
Software Engineering

DESIGN AND EVALUATION OF MUTATION OPERATORS
FOR THE ASMETAL LANGUAGE

Osama J. AlKrarha

iii

© Osama J. AlKrarha

2014

iv

To My Parents

v

ACKNOWLEDGMENTS

All praise and thank to almighty Allah (GOD) for giving me the strength, resolve, health,

patience, and knowledge to complete this work.

I acknowledge, with deep gratitude and appreciation, the inspiration, encouragement,

valuable time and guidance given to me by DR. Jameleddine Hussine, who served as my

major advisor and mentor. Thereafter, I am deeply indebted and grateful to Dr. Moataz

Ahmad, and Dr. Sami Zhioua, my committee member, for their extensive guidance,

continuous support, and personal involvement in all phases of this research. I am also

grateful to my director, Dr. Sadiq Sait their constructive guidance, valuable advice and

cooperation.

I also would like to express my deepest gratitude to my mother, father, brothers, sisters,

and friends, for their emotional and moral support throughout my academic career and also

for their love, patience, encouragement and prayers.

Finally, I would like to thank all the colleagues at the CCITR/Research Institute at King

Fahd University for their and support during the period this research took place is greatly

acknowledged.

vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... V

TABLE OF CONTENTS ... VI

LIST OF TABLES .. XI

LIST OF FIGURES ... XIII

LIST OF ABBREVIATIONS ... XV

ABSTRACT .. XIX

 XXI .. ملخص الرسالة

CHAPTER 1 INTRODUCTION ... 1

1.1 Motivation .. 1

1.2 Problem Statement .. 2

1.3 Research Hypothesis .. 3

1.4 Thesis Approach .. 3

1.5 Thesis Contributions.. 4

1.5.1 Contribution 1: Design and Evaluation of Mutation Operators for the AsmetaL Language .. 4

1.5.2 Contribution 2: Empirical Evaluation of the Proposed Approach ... 5

1.5.3 Contribution 3: Development of MuAsmetaL .. 5

1.5.4 Contribution 4: Investigation of Cost Reduction Techniques in the ASM Context 6

1.6 Issues not Addressed in this Thesis .. 6

1.7 Thesis Outline ... 7

CHAPTER 2 BASIC DEFINITIONS AND NOTATIONS ... 9

1.2 Abstract State Machines ... 9

vii

2.1.1 ASM Thesis .. 9

2.1.2 ASM in a Nutshell ... 10

2.1.3 ASM Languages .. 12

1. AsmL (Abstract State Machine Language) [10] .. 12

2. CoreASM [12] .. 13

3. ASM Meta-model [14] ... 14

3.1. Asmeta [16] .. 14

3.2. AsmM [17] ... 15

4. ASM SL and ASM Workbench [18] ... 15

5. Comparison of ASM environments .. 16

2.1.4 AsmetaL ... 17

2.1.5 AsmetaL Tools ... 27

1.1 Mutation Testing .. 28

2.2.1 Mutation Score .. 30

2.2.2 Equivalency Analysis Techniques .. 31

2.2.3 Reduction Techniques ... 32

2.3 Chapter Summary ... 38

CHAPTER 3 TESTING ABSTRACT STATE MACHINES: STATE OF THE ART

 39

3.1 Testing Abstract State Machines .. 39

3.1.1 Generation of Finite State Machines (FSM) from ASM .. 39

3.1.2 Conformance Testing .. 41

3.1.3 Coverage Criteria .. 44

3.1.4 Model Checking .. 45

3.1.5 ASMs Test Case Generation .. 46

3.2 Mutation Testing of Formal Specifications ... 47

viii

3.3 Chapter Summary ... 48

CHAPTER 4 ASMETAL MUTATION TESTING APPROACH 50

4.1 AsmetaL Mutation Testing Approach ... 50

4.1.1 Design of mutation operators ... 52

4.1.2 AsmetaL mutation tool design and implementation .. 54

4.1.3 Empirical evaluation of the proposed approach .. 54

4.1.4 Selective mutation ... 55

4.2 AsmetaL Mutation Operators .. 55

4.2.1 Function mutation operators ... 56

4.2.2 Rule mutation operators ... 56

4.2.3 Term mutation operators ... 64

4.2.4 Invariant mutation operators ... 68

4.2.5 Initialization mutation operators ... 68

4.3 Generation of Test Cases ... 70

4.4 Analysis of the proposed operators .. 73

4.5 Chapter Summary ... 77

CHAPTER 5 MUASMETAL: AN ASMETAL MUTATION EXPERIMENTAL

TOOL ... 78

5.1 Tool Requirements ... 78

5.2 MuAsmetaL Architecture ... 79

5.3 MuAsmetaL in Practice ... 83

5.4 Benchmarking the MuAsmetaL tool .. 99

5.5 MuAsmetaL Limitation ... 101

5.6 Chapter Summary ... 101

ix

CHAPTER 6 EMPIRICAL EVALUATION OF THE ASMETAL-BASED

MUTATION OPERATORS .. 102

6.1 Description of the AsmetaL Case Studies .. 102

6.1.1 Case Study 1: ferrymanSimulator Specification .. 103

6.1.2 Case Study 2: railroadGate Specification ... 104

6.1.3 Case Study 3: sluiceGateGround Specification .. 106

6.1.4 Case Study 4: cruiseControl Specification .. 107

6.1.5 Case Study 5: AdvancedClock Specification .. 109

6.1.6 Case Study 6: AdvancedClock2 Specification .. 110

6.1.7 Case Study 7: fattoriale Specification.. 112

6.2 ATGT Test Criteria Comparison using Mutation Testing... 113

6.2.1 CruiseControl Specification ... 113

6.2.2 RailroadGate Specification .. 117

6.2.3 SluiceGateGround Specification .. 120

6.2.4 Results Summary .. 122

6.3 Chapter Summary ... 123

CHAPTER 7 APPLICATION OF COST REDUCTION TECHNIQUES TO

ASMETAL MUTATION TESTING .. 124

7.1 Introduction.. 124

7.2 Evaluation Criteria of the Mutation Operators Cost Reduction Techniques 126

7.2.1 Effectiveness .. 126

7.2.2 Cost Saving .. 127

7.2.3 Stability .. 128

7.3 N-selective-based Mutation ... 129

4.7 Random-based Selective Mutation ... 129

7.5 Applying Cost Reduction Techniques to Case Studies ... 129

x

7.5.1 Case Study 1: ferrymanSimulator Specification .. 129

7.5.2 Case Study 2: railroadGate Specification ... 132

7.5.3 Case Study 3: sluiceGateGround Specification .. 135

7.5.4 Case Study 4: cruiseControl Specification .. 137

7.5.5 Case Study 5: AdvancedClock Specification .. 140

7.5.6 Case Study 6: AdvancedClock2 Specification .. 140

7.5.7 Case Study 7: fattoriale Specification.. 140

7.5.8 Results Summary .. 143

7.6 Overall Operator-Based Selection Mutation ... 146

7.7 General Discussion ... 149

7.8 Threats to Validity ... 153

CHAPTER 8 CONCLUSIONS AND FUTURE WORK .. 156

8.1 Hypothesis of the Thesis .. 156

8.2 Thesis Contributions of the Thesis ... 158

8.2.1 Contribution 1: Design and Evaluation of Mutation Operators for the AsmetaL language 158

8.2.2 Contribution 2: Empirical Evaluation of the Proposed Approach ... 158

8.2.3 Contribution 3: Development of MuAsmetaL .. 158

8.2.4 Contribution 4: Investigation of Cost Reduction Techniques in the ASM Context 159

8.3 Future Work... 159

REFERENCES .. 162

VITAE .. 176

xi

LIST OF TABLES

Table 1: Comparison of ASM Programs .. 17

Table 2: AsmetaL simple example ... 18

Table 3: concrete domain signature .. 19

Table 4: enumerator domain signature ... 19

Table 5: abstract domain signature ... 19

Table 6: basic domain signature ... 19

Table 7: static function signature .. 20

Table 8: dynamic function signature... 20

Table 9: derived function signature .. 20

Table 10: macro rule declaration .. 21

Table 11: turbo rule declaration .. 21

Table 12: main rule declaration .. 21

Table 13: AsmetaL rule structures .. 22

Table 14: FTP operator example ... 56

Table 15: turbo rule operator’s examples ... 60

Table 16: Traditional rule mutation operators examples .. 65

Table 17: Asmetal term operators examples ... 67

Table 18: ICR and IDD operators examples ... 68

Table 19: AsmetaL initialization operators examples .. 69

Table 20: AVaLLA test case example (.test) .. 70

Table 21: AVaLLA test case results generated by AsmetaV ... 71

Table 22: The upper bound for the number of generatred mutants per operator. 73

Table 23: Time spent to generate and validate mutants per case study 99

Table 24: Time spent to execute test cases and generate reports per case study. 100

Table 25: Case studies summary... 102

Table 26: ferrymanSimulator specification mutation results .. 103

Table 27: railroadGate specification mutation testing results ... 105

Table 28: sluiceGateGround specification mutation testing results 106

Table 29: cruiseControl specification mutation testing results 108

Table 30: AdvancedClock specification mutation testing results 109

Table 31: AdvancedClock2 specification mutation testing results 111

Table 32: fattoriale specification mutation testing results .. 112

Table 33: CruiseControl specification mutation testing based on update rule coverage 113

Table 34: CruiseControl specification mutation testing based basic rule coverage 114

Table 35: CruiseControl specification mutation testing based MCDC coverage 114

Table 36: CruiseControl specification mutation testing based fault coverage 114

Table 37: CruiseControl specification mutation testing based pair-wise coverage 115

Table 38: RailroadGate specification mutation testing based update rule coverage 117

Table 39: RailroadGate specification mutation testing based basic rule coverage 117

xii

Table 40: RailroadGate specification mutation testing based basic MCDC coverage ... 117

Table 41: RailroadGate specification mutation testing based fault coverage 118

Table 42: RailroadGate specification mutation testing based pair-wise coverage 118

Table 43: RailroadGate specification mutation testing based three-wise coverage 118

Table 44: SluiceGateGround specification mutation testing based update rule coverage

... 120

Table 45: SluiceGateGround specification mutation testing based basic rule coverage 120

Table 46: SluiceGateGround specification mutation testing based MCDC coverage 120

Table 47: SluiceGateGround specification mutation testing based fault coverage 121

Table 48: SluiceGateGround specification mutation testing based pair-wise coverage . 121

Table 49: 2, 4, 6-N-selective results for the case studies .. 143

Table 50: 10%, 25%, 50% random selection results for the case studies 145

Table 51: Ranking dominant operators (All case studies) .. 147

Table 52: Overall 2-Operators Selection mutation ... 148

Table 53: Overall 4-Operators Selection mutation ... 148

Table 54: Overall 6-Operators Selection mutation ... 149

xiii

LIST OF FIGURES

Figure 1: Thesis tasks workflow ... 4

Figure 2: ASM Workbench model verification process ... 16

Figure 3: AsmetaL basic structure .. 18

Figure 4: AsmetaL rule types .. 24

Figure 5: AsmetaL function types... 25

Figure 6: AsmetaL domain types .. 26

Figure 7: Typical procedure of mutation testing ... 30

Figure 8: Conformance Testing Concepts .. 42

Figure 9: AsmetaL mutation testing procedure .. 52

Figure 10: Mutant generation process... 54

Figure 11: MuAsmetaL Structure ... 80

Figure 12: Example of an AsmetaL Tree .. 82

Figure 13: Absolute value AsmetaL specification .. 84

Figure 14: Creating new AsmetaL specification using MuAsmetaL 85

Figure 15: Editing existing AsmetaL specification using MuAsmetaL............................ 86

Figure 16: Visualizing ASMetaLTree using MuAsmetaL .. 87

Figure 17: Statistical information about AsmetaL Specification using MuAsmetaL 88

Figure 18: MuAsmetaL mutation generation interface ... 89

Figure 19: MuAsmetaL mutation generation summary .. 90

Figure 20: MuAsmetaL handles manual input from the user ... 90

Figure 21: AsmetaL specification correctness validation and syntactic equivalency

validation... 91

Figure 22: MuAsmetaL mutants’ viewer .. 92

Figure 23: Import AVaLLA test cases using MuAsmetaL ... 92

Figure 24: Viewing/Ordering test cases using MuAsmetaL ... 93

Figure 25: Running test cases against original Specification using MuAsmetaL to obtain

test oracles ... 93

Figure 26: Test case results ... 94

Figure 27: MuAsmetaL custom testing... 95

Figure 28: Running test cases against mutants ... 95

Figure 29: Report file (CSV) generated by MuAsmetaL .. 96

Figure 30: Simulating AsmetaL specification using MuAsmetaL 96

Figure 31: MuAsmetaL mutation testing results 1 ... 97

Figure 32: MuAsmetaL mutation testing results 2 ... 98

Figure 33: MuAsmetaL mutation testing results 3 ... 98

Figure 34: MuAsmetaL mutation testing results 4 ... 99

Figure 35: ferrymanSimulator specification mutation testing results 104

Figure 36: railroadGate specification mutation testing results 105

Figure 37: sluiceGateGround specification mutation testing results 107

xiv

Figure 38: cruiseControl specification mutation testing results 109

Figure 39: AdvancedClock specification mutation testing results 110

Figure 40: AdvancedClock2 specification mutation testing results 112

Figure 41: fattoriale specification mutation testing results ... 113

Figure 42: Overall deference of mutation testing over different testing criteria for

CruiseControl Specification .. 116

Figure 43: Overall deference of mutation testing over different testing criteria for

RailroadGate Specification ... 119

Figure 44: Overall deference of mutation testing over different testing criteria for

SluiceGateGround Specification ... 122

Figure 45: Selective mutation reduction procedure .. 127

Figure 46: ferrymanSimulator specification random selection (10%) 130

Figure 47: ferrymanSimulator specification random selection (25%) 131

Figure 48: ferrymanSimulator specification random selection (50%) 132

Figure 49: railroadGate specification random selection (10%) 133

Figure 50: railroadGate specification random selection (25%) 134

Figure 51: railroadGate specification random selection (50%) 134

Figure 52: sluiceGateGround specification random selection (10%) 136

Figure 53: sluiceGateGround specification random selection (25%) 136

Figure 54: sluiceGateGround specification random selection (50%) 137

Figure 55: cruiseControl specification random selection (10%) 138

Figure 56: cruiseControl specification random selection (25%) 139

Figure 57: cruiseControl specification random selection (50%) 140

Figure 58: fattoriale specification random selection (10%) .. 142

Figure 59: fattoriale specification random selection (25%) .. 142

Figure 60: fattoriale specification random selection (50%) .. 143

xv

LIST OF ABBREVIATIONS

ABS : Absolute Value Operator

AOR : Arithmetic Operator Replacement Operator

ARO : Add Rule Operator

ASM : Abstract State Machine

ASM SL : Abstract State Machine Standard Language

AsmetaL : Abstract State Machine Meta Model Language

AsmL : Abstract State Machine Language

CDoR : Choose DoRule Replacement Operator

CDR : Choose Domain Replacement Operator

CIR : Choose IfNoneRule Replacement Operator

CLI : Command Line Interface

CRE : Choose Rule Exchange Operator

CRRO : Case Rule Replacement Operator

CTM : Constant Term Modification Operator

CTR : Constant Term Replacement Operator

CTRO : Case Term Replacement Operator

xvi

DIR : Default Initialization Replacement Operator

DSC : Delete Switch Case Operator

EBNF : Extended Backus–Naur Form

EDR : Extend Domain Replacement Operator

EIR : Extend ID Replacement Operator

ENF : Expression Negation Fault Operator

ERR : Else Rule Replacement Operator

ERRO : Extend Rule Replacement Operator

ETR : Else Term Replacement Operator

FCRP : Forall Choose Rules Permutation Operator

FDoR : Forall DoRule Replacement Operator

FQTDR : Finite Quantification Term Domain Replacement

Operator

FQTP : Finite Quantification Terms Permutation Operator

FSM : Finite State Machine

FTP : Function Type Permutation Operator

GUI : Graphical User Interface

ICR : Invariant Condition Replacement Operator

xvii

IDD : Invariant Declaration Deletion Operator

IDE : Integrated Development Environment

IIP : Initialization ID Permutation Operator

ISD : Initialization Statement Deletion Operator

LNF : Literal Negation Fault

LOR : Logical Operator Replacement Operator

LRR : Let Rule Replacement Operator

LRVA : Let Rule Variable Assignment Operator

LRVR : Let Rule Variable Replacement Operator

LTS : Label Transition System

MCDC : Multiple Condition Coverage

MRR : Main Rule Replacement Operator

MS : Mutation Score

RGCR : Rule Guard Condition Replacement Operator

ROR : Relational Operator Replacement Operator

RRO : Replace Rule Operator

RTS : Rule to Skip Rule Operator

xviii

S2PB : Sequential to Parallel Block Operator

SBSDL : Sequential Block Statement Deletion Operator

SCP : Switch Case Permutation Operator

SSM : Sequence Rule Order Permutation Operator

SSSC : Stuck Switch to Specific Case Operator

STF : Stuck at True False Operator

TGCR : Term Guard Condition Replacement Operator

TRR : Then Rule Replacement Operator

TTR : Then Term Replacement Operator

UOI : Unary Operator Insertion Operator

xix

ABSTRACT

Full Name : Osama Jamil AlKrarha

Thesis Title : Design and Evaluation of Mutation Operators for AsmetaL Language

Major Field : Master of Science in Software Engineering

Date of Degree : May, 2014

Abstract State Machines (ASMs) have been introduced by Gurevich in 1984. Abstract State

Machines aim to bridge the gap between informal and formal descriptions by transforming

informal specifications to clear and concise specifications. ASM Models are simple,

concise, and executable. In addition, they support various levels of abstraction, and provide

a well-defined refinement models. ASMs support concurrent and non-deterministic

specifications. Several ASM-based languages were proposed to develop and validate

Abstract State Machines specifications. Asmeta is an interoperable and integrated

framework that provides a standardized infrastructure that serves different specific domain

tools and languages. Mutation testing is fault-based testing technique aims to assess the

adequacy of test suites by introducing errors into program code to reveal the seeded errors.

This thesis proposes a mutation based approach to test ASM specifications. A set of

mutation operators were designed for AsmetaL language. The proposed AsmetaL-based

operators are analyzed and evaluated empirically using several case studies. Furthermore,

the proposed set of operators have been implemented in MuAsmetaL, an AsmetaL

mutation testing tool, allowing for validation and execution of mutants, as well as the

generation of related statistics. As an application of the proposed approach, test suites

generated using ATGT, an AsmetaL compatible testing tool implementing various

coverage criteria, were assessed. Mutation testing is known for its high computation cost.

xx

In this thesis, both selective and random mutation were applied to AsmetaL mutants

resulting in substantial gains in terms of effectiveness and cost savings.

xxi

 ملخص الرسالة

 أسامة جميل القرارعة :الاسم الكامل

 AsmetaLتصميم وتقييم مشغلات الطفرة للغة :عنوان الرسالة

 الماجستير في هندسة البرمجيات درجة التخصص:

 4102مايو، :تاريخ الدرجة العلمية

الفجوة لسد آلات الحالة المجردة تهدفو .4891بواسطة جورفيتش في عام (ASM) استحدثت آلات الحالة المجردة

موجزة. وواضحة رسمية لمواصفات رسميةالغير المواصفات من خلال تحويل غير الرسمية والرسمية المواصفات بين

توفر و التجريد، مختلفة من مستويات تدعم بالإضافة إلى أنها .للتنفيذقابلة وموجزة، و بسيطة ASM نماذجوتعتبر

 عدة لغات اقتراح تم وقد .غير القطعيةو المتزامنة المواصفاتكل من ASMsتدعم . وواضحة المعالم صقل نماذج

هي عبارة عن إطار للتشغيل Asmeta. مجردةال حالةال آلات مواصفات والتحقق من صحة لتطويرل ASM على أساس

تقنية ةاختبار الطفرعد ويالمتبادل و المتكامل والتي توفر بنية تحتية موحدة تخدم مختلف لغات وأدوات مجال معين.

من وذلكإدخال أخطاء في التعليمات البرمجية للبرنامج تعمد تهدف لتقييم مدى ملاءمة مجموعات الاختبار من خلال

طفرة ال اختبار. وتقترح هذه الرسالة نهج آنفا الأخطاء التى تم إدخالهاعن تقييم مدى قدرة مجموعة الاختبار الكشف أجل

وتم .AsmetaLالطفرة للغة تصمم مجموعة من مشغلاتم ت في هذه الرسالة،. وASMمواصفات تقنية ال على يستند

حة مجموعة المشغلات المقتر، فإن علاوة على ذلكة. وحال دراسات دام عدةباستخ المشغلات تجريبيا هذه تحليل وتقييم

للتحقق من ، مما يسمح AsmetaL الطفرة للغة اختبارلإجراء أداة ، والتي تعتبرMuAsmetaL فيذها بواسطةتن تم

اختبار تمجموعالد تم تو، لنهج المقترحل كتطبيقالإحصاءات ذات الصلة. و توليد فضلا عن، الطفرات وتنفيذ صحة

 من المعروفها. ووجرى تقييم المختلفة، التغطية معاييربناء على AsmetaLة مع لغة متوافقال ATGT أداة باستخدام

ة للغ عشواييةالنتقايية والا طفرةال كل من تم تطبيق، الرسالةهذه فيو أنه ذا تكلفة حسابية عالية. الطفرة اختبارعن

AsmetaL وخفض التكلفة الحسابية حيث الفعالية منلنتايج ايجابية مما أدى.

1

1 CHAPTER 1

INTRODUCTION

The demand for high quality software has increased in various fields and disciplines.

Therefore, it led to an increased focus on the effectiveness of the processes used in the

software industry. Software testing is considered one of the most critical processes that

lead to software projects success or failure, therefore, software engineers and researchers

in this area aim to put more emphasis on the effectiveness of software testing. Software

testing spans the entire software life cycle from requirements stage to the maintenance

stage. The magnitude of faults can be reduced if they were detected at the early stages.

1.1 Motivation

The typical way to validate unstructured software specifications is through inspection [1],

which is usually carried out manually and takes considerable time and effort. In contrast,

the usage of formal specifications reduces such an effort and time, while allowing for

automated validation. Abstract State Machines (ASMs) [2] is a formal paradigm that has

proved its merit in many fields such as software requirements engineering, network

protocols engineering, and system engineering. Handling software requirements using

Abstract State Machine overcomes the natural language with the following advantages:

Simplicity, precise semantics, various levels of abstractions, and executability. In addition,

2

it provides a well-defined validation and verification model. Moreover, ASM Models can

be used to generate portions of the implementation.

Mutation testing technique is a fault-based technique that has been successfully used to test

various programming and specification languages. This thesis introduces a new ASM-

based mutation testing approach to assess the adequacy of ASM test suites.

1.2 Problem Statement

The goal of this research is to develop a mutation testing approach for AsmetaL, an ASM-

based language. The proposed approach would allow both practitioners and researchers to

assess and improve the adequacy of AsmetaL test suites. The main goal is decomposed into

the following sub-goals:

 Sub-Goal 1: Definition of a set of mutation operators for AsmetaL as a concrete

incarnation of ASM mutation operators.

 Sub-Goal 2: Investigation of the applicability of the proposed mutation operators

to various case studies.

 Sub-Goal 3: Assessment of the effectiveness of the designed operators.

 Sub-Goal 4: Investigation the applicability of cost reduction techniques such as

selective and random mutation in the context of the AsmetaL language.

 Sub-Goal5: Develop an AsmetaL mutation testing tool that allows for validation

and execution of mutants and the generation of mutation related statistics.

3

1.3 Research Hypothesis

The research hypotheses can be formulated as follows:

Research Hypothesis 1:

Our first research hypothesis is denoted as follows:

 “Mutation testing can be applied to the Abstract State Machines (ASM)

formalism. This can be achieved through the design and the application of ASM-

based mutation operators.”

Research Hypothesis 2:

Our second research hypothesis is denoted as follows:

 “ASM-based mutation testing is an effective approach to assess the adequacy of

ASM-based test suites.”

Research Hypothesis 3:

Our Third research hypothesis is denoted as follows:

 “Mutation-based testing cost reduction techniques, such as selective and random

mutation can be applied in the context of Abstract State Machines specifications.”

1.4 Thesis Approach

Mutation testing has been successfully applied to many programming and specification

languages. In this thesis, we investigate the application of the mutation testing approach to

the ASM-based specification language AsmetaL.

4

Literature Review

Design of AsmetaL

Mutation Operators

Evaluation of AsmetaL

Mutation Operators

Empirical Evaluation

Selective Mutation

Analysis

MuAsmetaL Implementation

Figure 1: Thesis tasks workflow

As shown in Figure 1, this thesis includes, the design and evaluation of mutation operators

for AsmetaL, the implementation of mutation operator for AsmetaL. In addition, these

operators will be evaluated empirically using several case studies. Finally, cost reduction

techniques such as selective-mutation and random mutation are investigated in the context

of the AsmetaL language.

1.5 Thesis Contributions

This thesis offers four main contributions

1.5.1 Contribution 1: Design and Evaluation of Mutation Operators for

the AsmetaL Language

We have proposed a set of 18 operators for the AsmetaL language. The resulting operators

are categorized into 5 categories targeting different types of AsmetaL faults. Each mutation

operator is described using a concrete example and analyzed with respect to the produced

5

mutants (e.g.,, valid/invalid, equivalent/non-equivalent, etc.). Furthermore, a mathematical

characterization of the upper bound of the number of generated mutants is provided for

each operator. Chapter 4 presents and discusses the set of proposed AsmetaL-based

mutation operators.

1.5.2 Contribution 2: Empirical Evaluation of the Proposed Approach

Our proposed mutation-based approach is evaluated empirically using a set of 7 case

studies of different sizes. We have shown that mutation testing can be applied effectively

to ASM-based specifications. Furthermore, as an application of the proposed approach and

since the only tool, spotted in the literature, that supports the generation of test cases for

AsmetaL language is ATGT, we have focused on the evaluation of the test suites produced

using the ATGT coverage criteria. We have shown that some ATGT coverage criteria are

more adequate than others are. Chapter 6 presents and discusses our empirical experiments.

1.5.3 Contribution 3: Development of MuAsmetaL

We have developed a prototype tool (called MuAsmetaL) to perform AsmetaL-based

mutation testing. The tool presents many features that can be summarized as follows:

 Generating mutants based on the proposed operators.

 Validating the correctness of all the generated mutants using AsmetaLc.

 Validating syntactic equivalency of generated mutants against the original

specification.

 Running test cases against the original specification.

 Running test cases against mutants.

 Calculating mutation score per operator and for all mutants.

6

 Chapter 5 presents our MuAsmetaL tool.

1.5.4 Contribution 4: Investigation of Cost Reduction Techniques in the

ASM Context

Mutation testing is known to have a high computation cost due to the large number of

generated mutants. Many techniques have been proposed to reduce the cost of the

application of mutation testing. In this thesis, we have applied random mutation and

selective mutation to AsmetaL specifications. As discussed in Chapter 7 , we were able to

achieve satisfactory results with respect to the resulting mutation score and the cost

savings.

1.6 Issues not Addressed in this Thesis

This thesis will not address the following issues:

 Detection of equivalent mutants: we haven’t proposed any technique to preform

mutation equivalency analysis.

 Generation of test cases: The proposed approach aims at providing a useful

adequacy analysis technique to assess test suite for AsmetaL language. However,

it does not provide a mechanism to generate test cases.

 Higher order mutation testing: Only single order mutation testing will be

addressed in our approach.

 Applying mutation testing to non-deterministic specifications is out of the scope

of this thesis.

7

1.7 Thesis Outline

The remaining parts of the thesis are divided into eight chapters:

Chapter 2: provides the general background information that sets the stage for our

proposed approach. It consists of two parts. The first part introduces the background

information about the basic concepts, notations, and technologies about Abstract State

Machines (ASM) paradigm. The second part presents the basic definitions of mutation-

based testing methodology.

Chapter 3: provides an overview of the state of art for testing Abstract State Machines. In

addition, it includes a brief overview of formal specification (e.g., FSM, State chart, etc.)

mutation testing approaches and techniques.

Chapter 4: provides an in-depth look at our proposed approach including methodology,

mutation testing operators, empirical evaluation, developed tool, and selective mutation

criteria.

Chapter 5: presents an overview of the MuAsmetaL (a tool for mutating AsmetaL syntax,

developed as a proof of concept) including tool requirements, architecture, screenshots,

and tool limitations.

Chapter 6: provides an empirical evaluation of our proposed approach aiming to assess

the effectiveness of the proposed AsmetaL mutation operators. Several case studies

adopted from the literature were used in the experiment.

Chapter 7: applies random mutation and selective mutation to AsmetaL specifications.

8

Chapter 8: recalls the contributions of the thesis. This chapter concludes with some

directions for future research.

9

2 CHAPTER 2

Basic Definitions and Notations

We have to set the stage for our proposed approach by providing a general background

information. This chapter consists of two parts. First, an introduction to Abstract State

Machines paradigm including the basic concepts, notations, and technologies. Second, an

introduction to mutation testing technique including basic definitions and methodology.

2.1 Abstract State Machines

2.1.1 ASM Thesis

The concept of Abstract State Machines (ASM) was originally proposed by Gurevich [3]

in his thesis work back in 1984 that aims to allow the transformation of any sequential

algorithm into an abstract state machine (referred to as sequential dynamic structure) in

order to mimic any sequential computational devices. According to an Abstract State

Machines historical study by Buorger [4], spanning the period from 1984 to 2001, the

stages of the evolution of abstract state machines can be classified into four different stages.

(i) The early stages where dynamic structure was proposed by Gurevich to simulate any

sequential computational devices. (ii) The second stage is when abstract state machines

were adopted in the industry, because it provides structural and analytical ability. (iii) The

third stage focused on the ability and efficiency of abstract state machines to build, analyze

and verify various types of practical applications with various levels of complexity. (iv)

The fourth stage, which is the current stage, where the use of abstract state machines in

10

software development is noticed, especially using ground model and stepwise refinement

process which have been used in requirements engineering processes.

2.1.2 ASM in a Nutshell

The main idea behind ASMs is to eliminate any ambiguity by transforming informal

specifications to clear and formal specifications using a mathematical representation that

enforces tractability, reliability, predictability, and quality. Furthermore, ASMs support

formal verification, validation, and analysis techniques. The ASM concept is used to

simplify the design of complex systems, such as concurrent and reactive systems. In

software engineering process, ASM can be applied during the requirements engineering

phase, the design phase, and testing phase. ASM-based specifications can be used to assess

the quality of software, provide test oracles [5], and automate the generation test suites.

Farahbod and Glasser [6] summarized the characteristics of ASMs as follows: i) Simplicity

and conciseness. ii) Precision .iii) Variant level of abstraction. iv) Evolutionary iv) Well

defined refinement model vi) Executable. vii) Concurrent and non-deterministic. viii) Well

defined verification model. The strengths of ASMs are summarized as follows: i) Provides

a dynamic structural notation. ii) Simple. iii) General purpose and problem independent.

iv) Flexible level of abstraction. vi) Provides a proof of correctness (through tractability).

A basic ASM rule can be described as follows:

if guard then rule1 else rule2 end if

11

Where guard is a Boolean condition. Where the rule is a finite set of update function

defined by the transform terms of ASM.

A basic ASM function can be described as follows:

f : (t1; t2,…, tn)

There are two types of ASM functions:

a. Static functions that are not updated during the run time.

b. Dynamic functions that can be classified into four types: i) Controlled: updated

only by rules ii) Monitored: updated by the environment iii) Interaction:

updated by the rules and by the environment iv) Derived function that are

neither updated by rules nor by the environment.

Transition Rules

ASM provides seven types of rules:

1. Skip Rule: do nothing.

2. Update Rule: while in next state value of f is updated to S.

3. Block Rule: R and S are executed in parallel.

4. Conditional Rule:

if g the R else S

If g is true, execute R, otherwise excuse S.

5. Let Rule:

Let x = t in R

Assign value of t to x and execute R.

6. Forall Rule:

12

forall x with g do R

Execute R in parallel for each x that satisfies the condition g.

7. Call Rule:

r(t1; t2,…, tn)

Call r with parameters t2,…, tn.

ASM Types

Sequential ASMs referred to as ASMs that execute sequential time in a step-by-step

manner, with non-empty set of sates, non-empty set of initial states and one step

transformation function while closed under isomorphism [7]. It is proven that for every

sequential algorithm, there exists a behaviorally equivalent sequential ASMs [8]. Parallel

ASM is referred to ASMs that execute in sequential global time and have the ability to

create new parallel components on-the-fly [9]. For every parallel algorithm, it is proven

that must exist a parallel ASM that is behaviorally equivalent. Distributed ASM consists

of finitely many single agents sequential ASMs in which it has finitely many predecessors,

every agent are linearly ordered, and each finite initial segment corresponds to a state.

2.1.3 ASM Languages

Many languages were developed as incarnation of ASMs concept, in this subsection, we

present few of them.

1. AsmL (Abstract State Machine Language) [10]

The AsmL [11] language was developed by Microsoft to provide a tool that supports the

basics of ASM, while being integrated with the Microsoft .Net frameworks. That

integration is possible because AsmL is designed to comply with meta-modeling.

13

In addition, AsmL can be considered as an executable model that supports automatic

testing and automatic test case generation. AsmL takes advantage of the well-defined and

used FSM testing techniques in order to automate the test case generation and evaluation

processes as mentioned in section 3.1.5.1. AsmL is equipped with a set predefined of data

type beside that it is fully integrated with all elements of the .NET frameworks such as

(e.g.,, interfaces, classes, methods and delegates). Moreover, both .Net framework

languages and AsmL models can call each other natively without any adapter. AsmL

supports parallel, sequential, deterministic and nondeterministic ASM specification.

ASML has the ability to handle exceptions similarly to other .Net framework languages.

Barnett et al. [11] have introduced a model-based testing environment, based on AsmL.

This environment takes care of parameter generation, FSM generation, sequences

generation, and runtime execution.

2. CoreASM [12]

CoreASM, proposed by Farahbod and Glasser [13], provides all basics of ASM and fulfills

all characteristics mentioned in section 2.1.2. The focus of CoreASM is to support

extensibility by providing an open source framework offering the basis and foundations for

third parity tools (e.g., model checkers and test generation tools). It is an extensible

language that support the extensibility of both language’s syntax and semantics with

extensible grammar, extensible engine which provides the ability to extend functionality

and control of ASM, extensible simulator that supports multi agents for distributed abstract

state machines (multi ASMs that interact with each other and their environment) and a

library provides additional features. Since it supports extensibility, CoreASM features a

14

micro kernel that support customization based on user needs and domains. However,

CoreASM suffers from excessive extensibility, which requires a fast multi grammar parser.

In addition, it does not provide predefine modes (untyped models).

3. ASM Meta-model [14]

Combining model driven engineering with ASMs concepts, provides another dimension in

which it exploits the advantage of meta modeling in term of separation the ASMs

specifications from language, tool and environment that have been used to develop it.

Moreover, it enforces the ability of model transformation and provides higher

interoperability in case of dissimilar languages. According to Gargantini et al. [15] Meta

model provides a language independent standardized abstract notation for ASMs with an

intuitive graphical representation of ASMs that act as an interchange policy among

different ASM tools. In addition, it provides an infrastructure that serves the third party

tools and languages based on standard libraries and APIs to support interoperability and

integration among tools. One of the main characteristics of meta modeling approach is its

readiness for automation.

3.1. Asmeta [16]

Asmeta is an interoperable and integrated framework that provides a standardized

infrastructure (standard libraries, APIs and interchange format) that serves different

specific domain tools and languages [16].

15

3.2. AsmM [17]

AsmM [17] defines language syntax used to specify ASMs specifications based on Object

Management Group OMG framework. AsmM is combined with specific domain

description that specifies the creation, access, interchange and manipulation of ASMs.

4. ASM SL and ASM Workbench [18]

ASM workbench [19] is an integrated environment based on ASM specification language

that supports five main functionalities: ASM basics functionalities delivered by workbench

kernel, type checking provided by model checker component, simulation by simulators,

debugging based on debugging GUI and verification provided by model checker.

Workbench supports parallel and sequential, in addition to, deterministic and non-

deterministic ASM models.

Original ASM specifications do not support neither static nor universal functions; however,

ASM Workbench overcomes these issues by deriving these functionalities from ASM

specification languages. Moreover, the original specifications of ASM were untyped,

while, ASM workbench supports predefined type as mentioned earlier. In addition, ASM

workbench is built to be extensible, so that other tools can build on its functions. ASM

workbench relies on SMV (symbolic model verifier) to preform model checking as shown

in Figure 2, where the infinite model of ASM is transformed into finite model based on

fitness constraints before being fed into the model checker.

16

ASM SL

ASM Specification

Language

SMV

Symbolic Model

Verifier

SMV

Model Checker
transformation

CTL

Temporal Logic

Implementaion

Yes

OR

No (counter example)

Figure 2: ASM Workbench model verification process

5. Comparison of ASM environments

In order to compare the aforementioned ASMs languages/environments, I have proposed

the following attributes:

I. Typed: the availability of predefined data types.

II. Meta-Model: the support of using meta-model.

III. Integration: the ability to integrate with other tools.

IV. Test Generation: the ability to automate test cases generation.

V. Extensible: the ability to extend the environment (syntax and functionality).

VI. Infrastructure: offering infrastructure for third party tools.

Table 1 shows the comparison between ASM tools based on the proposed properties.

17

Table 1: Comparison of ASM Programs

 T
y

p
ed

M
etaM

o
d

el

E
x

cep
tio

n
s

In
teg

ratio
n

T
est G

en
eratio

n

E
x

ten
sib

le

In
frastru

ctu
re

Original ASM Untyped No No No No No No

SpecExplorer Typed Yes Yes .Net

framework
Yes No No

CoreASM Untyped No No Third party

Tools
No Yes Yes

Workbench Typed No No No No No No

Asmeta Typed Yes No Third party

Tools
No No Yes

2.1.4 AsmetaL

AsmetaL [16][20], [21][22] consists of four main sections: i) Header section. ii) Body

section. iii) Main rule. iv) Initialization section (optional). Figure 3 shows the main

structure of AsmetaL language and Table 2 provides a simple example of AsmetaL

specification. The header section includes three sub sections: i) Import clause is an optional

subsection, which identifies any external module that needs to be included, In addition, it

allows inclusion of selectable domains, functions, and rules. ii) Export clause is an optional

subsection, which identifies all portions of the current module that are permitted to be

imported in other modules. iii) Signature is mandatory subsection in which all domains and

functions signatures are defined respectively.

18

ASM

Header

Import

Clauses

Export

Clauses
Signature

Body
Main

Rule
Initializations

Domains Functions Rules Invariants

Figure 3: AsmetaL basic structure

Table 2: AsmetaL simple example

Header asm example
import ../STDL/StandardLibrary
signature :
monitored value:Integer
out msg:String

Body definitions :

Main Rule main rule r_main =
 if(value>10) then
 msg := "greater than 10"
 else
 msg := "10 or less"
 endif

Initialization default init s0:
function msg = ""

Typically as shown in Figure 6, a domain is either a concrete domain, which is a sub

domain of other domain, or a type domain. Type domain is either any domain (the most

universal domain, all domains are subset of Any Domain, denoted by any), structured

domain (product domain, sequence domain, powerset domain, bag domain, and map

domain), enumerator domain, abstract domain, or basic domain as shown in Table 3, Table

4, Table 5, and Table 6.

19

Table 3: concrete domain signature

(dynamic)? domain ID_DOMAIN subsetof ID_DOMAIN

Table 4: enumerator domain signature

enum domain ID_DOMAIN = {Element1, ….., Elementn}

Table 5: abstract domain signature

(dynamic)? abstract domain ID_DOMAIN

Table 6: basic domain signature

basic domain ID_DOMAIN

In AsmetaL, a function is considered as an entity that replaces variables in programing

languages. As shown in Figure 5, a function could be either a basic function or a derived

function. Basic function consists of static function (cannot be updated during the

execution), and dynamic function (out function, monitored function, shared function,

controlled function, and local function), as shown in Table 7. Furthermore, dynamic

function consists of out function (responsible of output to environment), controlled

function (only updated by the machine), monitored function (only updated by the

environment (user), thus, it cannot appear in the left side in update rule), and shared

function (updated by machine and environment)

Derived function (the value of derived function depends on the input), as shown in Table

9, where its value depends on the input.

20

Table 7: static function signature

static ID_FUNCTION : ID_DOMAIN ('->' ID_DOMAIN)?

Table 8: dynamic function signature

local (dynamic)? local ID_FUNCTION : (ID_DOMAIN '->')? ID_DOMAIN

controlled
(dynamic)? controlled ID_FUNCTION : ID_DOMAIN ('->'

ID_DOMAIN)?:

Shared (dynamic)? shared ID_FUNCTION : ID_DOMAIN ('->' ID_DOMAIN)?

monitored
(dynamic)? monitored ID_FUNCTION ':' ID_DOMAIN ('->'

ID_DOMAIN)?

out (dynamic)? out ID_FUNCTION : ID_DOMAIN ('->' ID_DOMAIN)?

Table 9: derived function signature

derived ID_FUNCTION : ID_DOMAIN ('->' ID_DOMAIN)?

The body section consists of all domains, functions, rules, and invariants definitions

respectively. Concrete domains and static functions value is set in the definition statements.

A derived function is defined in term of input.

There are two main rule declarations supported by AsmetaL language: i) Turbo rule

declaration, which takes a set of parameters and provide an optional return value in which

its type is defined in the rule header as shown in Table 11. In addition, they are called using

parentheses. ii) Macro rule declaration, which takes a set of parameters, but, do not return

any value and are called using squired brackets as shown in Table 10. When decelerating

rules the order of declaration matters, in other words, if rule r_a calls r_b, then declaration

21

of r_b must precede the declaration of r_b, thus it is impossible to have recursive call

between rules e.g., r_a calls r_b and r_b calls r_a.

Table 10: macro rule declaration

(macro)? rule ID_RULE ((variable in ID_DOMAIN (, variable in ID_DOMAIN)*)?)

Table 11: turbo rule declaration

turbo rule ID_RULE ((variable in ID_DOMAIN (, variable in ID_DOMAIN)*))? (in

ID_DOMAIN)? '=' rule

The main rule (Table 12) is the rule that will be executed first when running AsmetaL

specification. It is possible not to specify a main rule in case a module is exported. In

addition, the initialization section is optional, where the initial states are set. AsmetaL

allows only a single default state and multiple of non-default state initialization.

Table 12: main rule declaration

main (macro)? rule ID_RULE ((variable in ID_DOMAIN (, variable in

ID_DOMAIN)*))? (in ID_DOMAIN)? '=' rule

AsmetaL supports around 15 type of rules each for a particular purpose as shown in Figure

4. Rules are classified into six classes: i) Basic rule includes skip rule (does nothing), macro

rule call (the call of macro rule declaration), block rule (executes multiple inner rule in a

parallel manner. Note that it must contains at least 2 rules), conditional rule (executes

branch rules based on guard condition), choose rule (provides a non-deterministic

behavior by using an arbitrary term form domain that satisfies the guard condition), forall

rule (executes do-block rule for all term in a domain that satisfies the guard condition), let

22

rule (executes in-block rule while assigning terms to variables), and extend rule (extends a

domain with terms). ii) Update rule (updates the value of function. As mention before, the

machine cannot update the value of monitored function). iii) Turbo return rule. iv) Term

as rule. v) Derived rule. vi) Turbo rule includes sequence rule (executes multiple inner rule

in a sequential manner. Note that it must contains at least two rules), iterative rule (loop

through do-block rule), turbo call rule (the call for turbo rule declaration), and turbo local

state rule (internal rule used inside turbo rule to return the local state variable). Table 13

shows the syntax of each type of rules.

Table 13: AsmetaL rule structures

Skip skip

Macro rule

call
ID_RULE '[' (Term (',' Term)*)? ']'

Block par Rule (Rule)+ endpar

Conditional if Term then Rule (else Rule)? endif

Choose
choose VariableTerm in Term (',' VariableTerm in Term)* with Term

do Rule (ifnone Rule)?

Forall
forall VariableTerm in Term (',' VariableTerm in Term)* (with Term)?

do Rule

Let
let '(' VariableTerm '=' Term (',' VariableTerm '=' Term)* ')' in Rule

endlet

Extend extend ID_DOMAIN with VariableTerm (',' VariableTerm)* do Rule

Update (LocationTerm | VariableTerm) ':' Term

Turbo

return
(LocationTerm | VariableTerm) '<-' TurboCallRule

23

Term as

rule
FunctionTerm | VariableTerm

Derived
whilerec Term do Rule

while Term do Rule

Sequence seq Rule (Rule)+ endseq

Iterative iterate Rule enditerate

Turbo call ID_RULE '(' (Term (',' Term)*)? ')'

Turbo local

state
(LocalFunction '[' Rule ']')+ Rule

AsmetaL supports multiple initializations including a single optional default initialization.

Each initialization provides the initial state of domains, functions, and agents. AsmetaL

simulator can handle uninitialized domains, functions, and agents (default values are set to

undef); however, it is recommended to initialize all predicates.

24

R
u

le

B
a
sic

 R
u

le
T

u
rb

o
 R

u
le

S
k

ip
 R

u
le

U
p

d
a
te

 R
u

le
T

u
rb

o
R

e
tu

rn
 R

u
le

T
e
rm

 a
s R

u
le

D
e
riv

e
d

 R
u

le

M
a
c
ro

 C
a
ll R

u
le

B
lo

c
k

 R
u

le
C

o
n

d
itio

n
a
l R

u
le

S
e
q

 R
u

le
Ite

ra
tiv

e
 R

u
le

T
u

rb
o

 c
a
ll R

u
le

T
u

rb
o

 L
o

c
a
l S

ta
te

 R
u

le
C

h
o

o
se

 R
u

le
F

o
ra

ll R
u

le
L

e
t R

u
le

E
x

te
n

d
 R

u
le

Figure 4: AsmetaL rule types

25

F
u
n
c
tio

n

B
a
sic

 F
u

n
c
tio

n
D

e
riv

e
d

 F
u

n
c
tio

n

S
ta

tic
 F

u
n

c
tio

n
D

y
n

a
m

ic
 F

u
n

c
tio

n

O
u

t F
u

n
c
tio

n
M

o
n

ito
re

d
 F

u
n

c
tio

n
S

h
a
re

d
 F

u
n

c
tio

n
C

o
n

tro
lle

d
 F

u
n

c
tio

n
L

o
c
a
l F

u
n

c
tio

n

Figure 5: AsmetaL function types

26

D
o

m
a
in

C
o

n
c
re

te
 D

o
m

a
in

T
y

p
e
 D

o
m

a
in

A
n

y
 D

o
m

a
in

S
tru

c
tu

re
d

 D
o

m
a
in

E
n

u
m

 D
o

m
a
in

A
b

stra
c
t D

o
m

a
in

B
a
sic

 D
o

m
a
in

P
ro

d
u

c
t D

o
m

a
in

S
e
q

u
e
n

c
e
 D

o
m

a
in

P
o

w
e
rse

t D
o

m
a
in

B
a
g

 D
o

m
a
in

M
a
p

 D
o

m
a
in

Figure 6: AsmetaL domain types

27

For further information about the language structure, please refer to the full language

grammar (EBNF grammar) [23].

2.1.5 AsmetaL Tools

 ASMeta compiler (AsmetaLc) is a text to model complier that parses AsmetaL

specification in order to check its consistency with respect to itself. It is available

for download via [24].

 ASMeta simulator (AsmetaS) is run-time simulator that executes AsmetaL

specification modules in a scenario based. It is available for download via [25].

 ASMeta validator (AsmetaV) is AsmetaL specification validation tool. It is

available for download via [26].

 ASMeta modelchecker [27][28](AsmetaSMV). It is available for download

via [29].

 ASMEE [30],[31] is an eclipse plugin that add the support of AsmetaL environment

for eclipse IDE.

 AsmetaRE [32].

 NuSMV [33].

 NuSeen [34].

 NuSMV model advisor [35].

 ATGT [36] is a test generation tool that support generating test suite for Asmetal

modules based on coverage criteria.

 ATGT Boolean [37][38] is a test generation tool that enforce optimization for

efficient test suite generation.

28

 SCA-ASM [39].

2.2 Mutation Testing

Recently according to Jeevarathinam et al.[40], the interest of research has increased in the

field of software mutation testing emerged from the importance of software testing process.

The demand of higher quality of software products increased the need for better testing

methodologies. Software testing process aims to detecting bugs in the system-to-be as well

as increasing the confidence of the end user based on many tasks such as unit testing,

integration testing, system testing, and specification validation. These tasks share the

process of designing the test cases is non–trivial task and considered to be subjective task

due to the fact that different outputs is resulted depending on the human factor involved in.

Thus, test cases produced by different testers may vary in the level of effectiveness.

Although there are some testing techniques such as coverage criteria that aims at increasing

the effectiveness of a test suite, however, it does not consider the testing data selection.

Hence, there is a subtle need of a systematic methodology to assess the effectiveness of

test cases.

Mutation testing, was first introduced in 1971 by Lipton [41], aims to provide a numerical

representation of the adequacy of the test cases (testing suite). Based on two main

hypotheses, Competent Program Hypothesis [42] which assumes that developers are

smart people and they try to develop system-to-be in such a way that it is close to correct,

thus, the typical faults are considered to be miner faults. Based on that hypothesis, it

29

determines how to inspect and test systems in a way that minor faults are more potentially

to exist; therefore it should be carefully tested. In addition, complex faults are less likely

to exist. Second, Coupling Effect Hypothesis [43] which assumes that complex faults are

coupled with minor faults considering that complex faults are decomposed of a set of minor

faults. In other words, the data selected to detect all miner faults would detect most of the

complex faults. Thus, the detection and elimination of minor faults would detect and

eliminate complex faults simultaneously.

Figure 7 illustrates the typical procedure to generate mutants. Given a program P with a

test suite T and a set of mutant P’ that does not include P. The typical procedure to generate

mutants starts by running P against T. It is important that P passes without detecting any

failure, thus, the fault will not propagate to the generated mutants. The mutants will be

generated based on a predefined set of operators, which present systematic rules to generate

mutants. For the first order mutants only a single mutation operator must take place. If T

able to distinguish P from P’, it is considered that all mutants in P’ are killable and

eliminated from any further considerations. While the living (non-killable) mutants are

either mutants that could be killed but the test suite is not sufficient, Therefore, more test

cases must be add to kill these living mutants or equivalent mutants. The equivalent

mutants are those mutants that syntactically differ from P but have identical behavior to P.

More details about equivalent mutants is presented in section 2.2.2.

30

Program P

Mutates P’

Equivalency

Analysis

P Passes

Test Suite T

Non Equivalent

Mutants Pass

Run P

against T

Yes

Run P’ against T

Eliminate

Equivalent

Mutants

Generate

more Test

Cases to T

No

Add more Test Cases to T

Yes

Quit

No

Debug

Generate Mutants

based on Operators

Figure 7: Typical procedure of mutation testing

2.2.1 Mutation Score

Mutation testing does not measure the presence of potential faults in the system-to-be rather

than the adequacy of the test suite. The fewer living mutants resulted from preforming

mutation testing, the more adequate is the test suite. A mathematical representation of that

concept through mutation score denoted by MS. Mutation score measures the ratio of the

killable mutants denoted by MK to the all non-equivalent mutants denoted by M-ME.

Equation 1 shows the mathematical formula of the mutation score. The higher is the

31

mutation score, the more adequate the testing suite. It should be noted that mutation score

is weighted metric and its value range is [0, 1].

𝑀𝑆(𝑃, 𝑇) =
|𝑀𝑘|

|𝑀 − 𝑀𝐸|

2.2.2 Equivalency Analysis Techniques

An equivalent mutant ME is a syntactically different from the original program P; however,

it has the identical behavior of the original program. Thus, no test case exists that can

distinguish the output/behavior of the original program P from the equivalent mutant ME.

In order to obtain an accurate mutation score that reflects the adequacy of testing suite,

equivalent mutant must be eliminated from further process once they have been detected.

According to Jia et al.[44], the problem of detecting equivalent mutations is generally

undecidable problem. It could result from many scenarios such as dead code, non-

propagated fault and un-triggered events. Typically, they are detected manually in which

it requires a lot of time and effort. Many approaches in the literature have been proposed

to address the problem of detecting equivalent mutants.

Compiler Optimization Technique, proposed by Baldwin et al.[45], relies on the fact that

compliers within the process of compiling the code tend to optimize it, as consequent, many

equivalent mutants are generated from the optimization process. By intercepting the

optimization process, the number of equivalent mutants will decrease. Offutt et al.[46]

proposed Constraint Test Data Generation in which the propagation of fault from input to

32

output of the mutated path is analyzed based on constraints. If the constraints could not be

realized then the tested mutant is considered as an equivalent mutant.

Program Slicing Technique [47] based on the conventional procedure, however, it reduces

the effort required by adopting the idea of slicing the code so that it is easier to analyze

manually. Syntactic Difference [48] considers the idea of different programs consume

different resources and have different execution time. Based on these aspects, it could be

possible to differentiate between the original program P and mutants.

Different Program Behavior [49] distinguishes the original program P from mutants based

on behavior of the interaction between the program/mutants and its external environment

rather than output.

2.2.3 Reduction Techniques

Mutation testing generally is considered to be a computationally expensive task. Hundreds

if not thousands mutations are generated from the original program P. The most expensive

step is the execution of each mutant against the test suite T. Many techniques have been

proposed to reduce of the mutation computational cost. Jia [44] classifies them into classes:

2.2.3.1 Cost Reduction Techniques

The cost reduction techniques reduce the number of mutants that must be tested, however,

the number of the generated mutant remain identical of the typical procedure.

33

Acree [50] suggested in his PhD dissertation a novel approach called mutation sampling

technique, which basically runs a random set (x%) of the entire possible mutants against

the testing suite. The procedure can be summarized as follows:

1. List all possible mutants.

2. Randomly select a set of mutants x% of the entire mutants set.

3. Mutation testing is performed on all mutants in the randomly selected set.

4. The remaining mutants are discarded.

Wong and Mathur [51] conducted a study to examine the effectiveness of the sampling

technique, they suggested that preforming a mutant sampling on rate of 10% is less

effective than the full mutants testing by 16%.

Hussain [52] proposed in his master’s thesis a novel approach called mutation clustering

by selecting mutants based on clustering algorithm (K-means and Agglomerative clustering

algorithms [53]) instead of selecting the mutants randomly.

1. List all possible mutants.

2. Apply the clustering algorithm to classify mutants.

3. Select few mutants from each class.

4. Mutation testing is performed on the selected mutants.

5. The remaining mutants are discarded.

34

Comparing this approach with the previous one, mutant clustering resulted in a reasonable

mutation score, while selecting fewer mutants.

Unlike the previous approaches, selective mutation approach reduces the number of

mutants by reducing the set of mutation operators to generate fewer mutants.

Many of the proposed techniques are based on N-selective mutation, such as 2-Selective

was proposed by Mathur [54], in which eliminates two operators ASR (array reference for

scalar variable replacement) and SVR (scalar variable replacement), the number of

mutants will be decrease significantly. This approach maintains a mutation score of 99.99%

while the number mutant is decreased by 24%.

In addition, 4-Selective was proposed by Offutt [55], in which eliminates four operators,

the number of mutants will be decrease significantly. This approach maintains a mutation

score of 99.84% while the number mutant is decreased by 41%.

The 6-Selective was proposed by Offutt [56], in which eliminates six operators, the number

of mutants will be decrease significantly. This approach maintains a mutation score of

88.71% while the number mutant is decreased by 60%.

Wong and Mathur [54] proposed constraints approach in which mutant is generated based

on ABS (absolute value insertion) and ROR (relational operator replacement) operator.

35

Since, ABS mutants are killed using test cases cover input domain partitions and ROR

mutants are killed using test cases generated based on the mutant predicate.

Jia and Harman [57] introduced a new approach to mutation testing, in which it finds higher

order mutants that are rare, valuable and harder to kill. Considering single operator mutant

is a first order mutant, the higher order mutant is produced by replacing multiple first order

mutants. As a result, fewer higher order mutants that cover all first order mutants result in

a same mutation score.

Polo et al.[58] proposed an improved algorithm to generate second order mutant for the

first order mutant. Their experiment demonstrates that their approach reduces the cost by

50% while achieving the similar effectiveness test.

2.2.3.2 Execution Cost Reduction Techniques

This class of mutation reduction focuses on the improving the test execution process to

reduce the cost of mutation testing.

Strong mutation [43] testing is referred to the process where a mutant is killable if the final

result of the execution defers than the expected final result of the original program.

36

Weak mutation [59] testing is referred to the process where a mutant is killable if the

intermediate (state after the execution of the mutant instruction) result defers than the

intermediate of the original program. Weak mutation testing trades of the cost of execution

and the effectiveness of mutation testing reduces the effort of fully execution of the

program, but it reduces the effectiveness of the mutation testing.

Firm mutation [60] testing is referred to the process where a mutant is killable if the

continues intermediate possibilities in which it combine the strong and weak approaches.

2.2.3.3 Runtime Optimization Techniques

Interpreter based technique [61] is basically any mutant is generated from the source code

directly.

𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 = ∑ 𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡

The interpreter based technique provides flexibility and efficiency form small programs.

Compiler based technique [62] is basically any mutant is compiled to binary code and then

it is executed, since the execution of binary code is much faster than the interpreter.

𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 = ∑ (𝑐𝑜𝑚𝑝𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 + 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡)

Mutant schema technique [63] is basically for all mutants a single super mutant is created

and complied once with a meat program for each individual original mutant.

37

𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 = 𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑜𝑚𝑝𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 + ∑ 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡

Bytecode translation technique [64] is basically all mutants are derived from the original

compiled program without the need of any compilation cost of any mutant. This technique

support applying mutation testing without the need of the source code of the program

tested. However, it is subjective to the nature of the language itself.

𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 = ∑ 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡

Aspect oriented mutation [65] is basically preforming mutation testing on the fly, by

applying two iterations:

1. Get the result of the original program.

2. Generate and execute the mutants.

There are other approaches that focus on reducing the execution cost of mutation testing

based on distributed systems and parallel mutation testing, however, it is not part of scope

in that research.

38

2.3 Chapter Summary

In this chapter, we have provided a general definition and basic notation for Abstract State

Machines. In addition, several ASM languages and environments were briefly reviewed

and compared based on simple comparison criteria. Since our intention is to propose a

mutation approach for AsmetaL language, we have provided an in-depth review for the

structure of AsmetaL. The second part of that chapter provides a general notion and

definition for mutation testing technique, in addition to a review of equivalency analysis

techniques.

39

3 CHAPTER 3

Testing Abstract State Machines: State of the Art

Many techniques have been proposed in the area of Abstract State Machines testing. In this

chapter, we classified ASM-based techniques into five main categories. i) FSM generation

from ASM techniques, which uses FSM well, defined testing techniques to test ASM. ii)

Conformance testing technique to assure that the implementation is corresponding to the

specification. iii) Coverage criteria for test case generation for ASM. iv) Model checking

technique to ensure the consistency between implementation and specifications. v) Test

generation technique based on the aforementioned techniques. In addition, we have spotted

some works been done in the area of formal specification testing such as FSM, State charts

etc.

3.1 Testing Abstract State Machines

3.1.1 Generation of Finite State Machines (FSM) from ASM

Finite State Machines (FSM) is a computational model that consists of states, transitions,

input/output. According to Belinfante et al.[66], an ASM can be considered as a

generalization of an FSM. The main difference mentioned in the literature is that ASM

could have finite or infinite number of states, while FSM must have finite number of states.

In many approaches such as ASM testing and ASM test case generation, ASM model is

transferred into FSM to take advantage of the well-defined analysis techniques [67]. In

40

addition, ASMs tend to have more states compared to FSMs. Unfortunately; the

transformation process of an ASM to a FSM preserves some of the properties of the ASM

model but not all of them.

State Exploration

Barnett et al.[68] have proposed an approach that is similar to the fundamentals that model

checker operates on. It is so-called state space exploring, since it starts from the initial state

of the ASM model and then explore the next states. Unfortunately, the exploring process

suffers from the state explosion problem, where the exploring step tries to cover all possible

next states and end up with infinite possibilities. Thus, the exploring step must be subject

to prune techniques in order to make the space of exploration manageable. Mostly three

pruning techniques are used: i) State abstraction where each state in the FSM model

(concrete state) is mapped to a state in the ASM model (abstract state); the breakpoint is

when next state is already mapped. ii) Filters techniques are based on removing all states

that do not comply with certain domain-based conditions before being explored. iii) Model

coverage technique defines the amount of coverage that must be achieved in order to stop

exploring. The transformation process starts by generating domain specific parameters,

which are based on ADF (access driven filter). These parameters are used to identify

abstraction properties that rule the prune process. The abstraction properties identification

is manual task and subjective to the experience.

41

Belinfante et al. [66] proposed another technique for reducing the number of states in the

resulted finite state machine. This technique take advantage of the guard condition; if there

is an existence of two test cases where one of them results in a true value for the guard

condition and the other one resulted in false, then that guard condition called

distinguishable condition. On the other hand, if they do not exist, then the two adjacent

states, which have the update condition between them, are called equivalent states. By

merging the adjacent equivalent states into one state called hyper-state, the number of state

is reduced to finite number. In addition, DNF is another approach, which attempts to

investigate each clause of the guarded condition.

3.1.2 Conformance Testing

Conformance testing is one of the important types of software testing, where the objective

of that type of testing is the assurance that the implementation is corresponding to the

specification. As mentioned in section 2.1.2, ASMs are executable [69], thus, conformance

testing can be used to validate the conformance of implementations to the specifications.

According to Grieskamp et al.[70], conformance testing is carried out as shown in Figure

8 : i) the inputs for conformance testing are specification and implementation. ii) The

output is that the implementation either conforms or does not conform to specification.

Originally, the specification is used to derive test cases and the expected behavior.

Whenever the implementation is completed, these test cases are run against the

implementation. The conformance of the expected and actual behavior determines if the

implementation is conformed to the specification. However, ASMs could have infinitely

42

many states, where it is impossible to apply the original conformance testing. Thus,

conformance testing must be modified to accommodate this dilemma. Generally, there are

two approaches to preform ASM conformance testing. i) Labeled Transition Systems

(LTS) – based, and ii) Finite State Machines (FSM) – based.

Conformance Testing

Specifications

Implementation

ASM executable

“Pass”

Or

“Fail”

Figure 8: Conformance Testing Concepts

LTS – based

“A labeled transition system is a structure consisting of states with transitions, labeled with

actions, between them” [70]. Labeled transition systems [71] based testing is one of the

testing techniques that the conformance testing could be carried out. It can be applied to

any input – output transition based system. Compared with the FSM based conformance

testing, it is a general testing approach based on the model specification. In addition, LTSs

main characteristic is that it does not depend on transforming the ASM model to FSM

Model in order to perform testing. Thus, the overhead of transformation is eliminated.

Unlike, the FSM conformance testing which, makes distinguish between input and output

of the interaction. In order for a transition to be carried out, all participating processes must

43

have a transition at the current state that results in the next state. The Interactions in LTS

is considered as inputs to the FSM where the outputs of FSM cannot be mapped in to LTS.

According to Grieskamp et al.[70], LTS normally captures the external behaviors of the

system with it environment, thus, it is a black box testing where it validate the conformance

of implemented model of the system to the specification model of the system. In addition

to the deterministic and sequential interactions, LTS supports both nondeterministic (by

introducing the refusal set which identified by the blocking behavior) and parallel

interactions. LTS relies on what are so-called conformance relations (interactions of

interest). Many researches have been conducted to generate test suite for LTS model by

deriving FSM model, however, the size transitions of FSM model is huge compared with

LTS model.

FSM – based

Many well-defined techniques to preform conformance testing for the FSM have been

proposed in the literature. These techniques are not specific to FSM generated from ASM;

they are general techniques that are applicable to any FSM model. Examples of such

techniques include D-method [72], W-method [73], U-method [74] and Uv-method [74].

The review of these techniques is out of the scope of this research.

44

3.1.3 Coverage Criteria

In typical software testing, the coverage criteria determine the testing requirements that

achieve full coverage where minimal test cases are generated to fulfill the testing

requirements. Unfortunately, it is considered as costly and inconvenient. However,

specification based testing reduces the cost, since, ASMs are executable in its nature as

mentioned in section 2.1.2, they can be automated to contribute to the testing process and

reduce the testing cost. ASMs specifications are used to automate the generation of the test

oracle (expected output), assessment of the adequacy of test suite and generation of testing

sequence. In order to get the maximum benefit of the testing coverage criteria, it is

important to get an overview of the existing coverage criteria that are tailored for ASMs

specifications. Gargantini and Riccobene [75] proposed a classification (from the weakest

to the strongest) of coverage criteria:

• State Coverage (node coverage): for every state in ASM model, there must be at

least one testing sequence in which a state is exercised |S|.

• Rule Coverage: for every rule in ASM model, there must be at least one testing

sequence in which the rule is fired.

• Rule Update Coverage: for each rule update for all rules in ASM model, there must

be at least one testing sequence in which the rule update is fired and the rule update

is not trivial.

• Parallel Rule Coverage: for every n-tuple of rules, it must be either unfirable or

there must be at least one testing sequence that fires all n rules simultaneously.

45

• Strong Parallel Rule Coverage: for every k-tuple of rules, it must be either unfirable

or there must be at least one testing sequence that fires all k rules simultaneously.

Where k is 1<=k<=n.

• Modified Condition Decision Coverage: for each clause Ci of guard condition, there

must be testing sequences in which Ci is once true and once false, where other

clauses are fixed and the guard condition is affected(once true and once false).

• Multiple Condition Coverage: for each and every clause of every guard condition,

there must be testing sequences in which all combination of clauses is explored 2n.

3.1.4 Model Checking

The basic concept of model checker as described by Clarke et al.[76], is to ensure the

consistency between implementation and specifications by providing a proof for a certain

property of a model that is true in any possible state of the model. Originally, the model is

a finite state model that will be transferred into a Kripke structure, while the specifications

are a temporal logic expression in the form of either linear expression or branching

expression. The output of the model checker is one of the following cases: i) Return true,

that means the property holds for all possible state identified by the temporal logic

expression. ii) Return false, with counter example in which a state violates the temporal

logic expression for that property. iii) No conclusion, in some cases the model checker

suffers from state explosion problem in which it will try to cover all possible execution and

ends up with infinite number of possibilities that will consume all of the available

resources.

46

The model checking technique [77] is considered to be computationally expensive due to

the state exploring process that may lead to infinite possibilities (state explosion). Thus, it

does not support ASMs specification natively, since ASM is infinite in its nature. Many

works have been done to extract FSM models from ASM (see section 3.1.1) to take

advantage of the existing techniques provided by model checking.

3.1.5 ASMs Test Case Generation

3.1.5.1 FSM-based

This approach [68] is based on AsmL which supports generation of FSMs from ASM

specification as discussed in section 3.1.1. The process of generating a test suite implies

traverse all the states of FSM starting by the initial state and ending by the same initial

node based on Chinese postman tour algorithm. Unfortunately, the resulted test suite only

archives node based coverage, which is considered as a weak coverage criteria. Grieskamp

et al. [78] discussed another approach based on FSM which generates test cases using a

graph reachability algorithm to explore nondeterministic FSM state space controlled by the

original AsmL meta-programming. This technique implies a depth-first search algorithm

starting at the initial state.

47

3.1.5.2 Model Checking-based (for coverage criteria)

For coverage criteria where the testing requirements are defined, a model checking based

technique (see section 3.1.3) can be used. Model checking is a widely used technique in

the FSM realm in which it shows whether a certain properties can hold in all possible states.

Generally, a model checker takes a model and a specification as input, and examines all

possibility based on state explosion mechanism [97]. The idea of using model checker lies

in the fact that model checker provides a counter example [75]. However, model checking

based technique is considered to be computationally expensive. Moreover, model checking

operates on finite space domain, while, ASMs specification could be infinite in domain

space [77].

3.2 Mutation Testing of Formal Specifications

Although mutation testing has mostly been applied at the source code level, it has also been

applied to formal specifications [44]. Fabbri et al.[79] have applied specification mutation

to validate specifications based on Finite State Machines (FSM). They have proposed 9

mutation operators, representing faults related to the states (e.g.,, wrong-starting-state,

state-extra, etc.), transitions (e.g.,, event-missing, event-exchanged, etc.) and outputs (e.g.,,

output-missing, output-exchanged, etc.) of an FSM. Fabbri et al.[80] have defined mutation

operators for Statecharts, an extension of FSM formalism, while Batth et al.[81] have

applied mutation testing to Extended Finite State Machines (EFSM) formalism. In the

ASM context, Hassine [82], [83] has defined a set of generic mutation operators for

Abstract State Machines. The proposed operators have been classified into three main

generic classes: (1) ASM domain mutation operators, (2) ASM function update mutation

48

operators, and (3) ASM transition rules mutation operators. In this work, we refine the

ASM-based operators introduced in [83] to accommodate the AsmetaL language.

Hierons and Merayo [84] have investigated the application of mutation testing to

Probabilistic (PFSMs) or stochastic time (PSFSMs) Finite State Machines. The authors

have defined new mutation operators representing FSM faults related to altering

probabilities (PFSMs) or changing its associated random variables (PSFSMs) (i.e., the time

consumed between the input being applied and the output being received).

Formal specification languages to which mutation testing has been applied include Finite

State Machines [79],[84], and [85], Statecharts [80], Petri Nets [86], and Estelle [87].

Fabbri et al.[79] have applied specification mutation to validate specifications based on

Finite State Machines (FSM). They have proposed 9 mutation operators, representing faults

related to the states (e.g.,, wrong-starting-state, state-extra, etc.), transitions (e.g.,, event-

missing, event-exchanged, etc.) and outputs (e.g.,, output-missing, output-exchanged, etc.)

of an FSM. In a related work, Fabbri et al.[80] have defined mutation operators for

Statecharts, an extension of FSM formalism, while Batth et al.[81] have applied mutation

testing to Extended Finite State Machines (EFSM) formalism.

3.3 Chapter Summary

In this chapter, we presented, in the first part, Abstract State Machines testing state of the

art including the generation of FSM from ASM specifications, ASM conformance testing,

test case generation coverage criteria, ASM model checking. In addition, we reviewed

49

FSM-based, and model checking based test case generation techniques. In the second part,

we spot some of the formal specification mutation testing works.

50

4 CHAPTER 4

AsmetaL Mutation Testing Approach

In this chapter, we present our AsmetaL mutation testing approach. We describe the

proposed mutation testing methodology, and the proposed set of mutation operators for the

AsmetaL language. In addition, we evaluate our set of operators experimentally using a set

of case studies of different sizes.

4.1 AsmetaL Mutation Testing Approach

Figure 9 illustrates our AsmetaL mutation testing approach. Six main tasks were

conducted:

Task 1: Generate initial test suite T for AsmetaL specification P using ATGT tool (A test

generation tool) and set a mutation score threshold.

Task 2: Run T against P to detect any fault, thus, assure elimination of any propagated

fault to the generated mutants.

Task 3: Generate mutants P’ (automated) from P based on the proposed mutation

operators.

Task 4: Run the initial test suite against P’ (automated). All killed mutants will be

discarded from any further processing, therefore, only live mutants will be considered for

the next steps.

Task 5: Perform equivalency analysis (manual) on live mutants, in order to eliminate

equivalent mutants from any further processing.

51

Task 6: Generate more test cases and add them to T in order to kill living non-equivalent

mutants.

Task 7: Run generated test cases against P’.

Repeat Steps 6 and 7 until mutation score threshold is achieved.

52

Figure 9: AsmetaL mutation testing procedure

4.1.1 Design of mutation operators

Our designed AsmetaL-based mutation operators will follow the principles provided

by [95] in which only first order mutation testing will be considered and all of the generated

1
Run

ATGT

6
Generate New

Test Cases to T

ASMetaL

Specification

P

Mutants P’ P Passes

MS threshold

Yes

No

Add more Test Cases to T

Yes

Quit

Debug

Generate Mutants

based on Operators

Generate Initial Test Suite

2

3

4

5

Killed

Mutants

Alive

Mutants

Equivalency

Analysis

Equivalent
Non

Equivalent

Run

MuAMetaL

Run

T ageist P’

Test Suite T
Run T

against P

7
Run

T ageist P’

53

mutants are syntactically correct. In addition, mutation operators will address potential

faults.

 This phase includes the following tasks:

1. Investigate ASM fault classes.

2. Design mutation operators based on AsmetaL syntax’s.

3. Investigate the validity of each operator.

Assumptions:

 This study considers first order mutants only.

 This study considers mutation operators that produce syntactically correct mutants.

 Only potential faults resulting from (the defined classes of faults) will be addressed

by this study.

The proposed approach relies on a three steps generation process as shown in Figure 10.

Step 1: Create Mutant M.

Step 2: Validate syntax of M using AsmetaLc.

Step 3: Check S ≠ M syntactically. Where S is the original specification.

54

Create Mutant M

Run AsmetaLc

against M

Mutant M

is discarded

No

Yes

Check Syntactical

Equivalency(M,S)

Yes

No

Figure 10: Mutant generation process

4.1.2 AsmetaL mutation tool design and implementation

MuAsmetaL is name of prototype tool that will be developed during this research. It will

be both command line and GUI java based tool that will give the user the ability to

view/edit AsmetaL specifications, parse specifications, run the specifications, and generate

mutants and execute them.

4.1.3 Empirical evaluation of the proposed approach

We intend to validate theoretically the research hypothesis by developing the proposed

approach. Different theories and techniques are involved in the support of the proposed

verification cycles of Figure 9. Some of them, such as Mutation testing, equivalency

55

analysis, and test case generation already exist. Others are still to be developed as part of

this research:

 Design of the AsmetaL mutation operators.

 Apply the proposed operators (automatically).

 Design of test oracle for AsmetaL (verdict on passing/failing test cases).

 Implementation of the MuAsmetaL Tool (CLI and GUI).

We intend to validate our approach through its application to a wide range of AsmetaL

specifications.

4.1.4 Selective mutation

Mutation testing is known for its high computational cost. In order to reduce the

computation cost a selective set of mutants will be chosen based on two criteria: i) level of

effectiveness achieved. ii) Reduction of computation cost.

The empirical data collected from empirical evaluation is used to assess the effectiveness

of applying selective-based and random mutation testing. This would allow for

computation cost reduction, without affecting the effectiveness of the proposed

methodology.

4.2 AsmetaL Mutation Operators

Mutation operator is a rule in which it governs the way fault is injected into the original

specification to produces mutants. Typically, each operator tends to cover a real potential

fault that might exist in the original specification. In order to generate mutants, we have to

56

define each mutation operator. The defined set operators must provide a complete coverage

all of the aspects of AsmetaL grammar and to including all of the language constructs. We

have classified AsmetaL mutation operators into 5 different classes as follows:

4.2.1 Function mutation operators

AsmetaL functions are classified into static (not updated at run-time), derived (its return

value is subjected to its inputs), and dynamic. Dynamic functions are further classified as

monitored, controlled, shared, out, and local. Local dynamic are declared and used only in

the scope of a turbo transition rule with local state. An AsmetaL function can be mutated

using:

 Function Type Permutation Operator (FTP) (Table 14). FTP operator replaces a

dynamic function type with other types (e.g.,, controlled, monitored, shared, out).

It is worth noting that if a controlled/shared/out function appears in the left hand

side of an update rule, then mutating the function type to monitored would produce

an invalid mutant. Mutate function types from static/derived to dynamic and vice

versa would produce invalid mutants.

Table 14: FTP operator example

Operator Original AsmetaL code Mutant AsmetaL code

FTP controlled value : Integer monitored value: Integer

4.2.2 Rule mutation operators

We define 28 rule-based mutation operators for the AsmetaL language (Table 15):

57

 Rule Guard Condition Replacement Operator (RGCR): Replaces a guard

condition with another existing guard condition. The application of the operator

may result into invalid mutants in case the new guard has undefined variables in

the current scope.

 Then Rule Replacement Operator (TRR): Replaces then rule with an existing

rule (except variable and function terms).

 Else Rule Replacement Operator (ERR): Replaces the else rule with an existing

rule (except variable and function terms).

 Main Rule Replacement Operator (MRR): Replaces the main rule declaration

with an existing macro rule declaration.

 Parallel Block to Sequence Operator (PB2S): Converts a block rule to a sequence

rule.

 Sequence to Parallel Block Rule Operator (S2PB): Converts a sequence rule to

a block rule. S2PB operator may lead to inconsistent updates. It is worth noting that

the parser can discover only trivial inconsistent updates (for example a function

whose value is modified by two parallel instructions in the same rule). The other

inconsistent updates will occur at run-time.

 Add Rule Operator (ARO): Adds an existing rule to a block rule or to a sequence

rule.

 Replace Rule Operator (RRO): Replaces a rule within a block or a sequence rule

with an existing rule (except variable and function terms).

58

 Sequence Block Statement Deletion Operator (SBSDL): Removes a single rule

from a block or a sequence rule. At least three rules should exist in the

block/sequence rule.

 Sequence Rule Order Permutation Operator (SSM): Exchanges the order of a

pair of rules in a sequence rule.

 Choose DoRule Replacement Operator (CDoR): Replaces the rule defined in a

choose rule with an existing rule having the same type.

 Choose IfNoneRule Replacement Operator (CIR): Replaces ifnone rule in a

choose rule with an existing rule having the same type.

 Choose Rule Exchange Operator (CRE): Exchanges the do rule with the ifnone

rule. In case ifnone rule is not defined, the do rule is duplicated to serve as the

ifnone. Applying CRE may produce invalid mutants in case the chosen variable

does not exist within the scope of the do block.

 Choose Domain Replacement Operator (CDR): Replaces one domain of the

choose rule by a compatible one (e.g.,, different integer sub-domain).

 Forall DoRule Replacement Operator (FDoR): Replaces the do block defined in

a forall rule.

 Forall Choose Rules Permutation Operator (FCRP): Replaces forall rule with a

choose rule and vice versa. The difference between both types of rules is that:

o Choose rule assigns to each variable an arbitrary value from domain that

satisfies the guard condition in order to substitute it in the do block.

o Forall rule assigns to each variable all values from domain that satisfies the

guard condition in order to substitute it in the do block.

59

 Rule to Skip Rule Operator (RTS): replaces a non-skip rule with the skip rule.

 Stuck Switch to Specific Case Operator (SSSC): Mutate the selector of a switch

case rule to force the execution of a specific case.

 Switch Case Permutation Operator (SCP): Exchanges a pair of switch case rules

in case rule.

 Case Rule Replacement Operator (CRRO): Replaces the selected rule to be

executed as part of a case selection by another existing rule.

 Delete Switch Case Operator (DSC): Deletes a single case from a case rule.

 Let Rule Variable Assignment Operator (LRVA): Assigns a different term to a

variable within a let rule.

 Let Rule Replacement Operator (LRR): Replaces the in-block rule by any

existing rule.

 Let Rule Variable Replacement Operator (LRVR): Replaces a variable within a

let rule by an existing variable term.

 Extend Domain Replacement Operator (EDR): Replaces a domain of the extend

rule by a compatible one (e.g.,, different abstract domain).

 Extend Rule Replacement Operator (ERRO): Replaces do block by any existing

rule in extend rule.

 Extend ID Replacement Operator (EIR): Replaces variable, in which domain is

add universe of domain, by any existing rule.

60

Table 15: turbo rule operator’s examples

Operator Original AsmetaL code Mutant AsmetaL code

RGCR choose $v in Interval with $v>10

do r_rule[$v]

choose $v in Interval with $v=10

do r_rule[$v]

TRR if $a=10 then r_ruleA[] if $a=10 then r_ruleA[]

ERR if value=10 then r_ruleA[] else

r_ruleB[] endif

if value=10 then r_ruleA[] else

r_ruleC[] endif

MRR main rule r_main = r_travel[] main rule r_main = r_rule[]

PB2S par r_ruleA[] r_ruleB[] endpar seq r_ruleA[] r_ruleB[] endseq

S2PB seq r_ruleA[] r_ruleB[] endseq par r_ruleA[] r_ruleB[] endpar

Declarations needed for the examples:

Signature:

domain Interval subsetof Integer

domain IntervalB subsetof Integer

dynamic abstract domain Products

dynamic abstract domain Person

Definitions:

domain Interval= {1..10}

domain IntervalB= {1..11}

61

ARO par r_ruleA[] r_ruleB[] endpar par r_ruleA[] r_ruleB[] r_ruleC[]

endpar

RRO seq r_ruleA[] r_ruleB[] endseq seq r_ruleC[] r_ruleB[] endseq

SBSDL par r_ruleA[] r_ruleB[] r_ruleC[]

endpar

par r_ruleA[] r_ruleB[] endpar

SSM seq r_ruleA[] r_ruleB[] endseq seq r_ruleB[] r_ruleA[] endseq

CDoR choose $v in Interval with r_ruleA[] choose $v in Interval with r_ruleB[]

CIR choose $v in Interval with $v>10

do r_ruleA[] ifnone r_ruleB[]

choose $v in Interval with $v>10

do r_ruleA[] ifnone r_ruleC[]

CRE choose $v in Interval with $v>10

do r_ruleA[] ifnone r_ruleB[]

choose $v in Interval with $v>10

do r_ruleB[] ifnone r_ruleA[]

CDR choose $v in Interval with $v>0 do

r_ruleA[$v]

choose $v in IntervalB with $v>0

do r_ruleA[$v]

FDoR forall $v in Interval with $v>10 do

r_ruleA[]

forall $v in Interval with $v>10 do

r_ruleC[]

FCRP forall $v in Interval with $v>10 do

r_rule

choose $v in Interval with $v>10

do r_rule

RTS seq r_ruleA[] r_ruleB[] endseq seq r_ruleA[] skip endseq

62

SSSC switch($a)

case 1: r_ruleA[]

case 2: r_ruleB[]

endswitch

switch(1)

case 1: r_ruleA[]

case 2: r_ruleB[]

endswitch

SCP switch($a)

case 1: r_ruleA[]

case 2: r_ruleB[]

endswitch

switch($a)

case 1: r_ruleB[]

case 2: r_ruleA[]

endswitch

CRRO switch($c)

 case 1 : r_ruleA[]

 case 2 : r_ruleB[]

endswitch

switch($c)

 case 1 : r_ruleC[]

 case 2 : r_ruleB[]

endswitch

DSC switch($a)

case 1: r_ruleA[]

case 2: r_ruleB[]

case 3: r_ruleC[]

endswitch

switch($a)

case 2: r_ruleB[]

case 3: r_ruleC[]

endswitch

63

LRVA let ($value = 5) in

r_ruleA[$value]

endlet

let ($value = 10) in

r_ruleA[$value]

endlet

LRR let ($value = 5) in

r_ruleA[$value]

endlet

let ($value = 5) in

r_ruleB[$value]

endlet

LRVR let ($value= 5) in

r_ruleA[]

endlet

let ($x= 5) in

r_ruleA[]

endlet

EDR extend Products with $p do

value:=$p

extend Person with $p do value:=$p

ERRO extend Products with $p do

value:=$p

extend Products with $p do

r_ruleA[]

EIR extend Products with $p do

r_ruleA[]

extend Products with $c do

r_ruleA[]

64

4.2.3 Term mutation operators

Depending on the type of operands, traditional operators (Table 16) [79] such as Arithmetic

Operator Replacement (AOR), Logical Operator Replacement (LOR), Relational Operator

Replacement (ROR), and Unary Operator Insertion (UOI) can be applied (Table 4):

 Arithmetic Operator Replacement (AOR): Replaces arithmetic operators with

other types (e.g.,, +, -, *, /).

 Unary Operator Insertion (UOI): Inserts unary operators (+, -), in integer term,

real term, natural term, complex term, in addition to function calls returning the

following types: Integer, Real, Natural, Complex.

 Logical Operator Replacement (LOR): Replaces logical operators with other

types (e.g.,, and, or, xor, implies, iff).

 Relational Operator Replacement (ROR): For basic types, it replaces the

relational operator = by ! = and vice versa. For Integer, Real, Natural, and Char

domains, it replaces any relational operator with other types (e.g.,, <, <=, >, >=, =,

! =).

 Expression Negation Fault (ENF): Applies negation to guard conditions enclosed

within: conditional term guards, exist term guards, forall term guards, choose rule

guards, etc.

 Literal Negation Fault (LNF): Applies negation to single Boolean term or

function term with Boolean return type.

 Stuck at True False (STF): Replace guard conditions by true and false.

 Absolute Value Operator (ABS): Inserts the absolute value function to Integer

and Real Terms functions return type and constants. The application of this operator

65

may results in equivalent mutant, in case of applying it to a positive constant,

variable, or function.

Table 16: Traditional rule mutation operators examples

 Operator Original AsmetaL code Mutant AsmetaL code

AOR value := $a + $b value := $a - $b

UOI value := $a * $b value := $a * -$b

LOR if ($a and $b) if ($a or $b)

ROR if ($a < $b) if ($a > $b)

ENF if ($a and $b) if not($a and $b)

LNF if(valid and correct) if(not valid and correct)

STF if ($a and $b) if (true)

ABS hours := (hours+ 1) mod 3 hours := (abs(hours)+ 1) mod 3

In addition, we have defined the following operators (Table 17) for AsmetaL terms:

 Finite Quantification Terms Permutation (FQTP): Replaces finite quantification

terms (exit, exist unique, forall term) with other types. It is worth mentioning that

the difference between the three kinds lies in:

o exist term returns true if at least single term exists, that satisfies the guard

condition. Otherwise, it returns false.

66

o exist unique term returns true if there is only a single term exists that

satisfies the guard condition. Otherwise, it returns false.

o forall term returns true if there all terms satisfy the guard condition.

Otherwise, it returns false.

 Term Guard Condition Replacement Operator (TGCR): Replaces a guard

condition with another existing guard condition. The application of the operator

may result into invalid mutants in case the new guard has undefined variables in

the current scope.

 Then Term Replacement Operator (TTR): Replaces then term with any existing

term.

 Else Term Replacement Operator (ETR): Replaces else term by any existing

term.

 Finite Quantification Term Domain Replacement Operator (FQTDR):

Replaces one domain in a finite quantification term by a compatible one (e.g.,,

different integer sub-domain).

 Constant Term Replacement Operator (CTR): Replaces a constant term by an

existing term of the same type (e.g.,, Integer, Real, Complex, Char, Natural, String,

Boolean).

 Constant Term Modification Operator (CTM): Modifies a constant term by a

user input having the same type. Although the user should provide the input, the

mutant is still produced automatically.

 Case Term Replacement Operator (CTRO): Replaces the selected term to be

executed as part of a case selection by another existing term.

67

Table 17: Asmetal term operators examples

Operator Original AsmetaL code Mutant AsmetaL code

FQTP (exist $r in Integer with $r>0) (exist unique $r in Integer with

$r>0)

TGCR (exist $r in Integer with $r>0) (exist $r in Integer with $r>0)

TTR if $value=5 then 10 endif if $value=5 then 25 endif

ETR if $value=5 then 10 else 20 endif if $value=5 then 10 else 25 endif

FQTDR (forall $v in Coordenate with

isvalid($v))

(forall $v in Point with isvalid($v))

CTR value := 10 value := 20

CTM value := 10 value := 20 (User Input)

CTRO switch($c)

 case 1 : 1

 case 2 : 2

endswitch

switch($c)

 case 1 : 3

 case 2 : 2

endswitch

68

4.2.4 Invariant mutation operators

Invariants are used to express constraints over functions and rules. We define the following

two operators (Table 18):

 Invariant Condition Replacement (ICR): Replaces the invariant condition with

any existing invariant condition.

 Invariant Declaration Deletion (IDD): Deletes the invariant declaration

statement.

Table 18: ICR and IDD operators examples

Operator Original AsmetaL code Mutant AsmetaL code

ICR invariant over position:

position(WO)=position(GO)

invariant over position:

position(WO)!=position(GO)

IDD invariant over position:

position(WO)=position(GO)

// invariant over position:

// position(WO)=position(GO)

4.2.5 Initialization mutation operators

We have defined three operators (Table 19) to mutate AsmetaL initialization section:

 Default Initialization Replacement Operator (DIR): Choose a different default

initialization (in case of multiple initializations) using the keyword default. Only a

single Optional default initialization is allowed.

 Initialization ID Permutation Operator (IIP): Permutes the Ids of two

initialization blocks (i.e., init block).

69

 Initialization Statement Deletion Operator (ISD): Deletes a single initialization

statement.

Table 19: AsmetaL initialization operators examples

Operator Original AsmetaL code Mutant AsmetaL code

DIR default init s0:

 function signal = true

 function seconds = 10

init s1:

 function signal = false

 function seconds = 0

init s0:

 function signal = true

 function seconds = 10

default init s1:

 function signal = false

 function seconds = 0

IIP init s0:

 function signal = true

 function seconds = 10

init s1:

 function signal = false

 function seconds = 0

init s0:

 function signal = false

 function seconds = 0

init s1:

 function signal = true

 function seconds = 10

ISD init s1: init s1:

70

 function signal = false

 function seconds = 0

 function signal = false

 //function seconds = 0

4.3 Generation of Test Cases

For the purpose of applying mutation testing, it is necessary to generate test suites that will

be the nucleus of the empirical evaluation. The used test suites must be constructed based

on effective coverage criteria. In addition, the fact that test suit generation is not covered

by the scope of this study, we use ATGT [89] (a test generation tool for AsmetaL

specifications that supports structural, fault based, and combinatorial coverage) in order

to generate test cases from our specification under test S. We run the obtained test suite

against the set of generated mutants using the AsmetaV [90] tool. An ATGT test case,

written in ASM Validation Language (AVaLLA) [90], specifies the interaction steps

between the system and its environment as well as performs correctness checks (e.g.,,

function values) at each step. Table 20 shows an example of AVaLLA test case, while

Table 21 illustrates the results of that very test case. A given test case, part of the test suite,

is said to kill a mutant if the output produced by the mutant is different from the expected

output produced by the original AsmetaL specification. Hence, the test case is good enough

to detect the change between the original and the mutant AsmetaL specification. It should

be noted that the proposed approach is applicable for manual test case generation as well.

Table 20: AVaLLA test case example (.test)

Scenario Name scenario UR8

71

Load specification under test load ../../../TicTacToeXATGT.asm

Initial Step # 1

Set and check function values

Note that set function is used as update

rule. In addition, set function can use some

of AsmetaL constructs

While check function is used as assertion

function

set userSelCol := 0;

set methodCalled := USER_MOVE;

check numOfMoves = 0;

set userSelRow := 0;

check res = PLAYING;

check status = TURN_USER;

Step is used to go to the next state step

Step # 2 set methodCalled :=

COMPUTER_MOVE;

check numOfMoves = 1;

check board(0) = CROSS;

set userSelRow := 2;

check status = TURN_PC;

Step is used to go to the next state step

Step # 3 check board(1) = NOUGHT;

check numOfMoves = 2;

check status = TURN_USER;

Table 21: AVaLLA test case results generated by AsmetaV

** Simulation **

check succeeded: numOfMoves = 0

</State 2 (controlled)>

check succeeded: board(1) = NOUGHT

72

check succeeded: res = PLAYING

check succeeded: status = TURN_USER

<State 1 (controlled)>

board(0)=CROSS

methodCalled=USER_MOVE

numOfMoves=1

result=1

status=TURN_PC

step__=1

userSelCol=0

userSelRow=0

</State 1 (controlled)>

check succeeded: numOfMoves = 1

check succeeded: board(0) = CROSS

check succeeded: status = TURN_PC

<State 2 (controlled)>

board(0)=CROSS

board(1)=NOUGHT

methodCalled=COMPUTER_MOVE

numOfMoves=2

result=1

status=TURN_USER

step__=2

userSelCol=0

userSelRow=2

check succeeded: numOfMoves = 2

check succeeded: status = TURN_USER

<State 3 (controlled)>

board(0)=CROSS

board(1)=NOUGHT

methodCalled=COMPUTER_MOVE

numOfMoves=2

result=1

status=TURN_USER

step__=3

userSelCol=0

userSelRow=2

</State 3 (controlled)>

<State 4 (controlled)>

board(0)=CROSS

board(1)=NOUGHT

methodCalled=COMPUTER_MOVE

numOfMoves=2

result=1

status=TURN_USER

step__=3

userSelCol=0

userSelRow=2

</State 4 (controlled)>

ATGT translates AsmetaL specification into Spin model-checker [91] in order to use the

produced counter examples to generated test cases. ATGT provides several coverage

criteria to generate test cases. It includes structural coverage such as basic rule coverage,

update rule coverage, and MCDC Coverage (see section 3.1.3). In addition, it provides the

following criteria:

 Fault-based Coverage [92]: aims at generating test cases based on fault injection in

guard condition including the following operators LNF, ENF, MLF, ST0/1, ASF,

ORF, and ROF.

73

 Pair-wise Coverage [93]: aims at validating each possible pair of input values by

applying constraints over the input domain.

 Three-wise Coverage [94]: aims at validating t-wise of input values by applying

constraints over the input domain, where t is equal to 3.

4.4 Analysis of the proposed operators

In this section, we characterize mathematically the upper bound of the number of produced

mutants for each operator.

Number of mutant (upper bound)

Table 22 presents the upper bound for each operator.

Table 22: The upper bound for the number of generatred mutants per operator.

Operators Upper Bound

FTP |𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑠| ∗ 3

RGCR |𝑟𝑢𝑙𝑒 𝑔𝑢𝑎𝑟𝑑 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠| ∗ (|𝑢𝑛𝑖𝑞𝑢𝑒 𝑔𝑢𝑎𝑟𝑑 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠| − 1)

TRR |𝑡ℎ𝑒𝑛 𝑟𝑢𝑙𝑒𝑠| ∗ (|𝑢𝑛𝑖𝑞𝑢𝑒 𝑟𝑢𝑙𝑒𝑠| − 1)

ERR |𝑒𝑙𝑠𝑒 𝑟𝑢𝑙𝑒𝑠| ∗ (|𝑢𝑛𝑖𝑞𝑢𝑒 𝑟𝑢𝑙𝑒𝑠| − 1)

MMR |𝑚𝑎𝑐𝑟𝑜 𝑟𝑢𝑙𝑒 𝑑𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛𝑠| − 1

PB2S |𝑏𝑙𝑜𝑐𝑘 𝑟𝑢𝑙𝑒𝑠|

S2PB |𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑟𝑢𝑙𝑒𝑠|

ARO (|𝑏𝑙𝑜𝑐𝑘 𝑟𝑢𝑙𝑒𝑠| + |𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑟𝑢𝑙𝑒𝑠|) ∗ |𝑢𝑛𝑖𝑞𝑢𝑒 𝑟𝑢𝑙𝑒𝑠|

74

RRO (∑ |𝑟𝑢𝑙𝑒𝑠 𝑖𝑛 𝑏𝑙𝑜𝑐𝑘 𝑖|

𝐵𝑙𝑜𝑐𝑘 𝑟𝑢𝑙𝑒 𝒊

+ ∑ |𝑟𝑢𝑙𝑒𝑠 𝑖𝑛 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑖|) ∗ |𝑢𝑛𝑖𝑞𝑢𝑒 𝑟𝑢𝑙𝑒𝑠|

𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑟𝑢𝑙𝑒 𝒊

SBSDL ∑ |𝑟𝑢𝑙𝑒𝑠 𝑖𝑛 𝐵𝑙𝑜𝑐𝑘 𝑖|

𝑏𝑙𝑜𝑐𝑘 𝑖

 + ∑ |𝑟𝑢𝑙𝑒𝑠 𝑖𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑖|

𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑖

SSM
∑

|𝑟𝑢𝑙𝑒𝑠 𝑖𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝒊| ∗ (|𝑟𝑢𝑙𝑒𝑠 𝑖𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝒊| − 1)

2
𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑟𝑢𝑙𝑒 𝒊

CDoR |𝑐ℎ𝑜𝑜𝑠𝑒 𝑟𝑢𝑙𝑒𝑠| ∗ (|𝑢𝑛𝑖𝑞𝑢𝑒 𝑟𝑢𝑙𝑒𝑠| − 1)

CIR |𝑐ℎ𝑜𝑜𝑠𝑒 𝑟𝑢𝑙𝑒𝑠| ∗ (|𝑢𝑛𝑖𝑞𝑢𝑒 𝑟𝑢𝑙𝑒𝑠| − 1)

CRE |𝑐ℎ𝑜𝑜𝑠𝑒 𝑟𝑢𝑙𝑒𝑠|

CDR ∑ |𝑑𝑜𝑚𝑎𝑖𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑖| ∗ (|𝑑𝑜𝑚𝑎𝑖𝑛 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑠| − 1)

𝑐ℎ𝑜𝑜𝑠𝑒 𝑟𝑢𝑙𝑒 𝒊

FDoR |𝑓𝑜𝑟𝑎𝑙𝑙 𝑟𝑢𝑙𝑒𝑠| ∗ (|𝑢𝑛𝑖𝑞𝑢𝑒 𝑟𝑢𝑙𝑒𝑠| − 1)

FCRP |𝑐ℎ𝑜𝑜𝑠𝑒 𝑟𝑢𝑙𝑒𝑠| + |𝑓𝑜𝑟𝑎𝑙𝑙 𝑟𝑢𝑙𝑒𝑠|

RTS |𝑛𝑜𝑛 𝑠𝑘𝑖𝑝 𝑟𝑢𝑙𝑒𝑠 |

SSSC ∑ |𝑐𝑎𝑠𝑒 𝑖𝑛 𝒊| +

𝑐𝑎𝑠𝑒 𝑡𝑒𝑟𝑚 𝒊

∑ |𝑐𝑎𝑠𝑒 𝑖𝑛 𝒊|

𝑐𝑎𝑠𝑒 𝑟𝑢𝑙𝑒 𝒊

SCP
∑

|𝑐𝑎𝑠𝑒𝑠 𝑖𝑛 𝒊| ∗ (|𝑐𝑎𝑠𝑒𝑠 𝑖𝑛 𝒊| − 1)

2
𝑐𝑎𝑠𝑒 𝑡𝑒𝑟𝑚 𝒊

75

+ ∑
|𝑐𝑎𝑠𝑒𝑠 𝑖𝑛 𝒊| ∗ (|𝑐𝑎𝑠𝑒𝑠 𝑖𝑛 𝒊| − 1)

2
𝑐𝑎𝑠𝑒 𝑟𝑢𝑙𝑒 𝒊

CRRO |𝑐𝑎𝑠𝑒 𝑟𝑢𝑙𝑒𝑠| ∗ (|𝑢𝑛𝑖𝑞𝑢𝑒 𝑟𝑢𝑙𝑒𝑠| − 1)

DSC ∑ |𝑐𝑎𝑠𝑒𝑠 𝑖𝑛 𝑖|

𝑐𝑎𝑠𝑒 𝑟𝑢𝑙𝑒 𝒊

+ ∑ |𝑐𝑎𝑠𝑒𝑠 𝑖𝑛 𝑖|

𝑐𝑎𝑠𝑒 𝑡𝑒𝑟𝑚 𝒊

LRVA ∑ |𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑖|

𝑙𝑒𝑡 𝑟𝑢𝑙𝑒 𝒊

∗ (|𝑢𝑛𝑖𝑞𝑢𝑒 𝑡𝑒𝑟𝑚𝑠| − 1)

LRR |𝑙𝑒𝑡 𝑟𝑢𝑙𝑒𝑠| ∗ (|𝑢𝑛𝑖𝑞𝑢𝑒 𝑟𝑢𝑙𝑒𝑠| − 1)

LRVR ∑ |𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑖𝑛 𝑖|

𝑙𝑒𝑡 𝑟𝑢𝑙𝑒 𝒊

∗ (|𝑢𝑛𝑖𝑞𝑢𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠| − 1)

EDR ∑ |𝑑𝑜𝑚𝑎𝑖𝑛𝑠 𝑖𝑛 𝑖|

𝑒𝑥𝑡𝑒𝑛𝑑 𝑟𝑢𝑙𝑒 𝒊

∗ (|𝑑𝑜𝑚𝑎𝑖𝑛 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑠| − 1)

ERRO |𝑒𝑥𝑡𝑒𝑛𝑑 𝑟𝑢𝑙𝑒𝑠| ∗ (|𝑢𝑛𝑖𝑞𝑢𝑒 𝑟𝑢𝑙𝑒𝑠| − 1)

EIR ∑ |𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑖𝑛 𝑖|

𝑒𝑥𝑡𝑒𝑛𝑑 𝑟𝑢𝑙𝑒 𝒊

∗ (|𝑢𝑛𝑖𝑞𝑢𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠| − 1)

AOR |𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠| ∗ 3

UOI |𝑏𝑎𝑠𝑖𝑐 𝑑𝑜𝑚𝑎𝑖𝑛𝑠| + |𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑟𝑒𝑡𝑢𝑟𝑛 𝑏𝑎𝑠𝑖𝑐 𝑑𝑜𝑚𝑎𝑖𝑛𝑠|

LOR |𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠| ∗ 4

ROR |𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠| ∗ 5

76

ENF |𝑔𝑢𝑎𝑟𝑑 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠|

LNF |𝑏𝑜𝑜𝑙𝑒𝑎𝑛 𝑡𝑒𝑟𝑚𝑠| + |𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚𝑠 𝑟𝑒𝑡𝑢𝑟𝑛𝑖𝑛𝑔 𝑎 𝐵𝑜𝑜𝑙𝑒𝑎𝑛|

STF |𝑔𝑢𝑎𝑟𝑑 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠| ∗ 2

ABS |𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑎𝑛𝑑 𝑑𝑜𝑢𝑏𝑙𝑒 𝑡𝑒𝑟𝑚𝑠|

+ |𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑟𝑒𝑡𝑢𝑟𝑛𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑎𝑛𝑑 𝑑𝑜𝑢𝑏𝑙𝑒|

FQTP |𝐹𝑖𝑛𝑖𝑡𝑒 𝑄𝑢𝑎𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑇𝑒𝑟𝑚𝑠| ∗ 2

TGCR |𝑡𝑒𝑟𝑚 𝑔𝑢𝑎𝑟𝑑 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠| ∗ (|𝑢𝑛𝑖𝑞𝑢𝑒 𝑔𝑢𝑎𝑟𝑑 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠| − 1)

TTR |𝑡ℎ𝑒𝑛 𝑡𝑒𝑟𝑚𝑠| ∗ (|𝑢𝑛𝑖𝑞𝑢𝑒 𝑡𝑒𝑟𝑚𝑠| − 1)

ETR |𝑒𝑙𝑠𝑒 𝑡𝑒𝑟𝑚𝑠| ∗ (|𝑢𝑛𝑖𝑞𝑢𝑒 𝑡𝑒𝑟𝑚𝑠| − 1)

FQTDR ∑ |𝑑𝑜𝑚𝑎𝑖𝑛𝑠 𝑖𝑛 𝑖|

𝑓𝑖𝑛𝑖𝑡𝑒 𝑞𝑢𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑡𝑒𝑚 𝒊

∗ (|𝑑𝑜𝑚𝑎𝑖𝑛 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑠| − 1)

CTR |𝑏𝑜𝑜𝑙𝑒𝑎𝑛 𝑡𝑒𝑟𝑚𝑠| +

∑ |𝑡𝑦𝑝𝑒 𝑖 𝑡𝑒𝑟𝑚𝑠|
𝑡𝑦𝑝𝑒 𝒊={𝒄𝒉𝒂𝒓,𝒄𝒐𝒎𝒑𝒍𝒆𝒙,𝒊𝒏𝒕𝒆𝒈𝒆𝒓,

𝒏𝒂𝒕𝒖𝒓𝒂𝒍, 𝒓𝒆𝒂𝒍,𝒔𝒕𝒓𝒊𝒏𝒈,}

∗ (|𝑡𝑦𝑝𝑒 𝑖 𝑡𝑒𝑟𝑚𝑠| − 1)

CTM ∑ |𝑡𝑦𝑝𝑒 𝑖 𝑡𝑒𝑟𝑚𝑠|
𝑡𝑦𝑝𝑒 𝒊={𝒄𝒉𝒂𝒓,𝒄𝒐𝒎𝒑𝒍𝒆𝒙,𝒊𝒏𝒕𝒆𝒈𝒆𝒓,

𝒏𝒂𝒕𝒖𝒓𝒂𝒍, 𝒓𝒆𝒂𝒍,𝒔𝒕𝒓𝒊𝒏𝒈,}

CTRO |𝑐𝑎𝑠𝑒 𝑡𝑒𝑟𝑚𝑠| ∗ (|𝑢𝑛𝑖𝑞𝑢𝑒 𝑡𝑒𝑟𝑚𝑠| − 1)

77

ICR |𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠| ∗ (|𝑢𝑛𝑖𝑞𝑢𝑒 𝑔𝑢𝑎𝑟𝑑 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠| − 1)

IDD |𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠|

DIR |𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠| − 1

IIP (|𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠| ∗ (|𝑖𝑛𝑖𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠| − 1))

2

ISD |𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑚𝑒𝑛𝑡𝑠|

4.5 Chapter Summary

In this chapter, the proposed approach methodology was presented briefly including design

of AsmetaL mutation operators, AsmetaL mutation tool, empirical evaluation, and

selective mutation testing. In addition, the set of proposed AsmetaL mutation operators

was reviewed in full details. Moreover, the test case generation criteria provided by ATGT

was presented.

78

5 CHAPTER 5

MuAsmetaL: An AsmetaL Mutation Experimental Tool

MuAsmetaL (Mutation testing system for AsmetaL) is an integrated framework that

facilitates the generation and validation of mutants, and the execution of test cases against

mutants for AsmetaL specifications. It integrates several AsmetaL tools (AsmetaLc,

AsmetaV, and AsmetaS) used to preform automatic mutation testing. MuAsmetaL is a

prototype tool developed as a proof of concept of our proposed mutation testing/mutation

operators for AsmetaL language. We intend to public release the final version [106] to help

practitioners and researchers.

5.1 Tool Requirements

In order to apply mutation testing on AsmetaL specifications, we have elicited the

following minimal requirements for MuAsmetaL support:

R1 Creating and saving of new AsmetaL specifications (.asm files).

R2 Opening and editing of existing AsmetaL specification.

R3 Visualizing AsmetaL specifications using syntax highlights.

R4 Generating mutants based on user selection of a set of operators to be applied.

R5 Validating the correctness of the generated mutants using AsmetaLc.

R6 Validating syntactic equivalency of generated mutants against the original

specification.

R7 Viewing mutants.

R8 Importing and viewing test cases.

79

R9 Running test cases against the original specification using AsmetaV.

R10 Running test cases against the generated mutants using AsmetaV.

R11 Generating test report (.csv files) contains a table that shows the status mutants

against test cases e.g., pass, or fail.

R12 Simulating the original specification using AsmetaS.

R13 Simulating the generated mutants using AsmetaS.

R14 Calculating mutation score per operator and for all mutants.

The MuAsmetaL tool fulfills the aforementioned requirements while providing a user-

friendly interface.

5.2 MuAsmetaL Architecture

MuAsmetaL is implemented using Java. MuAsmetaL incarnates the following:

 AsmetaLc [24] is used to syntactically validate the specifications

(original/mutants).

 AsmetaV [26] runs specifications (original/mutants) against test cases

(AVaLLA).

 AsmetaS [25] simulates the execution of specifications (original/mutants)

Figure 11 shows the general architecture of MuAsmetaL tool. It is decomposed into five

main components (editor, parser, data structure, mutation engine, and tester).

80

Tester

AsmetaLParser

Parser

Exception

Mutation Engine

GUI

Parser

GUI

Application

Mutation

Generator

Editor Simulator

Mutation

Exceptions

DataStructure

AsmetaL Tree

1
AsmetaS.jar

AsmetaLc.jar

AsmetaV.jar

Validator

Uses

AsmetaL Specification <String>
Asmetal Tree <AsmetaLTree>

AsmetaL Tree <AsmetaLTree>
Mutants <ASM files (.asm)>

<ASM files (.asm)>

Syntax

Parser

output

Figure 11: MuAsmetaL Structure

Editor

The Editor component provides a graphical user interface for MuAsmetaL that handles

opening and saving of AsmetaL (.asm) files. In addition, it provides a syntax highlight and

a simple autocomplete mechanism. It relies on JTextPane component with custom

document style to view and highlight the AsmetaL syntax. Moreover, visualizer component

is implemented, it takes String as input and illustrates tree using JPanel. The editor

81

component provides a simple auto complete mechanism based on AsmetaL keywords.

This component fulfils the requirements R1, R2, R3, R7, and R8.

Parser

The parser supports all AsmetaL constructs defined by the EBNF grammar. It is generated

using javacc tool [107][107]. The input for the parser is either an AsmetaL specification

file (.asm) or an AsmetaL specification described as a String, while the output is an

ASMetaLTree.

Tree Data Structure

MuAsmetaL implements a comprehensive data structure that follows the AsmetaL

Language grammar [EBNF]. It is described as a tree called AsmetaLTree (see Figure 12).

AsmetaLTree has 132 different node types. The root and its children follows the main

structure of AsmetaL (see Figure 3), while the rest of the tree is dynamic structure based

on the specification structure. ASMetaLTree provides a manifest object (contains sets of

pointers for each node type in order to facilitate the traversing of tree with dynamic

structure e.g.,set of rules, set of terms).

Moreover, ASMetaLTree can be deeply cloned. Indeed, a new tree version is generated for

each mutant. In addition, the AsmetaLTree supports comparable interfaces, in which any

two nodes can be compared with each other and their children recursively. This comparison

feature allows syntactic equivalency between the original specification and the mutant.

82

Moreover, the resulting AsmetaLTree is used to generate AsmetaL syntax for mutants

(.asm files). R6 is fulfilled by tree structure.

Figure 12: Example of an AsmetaL Tree

Mutation Engine

The mutation engine is responsible of injecting faults into AsmetaL specifications by

applying all mutation operators. The input of the mutation engine is an ASMetaLTree,

while the output is one or many AsmetaL specification files (.asm) corresponding to the

generated mutants. In addition, the mutation engine is responsible for performing syntax

validation and syntactic equivalency checks as part of the mutant generation process. First,

a new ASMetaLTree is generated by cloning the original tree. Then, a mutation operator is

applied to the cloned tree. Next, the conformance of the mutated tree is checked against the

language grammar is performed using AsmetaLc. Although, mutation operators are

supposed to produce mutants that are syntactically different from the original

specifications, a syntactic equivalency check is performed to make sure that the produced

mutants are unique. Any mutated tree that fails the validation process is discarded. The rest

83

of mutants will be stored as AsmetaL specification files (.asm). Requirement R4 is fulfilled

by the mutation engine component.

Tester

The tester component is responsible of validating the correctness of AsmetaL specifications

(original/mutants) using AsmetaLc. The input to the AsmetaL specifications validation is

(.asm file), while the output is true or false with message that indicates the location of

invalid segment of specification and the expected segment of specification. In addition, it

perform the execution of AsmetaL specifications (original/mutants) using AsmetaS. The

input to AsmetaL specification execution is (.asm file), while the output is the execution

output in runtime in form of String. Moreover, the actual test (running test cases against

specifications) is done by the tester component in which it relies on AsmetaV. The input

for the AsmetaL testing is (.asm file) and the test suite, while the output is either Pass, Fail,

or Runtime Exception.

The Tester fulfils the requirements R5, R9, R10, R11, R12, R13, and R14.

5.3 MuAsmetaL in Practice

In this section, we describe the purpose of our tool and how it can be used to generate and

execute AsmetaL mutants. Let us consider the following example (see Figure 13, integer

84

absolute value specification) to show the usefulness of our proposed tool.

Figure 13: Absolute value AsmetaL specification

In this section, we provide several screenshots that show how the aforementioned

requirements are fulfilled:

asm absolutevalue
import ../STDL/StandardLibrary
signature:
monitored value:Integer
controlled output:Integer
definitions:
main rule r_main =
 if(value<0) then
 output := value*-1
 else
 output := value
 endif

85

R1 Creating AsmetaL specification file (.asm).

Figure 14: Creating new AsmetaL specification using MuAsmetaL

86

R2 Editing new/existing AsmetaL specification.

Figure 15: Editing existing AsmetaL specification using MuAsmetaL

87

R3 Visualizing original specification.

Figure 16: Visualizing ASMetaLTree using MuAsmetaL

88

Figure 17: Statistical information about AsmetaL Specification using MuAsmetaL

89

R4 Generating mutants based on the proposed operators.

Figure 18: MuAsmetaL mutation generation interface

90

Figure 19: MuAsmetaL mutation generation summary

Figure 20: MuAsmetaL handles manual input from the user

91

R5 Validating the correctness of all the generated mutants using AsmetaLc.

R6 Validating syntactic equivalency of generated mutants against the original

specification.

Figure 21: AsmetaL specification correctness validation and syntactic equivalency validation

92

R7 Viewing mutants.

Figure 22: MuAsmetaL mutants’ viewer

R8 Importing test cases.

Figure 23: Import AVaLLA test cases using MuAsmetaL

93

Figure 24: Viewing/Ordering test cases using MuAsmetaL

R9 Running test cases against the original specification using AsmetaV.

Figure 25: Running test cases against original Specification using MuAsmetaL to obtain test oracles

94

Figure 26: Test case results

95

R10 Running test cases against mutants using AsmetaV.

Figure 27: MuAsmetaL custom testing

Figure 28: Running test cases against mutants

96

R11 Generating test report files (.csv).

Figure 29: Report file (CSV) generated by MuAsmetaL

R12 Simulating the original specification using AsmetaS.

Figure 30: Simulating AsmetaL specification using MuAsmetaL

97

R13 Simulating mutants using AsmetaS.

R14 Calculate mutation score per operator and for all mutants.

Figure 31: MuAsmetaL mutation testing results 1

98

Figure 32: MuAsmetaL mutation testing results 2

Figure 33: MuAsmetaL mutation testing results 3

99

Figure 34: MuAsmetaL mutation testing results 4

5.4 Benchmarking the MuAsmetaL tool

In order to measure the performance and the mutation capabilities of our tool, we have

conducted some experiments over the case studies introduced in section 6.1.

Table 23 summarizes the time spent to generate and validate mutants.

Table 23: Time spent to generate and validate mutants per case study

 N
u
m

b
er o

f

M
u
tan

ts

D
u
ratio

n
 in

S
eco

n
d
s

A
v
erag

e T
im

e

p
er M

u
tan

t

ferrymanSimulator 280 613 s 2.19s/m

100

railroadGate 193 349 s 1.81s/m

sluiceGateGround 203 281 s 1.38s/m

cruiseControl 421 552 s 1.31s/m

AdvancedClock 210 448 s 2.13s/m

AdvancedClock2 204 387 s 1.9s/m

fattoriale 136 231 s 1.7s/m

Table 24 summarizes the time spent to execute test cases and generate reports.

Table 24: Time spent to execute test cases and generate reports per case study.

 N
u
m

b
er o

f

T
est C

ases

N
u
m

b
er o

f

M
u
tan

ts

N
u
m

b
er o

f

In
tersectio

n

R
atio

 o
f

In
tersectio

n

D
u
ratio

n
 in

S
eco

n
d
s

A
v
erag

e T
im

e

p
er

In
tersectio

n

ferrymanSimulator 64 280 4025 22.46% 5520 s 1.37s/i

railroadGate 77 193 6174 41.54% 13260 s 2.15s/i

sluiceGateGround 46 203 4958 53.09% 12540 s 2.53s/i

cruiseControl 102 421 18858 43.92% 29400 s 1.56s/i

AdvancedClock 1 210 210 100% 420 s 2s/i

AdvancedClock2 45 204 2896 31.55% 4680 s 1.62s/i

101

fattoriale 44 136 3135 52.39% 5100 s 1.63s/i

5.5 MuAsmetaL Limitation

MuAsmetaL presents the following limitations:

1. MuAsmetaL does not generate test cases.

However, it supports importing AVaLLA test cases generated by ATGT or

manually.

2. MuAsmetaL does not preform equivalency analysis.

Since the scope of the proposed approach does not include semantic equivalency

analysis, MuAsmetaL does not perform any semantic equivalency analysis and it

depends on the analyst to perform it manually. In addition, the mutation score is

calculated without any consideration of equivalent mutants.

It is worth noting that MuAsmetaL is still in prototype stages and requires testing

and documentation.

5.6 Chapter Summary

This chapter shows all the details of the design and development of MuAsmetaL tool.

These details include the tool requirements, and the general architectural and structure of

tool, tool workflow. In addition to measuring the tool performance of tool based on

benchmarks. Finally, we list limitations of the tool.

102

6 CHAPTER 6

Empirical Evaluation of the AsmetaL-based Mutation

Operators

In this Chapter, we evaluate empirically the proposed suite of AsmetaL mutation operators,

introduced in chapter 4, by applying them to seven different case studies. In addition, this

experiment aims at assessing both the effectiveness of the proposed operators and the

adequacy of test suites produced by ATGT tool and test cases that are manually generated.

6.1 Description of the AsmetaL Case Studies

In the following sections, we present the description of 7 AsmetaL specifications that are

used in our empirical study. Table 25 shows the summary of case studies structure.

Table 25: Case studies summary

 ferry
m

an
S

im
u
lato

r

railro
ad

G
ate

slu
iceG

ateG
ro

u
n
d

cru
iseC

o
n
tro

l

A
d
v
an

ced
C

lo
ck

A
d
v
an

ced
C

lo
ck

2

fatto
riale

Domains
3 3 2 2 3 3 0

Functions
4 6 4 6 3 4 4

Rules

Deceleration
4 1 3 1 2 2 2

103

Invariants
2 3 0 2 0 0 0

6.1.1 Case Study 1: ferrymanSimulator Specification

ferrymanSimulator [108] specification mimics the story of a man who has a wolf, a goat,

and a cabbage. The man wants to convey them across the river with his boat, which only

has room for a single item only (or without) in a single trip. The dilemma lies in the fact

that the wolf and the goat must not be on the same side of the river while the man on the

other side. Moreover, the goat and the cabbage must not be on the same side while the man

on the other side. Invariants are used to monitor the occurrences of these two conditions.

ferrymanSimulator specification has 3 enum domains, 4 functions (2 controlled, a

monitored, and a derived), and 4 macro rules. In addition, it has 2 invariants over position

function. The application of MuAsmetaL tool based on all of the proposed mutation

operators resulted in 280 valid mutants. A set of 64 test cases that covers all possible input

sequence combination for four steps (input: Wolf, Goat, Cabbage, and None).

Table 26: ferrymanSimulator specification mutation results

Operator T A K Eq MS Operator T A K Eq MS

ARO 19 12 7 0 37% PB2S 2 0 0 2 *

ICR 4 0 4 0 100% ROR 8 0 8 0 100%

RGCR 5 0 5 0 100% RRO 42 14 28 0 67%

CRRO 36 4 32 0 89% RTS 16 0 16 0 100%

TGCR 3 1 2 0 67% SBSDL 3 0 3 0 100%

IDD 2 0 2 0 100% SCP 6 0 6 0 100%

DSC 4 0 4 0 100% SSSC 4 0 4 0 100%

ENF 5 0 5 0 100% STF 10 0 10 0 100%

ERR 3 1 2 0 67% CTM 4 0 4 0 100%

ETR 54 4 50 0 93% CTR 4 0 4 0 100%

FTP 7 0 0 7 * TRR 11 2 9 0 82%

104

LOR 12 2 10 0 83% TTR 13 2 11 0 85%

MMR 3 0 3 0 100% Total 280 42 229 9 85%

Table 26 shows the results of applying mutation testing for ferrymanSimulator

specifications. The acquired MS is 85%. Figure 35 is a visual representation of the results.

Figure 35: ferrymanSimulator specification mutation testing results

6.1.2 Case Study 2: railroadGate Specification

railroadGate [109], [110] specification describes a railroad gate system that consists of a

gate and a light. The light state can be either in flashing or off state. The gate maybe closed,

opened, closing, or opening states. The operation cycle starts with gate state being open

and the light being off. Before the gate closes, during the closing, and until the gate is open,

the light must continuously flash to warn the motorists of the closing gate. The user input

is used to simulate the controlling signal that controls the light and the gate.

0

10

20

30

40

50

60

A
R

O

IC
R

R
G

C
R

C
R

R
O

TG
C

R

ID
D

D
SC

EN
F

ER
R

ET
R

FT
P

LO
R

M
M

R

P
B

2
S

R
O

R

R
R

O

R
TS

SB
SD

L

SC
P

SS
SC ST

F

C
TM C
TR

TR
R

TT
R

Ferryman Specification Mutation Analysis

Alive Killed Equivalent

105

 railroadGate specification has 3 enum domains, 6 functions (3 controlled, and 3

monitored), a macro rule. Moreover, it has 3 invariants over gate and light. MuAsmetaL

tool produces 193 valid mutants. 77 test cases were generated using ATGT tool.

Table 27: railroadGate specification mutation testing results

Operator T A K Eq MS Operator T A K Eq MS

ARO 7 4 3 0 43% LNF 4 0 4 0 100%

ICR 12 2 10 0 83% PB2S 1 0 1 0 100%

RGCR 8 0 8 0 100% ROR 19 3 16 0 84%

IDD 3 1 2 0 67% RRO 12 4 8 0 67%

ENF 5 0 5 0 100% RTS 7 1 6 0 86%

ERR 12 5 7 0 58% STF 10 1 9 0 90%

FTP 18 0 0 18 * TRR 12 4 8 0 67%

LOR 60 11 49 0 82% CTR 3 0 3 0 100%

 Total 193 36 139 18 79%

As shown in Table 27, and Figure 36, the resulting mutation score for railroadGate

specification is 79%.

Figure 36: railroadGate specification mutation testing results

0

10

20

30

40

50

60

70

ARO ICR RGCR IDD ENF ERR FTP LOR LNF CTR PB2S ROR RRO RTS STF TRR

railroadGate Specification Mutation Analysis

Alive Killed Equivalent

106

6.1.3 Case Study 3: sluiceGateGround Specification

sluiceGateGround [111], [112] specification is a ground model for simulating an irrigation

system which consists of a sluice gate and a motor that opens and closes by rotating

clockwise and anti-clockwise. The state of the motor can be on or off while the rotation

direction can be clockwise or anti-clockwise. The motor is linked to two sensors that

indicate fully opened and fully closed. The operating cycle begins by a closed sluice gate,

after 170 minutes (closing period) have passed. Sluice gate starts to open until it reaches a

fully opened state then wait for 10 minutes (Opening period) to pass. Then starts closing

until it reaches a full closed state and then the cycle begins again.

sluiceGateGround model AsmetaL has sub-domains, an enum domain, 4 functions (2

static, a controlled, and a monitored), and 3 macro rules declarations. Using MuAsmetaL

tool, 203 valid mutant were automatically generated. The generated mutant were run

against 46 test cases created using ATGT tool.

Table 28: sluiceGateGround specification mutation testing results

Operator T A K Eq MS Operator T A K Eq MS

ABS 2 0 0 2 * MMR 2 0 2 0 100%

ARO 36 24 12 0 33% PB2S 3 0 1 2 100%

RGCR 12 0 12 0 100% ROR 2 0 2 0 100%

ENF 4 0 4 0 100% RRO 66 26 40 0 61%

FTP 5 0 0 5 * RTS 11 2 9 0 82%

CTM 2 0 2 0 100% STF 8 0 8 0 100%

CTR 2 0 2 0 100% TRR 44 12 32 0 73%

LNF 2 0 2 0 100% UOI 2 0 2 0 100%

Total 203 64 130 9 67%

107

Table 28 shows results of applying mutation testing to sluiceGateGround specification, in

which MS is 67%. Figure 37 provides a visual representation of the results.

Figure 37: sluiceGateGround specification mutation testing results

6.1.4 Case Study 4: cruiseControl Specification

cruiseControl [113],[114] specification describes an automobile cruise control system. The

system consists of engine, ignition, brake pedal, and a cruise control lever. The ignition

and engine states could be either in ON or OFF mode. The modes of the cruise control are

OFF, INACTIVB (whenever ignition is on, but cruise control is not), CRUISE, and

OVERRIDB (whenever cruise control mode is on but is not controlling the speed). The

system's conditions indicate whether the ignition is on, the engine is running, the

automobile is travelling too fast to be controlled, the brake pedal is being pressed, and

whether the cruise control lever is set at Activate, Deactivate, or Resume. The system starts

in mode OFF and the cruise control lever is Deactivate.

0

10

20

30

40

50

60

70

ABS ARO RGCR ENF FTP CTM CTR LNF MMR PB2S ROR RRO RTS STF TRR UOI

sluiceGateGround Specification Mutation Analysis

Alive Killed Equivalent

108

Cruise control AsmetaL specification has 2 enum domains, 6 functions (a controlled, and

5 monitored), and a macro rule declaration. In addition, it contains 2 invariant definitions.

Using MuAsmetaL tool, 421 valid mutants were automatically generated. The generated

mutant were run against 102 test cases created using ATGT tool.

Table 29: cruiseControl specification mutation testing results

Operator T A K Eq MS Operator T A K Eq MS

ARO 13 7 6 0 46% PB2S 1 0 1 0 100%

ICR 18 0 18 0 100% ROR 8 0 8 0 100%

RGCR 72 0 72 0 100% RRO 48 12 36 0 75%

IDD 2 0 2 0 100% RTS 16 0 16 0 100%

ENF 10 0 10 0 100% SBSDL 4 0 4 0 100%

ERR 36 8 28 0 78% STF 20 0 20 0 100%

FTP 17 0 0 17 * TRR 96 31 65 0 68%

LNF 16 2 14 0 88% CTR 4 2 2 0 50%

LOR 40 1 39 0 98% Total 421 63 341 17 84%

The resulted MS of applying mutation testing on cruiseControl specification is 84% as

shown in Table 29. Figure 38 provides a visual illustration of the results.

109

Figure 38: cruiseControl specification mutation testing results

6.1.5 Case Study 5: AdvancedClock Specification

AdvancedClock [115] specification consists of seconds, minutes, and hours. In addition, it

continuously increments the seconds by one in each state and recalculated hours: minutes:

seconds schema to the correct form.

AdvancedClock AsmetaL specification has 3 sub domains, 3 functions (3 controlled), and

2 macro rule declarations. Using MuAsmetaL tool, 210 valid mutants were automatically

generated. The generated mutants were run against only one test case, since there user

input is not required, a single run is sufficient.

Table 30: AdvancedClock specification mutation testing results

Operator T A K Eq MS Operator T A K Eq MS

0

20

40

60

80

100

120

cruiseControl Specification Mutation Analysis

Alive Killed Equivalent

110

ABS 11 0 0 11 * MMR 1 0 1 0 100%

AOR 6 2 4 0 67% PB2S 2 0 0 2 *

ARO 13 8 5 0 38% ROR 10 3 7 0 70%

RGCR 2 0 2 0 100% RRO 22 6 16 0 73%

ENF 2 0 2 0 100% RTS 8 2 6 0 75%

FTP 6 0 0 6 * STF 6 2 4 0 67%

CTM 16 10 6 0 38% TRR 11 8 3 0 27%

CTR 80 43 37 0 46% UOI 14 11 3 0 21%

Total 210 95 96 19 55%

Table 30 shows MS of 55% resulting from applying mutation testing to the AdvancedClock

specification. Figure 39 provides a visual illustration of mutation testing results.

Figure 39: AdvancedClock specification mutation testing results

6.1.6 Case Study 6: AdvancedClock2 Specification

Similar to AdvancedClock specification, AdvancedClock2 [116] consists of seconds,

minutes, and hours. However, it increments the time based on user input (Signal).

0

10

20

30

40

50

60

70

80

90

ABS AOR ARO RGCR ENF FTP CTM CTR MMR PB2S ROR RRO RTS STF TRR UOI

AdvancedClock Specification Mutation Analysis

Alive Killed Equivalent

111

Moreover, the time schema is different from real world, where seconds, minutes, and hours

could be {0, 1, 2}.

AdvancedClock2 AsmetaL specification has 3 sub domains, 4 functions (3 controlled, and

a monitored), and 2 macro rule declarations. Using MuAsmetaL tool, 204 valid mutants

were automatically generated. The generated mutant were run against 45 test cases

generated using ATGT Tool.

Table 31: AdvancedClock2 specification mutation testing results

Operator T A F Eq MS Operator T A K Eq MS

ABS 11 0 0 11 * MMR 1 0 1 0 100%

ARO 20 8 12 0 60% PB2S 2 2 0 0 0%

RGCR 6 0 6 0 100% ROR 9 2 7 0 78%

ENF 3 0 3 0 100% RRO 24 6 18 0 75%

FTP 9 0 0 9 * RTS 9 0 9 0 100%

CTM 15 5 10 0 67% STF 6 0 6 0 100%

CTR 52 14 38 0 73% TRR 20 7 13 0 65%

LNF 2 1 1 0 50% UOI 15 9 6 0 40%

Total 204 54 130 20 71%

Table 31 shows the 71% MS resulted from applying mutation testing to AdvancedClock2

specification. Figure 40 provides a visual illustration of mutation testing results.

112

Figure 40: AdvancedClock2 specification mutation testing results

6.1.7 Case Study 7: fattoriale Specification

Fattoriale [117] specification is an implementation of factorial function in AsmetaL

Language according to the following equation.

𝑛 = {
1

(𝑛 − 1)! × 𝑛

𝑖𝑓 𝑛 = 0

𝑖𝑓 𝑛 > 0

It has 4 functions (3 controlled and a monitored), and 2 macro rule definitions. MuAsmetaL

generates 136 valid mutants, where ATGT generates 44 test cases.

Table 32: fattoriale specification mutation testing results

Operator T A K Eq MS Operator T A K Eq MS

ABS 13 0 0 13 * CTR 6 0 6 0 100%

AOR 4 0 4 0 100% LNF 6 0 6 0 100%

ARO 37 14 23 0 62% MMR 1 0 1 0 100%

RGCR 6 0 6 0 100% PB2S 2 2 0 0 0%

ENF 3 0 3 0 100% ROR 15 3 12 0 80%

ERR 12 3 9 0 75% RRO 24 2 22 0 92%

0

10

20

30

40

50

60

ABS ARO RGCR ENF FTP CTM CTR LNF MMR PB2S ROR RRO RTS STF TRR UOI

AdvancedClock 2 Specification Mutation Analysis

Alive Killed Equivalent

113

FTP 9 0 0 9 * SSM 1 0 1 0 100%

CTM 6 0 6 0 100% Total 136 24 90 22 79%

The resulted MS of fattoriale specification is 79% as shown in Table 32. Figure 41

visualizes that results based on status of each mutant per operator.

Figure 41: fattoriale specification mutation testing results

6.2 ATGT Test Criteria Comparison using Mutation Testing

We apply our proposed approach over three case studies to assist the adequacy of each

test suit generated by different criteria using ATGT (see section 4.3).

6.2.1 CruiseControl Specification

Update Rule Coverage (7 TCs)

Table 33: CruiseControl specification mutation testing based on update rule coverage

Operator T A K Eq MS Operator T A K Eq MS

ARO 13 8 5 0 38% PB2S 1 1 0 0 0%

ICR 18 0 18 0 100% ROR 8 0 8 0 100%

0

5

10

15

20

25

30

35

40

ABS AOR ARO RGCR ERR FTP CTR LNF MMR PB2S ROR RRO SSM

fattoriale Specification Mutation Analysis

Alive Killed Equivalent

114

RGCR 72 6 66 0 92% RRO 48 17 31 0 65%

IDD 2 0 2 0 100% RTS 16 2 14 0 88%

ENF 10 0 10 0 100% SBSDL 4 1 3 0 75%

ERR 36 8 28 0 78% STF 20 2 18 0 90%

FTP 17 0 0 17 * TRR 96 39 57 0 59%

LNF 16 2 14 0 88% CTR 4 2 2 0 50%

LOR 40 5 35 0 88% Total 421 93 311 17 77%

Basic Rule Coverage (12 TCs)

Table 34: CruiseControl specification mutation testing based basic rule coverage

Operator T A K Eq MS Operator T A K Eq MS

ARO 13 7 6 0 46% PB2S 1 1 0 0 0%

ICR 18 0 18 0 100% ROR 8 2 6 0 75%

RGCR 72 12 60 0 83% RRO 48 15 33 0 69%

IDD 2 0 2 0 100% RTS 16 3 13 0 81%

ENF 10 0 10 0 100% SBSDL 4 1 3 0 75%

ERR 36 9 27 0 75% STF 20 3 17 0 85%

FTP 17 0 0 17 * TRR 96 49 47 0 49%

LNF 16 5 11 0 67% CTR 4 2 2 0 50%

LOR 40 6 34 0 85% Total 421 115 289 17 72%

MCDC Coverage (32 TCs)

Table 35: CruiseControl specification mutation testing based MCDC coverage

Operator T A K Eq MS Operator T A K Eq MS

ARO 13 7 6 0 46% PB2S 1 0 1 0 100%

ICR 18 0 0 0 100% ROR 8 2 6 0 75%

RGCR 72 21 51 0 71% RRO 48 18 30 0 63%

IDD 2 0 0 0 100% RTS 16 7 9 0 56%

ENF 10 0 10 0 100% SBSDL 4 2 2 0 50%

ERR 36 12 24 0 67% STF 20 4 16 0 80%

FTP 17 0 0 17 * TRR 96 57 39 0 41%

LNF 16 4 12 0 75% CTR 4 2 2 0 50%

LOR 40 6 34 0 85% Total 421 142 242 17 60%

Fault Coverage (3 TCs)

Table 36: CruiseControl specification mutation testing based fault coverage

Operator T A K Eq MS Operator T A K Eq MS

115

ARO 13 13 0 0 0% PB2S 1 1 0 0 0%

ICR 18 5 13 0 72% ROR 8 8 0 0 0%

RGCR 72 66 6 0 8% RRO 48 48 0 0 0%

IDD 2 1 1 0 50% RTS 16 14 2 0 13%

ENF 10 7 3 0 30% SBSDL 4 4 0 0 0%

ERR 36 36 0 0 0% STF 20 16 4 0 20%

FTP 17 0 0 17 * TRR 96 85 11 0 11%

LNF 16 10 6 0 38% CTR 4 2 2 0 50%

LOR 40 33 7 0 18% Total 421 349 55 17 14%

Pair-wise Coverage (48 TCs)

Table 37: CruiseControl specification mutation testing based pair-wise coverage

Operator T A K Eq MS Operator T A K Eq MS

ARO 13 7 6 0 46% PB2S 1 1 0 0 0%

ICR 18 0 18 0 100% ROR 8 0 8 0 100%

RGCR 72 0 72 0 100% RRO 48 12 36 0 75%

IDD 2 0 2 0 100% RTS 16 0 16 0 100%

ENF 10 0 10 0 100% SBSDL 4 0 4 0 100%

ERR 36 8 28 0 78% STF 20 0 20 0 100%

FTP 17 0 0 17 * TRR 96 31 65 0 68%

LNF 16 2 14 0 88% CTR 4 2 2 0 50%

LOR 40 1 39 0 98% Total 421 64 340 17 84%

The best mutation score is achieved by pair-wise coverage (84%), while, the worst is

achieved by fault coverage (14%).

Figure 42 illustrates the results of the application of our proposed approach over

CruiseControl specification and overlap between different test case generation criteria by

ATGT.

 alive mutants.

 killed mutants.

116

 killed mutants that cause runtime exceptions.

 equivalent mutants

Figure 42: Overall deference of mutation testing over different testing criteria for CruiseControl Specification

117

6.2.2 RailroadGate Specification

Update Rule Coverage (4 TCs)

Table 38: RailroadGate specification mutation testing based update rule coverage

Operator T A K Eq MS Operator T A K Eq MS

ARO 7 4 3 0 43% LNF 4 0 4 0 100%

ICR 12 2 10 0 83% PB2S 1 0 1 0 100%

RGCR 8 0 8 0 100% ROR 19 7 12 0 63%

IDD 3 1 2 0 67% RRO 12 4 8 0 67%

ENF 5 0 5 0 100% RTS 7 1 6 0 86%

ERR 12 6 6 0 50% LOR 60 24 36 0 60%

CTR 3 0 3 0 100% STF 10 1 9 0 90%

FTP 18 0 0 18 * TRR 12 4 8 0 67%

Total 193 54 121 18 69%

Basic Rule Coverage (3 TCs)

Table 39: RailroadGate specification mutation testing based basic rule coverage

Operator T A K Eq MS Operator T A K Eq MS

ARO 7 4 3 0 43% LNF 4 0 4 0 100%

ICR 12 2 10 0 83% PB2S 1 0 1 0 100%

RGCR 8 0 8 0 100% ROR 19 8 11 0 58%

IDD 3 1 2 0 67% RRO 12 4 8 0 67%

ENF 5 0 5 0 100% RTS 7 2 5 0 71%

ERR 12 6 6 0 50% LOR 60 27 33 0 55%

CTR 3 0 3 0 100% STF 10 1 9 0 90%

FTP 18 0 0 18 * TRR 12 6 6 0 50%

Total 193 61 114 18 65%

MCDC Coverage (26 TCs)

Table 40: RailroadGate specification mutation testing based basic MCDC coverage

Operator T A K Eq MS Operator T A K Eq MS

ARO 7 4 3 0 43% LNF 4 0 4 0 100%

ICR 12 2 10 0 83% PB2S 1 0 0 0 100%

RGCR 8 0 8 0 100% ROR 19 6 13 0 68%

IDD 3 1 2 0 67% RRO 12 4 8 0 67%

ENF 5 0 5 0 100% RTS 7 1 6 0 86%

ERR 12 5 7 0 58% LOR 60 21 39 0 65%

CTR 3 0 3 0 100% STF 10 1 9 0 90%

118

FTP 18 0 0 18 * TRR 12 4 8 0 67%

Total 193 49 125 18 71%

Fault Coverage (8 TCs)

Table 41: RailroadGate specification mutation testing based fault coverage

Operator T A K Eq MS Operator T A K Eq MS

ARO 7 4 3 0 43% LNF 4 0 4 0 100%

ICR 12 2 10 0 83% PB2S 1 0 1 0 100%

RGCR 8 0 8 0 100% ROR 19 7 12 0 63%

IDD 3 1 2 0 67% RRO 12 4 8 0 67%

ENF 5 0 5 0 100% RTS 7 1 6 0 86%

ERR 12 5 7 0 58% LOR 60 22 38 0 63%

CTR 3 0 3 0 100% STF 10 1 9 0 90%

FTP 18 0 0 18 * TRR 12 4 8 0 67%

Total 193 51 124 18 71%

Pair-wise Coverage (20 TCs)

Table 42: RailroadGate specification mutation testing based pair-wise coverage

Operator T A K Eq MS Operator T A K Eq MS

ARO 7 4 3 0 43% LNF 4 0 4 0 100%

ICR 12 2 10 0 83% PB2S 1 0 1 0 100%

RGCR 8 0 8 0 100% ROR 19 3 16 0 84%

IDD 3 1 2 0 67% RRO 12 4 8 0 67%

ENF 5 0 5 0 100% RTS 7 1 6 0 86%

ERR 12 5 7 0 58% LOR 60 11 49 0 82%

CTR 3 0 3 0 100% STF 10 1 9 0 90%

FTP 18 0 0 18 * TRR 12 4 8 0 67%

Total 193 36 139 18 79%

Three-wise Coverage (16 TCs)

Table 43: RailroadGate specification mutation testing based three-wise coverage

Operator T A K Eq MS Operator T A K Eq MS

ARO 7 4 3 0 43% LNF 4 0 4 0 100%

ICR 12 2 10 0 83% PB2S 1 0 1 0 100%

RGCR 8 0 8 0 100% ROR 19 4 15 0 79%

IDD 3 1 2 0 67% RRO 12 4 8 0 67%

ENF 5 0 5 0 100% RTS 7 1 6 0 86%

119

ERR 12 5 7 0 58% LOR 60 15 45 0 75%

BTR 3 0 3 0 100% STF 10 1 9 0 90%

FTP 18 0 0 18 * TRR 12 4 8 0 67%

Total 193 41 134 18 77%

The best mutation score is achieved by pair-wise coverage (86%), while, the worst is

achieved by basic rule coverage (65%).

Figure 43 illustrates the results of the application of our proposed approach over

RailroadGate specification and overlap between different test case generation criteria by

ATGT.

 alive mutants.

 killed mutants.

 killed mutants that cause runtime exceptions.

 equivalent mutants.

Figure 43: Overall deference of mutation testing over different testing criteria for RailroadGate Specification

120

6.2.3 SluiceGateGround Specification

Update Rule Coverage (2 TCs)

Table 44: SluiceGateGround specification mutation testing based update rule coverage

Operator T A K Eq MS Operator T A K Eq MS

ABS 2 0 0 2 * MMR 2 0 2 0 100%

ARO 36 27 9 0 25% PB2S 3 1 0 2 0%

RGCR 12 1 11 0 92% ROR 2 0 2 0 100%

ENF 4 0 4 0 100% RRO 66 29 37 0 56%

FTP 5 0 0 5 * RTS 11 2 9 0 82%

CTM 2 0 2 0 100% STF 8 1 7 0 88%

CTR 2 0 2 0 100% TRR 44 12 32 0 73

LNF 2 0 2 0 100% UOI 2 0 2 0 100%

 Total 203 73 121 9 62%

Basic Rule Coverage (6 TCs)

Table 45: SluiceGateGround specification mutation testing based basic rule coverage

Operator T A K Eq MS Operator T A K Eq MS

ABS 2 0 0 2 * MMR 2 0 2 0 100%

ARO 36 24 12 0 33% PB2S 3 0 1 2 100%

RGCR 12 1 11 0 92% ROR 2 0 2 0 100%

ENF 4 0 4 0 100% RRO 66 26 40 0 61%

FTP 5 0 0 5 * RTS 11 2 9 0 82%

CTM 2 0 2 0 100% STF 8 0 8 0 100%

CTR 2 0 2 0 100% TRR 44 12 32 0 73%

LNF 2 0 2 0 100% UOI 2 0 2 0 100%

 Total 203 65 129 9 66%

MCDC Coverage (8 TCs)

Table 46: SluiceGateGround specification mutation testing based MCDC coverage

Operator T A K Eq MS Operator T A K Eq MS

ABS 2 0 0 2 * MMR 2 0 2 0 100%

ARO 36 24 12 0 33% PB2S 3 0 1 2 100%

RGCR 12 0 12 0 100% ROR 2 0 2 0 100%

ENF 4 0 4 0 100% RRO 66 26 40 0 61%

FTP 5 0 0 5 * RTS 11 2 9 0 82%

CTM 2 0 2 0 100% STF 8 0 8 0 100%

121

CTR 2 0 2 0 100% TRR 44 12 32 0 73%

LNF 2 0 2 0 100% UOI 2 0 2 0 100%

 Total 203 64 130 9 67%

Fault Coverage (26 TCs)

Table 47: SluiceGateGround specification mutation testing based fault coverage

Operator T A K Eq MS Operator T A K Eq MS

ABS 2 0 0 2 * MMR 2 0 2 0 100%

ARO 36 24 12 0 33% PB2S 3 0 1 2 100%

RGCR 12 0 12 0 100% ROR 2 0 2 0 100%

ENF 4 0 4 0 100% RRO 66 26 40 0 61%

FTP 5 0 0 5 * RTS 11 2 9 0 82%

CTM 2 0 2 0 100% STF 8 0 8 0 100%

CTR 2 0 2 0 100% TRR 44 12 32 0 73%

LNF 2 0 2 0 100% UOI 2 0 2 0 100%

 Total 203 64 130 9 67%

Pair-wise Coverage (4 TCs)

Table 48: SluiceGateGround specification mutation testing based pair-wise coverage

Operator T A K Eq MS Operator T A K Eq MS

ABS 2 0 0 2 * MMR 2 0 2 0 100%

ARO 36 24 12 0 33% PB2S 3 0 1 2 100%

RGCR 12 0 12 0 100% ROR 2 0 2 0 100%

ENF 4 0 4 0 100% RRO 66 26 40 0 61%

FTP 5 0 0 5 * RTS 11 2 9 0 82%

CTM 2 0 2 0 100% STF 8 0 8 0 100%

CTR 2 0 2 0 100% TRR 44 12 32 0 73%

LNF 2 0 2 0 100% UOI 2 0 2 0 100%

 Total 203 64 130 9 67%

The best mutation score is achieved by MCDC coverage, fault coverage, and pair-wise

coverage (67%), while, the worst is achieved by update rule coverage (62%).

122

Figure 44 illustrates the results of the application of our proposed approach over

SluiceGateGround specification and overlap between different test case generation criteria

by ATGT.

 alive mutants.

 killed mutants.

 killed mutants that cause runtime exceptions.

 equivalent mutants.

Figure 44: Overall deference of mutation testing over different testing criteria for SluiceGateGround Specification

6.2.4 Results Summary

Based on the above empirical evaluation, the test cases generated by ATGT vary in their

ability to kill certain mutants.

 CruiseControl RailroadGate SluiceGateGround Average

Update Rule

Coverage

77% 69% 62% 69%

123

Basic Rule

Coverage

72% 65% 66% 68%

MCDC

Coverage

60% 71% 67% 66%

Fault

Coverage

14% 71% 67% 51%

Pair-wise

Coverage

84% 79% 67% 77%

Three-wise

Coverage

N/A 77% N/A N/A

Based on the achieved mutation score for the three different case studies, we can conclude

observed that the best mutation score is achieved the pair wise test coverage criteria

(average mutation score of 77% based on the table above). In addition, update rule coverage

and basic rule coverage mutation scores are close, however, update rule coverage is slightly

better and that is conformed to coverage strength order in section 3.1.3.

6.3 Chapter Summary

In this chapter, an empirical investigation is performed on seven case studies, in order to

evaluate the proposed set of AsmetaL mutation operators. The proposed set of operators

for AsmetaL is able to generate syntactically correct AsmetaL mutants. In addition, it is

observed that different test cases for the case studies vary in their ability to kill mutants.

Therefore, it is possible to rely on the proposed set of AsmetaL mutation operators in

assessing and comparing the performance of different test cases. The goals of the

application mutation testing are achieved by the proposed mutation operator for AsmetaL

specification. In addition, as an application of the proposed approach, different test case

generation criteria provided by ATGT are evaluated based on the achieved mutation score.

124

7 CHAPTER 7

Application of Cost Reduction Techniques to AsmetaL

Mutation Testing

7.1 Introduction

Mutation testing has proven its effectiveness in detecting inadequacy in the testing suites.

However, mutation testing suffers from high computation problem where a few line of

code specification may result in over thousand faulty versions (mutants) [96]. The high

computation cost may hinder the adoption of mutation testing by practitioners. Many

techniques have been proposed to reduce the computation cost of mutation testing, such as

selective mutation (2-selective, 4-selective, 6-selective) and random mutation.

Gligoric et al.[98] have investigated the application of selective mutation on concurrent

operators, the conclusion of their study is that operator-based selection preformed slightly

better than random-based selection. However, Zhang et al.[99] have conducted a study on

comparing the application of operator-based selection verses random based selection with

respect to the resulting effectiveness and cost saving. Their work was conducted in the

context of the C programming language and they have shown that random-based selection

is superior to all types of operator-based selection. In addition, Zhang et al.[100] have

proposed a technique in which it combines operator-based and random-based to achieve

better results. Their approach is based on four strategies i) Baseline: selects x% mutants

from a selected set. ii) MOp-Based: selects x% mutants produces by each operators. iii)

125

PElem-Based: selects x% mutants produced by mutating the same program element. iv)

PElem-Mop-based: selects x% mutants produces by each operators by mutating the same

program element. Their approach resulted in 95% mutant’s reduction while reducing the

execution cost by 93.46%.

Mresa et al.[101] have evaluated the efficiency of mutation operators by the ratio of

mutation score to the cost of mutation testing. Zhang et al.[102] investigated the reduction

of cost by applying test prioritization inspired by regression test case prioritization

technique to an effective testing sequence. Namin et al.[103][104] have proposed an

approach for selecting a sufficient set of mutants based on several criteria of statistical

analysis including all-subsets regression, elimination-based correlation technique, and

cluster analysis.

The basic idea behind selective mutation analysis is that killing a mutant may lead to killing

other mutants as well. Thus, running test suite against a set of selected mutants might be

considered sufficient as substitution of the full set. In this chapter, we have investigated

applying selective mutation operator-based and random-based in order to demonstrate the

tradeoff between effectiveness and saving. Moreover, we have investigated the relationship

between operator-based and random-based mutation. Although, Zhang et al.[99] have

concluded that all operator-based selection are not superior to random-based selection.

In order to compare operator-based and random-based in the AsmetaL context, we adopt a

set of questions introduced in [55][106][96][98].

Q1[56]: What are the most dominant mutation operators out of the proposed AsmetaL

mutation operators?

126

Q2[55][56]: Is N-selective mutation applicable in the context AsmetaL?

Q3: Is random-based selective mutation applicable in the context Abstract State

Machines?

Q4[98]: How do operator-based and random-based mutant selection compare in the

context of AsmetaL?

Q5[99]: Does random-based mutant selection provide a stable mutation scores in the

context of AsmetaL?

7.2 Evaluation Criteria of the Mutation Operators Cost Reduction Techniques

In what follows, we present the criteria used to evaluate the application of the cost reduction

techniques to mutation testing.

7.2.1 Effectiveness

In order to acquire the level of effectiveness of applying selective mutation, we have

formulated the problem as follows. Given a specification (denoted as S) and a set of

mutants (denoted as M) generated for S by applying all mutation operators, equivalent

mutants are removed from M and a set of non-equivalent mutants (denoted as Mnq) is

acquired. After applying all test cases generated by ATGT tool, all non-killable (alive)

mutants in M are considered as equivalent mutants, as done by previous

studies [55][56][98][99][103] and removed. A reduced set of test cases (denoted as T) is

considered as Mnq sufficient, if for any mutant in Mnq, there is at least one test case that is

able to kill it. Similarly, a reduced set of test cases (denoted as TS ⊆ T) and a set of mutants

(denoted as MS ⊆ Mnq). TS is said to be MS sufficient, if for any mutant in MS, there is at

least one test case in TS that is able to kill it. The mutation score presented by applying TS

127

against all mutants Mnq, represents the effectiveness of applying selective set of mutants

MS.

𝐸𝑓𝑓(𝑀𝑆, 𝑀𝑛𝑞) = 𝑀𝑆(𝑇𝑆, 𝑀𝑛𝑞)

Figure 45 shows the procedure of acquiring the effectiveness of a set of selective mutants.

Full set of

mutants Mnq

Selective set

of mutants Ms

Test Suite Ts

Generate Selective

Set based on

Selection Criteria

Generate Adequate Test SuiteRun Ts against Mnq

Eff(Ms, Mnq) = MS(Ts,Mnq)

Figure 45: Selective mutation reduction procedure

7.2.2 Cost Saving

Saving is acquired as a difference between the execution cost of running the set of all

mutants and the execution cost of running selective set of mutants normalized by the

execution cost of running the set of all mutants. Originally, Offutt [56] has considered the

cost in term of number of generated mutants. However, the number of generated mutants

is not a precise indicator to the actual cost of preforming mutation testing.

𝑆𝑎𝑣𝑖𝑛𝑔 (𝑀𝑆, 𝑀𝑛𝑞) = 1 −
𝐶𝑜𝑠𝑡(𝑀𝑆)

𝐶𝑜𝑠𝑡(𝑀𝑛𝑞)

128

Where Cost(Ms) denotes the cost of running the set of selected mutants. And Cost (Mnq)

denotes the cost of running all none equivalent mutants.

Mresa et al.[101] proposed that the execution cost is acquired by counting the exact number

of execution of test cases against mutants.

𝑒𝑥𝑒𝑐𝐶𝑛𝑡(𝑡, 𝑀) = #𝑀

+ # 𝑀 − # 𝑘𝑖𝑙𝑙(𝑀, {𝑐1})

+ # 𝑀 − # 𝑘𝑖𝑙𝑙(𝑀, {𝑐1, 𝑐2}) …

+ # 𝑀 − # 𝑘𝑖𝑙𝑙(𝑀, {𝑐1, 𝑐2, … , 𝑐𝑛−1})

Where #M is the number of mutants. And # 𝑘𝑖𝑙𝑙(𝑀, {𝑐1}) represents the number of killed

mutants by test case 𝑐1.

In this study we follow Mresa [101] technique to acquire the exact number of execution.

𝑆𝑎𝑣𝑖𝑛𝑔 (𝑀𝑆 , 𝑀𝑛𝑞) = 1 −
𝑒𝑥𝑒𝑐𝐶𝑛𝑡(𝑇𝑆, 𝑀𝑆)

𝑒𝑥𝑒𝑐𝐶𝑛𝑡(𝑇, 𝑀𝑛𝑞)

7.2.3 Stability

In the case of the application of the random selection technique, standard deviation can

indicate the level of stability in the random sample. Zhang et al.[99] used 50 random runs

to calculate the stability (standard deviation) of randomly selected samples of mutants for

effectiveness and saving. The standard deviation will be calculated based on 100 random

runs. The effectiveness and saving are calculated as the average of 100 random runs.

129

7.3 N-selective-based Mutation

N-selective-based mutation testing is performed by applying all mutation operators to the

original specification resulting in a set of mutants, denoted as M. Mutants generated by the

N most dominant operators (dominant in number of generated mutants) are discarded. The

rest of mutants are to be considered the selective set of mutants, denoted as MS, based on

which the effectiveness and saving are drawn to assist the performance of that MS to M.

Based on Offutt [55] work, we have applied 2-selective, 4-selective and 6-selective to set

of case studies introduced in Chapter 6.

7.4 Random-based Selective Mutation

Similarly, random-based mutation testing technique acquires a set of mutants, denoted as

M, generated by all mutation operators. The set of selected mutants, denoted as MS, is

sample of x% size of M by uniformly random distribution. In our study, we have chosen to

investigate the level of effectiveness and saving by applying 10%, 25%, 50% random set

of mutants.

7.5 Applying Cost Reduction Techniques to Case Studies

7.5.1 Case Study 1: ferrymanSimulator Specification

Operator-based Selection Mutation

2-selective

The two most dominant operators for ferrymanSimulator specification are ETR and RRO,

producing 19%, and 15% of the overall mutants. The elimination of mutants they produce

will results in 100% effectiveness and 30.14% saving.

4-selective

130

In addition to ETR and RRO, we expand the set of selected mutants adding CRRO and

ARO operators. The overall set of 4 selected operators are producing 52% of mutants.

Hence, the level of effectiveness is 98.26%, while the saving is 56.81%.

6-selective

Moreover, the consideration of RTS and TTR (overall set produces 63% of mutants) results

in 98.26% effectiveness and 68.12% saving.

Random-based Selection Mutation

10% Random-based Selection Mutation

Figure 46 shows 100 runs 10% random selection based mutation testing. The average level

of effectiveness is 96.77% while the standard deviation is 0.032. The saving is 87.33%

with standard deviation of 0.013.

Figure 46: ferrymanSimulator specification random selection (10%)

25% Random-based Selection Mutation

82.00%

83.00%

84.00%

85.00%

86.00%

87.00%

88.00%

89.00%

90.00%

91.00%

80.00% 85.00% 90.00% 95.00% 100.00% 105.00%

100 Runs (10% Random Selection)

131

While applying 25% random selection results in 99.08% average effectiveness and average

68.82% saving. The standard deviation is 0.011 and 0.02 respectively. Figure 47 illustrates

a 100 random runs with 25% sample size.

Figure 47: ferrymanSimulator specification random selection (25%)

50% Random-based Selection Mutation

The application of 50% random selection produces 99.91% average of effectiveness and

37.65% average of saving (Standard deviations are 0.004 and 0.018 respectively). Figure

48 illustrates a 100 random runs with 50% sample size.

63.00%

64.00%

65.00%

66.00%

67.00%

68.00%

69.00%

70.00%

71.00%

72.00%

73.00%

74.00%

96.00% 96.50% 97.00% 97.50% 98.00% 98.50% 99.00% 99.50% 100.00%100.50%

100 Runs (25% Random Selection)

132

Figure 48: ferrymanSimulator specification random selection (50%)

7.5.2 Case Study 2: railroadGate Specification

Operator-based Selection Mutation

2-selective

Based on number of generated mutants, ROR and ICR are the most dominant operators, in

which they produce 14% and 9% respectively. The level of effectiveness maintained while

excluding their mutants is 100%. In addition, the level of saving is 19.67%.

4-selective

Introducing two more operators (ERR and RRO) to the previous set of selected operators

(overall set produces 41% of overall mutants) maintains 100% effeteness and reduces the

computation cost by 28.42%.

6-selective

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

98.00% 98.50% 99.00% 99.50% 100.00% 100.50%

100 Runs (50% Random Selection)

133

Furthermore, the inclusion of TRR (9%) and STF (8%) to the selected list (58% of mutants)

results in 100% effectiveness and 38.25% saving.

Random-based Selection Mutation

10% Random-based Selection Mutation

Applying 10% random selection mutation testing would results on average of 95.07%

effectiveness and 85.55% saving. Figure 49 illustrates a 100 random runs over 10% random

sample size (standard deviations are 0.049 and 0.018 respectively).

Figure 49: railroadGate specification random selection (10%)

25% Random-based Selection Mutation

As shown in Figure 50, a 100 random runs over 25% random sample size will results on

average of 99.62% effectiveness and 64.55% saving (standard deviations are 0.012 and

0.021 respectively).

81.00%

82.00%

83.00%

84.00%

85.00%

86.00%

87.00%

88.00%

89.00%

90.00%

0.00% 20.00% 40.00% 60.00% 80.00% 100.00% 120.00%

100 Runs (10% Random Selection)

134

Figure 50: railroadGate specification random selection (25%)

50% Random-based Selection Mutation

The average level of effectiveness is 100% and the average level of saving is 29.9%

(standard deviations are 0 and 0.023 respectively). Figure 51 shows a 100 runs with sample

size of 50%.

Figure 51: railroadGate specification random selection (50%)

60.00%

62.00%

64.00%

66.00%

68.00%

70.00%

72.00%

93.00% 94.00% 95.00% 96.00% 97.00% 98.00% 99.00% 100.00% 101.00%

100 Runs (25% Random Selection)

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

0.00% 20.00% 40.00% 60.00% 80.00% 100.00% 120.00%

100 Runs (50% Random Selection)

135

7.5.3 Case Study 3: sluiceGateGround Specification

Operator-based Selection Mutation

2-selective

The set of selected mutation operators includes RRO (32% of mutants) and TRR (21% of

mutants). The acquired effectiveness is 100% while the saving is 55%.

4-selective

The inclusion of ARO (17% of mutants) and RGCR (6% of mutants) operators to the

previous operators (76% of mutants) grants 99.24% effectiveness and 75.5% saving.

6-selective

Moreover, including RTS (5% of mutants) and STF (4% of mutants) operators (85% of

overall mutants) results in 96.18% effectiveness and 89% saving.

Random-based Selection Mutation

10% Random-based Selection Mutation

The application of 10% random selection results on averages of 96.42% (standard

deviation of 0.020) effectiveness and 83.93% (standard deviation of 0.015). Figure 52

illustrates a 100 runs with random sample of 10% size.

136

Figure 52: sluiceGateGround specification random selection (10%)

25% Random-based Selection Mutation

While applying 25% random selection results on averages of 98.77% (standard deviation

of 0.013) effectiveness and 60.13% (standard deviation of 0.02) saving. Figure 53

illustrates a 100 runs with random sample of 25% size.

Figure 53: sluiceGateGround specification random selection (25%)

78.00%

79.00%

80.00%

81.00%

82.00%

83.00%

84.00%

85.00%

86.00%

87.00%

88.00%

92.00% 93.00% 94.00% 95.00% 96.00% 97.00% 98.00% 99.00% 100.00%101.00%

100 Runs (10% Random Selection)

54.00%

56.00%

58.00%

60.00%

62.00%

64.00%

66.00%

68.00%

95.50% 96.00% 96.50% 97.00% 97.50% 98.00% 98.50% 99.00% 99.50%100.00%100.50%

100 Runs (25% Random Selection)

137

50% Random-based Selection Mutation

Nevertheless, the application of 50% random selection results on averages of 99.84%

(standard deviation of 0.015) effectiveness and 20.35% (standard deviation of 0.02)

saving. Figure 54 illustrates a 100 runs with random sample of 50% size.

Figure 54: sluiceGateGround specification random selection (50%)

7.5.4 Case Study 4: cruiseControl Specification

Operator-based Selection Mutation

2-selective

TRR (23% of mutants) and RGCR (17% of mutants) are the most dominant operators for

cruiseControl specification. The elimination of mutants generated by them results in

99.12% effectiveness and 42.42% saving.

4-selective

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

96.50% 97.00% 97.50% 98.00% 98.50% 99.00% 99.50% 100.00% 100.50%

100 Runs (50% Random Selection)

138

Furthermore, the including of RRO (11% of mutants) and LOR (10% of mutants) operators

to the previous set of selected operators (overall of 61% of mutants) results in 98.53%

effectiveness and 66.62% saving.

6-selective

ERR and STF produce 9% and 5% of mutants respectively. The set of the six operators is

responsible for 74% of overall generated mutants. Similar to 4-selective, the level of

effectiveness is 98.53%, however, the level of saving is 80.09%.

Random-based Selection Mutation

10% Random-based Selection Mutation

Figure 55 shows a 100 runs of 10% random selection. The average of effeteness is 95.99%

(standard deviation of 0.021), while the average of saving is 87.30% (standard deviation

of 0.011).

Figure 55: cruiseControl specification random selection (10%)

84.00%

85.00%

86.00%

87.00%

88.00%

89.00%

90.00%

91.00%

86.00% 88.00% 90.00% 92.00% 94.00% 96.00% 98.00% 100.00%

100 Runs (10% Random Selection)

139

25% Random-based Selection Mutation

Figure 56 shows a 100 runs of 25% random selection. The average of effeteness is 98.47%

(standard deviation of 0.022), while the average of saving is 68.83% (standard deviation

of 0.013).

Figure 56: cruiseControl specification random selection (25%)

50% Random-based Selection Mutation

The average of effeteness is 99.48% (standard deviation of 0.004), while the average of

saving is 38.13% (standard deviation of 0.016). Figure 57 shows a 100 runs 50% random

selection.

64.00%

65.00%

66.00%

67.00%

68.00%

69.00%

70.00%

71.00%

72.00%

73.00%

94.00% 95.00% 96.00% 97.00% 98.00% 99.00% 100.00%

100 Runs (25% Random Selection)

140

Figure 57: cruiseControl specification random selection (50%)

7.5.5 Case Study 5: AdvancedClock Specification

There is not mutation selection investigation done for this case study, since it only has one

test case (deterministic specification that does not required user input). Thus, a test case

that kills a single mutant would kill them all with 100% effectiveness.

7.5.6 Case Study 6: AdvancedClock2 Specification

There is not mutation selection investigation done for this case study, since only one test

case is effective among all test cases generated by ATGT while other test cases do not

contribute by killing any mutants therefore, they should be discarded. Thus, only a single

test case is kept in the test suite.

7.5.7 Case Study 7: fattoriale Specification

Operator-based Selection Mutation

2-selective

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

98.00% 98.50% 99.00% 99.50% 100.00% 100.50%

100 Runs (50% Random Selection)

141

The elimination of the two most dominant operators are ARO (26% of mutants) and RRO

(17% of mutants) results in 98.94% effeteness and 40.58% saving.

4-selective

The introduction of the next two dominant operators ROR (11% of mutants) and ABS (9%

of mutants), the four operators are responsible of 63% of overall mutants, results in 96.81%

effeteness and 52.17% saving.

6-selective

Furthermore, the consideration of ERR (9% of mutants) and CTR (4% of mutants) results

in 96.81% effectiveness and 73.91% saving.

Random-based Selection Mutation

10% Random-based Selection Mutation

The average level of effectiveness results from 10% random selection is 93.69% (standard

deviation 0.034) while the saving is 84.20% (standard deviation 0.027). Figure 58 shows

a 100 runs of sample with size of 10%.

142

Figure 58: fattoriale specification random selection (10%)

25% Random-based Selection Mutation

The average level of effectiveness results from 25% random selection is 96.44% (standard

deviation 0.016) while the saving is 62% (standard deviation 0.034). Figure 59 shows a

100 runs of sample with size of 25%.

Figure 59: fattoriale specification random selection (25%)

74.00%

76.00%

78.00%

80.00%

82.00%

84.00%

86.00%

88.00%

90.00%

0.00% 20.00% 40.00% 60.00% 80.00% 100.00% 120.00%

100 Runs (10% Random Selection)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

92.00% 93.00% 94.00% 95.00% 96.00% 97.00% 98.00% 99.00% 100.00%

100 Runs (25% Random Selection)

143

50% Random-based Selection Mutation

The average level of effectiveness results from 50% random selection is 98.90% (standard

deviation 0.0096) while the saving is 24.57% (standard deviation 0.034). Figure 60 shows

a 100 runs of sample with size of 25%.

Figure 60: fattoriale specification random selection (50%)

7.5.8 Results Summary

Table 49 describes the summary of the results of the application of N-selective.

Table 49: 2, 4, 6-N-selective results for the case studies

 ferry
m

an
S

im
u
lato

r

railro
ad

G
ate

slu
iceG

ateG
ro

u
n
d

cru
iseC

o
n
tro

l

fatto
riale

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

95.00% 96.00% 97.00% 98.00% 99.00% 100.00% 101.00%

100 Runs (50% Random Selection)

144

2

selective

Operators ETR

RRO

ROR

ICR

RRO

TRR

TRR

RGCR

ARO

RRO

Effectiveness 100% 100% 100% 99.12% 98.94%

Saving 30.14% 19.67% 55% 42.42% 40.58%

4

selective

Operators ETR

RRO

CRRO

ARO

ROR

ICR

ERR

RRO

RRO

TRR

ARO

RGCR

TRR

RGCR

RRO

LOR

ARO

RRO

ROR

ABS

Effectiveness 98.26% 100% 99.24% 98.53% 96.81%

Saving 56.81% 28.42% 75.5% 66.62% 52.17%

6

selective

Operators ETR

RRO

CRRO

ARO

RTS

TTR

ROR

ICR

ERR

RRO

TRR

STF

RRO

TRR

ARO

RGCR

RTS

STF

TRR

RGCR

RRO

LOR

ERR

STF

ARO

RRO

ROR

ABS

ERR

CTR

Effectiveness 98.26% 100% 96.18% 98.53% 96.81%

Saving 68.12% 38.25% 89% 80.09% 73.91%

145

Table 50 describes the summary of the results of the application of random selection.

Table 50: 10%, 25%, 50% random selection results for the case studies

 ferry
m

an
S

im
u
lato

r

railro
ad

G
ate

slu
iceG

ateG
ro

u
n
d

cru
iseC

o
n
tro

l

fatto
riale

10%

Random

Selective

Effectiveness 96.77% 95.07% 96.42% 95.99% 93.69%

Effectiveness

Stability

0.032 0.049 0.02 0.021 0.034

Saving 87.33% 85.55% 83.93% 87.30% 84.2%

Saving

Stability

0.013 0.018 0.015 0.011 0.027

25%

Random

Selective

Effectiveness 99.08% 99.62% 98.77% 98.47% 96.44%

Effectiveness

Stability

0.011 0.012 0.013 0.022 0.016

Saving 68.82% 64.55% 60.13% 68.83% 62%

Saving

Stability

0.02 0.012 0.02 0.013 0.034

50% Effectiveness 99.91% 100% 99.84% 99.48% 98.90%

146

Random

Selective

Effectiveness

Stability

0.004 0 0.015 0.004 0.01

Saving 37.65% 29.9% 20.35% 38.13% 24.57%

Saving

Stability

0.018 0.023 0.02 0.016 0.034

7.6 Overall Operator-Based Selection Mutation

Typical Operator-based selection reduces the number of generated mutants, however, the

mutants are actually generated but the output of the generation process to the testing

process would be reduced based on which operators must be eliminated. In other words,

the set of operators that would be discarded can be obtained without generating the full set

of mutants. Thus, in order to reduce the computation cost further, we have investigated the

possibility of generalizing the operator-based selection considering all of the case studies.

In order to carry out our investigation, we must first determine the list of operators

responsible for generating the largest share of mutants against all case studies. It should be

noted that the weight of each operator would be considered as the ratio generated mutants

per operator per case study rather than the total number of generated mutants for all case

studies. Table 51 provides a top six operators ranked list (RRO, CTR, TRR, ARO, RGCR,

and ROR) of weight per operators. These Operators produce on average 58% of the total

generated mutants (based on the selected case studies).

147

Table 51: Ranking dominant operators (All case studies)

 Fe
rrym

an

 railro
ad

G
ate

 slu
ice

G
ate

G
ro

u
n

d

 cru
ise

C
o

n
tro

l

 A
d

van
ce

d
C

lo
ck

 A
d

van
ce

d
C

lo
ck 2

 fatto
riale

 To
tal

RRO 42 12 66 48 22 24 24 238

CTR 0 0 2 0 80 51 6 139

TRR 11 12 44 96 11 20 0 194

ARO 19 7 36 13 13 20 37 145

RGCR 5 8 12 72 2 6 6 111

ROR 8 19 2 8 10 9 15 71

 Fe
rrym

an

 railro
ad

G
ate

 slu
ice

G
ate

G
ro

u
n

d

 cru
ise

C
o

n
tro

l

 A
d

van
ce

d
C

lo
ck

 A
d

van
ce

d
C

lo
ck 2

 fatto
riale

 A
verage

RRO 15% 9% 32% 11% 10% 11% 17% 15%

5
7

%

CTR 0% 0% 1% 0% 37% 24% 4% 9%

TRR 4% 9% 21% 23% 5% 10% 0% 10%

ARO 7% 5% 17% 3% 6% 10% 26% 11%

RGCR 2% 6% 6% 17% 1% 3% 4% 6%

ROR 3% 14% 1% 2% 5% 4% 11% 6%

Only operator-based selection will be investigated since the random selection is not

applicable for generalization. We have performed 2-selective, 4-selective, and 6-selective

for each study case as follows:

2-selective

As shown in Table 51, the two most dominant operators are RRO, and CTR. Table 52

shows the results of eliminating the mutants generated by these operators.

148

Table 52: Overall 2-Operators Selection mutation

 Fe
rrym

an

 railro
ad

G
ate

 slu
ice

G
ate

G
ro

u
n

d

 cru
ise

C
o

n
tro

l

 fatto
riale

Effectiveness 100.00% 100.00% 100.00% 100.00% 100.00%

Saving 15.94% 4.37% 30.00% 11.05% 27.54%

4-selective

While the four most dominant operators are RRO, CTR, TRR, and ARO. Table 53 shows

the results of eliminating the mutants generated by these operators.

Table 53: Overall 4-Operators Selection mutation

 Fe

rrym
an

 railro
ad

G
ate

 slu
ice

G
ate

G
ro

u
n

d

 cru
ise

C
o

n
tro

l

 fatto
riale

Effectiveness 98.26% 100.00% 100.00% 100.00% 98.94%

Saving 24.35% 10.93% 65.00% 34.47% 49.28%

6-selective

Considering the six most dominant operators, which are RRO, CTR, TRR, ARO, RGCR,

and ROR. Table 54 shows the results of eliminating the mutants generated by these

operators.

149

Table 54: Overall 6-Operators Selection mutation

 Fe
rrym

an

 railro
ad

G
ate

 slu
ice

G
ate

G
ro

u
n

d

 cru
ise

C
o

n
tro

l

 fatto
riale

Effectiveness 98.26% 100.00% 99.24% 99.12% 96.81%

Saving 28.41% 27.87% 77.50% 61.40% 61.59%

7.7 General Discussion

In this section, we have addressed the aforementioned questions as follows

Q1[56]: What are the most dominant mutation operators out of the proposed AsmetaL

mutation operators?

Based on section 7.6, RRO, CTR, TRR, ARO, RGCR, and ROR are the most dominant

operators that are responsible of 58% of the total number of generated mutants. Table

51 shows the amount and percentage of each dominant operator.

Q2[55][56]: Is N-selective mutation applicable in the context AsmetaL?

We compare the results of 2-, 4-, 6- selective obtained for each case study individually

with the results obtained by other researches (for other languages). As shown in Table

49, the average 2-selective operator based effectiveness is 99.61%, while the average

saving is 37.56%. Mathur [54] has obtained 99.99% effectiveness and 24% saving. It

is noticeable that the effectiveness achieved in for 2-selective in the context of ASM is

slightly less, however, the saving achieved is fairly higher. If RRO and CTR are

considered for the 2-selective, as shown in Table 52, the obtained average level of

effectiveness is 100%, while the average saving is 17.78%.

150

The 4- selective average of effectiveness is 98.57%, while the average saving is 55.9%.

Comparing the obtained results with results obtained by Offutt [55] research (99.84%

effectiveness and 41% saving), It is noticeable that the level of effectiveness achieved

in for 4-selective in the context of ASM is slightly less, however, the saving achieved

is fairly higher. If RRO, CTR, TRR, and ARO are considered for the 4-selective, as

shown in Table 53, the obtained average level of effectiveness is 99.44%, while the

average saving is 36.81%.

The 6- selective average of effectiveness is 97.96%, while the average saving is

69.87%. Comparing the obtained results with results obtained by Offutt [56] research

(88.71% effectiveness and 60% saving), It is noticeable that the level of effectiveness

and saving achieved in for 6-selective in the context of ASM is dramatically better. If

RRO, CTR, TRR, ARO, RGCR, and ROR are considered for the 6-selective, as shown

in Table 54, the obtained average level of effectiveness is 98.69%, while the average

saving is 51.35%.

Based on the comparison above, we consider that N-selective is applicable in the

context of ASM.

Q3: Is random-based selective mutation applicable in the context Abstract State

Machines?

We based our answer on the results from section 7.5, as shown in Table 50, the average

level of effectiveness obtained by 10% random selection is 95.59%, where the average

stability factor for the effectiveness (100 run standard deviation) is 0.031, In addition,

the average level of saving is 85.67%, where the average stability factor for the saving

151

is 0.0168. Comparing our results with Wong and Mathur [51] research (10% selective,

level of effectiveness is 84%), our results achieves dramatically better effectiveness

score.

In case of 25% random selection, the average level of effectiveness is 98.48%, where

the average stability of effectiveness is 0.015. In addition, the average level of saving

is 64.87%, where the average stability of saving is 0.02.

In addition, in case of 50% random selection, the average level of effectiveness is

99.63%, where the average stability of effectiveness is 0.007. In addition, the average

level of saving is 30.12%, where the average stability of saving is 0.022.

Based on our case study results, we can consider that random based selection is

applicable in the context of ASM.

Q4[98]: How do operator-based and random-based mutant selection compare in the

context of Abstract State Machines?

Ultimately, the relationship between effectiveness and savings is a tradeoff

relationship. As described in the answer to Q2, the order of the 2, 4, and 6 N selective

is descending order in term of effectiveness, however, it is ascending in term of saving.

In contradiction, as described in the answer to Q3, the order of 10%, 25%, and 50%

random selective is ascending in term of effectiveness, whereas in term of saving, it is

descending order. Hence, we compare, in term of effectiveness and saving, 2- N

152

selective with 50% random selective, 4- N selective with 25% random selective, and

6- N selective with 10% random selective.

In case of 2 – N selective and 50% random selection, random selective (99.63%)

preform slightly better than 2 – N selective (99.61%) in term of effectiveness. However

in term of saving, 2 – N selective (37.56%) preform fairly better than random selective

(30.12%).

In case of 4 – N selective and 25% random selection, 4 – N selective (98.57%) preform

slightly better than random selective (98.48%) in term of effectiveness. However in

term of saving, random selective (64.87%) preform fairly better than 4 – N selective

(55.9%).

In case of 6 – N selective and 10% random selection, 6 – N selective (97.96%) preform

fairly better than random selective (95.59%) in term of effectiveness. However in term

of saving, random selective (85.67%) preform dramatically better than 6 – N selective

(64.87%).

As mentioned earlier, the relationship between effectiveness and savings is a tradeoff

relationship. The selected case studies are insufficient to answer that question. It is

worth noting that random-based selection provides more fixable ratio selection that can

be subjective to the user need.

153

Q5[99]: Does random-based mutant selection provide a stable mutation scores in the

context of AsmetaL?

The stability calculation is based on standard deviation which indicates how far the

collected data from each other. It used as measurement of data precision. In the random

selection mutation, it is noticeable that the stability measurement does not exceed 0.05

for both effectiveness and cost saving for the case studies as shown in Table 50. It is

observed that 10% random selective analysis results in higher effectiveness standard

deviation in respect with 25% and 50% random mutation. However, it results in lower

cost saving standard deviation in respect with 25% and 50% random mutation. In

addition, 50% selective mutation is in contrast. Thus, we can consider our results (100

random sample runs) stable.

7.8 Threats to Validity

In this section we have addressed any possible threats to validity in our thesis as follows:

Construct Validity: is concerned with the relevance and the meaningfulness of the used

measures. In order to reduce threats of construction validity we have used metrics to

measure the selective reduction techniques used by many other studies. Another threat to

validity is the manual checking of equivalent mutants, which is a tedious and error prone

activity. Many studies, (e.g., [55], [56], [98], [99], and [103]), treated the remaining alive

mutants after refining test suites as equivalent mutants, and thereby they are discarded.

154

Internal Validity: is concerned with the uncontrolled variables used in experiments. In

order to reduce internal threats to validity, we have implemented MuAsmetaL to enforce

the consistency of data collection. All the results of the case studies were collected using

MuAsmetaL, thus, eliminating any faults related to manual data collection. Second, threat

to internal validity is related to the use of MuAsmetaL. The tool is still in the prototype

stage and requires more testing and improvements. To reduce this risk, selected test cases

are executed using the tool and manually, showing no discrepancies. Third, MuAsmetaL

does not have the ability to detect equivalent mutants nor it consider them in the mutation

score calculation.

External Validity: is concerned with how well you can generalize from the results of one

study to the real world. The ability to generalize depends on how similar the study

environment is to that use in actual practice. In order to reduce external threats to validity,

we have chosen several case studies obtained from the literature. Case studies that represent

a diversity of AsmetaL specifications in term of specification size and level of abstraction.

However, not all operators produce mutants due to the absence of certain AsmetaL

constructs. All operators were implemented in MuAsmetaL and can be used other case

studies. In addition, we have excluded non-deterministic specification from our selection,

since; testing non-deterministic behavior is off scope.

Last threat to external validity of the results reported in the case studies may be related to

the fact that ATGT does not fully support the AsmetaL language. However, our approach

155

does not depend on the exclusive use of the ATGT tool. Test cases can be generated using

any tool or even created manually.

156

8 CHAPTER 8

Conclusions and Future Work

The aim of this thesis is to propose a mutation-testing approach for Abstract State Machines

paradigm. The work described in this thesis has been concerned with the design and

evaluation of mutation operators for AsmetaL language, which is considered as incarnation

of ASMs concept. A set of 18 mutation operators, (each is associated with an AsmetaL

potential fault), are classified into 5 categories, have been proposed. An empirical

investigation, that demonstrates the applicability of mutation testing in the context of

ASMs, is presented in chapter 6. In addition, the effectiveness of operator-based and

random-based selection, in order to reduce the computational cost of mutation testing, are

investigated in chapter 7.

8.1 Hypothesis of the Thesis

To conclude our research, the research hypotheses are recalled

Research Hypothesis 1:

Our first research hypothesis is denoted as follows:

 “Mutation testing can be applied to the Abstract State Machines (ASM)

formalism. This can be achieved through the design and the application of ASM-

based mutation operators.”

Based on our approach and empirical evaluation, it can be noticed that the proposed

mutation operators for AsmetaL are able to generate a set of syntactically valid mutants.

Thesis mutants mimic potential fault that may exist. We can observe, based on case studies,

157

that most of the generated mutant are killable. In this sense, the application of mutation

testing achieves its goals, thus, we can conclude that mutation testing is applicable in the

context of Abstract State Machines.

Research Hypothesis 2:

Our second research hypothesis is denoted as follows:

 “ASM-based mutation testing is an effective approach to assess the adequacy of

ASM-based test suites.”

We can observe, based on case studies, that the ability of test cases to kill mutants vary

from one to another, hence, we can judge the effectiveness of test cases based on the

proposed operators, furthermore, we can compare the effectiveness of two test cases. Our

drawn conclusion is mutation testing is an effective approach to assess the adequacy of

ASM-based test suites.

Research Hypothesis 3:

Our Third research hypothesis is denoted as follows:

 “Mutation-based testing cost reduction techniques, such as selective and random

mutation can be applied in the context of Abstract State Machines specifications.”

We have performed selective and random mutation techniques, in chapter 7. Our judgment

would be based on levels of effectiveness and savings for several case studies. Despite the

fact that ASM context is different from other programming language such as C and Java,

we compare our results with other studies. Our obtained results are to other works.

Therefore, the drawn conclusion is that selective and random mutation are applicable in

the context of Abstract State Machines specifications.

158

8.2 Thesis Contributions of the Thesis

To conclude our research, the thesis contributions are recalled

8.2.1 Contribution 1: Design and Evaluation of Mutation Operators for the

AsmetaL language

We have proposed a set of 18 operators for the AsmetaL language. The resulting operators

are categorized into 5 categories targeting different types of AsmetaL faults. Each mutation

operator is described using a concrete example and analyzed with respect to the produced

mutants (e.g., valid/invalid, equivalent/non-equivalent, etc.). Furthermore, a mathematical

characterization of the upper bound of the number of generated mutants is provided for

each operator. Chapter 4 presented and discusses the set of proposed AsmetaL-based

mutation operators.

8.2.2 Contribution 2: Empirical Evaluation of the Proposed Approach

Our proposed mutation-based approach is evaluated empirically using a set of 7 case

studies of different sizes. We have shown that mutation testing can be applied effectively

to ASM-based specifications. Furthermore, as an application of the proposed approach and

since the only tool, spotted in the literature, that supports the generation of test cases for

AsmetaL language is ATGT, we have focused on the evaluation of the test suites produced

using the ATGT coverage criteria. We have shown that some ATGT coverage criteria are

more adequate than others are. Chapter 6 presents and discusses our empirical experiments.

8.2.3 Contribution 3: Development of MuAsmetaL

We have developed a prototype tool (called MuAsmetaL) to perform AsmetaL-based

mutation testing. The tool presents many features that can be summarized as follows:

159

 Generating mutants based on the proposed operators.

 Validating the correctness of all the generated mutants using AsmetaLc.

 Validating syntactic equivalency of generated mutants against the original

specification.

 Running test cases against the original specification.

 Running test cases against mutants.

 Calculating mutation score per operator and for all mutants.

 Chapter 5 presents our MuAsmetaL tool.

8.2.4 Contribution 4: Investigation of Cost Reduction Techniques in the ASM

Context

Mutation testing is known to have a high computation cost due to the large number of

generated mutants. Many techniques have been proposed to reduce the cost of the

application of mutation testing. In this thesis, we have applied random mutation and

selective mutation to AsmetaL specifications. As discussed in Chapter 7 , we were able to

achieve satisfactory results with respect to the resulting mutation score and the cost

savings.

8.3 Future Work

In this section, we present some of the works that can be done as complementary to the

proposed AsmetaL mutation approach:

 The conduction of wider empirical studies

160

Experiments with varieties of subjects can be conducted in order to provide

conclusion that can be generalized. In addition, thresholds can be drawn based on

the outputs of that empirical studies, since, ASM has its own unique context.

 Test case generation techniques adequacy assessment

The proposed approach can be used to assess the adequacy of any AsmetaL test

case generation techniques. In addition, the usage of AsmetaL promotes the

comparison between them. In this thesis, we have compared different ATGT test

coverage criteria, it can be used with other test generation tools.

 Intermediate state ‘weak’ mutation testing

Introducing compiler-based reduction technique based on intermediate state ‘weak’

mutation testing. It can reduce computation cost by forcing the machine to the

desired state (precondition state).

 AsmetaL test cases prioritization

The proposed mutation based testing for AsmetaL can be used to prioritize test

cases based on internal metrics and generation criteria in order to determine the

execution sequence. This prioritized sequence will reduce computation cost and

provides an optimized test process.

 Test case generation/Equivalency analysis

161

Test case generation/Equivalency analysis using AsmetaL mutation testing and

model checker counter example. Generally, equivalency analysis is undecidable

problem. Many proposed approach (e.g., Laser equivalent mutation

detection [118]) combines mutation testing and model checker to provide a fully

automated tool that can generated mutants, detect equivalent mutants, use model

checker counter-example to generate new test case. Therefore, mutation testing not

only assess the adequacy of test suites, but improve it.

162

References

[1] Adrion, W. Richards, Martha A. Branstad, and John C. Cherniavsky. "Validation,

verification, and testing of computer software." ACM Computing Surveys (CSUR)

14.2 (1982): 159-192.

[2] Börger, Egon, and Robert F. Stärk. Abstract State Machines: A Method for High-

level System Design and Analysis; with 19 Tables. Springer, 2003.

[3] Gurevich, Yuri. "Reconsidering Turing's thesis:(toward more realistic semantics of

programs)." (1984).

[4] Börger, Egon. "The origins and the development of the ASM method for high level

system design and analysis." Journal of Universal Computer Science 8.1 (2002): 2-

74.

[5] Richardson, Debra J., Stephanie Leif Aha, and T. Owen O'malley. "Specification-

based test oracles for reactive systems." Proceedings of the 14th international

conference on Software engineering. ACM, 1992.

[6] Farahbod, Roozbeh, and Uwe Glässer. "The CoreASM modeling framework."

Software: Practice and Experience 41.2 (2011): 167-178.

[7] Hassine, Jameleddine. Formal semantics and verification of use case maps. Diss.

Concordia University, 2008.

[8] Gurevich, Yuri. "Sequential abstract-state machines capture sequential algorithms."

ACM Transactions on Computational Logic (TOCL) 1.1 (2000): 77-111.

163

[9] Blass, Andreas, and Yuri Gurevich. "Abstract state machines capture parallel

algorithms." ACM Transactions on Computational Logic (TOCL) 4.4 (2003): 578-

651.

[10] http://research.microsoft.com/en-us/projects/specexplorer/

[11] Barnett, Mike, et al. "Towards a tool environment for model-based testing with

AsmL." Formal Approaches to Software Testing. Springer Berlin Heidelberg,

2004. 252-266.

[12] http://www.coreasm.org/download.php

[13] Farahbod, Roozbeh, and Uwe Glässer. "The CoreASM modeling framework."

Software: Practice and Experience 41.2 (2011): 167-178.

[14] http://asmeta.sourceforge.net/

[15] Gargantini, Angelo, Elvinia Riccobene, and Patrizia Scandurra. "Ten reasons to

metamodel ASMs." Rigorous Methods for Software Construction and Analysis.

Springer Berlin Heidelberg, 2009. 33-49.

[16] Gargantini, Angelo, Elvinia Riccobene, and Patrizia Scandurra. "A Metamodel-

based Language and a Simulation Engine for Abstract State Machines." J. UCS

14.12 (2008): 1949-1983.

[17] Gargantini, Angelo, Elvinia Riccobene, and Patrizia Scandurra. "Metamodelling a

formal method: applying mde to abstract state machines." (2006).

[18] http://www2.cs.uni-paderborn.de/cs/asm/ASMToolPage/asm-workbench.html

[19] Del Castillo, Giuseppe. The ASM Workbench: A Tool Environment for Computer-

Aided Analysis and Validation of Abstract State Machine Models. Springer Berlin

Heidelberg, 2001.

http://research.microsoft.com/en-us/projects/specexplorer/
http://www.coreasm.org/download.php
http://asmeta.sourceforge.net/
http://www2.cs.uni-paderborn.de/cs/asm/ASMToolPage/asm-workbench.html

164

[20] Gargantini, Angelo, Elvinia Riccobene, and Patrizia Scandurra. "A metamodel-

based simulator for ASMs." Proc. of the 14th Intl. Abstract State Machines

Workshop. 2007.

[21] http://fmse.di.unimi.it/asmeta/download/AsmetaL_quickguide.html

[22] http://fmse.di.unimi.it/asmeta/download/AsmetaL_guide.pdf

[23] http://fmse.di.unimi.it/asmeta/download/AsmetaL_EBNF.html

[24] http://asmeta.sourceforge.net/download/asmetalc.html

[25] http://asmeta.sourceforge.net/download/asmetas.html

[26] http://asmeta.sourceforge.net/download/asmetav.html

[27] Arcaini, Paolo, Angelo Gargantini, and Elvinia Riccobene. "AsmetaSMV: a way to

link high-level ASM models to low-level NuSMV specifications." Abstract State

Machines, Alloy, B and Z. Springer Berlin Heidelberg, 2010. 61-74.

[28] Arcaini, Paolo, Angelo Gargantini, and Elvinia Riccobene. "A model advisor for

NuSMV specifications." Innovations in systems and software engineering 7.2

(2011): 97-107.

[29] http://asmeta.sourceforge.net/download/asmetasmv.html

[30] Gargantini, Angelo, Elvinia Riccobene, and Patrizia Scandurra. "AsmEE: an

Eclipse plug-in in a metamodel based framework for the Abstract State Machines."

International Conference on Eclipse Technologies (Eclipse IT). Napoli (Italy).

2007.

[31] http://fmse.di.unimi.it/asmee/update/

http://fmse.di.unimi.it/asmeta/download/AsmetaL_quickguide.html
http://fmse.di.unimi.it/asmeta/download/AsmetaL_guide.pdf
http://asmeta.sourceforge.net/download/asmetalc.html
http://asmeta.sourceforge.net/download/asmetas.html
http://asmeta.sourceforge.net/download/asmetav.html
http://asmeta.sourceforge.net/download/asmetasmv.html
http://fmse.di.unimi.it/asmee/update/

165

[32] Scandurra, Patrizia, et al. "Functional requirements validation by transforming use

case models into Abstract State Machines." Proceedings of the 27th Annual ACM

Symposium on Applied Computing. ACM, 2012.

[33] http://nusmv.fbk.eu/

[34] http://code.google.com/a/eclipselabs.org/p/nuseen/

[35] http://code.google.com/a/eclipselabs.org/p/nusmv-tools/

[36] http://cs.unibg.it/gargantini/software/atgt/

[37] Arcaini, Paolo, Angelo Gargantini, and Elvinia Riccobene. "Optimizing the

automatic test generation by SAT and SMT solving for Boolean expressions."

Proceedings of the 2011 26th IEEE/ACM International Conference on Automated

Software Engineering. IEEE Computer Society, 2011.

[38] http://fmse.di.unimi.it/atgtBoolean.html

[39] Albani, Fabio, Elvinia Riccobene, and Patrizia Scandurra. "An Eclipse-based SCA

design framework to support coordinated execution of services." Proc. of the 6th

Workshop of the Italian Eclipse Community. 2011.

[40] Jeevarathinam, R., and Antony Selvadoss Thanamani. "A survey on mutation

testing methods, fault classifications and automatic test cases generation." Journal

of Scientific & Industrial Research 70 (2011): 113-117.

[41] Lipton, R. "Fault diagnosis of computer programs." Student Report, Carnegie

Mellon University (1971).

[42] Acree, Allen T., et al. Mutation Analysis. No. GIT-ICS-79/08. GEORGIA INST

OF TECH ATLANTA SCHOOL OF INFORMATION AND COMPUTER

SCIENCE, 1979.

http://code.google.com/a/eclipselabs.org/p/nuseen/
http://cs.unibg.it/gargantini/software/atgt/
http://fmse.di.unimi.it/atgtBoolean.html

166

[43] DeMillo, Richard A., Richard J. Lipton, and Frederick G. Sayward. "Hints on test

data selection: Help for the practicing programmer." Computer 11.4 (1978): 34-41.

[44] Jia, Yue, and Mark Harman. "An analysis and survey of the development of

mutation testing." Software Engineering, IEEE Transactions on 37.5 (2011): 649-

678.

[45] Baldwin, Douglas, and Frederick Sayward. Heuristics for Determining

Equivalence of Program Mutations. GEORGIA INST OF TECH ATLANTA

SCHOOL OF INFORMATION AND COMPUTER SCIENCE, 1979.

[46] Offutt, A. Jefferson, and Jie Pan. "Detecting equivalent mutants and the feasible

path problem." Computer Assurance, 1996. COMPASS'96,'Systems Integrity.

Software Safety. Process Security'. Proceedings of the Eleventh Annual Conference

on. IEEE, 1996.

[47] Harman, Mark, Rob Hierons, and Sebastian Danicic. "The relationship between

program dependence and mutation analysis." Mutation testing for the new century.

Springer US, 2001. 5-13.

[48] Ellims, Michael, Darrel Ince, and Marian Petre. "The csaw c mutation tool: Initial

results." Testing: Academic and Industrial Conference Practice and Research

Techniques-MUTATION, 2007. TAICPART-MUTATION 2007. IEEE, 2007.

[49] Grun, Bernhard JM, David Schuler, and Andreas Zeller. "The impact of equivalent

mutants." Software Testing, Verification and Validation Workshops, 2009.

ICSTW'09. International Conference on. IEEE, 2009.

167

[50] Acree Jr, Allen Troy. On Mutation. No. GIT-ICS-80/12. GEORGIA INST OF

TECH ATLANTA SCHOOL OF INFORMATION AND COMPUTER SCIENCE,

1980.

[51] Mathur, Aditya P., and W. Eric Wong. "An empirical comparison of data flow and

mutation‐based test adequacy criteria." Software Testing, Verification and

Reliability 4.1 (1994): 9-31.

[52] Hussain, Shamaila. "Mutation clustering." Ms. Th., King’s College London, Strand,

London (2008).

[53] Faber, Vance. "Clustering and the continuous k-means algorithm." Los Alamos

Science 22 (1994): 138-144.

[54] Mathur, Aditya P. "Performance, effectiveness, and reliability issues in software

testing." Computer Software and Applications Conference, 1991. COMPSAC'91.,

Proceedings of the Fifteenth Annual International. IEEE, 1991.

[55] Offutt, A. Jefferson, Gregg Rothermel, and Christian Zapf. "An experimental

evaluation of selective mutation." Proceedings of the 15th international conference

on Software Engineering. IEEE Computer Society Press, 1993.

[56] Offutt, A. Jefferson, et al. "An experimental determination of sufficient mutant

operators." ACM Transactions on Software Engineering and Methodology

(TOSEM) 5.2 (1996): 99-118.

[57] Jia, Yue, and Mark Harman. "Constructing subtle faults using higher order mutation

testing." Source Code Analysis and Manipulation, 2008 Eighth IEEE International

Working Conference on. IEEE, 2008.

168

[58] Polo, Macario, Mario Piattini, and Ignacio García‐Rodríguez. "Decreasing the cost

of mutation testing with second‐order mutants." Software Testing, Verification and

Reliability 19.2 (2009): 111-131.

[59] DeMillo, Richard A., Edward W. Krauser, and Aditya P. Mathur. "Compiler-

integrated program mutation." Computer Software and Applications Conference,

1991. COMPSAC'91., Proceedings of the Fifteenth Annual International. IEEE,

1991.

[60] Woodward, M. R., and K. Halewood. "From weak to strong, dead or alive? an

analysis of some mutation testing issues." Software Testing, Verification, and

Analysis, 1988., Proceedings of the Second Workshop on. IEEE, 1988.

[61] King, Kim N., and A. Jefferson Offutt. "A fortran language system for mutation‐

based software testing." Software: Practice and Experience 21.7 (1991): 685-718.

[62] Delamare, Romain, Benoit Baudry, and Yves Le Traon. "AjMutator: A tool for the

mutation analysis of AspectJ pointcut descriptors." Software Testing, Verification

and Validation Workshops, 2009. ICSTW'09. International Conference on. IEEE,

2009.

[63] Tuya, Javier, Ma José Suárez-Cabal, and Claudio de la Riva. "Mutating database

queries." Information and Software Technology 49.4 (2007): 398-417.

[64] Ma, Yu‐Seung, Jeff Offutt, and Yong Rae Kwon. "MuJava: an automated class

mutation system." Software Testing, Verification and Reliability 15.2 (2005): 97-

133.

169

[65] Bogacki, Bartosz, and Bartosz Walter. "Evaluation of test code quality with aspect-

oriented mutations." Extreme Programming and Agile Processes in Software

Engineering. Springer Berlin Heidelberg, 2006. 202-204.

[66] Belinfante, Axel, Lars Frantzen, and Christian Schallhart. "14 Tools for Test Case

Generation." Model-Based Testing of Reactive Systems. Springer Berlin

Heidelberg, 2005. 391-438.

[67] Lee, David, and Mihalis Yannakakis. "Principles and methods of testing finite state

machines-a survey." Proceedings of the IEEE 84.8 (1996): 1090-1123.

[68] Barnett, Mike, et al. "Towards a tool environment for model-based testing with

AsmL." Formal Approaches to Software Testing. Springer Berlin Heidelberg,

2004. 252-266.

[69] Stärk, Robert F., Dipl-Inf Joachim Schmid, and Egon Börger. "Abstract State

Machines." Java and the Java Virtual Machine. Springer Berlin Heidelberg, 2001.

15-28.

[70] Grieskamp, Wolfgang, et al. "Conformance testing with abstract state machines."

(2001).

[71] Bochmann, Gregor V., and Alexandre Petrenko. "Protocol testing: review of

methods and relevance for software testing." Proceedings of the 1994 ACM

SIGSOFT international symposium on Software testing and analysis. ACM, 1994.

[72] Gonenc, Guney. "A method for the design of fault detection experiments."

Computers, IEEE Transactions on 100.6 (1970): 551-558.

[73] Chow, Tsun S. "Testing software design modeled by finite-state machines."

Software Engineering, IEEE Transactions on 3 (1978): 178-187.

170

[74] Sabnani, Krishan, and Anton Dahbura. "A protocol test generation procedure."

Computer Networks and ISDN systems 15.4 (1988): 285-297.

[75] Gargantini, Angelo, and Elvinia Riccobene. "ASM-based testing: Coverage criteria

and automatic test sequence generation." Journal of Universal Computer Science

7.11 (2001): 1050-1067.

[76] Clarke, Edmund M., Orna Grumberg, and Doron A. Peled. Model checking. MIT

press, 1999.

[77] Gargantini, Angelo, Elvinia Riccobene, and Salvatore Rinzivillo. "Using Spin to

generate tests from ASM specifications." Abstract State Machines 2003. Springer

Berlin Heidelberg, 2003.

[78] Grieskamp, Wolfgang, et al. "Test case generation from AsmL specifications."

Abstract State Machines 2003. Springer Berlin Heidelberg, 2003.

[79] Pinto Ferraz Fabbri, S. C., et al. "Mutation analysis testing for finite state

machines." Software Reliability Engineering, 1994. Proceedings., 5th International

Symposium on. IEEE, 1994.

[80] Fabbri, Sandra Camargo Pinto Ferraz, et al. "Mutation testing applied to validate

specifications based on statecharts." Software Reliability Engineering, 1999.

Proceedings. 10th International Symposium on. IEEE, 1999.

[81] Batth, Samrat S., et al. "Specification of timed EFSM fault models in SDL." Formal

Techniques for Networked and Distributed Systems–FORTE 2007. Springer Berlin

Heidelberg, 2007. 50-65.

171

[82] Hassine, Jameleddine. "Abstract State Machines Mutation Operators." ICSEA

2012, The Seventh International Conference on Software Engineering Advances.

2012.

[83] Hassine, Jameleddine. "Design and Classification of Mutation Operators for

Abstract State Machines." International Journal On Advances in Software 6.1 and

2 (2013): 80-91.

[84] Hierons, Robert M., and Mercedes G. Merayo. "Mutation testing from probabilistic

and stochastic finite state machines." Journal of Systems and Software 82.11

(2009): 1804-1818.

[85] Li, Jin-hua, Geng-xin Dai, and Huan-huan Li. "Mutation analysis for testing finite

state machines." Electronic Commerce and Security, 2009. ISECS'09. Second

International Symposium on. Vol. 1. IEEE, 2009.

[86] Fabbri, Sandra Camargo Pinto Ferraz, et al. "Mutation testing applied to validate

specifications based on petri nets." Proceedings of the IFIP TC6 Eighth

International Conference on Formal Description Techniques VIII. Chapman &

Hall, Ltd., 1995.

[87] De Souza, Simone Do Rocio Senger, et al. "Mutation testing applied to estelle

specifications." System Sciences, 2000. Proceedings of the 33rd Annual Hawaii

International Conference on. IEEE, 2000.

[88] Ammann, Paul, and Jeff Offutt. Introduction to software testing. Cambridge

University Press, 2008.

[89] Gargantini, A., Calvagna, A., Riccobene, E., Rinzivillo, S., Galati, S.: ATGT: ASM

Tests Generation Tool. http://cs.unibg.it/gargantini/software/atgt/ (2013)

172

[90] Carioni, Alessandro, et al. "A scenario-based validation language for ASMs."

Abstract State Machines, B and Z. Springer Berlin Heidelberg, 2008. 71-84.

[91] Holzmann, Gerard J. "The model checker SPIN." IEEE Transactions on software

engineering 23.5 (1997): 279-295.

[92] Gargantini, Angelo. "Using model checking to generate fault detecting tests." Tests

and Proofs. Springer Berlin Heidelberg, 2007. 189-206.

[93] Calvagna, Andrea, and Angelo Gargantini. "A logic-based approach to

combinatorial testing with constraints." Tests and proofs. Springer Berlin

Heidelberg, 2008. 66-83.

[94] Calvagna, Andrea, and Angelo Gargantini. "Combining satisfiability solving and

heuristics to constrained combinatorial interaction testing." Tests and Proofs.

Springer Berlin Heidelberg, 2009. 27-42.

[95] Woodward, Martin R. "Errors in algebraic specifications and an experimental

mutation testing tool." Software Engineering Journal 8.4 (1993): 211-224.

[96] Rad, Mohsen Falah, and Mohadeseh Moosavi. "Investigation of Improving Test

Data in Mutation Testing by Optimization Methods."

[97] Baier, Christel, and Joost-Pieter Katoen. Principles of model checking. Vol.

26202649. Cambridge: MIT press, 2008.

[98] Gligoric, Milos, et al. "Selective mutation testing for concurrent code."

Proceedings of the 2013 International Symposium on Software Testing and

Analysis. ACM, 2013.

173

[99] Zhang, Lu, et al. "Is operator-based mutant selection superior to random mutant

selection?." Proceedings of the 32nd ACM/IEEE International Conference on

Software Engineering-Volume 1. ACM, 2010.

[100] Zhang, Lingming, et al. "Operator-based and random mutant selection: Better

together." Automated Software Engineering (ASE), 2013 IEEE/ACM 28th

International Conference on. IEEE, 2013.

[101] Mresa, Elfurjani S., and Leonardo Bottaci. "Efficiency of mutation operators and

selective mutation strategies: An empirical study." Software Testing Verification

and Reliability 9.4 (1999): 205-232.

[102] Zhang, Lingming, Darko Marinov, and Sarfraz Khurshid. "Faster mutation testing

inspired by test prioritization and reduction." Proceedings of the 2013 International

Symposium on Software Testing and Analysis. ACM, 2013.

[103] Siami Namin, Akbar, James H. Andrews, and Duncan J. Murdoch. "Sufficient

mutation operators for measuring test effectiveness." Proceedings of the 30th

international conference on Software engineering. ACM, 2008.

[104] Namin, A. Siami, and James H. Andrews. "Finding sufficient mutation operators

via variable reduction." Proceedings of the 2nd Workshop on Mutation Analysis

(MUTATION’06). 2006.

[105] Barbosa, Ellen Francine, José Carlos Maldonado, and Auri Marcelo Rizzo

Vincenzi. "Toward the determination of sufficient mutant operators for C†."

Software Testing, Verification and Reliability 11.2 (2001): 113-136.

[106] http://www.ccse.kfupm.edu.sa/~jhassine/MuAsmetaL/

174

[107] Copeland, Tom. Generating parsers with JavaCC. Alexandria: Centennial Books,

2007.

[108] Gargantini, A., Riccobene, E., Scandurra, P.: ferrymanSimulator AsmetaL

specification. http://cs.unibg.it/gargantini/software/atgt/examples.zip (2013)

[109] Gargantini, A., Riccobene, E., Scandurra, P.: railroadGate AsmetaL specification.

http://cs.unibg.it/gargantini/software/atgt/examples.zip (2013)

[110] Jonsson, Manfred Broy Bengt, Joost-Pieter Katoen Martin Leucker, and Alexander

Pretschner. "Model-Based Testing of Reactive Systems." (2005).

[111] Gargantini, A., Riccobene, E., Scandurra, P.: sluiceGateGround AsmetaL

specification. http://cs.unibg.it/gargantini/software/atgt/examples.zip (2013)

[112] Börger, Egon. "The abstract state machines method for high-level system design

and analysis." Formal Methods: State of the Art and New Directions. Springer

London, 2010. 79-116.

[113] Gargantini, A., Riccobene, E., Scandurra, P.: cruiseControl AsmetaL specification.

http://cs.unibg.it/gargantini/software/atgt/examples.zip (2013)

[114] Kirby, James. Example NRL/SCR software requirements for an automobile cruise

control and monitoring system. Technical report, Wang Institute of Graduate

Studies, 1988.

[115] Gargantini, A., Riccobene, E., Scandurra, P.: AdvancedClock AsmetaL

specification. http://cs.unibg.it/gargantini/software/atgt/examples.zip (2013)

[116] Gargantini, A., Riccobene, E., Scandurra, P.: AdvancedClock2 AsmetaL

specification. http://cs.unibg.it/gargantini/software/atgt/examples.zip (2013)

175

[117] Gargantini, A., Riccobene, E., Scandurra, P.: fattoriale AsmetaL specification.

http://cs.unibg.it/gargantini/software/atgt/examples.zip (2013)

[118] du Bousquet, Lydie, and Michel Delaunay. "Towards mutation analysis for Lustre

programs." Electronic Notes in Theoretical Computer Science 203.4 (2008): 35-48.

176

Vitae

Name :Osama Jamil AlKrarha

Nationality :Jordanian

Date of Birth :11/29/1986

 Email :alkrarha@kfupm.edu.sa

Address :Al Khobar, Eastern Region, Saudi Arabia

Academic Background :Bachelor of Science in Software Engineering, King Fahd

University of Petroleum and Minerals, currently works as research assistant in

research institute at King Fahd University of Petroleum and Minerals.

