

©Issam Hadj Laradji
2014

i

Dedicated to my parents, and my brothers

ii

ACKNOWLEDGMENTS

I would like to thank Dr. Lahouari Ghouti, my supervisor, whose help and

motivation encouraged me to accomplish the most rewarding goal that is this

thesis. I would also like to thank my thesis committee members, Prof. Sabri

Mahmoud and Prof. Shokri Selim, whose feedback and comments were vital to the

completion of this thesis. Furthermore, I express my gratitude for my professors

with whom I had the honour to be their student - among them are Dr. Adam

Salahadin, Dr. Wasfi Al-khatib, Dr. Musab Alturki, Dr. Mohammad Alshayeb,

and Dr. Sultan Almuhammadi. Finally, I would like to thank my family who

supported and inspired me to strive hard for my ambitious goals, allowing me to

enjoy the memorable journey of working through developing this thesis.

iii

TABLE OF CONTENTS

ACKNOWLEDGMENTS iii

LIST OF TABLES vii

LIST OF FIGURES ix

ABSTRACT (ENGLISH) xi

ABSTRACT (ARABIC) xiii

CHAPTER 1

INTRODUCTION 1

1.1 Problem Statement . 3

1.2 Thesis Contributions . 3

1.3 Thesis Breakdown . 3

CHAPTER 2

LITERATURE REVIEW 5

2.1 Notations . 5

2.2 Overview . 5

2.3 Overview of ANN Algorithms . 12

2.3.1 Logistic Regression . 13

2.3.2 Multi-Layer Perceptron . 15

2.3.3 Recurrent ANNs . 19

2.3.4 Sparse autoencoders . 20

iv

2.3.5 Deep Belief Networks . 23

2.3.6 Current Performance of Deep Learning Networks 26

2.4 Overview of Extreme Learning Machine Algorithms 32

2.4.1 Mathematical Notation . 32

2.5 Extreme Learning Machines . 33

2.5.1 Weighted ELMs . 35

2.5.2 Sequential ELMs . 37

2.6 Activation Functions . 39

2.7 Kernel Functions . 41

2.7.1 Model Selection and Criteria 42

CHAPTER 3

RECURRENT EXTREME LEARNING MACHINES 46

3.1 Introduction . 46

3.1.1 Recurrent-Hidden Extreme Learning Machines 47

3.1.2 Recurrent-Output Extreme Learning Machines 49

3.2 Experimental Results . 53

3.2.1 Experimental Setup . 53

3.2.2 Experimental Design . 53

3.2.3 Experimental Results . 55

CHAPTER 4

EXTREME LEARNING MACHINE BASED AUTOENCODERS 62

4.1 Introduction . 62

4.2 Experimental Results . 69

4.2.1 Experimental Setup . 69

4.2.2 Experimental Design . 69

4.2.3 Experimental Results . 70

4.2.4 ELM-AE Features . 71

4.2.5 ELM-AE feature weights 73

4.2.6 ELM-Based DBNs vs. DBNs 75

v

4.2.7 Performance results in the literature 77

CHAPTER 5

CONVOLUTIONAL EXTREME LEARNING MACHINES 78

5.1 Introduction . 78

5.2 Experimental Results . 85

5.2.1 Experimental Setup . 85

5.2.2 Experimental Design . 85

5.2.3 Experimental Results . 86

CHAPTER 6

CONCLUSION 90

REFERENCES 93

VITAE 104

vi

LIST OF TABLES

2.1 Notations. 6

3.1 Dataset statistics. S and F are the number of samples and features

in the dataset, respectively. 54

3.2 Comparison between algorithms using the Mean-Absolute Error

performance metric on the yahoo dataset. 55

3.3 Comparison between algorithms using the Mean-Absolute Error

performance metric against the 1D Wind dataset. 56

3.4 Comparison between algorithms using the Mean-Square Error per-

formance metric on the Short-movement Stock Prices dataset. . . 56

4.1 Dataset statistics. 69

4.2 Algorithms’ settings. 70

4.3 Performance on the MNIST dataset for 500, 1K, and 2K samples. 71

4.4 Performance on the MNIST dataset for 4k, 8k samples. 71

4.5 Performance on the AHDBase dataset for 500, 1K, and 2K samples. 72

4.6 Performance on the AHDBase dataset for 4k, 8k samples. 72

4.7 Performance on the MAHDBase dataset for 500, 1K, and 2K samples. 72

4.8 Performance on the MAHDBase dataset for 4k, 8k samples. . . . 73

4.9 Comparison between algorithms with respect to training time. . . 75

4.10 Comparison between DBN and ELM-DBN. 76

4.11 Overview of algorithms in the literature. 77

5.1 Dataset statistics. 85

vii

5.2 Comparison between algorithms using the accuracy performance

metric. 86

5.3 Performance on the MNIST dataset for 500, 1K, and 2K samples. 87

5.4 Performance on the MNIST dataset for 4K and 8K. 87

5.5 Performance on the MAHD dataset for 500, 1K, and 2K samples. 87

5.6 Performance on the MAHD dataset for 4K and 8K. 87

5.7 Performance on the AHDBase dataset for 500, 1K, and 2K samples. 88

5.8 Performance on the AHDBase dataset for 4K and 8K. 88

viii

LIST OF FIGURES

1.1 ANN with one hidden layer. 1

2.1 XOR problem formulation. 7

2.2 The green line represents the decision boundary. 8

2.3 The trained decision function separating the two classes. 8

2.4 4-Point XOR example. 9

2.5 A multi-curve solution of the XOR problem. 10

2.6 Weight initialization effect. 10

2.7 DBN pre-trained by RBM. 11

2.8 Levels of abstraction. 12

2.9 MLP with one hidden layer. 15

2.10 Elman Neural network. 19

2.11 Sparse autoencoder network. 21

2.12 Relationship between KLD and p̂ when p = 0.2. 22

2.13 Network with two hidden layers. 24

2.14 First hidden layer training. 24

2.15 Second hidden layer training. 25

2.16 Output layer training. 25

2.17 Plot of the logistic function . 40

2.18 Plot of hyperbolic tan. 41

3.1 Recurrent-hidden extreme learning machines. 48

3.2 Training Recurrent Hidden ELM. 49

3.3 Recurrent-output extreme learning machines. 50

ix

3.4 Training Recurrent Output Neural Network 51

3.5 Visualizing Spatio-Temporal learning. 53

3.6 Illustrates the values of the chaos datasets. 55

3.7 RH-ELM vs. RO-ELM vs. ELM on the 4-D japanese Wind dataset. 57

3.8 RH-ELM vs. RO-ELM vs. ELM on the Chaos dataset A. 58

3.9 RH-ELM vs. RO-ELM vs. ELM on the Chaos dataset B. 58

3.10 RH-ELM vs. RO-ELM vs. ELM on the Chaos dataset C. 59

3.11 RH-ELM vs. RO-ELM vs. ELM on the Chaos dataset D. 59

3.12 RH-ELM vs. RO-ELM vs. ELM on the Chaos dataset E. 60

3.13 RH-ELM vs. RO-ELM vs. ELM on the Chaos dataset F. 60

4.1 Sparse autoencoder network. 64

4.2 Training DBN using ELM-AE. 67

4.3 Samples of the three digit datasets. 70

4.4 Displays feature weights β trained by ELM-AE. 74

4.5 Displays feature weights W1 trained by SAE. 74

5.1 Convolution of a kernel with a 2D image subset. 79

5.2 Image reconstruction using ELM-CA. 80

5.3 Dot product representation. 82

5.4 Returns the hidden filters from training ELM-CA as features. . . 83

5.5 A CNN of one convolutional layer followed by a fully connected layer. 84

5.6 Trains an ELM-CNN consisting of one convolutional layer followed

by a fully connected layer. 84

x

THESIS ABSTRACT

NAME: Issam Hadj Laradji

TITLE OF STUDY: New Algorithms for Deep Learning Machines

MAJOR FIELD: Department of Information and Computer Science

DATE OF DEGREE: May 2014

The objective of the thesis is two-fold. First, it provides an outline of the

fundamental concepts revolving around artificial neural networks (ANNs) and ex-

treme learning machines (ELMs). Second, built on these concepts, it presents

three new deep learning algorithms. The first algorithm uses the least squares

technique to learn spatio-temporal patterns. It addresses problems including the

prediction of stock market values, wind speed and chaotic patterns. The algorithm

uses information provided by previous time-steps to improve its decision function.

Two variants are proposed for of this algorithm: 1) recurrent-hidden ELM and; 2)

recurrent-output ELM. Computer simulations showed that, on average, the algo-

rithm outperforms traditional ELMs on six different datasets. Called ELM-based

autoencoder (ELM-AE), the second algorithm is a feature extractor based on the

xi

least squares technique too. To extract structural hidden features from the input

data, the least squares algorithm is preferred over the backpropagation algorithm

for its learning speed. Further, the second algorithm can be used to train larger

neural networks consisting of two or more hidden layers. Using the optical char-

acter recognition (OCR) problem, simulation results revealed that the extracted

digit strokes using the ELM-AE and sparse autoencoders are similar. However, it

is worth noting that the ELM-AE algorithm has a faster learning curve. Moreover,

large networks, trained by the ELM-AE algorithm, perform as well as deep belief

networks trained with the backpropagation algorithm using the same number of

hidden layers. Like its predecessors, the third algorithm, called the ELM-based

convolutional autoencoders (ELM-CA), uses the least squares algorithm to train

a convolutional layer to reconstruct the input images. Such design allows con-

structing large convolutional neural networks (CNNs) that train very quickly as

opposed to those based on backpropagation. In fact, the latter networks can take

weeks to train. Reported results showed that CNNs trained using the ELM-based

CA algorithm achieve competitive results that greatly outperform support vector

machines (SVM) and standard ELM algorithms. The contributions, made in this

thesis, aim to start a new trend of deep learning algorithms that are quick to train

and efficient as well.

xii

xiii

 ةملخص الرسال
 حاج لعراجيالعصام سم: الا

 خوارزميات جديدة لآلات التعلم العميق :عنوان الرسالة
 لآلياعلوم الحاسب :التخصص

 4102مايو :الدرجة العلميةتاريخ

اعية وآلات تبيين مفصل للمف اهيم الأساسية للشبكات العصبية الصن تحقيق هدفين وهما: أولا الرسالة إلىتهدف هذه
م على هذه المف اهيم المقدمة يتم تصميم ثلاثة خوارزميات جديدة للتعلم العميق. تستخد بناءا التعلم السريعة. ثانيا،

مية، تتم معالجة وكتطبيق لهذه الخوارز والزمانية. نماط المكانيةالأ لمعرفة المربعات الصغرى بتقنيةالخوارزمية الأول
وتعلم أنماط الفوضى. وتعتمد هذه الخوارزمية على وسرعة الرياح، مشاكل مثل تنبؤ قيم أسهم الأوراق المالية،

ت وارزميات وهما آلاالخ هذه من نسختين وتم اقتراح الخطوات السابقة لتحسين وظيفة قرارها. المعلومات المتمثلة في
وآلات التعلم السريعة ذات مخرجات ، hidden ELM) -(recurrentالتعلم السريعة ذات طبقة خفية متكررة

 الخوارزمية تتفوق ،محاكاة المق ارنة أنه، في المتوسط وقد أظهرت .output ELM)-(recurrent متكررة
خدمة. أما الخوارزمية ة مجموعات بيانات مستست حالة في التق ليدية السريعة التعلم آلات على بنسختيها الأولى المقترحة

وهي طريقة استخراج الميزات AE) -(ELMآ لات التعلم السريعة للتشفير الذاتي المقترحة الثانية والمعروفة باسم
هي لتدريب الأوزان (backpropagation)يستخدم تقنية النشر العكسي على أساس المربعات الأق ل. وبما أنها لا

 لسماتا تعاني من بطؤ التعلم. وبذلك تتمكن هذه الخوارزمية من استخراج لاف النشر العكسي التيسريعة للغاية بخ
 الهيكلية الخفية عبر بيانات الإدخال. علاوة على ذلك، يمكن استخدامها لتدريب شبكا تعصبية كبيرة الأحجام

ات المستخرجة عبر شابه الميز ومن خلال محاكاة التعرف على الحروف، تبين ت أكثر. أو والمتكونة منطبقتين خفيتين
 (sparse autoencoders) التعلم السريعة للتشفير الذاتي وآلات التشفير الذاتي الق ليلة التواصل خوارزميتي آلات

 أن لدراسة أيضاا بكثير. كما أظهرت أق ل هو م السريعة للتشفير الذاتيلالتع آلات دريبت سرعة أن من الرغم على
شابهة للشبكات التعلم السريعة للتشفير الذاتي تتسم بدقة م استخدام آلاتالعصبية كبيرة الأحجام المدربة ب الشبكات

س يستخدم نف العكسي حتى عندما وتقنية النشر) (deep belief networksالعميقالمدربة عبر شبكات الإيمان
للتشفير ريعةآلات التعلم الس والمعروفة باسم العدد من الطبق ات الخفية. وفيما يخص الخوارزمية المقترحة الثالثة

والتي تستخدم المربعات based convolutional autoencoders) -(ELMالذاتي باعتماد التلافيف
ام باعتماد المدخلة. وبهذا يمكن بناء شبكات عصبية كبيرة الأحج الصور طبقة التلافيف لإعادة بناء لتدريب الصغرى

xiv

 سرعة أق ل من تقنية النشر العكسيوالتي يمكن تدريبها ب (convolutional neural networks)التلافيف
لكبيرة الأحجام باعتماد ا الشبكات العصبية تتطلب أسابيع لتدريب الشبكات. وقد أظهرت نتائج المحاكاة أن والتي قد

التلافيف والمدربة باستخدام آلات التعلم السريعة للتشفير الذاتي باعتماد التلافيف تحقق نتائج تنافسية ومتجاوزة
أخيرا، و وآلات التعلم السريعة التق ليدية. (support vector machines)لات شعاع الدعملأداء ا بشكل كبير

ة التعلم اتجاه جديد لخوارزميات التعلم العميقة والتي تتميز بسرع تهدف المساهمات المنجزة في هذه الرسالة إلى بدء
 .والكف اءة في آن واحد

CHAPTER 1

INTRODUCTION

Inspired by the brain, artificial neural networks (ANNs) mimic the behavior of the

neurons in mammalian brains [1]. It could learn highly non-linear and complex

functions by interconnecting as many neurons as needed [2]. A typical structure

of ANNs, shown in Figure 1.1, has an input layer, one or more hidden layers, and

an output layer. Each hidden layer extracts a more complex representation of the

previous layer such that the last hidden layer would have a representation meant

to discriminate between samples of different classes.

Figure 1.1: ANN with one hidden layer.

1

As a result, ANNs have long been useful in diverse applications including

data mining [3] and reinforcement learning [4]. Compared to other tools in the

literature, ANNs have been most successful in applications in which humans excel:

image, video and audio recognition. In fact, ANNs try to mimic the human brain

in how it learns new patterns [1]. Recently, ANNs have outperformed humans in

accurately recognizing different traffic signs [5].

Over the last few years, ANNs research experienced a boom and a new trend of

networks emerged. These networks, known as deep belief networks (DBN), use the

idea of pre-training the network to develop better functions representing the data

pattern. Sparse autoencoders, restricted boltzmann machines, and multi-layer

perceptron are some of the popular algorithms for pre-training DBNs [6].

However, DBNs usually take long to train. For very large datasets, DBNs

could take weeks of training time because backpropagation uses the slow stochastic

gradient descent algorithm to optimize their solutions [7].

On the other hand, extreme learning machines (ELMs) emerged as a fast

learning algorithm for training single-hidden layer perceptrons (SLFNs). ELMs

are faster than ANNs because they use the least-square algorithm instead of back-

propagation. Further, least-squares provide better generalization performance [8].

ELMs, being fast and efficient, were successful for many applications. But

little attention was given to their ability to train large deep belief networks, learn

spatio-temporal patterns, and extract latent features. These three limitations are

studied in this thesis, as opportunities to improve ELMs.

2

1.1 Problem Statement

The thesis aims at developing deep learning algorithms that are efficiently trained

while achieving acceptable performance. This thesis addresses the following two

issues,

� First is the lack of fast algorithms to learn spatio-temporal patterns, which

is addressed by proposing recurrent ELMs.

� Second is the lack of fast feature extractor models, which is addressed by

proposing ELM-based autoencoders and convolutional autoencoders.

1.2 Thesis Contributions

The main contributions of the thesis are listed below.

� Proposed a least squares approach to recurrent neural networks.

� Designed a least squares based sparse autoencoders and convolutional au-

toencoders for feature extraction.

� A novel structure for stacked ELMs to characterize convolutional neural and

deep learning networks.

1.3 Thesis Breakdown

The thesis contains the following chapters. Chapter 2 explains background infor-

mation and related work in artificial neural networks (ANNs) and extreme learning

3

machines (ELMs). Chapter 3 describes the proposed least squares approach to

recurrent ELMS. Chapters 4 and 5 give a detailed description of the least square

approach to sparse auto-encoders and convolutional autoencoders, respectively.

Finally, chapter 6 concludes the thesis and discusses future work.

4

CHAPTER 2

LITERATURE REVIEW

2.1 Notations

Table 2.1 shows the set of notations used throughout the thesis. Capital letter

symbols represent matrices, whereas small letter symbols represent an entry or

a row of their corresponding matrices. Artificial neural networks (ANNs) and

extreme learning machines (ELMs) might have different notations as indicated in

Table 2.1.

2.2 Overview

In 1958, Rosenblatt [9] developed “Preceptron” as the first adaptive learning al-

gorithm. It can learn linear data patterns through trial and error. Consider a set

of 4 samples as shown in Figure 2.1, where crosses represent class 1 data sam-

ples belong and circles represent class 2 data samples. Suppose the algorithm is

5

Table 2.1: Notations.

Symbol Description

X The matrix representing the input training sam-
ples, X ∈ Rn×m where n is the number of samples
and m is the number of features

T The vector representing the target sample labels,
T ∈ Rn×o where o is the number of output neurons.

Y The vector representing the predicted sample la-
bels, Y ∈ Rn

ANNs:W1;
ELMs:W

The input weight matrix between the input layer
and the hidden layer, W1,W ∈ RmxL where L is
the number of hidden neurons

ANNs:W2;
ELMs:β

The weight matrix between the hidden layer and
the output layer, W2, β ∈ RLxo where o is the num-
ber of output neurons

ANNs:b1;
ELMs:b

the hidden layer bias vector b1, b ∈ RL

b2 the output layer bias vector b2 ∈ Ro

βoutput the outgoing weights of the last hidden layer.

Wc the outgoing weights of the context layer in recur-
rent ELMs.

C the values representing the context layer neurons
in recurrent ELMs.

g(·) the activation function g(·) : R→ R

6

Figure 2.1: XOR problem formulation.

learning a decision function of the form,

f(X) = w0x0 + w1x1 (2.1)

where w0 and w1 are weights and x0 and x1 define the sample coordinates .

First, the algorithm assigns random values to w0 and w1, constructing an

arbitrary decision function as shown in Figure 2.2. Since the samples are not

separated by the decision function, the algorithm updates its weights as follows,

wj = wj + α(ti − yi)xji for each sample 0 <= i <= n (2.2)

where α is the learning rate.

The weights continue to update until the decision boundary positions itself

such that it separates the samples by their classes. The end result is similar to

the boundary in Figure 2.3.

A problem with this algorithm is that it cannot solve non-linear patterns. For

example, it is clear that a single line cannot separate the samples in Figure 2.4,

7

Figure 2.2: The green line represents the decision boundary.

Figure 2.3: The trained decision function separating the two classes.

8

Figure 2.4: 4-Point XOR example.

which is known as the XOR problem.

This issue made the algorithm unusable for complex problems, and as a result,

Artificial Neural Networks (ANNs) fell out of favor and experienced a stagna-

tion for a decade after [10]. At that time, other algorithms like Support Vector

Machines [11] were more suitable for complex tasks [12].

But in the early 1980s, backpropagation introduced by Rumelhart et al. [13]

brought a new light to ANNs. It allowed ANNs to learn non-linear functions and

therefore became useful for many real-life problems [14]. They use hidden layers

to construct curve-shaped or multi-line decision boundaries, allowing it to easily

solve the XOR problem like in Figure 2.5.

Despite being useful for many complex problems, ANNs research subsided once

again because other algorithms like Decision Trees and Support Vector Machines

(SVMs) hold similar capability, yet train much quicker [10]. SVMs [11] used

the kernel trick [15] and utilized dual optimization [16] to learn highly complex

patterns in a convenient amount of time. But backpropogation could take weeks

9

Figure 2.5: A multi-curve solution of the XOR problem.

Figure 2.6: Weight initialization effect.

to train large networks and they bear other problems as well [17], [18], [19]. When

backpropagation constructs the decision boundary, its effectiveness depends on the

initial values of the assigned weights. Since the function is non-linear and complex,

there could be many local minimas, many of which resulting in higher error rate

than the global minima. Therefore, optimizing the decision function could land

the weights in a poor local minima [20]. Figure 2.6 shows how initializing random

weights could have its values land near a local optima when the starting value is

far from the global minima.

10

Figure 2.7: DBN pre-trained by RBM.

Soon after, in 2006, Hinton et al. [6] addressed the weight initialization issue

with a new concept known as Deep Learning. Instead of randomizing weights,

Hinton et al. [6] trains restricted boltzmann machines (RBMs) that provide good

initial weights for the multi-layer perecptron network. Figure 2.7 displays this

process.

Basically, for each layer, a restricted boltzmann machine trains on reconstruct-

ing the features given in the previous layer. The weights developed by the RBM

become the initial outgoing weights of that layer [21].

RBMs are unsupervised learning algorithms that extract latent, invariable

11

Figure 2.8: Levels of abstraction.

features representing the input data. As a result, the features constructed for

each layer would constitute levels of abstractions of the input images, as shown

in Figure 2.8. These features help classifiers better discriminate between sample

classes.

2.3 Overview of ANN Algorithms

This section provides background information on five popular architectures of

ANNs, including:

� Logistic regression

� Multi-layer perceptron

� Recurrent ANNs

� Sparse autoencoders

� Deep belief network

12

2.3.1 Logistic Regression

Logistic Regression [22] is a popular algorithm in machine learning. Given a

matrix X ∈ Rn×m, and an output matrix T representing the sample targets. The

predictive function is the weighted summation of the input features followed by

an activation function g(·) : R → R, which can either be logistic function [23],

hyperbolic tangent function [24], or the like. The logistic regression function can

then be written as,

Y = g(W TX + b) (2.3)

where W is the weight matrix representing the coefficients of the weighted

summation.

Prediction comes mainly in three forms: binary Classification, multi-class clas-

sification, and regression [25].

Binary classification is to classify samples to either positive or negative class.

An example being to label a face either as authorized (positive case) or non-

authorized (negative case). Logistic regression, typically, uses the logistic function

to output a value between zero and one. A threshold, usually set to 0.5, would

assign input samples to the positive class if their predicted values is larger than

0.5; otherwise, they are assigned to the negative class.

Logistic regression optimizes W by first randomizing its values, and then com-

puting the function to get an arbitrary output. Next, a loss function measures

the difference between the real target value and the arbitrary output.

13

There are many loss functions, each having its own advantages [26], [27], [28].

Some of the popular loss functions are listed below (please note that the notations

are explained in Table 2.1),

Square error,

J(W, b) =
1

2
(Y − T)2 (2.4)

Log loss,

J(X) = − 1

n

n∑
i=1

[T log(Y) + (1− T) log(1− Y)] (2.5)

Hinge loss,

J(X) = max(0, 1− Y · T) (2.6)

Further, some popular activation functions are given below,

The logistic function is written as,

f(x) =
1

(1 + ex)
(2.7)

and the tan hyperbolic function is represented by,

f(x) = tanh(x) (2.8)

Finally, the weight update is defined as follows,

W = W +∇JW (2.9)

14

Figure 2.9: MLP with one hidden layer.

where ∇W is the derivative of the loss function J(W, b) with respect to W .

The process repeats itself until the loss function is smaller than a special threshold

ε.

2.3.2 Multi-Layer Perceptron

Multi-layer perceptron (MLP) can have one or more hidden layers, as shown

in Figure 2.9. It can learn non-linear, complex functions as each hidden layer

transforms the data in the previous layer to a more complex representation.

It contains three types of layers: input, hidden, and output layer.

The input layer consists of a set of neurons {xi|i = 1, 2, ..., n} representing the

input data as features. The number of neurons in that layer matches the number of

features in the input. The hidden layers transform data by a linear transformation

followed by the application of a non-linear activation function. The output layer

receives the data from the last hidden layer and transforms them into output

values.

15

As a result, multi-layer perceptron with one hidden layer has the following

function:

Y = W2 g(X ·W1 + b1) + b2 (2.10)

where W1 represents the input weights matrix and W2 represents the hidden

weights. b1 and b2 are bias vectors and g(·) : R← R is the activation function.

If the cost function is the square error, then the network minimizes the follow-

ing function,

J(W, b) =
1

2
(Y − T)2 (2.11)

The cost function, J(W, b), backpropagates across the layers in the network

in order to update W1 and W2 for a better decision boundary. This is done by

computing the gradients of W1 and W2 based on the cost function. Using the

chain rule, the gradient is expressed as,

∇Wj =
∂J

∂Ŷ

∂Ŷ

∂Y

∂Y

∂Wj

(2.12)

where,

Ŷ = W2 g(X ·W1 + b1) + b2 (2.13)

and

Y = g(Ŷ) (2.14)

16

To find ∇W2, the first term in eq. (2.12) is computed as,

∂J

∂Ŷ
=
∂(1

2
(Y − T)2

∂Ŷ
= −(Y − T) (2.15)

The second term is written as,

∂Ŷ

∂Y
= Ŷ (1− Ŷ) (2.16)

where the result is the well-known derivative of the logistic function. Finally, the

third term is given by,

∂Y

∂W2

=
∂(W2 g(X ·W1 + b1) + b2)

∂W2

= g(X ·W1 + b1) (2.17)

As a result, the weight gradient for W2 is,

∇W2 = −(Y − T) · T̂ (1− T) · g(X ·W1 + b1) (2.18)

For W1, the gradient is computed as follows,

∇W1 = −(
∂J

∂Ŷ

∂Ŷ

∂Y

∂Y

∂H
)
∂H

∂Ĥ

∂Ĥ

∂W1

(2.19)

where Ĥ = X ·W1 + b1 and H = g(Ĥ). While ∂J

∂Ŷ
and ∂X̂

∂Y
are already computed,

∂Y
∂H

is written as,

∂Y

∂H
=
∂(W2 ·H + b2)

∂H
= W2 (2.20)

17

Next, the derivative of the activation function is,

∂H

∂Ĥ
= H(1−H) (2.21)

Finally, the differentiation of the last term in ∇W1 is,

∂Ĥ

∂W1

=
∂X ·W1

∂W1

= X (2.22)

Therefore, the gradient for the input weights W1 is,

∇W1 = −(Y − T) · Y (1− T) ·W2 − (
p

p̂
) ·H(1−H) ·X (2.23)

The weights W1 and W2 are then updated as follows,

W1 = α∇W1 +W1 (2.24)

W2 = α∇W2 +W2 (2.25)

where α is the learning rate ranging between 0 and 1.

The update for W1 and W2 is repeated many times until the cost function,

J(W,x), is smaller than some set value ε.

This algorithm is known as backpropagation. It has been successful in many

applications including heart disease diagnosis [29], face recognition [30], damage

detection of bridge structures [31], and image segmentation [32].

18

Figure 2.10: Elman Neural network.

Many new ANN algorithms are designed based on MLP models using back-

propagation. The algorithms are discussed in the upcoming sections.

2.3.3 Recurrent ANNs

Recurrent ANNs use an extra layer, usually known as the context layer, to learn

spatio-temporal patterns. This layer retains time dimensional features - acquired

from the previous time steps - to help in predicting the output of the next time

step. Elman networks [33] is one popular method that can learn time-series

datasets. Its context layer maintains a certain information about the last time

step - like retaining the values of hidden or output neurons. To put this formally,

suppose the context layer C contains the entries c1, c2, ..., ck where k is the num-

ber of neurons in the context layer. The value of ci equals the value of hi of the

previous time step and therefore {ci|i = 1, 2, ..., k} are considered time-dependant

features. Figure 2.10 shows the structure of such network

19

The network trains using backpropagation on per sample basis. The values of

the hidden layer hi are copied to their respective nodes ci neurons in the context

layer. Next, the network updates the input and hidden weights and the outgoing

weights of the context layer as well. This would create a relationship between

time steps, providing more features that would otherwise improve the prediction

function for time-series datasets.

2.3.4 Sparse autoencoders

Sparse autoencoders (SAE) [34] extract new features to get interesting structural

information from the input data. As such, they may outperform hand-crafted

features extracted using the Fourier transform [35], discrete cosine transform [36],

discrete wavelet transform [37], etc.

SAE uses backpropagation to learn reconstructing the input data. The hidden

layer, shown in Figure 2.11, develops these new features as it reconstructs the

input data.

In order to get meaningful, sparse features, SAE trains with a sparsity con-

straint using Kullback-Leibler divergence (KLD). Therefore, SAE minimizes the

square error function, subject to the constraint that the hidden activations (the

values in the hidden layer) are close to a small set value p. Below is the resulting

cost function:

J(W, b) =
1

2
(Y − X̄)2 +KL(p||p̂) (2.26)

20

Figure 2.11: Sparse autoencoder network.

where X̄ is the target which is usually set as the input data, Y is the predicted

value produced by a forward pass on the network, and KL(p||p̂) is the sparsity

term given as,

KL(p||p̂) = p log
p

p̂j
+ (1− p) log 1− p

1− p̂j
(2.27)

where p controls the values of p̂, the average hidden activations of each hidden

neuron over the data. p̂ = H/number of samples

If p is set to 0.2, then the relationship between KLD and p̂ is shown in Figure

2.12.

Given an SAE network with L hidden neurons and n training samples. Con-

sider matrix X ∈ Rn×m defining the input vectors as {xi|xi ∈ Rm}for i = 0, 1, ..., n

where m is the number of input features representing a vector xi. Also consider

21

Figure 2.12: Relationship between KLD and p̂ when p = 0.2.

the bias vectors b1 ∈ RL and b2 ∈ R, and the target reconstruction matrix as X.

Consider the matrices W1 ∈ Rm × RL, and W2 ∈ RL representing the outgoing

weights of the input layer and the hidden layer, respectively.

To update the weights, ∇W1 and ∇W2 are computed. ∇W2 is computed the

same way as for the MLP case. But ∇W1 is little different due to the Kullbak-

leibler Divergence term in the objective function, which is written as,

∇W1 = −(Y − X̄) · X̄(1− X̄) ·W2 − (
p

p̂
+

1− p
1− p̂

)) ·H(1−H) · X̄ (2.28)

Sparse autoencoders have been successful in many applications, especially im-

age recognition [38]. It can also be used to train large DBNs [6], [39], to help them

22

learn better solutions.

2.3.5 Deep Belief Networks

Deep belief networks (DBNs) had been under the focus of research for several

years. But only recently did new methods emerge that made training DBNs

feasible. DBNs had the issue of poor weight initialization where weights were

assigned with random values, leading to solutions that lie in poor local optimas

and taking long time to converge. Further, large networks suffer from the error

diffusion problem, where the farther the layer is from the output layer, the less

momentum the error can have in updating the weights. As such, the weights

adapt slowly and thus take long to converge.

But in 2006, Hinton et al. [6] introduced a new concept involving pre-training

large networks in order to initialize weight values close to the global minima.

Greedy layer-wise training using sparse autoencoders is one way to train deep

belief networks (DBNs), shown in Figure 2.13. Suppose X is the input matrix,

W1, W2, and W3 are weight matrices, H1 and H2 are hidden layer activations and

T is the target matrix.

23

Figure 2.13: Network with two hidden layers.

First, X is fed into a sparse auto-encoder (SAE), shown in Figure 2.13. Once

trained, the weights leading to the activations H1 in the hidden layer of the SAE

denote the initial values for W1.

Figure 2.14: First hidden layer training.

24

Next, H1 is fed to another SAE, yielding a second set of hidden activations

H2, whose input weights denote the initial values of W2.

Figure 2.15: Second hidden layer training.

Finally, a softmax classifier uses H2 as input features to learn to classify the

images based on the target vector y. The trained weights become the initial values

of W3.

Figure 2.16: Output layer training.

25

This ends the pre-training phase and W1, W2, and W3 of the two-hidden layer

network are set.

Next is the fine-tuning phase where the algorithm runs backpropagation to

improve on the initialized weights, developing the final decision boundary. Such

decision boundary is likely to be more robust than if it was developed with weights

randomly initialized.

2.3.6 Current Performance of Deep Learning Networks

Many variants of Deep learning networks are available in the literature. This

section describes some of these algorithms in detail.

Many of the recent algorithms use restricted boltzmann machines (RBMs) to

train artificial neural networks (ANNs). Ruslan and Hinton [40] proposed a new

scheme to train DBN machines. It uses variational approximations and persistent

Markov chains to estimate data-dependent expectations for RBMs, which in turn

pre-train DBNs. This allows training millions of parameters of a large DBN in a

feasible amount of time. Using a 2-layer RBM for pre-training, DBN achieved a

0.95% error rate on the MNIST dataset.

In a similar work, Sun et al. [41] proposed a hybrid deep learning algorithm for

face verification. It uses convolutional layers trained using RBMs to verify faces

under different conditions. The network extracts robust, global features, which

allows it to achieve 89.6% accuracy in the CelebFaces dataset 1.

Part of the literature involves feature extraction as well. Vincent et al. [42]

26

proposed a denoising autoencoder. It is different from regular autoencoders, in

that it corrupts the input matrix X using zero-masking or Gaussian noise before

reconstruction. However, the objective function remains the same. This algorithm

was able to learn Gabor-like edge detectors from natural image patches. It helped

achieve 98.7% accuracy on the MNIST dataset.

Labusch et al. [43] proposed using SVM to train on extracted unsupervised fea-

tures. These features are extracted using a two-stage process. First, a Sparsenet

[44] algorithm extracts basis components from the input data. Second, a local

maximum operation is used to extract local coefficients from these basis compo-

nents to preserve local shift invariance. Next, the model trains using these local

coefficients for digit recognition. It achieved an accuracy of 98.73% on the MNIST

dataset.

Different DBN algorithms were successfully applied on various problems. Shen

and Song [45] proposed deep networks that can detect eye fixations. The algorithm

is able to extract salient features including textures, junctions and parallelism

using a 4-stage model. In the first stage, the model whitens the input data. In

the second step, it uses sparse coding to extract features. In steps 3 and 4, it

applies max-pooling to get more robust features on which a linear SVM trains. In

terms of area under the ROC (Receiver Operating Characteristic) curve (AUC)

[46], this model achieved a performance of 0.96 on the FIFA dataset [47].

Ngiam et al. [48] proposed multimodal deep learning networks which learn

features over multiple modalities. In other words, it uses both audio and video

27

features, instead of just audio features, for recognition. This algorithm achieved

competitive performance in speech classification, obtaining 91.7% accuracy on the

CUAVE dataset 2.

Ciresan et al. [49] proposed a multi-column deep neural network for traffic

sign classification where the authors trained large convolutional networks of 9

layers. The algorithm uses an ensemble of such networks whose votes’ average are

taken to determine the predicted class of a traffic sign. It achieved an accuracy

of 98.47%, surpassing even humans’ performance in traffic sign recognition.

Coates and Ng [50] proposed a feature representation algorithm using K-means.

This algorithm is fast and can scale up for a large number of samples. It combines

K-means clustering, whitening, and local receptive fields to train large deep neural

networks, achieving highest scores in CIFAR-10, and STL-10 datasets. Rothacker

et al. [51] presents feature representation for unconstrained handwriting recog-

nition. With the help of Hidden Markov Models, it extracts Bag-of-Features as

a model for representing handwritten character images. Empirically, it achieved

competitive results compared to other state-of-art algorithm for Arabic datasets.

Wang et al. [52] proposed an algorithm that does not rely on hand-engineered

features for text recognition. Instead, this algorithm uses multi-layer perceptron

and unsupervised learning to train on a set of images containing characters, and

extract new representative features. The algorithm achieved highly competitive

performance on Street View Text and ICDAR 2003.

Kavukeuoglu et al. [53] proposed an algorithm that learns locally-invariant

28

feature descriptors. First, it uses a set of filters - like edge deterctors - followed

by a non-linear transform on the output. Finally, a pooling layer operates on the

output. It is an unsupervised learning algorithm that generates topographic filter

maps, extracting features of different orientations, scales and positions. Com-

pared to SIFT features, features extracted by this algorithm achieve competitive

results and even better results on some tasks. Coates et al. [54] proposed an unsu-

pervised learning algorithm that can learn high-level, invariant features sensitive

to commonly-occurring objects - like human faces. This algorithm is meant to

deal with data that is completely unlabeled, which must be of large size (millions

of samples) in order to learn invariant features. The features extracted by this

system were found to be invariant to distortions like scale and translation.

Le et al. [55] used a large scale unsupervised learning algorithm that learns

high-level features robust to out-of-plane rotation, scaling, and translation. A

nine layer sparse autoencoder was trained on a 10 million 200x200 pixel images

downloaded from the internet. A cluster of 1000 machines trained the algorithm

using parallel, asynchronous stochastic gradient descent in three days. It achieved

a 70% relative improvement in accuracy on ImageNet, compared to state-of-the-art

algorithms. Pang et al. [56] proposed a new hand-engineered feature extraction

algorithm that is affine invariant while carrying other advantages. It combines

affine scale invariant feature transform (ASIFT) and the merits of speeded up

robust features (SURF). It selects the latitudes and longitudes to speed up feature

extraction while making sure the images are kept close to any other possible view.

29

Experimental results show that this algorithm achieved better than ASIFT and

SURF for several test images.

Yang et al. [57] presented an SVM algorithm with a modified kernel that

reduces the standard training time complexity of O(n2 ∼ n3) to O(n) where n is

the number of samples. It uses a modified spatial pyramid matching (SPM) kernel

which uses sparse coding and multi-scale spatial max pooling instead of vector

quantization. The results show that this algorithm considerably outperforms the

state-of-the-art linear SOM kernel and better than nonlinear SPM kernels on

several benchmarks.

Bastien et al. [58] described a deep self-taught learning algorithm that takes

advantage of what is known as out-of-distribution learning. They applied a noise

generator that transforms character images by adding slant, local elastic defor-

mations, changes in thickness, background images, grey level changes, and other

types of noise. Empirically, learning algorithms that train on such images achieved

higher accuracy in handwritten character recognition than previous state-of-the-

art algorithms. Aly [59] compared the performance of different features for face

recognition using Nearest Neighbour and Nearest Cluster Center. The results

show that SIFT features make for higher accuracy than Eigen Faces and Fisher

Faces on AT&T and Yale datasets.

Stolyarenko and Dershowitz [60] proposed a character recognition algorithm

that segments words into letters and classifies them using a grid of SIFT descrip-

tors. Applying different window sizes, the segmentation achieving maximal confi-

30

dence is set. On the PATS-A01 dataset, the algorithm achieved 87-96% accuracy

for classifying letters and 74-88% for classifying words. Bay et al. [61] proposed

speeded up robust features (SURF) that have empirically outperformed other fea-

ture descriptors such as SIFT features. SURF features are scale- and rotation-

invariant and relatively fast to extract. They are extracted using image integrals

for image convolutions. This algorithm achieved state-of-the-art performance on

object recognition datasets.

Ke and Sukthankar [62] proposed the combination of principal component

analysis (PCA) and SIFT features to achieve features robust to various image

deformations. The features encode saliant aspects of an image gradient on which

PCA features are extracted. The results show that these type of features increase

performance and achieve faster matching. Grana et al. [63] proposed an algorithm

that integrates Oriented Fast and Rotated Brief (ORB) features in bag of words

model. It uses k-means like approach to deal with the binary string nature of

ORB features. While this algorithm did not achieve state-of-the-art performance

for the ImageCLEF 2011 dataset, it required significantly lower computational

requirements, making it feasible for small devices like mobiles.

Known as word spatial arrangement (WSA), Penatti et al. [65] presents an

approach that uses the bag-of-visual-words model to represent the spatial ar-

rangement of visual words. It splits the image space into quadrants to encode the

relative position of visual words. The extracted feature vectors using this method

is useful for both image retrieval and classification. Such feature vectors - though

31

compact and encodes only spatial information - achieved substantial performance

for image classification.

Yu et al. [66] described an algorithm that combines different mid-level fea-

tures that complement each other and therefore achieve substantially higher per-

formance than if the individual features were selected. The algorithm compares

the integration of SIFT and Local Binary Patterns (LBP)descriptors and His-

togram of Oriented Gradients (HoG) and LBP descriptors. Experimentally, using

K-means clustering on SIFT-LBP features achieved state-of-the-art performance

compared to existing algorithms.

2.4 Overview of Extreme Learning Machine Al-

gorithms

This section includes an overview of three popular algorithms related to Extreme

Learning Machines:

� the traditional extreme learning machine (ELM) algorithm;

� weighted ELMS; and

� sequential ELMs

2.4.1 Mathematical Notation

Assume a single hidden layer feedforward network SLFN with L hidden neurons

and n training samples. Consider a matrix X ∈ Rn×m defining the input vectors as

32

xi|xi ∈ Rm for i = 0, 1, ..., n where m is the number of input features representing

a vector xi, the bias vector b ∈ Rm and the target vector T ∈ Rn defined as

ti for i = 1, 2, ..., n where ti is the output value of xi. Let us also consider the

matrices W ∈ Rm×L, and β ∈ RL. Then, the output of SLFN is defined as [8],

[67],

f(x) = βg(X ·W + b) (2.29)

where g(x) : R → R is the activation function (e.g. logistic and hyperbolic

tanh).

2.5 Extreme Learning Machines

Proposed by Haung et al. [8], [67] ELM represent a supervised learning algorithm

that trains SLFNs. One main issue with the backpropagation algorithm is the

slow learning speed. This limitation is attributed to the slow gradient descent

algorithm used to update the weights iteratively.

ELMs, on the other hand, train very quickly and efficiently. They randomly

assign input weights of an SLFN and use least-square solutions to find the hidden

weights. The algorithm is also simple to implement as it involves a small set of

matrix operations.

To put this in a mathematical formulation, the function given by ELM is,

βg(X ·W + b) = T (2.30)

33

In a more compact form, it is written as,

Hβ = Y (2.31)

where H = g(X ·W + b).

It is easy to find β by taking the inverse of H and multiplying it with T .

If H is a non-singular square matrix, then taking the inverse is straightforward.

Otherwise, the pseudo-inverse of H need to be computed.

A popular pseudo-inverse function is the generalized Moore-Penrose [68].

Given a matrix H, its Moore-Penrose pseudo-inverse matrix is defined as,

H+ = (HTH)−1HT (2.32)

After finding the pseudo-inverse H+. The hidden weight matrix is simply given

by,

β = TH+ (2.33)

Clearly, the algorithm is simple to implement. Yet, it is a fast, efficient learning

algorithm for many applications. ELMs have been used in mental task classifica-

tion [69], analysis of power utilities [70], and transmission lines protection [71].

34

2.5.1 Weighted ELMs

A dataset is considered imbalanced when a class has much larger number of sam-

ples than that of other classes. Algorithms that assume a balanced distribution of

the classes favor the majority class by pushing the decision function towards the

minority class [72]. This problem occurs since such algorithms try to maximize

the number of correctly classified samples and therefore labeling all classes with

the majority class label could achieve the highest accuracy.

Over- and under- sampling are two methods for balancing the distributions

[73]. Over-sampling adds new samples to the minority class so it becomes as large

as majority class. The new samples are generated by duplicating the existing

samples and adding Gaussian noise on its features. More formally, for a sample

x ∈ R, a new sample is generated as follows,

xnew = x+N (µ, σ2) (2.34)

The under-sampling method removes a fraction of the samples in the majority

class to have the same size as the minority class.

The issue with these methods is that they have parameters to adjust. It is

difficult to know which samples to remove without compromising information

quality of the dataset. Similarly, it is difficult to know how samples need to be

replicated so that they don’t misrepresent the dataset.

But Zong et al. [74] proposed weighted extreme learning machines to address

imbalanced datasets. During training, It assigns higher misclassification cost to

35

samples belonging to the minority class. The cost is a function of the class dis-

tribution. In other words, if the ratio of the positive class to the negative class is

0.5, then samples in the positive class would receive half the misclassification cost

than the negative class.

Recalling the mathematical notation in section , the optimization is given as,

Minimize:L =
1

2
||β||2 + C

1

2

N∑
i=1

||ψi||2Subject to: (2.35)

The Karush-Kuhn-Tucker theorem informs us that the constraint can be in-

corporated to the objective function using lagrange multipliers αi, and therefore,

we have,

Minimize:L =
1

2
||β||2 + C

1

2

N∑
i=1

||ψi||2 −
N∑
i=1

αi(h(xi)β − ti + ψi) (2.36)

The least-square solution to equation 2.36 is the zeros of the equation’s deriva-

tive with respect to β, ψ,α. That is,

Minimize:L =
1

2
||β||2 + C

1

2

N∑
i=1

||ψi||2 −
N∑
i=1

αi(h(xi)β − ti + ψi) (2.37)

Substituting for the variables α, and ψ in equation 2.37, gives us,

Minimize:β = HT (
I

C
+WHHT)−1HTWT (2.38)

36

C is the trade-off cost defining the amount of weight given to the minority class.

An automatic way of computing C for a class is to take the reciprocal of the

number of samples in that class. More formally,

Wi = 1/Number of samples (2.39)

where Wi is the weight for class i.

Weighted Extreme Learning Machines are useful for many applications. Few

popular problems involving imbalanced data are Software Defect Prediction, Can-

cer Classification, and water leakage prediction.

2.5.2 Sequential ELMs

Memory can be an issue for Extreme Learning Machines (ELMs) in the face of

large datasets. The reason is that the matrix representing the dataset must be

put in whole in memory before training the network. These matrices can have

over million rows for which some computers cannot handle.

Sequential ELMs, however, breaks the dataset into batches, small enough to fit

in memory. The algorithm can recursively update its hidden weights β by learning

each batch at a time. The recursive algorithm does not overlook information. In

fact, it rarely performs worse than standard ELMs. This is because the recursive

algorithm is simply another representation of the standard ELM function.

Liang et al. [75] developed sequential Extreme Learning machine (S-ELM),

which rests on these two principles. First, the algorithm discards the batches that

37

have been learned. Therefore, the memory requirement should only satisfy the size

of the largest batch without it being an issue to learn the whole dataset. Second,

S-ELM incorporates the computations of all batches to get the same performance

as though it has trained on the dataset as a whole.

Let X0 be a chunk of size N0 from the original data; H0 be a the hidden

activations generated by a kernel; and Y 0 be the target vector respective to X0.

Then, S-ELM minimizes the following function,

||H0β0 − Y0|| (2.40)

for which the least-square solution is,

β0 = K−1
0 HT

0 Y0 for K0 = HT
0 H0 (2.41)

With K0 and X0 in hand, it is possible to update β for the next batch X1 without

re-processing the X0, saving time and memory. It is easy to derive a sequential

algorithm by showing that β1 and K1 are nothing but,

β1 = K−1
1 [H0H1]T [Y0Y1] = K1(K1β0−HT

1 H1β0+HT
1 Y1 = β0+K−

1 1HT
1 (Y1−H1β0)

(2.42)

K1 = K−1
1 [H0H1]

T [Y0Y1] (2.43)

38

It follows that the algorithm can be generalized as.

Kk+1 = [H0H1]T [H0H1] = K0K
−1
0 HT

0 Y0+H
T
1 Y1 = K0β0+H

T
1 Y1 = K1β0−HT

1 H1β0+H
T
1 Y1

(2.44)

βk+1 = βk +K−
k+11H

T
k+1(Yk+1 −Hk+1βk) (2.45)

where k denotes the batch number.

2.6 Activation Functions

Many activation functions exist for ANNs. Logistic and hyperbolic tan are the

two of the most popular activation functions.

Activation functions are beneficial, in that they add a non-linearity element to

the algorithm’s function, while scaling the output values between a fixed range.

ANNs with a hidden layer and a non-linear activation function can plot decision

boundaries containing multiple curves to separate classes in non-linear datasets.

When the ANN uses the logistic function for the output, its derivative is used

for the backward pass in backpropagation. It is given as,

d

dx
f(x) = f(x) · (1− f(x)) (2.46)

Figure 2.17 shows the standard logistic function

The hyperbolic tangent is a scaled version of the logistic function, which is

39

Figure 2.17: Plot of the logistic function

defined by,

2f(x) = 1 + tanh(
x

2
) (2.47)

The hyperbolic tan (tanh) is written as,

f(x) = tanh(x) =
ex − e−x

ex + e−x
(2.48)

The derivative of hyperbolic tan is,

d

dx
tanh(x) = 1− x2 (2.49)

Figure 2.18 shows the plot of hyperbolic tan.

Another class of activation functions are known as radial basis functions

(RBFS). It includes these three functions, Gaussian RBF,

f(X,X0) = exp(−||X −X0||2

2σ2
) (2.50)

40

Figure 2.18: Plot of hyperbolic tan.

where σ defines the spread of the radius. Multiquadratics RBF,

f(X,X0) =
√

(||X −X0||2 + a2) (2.51)

where a defines the spread of the radius. Inverse multiquadratics RBF,

f(X,X0) = (||X −X0||2 + a2)−1/2 (2.52)

2.7 Kernel Functions

This section defines three types of popular kernels.

The most popular type is the random kernel. It multiplies, using the dot

product, an input matrix X ∈ Rn×m with a randomized matrix W ∈ Rm×o to get

a new representation of the input data. This is written as,

f(X) = X ·W (2.53)

41

The second type is the polynomial kernel, which multiplies the input matrix

X with XT followed by the addition of a constant c. The result is taken to the

power of an integer d.

f(X) = (X ∗XT + c)d (2.54)

The third type is a class of RBF functions, whose properties are explained in

section 2.4.

The objective of kernel functions is to get new set of features by transforming

them from their original space domain S (dimensions) to another space domain

V (or a new set of dimensions). The new domain space is meant to have a

better representation of the original features, allowing for an easier separation

of the sample classes during prediction. In fact, a linear learning algorithm can

efficiently train on non-linearly separable data, if the data pass through a kernel

function that transforms them to a linearly separable data.

2.7.1 Model Selection and Criteria

A fair benchmark is necessary to comparing performance between various learning

algorithms. Different metrics are required for different datasets. For example,

accuracy is not a suitable metric for imbalanced data; a naive learning algorithm

that constantly output class 1 would achieve 99% accuracy for a dataset having

99% of its samples belonging to class 1. Other metrics - like G-mean and AUC -

are more suitable in this case. For they evaluate the learning algorithm based on

the ratio of correctly labelled samples to the number of samples in their respective

42

classes. Below is a list of some of the popular metrics.

Assume TP , FP , FN , and TN as True Positives, False Positives, False Neg-

atives, and True Negatives, respectively.

The recall measure defines the ratio of the number of correctly classified doc-

uments in the category to the total number of documents in that category:

Recall =
TP

TP + FN
(2.55)

Precision is the ratio of correctly classified documents in the category to the total

number of documents classified in that category:

Precision =
TP

TP + FP
(2.56)

Accuracy is another measure for classification performance calculated as,

Accuracy =
TP + TN

TP + FP + FN + TN
(2.57)

F-measure is also prevalent for classification performance. It combines the Preci-

sion and Recall to compute its score. It is calculated as,

F1− Score = 2 · Precision ·Recall
Precision+Recall

(2.58)

43

AUC

Area under the ROC (Receiver Operating Characteristic) curve (AUC) measure

is especially important for imbalanced datasets when evaluating classification al-

gorithms [76]. The AUC metric determines the extent of the area below a ROC

curve and is computed as follows:

AUC =
1

mn

m∑
i=1

n∑
j=1

1pi>pj (2.59)

where the index i loops over the correctly predicted positive class samples, and j

loops over the correctly predicted negative class samples, pi, pj are the predicted

probabilities to the data sample i and j, respectively. Finally, 1pi>pj returns 1 if

and only if pi > pj, and 0 otherwise.

G-means

For imbalanced data, another metric is G-means. It takes the geometric mean of

the accuracy computed for each class. This is given by,

G-mean =

√
TP

TP + FN
× TN

TN + FP
(2.60)

It is also important to have the number of training set sufficient for contenders

to reflect their true capabilities. Likewise, it is important to have a fair and

44

sufficient testing set. In this case, 10-fold cross-validation is appropriate. The

validation scheme divides the data into ten unique chunks of 90% training and

10% testing respectively. The intersection of any two testing sets is the empty set

as they are disjoint.

Because parameters play a major role in performance, having a validation

set is necessary. Algorithms are evaluated with different parameters to get the

parameters that achieve highest performance in the validation set. This yields

more reliable test results in the benchmark.

45

CHAPTER 3

RECURRENT EXTREME

LEARNING MACHINES

3.1 Introduction

This chapter describes a new extreme learning machines (ELMs) algorithm that

can learn spatio-temporal patterns. They extend single-hidden layer feedforward

networks (SLFNs) by an additional layer, usually known as the context layer,

that stores information about the previous time step. It receives values of certain

features extracted from the previous time step - for example, values of the hidden

or the output layer, which are combined with the input features of the next time

step. This allows ELMs to develop an informative correlation between time steps,

which is useful for predicting future behaviour that depends on time.

This chapter presents two types of context layers,

� hidden context layer; and

46

� output context layer

The hidden context layer receives values of the hidden layer of the previous

time step, whereas the output context layer receives values of the output layer of

the previous time step. These two layers are explained in detail in the following

sections.

3.1.1 Recurrent-Hidden Extreme Learning Machines

Recurrent-hidden extreme learning machines (RH-ELM) are structured as ELMs

with an additional hidden context layer.

This context layer receives values of the hidden neurons of the past time step.

The outgoing weights of the context layer fully connects with the hidden layer, as

shown in Figure 3.1.

That way the values in the hidden layer become the weighted summation of

the input features and the context layer. This is written as,

H = (X ·W) + (Wc · C) (3.1)

where Wc represents the outgoing matrix of the context layer and C is the

vector representing the values of the context layer.

Suppose elmRH = (W, b,Wc, H, β, C) represents an RH-ELM where the no-

tations are those explained in Table 2.1. Then, the algorithm for training an

RH-ELM is given as,

In Line 1, the input weights W , bias vector b, and the outgoing weights Wc of

47

Figure 3.1: Recurrent-hidden extreme learning machines.

48

Input: a tuple elmRH = (W, b,Wc, H, β, C), input matrix X and target
vector T

Output: a trained Recurrent Hidden neural Network
1 W, b,Wc ← Uniform Random Values;
2 H ← g(dot product(X,W) + b);
3 C ← H[: −1];
4 H ← g(dot product(X,W) + dot product(C,Wc) + b);
5 β ← regularized least square(H, y);
6 return (W, b,Wc, H, β, C)

Figure 3.2: Training Recurrent Hidden ELM.

the context layer are assigned random initial values based on a uniform distribu-

tion in the range [−1, 1]. Lines 2 and 3 compute the hidden activations H and

assign a subset of their values to C. Next in line 4, H is computed as the weighted

summation of X and C. Finally, lines 5 and 6 solve for the hidden weights β us-

ing regularized least-square method and returns the new tuple defining a trained

elmRH .

3.1.2 Recurrent-Output Extreme Learning Machines

The second proposed algorithm, recurrent-output extreme learning machines (RO-

ELM), has an output context layer that receives a copy of the output values of

the previous time step. The neurons in the context layer have outgoing weights

that fully connect with the output layer. Therefore, the output layer has incoming

weights from the hidden layer and the context layer, as shown in Figure 3.3.

This network is more difficult to train than RH-ELM, since output values of

the previous time step can only be determined by running the standard ELM

algorithm first. Therefore, this algorithm must use sequential ELMs. It first

49

Figure 3.3: Recurrent-output extreme learning machines.

breaks X into batches. That way, the output values of the previous batches are

copied to the output context layer C.

Suppose elmRO = (W, b,Wc, H, β, C) represents an RO-ELM where the no-

tations are those explained in Table 2.1. Then, the algorithm for training an

RO-ELM is given as,

The algorithm starts by splitting X and T into batches. At the first itera-

tion (when k = 0), a standard ELM trains on X, and predicts the output of

the first batch. For the remaining iterations, line 6 computes the hidden activa-

tions H and line 8 combines them with the output of the previous batch given

as last output. Later, using recursive least-squares as defined in section 2.5.2, β

updates its values based on the features given by the hidden layer and the con-

text layer. Once all the batches are traversed, the algorithm returns the trained

50

Input: a tuple elmRO = (W, b,Wc, H, β, C), a trained ELM network elm,
an input matrix X and a target vector T

Output: a trained Recurrent Output ELM.
1 X batches, T batches← split(X), split(T);
2 for k in X batches.length do
3 if k = 0 then
4 last output = elm.predict(X batches[k]);
5 else
6 H ← g(dot product(X batches[i],W) + b);
7 H ← combine columnwise(H, last output);
8 β ← recursive least square(H, y batches[k], last output);
9 last output = dot product(H, β);

10 end

11 end
12 return elmRO = (W, b,Wc, H, β, C)

Figure 3.4: Training Recurrent Output Neural Network

elmRO = (W, b,Wc, H, β, C).

Mathematically, the function of RO-ELM is written as,

Hβ = y (3.2)

but β incorporates the outgoing weights of the hidden layer Ho as well as the

context layer Co, resulting in this matrix,

β =

βold
Wc

The recursive least-square update can be explained as follows.

� First, divide the training dataset into batches;

� Train a traditional ELM on the whole data and predict the output for the

51

first batch. This will allow RO-ELM to use that output to train on the rest

of the batches with spatio-temporal properties;

� Compute for the hidden layer H1, corresponding to the hidden activations

of the second batch and the output of the last batch copied in the context

layer C0

H1 =

Hsubset

C0

� Compute the initial β1 by solving for the following least-square problem;

||H1 · β1 − y1|| where β1 incorporates the outgoing weights from the hidden

layer as well as the output context layer in Eq. 3.8. It follows that

β1 = (HT
1 H1)

(−1) and

K1 = HT
1 H1.

� Finally, set k to 1.

Next is the recursive update of the variables, K, and β.

1. Compute Hk+1 using the batch k + 1 in the same way as computing H0;

2. Compute Kk+1 = Kk+HT
k+1Hk+1 and βk+1 = βk+K−1

k+1H
T
k+1(yk+1−Hk+1βk),

where yk+1 is the target output for batch k + 1;

3. increment k by one and return to step 1 of the recursion.

Figure 3.5 visualizes a spatio-temporal algorithm from another perspective..

52

Figure 3.5: Visualizing Spatio-Temporal learning.

3.2 Experimental Results

3.2.1 Experimental Setup

The experiments were ran in a machine with 3.6 GHz quad-core CPU and 32 GB

RAM operating a 64-bit Windows 7. The results are the average of 10 runs of

70-30 split cross-validation, with scores based on the mean square error.

For the benchmark, the following three algorithms were evaluated, 1. Extreme

learning machines (ELMs) 2. Recurrent hidden ELMs (RH-ELMs) 3. Recurrent

output ELMs (RO-ELMs)

3.2.2 Experimental Design

The experiment involves ten datasets and they are explained in Table 3.1

Figure 3.6 displays the sample values of the six chaos datasets with respect to time.

It is clear that although the values are “chaotic”, the time-steps are correlated

and therefore there is a pattern that recurrent ELMs can take advantage of.

53

Table 3.1: Dataset statistics. S and F are the number of samples and features in
the dataset, respectively.

Dataset S::F Description

Yahoo
Stock
Market

5296 ::2 stock values of the Yahoo! Finance
stock market dating from 1991 to 2012.

Short-
movement
Stock
Prices

11200 ::198 data representing features of various fi-
nancial securities recorded at 5-minute
intervals throughout a trading day.

1D
Japanese
Wind Data

20,000::1 recorded wind speeds at 5-minute
intervals

4D
Japanese
Wind Data

20,000::4 recorded wind speeds from 4 directions:
North, South, East, West at 5-minute
intervals.

Chaos
Data A

999::1 measurements on an 81.5-micron
14NH3 cw (FIR) laser, pumped op-
tically by the P(13) line of an N2O
laser via the vibrational aQ(8,7) NH3
transition.

Chaos
Data B

16999::3 a multivariate data set recorded from
a patient in the sleep laboratory of
the Beth Israel Hospital in Boston,
Massachusetts.

Chaos
Data C

14999::3 tick-wise time record of a financial
series.

Chaos
Data D

49999::1 generated points by numerically inte-
grating the equations of motion for a
damped, driven particle.

Chaos
Data E

27203::1 measurements of the light curve (time
variation of the intensity) of the vari-
able white dwarf star PG1159-035 dur-
ing March 1989.

Chaos
Data F

3823::4 measurements of four interacting de-
grees of freedom of the system.

54

(a) Chaos A. (b) Chaos B. (c) Chaos C.

(d) Chaos D. (e) Chaos E. (f) Chaos F.

Figure 3.6: Illustrates the values of the chaos datasets.

3.2.3 Experimental Results

This section reports the results from applying ELM, RO-ELM, RH-ELM on the

datasets described in Table 3.1.

Table 3.2 illustrates the tests scores of the algorithms on the yahoo dataset.

Algorithm Mean Absolute Error

ELM 0.085

RO-ELM 0.082

RH-ELM 0.081

Table 3.2: Comparison between algorithms using the Mean-Absolute Error per-
formance metric on the yahoo dataset.

For the yahoo dataset, it is clear that Recurrent ELM has performed better

than ELMs. The reason for such, the context layer helped in extracting features

representing the correlation between time steps, which helps in determining stock

values.

55

Table 3.3 illustrates the results of the algorithms on the 1D Japanese Wind

dataset.

Algorithm Mean Absolute Error

ELM 7.29

RH-ELM 7.26

RO-ELM 6.37

Table 3.3: Comparison between algorithms using the Mean-Absolute Error per-
formance metric against the 1D Wind dataset.

Recurrent ELMs outperformed ELM in the 1D Japanese Wind dataset. This

is due to the fact that wind speeds are highly correlated with respect to time.

Since ELMs does not consider such correlations, it had inferior performance to

recurrent ELMs, especially RO-ELM.

Table 3.4 illustrates the results of the algorithms on the Short-movement Stock

Prices dataset.

The Short-movement Stock Prices dataset contains ten features and therefore

recurrent ELMs performed better than the regular ELMs by better predicting the

output of the stock market. After all, having more features helps in extracting

more features from the past time step.

Algorithm Mean Absolute Error

ELM 1.6895

RH-ELM 1.478

RO-ELM 1.272

Table 3.4: Comparison between algorithms using the Mean-Square Error perfor-
mance metric on the Short-movement Stock Prices dataset.

Next, Figure 3.7 reports the results of the algorithms on the 4-D japanese

56

Wind dataset against the number of hidden layers.

Figure 3.7: RH-ELM vs. RO-ELM vs. ELM on the 4-D japanese Wind dataset.

The reason why recurrent ELMs achieved a higher performance on the 4-D

japanese Wind dataset than that on the 1-D japanese Wind dataset is because the

number of features are larger 4-D japanese Wind dataset - it has 4 features rather

than one. Therefore, with more hidden neurons, recurrent ELMs can capture

more meaningful relationships between features of the past time step and those

of the current time step.

The following six figures: Figure 3.8 to 3.13, report the results of applying the

three algorithms with respect to the number of hidden neurons.

In most results (Dataset A, B, C, D), output-recurrent ELM achieved the best

performance. This is expected as it uses least-square solutions to find the weights

that combine previous outputs and current hidden activations H.

On the other hand, hidden-recurrent ELM did not always achieve good per-

57

Figure 3.8: RH-ELM vs. RO-ELM vs. ELM on the Chaos dataset A.

Figure 3.9: RH-ELM vs. RO-ELM vs. ELM on the Chaos dataset B.

58

Figure 3.10: RH-ELM vs. RO-ELM vs. ELM on the Chaos dataset C.

Figure 3.11: RH-ELM vs. RO-ELM vs. ELM on the Chaos dataset D.

59

Figure 3.12: RH-ELM vs. RO-ELM vs. ELM on the Chaos dataset E.

Figure 3.13: RH-ELM vs. RO-ELM vs. ELM on the Chaos dataset F.

60

formance, but it has outperformed non-recurrent ELMs in datasets B, C, and F.

The reason is that hidden-recurrent ELM uses random weights to represent the

relations between time-steps, which is not as efficient as output-recurrent ELM.

61

CHAPTER 4

EXTREME LEARNING

MACHINE BASED

AUTOENCODERS

4.1 Introduction

This chapter describes a novel implementation of sparse autoencoders (SAE)

known as extreme learning machine based autoencoders (ELM-AE). Like SAE,

the algorithm extracts new, hidden features from a given set of images. It can

also train its weights in an unsupervised manner to help pre-train large artifi-

cial neural networks (ANNs). However, ELM-AE uses least-square solutions for

training, which involves few matrix operations, and therefore makes the algorithm

excel in both speed and efficiency.

Feature extraction is especially important for image, audio, and video process-

62

ing. Researchers have been working for decades to improve on feature extraction

algorithms, such as principal component analysis, SIFT, and Gabor wavelet trans-

form.

However, each of these algorithms require great expertise in the field from

the user side in order to tune their parameters for the dataset at hand. In other

words, without proper values of the parameters, the feature extractors could result

in poor performance. SIFT is one complex algorithm that is difficult to implement

and debug.

SAE gained great momentum as a reliable feature extractor, whose network

structure is shown in Figure 4.1. Instead of manually tuning the algorithm to suit

the dataset, SAE learns the structure of the data and the relationships between its

features to extract more robust features that are competitive to hand-engineered

features.

Backpropagation is one standard algorithm to train SAE. Starting from ran-

dom weights, the algorithm optimizes them by reducing the error of input recon-

struction, subject to a sparsity constraint such as the Kullback-Leibler divergence

(KLD) term. The values developed in the hidden layer become the new features

representing the input data.

Such algorithm is especially slow for large datasets because of the slow gradient

descent involved in backpropagation. On the other hand, since ELM-AE uses

least-squares to find these hidden features, it is a much faster feature extraction

algorithm.

63

Figure 4.1: Sparse autoencoder network.

ELM-AE is described as follows. Given an input matrix X ∈ Rn×m, a bias

vector b ∈ RL, and weight matrices W ∈ RmxL and β ∈ RLxm. Consider a

network containing m input neurons, L hidden neurons, and m output neurons.

The reconstruction function is written as,

X̄ = g(X ·W + b) · β (4.1)

where g() : R→ R is the logistic activation function, and X̄ is set to X.

The goal is to find β that solves equation 4.1. The hidden activations H of

the hidden layer are computed as,

H = g(X ·W + b) (4.2)

64

The following equation solves for β using regularization,

β = (
I

C
+HTH)−1HT X̄ (4.3)

where I is the identity matrix, and C is a constant that controls regularization.

Finally, the new features F are computed using this equations,

F = g(X · βT) (4.4)

First, W is given small, random values. Next, zero-masking is applied so that

around half of W contains zero entries. This would encourage the algorithm to

learn sparse features, similar to the scheme of SAE. More precisely, the initial

values of W range between −0.005 and 0.005 based on the uniform distribution.

Each value in W is zero-masked with probability 50% based on the Bernoulli

distribution. Next is to compute the initial hidden activations H given in eq. 4.2.

After computing β as in eq. 4.3, evaluate eq. 4.4 to get the new features F .

However, in many cases, β is solved using regularized least-square solutions,

as regularization counteracts the noise often present in datasets and therefore the

solutions are more robust than otherwise. It computes β as follows,

Algorithm 1 represents the scheme of ELM-AE as it ex-

tracts new features from the input using least-square solutions.

65

Input: a tuple elm = (W, b,H, β), a matrix X and target vector y

Output: a trained Sparse auto-encoder

1 W, b← Uniform Random Values;

2 H ← g(dot product(X,W) + b);

3 β ← regularized least square(H, y);

4 return dot product(X, βT)

Algorithm 1: Returns hidden features
In line 1, W and b are given small random values based on the uniform dis-

tribution. Line 2 computes the hidden activations by taking the dot product of

X and W followed by the addition of the bias vector and a non-linear activation

function. β is obtained using the regularized least-square solutions given in eq.

4.3. Using β, new hidden activations can be extracted by taking the dot product

between of input features X̂ and βT .

While ELM-AE can extract new, robust features as explained in Algorithm

1, it can also be used to train large deep belief networks (DBNs). After training

an ELM-AE, the extracted β is used as the weight matrix corresponding to a

layer in a DBN. The weight matrix of each hidden layer in a DBN is assigned

with the β values obtained from the corresponding trained ELM-AE. The weight

matrix corresponding to the last layer of a DBN, however, is obtained using the

least-squares approach. Figure 4.2 demonstrates this process.

Algorithm 2 illustrates an example of training a DBN of two hidden layers

using two ELM-AEs.

66

Figure 4.2: Training DBN using ELM-AE.

67

Input: a tuple DBNelm = (W, b,H, β, βoutput), a matrix X and target

vector T

Output: a trained deep belief network of two hidden layers

1 β1 ← get β by training ELM-AE on X;

2 H ← g(dot product(X, β1) + b);

3 β2 ← get β by training ELM-AE on H;

4 H2 ← g(dot product(H, β2));

5 βoutput ← regularized least square(H2, y);

6 return DBNelm = (W, b, β, βoutput)

Algorithm 2: Train a deep belief network of two hidden layers.

Given a DBN represented as DBNelm = (W, b,H, β, βoutput) whose notations

are described in Table 2.1. The algorithm, in line 1, trains an ELM-AE on X

to get β and assigns β1 to it. Line 2 obtains the hidden activations H of the

first hidden layer. Line 3 trains another ELM-AE on H to get β to which β2 is

assigned. Next, in line 4, the algorithm computes the second hidden activations

H2 representing the second hidden layer. Using regularized least-squares, the

algorithm solves for the outgoing weights βoutput of the second hidden layer. The

last line returns a trained deep belief network of two hidden layers containing the

parameters (W, b, β, βoutput).

68

Table 4.1: Dataset statistics.

Dataset # Samples Description

MNIST 500-8000 Arabic Digits from 0 to 9

AHDBase 500-8000 Hindi Digits from 0 to 9

MAHDBase 500-8000 Hindi Digits from 0 to 9

4.2 Experimental Results

4.2.1 Experimental Setup

The experiments were ran in a machine of 3.6 GHz quad-core CPU and 32 GB

RAM operating a 64-bit Windows. For a fair, reliable assessment, the average of

stratified 5-fold cross-validation is taken, with scores based on Accuracy.

For the benchmark, the following two algorithms are evaluated with the de-

scribed settings (unless specified otherwise).

1. Support vector machines (SVM) with radial-basis kernel (RBF).

2. Extreme learning machines (ELMs)

4.2.2 Experimental Design

The algorithms were evaluated on 3 datasets: MNIST, AHDBase, and MAHD-

Base. Table 4.1 reports the statistics of these datasets. A sample of each dataset

is shown in Figure 4.3

Using grid search on 2000 images set as the validation set from each dataset,

the settings given in Table 4.2 were selected for the algorithms since they result

in the best performance against that set.

69

(a) MNIST dataset.
(b) AHDBase dataset. (c) MAHDBase dataset.

Figure 4.3: Samples of the three digit datasets.

Table 4.2: Algorithms’ settings.

Algorithm Settings

ELM 700 neurons

SVM C = 1.2, RBF’s spread = 1
#offeatures

ELM-AE 550 hidden neurons

SAE 150 hidden neurons, 200 iterations

4.2.3 Experimental Results

The objective of the experiment is three-fold:

� it shows how accuracy improves with ELM-AE features over raw pixels;

� it compares extracted features generated by ELM-AE with that of sparse

autoencoders and their training time; and

� it compares accuracy and training time between deep belief network of two

layers based on backpropagation and one that is based on extreme learning

machines.

70

4.2.4 ELM-AE Features

This section shows that ELM-AE features improve performance over raw

pixel features. Table 4.3 and 4.4 report these results on the MNIST dataset.

Table 4.3: Performance on the MNIST dataset for 500, 1K, and 2K samples.

Algorithm 500 1k 2k

SVM 0.68± 0.03 0.84± 0.013 0.87± 0.013

SVM trained on ELM-AE features 0.86± 0.016 0.91± 0.02 0.92± 0.009

ELM 0.6± 0.019 0.7± 0.042 0.84± 0.012

ELM trained on ELM-AE features 0.69± 0.052 0.76± 0.023 0.91± 0.018

ELM trained on SAE features 0.7± 0.05 0.58± 0.028 0.91± 0.008

Table 4.4: Performance on the MNIST dataset for 4k, 8k samples.

Algorithm 4k 8k

SVM 0.9± 0.009 0.92± 0.004

SVM trained on ELM-AE features 0.94± 0.007 0.95± 0.02

ELM 0.88± 0.012 0.9± 0.007

ELM trained on ELM-AE features 0.93± 0.008 0.94± 0.006

ELM trained on SAE features 0.93± 0.05 0.95± 0.004

In Tables 4.3 and 4.4, it is clear that ELM-AE had extracted features that

greatly improved accuracy for SVM and ELM over using raw pixels as features.

The tables also show that that SAE features and ELM-AE features achieve

similar results. However, SAE training time ranges between 29 to 267 seconds,

whereas ELM-AE took 3 seconds as a maximum training time.

Tables 4.5 and 4.6 report the accuracies achieved by the algorithms on the

AHDBase dataset. The results show that the smaller the dataset the larger the

71

Table 4.5: Performance on the AHDBase dataset for 500, 1K, and 2K samples.

Algorithm 500 1k 2k

SVM 0.93± 0.01 0.94± 0.021 0.95± 0.01

SVM trained on ELM-AE features 0.94± 0.01 0.95± 0.018 0.96± 0.007

ELM 0.87± 0.014 0.68± 0.033 0.95± 0.006

ELM trained on ELM-AE features 0.91± 0.024 0.77± 0.039 0.91± 0.018

ELM trained on SAE features 0.7± 0.05 0.58± 0.028 0.95± 0.004

Table 4.6: Performance on the AHDBase dataset for 4k, 8k samples.

Algorithm 4k 8k

SVM 0.96± 0.003 0.96± 0.005

SVM trained on ELM-AE features 0.97± 0.004 0.96± 0.006

ELM 0.96± 0.006 0.95± 0.006

ELM trained on ELM-AE features 0.96± 0.008 0.95± 0.007

ELM trained on SAE features 0.93± 0.05 0.95± 0.004

improvement made by the extracted ELM-AE features. Fortunately, when there

is no improvement on larger datasets, the performance of using ELM-AE features

equals at least the resulting performance of using raw pixels as input features.

Table 4.7: Performance on the MAHDBase dataset for 500, 1K, and 2K samples.

Algorithm 500 1k 2k

SVM 0.91± 0.029 0.92± 0.019 0.94± 0.009

SVM trained on ELM-AE features 0.94± 0.022 0.94± 0.015 0.95± 0.006

ELM 0.83± 0.018 0.71± 0.029 0.93± 0.02

ELM trained on ELM-AE features 0.87± 0.047 0.73± 0.035 0.94± 0.018

ELM trained on SAE features 0.7± 0.05 0.58± 0.028 0.95± 0.004

Tables 4.7 and 4.8 report the accuracies achieved by the algorithms on the

MAHDBase dataset. Like the results achieved on AHDBase dataset, ELM-AE

features result in less improvement as the dataset grows larger. But the perfor-

72

Table 4.8: Performance on the MAHDBase dataset for 4k, 8k samples.

Algorithm 4k 8k

SVM 0.95± 0.004 0.95± 0.005

SVM trained on ELM-AE features 0.95± 0.007 0.96± 0.002

ELM 0.95± 0.009 0.95± 0.004

ELM trained on ELM-AE features 0.95± 0.007 0.95± 0.007

ELM trained on SAE features 0.93± 0.05 0.96± 0.004

mance of ELM-AE features are at least as efficient as that of raw pixels.

The reason that ELM-AE extracts robust features is that it uses sparse weight

randomization followed by regularized least-square. Pixels as individual features

are not informative, since different images can be represented by the same set

of pixels, if their locations are disregarded. However, algorithms like ELM-AE

can extract structural relationships between these pixels which would consider

their locations, and therefore provide a lot of information about the image. These

features allow classifiers to better differentiate between different images.

4.2.5 ELM-AE feature weights

This section shows that the feature weights printed by ELM-AE and SAE are

quite similar, while SAE take a much longer time to train.

The two algorithms were trained against 20,000 images of the MNIST, and

AHDBase dataset. Both ELM-AE and SAE used 100 hidden neurons. Addi-

tionally, SAE was ran for 200 iterations using the stochastic gradient descent

algorithm.

Figure 4.4 and 4.5 display the feature weights printed by ELM-AE and SAE,

73

respectively. Figure 4.4 illustrates the feature weights trained by ELM-AE. These

feature weights represent the transpose of the matrix β, where each square in the

image is a reshaped row vector in β.

(a) MNIST dataset. (b) AHDBase dataset. (c) MAHDBase dataset.

Figure 4.4: Displays feature weights β trained by ELM-AE.

Figure 4.5 displays the feature weights after training SAE on each dataset.

The printed weights in the image represent the transpose of the matrix W1, the

outgoing weights of the input layer.

(a) MNIST dataset. (b) AHDBase dataset. (c) MAHDBase dataset.

Figure 4.5: Displays feature weights W1 trained by SAE.

Both ELM-AE and SAE produced clear features representing each of the

datasets. For example, the digit strokes for the MNIST dataset reflect the subtle

structure of digits of that dataset; meaning the trained weights transform the in-

74

put digit images into their corresponding expected structure while removing the

background which could be noisy. However, ELM-AE took a much lesser time in

training than SAE. Table 4.9 shows the average time taken of training ELM-AE

and SAE on the datasets.

Table 4.9: Comparison between algorithms with respect to training time.

Algorithm Training Time (in minutes)

Sparse Autoencoders 16.7 minutes

ELM-based Autoencoders 0.956

The reason why SAE take a much longer time to train is, it uses backpropaga-

tion which usually needs over hundred iterations to optimize its weights.ELM-AE,

on the other hand, solves the linear system of equation only once, involving few

matrix operations.

One caveat with ELM-AE, however, is the memory requirement. The whole

matrix need to be in memory for training. But one can address this issue by im-

plementing a sequential version of ELM-AE using the scheme described in section

2.5.2. It reduces the memory requirement by breaking the dataset into batches so

that only one batch at a time must be in the memory for processing.

4.2.6 ELM-Based DBNs vs. DBNs

This section compares deep belief networks (DBN) with ELM-based DBNs (ELM-

DBN) against 6000 images of the MNIST dataset. Using a validation set of

2000 images, the algorithm were assigned the settings that achieved the best

performance for the two algorithms. The settings are,

75

� DBN: 200 iterations, 150 neurons in the first hidden layer, and 50 neurons

in the second hidden layer

� ELM-DBN: 550 neurons in the first hidden layer, and 500 neurons in the

second hidden layer

Table 4.8 shows the comparison between these two algorithms.

Table 4.10: Comparison between DBN and ELM-DBN.

Algorithm Accuracy Training Time (in seconds)

DBN 0.942 320

ELM-DBN 0.945 3

ELM-DBN has achieved better performance with much less training time. Reg-

ularized least-square solutions provide ELMs with a strong generalization power

allowing it to excel in prediction. DBNs, on the other hand, have the tendency to

overfit, meaning the parameters obtained from the validation dataset might not

generalize well on the training dataset.

With a 3 second training time for such a large dataset, ELM-DBN allows

researchers to test many different configurations and ideas in a short amount of

time.

76

4.2.7 Performance results in the literature

This section provides an overview of algorithms given in the literature and their

results on the MNIST dataset .

Table 4.11: Overview of algorithms in the literature.

Authors Title Accuracy

Hinton et al. [6] A fast learning algorithm for deep
belief nets

98.75%

Labusch et al. [43] Simple method for high-
performance digit recognition
based on sparse coding

98.73%

Ruslan and Hinton [40] Deep boltzmann machines 99.05%

Vincent et al. [42] Stacked denoising autoencoders:
Learning useful representations in
a deep network with a local de-
noising criterion

98.7%

77

CHAPTER 5

CONVOLUTIONAL EXTREME

LEARNING MACHINES

5.1 Introduction

This chapter presents a novel implementation of the convolutional neural network

(CNN), known as extreme learning machine based convolutional neural network

(ELM-CNN). It uses least-square solutions to train a CNN regardless of how many

layers it consists. The idea is to map the formulation of CNN into that of sparse

autoencoders (SAE).

A convolutional layer consists of kernels that convolve with the input images to

extract new, hidden features known as filters. A network with convolution avails

of the images’ 2D structure to extract meaningful, localized features. It preserves

the spatial locality by sliding a fixed mask over an image since neighbouring pixels

are highly correlated. Convolutional layers are more efficient than fully connected

78

Figure 5.1: Convolution of a kernel with a 2D image subset.

layers as the latter might extract meaningless relationships between pixels residing

far from each other and having no correlation. When the kernel slides over an

image, the kernel’s values multiply with the corresponding pixels in the image for

each position, whose sum is given as the output. Figure 5.1 shows the operation

of convolution between a kernel and a 2D image.

To train the layers in CNN, another network, known as ELM-based convolu-

tional autoencoder (ELM-CA), is proposed. ELM-CA uses a network similar to

that of SAE, in that the convolutional layer is nothing but a subtle representation

of the SAE hidden layer. The objective function is to find the optimal kernel

weights so that the input images can be reconstructed with minimum difference

between the original and the reconstructed images. After training, the kernel

weights can initialize a convolutional layer in a CNN. Such kernels are meant to

carry efficient weights as they are able to reconstruct the input images. Figure

5.2 shows image reconstruction using ELM-CA.

Suppose an ELM-CA has a kernels for the input layer and the hidden layer,

79

Figure 5.2: Image reconstruction using ELM-CA.

and b filters in the convolutional layer. The input and output layers represent

the image X. The kernels in the input layer use ’valid’ convolution so that the

size of the filters is smaller than the input image. If the input image is of size

m×m and the kernel is of n× n, then ’valid’ convolution outputs a filter size of

(m−n+ 1)× (m−n+ 1). A smaller representation is beneficial in that it usually

holds more subtle and concise features than the original representation.

Each kernel kinputi in the input layer convolves with X on which a bias vector

b is added, producing a 2D filter fj. This can be written as,

fj = g(X ∗ ki + b) (5.1)

where g(·) : R→ R is the logistic activation function.

To reconstruct the input images, the set of i kernels in the hidden layer convolve

with the filters using ’full’ convolution. Given an m×m kernel and an n×n filter,

’full’ convolution yields an (m + n − 1) × (m + n − 1) matrix, which equals the

size of the input image.

80

Next, the algorithm takes the sum of convolutions between a kernel khiddeni
in

the hidden layer and each filter fj as follows,

Y =
b∑

j=1

fj ∗ khiddeni
(5.2)

Using backpropagation, the kernel weights are updated until eq. 5.2 produces

a correct reconstruction of the input image. However, backpropagation is both

time consuming and complicated to implement. This is because, in addition to the

slow stochastic gradient descent, computing equations 5.1 and 5.2 involves many

loops, while finding the objective function derivatives is involved and difficult to

debug.

ELM-CA, on the other hand, has a simple implementation scheme and can

find these kernel weights very quickly. The idea is to represent the convolutional

layer in SAE as a fully connected layer. In other words, instead of using equations

5.1 and 5.2 as the functions for convolutional reconstruction, ELM-CA uses the

simple equations of 4.1 - 4.3. ELM-CA achieves this formulation by reshaping

the input and kernel matrices to have a dot product operation equivalent to the

original convolutional operation. The new representation of eq. 5.1 can therefore

be given as,

H = A ·B (5.3)

where H, A, and B are the new representations of fj|j = 0, 1, ..., b, X, and

ki|i = 0, 1, ..., a, respectively. For each sub-image in X that overlaps with the

kernel in convolution, there is a vector in A representing that sub-image. More

81

Figure 5.3: Dot product representation.

formally, the ith row in A is the flattened version of the sub-image in X sliced in

the dimensions x−indices i%n : i%n + m and y−indices i/n : i/n + m. Clearly,

A has m ∗ m columns and (n − m + 1)x(n − m + 1) rows. Similarly, B is the

matrix whose ith column is the flattened kth kernel. Figure 5.3 shows an example

representation of the these matrices.

Hβ = X (5.4)

where β represent the set of kernels khiddeni
|i = 0, 1, ..., a, meant to reconstruct

the input image. β can easily be solved using the regularized least-squares as in

eq. 4.3. Finally, the new hidden filters are computed using the following equation,

H = A · βT (5.5)

Running the algorithm in Figure 5.4 trains an ELM-CA and returns the hidden

82

filters as features.

Input: a tuple elmCA = (W, b,H, β), a matrix X, k filters, and a target
vector y

Output: filters
1 kernels inputs, b = Uniform Random Values between -1 and 1;
2 A← Stack each flattened window in X as rows;
3 B ← Stack each flattened filter in filters as columns;
4 H ← g(dot product(A,B));
5 β ← regularized least square(H,A);
6 features← dot product(A, βT);
7 return features.reshape to original size();

Figure 5.4: Returns the hidden filters from training ELM-CA as features.

Line 1 assigns random values to the kernels and bias vector based on a uniform

distribution between -1 and 1. Line 2 and 3 reshape X and kernels inputs to get

A and B that allow for the ”dot product” representation of convolution. Lines 4

and 5 obtain the hidden filters followed by the solutions for β using regularized

least-squares. Finally, the last line reshapes the extracted filters to their original

2D shape.

The algorithm in Figure 5.4 can be used to train CNNs consisting of a convo-

lutional layer followed by a fully connected layer - like the CNN shown in Figure

5.5.

Consider an ELM-CNN consisting of W1 that represents the kernel weights of

the input layer and W2 that represents the fully connected weights of the hidden

layer. ELM-CNN assigns W1 to beta, where beta is the matrix obtained from

training an ELM-CA on the input data. Next, ELM-CNN finds W2 using the

straightforward least-square solutions given in eq. 4.3.

The algorithm in Figure 5.6 describes the steps for training an ELM-CNN.

83

Figure 5.5: A CNN of one convolutional layer followed by a fully connected layer.

Input: a tuple elmCNN = (W1, b,H,W2), CAELM = (W,β) a matrix X
and target vector y

Output: a trained ELM-CNN
1 Train ELM CA on X;
2 W1 = ELM CA.βT ;
3 H = g(W1 ·X + b);
4 W2 ← regularized least square(H, y);
5 return (W1, b,H,W2)

Figure 5.6: Trains an ELM-CNN consisting of one convolutional layer followed by
a fully connected layer.

Lines 1 and 2 trains an ELM CA on the input data X and the obtained β

is imputed to W1. Next, Lines 3 to 5 solve for W2 using regularized least-square

solutions, and then return the trained ELM-CNN, which can then be used for

prediction.

84

Table 5.1: Dataset statistics.

Dataset # Samples Description

MNIST 500-8000 Arabic Digits from 0 to 9

AHDBase 500-8000 Hindi Digits from 0 to 9

MAHDBase 500-8000 Hindi Digits from 0 to 9

5.2 Experimental Results

5.2.1 Experimental Setup

The experiments were ran in a machine with 3.6 GHz quad-core CPU and 32 GB

RAM operating a 64-bit Windows 7. For a fair, reliable assessment, the average

of stratified 5-fold cross-validation is taken, with scores based on Accuracy.

The benchmarks involves the following four algorithms,

1. Support vector machines (SVM) with radial-basis function (RBF).

2. Extreme learning machines (ELMs)

3. ELM-based convolutional neural networks (ELM-CNN) with one convolu-

tional Layer, followed by one fully connected layer

5.2.2 Experimental Design

The algorithms were evaluated against 3 datasets: MNIST, AHDBase, and

MAHDBase.

Table 5.1 reports the statistics of these datasets.

To find good parameters, of the MNIST dataset, 8000 images were set as

85

training set and 2000 as the validation set. Using grid search for finding the

parameters achieving the best accuracy for the validation set, SVM optimized its

’C’ parameter which controls overfitting; Extreme Learning Machines optimized

its number of hidden neurons; and ELM-CNN optimized ots number of filters and

kernel size. The parameters are given in Table 5.2

Table 5.2: Comparison between algorithms using the accuracy performance met-
ric.

Algorithm MNIST AHDBase MAHDBase

SVM C=2 C=1.5 C=1.5

ELM 700 neurons 700 neurons 700 neurons

ELM-CNN 20 filters 120 filters 120 filters

5.2.3 Experimental Results

This section reports the performance of SVM, ELMs, and ELM-CNN on the three

datasets with respect to accuracy.

For the first experiment, there are three tables reporting the accuracy and

standard deviation of training the algorithms on the datasets with different sample

sizes.

Table 5.3 and 5.4 report the algorithms’ performance against the the MNIST

dataset with increasing sample size.

ELM-CNN outperformed other algorithms for each dataset size, mainly be-

cause of its ability to preserve the spatial locality by extracting correlations be-

tween close pixels. SVM and ELM achieved close performance since they both

have similar capabilities in constructing the non-linear function for prediction.

86

Table 5.3: Performance on the MNIST dataset for 500, 1K, and 2K samples.

Algorithm 500 1k 2k

SVM 0.74± 0.05 0.82± 0.03 0.87± 0.013

ELM 0.65± 0.043 0.66± 0.016 0.85± 0.009

ELM-CNN 0.9± 0.03 0.93± 0.01 0.95± 0.007

Table 5.4: Performance on the MNIST dataset for 4K and 8K.

Algorithm 4k 8k

SVM 0.9± 0.02 0.88± 0.013

ELM 0.91± 0.006 0.89± 0.007

ELM-CNN 0.96± 0.004 0.97± 0.03

The standard deviations are all very small to be considered significant, meaning

the results are stable and safely represent their performance.

Table 5.5 and 5.6 report the algorithms’ performance against the the MAHD

dataset with increasing sample size.

Table 5.5: Performance on the MAHD dataset for 500, 1K, and 2K samples.

Algorithm 500 1k 2k

SVM 0.9± 0.034 0.91± 0.025 0.93± 0.01

ELM 0.77± 0.049 0.79± 0.022 0.94± 0.014

ELM-CNN 0.89± 0.039 0.94± 0.047 0.95± 0.026

Table 5.6: Performance on the MAHD dataset for 4K and 8K.

Algorithm 4k 8k

SVM 0.95± 0.004 0.95± 0.004

ELM 0.95± 0.008 0.95± 0.008

ELM-CNN 0.97± 0.013 0.97± 0.012

For MAHDBase, ELM-CNN performed worse than SVM in the 500 sample

87

subset. An explanation of this is that ELM-CNN is expected to overfit on small

datasets, as it tends to construct highly complex functions. However, with larger

sample sizes ELM-CNN consistently outperformed other algorithms with a more

stable standard deviation.

Table 5.7: Performance on the AHDBase dataset for 500, 1K, and 2K samples.

Algorithm 500 1k 2k

SVM 0.83± 0.034 0.87± 0.025 0.89± 0.01

ELM 0.61± 0.037 0.61± 0.019 0.87± 0.013

ELM-CNN 0.88± 0.066 0.91± 0.038 0.94± 0.024

Table 5.8: Performance on the AHDBase dataset for 4K and 8K.

Algorithm 4k 8k

Support Vector Ma-
chines

0.87± 0.013 0.86± 0.011

Extreme Learning
Machines (ELM)

0.9± 0.008 0.9± 0.005

ELM-CNN 0.97± 0.009 0.96± 0.009

Table 5.7 and 5.8 report the algorithms’ performance against the the AHD

dataset with increasing sample size.

For AHDBase, ELM-CNN achieved the best performance with least standard

deviation on the 500 sample subset. Further, with larger sample size datasets,

ELM-CNN consistently outperformed other algorithms.

The time taken to train ELM-CNN was 164 seconds maximum.

It is clear that ELM-CNN is, on average, achieving the least error in all three

datasets. The main reason is that convolution captures important information of

2D structures like images. The sliding window convolving with the image captures

88

the relationship between neighboring pixels in images which prove informative.

After all, pixels close to one another are strongly correlated.

Another reason why ELM-CNN is successful is because the convolutional au-

toencoders based ELM used regularized least-squares for finding the weights of

the decoding filters, extracting important features.

One observation is that the training time bottleneck of ELM-CNN is in com-

puting the Moore-penrose pseudo inverse. Interestingly, Courrieu [68] proposed a

fast method that computes Moore-penrose pseudo inverse of a matrix, which is

five times faster than the method used in the experiments.

89

CHAPTER 6

CONCLUSION

This thesis presents three algorithms based on extreme learning machines (ELMs):

recurrent ELMs (R-ELM), ELM based autoencoders (ELM-CA), and ELM based

convolutional neural networks (ELM-CNN).

Developed for time-series datasets, R-ELM has an additional layer over ELMs,

known as the context layer. This layer takes features of the past time step in

order to improve the prediction accuracy. After all, features in each time step

are correlated with those in the previous time steps. R-ELM not only uses past

information for prediction, but also trains very quickly since it uses least-square

solutions. Unlike backpropagation, least-square is known to be fast and efficient

as it only involves few matrix operations for optimization.

One observation is that R-ELMs do not perform well with spatio-temporal

datasets represented by only few features. This limitation is attributed to the

fact that having a hidden layer would always cause overfitting on a dataset con-

taining few features. However, for datasets with more than two features, R-ELMs

90

consistently outperfom regular ELM.

Next, ELM-CA is proposed as a fast and efficient feature extractor. ELM-

CA uses least-square solutions to extract new structural features from the input

data. The idea is to randomize the input weights and use least-squares to solve

the outgoing weights of the hidden layer. Empirically, it was shown that these

weights are almost as efficient as that of sparse autoencoders (SAE) that trains

using backprogation. However, ELM-CA is a much faster learning algorithm than

SAE.

The experimental results have shown that features extracted by ELM-AE has

significantly improved regular ELM’s and SVM’s scores in classification. It was

also shown that compared to deep belief networks (DBNs) of two layers, a similar

network trained using ELM-AE achieved a better classification performance than

a DBN trained using backpropagation.

Finally, ELM-CNN was proposed to train large convolutional networks. First,

an ELM based convolutional autoencoder (ELM-CA) trains each convolutional

layer in ELM-CNN. Training ELM-CA is simple, in that it maps the convolu-

tion formulation given in sparse convolutional autoencoder to an equivalent dot

product formulation. ELM-CA can then be solved using least-square solutions

using the same scheme as in ELM-AE. However, instead of learning fully con-

nected weights, ELM-CA learns the kernel weights that can reconstruct the input

data. In the experimental results, ELM-CNN achieved better accuracy than other

state-of-the-art algorithms including support vector machines (SVMs) and ELMs.

91

On investigating the running time of ELM-CNN, the time bottleneck lies in

computing the pseudo-inverse involved in one of the matrix operations. However,

fast algorithms for computing the pseudo-inverse are available in the literature.

These three algorithms show that ELMs have a great promise in training large

DBNs for huge datasets in a little amount of time. This allows researchers not

only to carry out many different ideas and configurations - as training time is

extremely low, but also find new perspectives that improves the algorithms in

neural networks.

These algorithms have great potential for future work. R-ELMs, for example,

can make use of two context layers in one network: the hidden and the output

context layers, to establish better time step correlations. ELM-AE and ELM-CA

could avail of sequential ELMs so they could learn features in real time while

mitigating memory requirements. While ELM-AE is meant for gray-scale im-

ages, using complex functions like quaternions, ELM-AE would be able to extract

features from color images. As such, features extracted are likely to be more

meaningful than if they were extracted from gray-scale images. Similarly, ELM-

CA could make use of quaternions to get better features for color images. These

are interesting possibilities that are worth exploring.

92

REFERENCES

[1] R. P. Lippmann, “An introduction to computing with neural nets,” ASSP

Magazine, IEEE, vol. 4, no. 2, pp. 4–22, 1987.

[2] F.-C. Chen, “Back-propagation neural networks for nonlinear self-tuning

adaptive control,” Control Systems Magazine, IEEE, vol. 10, no. 3, pp. 44–48,

1990.

[3] J. P. Bigus, Data mining with neural networks: solving business problems

from application development to decision support. McGraw-Hill, Inc., 1996.

[4] K. O. Stanley and R. Miikkulainen, “Efficient reinforcement learning through

evolving neural network topologies,” Network (Phenotype), vol. 1, no. 2, p. 3,

1996.

[5] D. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column deep neural net-

works for image classification,” in Computer Vision and Pattern Recognition

(CVPR), 2012 IEEE Conference on. IEEE, 2012, pp. 3642–3649.

[6] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for

deep belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

93

[7] D. L. Ly, V. Paprotski, and D. Yen, “Neural networks on gpus:

Restricted boltzmann machines,” see http://www. eecg. toronto. edu/˜

moshovos/CUDA08/doku. php, 2008.

[8] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: theory

and applications,” Neurocomputing, vol. 70, no. 1, pp. 489–501, 2006.

[9] F. Rosenblatt, “The perceptron: a probabilistic model for information storage

and organization in the brain.” Psychological review, vol. 65, no. 6, p. 386,

1958.

[10] S. J. Russell and P. Norvig, “Artificial intelligence: a modern approach (in-

ternational edition),” 2002.

[11] M. A. Hearst, S. Dumais, E. Osman, J. Platt, and B. Scholkopf, “Support

vector machines,” Intelligent Systems and their Applications, IEEE, vol. 13,

no. 4, pp. 18–28, 1998.

[12] B. Schölkopf and A. J. Smola, Learning with kernels: Support vector ma-

chines, regularization, optimization, and beyond. MIT press, 2002.

[13] D. E. Rumelhart, G. E. Hintont, and R. J. Williams, “Learning representa-

tions by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536,

1986.

[14] M. Riedmiller and H. Braun, “A direct adaptive method for faster backprop-

agation learning: The rprop algorithm,” in Neural Networks, 1993., IEEE

International Conference on. IEEE, 1993, pp. 586–591.

94

[15] B. Scholkopf, “The kernel trick for distances,” Advances in neural information

processing systems, pp. 301–307, 2001.

[16] O. Chapelle, “Training a support vector machine in the primal,” Neural Com-

putation, vol. 19, no. 5, pp. 1155–1178, 2007.

[17] N. Morgan, D. Ellis, E. Fosler-Lussier, A. Janin, and B. Kingsbury, “Reducing

errors by increasing the error rate: Mlp acoustic modeling for broadcast

news transcription,” in Broadcast News Workshop’99 Proceedings. Morgan

Kaufmann Pub, 1999, p. 167.

[18] G. K. Venayagamoorthy, “Teaching neural networks concepts and their learn-

ing techniques,” in 39th ASEE Midwest Section Meeting, 2004.

[19] D. Scherer, H. Schulz, and S. Behnke, “Accelerating large-scale convolutional

neural networks with parallel graphics multiprocessors,” in Artificial Neural

Networks–ICANN 2010. Springer, 2010, pp. 82–91.

[20] E. D. Sontag and H. J. Sussmann, “Backpropagation can give rise to spurious

local minima even for networks without hidden layers,” Complex Systems,

vol. 3, no. 1, pp. 91–106, 1989.

[21] N. Le Roux and Y. Bengio, “Representational power of restricted boltzmann

machines and deep belief networks,” Neural Computation, vol. 20, no. 6, pp.

1631–1649, 2008.

[22] D. W. Hosmer Jr and S. Lemeshow, Applied logistic regression. John Wiley

& Sons, 2004.

95

[23] M. I. Jordan et al., “Why the logistic function? a tutorial discussion on

probabilities and neural networks,” 1995.

[24] B. Karlik and A. V. Olgac, “Performance analysis of various activation func-

tions in generalized mlp architectures of neural networks,” International

Journal of Artificial Intelligence and Expert Systems, vol. 1, no. 4, pp. 111–

122, 2010.

[25] S. B. Kotsiantis, “Supervised machine learning: a review of classification

techniques.” Informatica (03505596), vol. 31, no. 3, 2007.

[26] W. James and C. Stein, “Estimation with quadratic loss,” in Proceedings

of the fourth Berkeley symposium on mathematical statistics and probability,

vol. 1, no. 1961, 1961, pp. 361–379.

[27] J. W. Miller, R. Goodman, and P. Smyth, “On loss functions which mini-

mize to conditional expected values and posterior probabilities,” Information

Theory, IEEE Transactions on, vol. 39, no. 4, pp. 1404–1408, 1993.

[28] S. Suresh, N. Sundararajan, and P. Saratchandran, “Risk-sensitive loss func-

tions for sparse multi-category classification problems,” Information Sciences,

vol. 178, no. 12, pp. 2621–2638, 2008.

[29] H. Yan, Y. Jiang, J. Zheng, C. Peng, and Q. Li, “A multilayer perceptron-

based medical decision support system for heart disease diagnosis,” Expert

Systems with Applications, vol. 30, no. 2, pp. 272–281, 2006.

96

[30] M. K. Bhowmik, D. Bhattacharjee, M. Nasipuri, D. K. Basu, and M. Kundu,

“Classification of polar-thermal eigenfaces using multilayer perceptron for

human face recognition,” in Industrial and Information Systems, 2008. ICIIS

2008. IEEE Region 10 and the Third international Conference on. IEEE,

2008, pp. 1–6.

[31] P. Pandey and S. Barai, “Multilayer perceptron in damage detection of bridge

structures,” Computers & Structures, vol. 54, no. 4, pp. 597–608, 1995.

[32] S. L. Phung, A. Bouzerdoum, and D. Chai Sr, “Skin segmentation using color

pixel classification: analysis and comparison,” Pattern Analysis and Machine

Intelligence, IEEE Transactions on, vol. 27, no. 1, pp. 148–154, 2005.

[33] D. Pham and X. Liu, “Training of elman networks and dynamic system mod-

elling,” International Journal of Systems Science, vol. 27, no. 2, pp. 221–226,

1996.

[34] A. Ng, “Sparse autoencoder,” CS294A Lecture notes, p. 72, 2011.

[35] R. N. Bracewell, “Fourier transform and its applications,” 1980.

[36] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform,” Com-

puters, IEEE Transactions on, vol. 100, no. 1, pp. 90–93, 1974.

[37] M. Shensa, “The discrete wavelet transform: wedding the a trous and mallat

algorithms,” Signal Processing, IEEE Transactions on, vol. 40, no. 10, pp.

2464–2482, 1992.

97

[38] Y. Wong, M. T. Harandi, C. Sanderson, and B. C. Lovell, “On robust bio-

metric identity verification via sparse encoding of faces: Holistic vs local

approaches,” in Neural Networks (IJCNN), The 2012 International Joint

Conference on. IEEE, 2012, pp. 1–8.

[39] H. Wersing and E. Körner, “Learning optimized features for hierarchical mod-

els of invariant object recognition,” Neural computation, vol. 15, no. 7, pp.

1559–1588, 2003.

[40] R. Salakhutdinov and G. E. Hinton, “Deep boltzmann machines,” in Interna-

tional Conference on Artificial Intelligence and Statistics, 2009, pp. 448–455.

[41] Y. Sun, X. Wang, X. Tang et al., “Hybrid deep learning for face verification.”

ICCV, 2013.

[42] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, “Stacked

denoising autoencoders: Learning useful representations in a deep network

with a local denoising criterion,” The Journal of Machine Learning Research,

vol. 9999, pp. 3371–3408, 2010.

[43] K. Labusch, E. Barth, and T. Martinetz, “Simple method for high-

performance digit recognition based on sparse coding,” Neural Networks,

IEEE Transactions on, vol. 19, no. 11, pp. 1985–1989, 2008.

[44] R. Mazumder, J. H. Friedman, and T. Hastie, “Sparsenet: Coordinate de-

scent with nonconvex penalties,” Journal of the American Statistical Associ-

ation, vol. 106, no. 495, 2011.

98

[45] C. Shen, M. Song, and Q. Zhao, “Learning high-level concepts by training

a deep network on eye fixations,” Deep Learning and Unsupervised Feature

Learning Worshop, in conduction with NIPS, Lake Tahoe, USA, 2012.

[46] S. Wu and P. Flach, “A scored auc metric for classifier evaluation and selec-

tion,” in Second Workshop on ROC Analysis in ML, Bonn, Germany, 2005.

[47] M. Cerf, E. P. Frady, and C. Koch, “Faces and text attract gaze independent

of the task: Experimental data and computer model,” Journal of vision,

vol. 9, no. 12, p. 10, 2009.

[48] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng, “Multimodal

deep learning,” in Proceedings of the 28th International Conference on Ma-

chine Learning (ICML-11), 2011, pp. 689–696.

[49] D. Cireşan, U. Meier, J. Masci, and J. Schmidhuber, “Multi-column deep

neural network for traffic sign classification,” Neural Networks, vol. 32, pp.

333–338, 2012.

[50] A. Coates and A. Y. Ng, “Learning feature representations with k-means,”

in Neural Networks: Tricks of the Trade. Springer, 2012, pp. 561–580.

[51] L. Rothacker, S. Vajda, and G. A. Fink, “Bag-of-features representations

for offline handwriting recognition applied to arabic script,” in Frontiers

in Handwriting Recognition (ICFHR), 2012 International Conference on.

IEEE, 2012, pp. 149–154.

99

[52] T. Wang, D. J. Wu, A. Coates, and A. Y. Ng, “End-to-end text recognition

with convolutional neural networks,” in Pattern Recognition (ICPR), 2012

21st International Conference on. IEEE, 2012, pp. 3304–3308.

[53] K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. LeCun, “Learning invariant

features through topographic filter maps,” in Computer Vision and Pattern

Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 2009, pp.

1605–1612.

[54] A. Coates, A. Karpathy, and A. Y. Ng, “Emergence of object-selective fea-

tures in unsupervised feature learning.” in NIPS, vol. 25, 2012, pp. 2690–2698.

[55] Q. V. Le, “Building high-level features using large scale unsupervised learn-

ing,” in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE In-

ternational Conference on. IEEE, 2013, pp. 8595–8598.

[56] Y. Pang, W. Li, Y. Yuan, and J. Pan, “Fully affine invariant surf for image

matching,” Neurocomputing, vol. 85, pp. 6–10, 2012.

[57] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid matching

using sparse coding for image classification,” in Computer Vision and Pattern

Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 2009, pp. 1794–

1801.

[58] F. Bastien, Y. Bengio, A. Bergeron, N. Boulanger-Lewandowski, T. Breuel,

Y. Chherawala, M. Cisse, M. Côté, D. Erhan, J. Eustache et al., “Deep

100

self-taught learning for handwritten character recognition,” arXiv preprint

arXiv:1009.3589, 2010.

[59] C. Geng and X. Jiang, “Face recognition using sift features,” in Image Pro-

cessing (ICIP), 2009 16th IEEE International Conference on. IEEE, 2009,

pp. 3313–3316.

[60] A. Stolyarenko and N. Dershowitz, “Ocr for arabic using sift descriptors with

online failure prediction.”

[61] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,”

in Computer Vision–ECCV 2006. Springer, 2006, pp. 404–417.

[62] Y. Ke and R. Sukthankar, “Pca-sift: A more distinctive representation for

local image descriptors,” in Computer Vision and Pattern Recognition, 2004.

CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on,

vol. 2. IEEE, 2004, pp. II–506.

[63] C. Grana, D. Borghesani, M. Manfredi, and R. Cucchiara, “A fast approach

for integrating orb descriptors in the bag of words model,” in IS&T/SPIE

Electronic Imaging. International Society for Optics and Photonics, 2013,

pp. 866 709–866 709.

[64] J. C. van Gemert, C. J. Veenman, A. W. Smeulders, and J.-M. Geusebroek,

“Visual word ambiguity,” Pattern Analysis and Machine Intelligence, IEEE

Transactions on, vol. 32, no. 7, pp. 1271–1283, 2010.

101

[65] O. A. Penatti, F. B. Silva, E. Valle, V. Gouet-Brunet, and R. d. S. Tor-

res, “Visual word spatial arrangement for image retrieval and classification,”

Pattern Recognition, vol. 47, no. 2, pp. 705–720, 2014.

[66] J. Yu, Z. Qin, T. Wan, and X. Zhang, “Feature integration analysis of bag-of-

features model for image retrieval,” Neurocomputing, vol. 120, pp. 355–364,

2013.

[67] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: a new

learning scheme of feedforward neural networks,” in Neural Networks, 2004.

Proceedings. 2004 IEEE International Joint Conference on, vol. 2. IEEE,

2004, pp. 985–990.

[68] P. Courrieu, “Fast computation of moore-penrose inverse matrices,” arXiv

preprint arXiv:0804.4809, 2008.

[69] J. Kim, H. S. Shin, K. Shin, M. Lee et al., “Robust algorithm for arrhythmia

classification in ecg using extreme learning machine,” Biomed Eng Online,

vol. 8, p. 31, 2009.

[70] A. Nizar, Z. Dong, and Y. Wang, “Power utility nontechnical loss analysis

with extreme learning machine method,” Power Systems, IEEE Transactions

on, vol. 23, no. 3, pp. 946–955, 2008.

[71] V. Malathi, N. Marimuthu, and S. Baskar, “Intelligent approaches using sup-

port vector machine and extreme learning machine for transmission line pro-

tection,” Neurocomputing, vol. 73, no. 10, pp. 2160–2167, 2010.

102

[72] Z. Sun, Q. Song, and X. Zhu, “Using coding-based ensemble learning to

improve software defect prediction,” Systems, Man, and Cybernetics, Part C:

Applications and Reviews, IEEE Transactions on, vol. 42, no. 6, pp. 1806–

1817, 2012.

[73] R. Barandela, R. M. Valdovinos, J. S. Sánchez, and F. J. Ferri, “The im-

balanced training sample problem: Under or over sampling?” in Structural,

Syntactic, and Statistical Pattern Recognition. Springer, 2004, pp. 806–814.

[74] W. Zong, G.-B. Huang, and Y. Chen, “Weighted extreme learning machine

for imbalance learning,” Neurocomputing, vol. 101, pp. 229–242, 2013.

[75] N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundararajan, “A fast

and accurate online sequential learning algorithm for feedforward networks,”

Neural Networks, IEEE Transactions on, vol. 17, no. 6, pp. 1411–1423, 2006.

[76] H. He and E. A. Garcia, “Learning from imbalanced data,” Knowledge and

Data Engineering, IEEE Transactions on, vol. 21, no. 9, pp. 1263–1284, 2009.

103

Vitae

� Personal Information

– Issam Hadj Laradji

– Algerian nationality

– issam.laradji@gmail.com

� Education

– Master of Science degree in Computer Science, King Fahd University of

Petroleum & Minerals, Dhahran, Saudi Arabia. Expected graduation

date, July, 2014.

– Bachelor of Science degree in Computer Science, King Fahd University

of Petroleum & Minerals, Dhahran, Saudi Arabia, August 2012.

� Refereed Publications

– I. H. Laradji, L. Ghouti, and E-H. Khiari. “PERCEPTUAL HASH-

ING OF COLOR IMAGES USING HYPERCOMPLEX REPRESEN-

TATIONS.” Published in ICIP 2013 : IEEE International Conference

on Image Processing.

– I.H. Laradji, S. A. Mohammad, and L. Ghouti . “XML Classification

using Ensemble Learning on Extracted Features.” To appear in The

52nd Annual ACM Southeast Conference.

104

– I. H. Laradji, L. Ghouti, F. Saleh, and M. AlTurki. “Sparse Single-

hidden Layer Feedforward Network for Mapping Natural Language

Questions to SQL Queries”. To appear in ICANN 2014 : The 24th

International Conference on Artificial Neural Networks.

105

