepping controller. Model Predictive Control (MPC) with

friction compensation for mobile robot with inverse kinematics has been proposed

in [30] and the work has been validated experimentally. The main drawback of

MPC is the complexity of the optimization algorithm for linear and nonlinear case

which takes more time for computations.

In our work, L1 adaptive controller will be studied on different classes of

systems. Fuzzy-L1 adaptive controller will be proposed to tackle problems of

L1 adaptive controller in terms of robustness margin and control signal range.

Recent study of neuro-adptive control with PPF will be studied to evaluate the

main role of PPF. MRAC with PPF will be proposed to tackle problems of neuro-

adaptive control with PPF and L1 adaptive controller in a proper way. Robust

adaptive observer will be implemented with L1 adaptive controller to examine the

performance under inaccessible states. All foregoing tools will be applied on differ-

ent classes of high nonlinear systems including UVS. Moreover, the nonlinearities

will be assumed to be unknown with uncertainties in parameters.
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2.3 L1 Adaptive Controller

L1 adaptive control was first inspired from MRAC. MRAC has been developed

initially to control linear systems with uncertainty in parameters [8]. MRAC

stability performance relies on Lyapunov function.

L1 adaptive controller has been built to enable fast adaption and ensuring

robustness. L1 adaptive controller ensures uniformly bounded in the transient

response and steady state tracking for both regulated output and control signal

owing to the low pass filter in the feedback loop. Through the use of low pass filter

in the feedback loop will increase the adaptation gain, L1 adaptive control has

been proposed to solve several issues that may exist in the control design. Output

of the actual system will be compared to the output of the predicted system and

the difference will be addressed into the projection function to help in estimating

the uncertainties and disturbances. The output of the projection function will be

used in building the required control signal. L1 adaptive controller design could

be adopted to control linear and nonlinear systems with uncertainties in both

dynamics and input parameters in the presence of disturbances.

Nonlinearities, uncertainties, disturbances and unmodelled input will be rep-

resented by compact regions and all these regions will give a complete view of

system nonlinearities. The major advantage of L1 adaptive controller is that the

worst scenario of all previous unexact modeling can be represented by compact

regions with upper and lower bounds without accurate knowledge of nonlinear-

ities structure. L1 adaptive controller can be defined as a robust controller for
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improving the transient and tracking response with appropriate assumptions of

foregoing compact regions. All previous approximations have to be concerned to

build approximated model allows us to build L1 adaptive controller with satisfac-

tory performance.

L1 adaptive controller has been proposed successfully for a simple SISO sys-

tem in [31]. In this work, the controller and stability analysis was mainly designed

for an unstable linear system with constant uncertain parameters in the level of

the states which assumed to be unknown. The output response shows a satis-

factory transient and tracking performance with different values of a step input.

In the following year, The work has been modified including control law and sta-

bility analysis in order to be able to deal with nonlinear time varying unknown

uncertainties and disturbances for nonlinear SISO systems [32]. The output per-

formance of shows good results for both tracking, transient response and smooth

control signal. Therefor, the controller has been tested on the same nonlinear

system and with higher level of time varying uncertainties. Although, the out-

put performance showed good results similar to previous case, the control signal

included chattering in contrast to the first case. Finally, the work has been for-

mulated in the following year as a journal paper [22] considering the foregoing two

cases SISO systems in [31,32] in addition to the investigation of different feedback

filter structures.

L1 adaptive control for nonlinear systems with unmatched uncertainties has

been formulated in [33] for NASA AIRSTAR flight. It was designed for single

13



flight condition and data recorded during flight test and compared to simulated

output data. The comparison study showed satisfactory results and good flight

control although results were not very close due to insufficient representations of

nonlinearities, disturbances and unmodeled input in the control law.

L1 adaptive controller was successfully designed for high nonlinear SISO sys-

tems [23]. The control law formulation considered nonlinear time variant for each

of uncertainties, system nonlinearities and disturbances in addition to unmodeled

input parameters. The controller performance has been validated on high nonlin-

ear SISO system including nonlinearities in the input signal. The transient and

tracking performance showed great results with cosine reference input. The same

procedure can be applied on MIMO nonlinear systems.

L1 adaptive controller for MIMO nonlinear systems in the presence of strong

coupling and unmatched uncertainties has been proposed successfully in [24]. The

work in [24] approximated the system into two parts where the first was matched

and the second was unmatched part. The control law was developed successfully

and stability analysis ensured the robustness of the proposed controller. The

output performance showed impressive results for tracking capabilities.

L1 adaptive control has been tested for different applications and specifically

for flight tests in [33–38] where it shows promising results with flight applications.

It has been formulated for different aspects of control problems in [39]. The

structure of L1 adaptive control theory depends on three features and one of

them is the implementation of a low pass filter in order to limit the frequency
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range of the control signal and reduce the effect of uncertainties. The low pass

filter should be selected such that the system output tracks properly the reference

input and the undesirable uncertainties and frequencies are filtered [31,39]. Using

the low pass filter, L1 ensures decoupling between robustness, fast adaptation,

infinity norm boundedness of the transient and steady state responses.

The optimal structure of filter has been studied extensively in [39] by inves-

tigating different type of structures and identifying the optimal filter coefficients.

Indeed, the determination of the appropriate parameters of the best filter within

a certain class of predefined structure has attracted a particular attention and

several attempts on identifying these optimal coefficients have been made. This

includes convex optimization based on linear matrix inequality [39,40] and multi-

objective optimization using MATLAB optimization solver [41]. Limitations of

L1 adaptive controller and the interconnection between adaptive estimates and

the feedback filter were studied in [42], where Several filter designs were considered

based on disturbance observer. More recent, Systematic approach was presented

in [43] to determine the optimal feedback filter coefficients in order to increase the

zone of robustness margin. The authors proposed the use of greedy randomized

algorithms during the analysis of the system performance and robustness in the

presence of uncertainties.

The trade-off between fast desired closed loop dynamics and filter parameters

relies on error values. However, all previous studies assume constant coefficients of

the feedback filter and the effort of tuning the filter’s parameters is performed off-
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line. Increasing the bandwidth of the low pass filter will reduce robustness margin,

which will require slowing the desired closed loop performance in order to regain

the robustness. However, slower selection of desired closed loop performance will

deteriorate the output performance especially during the transient period [39].

We argue that increasing the robustness with fast closed loop dynamics requires

dynamic on-line tuning of the feedback filter gain. The method should practical

and implementable. Therefore, in this thesis, we propose a fuzzy tuning of the

filter coefficients function based on the rate and value of the tracking error between

the model output and the system output.

2.4 Adaptive Control with Prescribed Perfor-

mance Function

Prescribed performance is considered as convergence the tracking error into an

arbitrarily small residual set and the convergence error should be within range.

Prescribed performance with robust adaptive control will provide a smooth control

signal for soft tracking. It comes to solve the problem of accurate computation

of the upper bounds for systematic convergence owing to nonexistence adaptive

control nonlinear systems for error convergence into a predefined small set.

The main function of the prescribed performance is the ability of tracking the

error into a defined small set. Prescribed performance should guarantee many

factors
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• The convergence has to be less than a prescribed value.

• Maximum overshot is sufficiently less than small prescribed value.

• Uniform ultimate boundedness property for the transformed output error.

• Adaptive and smooth tracking.

Several studies included in their design the use of PPF with linearly param-

eterized neural network as approximation model to handle unknown nonlineari-

ties and disturbances with or without fuzzy techniques [19–21, 44–46]. PPF has

been applied in different applications and showed promising results. It was first

introduced with neuro-adaptive control feedback for strict MIMO systems with

unknown nonlinearities; linearly parameterized neural network has been used to

approximate the model [19]. Although the control law prove robust performance

and track the output performance into the desired trajectory, defining radial basis

neural network weights offline by try and error is considered the main drawback

in [19]. In addition, values of other constant parameters are sensitive. Overall,

the output performance showed great results for 2-DOF planar robot.

Robust adaptive controller with prescribed performance has been modified to

deal with uncertain MIMO nonlinear systems [45]. Linearly parameterized neural

network has been used to compute the control signal and avoid the need of observer

from the measured output. Although output performance proves robustness and

control law refers to system stability, but limitations of [19] still exist in [45].

Also, [45] mentioned another flaw that even structure of each neuron in the neural

network will be defined by try and error.
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SISO system with unknown nonlinearities for strict feedback systems studied

in [47]. The work in [47] is mostly similar to that in [19] and the only difference

was the way of developing control law. The output showed good performance

and it had same limitations of [19]. Adaptive compensation control for uncertain

nonlinear strict feedback systems with constrained input proposed in [48]. The

control law mainly based on two adaptive backstepping controller with prescribed

performance bound. Adaptive control with PPF has been proposed for nonlinear

systems with unknown dead zone and in order to compensate nonlinearities and

uncertainties in the system [21]. In [49], A fuzzy adaptive prescribed performance

control for MIMO uncertain chaotic systems is presented. The system is in a

non-strict feedback form. A proportional integral adaptation law is proposed for

updating the parameters of the fuzzy logic controller.

2.5 Adaptive Observers

Adaptive observer design is an active area of research and it was studied ex-

tensively for linear time invariant SISO systems in [50, 51]. Robust observer for

uncertain linear systems with solution provided by algebraic Riccati equation pre-

sented in [52]. Generally, sliding mode observers such as [53,54] are suitable with

certain model structures. Neural network has been studied widely for observer de-

sign and showed efficacy in observing system states. Radial Basis Function (RBF)

in [55,56] and Chebyshev neural network observer in [57] are designed as adaptive

observers for nonlinear systems. Try and error are significant problem in adaptive
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Neural Network (NN) observer design in addition to the need of multi layers in

certain cases. Adaptive observer design for nonlinear uncertain systems has been

proposed in [58, 59]. The advantage of [59] is being effective for unmodeled dy-

namics in addition to the possibility of building the adaptation law of observer in

the absence of control signal knowledge.

2.6 Conclusions

This chapter included overview of adaptive control research also included several

research works on nonlinear systems especially UVS. The main work of research

focused on L1 adaptive controller and neuro-adaptive control with PPF. The main

contribution in this work has been presented.
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CHAPTER 3

L1 ADAPTIVE CONTROLLER

3.1 Introduction

Unmanned Vehicle Systems (UVS) are important for different areas nowadays be-

cause they can be controlled and operated remotely without human interference.

UVS is a research key because of the increase in demand of remote sensing and

control in wide range of applications such as scientific surveys, traffic surveillance,

transportation aids, and inspection in addition to operation in harsh environ-

ments. UVS have various configurations, characteristics, shapes and sizes which

will be reflected on system dynamics. The development in miniaturization of

UVS offers high potential effort for small size and low cost of UVS compared to

manned applications especially in certain applications. Rapid growing of UVS

comes with promising future because of its size, cost, construction simplicity and

maneuverability.

UVS can be classified into two categories either remotely control vehicles, or

autonomous vehicles. Each of these categories includes different types of UVS such

as: Unmanned Aerial Vehicles, Underwater Vehicles, Unmanned Surface Vehicle,
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Unmanned Spacecraft and Unmanned Grounded Vehicle. Importance of UVS

relies on performance and mission targets. Generally, each type is considered as a

mechanical rigid body with different equations of motion. The majority of UVS

can be represented by nonlinear dynamics. The dynamic of UVS have their own

features as affine nonlinear systems with normal coupling or with strong coupling.

Usually, the controller is required to drive the system to the desired trajectory with

smooth transition and fast response. Smooth transition in both control signal and

output response will contribute in protecting the life cycle of system rotors and

other parts in the UVS.

Developing UVS in the absence of the operator is costly in the controller

complexity for tracking and vision. The controller is demanded to overcome many

drawbacks, starting with stabilizing the system, driving the system to the desired

trajectory in the shortest possible time, adapt against any variations of system

dynamics and finally be robust against any disturbances. All these requirements

ended up making the control design as an important issue and an interested subject

to be investigated.

In order to design a controller for UVS, accurate models are needed to reflect

system dynamics either by precise modeling or real time identification. UVS have

a framework of rigid body dynamics and can be described by a set of differential

equations using Euler-Lagrange. The definition of exact model is a struggling

problem because nominal model is usually defined under certain operating condi-

tions with neglecting any uncertainties and disturbances that may exist during the
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control process. Classical controller will not be sufficient due to nonexact model

represented by presence of uncertainties and/or disturbances. Other types of con-

trollers have to be considered in order to overcome classical controller drawbacks.

In the literature, several control design approaches have been adopted for

Euler-Lagrange systems like adaptive control, nonlinear control, robust control

and so forth. The weakness of many control approaches resides in defining the

appropriate model for nonlinearity cancellation. In nonlinear control, it is often

difficult to use the approximated nonlinear Euler-Lagrange equations of the sys-

tem without adding a robustifing term to ensure system operation in the stability

region. Including a robustifing term in the control law introduces discontinuity

and chattering on the control signal. On the other hand, estimation of system

nonlinearities normally experienced with discontinuity or singularity in the esti-

mation process which may take the system out of the stability region.

Unmanned Vehicle Systems (UVS) are important for different areas nowadays

because they can be controlled and operated remotely without human interfer-

ence. UVS is a research key because of the increase in demand of remote sens-

ing and control in wide range of applications such as scientific surveys, traffic

surveillance, transportation aids, and inspection in addition to operation in harsh

environments. UVS have various configurations, characteristics, shapes and sizes

which will be reflected on system dynamics. The development in miniaturization

of UVS offers high potential effort for small size and low cost of UVS compared

to manned applications especially in certain applications. Rapid growing of UVS
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comes with promising future because of its size, cost, construction simplicity and

maneuverability.

UVS can be classified into two categories either remotely control vehicles, or

autonomous vehicles. Each of these categories includes different types of UVS such

as: Unmanned Aerial Vehicles, Underwater Vehicles, Unmanned Surface Vehicle,

Unmanned Spacecraft and Unmanned Grounded Vehicle. Importance of UVS

relies on performance and mission targets. Generally, each type is considered as a

mechanical rigid body with different equations of motion. The majority of UVS

can be represented by nonlinear dynamics. The dynamic of UVS have their own

features as affine nonlinear systems with normal coupling or with strong coupling.

Usually, the controller is required to drive the system to the desired trajectory with

smooth transition and fast response. Smooth transition in both control signal and

output response will contribute in protecting the life cycle of system rotors and

other parts in the UVS.

Developing UVS in the absence of the operator is costly in the controller

complexity for tracking and vision. The controller is demanded to overcome many

drawbacks, starting with stabilizing the system, driving the system to the desired

trajectory in the shortest possible time, adapt against any variations of system

dynamics and finally be robust against any disturbances. All these requirements

ended up making the control design as an important issue and an interested subject

to be investigated.

In order to design a controller for UVS, accurate models are needed to reflect
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system dynamics either by precise modeling or real time identification. UVS have

a framework of rigid body dynamics and can be described by a set of differential

equations using Euler-Lagrange. The definition of exact model is a struggling

problem because nominal model is usually defined under certain operating condi-

tions with neglecting any uncertainties and disturbances that may exist during the

control process. Classical controller will not be sufficient due to nonexact model

represented by presence of uncertainties and/or disturbances. Other types of con-

trollers have to be considered in order to overcome classical controller drawbacks.

In the literature, several control design approaches have been adopted for

Euler-Lagrange systems like adaptive control, nonlinear control, robust control

and so forth. The weakness of many control approaches resides in defining the

appropriate model for nonlinearity cancellation. In nonlinear control, it is often

difficult to use the approximated nonlinear Euler-Lagrange equations of the sys-

tem without adding a robustifing term to ensure system operation in the stability

region. Including a robustifing term in the control law introduces discontinuity

and chattering on the control signal. On the other hand, estimation of system

nonlinearities normally experienced with discontinuity or singularity in the esti-

mation process which may take the system out of the stability region.

Unmanned Vehicle Systems (UVS) are important for different areas nowadays

because they can be controlled and operated remotely without human interfer-

ence. UVS is a research key because of the increase in demand of remote sens-

ing and control in wide range of applications such as scientific surveys, traffic
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surveillance, transportation aids, and inspection in addition to operation in harsh

environments. UVS have various configurations, characteristics, shapes and sizes

which will be reflected on system dynamics. The development in miniaturization

of UVS offers high potential effort for small size and low cost of UVS compared

to manned applications especially in certain applications. Rapid growing of UVS

comes with promising future because of its size, cost, construction simplicity and

maneuverability.

UVS can be classified into two categories either remotely control vehicles, or

autonomous vehicles. Each of these categories includes different types of UVS such

as: Unmanned Aerial Vehicles, Underwater Vehicles, Unmanned Surface Vehicle,

Unmanned Spacecraft and Unmanned Grounded Vehicle. Importance of UVS

relies on performance and mission targets. Generally, each type is considered as a

mechanical rigid body with different equations of motion. The majority of UVS

can be represented by nonlinear dynamics. The dynamic of UVS have their own

features as affine nonlinear systems with normal coupling or with strong coupling.

Usually, the controller is required to drive the system to the desired trajectory with

smooth transition and fast response. Smooth transition in both control signal and

output response will contribute in protecting the life cycle of system rotors and

other parts in the UVS.

Developing UVS in the absence of the operator is costly in the controller

complexity for tracking and vision. The controller is demanded to overcome many

drawbacks, starting with stabilizing the system, driving the system to the desired
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trajectory in the shortest possible time, adapt against any variations of system

dynamics and finally be robust against any disturbances. All these requirements

ended up making the control design as an important issue and an interested subject

to be investigated.

In order to design a controller for UVS, accurate models are needed to reflect

system dynamics either by precise modeling or real time identification. UVS have

a framework of rigid body dynamics and can be described by a set of differential

equations using Euler-Lagrange. The definition of exact model is a struggling

problem because nominal model is usually defined under certain operating condi-

tions with neglecting any uncertainties and disturbances that may exist during the

control process. Classical controller will not be sufficient due to nonexact model

represented by presence of uncertainties and/or disturbances. Other types of con-

trollers have to be considered in order to overcome classical controller drawbacks.

In the literature, several control design approaches have been adopted for

Euler-Lagrange systems like adaptive control, nonlinear control, robust control

and so forth. The weakness of many control approaches resides in defining the

appropriate model for nonlinearity cancellation. In nonlinear control, it is often

difficult to use the approximated nonlinear Euler-Lagrange equations of the sys-

tem without adding a robustifing term to ensure system operation in the stability

region. Including a robustifing term in the control law introduces discontinuity

and chattering on the control signal. On the other hand, estimation of system

nonlinearities normally experienced with discontinuity or singularity in the esti-
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mation process which may take the system out of the stability region.

3.1.1 Problem Formulation and Simulation

Example 3.2.1 Consider the following unknown nonlinear system [23]

ẋ(t) = Amx(t) + b(ωu(t) + f(x(t),u(t), t))

y(t) = cx(t)

where x(t) = [x1(t),x2(t)]T are the system states, u(t)is the system control input,

f(x(t),u(t), t) is assumed to be unknown nonlinear function, y(t) is the output

of the system and the system parameters are presented as following

Am =

 0 1

−1 −1.4

 , b =

0

1

 , c =

[
1 0

]

f(x(t),u(t), t) =x1(t) + 1.4x2(t) + (2 + 0.2sin(t))u(t) + sin(u(t))sin(x1(t))

+ x2
1(t) + x2

2(t) + sin(0.5t)

Parameters of L1 can be computed numerically and they are chosen to be ωl = 0.5,

ωu = 3, θb = 10, σb = 10 and the adaptation gain Γ = 100000. L1 adaptive

control parameters are defined as Q =
(

1 0
0 1
)
, k = 20, hence P =

(
1.4144 0.5001
0.5001 0.7144

)
.

Figure (3.1) and (3.2) are the output response and control signal respectively

with reference input r(t) = 2cos(0.2t) while figure (3.3) and (3.4) are the output

response and control signal respectively with 0.23Hz square wave reference input
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Figure 3.1: The output performance of L1 adaptive controller for unknown non-
linear SISO system.

Figure 3.2: Control signal of L1 Adaptive controller for unknown nonlinear SISO
system.

Figure 3.3: The output performance of L1 adaptive controller for unknown non-
linear SISO system.

for the same problem
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Figure 3.4: Control signal of L1 Adaptive controller for unknown nonlinear SISO
system.

3.2 L1 Adaptive Controller for Uncertain MIMO

Systems

Unmanned Vehicle Systems (UVS) are important for different areas nowadays be-

cause they can be controlled and operated remotely without human interference.

UVS is a research key because of the increase in demand of remote sensing and

control in wide range of applications such as scientific surveys, traffic surveillance,

transportation aids, and inspection in addition to operation in harsh environ-

ments. UVS have various configurations, characteristics, shapes and sizes which

will be reflected on system dynamics. The development in miniaturization of

UVS offers high potential effort for small size and low cost of UVS compared to

manned applications especially in certain applications. Rapid growing of UVS

comes with promising future because of its size, cost, construction simplicity and

maneuverability.

UVS can be classified into two categories either remotely control vehicles, or

autonomous vehicles. Each of these categories includes different types of UVS such
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as: Unmanned Aerial Vehicles, Underwater Vehicles, Unmanned Surface Vehicle,

Unmanned Spacecraft and Unmanned Grounded Vehicle. Importance of UVS

relies on performance and mission targets. Generally, each type is considered as a

mechanical rigid body with different equations of motion. The majority of UVS

can be represented by nonlinear dynamics. The dynamic of UVS have their own

features as affine nonlinear systems with normal coupling or with strong coupling.

Usually, the controller is required to drive the system to the desired trajectory with

smooth transition and fast response. Smooth transition in both control signal and

output response will contribute in protecting the life cycle of system rotors and

other parts in the UVS.

Developing UVS in the absence of the operator is costly in the controller

complexity for tracking and vision. The controller is demanded to overcome many

drawbacks, starting with stabilizing the system, driving the system to the desired

trajectory in the shortest possible time, adapt against any variations of system

dynamics and finally be robust against any disturbances. All these requirements

ended up making the control design as an important issue and an interested subject

to be investigated.

In order to design a controller for UVS, accurate models are needed to reflect

system dynamics either by precise modeling or real time identification. UVS have

a framework of rigid body dynamics and can be described by a set of differential

equations using Euler-Lagrange. The definition of exact model is a struggling

problem because nominal model is usually defined under certain operating condi-
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tions with neglecting any uncertainties and disturbances that may exist during the

control process. Classical controller will not be sufficient due to nonexact model

represented by presence of uncertainties and/or disturbances. Other types of con-

trollers have to be considered in order to overcome classical controller drawbacks.

In the literature, several control design approaches have been adopted for

Euler-Lagrange systems like adaptive control, nonlinear control, robust control

and so forth. The weakness of many control approaches resides in defining the

appropriate model for nonlinearity cancellation. In nonlinear control, it is often

difficult to use the approximated nonlinear Euler-Lagrange equations of the sys-

tem without adding a robustifing term to ensure system operation in the stability

region. Including a robustifing term in the control law introduces discontinuity

and chattering on the control signal. On the other hand, estimation of system

nonlinearities normally experienced with discontinuity or singularity in the esti-

mation process which may take the system out of the stability region.

Unmanned Vehicle Systems (UVS) are important for different areas nowadays

because they can be controlled and operated remotely without human interfer-

ence. UVS is a research key because of the increase in demand of remote sens-

ing and control in wide range of applications such as scientific surveys, traffic

surveillance, transportation aids, and inspection in addition to operation in harsh

environments. UVS have various configurations, characteristics, shapes and sizes

which will be reflected on system dynamics. The development in miniaturization

of UVS offers high potential effort for small size and low cost of UVS compared
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to manned applications especially in certain applications. Rapid growing of UVS

comes with promising future because of its size, cost, construction simplicity and

maneuverability.

UVS can be classified into two categories either remotely control vehicles, or

autonomous vehicles. Each of these categories includes different types of UVS such

as: Unmanned Aerial Vehicles, Underwater Vehicles, Unmanned Surface Vehicle,

Unmanned Spacecraft and Unmanned Grounded Vehicle. Importance of UVS

relies on performance and mission targets. Generally, each type is considered as a

mechanical rigid body with different equations of motion. The majority of UVS

can be represented by nonlinear dynamics. The dynamic of UVS have their own

features as affine nonlinear systems with normal coupling or with strong coupling.

Usually, the controller is required to drive the system to the desired trajectory with

smooth transition and fast response. Smooth transition in both control signal and

output response will contribute in protecting the life cycle of system rotors and

other parts in the UVS.

Developing UVS in the absence of the operator is costly in the controller

complexity for tracking and vision. The controller is demanded to overcome many

drawbacks, starting with stabilizing the system, driving the system to the desired

trajectory in the shortest possible time, adapt against any variations of system

dynamics and finally be robust against any disturbances. All these requirements

ended up making the control design as an important issue and an interested subject

to be investigated.
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In order to design a controller for UVS, accurate models are needed to reflect

system dynamics either by precise modeling or real time identification. UVS have

a framework of rigid body dynamics and can be described by a set of differential

equations using Euler-Lagrange. The definition of exact model is a struggling

problem because nominal model is usually defined under certain operating condi-

tions with neglecting any uncertainties and disturbances that may exist during the

control process. Classical controller will not be sufficient due to nonexact model

represented by presence of uncertainties and/or disturbances. Other types of con-

trollers have to be considered in order to overcome classical controller drawbacks.

In the literature, several control design approaches have been adopted for

Euler-Lagrange systems like adaptive control, nonlinear control, robust control

and so forth. The weakness of many control approaches resides in defining the

appropriate model for nonlinearity cancellation. In nonlinear control, it is often

difficult to use the approximated nonlinear Euler-Lagrange equations of the sys-

tem without adding a robustifing term to ensure system operation in the stability

region. Including a robustifing term in the control law introduces discontinuity

and chattering on the control signal. On the other hand, estimation of system

nonlinearities normally experienced with discontinuity or singularity in the esti-

mation process which may take the system out of the stability region.

Unmanned Vehicle Systems (UVS) are important for different areas nowadays

because they can be controlled and operated remotely without human interfer-

ence. UVS is a research key because of the increase in demand of remote sens-
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ing and control in wide range of applications such as scientific surveys, traffic

surveillance, transportation aids, and inspection in addition to operation in harsh

environments. UVS have various configurations, characteristics, shapes and sizes

which will be reflected on system dynamics. The development in miniaturization

of UVS offers high potential effort for small size and low cost of UVS compared

to manned applications especially in certain applications. Rapid growing of UVS

comes with promising future because of its size, cost, construction simplicity and

maneuverability.

UVS can be classified into two categories either remotely control vehicles, or

autonomous vehicles. Each of these categories includes different types of UVS such

as: Unmanned Aerial Vehicles, Underwater Vehicles, Unmanned Surface Vehicle,

Unmanned Spacecraft and Unmanned Grounded Vehicle. Importance of UVS

relies on performance and mission targets. Generally, each type is considered as a

mechanical rigid body with different equations of motion. The majority of UVS

can be represented by nonlinear dynamics. The dynamic of UVS have their own

features as affine nonlinear systems with normal coupling or with strong coupling.

Usually, the controller is required to drive the system to the desired trajectory with

smooth transition and fast response. Smooth transition in both control signal and

output response will contribute in protecting the life cycle of system rotors and

other parts in the UVS.

Developing UVS in the absence of the operator is costly in the controller

complexity for tracking and vision. The controller is demanded to overcome many
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drawbacks, starting with stabilizing the system, driving the system to the desired

trajectory in the shortest possible time, adapt against any variations of system

dynamics and finally be robust against any disturbances. All these requirements

ended up making the control design as an important issue and an interested subject

to be investigated.

In order to design a controller for UVS, accurate models are needed to reflect

system dynamics either by precise modeling or real time identification. UVS have

a framework of rigid body dynamics and can be described by a set of differential

equations using Euler-Lagrange. The definition of exact model is a struggling

problem because nominal model is usually defined under certain operating condi-

tions with neglecting any uncertainties and disturbances that may exist during the

control process. Classical controller will not be sufficient due to nonexact model

represented by presence of uncertainties and/or disturbances. Other types of con-

trollers have to be considered in order to overcome classical controller drawbacks.

In the literature, several control design approaches have been adopted for

Euler-Lagrange systems like adaptive control, nonlinear control, robust control

and so forth. The weakness of many control approaches resides in defining the

appropriate model for nonlinearity cancellation. In nonlinear control, it is often

difficult to use the approximated nonlinear Euler-Lagrange equations of the sys-

tem without adding a robustifing term to ensure system operation in the stability

region. Including a robustifing term in the control law introduces discontinuity

and chattering on the control signal. On the other hand, estimation of system

35



nonlinearities normally experienced with discontinuity or singularity in the esti-

mation process which may take the system out of the stability region.

Unmanned Vehicle Systems (UVS) are important for different areas nowadays

because they can be controlled and operated remotely without human interfer-

ence. UVS is a research key because of the increase in demand of remote sens-

ing and control in wide range of applications such as scientific surveys, traffic

surveillance, transportation aids, and inspection in addition to operation in harsh

environments. UVS have various configurations, characteristics, shapes and sizes

which will be reflected on system dynamics. The development in miniaturization

of UVS offers high potential effort for small size and low cost of UVS compared

to manned applications especially in certain applications. Rapid growing of UVS

comes with promising future because of its size, cost, construction simplicity and

maneuverability.

UVS can be classified into two categories either remotely control vehicles, or

autonomous vehicles. Each of these categories includes different types of UVS such

as: Unmanned Aerial Vehicles, Underwater Vehicles, Unmanned Surface Vehicle,

Unmanned Spacecraft and Unmanned Grounded Vehicle. Importance of UVS

relies on performance and mission targets. Generally, each type is considered as a

mechanical rigid body with different equations of motion. The majority of UVS

can be represented by nonlinear dynamics. The dynamic of UVS have their own

features as affine nonlinear systems with normal coupling or with strong coupling.

Usually, the controller is required to drive the system to the desired trajectory with
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smooth transition and fast response. Smooth transition in both control signal and

output response will contribute in protecting the life cycle of system rotors and

other parts in the UVS.

Developing UVS in the absence of the operator is costly in the controller

complexity for tracking and vision. The controller is demanded to overcome many

drawbacks, starting with stabilizing the system, driving the system to the desired

trajectory in the shortest possible time, adapt against any variations of system

dynamics and finally be robust against any disturbances. All these requirements

ended up making the control design as an important issue and an interested subject

to be investigated.

In order to design a controller for UVS, accurate models are needed to reflect

system dynamics either by precise modeling or real time identification. UVS have

a framework of rigid body dynamics and can be described by a set of differential

equations using Euler-Lagrange. The definition of exact model is a struggling

problem because nominal model is usually defined under certain operating condi-

tions with neglecting any uncertainties and disturbances that may exist during the

control process. Classical controller will not be sufficient due to nonexact model

represented by presence of uncertainties and/or disturbances. Other types of con-

trollers have to be considered in order to overcome classical controller drawbacks.

In the literature, several control design approaches have been adopted for

Euler-Lagrange systems like adaptive control, nonlinear control, robust control

and so forth. The weakness of many control approaches resides in defining the
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appropriate model for nonlinearity cancellation. In nonlinear control, it is often

difficult to use the approximated nonlinear Euler-Lagrange equations of the sys-

tem without adding a robustifing term to ensure system operation in the stability

region. Including a robustifing term in the control law introduces discontinuity

and chattering on the control signal. On the other hand, estimation of system

nonlinearities normally experienced with discontinuity or singularity in the esti-

mation process which may take the system out of the stability region.

UVS can be classified into two categories either remotely control vehicles, or

autonomous vehicles. Each of these categories includes different types of UVS such

as: Unmanned Aerial Vehicles, Underwater Vehicles, Unmanned Surface Vehicle,

Unmanned Spacecraft and Unmanned Grounded Vehicle. Importance of UVS

relies on performance and mission targets. Generally, each type is considered as a

mechanical rigid body with different equations of motion. The majority of UVS

can be represented by nonlinear dynamics. The dynamic of UVS have their own

features as affine nonlinear systems with normal coupling or with strong coupling.

Usually, the controller is required to drive the system to the desired trajectory with

smooth transition and fast response. Smooth transition in both control signal and

output response will contribute in protecting the life cycle of system rotors and

other parts in the UVS.
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3.2.1 Problem Formulation and Simulation

Example 3.3.1 Simulation Problem of Two Link Planar Robot [19]

M(q)q̈+C(q̇, q)q̇+G0(q) = τ

where q = [q1 q2]T are the angular position and τ = [τ1 τ2]T are representing

the applied torques.

The inertia matrix is represented by

M(q) =

M11 M12

M21 M22



with

M11 = Iz1 + Iz2 +
m1l

2
1

2 +m2
(
l21 +

l22
4 + l1l2c2

)
M12 = M21 = Iz2 +m2

(
l22
4 + 1

2 l1l2c2
)

M22 = Iz2 +m2
l22
4

C(q̇, q) is the Coriolis and centrifugal torques matrix, q̇ is angular speed and

C(q̇, q)q̇ is actuator joint friction forces where

C(q̇, q)q̇ =

cq̇2 + k1 −c(q̇1 + q̇2)

cq̇1 k2


q̇1

q̇2
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with c = 1
2m2l1l2s2. and G0(q) is the vector of gravitational torques

G0(q) =


1
2m1gl1c1 +m2g(l1c1 +

1
2 l2c12)

1
2m2gl2c12



with c1 = cos(q1), c12 = cos(q1 + q2), s1 = sin(q1) and c2 = cos(q2). Table

(3.1) and (3.2) defines the necessary symbols, description and their associated

values.

Table 3.1: Description of symbols and their units

Symbol Description Unit
qi Angular position of joint-i rad
q̇i Angular velocity of joint-i rad/sec
τi Applied torque at joint-i N/m
mi Mass of link-i kg
li Length of link-i m
IZi

Moment Inertia of link-i kg.m2

ki Friction coefficient of joint-i kg.m2/s
g Gravity acceleration m/s2

Table 3.2: System parameters

m1 l1 IZ1 k1 m2 l2 IZ2 k2 g
3.2 0.5 0.96 1 2.0 0.4 0.841 1 9.81

The equation of motion of the nonlinear plant can be represented as following

q̈ = −M−1(q)(C(q̇, q)q̇+G0(q)) +M−1(q)τ

Case 1: Parameters of L1 can be computed numerically where their bounds
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Figure 3.5: L1 adaptive control of two link planar robot with reference and actual
tracking

Figure 3.6: Control signal of L1 adaptive control for two link planar robot

were chosen to be ωl = 0.5, ωu = 10, θb = 100, σb = 10 and the adaptation

gain Γ = 100000. Assuming the desired poles are −300 ± j5 and −400 ± j5.

The feedback controller was set to be 30diag(4). The simulated response will

be demonstrated in figure (3.5) and (3.6) for L1 output performance and control

signal respectively.

Case 2: Figure 3.7 and 3.8 present the outputs of L1 adaptive control

and control signals respectively considering same assumptions as in case 1 except

setting desired poles −30± j0.5 and −40± j0.5 in order to investigate the relation

between fast and slow desired dynamics with respect to the control signal and
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Figure 3.7: L1 adaptive control of two link planar robot with reference and actual
tracking

Figure 3.8: Control signal of L1 adaptive control for two link planar robot

tracking performance.

Figures (3.5), (3.6), (3.7) and (3.8) describe the relation between robustness

and fast tracking response from one hand and control signal range from the other

hand. Increasing the speed of transient and tracking performance has a direct

relation with how far the desired poles can be located in the left hand side from

the origin of (σ − jω) axis. However, it reduces the robustness of the zone wish

demand reducing the feedback gain value. On the other hand, the narrow range

of control signal has adverse relation with transient speed.

Example 3.3.2 Simulation Problem of Quadrotor
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Consider the quadrotor model in [29] with model parameters presented in [60]

η̈1 =
1
m
R(η2)

[
0 0 τz

]T
− g

[
0 0 1

]T

η̈2 = f(η2) +G(η2)

[
τp τq τr

]T

Where R is the Euler transformation angle matrix, η2 is the Euler angles, f(η2) ∈

R3×1 is the nonlinear function and G(η2) ∈ R3×3 is the inverse of the inertia

matrix.

Case 1: We assume exact modeling and system with free disturbances where

projection bounds of adaptation laws were defined numerically. Parameters of

L1 can be computed numerically where their bounds were chosen such as ωl = 0.5,

ωu = 10, θb = 100, σb = 100 and the adaptation gain Γ = 100000. The control

input is constrained to τz = 15 while other control signals are set free. The desired

poles were set to −30± j0.5, −35± j0.5 and −40± j0.5 and the feedback gain

were set to diag(30,30,30). Figures (3.9), (3.10), (3.11) and (3.12) represent the

output positions, angles, control signals and 3D trajectory of quadrotor system

by L1 adaptive control respectively.

Case 2: Same assumptions and given data as mentioned in part 1 are con-

sidered here except the model is no longer exact. Uncertainties in the level of the

states, disturbances and unmodeled input represented will be addressed into the

system.

η̈1 =
1
m
R(η2)

[
0 0 τz

]T
− g

[
0 0 1

]T
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Figure 3.9: L1 adaptive controller with reference and actual tracking positions for
quadrotor.

Figure 3.10: L1 adaptive controller with reference, desired and actual tracking
angles of a quadrotor system.

Figure 3.11: Control input of L1 adaptive controller of a quadrotor system.
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Figure 3.12: The 3D space tracking trajectory for both reference and actual output
of a quadrotor system.

η̈2 = f(η2) + f∆(η2) +G∆(η2)G(η2)

[
τp τq τr

]T
+D(s)

f∆(η2) =



0.2cos(φ)sin(θ) + 0.2φψ

0.2cos(φ)sin(ψ) + 0.2φψ2

0.2cos(θ)sin(φ) + 0.2φθψ


, D(s) =



0.2
s+1ud1(s)

0.24
s2+2s+3ud2(s)

0.15
s2+3s+2ud3(s)



G∆(η2) =



1.6 0 0

0 0.7 0

0 0 1.23


ud1(t) = sin(0.4t), ud2(t) = sin(0.6t), ud3(t) = sin(0.5t),

Figures (3.13), (3.14), (3.15) and (3.16) are describing the output positions, angles,

control signals and 3D trajectory of quadrotor system by L1 adaptive control after

admitting uncertainties, unmodeled input and disturbances.

Example 3.3.3 Simulation Problem of Fully Actuated MARES Autonomous

Underwater Vehicle

MARES underwater vehicle model and parameters were defined in [61–64]. The
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Figure 3.13: L1 adaptive controller with reference and actual tracking positions
for quadrotor.

Figure 3.14: L1 adaptive controller with reference, desired and actual tracking
angles of a quadrotor syste.m

Figure 3.15: Control input of L1 adaptive controller of a quadrotor system
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Figure 3.16: The 3D space tracking trajectory for both reference and actual output
of a quadrotor system.

submarine model can be represented as following

τη(η) = Mη(η)η̈+Cη(η, ν)η̇+Dη(η, ν)η̇+Gη(η)

Where η is the earth coordinate frame, Gη(η) is vector of gravitational/buoyancy

forces and moments, Dη(η, ν) is damping matrix, Cη(η, ν) is coriolis-centripetal

matrix (including added mass), Mη(η) is system inertia matrix (including added

mass) and τη(η) is the control input vector.

Parameters of L1 can be computed numerically where their bounds were cho-

sen to ωl = 0.5, ωu = 20, θb = 100, σb = 100 and the adaptation gain Γ =

100000. The desired poles are −9± j0.1, −10.5± j0.1, −12± j0.1, −13.5± j0.1,

−15± j0.1 and −16.5± j0.1. Finally, the feedback gain is diag(30,30,30,30,30,30).

Figures (3.17), (3.18), (3.19) and (3.20) are describing the output positions, an-

gles, control signals and 3D trajectory respectively of MARES submarine using

L1 adaptive control.
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Figure 3.17: L1 adaptive controller with reference and actual tracking positions
of MARES.

Figure 3.18: L1 adaptive controller with reference, desired and actual tracking
angles of MARES

Figure 3.19: Control input of L1 adaptive controller of MARES.
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Figure 3.20: The 3D space tracking trajectory for both reference and actual output
of MARES.

3.3 L1 Adaptive Controller for MIMO Systems

in the Presence of Unmatched Nonlinear

Uncertainties and Strong Coupling Effect

Unmanned Vehicle Systems (UVS) are important for different areas nowadays be-

cause they can be controlled and operated remotely without human interference.

UVS is a research key because of the increase in demand of remote sensing and

control in wide range of applications such as scientific surveys, traffic surveillance,

transportation aids, and inspection in addition to operation in harsh environ-

ments. UVS have various configurations, characteristics, shapes and sizes which

will be reflected on system dynamics. The development in miniaturization of

UVS offers high potential effort for small size and low cost of UVS compared to

manned applications especially in certain applications. Rapid growing of UVS

comes with promising future because of its size, cost, construction simplicity and

maneuverability.
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UVS can be classified into two categories either remotely control vehicles, or

autonomous vehicles. Each of these categories includes different types of UVS such

as: Unmanned Aerial Vehicles, Underwater Vehicles, Unmanned Surface Vehicle,

Unmanned Spacecraft and Unmanned Grounded Vehicle. Importance of UVS

relies on performance and mission targets. Generally, each type is considered as a

mechanical rigid body with different equations of motion. The majority of UVS

can be represented by nonlinear dynamics. The dynamic of UVS have their own

features as affine nonlinear systems with normal coupling or with strong coupling.

Usually, the controller is required to drive the system to the desired trajectory with

smooth transition and fast response. Smooth transition in both control signal and

output response will contribute in protecting the life cycle of system rotors and

other parts in the UVS.

Developing UVS in the absence of the operator is costly in the controller

complexity for tracking and vision. The controller is demanded to overcome many

drawbacks, starting with stabilizing the system, driving the system to the desired

trajectory in the shortest possible time, adapt against any variations of system

dynamics and finally be robust against any disturbances. All these requirements

ended up making the control design as an important issue and an interested subject

to be investigated.

In order to design a controller for UVS, accurate models are needed to reflect

system dynamics either by precise modeling or real time identification. UVS have

a framework of rigid body dynamics and can be described by a set of differential
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equations using Euler-Lagrange. The definition of exact model is a struggling

problem because nominal model is usually defined under certain operating condi-

tions with neglecting any uncertainties and disturbances that may exist during the

control process. Classical controller will not be sufficient due to nonexact model

represented by presence of uncertainties and/or disturbances. Other types of con-

trollers have to be considered in order to overcome classical controller drawbacks.

In the literature, several control design approaches have been adopted for

Euler-Lagrange systems like adaptive control, nonlinear control, robust control

and so forth. The weakness of many control approaches resides in defining the

appropriate model for nonlinearity cancellation. In nonlinear control, it is often

difficult to use the approximated nonlinear Euler-Lagrange equations of the sys-

tem without adding a robustifing term to ensure system operation in the stability

region. Including a robustifing term in the control law introduces discontinuity

and chattering on the control signal. On the other hand, estimation of system

nonlinearities normally experienced with discontinuity or singularity in the esti-

mation process which may take the system out of the stability region.

Unmanned Vehicle Systems (UVS) are important for different areas nowadays

because they can be controlled and operated remotely without human interfer-

ence. UVS is a research key because of the increase in demand of remote sens-

ing and control in wide range of applications such as scientific surveys, traffic

surveillance, transportation aids, and inspection in addition to operation in harsh

environments. UVS have various configurations, characteristics, shapes and sizes
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which will be reflected on system dynamics. The development in miniaturization

of UVS offers high potential effort for small size and low cost of UVS compared

to manned applications especially in certain applications. Rapid growing of UVS

comes with promising future because of its size, cost, construction simplicity and

maneuverability.

UVS can be classified into two categories either remotely control vehicles, or

autonomous vehicles. Each of these categories includes different types of UVS such

as: Unmanned Aerial Vehicles, Underwater Vehicles, Unmanned Surface Vehicle,

Unmanned Spacecraft and Unmanned Grounded Vehicle. Importance of UVS

relies on performance and mission targets. Generally, each type is considered as a

mechanical rigid body with different equations of motion. The majority of UVS

can be represented by nonlinear dynamics. The dynamic of UVS have their own

features as affine nonlinear systems with normal coupling or with strong coupling.

Usually, the controller is required to drive the system to the desired trajectory with

smooth transition and fast response. Smooth transition in both control signal and

output response will contribute in protecting the life cycle of system rotors and

other parts in the UVS.

Developing UVS in the absence of the operator is costly in the controller

complexity for tracking and vision. The controller is demanded to overcome many

drawbacks, starting with stabilizing the system, driving the system to the desired

trajectory in the shortest possible time, adapt against any variations of system

dynamics and finally be robust against any disturbances. All these requirements
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ended up making the control design as an important issue and an interested subject

to be investigated.

In order to design a controller for UVS, accurate models are needed to reflect

system dynamics either by precise modeling or real time identification. UVS have

a framework of rigid body dynamics and can be described by a set of differential

equations using Euler-Lagrange. The definition of exact model is a struggling

problem because nominal model is usually defined under certain operating condi-

tions with neglecting any uncertainties and disturbances that may exist during the

control process. Classical controller will not be sufficient due to nonexact model

represented by presence of uncertainties and/or disturbances. Other types of con-

trollers have to be considered in order to overcome classical controller drawbacks.

In the literature, several control design approaches have been adopted for

Euler-Lagrange systems like adaptive control, nonlinear control, robust control

and so forth. The weakness of many control approaches resides in defining the

appropriate model for nonlinearity cancellation. In nonlinear control, it is often

difficult to use the approximated nonlinear Euler-Lagrange equations of the sys-

tem without adding a robustifing term to ensure system operation in the stability

region. Including a robustifing term in the control law introduces discontinuity

and chattering on the control signal. On the other hand, estimation of system

nonlinearities normally experienced with discontinuity or singularity in the esti-

mation process which may take the system out of the stability region.

Unmanned Vehicle Systems (UVS) are important for different areas nowadays
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because they can be controlled and operated remotely without human interfer-

ence. UVS is a research key because of the increase in demand of remote sens-

ing and control in wide range of applications such as scientific surveys, traffic

surveillance, transportation aids, and inspection in addition to operation in harsh

environments. UVS have various configurations, characteristics, shapes and sizes

which will be reflected on system dynamics. The development in miniaturization

of UVS offers high potential effort for small size and low cost of UVS compared

to manned applications especially in certain applications. Rapid growing of UVS

comes with promising future because of its size, cost, construction simplicity and

maneuverability.

UVS can be classified into two categories either remotely control vehicles, or

autonomous vehicles. Each of these categories includes different types of UVS such

as: Unmanned Aerial Vehicles, Underwater Vehicles, Unmanned Surface Vehicle,

Unmanned Spacecraft and Unmanned Grounded Vehicle. Importance of UVS

relies on performance and mission targets. Generally, each type is considered as a

mechanical rigid body with different equations of motion. The majority of UVS

can be represented by nonlinear dynamics. The dynamic of UVS have their own

features as affine nonlinear systems with normal coupling or with strong coupling.

Usually, the controller is required to drive the system to the desired trajectory with

smooth transition and fast response. Smooth transition in both control signal and

output response will contribute in protecting the life cycle of system rotors and

other parts in the UVS.
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Developing UVS in the absence of the operator is costly in the controller

complexity for tracking and vision. The controller is demanded to overcome many

drawbacks, starting with stabilizing the system, driving the system to the desired

trajectory in the shortest possible time, adapt against any variations of system

dynamics and finally be robust against any disturbances. All these requirements

ended up making the control design as an important issue and an interested subject

to be investigated.

In order to design a controller for UVS, accurate models are needed to reflect

system dynamics either by precise modeling or real time identification. UVS have

a framework of rigid body dynamics and can be described by a set of differential

equations using Euler-Lagrange. The definition of exact model is a struggling

problem because nominal model is usually defined under certain operating condi-

tions with neglecting any uncertainties and disturbances that may exist during the

control process. Classical controller will not be sufficient due to nonexact model

represented by presence of uncertainties and/or disturbances. Other types of con-

trollers have to be considered in order to overcome classical controller drawbacks.

In the literature, several control design approaches have been adopted for

Euler-Lagrange systems like adaptive control, nonlinear control, robust control

and so forth. The weakness of many control approaches resides in defining the

appropriate model for nonlinearity cancellation. In nonlinear control, it is often

difficult to use the approximated nonlinear Euler-Lagrange equations of the sys-

tem without adding a robustifing term to ensure system operation in the stability
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region. Including a robustifing term in the control law introduces discontinuity

and chattering on the control signal. On the other hand, estimation of system

nonlinearities normally experienced with discontinuity or singularity in the esti-

mation process which may take the system out of the stability region.

Unmanned Vehicle Systems (UVS) are important for different areas nowadays

because they can be controlled and operated remotely without human interfer-

ence. UVS is a research key because of the increase in demand of remote sens-

ing and control in wide range of applications such as scientific surveys, traffic

surveillance, transportation aids, and inspection in addition to operation in harsh

environments. UVS have various configurations, characteristics, shapes and sizes

which will be reflected on system dynamics. The development in miniaturization

of UVS offers high potential effort for small size and low cost of UVS compared

to manned applications especially in certain applications. Rapid growing of UVS

comes with promising future because of its size, cost, construction simplicity and

maneuverability.

UVS can be classified into two categories either remotely control vehicles, or

autonomous vehicles. Each of these categories includes different types of UVS such

as: Unmanned Aerial Vehicles, Underwater Vehicles, Unmanned Surface Vehicle,

Unmanned Spacecraft and Unmanned Grounded Vehicle. Importance of UVS

relies on performance and mission targets. Generally, each type is considered as a

mechanical rigid body with different equations of motion. The majority of UVS

can be represented by nonlinear dynamics. The dynamic of UVS have their own
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features as affine nonlinear systems with normal coupling or with strong coupling.

Usually, the controller is required to drive the system to the desired trajectory with

smooth transition and fast response. Smooth transition in both control signal and

output response will contribute in protecting the life cycle of system rotors and

other parts in the UVS.

Developing UVS in the absence of the operator is costly in the controller

complexity for tracking and vision. The controller is demanded to overcome many

drawbacks, starting with stabilizing the system, driving the system to the desired

trajectory in the shortest possible time, adapt against any variations of system

dynamics and finally be robust against any disturbances. All these requirements

ended up making the control design as an important issue and an interested subject

to be investigated.

In order to design a controller for UVS, accurate models are needed to reflect

system dynamics either by precise modeling or real time identification. UVS have

a framework of rigid body dynamics and can be described by a set of differential

equations using Euler-Lagrange. The definition of exact model is a struggling

problem because nominal model is usually defined under certain operating condi-

tions with neglecting any uncertainties and disturbances that may exist during the

control process. Classical controller will not be sufficient due to nonexact model

represented by presence of uncertainties and/or disturbances. Other types of con-

trollers have to be considered in order to overcome classical controller drawbacks.

In the literature, several control design approaches have been adopted for
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Euler-Lagrange systems like adaptive control, nonlinear control, robust control

and so forth. The weakness of many control approaches resides in defining the

appropriate model for nonlinearity cancellation. In nonlinear control, it is often

difficult to use the approximated nonlinear Euler-Lagrange equations of the sys-

tem without adding a robustifing term to ensure system operation in the stability

region. Including a robustifing term in the control law introduces discontinuity

and chattering on the control signal. On the other hand, estimation of system

nonlinearities normally experienced with discontinuity or singularity in the esti-

mation process which may take the system out of the stability region.

3.3.1 Problem Formulation and Simulation

Example 3.4.1 MIMO System with Nonlinear Unmatched Uncertainties.

L1 adaptive control will be implemented to high nonlinear system with unmatched

uncertainties in order to investigate output performance and control signals. Con-

sider the system in [24].

ẋ(t) = (Am +A∆)x(t) +Bmωu(t) + f∆(x(t), z(t), t)

y(t) = Cx(t)

where

Am =



−1 0 0

0 0 1

0 −1 −1.8


, Bm =



1 0

0 0

1 1


, C =

1 0 0

0 1 0
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while A∆ ∈ R3×3 and ω∆ ∈ R2×2 are unknown constant matrices satisfying

ω ∈

 [0.6, 1.2] [−0.2, 0.2]

[−0.2, 0.2] [0.6, 1.2]

 = Ω

and f∆ is the (unknown) nonlinear function

f∆(x(t), z(t), t) =



k1
3 x

Tx+ tanh(k2
2 x1)x1 + k3z

k4
2 sec(x2)x2 +

k5
5 x

2
3 + k6(1− e−λt) + k7

2 z

k8x3cos(ωut) + k9z2



where k1 = −1, k2 = 1, k3 = 0, k4 = 1, k5 = 0, k6 = 0.2, k7 = 1, k8 = 0.6,

k9 = −0.7, λ = 0.3 and ωu = 5. The internal unmodeled dynamics are given by

ẋz1 = xz2(t)

ẋz2 = −xz1(t) + 0.8(1− x2
z1(t))xz2(t)

z(t) = 0.1(xz1(t)− xz2(t)) + zu(t)

z(s) =
−s+ 1

100s2 + 8s+ 1

[
1 −2 1

]
x(s)

Desired poles are chosen as p = −1,−0.9± j0.4359, Γ = 80000 and

Q =



1 0 0

0 1 0

0 0 1


, K =

8 0

0 8
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Figure 3.21: Tracking output of L1 adaptive control with reference and desired
outputs for unmatched MIMO uncertain system.

D(s) =
1

s(s/25 + 1)(s/70 + 1)(s2/402 + 1.8s/40 + 1)I2

Adaptive estimates belong to the following bounds θ̂1(t) ∈ [−40, 40]I2, θ̂2(t) ∈

[−40, 40], σ̂1(t) ∈ [−5, 5]I2, σ̂2(t) ∈ [−5, 5], ω̂11(t), ω̂22(t) ∈ [0.25, 3], and

ω̂12(t), ω̂21(t) ∈ [−0.2, 0.2]. Also other uncertainities and modeled input parame-

ters will be defined by

A∆ =



0.2 −0.2 −0.3

−0.2 −0.2 0.6

−0.1 0 −0.9


, ω =

0.6 −0.2

0.2 1.2



Figure 3.21 and 3.22 show output response and control signals of L1 adaptive

control.

Example 3.4.2 Nonlinear Twin Rotor MIMO System (TRMS) with Strong

Coupling.

Twin rotor was designed for training high nonlinear control applications to mimic

the behavior of the helicopter dynamics in terms of angle orientation [65]. The
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Figure 3.22: Control signal of L1 adaptive control for unmatched MIMO uncertain
system.

Figure 3.23: Laboratory set-up of TRMS.

model and parameters of the system are defined in [66]. Complexity of the twin ro-

tor comes from high nonlinearities in addition to strong coupling between control

signals. Figure 3.23 demonstrates TRMS set up. L1 adaptive control will be im-

plemented on high nonlinear TRMS with strong coupling effect in order to evaluate

the control performance on output response and control signals. Adaptive esti-

mates were defined as θ̂1(t) ∈ [−50, 50]I2, θ̂2(t) ∈ [−50, 50], σ̂1(t) ∈ [−15, 15]I2,

σ̂2(t) ∈ [−15, 15], ω̂11(t), ω̂22(t) ∈ [0.25, 5], Γ = 100000 and the desired poles are

assigned to −15± 0.3i, −17± 0.5i and −20± 0.5i and finally the feedback gain

= 5
(

1 0
0 1
)
.
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Figure 3.24: Tracking output of L1 adaptive control with reference and desired
outputs for TRMS.

Figure 3.25: Control signal of L1 adaptive control for TRMS.

Figure 3.24 and 3.25 show output response and control signals of L1 adaptive

control for TRMS.

3.4 Conclusion

This chapter mainly handled L1 adaptive controller from different perspectives

and for different classes of nonlinear systems. The robustness, transient perfor-

mance and tracking trajectory are prominent features of L1 adaptive controller.

All previous features have been validated through different cases of studies in-

cluding reproducing recent results. From the literature, the relation between
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improving robustness, enhancing transient performance and control signal range

have been demonstrated. In conclusion, improving robustness and enhancing the

transient performance have a direct effect on the control signal range. We will

present a satisfactory solution will be studied in subsequent chapters.
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CHAPTER 4

A FUZZY LOGIC FEEDBACK FILTER

DESIGN TUNED WITH PSO FOR L1

ADAPTIVE CONTROLLER

4.1 Introduction

The trade-off between fast desired closed loop dynamics and filter parameters

relies on error values. However, all previous studies assume constant coefficients of

the feedback filter and the effort of tuning the filter’s parameters is performed off-

line. Increasing the bandwidth of the low pass filter will reduce robustness margin,

which will require slowing the desired closed loop performance in order to regain

the robustness. However, slower selection of desired closed loop performance will

deteriorate the output performance especially during the transient period [39].

We argue that increasing the robustness with fast closed loop dynamics requires

dynamic on-line tuning of the feedback filter gain. The method should be practical

and implementable. Therefore, in this chapter we propose a fuzzy tuning of the

filter coefficients function based on the rate and value of the tracking error between
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the model output and the system output. This chapter is organized as follows: In

section two, brief review of L1 adaptive control including adaptation laws and the

general structure is discussed. Section three presents the idea of filter design and

the structure of the proposed control. Section four states the optimization problem

and presents the particle swarm optimization algorithm. Illustrative examples will

be presented in section five in order to clarify and verify the proposed approach.

Finally, last section contains the conclusion.

4.2 Review of L1 adaptive controller

Consider the following dynamics for nonlinear system

ẋ(t) = Amx(t) + b(ωu(t) + f(x(t),u(t), t))

y(t) = cx(t)

(4.1)

where x(t) ∈ Rn is the system state vector (assumed measured); u(t) ∈ R is

the control input; y(t) ∈ R is the system output; b, c ∈ Rn are constant vectors

(known); Am is Rn×n Hurwitz matrix (known) refers to the desired closed-loop

dynamics; ω(t) ∈ R is an unknown time variant parameter describes unmodeled

input gain with known sign, and f(x(t),u(t), t) : Rn×R×R→ R is an unknown

nonlinear continuous function.

Assumption 4.1 (Partially known with known sign control input) Let

the upper and the lower input gain bounds be defined by ωl and ωu respectively,
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where

ω ∈ Ω , [ωl,ωu], |ω̇| < ω

Ω is assumed to be known convex compact set and 0 < ωl < ωu are uniformly

known conservative bounds.

Assumption 4.2 (Uniform boundedness of f(0,u(t), t)) Let B > 0 such that

f(0,u(t), t)) ≤ B for all t ≥ 0

Assumption 4.3 (Partial derivatives are semiglobal uniform bounded)

For any δ > 0, there exist dfx(δ) > 0 and dft(δ) > 0 such that for arbitrary

||x||∞ ≤ δ and any u, the partial derivatives of f(x(t),u(t), t)) is piecewise-

continuous and bounded,

||∂f(x(t),u(t), t)
∂x

|| ≤ dfx(δ), |
∂f(x(t),u(t), t)

∂t
| ≤ dft(δ)

Assumption 4.4 (Asymptotically stable of initial conditions) The system

assumed to start initially with x0 inside an arbitrarily known set ρ0 i.e., ||x0||∞ ≤

ρ0 <∞.

θb , dfx(δ), ∆ , B + ε (4.2)

Lemma 4.1 If ||x||L∞ ≤ ρ and there exist u(τ ), ω(τ ), θ(τ )and σ(τ ) over [0, t]

such that

ωl < ω < ωu (4.3)

|θ(τ )| < θb (4.4)
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|σ(τ )| < σb (4.5)

f(x(τ ),u(τ ), τ ) = ωu(τ ) + θ(τ )||x(τ )||∞ + σ(τ )

If ẋ(τ ) and u̇(τ ) are bounded then ω(τ ), θ(τ )and σ(τ ) are differentiable with

finite derivatives.

The L1 adaptive controller is composed of three parts defined as the state pre-

dictor, the adaption algorithm based on projection and the feedback filter (see

Figure 4.1). The structure allows decoupling of the adaption and robustness us-

ing high-gain for fast adaption.

Figure 4.1: The general structure of L1 adaptive controller.

UVS can be classified into two categories either remotely control vehicles, or au-

tonomous vehicles. Each of these categories includes different types of UVS such

as: Unmanned Aerial Vehicles, Underwater Vehicles, Unmanned Surface Vehicle,

Unmanned Spacecraft and Unmanned Grounded Vehicle. Importance of UVS re-

lies on performance and mission targets. Generally, each type is considered as a

mechanical rigid body with different equations of motion. The majority of UVS

can be represented by nonlinear dynamics. The dynamic of UVS have their own

features as affine nonlinear systems with normal coupling or with strong coupling.
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Usually, the controller is required to drive the system to the desired trajectory

with smooth transition and fast response. Smooth transition in both control sig-

nal and output response will contribute in protecting the life cycle of system rotors

and other parts in the UVS.

Developing UVS in the absence of the operator is costly in the controller com-

plexity for tracking and vision. The controller is demanded to overcome many

drawbacks, starting with stabilizing the system, driving the system to the desired

trajectory in the shortest possible time, adapt against any variations of system

dynamics and finally be robust against any disturbances. All these requirements

ended up making the control design as an important issue and an interested sub-

ject to be investigated.

In order to design a controller for UVS, accurate models are needed to reflect

system dynamics either by precise modeling or real time identification. UVS have

a framework of rigid body dynamics and can be described by a set of differential

equations using Euler-Lagrange. The definition of exact model is a struggling

problem because nominal model is usually defined under certain operating condi-

tions with neglecting any uncertainties and disturbances that may exist during the

control process. Classical controller will not be sufficient due to nonexact model

represented by presence of uncertainties and/or disturbances. Other types of con-

trollers have to be considered in order to overcome classical controller drawbacks.

In the literature, several control design approaches have been adopted for Euler-

Lagrange systems like adaptive control, nonlinear control, robust control and so
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forth. The weakness of many control approaches resides in defining the appropri-

ate model for nonlinearity cancellation. In nonlinear control, it is often difficult

to use the approximated nonlinear Euler-Lagrange equations of the system with-

out adding a robustifing term to ensure system operation in the stability region.

Including a robustifing term in the control law introduces discontinuity and chat-

tering on the control signal. On the other hand, estimation of system nonlinearities

normally experienced with discontinuity or singularity in the estimation process

which may take the system out of the stability region.

4.3 Optimal Fuzzy-tuning of the feedback filter

FLC has been used widely for various control applications. In this work, FLC is

developed in order to tune the feedback filter gain of the L1 adaptive controller.

The importance of tuning this filter is crucial to improve the robustness and to

reduce the control signal range.

The complete structure of fuzzy- L1 adaptive controller is presented in figure (4.2).

The FLC-based tuning is performed on-line during operation. On the other hand,

PSO identifies the optimal values of output membership functions through off-line

tuning.

4.3.1 Structure of Fuzzy Logic Controller

The error e(t) is the difference between reference input r(t) and regulated output

y(t). kp and kd are proportional and differential weights respectively. These
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Figure 4.2: Proposed fuzzy-L1 adaptive control structure.

parameters will be assigned before designing the membership functions and their

values rely on the expected range of both e(t) and ė(t) in order to normalize fuzzy

input between 1 and 0.

kp ≤
1
||e||∞

, kd ≤
1
||ė||∞

(4.6)

The existence of these norms is guaranteed by L1 adaptive controller in case of

stable dynamics. In addition, they can also be dynamically assigned. The fuzzy

filter has a triangular membership functions for both inputs and output. The

fuzzy filter has two inputs represented by the error and its rate and one output

which is the inverse of the feedback gain kf . The fuzzy inputs and output have

triangular membership functions with five linguistic variables. Linguistic variables

are assigned as very large (V L), large (L), small (S), very small (V S) and zero (Z)

where values of input membership function will be assigned arbitrarily. Values of
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Table 4.1: Rule base of FLC.
∆e/e VL L S VS Z
VL V L V L V L V L L

L V L V L V L L S

S V L V L L S V S

VS V L L S V S V S

Z L S V S V S Z

output membership functions are optimized using PSO. Rule base of the proposed

filter is demonstrated in table 4.1.

Fuzzy inputs are the absolute values of e(t) and ė(t) multiplied by weighted gains

kp and kd. L1 adaptive controller will consider the fuzzy output kf as a feedback

gain if the error is greater than ke. Adversely, the controller will consider a

constant feedback gain k if the error is less than or equal ke.

4.4 Particle Swarm Optimization

Particle swarm optimization is an intelligent evolutionary computation algorithm.

It has been proposed recently to simulate the behavior of bird flocking or fish

schooling [67]. PSO algorithm deploys a set of particles in the space as a popula-

tion and each particle is a candidate solution. Each particle in the search space

moves randomly in swarm of particles to find the optimal solution. Each solu-

tion is defined by a particle position in the space and the velocity of swarming is

necessary to target the best position. The proper setting of the algorithm vari-

ables ensures swarming in the vicinity space of the optimal solution and increases

the probability of fast convergence. The velocity and position of the particle are
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defined according to the following two equations 4.7 and 4.8 respectively

vi,j(t) = α(t)vi,j(t− 1) + c1r1(x
∗
i,j(t− 1)

− xi,j(t− 1)) + c2r2(x
∗∗
i,j(t− 1)− xi,j(t− 1))

(4.7)

xi,j(t) = vi,j(t) + xi,j(t− 1)) (4.8)

UVS can be classified into two categories either remotely control vehicles, or au-

tonomous vehicles. Each of these categories includes different types of UVS such

as: Unmanned Aerial Vehicles, Underwater Vehicles, Unmanned Surface Vehicle,

Unmanned Spacecraft and Unmanned Grounded Vehicle. Importance of UVS re-

lies on performance and mission targets. Generally, each type is considered as a

mechanical rigid body with different equations of motion. The majority of UVS

can be represented by nonlinear dynamics. The dynamic of UVS have their own

features as affine nonlinear systems with normal coupling or with strong coupling.

Usually, the controller is required to drive the system to the desired trajectory

with smooth transition and fast response. Smooth transition in both control sig-

nal and output response will contribute in protecting the life cycle of system rotors

and other parts in the UVS.

Developing UVS in the absence of the operator is costly in the controller com-

plexity for tracking and vision. The controller is demanded to overcome many

drawbacks, starting with stabilizing the system, driving the system to the desired

trajectory in the shortest possible time, adapt against any variations of system

dynamics and finally be robust against any disturbances. All these requirements
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ended up making the control design as an important issue and an interested sub-

ject to be investigated.

In order to design a controller for UVS, accurate models are needed to reflect

system dynamics either by precise modeling or real time identification. UVS have

a framework of rigid body dynamics and can be described by a set of differential

equations using Euler-Lagrange. The definition of exact model is a struggling

problem because nominal model is usually defined under certain operating condi-

tions with neglecting any uncertainties and disturbances that may exist during the

control process. Classical controller will not be sufficient due to nonexact model

represented by presence of uncertainties and/or disturbances. Other types of con-

trollers have to be considered in order to overcome classical controller drawbacks.

4.5 Results and Discussions

4.5.1 Fuzzy L1 adaptive controller implementation:

Example 4.5.1 Problem in [39] has been considered here with additive nonlin-

earities added to the system as follows

ẋ(t) = Amx(t) +B(ωu(t) + f(x(t), t))

y(t) = Cx(t)

where x(t) = [x1(t),x2(t)]T are the system states, u(t) is the control input, y(t)

is the regulated output and f(t,x(t)) includes high nonlinearity assumed to be
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Figure 4.3: Flowchart of particle swarm Optimization.

unknown. In addition,

A =

0 1

0 0

 , B =

0

1

 , C =

[
1 0

]

and

f(x(t), t) = 2x2
1(t) + 2x2

2(t) + x1sin(x
2
1) + x2cos(x

2
2)

ω =
75

s+ 75

ω is a function with fast dynamic to ensure smoothness of the control signal.
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The compact sets of the projection operators for unmodeled input parameters,

uncertainties and disturbances were assigned to [ωmin,ωmax] ∈ [0, 10], ∆ = 100

and θb = 10 . The control objective is to design a fuzzy L1 adaptive controller to

enhance each of control signal range and tracking capability of a bounded reference

input r(t) for the output signal y(t). Desired poles are set to = −21± j0.743,

feedback gain(k) = 20, the adaptation gain(γ) = 1000000 and Q =
[

1 0
0 1
]
. Fuzzy

control parameters are kp = 0.1 , kd = 0.05 and ke = 0.1. Figure 4.4 illustrates

the FLC with L1 adaptive controller.

Figure 4.4: Fuzzy-L1 adaptive controller for nonlinear SISO system.

The objective of this work is to construct output membership function for FLC

capable of reducing the error and the control signal. Values of input membership

functions and constraint values of the output membership functions were chosen

based on trying different values by running a certain number of experiments. The

range of input membership functions was adjusted between 0.08 and 1 and their

values were selected as shown in figure (4.5).
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Figure 4.5: Error and rate of error membership functions.

Constraint values of output membership functions are represented by three param-

eters as lower (l), center (c) and higher (h) values. These three parameters of each

triangular membership function will constrain between minimum and maximum

bounds. Constraints bounds of the problem can be defined as follows

[4, 8, 8] ≤ [V Ll,V Lc,V Lh] ≤ [8, 12, 12]

[1.5, 3, 6] ≤ [Ll,Lc,Lh] ≤ [3, 6, 10]

[0.3, 1.5, 4] ≤ [Sl,Sc,Sh] ≤ [1.5, 4, 8]

[0, 0.5, 1.5] ≤ [V Sl,V Sc,V Sh] ≤ [0.5, 1.5, 3]

[0.0, 0.0, 0.3] ≤ [Zl,Zc,Zh] ≤ [0.0, 0.0, 1.5]

(4.9)

With V L, ML, L, S, MS, V S and Z were defined in foregoing section as a

linguistic variables. Also, we assigned V Lc = V Lh, V Ll = Sh, Ll = V Sh and

Sl = Zh.
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4.5.2 PSO Simulation results

The population size is set arbitrarily as 150 particles and each particle include

9 parameters will be optimized based on a minimization objective function and

these parameter are V Lc, V Ll, Ll, Lc, Lh, Sl, Sc, V Sl and V Sc in ??. The

initial settings of PSO algorithm are demonstrated in table 4.2 and the maximum

numbers of generations is 100.

Table 4.2: Parameters setting for PSO.
Parameter λ α c1 c2

Settings 10 0.99 2 2

4.5.3 PSO Results

The system was simulated for 8 seconds and the sampling time considered as 0.01

seconds. The reference input was defined by cos(0.5t) with zero initial conditions.

The optimal variables of output triangular membership functions are illustrated

in figure (4.6). The fitness reduction during the search process is demonstrated

in figure (4.7). However, it is clear that objective function is reduced significantly

and enormously to a suitable value which is reflected on the output performance

as revealed in figure (4.8). Figure (4.8.a) demonstrates the optimal output per-

formance and Figure (4.8.b) shows the control signal of the considered problem.

In this study, three different scenarios are considered to demonstrate the robust-

ness of fuzzy L1 adaptive controller. All cases will be simulated for 40 seconds.

The first case will discuss the nonlinear system included in the search process.
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Figure 4.6: Graphical illustration of output membership functions.

Figure 4.7: Objective function minimization with PSO search process.

Case 2 includes the nonlinear model with high uncertainties, unmodeled input

parameters and adding some disturbances in order to validate the robustness of

fuzzy filter with L1 adaptive controller. Case 3 consider all assumptions in case 2

in addition to analyze the system with faster desired closed loop dynamics.

Case 1: Figure (4.9) presents the output performance of fuzzy L1 adaptive con-

troller versus L1 adaptive controller and their control signals. Fuzzy L1 adaptive

controller guarantees uniform transient and smooth tracking performance. In ad-

dition, the major contribution in this approach lies in reducing the control signal

range through tuning the feedback gain. Tuning feedback gain enhances the ro-
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Figure 4.8: Performance of fuzzy-L1 adaptive controller after 100 iterations search
process.

bustness of the system and reduces the control signal range. The difference of

feedback gain between fuzzy approach and fixed gain approach in L1 adaptive

controller is illustrated in figure (4.10.a). The errors of both controllers are pre-

sented in figure (4.10.b).

Figure 4.9: Performance of fuzzy-L1 adaptive controller and L1 adaptive controller
for nonlinear system of case 1.

Case 2:To illustrate the effectiveness of the proposed fuzzy filter with L1 adaptive
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Figure 4.10: Feedback gain and output error of fuzzy filter and fixed gain filter of
case 1.

controller, the robustness of the fuzzy filter is examined against high uncertain-

ties, unmodeled input parameters and disturbances. The nonlinear model and

controller parameters are similar to case 1. However, the nonlinearity includes

high time variant uncertainties and disturbances as follows

f(x(t), t) =
(
sin(0.4t) + 1

)
x2

1(t) +
(
2cos(0.35t) + 0.5

)
x2

2(t)

+
(
sin(0.3t) + 0.3

)
x1sin(x

2
1) + sin(0.35t)cos(0.4t)

+ 0.5x2cos(x
2
2 + 0.5cos(0.3t)) + sin(0.3t)cos(0.4t)z2

where

z(s) =
s− 1

s2 + 3s+ 2v(s), v(t) = x1sin(0.2t) + x2

The robustness of fuzzy feedback filter gain with L1 adaptive controller has been

validated in figure (4.11) and presented versus L1 adaptive controller. The signifi-

cant impact and the advantage of fuzzy L1 controller is revealed on control signals
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performance as shown figure (4.11). Figure 4.12(a) presents the performance of

feedback gain for fuzzy L1 adaptive controller and L1 adaptive controller. Finally,

figure (4.12.b) shows the error of both controllers. Uniform transient and tracking

capability are validated as shown in figure (4.9) and (4.11). The benefits of fuzzy

L1 adaptive controller can be summarized by the following points: 1) fast desired

dynamics, 2) improving the tracking capability and 3) robustness with less range

of control signal.

Figure 4.11: Performance of fuzzy-L1 adaptive controller and L1 adaptive con-
troller for nonlinear system of case 2.

Case 3: The robustness of fuzzy L1 adaptive controller and L1 adaptive con-

troller will reveal more in this case. All aforementioned assumptions in case 2 are

similar here except the desired closed loop dynamics assumed to be faster than

case 2. Desired poles are set to p = −84± j0.743. According to this change in

closed loop poles, the robustness of L1 adaptive controller will be violated and

the system will no longer be stable. However, fuzzy L1 adaptive controller will

be able to track the output under this new condition with limitation in increasing
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Figure 4.12: Feedback gain and output error of fuzzy filter and fixed gain filter of
case 2.

the control signal range. Figure (4.13) illustrate the output performance of fuzzy

L1 adaptive controller for case 3.

The robustness of this criterion has been simulated and validated with

Figure 4.13: Performance of fuzzy-L1 adaptive controller for nonlinear system of
case 3.

L1 adaptive controller on high nonlinear system with different forms of nonlin-

earities and uncertainties in addition to fast closed loop dynamics compared to
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normal structure of L1 adaptive controller. It can be concluded based on the cases

considered and results obtained that the proposed fuzzy-based approach to tune

the feedback filter improves greatly the performance of L1 adaptive controller.

The proposed fuzzy L1 adaptive controller guarantees boundedness of the output

and control signal and insures fast tracking and low range of control input signal.

Example 4.5.1 Consider fuzzy L1 adaptive control for problem 3.4.2 (TRMS)

The desired poles has been chosen to be −20 ± j0.3, 25 ± j0.5 and 27 ± j0.5,

the highest value of the feedback filter be Kf =
[

10 0
0 10

]
, Q = I6×6. Two fuzzy

controllers were designed where the first one is Kf (1, 1) and the second one is

Kf (2, 2). Fuzzy control parameters were chosen to be kp = 3.45, kd = 0.05 and

ke = 0.09. The rule base is similar to table (4.1) and error and rate of error

membership functions are similar to figure 4.5 while output membership function

is defined as follows The output response of fuzzy L1 adaptive controller is pre-

Figure 4.14: Graphical illustration of output membership functions.

sented in figure 4.15 although L1 adaptive control with constant gain goes out of

stability with foregoing control parameters.

83



Figure 4.15: Output response and control signal of fuzzy L1 adaptive controller.

4.6 Conclusion

This paper presents a new FLC-PSO design of the feedback gain filter part of

L1 adaptive controller. PSO determines the optimal variables of the output mem-

bership functions. The proposed algorithm tunes on-line the filter parameters,

which in turn contributed to improving robustness and stability of L1 adaptive

controller. Moreover, owing to a smooth tuning of the filter the control signal

range has been reduced. Illustrative examples were developed and simulated to

compare fuzzy L1 adaptive controller with L1 adaptive controller with constant

filter parameters and to validate the advantages of the proposed approach. The

results show improved performance and robustness with high levels of time variant

uncertainties and disturbances in addition to fast desired closed loop adaptation.
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CHAPTER 5

NEURO-ADAPTIVE FOR STRICT

FEEDBACK MIMO SYSTEMS WITH PPF

5.1 Introduction

This chapter is mainly concerned in reproducing recent study of robust neuro

adaptive control with prescribed performance function on strict feedback MIMO

system. The importance of this chapter relies on capturing prescribed perfor-

mance idea on transient performance, tracking trajectory and smoothness of the

control signal. This chapter consists of six sections with first section is an in-

troduction. The second section presents introduction and necessary conditions of

prescribed performance. The third section describes the problem formulation and

the main idea of prescribed performance function. The fourth section presents

neural network for nonlinearity approximation. Section five includes control law

formulation and stability analysis. Section six presents simulation and controller

benchmark results. The last section is a conclusion.
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5.2 Introduction of Prescribed Performance

Prescribed performance simply means tracking error into an arbitrarily small

residual set and the convergence error should be within pre-assigned range. In

addition, the convergence rate has to be less than a prescribed value and maxi-

mum overshoot should be less than a prescribed constant. Prescribed performance

with robust adaptive control was mainly developed to provide a smooth control

signal for soft tracking and to solve the problem of accurate computation of the

upper bounds for systematic convergence. Due to nonexistence adaptive control

for nonlinear systems with error convergence into a predefined small set, the con-

troller with prescribed performance function is demanded. In this chapter, robust

adaptive control with prescribed performance should have the ability to approx-

imate the nonlinear model assuming completely unknown dynamics and provide

smooth control signal to track the output into the desired trajectory smoothly

and accurately.

The main features of the prescribed performance is its ability of tracking the error

into a defined small set. Prescribed performance should guarantee many factors

• the convergence of the error within a prescribed bound,

• a maximum overshot less than a prescribed value,

• a uniform ultimate boundedness property for the transformed output error,

• adaptive and smooth tracking.

Neural network will be used to estimate the nonlinear model as an online esti-
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mation tool in the adaptive control problem. Adaptive control will be offered to

stabilize the system by canceling undesired dynamics using neural network. Also,

it will be used to provide robust tracking and forcing the error to be bounded in

predefined set. The prescribed set will be reduced into a very small set accord-

ing to a pre-assigned prescribed performance function. Number of neurons of the

neural network and their types are defined based on try and error which can be

considered as a main drawback of this method.

The work in this section is mainly based on reproducing [19] to catch the idea

of prescribed performance function and to evaluate the function with adaptive

control.

5.3 Problem Formulation and Preliminaries

For compactness and easy reading of the chapter, this section presents the concept

of prescribed performance (for more details the reader is invited to consult [19]).

Consider the general case of nonlinear affine system as follows

x
(n1)
1 = f1(x) + g11(x)u1 + · · ·+ g1m(x)um

...

x(nm)
m = fm(x) + gm1(x)u1 + · · ·+ gmm(x)um

(5.1)

which can be adequately written in the form:

x(n) = f(x) +G(x)u
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where

x(n) =

[
x
(n1)
1 · · · x

(nm)
m

]T

f(x) =

[
f1(x) · · · fm(x)

]T

G(x) =



g11(x) · · · g1m(x)

... . . . ...

gm1(x) · · · gmm(x)


The use of Prescribed performance with robust adaptive control demand consid-

ering four basic assumptions.

Assumption 5.1 The matrix G(x)GT (x)
2) has to be known with either uniformly

positive definite or uniformly negative definite for all x ∈ Ωx where Ωx ⊆ Rn is

a compact set to guarantee system controllability.

σ(
G(x)GT (x)

2 ) ≥ g∗ > 0 ∀x ∈ Ωx (5.2)

where σ(W ) is the smallest singular value of the matrix W and g∗ represents

its lower bound. In addition, if G(x) satisfies Assumption 5.1 then system is

uniformly strongly controllable [19].

Assumption 5.2 The desired trajectories are known bounded functions of time

with bounded known derivatives.

Assumption 5.3 The system states are available for measurement.
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Assumption 5.4 The functions fi(x) and gij(x), i, j = 1, · · · ,m are continuous

but otherwise completely unknown.

Prescribed performance can be defined as the effort of tracking a generic error

e(t) = [e1(t), e2(t), ..., em(t)] ∈ Rn such that each element of e(t) evolves within

PPB in a form of decaying functions of time that define the range of the residual

error, the speed of convergence to the residual set, and the allowable overshoot

or undershoot. In addition, prescribed performance with robust adaptive control

was mainly developed to provide an adequate command signal for smooth track-

ing and solve the problem of accurate computation of the transient and steady

state error bounds by guarantying uniform ultimate boundedness property of the

error.

A smooth function ρi(t) : R+ → R+ is defined as a performance function associ-

ated with error component ei(t), i = 1, ...,m, if ρi(t) is positive, decreasing and

lim
t→∞

ρi(t) = ρi∞ > 0.

5.3.1 Performance Functions

A smooth function ρi(t) : R+ → R+ is defined as a performance function associ-

ated with error component ei(t), i = 1, ...,m, if ρi(t) is positive, decreasing and

lim
t→∞

ρi(t) = ρi∞ > 0. A possible choice of such function can be

ρi(t) = (ρi0 − ρi∞) exp−`i t+ρi∞ (5.3)

89



where ρi0 , ρi∞ and `i are appropriately defined positive constants. The control

objective is to guarantee that

−δiρ(t) < ei(t) < ρi(t), if ei(0) > 0 (5.4)

−ρi(t) < ei(t) < δiρi(t), if ei(0) < 0 (5.5)

for all t ≥ 0 and 0 ≤ δi ≤ 1, and i = 1, ...,m. Figure 5.1 illustrates the prescribed

performance function and tracking error evolving from a large to a small set as

per equations (5.4) and (5.5).

Figure 5.1: Graphical illustration of PPF for the tracking error behavior (a) graph-
ical illustration of (5.4); (b) graphical illustration of (5.5).
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Error Transformation

To implement the prescribing performance, one needs to solve a constrained con-

trol problem. To avoid such difficulty, the following error transformation is used

εi = Ti(
ei(t)

ρi(t)
) (5.6)

or equivalently,

ei(t) = ρi(t)S(εi) (5.7)

where εi, i = 1, 2, ...,m is the transformed error and Si(.) and T−1
i (.) are two

smooth functions such that Si(.) = T−1
i (.) and Si(.) satisfy the following proper-

ties:

1. Si(εi) is smooth and strictly increasing.

2. −δi < Si(εi) < 1, if ei(0) > 0

−1 < Si(εi) < δi, if ei(0) < 0

3.
limεi→−∞Si(εi) = −δi

limεi→+∞Si(εi) = 1,

 if ei(0) ≥ 0

limεi→−∞Si(εi) = −1

limεi→+∞Si(εi) = δi,

 if ei(0) < 0

where

S(ε) =


δ̄eε − δe−ε

eε + e−ε
, δ̄ = 1 and δ = 0 if e(0) ≥ 0

δ̄eε − δe−ε

eε + e−ε
, δ = 1 and δ̄ = 0 if e(0) ≥ 0

(5.8)
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One should note that the overshoot/undershoot in equation (5.8) is assumed to

be zero.

where the overshot in equation (5.8) assumed to be zero. To continue, an er-

ror transformation that modulates ei(t) with respect to the corresponding per-

formance bounds has to be defined. More specifically, we define the following

transformed errors:

ε = S−1
(
ρ(t)

e(t)

)
(5.9)

Next a metric error E(t) will be defined to describe the system dynamics in a new

form of system error.

Ei(t) = (
d

dt
+ λi)

n−1εi (5.10)

Ė(t) = V +Rẋ (5.11)

where Ė(t) =
[
E1 · · · En

]T
and V =

[
v1 · · · vn

]T
.

R =



1
2ρ1(t)

(∂S−1
1 /∂(ρ1(t)

e1(t)
)) · · · 0

... . . . ...

0 · · · 1
2ρn(t)

(∂S−1
n /∂(ρn(t)

en(t)
))


(5.12)

Equations (5.11) and (5.12) can be driven easily. All foregoing equations in ad-

dition to approximated nonlinear model will be implemented in order to define

the required control signal. Online training of linearly parameterized neural net-

work is mainly implemented to estimate the nonlinear model as presented in the

following subsection.
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5.4 Neural Approximations

Neural network with linear parameterization can be expressed by the following

relation

y = ZT (x)θ (5.13)

where y ∈ Rm is the neural net output, x ∈ Rn is the neural input, θ ∈ Rp is

a p-dimensional vector of synaptic weights and Z(x) is a p-dimensional vector of

regressor terms. Regressor terms may include high order functions of radial basis

function [69], sigmoid functions [70] and shifted sigmoids [71] are defined as high

order neural network.

The nonlinear system is considered to be unknown functions and may be repre-

sented by one layer neural network structure with linear in weights plus modeling

error term ∀x ∈ Ωx obtaining:

f(x) = ZTf (x)θ
∗ + ωf (x) (5.14)

G(x) =



ZTG11(x)θ
∗ · · · ZTG1m

(x)θ∗

... . . . ...

ZTGm1(x)θ
∗ · · · ZTGmm

(x)θ∗


+ ωG(x) (5.15)

where Zf (x) =
[
Zf1(x) · · · Zfm(x)

]
, Zfi

(x) and ZGi,j (x) ∈ Rp,i, j = 1, · · · ,m

are selected basis functions and θ∗ ∈ Rp are constants but unknown parameters

which are used to minimize the approximation errors ωf (x),ωG(x)∀x ∈ Ωx. Num-

ber of regressor p should be chosen appropriately and sufficiently large in order to
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have a suitable representation of the nonlinear system. The approximated errors

ωf (x),ωG(x) should satisfy the following conditions

||ωf (x)|| ≤ Wf , ∀x ∈ Ωx (5.16)

||ωG(x)|| ≤ WG,∀x ∈ Ωx (5.17)

where Wf > 0 and WG > 0 and they are constants.

Furthermore, if we define:

f(x, θ) = ZTf (x)θ (5.18)

G(x, θ) =



ZTG11(x)θ · · · ZTG1m
(x)θ

... . . . ...

ZTGm1(x)θ · · · ZTGmm
(x)θ


(5.19)

Then, defining the control law require the following variables

FG(x, θ)v = AF (x, θ)θ (5.20)

where

AF (x, θ) =



ZTG11(x)v1 + · · ·+ ZTG1m
(x)vm

...

ZTGm1(x)v1 + · · ·+ ZTGmm
(x)vm


(5.21)
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5.5 Robust Adaptive Control Design

The control law may be formulated as following

u = νa − (ηGa|νa|2 + ηGb
|νb|2)

RTE

sign(G(x))
(5.22)

νa(x, θ̂) = −Adj(FG(x, θ̂))Det(FG(x, θ̂))
Det2(FG(x, θ̂)) + δd

νb(x, θ̂) (5.23)

νb(x, θ̂) = Ff (x, θ̂) +R−1V + kR−1E + nfR
T +E (5.24)

For ηGa , ηGb
,nf , k and δd are positive constants and Ff (x, θ̂) and FG(x, θ̂) are

the approximations of f(x) and G(x). δd is necessary to make equation (5.23)

free of singularities. In order to validate equations (5.22),(5.23) and (5.24), let’s

formulate Lyapunov candidate function as

L =
1
2E

TE +
1
2 θ̃

TΓ−1θ̃ (5.25)

L̇ =
1
2Ė

TE +
1
2E

T Ė +
1
2

˙̃θTΓ−1θ̃+
1
2 θ̃

TΓ−1 ˙̃θ

L̇ =
1
2(V +R(f(x)+G(x)u))TE+

1
2E

T (V +R(f(x)+G(x)u))+
1
2

˙̃θTΓ−1θ̃+
1
2 θ̃

TΓ−1 ˙̃θ

And after some manipulations, next equation will be chosen to validate global

stability of the control law

˙̂θ = Γ
(
(ZTf (x) +AF (x, νa))TRTE − σ(θ− θ0)

)
(5.26)

95



Where σ > 0 and θ0 a parameter vector used to incorporate a good guess of θ.

Finally, L̇ will be equivalent to

L̇ ≤− k|E2| − σ

2 |θ̃|
2 − ηf |RTE|2 + |RTE|Wf + |RTE|2|νa|WG

− ηGag
∗|νa|2|RTE|2 + |RTE||νb| − ηGb

g∗|νb|2|RTE|2 +
σ

2 |θ
∗ − θ|2

Finally we will have

L̇ ≤ −k|E2| − σ

2 |θ̃|
2 +

W 2
f

4ηf
+

W 2
G

4ηGag
∗ +

1
4ηGb

g∗
+
σ

2 |θ
∗ − θ|2

and if we choose d =
W 2

f

4ηf
+ W 2

G
4ηGag

∗ +
1

4ηGb
g∗ +

σ
2 |θ
∗ − θ|2, then the value of d will

be reflected on the value of E or/and θ̃.For more details look [19].

5.6 Problem Simulation and Results

Consider equations of motion of 2 DOF planner robot in example 3.3.1, the non-

linear plant assumed to be completely unknown. Single layer neural network with

30 neurons sigmoid basis function were used to estimate the system nonlinearities

−M−1(q)(C(q̇, q)q̇ +G0(q)) and M−1(q). The parameters of the sigmoid basis

function ζj(x) = 1/(1 + e−ω
T
j −bj ) with ωj ∈ R4, bj ∈ R4, j = 1, 2, · · · , 30 were

chosen by off-line training try and error on the simulation then kept constant

throughout the simulation. θ0 is a vector represents the good guess of the initial

conditions of the parameter estimates and was taken to be a zero vector referring

to completely unknown nonlinear dynamics.
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The robot assumed to start initially from the origin while the desired trajectory

for both angles were chosen to be

qd =

[
0.5cos(0.7t) −0.6cos(0.65t)

]T

Prescribed performance function was chosen as

ρi(t) = (ρi0 − ρi∞)e−lit + ρi∞, i = 1, 2

Prescribed performance parameters are demonstrated in table 5.1 and parameters

of controller are defined table 6.1

Table 5.1: Prescribed performance function parameters

ρ10 ρ1∞ l1 ρ20 ρ2∞ l2
1.1 0.005 2.0 1.1 0.005 2.0

Table 5.2: Adaptive PPF Controller parameters

k nf ηGa ηGb
δd σ Γ λ1 λ2

0.5 0.2 0.2 0.2 0.1 7.5 0.1I 0.75 0.75

In figure 5.2, angular positions of both actual and desired trajectory had verified

the control efficacy. Figure 5.3 demonstrates the smoothness of the control signal

along the trajectory. Figure 5.4 presents bounds of the prescribed performance

function and verify that the error of each joint is bounded within a large set and

ended within a small preassigned set. Finally, transformed errors both joints are
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demonstrated in figure 5.4.

Figure 5.2: Output response of the robust adaptive control with PPF for q1 and
q2 versus desired trajectory qd1 and qd2

Figure 5.3: Control input provided by robust adaptive control with PPF where
u1 is τ1 and u2 is τ2.

5.7 Conclusion

This chapter illustrated the significant role of prescribed performance function

with robust adaptive control. The main idea of Prescribed performance has been
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Figure 5.4: Prescribed error bounds between ρ0 and ρ∞ and ε for both joints (a)q1
and (b)q2.

gained and the controller showed smoothness in the control signal and impressive

tracking performance. In a subsequent chapter, new controller stands on PPF will

be developed relies on the result of this chapter.
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CHAPTER 6

ROBUST MRAC WITH PPF FOR

NONLINEAR MIMO SYSTEMS

6.1 Introduction

In this work, we are motivated by the limitations of the studies presented in the

literature and mentioned in chapter 3 and 5 to propose a robust MRAC with

PPF. We show that the robust stabilization of the transformed error guaranties

the stability and convergence of the constrained tracking error within the set of

time varying constraints representing the performance limits. Simulation results

benchmark the performance of the proposed approach with L1 adaptive control

and neuro-adaptive control with prescribed performance. The rest of the chapter

is organized as follows. In section two, the problem formulation with important

remark are presented. The design and analysis of the proposed robust MRAC-

PPF, which represents the main contribution, is presented in section three. In

section four, simulation results verify the effectiveness of the proposed control

and show that the MRAC-PPF considerably improves the transient performance

when compared to L1 adaptive control and Neuro-Adaptive controller with PPF.

100



We conclude the chapter in section five.

6.2 Problem Formulation

We consider the following uncertain system defined by

ẋ = Ax(t) +Bu(t) + θTx(t) + ∆f(x,u, t) + d(t), x(0) = x0.

y(t) = Cx(t).
(6.1)

where ∆f is an unknown uncertainty and d(t) is the system unknown but bounded

disturbance. And Let the desired dynamics be defined as following

˙xm(t) = Amx(t) +Bmr(t), Bm = Bkg. (6.2)

where Am is a Hurwitz matrix, and both pairs (A,B) and (Am,B) are control-

lable. Consider u(t) = um(t) + uad(t) where um(t) = −kmx(t) and km is a state

feedback gain such that Am = A − kmx(t).

ẋ(t) = Amx(t) +Buad(t) + θT x(t) + ∆f(x,u, t) + d(t) (6.3)

Remark 6.1 B is not necessary a square matrix but satisfies

σ(
BBT

2 ) ≥ g∗ > 0 (6.4)

A ∈ Rn×n, B ∈ Rn×m, x(t) ∈ Rn, u(t) and r(t) are ∈ Rm, ∆f(x,u, t) ∈ Rn
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and d(t) ∈ Rn.

Let the error be e = x− xm, then

ė = ẋ− ẋm = Ame+B(uad − kg r) + θT x(t) + ∆f(x,u, t) + d(t) (6.5)

6.3 Controller Structure

Let

e(t) = ρ(t)S(ε) (6.6)

ρ(t) = (ρ0 − ρ∞)e−lt + ρ∞ (6.7)

the transformed error is then

ε = S−1(
ρ(t)

e(t)
) (6.8)

where

S(ε) =


δ̄eε − δe−ε

eε + e−ε
, δ̄ = 1andδ = 0ife(0) ≥ 0

δ̄eε − δe−ε

eε + e−ε
, δ = 1andδ̄ = 0ife(0) ≥ 0

(6.9)

and

ε = S−1(
ρ(t)

e(t)
) =

1
2 ln(δ + e(t)/ρ(t))− 1

2 ln(δ̄− e(t)/ρ(t)) (6.10)
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Let

1
2ρ(t)

(
∂S−1(ε)/ε) =

1
2ρ(t)

( 1
δ + e(t)/ρ(t)

− 1
e(t)/ρ(t)− δ̄

)
(6.11)

which can be written in matrix form as

Γ =



1
2ρ1(t)

(
∂S−1(ε1)/ε1) · · · 0

... . . . ...

0 · · · 1
2ρn(t)

(
∂S−1(εn)/εn)



Let

Φ = −Γ



e1(t)/ρ1(t) · · · 0
... . . . ...

0 · · · en(t)/ρn(t)



ε =



ε1

...

εn


and

ρ =



ρ1

...

ρn
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then

ε̇ = Γė+ Φρ̇ = Γ
(
Ame+B(uad− kgr) + θTx(t) + ∆f(x,u, t) + d(t)

)
+ Φρ̇

(6.12)

Let

γ(x) = θT x(t) + ∆f(x,u, t) + d(t) (6.13)

Assume

γ(x) = θT x(t) + σT ψ(x,u) + α(x,u) (6.14)

where α(x,u) represents all the unknown nonlinear in parameters terms such that

α(x) ≤ ᾱi. Let

V = Γ
(
Ame−Bkgr)

)
+ Φρ̇ (6.15)

and define

Vn = Γ−1 V (6.16)

Consider

γ̂(x) = θ̂T x(t) + σ̂T ψ(x,u) (6.17)

where ˆ(.) stands for the estimate. Then

γ(x)− γ̂(x, θ̂, σ̂) = θ̃Tx(t) + σ̃Tψ(x) + α(x).

θ̃ = θ̂− θ, σ̃ = σ̂− σ
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εT ε̇ = εT
(

Γ
(
− γ̂(x, θ̂, σ̂)− Vn

)
+ V

)

εT ε̇ = −
n∑
i=1

εiΓi,iθ̃T:,ix(t)−
n∑
i=1

εiΓi,iσ̃T:,iψ(x) +
n∑
i=1

εiΓi,iᾱi (6.18)

It is important to notice that

θ̃T:,iθ̂:,i =
1
2 θ̃

T
:,iθ̃:,i +

1
2
(
θ̂:,i − θ:,i

)T(
θ̂:,i + θ:,i

)
≥ 1

2 θ̃
T
:,iθ̃:,i −

1
2θ

T
:,iθ:,i

−θ̃T:,iθ̂:,i ≤ −
1
2 θ̃

T
:,iθ̃:,i +

1
2θ

T
:,iθ:,i

The control signal can be selected as

uad(t) = B−1
(
− θ̂Tx(t)− σ̂T ψ(x)− Vn

)
+ ur(t) (6.19)

where B−1 can be replaced by its Moore−Penrose inverse when it is not square

owing to Assumption. Let the adaption rules for θ̂ and σ̂ be defined as follows

respectively

˙̂θ:,i = −γ1iεiΓi,ix(t) (6.20)

˙̂σ:,i =
∫ ∞

0
Γi,i

(
− γ2i|εi|υiσ̂:,i + γ2iεiψ(x)

)
dτ − βiδi (6.21)

δi = γ2i|εi|υiσ̂:,i + γ2iεiψ(x) (6.22)

ˆ̄α ≥ ᾱi +
1
2 ||σ:,i||2Γi,iυi (6.23)

105



and the robustifying term

ur = [uri] = [−sign(ε)i · ˆ̄α] (6.24)

We are now ready to announce the following theorem.

Theorem 6.1 Under Assumption 1 with the prescribed performance defined by

( 5.3), the MRAC of System (6.1) with reference model (6.2) having the error

dynamic (6.5) and the transformed error dynamic (6.12), the control input de-

fined by (6.19), equations (6.17)-(6.16), and the adaption rule (6.20)-(6.22) and

the robustifying term (6.23)-(6.24), forces the transformed error to asymptotically

reach zero and therefore the tracking error to satisfy the prescribed performance.

6.4 Stability Analysis

The proof is similar to the one in [49]. We adapted it to our case. Let us consider

the Lyapunov candidate The Lyapunov candidate may be chosen as

W = W1 +W2 (6.25)

W1 = εT ε

W2 =
n∑
i=1

1
2γ1i

θ̃T:,iθ̃:,i +
n∑
i=1

1
2γ2i

(
σ̃:,i + βiδi

)T(
σ̃:,i + βiδi

)

Ẇ = Ẇ1 + Ẇ2
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Ẇ1 = ε̇T ε+ εT ε̇

Ẇ2 =
n∑
i=1

1
2γ1i

θ̃T:,i
˙̂θ:,i +

n∑
i=1

1
γ2i

(
σ̃:,i + βiδi

)T( ˙̂σ:,i + βiδ̇i
)

(6.26)

Ẇ1 ≤ −
∑n
i=1 εiΓi,iθ̃T:,ix(t)−

∑n
i=1 εiΓi,iσ̃T:,iψ(x) +

∑n
i=1 |εi|Γi,iᾱi

−∑n
i=1 εiΓi,iKi,iεi +

∑n
i=1 εiΓi,iuri (6.27)

n∑
i=1

1
γ2i

(
σ̃:,i + βiδi

)T( ˙̂σ:,i + βiδ̇i
)
≤ −

n∑
i=1

1
2 ||σ̃:,i||2|εi|Γi,iυi +

n∑
i=1

1
2 ||σ:,i||2|εi|Γi,iυi+

n∑
i=1

1
2 σ̃:,iεiΓi,iψ(x)−

n∑
i=1

βi||δi||

Ẇ = Ẇ1 + Ẇ2 ≤ −
n∑
i=1

εiΓi,iθ̃T:,ix(t)−
n∑
i=1

εiΓi,iσ̃T:,iψ(x) +
n∑
i=1
|εi|Γi,iᾱi −

n∑
i=1

εiΓi,iKi,iεi

+
n∑
i=1

εiΓi,iuri +
n∑
i=1

1
2γ1i

θ̃T:,i
˙̂θ:,i +

n∑
i=1

1
γ2i

(
σ̃:,i + βiδi

)T( ˙̂σ:,i + βiδ̇i
)
≤ 0

Then by choosing

˙̂σ:,i =
∫ ∞

0
Γi,i

(
− γ2i|εi|υiσ̂:,i + γ2iεiψ(x)

)
dτ − βiδi

δi = γ2i|εi|υiσ̂:,i + γ2iεiψ(x)

and

uri = −sign(ε)i · ˆ̄α
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one gets

Ẇ ≤−
n∑
i=1

εiΓi,iθ̃T:,ix(t)−
n∑
i=1

εiΓi,iσ̃T:,iψ(x) +
n∑
i=1
|εi|Γi,iᾱi −

n∑
i=1

εiΓi,iKi,iεi

−
n∑
i=1
|εi|Γi,i ˆ̄α+

n∑
i=1

1
2γ1i

θ̃T:,i
˙̂θ:,i −

n∑
i=1

1
2 ||σ̃:,i||2|εi|Γi,iυi

+
n∑
i=1

1
2 σ̃:,iεiΓi,iψ(x)−

n∑
i=1

βi||δi||+
n∑
i=1

1
2 ||σ:,i||2|εi|Γi,iυi ≤ 0

(6.28)

Using the adaption rule

˙̂θ:,i = −γ1iεiΓi,ix(t)

and leads to

+
n∑
i=1
|εi|Γi,iᾱi −

n∑
i=1

εiΓi,iKi,iεi −
n∑
i=1
|εi|Γi,i ˆ̄α

−
n∑
i=1

1
2 ||σ̃:,i||2|εi|Γi,iυi +

n∑
i=1

1
2 ||σ:,i||2|εi|Γi,iυi −

n∑
i=1

βi||δi|| ≤ 0
(6.29)

The following terms are negative −∑n
i=1 εiΓi,iKi,iεi, −

∑n
i=1

1
2 ||σ̃:,i||2|εi|Γi,iυi and

−∑n
i=1 βi||δi||, Therefore one can select

n∑
i=1
|εi|Γi,iᾱi −

n∑
i=1
|εi|Γi,i ˆ̄α+

n∑
i=1

1
2 ||σ:,i||2|εi|Γi,iυi ≤ 0 (6.30)

Which leads to

n∑
i=1
|εi|Γi,i ˆ̄α ≥

n∑
i=1
|εi|Γi,iᾱi +

n∑
i=1

1
2 ||σ:,i||2|εi|Γi,iυi (6.31)
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which is satisfied if ˆ̄α is selected as

ˆ̄α ≥
(
ᾱi +

1
2 ||σ:,i||2υi

)

In the next section, several simulation results to validate the approach ad assess

its stability will be presented.

6.5 Simulation Examples

the performance of the proposed robust MRAC control design is demonstrated

using two different cases. In each case, the control performance and its ability to

guarantee the desired performance are benchmarked to first L1 adaptive controller

and Neuro-adaptive controller.

Example 6.5.1

ẋ = Ax(t) +Bu(t) + θTx(t) + ∆f + d(t), x(0) = x0.

y(t) = Cx(t).

A =



−36 36 0

0 20 0

0 0 −3


,B =



1 0 0

0 1 0

0 0 1


,C =



1 0 0

0 1 0

0 0 1
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∆f =



x2
3 + 0.2sin(x1)

−x1x3 − 0.2xos(x3)x1

x1x2


, d(t) =



1 + sin(t)

1.2 + cos(t)

sin(t) + cos(t)− 1



, θ(t) =



3sin(0.5t) 2sin(0.4t)cos(0.3t) 0.7sin(0.2t)

0.9sin(0.2t) 2.5sin(0.3t) + 0.3cos(t) sin(0.1t)

0.5sin(0.13t) 0.6cos(0.15t) 1.5cos(0.7t) + 1.6sin(0.3t)


Example 6.5.2

ẋ = Ax(t) +Bu(t) + θTx(t) + ∆f + d(t), x(0) = x0.

y(t) = Cx(t).

A =



−36 36 0

0 20 0

0 0 −3


,B =



1 0 0

0 1 0

0 0 1


,C =



1 0 0

0 1 0

0 0 1



∆f =



x2
3 + 0.2sin(x1)− 2.5u3cos(u1)

−x1x3 − 0.2xos(x3)x1 + 0.7u2
3

x1x2


, d(t) =



1 + sin(t)

1.2 + cos(t)

sin(t) + cos(t)− 1



, θ(t) =



3sin(0.5t) 2sin(0.4t)cos(0.3t) 0.7sin(0.2t)

0.9sin(0.2t) 2.5sin(0.3t) + 0.3cos(t) sin(0.1t)

0.5sin(0.13t) 0.6cos(0.15t) 1.5cos(0.7t) + 1.6sin(0.3t)
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Desired poles are selected as p = −70,−60± i.

Robust Adaptive Prescribed Performance Parameters Parameters ρi0 =

2,ρi∞ = 0.05,li = 1.5,and estimator parameters βi = 2,γ1i = 50000,γ2i =

50000,υi = 0.05 where ,i = 1, 2, 3 and finally ψ(x) =

[
2 2 2

]T
, ˆ̄ε =[

10 10 10
]T

,K = 0.1diag(3)

Reference input assigned to be r(t) =
[
cos(0.75t) cos(0.8t) cos(0.7t)

]T
,

L1 Adaptive Controller Parameters θb ∈ [−5, 5], ∆ ∈ 20, ω̂ ∈ [0.3, 10],

The parameters of the sigmoid basis function ζj(x) = 1/(1 + e−ω
T
j −bj ) with

ωj ∈ R3, bj ∈ R3, j = 1, 2, · · · , 80 were chosen by off-line training try and error

on the simulation then kept constant throughout the simulation. θ0 is a vector

represents the good guess of the initial conditions of the parameter estimates and

was taken to be a zero vector referring to completely unknown nonlinear dynam-

ics. Prescribed performance parameters are ρi0 = 2, ρi∞ = 0.05, li = 1.5. Figure

Table 6.1: Robust Neuro Adaptive Control with PPF parameters

k nf ηGa ηGb
δd σ Γ

0.5 0.2 0.2 0.2 0.1 7.5 0.1I

6.1 shows the output performance of the proposed approach versus L1 adaptive

controller, the control signal of these two controllers are presented in figure 6.2.

Figure 6.3 and 6.4 reveal the idea of prescribed performance and demonstrates

the error of these three controllers with respect to pre-assigned prescribed values

with high nonlinear uncertainties and nonlinearities as mentioned in case 1.

The following figures of case 2 overlay the simulation results of the proposed ap-
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proach as well as two controllers from the literature. we can see in figure 6.5

the output performance of three controllers, their control signal is presented in

6.6, error and transformed error are presented in figure 6.7, and finally figure

6.8 highlights the advantage of the proposed controller. In all, the performance

of the proposed approach, its efficiency, and robustness compete with L1 and

Neuro−Adaptive.

Figure 6.1: Output Performance of robust MRAC-PPF and L1 adaptive controller
for case 1.

6.6 Conclusion

In this chapter, we proposed an adaptive control of multi-input multi-output un-

certain high-order nonlinear system capable of guaranteeing a predetermined pre-

scribed performance. The robust stabilization of the transformed error, guar-

anties the stability and convergence of the constrained tracking error within the

set of time varying constraints representing the performance limits. Simulation
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Figure 6.2: Control Signal of robust MRAC-PPF and L1 adaptive controller for
case 1.

Figure 6.3: e2 and ε2 of robust MRAC-PPF and L1 adaptive controller for case
1.
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Figure 6.4: e2 and ε2 of robust MRAC-PPF and L1 adaptive controller for case
1.

Figure 6.5: Output Performance of robust MRAC-PPF, L1 adaptive controller
and Neuro−Adaptive with PPF for case 2.
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Figure 6.6: Control Signal of robust MRAC-PPF, L1 adaptive controller and
Neuro−Adaptive controller with PPF for case 2.

Figure 6.7: e2 and ε2 of robust MRAC-PPF, L1 adaptive controller and Neuro−
Adaptive controller with PPF for case 2.
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Figure 6.8: e2 and ε2 of robust MRAC-PPF, L1 adaptive controller and Neuro−
Adaptive controller with PPF for case 2.

results demonstrated the efficiency of the proposed approach when compared to

L1 adaptive control and to the neuro-adaptive approach with similar requirement.
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CHAPTER 7

ROBUST ADAPTIVE OBSERVER FOR

L1 ADAPTIVE CONTROLLER

7.1 Introduction

Designing a robust adaptive observer for nonlinear systems could be headed in

order to estimate inaccessible states from the measured output but can be chal-

lenging due to unmodeled dynamics, presence high nonlinearities and time vary-

ing uncertainties. In this chapter, robust adaptive observer design for L1 adaptive

controller is mainly adopted from [59]. The work in [59] was designed to deal with

SISO and MIMO systems with high level of nonlinearities that are assumed to be

completely unknown in addition to the presence of structured uncertainties. The

chapter is organized as following: section one is an introduction. Problem formu-

lation is presented in section two. The observer design and stability analysis are

presented in section three. In section four, discussion of illustrative examples val-

idate the effectiveness of the observer design with L1 adaptive controller. Finally,

the chapter is concluded.
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7.2 Problem formulationn

Consider the following problem:

ẋ(t) = Ax(t) +Bf(x,u, t) + g(y,u)

y = Cx(t)

(7.1)

where x ∈ Rn, u ∈ Rm and y ∈ Rp are the system stats (unmeasured), the control

input (unmeasured) and the system output (measured) respectively. g(y,u) is

nonlinear function with known parameters and f(x,u, t) is an unknown nonlinear

function. Finally, A, B and C are constant matrices (known) with appropriate

sizes.

The objective of this chapter is to design an adaptive observer for uncertain

nonlinear system with unknown dynamics in order to estimate states values for

L1 adaptive controller from the regulated output value. Four basic assumptions

will be considered

Assumption 7.1 The pair (A,B) is controllable and the pair (A,C) is de-

tectable.

Assumption 7.2 Lyapunov function of the system V (ω) is uniformly bounded

and satisfies

α1(||ν||) ≤ Vν(ν) ≤ α2(||ν||) (7.2)

∂ ≤ Vν(ν)

∂ν
S(y, ν) ≤ −α3(||ν||) (7.3)
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α3(||ν||) = τ0Vν(ν)− γ(||y||)− d0 (7.4)

where α1 , α2 and α3 are positive definite class K∞ functions [72], and τ0 > 0 ;

d0 > 0 are positive constants. γ0 is a smooth nonnegative function and has the

form of γ(s) = s2γ0(s2) which will be equivalent to y2γ0(y2) as mentioned in [73]

and ε̄0 is a small positive number.

Assumption 7.3 The nonlinear function can be written in the form of

||f(x,u, t)|| ≤ λ1 + λ2||x||ξ(y,u) + λ3ζ(y,u) + λ4α(||ν||) (7.5)

with λi ≥ 0, i = 1, 2, 3, 4 are unknown nonnegative constants, α(|| · ||) is a class

K∞ function and both of ξ(y,u) and ζ(y,u) are functions assigned arbitrarily

nonnegative.

Assumption 7.4 Q, P are positive definite matrices satisfying

(A− klC)TP + P (A− klC) +Q ≤ 0

PB = CT
(7.6)

7.3 Robust adaptive observer

The observer design is given by UVS can be classified into two categories either re-

motely control vehicles, or autonomous vehicles. Each of these categories includes

different types of UVS such as: Unmanned Aerial Vehicles, Underwater Vehicles,

Unmanned Surface Vehicle, Unmanned Spacecraft and Unmanned Grounded Ve-
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hicle. Importance of UVS relies on performance and mission targets. Generally,

each type is considered as a mechanical rigid body with different equations of

motion. The majority of UVS can be represented by nonlinear dynamics. The

dynamic of UVS have their own features as affine nonlinear systems with normal

coupling or with strong coupling. Usually, the controller is required to drive the

system to the desired trajectory with smooth transition and fast response. Smooth

transition in both control signal and output response will contribute in protecting

the life cycle of system rotors and other parts in the UVS.

Developing UVS in the absence of the operator is costly in the controller com-

plexity for tracking and vision. The controller is demanded to overcome many

drawbacks, starting with stabilizing the system, driving the system to the desired

trajectory in the shortest possible time, adapt against any variations of system

dynamics and finally be robust against any disturbances. All these requirements

ended up making the control design as an important issue and an interested sub-

ject to be investigated.

In the literature, several control design approaches have been adopted for Euler-

Lagrange systems like adaptive control, nonlinear control, robust control and so

forth. The weakness of many control approaches resides in defining the appropri-

ate model for nonlinearity cancellation. In nonlinear control, it is often difficult

to use the approximated nonlinear Euler-Lagrange equations of the system with-

out adding a robustifing term to ensure system operation in the stability region.

Including a robustifing term in the control law introduces discontinuity and chat-
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tering on the control signal. On the other hand, estimation of system nonlinearities

normally experienced with discontinuity or singularity in the estimation process

which may take the system out of the stability region.

Figure 7.1: Robust adaptive observer design with L1 adaptive controller.

7.3.1 Lyapunov function

consider the following Lyapunov candidate

Vν =
1
2
[
eTl Pel + Γlβ̃2] (7.7)

where β̃ = β − β∗ and β∗ > 0 is a constant representing the desired value of β.

The derivative of (7.7) in addition to the use of (??), (??) and assumption 7.3.

V̇ν =
1
2el(A

T
l P + PAl)el − eTl Pβ̂Bēlβl − eTl PBf(x, t) + Γ−1

l β̃ ˙̂β
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V̇ν =
1
2elQel − e

T
l Pβ̂Bēlβl − eTl PBf(x, t) + Γ−1

l β̃ ˙̂β

V̇ν =
1
2elQel − β̂||ēl||

2
[
1 + ξ2(y,u) + ||x̆||ξ2(y,u) + η2(y,u) +

[
α
(
α−1

1 (2δ)
)]2]

− ||ēl||
[
λ1 + λ2||x||ξ(y,u) + λ3ζ(y,u) + λ4α(||ν||)

]
+ Γ−1

l β̃ ˙̂β

(7.8)

V̇ν =
1
2elQel − ||ēl||

[
λ1 + λ2||x||ξ(y,u) + λ3ζ(y,u) + λ4α(||ν||)

]
+ σlβ̃β

− β∗||ēl||2
[
1 + ξ2(y,u) + ||x̆||ξ2(y,u) + η2(y,u) +

[
α
(
α−1

1 (2δ)
)]2] (7.9)

From (??)

α(||ν||) ≤ α
(
α−1

1 (2δ)) + α
(
α−1

1 (2D)) (7.10)

V̇ν =
1
2elQel − ||ēl||λ1 + ||ēl||λ2||x||ξ(y,u) + ||ēl||λ3ζ(y,u)

+ ||ēl||λ4α
(
α−1

1 (2δ)) + ||ēl||λ4α
(
α−1

1 (2D))− σlβ̃β

− β∗||ēl||2
[
1 + ξ2(y,u) + ||x̆||ξ2(y,u) + η2(y,u) +

[
α
(
α−1

1 (2δ)
)]2]

(7.11)

Choosing λ̄1 = λ1 + λ4α
(
α−1

1 (2D)) and ||x|| ≤ ||el||+ ||x̆||

V̇ν =
1
2elQel − ||ēl||λ̄1 + ||ēl||λ2||el||ξ(y,u) + ||ēl||λ2||x̆||ξ(y,u)

+ ||ēl||λ3ζ(y,u) + ||ēl||λ4α
(
α−1

1 (2δ))− σ−1
l β̃β

− β∗||ēl||2
[
1 + ξ2(y,u) + ||x̆||ξ2(y,u) + η2(y,u) +

[
α
(
α−1

1 (2δ)
)]2]

(7.12)

V̇ν =
1
2elQel − σ

−1
l β̃β − β∗||ēl||2βl +M (7.13)
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Where M includes the rest terms which is equivalent to equation (7.3).

7.4 Results and Discussions

Two cases will validate the robustness of robust adaptive observer design with

L1 adaptive controller. The first case represent the observer with high nonlinear

SISO system and in the second case and the observer is designed for high nonlinear

MIMO system. The nonlinearity, states and control input are assumed to be

completely unknown for previous two cases.

Example 7.5.1 Consider the following nonlinear SISO system

ẋ = Ax+B(ωu+ f(x, t))

y = Cx

where x = [x1,x2]T are system states (unmeasured), u is the control input (un-

measured), y is the output (measured). A, B and C are known matrices and they

indicate that the system is controllable and detectable. The unknown nonlinearity

is f(x, t).

A =

0 1

0 0

 ,B =

0

1

 ,C =

[
1 1

]

and

ω =
75

s+ 75, z(s) = s− 1
s2 + 3s+ 2v(s), v(t) = x1sin(0.2t) + x2
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f(x, t) = 2x2
1 + 2x2

2 + x1sin(x
2
1) + x2cos(x

2
2) + z2

Each of the unmodeled input parameters, uncertainties in the states and dis-

turbances were assigned in compact sets [ωmin,ωmax] ∈ [0, 10], ∆ = 100 and

θb = 10. The desired closed loop poles are chosen to be −1.4± j0.743, the feed-

back gain = 20, the adaptation gain(Γ) = 1000000 and Q = [ 1 0
0 1 ]. The observer

design parameters were selected as Γl = 10, σl = 0.0001, λ0 = 2.5, d0 = 0.625

and finally kl = [8, 64]T . The parameter of the adaptive law βl is defined by

βl = 1+ ||y||4 + ||x̆||2||y||4 + 2δ with δ(0) = 1 and β̆(0) = 1. The reference input

was chosen to r = cos(0.5t) with step change by +1 and −1 at 14 and 35 second

respectively in order to validate the robustness of the observer with L1 adaptive

controller.

Figure (7.2) illustrates the output performance and the control signal of

L1 adaptive controller with the observer design. The actual and estimated states

are demonstrated in figure (7.3). The change in the adaptive estimate during the

control process is revealed in figure (7.4).

Example 7.5.2 Consider the following 2-DOF planner robot example 3.3.1

which is similar to our case with some time variant uncertainties in the inertia

matrix to be

M(q) =

M11 + d1(t) M12 + d2(t)

M21 + d2(t) M22 + d3(t)
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Figure 7.2: Output performance of L1 adaptive controller with robust adaptive
observer.

Figure 7.3: x and x̆ of robust observer with L1 adaptive controller.

where d1(t) = 0.6sin(0.3t), d2(t) = 0.7sin(0.25t) and d3(t) = |0.5sin(0.35t)| are

time varying uncertain parameters included in the model. Projection operator

bounds are ω̂ ∈ [ [0.3,9.0] [0.0,0.3]
[0.0,0.3] [0.3,4] ], ∆ = 100 and θb = 10. The desired closed loop

poles were chosen to −10± j0.5,−15± j0.5, the feedback gain = K = [ 20 0
0 20 ], the

adaptation gain(Γ) = 100000 and Q = eye(4, 4). The observer deign parameters

were selected as Γl = 100, σl = 0.0001, λ0 = 2.5, d0 = 0.625. The parameter of
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Figure 7.4: β̆ of robust observer with L1 adaptive controller.

adaptive law βl is defined by βl = 1 + ||y||4 + ||x̆||2||y||4 + 2δ with δ(0) = 1 and

β̆(0) = 1 and the desired closed loop poles of observers are −60± j0.5,−50± j0.5.

Figure 7.5 shows the output performance and the control signal of L1 adaptive

controller with the observer design for joints q1 and q2. In figure (7.6), actual and

observed states are plotted. Finally, figure (7.7) illustrates the change in adaptive

estimate β̆ during the control process. Example 7.5.3 Consider simulation

Figure 7.5: Output performance of L1 adaptive controller with robust observer
for 2 DOF planner robot.
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Figure 7.6: x and x̆ of robust observer with L1 adaptive controller for 2-DOF
planer robot.

Figure 7.7: β̆ in the estimate robust observer with L1 adaptive controller.

problem of quadrotor in example (3.3.2), The observer deign parameters were

selected as Γl = 100, σl = 0.0001, λ0 = 2.5, d0 = 0.625. The parameter of

adaptive law βl is defined by βl = 1 + ||y||4 + ||x̆||2||y||4 + 2δ with δ(0) = 1

and β̆(0) = 1 and the desired closed loop poles of observers are −70± j0.5, 75±

j0.5and− 85± j0.5.

Figure (7.8) shows the output performance for positions of x, y and z of quadrotor.

The angles performance and control signal are illustrated in figure (7.9) and (7.10)
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respectively. Figure (7.11) shows the output position in 3D-frame. Finally, figure

(7.12) benchmark the estimated states and actual states. The figure illustrate the

robustness of the observer design.

Figure 7.8: Position performance of L1 adaptive controller with robust observer
for quadrotor.

Figure 7.9: Angles performance of L1 adaptive controller with robust observer for
quadrotor.
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Figure 7.10: Control signal of L1 adaptive controller with robust observer for
quadrotor.

Figure 7.11: Angles performance of L1 adaptive controller with robust observer
for quadrotor.

7.5 Conclusion

In this work, robust adaptive observer has been examined with L1 adaptive con-

troller for nonlinear systems. Nonlinearities are assumed to be completely un-

known in addition to unmodeled input parameters and uncertainties. System
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Figure 7.12: Actual and estimated angles of robust observer with L1 adaptive
controller for quadrotor.

outputs were available for measurements while states were unmeasurable and con-

trol inputs were not used in the observer design. Two illustrative simulations were

developed including SISO and MIMO systems to prove the robustness of the ob-

server design with L1 adaptive controller and to validate the tracking performance.

The output performance was impressive and both observed and actual states were

very close in their values which validate the efficacy of the observer design with

L1 adaptive controller.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 Summary of Conclusions and Contributions

L1 adaptive controller was applied on different structures of nonlinear systems. In

addition, the proposed controllers fuzzy-L1 adaptive controller and robust MRAC

with PPF have been implemented on different nonlinear systems. In this thesis,

the following problems and results have been presented

Chapter 3

1. L1 adaptive controller has been presented for high nonlinear SISO and

MIMO systems with matched and unmatched uncertainties.

2. High nonlinear systems include UVS such as twin rotor, quadrotor and UAV.

Also, two degree of freedom planar robot and other nonlinear systems from

recent papers have been simulated.

Chapter 4

1. Fuzzy filter for L1 adaptive controller has been proposed for high nonlinear

uncertain systems.
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2. Stability analysis and robustness of the controller has been validated.

3. The proposed controller showed better results in terms of control signal, ro-

bustness margin and tracking capability compared to L1 adaptive controller.

Chapter 5

1. The work of neuro adaptive control with PPF has been developed success-

fully.

Chapter 6

1. Robust MRAC with PPF for high nonlinear uncertain systems has been

proposed.

2. Stability analysis and robustness of the controller has been validated.

3. The proposed controller showed better results from L1 adaptive controller

in case of not-affine systems and it solved the limitations of neuro adaptive

control with PPf.

Chapter 7

1. Developed and implemented a robust adaptive observer with L1 adaptive

controller.

2. The observer showed impressive results with the controller applied to differ-

ent systems.
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8.2 Future Work

1. Optimizing fuzzy membership functions on scale of MIMO systems for fuzzy

L1 -adaptive controller.

2. Propose MRAC with PPF for high nonlinear systems with unmatched un-

certainties.

3. Propose L1 adaptive controller with PPF for nonlinear systems.
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