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ABSTRACT 

 

Full Name : Waqas Waseem Ahmed 

Thesis Title : Plasmon-enhanced white light generation in phosphor based GaN LEDs 
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Date of Degree : May 2014 

 

White light emitting diodes (wLEDs) are on the brink of a breakthrough in general 

illumination, due to their unique properties as compared to conventional lighting sources. 

Up till now, the main challenges in white LEDs have been to realize high chromatic 

stability, high luminescence efficiency, and high color-rending index, which depend 

considerably on optical light conversion phenomena. The ability of phosphor material for 

wavelength down conversion has made it possible to explore the novel concepts in 

phosphor converted white LEDs. In this thesis work, a novel quantum coupled 

electromagnetic model of most commercially used phosphor Ce
3+

-doped Y3Al5O12 is 

proposed.  The electron transition process is integrated using rate equations and the 

material dispersion and luminance saturation properties are incorporated using Lorentzian 

and Weibull distribution functions in the proposed model, respectively. Finite Difference 

Time Domain method (FDTD) is used to numerically solve the coupled model. The 

resulting FDTD simulator is utilized to study the dynamics of structures consisting of 

phosphor layer coated on the GaN LED. It is also applied to investigate plasmonic 

structures for enhanced white light conversion in GaN LEDs. It is found that white light 

conversion is enhanced significantly via localized surface plasmon resonance by 
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embedding the silver rectangular array in phosphor layer and also coating the polystyrene 

doped silver rectangular array on surface of yellow phosphor converted GaN LEDs.  
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  الجاليوم صماماتالضوء الأبيض في  انتاج في استخدام التركيبات البلازمونية                :عنوان الرسالة
   الضوئية           

 
 

   ةهندسة كهربائي                       التخصص:
 

 هجرية 5341رجب :          تاريخ الدرجة العلمية
 

 
 

في الأعوام القليلة القادمة  قوية   من المتوقع ان تشهد تقنية الإضاءة المعتمدة على اشباه الموصلات انطلاقة  

هو متجاوزة كافة تقنيات الإضاءة الأخرى وذلك بسبب خصائصها الفريدة والمتميزة. التحدي الأكبر لهذه التقنية 

أن تعطي ثباتا عاليا في لون الضوء الأبيض وشدة إضاءة اعلى. هذه الصفات تعتمد على كفاءة هذه الأجهزة في 

انتاج الضوء الأبيض من خلال عملية التحويل الضوئي الجزئي من الأزرق الى الأصفر والقائمة على استخدام 

 المواد الفسفورية ومن ثم  مزج اللونين الأزرق والأصفر.

 

ض هذه الرسالة نموذجا كهرومغناطيسيا كميا جديدا لدراسة أكثر أنواع اضاءة اشباه الموصلات انتشارا تعر

وتداولا في الأسواق. في هذه الدراسة تم التعبير عن عملية التحويل بين الضوء الأزرق والضوء الأصفر عن 

ونقل  لمواد الفسفورية ونموذج توليدطريق ربط نموذج ديناميكية انتقال الالكترونات بين مجالات الطاقة في ا

العددية لحَلّ النموذجِ المزدوج  FDTDالضوئية المعتمد على معادلات ماكسويل. تم استخدام طريقة  الموجات

بشكل عددي. استخدم برنامج المحاكاة الناتجَ في دِراسَة كفاءة التحويل الضوئي مع وجود تركيبات بلازمونية 

ضة النانوية ضمن المادة الفسفورية. واظهرت النتائج إمكانية رفع درجة التحويل ناتجة عن وجود جسيمات الف

 الضوئي للون الأصفر مما يشير الى زيادة متوقعة في الضوء الأبيض الناتج.
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1 CHAPTER 1 

INTRODUCTION 

Over the last few years, light emitting diodes (LEDs) have attracted significant attention 

in common lighting owing to continuous increase in energy demand that exerted pressure 

on world energy infrastructure [1]. The phenomenon associated with conventional 

lighting sources (e.g., flashlight, incandescent light bulb and halogen lamp) result in large 

energy losses caused by high temperature and large stokes shifts. It is well acknowledged 

that the widespread substitute of traditional sources by higher efficiency light sources will 

lead to a significant reduction in power consumption [2]. In this scenario, white LEDs 

based light sources provide an alternative way of illumination. These sources have a long 

list of potential benefits such as small size, energy saving, long operating lifetime, high 

luminous efficiency and fast switching [3]. To date, the conventional white light sources 

have nearly approached their physical limit of efficiency, but the desired efficiency of 

white LEDs has not been achieved yet. Among numerous types of LEDs, GaN based 

LEDs having blue light emission have attracted attention for development of white LEDs 

with yellow phosphor.  The progress of white LEDs is imperative to expand its use in 

indoor and outdoor environment. It is predicted that solid state lighting LED technology  

have a bright future that would lead to replace the existing lighting technologies one day 

due to its potential market and inherent advantages. However, there are still many issues 

that need to be further resolved before white LEDs can be used widely for general 
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illumination. One of major the constraints is how to improve the efficiency of white light 

with exceptional color quality which mainly depends on the light conversion phenomena. 

Continuous progress is being made in developing the techniques for white light emission 

from GaN LEDs. Phosphor materials are considered one of the most optimal solutions for 

conversion of blue light in GaN LEDs into white light using wavelength down 

conversion phenomena.  In addition to the originally emitted blue light, such phosphors 

have the ability to emit the necessary red, green or yellow light required for a sun like 

spectrum. The evolution of highly efficient next generation solid state white LEDs 

require the discovery of novel down conversion phosphor materials with high 

photoluminescent quantum yield and thermal stability [4]. Substantial research efforts 

have been exerted on the development of new phosphor materials due to their importance 

in solid state lighting technology.  

Theoretical understanding of the process of white light generation with numerical 

modeling of the wavelength down conversion process using phosphor is necessary to 

study the dynamics of phosphor converted white LEDs. The fundamental physical 

insights offered by theoretical models can be numerically solved to guide the 

development of efficient phosphor layers in order to improve the optical proprieties of 

semiconductor devices. The numerical modeling of underlying physics of light 

propagation in phosphor materials plays an important role in evolution of new structures, 

improvement of existing designs and exploring the novel concepts in phosphor converted 

white LEDs. In this work, the modeling of wavelength down conversion process using 

yellow phosphor (YAG:Ce
3+

) along with enhanced light conversion using plasmonic 

structure in GaN LEDs is investigated. 
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1.1 White light generation approaches 

In general, three different approaches are used to produce white light using light emitting 

diodes as illustrated in Figure 1.1.   

1. At least three (red, green, blue) monochromatic LEDs are combined in an 

appropriate way such that power ratios are adjusted to produce white light with 

specific temperature. This technique is useful for small light sources which can 

adapt their emission color and intensity as desired by the user. The demerits of 

this approach are complex geometry and spectral shifts differences among the 

different colors. 

2. Ultraviolet LED is used to excite the red, green and blue phosphor to obtain white 

light. This technique is based on multi emitting center phosphor and faces certain 

limitations due to unavailability of green phosphor in nature.  

3. Blue (GaN) LED is used to pump the yellow phosphor to yield white light. The 

blend of yellow and blue light creates the white light. This scheme is based on 

single emitting center phosphor YAG:Ce
3+

 and mostly used in commercial white 

LEDs. 

The latter two methods employ the phosphor as wavelength down conversion 

luminescent materials for generating white light in LEDs. Although there are pros and 

corns of each strategy, the first two approaches are not commonly used due to certain 

inherent problems e.g. efficient green phosphors are not common in nature so this 



4 

 

restrains the 3-LED approach and UV with full down conversion is not efficient due to 

large stoke shift. 

 

                                            Figure 1.1 White Light generation approaches in LEDs. 

 

 

1.2 Phosphor and Luminescence  

Phosphors, also known as luminescent materials, exhibit the phenomenon of 

luminescence. Eilhard Wiedemann, a German physicist, used the term ‘Luminescence’ 

for the first time in 1888 to describe light emission from phosphors under appropriate 

excitation [5]. Luminescence can be broadly classified into phosphorescence and 

fluorescence on the basis of decay time as shown in Figure 1.2. The phenomenon of 

fluorescence takes short decay time for emission in the range of       to        whereas 

longer decay time (    ) is associated with phosphorescence for emission [6]. 

According to quantum theory, the spin direction of electron does not change in singlet 
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excited state and transition occurs from the singlet state in fluorescence process. On the 

other hand, in a phosphorescence process, energy is trapped in triplet state due to change 

in electron spin. The selection rules consider the triplet state as kinetically unfavorable 

and forbid the electron transitions from it. Thus, electrons progress at considerably slower 

time scales with low intensity compared with fluorescence. 

Singlet S=0

excitation

fluorescence

phosphorescence

Triplet S=1

Singlet S=0

 spin-orbital coupling

 

Figure 1.2 Fluorescence and Phosphorescence. 

Most of the phosphor materials are organic in nature consisting of dopant, also known as 

activator, and host crystal. The host crystals are mostly oxide, halide, nitride, oxynitride 

and oxyhalide selected on the basis of wide band gaps and other key features.  The 

dopants are emissive centers which are normally rare earth and transition metals ions. 

The incident electromagnetic energy is absorbed by these materials and emission occurs 

due to intentionally created inhomogeneities in host lattice by addition of dopant. The 

emission wavelength is dependent on dopant and the surrounding crystal structure [7]. 

The emitted light usually covers the visible region but it can also fall in the invisible 

region depending upon the dopant and crystal structure. But the phosphors having 

emission in the visible spectrum (400 nm-700 nm) are more considered at commercial 
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level. This fact can be described on the basis of human eye sensitivity to the visible 

spectrum between 400 nm and 700 nm.  Phosphors can be found both in crystalline and 

amorphous form in nature but it is reported that the quantum efficiencies of crystalline 

structures are normally higher as compared to amorphous hosts [8]. 

Phosphors have found extensive application in new areas in last few years. It is mostly 

used in lighting and display devices, optical amplifiers, X-ray detector systems, solar 

cells and white-light-emitting LEDs. The properties of phosphors are defined in terms of 

quantum efficiency, color coordinates, and color temperature for practical lighting and 

display devices. 

 

1.2.1 Requirement for Phosphor wavelength conversion  

 

Phosphor wavelength conversion is the most popular method for producing white Light 

in LEDs. There are few phosphor materials recognized as being appropriate for 

wavelength conversion process. The main performance requirements which must be 

satisfied for color conversion phosphors are: 

 The resulting emission spectrum including the emission of the other components 

(LED, other phosphors), should produce a pure white emission with a specific 

color rendering and color temperature. 

 The excitation spectrum should be well matched with the pumping LED and have 

large absorption strength at pumping wavelength. 
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 The increase in temperature should not affect the emission spectrum, excitation 

spectrum and quantum efficiency.  

 The quantum efficiency should approach unity in order to maximize the overall 

electrical-to-optical conversion efficiency of the phosphor converted LED. 

 The material should show an excellent chemical and temperature stability. 

 The phosphor should not show saturation effects for high excitation intensity. 

Phosphor should be carefully evaluated keeping in view of above-mentioned parameters 

for commercial applications. The failure in any one of the above requirements will 

restrict the phosphor usage in practical applications. 

 

1.3 LED Modeling Techniques 

In recent years, continuous efforts have been dedicated to micro and nano fabrication 

techniques of complex semiconductor devices. These techniques are complicated and 

their setup incurs huge cost. In this situation, an accurate modeling of semiconductor 

devices is indispensable for design and optimization, prior the actual fabrication of 

devices. The modeling of these devices provides an efficient way for reliable design and 

subsequent optical analysis. The analytical techniques developed in the past are not 

adequate to model modern devices due to arbitrary geometry. This limitation of analytical 

methods has made it impossible to optimize the design of such devices. Therefore, 

numerical techniques provide an alternative way to model the semiconductor devices. It 
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is found that the results of numerical techniques are more consistent with experiments 

since it can approximate the exact solutions. In fact, the numerical realization of these 

devices plays a significant role in industrial development cycle and also affects the 

behavior of optoelectronic systems. Despite high computational capability, a particular 

method can be applied to specific class of problems. Therefore, it is crucial to simulate 

and model the device for appropriate method for optical analysis.  

In semiconductors modeling, numerical techniques have been successfully employed for 

investigating the light matter interaction in LEDs. The performance of LEDs is examined 

through these techniques to make an optoelectronic system more reliable and efficient. In 

literature, many numerical techniques have been used to model the light emitting diodes 

such as Monte Carlo ray-tracing technique, FEM, BPM, FDTD etc. The light extraction 

characteristics of LEDs were modeled using Monte Carlo techniques as reported in  [9]. 

Monte Carlo ray tracing method provides an appropriate way to simulate and study the 

ray propagation, light distribution and light extraction efficiency in LEDs dies. In [10], 

the finite element method was employed to investigate heat dissipation and generation 

and the current flow paths that can improve the performance of GaN LEDs. This method 

is extensively used for modeling the complex geometries and irregular boundaries with 

various element sizes. In [11], Beam propagation method (BPM) was used to study the 

extraction efficiency of GaN LEDs using 2D periodic metal dielectric patterns. BPM 

method is more useful in simulating the propagation of light in integrated and fiber-optic 

photonic devices. Finite Difference Time domain (FDTD) technique is also applied to 

simulate the GaN LEDs as reported in [12]. This method has many advantages as 

compared to other computational techniques such as robustness, efficiency, ease of 
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implementation, etc. Therefore, we will focus on the FDTD method for simulating the 

yellow phosphor converted GaN LED in this thesis work. 

 

1.4 Literature Review 

Solid-state semiconductor lighting technology has made a great progress since the 

invention of the first semiconductor diode laser by Hall in 1962 [13]. In the past, the 

applications of semiconductor lasers in lighting were limited due to the fact that its 

emission wavelengths have usually been beyond visible range. However, Shuji 

Nakamura’s invention of InGaN/GaN blue LED chips in 1994 has made it possible to 

expand the LED applications in commercial sector [14]. The invention of blue LED 

paved the way to create white light LED for general illumination. The optical conversion 

process for white LEDs can be carried out by different methods. In 1996, Nichia 

Corporation developed the first commercial white LED by combination of InGaN diode 

chip and the yellow phosphor (YAG: Ce
3+

). The properties of YAG:Ce
3+

 phosphor were 

investigated  first time by Blasse and Bril as reported in [15].  

Phosphors have been a subject of very detailed investigations in the context of 

wavelength conversion in many lighting and display systems [16]. This promoted the 

rapid development of single and multi-color phosphor materials for light conversion 

process in LEDs. Rare earth based phosphors were mostly employed in pc-LEDs because 

of excellent luminescent properties. The dynamics of phosphor materials can be 

represented by energy levels and electron transition processes. Many studies have been 

done in literature to model the energy transition. The first insight to model the transition 
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processes between different energy level in a medium was given by Nagra and York [17]. 

In this paper, population dynamics of gain and absorbing medium were presented in semi 

classical rate equation model. The dynamics of spontaneous emission and light 

amplification has been investigated in silicon based photonics devices using quantum 

coupled rate equation model [18]. The numerical FDTD modeling of laser based on 

microstructures was reported in [19]. This paper discusses the introduction of 

spontaneous emission phenomena in Maxwell equations in terms of the external current 

density function. It also explains that the optical pumping can be added into rate equation 

model using medium polarizability. The coupled Maxwell-Bloch equations were used to 

model the nonlinear gain dynamics of semiconductor microcavities and optical slab 

waveguide based on FDTD method in [20] . This paper presents the inclusion of 

spontaneous emission in Maxwell equations by random fluctuation electric field term. A 

steady state  theoretical model for wavelength down conversion process based on Pr
3+

-

Yb
3+

 co-doped fluoride glasses was presented by rate equations and propagation 

equations to improve solar cell efficiency [21]. In [22] the multicolor phosphor blends 

excited by ultraviolet light were modeled theoretically by combining the emission and 

absorption processes with spatial distribution of light intensity. The emission and 

absorption processes among different energy levels are represented by rate equations 

while a differential equation is used to represent spatial distribution of light intensity. 

This steady state model can be utilized in developing the phosphor converted white LED 

with arbitrary designed light output. A theoretical model of Tb
+3

-Eu
+3

-Tm
+3

 co-doped 

system was reported under 359 nm excitation for generation of white light [23]. In this 

paper, electron transition processes, energy levels, and power and rate equations of 
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propagation were used for calculating the fluorescence intensity. Another similar 

theoretical model of multi rare earth co-doped system (Yb
+3

-Er
+3

-Tm
+3

) under 980 nm 

excitation for generation of white light was presented by Xu et al. [24]. This model is also 

based on the rate equations of transition processes between different energy levels. YAG: 

Ce
3+ 

phosphor mixed with SiO2 particles has been modeled analytically as reported in 

[25]. This paper discusses the optical properties of YAG:Ce
3+ 

phosphor including the 

absorption coefficient, scattering coefficient, asymmetry parameters calculated using Mie 

scattering theory. It is found that these parameters play a vital role in describing the 

characteristics of white LED. The optical performance parameters of YAG:Ce
3+  

phosphor calculated by Monte Carlo ray tracing and Mie theory were also reported in 

[26].   

In the last two decades, a lot of research has been conducted to enhance device efficiency 

and achieve desirable emission color by incorporating different phosphor materials for 

optical light conversion in GaN LEDs. However, there are some inherent losses 

associated with LED efficiency such as the difficulty to extract the generated photons and 

inherent low internal quantum efficiency. The rapid development of phosphor materials 

for light conversion process in LEDs has made it possible to overcome the color emission 

and IQE efficiency problems to some extent but still there is need to develop different 

ways to enhance the efficiency of LEDs. Several techniques have been reported in 

literature to enhance the emission of LED such as corrugated microstructures, micro-

lenses, photonic crystals, nano-gratings,  and so on [27]. There are still some challenging 

issues to use these methods in subwavelenght structures. However, Plasmonics offers a 

unique way of manipulating light in this scenario. Okamoto et al. proposed plasmonic 
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based InGaN LEDs for the first time to enhance the efficiency of QW based LEDs  using 

Surface plasmon polaritons (SPPs) in 2004 [28]. The resonant behavior of the metallic 

nanostructures at optical frequencies can be used to enhance the emission characteristics 

of LEDs. In addition, localized surface plasmon resonances provide a way to enhance 

light emission via near field interactions and local field enhancement. Plasmonic arrays 

consisting of aluminum particles showed approximately 60-fold and 70-fold emission 

enhancements for unpolarized and p-polarized light respectively [29]. Silver 

nanostructures with ITO grating layer were used to enhance the extraction efficiency  of 

GaN LED three times due to LSP coupling of evanescent field with GaN/ITO interface as 

reported in [30] . In this thesis, we will use different plasmonic structures to enhance the 

white light generation and emission in GaN LEDs. 

To this point, most of the references on white light generation mainly discussed the 

different techniques for fabrication of phosphor materials rather than modeling. Most of 

the presented phosphor models in literature are steady state or analytical which are unable 

to give physical insight for white light generation process. Due to the importance of 

phosphor materials for white light generation, a time domain electromagnetic model must 

be developed for optimizing the design of phosphor converted LEDs. To best of my 

knowledge, the presented time domain model for the electrodynamics of phosphor 

material is novel. In this work, we are focused on modeling the YAG:Ce
3+ 

based 

phosphor converted LEDs using the FDTD method.  
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1.5 Thesis Objectives 

The main contribution of this work is to formulate and numerically solve a quantum 

coupled electromagnetic model representing the electrodynamics of YAG:Ce
3+ 

phosphor. 

It is used to investigate the plasmonic structures for enhanced conversion of light in GaN 

LEDs. The specific objectives are as follows: 

 To perform an extensive literature survey on white light generation using 

phosphor materials associated with blue GaN LEDs 

 To develop a time domain model representing the wavelength down conversion 

phenomena based on phosphor material. The model also includes spontaneous 

emission and saturation effect due to density of dopant. 

 To develop a 2D-EM simulator that accounts for optical light conversion and 

spontaneous emission utilizing the ADE-FDTD technique. 

 To use the developed simulator to analyze different plasmonic structures for 

enhanced white light conversion in white LEDs 

 To extract important conclusions regarding the white light generation phenomena 

and their potential applications. 
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1.6 Thesis Organization 

This thesis is organized as follow: 

 Chapter 1 describes the fundamental concepts of white light generation in light 

emitting diodes and also defines the objectives of the thesis. 

 Chapter 2 describes the basic theory of phosphor converted white LEDs and also 

provides the theoretical background of electromagnetic modeling. 

 Chapter 3 elucidates Auxiliary Differential equation FDTD method to solve 

Maxwell's equations based on Yee’s Algorithm. It also enlightens the addition of 

dispersive properties of material and Total field scattered field (TF/SF) boundary 

conditions in ADE-FDTD 

 Chapter 4 explains the rate equation modeling of YAG:Ce
3+ 

phosphor material. It 

also discusses how line shape models and saturation effects are incorporated in 

the proposed model. 

 Chapter 5 discusses plasmonic structures for enhanced electromagnetic field and 

also sheds light on the enhancement of light conversion process in white LEDs 

using metallic nanostructures. 

 Chapter 6 contains the conclusions and the possible extensions of this thesis as 

future work.  
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2 CHAPTER 2 

THEORATICAL BACKGROUND 

In this chapter, the basic theory of yellow phosphor will be discussed by presenting the 

emission and absorption properties of YAG:Ce
3+

. The chapter highlights the importance 

of yellow phosphor in general illumination and explains the working principle of the 

phosphor converted white LEDs. The basic concepts of electromagnetic modeling using 

Maxwell’s equations will also be introduced in this chapter. 

 

2.1 Overview of Yellow Phosphor  

 

Cerium (III) doped YAG is a phosphor material firstly used by Nichia Corporation as 

down conversion phosphor for white light generation in GaN LEDs [13]. The properties 

which make YAG:Ce
3+ 

a suitable candidate for white LEDs are given below: 

 YAG: Ce
3+ 

has a very broad emission spectrum due to the spin orbital splitting of 

ground state of Ce
3+

.  The FWHM of yellow phosphor is typically 100 nm which 

covers visible range sensitive to the human eye. The white light is generated in 

higher Color Correlated range as combination of its yellow emission color and 

part of the blue emission from the pumping LED.  

 
 

 YAG:Ce
3+ 

has a broad excitation spectrum near 460 nm. It can easily be excited 

by the blue pumping LED due to good overlap with the LED’s emission 
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spectrum. It has high absorption strength due to spin-allowed 4f-5d energy 

transition. It has also relatively high optimum dopant concentration of about 5% 

before concentration quenching. 

 

 The quantum efficiency obtained from YAG:Ce
3+ 

is more than 90% which is 

essential for the fabrication of efficient LED. 

 

 It exhibits an excellent chemical stability and, as a result, phosphor converted 

LEDs do not undergo any deterioration under high excitation fluxes. 

 

 It shows an excellent thermal quenching behavior and, as a result, emission 

spectrum of phosphor converted LEDs do not change significantly at high 

temperature. 

 

Although YAG:Ce
3+ 

is a good candidate for phosphor converted GaN LEDs, the main 

problem of yellow phosphor lies in the lack of emission in the red part of the visible 

spectrum. The red-shift can be introduced in the emission spectrum by adding the Gd
3+

 or 

Tb
3+ 

[31], while the emission spectrum is blue-shifted by substituting some Al
3+

 sites by 

Ga
3+

 in the lattice [32]. Some other dopants can also be added in YAG:Ce
3+

 to include the 

red part in the emission spectrum. Therefore, the more efficient emission can be obtained 

by adding relatively narrow-emitting rare earth ions. 
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2.1.1 Electron Transition Processes in yellow phosphor  

 

The electrodynamics of phosphor material can be described by the electron transitions 

among different energy levels. The energy level diagram of free Ce
3+

 and YAG: Ce
3+ 

is 

shown in the Figure 2.1. The ground state demonstrates a spin orbital splitting into two 

states, namely 
2
F5/2 and 

2
F7/2 that are associated with     electronic configuration of free 

Ce
3+ 

ion with energy separation of 2000 cm
-1

. The incorporation of Ce
3+ 

ions in host 

inorganic material (YAG) decreases energy of 5d excited state as compared to free Ce
3+ 

ion. The decrease in energy is attributed to phenomenon of crystal field splitting and 

centroid shift. Therefore, the composition of Ce
3+ 

in host material plays a vital role in 

determining the emission and excitation wavelength of phosphor material. Two lower 

energy levels of 
2
D3/2 and 

2
D5/2 states are formed due to crystal field splitting. The stoke 

shift is obtained upon the excitation of electron from 4f to 5d resulting in different 

absorption and emission wavelengths.  

 

 

Figure 2.1 Energy Level diagram for free Ce3+ ion for YAG: Ce+3 [33]. 
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2.1.2 Excitation and Emission Spectrum of YAG: Ce
3+

 

 

The emission and excitation spectra for YAG:Ce
3+ 

 is shown in Figure 2.2. It is found that 

excitation peaks at 338 nm and 460 nm are associated with 
2
F5/2 →

2
D3/2 and 

2
F5/2 →

2
D5/2 

transitions respectively. The electrons on the energy level of 
2
D5/2 state would relax to 

2
D3/2 state through electron–phonon interaction phenomenon. As a result, the emission 

band is associated to 
2
D3/2 →

2
F7/2 or 

2
F5/2 transitions. 

 

 

 

               Figure 2.2 Emission and Excitation spectrum of YAG:Ce3+ with different Ce3+ concentration. 
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2.2 Working Principle of yellow phosphor converted GaN LEDs 

 

The commercially available white LEDs are produced by coating the surface of blue GaN 

LED chip with down converting phosphor (YAG:Ce
3+

) layer. The basic principle is based 

on absorption of blue light and re-emission of yellow light. The structure of blue GaN 

LED with YAG: Ce
3+ 

layer to produce white light is shown in the Figure 2.3. It is well 

known that yellow phosphor
 
has strong absorption near 460 nm which is well matched 

with emission wavelength of GaN LED. Part of the blue light emitted from the GaN LED 

chip coated with yellow phosphor layer is absorbed by YAG:Ce
3+  

layer and the rest of 

the blue light propagate in air. Phosphor layer converts the absorbed light into yellow 

light and re-emits it. The un-absorbed blue light from GaN LED will combine with re-

emitted yellow light from phosphor to give a radiance of white light as illustrated in 

Figure 2.4.  

 Blue LED 

Blue LED with Yellow Phosphor 

         Yellow Phosphor 

 

Figure 2.3 Schematic of GaN Chip coated with yellow phosphor. 
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Figure 2.4 Spectral power of phosphor converted white LED. 

 

2.3 Maxwell’s Equations for light propagation 

 

The electromagnetic model to describe the dynamics of white LEDs is based on 

Maxwell’s equations. Maxwell’s equations in a linear, non-dispersive, and isotopic and 

source free media are given by 

  

  
  

 

 
    

 

2.1 

  

  
 

 

 
    

 

2.2 

         

 

2.3 

      2.4 



21 

 

The six coupled scalar equations derived from basic Maxwell’s equations using 

Faraday’s law and Ampere’s law in Cartesian coordinate system are given by 
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Considering 2-dimensional transverse electric (TE) or transverse magnetic (TM) mode, 

and assuming no variation of the fields in the z-direction, all partial derivatives with 

respect to z are zero 
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 For TM polarized wave, the equations are expressed as 
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For TE polarized wave, the equations are expressed as 
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2.4 Material Dispersion Models 

 

The behavior of materials can be described by constitutive parameters which are 

frequency dependent in reality. Therefore, it is important to know about the frequency 

response to incorporate the material properties in FDTD. There are certain standard 

models found in literature that define the frequency response of material. These models 

are based on the fundamental physical concept of dipole formation by the applied 

electrical field. Understanding this behavior leads to model the electric susceptibility and 

permittivity of the medium. The behavior of a dispersive medium can be defined by the 

following constitutive relations in frequency domain as: 

 ( )   ( ) ( )     2.18 
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 ( )     ( ) ( )  2.19 

 

where  ( ) is the frequency dependent polarization induced in the material due to an 

applied electric field  ( ) and   is the susceptibility of the medium, which represents 

the ability of the dielectric to polarize in an applied dielectric field. 

By combining eq. 2.18 and eq. 2.19, we get 

  ( )     ( )(   ( ))     2.20 

 

The permittivity can be written as  

 ( )    (   ( ))  2.21 

 

with relative permittivity as 

  ( )     ( ) 2.22 

 

With the above expressions it is now possible to assign a material model depending on 

the properties of the material. 
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2.4.1 The Lorentz Model 

 

The Lorentz oscillator model is one of the well know material models that employs the 

simplest picture of atom-field interaction. It is derived by considering driven harmonic 

oscillator which assumes atom as a mass (nucleus) attached to smaller mass (electron) 

through a spring. The incident electric field of electromagnetic wave will set the electron 

into harmonic motion. The Lorentz model defines the temporal response of a system in 

terms of polarization of the medium and electric field as: 

   

   
  

  

  
   

       
   

2.23 

  

where      √
 

 
      and        √

   

   
 

  is spring constant in Newton/ meter  

  is charges / molecules per unit volume  

The response of the system in frequency domain, assuming      time dependence, is 

given by : 

 ( )  
    

 

  
        

 ( ) 
2.24 

 

The electric susceptibility can be defined as: 

        ( )  
 ( )

   ( )
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The permittivity can be obtained as : 
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        ( )    (          ( ))  2.24  

 

The electric flux density can be calculated using  

 ( )    (  
  

 

  
        

) ( ) 
2.26 

 

2.4.2 The Drude Model 

 

The Drude Model is a simplified form of the Lorentz model that can be derived by 

neglecting the restoring force in a harmonic oscillator. This model was first proposed by 

Paul Drude to explain the electron transport properties in the metals. The Drude model 

defines the temporal response of system under the applied electric field as: 
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The electric susceptibility can be defined as: 

      ( )  
 ( )

   ( )
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The permittivity can be obtained as: 

      ( )    (        ( ))  2.29 

 

The electric flux density can be calculated using  
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 ( )    (  
  

 

      
) ( ) 
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2.4.3 The Lorentz-Drude Model 

 

This model is the most generalized form that describes the interaction of electromagnetic 

wave with metals. This model is derived by representing the permittivity of material due 

to free electrons and bounded elections in metal. The permittivity of Lorentz model is 

defined by oscillation of bounded electrons in metals and the permittivity of Drude model 

is defined by oscillations of free electrons in metals. As a result, the permittivity can be 

defined as: 

                2.31 

 

The permittivity of Lorentz Mode is given as  

       
  

 

  
        

     
2.31 

 

The permittivity of Drude Mode is given as  

        
  

 

      
     

2.32 

 

The electric flux density can be defined as 
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 ( )    (   
  

 

      
 

  
 

  
        

) 
2.33 

 

In this thesis, Silver is used for plasmonic structures whose permittivity is modeled using 

the six-pole Lorentz-Drude model [34]. The relative permittivity of silver using this 

Lorentz-Drude model is shown in Figure 2.5. 

 

Figure 2.5 Six pole Lorentz Drude Model of Silver metal. 
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3 CHAPTER 3 

FINITE DIFFERENCE TIME DOMAIN (FDTD) 

SIMULATION METHOD 

In this chapter, the basics of Finite Difference Time Domain method will be introduced 

for the solution of Maxwell’s equation using Yee’s Algorithm. The inclusion of 

dispersive properties of materials in FDTD will also be explained along with the stability 

conditions of FDTD. The incorporation of Total field scattered field (TF/SF) technique in 

FDTD will also be discussed in this chapter.  

 

3.1 Overview of FDTD 

 

The Finite Difference Time Domain (FDTD) method is arguably the most versatile 

computational electrodynamics modeling method, both conceptually and in terms of 

implementation. The solutions obtained by this technique cover a wide range of 

frequency due to the time dependence in the analysis. It has become a popular method to 

solve numerous problems with extensive applications in new areas in recent years. In 

1966, the basic algorithm of FDTD was presented by Kane Yee for the first time. Later 

on, numerical stability of this algorithm was improved by A. Taflove and M. E. Brodwin 

with the introduction of the correct stability criteria in 1975. In 1981, G. Mur introduced 

the first numerically stable absorbing boundary condition (ABC). Later on, J. P. Berenger 
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published the perfectly matched layer (PML) in 1994. The PML is the most commonly 

boundary conditions used due to its frequency independent and easy implementation 

features. 

 

3.1.1 Yee’s Algorithm  

 

Yee’s Algorithm has been developed by K Yee in 1966 which employs the second order 

central difference approximation for discretization of Maxwell’s curl equations [35]. It 

provides a robust solution by solving the coupled electric and magnetic field equations 

simultaneously rather than solving the electric or magnetic fields separately in the wave 

equation. Yee’s mesh is defined by an orthogonal cubic spatial grid whose unit cell is 

shown in Figure 3.1. It is based on a 3-dimensional Cartesian grid in which E and H 

components are placed in such a way that every H component is enclosed by four 

circulating E components and vice versa. Each field components is sampled and 

evaluated at a particular grid point. The material properties are specified at each grid 

point such that the continuity of tangential field is maintained at the interfaces of different 

materials. The E and H components are updated using leapfrog time-stepping algorithm 

as shown in Figure 3.2. The time advancing algorithm is explicit which calculates the 

field at each time instant from previously computed field components. The magnetic and 

electric fields are calculated at time instants staggered by half the sampling time step. 
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Figure 3.1 Yee’s Mesh unit cell. 

 

3.1.2 Finite Difference expressions for Maxwell’s equations  

 

To formulate the FDTD solution, the equations for TM polarized wave are approximated 

by using central difference approximation and then, discretize simultaneously both in 

space and time utilizing Yee’s Algorithm. The resulting equations are 
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The electric and magnetic field is again computed using Yee’s algorithm and leapfrog 

time-stepping scheme as shown in Figure 3.2. In this scheme, the E and H fields are off-

set in time by half time step. 

 

Figure 3.2 Leap-frog algorithm in time. 

 

The update equations for calculating the electric and magnetic field components for a TM 

polarized wave are given as 
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3.6 

 

where   ,   ,     are discretized steps in space and time.  

 

3.1.3 Grid size, step time and Stability Criterion for FDTD 

 

Space grid size and time step are most important grid parameters in defining the FDTD 

model for a given problem. These parameters must be chosen according to certain rules 

to avoid any instability in the algorithm. The restrictions on the space grid size are due to 

numerical dispersion in the FDTD algorithm which causes some non-physical effects 

such as broadening of pulses, anisotropy and pseudo reflections. The rule of thumb is that 

space grid size must be a fraction of wavelength so that electromagnetic field does not 

change significantly over one increment in space grid size. To resolve the principle 

wavelength of propagation mode (  ) , the grid density per wavelength should follow  

                                
  

  
                                                             

3.7 
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Once the space grid sizes are chosen, the time step is bounded via computational stability 

criteria. For constant   and  , the computational stability requires that  

√(  )  (  )       √
 

  
    

3.8 

 

where   is the speed of light. If      is the maximum speed of light in given medium, 

then the stability criteria is  

√(  )  (  )          3.9 

 

where   ,   ,     are discretized steps in space and time. 

 

3.2 Auxiliary Differential Equation FDTD (ADE-FDTD) 

 

 

 

The modeling of material properties is one of the most important subjects in the analysis 

of photonic devices. The FDTD has the potential to easily incorporate the dispersive 

nature of material in it using different methods. The auxiliary differential equation FDTD 

(ADE-FDTD) was proposed by Taflove [36] to introduce the dispersive relation of metals 

and dielectrics in the FDTD. In this method, the dispersive relation is converted from 

frequency domain to time domain using inverse Fourier transform and as a result, electric 

field is computed from pervious values of E and D. Finally, the relation is added into 

FDTD method to update the electric field.  
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In order to introduce multiple dispersion relations for a material in the FDTD, the general 

algorithm proposed by Alsunaidi and Al-Jabr [37] is used. This algorithm can be applied 

to dispersion relation of any material. The general form of dispersion relation having N-

poles can be defined as 

 

        ∑  

 

   

     
3.10 

 

After the discretization, we get  

              ∑  
   

 

   

     
3.11 

 

The equation can be re-arranged to compute the E field: 

     
     ∑   

    
   

    
     

3.12 

The Lorentz model in the frequency domain can be written as: 

 ( )  
 

          
 ( )     3.13 

 

After taking the inverse Fourier transform, we get  

  ( )     ( )      ( )    ( )     3.14 

 

The polarization field can be discretized as: 
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After re-arranging to compute      , we get; 
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It can be written in simplified form as 

            
     

       
  3.17 

 

The constants   ,    and    are calculated using : 

   
        

      
            

       

      
         

     

      
 

 

 

For the multi-pole Lorentz model the values of   ,    and    are different for different 

materials. These values of a, b, c and d are obtained by fitting the experimental data of 

dielectric constant for a certain material into Lorentz model. 
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3.3 Total Field /Scattered Field (TF/SF) FDTD Formulation 
 

 

 

 

The total field / scattered field formulation is a versatile method to generate uniform 

plane wave by incorporating incident source conditions in the FDTD algorithm. The 

linearity principle on Maxwell’s equations is applied to compute the field components. 

The 2-dimensional computational domain is shown in Figure 3.3. The simulation domain 

is subdivided into total field (TF) and scattered field (SF) regions which are isolated by 

nonphysical virtual boundary called TF/SF boundary. The scattering objects having 

arbitrary shapes are placed in the total field region.  Perfectly Matched layer (PML) is 

defined on four sides of the computational space by applying the absorbing boundary 

conditions. It is a hypothetical medium that absorbs the incident electromagnetic waves 

with minimal reflection.    

 

Figure 3.3 Computation window for TF/SF. 
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In TF/SF formulation, the total field is represented by the field components computed in 

the TF region and the scattered field is represented by the field components computed in 

the SF region. The field components are divided into incident and scattered field which 

are used to calculate the total electric and magnetic field given as  

                                                                          3.18 

 

Yee’s Algorithm is applied to compute the field components in both regions via FDTD 

update equations. The only difference is that they will be operating on two different set of 

fields. As a result, the inconsistency would arise by applying FDTD update equations at 

the TF/SF boundary. At the TF/SF boundary, the field in TF region is total field 

composed of incident and scattered field components and on the other side of boundary is 

scattered field.  The inconsistency exits due to taking the difference between these fields 

components to update the field quantity on the boundary. This inconsistency can be 

removed by using the value of incident field at TF/SF boundary points at the current time.  

In TF region, the FDTD solution for    would be 
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 and correspondingly in SF region, it would be  
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Consider the bottom interface, the solution for    at TF/SF boundary can be found as: 
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The inconsistency seen in the eq. 3.21 can be removed by substituting eq. 3.18 for   

fields giving the equation 
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It can be simplified as: 
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At TF/SF boundary, the solution for    by considering the top interface       
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At TF/SF boundary, the solution for    by considering the left interface      
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At TF/SF boundary, the solution for    by considering the top interface      
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A similar procedure is followed for the correction of    fields. 

One-dimensional auxiliary computational domain is considered to calculate the 

expressions for                 and        using FDTD as: 
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where   is the representative location of the field and   is the angle at which the incident 

plane wave is oriented. Figure 3.4 illustrates the step by step procedure for incorporating 

TF/SF boundary condition in the General ADE FDTD algorithm.  
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Figure 3.4 Flow chart of incorporating TF/SF boundary in general ADE-FDTD algorithm. 
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4 CHAPTER 4 

MODELING OF YELLEOW PHOSPHOR CONVERTED 

WHITE LEDS  

This chapter investigates the modeling of white light conversion process using 

commercially available yellow phosphor material (YAG:Ce
3+

) for GaN LEDs. The 

electrodynamics of yellow phosphor is translated into quantum coupled electromagnetic 

model by incorporating the absorption and emission properties. The spontaneous 

emission and luminance saturation modeling is also explained in this Chapter.  

 

4.1 Modeling of YAG:Ce
3+

 

 

Phosphors have been realized as a key and technologically important component of white 

LEDs. The efficiency of a white LED mainly depends on optical light conversion 

phenomena associated with phosphor materials. The most popular commercial phosphor 

is Cerium doped yttrium aluminum garnet (YAG:Ce
3+

) used in GaN LEDs to produce 

white light. The modeling of the electrodynamics of YAG:Ce
3+ 

phosphor is necessary to 

gauge the optical performance of white LEDs. There are different steps involved in 

modeling the yellow phosphor converted white LEDs which are described in this section. 
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4.1.1 Medium modeling using Lorentzian Function 

 

Lorentzian functions are extensively used for modeling the non-linear, non-isotropic and 

dispersive media by selecting the appropriate parameters. Special Schemes of FDTD are 

needed to model the media with complex  ( ) as discussed in previous chapter. ADE-

FDTD methodology with a Lorentzian function will be used to represent the polarization 

of the medium in this thesis work. The complex permittivity of the medium can be 

represented as  

 ( )    ( )      ( )  4.1 

 

where   ( ) is the real part of permittivity which represent energy stored in the medium 

and    ( ) is the imaginary part of permittivity which represent loss or gain in the 

medium depending on the sign. The Lorentzian function in terms of medium polarization 

can be written as: 

 

 ( )  
 

          
 ( )     4.2 

 

where  ( ) is frequency dependent medium polarization,  ( ) is frequency dependent 

electric field, and  ,  ,   and   are Lorentzian parameters describing the medium 

polarization. The Lorentzian function in complex permittivity can be represented as: 

 

 ( )       
 

          
    4.3 
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In this thesis work, yellow phosphor is modeled using Lorentzian function. The complex 

form of refractive index of YAG:Ce
3+ 

phosphor crystal is defined as;  

       
      

   4.4 

 

where    
  and    

   are real and imaginary parts of refractive index of phosphor crystal. 

The    
  of phosphor crystal does not vary significantly with wavelength in visible region 

and is considered constant i.e 1.843. The imaginary part    
   can be calculated using  

 

    
    

 ( ) 

  
 

4.5 

 

where   is the absorption coefficient of phosphor crystal and calculated experimentally as 

shown in Figure 4.1.  The absorption coefficient depends on the wavelength of light for 

YAG: Ce
3+

 [38]. 

 
                                                          Figure 4.1 Absorption coefficient of YAG: Ce3+. 
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In order to model the YAG:Ce
3+  

medium, the refractive indices are translated into 

complex permittivity form using the relations: 

  

   (   
 )  (   

  )  4.6 

        
    

   4.7 

 

The Lorentzian parameters (a, b, c, d) are used to add the material properties of 

YAG:Ce
3+

 using general algorithm in ADE-FDTD model. 

 

4.1.2 Four Level Rate Equation Model  

 

 The ADE-FDTD method is used to study the mutual interaction of electromagnetic field 

and phosphor material. In this method, material specific rate equations are used to model 

the quantum mechanics based light emission. The schematic of energy level, electronic 

transition process of YAG:Ce
3+ 

is illustrated in the Figure 4.2. The 4-Level 

electromagnetic quantum coupled model with energy levels   ,   ,    and   , is 

proposed which describes the electron population dynamics at each level described by the 

rate equations. The optical pumping mechanism is included in the model by adding the 

medium polarization which transfers the energy from ground to upper energy level via 

stimulated absorption. 
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                                     Figure 4.2 Ce3+ electron transition accounted in the rate equation model.  
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where                 are the population values in the ground level, level 1 , level 2  

and level 3 respectively and      are the relaxation times from levels   to  . The energy 
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levels of Ce
3+

 are 
2
F5/2, 

2
F3/2, 

2
D3/2 and 

2
D5/2 that correspond to   ,   ,    and    

respectively. The introduction of the term   (   ) ( )   ( )     in rate equations 

represents energy transfer from    to    with     corresponds to pumping wavelength of 

460 nm. 

4.1.3 Discretization and ADE-FDTD Solution 

 

The equations are discretized using ADE-FDTD method in the following way; 
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4.9 

 

The    (ground level) is assumed to be an infinite reservoir having a very large 

population density as compared to other energy levels. 

 

The dot product in eq. 4.9 can be expanded to make it consistent in time as follow: 

 

           
        

  4.10 
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  4.11 

 

The   
  and   

  are unit vectors along the x-axis and y-axis respectively.  
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The population densities   (         ) at different energy levels are defined at spatial 

location (           ) of Yee’s grid to make them consistent in space by defining 

the      
       

         
  and        

  as follows 
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Similarly,      
         

           
    and        

    can also be defined. 

 

The spatial location of fields and populations densities in Yee’s grid is illustrated in 

Figure 4.3. 
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                                 Figure 4.3 Spatial location of field components and population densities.  

 

4.1.4 Spontaneous emission modeling 

 

The phenomenon of spontaneous emission is included in Maxwell equations in terms of 

external current density function.  

 

    
  

  
  ( ) 

4.14 

 

The expression for current density in terms of population is derived and expressed as; 
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4.15 

 

The spontaneous emission is studied by distributing the dipole sources randomly 

throughout the phosphor medium. The phase and polarization is assigned randomly as a 

function of space. The        represents the electric field strength corresponding to each 

site in phosphor layer. The    represents the conversion efficiency whose value is varies 

between 0 and 1. The    represents the proportionality constant determined by equating 

the absorbed power in material and emitted power by the phosphor material due to N2. It 

is found that proportionality constant can be expressed as;  

 

 
      

   

    
  (   ) 

4.16 

 

4.1.5 Emission Line shape  

 

There are numbers of line shape functions that could be used to model the spectral data. 

The most appropriate function is that which associate the parameters of line shape model 

with the physical phenomena. The important parameters of line shape function are peak 

position, peak width, peak area and asymmetry. The physical phenomena that contribute 

to the final line shape of emission spectrum are Doppler broadening, collision broadening 

and radiation damping [39].  

 

Gaussian lineshape can be used to describe the Doppler broadening as; 
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Lorentzian lineshape can be used to describe the collision broadening and radiation 

damping phenomena as; 

 ( )  
      

    [(
    

  
)
 

]
 

4.18 

 

where   is frequency in wavenumber,     is the peak position and    is the full width half 

maximum (FWHM) and A is the area under the peak.  

 

The final lineshape of the emission spectrum is defined as a combined effect of Doppler 

broadening, collision broadening and radiation damping. Thus, the final lineshape is the 

sum of fractional contributions of Lorentzian and Gaussian lineshape functions as; 

 ( )    ( )  (   ) ( ) 4.19 

 

where   is the fractional Lorentzian contribution to the final lineshape. The final shape 

depends on the value of   which can be varied between 0 and 1. The final lineshape is 

reduced to pure Gaussian and pure Lorentzian corresponding values of  =0 and  =1 

respectively.   

The emission spectrum of the YAG:Ce
3+ 

is not uniform over the visible band, so it is 

necessary to include some asymmetric profile in the lineshape model. The best approach 

is to replace the    with well-behaved function in which width is varied sigmoidally as; 
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4.20 

 

The asymmetry in the final line shape is measured by the values of       parameter. The 

positive values of the       skew the spectrum towards higher wavelength while 

negative values of       skew the spectrum towards lower wavelength. The lineshape 

model  ( ) is reduced to symmetric standard Gaussian and Lorentzian profile when  

        . 

 

4.1.6 Luminance Saturation effect Modeling 

 

Phosphor materials exhibit the phenomena of luminance intensity saturation. There are 

many factors that contribute to this intensity saturation in phosphor. The major factors are 

concentration of activators in the host, temperature, decay time, non-radiative transitions 

etc. YAG:Ce
3+ 

has a high radiative transition time (ns), so the intensity saturation due to 

decay time is not significant. The Ce
3+

 concentration plays a significant role in 

determining the output intensity of yellow phosphor based GaN LEDs. Therefore, it is 

essential to use optimal concentration of Ce
3+

 to avoid the performance degradation of 

yellow phosphor based white LEDs. The phenomena of luminance saturation due to 

activator concentration can be included in the model using different ways. In this thesis, 

we are incorporating the intensity saturation effect using the density of Ce
3+

 ions in the 

proposed model. The density of Ce
3+

 ions is defined on the number of occupied emitting 
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sites in the active phosphor layer. Weibull distribution function is used to add the 

saturation effect due to density of Ce
3+ 

ions. This function is widely used in studying the 

breaking strength of engineering devices and materials [40]. Many application of this 

function can be found in electronics, aerospace, material and automotive industry. The 

Weibull distribution function used for intensity saturation can be defined as; 
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  is shaping parameter  

  is scaling parameter  

  is density of Ce
3+

 ions in phosphor layer  

The scaling factor can be determined using  

  
  

(
   

 
)
    

4.22 

 

where    is the percentage of occupied emitting sites at saturation point. 

 

After introducing the saturation factor in the current density function, the expression for 

spontaneous emission coupled with Maxwell’s equations can be written as; 
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4.2 Simulation Results for yellow phosphor converted LEDs 

 

The proposed model is implemented by considering a simple structure shown in                          

Figure 4.4. The Finite Difference Time Domain (FDTD) method is used to simulate and 

analyze the dynamics of the structure. The structure consists of three layers in which 

phosphor layer coated on the blue LED layer. The white light is emitted in to air layer 

containing both the unabsorbed blue light and broad band yellow light. When the light 

emitted from blue light source strikes the interface between the phosphor layer and light 

source, some light is absorbed by the YAG: Ce medium and some is reflected back. After 

absorption of blue light, the phosphor material convert light into yellow light depending 

upon the density of Ce
3+

 ions in YAG and rest of light remain blue in phosphor layer. At 

the end, the white light is produced by intermixing of input blue light and converted 

yellow light in the phosphor medium. 

  𝑢        𝑢𝑟   (   )  

𝑌    𝑤  ℎ   ℎ 𝑟 (𝑌  :   3+)  

  𝑟 

 

                                          Figure 4.4 Schematic of GaN LED coated with yellow phosphor.  
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The discretized equation with           and with the proposed model parameters 

mentioned in the table are run for 1ns for determining the steady state population 

densities in different energy levels. The steady state values of population densities are 

different at each spatial location in the phosphor layer in accordance with incoming blue 

light from randomly polarized point sources in the GaN layer. 

                                                       Table 4.1 Parameters for rate equation model 

 

 

 

 

 

 

 

The medium polarization is modeled using the Lorentz-Drude model. The Lorentzian 

parameters (a, b, c, d) are obtained using curve fitting in MATLAB for ADE-FDTD 

model. The fitting parameters for imaginary part of permittivity are shown in Table 4.2. 

                                               

                                                   Table 4.2 Lorentz-Drude parameters for YAG:Ce3+ 

Parameter Value 

  -2.189×10
27

 

  1.691×10
31

 

  4.31×10
14

 

  1.00 

   3.40 

Pump wavelength (nm) 460 

Peak Emission Wavelength (nm) 560 

   ( )       

    ( )      

                                  ( )      
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The fitting result for imaginary part of permittivity is shown in Figure 4.5.          

 

 

 

Figure 4.5 Imaginary part of permittivity of YAG: Ce3+. 

 

The source of blue light is modeled by considering the dipole sources with random 

phases in the GaN layer. The linewidth of emission spectrum of blue GaN source is 20 

nm which is defined by line shape functions. The time domain signal of blue GaN source 

is shown in the Figure 4.6. It is obvious that source is a continuous wave having range of 

frequencies components with its own amplitude defined by line shape models. The 

spectrum of source is also shown in the Figure 4.7. 

 

 

 

 

350 400 450 500 550 600 650 700
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

-3

Wavelenght (nm)

C
o

m
p

le
x
 P

e
rm

it
ti

v
it

y
 

 

 

Fitted 

experimental



57 

 

 

Figure 4.6 Time domain signal of blue source emitted from GaN layer. 

                

 

                                    Figure 4.7 Spectrum of Blue Light Source emitted from GaN layer.  
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The yellow phosphor material defined by four level rate equation model is pumped with 

blue GaN source via optical pumping mechanism to observe the population dynamics of 

different energy levels. The time evolution of the population density N2 at certain spatial 

location in the phosphor layer is shown in Figure 4.8. It is obvious that the population 

density increases with time and reaches the steady state values according to the relaxation 

time between the energy states responsible for emission. The steady states values of 

population densities in the phosphor layer are different at each spatial location due to 

different absorption. The light absorbed by phosphor layer at each spatial location is 

different due to incoming random light emitted by GaN layer.  

 

                                                         Figure 4.8 Time evolution of N2 population. 
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wavelength. There are certain factors that contribute to broadening the final emission 

spectrum as explained in lineshape models section of this chapter. The strength of 

spontaneous emission is determined by the population density of N2. Therefore, it is 

assumed that the amplitude of N2 population is varied as a function of wavelength. The 

variation in amplitude of N2 is defined by lineshape functions using combined 

contribution of Gaussian and Lorentzian functions as shown in Figure 4.9. The central 

emission wavelength has maximum amplitude as compared to the others.   

 

                                              Figure 4.9 Amplitude of N2 as function of emission wavelengths. 
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saturate the intensity, the number of emitting Ce
3+

 sites at saturation point (ns) are defined 

in the function. The shaping parameter is defined in such a way that the saturation factor 

     is decreased with the increasing the Ce
3+

 sites to make the output intensity constant 

after the saturation point. The shaping parameter value is varied between 1 and 2 in this 

distribution function. The saturation factor with the occupied Ce
3+

 sites at saturation level 

5% and shaping parameter 1.4 is considered in this work as shown in Figure 4.10. 

 

                                   Figure 4.10 Variation of saturation factor with occupied emission sites. 
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Figure 4.11 Emission Spectrum of YAG: Ce3+ for different occupied Ce3+ sites (%) without saturation. 

 

 

Figure 4.12 Emission Spectrum of YAG: Ce3+ for different occupied Ce3+ sites (%) with saturation 
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The final output intensity of yellow phosphor is also shown in Figure 5.13. It is obvious 

that the output intensity is first increased with number of occupied emitting Ce
3+

 sites and 

after saturation point, the output intensity is constant irrespective of the number of 

occupied Ce
3+

 sites in the phosphor layer. 

 

 

                                     Figure 4.13 Output Intensity of YAG: Ce3+ for different occupied sites.  
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                                      Figure 4.14 Output Spectrum of white LED for 5%age occupied sites.  

 

4.3 Summary and Discussion 

 

The different steps for modeling the yellow phosphor converted GaN LEDs are described 

in this chapter. The material specific rate equations are used to model the electron 

transitions processes among different energy levels. The coupling procedure for 

interaction of rate equation model and Maxwell’s equations is discussed using current 

density function in terms of dipole sources. The broadening of emission spectrum is 

represented by line shape functions. The concept of saturation in yellow phosphor is 
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3+

 sites. The final output of white LED shows 

that the proposed model has a capability to give physical insight of white light generation 

phenomena based on phosphor material.  
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5 CHAPTER 5 

PLASMONIC STRUCTURES FOR ENHANCED WHITE 

LIGHT GENERATION 

         This chapter highlights the importance of plasmonic structures for enhanced white 

light conversion. The scattering properties of metallic nanoparticles and rectangular 

arrays are studied at a particular wavelength. It also investigates the plasmonic effect of 

metallic nanostructures on white light conversion process in yellow phosphor (YAG:Ce) 

coated GaN LEDs. The silver rectangular array configuration is designed at the emission 

wavelength of GaN LED to enhance the yellow emission of phosphor converted GaN 

LED.    

 

5.1   Overview of Plasmonics for enhanced field confinement 

 

Plasmonics is a booming area of science and technology that explores the interaction of 

light with nano-metallic surfaces to manipulate light at subwavelenght scales. The 

distinct properties of nano-metallic structures to maneuver the light are derived from an 

ability to support collective electromagnetic excitations whose field is confined to near 

the locality of metal-dielectric interface, known as surface plasmons. In recent years, the 

research advances in the plasmonics field allowed new science and device technologies 

and offered dramatic growth in plasmonic applications. Plasmonics may perhaps become 
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a prevalent technology in few years due to its unusual optical capabilities to accomplish 

extraordinary levels of interaction between electronic and optical areas. Although there 

are some inherent resistive heating losses associated with plasmonics due to metals which 

affect the performance of optical devices, still many useful applications of this 

technology have recently been realized. The excellent examples are nanoantennas, lenses 

and resonators and structures for light enhancement and confinement.  

The dielectric lenses and resonators have been traditionally used to confine light and 

enhance the local field intensities. Due to the fundamental laws of diffraction, these 

devices are unable to confine and enhance the light at subwavelenght scale. The metallic 

nanostructures based devices do not have these limitations in confining light due to their 

different nature as compared to dielectric counterparts. They have the ability to transform 

electromagnetic radiations into intense localized fields through surface plasmons. Various 

plasmonic structures such as nanogrooves, nanospheres, nanocones and bow-tie antenna 

to confine and enhance the electromagnetic field have been investigated both 

experimentally and analytically. It has been shown that electromagnetic field can be 

enhanced 10
2
-10

3
 times due to resonant plasmon oscillations in these structures. Two 

gold rectangular rods were used to enhance the local field strength around 200 times at a 

wavelength of 830 nm as reported in [41]. The field enhancement up to 160 times at a 

wavelength of 700 nm  using gold prisms was demonstrated in [42]. In [43], gold and 

silver grooves  were used to achieve the 20–30 times local field enhancement at the 

wavelengths of 620–670 nm and 27–29 times enhancement at wavelengths of 550–

570 nm respectively. The realization of this effect considerably depends on the design of 
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metallic nanostructures which control the interaction between light and surface plasmon 

modes to yield the interesting optical effects in integrated photonic devices. 

 

5.2   Plasmonics cavities for enhanced field confinement  

 

The concept of plasmonic cavities is used to enhance and confine the electromagnetic 

field by embedding the silica nanoparticles in nano-metallic film [44]. The proposed 

structure for enhanced field confinement is shown in Figure 5.1. The configuration 

consists of silicon, silver and air layers. The silica nanoparticles of 40 nm radius are 

partially embedded between silicon and silver interface. The thickness of Ag metallic 

film is 100 nm and the spacing between the nanoparticles is varied from 10 nm to 90 nm. 

𝑆       (𝑆 ) 

𝑆    𝑟 ( 𝑔) 

𝑆 𝑂2 

  𝑟 

𝑟 = 40   

 

Figure 5.1 Structure of SiO2 nanoparticles embedded in Ag Film. 
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When an incident wave strikes the interface between the silicon and the nanoparticles it 

gets trapped inside the nanoparticles by the lensing effect, and surface plasmon polaritons 

(SPPs) are excited within the cavities. These cavities enhance the electromagnetic field 

due to localized surface plasmon resonance (LSPR) and cavity resonance. The resonance 

condition of plasmonic cavities at a particular wavelength is matched by tuning the shape, 

size and spacing between the nanoparticles. 

 

5.2.1 Enhanced Optical Confinement 

 

Enhanced optical confinement can be described using enhancement factor which is 

defined as intensity within the nanoparticles with Ag metallic film divided by 

corresponding intensity within the nanoparticles without Ag metallic film: 

    
   𝑤  ℎ  𝑔

   𝑤  ℎ 𝑢   𝑔

 
5.1 

 

The value of F𝝺 determines the enhancement in intensity within the nanoparticles at given 

wavelength in presence of plasmonic cavities. The silica nanoparticles behave like 

plasmonic cavities in the presence of silver metallic film due to excitation of surface 

plasmons. Therefore, it is essential to determine the resonance frequency of these cavities 

to confine light efficiently. To calculate the resonances of the plasmonic cavities, an 

isolated nanoparticle is considered in the presence of silver layer and the result is shown 

in Figure 5.2. 
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Figure 5.2 Resonance of Plasmonic cavity. 

 

It is evident from Figure 5.2 that resonance frequency of a nanoparticle of radius 40 nm is 
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14 
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layer. 

A continuous wave (CW) excitation is applied at resonance frequency of plasmonic 
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intensity is calculated within the nanoparticles with Ag metallic film and without metallic 

film as shown in Figure 5.3. The radius of nanoparticle is 40 nm and spacing between the 

particles is 50 nm. The sharp peaks show that energy is confined within the nanoparticles 

due to surface plasmon resonances. It is observed that intensity is enhanced over a 

hundred times as compared to intensity in the absence of plasmonic resonance. 
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                 Figure 5.3 Variation of intensity inside plasmonic cavities with position. 

 

The intensity profiles within the nanoparticles in the presence and absence of metallic 

silver film are also shown in Figure 5.4 and Figure 5.5.  
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Figure 5.4 Intensity profile without the metallic silver film. 

 

 

Figure 5.5 Intensity profile with metallic silver film. 
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The enhancement factor is determined as a function of wavelength as shown in 

Figure 5.6. It is found that the maximum enhancement factor is obtained by matching the 

resonance condition at 898.7 nm for nanoparticles of radius 40 nm with interparticle 

spacing 50 nm. The off resonance wavelength are unable to resonate the cavities which 

result in small optical enhancement and confinement of the optical field. 

 

Figure 5.6 Variation of enhancement factor with wavelength. 
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to optimize the interparticle spacing as shown in Figure 5.7. The structure is excited at 
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is observed that the maximum enhancement is obtained at 50 nm spacing between the 

particles as shown in Figure 5.7. Thus, optimal value of interparticle spacing is found to 

be 50 nm for plasmonic cavity of radius 40 nm. 

 

       Figure 5.7 Variation of enhancement factor with interparticle spacing. 
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sections of spherical particles with diameters smaller than the wavelength of light are 

defined as   
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where   is the wave vector and   is an integer representing the dipole, quadro-pole and 

higher multi-poles  oscillations and    and    are composed of Ricatti-Bessel functions. 

The scattering properties of nanoparticles are necessary to describe the response of these 

particles under the interaction of electromagnetic field.  TFSF is used to find the scattered 

field response of the nano-particles. 

 

5.3.1 Verification of scattering properties of Silver nanoparticle 

 

Silver nanoparticles have the ability to absorb and scatter light with extraordinary 

efficiency. Upon the excitation by light at specific wavelength, the conduction electrons 

on metallic nanoparticles undergo collective oscillation, known as a surface plasmon 

resonance (SPR), due to strong interaction of light with these particles. The absorption 

and scattering intensities of silver nanoparticles are higher as compared to their 

identically sized non-plasmonic nanoparticles due to these surface plasmon resonances. 
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The different parameters such as particle size, shape, and particle surrounding local 

refractive index are necessary to tune for controlling the scattering and absorption 

properties of silver nanoparticles.  

 

The scattering properties of a single silver nanoparticle are verified by calculating the    

scattering cross-section using FDTD and analytical formulation. The scattering cross-

section of a silver nano-particle with a radius       placed in free-space is determined. 

The input source is Gaussian pulse in time centered at            wavelength with 

         and        given as; 

            ( )     (
    

  
)

 

   (
  

 
(    ))       

5.5 

 

The source Gaussian pulse in time domain is shown in Figure 5.8. The spectrum of the 

pulse covers the entire optical domain as shown in  Figure 5.9. It is found that the 

scattering cross-section calculated using FDTD and analytically is well matched to each 

other as shown in Figure 5.10.  The scattering cross section of a single nanoparticle has 

two dominant modes with resonant wavelengths at          and       .  
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                                       Figure 5.8 Time domain signal of modulated Gaussian with cosine 

 

                                               Figure 5.9 Spectrum of modulated Gaussian with cosine 
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                                    Figure 5.10 Scattering Cross-section for 40nm radius single Ag nanoparticle. 

   

5.4   Metallic nanostructures for enhanced phosphor conversion   

 

 The emission characteristics of materials are determined by intrinsic material properties 

and the surroundings that interact with these materials. It means that the emission 

properties can also be tailored by the emission environment. In this scenario, the field of 

nanophotonics provides two fundamental approaches that are focused on modifying the 

emission environment to enhance spontaneous emission. These two approaches are based 

on either by controlling the density of states or introducing the intense localized 

electromagnetic field in the vicinity of emitting material. The density of states can be 

controlled using photonic crystal and intense localized electromagnetic field can be 

introduced using the metallic nanostructures.  
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The concept of intense localized electromagnetic field using metallic nanostructure is 

used to enhance the conversion in phosphor converted GaN LEDs. The yellow phosphor 

doped with cerium has strong absorption at 460 nm which is well matched with the 

excitation wavelength of GaN LEDs. In this situation, it is essential to find a suitable 

shape and arrangement of the metallic nanostructure having resonance at 460 nm to 

enhance the conversion process in white LEDs. The optical properties of these metallic 

nanostructures are dependent on features like shape, size, dielectric environment and 

number of particles. In this work, a periodic silver rectangular array embedded in the 

phosphor layer is used to enhance the emission of white GaN LEDs. Therefore, it is 

necessary to investigate the optical properties of silver rectangles to design a 

configuration that resonate with the emission wavelength of GaN LEDs. 

 

5.4.1 Silver Rectangular Array Configuration  

 

The resonance behavior of metallic nanostructures can easily be determined by the 

investigating its scattering properties using TFSF. Therefore, the first step is to study the 

scattering properties of single silver rectangle to design a suitable configuration that can 

resonate at 460 nm. The dependence of resonance wavelength of silver rectangles on 

features like length, height, dielectric environment and number of silver rectangle is 

studied to find the suitable arrangement for optimized configuration.   

 

First, a single silver rectangle is embedded in the dielectric environment of yellow 

phosphor for examining its scattering properties. The height of silver rectangle is 
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considered 10nm and length of the silver rectangle is varied from 10 nm to 20 nm to 

observe how it affects it resonance behavior. The scattering cross-section of a single 

rectangle as a function of length is shown in Figure 5.11. It is found that single silver 

rectangle have a red shift with the increasing the length. Another test is performed on 

silver rectangle by varying the height of the rectangle from 10 nm to 20 nm while 

considering the length 10nm.  
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Figure 5.11 Variation of scattering cross section of silver rectangle with length. 

 

The scattering cross-section of single silver rectangle with the function of height is shown 

in Figure 5.12. It is found that the spectrum is shifted toward blue wavelength and other 

modes are also dominant with increasing the height of silver rectangle.  
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Figure 5.12 Variation of scattering cross section of silver rectangle with height. 

 

 

Another configuration by embedding two silver rectangles in yellow phosphor medium 

for examining the scattering properties is tested. The height and length of the silver 

rectangles are 10 nm. The spacing between two rectangles is varied from 10 nm to 20 nm 

to observe resonance behavior. The scattering cross-section of two rectangles as a 

function of spacing between rectangles is shown in the Figure 5.13. It is found that 

scattering cross-section have the blue shift with increasing the distance between two 

rectangles. It is also obvious that the spectrum of scattering cross-section is sharpened 

with increasing the distance.  
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length and spacing between silver rectangles are 10 nm. The parameter that is varied is 

number of silver rectangles. The scattering cross section of the silver rectangles with 

increasing number of the rectangles is shown in Figure 5.14. It is found that the scattering 

cross-section have a red shift with increasing number of particles. It is also observed that 

the spectrum of scattering cross-section is also broadened with the increasing number of 

rectangles. 

 

With this experience in hand regarding the resonance behavior of the silver rectangles, a 

configuration has been designed which has a resonance close to the emission wavelength 

of the GaN LEDs. The configuration is based on embedding an array of silver rectangles 

in yellow phosphor with length, height and equidistant spacing of      ,       and 

      as shown in Figure 5.15. 

 

Figure 5.13 Variation of scattering cross section with spacing between two silver rectangles. 
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Figure 5.14 Variation of scattering cross section with number of silver rectangles. 

 

 

             

Figure 5.15 Optimized Configuration with silver rectangles embedded in phosphor layer. 

 

200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 
Np=2

Np=3

Np=4

Np=5

Np=6



82 

 

The scattering cross-section of the optimized configuration is determined as shown in the 

Figure 5.16. It is found that the configuration has the resonance at 459.6 nm which is 

very close to the emission wavelength of 460 nm.  

 

Figure 5.16 Scattering cross section of optimized configuration. 
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electromagnetic field is produced due to the surface plasmons created by resonating the 

metallic nanostructure. As a result, the conversion of yellow light is enhanced in the 

presence of metallic rectangular arrays.  

 

 
                  

Figure 5.17 Structure with silver rectangles for phosphor converted white LEDs. 

 

The emission spectrum of yellow phosphor is determined with and without the plasmonic 

structure as shown in the Figure 5.18 and Figure 5.19 respectively.  It is observed that the 

emission is increased by increasing the number of occupied sites in the phosphor layer. It 

is also found that the emission is enhanced in the presence of the plasmonic structures 

due to strong electromagnetic field in the vicinity of the rectangular array. 
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Figure 5.18 Emission Spectrum of YAG: Ce3+ without saturation and no plasmonic array. 

 

      

Figure 5.19 Emission Spectrum of YAG: Ce3+ without saturation and presence of plasmonic array. 
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The emission spectrum of the yellow phosphor is also determined for both cases with and 

without plasmonic array and introducing the saturation effect as shown in Figure 5.20 and 

Figure 5.21 respectively. The saturation density of Ce
3+

 for both cases is considered 5% 

which is defined on the basis of number of occupied Ce
3+

 sites in the phosphor layer.  It 

is found that the emission almost remains constant after saturation density of Ce
3+

 for 

both cases.  

 

 

Figure 5.20 Emission Spectrum of YAG: Ce3+ with saturation and no plasmonic array. 
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Figure 5.21 Emission Spectrum of YAG: Ce3+ with saturation in presence of plasmonic array. 
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3+
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output spectrum for white LED is shown in Figure 5.25. In case of plasmonic array, more 
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and, as a result, the converted yellow light is increased as compared to without metal 
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Figure 5.22 Emission Intensity of YAG: Ce3+ with and without plasmonic array. 

 

Figure 5.23 Final Output spectrum of white LED without plasmonic array. 
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Figure 5.24 Final Output spectrum of white LED with plasmonic array. 

 

Figure 5.25 Comparison of Final Output spectrum of white LED with and without plasmonic array. 
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Another configuration was tested for investigating the emission properties of yellow 

phosphor converted GaN LEDs by coating a layer of polystyrene on the surface of 

phosphor as shown in. The silver rectangular array was embedded in the polystyrene 

layer. The optimization of the configuration is needed before investigating the emission 

properties of the device. The optimization of the device is done in two steps. The first 

step involves finding the suitable arrangement and parameters of rectangular array with 

polystyrene as a surrounding medium to resonate at 460 nm. This step is done by 

determining the scattering properties using TFSF. The second step involves optimizing 

the thickness of polystyrene (PS) layer so that maximum light is transmitted into air with 

minimal reflection from the interface. The scattering cross-section of optimized 

arrangement of rectangular array is shown in the Figure. It is obvious from scattering 

section that the designed arrangement has resonance at 460 nm.  

 

Ag

𝑌    𝑤  ℎ   ℎ 𝑟     
 

 = 290    = 70   

ℎ = 30   

  𝑢            𝑢𝑟     = 2.5 

  𝑟    

       𝑟     = 1.58     

 

Figure 5.26 Structure of phosphor converted GaN LED coated with metal doped polystyrene layer. 
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Figure 5.27 Scattering Cross-section of optimized arrangement of silver array in polystyrene media. 

 

In the optimization step of PS layer, the random dipole sources are distributed in the 

phosphor layer with random phases to calculate the emission power in air with various 

thickness of PS layer (PS) as shown in Figure 5.28. 
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Figure 5.28 Structure for PS thickness (d) optimization. 
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The spectral emission power calculated in air for various thicknesses is shown in the 

Figure 5.29. PS layer of 250 nm thickness is used as optimized thickness for phosphor 

converted white LED configuration. 

 

Figure 5.29 Spectral power for different PS thickness (d). 
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Figure 5.30 Emission Spectrum of YAG: Ce3+ without plasmonic array and PS layer. 

 

 

Figure 5.31 Emission Spectrum of YAG: Ce3+ with PS layer and no plasmonic array. 
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Figure 5.32 Emission Spectrum of YAG: Ce3+ with PS layer and plasmonic array. 
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cases with saturation effect is shown in Figure 5.33, Figure 5.34 and Figure 5.35 
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3+ 
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500 520 540 560 580 600 620 640 660 680 700
0

1

2

3

4

5

6
x 10

18

Wavelenght (nm)

S
p
e
c
tr

a
l 
P

o
w

e
r 

(a
.u

)

 

 
1.25%

2.5%

5%

10%

15%



94 

 

 

Figure 5.33 Emission Spectrum of YAG: Ce3+ with saturation in absence of plasmonic array and PS layer. 

 

 

Figure 5.34 Emission Spectrum of YAG: Ce3+ with saturation in presence of PS layer and no plasmonic array. 
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Figure 5.35 Emission Spectrum of YAG: Ce3+ with saturation in presence of PS layer and plasmonic array. 
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population of N2 is significantly increased which results in enhancement of conversion 

process in designed configuration as shown in Figure 5.36. 
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Figure 5.36 Comparison of Final Output spectrum of optimized configuration with metal doped PS layer. 
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6 CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

         Phosphor converted white LEDs have been attracting a lot of interest by researchers 

with ultimate limits of efficiency still not achieved. The modeling of structures and 

phenomenon associated with white light generation is an important step for further 

research in solid state lighting technology and meet the current demand of highly 

efficient white LEDs. Therefore, modeling of electrodynamics of phosphor converted 

GaN LEDs is presented in this thesis.  The overall summary, conclusions and future work 

is discussed in this chapter. 

 

6.1 Summary 

7  

In this thesis, yellow phosphor is considered as wavelength conversion material for white 

light generation in GaN LEDs. The unique optical characteristics of yellow phosphor are 

modeled using ADE-FDTD algorithm for phosphor converted GaN LEDs. The work that 

has been done can be summarized as follows: 

8  

 An electromagnetic coupled model that describes the physics behind the 

wavelength down conversion process using yellow phosphor for white light 

generation was developed using material specific rate equations.  
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 The spontaneous emission process of yellow phosphor was modeled by coupling 

the rate equations with the Maxwell’s equations using current density function in 

the form of random dipole sources. 

 

 ADE-FDTD algorithm was formulated for simulating the yellow phosphor 

converted GaN LEDs.  

 

 The dispersion of YAG:Ce
3+

 was incorporated using Lorentzian function in 

general algorithm.  

 

 The linewidth in emission spectrum was introduced using line-shape models in 

the proposed algorithm. The line-shape models are based on combined 

contribution of Lorentzian and Gaussian functions.   

 

 The density saturation effect was included on the basis of the density of occupied 

Ce
3+

 sites in emitting layer using weibull distribution function. 

 

 A device based on an array of silica nanoparticles embedded in the silver metallic 

film was investigated to study the enhanced field confinement. 

 

 Nano-metallic structures were used to tailor the emission environment of yellow 

phosphor material to enhance the conversion process. The configuration of 

plasmonic rectangular array was optimized to resonate at the emission wavelength 

of GaN LEDs using scattering properties.  
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 The polystyrene doped with metallic rectangular array based configuration was 

investigated to enhance the transmission and as well as conversion process in 

yellow phosphor converted GaN LEDs.  

 

6.2    Conclusions  

 

The conclusion obtained from the simulation results of different proposed configurations 

for yellow phosphor converted GaN LEDs are as follows: 

 

 The rate equation based electromagnetic model is a powerful tool to represent the 

electrodynamics of phosphor materials. It also offers fundamental physical 

insights to improve the performance of phosphor converted white LEDs. 

 

 The strength of spontaneous emission in yellow phosphor mainly depends on the 

population of energy level N2. The variation in population density is considered as 

a function of wavelength due to discrete nature of energy levels. 

 

 The broadening and asymmetry of final emission spectrum can be attributed to 

Doppler broadening, collisions broadening and radiation damping defined by 

Lorentzian and Gaussian line shape function.  

 

 The modeling of spontaneous emission using dipole sources is more realistic due 

to introduction of randomness in terms of phases and polarization.  
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 The density of Ce
3+

 is an important factor in determining the emission 

characteristics of yellow phosphor converted LEDs. The saturation effect can be 

avoided by considering the optimal value of Ce
3+

 density in yellow phosphor. 

 

 Plasmonic structures can be used to enhance and confine the electromagnetic field 

by utilizing the combined effect of localized surface plasmons resonance (LSPR) 

and cavity resonance.  

 

 The white light conversion can be enhanced in yellow phosphor converted GaN 

using plasmonic rectangular array which change the emission environment of 

phosphor layer by creating intense electromagnetic field via localized surface 

plasmon resonance (LSPR). 

 

6.3    Future Work 

 

In this thesis, we have attempted to model the phosphor conversion process using simple 

ADE-FDTD approach for white light generation in GaN LEDs. The proposed model can 

be extended and improved in many ways given below: 

 

 The model can be extended by incorporating the electron transition process due to 

some other dopants in yellow phosphor such as Eu
3+

 in rate equation model which 

improve the conversion efficiency and lack of red part in the emission spectrum 

of phosphor converted GaN LEDs   
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 The model can be improved by investigating the intensity saturation effect as a 

function of intensity rather than the density of Ce
3+

 sites in yellow phosphor. 

 

 The model can be extended to 3-D domain so that the random polarization in the 

spontaneous emission process in the model includes both TE and TM waves 

which give more realistic results. 

 

 The model can also be tested using the random mixing of plasmonic nanoparticles 

in the phosphor layer for enhanced white light conversion. 

 

  

 

 

 

 

 

 

 

   

  



102 

 

References 

[1] M. S. Shur and A. Zukauskas, “Solid-State Lighting: Toward Superior 

Illumination,” Proc. IEEE, vol. 93, no. 10, pp. 1691–1703, Oct. 2005. 

[2] S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED 

lighting,” Nat. Photonics, vol. 3, no. 4, pp. 180–182, Apr. 2009. 

[3] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. 

Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting 

technology,” IEEE J. Sel. Top. Quantum Electron., vol. 8, no. 2, pp. 310–320, 

Mar. 2002. 

[4] J. Brgoch, “Rapid identification of advanced phosphors for solid-state white 

LEDs,” SPIE Newsroom, Feb. 2014. 

[5] B. Valeur and M. N. Berberan-Santos, “A Brief History of Fluorescence and 

Phosphorescence before the Emergence of Quantum Theory,” J. Chem. Educ., 

vol. 88, no. 6, pp. 731–738, Jun. 2011. 

[6] P. Jaffe, “Fluorescence and Phosphorescence,” IEEE Trans. Compon. Parts, vol. 

11, no. 3, pp. 3–7, Sep. 1964. 

[7] R.-J. Xie and N. Hirosaki, “Silicon-based oxynitride and nitride phosphors for 

white LEDs—A review,” Sci. Technol. Adv. Mater., vol. 8, no. 7–8, p. 588, Oct. 

2007. 

[8] J. W. M. Verwey and G. Blasse, “Luminescence efficiency of ions with broad-

band excitation in lithium lanthanum phosphate glass,” Chem. Mater., vol. 2, no. 

4, pp. 458–463, Jul. 1990. 

[9] J.-W. Pan and C.-S. Wang, “Light extraction efficiency of GaN-based LED with 

pyramid texture by using ray path analysis,” Opt. Express, vol. 20 Suppl 5, pp. 

A630–640, Sep. 2012. 



103 

 

[10] F. Bertoluzza, N. Delmonte, and R. Menozzi, “Three-dimensional finite-element 

thermal simulation of GaN-based HEMTs,” Microelectron. Reliab., vol. 49, no. 5, 

pp. 468–473, May 2009. 

[11] S.-K. Kim, H.-S. Ee, K.-D. Song, and H.-G. Park, “Design of out-coupling 

structures with metal-dielectric surface relief,” Opt. Express, vol. 20, no. 15, pp. 

17230–17236, Jul. 2012. 

[12] P. Zhu, G. Liu, J. Zhang, and N. Tansu, “FDTD Analysis on Extraction Efficiency 

of GaN Light-Emitting Diodes With Microsphere  Arrays,” J. Disp. Technol., vol. 

9, no. 5, pp. 317–323, May 2013. 

[13] S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode: The Complete 

Story. Springer, 2000. 

[14] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness 

InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. 

Lett., vol. 64, no. 13, pp. 1687–1689, 1994. 

[15] G. Blasse and A. Bril, “Investigation of Some Ce3+‐Activated Phosphors,” J. 

Chem. Phys., vol. 47, no. 12, pp. 5139–5145, Dec. 1967. 

[16] W. M. Yen, S. Shionoya, and H. Yamamoto, Phosphor handbook. Boca Raton, 

FL: CRC Press/Taylor and Francis, 2007. 

[17] A. S. Nagra and R. A. York, “FDTD analysis of wave propagation in nonlinear 

absorbing and gain media,” Antennas Propag. IEEE Trans. On, vol. 46, no. 3, pp. 

334–340, 1998. 

[18] B. Redding, S. Shi, T. Creazzo, and D. W. Prather, “Electromagnetic modeling of 

active silicon nanocrystal waveguides,” Opt. Express, vol. 16, no. 12, pp. 8792–

8799, 2008. 

[19] S. V. Zhukovsky and D. N. Chigrin, “Numerical modelling of lasing in 

microstructures,” Phys. Status Solidi B, vol. 244, no. 10, pp. 3515–3527, Oct. 

2007. 



104 

 

[20] G. M. Slavcheva, J. M. Arnold, and R. W. Ziolkowski, “FDTD Simulation of the 

Nonlinear Gain Dynamics in Active Optical Waveguides and Semiconductor 

Microcavities,” IEEE J. Sel. Top. Quantum Electron., vol. 10, no. 5, pp. 1052–

1062, Sep. 2004. 

[21] P. Song and C. Jiang, “Modeling of downconverter based on Pr
3+

-Yb
3+

 codoped 

fluoride glasses to improve sc-Si solar cells efficiency,” AIP Adv., vol. 2, no. 4, p. 

042130, 2012. 

[22] K. Ishida, I. Mitsuishi, Y. Hattori, and S. Nunoue, “Numerical Simulation on 

Light Output of UV-based White Light-Emitting Diodes with Multicolor 

Phosphor Blends,” Appl. Phys. Express, vol. 1, p. 082201, Jul. 2008. 

[23] C. Jiang and W. Xu, “Modeling Multiple Rare Earth-Doped System for White 

Light Generation,” J. Disp. Technol., vol. 5, no. 12, pp. 431–437, Dec. 2009. 

[24] C. Jiang and W. Xu, “Theoretical Model of Yb
3+

-Er
3+

-Tm
3+

-Codoped System for 

White Light Generation,” J. Disp. Technol., vol. 5, no. 8, pp. 312–318, Aug. 

2009. 

[25] R. Hu, X. Luo, H. Zheng, and S. Liu, “Optical constants study of YAG:Ce 

phosphor layer blended with SiO2 particles by Mie theory for white light-emitting 

diode package,” Front. Optoelectron., vol. 5, no. 2, pp. 138–146, Jun. 2012. 

[26] Z. Liu, S. Liu, K. Wang, and X. Luo, “Measurement and numerical studies of 

optical properties of YAG: Ce phosphor for white light-emitting diode 

packaging,” Appl. Opt., vol. 49, no. 2, pp. 247–257, 2010. 

[27] K. Saxena, V. K. Jain, and D. S. Mehta, “A review on the light extraction 

techniques in organic electroluminescent devices,” Opt. Mater., vol. 32, no. 1, pp. 

221–233, Nov. 2009. 

[28] N. Gao, K. Huang, J. Li, S. Li, X. Yang, and J. Kang, “Surface-plasmon-enhanced 

deep-UV light emitting diodes based on AlGaN multi-quantum wells,” Sci. Rep., 

vol. 2, Nov. 2012. 



105 

 

[29] G. Lozano, D. J. Louwers, S. R. Rodríguez, S. Murai, O. T. Jansen, M. A. 

Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced 

excitation and directional emission of highly efficient light sources,” Light Sci. 

Appl., vol. 2, no. 5, p. e66, May 2013. 

[30] S. Dang, C. Li, W. Jia, Z. Zhang, T. Li, P. Han, and B. Xu, “Improvement of light 

extraction efficiency of GaN-based light-emitting diodes using Ag nanostructure 

and indium tin oxide grating,” Opt. Express, vol. 20, no. 21, pp. 23290–23299, 

2012. 

[31] S. Fujita, A. Sakamoto, and S. Tanabe, “Luminescence Characteristics of YAG 

Glass-Ceramic Phosphor for White LED,” IEEE J. Sel. Top. Quantum Electron., 

vol. 14, no. 5, pp. 1387–1391, 2008. 

[32] R. Hansel, S. Allison, and G. Walker, “Temperature-dependent luminescence of 

gallium-substituted YAG:Ce,” J. Mater. Sci., vol. 45, no. 1, pp. 146–150, Jan. 

2010. 

[33] P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting Conversion Phosphors 

for White Light-Emitting Diodes,” J. Electrochem. Soc., vol. 158, no. 6, pp. R37–

R54, Jun. 2011. 

[34] A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties 

of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt., vol. 37, 

no. 22, pp. 5271–5283, Aug. 1998. 

[35] K. S. Yee, “Numerical solution of initial boundary value problems involving 

Maxwell’s equations in isotropic media,” IEEE Trans Antennas Propag., pp. 302–

307, 1966. 

[36] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-

Difference Time-Domain Method. Artech House, Incorporated, 2005. 



106 

 

[37] M. A. Alsunaidi and A. A. Al-Jabr, “A General ADE-FDTD Algorithm for the 

Simulation of Dispersive Structures,” IEEE Photonics Technol. Lett., vol. 21, no. 

12, pp. 817–819, Jun. 2009. 

[38] Y. Zorenko, T. Voznyak, V. Gorbenko, E. Zych, S. Nizankovski, A. Dan’ko, and 

V. Puzikov, “Luminescence properties of Y3Al5O12:Ce nanoceramics,” J. Lumin., 

vol. 131, no. 1, pp. 17–21, Jan. 2011. 

[39] H. H. Telle, A. G. Ureña, and R. J. Donovan, Laser Chemistry: Spectroscopy, 

Dynamics and Applications. John Wiley & Sons, 2007. 

[40] H. Rinne, The Weibull Distribution: A Handbook. CRC Press, 2010. 

[41] P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, 

“Resonant Optical Antennas,” Science, vol. 308, no. 5728, pp. 1607–1609, Jun. 

2005. 

[42] R. Marty, G. Baffou, A. Arbouet, C. Girard, and R. Quidant, “Charge distribution 

induced inside complex plasmonic nanoparticles,” Opt. Express, vol. 18, no. 3, 

pp. 3035–3044, Feb. 2010. 

[43] T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and 

T. W. Ebbesen, “Resonant Plasmon Nanofocusing by Closed Tapered Gaps,” 

Nano Lett., vol. 10, no. 1, pp. 291–295, Jan. 2010. 

[44] W. W. Ahmed and M. A. Alsunaidi, “Plasmonic cavities for enhanced optical 

confinement,” in Electronics, Communications and Photonics Conference 

(SIECPC), 2013 Saudi International, 2013, pp. 1–3. 

[45] C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small 

Particles. John Wiley & Sons, 2008. 

  

 

 



107 

 

Vitae 

 

Name    :Waqas Waseem Ahmed 

Nationality   :Pakistani 

Date of Birth   :8/3/1987 

 Email    :waqas.waseem291@gmail.com 

Address   :12-G Shahjamal , Lahore, Pakistan 

Academic Background :BS in Electronic Engineering (2009), GIKI, Pakistan  

                                      :MS in Electrical  Engineering (2014), KFUPM, KSA  

Publications  

 (Invited) W.W. Ahmed, M. T. Mujahid, M. Ziaullahkhan and M. A. Alsunaidi, 

“Light extraction enhancement of GaN Light emitting diodes,” 2nd IEEE 

International Conference on Electronics, Communication, and Photonics 

(SIECPC), Riyadh, Saudi Arabia, April 2013. 

 

 W.W. Ahmed and M. A. Alsunaidi, “Plasmonic Cavities for Enhanced optical 

Confinement,” 2nd IEEE International Conference on Electronics, 

Communication, and Photonics (SIECPC), Riyadh, Saudi Arabia, April 2013. 

 



108 

 

 M.T.M. Mujahid, W.W. Ahmed and M. A. Alsunaidi, “Sensing Properties of 

Plasmonic Ring Resonators,” 2nd IEEE International Conference on Electronics, 

Communication, and Photonics (SIECPC), Riyadh, Saudi Arabia, April 2013. 

 

 W.W. Ahmed, M. T. Mujahid and M. A. Alsunaidi, “Enhanced Optical 

Confinement using an Array of Silica Nanoparticles Embedded in Ag Metallic 

Film,” 4th International conference on Metamaterials, Photonic Crystals and 

Plasmonics (META’13), Sharjah, UAE, March 2013. 

 

 

 


