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An Approach to Identify the Disease-Gene Association Through 

Biological Networks Topological Features 
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Date of Degree : May/2014 

Background: biologists generate massive datasets which are difficult to interpret and 

make use of for further diseases analysis. Hence, computational analysis techniques are 

required towards systems biology. There is an urgent need to investigate a system rather 

than evaluating individuals solely. This could be experimentally accomplished through 

studying individuals and then how they are interacting with others, such a concept is 

known as networks. 

Approach: Complex biological networks constitute of thousands of nodes and thousands 

of interactions which could be represented as a graph. So, a graph theory could be 

utilized to rank nodes (i.e. genes) of the biological networks as individuals and as whole 

to retrieve the hidden properties and knowledge. Furthermore, this study applies different 

ranking algorithms (i.e. 14 ranking algorithms are used) and fed as features to two 

classification models which are decision tree bagger (DTB) and random under sampling 

boost (RUSBoost) to investigate the breast cancer genes. More importantly, to overcome 

the problem of the skewed datasets a synthetic minority oversampling technique 

(SMOTE) is adopted in order to transform an imbalanced dataset to a balanced one. 

Finally, we propose our modified co-cross validation technique to compute four-

evaluation metrics (Accuracy, F-Measure, AUC, and Geometric Mean). 
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Results: We have extracted fourteen features from publicly co-expression network, 

protein interaction network, and functional interaction network. Then, we use 

classification models to investigate the phenotype-gene association in breast cancer 

genes. Prior classification, a SMOTE sampling technique is utilized in all biological 

networks. By using a Hill-climbing feature selection approach and Pearson correlation 

coefficients, a subset features have been identified as important features to predict 

phenotype-gene association. Specifically, 'within module z-score' is identified as the most 

influential feature to predict breast cancer genes.  

Conclusion: We are able to identify sub-set of topological features that are significant to 

identify the breast cancer genes. We have adopted 'within module z-score' topological 

features to apply in-depth analysis which helped us to identify three genes that are subtle 

to breast cancer genes (i.e. „ZNF22‟, „CUL2‟, and „GTF2F2‟). 

Keywords: Biological network; Machine learning; Decision tree bagger; SMOTE; Breast 

cancer; Gene ranking. 
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 ملخص الرسالة

 

 

 طادق عثذ انًسسٍ يكٙ آل اَظٛف 8الاسم الكامل
 

يٍ خلال انخظائض انًستخشخح يٍ  انشثكاخ َٓح نتسذٚذ انعلالح ياتٍٛ الأيشاع ٔ اندُٛاخ  عنوان الرسالة:

 انثٕٛنٕخٛح

 

 عهٕو زاسة التخصص:
 

 4102/يإٚ 8تاريخ الدرجة العلمية
. الأيشاع نتسهٛم يُٓا ٔالإستفادج تفسٛشْا ٚظعة انتٙ انثٛاَاخ كى ْائم يٍ ٚمٕيٕا تإَتاج الأزٛاء عهًاء المقدمة:

نذساسح الأَطًح انسٕٛٚح  ثٕٛنٕخٛحانشثكاخ ان أَطًح َسٕ انسساتٙ انتسهٛم إستخذاو تمُٛاخ ٚهضو انتٕخّ إنٗ ٔتانتانٙ،

 يع كٛف إٌ الأفشاد تتفاعم ثى ٔيٍ الأفشاد دساسح خلال يٍ تدشٚثٛا ٚتسمك أٌ ًٚكٍ ْٔزا. فمط الأفشاد تمٛٛى يٍ تذلا

.ٚسًٗ تانشثكاخ انًفٕٓو ْزا يثم انًعشٔف ٔيٍ اٜخشٍٚ،  

 ٕضر تإستخذاوت أٌ ًٚكٍ انتٙ انتفاعلاخ يٍ ٔاٜلاف انعمذ يٍ اٜلاف يٍ شكمتت انًعمذج انثٕٛنٕخٛح شثكاخان8 النهج

 انثٕٛنٕخٛح شثكاخان يٍ( اندُٛاخ أ٘) انعمذ ٔتمٛٛى نتشتٛة انثٛاَٙ انشسى اخَظشٚ استخذاو ًٚكٍ نزنك،. انشثكاخ

ٔانتمٛٛى  انتشتٛة خٕاسصيٛاخيٍ  02 ْزا انثسث ٚطثك رنك، عهٗ علأج. انخفٛح ٔانًعشفح خظائضان نهسظٕل عهٗ

 رنك، يٍ الأْى. انثذ٘ سشطاٌانًتعهّ ت اندُٛاخيٍ تعهٛى اٜنح نذساسح  ًَٕرخٍٛ نهدُٛاخ انٕساثٛح, زٛث تغُزٖ إنٗ 

ٔانتخهض يٍ  الألهٛحنضٚادج انعُٛاخ  ططُاعٛحتى اعتًاد اسهٕب طُاعح عُٛاخ ا ًُسشفحان انثٛاَاخ يشكهح عهٗ نهتغهة

 لتشذتى ا أخٛشا،. ّيتٕاصَ تٛاَاخ إنٗ انًتٕاصَح غٛش ثٛاَاخان يدًٕعح تسٕٚم أخم يٍتشكم عشٕائٙ انعُٛاخ انًفشطح 

اسهٕب خذٚذ فٙ ْزِ انذساسح نتمسٛٛى انثٛاَاخ ٔيٍ ثى تعهٛى ًَزخٙ اٜنح, ٔتى انتسمك يٍ لٕج ٔطسح انًُزخٍٛ يٍ 

يماٚٛس. أستعحخلال زساب   

ٔ شثكح انتفاعم  ،انثشٔتٍٛ تفاعم شثكح انتعثٛش، شثكح عهٗ زذج كلاً ي8ٍ خاطٛح عشش أستعح تى استخشج نمذ8 النتائج

 سشطاٌ دُٛاختى استخذاو ْزِ انخظائض يٍ خلال ًَٕرخٍٛ يٍ تعهٛى اٜنّ نكتشاف الأًَاط انًتعهمح ت ثى،. انٕظٛفٙ

هتغهة عهٗ يشكهح انثٛاَاخ انًُسشفح لثم تعهٛى ًَٕرخٙ اٜنح تى استخذاو تمُٛح يٕاصَح انثٛاَاخ ن ،اندذٚش تانزكش .انثذ٘

تمُٛاخ يختهفح نتمٛٛى انخظائض انًستخشخح يٍ انشثكاخ  تاستخذاو. انثٕٛنٕخٛح انشثكاخ خًٛع ٔلذ تى فعم رنك فٙ
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انسٕٛٚح, تى انتٕطم إنٗ اٌ "انذسخح انًعٛاسٚح" أكثش انخظائض أًْٛح نكتشاف الأًَاط انًتعهمح تدُٛاخ سشطاٌ 

 انثذ٘.

 خُٛاخ نتسذٚذ ْايح تعتثش انتٙ انطٕتٕغشافٛح انًٛضاخ يٍ فشعٛح يدًٕعح ْزِ انذساسح تى انتعشف عهٗفٙ 8 الخاتمة

 ساعذتُا , ٔانتٙيتعًك تسهٛم نتطثٛك' انذسخح انًعٛاسٚح' تٕخّ انخظٕص عهٗ خاطٛح اعتًذَا ٔلذ. انثذ٘ سشطاٌ

.انثذ٘ سشطاٌ يتعهمح تًشع لذ تكٌٕ تشكم كثٛش خُٛاخ ثلاثح تسذٚذ عهٗ  
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1. CHAPTER 1 

INTRODUCTION 

1.1. Overview 

The ultimate goal of biologists is to understand the genetic bases of human diseases.  

Hence, the disease-gene association will prevent and provide proper therapeutic of 

diseases. For instance, Online Mendelian Inheritance in Man [1], the genetic association 

database [2], and other databases store phenotypic genes. These databases provide the 

"seed" genes of a certain disease, which might help to investigate further candidate genes. 

However, to understand and study new disease-genes association is a challenging task 

which requires laborious experiments.  Moreover, it is time-consuming for a researcher to 

genotype and phenotype large population to determine which sequence features are most 

related to specific phenotype. Therefore, different bio-statistical techniques have been 

proposed to predict disease-gene association. For instance, linkage mapping is a 

statistical approach that has been successful to find the genomic regions that are related to 

a disease [3]. It is widely known technique that might examine genetically well-

characterized populations, such as  to identify quantitative trait loci (QTL) that contain 

causal mutations [4]. However, the identified regions typically reveal hundreds of 

candidate disease-causing genes [3] which means to identify the actual disease genes 
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among the revealed candidate genes empirically it will still take a huge amount of time 

and effort.  

Although quantitative genetics methods had promising results, these approaches have 

problematic limitations. For instance, QTL technique could suffer from sampling biases 

[4]. In addition, several linkages mapping QTL studies lack the statistical power to 

reduce the defined causal loci, which go through the entire chromosomes population that 

contain hundreds of candidate gens [5]. Therefore, it is necessary to provide an 

alternative and complementary approach that could substitute quantitative genetics 

techniques. Such new techniques must be independent and bias-free inherent in 

quantitative genetics. Furthermore, a combination of graph theory (i.e. biology network) 

and computational intelligence techniques could be applied to model co-expression, PPIs, 

and functional genomics networks of the activities of genes (e.g. expression, interaction, 

etc.). These techniques could identify candidate genes that probably will be involved in a 

phenotypic outcome, thus, that would lead to new discoveries in phenotype-gene 

associations. 

The study of complex biological networks is a significant emerging field in a wide 

variety of disciplines, ranging from computer science, physics, and sociology, to biology. 

In the field of biomedicine and biology, there are a potential of research applications for 

network analysis. These include, drug development, personalized medicine, determining 

a gene's function, or phenotype-gene association studies. Furthermore, large and complex 

biological networks could be often represented using nodes and edges (i.e. nodes 

represent genes and edges represent interactions among genes). Such representation could 

be used to reveal significant hidden knowledge for further data analysis and pattern 
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extraction. The graph theory plays an important role in the interactive analysis to build up 

the question of "which genes are most important relatively to a particular gene or set of 

genes". However, biological networks are too complex and cannot be analyzed easily. 

Thus, these biological networks could be understood through the utilization of graph 

theory analysis approaches. The graph theory is well-known approach that has been 

inspired from the study of the social network problems [6] and could be utilized to study 

biological networks as well. More interestingly, graph theory could be used to compute 

the topological properties and extract hidden knowledge of complex biological networks. 

In this study, fourteen  different raking properties are computed (i.e. degree, closeness, 

betweeness, eigenvectors, within module z-score, k-step Markov, sub-graph, clustering 

coefficient, flow coefficient,  Katz status, coreness, structural holes, proximity and Bary-

center score). These topological properties have been extracted from co-expression, 

BioGrid PPIs, and functional protein interaction networks to rank the importance of 

individual genes relatively to others. Further, these aforementioned topological features 

are assessed in a hill-climbing feature selection to reveal the most significant sub-set 

topological features that provide best prediction rate.   

In this study, the extracted topological features out of complex biological networks 

are utilized as features to build automated models using machine learning.  The built 

models could be used to associate different kind of phenotypes (i.e. this study is 

investigating breast cancer genes). Prior the classification and due to the sever imbalance 

datasets; a SMOTE sampling technique is applied. Then, the balanced datasets are fed to 

two different classification models: Decision Tree Bagger (DTB) and RUSBoost. The 

two classifiers are implemented to predict breast cancer and non-breast cancer genes. 
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1.2. Motivation 

Prior to the development of high-throughput technologies, it was difficult to diagnose 

diseases. The diagnostic process was based heavily on the identification of symptoms. 

Obviously, these symptoms are common among different types of diseases. Interestingly, 

the completion of human genome project in April, 2003 

(http://www.genome.gov/11006943) opened the horizon to the informatics era. The 

genomic information abundance brought significant improvement in the way for diseases 

association. More specifically, a certain gene could be associated with a disease on 

interest. For instance, remarkable results achieved by proteomics (i.e. the large-scale of 

protein-protein interactions network) helped us to have a better understanding of protein 

functions as proteins are the essence of metabolic pathways of cells.   

The disease-gene association in wet-labs is a challenging process for biologists. 

Thousands of genes need to be analyzed, which is not feasible to be conducted in labs. 

Thus, the high-throughput technologies are utilized to narrow potential candidate genes 

for a disease of interest. A combination of graph theory (i.e. biology network) and 

computational intelligence techniques from machine learning tools can help us to better 

analyze and identify gene functions.  Functional networks and machine learning 

emerging techniques could reveal significant phenotypic genes in remarkable manner of 

time.  

http://www.genome.gov/11006943
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1.3. Objectives and Goals 

The main objective and goals of the proposed study is to develop new models capable 

of predicting genes, and validate pre-exiting genes that are associated or related to a 

certain phenotype using biological networks data with the latest available Artificial 

Intelligence (AI) and data mining techniques. These objectives will be achieved through 

the following millstones: 

1. Providing gene function predictions to prioritize genes most likely to be relative or 

associated with breast cancer through biological networks analysis. 

2. Utilizing a protein-protein interactions network and gene expression network in order 

to investigate breast cancer phenotypic genes. 

3. To utilize integrated complex network (functional network) and identify disease 

specific genes.  

4. To apply a network approach and machine learning methods in order to identify 

breast cancer phenotype.  

5. To provide insight of how well topological properties of different biological 

networks could help identifying biomarkers utilizing, functional genomics, protein-

protein interactions network and co-expression datasets. 

1.4. Contribution 

This thesis work provides an efficient and reliable approach with high accuracy rate 

to solve the problem of disease-gene association. The thesis contribution could be 

summarized as follows: 
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1. Implementation of fourteen different centrality measures and ranking algorithms. 

These ranking algorithms could be categorized as follows: local and global 

centrality measures. More specifically, we predict the phenotypic genes based on 

a collection of topological features, rather than using a single topological feature 

at a time.  

2. Applying various features selection: 1) Pearson correlation coefficients (PCCs) 

and 2) hill-climbing feature selection to identify the most significant topological 

features that provide best prediction rate.  

3. Building different classification models that allow biologist to predict breast 

cancer genes.  

4. Proposing our co-cross validation scheme to provide a generalized classification 

performance.  

5. Implementation of a SMOTE sampling technique to balance the datasets. In 

return, enhance the classification performance.  

6. Utilizing three publicly datasets (functional genomics network, protein-protein 

interactions network, and co-expression network) to extract different topological 

features.  

1.5. Outline 

The rest of the thesis is organized as follows: Chapter 2 provides a background to the 

biological, graph theory terminologies, and the proposed ranking and scoring algorithm 

for the genes in the biological networks. 
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Chapter 3 provides review of previously published work related to disease-gene 

association. 

Chapter 4 presents how to overcome the problem of unbalanced datasets, the 

randomization of the biological networks, and more importantly, the implemented 

classifiers in this study. 

Chapter 5 presents the experimental datasets and a description of how the 

classification models would be evaluated. 

Chapter 6 presents the Experimental Results and discussion of the proposed 

computed scoring algorithms. Finally Chapter 7 concludes the thesis work and highlights 

the future work directions. 
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2. CHAPTER 2 

BACKGROUND 

 

2.1. Biological Terminology 

Cell biology is the essential component of living organisms, which is the structural, 

functional and biological unit of such organisms. More specifically, a cell contains 

further smaller ingredients of DNA, RNA, proteins, and metabolites, which are a part of a 

tissue.  Collections of different tissue form the organs of an organism. More importantly, 

the organisms are evolving, which results to form relationships among elements in the 

organism. The relationship among these elements is a place for interest to study. These 

relationships could be presented as a graph (network), in which the organism's elements 

are the vertices (proteins, genes, DNA, RNA), and the relationships among these 

elements could be presented as edges (interactions among the elements). Very well-

known types of biological networks at the molecular level are known as gene regulation 

networks, signal transduction networks, protein interaction networks, and metabolic 

networks. An example of a biological network is shown in  Fig. 1.  

 

Fig. 1.  Example of a biological network that is generated randomly. 
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2.1.1 Basic Biological Ingredient 

The desoxyribonucleic acid (DNA) (see  Fig. 2. )  stores the information of an 

organism ( Fig. 3. ). DNA is viewed as a double coiled ladder (double helix), which 

consists of two sugar phosphates in the backbones. The backbones are enclosed by pairs 

of nucleotide bases (i.e. adenine, cytosine, guanine, and thymine (A, C, G, and T). It is 

worth noting that the nucleotide A pairs only with T, and C pairs only with G. On other 

hand, ribonucleic acid (RNA) could be viewed as a single helix ( Fig. 2. ), which the 

backbone consist of   Phosphate and ribose sugar, and backbone consists of the following 

four bases: adenine, guanine, uracil, and cytosine (A, G, U, and C) 

 

Fig. 2.  DNA and RNA structure. 



10 

 

 

Fig. 3.  Information processing staring from genes until research metabolites in 

cells. The picture is obtained from the book by Junker, Björn H., and Falk 

Schreiber [7]. 

The process of information transition from DNA to proteins is known as gene 

expression ( Fig. 3. ). This process could be explained in two main folds: 

1. Transcription: is a sophisticated, highly regulated process. A protein complex 

contains RNA polymerase opens the DNA helix, reads one strand and generates 

the corresponding RNA like a scheme. The corresponding generated RNA is 

named as transcript ( Fig. 3. ) 

2. Translation: is the final stage of protein generation from generated RNA. RNA 

goes through a process which is called slicing, such that the introns (noncoding 

regions) are removed and only the exons (coding regions) stays. In translation, 

amino acid chains are generated from the (spliced) RNA by the   ribosomes. The 

RNA information is read in triplets (codons), such that there are         
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combinations. These combinations are utilized to code 20 amino acids (i.e.one 

codon might represent more than one amino acid), additionally one start codon 

and three stop codons.  

2.1.2 Cell Biology 

Organism could have one of two cells types. Prokaryotes, e.g., bacteria, which are 

only single cells and cannot be subdivided. Prokaryotes genomes (i.e. the whole of the 

genes) are formed as a single circular chromosome (i.e. the structure of DNA, RNA, 

protein that could be found in the cells). On the other hand, eukaryotes cells are more 

sophisticated ( Fig. 4. ). 

 
Fig. 4.  Elucidation of an animal cell with some organelles. The picture is obtained 

from the book by Junker, Björn H., and Falk Schreiber [7]. 
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The genome of eukaryotes cells is structured on many chromosomes inside the nucleus. 

Each chromosome contains two chromatids ( Fig. 5. ). It means on the gene level, a 

eukaryotic cell has at least two copies of every gene. In addition, majority of organism 

cells contains two sets of chromosomes, one from each parent. 

 
Fig. 5.  Illustration of eukaryotes chromosome: 1) chromatid – one of the two 

identical parts of chromosome, 2) Centromere – where the two chromatids intersect, 

3) short arm, 4) long arm. 

2.1.3 System Biology 

The field of biology is evolving which will shift into accurate science with the 

availability of high-throughput technologies and bioinformatics techniques. The massive 
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and wealthy datasets that are generated out of high-through technologies shifted the 

attention rather than dealing with an individual genes, to deal with a collection of genes. 

This field of biology is called "systems biology: a new field in biology that meant to 

understand and make sense of a biological system at a system-level". Interestingly, 

system biology will enable the understanding of totality of biological systems by 

visualization, modeling, and the prediction of the behavior of a system's components, 

sub-components, and interaction within components.  

As promising as the field sounds, but the abundance of the –omics datasets that are 

generated from high-throughput technologies make it difficult to make sense of these 

datasets. To model these datasets and might generate hypothesis to be studied, network 

(graph) analysis could be used, as it will be described in the following section.  

2.2. Graph Theoretic Terminology 

This section introduces the fundamental concepts of graph theory that will be used in 

this thesis work. The mathematical formulation will be described as provided in the 

literature [7-9].  

2.2.1. Undirected Graph 

A graph  is usually defined as a pair of      , such that   contains the set of 

vertices, which represent the nodes and E contains the set of edges, representing the 

interaction between the nodes. Furthermore,   could be defined as follows   

{    |       , which is a connection between the two nodes    and  . So, we could say 

that the two nodes   and   are neighbors. In addition, the two nodes could have a multi-
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edge connection, such that they are two or more edges having the same endpoints.  A 

multi-edges connection is an important feature, such that the two nodes are connected by 

more than on link. In such case, each connection might convey different type of 

information. 

2.2.2. Directed Graph 

A directed graph could be defined as follows,            , such that the function   

maps each member of   to an ordered pair of nodes in    . The ordered pairs are directed 

edges, known as arcs or arrows. Furthermore, the directed graph is asymmetric, such that 

if an edge           has a direction from  to  , then it is not necessary there be an edge 

having a direction from   to  . 

2.2.3. Weighted Graph 

The weighted graph could be defined as          , where   is the set of nodes and 

  is the set of edges between the vertices     {      |         . In this case there will 

be a weight function to assign a score for every edge:       , where   denotes the set 

of all real numbers. Usually the weight     that is assigned to an edge has a meaning of 

how relevant two nodes   and   are, so, the higher the weight, the higher the relevance 

might be. 

2.2.4. Data Structure 

The main data structure that has been used to store the network graph representations 

is adjacency matrix. For a given graph         , then the adjacency matrix 
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representation size will be | | | |       . However, matrix A contains entries either of 

1's or 0's, such that         if   and      or           otherwise. Such that, 

   (

       
   

       
), where     | |. In the case of a weighted graph, the entry   

         if   and      or           otherwise. Furthermore, for an undirected graph, 

the adjacency matrix is symmetric for the reason that         . However, the previously 

mentioned rule is not applicable to directed graphs, for the reason that the upper and 

lower triangular parts of the matrix shows the direction of the edges. Moreover, the space 

complexity of the adjacency matrix is   | |  .Thus, it is highly preferred to be used with 

dense graphs rather than the sparse graphs. In addition, for an all-against-all symmetric 

data set, then either the upper or the lower triangular part of the matrix is needed. This 

will then reduce the amount of space complexity to be   | | . However, such data 

structure will be well suited with the cluttered networks that have high density 

connections between the elements. Finally, for the case of the fully connected graph, such 

that all nodes are connected to each other, then an adjacency matrix is highly suggested.  

2.2.5. Graph (Network) Properties 

Graph theory could play important role in assessing each node of the network, and 

could retrieve valuable properties and features that could provide insight about the 

internal structure of biological networks. In the following, a brief description of the 

fundamental properties that could be used to analyze a network is as follows: 
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2.2.5.1. Graph Density 

The graph density helps to reveal the likelihood of a graph, whether it is spare or 

dense (i.e. depends of the number of links for every node set). This could be computed as 

follows:          
  | |

| | | |   
. Moreover, for a spare graph would be a graph meets the 

following parameters, | |    | |  and       , or otherwise when | |   | |.On the 

other hand, a dense graph would meet the following parameter (i.e. a graph where 

| |   | | ). 

2.2.5.2. Average Shortest Path  

The average path length of a given network is defined as the average number of edges 

between nodes. The average path length must be traversed in the shortest path between 

any two nodes.  Furthermore, it can be computed as    
 

       
∑ ∑          

 
   

 
    

where          is the minimum distance between nodes   and  . 

It is also worth mentioning that the most well-known two algorithms for computing 

the shortest paths are Dijkstra‟s greedy algorithm [10] and Floyd‟s dynamic algorithm 

[11]. 

2.2.5.3. Diameter  

The graph diameter could be found by computing the longest shortest path within a 

graph. Thus, the diameter is defined                
   . 
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Fig. 6.  (a) An original graph to illustrate the purpose for different centrality 

measures. (b)  If we remove A, the network will be disconnected into two sub-

graphs. Then, is node A an important vertex?. (c)  If node B1 is removed then the 

graph will be scatted into disconnected components. Therefore, an identification of 

important node is non-deterministic. The picture is obtained from the book by 

Junker, Björn H., and Falk Schreiber [7]. 

2.3. Centrality Measures and Node Ranking 

This section provides a mathematical description of different raking theories [7-9, 

12], such that how is a certain node could be raked or sorted according to its position in 

the biological network. More importantly, the obtained score for every vertex is 
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meaningless, unless it is associated with the properly asked question. For example, in the 

biological networks, how would the detection of central or intermediate nodes affect the 

topology of the network. It is important to state a goal of finding the central nodes. 

However, a question could be to find the molecules that are really central, but more 

importantly, they are participating in a biological pathway and have a crucial role in 

signal transduction. Furthermore, a centrality measure can only capture a portion of the 

important elements within a network as illustrated in  Fig. 6. Therefore, different 

centrality measures are developed with different interpretation [13-16]. More specifically, 

in this thesis we compute fourteen centrality measures for every gene in the biological 

network.  

1. Degree (DC) centrality: 

   reveals that the highly significant nodes participate in a large number of 

interactions. For a given node  , the degree centrality is defined as        = the  number 

incident edges. For directed graphs, an in-degree          and an out-degree          

can be defined, such that,        , represents the number of arcs going toward a node  , 

but           represents the number of  arcs going out of a node  . Furthermore, those 

nodes which are highly connected are called hubs. The scale free networks tend to have 

hubs. The removal of such highly connected nodes will have an effect upon network 

topology. The biological networks are robust against random removal of hubs. On the 

other hand, their removal may cause system failure [17, 18]. 
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2. Closeness Centrality (     ): 

      elucidates the significant nodes that can communicate quickly with other 

nodes of the network. For a vertex     in graph          it is defined by the 

following equation: 

          
 

∑          
| |
   

 
(1)  

Where          is the length of the shortest path between two vertices   and  . For a node 

with a high        will require a minimum number of steps to pass information 

originating from itself to other nodes in the network. It also indicates how a change in a 

node affects other nodes in the network.  

3. Betweeness Centrality     : 

   indicates the ease by which certain vertices can monitor communications between 

other vertices. Without the existence of such nodes that monitor communication, then 

there will be no way for other nodes to communicate. For a vertex     in graph 

         it is defined by the following equation: 

        ∑ ∑
      

   
              

 
(2)  

      are the number of shortest paths between two vertices   and   that pass through 

vertex    If   and   are not connected, 
      

   
  . It shows how influential a node is over 

the information flow in a network. A node having high    potentially plays an important 

role in the network by controlling the flow of interactions. 
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4. Eigenvector Centrality (EC): 

The eigenvector centrality expresses the centrality of a node as dependent on the 

centralities of its directly connected neighboring nodes. A node is highly ranked if and 

only if that node is connected to important neighbors. For an undirected graph    

       and   is the adjacency matrix of network  . Then, the eigenvector centrality is 

the eigenvector       of the largest eigenvalue       in absolute value, such that could be 

obtained from the following system of equations: 

      ⃗⃗ ⃗⃗ ⃗⃗  ⃗       ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (3)  

5. K-Step Markov (KSM): 

The K-Step Markov technique calculates the relative probability that the system will 

spend some time at any particular node, such that, it is given the start set of roots   and 

shall end after   steps. The author whit et al.[19], demonstrates that the number of steps 

  manage the bias distribution toward the specified roots  . In addition, as   gets larger 

the steady distribution coverage to PageRank results. However, for a graph         

contains vertices        and edges          Next, Let      be the probability to reach 

  from   in one step,so this probability is the weight of the edge between   and  . Then, 

let      be the set of neighbor vertices of  . After that, the probabilities are constrained 

by the following equation. 

 
∑     
   

      

   
(4)  
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Furthermore, a random walk is defined as a walk that starts at a particular vertex and 

traverses the graph based on the    . Then, K-Step Markov centrality is the probability 

with which a random walk of length   brings a system to a particular vertex [19]. For 

vertex , k-Step Markov (     is defined by the following equation. 

                 (5)  

Where   is an initial probability distribution of the vertices, , and   is the adjacency 

matrix of   containing the transition probabilities. Finally, in this study we consider k to 

be 6. 

6. Subgraph centrality (   : 

    ranking nodes according to the number of times a given vertex participates in 

different connected subgraphs of a network  [15]. A subgraph is a closed walk that starts 

and ends at the same vertex.   , weighted according to the length of the closed walks. 

The weight of a closed walk decreases with increase in its length. For a vertex   in 

undirected graph          , and   is the adjacency matrix of  . Then, the subgraph 

centrality for a node that has the length of a close walk   is computed as follows: 

       ∑
      
  

 

   

 (6)  

7. Clustering Coefficient (   : 

   measures the degree of cohesiveness in a given graph. For a given vertex, it is 

defined as the ratio of actual number of adjacent edges    to the maximum number of 
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possible edges. This gives the probability that two vertices with a common neighbor are 

connected: 

       
   

      
 (7)  

Furthermore,    measures the edges ratio of a certain node to the total possible number of 

edges, i.e.,         .    values range in the interval of        . Thus, as the local 

clustering coefficient of a certain node gets closer to 1, then it is more likely that node is 

highly ranked. 

8. Flow Coefficient (FC):  

The clustering coefficient of a node, as shown above, is calculated as the number of 

all existing connections between the node‟s neighbors divided by the number of all 

possible such connections. However, in analogy to the clustering coefficient, the Flow 

Coefficient [20] is defined as the number of all paths of length 2 linking neighbors of a 

central node that pass through the node, divided by the total numbers of all possible such 

paths. Furthermore, the flow coefficient allows estimating the capacity of a node to 

conduct information flow between its neighboring nodes, thus, the flow coefficient, is a 

measure of „„local centrality‟‟. It is calculated as the number of actual paths of length 2 

divided by the number of all possible paths of length 2 that traverse a central node. Hub 

regions that act as bridges between different communities of nodes are likely to exhibit 

small clustering coefficients and large flow coefficients. 
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9. Katz Status Index (   ) centrality: 

    ranks a node as highly important if a large number of vertices are connected to 

it. Both direct and indirect neighbors of a vertex contribute to its importance. For a graph 

with adjacency matrix  ,     is defined by the following equation: 

    ⃗⃗⃗⃗⃗⃗⃗⃗                ⃗  (8)  

 is a scaling factor that is less than the reciprocal of the absolute value of the largest 

eigenvalue of A (     |    |⁄ ).   the transpose of  ,   is an identity vector,  ⃗  is a 

vector of ones. 

10. Node Coreness (NC): 

Node coreness [21] measures the set of nodes that are highly and mutually 

interconnected which are known as network core. For a binary network, the k-core is the 

largest subgraph comprising nodes of degree at least k, and is derived by recursively 

removing off nodes with degree lower than k until none remain. Each node is then 

assigned a core number, which is defined as the largest k such that the node is still 

contained in the k-core. The k-core decomposition is applied on binary connections. 

11. Within Module Z-score (WMZ): 

The within module z-score [22] measures how nodes are relatively related within a 

module. Moreover, modules could be organized in different ways, such that some 

modules could be totally centralized with one or few nodes connected to all others. 

However, some modules could be totally decentralized, with all nodes having similar 

connectiveness. Furthermore, the nodes with similar roles are anticipated to have similar 

relative within-module connectivity. If    is the number of links of node    to other nodes 
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in its module  ,  ̅   is the average of   over all the nodes in   , and     is the standard 

deviation of   in     hen: 

     
      ̅  

   
 (9)  

this is the so-called z-score. The within-module degree z-score measures how well-

connected node   is to other nodes in the module. 

12. The Burt’s measure of constraint(Structural Holes (SH)): 

Structural holes[23]measures the degree to which an individual has exclusive 

exchange relations to otherwise disconnected partners and groups. Individuals with more 

structural holes are positioned for entrepreneurial action as they can control the flow 

between people on opposite sides of structural holes. The Burt‟s measure of constraint 

could be found using the following equation: 

          ∑       
           

   
(10)  

Where    is the adjacency matrix of   containing the transition probabilities. Given the 

    matrix, the indirect constraint (      ), could be obtained with the 2-step path 

distance. 

13. Proximity Prestige (PP): 

Proximity prestige [24] is used to determine what is known as the node‟s influence 

domain. Such that the influence domain of a node could be defined as the set of nodes 

who are both directly and indirectly linked to that node. This set includes those nodes that 
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are reachable to node  .If there exists a path then these two nodes are called reachable 

from one another. The influence domain for node   includes all nodes whose entries in the 

 -th column of a distance matrix are finite.  The number of nodes in the influence domain 

for a node   is denoted by  . Furthermore, the proximity prestige could be measured as the 

ratio of the proportion of nodes which can reach  to the average path length of these 

nodes from . 

         
        

∑     
  
          

 
(11)  

Where  is the number of nodes in the influence domain of node   ,  is the total number of 

nodes in the graph and        is the geodesic distance that node  is from node  . 

14. Bary-Center Score (BCS): 

BaryCenter score[19] ranks each node of the graph depending on the total shortest 

path of the node. It computes the shortest path distances for each node in the graph, and a 

score will be assigned for each node based on the lengths of the shortest paths that go 

through the node. Moreover, the highly central nodes in a connected component tend to 

have smaller overall shortest paths. On the other hand, the 'peripheral' nodes on the 

network tend to have larger overall shortest paths. 
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3. CHAPTER 3 

LITERATURE REVIEW 

The identification of gene-phenotype association has been studied in many different 

aspects. In literature, there are studies which utilize the protein-protein interactions (PPIs) 

[25] and gene expression [25] solely without the integration of prior knowledge (i.e. 

Gene Ontology (GO)) or integration with different data types. More recently, high-

throughput technologies like microarrays and, most recently, next generation sequencing 

have increasingly generated massive datasets. These datasets were shown to examine 

false positive interactions [26, 27].Thus, several authors have proposed different 

techniques that some utilizing supervised machine learning and others are utilizing un-

supervised machine learning for the purpose of different data type integration. Moreover, 

the following review several works that has published of how the aforementioned 

problem tackled to investigate disease-causing genes. 

3.1. Gene Expression  

The gene expression datasets have been used extensively for the purpose of diseases-

causing gene. There are many studies utilizing gene expression in different perspectives. 

Such that, the genes expression profiles are used as is and fed as features to the 

classification problems, and some researches might filter or apply feature selection prior 

the classification. More specifically, this section reviews published work based on the use 

of gene expression profiles. The reviewed work is further categorized into: 1) Machine 
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Learning-Based Disease-Gene Association and 2) Co-expression Based Disease Gene-

Association.  

3.1.1. Machine Learning-Based Disease-Gene Association 

This section reviews published work based on the machine learning techniques to 

predict the disease-gene association. Automated models could be built for the purpose of 

predicting the phenotypic genes based on the raw gene expression profiles. For instance, 

one of the pioneer studies published by Furey et al. [28]proposed support vector 

machines (SVMs) for the purpose of analyzing tissue samples of microarray data. The 

performed analysis has two folds, firstly, the classification of the tissue samples, and 

scanning of the data for the mislabeled tissue results. Moreover, the Furey et al. approach 

was evaluated using ovarian cancer tissues, normal ovarian tissues, and other normal 

tissues. For each tissue that consists of expression results for 97,802cDNAs.  

Furthermore, the proposed approach was able to reveal mislabeled tissue samples, after 

fixing these mislabeled samples and removing the outliers, the SVMs achieved perfect 

classification. However, the confidence level was not high.  

Ramaswamy et al. [29] proposed to utilizes 218  tumor samples, spanning 14 

common tumor types, and 90 normal tissue samples to oligonucleotide microarray gene 

expression analysis. The expression levels of 16,063 genes and expressed sequence tags 

are employed for the evaluation of accuracy of the multiclass classifier. Ramaswamy‟s et 

al. study implements SVMs to distinguish the tumor and normal samples. The 

classification model was able to achieve an accuracy rate of 78%. A similar study which 

is done by Lee et al. [30] proposed the use of the extended support vector machines [31], 
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which will be used to  classify gene expression data of multi-category cancer problems. 

The Multi-category SVM was evaluated using two gene expression data sets, first of 

which leukemia data that comes with three classes [32]. The other dataset is the small 

round blue cell tumors of childhood data [33] which is a four classes problem. The 

resultant of this study showed comparable classification accuracy to the other 

classification methods.  

There are different studies, which implement different classification models for gene 

expression datasets. For instance, Wei et al. [34] proposed an automated model to 

classify patients and to which risk group of neuroblastoma they belong. This study 

utilizes gene expression profiling from cDNA microarrays that contains 42,578 clones. 

Moreover, an artificial neural networks classification model is adapted to build a 

predictor of survival for each individual patient with neuroblastoma. Additionally; 

principle component analysis (PCA) is applied and revealed that neuroblastoma tumors 

exhibited inherent prognostic specific gene expression profiles. In addition, expression 

levels of 37,920 good-quality clones are fed to an artificial neural network-based 

prognosis prediction; however, the achieved accuracy rate is 88%. Further analysis is 

applied using an artificial neural network-based gene minimization technique that reveals 

19 genes, including 2 prognostic markers that have been reported before. They are 

MYCNand CD44, which correctly predicted outcome for 98% of these patients. Theses 

identified 19 genes able to classify the Children's Oncology Group-stratified high-risk 

patients into two subgroups according to their survival status (P = 0.0005). 

A different study that has been published by Xia et al. [35], who developed an 

ensemble decision approach that can do gene mining tasks. Xia et al. has utilized two 
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publicly available datasets for analysis purposes, which are colon data [36] and leukemia 

data [32]. However, the analysis has revealed 20 significant colon cancer genes, and 23 

significant molecular signatures for refining the acute leukemia phenotype. The identified 

genes are verified using biological experiments or by alternative analysis approaches.  

Dettling et al. [37] proposed to modify and extend the boosting classifiers for 

microarray expression data that comes from several tissue or cancer types. In addition, 

feature selection is applied and LogitBoost is used, which is integrated with several 

approaches for binary problems. The Dettling et al. algorithm was evaluated using six 

real and one simulated gene expression datasets. This approach does not implement 

sophisticated tuning or kernel selection and provides directly class membership 

probabilities. 

Previously reviewed research studies one classification model which lacks the 

comparison of results with other different classification models. Guthke et al. [38] 

studied the use of supervised and unsupervised clustering techniques and machine 

learning algorithms for automated model relationships between gene expression data and 

gene functions of microorganism Escherichia coli [39]. Moreover, the Guthke et al. study 

utilized pre-selected subset of 265 genes (which belong to 3 functional groups) However, 

the functions have been predicted with an accuracy rate of 63-71% by various data 

mining methods. For example, some of the machine learning algorithms that were 

presented in this paper are: K-means clustering, Kohonen‟s self-organizing maps (SOM), 

Eisen‟s hierarchical clustering and Quinlan‟s C4.5 decision tree induction algorithm. 

Moreover, the Guthke et al. study introduced the use of the fuzzy approach for gene 

expression data analysis. Such that, it has investigated the used of the fuzzy-C-means 
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algorithm (FCM), the Gustafson-Kessel algorithm for unsupervised clustering, and the 

Adaptive Neuro-Fuzzy Inference System (ANFIS) for the purpose of the functional 

classification of E. coli genes.  

Moreover, Pirooznia et al. [40] also studied different classification models to 

investigate different diseases through the gene expression datasets. The implemented 

classification models are SVM, Neural Networks, MLP Neural Networks, Bayesian, 

Decision Tree, and Random Forest. In addition, some of the unsupervised machines 

learning models used include: K-means, Density Based Clustering (DBC), and 

Expectation Maximization (EM) clustering. Furthermore, the gene expression data 

dimension was reduced using different feature section algorithms for comparison 

purposes, which include: support vector machine recursive feature elimination (SVM-

RFE), Chi Squared, and Correlation based Feature Selection (CFS) [41]. More 

importantly, K-fold cross-validation is utilized for the evaluation purposes. For each case 

mentioned previously, eight different binary (two class) microarray datasets are used to 

investigate the following diseases: Lymphoma, Breast Cancer, Colon Cancer, Lung 

Cancer, Adenocarcinoma, Lymphoma, Melanoma, and Ovarian Cancer. 

3.1.2. Co-expression Based Disease-Gene Association 

The gene expression profiles could be used to reveal the co-expression links based on 

the correlation between each pair of gene expression. More interestingly then, gene 

expressions could be modeled as a network. In this case, the disease-causing genes could 

be studied in more depth, rather than studying a gene at a time. Hence, it is possible to 

study genes that interact with each other and might rank a certain gene to reveal its 
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susceptibility to cause a disease of interest. More importantly, the ability to study the 

gene neighbors for the possibility that they might cause the same disease of interest. For 

instance, Lee et al.[42], who introduced a large-scale analysis of mRNA co-expression 

utilizing 60 large human data sets contains a total of 3924 microarrays. The Lee et al. 

study explored the pairs of genes that were reliably co-expressed (based on the 

correlation of their expression profiles) in multiple datasets. Moreover, a high-confidence 

network was built consisting of 8805 genes linked by 220, 649 “co-expression links” that 

are observed on at least three datasets. This study has revealed that the co-expression in 

multiple datasets is correlated with functional relatedness. Additionally, the large body of 

accumulated microarray data can be exploited to increase the reliability of inference 

about gene function. 

Ruan et al.[43] proposed a general co-expression network-based technique that 

allows analysis of genes and samples obtained from microarray datasets. The Ruan et al. 

technique has a rank-based network construction method, a parameter-free module 

discovery algorithm, and a reference network-based metric for module evaluation. This 

study has utilized different datasets for evaluation purposes, i.e. yeast, Arabidopsis and 

human cancer microarray.  

A more sophisticated technique was proposed by de Matos Simoes et al. [44] to infer 

casual gene regulatory networks from large-scale gene expression data and a proposed 

method called BC3NET. The proposed method is an ensemble-based on the bagging of a 

C3NET algorithm. Furthermore, the BC3NET algorithm matches with the Bayesian 

technique but with non-informative priors. The proposed algorithm was evaluated using 

simulated and biological gene expression data from S. cerevisiae. 
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Interestingly, Zhu et al. [45] proposed a network-based SVM with hinge loss function 

to classify a binary class problem through the utilization of the penalty term from   - 

norm, which will be applied to pairwise gene neighbors for prediction and gene selection. 

The Zhu et al. algorithm was evaluated using low and high-dimensional data, 

additionally; two real microarrays are used for evaluation. The proposed algorithm is able 

to achieve a similar or higher prediction accuracy compared with the standard and the    

penalized SVMs.  

In addition, Wu et al. [46] proposed the utilization of a machine learning model for 

the identification of prognostic biomarkers in cancer gene expression data sets, utilizing 

modules inferred from a highly reliable gene functional interaction network [47]. The 

proposed work could be divided into two folds: 1) module discovery, and 2) module 

validation. For the model discovery, a breast cancer tissue microarray is used [48], but for 

the validation module, four different independent breast cancer microarray expression 

datasets are used [25]. The Wu et al. approach algorithm build-up on the functional 

interaction (FI) network to find out the prognostic signatures as it is un-weighted and is 

not for a certain tissue of phenotype. However, the Pearson correlation coefficients 

(PCCs) is calculated among all functional interaction pairs in the gene expression dataset, 

and then the PCCs weights are assigned to the edges of the FI network. In this case, the 

un-weighed graph is converted to be weighed for a particular disease. Then,  the Markov 

clustering (MCL) [49] is applied to cluster the weighted network into a series of gene 

interaction modules.  Moreover, this approach has revealed a 31-gene signature 

associated with patient survival for the breast cancer application.  The signature is 

repeated through the 5 independent gene expression studies. Furthermore, this study also 
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has revealed a 75-gene that is signature associated to the patient survival for the 

application of ovarian cancer. 

Most recently, Zhang et al.[50]  proposed a network-based Cox regression model (i.e. 

it is called Net-Cox).  The proposed model is meant to investigate the gene expression 

signatures (i.e. these signatures probably participate in the results of death or repetition in 

ovarian cancer medication). The analysis of the co-expression and the prior knowledge of 

gene functional relations are utilized to construct the relations between gene expressions 

as a gene relation network. Furthermore, the Net-Cox model is then used to study the co-

expression or functional relation within the gene expression features for survival 

prediction outcome in ovarian cancer treatment. The Zhang et al. study does not solely 

depend on the univariate Cox regression [25].Additionally, it utilizes the co-expression 

and functional information to build up the gene networks. More importantly, the network-

based analysis will assist in identifying sub-network signatures and help in the prognosis 

of survival in ovarian cancer therapy. However, Net-Cox detected a signature gene, 

FBN1, which was validated as a biomarker for predicting early recurrence in 

platinumsensitive ovarian cancer patients in a laboratory. 

Table 1 Literature Overview of studies utilizing Gene Expression Profiles 

Author Method Tackled Problem 

Machine Learning-Based Disease-Gene Association 

Furey et al. 2000 SVM Ovarian cancer 
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Author Method Tackled Problem 

Ramaswamyet al. 

2001 
SVM 

Tumor and 

Oligonucleotide 

Guthke et al.2002 
Supervised and unsupervised machine 

learning techniques 

Reveal relationship 

between gene 

expression and gene 

functions 

Lee et al.2003 SVM 
Leukemia and Round 

blue cell tumor 

Dettling et al.2003 Boosting classifier 

Leukemia, Colon, 

Estrogen and Nodal, 

Lymphoma 

Wei et al. 2004 Neural Networks/PCA 
Neuroblastoma and 

Colon 

Xia et al. 2004 Ensamble decision technique Acute Leukemia 

Pirooznia et al.2008 

Supervised and unpupervised machine 

learning techniques/ Different features 

slection are used 

Lymphoma, Breast 

Cancer, Colon 

Cancer, Lung 

Cancer, 

Adenocarcinoma, 

Lymphoma, 

Melanoma, and 

Ovarian Cancer 

Co-expression Based Disease-Gene Association 

Zhu et al. 2009 
Network-based SVM (Using biological 

prior knowledge to build SVM) 

Parkinson's disease 

and Breast cancer 

Ruanet al. 2010 Rank-based network construction 
Co-expression links 

prediction 

De Matos Simoes et 

al. 2012 

BC3NET: A tool to infere gene network 

from gene expression 

Yeast and simulated 

gene expression are 

used to validate 

BC3NET 
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Author Method Tackled Problem 

Wu et al. 2012 
Markov clustering scheme is used to 

reveal funtional group 

Breast cancer 

biomarkers 

prediction 

Zhang et al. 2013 Network-based Cox regression model Ovarian cancer 

3.2. PPIs Literature Review 

Protein networks have been used for great analysis to reveal molecular evolution, and 

the analysis of protein functions and identification of new functions. They have been used 

for validating existing diseases and, more importantly, revealing new diseases. The 

protein network simply could be presented as graph that contains set of nodes and edges. 

The nodes represent the genes and the edges represent the interaction between these 

genes. For example, protein-protein interactions (PPIs) networks could be easily seen as 

undirected graphs, such that, the nodes are the proteins, and if the proteins are physically 

known to interact then they are connected by an undirected edge. More specifically, this 

section reviews published work based on the use of PPIs networks. The reviewed work is 

further categorized into: 1) Guilt by Association and 2) Kernel Models-based disease-

gene association. 

3.2.1. Guilt by Association  

The guilt by association is based on the proximity concept, such that the analysis of 

genes those are neighbor to known disease genes (seeds). For instance, Goh et al. [51] 

assumed that if genes  are neighbors in the network of a disease-causing gene, there is 
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possibility they yield the same or a similar disease. Furthermore, the networks models 

have been used in different research. For instance, Navlakha et al. [52] proposed to use 

the PPIs network to investigate disease-gene association. Navlakha et al. has utilized 

several published computational methods (i.e. direct network neighbors [53], graph 

summarization [54], markov clustering [55], semi-supervised graph Partitioning  [56], 

random walks [57], and network flow [58]) to rank and associate genes to a disease of 

interest. This study has revealed that the random-walk technique outperforms the 

clustering and neighborhood techniques. Furthermore, most methods propose predictions 

that are not made by other methods. In addition, the combination of the previously 

mentioned methods results in an optimal decision. Navlakha et al. investigated the diffuse 

topological distribution of disease-related proteins which negatively affects the quality of 

the prediction. Thus, it has the ability to reveal diseases that are adjustable to network-

based prediction. However, the algorithms were evaluated using Human Protein 

Reference Database (HPRD) [59]. 

Vanunu et al. [60]  built a gene prioritization network-based  model to predict a genes 

and proteins complex that are related to a certain disease. The proposed algorithm is 

called PRINCE (PRIoritizatioN and Complex Elucidation).This approach combines the 

protein-protein interactions (PPIs) information with disease of similarity metrics and then 

the interactions will be scored to reveal how strongly those proteins associated with a 

certain phenotype of interest. The score methodology is done as follows: 1) the utilization 

of seeds of genes that have the same phenotype or similar ones, 2) the seed genes 

repeatedly propagates the flow to the network neighbors. The aforementioned two steps 

will reveal the strength-of-association (i.e. the neighbor nodes are assigned similar 
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values), such that, each protein propagates the flow received in the prior iteration to its 

neighbor. Each protein has an assigned score (i.e. computed by the amount of flow it 

has).This score is used in the integration with a PPI network for the prediction of the 

protein complex that might be involved in the given disease. Furthermore, there are three 

diseases are studied (Prostate Cancer, Alzheimer Disease, and Non-insulin-dependent 

Diabetes Mellitus (Type 2)).The phenotypic genes are collected from Online Mendelian 

Inheritance in Man (OMIM) [61]. In addition, the used PPIs network contains 9998 

proteins and 41072 interactions. These PPIs are obtained from three large scale 

experiments [25], additionally,  Human Protein Reference Database (HPRD) [62] is used. 

Finally, the proposed algorithm was tested using a leave-one-out cross-validation setting. 

3.2.2. Kernel Models-based disease-gene association  

Kernels models based on the utilization of extracted features out of the datasets. 

Then, these features are applied for the purpose of disease-gene prediction. For instance, 

Lage et al. [63] developed a systematics, large-scale investigation of the human protein 

complexes including products that are implicated in several categories of human diseases 

to create the phenome-interactome network. However, this study is constructed through 

the integration of controlled interactions of human proteins with a computationally 

validated phenotype similarity score. This will allow the prediction of the previously 

unknown complexes that might be associated with a disease. In addition, Lage et al. 

implemented a Bayesian predictor model where a phenomic ranking of protein 

complexes likened to human disease are utilized for building such a model. This model is 

able to predict 298 out of 669 linkage intervals correctly rank the known disease-causing 
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protein as the top candidate. In addition, the Bayesian model in 870 intervals with no 

identified disease-causing genes was able to reveal candidates implicated in different 

disorders. 

Reyes et al. [64] proposed to tackle the problem of prediction of protein-protein 

interactions (PPIs) when integrating different types of biological information, such that 

two proteins are classified whether they do or do not interact utilizing different machine 

classification models. The formation of the data yields to two essential problems that can 

affect the results: 1) the imbalance class problem (i.e. the positive samples that really 

interact smaller than the negative samples), and 2) the selection of negative examples. 

Reyes et al has used the one-class classification (OCC) to predict the PPI, the advantage 

of OCC utilizing only one class to generate the predictive model that is independent of 

the type of negative examples chosen, which will have the ability to handle the 

imbalanced class problem. 

Finally, it is obvious the concept of PPIs utilization to reveal the disease-causing-

genes and the assumption of using 'seeds' of known genes that are associated to 

phenotype of interested has rapidly been used to validate and tackle new diseases.  

Table 2 Literature Overview of studies utilizing PPIs Network 

Author Method Tackled Problem 

Kernel Models-based disease-gene association 

Lage et al. 2007 Bayesian predictor model 

Retinitis pigmentosa, 

epithelial ovarian 

cancer, inflammatory 

bowel disease, 
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Author Method Tackled Problem 

Kernel Models-based disease-gene association 

amyotrophic lateral 

sclerosis, Alzheimer 

disease, type 2 

diabetes and 

coronary heart 

disease 

Reyes et al. 2007 One class classification model 
Predict PPIs of a 

network 

Guilty By Association 

Navlakha et al. 2010 

Direct network neighbor, graph 

summarization, Markov clustering, 

semi-supervised graph Partitioning, and 

random walks, and network flow. 

Identify family-based 

diseases 

Vanunu et al. 2010 Prioritization and Complex Elucidation 

Prostate Cancer, 

Alzheimer Disease, 

and Non-insulin-

dependent Diabetes 

Mellitus (Type 2) 

3.3. Genomic Data Integration Literature Review 

There is a new era of the high-throughput data utilization, rather than investigating 

every single 'omics' data solely, are integrated to draw a bigger view of available 

genomics, transcriptomics, and proteomics datasets. Furthermore, the integration to such 

data will provide a complete description model to study and analyze a certain biological 

phenomena. It will also validate existing results, even more to predict new findings that 

are not found in previous naïve models. Furthermore, a review paper has been published 

by Georgia et al.[65] which reviews the different methodologies that have been known in 
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the literature of how the different data types possibly could be integrated (i.e. the data 

integration could be done thorough Bayesian models, Kernel models and SVM, or Guilt-

by-association models). In this thesis, we adopted the same categorization. 

3.3.1. Guilt by Association  

The guilt by association is based on the proximity concept, such that the analysis of 

genes those are neighbor to known disease genes (seeds). For instance, Savage et al. [66] 

proposed a method that integrates gene expression and transcription factor binding 

(ChIP-chip) data that allows direct inferring transcriptional modules (TMs). This method 

expands the   hierarchical Dirichlet process mixture model to allow data fusion on a gene-

by-gene basis. Moreover, this method encodes the co-expression and co-regulation that 

are not needed to be equivalent. Thus, the genes are not expected to group in the same 

way in both datasets. In addition, this method allows revealing the subset of genes that 

share same structure of transcriptional modules in both datasets. 

Singh-Blom et al. [67] proposed two methods that relies on functional gene 

associations and phenotype-gene associations in model organisms for the purpose of 

disease-gene association. Two methods, the Katz measure method, and the second one, 

CATAPULT (Combining dATaAcross species using Positive-Unlabeled Learning 

Techniques) is a supervised machine learning technique that utilizes a biased support 

vector machine, which features are derived from walks in a heterogeneous gene-trait 

network. The evaluation of the Singh-Blom et al. algorithm is done utilizing two data 

sets, OMIM phenotypes and drug-target interactions. This study has revealed that the 
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Katz measure is better at identifying associations between traits and poorly studied genes; 

whereas, CATAPULT is better suited to correctly identifying gene-trait associations overall. 

3.3.2. Bayesian Models  

The Bayesian models could be further subdivided into: 1) Bayesian network models, 

2) Bayesian classification models. The Bayesian network is constructed using Directed 

Acyclic Graph (DAG), such that each node (variable) shows how it conditions on other 

variables. More importantly, the Bayesian network could integrate datasets that are 

dissimilar. For instance, Huttenhower et al.[68] proposed a scalable Bayesian framework 

for predicting functional relationships from integrated microarray datasets, which is 

called the Microarray Experiment Functional Integration Technology (MEFIT). The 

MEFIT framework predicts the functional relationships within the context of specific 

biological processes. This study has integrated 40 Saccharomyces cerevisiae microarray 

datasets spanning 712 unique conditions using MEFIT. Furthermore, the test of this 

method based on 110 biological functions utilized from GO biological process ontology, 

showed a 5% or greater performance increase for 54 functions, with a 5% or more 

decrease in performance in only two functions. 

Huttenhower et al. [69] developed a Sleipnir C++ library that implements multiple 

machine learning and data manipulation algorithms with a focus on heterogeneous data 

integration that could handle large biological data collections. Sleipnir has the ability to 

process microarray, functional ontology mining, clustering, Bayesian learning and 

inferences and support vector machine that could be applied to heterogeneous data on a 

http://scholar.google.com/citations?user=yFncM6AAAAAJ&hl=en&oi=sra
http://scholar.google.com/citations?user=yFncM6AAAAAJ&hl=en&oi=sra
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large scale. Moreover, this library has the advantage of being integrated with other 

computational systems.  

Nguyen et al. [70] proposed a toolbox for learning a globally optimal dynamic 

Bayesian network (DBN)  structure from the gene expression data sets. Nguyen et al 

utilized the mutual information test (MIT) scoring system; such that the globally optimal 

learning DBN is achieved in polynomial time.  

Wang et al. [71] proposed the identification of functional modules out of protein-

protein interaction (PPI).The proposed technique is called the PPI-based Bayesian 

Models (PPIBM). The PPIBM approach integrates both the gene expression data analysis 

and clustering of protein-protein interactions. Furthermore, PPIBM utilizes the Bayesian 

model, which uses its base protein-protein interactions given as a part of input. 

Chang et al. [72] proposed the use of a Bayesian network-based technique for the 

purpose of a single-nucleotide polymorphism (SNP) and expression microarray data 

integration. The integrated network models the SNP-gene interactions through the 

phenotype centric network. However, Chang et al. consists of two parts, variable 

selection and network learning. The learnt network elucidates how functionally 

dependent SNPs and how genes effects each other. In addition, the learnt network could 

be utilized for the purpose of predicting phenotypes. Moreover, this study has 

investigated the pediatric acute lymphoblastic leukemia dataset. 

Yuanfang et al. [4] proposed an approach that overcomes the limitations of the 

quantitative genetics techniques through the application of functional genomics. The 

proposed algorithm integrates the genome-wide functional relationship network and 
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SVM. The functional relationship network was first constructed utilizing the laboratory 

mouse through the integration of multiple different data types, excluding phenotype and 

disease data to avoid contamination in the evaluation process. The data was integrated 

utilizing Gene Ontology as a gold standard and using an established Bayesian pipeline 

[73]. Moreover, the constructed network was fed into SVM for the prediction of related 

phenotypes. The proposed algorithm is evaluated through predicting genes associated 

with each of the 1,157 diverse phenotype ontology terms. This study has investigated 

bone mineral density (BMD), a phenotype related to an osteoporotic fracture, and 

revealed two genes (i.e. Timp2 and Abcg8) that are related to bone density defects, which 

are not identified in other statistical methods (i.e. genome-wide association studies / 

quantitative trait loci). 

Wu et al. [47] developed  a functional interaction, an (FI) network that combines both 

curated interactions from Reactome [74], other pathway databases, such as Panther [75] 

CellMap, NCI Pathway Interaction Database, and KEGG, additionally, un-curated 

pairwise relationships. This study utilizes collected data from physical PPIs in human and 

model organisms, gene co-expression data, protein domain-domain interactions, proteins 

interactions generated from text mining, and Gene Ontology annotations. The Wu et al. 

technique utilizes the naïve Bayes classifier (NBC) to reveal the high FIs from non-

functional pairwise relationships, to neglect the false positives.  The built protein 

functional interaction network (i.e. combines the curated pathways with non-curated 

source of information) covering close to 50% of the human proteome, then using this 

network to investigate two Glioblastoma multiforme (GBM) data sets and projecting the 

cancer candidate genes onto the FI network. 
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3.3.3. Kernel Models and SVM 

Kernels models and SVM based on the utilization of extracted features out of the 

datasets. Then, these features are applied for the purpose of integration and disease-gene 

prediction. For instance, Yu et al.[76] investigated biological systems through the 

integration of both the human protein  reference database [59],the protein-protein 

interaction (PPI) network and the gene expression omnibus [77] data to study lung 

cancer. Furthermore, A SVM classification model was implemented to predict the PPIs. 

Most recently, Qian et al. [78] studied the Multiple Sclerosis disease using two gene 

expression datasets and the HPRD protein-protein interaction for the integration process. 

The Qian et al.  technique was divided into four steps: 1) the inference of the gene states 

are done by Hidden Markov Model (HMM)/Gaussian Mixture Model (GMM) hybrid 

model, 2) the extraction of the bi-clusters out of the gene state sequences, 3) assigning a 

score for each bi-cluster, dependent on its genes' connection in the PPI network, and 4) 

K-nearest neighbor classification model is trained and then the SVM classification model 

is utilized on the collection of K-nearest neighbors. 

Finally, in literature [25] has investigated that the pairwise interactions could be 

incomplete (false negatives) and contains noise (false positives). For that reason, many 

studies have been published toward integrating several data types and knowledge to 

provide highly reliable and efficient one single probabilistic integrated model, such that, 

this model is able to identify disease markers optimally [79]. 
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Table 3 Literature Overview of studies utilizing Functional Genomics Network 

Author Method Tackled Problem 

Guilt By Association  

Savage et al. 2010 Hierarchical Dirichlet process mixture 

Gene expression and 

transcription factor 

integration 

Sigh-Blom et al. 2013 Katz and CATAPULT 

OMIM phenotypes 

and drug-target 

interactions 

prediction 

Bayesian Models 

Huttenhoweret al. 

2006 

Bayesian framework for predicting 

functional relations  

Integrating various 

Saccharomyces 

cerevisiae microarray 

datasets 

Huttenhoweret al. 

2008 
Sleipnir C++ library  

Allow integration of 

various of datasets 

using: 1) Bayesian 

classification model 

or 2) SVM 

Yuanfang et al. 2010 

Byesian based tehcnique to integrate 

different datasets/SVM for 

classification 

Bone mineral density 

Wu et al. 2010 
Naïve Bayes classifier to integrate 

varous datasets 

Study glioblastoma-

multiforme brain 

tumor 

Nguyen et al. 2011 Bayesian network construction 

A tool for learning 

globally optimal 

dynamic Bayesian 

network structure 

Chang et al. 2011 
Bayesian network-based technique to 

integrate SNP and gene expression 

Pediatric acute 

lymphoblastic 

leukemia 

http://scholar.google.com/citations?user=yFncM6AAAAAJ&hl=en&oi=sra
http://scholar.google.com/citations?user=yFncM6AAAAAJ&hl=en&oi=sra
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Author Method Tackled Problem 

Wang et al.2012 PPI-based Bayesian integration 

Integrates gene 

expression and PPIs 

network 

Kernel Models and SVM 

Yu et al. 2013 
SVM-based classification model to 

reveal PPIs  

Lung cancer 

prediction 

Qian et al. 2013 K-nearest/SVM 
Multiple Sclerosis 

disease prediction 

3.4. Our Proposed Method 

In this study, we extract fourteen topological features. These features are very well-

known in literature which are used to study genes either in local or global manner in the 

biological or social networks. More importantly, these topological features (or raking 

algorithms) are typically used to prioritize candidate genes based on one raking algorithm 

at a time. However, this study attempts to use fourteen ranking algorithm at once through 

the utilization of efficient and reliable classification models. Furthermore, the 

classification performance is enhanced using a SMOTE sampling technique to overcome 

the imbalance datasets problem that comes in nature in such biological networks. The 

classification performance is validates using a novel co-cross validation technique. 

Finally, the classification models power is verified utilizing three publicly datasets 

(functional genomics network, protein-protein interactions network, and co-expression 

network). 
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Fig. 7.  A summary of the research procedure. 

 Fig. 7. shows the work summary that has been adopted in this research: 

1. We start-off with a biological network as shown in upper left corner. Our 

contribution, we combine fourteen topological features instead of using a single 
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topological feature. These fourteen topological features are computed for every 

gene in the biological network. 

2. We balance the datasets using a SMOTE sampling technique to enhance the 

classification performance. 

3. We proposed a novel co-cross-validation technique that has not been used in the 

literature, to provide a generalized performance for the classification models. 

4. Our contribution is extended in the form of a feature space that is fed to different 

classification models to discriminate breast cancer and non-breast cancer genes. 

5. The classification models are built to predict breast cancer in the following 

scenarios: a) one features at a time, b) applying hill-climbing to find the most 

significant sub-set of topological features that increases the classification 

performance and c) applying Pearson's correlation coefficients features selection. 
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4. CHAPTER 4 

METHODOLOGY 

The complex biological networks could be represented as graphs. Such that, a node 

represents a gene, and the interactions between genes could be represented by links. In 

the literature, several ranking algorithms are developed to rank a certain node to its 

position in the graph. Some algorithms rank a certain gene depending on its direct 

neighbors. Others ranking algorithms rank a certain node globally (i.e. all nodes are 

considered). In this study, three different datasets (i.e. co-expression, PPIs, and functional 

genomic networks) are utilized to examine fourteen ranking algorithms. The computed 

scores for each gene are then fed into two different classification models to discriminate a 

disease of interest (i.e. breast cancer). Due to the high imbalance, SMOTE sampling 

technique is adopted. 

4.1. Genomic Data Integration Methodology 

This study has utilized Wu et al. publicly available integrated datasets of several 

types (i.e. gene expression, PPIs, Gene Ontology, and Domain Interaction). There is an 

urgent need to apply integration of multiple datasets of different types, such that 

knowledge from different resources is gained to construct a more reliable network. The 

problem of using a single dataset is that the pairwise networks do not necessarily provide 

fully 100% true positive interaction between two genes of proteins. For instance, the 

yeast two-hybrid approach might indicate that two proteins might physically interact 
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without indicting that this interaction constitutes a part of a biological meaningful 

pathway in the living organism [47].  Moreover, there might be pairwise interaction 

datasets that may have a high false positive [26, 27]. In this section, we provide an 

overview of Wu et al. integration approach which could be summarized in the following 

three items.   

1. Transforming pairwise interactions into probable functional interactions 

The aforementioned problem of false positive could be resolve through the utilization 

of a pathway-based inference on the high-throughput functional data sets, such that the 

utilization of pathway databases will reveal a clean pairwise that are functionally related. 

Wuet al.[47] goal is to integrate both high-coverage, unreliable pairwise datasets with the 

low-coverage, highly reliable pathways to create a pathway informed data analysis for 

high-throughput analysis. 

The first step to achieving this goal is that a functional interaction (FI) network is 

constructed that integrates a curated interaction from Reactome [74] and other pathway 

databases (i.e. Panther[75], CellMap[80], NCI-Nature[81], NCI-BioCarta[81], and 

KEGG[82]), with un-curated pairwise relationships that are collected from physical PPIs 

in human and model organisms, gene co-expression data, protein domain-domain 

interactions, protein generated from text mining, and Gene Ontology annotations. The 

Wu et al. approach makes use of the naïve Bayes classifier (NBC) to discriminate high-

likelihood FIs from non-functional pairwise relationships. 
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2. Construction and training of a functional interaction classifier 

The essential goal is to establish a network of protein functional relationships that 

shows functionally significant molecular events in cellular pathways. Most PPIs   

interaction databases are categorized as physically interactions and there is no clear proof 

that these interactions are involved in biomedical events. Furthermore, even other protein 

pairwise relationships have similar problems. An NBC [83] is implemented which scores 

the probability that two proteins are functionally related in a pathway event (i.e. if the 

probability greater or equal to 0.5).  

Obviously the pathway databases are far richer than the binary PPIs and other 

pairwise relationships in terms of contents.  Thus, Wu et al. has developed a relationship, 

called „functional interaction‟, which defines a functional interaction as one in which two 

proteins are involved in the same biochemical reaction as an input, catalyst, activator, or 

inhibitor, or as two members of the same protein complex. The aforementioned definition 

is used to obtain the positive training sets from Reactome pathways for NBC. However, 

the NBC must be trained with both positive and negative samples. More importantly, the 

lack of knowledge that two proteins are not known to interact does not mean that these 

two protein are not interacting. Wu et  al. adopted Zhange et al. [84] to create negative 

samples using random pairs selected from proteins in the Reactome FI set (in other 

words, using random pairs from the positive samples).  

3. Merging the NBC with pathway data to create an extended FI network 

An extended FI network is constructed with high protein and gene coverage through 

the combination of FIs predicted from the trained NBC with the annotated FIs extracted 

from the pathway databases (i.e. the pathway databases are: Reactome [74], Panther [75], 



52 

 

CellMap [80], NCI-Nature [81], NCI-BioCarta [81], and KEGG[82]). For the purpose of 

increasing the coverage of the FI network, the interactions between human transcription 

factors and their targets from the TRED database are imported [85]. Furthermore, the 

result in an extended FI network consisting of 10,956 proteins and 209,988 FIs. 

4.2. SMOTE: Synthetic Minority Over-sampling TEchnique 

This study investigates highly imbalanced datasets (i.e. one category is far more than 

the other category). To enhance the classification performance the SMOTE sampling 

technique was used in this study, which was proposed by Chawla et al. [86].SMOTE has 

the advantage of combining in formed oversampling of the minority class with random 

under-sampling of the majority class. However, SMOTE is a sampling approach that 

could be used to overcome the problem of imbalance datasets. It over-samples the 

minority class by creating synthetic samples rather than over-sampling with replacements 

(i.e. that the positive (minority) samples are over-sampled with replacement to match the 

number of negative (majority) samples). However, it operates in "feature space" rather 

than "data space". Such that, the minority class is over-sampled by taking each minority 

class sample and generating synthetic samples along the line segments joining any or all 

of the k minority class nearest neighbors. The neighbors from the k nearest neighbors are 

randomly selected, and that is based on the amount of over-sampling needed. 

SMOTE sampling technique computation should go as follows: 

1. For each minority Sample: 

◦ Find its k-nearest minority neighbors. 
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◦ Randomly select n of these neighbors. 

◦ Randomly generate synthetic samples along the lines joining the minority 

sample and its n selected neighbors. 

2. For instance: 

◦ Select a minority sample.  

◦ Take the difference between minority sample under consideration and its 

nearest neighbor. 

◦ Multiply this difference by a random number between 0 and 1, and  

◦ Add the resultant difference to minority sample under consideration (i.e. 

this will be the synthetic sample).  

SMOTE was implemented in R using the ' DMwR' package [87]. It is worth 

mentioning that SMOTE was implemented with the following parameters: 1) the k-

nearest neighbor is equal to 5 for every case scenario in this study, 2) to sample the breast 

cancer featuring the over sampling percentage = 400 and under sampling percentage = 

125.  

4.3. Biological Network Randomization 

The biological network that has been utilized in this study was randomized based on 

the Maslov et al. [88] technique. The procedure rewires the connections of a given 

complex network, more importantly, conserving the connectiveness (keeping the degree of 

each vertex constant). Firstly, the algorithm uses a conventional procedure to perform the 
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network randomization randomly choosing a pair of edges A→B and C→D. Secondly, the 

randomly chosen edges are rewired in the following manner, A becomes connected to D 

and C becomes connected to B. Furthermore, if it happens that one or both of these new 

links already exist in the network, then this step is canceled and a new pair of edges will 

be chosen. This restriction will result an out of a network that prevents the appearance of 

multiple edges connecting the same pair of nodes. Thirdly, a repetition of the previous 

rewiring procedure will provide a randomized network of the original network. Finally, 

the randomization of a large complex network will help to reveal significant topological 

patterns in a network. Such pattern might be over (or under) represented in the real 

network compared to the randomized network.  Fig. 8. illustrate the biological network 

randomization methodology: 1) Select randomly pair of edges and rewire.  Such that, the 

new re-wiring should not exist in the current network. 2) Results in a null model 

(randomized network) of a given complex network. Such that, the degree of direct 

neighbors is preserved. 3) The randomized model could be used to identify the over- 

under- represented pattern in the real network. 

 

Fig. 8.  Biological Network Randomization 
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4.4. Implemented Classifiers 

In this study, there are mainly two stages to investigate whether a gene is related to a 

certain disease (i.e. breast cancer). Firstly, a graph theory is employed for feature 

extraction based on the network centrality measures and node raking as described earlier, 

and then SMOTE is applied to balance the minority class. Secondly, the performance of 

different classifiers for the prediction of different crucial diseases are analyzed (i.e. breast 

cancer). In particular, this study considers two classification models. First, to start off 

with, the decision tree bagger (DTB) [89-91] and RUSBoost [92] are both  tested with a 

different growing number of trees.  However, the used classifiers are implemented in 

Matlab [93]. Each model will be described briefly as follows. 

4.4.1. Decision Trees Bagger 

Bagging, which is also known as "bootstrap aggregation," is one of ensemble learning. 

The weak leaner decision tree will bag a specific dataset through generating many 

bootstrap replicas of the dataset, and the decision trees will be grown on these replicas. 

The bootstrap replica could be sampled randomly choosing from N observations out of N 

with replacement, where N is the dataset size. Furthermore, the average of the predictions 

from individual trees will give the predicted output of the trained ensemble. 

The bagging technique is employed by training learners on resampled versions of the 

data which are often facilitated by bootstrapping observations, such that, N out of N 

observations with replacements are chosen for every new learner. Furthermore, the 

accuracy of the bagged trees could be improved, such that the tree in the ensemble could 

randomly choose the predictors for the decision splits.  
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Finally, the implemented minimal leaf sizes of the bagged trees are set to be 1. Thus, 

the trees grown (i.e. this study applied exhaustive growing trees starting from 50 up to 

750, such that the increment pointer is 50 trees and then the best number of grown trees is 

chosen) with such a minimal leaf size tend to be very deep. More importantly, this setting 

is closer to be the optimal for the predictive power of an ensemble, but time consuming. 

Another important parameter is the number of predictors that are chosen randomly for 

every decision split. However, the parameter is determined as the square root of the 

number of the predictors. 

4.4.2. RUSBoost 

RUS is an acronym for Random Under sampling. It is meant to deal with imbalanced 

datasets effectively. Firstly, the algorithm is developed to take   observations to be the 

number of members in the class with the fewest members in the training data. These 

observations will be handled as the basic population for sampling. Furthermore, the 

majority classes are under sampled by taking only N observations of every class. 

The RUSBoost ensemble is constructed with an optimal name-value pair. Called Ratio-

To-Smallest, it provides a vector of K values, with each value representing the multiple of 

N to sample for the associated class. For instance, if the minority class contains only N = 

100 members and the vector K =       then it could be interpreted that each weak learner 

has 200 members, 300 members and 400 members for the class 1, 2 and 3, respectively. 

Finally, if the Ratio-To-Smallest generates a value that is greater than the number of 

members in a specific class, then the RUSBoost samples the members with a replacement. 

Else and RUSBoost samples members without a replacement. 
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This study fixes one parameter of the RUSBoost that is the minimal leaf size, trees are 

set to be a default value = 1. On the other hands, the trees grown in this study are growing 

trees starting from 50 up to 750, such that the increment pointer is 50 trees. Then, among 

the grown set of trees, the one that is gives the best classification performance is selected. 
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5. CHAPTER 5 

EXPERIMENTS 

5.1. Experimental Data 

A biologist generates massive datasets using high-throughput technologies (i.e. 

genomics, proteomics, or transcriptomics [65]). For instance, proteomics might provide 

for protein-protein interactions (PPIs) [25]through the yeast, the two-hybrid method or 

mass spectrometry.  However, with PPIs, processing two or more genes are considered to 

be physically interacting. The datasets of PPIs could be viewed as a network, such that 

each gene in this network is represented using a node, and the interaction between genes 

represented using links. Using transcriptomics technologies, for instance, microarray 

could provide a gene expression profiling [25], such that, gene expression profiling 

measures the expression values of genes. Furthermore, this study utilizes three types of 

datasets. These datasets are BioGrid Homo sapiens PPIs [94], gene expression which 

made publicly available by Hedenfalk et al. [95], and an integrated functional protein 

network which made publicly available by Wu et. al. [96]. Prior to utilizing these 

networks, the common genes across these three datasets are obtained, such that, the 

common number of genes is 1,235.Based on this common number all three datasets are 

filtered to have the same size for all three networks.  
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5.1.1. Gene Expression Datasets 

This study utilizes gene expression profiles of breast cancer for comparing and 

evaluating the classification and prediction purposes against the integrated genomic 

network of Wu et al. [96] and the BioGrid PPI. Firstly, the breast cancer gene expression 

profiles that has been utilized are obtained from Hedenfalk et al. [95], which consists 

originally of 3,226 genes and 22 gene expression profiles of patients that have breast 

cancer.  The Hedenfalk et al. gene expression profiles are filtered according to the 

common genes (i.e. 1,235 genes).  

The gene expression profiles are used to construct a co-expression network. The 

network construction is based on Ruan et al. [43]. The Ruan et al. approach is a rank-

based network construction technique. Furthermore, the constructed co-expression 

network was randomized based on the Maslov et al. method. However, the resulted 

networks properties are shown in Table 4. 

Table 4 Co-Expression Network Properties 

Dataset Proteins Interactions 
Average 

Degree 
Density 

Co-expression 

Nerwork 
1,235 05,051 46.0 1.140 

Randomized 

Co-expression 

Nerwork 

1,235 05,051 46.0 1.140 

5.1.2. Proteins-Proteins Interactions (PPIs) Networks 

For further analysis, this study utilizes single PPIs of Homo sapiens to extract the 

topological features that have been described above and then fed into the classification 

models, i.e., these classification results will be reasoned against the Wu et al. integrated 

genomic network and the Hedenfalk et al. gene expression datasets classification results. 
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The datasets of PPIs are considered as a network. However, the nodes represent proteins 

and edges represent interactions among proteins. The PPI data of homo sapiens that were 

obtained from the BioGrid database has a version code of “BIOGRID-ORGANISM-

Homo_sapiens-3.2.96”, which consists of 14,850 proteins and 169,166 interactions [94]. 

More importantly, the BioGrid PPIs is pre-processed, such that the proteins that are not 

found among the common genes (i.e. 1,235 genes), then are removed from the BioGrid 

PPIs network. In addition, the filtered PPIs network, which consists only of 1,235 genes 

was randomized based on the Maslov et al. method. However, the resulted network 

properties are shown in Table 5. 

Table 5 PPIs Network Properties 

Dataset Proteins Interactions 
Average 

Degree 
Density 

PPIs Nerwork 1,235 04,023 07.7 1.104 

Randomized 

PPIs Nerwork 
1,235 01,250 04.7 1.102 

5.1.3. Integrated Genomics Network 

The third dataset of this utilized study is made publicly available by Wu et al.[96]. The 

constructed functional protein biological network has the advantages of binding both the 

high-coverage and unreliable pairwise datasets with the low-coverage, highly reliable 

pathways to make a pathway-informed data analysis system for high-throughput data 

analysis. However, the integration of both “high-coverage, unreliable pairwise” with “low-

coverage, highly reliable pathways” datasets yield a functional interaction (FI) network. 

This FI network was constructed using curated interactions by experts and un-curated 

pairwise relationships (including protein-protein interactions in human and model 

organisms, genes co-expression data, protein domain-domain interactions, protein domain 
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extracted from text mining and Gene Ontology annotations). More importantly, the FI 

network covers approximately 50% of the human entire set of proteins. Moreover, the 

proposed scoring system that is used by Wu et al.is a naïve Bayes classifier machine 

learning model. The score is an indication of the probability that a protein pairwise 

relationship reflects a function pathway event (refer to ch# 4, section  4.1 for the integration 

methodology). Furthermore, Wu et al. FI network was filtered to contain genes that match 

the common genes across the other two utilized datasets (i.e. gene expression and PPIs). In 

addition, the filtered FI network, which consists of only 1,235 genes, was randomized 

based on the Maslov et al. method. However, the resulted networks properties are shown 

in Table 6. 

Table 6 FI Network Properties 

Dataset Proteins Interactions 
Average 

Degree 
Density 

FI Nerwork 1,235 6,004 00.3 1.100 

Randomized FI 

Nerwork 
1,235 00,212 40.5 1.106 

5.1.4. Breast Cancer Genes 

Breast cancer genes and the ones that are related to these diseases are annotated and 

could be found in several public databases. This study has utilized several databases to 

extract the phenotypic genes that are related to breast cancer. Such that, the genetic 

association database (GAD) [2], The Mammalian Phenotype (MP) [97], The Human 

Phenotype Ontology [98] are made used of to extract genes that related to breast cancer.  

Due to the severe unbalanced datasets, a sampling technique was utilized SMOTE to 

balance the data of these extracted features. This yielded consistently positive and 

negative samples across the three datasets (i.e. gene expression, BioGrid PPIs, and FI 
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network). Such that, there 615 positive samples and 615 negative samples for the breast 

cancer.  

5.2. Co-Cross Validation 

The performance of each of the classifiers used in this thesis is generalized based on 

the use of cross-validation (CV) approach. CV is a well-known testing methodology that 

provides some insight on how well the system is able to classify using various 

combinations of testing and training data sets. The performance of phenotypic genes 

outcome prediction is measure by systematically excluding some data instances during the 

training process and testing the trained model using the excluded instances. However, we 

propose a novel technique based on the usual CV scheme, such that we have chosen a 5-

folds CV scheme, where each time 4-folds are used to create another 5-fold to train and 

test certain models of the classifier, the best model is selected based on the averaged 

values of: F-Measure, AUC, and Geometric-Mean. The model that has been chosen is 

based on the averaged three values then it is tested using the 1-left-out fold from the 

original 5-folds. The process is repeated to cover all the dataset as a testing dataset. It is 

worth mentioning that we used only 5-fold co-cross validation because of the large 

number of samples. Hence, the division of the datasets will create sufficient number of 

sample for trains, and sufficient number of samples for testing.  
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Fig. 9.  Proposed co-cross validation 

 Fig. 9. shows the layout of our proposed co-cross validation scheme. The progress of 

the co-cross validation goes as follows: 

1. At first stage, we create a 5-fold; out of these 5-folds we select 4-folds to create 

other 5-folds. 

2. At the second stage, we used the created new 5-folds to train and test the system: 

a. Use 4-folds for training and the left fold for testing. 

b. Repeat this process 5-time, such that at each iteration  new fold is used for 

testing (i.e. at first iteration fold one is used for testing and other four folds 

are used for training, at second iteration use the second fold for testing and 

other remaining folds for training, and so on). 

c. The classification performance is reported 5-time. Hence the average is 

taken. 



64 

 

d.  The best model that is chosen from second phase is based on the averaged 

values of F-Measure, AUC, and Geometric-Mean.  

3. The best model that has been chosen in the second phase will be used to test the 

classifier using the left fold from first stage.  

4. This process is repeated 5-time at stage one (i.e. the classification performance is 

reported 5-time; hence the average values are taken). 

5.3. Performance Evaluation 

Clinical research often investigates the statistical relationship between symptoms (or 

test results) and the presence of a disease. When significant associations are found, it is 

useful to express the data in ways which are clinically relevant. Thus, to evaluate the 

performances of the different classifiers models, the following performance metrics are 

used in this thesis. 

Let: 

FP = false positives: Represents the number of wrongly predicted positive samples. 

FN = false negatives: Represents the number of wrongly predicted negative samples. 

TP = true positives: Represents the number of correctly predicted positive samples. 

TN = true negatives: Represents the number of correctly predicted negative samples. 

The aforementioned four counting (i.e. FP, FN, TP, and TN) could be illustrated using 

the confusion matrix in Table 7.  
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Table 7 Confusion Matrix 

 
Predict Number of Negative 

samples 

Predict Number of Positive 

samples 

Actual Number of Negative 

samples 
TN FP 

Actual Number of Positive 

samples 
FN TP 

The following are definitions of the metrics that have been computed to evaluate each 

classifier performance. They are accuracy, F-measure, area under ROC curve, and 

geometric mean. Additional definitions, such as sensitivity, specificity, and positive 

predictive value are included, because the other metrics that are used in this thesis are 

dependent on those.  

1) Accuracy (ACC).Accuracy is one of the widely used performance metrics to 

evaluate a classifier. ACC is defined as all samples that are classified correctly 

over the total number of samples available (N). 

       
     

 
 (12)  

2) Sensitivity (SN). Sensitivity refers to the proportion of cancerous genes which 

are correctly predicted as cancerous and total cancerous genes. 

 
      

  

     
 (13)  

3) Specificity (SP). Specificity refers to the proportion of non-cancerous genes 

which are correctly eliminated and total non-cancerous gens. 

 
      

  

     
 (14)  
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4) Positive predictive value (PPV). Positive predictive value is the proportion of 

cancerous genes in the prediction which are correctly predicted as cancerous. 

 
       

  

     
 (15)  

5) F-measure (F). F-measure is the harmonic means of sensitivity and positive 

predictive value, which is defined as 

 
    

        

      
 (16)  

6) Area Under ROC plots[99]: Performances of each of the classifiers were 

computed using AUC (area under receiver operating characteristic: ROC curves). 

The ROC plot space is a one-unit square, which the highest obtained AUC value 

that could be 1, meaning perfect ordering. However, in ROC graphs with a 0.5 

AUC value, this represents random guessing, and values that smaller than 0.5 are 

not realistic as they can be negated by changing the decision criteria of the 

classifier. More importantly, the AUC value of a particular classifier could be 

viewed as the probability that a classifier will rank a randomly chosen positive 

instance higher than a randomly chosen negative instance. 

7) Geometric mean (Gm). Geometric mean has been introduced in [100]  to 

overcome the problem that is associated with accuracy metric in unbalanced 

dataset learning. 

       √      (17)  
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5.4. Hill-Climbing Feature Selection Technique 

The classification performance can be enhanced through choosing a combination of 

important features that represent maximal separation between the classes [101]. In this 

thesis, we applied a hill-climbing feature selection algorithm. This algorithm initially 

selects the most influential features from the dataset and then repetitively adds feature to 

the selected feature set that positively improves the classification results or provides the 

least reduction in classification performances. The steps of the algorithm are as follows: 

1. Initialize the select feature set   as an empty set.  

2. Compute the classification performance for each of the individual features   

paired with  . 

3. Select the feature       for which the best classification performance is achieved 

and add the feature to selected feature set  . 

4. Repeat steps 2 and 3 until there is no remaining feature to be added to  . 
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CHAPTER 6 

RESULTS AND DISCUSSION 

In this study, three datasets are utilized (i.e. co-expression network, BioGrid PPIs 

network, and FI network) to extract fourteen network topological features to predict breast 

cancer genes. These features are fed to two classifiers (i.e. Decision tree bagger (DTB) 

and  RUSBoost) which are implemented based on growing trees of multiple of 50 trees 

staring from 50 trees up to 750 trees. Prior the classification and due to the severe 

imbalance between positive and negative samples, a SMOTE sampling technique is used, 

which resulted in a standard number of samples (i.e. 615 positive and negative samples). 

Furthermore, to validate the classification performance, we propose our co-cross 

validation, which in this study is implemented with a 5-fold, as described earlier. Co-cross 

validation technique is effective and efficient scheme to avoid the classifier over-fitting. 

In this study, 1) we study the significance of the extracted 14 topological features from 

every individual biological networks. 2) Then, we study the most influential identified 

topological feature, and study its ability to reveal biological significant phenomena, in 

term of identifying the most central genes that are related to breast cancer.   

6.1. Classification Performance Significance based on the Proposed 

Extracted Features  

In this study, we construct a number of classification models to provide a wide view of 

the significant fourteen topological features and their ability to predict the phenotypic 

genes correctly and with high performance rates. More specifically, we find the 
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classification performance using: 1) one feature at a time, 2) using sub-set of selected 

topological features using Hill-Climbing Feature Selection, and 3) using sub-set of 

selected topological features using Pearson correlation coefficients (PCCs) features 

selection. 

6.1.1. Classification Performance using One Feature at a Time 

In this section, we show the classification performance for each topological feature to 

predict the breast cancer and non-breast cancer genes using three complex biological 

networks, i.e., co-expression, BioGrid PPIs, and FI networks (results are shown in Table 8 

- Table 10). Table 8 shows the classification results for the two classification models (i.e. 

DTB and RUSBoost) while adopting the extracted features from the co-expression 

network. We notice that within module Z-score (WMZ) topological feature provides the 

best classification results among the 14 topological features (i.e. DTB and RUSBoost 

achieve an accuracy rate of 81% (approx.), F-measure rate of 0.84, AUC rate of 0.81, and 

Geometric-Mean rate 0.80 while using only WMZ feature). 

 On the other hand, we observe that using node corness (NC) feature of co-expression 

network achieves the lowest classification performance among other topological features 

while classifying the datasets using DTB and RUSBoot to predict breast cancer (i.e. the 

accuracy rate of  55% (approx.), F-measure rate of 0.21, AUC  rate of 0.55, and 

Geometric-mean of 0.34). 
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Table 8 Comparison of the Values of Accuracy, F-Measure, AUC, and Geometric-

Mean using one feature at a time that extracted from Co-expression Network to 

Predict Breast cancer. 

 DTB RUSBOOST 

METHOD ACC F AUC 
G-

MEAN 
ACC F AUC 

G-

MEAN 

DC 0.7593 0.7923 0.7593 0.7403 0.7545 0.7874 0.7545 0.7361 

BC 0.6008 0.6134 0.6008 0.5982 0.5756 0.5834 0.5756 0.5728 

ClosC 0.6415 0.6666 0.6415 0.6363 0.5862 0.6004 0.5862 0.5824 

KSM 0.6415 0.6564 0.6415 0.6396 0.6081 0.6171 0.6081 0.6068 

EC 0.7650 0.7916 0.7650 0.7525 0.7602 0.7875 0.7602 0.7473 

BCS 0.6423 0.6662 0.6423 0.6375 0.5854 0.5987 0.5854 0.5818 

CC 0.6992 0.7274 0.6992 0.6895 0.6691 0.6926 0.6691 0.6630 

FC 0.6984 0.7269 0.6984 0.6885 0.6683 0.6907 0.6683 0.6630 

KSI 0.6333 0.6492 0.6333 0.6308 0.6106 0.6196 0.6106 0.6065 

NC 0.5488 0.2117 0.5488 0.3419 0.5488 0.2117 0.5488 0.3419 

WMZ 0.8187 0.8429 0.8187 0.8040 0.8130 0.8365 0.8130 0.8001 

SC 0.6301 0.6467 0.6301 0.6276 0.6187 0.6343 0.6187 0.6165 

PP 0.6423 0.6672 0.6423 0.6372 0.5862 0.6004 0.5862 0.5824 

SH 0.6366 0.6549 0.6366 0.6335 0.6081 0.6245 0.6081 0.6058 

To assess the power of the individual topological features, we use a different complex 

biological network, Namely, BioGrid PPIs network (i.e. the results are shown in Table 9). 

Comparison to the co-expression network features (Table 8), the BioGrid PPIs network 

features reveal same findings, i.e., DTB and RUSBoost classification models achieve 

highest classification performance using only within module z-score to predict breast 

cancer and non-breast cancer genes. WMZ BioGrid PPIs feature when is fed to DTB and 

RUSBoost is able to provide the highest performance rate, i.e., an accuracy rate of 87% 

(approx.), F-measure rate of 0.89, AUC rate of 0.88 and Geometric-Mean of 0.87. 
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 On the other hand, we observe that Structural Holes (SH) of BioGrid PPIs network 

achieves the lowest classification performance among other topological feature for both 

DTB and RUSBoot classification models (i.e., the accuracy rate of 66% (approx.)). 

BioGrid PPIs features are able to classify better comparison to the features that are 

extracted from co-expression network. 

Table 9 Comparison of the Values of Accuracy, F-Measure, AUC, and Geometric-

Mean using one feature at a time that extracted from BioGrid PPIs Network to 

Predict Breast cancer. 

 DTB RUSBOOST 

METHOD ACC F AUC 
G-

MEAN 
ACC F AUC 

G-

MEAN 

DC 0.8667 0.8797 0.8667 0.8598 0.8618 0.8751 0.8618 0.8551 

BC 0.7341 0.7397 0.7341 0.7336 0.7163 0.7134 0.7163 0.7154 

ClosC 0.6618 0.6759 0.6618 0.6587 0.6472 0.6602 0.6472 0.6447 

KSM 0.7057 0.7156 0.7057 0.7031 0.6959 0.7038 0.6959 0.6940 

EC 0.7325 0.7492 0.7325 0.7283 0.7407 0.7496 0.7407 0.7390 

BCS 0.7772 0.7996 0.7772 0.7683 0.7512 0.7730 0.7512 0.7436 

CC 0.7740 0.7894 0.7740 0.7696 0.7675 0.7787 0.7675 0.7650 

FC 0.7699 0.7852 0.7699 0.7657 0.7415 0.7579 0.7415 0.7373 

KSI 0.7252 0.7349 0.7252 0.7235 0.7041 0.7109 0.7041 0.7029 

NC 0.8650 0.8747 0.8650 0.8615 0.8650 0.8747 0.8650 0.8615 

WMZ 0.8748 0.8866 0.8748 0.8682 0.8772 0.8878 0.8772 0.8718 

SC 0.7821 0.7867 0.7821 0.7798 0.7715 0.7741 0.7715 0.7696 

PP 0.6650 0.6830 0.6650 0.6608 0.6463 0.6608 0.6463 0.6436 

SH 0.6602 0.6754 0.6602 0.6579 0.6106 0.6231 0.6106 0.6095 

Furthermore, a third functional interaction (FI) network is utilized to extract the 

proposed fourteen topological features.  FI fourteen topological features are fed one at a 

time for two different classification models (i.e. DTB and RUSBoost), the classification 

results to predict breast and non-breast genes are shown in Table 10. 
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It is consistently observed that within module z-score (WMZ) (through the three 

biological networks, i.e., co-expression, BioGrid PPIs, and FI networks) achieves the 

highest classification results when is fed to DTB and RUSBoost. WMZ topological feature 

of FI network when is fed to DTB and RUSBoost is able to provide an accuracy rate of 

81% (approx.) for both classifiers. DTB and RUSBoost are also able to predict breast 

cancer genes using only WMZ with F-measure, AUC and Geometric-Mean with rates of 

0.83, 0.81, and 0.79, respectively. 

 On the other hand, we observe that Betweenness centrality (BC) that was extracted 

from FI network achieves the lowest classification performance among other topological 

features for both DTB and RUSBoot classification models (i.e. the accuracy rate of ~64%, 

F-measure rate of 0.67, AUC rate of 0.64, and Geometric-mean of 0.64). Moreover, co-

expression topological features remain to provide the lowest classification performance 

among the other complex biological networks (i.e. BioGrid PPIs and FI networks).  
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Table 10 Comparison of the Values of Accuracy, F-Measure, AUC, and Geometric-

Mean using one feature at a time that extracted from Functional Interaction 

Network to Predict Breast cancer. 

 DTB RUSBOOST 

METHOD ACC F AUC 
G-

MEAN 
ACC F AUC 

G-

MEAN 

DC 0.7837 0.8152 0.7837 0.7647 0.7675 0.8016 0.7675 0.7471 

BC 0.6463 0.6717 0.6463 0.6399 0.6431 0.6674 0.6431 0.6362 

ClosC 0.6805 0.6904 0.6805 0.6790 0.6593 0.6677 0.6593 0.6573 

KSM 0.6602 0.6799 0.6602 0.6571 0.6415 0.6582 0.6415 0.6388 

EC 0.7772 0.8073 0.7772 0.7607 0.7593 0.7911 0.7593 0.7432 

BCS 0.7984 0.8175 0.7984 0.7913 0.7683 0.7856 0.7683 0.7630 

CC 0.6951 0.7350 0.6951 0.6782 0.6748 0.7112 0.6748 0.6628 

FC 0.6878 0.7292 0.6878 0.6695 0.6740 0.7152 0.6740 0.6580 

KSI 0.6561 0.6824 0.6561 0.6501 0.6341 0.6613 0.6341 0.6285 

NC 0.7772 0.8153 0.7772 0.7494 0.7764 0.8152 0.7764 0.7473 

WMZ 0.8049 0.8327 0.8049 0.7874 0.8073 0.8320 0.8073 0.7937 

SC 0.6626 0.6758 0.6626 0.6607 0.6415 0.6498 0.6415 0.6403 

PP 0.6789 0.6887 0.6789 0.6773 0.6569 0.6650 0.6569 0.6550 

SH 0.6878 0.7122 0.6878 0.6820 0.6650 0.6866 0.6650 0.6611 

In summary, „within module z-score‟ is the best feature that is identified using DTB 

and RUSBoost to classify breast cancer and non-breast cancer genes in all three complex 

biological networks (i.e. co-expression, BioGrid PPIs, and FI networks). On the other 

hand, DTB and RUSboost do not provide consistent view of the features that achieve the 

least classification performance among the extracted fourteen topological features. For 

instance, NC feature extracted from co-expression, SH extracted from BioGrid PPIs 

network, and BC extracted from FI network achieve the lowest classification results when 

are fed to DTB and RUSboost classification models to predict breast cancer. 
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6.1.2. Hill-Climbing Feature Selection Classification Performance 

In this section, we show the classification performance adopting hill-climbing feature 

selection technique with two classification model (i.e. DTB and RUSBoost). Three 

complex biological networks are utilized in this study, i.e., co-expression, BioGrid PPIs, 

and FI networks to extract the aforementioned fourteen topological features. These 

fourteen features are fed to DTB or RUSBoost in hill-climbing mode (results shown 

in  Fig. 11.  -  Fig. 16. ) to predict breast cancer genes. DTB and RUSBoost classification 

models with hill-climbing feature selection will select the most significant sub-set of the 

topological features to increase the performance rate of breast cancer prediction. Hill-

climbing approach would provide the optimal classification results, because it investigates 

all possible combination of the given topological features, unlike PCCs which chooses the 

uncorrelated-based features.  

 
 

Fig. 10.  Example of Hill-Climbing Approach 

 

           -                                 

           -                                 

           -                                 



75 

 

 Fig. 10.  shows an example of hill-climbing approach, i.e., at first iteration a classification 

model will compute AUC performance rate for every feature. In this example, we assume 

that    gives the highest AUC rate. Then, we fix it and try it with every other feature. 

Further, if     matched with   , we would get a better AUC performance rate. So, we fix 

    with   , and then we try to match them with every other feature. We continue to do 

that, until all combinations are tested and no feature is left to match with.  

Table 12 shows performance rates of two classifiers to predict breast cancer while 

adopting co-expression network, BioGrid PPIs network, and FI network topological 

features individually for co-cross validation tests. The average success rate was greater 

than 80% for RUSBoost and 88% for DTB while using all 14 topological features that 

extracted from any of the individual biological network to predict breast cancer. However, 

when DTB and RUSBoost classifiers were trained with selected features network (i.e. 

selected important features are shown in Table 11), the classification performance 

improved while adopting the selected features (i.e. the results are shown in Table 13). 

Further,  Fig. 11. -  Fig. 16.   show the trends of improvement of classification performance 

of the classifiers in terms of classification accuracy, F-measure, AUC, and Geometric-

mean when using the hill-climbing approach.  

Table 11 shows the topological features that are identified influential in discriminating 

breast cancer using hill climbing approach. For instance, DTB achieved an improvement 

by at least 90% compared to that of using all features in terms of classification accuracy 

(for both co-expression network and FI network individually). However, for BioGrid PPI 

network this performance improvement is 89% compared to that of using all the 14 

topological features.  It is noticeable that the huge improvement in classification accuracy 
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was achieved using 9 topological features for co-expression network and 10 topological 

features for FI network respectively.  Fig. 11. ,  Fig. 13. , and  Fig. 15.  show the trends of 

performance improvement visually for individual networks (i.e. co-expression, BioGrid 

PPIs, and FI, respectively) while using DTB. It is interesting to note that after using few 

selected features the performance starts declining for the both classifiers. This evidently 

guides us to use a subset of the 14 features in place of using all features to accurately 

classify the dataset.  

To further assessing the performance of important topological features, we computed 

F-measure. As shown in Table 13, DTB using 9 topological features of co-expression to 

achieve F-measure value of 0.90, 7 topological features of BioGrid PPIs network to 

achieve F-measure value of 0.90, and 10 topological features of FI network to achieve F-

measure value of 0.90 (i.e.  Fig. 11. ,  Fig. 13. , and  Fig. 15. show the trends improvement 

for co-expression, BioGrid PPIs, and FI networks topological features, respectively). On 

the other hand, RUSBoost classifier uses 8 features of co-expression network to achieve 

maximum F-measure value of 0.82, only 1 topological feature of BioGrid PPIs network to 

attain maximum F-measure of 0.89, and 7 topological features of FI network to achieve F-

measure of 0.84 (i.e. the visual trends improvement are shown in  Fig. 12. ,  Fig. 14. , 

and  Fig. 16. , respectively). 

A similar classification performance improvement trend is achieved when the 

performance of the classifiers is evaluated using area under the curve (AUC). For DTB, 

achieved mean AUC of 0.90 while using 9 topological features of co-expression network 

( Fig. 11. ) , AUC of 0.89 while using 7 topological features of BioGrid PPIs network ( Fig. 

13. ), and AUC of 0.90 while using 10 topological features of FI network ( Fig. 15. ). On 
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the other hand, RUSBoost acquired a mean AUC of 0.82 using 8 features of co-expression 

network ( Fig. 12. ), the maximum classification performance (i.e., AUC value: 0.88) was 

achieved while using only WMZ of BioGrid PPIs network ( Fig. 14. ), for FI network 7 

features is used to achieve AUC of 0.83 ( Fig. 16. ).  

For further assessing the performance of important topological features, we compute 

one more statistical indicator which is Geometric-mean including the ones mentioned 

above, which are accuracy, F-measure and AUC.  However, DTB using 9 topological of 

co-expression network to achieve the highest Geometric mean value of 0.90 ( Fig. 11. ), 7 

topological features of BioGrid PPIs network to achieve maximum Geometric-mean value 

of 0.89 ( Fig. 13. ), For FI network the selected topological features are 10 to achieve a 

Geometric-mean value of 0.90 ( Fig. 15. ). Furthermore, RUSBoost acquired a Geometric-

mean of 0.81 using 8 features of co-expression network ( Fig. 12. ), the maximum 

classification performance (i.e., AUC value: 0.87) was achieved while using only WMZ of 

BioGrid PPIs network ( Fig. 14. ), for FI network 7 features is used to achieve Geometric-

mean of 0.83 ( Fig. 16. ). 

A comparison between Table 12 and Table 13 reveals that utilizing a combination of 

selected features an enhanced classification performance was achieved for both DTB and 

RUSBoost classifiers while adopting any of the individual  biological networks (i.e. co-

expression network, BioGrid PPIs network, or FI network). DTB classifier showed at least 

2% improvements and RUSBoost displayed at least 1% improvements while adopting 

selected set of topological features. 
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Fig. 11.  Comparison of Values of Accuracy, F-Measure, AUC, and Geometric-

Mean using Selected Features Based on Hill-Climbing to Predict Breast Cancer 

using DTB/Co-expression Network Topological Features 

 

 

Fig. 12.  Comparison of Values of Accuracy, F-Measure, AUC, and Geometric-

Mean using Selected Features Based on Hill-Climbing to Predict Breast Cancer 

using RUSBoost/Co-expression Network Topological Features 
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Fig. 13.  Comparison of Values of Accuracy, F-Measure, AUC, and Geometric-

Mean using Selected Features Based on Hill-Climbing to Predict Breast Cancer 

using DTB/BioGrid PPIs Network Topological Features 

 

 

Fig. 14.  Comparison of Values of Accuracy, F-Measure, AUC, and Geometric-

Mean using Selected Features Based on Hill-Climbing to Predict Breast Cancer 

using RUSBoost/BioGrid PPIs Network Topological Features 
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Fig. 15.  Comparison of Values of Accuracy, F-Measure, AUC, and Geometric-

Mean using Selected Features Based on Hill-Climbing to Predict Breast Cancer 

using DTB/FI Network Topological Features 

 

 

Fig. 16.  Comparison of Values of Accuracy, F-Measure, AUC, and Geometric-

Mean using Selected Features Based on Hill-Climbing to Predict Breast Cancer 

using RUSBoost/FI Network Topological Features 
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Table 11 Selected Important Features Based on DTB and RUSBoost Classification 

Models with Hill-Climbing Approach to Predict Breast Cancer From three 

Different Datasets 

 

DTB 

Co-

Expression 

Network 

WMZ NC FC EC ClosC SC BC BCS CC  

BioGrid 

PPIs 

Network 

WMZ DC NC SC KSI BC FC    

FI Network WMZ KSI BCS NC CC DC BC SC FC KSM 

RUSBoost 

Co-

Expression 

Network 

WMZ DC NC CC ClosC KSM SH SC   

BioGrid 

PPIs 

Network 

WMZ          

FI Network WMZ KSI NC PP CC KSM BCS    

 

Table 12 Classification Performance, Accuracy, F-Measure, AUC And Gm Of 5-

Fold   Co-Cross Validation Tests Using All 14 Topological Features 

 DTB RUSBOOST 

METHOD ACC F AUC 
G-

MEAN 
ACC F AUC 

G-

MEAN 

Co-

Expression 

Network 

0.887 0.887 0.887 0.887 0.798 0.801 0.798 0.798 

BioGrid 

PPIs 

Network 

0.885 0.889 0.885 0.883 0.826 0.830 0.826 0.825 

FI 

Network 
0.894 0.892 0.894 0.894 0.816 0.818 0.816 0.815 
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Table 13 The Maximum Classification Performance, Accuracy, F-Measure, AUC 

And Geometric-Mean Of 5-Fold   Co-Cross Validation Tests Using Selected 

Topological Features 

 DTB RUSBOOST 

METHOD ACC F AUC 
G-

MEAN 
ACC F AUC 

G-

MEAN 

Co-

Expression 

Network 

0.903 0.903 0.903 0.903 0.815 0.818 0.815 0.814 

BioGrid 

PPIs 

Network 

0.893 0.896 0.893 0.891 0.877 0.888 0.877 0.872 

FI Network 0.898 0.895 0.898 0.897 0.833 0.836 0.833 0.833 

6.1.3. Pearson Correlation Coefficients (PCCs) Feature Selection 

To provide some insight about the features, we analyze the correlation between each 

pair of the features.  In this regard, we used Pearson correlation coefficients (PCCs) which 

is defined as          
      

      
, where a and b are two zero-mean real valued random 

variables,        is the cross-correlation between a and b,           and           

[102]. More importantly, we set a threshold of 0.6 to select the highly correlated features. 

 Fig. 17. shows the level of correlation between each pair of the features where the 

features were extracted from co-expression dataset. An analysis of the figure reveals that 

the feature „Within Module Z-core‟ is highly correlated with „Degree Centrality‟, „k-step 

markov centrality‟, „eigenvector centrality‟, „katz status index‟, „Subgraph centrality‟ and 

„Structural holes‟. Further, the feature „Betweenness Centrality‟ is found to be highly 

correlated with the features „Closeness Centrality‟, „Bary-center score‟ and „proximity 

prestige‟. Similarly, „Clustering coefficient‟ is highly correlated with „flow coefficient‟. In 
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summary, the features: „Within module Z-score‟, „Betweennness centrality‟, „Node 

Coreness‟, and „Clustering coefficient‟ are considered to be uncorrelated in the context of 

co-expression network topological features and could be considered for building the 

classification models.  

 
Fig. 17.  Pearson correlation Heat-map of Extracted Features from Co-expression 

network. 

 Fig. 18. shows the level of correlation between each pair of the features where the 

features were extracted from BioGrid PPIs dataset. An analysis of the figure reveals that 

„Within Module Z-score‟ is highly correlated with „Degree centrality‟, „Betweenness 

Centrality‟, „K-step markov centrality‟, „Eigenvector Centrality‟, „Katz Status Index‟, 

„Node Coreness‟, and „Subgraph Centrality‟. Further, „Closeness Centrality‟ is highly 
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correlated with „Proximity Prestige‟. Hence, „Within Module Z-score‟, „Closeness 

centrality‟, „Bary-center score centrality‟, „Clustering coefficient‟, „Flow coefficient‟ and 

„Structural Holes‟ are considered to be uncorrelated and could be used for building 

classification models. 

 
Fig. 18.  Pearson correlation Heat-map of Extracted Features from BioGrid PPIs 

network. 

 Fig. 19. shows the level of correlation between each pair of the features where the 

features were extracted from functional interaction network. More specifically, „Within 

Module Z-score‟ is highly correlated with „Degree centrality‟, „K-step markov centrality‟ 

and „Eigenvector centrality‟. Further, „Betwenness Centrality‟ is highly correlated with 

„Node Coreness‟. In addition, „Closeness Centrality‟ is highly correlated with „Bary-
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Center Score‟. Furthermore, „Proximity Prestige‟ is highly correlated with „Structural 

Holes‟. Hence, „Within Module Z-score‟, „Betweennness centrality‟, „Closeness 

centrality‟, „Clustering coefficient‟, „Flow coefficient‟, „Katz Status Index‟,  „Subgraph 

centrality‟, and „Proximity Prestige‟, are considered to be uncorrelated and could be used 

for building the classification models. 

 
Fig. 19.  Pearson correlation Heat-map of Extracted Features from Functional 

Interaction network. 
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Table 14 Selected Uncorrelated Features Based on Pearson Correlation Coefficients 

to be Considered for Classification From Three Different Networks 

Co-Expression 

Network 
WMZ BC NC CC     

BioGrid PPIs 

Network 
WMZ ClosC BCS CC FC SH   

FI Network WMZ BC ClosC CC FC KSI SC PP 

Table 14 shows the potential selected uncorrelated features based on PCCs that could 

be adopted to build different classification models to predict breast cancer genes. Such 

that, four topological features, six topological features, and eight topological features are 

selected from co-expression network, BioGrid PPIs network, and FI network, respectively. 

These selected topological features from every individual biological network will be used 

to build two classification models (i.e. DTB and RUSBoost) to predict breast cancer and 

non-breast cancer genes.  

 Fig. 20.  shows the classification results of DTB, when is combined with FI network 

topological features we get the best classification performance, i.e., the accuracy rate of 

88% (approx.), F-measure rate of 0.88, AUC rate of 0.88, and Geometric-mean of 0.88.  

RUSBoost while adopting selected topological features based on PCCs either for 

BioGrid PPIs or FI networks, is able to achieve comparable results ( Fig. 21. ) . For 

instance, RUSBoost combined either with BioGrid PPIs network or FI network, is able to 

predict the breast cancer and non-breast cancer genes with an accuracy rate of 80% 

(approx.). Further, RUSBoost combined with BioGrid PPIs or FI network, is able to 

predict the breast cancer genes with F-measure, AUC, and Geometric-mean with rates of 

0.80, 0.80, 0.80, respectively.  
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Fig. 20.  Comparison of Values of Accuracy, F-Measure, AUC, 

and Geometric-Mean using Selected Features Based on PPCs to 

Predict Breast Cancer using DTB 

 

 

Fig. 21.  Comparison of Values of Accuracy, F-Measure, AUC, 

and Geometric-Mean using Selected Features Based on PPCs to 

Predict Breast Cancer using RUSBoost 

In summary, this study shows that the performance rates achieved for DTB combined 

with selected sub-set topological features from Functional Interaction network for breast 

cancer detection is more than satisfactory and, in addition, its automated nature also makes 

it suitable to be used in real clinical conditions. Further, the proposed approach has the 

feasibility of a real-time utilization, after offline training and testing. It is a beneficial to 

develop a system as a result of this study that may provide a robust feedback to the experts 

for the classification of breast cancer quickly and accurately based on the identified 

significant sub-set topological features based on PCCs or Hill-Climbing features selection. 

6.2. Biological Significance of Selected Genes based on Within Module 

Z-score 

The complex biological networks are powerful tools to define the interactions. In 

addition, these tools provide insight to predict the function and the evolution of the 
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components (i.e. genes) in the biological networks. Obviously, the large size of the 

complex biological networks makes it difficult, if not possible, to extract the insightful 

knowledge from such biological networks. In this regard, we have used in this study 14 

topological features with different classifiers that systematically allow identifying patterns 

and predicting phenotypic genes in complex biological networks. These 14 topological 

features could identify a crucial role for the genes in the biological networks, i.e., the most 

central within the network structure. Furthermore, we have analyzed every feature and we 

were able to identify that „Within Module Z-score‟ is the best feature to predict the breast 

cancer genes. Other topological features are identified that might increase the prediction 

performance rate in hill-climbing feature selection approach. However, we focus our 

attention on WMZ and its ability to predict the breast cancer genes. WMZ is based on 

finding modules in the complex biological network, and then ranking the genes in that 

module based on the z-score.  Every module could be arranged in a different manner, i.e., 

some modules could be centralized with one or few nodes connected to all the others. 

Other modules could be decentralized with all nodes having similar connectivies. More 

importantly, nodes with similar roles are predicted to have similar within module 

connectivity.   

Due to the large size of complex biological networks, it is complicated to collect 

insightful knowledge out of hundreds or thousands of vertices and links. Though different 

centralities are computed but every centrality measure lack the ability to identify 

phenotypic genes with high accuracies. However, „within module z-score‟ was proven to 

yield remarkable prediction results with two different classifiers. It is able to extract the 

central nodes based on a scale-specific context through the identification of the crucial 
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modules (clusters).  Hence, the identified modules summarize the connections and 

information of network structure, and that contain components (i.e. genes) of high 

similarities. Moreover, it is likely that the set of connected nodes in a certain module 

reveal similar roles or functions (i.e. related to breast cancer). 

6.2.1. Parameter to Select Hubs Genes based on WMZ 

We define hub genes based on „within module z-score‟, i.e., the nodes with a 

                           are catecorized as module hubs genes, else we classify 

nodes with a                              as non-hubs genes. Hence, the non-hubs 

genes are discarded and only the hubs genes are further studied because they tend to be 

important and they might influence other genes.  Moreover,  Fig. 22. shows the selected 

hubs genes out of co-expression network and their corresponding z-score, i.e., 36 genes 

are selected.  Among the selected genes from co-expression network based on within 

module z-score, there are 18 genes that already known to be related to breast cancer (i.e.,  

POLB, RAB25, FOXM1, TNFRSF1B, AKT1, IRF1, BCL2A1, LSP1, PCM1, RGS16, 

TRIM24, SP2, VDR, CKS2, DDX17, RAB11FIP1, APLP2,  MAD2L1).  

 

Fig. 22.  Within module Z-score of Selected Genes from Co-expression Network. 
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 Fig. 23. shows the selected hubs-genes out of BioGrid PPIs network and their 

corresponding z-score, i.e., 24 hubs-genes are selected and among the selected genes from 

BioGrid PPIs based on within module z-score, there are 23 genes that already known to be 

cancerous except for one genes which is CUL2. 

 

Fig. 23.  Within module Z-score of Selected Genes from BioGrid PPIs Network. 

Furthermore,  Fig. 24. shows the selected genes out of FI network, i.e., 42 hubs-genes 

are selected and among the selected genes from FI network based on within module z-

score, there are 36 genes that already known to be linked to breast cancer except for 6 

genes which are CPSF1, CSNK1A1, DHX38, GTF2F2, GTF2B, NCBP2. 
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Fig. 24.  Within module Z-score of Selected Genes from FI Network. 

Finally, the „Within module z-score‟-based selected genes across the three individual 

biological networks (i.e. co-expression network, BioGrid PPIs network, FI network) 

shows remarkable results. Interestingly, majority of the identified hubs-genes are related 

to breast genes. Nonetheless,   the selected hubs-genes, i.e., they are unknown whether 

they are related to breast cancer or not could be further studied and identify the 

functionally related similarities.  

6.2.2. David’s Tools Analysis  

To provide some insight about the selected genes, we analyze the selected genes using 

Database for Annotation, Visualization and Integrated Discovery (DAVID) [103] to reveal 

which hubs-genes are similar to which hub-genes. Specifically, we use gene similarity 

search tool, this tool incorporates association of set of annotation terms for any given 

gene. Genes tend to participate in similar biological processes, if they are share set of 

those terms. The gene similarity search algorithm, adopts kappa statistics to quantitatively 

measure the degree of the agreement how genes share the similar annotation terms (i.e. 
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kappa values ranges from 0 to 1). Intuitively, the higher the kappa value, the stronger the 

relationship among the genes. More importantly, we set a threshold of 0.6 to select the 

highly similar genes. 

Table 15 shows the selected genes from co-expression network and their corresponding 

functionally related genes with kappa statistics to detect any functional relationship.  For 

instance, „ZNF22‟ gene shows a high functional relationship with „SP2‟ gene (i.e. the 

kappa value is 0.64). This indicates that the two genes „ZNF22‟ and „SP2‟ in considerable 

agreement and highly participate in the same biological processes, more so than by 

random event. Hence, „ZNF22‟ is highly involved to breast cancer.   

Table 15 Selected Genes from Co-expression Network based on Within Module Z-

score and their Corresponding Functionally Related Genes. 

Symbol 
Entrez 

Gene ID 

Breast 

Cancerous 
Functionally Related Genes (Kappa rate) 

PRPS2 5634 Unknown None 

POLB 5423 Known None 

RAB25 57111 Known None 

MED20 9477 Unknown 
PBX2 (0.40), GTF2E2 (0.39), FOXM1(0.37), 

SP2(0.36), 

TOMM

70A 
9868 Unknown None 

PBX2 5089 Unknown 
SPI1(0.47), IRF1(0.45),GTF2H1(0.42), 

MED20(0.40) 

FOXM1 2305 Known 
SP2(0.40), IRF1(0.38), MED20 (0.37), SPI1 

(0.37), GTF2E2 (0.37) 

ZNF22 7570 Unknown SP2 (0.64), ZNF24 (0.62) 

CNN1 1264 Unknown None 

ZNF24 7572 Unknown 
SP2(0.67), ZNF22(0.62), SPI1(0.41), 

TRIM24(0.36) 

PKN2 5586 Unknown None 

TNFRS

F1B 
7133 Known None 

GTF2H

1 
2965 Unknown GTF2E2(0.45), PBX2(0.42) 
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GTF2E2 2961 Unknown GTF2H1 (0.45), MED20(0.39), FOXM1(0.37) 

AKT1 207 Known None 

IRF1 3659 Known PBX2(0.45), SPI1(0.44), FOXM1(0.38) 

BCL2A

1 
597 Known None 

LSP1 4046 Known None 

PCM1 5108 Known None 

RGS16 6004 Known None 

ITGAE 3682 Unknown None 

COL3A

1 
1281 Unknown None 

TRIM24 8805 Known VDR(0.38), ZNF24(0.36), SPI1(0.36) 

SP2 6668 Known 
ZNF24(0.67), ZNF22(0.64), FOXM1(0.40), 

MED20(0.36) 

VDR 7421 Known TRIM24(0.38) 

CKS2 1164 Known None 

RBM17 84991 Unknown None 

DDX17 10521 Known None 

HLA-

DMA 
3108 Unknown None 

PPP3CC 5533 Unknown None 

RAB11

FIP1 
80223 Known None 

APLP2 334 Known None 

NID2 22795 Unknown None 

SPI1 6688 Unknown 
PBX2(0.47), IRF1(0.44),ZNF24(0.41), 

FOXM1(0.37), TRIM24(0.36) 

CUL2 8453 Unknown None 

MAD2L

1 
4085 Known None 

Table 16 shows the functionally related genes that are selected based on „within 

module z-score‟ from BioGrid PPIs network. Interestingly, all selected genes are known to 

be involved in breast cancer except for „CUL2‟ genes. „CUL2‟ is highly functionally 

related to „CUL4A‟ and „CUL1‟ genes with kappa values of 0.85 and 0.66, respectively. 

These achieved kappa statistics values indicate strongly that „CUL2‟ gene is involved in 

breast cancer. 
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Table 16 Selected Genes from BioGrid PPIs Network based on Within Module Z-

score and their Corresponding Functionally Related Genes. 

Symbol 
Entrez Gene 

ID 

Breast 

Cancerous 

Functionally Related Genes (Kappa 

Rate) 

CDK2 1017 Known None 

ELAVL1 1994 Known None 

COPS5 10987 Known None 

CUL1 8454 Known CUL2(0.66), CUL4A(0.66) 

TP53 7157 Known PML(0.45), SMAD3(0.35) 

CUL2 8453 Unknown CUL4A(0.85), CUL1(0.66) 

SUMO1 7341 Known None 

MYC 4609 Known None 

GRB2 2885 Known SHC1(0.52) 

SP1 6667 Known None 

SHC1 6464 Known GRB2(0.52) 

HDAC2 3066 Known 
HDAC3(0.49), SMARCA4(0.40), 

RB1(0.37) 

HDAC3 8841 Known HDAC2(0.49) 

PML 5371 Known TP53(0.45) 

CBL 867 Known None 

CUL4A 8451 Known CUL2(0.85), CUL1(0.66) 

SMARCA

4 
6597 Known HDAC2(0.40) 

SMAD3 4088 Known TP53(0.35) 

H2AFX 3014 Known None 

RB1 5925 Known HDAC2(0.37) 

VHL 7428 Known None 

MAPK1 5594 Known AKT1(0.37) 

AKT1 207 Known MAPK1(0.37) 

CTNNB1 1499 Known None 

Table 17 shows the functionally related genes that are selected based on „within 

module z-score‟ from Functional Interaction network. There are 6 unknown genes whether 

they are involved in the breast cancer. However, among these genes is „GTF2F2‟ gene 

which shows a high similarities with „GTF2F1‟ (i.e. kappa value is 0.69). This is a strong 

indication that „GTF2F2‟ share major biological processes with „GTF2F1‟, hence, 

„GTF2F2‟ could be strongly involved in breast cancer disease.  
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Table 17 Selected Genes from FI Network based on Within Module Z-score and 

their Corresponding Functionally Related Genes. 

Symb

ol 

Entrez 

Gene 

ID 

Breast 

Cancero

us 

Functionally Related Genes (Kappa rate) 

AKT1 207 Known MAPK1(0.37) 

CTN

NB1 
1499 Known None 

ACT

B 
60 Known None 

GRB2 2885 Known MAPK3(0.41), PIK3R1(0.36) 

JUN 3725 Known FOS(0.53) 

MAP

K1 
5594 Known MAPK3(0.65), AKT1(0.37), GSK3B(0.36) 

MAP

K3 
5595 Known 

MAPK1(0.65), CSNK2A1(0.43), GRB2(0.41), 

CDK4(0.39), PIK3CA(0.39), CDK2(0.36) 

CDK

2 
1017 Known 

CDK4(0.66), CDK7(0.49), CSNK2A1(0.46), 

CSNK1A1(0.41), MAPK3(0.36) 

CRE

B1 
1385 Known FOS(0.36) 

CDK

7 
1022 Known 

CCNH(0.61), GTF2F2(0.52), CDK2(0.49), CDK4(0.47), 

GTF2F1(0.42), CSNK2A1(0.39), CSNK1A1(0.37) 

CCN

D1 
595 Known None 

FOS 2353 Known JUN(0.53), CREB1(0.36) 

GTF2

F1 
2962 Known GTF2F2 (0.69), GTF2B(0.52), CCNH(0.49), CDK7(0.42) 

FYN 2534 Known LCK(0.41), ABL1(0.38), 

CBL 867 Known None 

APC 324 Known None 

CASP

3 
836 Known None 

CD4 920 Known None 

ABL1 25 Known FYN(0.38), LCK(0.38) 

CCN

H 
902 Known 

CDK7(0.61), GTF2F2(0.52), GTF2F1(0.49), 

GTF2B(0.42) 

GSK3

B 
2932 Known CSNK1A1(0.39), MAPK1(0.63) 

ITGB

1 
3688 Known None 

ATF2 1386 Known None 

CPSF

1 
29894 

Unknow

n 
None 
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LCK 3932 Known FYN(0.41), ABL1(0.38) 

PIK3

R1 
5295 Known PIK3CA(0.47), GRB2(0.36) 

PIK3

CA 
5290 Known PIK3R1(0.47), MAPK3(0.39) 

HDA

C2 
3066 Known None 

CSN

K1A1 
1452 

Unknow

n 

CSNK2A1(0.55), CDK4(0.45), CDK2(0.41), 

GSK3B(0.39), CDK7(0.37) 

DHX

38 
9785 

Unknow

n 
GTF2F2(0.43) 

CDK

4 
1019 Known 

CDK2(0.66), CDK7(0.47), CSNK2A1(0.46), 

CSNK1A1(0.45), MAPK3(0.39) 

HNR

NPA1 
3178 Known NCBP2(0.50) 

AUR

KA 
6790 Known None 

GTF2

F2 
2963 

Unknow

n 

GTF2F1(0.69), CDK7(0.52), CCNH (0.52), 

GTF2B(0.44), DHX38(0.43) 

MYC 4609 Known None 

CSN

K2A1 
1457 Known 

CSNK1A1(0.55), CDK4(0.46), CDK2(0.46), 

MAPK3(0.43), CDK7(0.39) 

HSP9

0AA1 
3320 Known None 

FN1 2335 Known None 

NFK

B1 
4790 Known None 

GTF2

B 
2959 

Unknow

n 
GTF2F1(0.52), GTF2F2(0.44), CCNH(0.42) 

NCB

P2 
22916 

Unknow

n 
HNRNPA1(0.50) 

COL1

A1 
1277 Known None 

Finally, we shed the light specifically on three genes which are „ZNF22‟ from co-

expression network, „CUL2‟ from BioGrid PPIs network, and „GTF2F2‟ from FI network. 

These three genes showed high similarities in term of kappa values. However, the other 

selected unknown genes are highly potential candidates to be involved in breast cancer 

disease.  
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6.3. Impact of our Work 

In our work, we are able to identify significant sub-set of topological features that 

could help biologists and researchers to adopt those biological features to study the 

structure and functions of biological networks. Specifically, we found that 'within module 

z-score' and 'node coreess' topological features have the ability to accurately identifying 

the central genes (i.e. hub-genes that are highly connected to other genes) when are fed to 

two classifiers. Hub-genes are potential candidates that must be studied because they are 

essential to influence other neighboring genes.  

Furthermore, 'within module z-score' is utilized to perform in-depth analysis. 

Particularly, we set a threshold that any gene has a within module z-score equal or greater 

2.5, then it is selected to be a hub-gene. Interestingly, we observed that the majority of 

selected hubs-genes are involved in breast cancer disease. Obviously, the selected hubs-

genes that are unknown whether they are involved in breast cancer disease, they are 

potential candidates to be related to breast cancer. However, a gene similarity analysis 

revealed that „ZNF22‟ from co-expression network, „CUL2‟ from BioGrid PPIs network, 

and „GTF2F2‟ from FI network provide high statistical significance that are participating 

in biological processes that typically breast cancerous genes are involve in. Hence, our 

analysis suggests that „ZNF22‟, „CUL2‟, and „GTF2F2‟ are involved in breast cancer 

diseases. 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

The bioinformatics techniques that are studied for disease-gene association are 

evaluated using three publicly available datasets (i.e. co-expression, BioGrid PPIs, and FI 

networks). These complex biological networks were utilized to apply analysis for breast 

cancer prediction. The work of this study could be divided into three folds. Firstly, the 

graph theory discipline which has been a significant part to studying complex biological 

networks. It has been applied to different complex biological networks to extract hidden 

knowledge (i.e. we have used fourteen ranking algorithms for every network). These 

topological properties are then fed into different classification models as features. 

Secondly, the phenotype that has been studied (i.e. breast cancer) is associated with a few 

number of samples. Thus, the negative classes are far more in number than in the positive 

classes. For this reason, a SMOTE sampling mechanism is adopted to overcome the 

problem of unbalanced datasets. Thirdly, at this stage, different classification models, such 

as: decision tree bagger and RUSBoost, are implemented to discriminate between the 

positive classes and negative classes. Moreover, the power of network topology analysis is 

limited, as we are dealing with the biological networks as a statics perspective, which in 

fact they are highly dynamic systems. Thus, the used biological networks have been 

randomized and the classification results are generated once again in the attempt to reveal 

some hidden patterns that are uncovered from the real networks. However, it remains the 
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study of dynamic biological network over-times a bottleneck which will be investigated 

more in our future research. 

7.1. Limitations  

In this research, we were able to build a systematic approach that could association 

genes to diseases. However, there were some limitations of this study because of its 

nature. First, only one balanced sampled datasets are generated from each network 

topological features using SOMTE. We could get more insights about the classification 

performance significance by generating more number of sampled datasets using SMOTE 

or even using different sampling techniques. Second, the classification performance could 

be improved by extracting more robust topological features. Third, different classifiers 

need to be tested that might provide a better classification performance, and different weak 

learners could be ensemble.  
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Appendix A 

In this appendix, we include a number of results that were omitted from the main 

thesis write-up. In section A, we show the classification performance using the fourteen 

extracted topological features from the randomized co-expression, BioGrid PPIs, and FI 

networks to predict breast cancer genes.  

A Randomized Co-expression, BioGrid PPIs, and FI networks 

Features Classification Performance 

In this section, we show the classification performance using all fourteen topological 

features at once to predict the breast cancer and non-breast cancer genes. More 

importantly, these fourteen topological features are extracted from the randomized 

models of the three complex biological networks (i.e. co-expression network, BioGrid 

PPIs network, and FI network). The adopted randomization scheme is illustrated in 

chapter  4, section  4.3. Then, these fourteen topological features that have been extracted 

from the randomized biological networks are fed to two different classification models 

i.e., DTB and RUSBoost (results shown in Table 18) to predict breast cancer genes. 

A.1 Classification Performance using Fourteen Topological Features 

Cancer phenotype participates in dysregulation of several pathways controlling 

essential cell processes [104] (e.g. breast cancer phenotype). In this case, the complex 

biological networks are affected by having altered pathways (in other words, the 

interactions are altered), which will cause a genetic mutation dependent on the 

environmental context. Moreover, the potential of topological properties analysis is not 

fully utilized since we are dealing solely with statics networks. Rather the complex 



102 

 

biological networks tend to be highly dynamics, as new interactions and genes are 

involved in the biological processes. Hence, the utilization of the randomized network 

provides the advantages of covering the hidden patterns that might be under (or over) 

represented in the real network. Therefore, a randomized version of the three biological 

networks (i.e. co-expression network, BioGrid PPIs, and FI) is generated based on the 

Maslov et al. technique. The fourteen topological properties are then applied to extract the 

features. Prior classification, the raw data are balanced using SMOTE (i.e. the positive and 

negative samples are equal to 615). Next the classification models are applied to predict 

the breast cancer and non-breast cancer genes using the extracted features from the 

randomized network. The results are shown in Table 18. 

The randomized BioGrid PPIs network topological features when are adopted for any 

classification model (i.e. DTB or RUSBoost); tend to provide highest classification 

performance. More specifically, DTB combined with randomized BioGrid PPIs network 

topological features provide best classification results. Further, DTB/ randomized BioGrid 

PPIs topological features is able to predict breast cancer  and non-breast cancer genes with 

an accuracy rate of 87% (approx.), and could predict breast cancer genes correctly with  F-

measure rate of 0.88, AUC rate of 0.87, and geometric-mean rate of 0.87 (Table 18) 

Secondly, the RUSBoost achieved the second best classification performance using the 

randomized PPIs network topological features, where the accuracy, F-measure, AUC, and 

geometric-means are 83% (approx.), 0.84, 0.83, and 0.83, respectively.  

Moreover, the randomized co-expression network topological features, when used for 

training and testing the DTB and RUSBoost, the classification trends are slightly better 

than using the randomized FI network (Table 18).  
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Table 18 Comparison of the Values of Accuracy, F-Measure, AUC, and Geometric-

Mean using All Fourteen Features to Predict Breast cancer. 

 DTB RUSBOOST 

METHOD ACC F AUC 
G-

MEAN 
ACC F AUC 

G-

MEAN 

Co-

Expression 

Network 

0.871 0.87 0.871 0.871 0.775 0.777 0.775 0.774 

BioGrid PPIs 

Network 
0.872 0.878 0.872 0.87 0.832 0.835 0.832 0.832 

FI Network 0.867 0.869 0.867 0.867 0.77 0.773 0.77 0.769 
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Appendix B 

In this appendix, we include a number of results that were omitted from the main 

thesis write-up. In Section B, we provide classification results following the same 

procedure applied in the thesis on four disease specific gene association networks.  

B Disease Specific Gene Association Networks 

In our thesis work, we have extracted fourteen features from publicly gene expression 

profiles, protein-protein interaction networks, and functional interaction network. Then, 

we used a sampling technique SMOTE to overcome the problem of imbalanced datasets 

that are inherited in nature in such types of datasets. After that, the imbalanced datasets are 

used to train the classification models (i.e. decision tree bagger and RUSBoost) to 

investigate the phenotype-gene association in breast cancer. More importantly, in this 

section we validate our approach that has been proposed in this thesis using more four 

disease specific gene association networks to reveal breast cancer genes patterns. 

In analogy with our previous procedure, we have built also two classification models 

that could be used for discriminating breast cancer genes in more four datasets which are 

disease specific gene association networks. The classification results are shown in Table 

19. 
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Table 19 Disease Specific Networks Classification Performance To Predict Breast 

Cancer Genes 

CLASSIFIER  
BASAL 

NETWORK 

HER2 

NETWORK 

LUMA 

NETWORK 

LUMB 

NETWORK 

DTB 

ACC 

0.931 
  

0.005 

0.927 
  

0.006 

0.923 
  

0.008 

0.929 
  

0.013 

F 

0.935 
  

0.005 

0.931 
  

0.006 

0.927 
  

0.008 

0.929 
  

0.013 

AUC 

0.931 
  

0.005 

0.927 
  

0.006 

0.923 
  

0.008 

0.929 
  

0.013 

G-Mean 

0.929 
  

0.006 

0.925 
  

0.006 

0.921 
  

0.008 

0.929 
  

0.013 

RUSBOOST 

ACC 

0.902 
  

0.005 

0.892 
  

0.004 

0.881 
  

0.008 

0.875 
  

0.01 

F 

0.903 
  

0.005 

0.894 
  

0.003 

0.883 
  

0.008 

0.876 
  

0.01 

AUC 

0.902 
  

0.005 

0.892 
  

0.004 

0.881 
  

0.008 

0.875 
  

0.01 

G-Mean 

0.902 
  

0.005 

0.891 
  

0.004 

0.881 
  

0.008 

0.875 
  

0.01 
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The proposed methodology in this thesis showed great potential when it was tested 

using three publicly available datasets: co-expression network, protein-protein interactions 

network, and function interaction network. Furthermore, we validate the strength of our 

proposed fourteen topological features along with the selected classification models 

performance in predicting the phenotype-gene association using features extracted from 

different four disease specific networks. Table 19 reports the performance measures which 

are defined earlier, and more importantly the table show a comparison among three 

classification models (i.e. decision tree bagger and RUSBoost). Obviously, decision 

bagger provides best classification results which adopt SMOTE sampling technique and 

using the topological features extracted from disease specific gene association networks. 

That is an indication of the strength of the generated rules of the decision tree bagger 

during the training phase. Moreover, that is also shows the efficiency of the used co-

crossed validation that is proposed in this study to obtain high and efficient classification 

performance rates during the testing phase.  

The classifiers are evaluated with accuracy rate, along with other performance 

measures (i.e. F-measure, AUC, geometric mean) to provide a better indication of the 

classification performance. However, the combination of Basal gene specific network and 

decision tree bagger achieved the highest classification performance in term of accuracy, 

F-measure, AUC, and geometric mean. Such that, the accuracy rate is 0.931, this shows 

how the decision tree bagger capable to correctly classify cancerous and non-cancerous 

breast cancer genes. On the other hand, geometric mean which is an efficient metrics for 

unbalanced datasets showed a proportion of 0.929 which is an indication of capability of 

decision tree bagger to classify breast cancerous genes correctly.  
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