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ABSTRACT 

 

Full Name : Osama Jamil AlKrarha 

Thesis Title : Design and Evaluation of Mutation Operators for AsmetaL Language 

Major Field : Master of Science in Software Engineering 

Date of Degree : May, 2014 

 

Abstract State Machines (ASMs) have been introduced by Gurevich in 1984. Abstract State 

Machines aim to bridge the gap between informal and formal descriptions by transforming 

informal specifications to clear and concise specifications. ASM Models are simple, 

concise, and executable. In addition, they support various levels of abstraction, and provide 

a well-defined refinement models. ASMs support concurrent and non-deterministic 

specifications. Several ASM-based languages were proposed to develop and validate 

Abstract State Machines specifications. Asmeta is an interoperable and integrated 

framework that provides a standardized infrastructure that serves different specific domain 

tools and languages. Mutation testing is fault-based testing technique aims to assess the 

adequacy of test suites by introducing errors into program code to reveal the seeded errors. 

This thesis proposes a mutation based approach to test ASM specifications. A set of 

mutation operators were designed for AsmetaL language. The proposed AsmetaL-based 

operators are analyzed and evaluated empirically using several case studies. Furthermore, 

the proposed set of operators have been implemented in MuAsmetaL, an AsmetaL 

mutation testing tool, allowing for validation and execution of mutants, as well as the 

generation of related statistics. As an application of the proposed approach, test suites 

generated using ATGT, an AsmetaL compatible testing tool implementing various 

coverage criteria, were assessed. Mutation testing is known for its high computation cost. 
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In this thesis, both selective and random mutation were applied to AsmetaL mutants 

resulting in substantial gains in terms of effectiveness and cost savings.  
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 ملخص الرسالة

 
 

 أسامة جميل القرارعة :الاسم الكامل
 

 AsmetaLتصميم وتقييم مشغلات الطفرة للغة  :عنوان الرسالة
 

 الماجستير في هندسة البرمجيات درجة التخصص:
 

 4102مايو،  :تاريخ الدرجة العلمية
 

الفجوة  لسد آلات الحالة المجردة تهدفو .4891بواسطة جورفيتش في عام  (ASM) استحدثت آلات الحالة المجردة

موجزة. وواضحة رسمية  لمواصفات رسميةالغير  المواصفات من خلال تحويل غير الرسمية والرسمية المواصفات بين

توفر و التجريد، مختلفة من مستويات تدعم بالإضافة إلى أنها .للتنفيذقابلة وموجزة، و بسيطة ASM نماذجوتعتبر 

 عدة لغات اقتراح تم وقد .غير القطعيةو المتزامنة المواصفاتكل من  ASMsتدعم . وواضحة المعالم صقل نماذج

هي عبارة عن إطار للتشغيل  Asmeta. مجردةال حالةال آلات مواصفات والتحقق من صحة لتطويرل ASM على أساس

تقنية  ةاختبار الطفرعد ويالمتبادل و المتكامل والتي توفر بنية تحتية موحدة تخدم مختلف لغات وأدوات مجال معين. 

من  وذلكإدخال أخطاء في التعليمات البرمجية للبرنامج  تعمد تهدف لتقييم مدى ملاءمة مجموعات الاختبار من خلال

طفرة ال اختبار. وتقترح هذه الرسالة نهج آنفا الأخطاء التى تم إدخالهاعن  تقييم مدى قدرة مجموعة الاختبار الكشف أجل

وتم  .AsmetaLالطفرة للغة  تصمم مجموعة من مشغلاتم ت في هذه الرسالة،. وASMمواصفات تقنية ال على يستند

حة مجموعة المشغلات المقتر، فإن علاوة على ذلكة. وحال دراسات دام عدةباستخ المشغلات تجريبيا هذه تحليل وتقييم

للتحقق من ، مما يسمح AsmetaL الطفرة للغة اختبارلإجراء  أداة ، والتي تعتبرMuAsmetaL فيذها بواسطةتن تم

اختبار  تمجموعالد تم تو، لنهج المقترحل كتطبيقالإحصاءات ذات الصلة. و توليد فضلا عن، الطفرات وتنفيذ صحة

 من المعروفها. ووجرى تقييم المختلفة، التغطية معاييربناء على  AsmetaLة مع لغة متوافقال ATGT أداة باستخدام

ة للغ عشواييةالنتقايية والا طفرةال كل من تم تطبيق، الرسالةهذه  فيو أنه ذا تكلفة حسابية عالية. الطفرة اختبارعن 

AsmetaL  وخفض التكلفة الحسابية حيث الفعالية منلنتايج ايجابية مما أدى. 
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1 CHAPTER 1 

INTRODUCTION 

The demand for high quality software has increased in various fields and disciplines. 

Therefore, it led to an increased focus on the effectiveness of the processes used in the 

software industry. Software testing is considered one of the most critical processes that 

lead to software projects success or failure, therefore, software engineers and researchers 

in this area aim to put more emphasis on the effectiveness of software testing. Software 

testing spans the entire software life cycle from requirements stage to the maintenance 

stage. The magnitude of faults can be reduced if they were detected at the early stages.  

1.1 Motivation 

The typical way to validate unstructured software specifications is through inspection [1], 

which is usually carried out manually and takes considerable time and effort. In contrast, 

the usage of formal specifications reduces such an effort and time, while allowing for 

automated validation. Abstract State Machines (ASMs) [2] is a formal paradigm that has 

proved its merit in many fields such as software requirements engineering, network 

protocols engineering, and system engineering. Handling software requirements using 

Abstract State Machine overcomes the natural language with the following advantages: 

Simplicity, precise semantics, various levels of abstractions, and executability. In addition, 
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it provides a well-defined validation and verification model. Moreover, ASM Models can 

be used to generate portions of the implementation. 

Mutation testing technique is a fault-based technique that has been successfully used to test 

various programming and specification languages. This thesis introduces a new ASM-

based mutation testing approach to assess the adequacy of ASM test suites.  

1.2 Problem Statement 

The goal of this research is to develop a mutation testing approach for AsmetaL, an ASM-

based language. The proposed approach would allow both practitioners and researchers to 

assess and improve the adequacy of AsmetaL test suites. The main goal is decomposed into 

the following sub-goals: 

 Sub-Goal 1: Definition of a set of mutation operators for AsmetaL as a concrete 

incarnation of ASM mutation operators. 

 Sub-Goal 2: Investigation of the applicability of the proposed mutation operators 

to various case studies. 

 Sub-Goal 3: Assessment of the effectiveness of the designed operators. 

 Sub-Goal 4: Investigation the applicability of cost reduction techniques such as 

selective and random mutation in the context of the AsmetaL language. 

  Sub-Goal5: Develop an AsmetaL mutation testing tool that allows for validation 

and execution of mutants and the generation of mutation related statistics. 
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1.3 Research Hypothesis 

The research hypotheses can be formulated as follows: 

 

Research Hypothesis 1: 

Our first research hypothesis is denoted as follows: 

 “Mutation testing can be applied to the Abstract State Machines (ASM) 

formalism. This can be achieved through the design and the application of ASM-

based mutation operators.” 

Research Hypothesis 2: 

Our second research hypothesis is denoted as follows: 

 “ASM-based mutation testing is an effective approach to assess the adequacy of 

ASM-based test suites.” 

Research Hypothesis 3: 

Our Third research hypothesis is denoted as follows: 

 “Mutation-based testing cost reduction techniques, such as selective and random 

mutation can be applied in the context of Abstract State Machines specifications.” 

1.4 Thesis Approach 

Mutation testing has been successfully applied to many programming and specification 

languages. In this thesis, we investigate the application of the mutation testing approach to 

the ASM-based specification language AsmetaL. 
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Figure 1: Thesis tasks workflow 

As shown in Figure 1, this thesis includes, the design and evaluation of mutation operators 

for AsmetaL, the implementation of mutation operator for AsmetaL. In addition, these 

operators will be evaluated empirically using several case studies. Finally, cost reduction 

techniques such as selective-mutation and random mutation are investigated in the context 

of the AsmetaL language.   

1.5 Thesis Contributions 

This thesis offers four main contributions 

1.5.1 Contribution 1: Design and Evaluation of Mutation Operators for 

the AsmetaL Language 

We have proposed a set of 18 operators for the AsmetaL language. The resulting operators 

are categorized into 5 categories targeting different types of AsmetaL faults. Each mutation 

operator is described using a concrete example and analyzed with respect to the produced 
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mutants (e.g.,, valid/invalid, equivalent/non-equivalent, etc.). Furthermore, a mathematical 

characterization of the upper bound of the number of generated mutants is provided for 

each operator. Chapter 4 presents and discusses the set of proposed AsmetaL-based 

mutation operators. 

1.5.2 Contribution 2: Empirical Evaluation of the Proposed Approach 

Our proposed mutation-based approach is evaluated empirically using a set of 7 case 

studies of different sizes. We have shown that mutation testing can be applied effectively 

to ASM-based specifications. Furthermore, as an application of the proposed approach and 

since the only tool, spotted in the literature, that supports the generation of test cases for 

AsmetaL language is ATGT, we have focused on the evaluation of the test suites produced 

using the ATGT coverage criteria. We have shown that some ATGT coverage criteria are 

more adequate than others are. Chapter 6 presents and discusses our empirical experiments.  

1.5.3 Contribution 3: Development of MuAsmetaL 

We have developed a prototype tool (called MuAsmetaL) to perform AsmetaL-based 

mutation testing. The tool presents many features that can be summarized as follows: 

 Generating mutants based on the proposed operators. 

 Validating the correctness of all the generated mutants using AsmetaLc. 

 Validating syntactic equivalency of generated mutants against the original 

specification. 

 Running test cases against the original specification. 

 Running test cases against mutants. 

 Calculating mutation score per operator and for all mutants. 
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 Chapter 5 presents our MuAsmetaL tool. 

1.5.4 Contribution 4: Investigation of Cost Reduction Techniques in the 

ASM Context 

Mutation testing is known to have a high computation cost due to the large number of 

generated mutants. Many techniques have been proposed to reduce the cost of the 

application of mutation testing. In this thesis, we have applied random mutation and 

selective mutation to AsmetaL specifications. As discussed in Chapter 7 , we were able to 

achieve satisfactory results with respect to the resulting mutation score and the cost 

savings.  

 

1.6 Issues not Addressed in this Thesis 

This thesis will not address the following issues: 

 Detection of equivalent mutants: we haven’t proposed any technique to preform 

mutation equivalency analysis. 

 Generation of test cases: The proposed approach aims at providing a useful 

adequacy analysis technique to assess test suite for AsmetaL language. However, 

it does not provide a mechanism to generate test cases. 

 Higher order mutation testing: Only single order mutation testing will be 

addressed in our approach. 

 Applying mutation testing to non-deterministic specifications is out of the scope 

of this thesis. 
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1.7 Thesis Outline 

The remaining parts of the thesis are divided into eight chapters: 

Chapter 2: provides the general background information that sets the stage for our 

proposed approach. It consists of two parts. The first part introduces the background 

information about the basic concepts, notations, and technologies about Abstract State 

Machines (ASM) paradigm. The second part presents the basic definitions of mutation-

based testing methodology. 

Chapter 3: provides an overview of the state of art for testing Abstract State Machines.  In 

addition, it includes a brief overview of formal specification (e.g., FSM, State chart, etc.) 

mutation testing approaches and techniques. 

Chapter 4: provides an in-depth look at our proposed approach including methodology, 

mutation testing operators, empirical evaluation, developed tool, and selective mutation 

criteria. 

Chapter 5: presents an overview of the MuAsmetaL (a tool for mutating AsmetaL syntax, 

developed as a proof of concept) including tool requirements, architecture, screenshots, 

and tool limitations. 

Chapter 6: provides an empirical evaluation of our proposed approach aiming to assess 

the effectiveness of the proposed AsmetaL mutation operators. Several case studies 

adopted from the literature were used in the experiment. 

Chapter 7: applies random mutation and selective mutation to AsmetaL specifications.   
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Chapter 8: recalls the contributions of the thesis. This chapter concludes with some 

directions for future research.  
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2 CHAPTER 2 

Basic Definitions and Notations 

We have to set the stage for our proposed approach by providing a general background 

information. This chapter consists of two parts. First, an introduction to Abstract State 

Machines paradigm including the basic concepts, notations, and technologies. Second, an 

introduction to mutation testing technique including basic definitions and methodology. 

2.1 Abstract State Machines 

 

2.1.1 ASM Thesis 

The concept of Abstract State Machines (ASM) was originally proposed by Gurevich [3] 

in his thesis work back in 1984 that aims to allow the transformation of any sequential 

algorithm into an abstract state machine (referred to as sequential dynamic structure) in 

order to mimic any sequential computational devices. According to an Abstract State 

Machines historical study by Buorger [4], spanning the period from 1984 to 2001, the 

stages of the evolution of abstract state machines can be classified into four different stages. 

(i) The early stages where dynamic structure was proposed by Gurevich to simulate any 

sequential computational devices. (ii) The second stage is when abstract state machines 

were adopted in the industry, because it provides structural and analytical ability. (iii) The 

third stage focused on the ability and efficiency of abstract state machines to build, analyze 

and verify various types of practical applications with various levels of complexity. (iv) 

The fourth stage, which is the current stage, where the use of abstract state machines in 
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software development is noticed, especially using ground model and stepwise refinement 

process which have been used in requirements engineering processes. 

 

2.1.2 ASM in a Nutshell 

The main idea behind ASMs is to eliminate any ambiguity by transforming informal 

specifications to clear and formal specifications using a mathematical representation that 

enforces tractability, reliability, predictability, and quality. Furthermore, ASMs support 

formal verification, validation, and analysis techniques. The ASM concept is used to 

simplify the design of complex systems, such as concurrent and reactive systems. In 

software engineering process, ASM can be applied during the requirements engineering 

phase, the design phase, and testing phase. ASM-based specifications can be used to assess 

the quality of software, provide test oracles [5], and automate the generation test suites. 

Farahbod and Glasser [6] summarized the characteristics of ASMs as follows: i) Simplicity 

and conciseness. ii) Precision .iii) Variant level of abstraction. iv) Evolutionary iv) Well 

defined refinement model vi) Executable. vii) Concurrent and non-deterministic. viii) Well 

defined verification model. The strengths of ASMs are summarized as follows: i) Provides 

a dynamic structural notation. ii) Simple. iii) General purpose and problem independent. 

iv) Flexible level of abstraction. vi) Provides a proof of correctness (through tractability). 

 

A basic ASM rule can be described as follows: 

if guard then rule1 else rule2 end if 
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Where guard is a Boolean condition. Where the rule is a finite set of update function 

defined by the transform terms of ASM. 

 

A basic ASM function can be described as follows: 

f : (t1; t2,…, tn) 

 

There are two types of ASM functions: 

a. Static functions that are not updated during the run time.  

b. Dynamic functions that can be classified into four types: i) Controlled: updated 

only by rules ii) Monitored: updated by the environment iii) Interaction: 

updated by the rules and by the environment iv) Derived function that are 

neither updated by rules nor by the environment. 

Transition Rules 

ASM provides seven types of rules: 

1. Skip Rule: do nothing. 

2. Update Rule: while in next state value of f is updated to S. 

3. Block Rule: R and S are executed in parallel. 

4. Conditional Rule: 

if g the R else S 

If g is true, execute R, otherwise excuse S. 

5. Let Rule: 

Let x = t in R 

Assign value of t to x and execute R. 

6. Forall Rule: 
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forall x with g do R 

Execute R in parallel for each x that satisfies the condition g. 

7. Call Rule: 

r(t1; t2,…, tn) 

Call r with parameters t2,…, tn. 

ASM Types 

Sequential ASMs referred to as ASMs that execute sequential time in a step-by-step 

manner, with non-empty set of sates, non-empty set of initial states and one step 

transformation function while closed under isomorphism [7]. It is proven that for every 

sequential algorithm, there exists a behaviorally equivalent sequential ASMs [8]. Parallel 

ASM is referred to ASMs that execute in sequential global time and have the ability to 

create new parallel components on-the-fly [9]. For every parallel algorithm, it is proven 

that must exist a parallel ASM that is behaviorally equivalent. Distributed ASM consists 

of finitely many single agents sequential ASMs in which it has finitely many predecessors, 

every agent are linearly ordered, and each finite initial segment corresponds to a state. 

2.1.3 ASM Languages 

Many languages were developed as incarnation of ASMs concept, in this subsection, we 

present few of them. 

1. AsmL (Abstract State Machine Language) [10] 

The AsmL [11] language was developed by Microsoft to provide a tool that supports the 

basics of ASM, while being integrated with the Microsoft .Net frameworks. That 

integration is possible because AsmL is designed to comply with meta-modeling. 
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In addition, AsmL can be considered as an executable model that supports automatic 

testing and automatic test case generation. AsmL takes advantage of the well-defined and 

used FSM testing techniques in order to automate the test case generation and evaluation 

processes as mentioned in section 3.1.5.1. AsmL is equipped with a set predefined of data 

type beside that it is fully integrated with all elements of the .NET frameworks such as 

(e.g.,, interfaces, classes, methods and delegates). Moreover, both .Net framework 

languages and AsmL models can call each other natively without any adapter. AsmL 

supports parallel, sequential, deterministic and nondeterministic ASM specification. 

ASML has the ability to handle exceptions similarly to other .Net framework languages. 

Barnett et al. [11] have introduced a model-based testing environment, based on AsmL. 

This environment takes care of parameter generation, FSM generation, sequences 

generation, and runtime execution. 

 

2. CoreASM [12] 

CoreASM, proposed by Farahbod and Glasser [13], provides all basics of ASM and fulfills 

all characteristics mentioned in section 2.1.2. The focus of CoreASM is to support 

extensibility by providing an open source framework offering the basis and foundations for 

third parity tools (e.g., model checkers and test generation tools). It is an extensible 

language that support the extensibility of both language’s syntax and semantics with 

extensible grammar, extensible engine which provides the ability to extend functionality 

and control of ASM, extensible simulator that supports multi agents for distributed abstract 

state machines (multi ASMs that interact with each other and their environment) and a 

library provides additional features. Since it supports extensibility, CoreASM features a 
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micro kernel that support customization based on user needs and domains. However, 

CoreASM suffers from excessive extensibility, which requires a fast multi grammar parser. 

In addition, it does not provide predefine modes (untyped models). 

3. ASM Meta-model [14] 

Combining model driven engineering with ASMs concepts, provides another dimension in 

which it exploits the advantage of meta modeling in term of separation the ASMs 

specifications from language, tool and environment that have been used to develop it. 

Moreover, it enforces the ability of model transformation and provides higher 

interoperability in case of dissimilar languages. According to Gargantini et al. [15] Meta 

model provides a language independent standardized abstract notation for ASMs with an 

intuitive graphical representation of ASMs that act as an interchange policy among 

different ASM tools. In addition, it provides an infrastructure that serves the third party 

tools and languages based on standard libraries and APIs to support interoperability and 

integration among tools. One of the main characteristics of meta modeling approach is its 

readiness for automation. 

3.1. Asmeta [16] 

Asmeta is an interoperable and integrated framework that provides a standardized 

infrastructure (standard libraries, APIs and interchange format) that serves different 

specific domain tools and languages [16]. 
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3.2. AsmM [17] 

AsmM [17]  defines language syntax used to specify ASMs specifications based on Object 

Management Group OMG framework. AsmM is combined with specific domain 

description that specifies the creation, access, interchange and manipulation of ASMs. 

4. ASM SL and ASM Workbench [18] 

ASM workbench [19] is an integrated environment based on ASM specification language 

that supports five main functionalities: ASM basics functionalities delivered by workbench 

kernel, type checking provided by model checker component, simulation by simulators, 

debugging based on debugging GUI and verification provided by model checker. 

Workbench supports parallel and sequential, in addition to, deterministic and non-

deterministic ASM models.  

Original ASM specifications do not support neither static nor universal functions; however, 

ASM Workbench overcomes these issues by deriving these functionalities from ASM 

specification languages. Moreover, the original specifications of ASM were untyped, 

while, ASM workbench supports predefined type as mentioned earlier. In addition, ASM 

workbench is built to be extensible, so that other tools can build on its functions. ASM 

workbench relies on SMV (symbolic model verifier) to preform model checking as shown 

in Figure 2, where the infinite model of ASM is transformed into finite model based on 

fitness constraints before being fed into the model checker. 
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Figure 2: ASM Workbench model verification process 

5. Comparison of ASM environments 

In order to compare the aforementioned ASMs languages/environments, I have proposed 

the following attributes: 

I. Typed: the availability of predefined data types. 

II. Meta-Model: the support of using meta-model. 

III. Integration: the ability to integrate with other tools. 

IV. Test Generation: the ability to automate test cases generation. 

V. Extensible: the ability to extend the environment (syntax and functionality). 

VI. Infrastructure: offering infrastructure for third party tools. 

Table 1 shows the comparison between ASM tools based on the proposed properties. 
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Table 1: Comparison of ASM Programs 
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Original ASM Untyped No No No No No No 

SpecExplorer Typed Yes Yes .Net 

framework 
Yes No No 

CoreASM Untyped No No Third party 

Tools 
No Yes Yes 

Workbench Typed No No No No No No 

Asmeta Typed Yes No Third party 

Tools 
No No Yes 

 

2.1.4 AsmetaL 

AsmetaL [16][20], [21][22] consists of four main sections: i) Header section. ii) Body 

section. iii) Main rule. iv) Initialization section (optional). Figure 3 shows the main 

structure of AsmetaL language and Table 2 provides a simple example of AsmetaL 

specification. The header section includes three sub sections: i) Import clause is an optional 

subsection, which identifies any external module that needs to be included, In addition, it 

allows inclusion of selectable domains, functions, and rules. ii) Export clause is an optional 

subsection, which identifies all portions of the current module that are permitted to be 

imported in other modules. iii) Signature is mandatory subsection in which all domains and 

functions signatures are defined respectively.  
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Figure 3: AsmetaL basic structure 

  

Table 2: AsmetaL simple example 

Header asm example 
import ../STDL/StandardLibrary 
signature : 
monitored value:Integer 
out msg:String 

Body definitions : 

Main Rule main rule r_main = 
 if(value>10) then 
  msg := "greater than 10" 
 else 
  msg := "10 or less" 
 endif 

Initialization default init s0: 
function msg = "" 

 

Typically as shown in Figure 6, a domain is either a concrete domain, which is a sub 

domain of other domain, or a type domain. Type domain is either any domain (the most 

universal domain, all domains are subset of Any Domain, denoted by any), structured 

domain (product domain, sequence domain, powerset domain, bag domain, and map 

domain), enumerator domain, abstract domain, or basic domain as shown in Table 3, Table 

4, Table 5, and Table 6. 
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Table 3: concrete domain signature 

(dynamic)? domain ID_DOMAIN subsetof ID_DOMAIN 

 

Table 4: enumerator domain signature 

enum domain ID_DOMAIN = {Element1, ….., Elementn} 

 

Table 5: abstract domain signature 

(dynamic)? abstract domain ID_DOMAIN 

 

Table 6: basic domain signature 

basic domain ID_DOMAIN 

 

In AsmetaL, a function is considered as an entity that replaces variables in programing 

languages. As shown in Figure 5, a function could be either a basic function or a derived 

function. Basic function consists of static function (cannot be updated during the 

execution), and dynamic function (out function, monitored function, shared function, 

controlled function, and local function), as shown in Table 7. Furthermore, dynamic 

function consists of out function (responsible of output to environment), controlled 

function (only updated by the machine), monitored function (only updated by the 

environment (user), thus, it cannot appear in the left side in update rule), and shared 

function (updated by machine and environment) 

Derived function (the value of derived function depends on the input), as shown in Table 

9, where its value depends on the input.  
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Table 7: static function signature 

static ID_FUNCTION :  ID_DOMAIN ('->' ID_DOMAIN)?  

 

Table 8: dynamic function signature 

local (dynamic)? local ID_FUNCTION : (ID_DOMAIN '->' )? ID_DOMAIN 

controlled 
(dynamic)? controlled ID_FUNCTION : ID_DOMAIN ('->' 

ID_DOMAIN)?: 

Shared (dynamic)? shared ID_FUNCTION :  ID_DOMAIN ('->' ID_DOMAIN)? 

monitored 
(dynamic)? monitored ID_FUNCTION ':' ID_DOMAIN ('->' 

ID_DOMAIN)? 

out (dynamic)? out ID_FUNCTION :  ID_DOMAIN ('->' ID_DOMAIN)? 

 

Table 9: derived function signature 

derived ID_FUNCTION : ID_DOMAIN ('->'  ID_DOMAIN)? 

 

The body section consists of all domains, functions, rules, and invariants definitions 

respectively. Concrete domains and static functions value is set in the definition statements. 

A derived function is defined in term of input. 

There are two main rule declarations supported by AsmetaL language: i) Turbo rule 

declaration, which takes a set of parameters and provide an optional return value in which 

its type is defined in the rule header as shown in Table 11. In addition, they are called using 

parentheses. ii) Macro rule declaration, which takes a set of parameters, but, do not return 

any value and are called using squired brackets as shown in Table 10. When decelerating 

rules the order of declaration matters, in other words, if rule r_a calls r_b, then declaration 
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of r_b must precede the declaration of r_b, thus it is impossible to have recursive call 

between rules e.g., r_a calls r_b and r_b calls r_a. 

Table 10: macro rule declaration 

(macro)? rule ID_RULE ((variable in ID_DOMAIN ( , variable in ID_DOMAIN)*)?) 

 

Table 11: turbo rule declaration 

turbo rule ID_RULE ((variable in ID_DOMAIN ( , variable in ID_DOMAIN)* ))? ( in 

ID_DOMAIN)? '=' rule 

 

The main rule (Table 12) is the rule that will be executed first when running AsmetaL 

specification. It is possible not to specify a main rule in case a module is exported. In 

addition, the initialization section is optional, where the initial states are set. AsmetaL 

allows only a single default state and multiple of non-default state initialization. 

Table 12: main rule declaration 

main (macro)?  rule ID_RULE ((variable in ID_DOMAIN ( , variable in 

ID_DOMAIN)* ))? ( in ID_DOMAIN)? '=' rule 

 

AsmetaL supports around 15 type of rules each for a particular purpose as shown in Figure 

4. Rules are classified into six classes: i) Basic rule includes skip rule (does nothing), macro 

rule call (the call of macro rule declaration), block rule (executes multiple inner rule in a 

parallel manner. Note that it must contains at least 2 rules), conditional rule (executes 

branch rules based on guard condition), choose rule (provides a non-deterministic 

behavior by using an arbitrary term form domain that satisfies the guard condition), forall 

rule (executes do-block rule for all term in a domain that satisfies the guard condition), let 
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rule (executes in-block rule while assigning terms to variables), and extend rule (extends a 

domain with terms). ii) Update rule (updates the value of function. As mention before, the 

machine cannot update the value of monitored function). iii) Turbo return rule. iv) Term 

as rule. v) Derived rule. vi) Turbo rule includes sequence rule (executes multiple inner rule 

in a sequential manner. Note that it must contains at least two rules), iterative rule (loop 

through do-block rule), turbo call rule (the call for turbo rule declaration), and turbo local 

state rule (internal rule used inside turbo rule to return the local state variable). Table 13 

shows the syntax of each type of rules. 

Table 13: AsmetaL rule structures 

Skip skip 

Macro rule 

call 
ID_RULE '[' ( Term ( ',' Term )* )? ']' 

Block par Rule ( Rule )+ endpar 

Conditional if Term then Rule ( else Rule )? endif 

Choose 
choose VariableTerm in Term ( ',' VariableTerm in Term )* with Term 

do Rule ( ifnone Rule )? 

Forall 
forall VariableTerm in Term ( ',' VariableTerm in Term )* ( with Term )? 

do Rule 

Let 
let '(' VariableTerm '=' Term ( ',' VariableTerm '=' Term )* ')' in Rule 

endlet 

Extend extend ID_DOMAIN with VariableTerm ( ',' VariableTerm )* do Rule 

Update ( LocationTerm | VariableTerm ) ':' Term 

Turbo 

return 
( LocationTerm | VariableTerm ) '<-' TurboCallRule 
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Term as 

rule 
FunctionTerm | VariableTerm 

Derived 
whilerec Term do Rule 

while Term do Rule 

Sequence seq Rule ( Rule )+ endseq 

Iterative iterate Rule enditerate 

Turbo call ID_RULE '(' ( Term ( ',' Term )* )? ')' 

Turbo local 

state  
( LocalFunction '[' Rule ']' )+ Rule 

 

AsmetaL supports multiple initializations including a single optional default initialization. 

Each initialization provides the initial state of domains, functions, and agents. AsmetaL 

simulator can handle uninitialized domains, functions, and agents (default values are set to 

undef); however, it is recommended to initialize all predicates. 
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Figure 4: AsmetaL rule types 
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Figure 5: AsmetaL function types 
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Figure 6: AsmetaL domain types 
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For further information about the language structure, please refer to the full language 

grammar (EBNF grammar) [23]. 

 

2.1.5 AsmetaL Tools 

 ASMeta compiler (AsmetaLc) is a text to model complier that parses AsmetaL 

specification in order to check its consistency with respect to itself. It is available 

for download via [24]. 

 ASMeta simulator (AsmetaS) is run-time simulator that executes AsmetaL 

specification modules in a scenario based. It is available for download via [25]. 

 ASMeta validator (AsmetaV) is AsmetaL specification validation tool. It is 

available for download via [26]. 

 ASMeta modelchecker [27][28](AsmetaSMV). It is available for download 

via [29]. 

 ASMEE [30],[31] is an eclipse plugin that add the support of AsmetaL environment 

for eclipse IDE. 

 AsmetaRE [32]. 

 NuSMV [33]. 

 NuSeen [34]. 

 NuSMV model advisor [35]. 

 ATGT [36] is a test generation tool that support generating test suite for Asmetal 

modules based on coverage criteria. 

 ATGT Boolean [37][38] is a test generation tool that enforce optimization for 

efficient test suite generation. 
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 SCA-ASM [39]. 

 

2.2 Mutation Testing  

 

Recently according to Jeevarathinam et al.[40], the interest of research has increased in the 

field of software mutation testing emerged from the importance of software testing process. 

The demand of higher quality of software products increased the need for better testing 

methodologies.  Software testing process aims to detecting bugs in the system-to-be as well 

as increasing the confidence of the end user based on many tasks such as unit testing, 

integration testing, system testing, and specification validation. These tasks share the 

process of designing the test cases is non–trivial task and considered to be subjective task 

due to the fact that different outputs is resulted depending on the human factor involved in. 

Thus, test cases produced by different testers may vary in the level of effectiveness. 

Although there are some testing techniques such as coverage criteria that aims at increasing 

the effectiveness of a test suite, however, it does not consider the testing data selection. 

Hence, there is a subtle need of a systematic methodology to assess the effectiveness of 

test cases.  

 

Mutation testing, was first introduced in 1971 by Lipton [41], aims to provide a numerical 

representation of the adequacy of the test cases (testing suite). Based on two main 

hypotheses, Competent Program Hypothesis [42] which assumes that developers are 

smart people and they try to develop system-to-be in such a way that it is close to correct, 

thus, the typical faults are considered to be miner faults. Based on that hypothesis, it 
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determines how to inspect and test systems in a way that minor faults are more potentially 

to exist; therefore it should be carefully tested. In addition, complex faults are less likely 

to exist. Second, Coupling Effect Hypothesis [43] which assumes that complex faults are 

coupled with minor faults considering that complex faults are decomposed of a set of minor 

faults. In other words, the data selected to detect all miner faults would detect most of the 

complex faults. Thus, the detection and elimination of minor faults would detect and 

eliminate complex faults simultaneously. 

Figure 7 illustrates the typical procedure to generate mutants. Given a program P with a 

test suite T and a set of mutant P’ that does not include P. The typical procedure to generate 

mutants starts by running P against T. It is important that P passes without detecting any 

failure, thus, the fault will not propagate to the generated mutants. The mutants will be 

generated based on a predefined set of operators, which present systematic rules to generate 

mutants. For the first order mutants only a single mutation operator must take place. If T 

able to distinguish P from P’, it is considered that all mutants in P’ are killable and 

eliminated from any further considerations. While the living (non-killable) mutants are 

either mutants that could be killed but the test suite is not sufficient, Therefore, more test 

cases must be add to kill these living mutants or equivalent mutants. The equivalent 

mutants are those mutants that syntactically differ from P but have identical behavior to P. 

More details about equivalent mutants is presented in section 2.2.2. 
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Figure 7: Typical procedure of mutation testing 

2.2.1 Mutation Score 

 

Mutation testing does not measure the presence of potential faults in the system-to-be rather 

than the adequacy of the test suite. The fewer living mutants resulted from preforming 

mutation testing, the more adequate is the test suite. A mathematical representation of that 

concept through mutation score denoted by MS. Mutation score measures the ratio of the 

killable mutants denoted by MK to the all non-equivalent mutants denoted by M-ME. 

Equation 1 shows the mathematical formula of the mutation score. The higher is the 
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mutation score, the more adequate the testing suite. It should be noted that mutation score 

is weighted metric and its value range is [0, 1]. 

𝑀𝑆(𝑃, 𝑇) =
|𝑀𝑘|

|𝑀 − 𝑀𝐸|
 

2.2.2 Equivalency Analysis Techniques 

 

An equivalent mutant ME is a syntactically different from the original program P; however, 

it has the identical behavior of the original program. Thus, no test case exists that can 

distinguish the output/behavior of the original program P from the equivalent mutant ME. 

In order to obtain an accurate mutation score that reflects the adequacy of testing suite, 

equivalent mutant must be eliminated from further process once they have been detected. 

According to Jia et al.[44], the problem of detecting equivalent mutations is generally 

undecidable problem. It could result from many scenarios such as dead code, non-

propagated fault and un-triggered events.  Typically, they are detected manually in which 

it requires a lot of time and effort. Many approaches in the literature have been proposed 

to address the problem of detecting equivalent mutants. 

 

Compiler Optimization Technique, proposed by Baldwin et al.[45], relies on the fact that 

compliers within the process of compiling the code tend to optimize it, as consequent, many 

equivalent mutants are generated from the optimization process. By intercepting the 

optimization process, the number of equivalent mutants will decrease. Offutt et al.[46] 

proposed Constraint Test Data Generation in which the propagation of fault from input to 



32 

 

output of the mutated path is analyzed based on constraints. If the constraints could not be 

realized then the tested mutant is considered as an equivalent mutant.  

Program Slicing Technique [47] based on the conventional procedure, however, it reduces 

the effort required by adopting the idea of slicing the code so that it is easier to analyze 

manually. Syntactic Difference [48] considers the idea of different programs consume 

different resources and have different execution time. Based on these aspects, it could be 

possible to differentiate between the original program P and mutants. 

 

Different Program Behavior [49] distinguishes the original program P from mutants based 

on behavior of the interaction between the program/mutants and its external environment 

rather than output. 

 

2.2.3 Reduction Techniques 

 

Mutation testing generally is considered to be a computationally expensive task. Hundreds 

if not thousands mutations are generated from the original program P. The most expensive 

step is the execution of each mutant against the test suite T. Many techniques have been 

proposed to reduce of the mutation computational cost. Jia [44] classifies them into classes: 

2.2.3.1 Cost Reduction Techniques 

 

The cost reduction techniques reduce the number of mutants that must be tested, however, 

the number of the generated mutant remain identical of the typical procedure. 
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Acree [50] suggested in his PhD dissertation a novel approach called mutation sampling 

technique, which basically runs a random set (x%) of the entire possible mutants against 

the testing suite. The procedure can be summarized as follows: 

1. List all possible mutants. 

2. Randomly select a set of mutants x% of the entire mutants set. 

3. Mutation testing is performed on all mutants in the randomly selected set. 

4. The remaining mutants are discarded. 

Wong and Mathur [51] conducted a study to examine the effectiveness of the sampling 

technique, they suggested that preforming a mutant sampling on rate of 10% is less 

effective than the full mutants testing by 16%.  

 

Hussain [52] proposed in his master’s thesis a novel approach called mutation clustering 

by selecting mutants based on clustering algorithm (K-means and Agglomerative clustering 

algorithms [53]) instead of selecting the mutants randomly. 

1. List all possible mutants. 

2. Apply the clustering algorithm to classify mutants. 

3. Select few mutants from each class. 

4. Mutation testing is performed on the selected mutants. 

5. The remaining mutants are discarded.  
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Comparing this approach with the previous one, mutant clustering resulted in a reasonable 

mutation score, while selecting fewer mutants.    

Unlike the previous approaches, selective mutation approach reduces the number of 

mutants by reducing the set of mutation operators to generate fewer mutants.  

Many of the proposed techniques are based on N-selective mutation, such as 2-Selective 

was proposed by Mathur [54], in which eliminates two operators ASR (array reference for 

scalar variable replacement) and SVR (scalar variable replacement), the number of 

mutants will be decrease significantly. This approach maintains a mutation score of 99.99% 

while the number mutant is decreased by 24%. 

 

In addition, 4-Selective was proposed by Offutt [55], in which eliminates four operators, 

the number of mutants will be decrease significantly. This approach maintains a mutation 

score of 99.84% while the number mutant is decreased by 41%. 

 

The 6-Selective was proposed by Offutt [56], in which eliminates six operators, the number 

of mutants will be decrease significantly. This approach maintains a mutation score of 

88.71% while the number mutant is decreased by 60%. 

 

Wong and Mathur [54] proposed constraints approach in which mutant is generated based 

on ABS (absolute value insertion) and ROR (relational operator replacement) operator. 
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Since, ABS mutants are killed using test cases cover input domain partitions and ROR 

mutants are killed using test cases generated based on the mutant predicate. 

 

Jia and Harman [57] introduced a new approach to mutation testing, in which it finds higher 

order mutants that are rare, valuable and harder to kill. Considering single operator mutant 

is a first order mutant, the higher order mutant is produced by replacing multiple first order 

mutants. As a result, fewer higher order mutants that cover all first order mutants result in 

a same mutation score. 

 

Polo et al.[58] proposed an improved algorithm to generate second order mutant for the 

first order mutant. Their experiment demonstrates that their approach reduces the cost by 

50% while achieving the similar effectiveness test. 

2.2.3.2 Execution Cost Reduction Techniques 

 

This class of mutation reduction focuses on the improving the test execution process to 

reduce the cost of mutation testing. 

 

Strong mutation [43] testing is referred to the process where a mutant is killable if the final 

result of the execution defers than the expected final result of the original program. 
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Weak mutation [59] testing is referred to the process where a mutant is killable if the 

intermediate (state after the execution of the mutant instruction) result defers than the 

intermediate of the original program. Weak mutation testing trades of the cost of execution 

and the effectiveness of mutation testing reduces the effort of fully execution of the 

program, but it reduces the effectiveness of the mutation testing. 

 

Firm mutation [60] testing is referred to the process where a mutant is killable if the 

continues intermediate possibilities in which it combine the strong and weak approaches.  

2.2.3.3 Runtime Optimization Techniques 

 

Interpreter based technique [61] is basically any mutant is generated from the source code 

directly. 

𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 =  ∑ 𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 

The interpreter based technique provides flexibility and efficiency form small programs.  

  

Compiler based technique [62] is basically any mutant is compiled to binary code and then 

it is executed, since the execution of binary code is much faster than the interpreter. 

𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 =  ∑ (𝑐𝑜𝑚𝑝𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 +  𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡) 

Mutant schema technique [63] is basically for all mutants a single super mutant is created 

and complied once with a meat program for each individual original mutant.  
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𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 =  𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑜𝑚𝑝𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 +  ∑ 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 

 

Bytecode translation technique [64] is basically all mutants are derived from the original 

compiled program without the need of any compilation cost of any mutant. This technique 

support applying mutation testing without the need of the source code of the program 

tested. However, it is subjective to the nature of the language itself. 

𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 =  ∑ 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 

 

Aspect oriented mutation [65] is basically preforming mutation testing on the fly, by 

applying two iterations: 

1. Get the result of the original program. 

2. Generate and execute the mutants. 

 

There are other approaches that focus on reducing the execution cost of mutation testing 

based on distributed systems and parallel mutation testing, however, it is not part of scope 

in that research. 
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2.3 Chapter Summary 

 

In this chapter, we have provided a general definition and basic notation for Abstract State 

Machines. In addition, several ASM languages and environments were briefly reviewed 

and compared based on simple comparison criteria. Since our intention is to propose a 

mutation approach for AsmetaL language, we have provided an in-depth review for the 

structure of AsmetaL. The second part of that chapter provides a general notion and 

definition for mutation testing technique, in addition to a review of equivalency analysis 

techniques. 
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3 CHAPTER 3 

Testing Abstract State Machines: State of the Art 

Many techniques have been proposed in the area of Abstract State Machines testing. In this 

chapter, we classified ASM-based techniques into five main categories. i) FSM generation 

from ASM techniques, which uses FSM well, defined testing techniques to test ASM. ii) 

Conformance testing technique to assure that the implementation is corresponding to the 

specification. iii) Coverage criteria for test case generation for ASM. iv) Model checking 

technique to ensure the consistency between implementation and specifications. v) Test 

generation technique based on the aforementioned techniques. In addition, we have spotted 

some works been done in the area of formal specification testing such as FSM, State charts 

etc. 

3.1 Testing Abstract State Machines  

 

3.1.1 Generation of Finite State Machines (FSM) from ASM 

Finite State Machines (FSM) is a computational model that consists of states, transitions, 

input/output. According to Belinfante et al.[66], an ASM can be considered as a 

generalization of an FSM. The main difference mentioned in the literature is that ASM 

could have finite or infinite number of states, while FSM must have finite number of states. 

In many approaches such as ASM testing and ASM test case generation, ASM model is 

transferred into FSM to take advantage of the well-defined analysis techniques [67]. In 
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addition, ASMs tend to have more states compared to FSMs. Unfortunately; the 

transformation process of an ASM to a FSM preserves some of the properties of the ASM 

model but not all of them. 

 

State Exploration 

 

Barnett et al.[68] have proposed an approach that is similar to the fundamentals that model 

checker operates on. It is so-called state space exploring, since it starts from the initial state 

of the ASM model and then explore the next states. Unfortunately, the exploring process 

suffers from the state explosion problem, where the exploring step tries to cover all possible 

next states and end up with infinite possibilities. Thus, the exploring step must be subject 

to prune techniques in order to make the space of exploration manageable. Mostly three 

pruning techniques are used: i) State abstraction where each state in the FSM model 

(concrete state) is mapped to a state in the ASM model (abstract state); the breakpoint is 

when next state is already mapped. ii) Filters techniques are based on removing all states 

that do not comply with certain domain-based conditions before being explored. iii) Model 

coverage technique defines the amount of coverage that must be achieved in order to stop 

exploring. The transformation process starts by generating domain specific parameters, 

which are based on ADF (access driven filter). These parameters are used to identify 

abstraction properties that rule the prune process. The abstraction properties identification 

is manual task and subjective to the experience. 
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Belinfante et al. [66] proposed another technique for reducing the number of states in the 

resulted finite state machine. This technique take advantage of the guard condition; if there 

is an existence of two test cases where one of them results in a true value for the guard 

condition and the other one resulted in false, then that guard condition called 

distinguishable condition. On the other hand, if they do not exist, then the two adjacent 

states, which have the update condition between them, are called equivalent states. By 

merging the adjacent equivalent states into one state called hyper-state, the number of state 

is reduced to finite number. In addition, DNF is another approach, which attempts to 

investigate each clause of the guarded condition. 

 

3.1.2 Conformance Testing 

 

Conformance testing is one of the important types of software testing, where the objective 

of that type of testing is the assurance that the implementation is corresponding to the 

specification. As mentioned in section 2.1.2, ASMs are executable [69], thus, conformance 

testing can be used to validate the conformance of implementations to the specifications. 

According to Grieskamp et al.[70], conformance testing is carried out as shown in Figure 

8 : i) the inputs for conformance testing are specification and implementation. ii) The 

output is that the implementation either conforms or does not conform to specification. 

Originally, the specification is used to derive test cases and the expected behavior. 

Whenever the implementation is completed, these test cases are run against the 

implementation. The conformance of the expected and actual behavior determines if the 

implementation is conformed to the specification. However, ASMs could have infinitely 
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many states, where it is impossible to apply the original conformance testing. Thus, 

conformance testing must be modified to accommodate this dilemma. Generally, there are 

two approaches to preform ASM conformance testing. i) Labeled Transition Systems 

(LTS) – based, and ii) Finite State Machines (FSM) – based. 

Conformance Testing

Specifications

Implementation

ASM executable

“Pass”

Or

“Fail”

 

Figure 8: Conformance Testing Concepts 

 

 

LTS – based 

 

“A labeled transition system is a structure consisting of states with transitions, labeled with 

actions, between them” [70]. Labeled transition systems [71] based testing is one of the 

testing techniques that the conformance testing could be carried out. It can be applied to 

any input – output transition based system. Compared with the FSM based conformance 

testing, it is a general testing approach based on the model specification. In addition, LTSs 

main characteristic is that it does not depend on transforming the ASM model to FSM 

Model in order to perform testing. Thus, the overhead of transformation is eliminated. 

Unlike, the FSM conformance testing which, makes distinguish between input and output 

of the interaction. In order for a transition to be carried out, all participating processes must 
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have a transition at the current state that results in the next state. The Interactions in LTS 

is considered as inputs to the FSM where the outputs of FSM cannot be mapped in to LTS. 

 

According to Grieskamp et al.[70], LTS normally captures the external behaviors of the 

system with it environment, thus, it is a black box testing where it validate the conformance 

of implemented model of the system to the specification model of the system. In addition 

to the deterministic and sequential interactions, LTS supports both nondeterministic (by 

introducing the refusal set which identified by the blocking behavior) and parallel 

interactions. LTS relies on what are so-called conformance relations (interactions of 

interest). Many researches have been conducted to generate test suite for LTS model by 

deriving FSM model, however, the size transitions of FSM model is huge compared with 

LTS model. 

 

FSM – based 

 

Many well-defined techniques to preform conformance testing for the FSM have been 

proposed in the literature. These techniques are not specific to FSM generated from ASM; 

they are general techniques that are applicable to any FSM model. Examples of such 

techniques include D-method [72], W-method [73], U-method [74] and Uv-method [74]. 

The review of these techniques is out of the scope of this research. 
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3.1.3 Coverage Criteria 

 

In typical software testing, the coverage criteria determine the testing requirements that 

achieve full coverage where minimal test cases are generated to fulfill the testing 

requirements. Unfortunately, it is considered as costly and inconvenient. However, 

specification based testing reduces the cost, since, ASMs are executable in its nature as 

mentioned in section 2.1.2, they can be automated to contribute to the testing process and 

reduce the testing cost. ASMs specifications are used to automate the generation of the test 

oracle (expected output), assessment of the adequacy of test suite and generation of testing 

sequence. In order to get the maximum benefit of the testing coverage criteria, it is 

important to get an overview of the existing coverage criteria that are tailored for ASMs 

specifications. Gargantini and Riccobene [75] proposed a classification (from the weakest 

to the strongest) of coverage criteria: 

 

• State Coverage (node coverage): for every state in ASM model, there must be at 

least one testing sequence in which a state is exercised |S|. 

• Rule Coverage: for every rule in ASM model, there must be at least one testing 

sequence in which the rule is fired. 

• Rule Update Coverage: for each rule update for all rules in ASM model, there must 

be at least one testing sequence in which the rule update is fired and the rule update 

is not trivial. 

• Parallel Rule Coverage: for every n-tuple of rules, it must be either unfirable or 

there must be at least one testing sequence that fires all n rules simultaneously. 
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• Strong Parallel Rule Coverage: for every k-tuple of rules, it must be either unfirable 

or there must be at least one testing sequence that fires all k rules simultaneously. 

Where k is 1<=k<=n. 

• Modified Condition Decision Coverage: for each clause Ci of guard condition, there 

must be testing sequences in which Ci is once true and once false, where other 

clauses are fixed and the guard condition is affected(once true and once false). 

• Multiple Condition Coverage: for each and every clause of every guard condition, 

there must be testing sequences in which all combination of clauses is explored 2n. 

 

3.1.4 Model Checking 

 

The basic concept of model checker as described by Clarke et al.[76], is to ensure the 

consistency between implementation and specifications by providing a proof for a certain 

property of a model that is true in any possible state of the model. Originally, the model is 

a finite state model that will be transferred into a Kripke structure, while the specifications 

are a temporal logic expression in the form of either linear expression or branching 

expression. The output of the model checker is one of the following cases: i) Return true, 

that means the property holds for all possible state identified by the temporal logic 

expression. ii) Return false, with counter example in which a state violates the temporal 

logic expression for that property. iii) No conclusion, in some cases the model checker 

suffers from state explosion problem in which it will try to cover all possible execution and 

ends up with infinite number of possibilities that will consume all of the available 

resources. 
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The model checking technique [77] is considered to be computationally expensive due to 

the state exploring process that may lead to infinite possibilities (state explosion). Thus, it 

does not support ASMs specification natively, since ASM is infinite in its nature. Many 

works have been done to extract FSM models from ASM (see section 3.1.1) to take 

advantage of the existing techniques provided by model checking. 

 

3.1.5 ASMs Test Case Generation 

3.1.5.1 FSM-based 

 

This approach [68] is based on AsmL which supports generation of FSMs from ASM 

specification as discussed in section 3.1.1. The process of generating a test suite implies 

traverse all the states of FSM starting by the initial state and ending by the same initial 

node based on Chinese postman tour algorithm. Unfortunately, the resulted test suite only 

archives node based coverage, which is considered as a weak coverage criteria. Grieskamp 

et al. [78] discussed another approach based on FSM which generates test cases using a 

graph reachability algorithm to explore nondeterministic FSM state space controlled by the 

original AsmL meta-programming. This technique implies a depth-first search algorithm 

starting at the initial state. 
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3.1.5.2 Model Checking-based (for coverage criteria) 

For coverage criteria where the testing requirements are defined, a model checking based 

technique (see section 3.1.3) can be used. Model checking is a widely used technique in 

the FSM realm in which it shows whether a certain properties can hold in all possible states. 

Generally, a model checker takes a model and a specification as input, and examines all 

possibility based on state explosion mechanism [97]. The idea of using model checker lies 

in the fact that model checker provides a counter example [75]. However, model checking 

based technique is considered to be computationally expensive. Moreover, model checking 

operates on finite space domain, while, ASMs specification could be infinite in domain 

space [77]. 

3.2 Mutation Testing of Formal Specifications 

Although mutation testing has mostly been applied at the source code level, it has also been 

applied to formal specifications [44]. Fabbri et al.[79] have applied specification mutation 

to validate specifications based on Finite State Machines (FSM). They have proposed 9 

mutation operators, representing faults related to the states (e.g.,, wrong-starting-state, 

state-extra, etc.), transitions (e.g.,, event-missing, event-exchanged, etc.) and outputs (e.g.,, 

output-missing, output-exchanged, etc.) of an FSM. Fabbri et al.[80] have defined mutation 

operators for Statecharts, an extension of FSM formalism, while Batth et al.[81] have 

applied mutation testing to Extended Finite State Machines (EFSM) formalism. In the 

ASM context, Hassine [82], [83] has defined a set of generic mutation operators for 

Abstract State Machines. The proposed operators have been classified into three main 

generic classes: (1) ASM domain mutation operators, (2) ASM function update mutation 
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operators, and (3) ASM transition rules mutation operators. In this work, we refine the 

ASM-based operators introduced in [83] to accommodate the AsmetaL language.  

Hierons and Merayo [84] have investigated the application of mutation testing to 

Probabilistic (PFSMs) or stochastic time (PSFSMs) Finite State Machines. The authors 

have defined new mutation operators representing FSM faults related to altering 

probabilities (PFSMs) or changing its associated random variables (PSFSMs) (i.e., the time 

consumed between the input being applied and the output being received). 

Formal specification languages to which mutation testing has been applied include Finite 

State Machines [79],[84], and [85], Statecharts [80], Petri Nets [86], and Estelle [87]. 

Fabbri et al.[79] have applied specification mutation to validate specifications based on 

Finite State Machines (FSM). They have proposed 9 mutation operators, representing faults 

related to the states (e.g.,, wrong-starting-state, state-extra, etc.), transitions (e.g.,, event-

missing, event-exchanged, etc.) and outputs (e.g.,, output-missing, output-exchanged, etc.) 

of an FSM. In a related work, Fabbri et al.[80] have defined mutation operators for 

Statecharts, an extension of FSM formalism, while Batth et al.[81] have applied mutation 

testing to Extended Finite State Machines (EFSM) formalism. 

3.3 Chapter Summary 

 

In this chapter, we presented, in the first part, Abstract State Machines testing state of the 

art including the generation of FSM from ASM specifications, ASM conformance testing, 

test case generation coverage criteria, ASM model checking. In addition, we reviewed 
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FSM-based, and model checking based test case generation techniques.  In the second part, 

we spot some of the formal specification mutation testing works.   
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4 CHAPTER 4 

AsmetaL Mutation Testing Approach 

In this chapter, we present our AsmetaL mutation testing approach. We describe the 

proposed mutation testing methodology, and the proposed set of mutation operators for the 

AsmetaL language. In addition, we evaluate our set of operators experimentally using a set 

of case studies of different sizes.  

4.1 AsmetaL Mutation Testing Approach 

 

Figure 9 illustrates our AsmetaL mutation testing approach. Six main tasks were 

conducted: 

Task 1: Generate initial test suite T for AsmetaL specification P using ATGT tool (A test 

generation tool) and set a mutation score threshold. 

Task 2: Run T against P to detect any fault, thus, assure elimination of any propagated 

fault to the generated mutants.  

Task 3: Generate mutants P’ (automated) from P based on the proposed mutation 

operators. 

Task 4: Run the initial test suite against P’ (automated). All killed mutants will be 

discarded from any further processing, therefore, only live mutants will be considered for 

the next steps.  

Task 5: Perform equivalency analysis (manual) on live mutants, in order to eliminate 

equivalent mutants from any further processing. 
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Task 6: Generate more test cases and add them to T in order to kill living non-equivalent 

mutants. 

Task 7: Run generated test cases against P’. 

Repeat Steps 6 and 7 until mutation score threshold is achieved. 
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Figure 9: AsmetaL mutation testing procedure 

4.1.1 Design of mutation operators 

Our designed AsmetaL-based mutation operators will follow the principles provided 

by [95] in which only first order mutation testing will be considered and all of the generated 
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mutants are syntactically correct. In addition, mutation operators will address potential 

faults.  

 

 This phase includes the following tasks: 

1. Investigate ASM fault classes. 

2. Design mutation operators based on AsmetaL syntax’s. 

3. Investigate the validity of each operator. 

Assumptions: 

 This study considers first order mutants only. 

 This study considers mutation operators that produce syntactically correct mutants. 

 Only potential faults resulting from (the defined classes of faults) will be addressed 

by this study. 

The proposed approach relies on a three steps generation process as shown in Figure 10. 

Step 1: Create Mutant M. 

Step 2: Validate syntax of M using AsmetaLc. 

Step 3: Check S ≠ M syntactically. Where S is the original specification. 
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Figure 10: Mutant generation process 

4.1.2 AsmetaL mutation tool design and implementation 

MuAsmetaL is name of prototype tool that will be developed during this research. It will 

be both command line and GUI java based tool that will give the user the ability to 

view/edit AsmetaL specifications, parse specifications, run the specifications, and generate 

mutants and execute them. 

 

4.1.3 Empirical evaluation of the proposed approach 

We intend to validate theoretically the research hypothesis by developing the proposed 

approach. Different theories and techniques are involved in the support of the proposed 

verification cycles of Figure 9. Some of them, such as Mutation testing, equivalency 
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analysis, and test case generation already exist. Others are still to be developed as part of 

this research: 

 Design of the AsmetaL mutation operators. 

 Apply the proposed operators (automatically). 

 Design of test oracle for AsmetaL (verdict on passing/failing test cases). 

 Implementation of the MuAsmetaL Tool (CLI and GUI). 

We intend to validate our approach through its application to a wide range of AsmetaL 

specifications. 

 

4.1.4 Selective mutation 

Mutation testing is known for its high computational cost. In order to reduce the 

computation cost a selective set of mutants will be chosen based on two criteria: i) level of 

effectiveness achieved. ii) Reduction of computation cost. 

 

The empirical data collected from empirical evaluation is used to assess the effectiveness 

of applying selective-based and random mutation testing. This would allow for 

computation cost reduction, without affecting the effectiveness of the proposed 

methodology. 

 

4.2 AsmetaL Mutation Operators 

Mutation operator is a rule in which it governs the way fault is injected into the original 

specification to produces mutants. Typically, each operator tends to cover a real potential 

fault that might exist in the original specification. In order to generate mutants, we have to 
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define each mutation operator. The defined set operators must provide a complete coverage 

all of the aspects of AsmetaL grammar and to including all of the language constructs. We 

have classified AsmetaL mutation operators into 5 different classes as follows: 

4.2.1 Function mutation operators 

AsmetaL functions are classified into static (not updated at run-time), derived (its return 

value is subjected to its inputs), and dynamic. Dynamic functions are further classified as 

monitored, controlled, shared, out, and local. Local dynamic are declared and used only in 

the scope of a turbo transition rule with local state. An AsmetaL function can be mutated 

using: 

 Function Type Permutation Operator (FTP) (Table 14). FTP operator replaces a 

dynamic function type with other types (e.g.,, controlled, monitored, shared, out). 

It is worth noting that if a controlled/shared/out function appears in the left hand 

side of an update rule, then mutating the function type to monitored would produce 

an invalid mutant. Mutate function types from static/derived to dynamic and vice 

versa would produce invalid mutants. 

 

Table 14: FTP operator example 

Operator Original AsmetaL code Mutant AsmetaL code 

FTP controlled value : Integer monitored value: Integer 

 

4.2.2 Rule mutation operators 

We define 28 rule-based mutation operators for the AsmetaL language (Table 15): 
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 Rule Guard Condition Replacement Operator (RGCR): Replaces a guard 

condition with another existing guard condition. The application of the operator 

may result into invalid mutants in case the new guard has undefined variables in 

the current scope.  

 Then Rule Replacement Operator (TRR): Replaces then rule with an existing 

rule (except variable and function terms). 

 Else Rule Replacement Operator (ERR): Replaces the else rule with an existing 

rule (except variable and function terms). 

 Main Rule Replacement Operator (MRR): Replaces the main rule declaration 

with an existing macro rule declaration. 

 Parallel Block to Sequence Operator (PB2S): Converts a block rule to a sequence 

rule. 

 Sequence to Parallel Block Rule Operator (S2PB): Converts a sequence rule to 

a block rule. S2PB operator may lead to inconsistent updates. It is worth noting that 

the parser can discover only trivial inconsistent updates (for example a function 

whose value is modified by two parallel instructions in the same rule). The other 

inconsistent updates will occur at run-time. 

 Add Rule Operator (ARO): Adds an existing rule to a block rule or to a sequence 

rule. 

 Replace Rule Operator (RRO): Replaces a rule within a block or a sequence rule 

with an existing rule (except variable and function terms). 
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 Sequence Block Statement Deletion Operator (SBSDL): Removes a single rule 

from a block or a sequence rule. At least three rules should exist in the 

block/sequence rule. 

 Sequence Rule Order Permutation Operator (SSM): Exchanges the order of a 

pair of rules in a sequence rule. 

 Choose DoRule Replacement Operator (CDoR): Replaces the rule defined in a 

choose rule with an existing rule having the same type. 

 Choose IfNoneRule Replacement Operator (CIR): Replaces ifnone rule in a 

choose rule with an existing rule having the same type. 

 Choose Rule Exchange Operator (CRE): Exchanges the do rule with the ifnone 

rule. In case ifnone rule is not defined, the do rule is duplicated to serve as the 

ifnone. Applying CRE may produce invalid mutants in case the chosen variable 

does not exist within the scope of the do block. 

 Choose Domain Replacement Operator (CDR): Replaces one domain of the 

choose rule by a compatible one (e.g.,, different integer sub-domain). 

 Forall DoRule Replacement Operator (FDoR): Replaces the do block defined in 

a forall rule. 

 Forall Choose Rules Permutation Operator (FCRP): Replaces forall rule with a 

choose rule and vice versa. The difference between both types of rules is that: 

o Choose rule assigns to each variable an arbitrary value from domain that 

satisfies the guard condition in order to substitute it in the do block. 

o Forall rule assigns to each variable all values from domain that satisfies the 

guard condition in order to substitute it in the do block. 
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 Rule to Skip Rule Operator (RTS): replaces a non-skip rule with the skip rule. 

 Stuck Switch to Specific Case Operator (SSSC): Mutate the selector of a switch 

case rule to force the execution of a specific case. 

 Switch Case Permutation Operator (SCP): Exchanges a pair of switch case rules 

in case rule. 

 Case Rule Replacement Operator (CRRO): Replaces the selected rule to be 

executed as part of a case selection by another existing rule. 

 Delete Switch Case Operator (DSC): Deletes a single case from a case rule.  

 Let Rule Variable Assignment Operator (LRVA): Assigns a different term to a 

variable within a let rule.  

 Let Rule Replacement Operator (LRR): Replaces the in-block rule by any 

existing rule. 

 Let Rule Variable Replacement Operator (LRVR): Replaces a variable within a 

let rule by an existing variable term. 

 Extend Domain Replacement Operator (EDR): Replaces a domain of the extend 

rule by a compatible one (e.g.,, different abstract domain). 

 Extend Rule Replacement Operator (ERRO): Replaces do block by any existing 

rule in extend rule. 

 Extend ID Replacement Operator (EIR): Replaces variable, in which domain is 

add universe of domain, by any existing rule.  
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Table 15: turbo rule operator’s examples 

Operator Original AsmetaL code Mutant AsmetaL code 

RGCR choose $v in Interval with $v>10 

do r_rule[$v] 

choose $v in Interval with $v=10 

do r_rule[$v] 

TRR if $a=10 then r_ruleA[] if $a=10 then r_ruleA[] 

ERR if value=10 then r_ruleA[] else 

r_ruleB[] endif 

if value=10 then r_ruleA[] else 

r_ruleC[] endif 

MRR main rule r_main = r_travel[] main rule r_main = r_rule[] 

PB2S par r_ruleA[] r_ruleB[] endpar seq r_ruleA[] r_ruleB[] endseq 

S2PB seq r_ruleA[] r_ruleB[] endseq par r_ruleA[] r_ruleB[] endpar 

Declarations needed for the examples: 

Signature: 

domain Interval subsetof Integer 

domain IntervalB subsetof Integer 

dynamic abstract domain Products 

dynamic abstract domain Person 

Definitions: 

domain Interval= {1..10}  

domain IntervalB= {1..11} 
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ARO par r_ruleA[] r_ruleB[] endpar par r_ruleA[] r_ruleB[] r_ruleC[] 

endpar 

RRO seq r_ruleA[] r_ruleB[] endseq seq r_ruleC[] r_ruleB[] endseq 

SBSDL par r_ruleA[] r_ruleB[] r_ruleC[] 

endpar 

par r_ruleA[] r_ruleB[] endpar 

SSM seq r_ruleA[] r_ruleB[] endseq seq r_ruleB[] r_ruleA[] endseq 

CDoR choose $v in Interval with r_ruleA[] choose $v in Interval with r_ruleB[] 

CIR choose $v in Interval with $v>10 

do r_ruleA[] ifnone r_ruleB[] 

choose $v in Interval with $v>10 

do r_ruleA[] ifnone r_ruleC[] 

CRE choose $v in Interval with $v>10 

do r_ruleA[] ifnone r_ruleB[] 

choose $v in Interval with $v>10 

do r_ruleB[] ifnone r_ruleA[] 

CDR choose $v in Interval with $v>0 do 

r_ruleA[$v] 

choose $v in IntervalB with $v>0 

do r_ruleA[$v] 

FDoR forall $v in Interval with $v>10 do 

r_ruleA[] 

forall $v in Interval with $v>10 do 

r_ruleC[] 

FCRP forall $v in Interval with $v>10 do 

r_rule 

choose $v in Interval with $v>10 

do r_rule 

RTS seq r_ruleA[] r_ruleB[] endseq seq r_ruleA[] skip endseq 
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SSSC switch($a) 

case 1: r_ruleA[] 

case 2: r_ruleB[] 

endswitch 

switch(1) 

case 1: r_ruleA[] 

case 2: r_ruleB[] 

endswitch 

SCP switch($a) 

case 1: r_ruleA[] 

case 2: r_ruleB[] 

endswitch 

switch($a) 

case 1: r_ruleB[] 

case 2: r_ruleA[] 

endswitch 

CRRO switch($c) 

 case 1 : r_ruleA[] 

 case 2 : r_ruleB[] 

endswitch 

switch($c) 

 case 1 : r_ruleC[] 

 case 2 : r_ruleB[] 

endswitch 

DSC switch($a) 

case 1: r_ruleA[] 

case 2: r_ruleB[] 

case 3: r_ruleC[] 

endswitch 

switch($a) 

case 2: r_ruleB[] 

case 3: r_ruleC[] 

endswitch 
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LRVA let ($value = 5) in  

r_ruleA[$value] 

endlet 

let ($value = 10) in  

r_ruleA[$value] 

endlet 

LRR let ($value = 5) in  

r_ruleA[$value] 

endlet 

let ($value = 5) in  

r_ruleB[$value] 

endlet 

LRVR let ($value= 5) in  

r_ruleA[] 

endlet 

let ($x= 5) in  

r_ruleA[] 

endlet 

EDR extend Products with $p do 

value:=$p 

extend Person with $p do value:=$p 

ERRO extend Products with $p do 

value:=$p 

extend Products with $p do 

r_ruleA[] 

EIR extend Products with $p do 

r_ruleA[] 

extend Products with $c do 

r_ruleA[] 

 

 

 



64 

 

4.2.3 Term mutation operators 

Depending on the type of operands, traditional operators (Table 16) [79] such as Arithmetic 

Operator Replacement (AOR), Logical Operator Replacement (LOR), Relational Operator 

Replacement (ROR), and Unary Operator Insertion (UOI) can be applied (Table 4): 

 Arithmetic Operator Replacement (AOR): Replaces arithmetic operators with 

other types (e.g.,, +, -, *, /). 

 Unary Operator Insertion (UOI): Inserts unary operators (+, -), in integer term, 

real term, natural term, complex term, in addition to function calls returning the 

following types: Integer, Real, Natural, Complex. 

 Logical Operator Replacement (LOR): Replaces logical operators with other 

types (e.g.,, and, or, xor, implies, iff). 

 Relational Operator Replacement (ROR): For basic types, it replaces the 

relational operator = by ! = and vice versa. For Integer, Real, Natural, and Char 

domains, it replaces any relational operator with other types (e.g.,, <, <=, >, >=, =, 

! =). 

 Expression Negation Fault (ENF): Applies negation to guard conditions enclosed 

within: conditional term guards, exist term guards, forall term guards, choose rule 

guards, etc. 

 Literal Negation Fault (LNF): Applies negation to single Boolean term or 

function term with Boolean return type. 

 Stuck at True False (STF): Replace guard conditions by true and false. 

 Absolute Value Operator (ABS): Inserts the absolute value function to Integer 

and Real Terms functions return type and constants. The application of this operator 
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may results in equivalent mutant, in case of applying it to a positive constant, 

variable, or function. 

Table 16: Traditional rule mutation operators examples 

 Operator Original AsmetaL code Mutant AsmetaL code 

AOR value := $a + $b value := $a - $b 

UOI value := $a * $b value := $a * -$b 

LOR if ($a and $b) if ($a or $b) 

ROR if ($a < $b) if ($a > $b) 

ENF if ($a and $b) if not($a and $b) 

LNF if(valid and correct) if(not valid and correct) 

STF if ($a and $b) if (true) 

ABS hours := (hours+ 1) mod 3 hours := (abs(hours)+ 1) mod 3 

 

In addition, we have defined the following operators (Table 17) for AsmetaL terms: 

 Finite Quantification Terms Permutation (FQTP): Replaces finite quantification 

terms (exit, exist unique, forall term) with other types. It is worth mentioning that 

the difference between the three kinds lies in: 

o exist term returns true if at least single term exists, that satisfies the guard 

condition. Otherwise, it returns false. 
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o exist unique term returns true if there is only a single term exists that 

satisfies the guard condition. Otherwise, it returns false. 

o forall term returns true if there all terms satisfy the guard condition. 

Otherwise, it returns false. 

 Term Guard Condition Replacement Operator (TGCR): Replaces a guard 

condition with another existing guard condition. The application of the operator 

may result into invalid mutants in case the new guard has undefined variables in 

the current scope. 

 Then Term Replacement Operator (TTR): Replaces then term with any existing 

term.  

 Else Term Replacement Operator (ETR):  Replaces else term by any existing 

term.  

 Finite Quantification Term Domain Replacement Operator (FQTDR): 

Replaces one domain in a finite quantification term by a compatible one (e.g.,, 

different integer sub-domain). 

 Constant Term Replacement Operator (CTR): Replaces a constant term by an 

existing term of the same type (e.g.,, Integer, Real, Complex, Char, Natural, String, 

Boolean). 

 Constant Term Modification Operator (CTM): Modifies a constant term by a 

user input having the same type. Although the user should provide the input, the 

mutant is still produced automatically. 

 Case Term Replacement Operator (CTRO): Replaces the selected term to be 

executed as part of a case selection by another existing term. 
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Table 17: Asmetal term operators examples 

Operator Original AsmetaL code Mutant AsmetaL code 

FQTP (exist $r in Integer with $r>0) (exist unique $r in Integer with 

$r>0) 

TGCR (exist $r in Integer with $r>0) (exist $r in Integer with $r>0) 

TTR if $value=5 then 10  endif if $value=5 then 25  endif 

ETR if $value=5 then 10  else 20 endif if $value=5 then 10  else 25 endif 

FQTDR (forall  $v in Coordenate with 

isvalid($v)) 

(forall  $v in Point with isvalid($v)) 

CTR value := 10 value := 20 

CTM value := 10  value := 20 (User Input) 

CTRO switch($c) 

 case 1 : 1 

 case 2 : 2 

endswitch 

switch($c) 

 case 1 : 3 

 case 2 : 2 

endswitch 
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4.2.4 Invariant mutation operators 

Invariants are used to express constraints over functions and rules. We define the following 

two operators (Table 18): 

 Invariant Condition Replacement (ICR): Replaces the invariant condition with 

any existing invariant condition. 

 Invariant Declaration Deletion (IDD): Deletes the invariant declaration 

statement. 

 

Table 18: ICR and IDD operators examples 

Operator Original AsmetaL code Mutant AsmetaL code 

ICR invariant over position: 

position(WO)=position(GO) 

invariant over position: 

position(WO)!=position(GO) 

IDD invariant over position: 

position(WO)=position(GO) 

// invariant over position: 

// position(WO)=position(GO) 

 

4.2.5 Initialization mutation operators 

We have defined three operators (Table 19) to mutate AsmetaL initialization section: 

 Default Initialization Replacement Operator (DIR): Choose a different default 

initialization (in case of multiple initializations) using the keyword default. Only a 

single Optional default initialization is allowed.  

 Initialization ID Permutation Operator (IIP): Permutes the Ids of two 

initialization blocks (i.e., init block).  
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 Initialization Statement Deletion Operator (ISD): Deletes a single initialization 

statement. 

 

Table 19: AsmetaL initialization operators examples 

Operator Original AsmetaL code Mutant AsmetaL code 

DIR default init s0:     

 function signal = true 

 function seconds = 10 

init s1:     

 function signal = false 

 function seconds = 0 

init s0:     

 function signal = true 

 function seconds = 10 

default  init s1:     

 function signal = false 

 function seconds = 0 

IIP init s0:     

 function signal = true 

 function seconds = 10 

init s1:     

 function signal = false 

 function seconds = 0 

init s0:     

 function signal = false 

 function seconds = 0 

init s1:     

 function signal = true 

 function seconds = 10 

ISD init s1:     init s1:     
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 function signal = false 

 function seconds = 0 

 function signal = false 

 //function seconds = 0 

 

4.3 Generation of Test Cases 

 

For the purpose of applying mutation testing, it is necessary to generate test suites that will 

be the nucleus of the empirical evaluation. The used test suites must be constructed based 

on effective coverage criteria. In addition, the fact that test suit generation is not covered 

by the scope of this study, we use ATGT [89] (a test generation tool for AsmetaL 

specifications that supports structural, fault based, and combinatorial coverage) in order 

to generate test cases from our specification under test S. We run the obtained test suite 

against the set of generated mutants using the AsmetaV [90] tool. An ATGT test case, 

written in ASM Validation Language (AVaLLA) [90], specifies the interaction steps 

between the system and its environment as well as performs correctness checks (e.g.,, 

function values) at each step. Table 20 shows an example of AVaLLA test case, while 

Table 21 illustrates the results of that very test case. A given test case, part of the test suite, 

is said to kill a mutant if the output produced by the mutant is different from the expected 

output produced by the original AsmetaL specification. Hence, the test case is good enough 

to detect the change between the original and the mutant AsmetaL specification. It should 

be noted that the proposed approach is applicable for manual test case generation as well.  

Table 20: AVaLLA test case example (.test) 

Scenario Name scenario UR8 
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Load specification under test load ../../../TicTacToeXATGT.asm 

Initial Step # 1 

Set and check function values 

Note that set function is used as update 

rule. In addition, set function can use some 

of AsmetaL constructs  

While check function is used as assertion 

function 

set userSelCol := 0; 

set methodCalled := USER_MOVE; 

check numOfMoves = 0; 

set userSelRow := 0; 

check res = PLAYING; 

check status = TURN_USER; 

Step is used to go to the next state step 

Step # 2 set methodCalled := 

COMPUTER_MOVE; 

check numOfMoves = 1; 

check board(0) = CROSS; 

set userSelRow := 2; 

check status = TURN_PC; 

Step is used to go to the next state step 

Step # 3 check board(1) = NOUGHT; 

check numOfMoves = 2; 

check status = TURN_USER; 

 

 

Table 21: AVaLLA test case results generated by AsmetaV 

** Simulation ** 

check succeeded: numOfMoves = 0 

</State 2 (controlled)> 

check succeeded: board(1) = NOUGHT 
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check succeeded: res = PLAYING 

check succeeded: status = TURN_USER 

<State 1 (controlled)> 

board(0)=CROSS 

methodCalled=USER_MOVE 

numOfMoves=1 

result=1 

status=TURN_PC 

step__=1 

userSelCol=0 

userSelRow=0 

</State 1 (controlled)> 

check succeeded: numOfMoves = 1 

check succeeded: board(0) = CROSS 

check succeeded: status = TURN_PC 

<State 2 (controlled)> 

board(0)=CROSS 

board(1)=NOUGHT 

methodCalled=COMPUTER_MOVE 

numOfMoves=2 

result=1 

status=TURN_USER 

step__=2 

userSelCol=0 

userSelRow=2 

check succeeded: numOfMoves = 2 

check succeeded: status = TURN_USER 

<State 3 (controlled)> 

board(0)=CROSS 

board(1)=NOUGHT 

methodCalled=COMPUTER_MOVE 

numOfMoves=2 

result=1 

status=TURN_USER 

step__=3 

userSelCol=0 

userSelRow=2 

</State 3 (controlled)> 

<State 4 (controlled)> 

board(0)=CROSS 

board(1)=NOUGHT 

methodCalled=COMPUTER_MOVE 

numOfMoves=2 

result=1 

status=TURN_USER 

step__=3 

userSelCol=0 

userSelRow=2 

</State 4 (controlled)> 

 

ATGT translates AsmetaL specification into Spin model-checker [91] in order to use the 

produced counter examples to generated test cases. ATGT provides several coverage 

criteria to generate test cases. It includes structural coverage such as basic rule coverage, 

update rule coverage, and MCDC Coverage (see section 3.1.3). In addition, it provides the 

following criteria: 

 Fault-based Coverage [92]: aims at generating test cases based on fault injection in 

guard condition including the following operators LNF, ENF, MLF, ST0/1, ASF, 

ORF, and ROF. 
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 Pair-wise Coverage [93]: aims at validating each possible pair of input values by 

applying constraints over the input domain. 

 Three-wise Coverage [94]: aims at validating t-wise of input values by applying 

constraints over the input domain, where t is equal to 3. 

4.4 Analysis of the proposed operators 

In this section, we characterize mathematically the upper bound of the number of produced 

mutants for each operator. 

Number of mutant (upper bound) 

Table 22 presents the upper bound for each operator. 

Table 22: The upper bound for the number of generatred mutants per operator. 

Operators Upper Bound 

FTP |𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑠|  ∗  3 

RGCR |𝑟𝑢𝑙𝑒 𝑔𝑢𝑎𝑟𝑑 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠|  ∗  (|𝑢𝑛𝑖𝑞𝑢𝑒 𝑔𝑢𝑎𝑟𝑑 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠|  −  1) 

TRR |𝑡ℎ𝑒𝑛 𝑟𝑢𝑙𝑒𝑠|  ∗  (|𝑢𝑛𝑖𝑞𝑢𝑒 𝑟𝑢𝑙𝑒𝑠|  − 1) 

ERR |𝑒𝑙𝑠𝑒 𝑟𝑢𝑙𝑒𝑠|  ∗  (|𝑢𝑛𝑖𝑞𝑢𝑒 𝑟𝑢𝑙𝑒𝑠|  − 1) 

MMR |𝑚𝑎𝑐𝑟𝑜 𝑟𝑢𝑙𝑒 𝑑𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛𝑠|  −  1 

PB2S |𝑏𝑙𝑜𝑐𝑘 𝑟𝑢𝑙𝑒𝑠| 

S2PB |𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑟𝑢𝑙𝑒𝑠| 

ARO (|𝑏𝑙𝑜𝑐𝑘 𝑟𝑢𝑙𝑒𝑠| + |𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑟𝑢𝑙𝑒𝑠|)  ∗  |𝑢𝑛𝑖𝑞𝑢𝑒 𝑟𝑢𝑙𝑒𝑠| 
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RRO ( ∑ |𝑟𝑢𝑙𝑒𝑠 𝑖𝑛 𝑏𝑙𝑜𝑐𝑘 𝑖|

𝐵𝑙𝑜𝑐𝑘 𝑟𝑢𝑙𝑒 𝒊

+ ∑ |𝑟𝑢𝑙𝑒𝑠 𝑖𝑛 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑖| ) ∗ |𝑢𝑛𝑖𝑞𝑢𝑒 𝑟𝑢𝑙𝑒𝑠|

𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑟𝑢𝑙𝑒 𝒊

 

SBSDL ∑ |𝑟𝑢𝑙𝑒𝑠 𝑖𝑛 𝐵𝑙𝑜𝑐𝑘 𝑖|

𝑏𝑙𝑜𝑐𝑘 𝑖

 + ∑ |𝑟𝑢𝑙𝑒𝑠 𝑖𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑖|

𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑖

 

SSM 
∑

|𝑟𝑢𝑙𝑒𝑠 𝑖𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝒊| ∗ (|𝑟𝑢𝑙𝑒𝑠 𝑖𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝒊| − 1)

2
𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑟𝑢𝑙𝑒 𝒊

 

CDoR |𝑐ℎ𝑜𝑜𝑠𝑒 𝑟𝑢𝑙𝑒𝑠|  ∗  (|𝑢𝑛𝑖𝑞𝑢𝑒 𝑟𝑢𝑙𝑒𝑠|  −  1) 

CIR |𝑐ℎ𝑜𝑜𝑠𝑒 𝑟𝑢𝑙𝑒𝑠|  ∗  (|𝑢𝑛𝑖𝑞𝑢𝑒 𝑟𝑢𝑙𝑒𝑠|  −  1) 

CRE |𝑐ℎ𝑜𝑜𝑠𝑒 𝑟𝑢𝑙𝑒𝑠| 

CDR ∑ |𝑑𝑜𝑚𝑎𝑖𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑖| ∗  (|𝑑𝑜𝑚𝑎𝑖𝑛 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑠| − 1)

𝑐ℎ𝑜𝑜𝑠𝑒 𝑟𝑢𝑙𝑒 𝒊

 

FDoR |𝑓𝑜𝑟𝑎𝑙𝑙 𝑟𝑢𝑙𝑒𝑠|  ∗  (|𝑢𝑛𝑖𝑞𝑢𝑒 𝑟𝑢𝑙𝑒𝑠|  −  1) 

FCRP |𝑐ℎ𝑜𝑜𝑠𝑒 𝑟𝑢𝑙𝑒𝑠|  +  |𝑓𝑜𝑟𝑎𝑙𝑙 𝑟𝑢𝑙𝑒𝑠|  

RTS |𝑛𝑜𝑛 𝑠𝑘𝑖𝑝 𝑟𝑢𝑙𝑒𝑠 | 

SSSC ∑ |𝑐𝑎𝑠𝑒 𝑖𝑛 𝒊|  + 

𝑐𝑎𝑠𝑒 𝑡𝑒𝑟𝑚 𝒊

∑ |𝑐𝑎𝑠𝑒 𝑖𝑛 𝒊|

𝑐𝑎𝑠𝑒 𝑟𝑢𝑙𝑒 𝒊

 

SCP 
∑

|𝑐𝑎𝑠𝑒𝑠 𝑖𝑛 𝒊| ∗ (|𝑐𝑎𝑠𝑒𝑠 𝑖𝑛 𝒊| − 1)

2
𝑐𝑎𝑠𝑒 𝑡𝑒𝑟𝑚 𝒊
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+ ∑
|𝑐𝑎𝑠𝑒𝑠 𝑖𝑛 𝒊| ∗ (|𝑐𝑎𝑠𝑒𝑠 𝑖𝑛 𝒊| − 1)

2
𝑐𝑎𝑠𝑒 𝑟𝑢𝑙𝑒 𝒊

 

CRRO |𝑐𝑎𝑠𝑒 𝑟𝑢𝑙𝑒𝑠|  ∗  (|𝑢𝑛𝑖𝑞𝑢𝑒 𝑟𝑢𝑙𝑒𝑠|  −  1) 

DSC ∑ |𝑐𝑎𝑠𝑒𝑠 𝑖𝑛 𝑖|

𝑐𝑎𝑠𝑒 𝑟𝑢𝑙𝑒 𝒊

+ ∑ |𝑐𝑎𝑠𝑒𝑠 𝑖𝑛 𝑖|

𝑐𝑎𝑠𝑒 𝑡𝑒𝑟𝑚 𝒊

 

LRVA ∑ |𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑖|

𝑙𝑒𝑡 𝑟𝑢𝑙𝑒 𝒊

∗ (|𝑢𝑛𝑖𝑞𝑢𝑒 𝑡𝑒𝑟𝑚𝑠| − 1) 

LRR |𝑙𝑒𝑡 𝑟𝑢𝑙𝑒𝑠|  ∗  (|𝑢𝑛𝑖𝑞𝑢𝑒 𝑟𝑢𝑙𝑒𝑠|  −  1) 

LRVR ∑ |𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑖𝑛 𝑖|

𝑙𝑒𝑡 𝑟𝑢𝑙𝑒 𝒊

∗ (|𝑢𝑛𝑖𝑞𝑢𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠| − 1) 

EDR ∑ |𝑑𝑜𝑚𝑎𝑖𝑛𝑠 𝑖𝑛 𝑖|

𝑒𝑥𝑡𝑒𝑛𝑑 𝑟𝑢𝑙𝑒 𝒊

∗ (|𝑑𝑜𝑚𝑎𝑖𝑛 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑠| − 1) 

ERRO |𝑒𝑥𝑡𝑒𝑛𝑑 𝑟𝑢𝑙𝑒𝑠| ∗  (|𝑢𝑛𝑖𝑞𝑢𝑒 𝑟𝑢𝑙𝑒𝑠| − 1) 

EIR ∑ |𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑖𝑛 𝑖|

𝑒𝑥𝑡𝑒𝑛𝑑 𝑟𝑢𝑙𝑒 𝒊

∗ (|𝑢𝑛𝑖𝑞𝑢𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠| − 1) 

AOR |𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠|  ∗  3 

UOI |𝑏𝑎𝑠𝑖𝑐 𝑑𝑜𝑚𝑎𝑖𝑛𝑠|  +  |𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑟𝑒𝑡𝑢𝑟𝑛 𝑏𝑎𝑠𝑖𝑐 𝑑𝑜𝑚𝑎𝑖𝑛𝑠| 

LOR |𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠|  ∗  4 

ROR |𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠|  ∗  5 
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ENF |𝑔𝑢𝑎𝑟𝑑 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠| 

LNF |𝑏𝑜𝑜𝑙𝑒𝑎𝑛 𝑡𝑒𝑟𝑚𝑠|  +  |𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚𝑠 𝑟𝑒𝑡𝑢𝑟𝑛𝑖𝑛𝑔 𝑎 𝐵𝑜𝑜𝑙𝑒𝑎𝑛| 

STF |𝑔𝑢𝑎𝑟𝑑 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠|  ∗  2 

ABS |𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑎𝑛𝑑 𝑑𝑜𝑢𝑏𝑙𝑒 𝑡𝑒𝑟𝑚𝑠|  

+  |𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑟𝑒𝑡𝑢𝑟𝑛𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑎𝑛𝑑 𝑑𝑜𝑢𝑏𝑙𝑒| 

FQTP |𝐹𝑖𝑛𝑖𝑡𝑒 𝑄𝑢𝑎𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑇𝑒𝑟𝑚𝑠|  ∗  2 

TGCR |𝑡𝑒𝑟𝑚 𝑔𝑢𝑎𝑟𝑑 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠|  ∗  (|𝑢𝑛𝑖𝑞𝑢𝑒 𝑔𝑢𝑎𝑟𝑑 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠|  −  1) 

TTR |𝑡ℎ𝑒𝑛 𝑡𝑒𝑟𝑚𝑠|  ∗  (|𝑢𝑛𝑖𝑞𝑢𝑒 𝑡𝑒𝑟𝑚𝑠|  − 1) 

ETR |𝑒𝑙𝑠𝑒 𝑡𝑒𝑟𝑚𝑠|  ∗  (|𝑢𝑛𝑖𝑞𝑢𝑒 𝑡𝑒𝑟𝑚𝑠|  − 1) 

FQTDR ∑ |𝑑𝑜𝑚𝑎𝑖𝑛𝑠 𝑖𝑛 𝑖|

𝑓𝑖𝑛𝑖𝑡𝑒 𝑞𝑢𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑡𝑒𝑚 𝒊

∗ (|𝑑𝑜𝑚𝑎𝑖𝑛 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑠| − 1) 

CTR |𝑏𝑜𝑜𝑙𝑒𝑎𝑛 𝑡𝑒𝑟𝑚𝑠| + 

∑ |𝑡𝑦𝑝𝑒 𝑖 𝑡𝑒𝑟𝑚𝑠|
𝑡𝑦𝑝𝑒  𝒊={𝒄𝒉𝒂𝒓,𝒄𝒐𝒎𝒑𝒍𝒆𝒙,𝒊𝒏𝒕𝒆𝒈𝒆𝒓,

𝒏𝒂𝒕𝒖𝒓𝒂𝒍,   𝒓𝒆𝒂𝒍,𝒔𝒕𝒓𝒊𝒏𝒈,}

∗ (|𝑡𝑦𝑝𝑒 𝑖 𝑡𝑒𝑟𝑚𝑠| − 1) 

CTM ∑ |𝑡𝑦𝑝𝑒 𝑖 𝑡𝑒𝑟𝑚𝑠|
𝑡𝑦𝑝𝑒  𝒊={𝒄𝒉𝒂𝒓,𝒄𝒐𝒎𝒑𝒍𝒆𝒙,𝒊𝒏𝒕𝒆𝒈𝒆𝒓,

𝒏𝒂𝒕𝒖𝒓𝒂𝒍,   𝒓𝒆𝒂𝒍,𝒔𝒕𝒓𝒊𝒏𝒈,}

 

CTRO |𝑐𝑎𝑠𝑒 𝑡𝑒𝑟𝑚𝑠|  ∗  (|𝑢𝑛𝑖𝑞𝑢𝑒 𝑡𝑒𝑟𝑚𝑠|  −  1) 
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ICR |𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠|  ∗  (|𝑢𝑛𝑖𝑞𝑢𝑒 𝑔𝑢𝑎𝑟𝑑 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠|  −  1) 

IDD |𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠| 

DIR |𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠| − 1 

IIP (|𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠| ∗ (|𝑖𝑛𝑖𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠| − 1))

2
 

ISD |𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑚𝑒𝑛𝑡𝑠| 

 

4.5 Chapter Summary 

In this chapter, the proposed approach methodology was presented briefly including design 

of AsmetaL mutation operators, AsmetaL mutation tool, empirical evaluation, and 

selective mutation testing. In addition, the set of proposed AsmetaL mutation operators 

was reviewed in full details. Moreover, the test case generation criteria provided by ATGT 

was presented. 
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5 CHAPTER 5 

MuAsmetaL: An AsmetaL Mutation Experimental Tool 

MuAsmetaL (Mutation testing system for AsmetaL) is an integrated framework that 

facilitates the generation and validation of mutants, and the execution of test cases against 

mutants for AsmetaL specifications. It integrates several AsmetaL tools (AsmetaLc, 

AsmetaV, and AsmetaS) used to preform automatic mutation testing. MuAsmetaL is a 

prototype tool developed as a proof of concept of our proposed mutation testing/mutation 

operators for AsmetaL language. We intend to public release the final version [106] to help 

practitioners and researchers. 

5.1 Tool Requirements 

In order to apply mutation testing on AsmetaL specifications, we have elicited the 

following minimal requirements for MuAsmetaL support: 

R1 Creating and saving of new AsmetaL specifications (.asm files). 

R2 Opening and editing of existing AsmetaL specification. 

R3 Visualizing AsmetaL specifications using syntax highlights. 

R4 Generating mutants based on user selection of a set of operators to be applied. 

R5 Validating the correctness of the generated mutants using AsmetaLc. 

R6 Validating syntactic equivalency of generated mutants against the original 

specification. 

R7 Viewing mutants. 

R8 Importing and viewing test cases. 
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R9 Running test cases against the original specification using AsmetaV. 

R10 Running test cases against the generated mutants using AsmetaV. 

R11 Generating test report (.csv files) contains a table that shows the status mutants 

against test cases e.g., pass, or fail. 

R12 Simulating the original specification using AsmetaS. 

R13 Simulating the generated mutants using AsmetaS. 

R14 Calculating mutation score per operator and for all mutants. 

 

The MuAsmetaL tool fulfills the aforementioned requirements while providing a user-

friendly interface. 

5.2 MuAsmetaL Architecture  

MuAsmetaL is implemented using Java. MuAsmetaL incarnates the following: 

 AsmetaLc [24] is used to syntactically validate the specifications 

(original/mutants).  

 AsmetaV [26] runs specifications (original/mutants) against test cases 

(AVaLLA).  

 AsmetaS [25] simulates the execution of specifications (original/mutants) 

Figure 11 shows the general architecture of MuAsmetaL tool. It is decomposed into five 

main components (editor, parser, data structure, mutation engine, and tester). 
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Figure 11: MuAsmetaL Structure 

Editor 

The Editor component provides a graphical user interface for MuAsmetaL that handles 

opening and saving of AsmetaL (.asm) files. In addition, it provides a syntax highlight and 

a simple autocomplete mechanism. It relies on JTextPane component with custom 

document style to view and highlight the AsmetaL syntax. Moreover, visualizer component 

is implemented, it takes String as input and illustrates tree using JPanel. The editor 
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component provides a simple auto complete mechanism based on AsmetaL keywords.   

This component fulfils the requirements R1, R2, R3, R7, and R8. 

Parser 

The parser supports all AsmetaL constructs defined by the EBNF grammar. It is generated 

using javacc tool [107][107]. The input for the parser is either an AsmetaL specification 

file (.asm) or an AsmetaL specification described as a String, while the output is an 

ASMetaLTree.  

 

Tree Data Structure 

MuAsmetaL implements a comprehensive data structure that follows the AsmetaL 

Language grammar [EBNF]. It is described as a tree called AsmetaLTree (see Figure 12). 

AsmetaLTree has 132 different node types. The root and its children follows the main 

structure of AsmetaL (see Figure 3), while the rest of the tree is dynamic structure based 

on the specification structure. ASMetaLTree provides a manifest object (contains sets of 

pointers for each node type in order to facilitate the traversing of tree with dynamic 

structure e.g.,set of rules, set of terms).   

Moreover, ASMetaLTree can be deeply cloned. Indeed, a new tree version is generated for 

each mutant. In addition, the AsmetaLTree supports comparable interfaces, in which any 

two nodes can be compared with each other and their children recursively. This comparison 

feature allows syntactic equivalency between the original specification and the mutant.   
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Moreover, the resulting AsmetaLTree is used to generate AsmetaL syntax for mutants 

(.asm files). R6 is fulfilled by tree structure. 

 

Figure 12: Example of an AsmetaL Tree 

 

Mutation Engine 

The mutation engine is responsible of injecting faults into AsmetaL specifications by 

applying all mutation operators. The input of the mutation engine is an ASMetaLTree, 

while the output is one or many AsmetaL specification files (.asm) corresponding to the 

generated mutants. In addition, the mutation engine is responsible for performing syntax 

validation and syntactic equivalency checks as part of the mutant generation process. First, 

a new ASMetaLTree is generated by cloning the original tree. Then, a mutation operator is 

applied to the cloned tree. Next, the conformance of the mutated tree is checked against the 

language grammar is performed using AsmetaLc. Although, mutation operators are 

supposed to produce mutants that are syntactically different from the original 

specifications, a syntactic equivalency check is performed to make sure that the produced 

mutants are unique. Any mutated tree that fails the validation process is discarded. The rest 
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of mutants will be stored as AsmetaL specification files (.asm). Requirement R4 is fulfilled 

by the mutation engine component. 

Tester 

The tester component is responsible of validating the correctness of AsmetaL specifications 

(original/mutants) using AsmetaLc. The input to the AsmetaL specifications validation is 

(.asm file), while the output is true or false with message that indicates the location of 

invalid segment of specification and the expected segment of specification. In addition, it 

perform the execution of AsmetaL specifications (original/mutants) using AsmetaS. The 

input to AsmetaL specification execution is (.asm file), while the output is the execution 

output in runtime in form of String. Moreover, the actual test (running test cases against 

specifications) is done by the tester component in which it relies on AsmetaV. The input 

for the AsmetaL testing is (.asm file) and the test suite, while the output is either Pass, Fail, 

or Runtime Exception. 

The Tester fulfils the requirements R5, R9, R10, R11, R12, R13, and R14. 

5.3 MuAsmetaL in Practice 

In this section, we describe the purpose of our tool and how it can be used to generate and 

execute AsmetaL mutants. Let us consider the following example (see Figure 13, integer 
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absolute value specification) to show the usefulness of our proposed tool. 

 

Figure 13: Absolute value AsmetaL specification 

 

In this section, we provide several screenshots that show how the aforementioned 

requirements are fulfilled: 

  

asm absolutevalue 
import ../STDL/StandardLibrary 
signature: 
monitored value:Integer 
controlled output:Integer 
definitions: 
main rule r_main = 
 if(value<0) then 
  output := value*-1 
 else 
  output := value 
 endif 
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R1 Creating AsmetaL specification file (.asm). 

 

Figure 14: Creating new AsmetaL specification using MuAsmetaL 
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R2 Editing new/existing AsmetaL specification. 

 

Figure 15: Editing existing AsmetaL specification using MuAsmetaL 
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R3 Visualizing original specification. 

 

Figure 16: Visualizing ASMetaLTree using MuAsmetaL 
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Figure 17: Statistical information about AsmetaL Specification using MuAsmetaL 
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R4 Generating mutants based on the proposed operators. 

 

Figure 18: MuAsmetaL mutation generation interface 
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Figure 19: MuAsmetaL mutation generation summary 

 

Figure 20: MuAsmetaL handles manual input from the user 
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R5 Validating the correctness of all the generated mutants using AsmetaLc. 

R6 Validating syntactic equivalency of generated mutants against the original 

specification. 

 

Figure 21: AsmetaL specification correctness validation and syntactic equivalency validation 
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R7 Viewing mutants. 

 

 

Figure 22: MuAsmetaL mutants’ viewer 

R8 Importing test cases. 

 

Figure 23: Import AVaLLA test cases using MuAsmetaL 
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Figure 24: Viewing/Ordering test cases using MuAsmetaL 

R9 Running test cases against the original specification using AsmetaV. 

 

Figure 25: Running test cases against original Specification using MuAsmetaL to obtain test oracles 
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Figure 26: Test case results 
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R10 Running test cases against mutants using AsmetaV. 

 

Figure 27: MuAsmetaL custom testing 

 

Figure 28: Running test cases against mutants 
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R11 Generating test report files (.csv). 

 

Figure 29: Report file (CSV) generated by MuAsmetaL 

R12 Simulating the original specification using AsmetaS. 

 

Figure 30: Simulating AsmetaL specification using MuAsmetaL 
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R13 Simulating mutants using AsmetaS. 

 

R14 Calculate mutation score per operator and for all mutants. 

 

Figure 31: MuAsmetaL mutation testing results 1 
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Figure 32: MuAsmetaL mutation testing results 2 

 

Figure 33: MuAsmetaL mutation testing results 3 
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Figure 34: MuAsmetaL mutation testing results 4 

5.4 Benchmarking the MuAsmetaL tool  

In order to measure the performance and the mutation capabilities of our tool, we have 

conducted some experiments over the case studies introduced in section 6.1. 

Table 23 summarizes the time spent to generate and validate mutants. 

Table 23: Time spent to generate and validate mutants per case study 
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ferrymanSimulator  280 613 s 2.19s/m 
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railroadGate  193 349 s 1.81s/m 

sluiceGateGround  203 281 s 1.38s/m 

cruiseControl  421 552 s 1.31s/m 

AdvancedClock  210 448 s 2.13s/m 

AdvancedClock2  204 387 s 1.9s/m 

fattoriale  136 231 s 1.7s/m 

 

Table 24 summarizes the time spent to execute test cases and generate reports. 

Table 24: Time spent to execute test cases and generate reports per case study. 
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ferrymanSimulator  64 280 4025 22.46% 5520 s 1.37s/i 

railroadGate  77 193 6174 41.54% 13260 s 2.15s/i 

sluiceGateGround  46 203 4958 53.09% 12540 s 2.53s/i 

cruiseControl  102 421 18858 43.92% 29400 s 1.56s/i 

AdvancedClock  1 210 210 100% 420 s 2s/i 

AdvancedClock2  45 204 2896 31.55% 4680 s 1.62s/i 
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fattoriale  44 136 3135 52.39% 5100 s 1.63s/i 

 

5.5 MuAsmetaL Limitation 

MuAsmetaL presents the following limitations: 

1. MuAsmetaL does not generate test cases.  

However, it supports importing AVaLLA test cases generated by ATGT or 

manually. 

2. MuAsmetaL does not preform equivalency analysis. 

Since the scope of the proposed approach does not include semantic equivalency 

analysis, MuAsmetaL does not perform any semantic equivalency analysis and it 

depends on the analyst to perform it manually. In addition, the mutation score is 

calculated without any consideration of equivalent mutants.  

It is worth noting that MuAsmetaL is still in prototype stages and requires testing 

and documentation. 

5.6 Chapter Summary 

This chapter shows all the details of the design and development of MuAsmetaL tool. 

These details include the tool requirements, and the general architectural and structure of 

tool, tool workflow. In addition to measuring the tool performance of tool based on 

benchmarks.  Finally, we list limitations of the tool. 
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6 CHAPTER 6 

Empirical Evaluation of the AsmetaL-based Mutation 

Operators 

In this Chapter, we evaluate empirically the proposed suite of AsmetaL mutation operators, 

introduced in chapter 4, by applying them to seven different case studies. In addition, this 

experiment aims at assessing both the effectiveness of the proposed operators and the 

adequacy of test suites produced by ATGT tool and test cases that are manually generated. 

6.1 Description of the AsmetaL Case Studies 

In the following sections, we present the description of 7 AsmetaL specifications that are 

used in our empirical study. Table 25 shows the summary of case studies structure. 

Table 25: Case studies summary 
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Invariants 
2 3 0 2 0 0 0 

 

6.1.1 Case Study 1: ferrymanSimulator Specification 

ferrymanSimulator [108] specification mimics the story of a man who has a wolf, a goat, 

and a cabbage. The man wants to convey them across the river with his boat, which only 

has room for a single item only (or without) in a single trip. The dilemma lies in the fact 

that the wolf and the goat must not be on the same side of the river while the man on the 

other side. Moreover, the goat and the cabbage must not be on the same side while the man 

on the other side. Invariants are used to monitor the occurrences of these two conditions. 

ferrymanSimulator specification has 3 enum domains, 4 functions ( 2 controlled, a 

monitored, and a derived), and 4 macro rules. In addition, it has 2 invariants over position 

function. The application of MuAsmetaL tool based on all of the proposed mutation 

operators resulted in 280 valid mutants. A set of 64 test cases that covers all possible input 

sequence combination for four steps (input: Wolf, Goat, Cabbage, and None). 

Table 26: ferrymanSimulator specification mutation results 

Operator T A K Eq MS Operator T A K Eq MS 

ARO 19 12 7 0 37% PB2S 2 0 0 2 * 

ICR 4 0 4 0 100% ROR 8 0 8 0 100% 

RGCR 5 0 5 0 100% RRO 42 14 28 0 67% 

CRRO 36 4 32 0 89% RTS 16 0 16 0 100% 

TGCR 3 1 2 0 67% SBSDL 3 0 3 0 100% 

IDD 2 0 2 0 100% SCP 6 0 6 0 100% 

DSC 4 0 4 0 100% SSSC 4 0 4 0 100% 

ENF 5 0 5 0 100% STF 10 0 10 0 100% 

ERR 3 1 2 0 67% CTM 4 0 4 0 100% 

ETR 54 4 50 0 93% CTR 4 0 4 0 100% 

FTP 7 0 0 7 * TRR 11 2 9 0 82% 
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LOR 12 2 10 0 83% TTR 13 2 11 0 85% 

MMR 3 0 3 0 100% Total 280 42 229 9 85% 

 

Table 26 shows the results of applying mutation testing for ferrymanSimulator 

specifications. The acquired MS is 85%. Figure 35 is a visual representation of the results. 

 

Figure 35: ferrymanSimulator specification mutation testing results 

 

6.1.2 Case Study 2: railroadGate Specification  

railroadGate [109], [110]  specification describes a railroad gate system that consists of a 

gate and a light. The light state can be either in flashing or off state. The gate maybe closed, 

opened, closing, or opening states. The operation cycle starts with gate state being open 

and the light being off. Before the gate closes, during the closing, and until the gate is open, 

the light must continuously flash to warn the motorists of the closing gate. The user input 

is used to simulate the controlling signal that controls the light and the gate. 
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 railroadGate specification has 3 enum domains, 6 functions (3 controlled, and 3 

monitored), a macro rule. Moreover, it has 3 invariants over gate and light. MuAsmetaL 

tool produces 193 valid mutants. 77 test cases were generated using ATGT tool. 

Table 27: railroadGate specification mutation testing results 

Operator T A K Eq MS Operator T A K Eq MS 

ARO 7 4 3 0 43% LNF 4 0 4 0 100% 

ICR 12 2 10 0 83% PB2S 1 0 1 0 100% 

RGCR 8 0 8 0 100% ROR 19 3 16 0 84% 

IDD 3 1 2 0 67% RRO 12 4 8 0 67% 

ENF 5 0 5 0 100% RTS 7 1 6 0 86% 

ERR 12 5 7 0 58% STF 10 1 9 0 90% 

FTP 18 0 0 18 * TRR 12 4 8 0 67% 

LOR 60 11 49 0 82% CTR 3 0 3 0 100% 

 Total 193 36 139 18 79% 

 

As shown in Table 27, and Figure 36, the resulting mutation score for railroadGate 

specification is 79%. 

 

Figure 36: railroadGate specification mutation testing results 
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6.1.3 Case Study 3: sluiceGateGround Specification 

sluiceGateGround [111], [112] specification is a ground model for simulating an irrigation 

system which consists of a sluice gate and a motor that opens and closes by rotating 

clockwise and anti-clockwise. The state of the motor can be on or off while the rotation 

direction can be clockwise or anti-clockwise. The motor is linked to two sensors that 

indicate fully opened and fully closed. The operating cycle begins by a closed sluice gate, 

after 170 minutes (closing period) have passed. Sluice gate starts to open until it reaches a 

fully opened state then wait for 10 minutes (Opening period) to pass. Then starts closing 

until it reaches a full closed state and then the cycle begins again. 

 

sluiceGateGround model AsmetaL has sub-domains, an enum domain, 4 functions (2 

static, a controlled, and a monitored), and 3 macro rules declarations. Using MuAsmetaL 

tool, 203 valid mutant were automatically generated.  The generated mutant were run 

against 46 test cases created using ATGT tool. 

Table 28: sluiceGateGround specification mutation testing results 

Operator T A K Eq MS Operator T A K Eq MS 

ABS 2 0 0 2 * MMR 2 0 2 0 100% 

ARO 36 24 12 0 33% PB2S 3 0 1 2 100% 

RGCR 12 0 12 0 100% ROR 2 0 2 0 100% 

ENF 4 0 4 0 100% RRO 66 26 40 0 61% 

FTP 5 0 0 5 * RTS 11 2 9 0 82% 

CTM 2 0 2 0 100% STF 8 0 8 0 100% 

CTR 2 0 2 0 100% TRR 44 12 32 0 73% 

LNF 2 0 2 0 100% UOI 2 0 2 0 100% 

Total 203 64 130 9 67% 
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Table 28 shows results of applying mutation testing to sluiceGateGround specification, in 

which MS is 67%. Figure 37 provides a visual representation of the results. 

 

Figure 37: sluiceGateGround specification mutation testing results 

 

6.1.4 Case Study 4: cruiseControl Specification 

cruiseControl [113],[114] specification describes an automobile cruise control system. The 

system consists of engine, ignition, brake pedal, and a cruise control lever. The ignition 

and engine states could be either in ON or OFF mode. The modes of the cruise control are 

OFF, INACTIVB (whenever ignition is on, but cruise control is not), CRUISE, and 

OVERRIDB (whenever cruise control mode is on but is not controlling the speed). The 

system's conditions indicate whether the ignition is on, the engine is running, the 

automobile is travelling too fast to be controlled, the brake pedal is being pressed, and 

whether the cruise control lever is set at Activate, Deactivate, or Resume. The system starts 

in mode OFF and the cruise control lever is Deactivate. 

 

0

10

20

30

40

50

60

70

ABS ARO RGCR ENF FTP CTM CTR LNF MMR PB2S ROR RRO RTS STF TRR UOI

sluiceGateGround Specification Mutation Analysis

Alive Killed Equivalent



108 

 

Cruise control AsmetaL specification has 2 enum domains, 6 functions (a controlled, and 

5 monitored), and a macro rule declaration. In addition, it contains 2 invariant definitions.  

Using MuAsmetaL tool, 421 valid mutants were automatically generated.  The generated 

mutant were run against 102 test cases created using ATGT tool. 

 

Table 29: cruiseControl specification mutation testing results 

Operator T A K Eq MS Operator T A K Eq MS 

ARO 13 7 6 0 46% PB2S 1 0 1 0 100% 

ICR 18 0 18 0 100% ROR 8 0 8 0 100% 

RGCR 72 0 72 0 100% RRO 48 12 36 0 75% 

IDD 2 0 2 0 100% RTS 16 0 16 0 100% 

ENF 10 0 10 0 100% SBSDL 4 0 4 0 100% 

ERR 36 8 28 0 78% STF 20 0 20 0 100% 

FTP 17 0 0 17 * TRR 96 31 65 0 68% 

LNF 16 2 14 0 88% CTR 4 2 2 0 50% 

LOR 40 1 39 0 98% Total 421 63 341 17 84% 

 

The resulted MS of applying mutation testing on cruiseControl specification is 84% as 

shown in Table 29. Figure 38 provides a visual illustration of the results. 
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Figure 38: cruiseControl specification mutation testing results 

 

6.1.5 Case Study 5: AdvancedClock Specification 

AdvancedClock [115] specification consists of seconds, minutes, and hours. In addition, it 

continuously increments the seconds by one in each state and recalculated hours: minutes: 

seconds schema to the correct form.  

 

AdvancedClock AsmetaL specification has 3 sub domains, 3 functions (3 controlled), and 

2 macro rule declarations. Using MuAsmetaL tool, 210 valid mutants were automatically 

generated.  The generated mutants were run against only one test case, since there user 

input is not required, a single run is sufficient. 

 

Table 30: AdvancedClock specification mutation testing results 

Operator T A K Eq MS Operator T A K Eq MS 

0

20

40

60

80

100

120

cruiseControl Specification Mutation Analysis

Alive Killed Equivalent



110 

 

ABS 11 0 0 11 * MMR 1 0 1 0 100% 

AOR 6 2 4 0 67% PB2S 2 0 0 2 * 

ARO 13 8 5 0 38% ROR 10 3 7 0 70% 

RGCR 2 0 2 0 100% RRO 22 6 16 0 73% 

ENF 2 0 2 0 100% RTS 8 2 6 0 75% 

FTP 6 0 0 6 * STF 6 2 4 0 67% 

CTM 16 10 6 0 38% TRR 11 8 3 0 27% 

CTR 80 43 37 0 46% UOI 14 11 3 0 21% 

Total 210 95 96 19 55% 

 

Table 30 shows MS of 55% resulting from applying mutation testing to the AdvancedClock 

specification. Figure 39 provides a visual illustration of mutation testing results. 

 

 

Figure 39: AdvancedClock specification mutation testing results 
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Moreover, the time schema is different from real world, where seconds, minutes, and hours 

could be {0, 1, 2}. 

 

AdvancedClock2 AsmetaL specification has 3 sub domains, 4 functions (3 controlled, and 

a monitored), and 2 macro rule declarations. Using MuAsmetaL tool, 204 valid mutants 

were automatically generated.  The generated mutant were run against 45 test cases 

generated using ATGT Tool. 

 

Table 31: AdvancedClock2 specification mutation testing results 

Operator T A F Eq MS Operator T A K Eq MS 

ABS 11 0 0 11 * MMR 1 0 1 0 100% 

ARO 20 8 12 0 60% PB2S 2 2 0 0 0% 

RGCR 6 0 6 0 100% ROR 9 2 7 0 78% 

ENF 3 0 3 0 100% RRO 24 6 18 0 75% 

FTP 9 0 0 9 * RTS 9 0 9 0 100% 

CTM 15 5 10 0 67% STF 6 0 6 0 100% 

CTR 52 14 38 0 73% TRR 20 7 13 0 65% 

LNF 2 1 1 0 50% UOI 15 9 6 0 40% 

Total 204 54 130 20 71% 

 

Table 31 shows the 71% MS resulted from applying mutation testing to AdvancedClock2 

specification. Figure 40 provides a visual illustration of mutation testing results. 
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Figure 40: AdvancedClock2 specification mutation testing results 

6.1.7 Case Study 7: fattoriale Specification 

Fattoriale [117] specification is an implementation of factorial function in AsmetaL 

Language according to the following equation.  

𝑛 =  {
1

(𝑛 − 1)! × 𝑛             

𝑖𝑓 𝑛 = 0

𝑖𝑓 𝑛 > 0
 

 

 

It has 4 functions (3 controlled and a monitored), and 2 macro rule definitions. MuAsmetaL 

generates 136 valid mutants, where ATGT generates 44 test cases. 

Table 32: fattoriale specification mutation testing results 

Operator T A K Eq MS Operator T A K Eq MS 

ABS 13 0 0 13 * CTR 6 0 6 0 100% 

AOR 4 0 4 0 100% LNF 6 0 6 0 100% 

ARO 37 14 23 0 62% MMR 1 0 1 0 100% 

RGCR 6 0 6 0 100% PB2S 2 2 0 0 0% 

ENF 3 0 3 0 100% ROR 15 3 12 0 80% 

ERR 12 3 9 0 75% RRO 24 2 22 0 92% 
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FTP 9 0 0 9 * SSM 1 0 1 0 100% 

CTM 6 0 6 0 100% Total 136 24 90 22 79% 

 

The resulted MS of fattoriale specification is 79% as shown in Table 32. Figure 41 

visualizes that results based on status of each mutant per operator. 

 

Figure 41: fattoriale specification mutation testing results 
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RGCR 72 6 66 0 92% RRO 48 17 31 0 65% 

IDD 2 0 2 0 100% RTS 16 2 14 0 88% 

ENF 10 0 10 0 100% SBSDL 4 1 3 0 75% 

ERR 36 8 28 0 78% STF 20 2 18 0 90% 

FTP 17 0 0 17 * TRR 96 39 57 0 59% 

LNF 16 2 14 0 88% CTR 4 2 2 0 50% 

LOR 40 5 35 0 88% Total 421 93 311 17 77% 

 

Basic Rule Coverage (12 TCs) 

Table 34: CruiseControl specification mutation testing based basic rule coverage 

Operator T A K Eq MS Operator T A K Eq MS 

ARO 13 7 6 0 46% PB2S 1 1 0 0 0% 

ICR 18 0 18 0 100% ROR 8 2 6 0 75% 

RGCR 72 12 60 0 83% RRO 48 15 33 0 69% 

IDD 2 0 2 0 100% RTS 16 3 13 0 81% 

ENF 10 0 10 0 100% SBSDL 4 1 3 0 75% 

ERR 36 9 27 0 75% STF 20 3 17 0 85% 

FTP 17 0 0 17 * TRR 96 49 47 0 49% 

LNF 16 5 11 0 67% CTR 4 2 2 0 50% 

LOR 40 6 34 0 85% Total 421 115 289 17 72% 

 

MCDC Coverage (32 TCs) 

Table 35: CruiseControl specification mutation testing based MCDC coverage 

Operator T A K Eq MS Operator T A K Eq MS 

ARO 13 7 6 0 46% PB2S 1 0 1 0 100% 

ICR 18 0 0 0 100% ROR 8 2 6 0 75% 

RGCR 72 21 51 0 71% RRO 48 18 30 0 63% 

IDD 2 0 0 0 100% RTS 16 7 9 0 56% 

ENF 10 0 10 0 100% SBSDL 4 2 2 0 50% 

ERR 36 12 24 0 67% STF 20 4 16 0 80% 

FTP 17 0 0 17 * TRR 96 57 39 0 41% 

LNF 16 4 12 0 75% CTR 4 2 2 0 50% 

LOR 40 6 34 0 85% Total 421 142 242 17 60% 

 

Fault Coverage (3 TCs) 

Table 36: CruiseControl specification mutation testing based fault coverage 

Operator T A K Eq MS Operator T A K Eq MS 
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ARO 13 13 0 0 0% PB2S 1 1 0 0 0% 

ICR 18 5 13 0 72% ROR 8 8 0 0 0% 

RGCR 72 66 6 0 8% RRO 48 48 0 0 0% 

IDD 2 1 1 0 50% RTS 16 14 2 0 13% 

ENF 10 7 3 0 30% SBSDL 4 4 0 0 0% 

ERR 36 36 0 0 0% STF 20 16 4 0 20% 

FTP 17 0 0 17 * TRR 96 85 11 0 11% 

LNF 16 10 6 0 38% CTR 4 2 2 0 50% 

LOR 40 33 7 0 18% Total 421 349 55 17 14% 

 

Pair-wise Coverage (48 TCs) 

Table 37: CruiseControl specification mutation testing based pair-wise coverage 

Operator T A K Eq MS Operator T A K Eq MS 

ARO 13 7 6 0 46% PB2S 1 1 0 0 0% 

ICR 18 0 18 0 100% ROR 8 0 8 0 100% 

RGCR 72 0 72 0 100% RRO 48 12 36 0 75% 

IDD 2 0 2 0 100% RTS 16 0 16 0 100% 

ENF 10 0 10 0 100% SBSDL 4 0 4 0 100% 

ERR 36 8 28 0 78% STF 20 0 20 0 100% 

FTP 17 0 0 17 * TRR 96 31 65 0 68% 

LNF 16 2 14 0 88% CTR 4 2 2 0 50% 

LOR 40 1 39 0 98% Total 421 64 340 17 84% 

 

The best mutation score is achieved by pair-wise coverage (84%), while, the worst is 

achieved by fault coverage (14%). 

Figure 42 illustrates the results of the application of our proposed approach over 

CruiseControl specification and overlap between different test case generation criteria by 

ATGT. 

  alive mutants. 

  killed mutants. 
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  killed mutants that cause runtime exceptions. 

  equivalent mutants 

 

Figure 42: Overall deference of mutation testing over different testing criteria for CruiseControl Specification 
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6.2.2 RailroadGate Specification 

Update Rule Coverage (4 TCs) 

Table 38: RailroadGate specification mutation testing based update rule coverage 

Operator T A K Eq MS Operator T A K Eq MS 

ARO 7 4 3 0 43% LNF 4 0 4 0 100% 

ICR 12 2 10 0 83% PB2S 1 0 1 0 100% 

RGCR 8 0 8 0 100% ROR 19 7 12 0 63% 

IDD 3 1 2 0 67% RRO 12 4 8 0 67% 

ENF 5 0 5 0 100% RTS 7 1 6 0 86% 

ERR 12 6 6 0 50% LOR 60 24 36 0 60% 

CTR 3 0 3 0 100% STF 10 1 9 0 90% 

FTP 18 0 0 18 * TRR 12 4 8 0 67% 

Total 193 54 121 18 69% 

 

Basic Rule Coverage (3 TCs) 

Table 39: RailroadGate specification mutation testing based basic rule coverage 

Operator T A K Eq MS Operator T A K Eq MS 

ARO 7 4 3 0 43% LNF 4 0 4 0 100% 

ICR 12 2 10 0 83% PB2S 1 0 1 0 100% 

RGCR 8 0 8 0 100% ROR 19 8 11 0 58% 

IDD 3 1 2 0 67% RRO 12 4 8 0 67% 

ENF 5 0 5 0 100% RTS 7 2 5 0 71% 

ERR 12 6 6 0 50% LOR 60 27 33 0 55% 

CTR 3 0 3 0 100% STF 10 1 9 0 90% 

FTP 18 0 0 18 * TRR 12 6 6 0 50% 

Total 193 61 114 18 65% 

 

MCDC Coverage (26 TCs) 

Table 40: RailroadGate specification mutation testing based basic MCDC coverage 

Operator T A K Eq MS Operator T A K Eq MS 

ARO 7 4 3 0 43% LNF 4 0 4 0 100% 

ICR 12 2 10 0 83% PB2S 1 0 0 0 100% 

RGCR 8 0 8 0 100% ROR 19 6 13 0 68% 

IDD 3 1 2 0 67% RRO 12 4 8 0 67% 

ENF 5 0 5 0 100% RTS 7 1 6 0 86% 

ERR 12 5 7 0 58% LOR 60 21 39 0 65% 

CTR 3 0 3 0 100% STF 10 1 9 0 90% 



118 

 

FTP 18 0 0 18 * TRR 12 4 8 0 67% 

Total 193 49 125 18 71% 

 

Fault Coverage (8 TCs) 

Table 41: RailroadGate specification mutation testing based fault coverage 

Operator T A K Eq MS Operator T A K Eq MS 

ARO 7 4 3 0 43% LNF 4 0 4 0 100% 

ICR 12 2 10 0 83% PB2S 1 0 1 0 100% 

RGCR 8 0 8 0 100% ROR 19 7 12 0 63% 

IDD 3 1 2 0 67% RRO 12 4 8 0 67% 

ENF 5 0 5 0 100% RTS 7 1 6 0 86% 

ERR 12 5 7 0 58% LOR 60 22 38 0 63% 

CTR 3 0 3 0 100% STF 10 1 9 0 90% 

FTP 18 0 0 18 * TRR 12 4 8 0 67% 

Total 193 51 124 18 71% 

 

Pair-wise Coverage (20 TCs) 

Table 42: RailroadGate specification mutation testing based pair-wise coverage 

Operator T A K Eq MS Operator T A K Eq MS 

ARO 7 4 3 0 43% LNF 4 0 4 0 100% 

ICR 12 2 10 0 83% PB2S 1 0 1 0 100% 

RGCR 8 0 8 0 100% ROR 19 3 16 0 84% 

IDD 3 1 2 0 67% RRO 12 4 8 0 67% 

ENF 5 0 5 0 100% RTS 7 1 6 0 86% 

ERR 12 5 7 0 58% LOR 60 11 49 0 82% 

CTR 3 0 3 0 100% STF 10 1 9 0 90% 

FTP 18 0 0 18 * TRR 12 4 8 0 67% 

Total 193 36 139 18 79% 

 

Three-wise Coverage (16 TCs) 

Table 43: RailroadGate specification mutation testing based three-wise coverage 

Operator T A K Eq MS Operator T A K Eq MS 

ARO 7 4 3 0 43% LNF 4 0 4 0 100% 

ICR 12 2 10 0 83% PB2S 1 0 1 0 100% 

RGCR 8 0 8 0 100% ROR 19 4 15 0 79% 

IDD 3 1 2 0 67% RRO 12 4 8 0 67% 

ENF 5 0 5 0 100% RTS 7 1 6 0 86% 
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ERR 12 5 7 0 58% LOR 60 15 45 0 75% 

BTR 3 0 3 0 100% STF 10 1 9 0 90% 

FTP 18 0 0 18 * TRR 12 4 8 0 67% 

Total 193 41 134 18 77% 

 

The best mutation score is achieved by pair-wise coverage (86%), while, the worst is 

achieved by basic rule coverage (65%). 

Figure 43 illustrates the results of the application of our proposed approach over 

RailroadGate specification and overlap between different test case generation criteria by 

ATGT. 

  alive mutants. 

  killed mutants. 

  killed mutants that cause runtime exceptions. 

  equivalent mutants. 

 

Figure 43: Overall deference of mutation testing over different testing criteria for RailroadGate Specification 
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6.2.3 SluiceGateGround Specification 

Update Rule Coverage (2 TCs) 

Table 44: SluiceGateGround specification mutation testing based update rule coverage 

Operator T A K Eq MS Operator T A K Eq MS 

ABS 2 0 0 2 * MMR 2 0 2 0 100% 

ARO 36 27 9 0 25% PB2S 3 1 0 2 0% 

RGCR 12 1 11 0 92% ROR 2 0 2 0 100% 

ENF 4 0 4 0 100% RRO 66 29 37 0 56% 

FTP 5 0 0 5 * RTS 11 2 9 0 82% 

CTM 2 0 2 0 100% STF 8 1 7 0 88% 

CTR 2 0 2 0 100% TRR 44 12 32 0 73 

LNF 2 0 2 0 100% UOI 2 0 2 0 100% 

      Total 203 73 121 9 62% 

 

Basic Rule Coverage (6 TCs) 

Table 45: SluiceGateGround specification mutation testing based basic rule coverage 

Operator T A K Eq MS Operator T A K Eq MS 

ABS 2 0 0 2 * MMR 2 0 2 0 100% 

ARO 36 24 12 0 33% PB2S 3 0 1 2 100% 

RGCR 12 1 11 0 92% ROR 2 0 2 0 100% 

ENF 4 0 4 0 100% RRO 66 26 40 0 61% 

FTP 5 0 0 5 * RTS 11 2 9 0 82% 

CTM 2 0 2 0 100% STF 8 0 8 0 100% 

CTR 2 0 2 0 100% TRR 44 12 32 0 73% 

LNF 2 0 2 0 100% UOI 2 0 2 0 100% 

      Total 203 65 129 9 66% 

 

MCDC Coverage (8 TCs) 

Table 46: SluiceGateGround specification mutation testing based MCDC coverage 

Operator T A K Eq MS Operator T A K Eq MS 

ABS 2 0 0 2 * MMR 2 0 2 0 100% 

ARO 36 24 12 0 33% PB2S 3 0 1 2 100% 

RGCR 12 0 12 0 100% ROR 2 0 2 0 100% 

ENF 4 0 4 0 100% RRO 66 26 40 0 61% 

FTP 5 0 0 5 * RTS 11 2 9 0 82% 

CTM 2 0 2 0 100% STF 8 0 8 0 100% 
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CTR 2 0 2 0 100% TRR 44 12 32 0 73% 

LNF 2 0 2 0 100% UOI 2 0 2 0 100% 

      Total 203 64 130 9 67% 

 

Fault Coverage (26 TCs) 

Table 47: SluiceGateGround specification mutation testing based fault coverage 

Operator T A K Eq MS Operator T A K Eq MS 

ABS 2 0 0 2 * MMR 2 0 2 0 100% 

ARO 36 24 12 0 33% PB2S 3 0 1 2 100% 

RGCR 12 0 12 0 100% ROR 2 0 2 0 100% 

ENF 4 0 4 0 100% RRO 66 26 40 0 61% 

FTP 5 0 0 5 * RTS 11 2 9 0 82% 

CTM 2 0 2 0 100% STF 8 0 8 0 100% 

CTR 2 0 2 0 100% TRR 44 12 32 0 73% 

LNF 2 0 2 0 100% UOI 2 0 2 0 100% 

      Total 203 64 130 9 67% 

 

Pair-wise Coverage (4 TCs) 

Table 48: SluiceGateGround specification mutation testing based pair-wise coverage 

Operator T A K Eq MS Operator T A K Eq MS 

ABS 2 0 0 2 * MMR 2 0 2 0 100% 

ARO 36 24 12 0 33% PB2S 3 0 1 2 100% 

RGCR 12 0 12 0 100% ROR 2 0 2 0 100% 

ENF 4 0 4 0 100% RRO 66 26 40 0 61% 

FTP 5 0 0 5 * RTS 11 2 9 0 82% 

CTM 2 0 2 0 100% STF 8 0 8 0 100% 

CTR 2 0 2 0 100% TRR 44 12 32 0 73% 

LNF 2 0 2 0 100% UOI 2 0 2 0 100% 

      Total 203 64 130 9 67% 

 

The best mutation score is achieved by MCDC coverage, fault coverage, and pair-wise 

coverage (67%), while, the worst is achieved by update rule coverage (62%). 
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Figure 44 illustrates the results of the application of our proposed approach over 

SluiceGateGround specification and overlap between different test case generation criteria 

by ATGT. 

  alive mutants. 

  killed mutants. 

  killed mutants that cause runtime exceptions. 

  equivalent mutants. 

 

Figure 44: Overall deference of mutation testing over different testing criteria for SluiceGateGround Specification 

 

 

6.2.4 Results Summary 

 

Based on the above empirical evaluation, the test cases generated by ATGT vary in their 

ability to kill certain mutants.  

 CruiseControl RailroadGate SluiceGateGround Average 

Update Rule 

Coverage 

77% 69% 62% 69% 
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Basic Rule 

Coverage 

72% 65% 66% 68% 

MCDC 

Coverage 

60% 71% 67% 66% 

Fault 

Coverage 

14% 71% 67% 51% 

Pair-wise 

Coverage 

84% 79% 67% 77% 

Three-wise 

Coverage 

N/A 77% N/A N/A 

 

Based on the achieved mutation score for the three different case studies, we can conclude 

observed that the best mutation score is achieved the pair wise test coverage criteria 

(average mutation score of 77% based on the table above). In addition, update rule coverage 

and basic rule coverage mutation scores are close, however, update rule coverage is slightly 

better and that is conformed to coverage strength order in section 3.1.3. 

6.3 Chapter Summary 

In this chapter, an empirical investigation is performed on seven case studies, in order to 

evaluate the proposed set of AsmetaL mutation operators. The proposed set of operators 

for AsmetaL is able to generate syntactically correct AsmetaL mutants. In addition, it is 

observed that different test cases for the case studies vary in their ability to kill mutants. 

Therefore, it is possible to rely on the proposed set of AsmetaL mutation operators in 

assessing and comparing the performance of different test cases. The goals of the 

application mutation testing are achieved by the proposed mutation operator for AsmetaL 

specification.  In addition, as an application of the proposed approach, different test case 

generation criteria provided by ATGT are evaluated based on the achieved mutation score.  
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7 CHAPTER 7 

Application of Cost Reduction Techniques to AsmetaL 

Mutation Testing 

7.1 Introduction  

Mutation testing has proven its effectiveness in detecting inadequacy in the testing suites. 

However, mutation testing suffers from high computation problem where a few line of 

code specification may result in over thousand faulty versions (mutants) [96]. The high 

computation cost may hinder the adoption of mutation testing by practitioners. Many 

techniques have been proposed to reduce the computation cost of mutation testing, such as 

selective mutation (2-selective, 4-selective, 6-selective) and random mutation.  

Gligoric et al.[98] have investigated the application of selective mutation on concurrent 

operators, the conclusion of their study is that operator-based selection preformed slightly 

better than random-based selection. However, Zhang et al.[99] have conducted a study on 

comparing the application of operator-based selection verses random based selection with 

respect to the resulting effectiveness and cost saving. Their work was conducted in the 

context of the C programming language and they have shown that random-based selection 

is superior to all types of operator-based selection. In addition, Zhang et al.[100] have 

proposed a technique in which it combines operator-based and random-based to achieve 

better results. Their approach is based on four strategies i) Baseline: selects x% mutants 

from a selected set. ii) MOp-Based: selects x% mutants produces by each operators. iii) 
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PElem-Based: selects x% mutants produced by mutating the same program element. iv) 

PElem-Mop-based: selects x% mutants produces by each operators by mutating the same 

program element. Their approach resulted in 95% mutant’s reduction while reducing the 

execution cost by 93.46%. 

Mresa et al.[101] have evaluated the efficiency of mutation operators by the ratio of 

mutation score to the cost of mutation testing. Zhang et al.[102] investigated the reduction 

of cost by applying test prioritization inspired by regression test case prioritization 

technique to an effective testing sequence. Namin et al.[103][104] have proposed an 

approach for selecting a sufficient set of mutants based on several criteria of statistical 

analysis including all-subsets regression, elimination-based correlation technique, and 

cluster analysis. 

The basic idea behind selective mutation analysis is that killing a mutant may lead to killing 

other mutants as well. Thus, running test suite against a set of selected mutants might be 

considered sufficient as substitution of the full set. In this chapter, we have investigated 

applying selective mutation operator-based and random-based in order to demonstrate the 

tradeoff between effectiveness and saving. Moreover, we have investigated the relationship 

between operator-based and random-based mutation. Although, Zhang et al.[99] have 

concluded that all operator-based selection are not superior to random-based selection. 

In order to compare operator-based and random-based in the AsmetaL context, we adopt a 

set of questions introduced in [55][106][96][98]. 

Q1[56]: What are the most dominant mutation operators out of the proposed AsmetaL 

mutation operators? 
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Q2[55][56]: Is N-selective mutation applicable in the context AsmetaL?  

Q3: Is random-based selective mutation applicable in the context Abstract State 

Machines?  

Q4[98]: How do operator-based and random-based mutant selection compare in the 

context of AsmetaL?  

Q5[99]: Does random-based mutant selection provide a stable mutation scores in the 

context of AsmetaL? 

7.2 Evaluation Criteria of the Mutation Operators Cost Reduction Techniques 

In what follows, we present the criteria used to evaluate the application of the cost reduction 

techniques to mutation testing. 

7.2.1 Effectiveness 

In order to acquire the level of effectiveness of applying selective mutation, we have 

formulated the problem as follows.  Given a specification (denoted as S) and a set of 

mutants (denoted as M) generated for S by applying all mutation operators, equivalent 

mutants are removed from M and a set of non-equivalent mutants (denoted as Mnq) is 

acquired. After applying all test cases generated by ATGT tool, all non-killable (alive) 

mutants in M are considered as equivalent mutants, as done by previous 

studies [55][56][98][99][103] and removed. A reduced set of test cases (denoted as T) is 

considered as Mnq sufficient, if for any mutant in Mnq, there is at least one test case that is 

able to kill it. Similarly, a reduced set of test cases (denoted as TS ⊆ T) and a set of mutants 

(denoted as MS ⊆ Mnq). TS is said to be MS sufficient, if for any mutant in MS, there is at 

least one test case in TS that is able to kill it. The mutation score presented by applying TS 
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against all mutants Mnq, represents the effectiveness of applying selective set of mutants 

MS.  

𝐸𝑓𝑓(𝑀𝑆, 𝑀𝑛𝑞)  =  𝑀𝑆(𝑇𝑆, 𝑀𝑛𝑞) 

Figure 45 shows the procedure of acquiring the effectiveness of a set of selective mutants. 

 

Full set of 

mutants Mnq

Selective set 

of mutants Ms

Test Suite Ts

Generate Selective

Set based on 

Selection Criteria

Generate Adequate Test SuiteRun Ts against Mnq

Eff(Ms, Mnq) = MS(Ts,Mnq)

 

Figure 45: Selective mutation reduction procedure 

7.2.2 Cost Saving 

Saving is acquired as a difference between the execution cost of running the set of all 

mutants and the execution cost of running selective set of mutants normalized by the 

execution cost of running the set of all mutants. Originally, Offutt [56] has considered the 

cost in term of number of generated mutants. However, the number of generated mutants 

is not a precise indicator to the actual cost of preforming mutation testing.  

𝑆𝑎𝑣𝑖𝑛𝑔 (𝑀𝑆, 𝑀𝑛𝑞) = 1 −  
𝐶𝑜𝑠𝑡(𝑀𝑆)

𝐶𝑜𝑠𝑡(𝑀𝑛𝑞)
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Where Cost(Ms) denotes the cost of running the set of selected mutants. And Cost (Mnq) 

denotes the cost of running all none equivalent mutants. 

Mresa et al.[101] proposed that the execution cost is acquired by counting the exact number 

of execution of test cases against mutants.  

𝑒𝑥𝑒𝑐𝐶𝑛𝑡(𝑡, 𝑀)  =  #𝑀 

+ # 𝑀 −  # 𝑘𝑖𝑙𝑙(𝑀, {𝑐1}) 

+ # 𝑀 −  # 𝑘𝑖𝑙𝑙(𝑀, {𝑐1, 𝑐2}) … 

+ # 𝑀 −  # 𝑘𝑖𝑙𝑙(𝑀, {𝑐1, 𝑐2, … ,  𝑐𝑛−1})  

Where #M is the number of mutants. And # 𝑘𝑖𝑙𝑙(𝑀, {𝑐1}) represents the number of killed 

mutants by test case 𝑐1. 

In this study we follow Mresa [101] technique to acquire the exact number of execution.  

𝑆𝑎𝑣𝑖𝑛𝑔 (𝑀𝑆 , 𝑀𝑛𝑞) = 1 −  
𝑒𝑥𝑒𝑐𝐶𝑛𝑡(𝑇𝑆, 𝑀𝑆)

𝑒𝑥𝑒𝑐𝐶𝑛𝑡(𝑇, 𝑀𝑛𝑞)
 

7.2.3 Stability 

In the case of the application of the random selection technique, standard deviation can 

indicate the level of stability in the random sample. Zhang et al.[99] used 50 random runs 

to calculate the stability (standard deviation) of randomly selected samples of mutants for 

effectiveness and saving. The standard deviation will be calculated based on 100 random 

runs. The effectiveness and saving are calculated as the average of 100 random runs. 
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7.3 N-selective-based Mutation 

N-selective-based mutation testing is performed by applying all mutation operators to the 

original specification resulting in a set of mutants, denoted as M. Mutants generated by the 

N most dominant operators (dominant in number of generated mutants) are discarded. The 

rest of mutants are to be considered the selective set of mutants, denoted as MS, based on 

which the effectiveness and saving are drawn to assist the performance of that MS to M. 

Based on Offutt [55] work, we have applied 2-selective, 4-selective and 6-selective to set 

of case studies introduced in Chapter 6. 

7.4 Random-based Selective Mutation 

Similarly, random-based mutation testing technique acquires a set of mutants, denoted as 

M, generated by all mutation operators. The set of selected mutants, denoted as MS, is 

sample of x% size of M by uniformly random distribution. In our study, we have chosen to 

investigate the level of effectiveness and saving by applying 10%, 25%, 50% random set 

of mutants.  

7.5 Applying Cost Reduction Techniques to Case Studies  

7.5.1 Case Study 1: ferrymanSimulator Specification 

Operator-based Selection Mutation 

2-selective 

The two most dominant operators for ferrymanSimulator specification are ETR and RRO, 

producing 19%, and 15% of the overall mutants. The elimination of mutants they produce 

will results in 100% effectiveness and 30.14% saving. 

4-selective 
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In addition to ETR and RRO, we expand the set of selected mutants adding CRRO and 

ARO operators. The overall set of 4 selected operators are producing 52% of mutants. 

Hence, the level of effectiveness is 98.26%, while the saving is 56.81%. 

6-selective 

Moreover, the consideration of RTS and TTR (overall set produces 63% of mutants) results 

in 98.26% effectiveness and 68.12% saving. 

Random-based Selection Mutation 

10% Random-based Selection Mutation 

Figure 46 shows 100 runs 10% random selection based mutation testing. The average level 

of effectiveness is 96.77% while the standard deviation is 0.032. The saving is 87.33% 

with standard deviation of 0.013. 

 

Figure 46: ferrymanSimulator specification random selection (10%) 

25% Random-based Selection Mutation 
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While applying 25% random selection results in 99.08% average effectiveness and average 

68.82% saving. The standard deviation is 0.011 and 0.02 respectively. Figure 47 illustrates 

a 100 random runs with 25% sample size.  

 

Figure 47: ferrymanSimulator specification random selection (25%) 

50% Random-based Selection Mutation 

The application of 50% random selection produces 99.91% average of effectiveness and 

37.65% average of saving (Standard deviations are 0.004 and 0.018 respectively). Figure 

48 illustrates a 100 random runs with 50% sample size.  
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Figure 48: ferrymanSimulator specification random selection (50%) 

 

7.5.2 Case Study 2: railroadGate Specification 

Operator-based Selection Mutation 

2-selective 

Based on number of generated mutants, ROR and ICR are the most dominant operators, in 

which they produce 14% and 9% respectively. The level of effectiveness maintained while 

excluding their mutants is 100%. In addition, the level of saving is 19.67%. 

4-selective 

Introducing two more operators (ERR and RRO) to the previous set of selected operators 

(overall set produces 41% of overall mutants) maintains 100% effeteness and reduces the 

computation cost by 28.42%. 

6-selective 
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Furthermore, the inclusion of TRR (9%) and STF (8%) to the selected list (58% of mutants) 

results in 100% effectiveness and 38.25% saving. 

Random-based Selection Mutation 

10% Random-based Selection Mutation 

Applying 10% random selection mutation testing would results on average of 95.07% 

effectiveness and 85.55% saving. Figure 49 illustrates a 100 random runs over 10% random 

sample size (standard deviations are 0.049 and 0.018 respectively). 

 

Figure 49: railroadGate specification random selection (10%) 

25% Random-based Selection Mutation 

As shown in Figure 50, a 100 random runs over 25% random sample size will results on 

average of 99.62% effectiveness and 64.55% saving (standard deviations are 0.012 and 

0.021 respectively). 
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Figure 50: railroadGate specification random selection (25%) 

50% Random-based Selection Mutation 

The average level of effectiveness is 100% and the average level of saving is 29.9% 

(standard deviations are 0 and 0.023 respectively). Figure 51 shows a 100 runs with sample 

size of 50%. 

 

Figure 51: railroadGate specification random selection (50%) 
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7.5.3 Case Study 3: sluiceGateGround Specification  

Operator-based Selection Mutation 

2-selective 

The set of selected mutation operators includes RRO (32% of mutants) and TRR (21% of 

mutants). The acquired effectiveness is 100% while the saving is 55%. 

4-selective 

The inclusion of ARO (17% of mutants) and RGCR (6% of mutants) operators to the 

previous operators (76% of mutants) grants 99.24% effectiveness and 75.5% saving. 

6-selective 

Moreover, including RTS (5% of mutants) and STF (4% of mutants) operators (85% of 

overall mutants) results in 96.18% effectiveness and 89% saving. 

Random-based Selection Mutation 

10% Random-based Selection Mutation 

The application of 10% random selection results on averages of 96.42% (standard 

deviation of 0.020) effectiveness and 83.93% (standard deviation of 0.015). Figure 52 

illustrates a 100 runs with random sample of 10% size. 
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Figure 52: sluiceGateGround specification random selection (10%) 

25% Random-based Selection Mutation 

While applying 25% random selection results on averages of 98.77% (standard deviation 

of 0.013) effectiveness and 60.13% (standard deviation of 0.02) saving. Figure 53 

illustrates a 100 runs with random sample of 25% size. 

 

Figure 53: sluiceGateGround specification random selection (25%) 
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50% Random-based Selection Mutation 

Nevertheless, the application of 50% random selection results on averages of 99.84% 

(standard deviation of 0.015) effectiveness and 20.35% (standard deviation of 0.02)  

saving. Figure 54 illustrates a 100 runs with random sample of 50% size. 

 

Figure 54: sluiceGateGround specification random selection (50%) 

7.5.4 Case Study 4: cruiseControl Specification  

Operator-based Selection Mutation 

2-selective 

TRR (23% of mutants) and RGCR (17% of mutants) are the most dominant operators for 

cruiseControl specification. The elimination of mutants generated by them results in 

99.12% effectiveness and 42.42% saving. 

4-selective 
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Furthermore, the including of RRO (11% of mutants) and LOR (10% of mutants) operators 

to the previous set of selected operators (overall of 61% of mutants) results in 98.53% 

effectiveness and 66.62% saving. 

6-selective 

ERR and STF produce 9% and 5% of mutants respectively. The set of the six operators is 

responsible for 74% of overall generated mutants. Similar to 4-selective, the level of 

effectiveness is 98.53%, however, the level of saving is 80.09%. 

Random-based Selection Mutation 

10% Random-based Selection Mutation 

Figure 55 shows a 100 runs of 10% random selection. The average of effeteness is 95.99% 

(standard deviation of 0.021), while the average of saving is 87.30% (standard deviation 

of 0.011). 

 

Figure 55: cruiseControl specification random selection (10%) 
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25% Random-based Selection Mutation 

Figure 56 shows a 100 runs of 25% random selection. The average of effeteness is 98.47% 

(standard deviation of 0.022), while the average of saving is 68.83% (standard deviation 

of 0.013). 

 

Figure 56: cruiseControl specification random selection (25%) 

50% Random-based Selection Mutation 

The average of effeteness is 99.48% (standard deviation of 0.004), while the average of 

saving is 38.13% (standard deviation of 0.016). Figure 57 shows a 100 runs 50% random 

selection. 
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Figure 57: cruiseControl specification random selection (50%) 

 

7.5.5 Case Study 5: AdvancedClock Specification 

There is not mutation selection investigation done for this case study, since it only has one 

test case (deterministic specification that does not required user input). Thus, a test case 

that kills a single mutant would kill them all with 100% effectiveness.  

7.5.6 Case Study 6: AdvancedClock2 Specification  

There is not mutation selection investigation done for this case study, since only one test 

case is effective among all test cases generated by ATGT while other test cases do not 

contribute by killing any mutants therefore, they should be discarded. Thus, only a single 

test case is kept in the test suite. 

7.5.7 Case Study 7: fattoriale Specification  
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2-selective 
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The elimination of the two most dominant operators are ARO (26% of mutants) and RRO 

(17% of mutants) results in 98.94% effeteness and 40.58% saving.  

4-selective 

The introduction of the next two dominant operators ROR (11% of mutants) and ABS (9% 

of mutants), the four operators are responsible of 63% of overall mutants, results in 96.81% 

effeteness and 52.17% saving.  

6-selective 

Furthermore, the consideration of ERR (9% of mutants) and CTR (4% of mutants) results 

in 96.81% effectiveness and 73.91% saving. 

Random-based Selection Mutation 

10% Random-based Selection Mutation 

The average level of effectiveness results from 10% random selection is 93.69% (standard 

deviation 0.034) while the saving is 84.20% (standard deviation 0.027). Figure 58 shows 

a 100 runs of sample with size of 10%. 
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Figure 58: fattoriale specification random selection (10%) 

25% Random-based Selection Mutation 

The average level of effectiveness results from 25% random selection is 96.44% (standard 

deviation 0.016) while the saving is 62% (standard deviation 0.034). Figure 59 shows a 

100 runs of sample with size of 25%. 

 

Figure 59: fattoriale specification random selection (25%) 

74.00%

76.00%

78.00%

80.00%

82.00%

84.00%

86.00%

88.00%

90.00%

0.00% 20.00% 40.00% 60.00% 80.00% 100.00% 120.00%

100 Runs (10% Random Selection)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

92.00% 93.00% 94.00% 95.00% 96.00% 97.00% 98.00% 99.00% 100.00%

100 Runs (25% Random Selection)



143 

 

50% Random-based Selection Mutation 

The average level of effectiveness results from 50% random selection is 98.90% (standard 

deviation 0.0096) while the saving is 24.57% (standard deviation 0.034). Figure 60 shows 

a 100 runs of sample with size of 25%. 

 

Figure 60: fattoriale specification random selection (50%) 

7.5.8 Results Summary   

Table 49 describes the summary of the results of the application of N-selective. 

Table 49: 2, 4, 6-N-selective results for the case studies 
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2 

selective 

Operators ETR 

RRO 

ROR 

ICR 

RRO 

TRR 

TRR 

RGCR 

ARO 

RRO 

Effectiveness 100% 100% 100% 99.12% 98.94% 

Saving 30.14% 19.67% 55% 42.42% 40.58% 

4 

selective 

Operators ETR 

RRO 

CRRO 

ARO 

ROR 

ICR 

ERR 

RRO 

RRO 

TRR 

ARO 

RGCR 

TRR 

RGCR 

RRO 

LOR 

ARO 

RRO 

ROR 

ABS 

Effectiveness 98.26% 100% 99.24% 98.53% 96.81% 

Saving 56.81% 28.42% 75.5% 66.62% 52.17% 

6 

selective 

Operators ETR 

RRO 

CRRO 

ARO 

RTS 

TTR 

ROR 

ICR 

ERR 

RRO 

TRR 

STF 

RRO 

TRR 

ARO 

RGCR 

RTS 

STF 

TRR 

RGCR 

RRO 

LOR 

ERR 

STF 

ARO 

RRO 

ROR 

ABS 

ERR 

CTR 

Effectiveness 98.26% 100% 96.18% 98.53% 96.81% 

Saving 68.12% 38.25% 89% 80.09% 73.91% 
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Table 50 describes the summary of the results of the application of random selection. 

Table 50: 10%, 25%, 50% random selection results for the case studies 
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10% 

Random 

Selective 

Effectiveness 96.77% 95.07% 96.42% 95.99% 93.69% 

Effectiveness 

Stability 

0.032 0.049 0.02 0.021 0.034 

Saving 87.33% 85.55% 83.93% 87.30% 84.2% 

Saving 

Stability 

0.013 0.018 0.015 0.011 0.027 

25% 

Random 

Selective 

Effectiveness 99.08% 99.62% 98.77% 98.47% 96.44% 

Effectiveness 

Stability 

0.011 0.012 0.013 0.022 0.016 

Saving 68.82% 64.55% 60.13% 68.83% 62% 

Saving 

Stability 

0.02 0.012 0.02 0.013 0.034 

50% Effectiveness 99.91% 100% 99.84% 99.48% 98.90% 
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Random 

Selective 

Effectiveness 

Stability 

0.004 0 0.015 0.004 0.01 

Saving 37.65% 29.9% 20.35% 38.13% 24.57% 

Saving 

Stability 

0.018 0.023 0.02 0.016 0.034 

 

 

7.6 Overall Operator-Based Selection Mutation 

Typical Operator-based selection reduces the number of generated mutants, however, the 

mutants are actually generated but the output of the generation process to the testing 

process would be reduced based on which operators must be eliminated. In other words, 

the set of operators that would be discarded can be obtained without generating the full set 

of mutants. Thus, in order to reduce the computation cost further, we have investigated the 

possibility of generalizing the operator-based selection considering all of the case studies. 

In order to carry out our investigation, we must first determine the list of operators 

responsible for generating the largest share of mutants against all case studies. It should be 

noted that the weight of each operator would be considered as the ratio generated mutants 

per operator per case study rather than the total number of generated mutants for all case 

studies. Table 51 provides a top six operators ranked list (RRO, CTR, TRR, ARO, RGCR, 

and ROR) of weight per operators. These Operators produce on average 58% of the total 

generated mutants (based on the selected case studies). 
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Table 51: Ranking dominant operators (All case studies) 
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RRO 42 12 66 48 22 24 24 238  

CTR 0 0 2 0 80 51 6 139  

TRR 11 12 44 96 11 20 0 194  

ARO 19 7 36 13 13 20 37 145  

RGCR 5 8 12 72 2 6 6 111  

ROR 8 19 2 8 10 9 15 71  
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RRO 15% 9% 32% 11% 10% 11% 17% 15% 

5
7

%
 

CTR 0% 0% 1% 0% 37% 24% 4% 9% 

TRR 4% 9% 21% 23% 5% 10% 0% 10% 

ARO 7% 5% 17% 3% 6% 10% 26% 11% 

RGCR 2% 6% 6% 17% 1% 3% 4% 6% 

ROR 3% 14% 1% 2% 5% 4% 11% 6% 
 

Only operator-based selection will be investigated since the random selection is not 

applicable for generalization. We have performed 2-selective, 4-selective, and 6-selective 

for each study case as follows: 

2-selective 

As shown in Table 51, the two most dominant operators are RRO, and CTR. Table 52 

shows the results of eliminating the mutants generated by these operators. 
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Table 52: Overall 2-Operators Selection mutation 
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Effectiveness 100.00% 100.00% 100.00% 100.00% 100.00% 

Saving 15.94% 4.37% 30.00% 11.05% 27.54% 
 

4-selective 

While the four most dominant operators are RRO, CTR, TRR, and ARO. Table 53 shows 

the results of eliminating the mutants generated by these operators. 

Table 53: Overall 4-Operators Selection mutation 
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Effectiveness 98.26% 100.00% 100.00% 100.00% 98.94% 

Saving 24.35% 10.93% 65.00% 34.47% 49.28% 
 

6-selective 

Considering the six most dominant operators, which are RRO, CTR, TRR, ARO, RGCR, 

and ROR. Table 54 shows the results of eliminating the mutants generated by these 

operators. 
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Table 54: Overall 6-Operators Selection mutation 
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Effectiveness 98.26% 100.00% 99.24% 99.12% 96.81% 

Saving 28.41% 27.87% 77.50% 61.40% 61.59% 
 

7.7 General Discussion 

In this section, we have addressed the aforementioned questions as follows 

Q1[56]: What are the most dominant mutation operators out of the proposed AsmetaL 

mutation operators? 

Based on section 7.6, RRO, CTR, TRR, ARO, RGCR, and ROR are the most dominant 

operators that are responsible of 58% of the total number of generated mutants. Table 

51 shows the amount and percentage of each dominant operator. 

Q2[55][56]: Is N-selective mutation applicable in the context AsmetaL?  

We compare the results of 2-, 4-, 6- selective obtained for each case study individually 

with the results obtained by other researches (for other languages). As shown in Table 

49, the average 2-selective operator based effectiveness is 99.61%, while the average 

saving is 37.56%. Mathur [54] has obtained 99.99% effectiveness and 24% saving. It 

is noticeable that the effectiveness achieved in for 2-selective in the context of ASM is 

slightly less, however, the saving achieved is fairly higher. If RRO and CTR are 

considered for the 2-selective, as shown in Table 52, the obtained average level of 

effectiveness is 100%, while the average saving is 17.78%. 
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The 4- selective average of effectiveness is 98.57%, while the average saving is 55.9%. 

Comparing the obtained results with results obtained by Offutt [55] research (99.84% 

effectiveness and 41% saving), It is noticeable that the level of effectiveness achieved 

in for 4-selective in the context of ASM is slightly less, however, the saving achieved 

is fairly higher. If RRO, CTR, TRR, and ARO are considered for the 4-selective, as 

shown in Table 53, the obtained average level of effectiveness is 99.44%, while the 

average saving is 36.81%. 

 

The 6- selective average of effectiveness is 97.96%, while the average saving is 

69.87%. Comparing the obtained results with results obtained by Offutt [56] research 

(88.71% effectiveness and 60% saving), It is noticeable that the level of effectiveness 

and saving achieved in for 6-selective in the context of ASM is dramatically better. If 

RRO, CTR, TRR, ARO, RGCR, and ROR are considered for the 6-selective, as shown 

in Table 54, the obtained average level of effectiveness is 98.69%, while the average 

saving is 51.35%. 

Based on the comparison above, we consider that N-selective is applicable in the 

context of ASM.  

Q3: Is random-based selective mutation applicable in the context Abstract State 

Machines?  

We based our answer on the results from section 7.5, as shown in Table 50, the average 

level of effectiveness obtained by 10% random selection is 95.59%, where the average 

stability factor for the effectiveness (100 run standard deviation) is 0.031, In addition, 

the average level of saving is 85.67%, where the average stability factor for the saving 
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is 0.0168. Comparing our results with Wong and Mathur [51] research (10% selective, 

level of effectiveness is 84%), our results achieves dramatically better effectiveness 

score.  

 

In case of 25% random selection, the average level of effectiveness is 98.48%, where 

the average stability of effectiveness is 0.015. In addition, the average level of saving 

is 64.87%, where the average stability of saving is 0.02. 

 

In addition, in case of 50% random selection, the average level of effectiveness is 

99.63%, where the average stability of effectiveness is 0.007. In addition, the average 

level of saving is 30.12%, where the average stability of saving is 0.022. 

 

Based on our case study results, we can consider that random based selection is 

applicable in the context of ASM.  

 

Q4[98]: How do operator-based and random-based mutant selection compare in the 

context of Abstract State Machines?  

Ultimately, the relationship between effectiveness and savings is a tradeoff 

relationship. As described in the answer to Q2, the order of the 2, 4, and 6 N selective 

is descending order in term of effectiveness, however, it is ascending in term of saving. 

In contradiction, as described in the answer to Q3, the order of 10%, 25%, and 50% 

random selective is ascending in term of effectiveness, whereas in term of saving, it is 

descending order. Hence, we compare, in term of effectiveness and saving, 2- N 
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selective with 50% random selective, 4- N selective with 25% random selective, and 

6- N selective with 10% random selective.  

 

In case of 2 – N selective and 50% random selection, random selective (99.63%) 

preform slightly better than 2 – N selective (99.61%) in term of effectiveness. However 

in term of saving, 2 – N selective (37.56%) preform fairly better than random selective 

(30.12%). 

 

In case of 4 – N selective and 25% random selection, 4 – N selective (98.57%) preform 

slightly better than random selective (98.48%) in term of effectiveness. However in 

term of saving, random selective (64.87%) preform fairly better than 4 – N selective 

(55.9%). 

 

In case of 6 – N selective and 10% random selection, 6 – N selective (97.96%) preform 

fairly better than random selective (95.59%) in term of effectiveness. However in term 

of saving, random selective (85.67%) preform dramatically better than 6 – N selective 

(64.87%). 

 

As mentioned earlier, the relationship between effectiveness and savings is a tradeoff 

relationship. The selected case studies are insufficient to answer that question.  It is 

worth noting that random-based selection provides more fixable ratio selection that can 

be subjective to the user need.   
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Q5[99]: Does random-based mutant selection provide a stable mutation scores in the 

context of AsmetaL? 

The stability calculation is based on standard deviation which indicates how far the 

collected data from each other. It used as measurement of data precision. In the random 

selection mutation, it is noticeable that the stability measurement does not exceed 0.05 

for both effectiveness and cost saving for the case studies as shown in Table 50.  It is 

observed that 10% random selective analysis results in higher effectiveness standard 

deviation in respect with 25% and 50% random mutation. However, it results in lower 

cost saving standard deviation in respect with 25% and 50% random mutation. In 

addition, 50% selective mutation is in contrast. Thus, we can consider our results (100 

random sample runs) stable. 

  

7.8 Threats to Validity 

 

In this section we have addressed any possible threats to validity in our thesis as follows:  

Construct Validity:  is concerned with the relevance and the meaningfulness of the used 

measures. In order to reduce threats of construction validity we have used metrics to 

measure the selective reduction techniques used by many other studies. Another threat to 

validity is the manual checking of equivalent mutants, which is a tedious and error prone 

activity. Many studies, (e.g., [55], [56], [98], [99], and [103]), treated the remaining alive 

mutants after refining test suites as equivalent mutants, and thereby they are discarded. 
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Internal Validity: is concerned with the uncontrolled variables used in experiments. In 

order to reduce internal threats to validity, we have implemented MuAsmetaL to enforce 

the consistency of data collection. All the results of the case studies were collected using 

MuAsmetaL, thus, eliminating any faults related to manual data collection. Second, threat 

to internal validity is related to the use of MuAsmetaL. The tool is still in the prototype 

stage and requires more testing and improvements. To reduce this risk, selected test cases 

are executed using the tool and manually, showing no discrepancies. Third, MuAsmetaL 

does not have the ability to detect equivalent mutants nor it consider them in the mutation 

score calculation.  

 

External Validity: is concerned with how well you can generalize from the results of one 

study to the real world. The ability to generalize depends on how similar the study 

environment is to that use in actual practice. In order to reduce external threats to validity, 

we have chosen several case studies obtained from the literature. Case studies that represent 

a diversity of AsmetaL specifications in term of specification size and level of abstraction. 

However, not all operators produce mutants due to the absence of certain AsmetaL 

constructs. All operators were implemented in MuAsmetaL and can be used other case 

studies. In addition, we have excluded non-deterministic specification from our selection, 

since; testing non-deterministic behavior is off scope.  

Last threat to external validity of the results reported in the case studies may be related to 

the fact that ATGT does not fully support the AsmetaL language. However, our approach 
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does not depend on the exclusive use of the ATGT tool. Test cases can be generated using 

any tool or even created manually.  
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8 CHAPTER 8 

Conclusions and Future Work 

The aim of this thesis is to propose a mutation-testing approach for Abstract State Machines 

paradigm. The work described in this thesis has been concerned with the design and 

evaluation of mutation operators for AsmetaL language, which is considered as incarnation 

of ASMs concept. A set of 18 mutation operators, (each is associated with an AsmetaL 

potential fault), are classified into 5 categories, have been proposed. An empirical 

investigation, that demonstrates the applicability of mutation testing in the context of 

ASMs, is presented in chapter 6. In addition, the effectiveness of operator-based and 

random-based selection, in order to reduce the computational cost of mutation testing, are 

investigated in chapter 7. 

8.1 Hypothesis of the Thesis 

To conclude our research, the research hypotheses are recalled 

Research Hypothesis 1: 

Our first research hypothesis is denoted as follows: 

 “Mutation testing can be applied to the Abstract State Machines (ASM) 

formalism. This can be achieved through the design and the application of ASM-

based mutation operators.” 

Based on our approach and empirical evaluation, it can be noticed that the proposed 

mutation operators for AsmetaL are able to generate a set of syntactically valid mutants. 

Thesis mutants mimic potential fault that may exist. We can observe, based on case studies, 
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that most of the generated mutant are killable. In this sense, the application of mutation 

testing achieves its goals, thus, we can conclude that mutation testing is applicable in the 

context of Abstract State Machines. 

Research Hypothesis 2: 

Our second research hypothesis is denoted as follows: 

 “ASM-based mutation testing is an effective approach to assess the adequacy of 

ASM-based test suites.” 

We can observe, based on case studies, that the ability of test cases to kill  mutants vary 

from one to another, hence, we can judge the effectiveness of test cases based on the 

proposed operators, furthermore, we can compare the effectiveness of two test cases. Our 

drawn conclusion is mutation testing is an effective approach to assess the adequacy of 

ASM-based test suites. 

Research Hypothesis 3: 

Our Third research hypothesis is denoted as follows: 

 “Mutation-based testing cost reduction techniques, such as selective and random 

mutation can be applied in the context of Abstract State Machines specifications.” 

We have performed selective and random mutation techniques, in chapter 7. Our judgment 

would be based on levels of effectiveness and savings for several case studies. Despite the 

fact that ASM context is different from other programming language such as C and Java, 

we compare our results with other studies. Our obtained results are to other works. 

Therefore, the drawn conclusion is that selective and random mutation are applicable in 

the context of Abstract State Machines specifications. 
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8.2 Thesis Contributions of the Thesis 

To conclude our research, the thesis contributions are recalled 

8.2.1 Contribution 1: Design and Evaluation of Mutation Operators for the 

AsmetaL language 

We have proposed a set of 18 operators for the AsmetaL language. The resulting operators 

are categorized into 5 categories targeting different types of AsmetaL faults. Each mutation 

operator is described using a concrete example and analyzed with respect to the produced 

mutants (e.g., valid/invalid, equivalent/non-equivalent, etc.). Furthermore, a mathematical 

characterization of the upper bound of the number of generated mutants is provided for 

each operator. Chapter 4 presented and discusses the set of proposed AsmetaL-based 

mutation operators. 

8.2.2 Contribution 2: Empirical Evaluation of the Proposed Approach 

Our proposed mutation-based approach is evaluated empirically using a set of 7 case 

studies of different sizes. We have shown that mutation testing can be applied effectively 

to ASM-based specifications. Furthermore, as an application of the proposed approach and 

since the only tool, spotted in the literature, that supports the generation of test cases for 

AsmetaL language is ATGT, we have focused on the evaluation of the test suites produced 

using the ATGT coverage criteria. We have shown that some ATGT coverage criteria are 

more adequate than others are. Chapter 6 presents and discusses our empirical experiments.  

8.2.3 Contribution 3: Development of MuAsmetaL 

We have developed a prototype tool (called MuAsmetaL) to perform AsmetaL-based 

mutation testing. The tool presents many features that can be summarized as follows: 
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 Generating mutants based on the proposed operators. 

 Validating the correctness of all the generated mutants using AsmetaLc. 

 Validating syntactic equivalency of generated mutants against the original 

specification. 

 Running test cases against the original specification. 

 Running test cases against mutants. 

 Calculating mutation score per operator and for all mutants. 

 Chapter 5 presents our MuAsmetaL tool. 

8.2.4 Contribution 4: Investigation of Cost Reduction Techniques in the ASM 

Context 

Mutation testing is known to have a high computation cost due to the large number of 

generated mutants. Many techniques have been proposed to reduce the cost of the 

application of mutation testing. In this thesis, we have applied random mutation and 

selective mutation to AsmetaL specifications. As discussed in Chapter 7 , we were able to 

achieve satisfactory results with respect to the resulting mutation score and the cost 

savings.  

 

8.3 Future Work 

In this section, we present some of the works that can be done as complementary to the 

proposed AsmetaL mutation approach: 

 The conduction of wider empirical studies  
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Experiments with varieties of subjects can be conducted in order to provide 

conclusion that can be generalized. In addition, thresholds can be drawn based on 

the outputs of that empirical studies, since, ASM has its own unique context.  

 

 Test case generation techniques adequacy assessment  

The proposed approach can be used to assess the adequacy of any AsmetaL test 

case generation techniques. In addition, the usage of AsmetaL promotes the 

comparison between them. In this thesis, we have compared different ATGT test 

coverage criteria, it can be used with other test generation tools. 

 

 Intermediate state ‘weak’ mutation testing 

Introducing compiler-based reduction technique based on intermediate state ‘weak’ 

mutation testing. It can reduce computation cost by forcing the machine to the 

desired state (precondition state). 

 

 AsmetaL test cases prioritization 

The proposed mutation based testing for AsmetaL can be used to prioritize test 

cases based on internal metrics and generation criteria in order to determine the 

execution sequence. This prioritized sequence will reduce computation cost and 

provides an optimized test process. 

 

 Test case generation/Equivalency analysis  
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Test case generation/Equivalency analysis using AsmetaL mutation testing and 

model checker counter example. Generally, equivalency analysis is undecidable 

problem. Many proposed approach (e.g., Laser equivalent mutation 

detection [118]) combines mutation testing and model checker to provide a fully 

automated tool that can generated mutants, detect equivalent mutants, use model 

checker counter-example to generate new test case. Therefore, mutation testing not 

only assess the adequacy of test suites, but improve it.  
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