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THESIS ABSTRACT
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TITLE OF STUDY:  Bioinspired Algorithm for Identifying Overlapping Clus-
ters in Protein-Protein Interaction Networks

MAJOR FIELD: Computer Science

DATE OF DEGREE: May, 2014

Recently, biological networks have attracted a lot of researcher efforts as
they are very essential in increasing our knowledge of living systems at the cellular
level. Consequently, several methods have been developed to study and analyze the
topological features of such networks.

In this work, we focus on particular biological networks, called protein-
protein interaction networks (PPI) which obtained by using recent technologies
such as yeast-two hybrid and mass spectrometry as well as several computational
models. We develop algorithms for studying these networks. We aim to assist
biologists to draw a conclusion about the general principles that control all the bio-
logical processes for producing a correctly functioning organism. The applications

of the existing clustering methods applied on these networks would not gain good
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findings due to the scale-free structure, small-world, disassortivity and multifunc-
tionality characteristics of PPI networks. We consider a genetic algorithm tech-
nique to develop a computational model for identifying functional modules in PPI
network. We assess the quality of our findings whether they have any biological
meaning by using gene ontology terms. Furthermore, we compare and validate the
performance of our clustering approach with three competing clustering methods:
MCL, MCODE and ClusterOne. Our analysis of the clusters identified demon-
strates that our clustering approach: (a) can find several biologically significant
protein complezes (group of proteins) compared to cellular component GO terms;
(b) group higher percentage of proteins in the original network; and (c) is more
effective than existing approaches (i.e., MCL, ClusterOne, and MCODE) when

compared against two reference sets: MIPS and C'YC2008.
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CHAPTER 1

INTRODUCTION

1.1 General

Proteins carry out all essential biological functions in all living organ-
isms [2]. Studying the proteins as well as their interactions is very vital in order
to understand how the proteins achieve their functions within a cell [3]. In the last
few decades, high-throughput experimental methods such as: yeast-two hybrid [4]
and mass spectrometry [5] have been used for discovering the pairwise protein
interactions. These techniques and other inexpensive tools (computational mod-
els) have amassed a huge amount of data of protein-protein interaction networks.
This work contributes only as a part of wider studies done to explore and analyze
the proteome -all proteins that make up an organism.

In general, proteomic network data set is modeled as a graph G =
(V, E), as illustrated in Figure 1.1 where nodes V represent proteins and edges

E represent interactions between the proteins. Several research studies have been



done to analyze the proteomic networks [3][6]. Such studies have uncovered sev-
eral significant topological characteristics of the protein-protein interaction (PPT)
networks, including multifunctionality a protein can be included in various bio-
logical processes, small world property which defined as follows: the distance [
between two nodes is proportional to the logarithm of the network size N, power-
low degree distribution which defined as follows: the probability p(k) that a node
has k links to other nodes is p(k) ~ k™7, where ~ is the degree exponent [7]. Such
networks that have a power-low degree distribution are called scale-free networks
in which a few proteins have lots of interactions and a lot of proteins have few
interactions to other proteins and disassortativity in which proteins having a lot
of interactions are not directly connected to each other.

According to the analysis performed on a number of published proteins inter-
actions, the findings have shown that proteins of known functions tend to group
together [8]. Thus, understanding the inner workings of the cells more clearly
demands identifying protein clusters within a cell’s biological network. Hence,
developing effective methods for revealing the modular structure (protein clus-
ters) in a graph modeling the PPI networks has become a major challenge in
computational system biology.

In recent years, many clustering algorithms, depending on different ap-
proaches and ideas, have been developed for revealing protein complexes in the
PPI networks. These algorithms can be classified into two categories: exclusive

clustering algorithms and overlapping clustering algorithms. The algorithms (e.g.



Figure 1.1: A graph modeling protein-protein interaction network



MCL [9], SPICi [10]) have the ability to discover exclusive complexes in which
each protein must belong to at most one cluster while in biology one protein
may be involved in many complexes simultaneously. (2) The other algorithms
(e.g. MCODE [11], ClusterOne [12], CFinder [13] and OCG [14]) can discover
overlapping clusters in which there are some common proteins in the identified
clusters. In general, it has been observed that several clustering methods start
looking for cliques, fully completed subgraphs, or densely connected subgraphs in
the PPI networks in order to identify the overlapping or non-overlapping protein
complexes. Here, we list some limitations of the considered clustering methods,
regarding MCODE [11] and CFinder [13]: the sparsely interconnected clusters are
neglected, the percentage of covered proteins is low, and their results either a small
number of large clusters or a large number of small cliques. Although MCL [9]
algorithm is more robust and scalable, it does not support finding the overlapping
clusters. On the other hand, another algorithm [15] relies on messages passing
between nodes which determine whether a pair of nodes may belong to the same
cluster. The main limitation of this method is determining the best value of the
parameter exemplar that gives an optimal clustering solution. Other algorithm
(e.g. RSGNM [16] and RSRGM [17]) based on multiplicative updating rule [18§]
in order to optimize the protein-cluster membership which generated by another
proposed method or generated randomly. Another clustering method (e.g. PRO-
COMOSS [19]) uses a genetic algorithm for finding overlapping clusters and based

on semantic similarity of gene ontology. The main drawback of this approach is



that the predicted clusters cover a small percentage of the PPI network.

In this work, we consider clustering such networks into complexes
(groups of proteins) that share a common biological activity using the concept of
Genetic Algorithm (GA) approach that take into account the topological charac-

teristics of the proteomic networks. We give a basic overview of GA in section 2.2

1.2 Problem Statement

Cellular processes are achieved by multi-protein complexes/functional modules
(communities). Several studies have shown that clustering PPI is an effective
way for finding protein complexes. However, revealing the modular structure of
such networks remains a major challenge in computational system biology.

Research Question: Can we discover the presence of communities in a network

and identify the members of the communities?

1.3 Thesis Objectives

The goal of this study is to design algorithms for studying PPI networks to discover

biologically significant clusters. Specific goals for this work are as follows:

e Detect the presence of communities in PPI networks (functional mod-

ules/protein complexes) and find the members of these communities.

e Help biologists to find the general principles that govern the organization of



protein-protein interaction networks.

1.4 Thesis contributions

In particular, the contributions of this study are:

1. Overlapping clustering for biological networks: We introduce a clustering
approach which is effective for clustering networks with the following char-
acteristics: scale-free structure, small-world, disassortativity and multifunc-
tionality. Furthermore this clustering approach identifies clusters with vary-
ing properties: cohesive clusters (cliques or near-cliques), and non-cohesive

clusters . This approach also has high coverage ratio.
2. Predict the cellular function of uncharacterized proteins.

3. Validate discovered protein clusters using two reference sets (CYC2008 and

MIPS) and Gene Ontology terms.

1.5 Thesis Methodology

Here, we state the main tasks that have been done in order to achieve the

stated objectives:

1. Literature Review:
We have conducted a critical survey of clustering approaches for identifying

overlapping clusters in protein-protein interaction networks.



2. Collecting Materials:
We have collected and analyzed the biological networks data that are used

in this study as well as the reference sets that are used for validation.

3. Developing GA-based clustering approach:
We have designed a clustering approach for identifying overlapping clusters

in protein-protein interaction network using genetic algorithm method.

4. Developing a software tool:
We have developed a cytoscape plugin that packages our clustering algo-

rithms.

5. Performance analysis:
We have compared the performance of our clustering approach with three
competing clustering approaches. Furthermore, we have evaluated the qual-
ity of the resulted clusters compared with two reference sets and cellular

component terms from gene ontology.

1.6 Thesis Outline

This thesis is organized as follows. Chapter 2 provides some biologi-
cal concepts and an introduction to genetic algorithm and spectral clustering.
A summary of the literature surveyed so far is provided in Chapter 3. Chap-
ter 4 presents the developed clustering approach to identify protein complexes

in protein-protein interaction networks. Chapter 5 addresses our experiments



and the results obtained by applying our clustering approach in order to identify
protein complexes. Chapter 6 presents a cytoscape plugin that packages our clus-
tering algorithm. Finally, Chapter 7 presents a general conclusion and suggests

some future work.



CHAPTER 2

BACKGROUND AND

OVERVIEW

This chapter presents some biological concepts and an introduction to ge-

netic algorithm and spectral clustering.

2.1 Biological background

Here we give a brief concept about molcular biology which is very important for

understanding this thesis.

2.1.1 Cells biology

Cells are the fundamental unit of life. Every living organism - from the smallest
bacterium to the largest mammal is made of one or more cells [2]. Cells, as shown

in Figure 2.1 are enclosed by a plasma membrane, which separates the interior
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Figure 2.1: Anatomy of the Animal Cell [1].

contents of all cells in order to protect the cell from the surrounding environment
and allow the materials to enter and leave the cell. Each cell contains a variety of
components called organelles each with a specific function. The most important
part in the cell is the nucleus which existed just in the eukaryotic cells. It is
considered as the cell’s instructions center that regulates all cell activities including
sending instructions to the cell to grow, divide or die as well as regulating the
gene expression process - the process by which information from a gene is used to

synthesize a functional gene product(Protein).

2.1.2 Genome

Deoxyribonucleic acid (DNA) is the hereditary material in almost all living or-
ganisms. It is a molecule which stores all genetic information needed to make
and regulate all organisms. DNA is arranged in two long complementary strands

that form a double helix as illustrated in Figure 2.2. The complete set of DNA

10



molecules is called organism’s genome. DNA is encoded as a sequence of four
chemical bases (nucleutide): adenine (A), thymine(T), guanine (G) and cytosine
(C). Such bases pair up with each other following a set of rules: A pairs with T

and C pairs with G, to form units called base pairs.

Figure 2.2: DNA helix.

11



2.1.3 Proteins

Proteins are produced using the information encoded in DNA sequence. The pro-
cess of manufacturing proteins is called central dogma (gene expression) as shown
in Figure 2.4. This process involves two main operations: First, RNA transcription
in which enzymes called RNA polymerases read the information in a relevant re-
gion of DNA molecule - which is usually for a single protein - and transcribe it into
a messenger ribonucleic acid (mRNA) chain. mRNA is encoded as a sequence of
four chemical bases (nucleutide): adenine (A), thymine(T), guanine (G) and uracil
(U). Second, protein translation in which every consecutive three bases in mRNA
is translated into an amino acid according to standard genetic code illustrated in
Talble 2.1, which in turn a chin of amino acid make up a particular protein. The
proteins are the essential working parts of organisms which playing the main func-
tions in almost all processes of life [2]. Proteins achieve their biological functions
within a cell by forming multi-protein functional modules (complexes), which are
groups of proteins. Thus, knowing such complexes provides a greater understand-
ing of cellular functions and organization. Such predictions can be done through

high large-scale experiments or inexpensive computer modeling tools.

12



Figure 2.3: 3D structure of a protein.
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Figure 2.4: Central dogma.
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Table 2.1: The 20 amino acids (three-letter amino acid code) corresponding to
each codon.

Second letter of the codon
U C A G
UUU | Phe | UCU | Ser | UAU | Tyr | UGU | Cys
UUC | Phe | UCC | Ser | UAC | Tyr | UGC | Cys
UUA | Leu | UCA | Ser | UAA | Tyr | UGA | Stop
UUG | Leu | UCG | Ser | UAG | Tyr | UGG | Trp
CUU | Leu | CCU | Pro | CAU | His | CGU | Arg
CUC | Leu | CCC | Pro | CAC | His | CGC | Arg
CUA | Leu | CCA | Pro | CAA | Gln | CGA | Arg
CUG | Leu | CCG | Pro | CAG | Gln | CGG | Arg
AUU | Ile | ACU | Thr | AAU | Asn | AGU | Ser
AUC | Ile | ACC | Thr | AAC | Asn | AGC | Ser
AUA | Ile | ACA | Thr | AAA | Lys | AGA | Arg
AUG | Met | ACG | Thr | AAG | Lys | AGG | Arg
Ala | Val | GCU | Ser | GAU | Asp | GGU | Gly
GUC | Val | GCC | Ala | GAC | Asp | GGC | Gly
GUA | Val | GCA | Ala | GAA | Glu | GGA | Gly
GUG | Val | GCG | Ala | GAG | Glu | GGG | Gly

aQ

b

First letter of the codon
Third letter of the codon

QrFraQcQrrQcr»QcCc Qg
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2.2 Genetic Algorithm

Genetic Algorihms (GAs) are family of search and optimization methods which
based on the Darwin’s theory (evolutionary theory) ”survival of the fittest” [20].
GA is first invented by John Holland in 1975. Following that, it has been improved
by a number of researchers [21] [22]. It has proved to be highly suitable and
powerful method to progress toward an approximate solution which should be
as close as possible to the optimal solution in search and optimization problems.
It mimics the processes inspired from biological evolution such as inheritance,
selection, mutation, and crossover. Initially, genetic algorithm approach depends
on a population (a set of individuals) where each individual represents a candidate
solution for a given problem. Based on fitness functions, selecting, crossover and
mutation operators, the population is refined in each generation by selecting the
fittest individuals and modifying them to generate a new population for the next
generation. The fitness value of each individual indicates how well each individual
is suited to be a solution. Consequently, GA reaches to a satisfactory individual

as a solution to a problem. The common steps of GA are the following [23] :
1. Create the initial population of possible solutions (individuals).
2. Compute the fitness value of each individual.

3. Select all the individuals, that used as parents to create the next generation,

based on their fitness values and the selection method.

4. Make perturbation to each of these selected individuals using genetic op-

15



erators, e.g. crossover and mutation to create the offsprings of the next

generation.

These steps, except population initialization step, are iterated until some
stopping criteria are satisfied. Before GA can be used, there are four domain-
dependent things to do: representing the chromosome of the problem, the
blueprint of the possible solutions, which supposed to be very close to the original
solution of the considered problem, defining the fitness function, selecting parent

selection methods, and defining genetic operators.

2.3 Spectral Clustering

A clustering of a graph is a partitioning of the vertices into groups such
that vertices in each group are similar to each other and dissimilar to vertices
in other groups. In an exclusive clustering, each vertex belongs to at most one
subset in the clustering, but in an overlapping clustering, a vertex could belong
to more than one subset. Here, we present a brief introduction to the family of
spectral clustering methods which have been applied widely over the last decades
and several algorithms have been proposed along this line of study. There are
some intuition behind the popularity of such spectral clustering approaches which
can be summarized as follows: such approaches are very simple to implement
as they based on standard algebra methods [24]. Furthermore, they have the
ability to figure out problems in much complex shapes such as spiral, linear and

nonlinear shapes as they are invariant to cluster shape, that is, they do not make

16



presumption to the clusters’ shapes. Algorithm 1 illustrates the spectral clustering

algorithm used in this study.

Algorithm 1 Normalized Spectral Clustering.

1:
2:

Given an adjacency matrix A.

Construct the degree matrix D, the degree for each vertex is computed by the
number of adjacent vertices of that vertex d; = Z?Zl Ajj.

Compute the symmetric Laplacian matrix L.

Identify vy, vs, ..., vx the top k eigenvectors of L.

Construct the matrix V' € R™* from vy, vs, ..., Ug.

Each row of V represents a vertex in R¥, group these vertices into k clusters
using any approach such as k-means algorithm

17



CHAPTER 3

LITERATURE REVIEW

Several studies have been done on the the problem of clustering PPI
network to identify protein complexes. Although there are a wide variety of
such methods in the literature, this review can be divided into groups includ-
ing density-based clustering methods [14], [25], [11], [12], [26], [13], [27], message
passing-based clustering method [15], random walk-based method [9] and genetic
algorithm-based clustering method [19]. In this Chapter, we discuss and review

in brief such clustering algorithms.

3.1 Affinity Propagation-Based Methods

Wang and Gao [15] proposed an algorithm called Overlapping Affinity
Propagation (OAP) for identifying overlapping complexes in PPI network. This
algorithm based on passing messages. The first message is responsibility message
r(i, k) sent from a data point to a candidate exemplar which indicates how strongly

the data point ¢ prefers the exemplar k. The second message is availability message

18



a(i, k) sent from an exemplar to a data point which indicates the probability
of the node k to be available as an exemplar to the data point i. Given the
adjacency matrix Ayyy, where N is the number of proteins in the PPI network.
OAP algorithm involves the following phases: (i) computing the similarity Sy
between each pair of vertices using Jaccard similarity measure, i.e. s(i, k) indicates
how well the vertex with index k is suited to be the exemplar of the vertex i and the
diagonal of the similarity matrix represents the prior exemplars, preferences; (i)
obtaining the exclusive clusters of the graph using AP algorithm; (#4) initializing
the availability matrix Ayxn to zero; (i) continue updating the availability and
responsibility matrices until reaching to a steady state; and (iv) the vertices that
share the same exemplar are considered as a cluster as well as the proteins that
have more than one exemplar are considered as candidate overlapping vertices as
long as satisfying some conditions. The drawback of such a method is how to

determine the number of the preferences.

3.2 Density-Based Methods

There are several clustering methods in the literature start looking for
either cliques, fully completed subgraphs, or densely connected subgraphs in the
PPI networks in order to identify the overlapping modules in the studied networks.
In this section, we show some density-based methods.

Becker et al [14] developed a novel clustering approach called ”Overlapping

Clustering Generator” (OCG) which can be described as follows: (7) finding all
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centered cliques, clusters, using a greedy polynomial approach; (i7) computing the
modularity of all clusters; (7i7) combining the clusters ¢; and ¢; whose maximal
gab, defined by the difference between the modularity values of each cluster, is
positive and iterating this operation until either the expected number of clusters
or the maximum number of nodes in a cluster is reached; and (i) enhancing the
modularity values as well as the performance of the developed algorithm, OCG,
by transferring each protein to the clusters where its contribution maximizes the
modularity value of the clusters.

Liu et al [25] developed an approach for clustering PPI networks called AD-
HOC which based on a new subgraph density metric. First, for each vertex,
ADHOC computes the degree, clustering coefficient and the local-density coeffi-
cient, MinCC, values for each node. There is a well-known clustering coefficient
formula but they developed a new local-density measurement method, MinCC, by
including the degree of the vertex as a significant parameter into the clustering
coefficient. Based on the following parameters k,d and MinCC values, ADHOC
method can be summarized in the following steps: (i) grouping the set of nodes in
the studied graph into four types: (1) density nodes which have clustering coeffi-
cient values greater than or equal to their MinCC values and the density region is
defined as the set of adjacent nodes of the density nodes except the nodes which
are not connected to other neighbors (2) every node in the density region and
not density node is called border node. (3) affiliated node to a cluster is a node

whose edges are connected to the clusters nodes. (4) interspersed nodes are all the
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remaining nodes in the studied graph; (i) after classifying all the nodes, grouping
the density nodes that are directly connected as well as the border nodes that are
directly connected to those density nodes to the same cluster while the affiliated
nodes are assigned to the clusters that are connected with.

Bader and Hogue [11] proposed a density-based algorithm called ”Molecular
Complex Detection” (MCODE). First, MCODE assigns weights to all nodes which
are computed based on the core clustering coefficient. Second, starting with a
cluster c¢ of size one which contains the node with the highest weight and iterates
to include all nodes that are neighbors to the nodes in the cluster ¢ and have
weight above a given threshold 7, and this continues until all nodes have been
checked. Finally, it removes every obtained cluster ¢ that contains one node.

ClusterOne approach proposed by Nepusz et al [12] is another recent algo-
rithm for finding overlapping clusters in PPI network. It is similar to MCODE.
ClusterOne is an agglomerative method starting from a single seed vertex, and
adds or removes vertices greedily to find groups with high cohesiveness. Then, it
merges each pair of groups where the overlap score is above a specified threshold.
Finally, it removes all clusters of size less than three vertices or whose density is
below a given threshold.

Rhrissorrakrai and Gunsalus [26] extends MCODE [11] approach by proposing
an algorithm called MINE to identify overlapping clusters in biological networks.
In MINE, the weight of each vertex v is initialized with a value obtained by the

multiplication of the clustering coefficient value of v with respect to the cluster
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involved the vertex v and the highest degree in the v's neighbors N[v]. Moreover,
the modularity of a cluster is defined as the ratio between the size of the intra-
cluster and the size of the inter-cluster.

Another overlapping clustering method is clique percolation method (CPM)
developed by Palla et al [28]. CPM consists of two main phases: (i) based on
greedy concept, all maximal cliques of a given size k in the considered network
are identified, where k takes values between s(the largest degree over all vertices)
and 2, (i) constructing a clique-clique overlap symmetric matrix in which rows
and columns represent cliques and its entries are the shred nodes between the
corresponding two cliques. A cluster is defined to be all k—cliques that share
k — 1 nodes. An application called CFinder which implemented by Adamsek et
al [13] uses the CPM approach.

Zhang et al. [29] applied CPM [28] on a line graph L(G) which is obtained from
the original graph G represented a PPI network. Then, the clusters discovered in
L(G) are transformed back to groups in G. Finally, any pairs of clusters that are
heavily overlapped are merged to one cluster.

Cho et al [27] proposed an information flow approach for finding over-
lapping functional groups in PPI networks. The proposed algorithm can be de-
scribed as follows: (i) assigning a weight to each node as follows: the weight of
a vertex v is the summation of its incident edges’ weights which are computed
by using Pearson’s correlation measure; (ii) picking up set of nodes (informative

nodes) having the highest weights which correspond to the preliminary number of
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obtained clusters in the studied network; (74) identifying preliminary clusters by
considering each node s € { informative nodes } as starting point which expanded
to include all its reliable neighbors (the edge between a pair of nodes has a positive

weight) and iterating this process until all nodes in the network are clustered.

3.3 Model-Based Methods

Actually, real complexes in the organism is not limited to densely connected
subgraph but parsley connected subgraphs are also existed in PPI networks. Since
density-based algorithms usually neglect the proteins that connect with main com-
plexes by few edges even though these proteins may represent primary interaction,
it is crucial to develop methods to identify overlapping complexes and complexes
that covers peripheral proteins with low density.

Zhang et al [16] argue that the density-based approaches cannot identify the
sparse complexes as well as the proteins that have a few connections to dense com-
plexes. They developed a method called "regularized sparse generative network
model” (RSGNM) for finding protein communities in PPI network. This method
can discover the sparse and dense subnetworks. They rely on the observation
that two proteins that have higher propensities, which specifies the likelihood
that proteins belong to some modules, may interact with each other. The devel-
oped algorithm can be outlined as follows: (i) finding exclusive clusters using a
SPICi algorithm [10]; (4) based on K, the number of clusters obtained from SPICi

method, a protein-complex indication matrix F' is constructed where its rows rep-
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resent the nodes (proteins), columns represent the clusters and its elements either
Oorle.g. ﬁ»,z = 1 if protein with index ¢ belongs to the module with index z oth-
erwise 0; (744) initializing the propensity matrix; (iv) using a multiplicative update
rule to optimize the obtained clusters and results the protein-complex indication
matrix F™ which shows all proteins in the studied network and the complexes
to which belong using f;, = 1 if f;, > 7 (they give 0.3 to the threshold). The
propensity matrix F* indicates the number of complexes and each protein to which
complexes belongs. Such method based on a lot of parameters and it also based
on a multiplicative update rule which needs a lot of time especially where the data
is very large.

Zhang et al [17] proposed another approach called Regularized Sparse Random
Graph Model, RSRGM, for detecting cohesive, non-cohesive and overlapping com-
plexes in PPI network. This method actually extended to the previous approach
RSGNM [16] with the following modifications: instead of using a method to find
the exclusive clusters, they initialized the protein-complex indication matrix 6
and the maximum number of possible functional groups, K, randomly. Then, the

same RSGNM [16] steps are used in RSRGM.

3.4 Random Walk-based Methods

Dongen [9] proposed a Markov clustering method (MCL) which based on random
walks (called flow) within a graph. MCL partitions the graph into clusters by

applying two alternative operators: (1) expansion operator which defined by cal-
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culating successive powers of the associated transition matrix M using the normal
matrix product (i.e. matrix squaring) in order to allow flow to connect different
regions of the graph, (2) Inflation operator is defined by raising each single column
to a non-negative power, and then re-normalizing in order to further strengthen
the cohesive regions and demote the sparse regions. Although MCL is very effi-
cient and scalable, it has the drawback that it partitions the graph into multiple

cohesive exclusive clusters.

3.5 Genetic Algorithm-Based Methods

Anirban et al [19] proposed an algorithm (PROCOMOSS) to detect overlapping
clusters in PPI network using genetic algorithm technique. They rely on the prop-
erties captured in the graph modeling the PPI network and they also utilize the
GO terms to consider the biological properties of the proteins. Their approach
can be described as follows: First, encoding the chromosome as a vector of integer
numbers representing the indices of the proteins in the proteins set. Then, ini-
tializing the population based on applying k-means clustering on both dimensions
of the adjacency matrix A of a graph modeling PPI network. Next, calculating
the fitness values of each individual of the population using two objective func-
tions. Finally, selecting parents by adopting the same way used in NSGA-II [30]
and mutating the selected chromosome as follows: select a random node and then
either remove that node or add its neighbors to the selected chromosome with

the same probability. The main drawback of this approach is that the predicted
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clusters cover a small percentage of the PPI network as well as this algorithm
uses NSGA-II [30] which its complexity is O(M N?), where N be the size of the

population and M is the number of objectives.
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CHAPTER 4

A NEW GA BASED

CLUSTERING APPROACH

4.1 Research Problem

As shown in Chapter 3, many density-based clustering approaches compute the
density for each vertex on the basis of different density, modularity and cluster-
ing coefficient measures. Then, they always start from a seed (vertex with the
highest wight) and expand to include the other vertices in order to cluster the
network according to greedy strategy. Such approaches discard a lot of nodes
having low weights; the predicted clusters are not highly directed to each other,
i.e., the overlapping degree distribution is low since the PPI is a disassortative
network in which the highly wighted vertices are not directly linked to each other
while, in nature, the nodes (proteins) can be involved in several protein complexes.

Furthermore, being an optimization technique, starting from a set of candidate
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solutions is much better than a single solution which based on a greedy proce-
dure as the most optimal short-term solution may lead to the worst potentially
long-term results.

Chapter 3 also shows that there is only one GA-based clustering approach in
the PPI literature. Such method discards a lot of proteins from the original PPI
network since the inappropriate representation of the chromosome used. It uses
semantic similarity measure to compute the fitness value for each possible solution
in the population and the parents are selected using binary crowded tournament
selection method which are very demanding complexity.

As essential features of GA-based clustering method in the context of PPI
are that the chromosome representation should take into account the overlapping
property and the variety of the clusters size in order to be close to the original
clustering solution; the variety among solutions in the first population should be
very high in order to prevent the premature convergence; and the most important
characteristic of GA based clustering algorithm that the fitness function must be
well-defined and capable of finding optimal solution in which the clusters should
contain more internal links among nodes inside the cluster than external links to
other clusters.

Guided by the previous issues (chromosome representation, population initial-
ization and fitness function definition) we have developed a clustering approach
on the basis of GA technique that takes into account the main characteristics of

PPI networks (multifunctionality, scale-free structure, small-world property and
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disassortativity) to perform better than existing clustering algorithms.

4.2 Research Approach

4.2.1 Introduction

In this section we present an overlapping clustering approach to identify
protein complexes in protein-protein interaction networks.

Algorithm 2 provides the high-level description followed in our study for clus-
tering the PPI network. Starting with initial population of individuals (set of
clusterings), the algorithm generations of individuals using genetics operators (i.e.,
selection and mutation). The goal is to get individuals to converge to solutions

(clusterings) of maximum fitness according to the objective function.

Algorithm 2 Clustering Algorithm high-level description.

: Population initialization.

while Number of generations limit has not been exceeded do
Evaluate fitness of all individuals of the current generation population.
Select survivals to next generation.
Mutate survivals.

end while
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4.2.2 Representation and Initialization

Before using GA, we have to represent its chromosome appropriately, defining the
blueprint of a possible solution. Since the result of clustering problems is a set of
overlapping clusters each with different size (the size of the cluster is the number
of proteins belongs to it), such representation should be as close as possible to
the original one. Anirban et al [19] encoded the chromosome as a list of n inte-
ger number. Thus, the population includes m lists (clusters). Consequently, in
such representation, the number of predicted clusters is highly correlated to the
population size; the size of the clusters is very high; and the overlapping degree
distribution is also high. All those issues resulted in the high discarded percentage
of proteins in the original network.

In the clustering social networks literature, Blas et al[31] represented the chromo-
some as a list including two parts. The first part is of length N, where N is the
size of the network, while the second part involves m integer numbers in the range
{1, ..., k}, where k represents the number of clusters. In such representation, the
value of the element j in the first part of the list represents the cluster to which
jth node is assigned. Consequently, each node is assigned to a single cluster which
is inappropriate representation to clustering problems in the context of PPI.
Tasgen and Bingol[32] represented each chromosome as an array of n integer num-
bers, where n is the number of nodes on the considered network, and each element
j in the array represents the cluster to which jth node is assigned which is also

inappropriate representation to partitioning PPI networks.
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In this study, we represent each chromosome (individual) as k lists
{c1,¢9,c3,...,c}, where k is the number of clusters. Each list can store inte-
ger numbers in the range {1,2,..., N}, where N is the size of the data set. The
element j of a list is a node’s index of the graph G modeling the PPI network. It
is possible that some elements of different lists can hold the same value j which
means that a protein with index j can exist in more than one cluster; this is in

case of overlapping clustering.

c1: |1|20|8|70|400|...|
cz [12]220] .. [8]200] .. |
cs: |4oo|5|...|1|3o|90|
ck: [200] 120 | 2000 | ... [ 400 |

Figure 4.1: Chromosome representation [for our clustering approach].
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Once the blueprint of the possible solution is determined, we create the first
population which composed of a number (population size) of individuals, possible
clusterings. We use two different methods to initialize the population. The first
approach, generating m random individuals, where m is the size of the population,
as follows: for each individual consisting of k lists, assigning an integer value j in
the range {1,2,..., N} where N is the size of data set for each element randomly.
For example, as illustrated in Figure 4.2, the node with index 70 is assigned to
the cluster ¢; while the node with index 8 is assigned to two clusters ¢; and cs.
Such a way should take into account the variety among the individuals of the
population which supposed to be considerably high to prevent the tendency to
a premature convergence (failing in local optimal solution which is an optimal

within a neighboring set of feasible solutions).

Algorithm 3 Generating an individual randomly.

1: Define a vector L containing a random permutation of the integers from 1 to

N inclusive. > Let NV be the size of the network.
2: Divide L to k parts. > Let k& be the number of Clusters.
3: Assign each part of L to a cluster ¢;. > Let ¢ be in the rang {1, ..., k}.
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c1: |1|20|8|70|400|...|
co: |12|220|...|8|200|...|
ca: [400] 5| .. |1]30]09 ]
ck: [200] 120 | 1000 | ... [7400 |

Figure 4.2: Population initialization method [using the random initialization
method and spectral clustering method].

The second way, we use the resulting complexes of spectral clustering algo-
rithm [33] to create the initial population. This method can be described as
follows: given an adjacency matrix A. First, construct the degree matrix D ,
the degree for each vertex is computed by the number of adjacent vertices of
that vertex d; = Z?:l A;;. Then, compute the symmetric Laplacian matrix L.
Next, identify vy, v, ..., vg the top k eigenvectors of L. Then, construct the matrix
V € R™* from vy, vs,...,v,. Finally, each row of V represents a vertex in R”,
group these vertices into k clusters using any approach such as k-means algorithm.
In such a case, a set of exclusive clusters is predicted which used to initialize the
population.

Once the population is initialized, the algorithm performs the genetic algo-
rithm operations for a number of iterations called generation. These operations

are discussed in details in the following subsections.
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4.2.3 Objective Function

The objective function aims to calculate the fitness values for each individual of

the population to indicate how well each individual is suited to be the solution of

a given problem. In Table 4.1, we present the objective functions used to compute

the fitness values for population in the literature.

Table 4.1: The objective functions used in previous published works.

Authors Objective Function Network Type
(Year)

Details

Q(S;) = M(S;) x vs is the fitness
value for each cluster S;, where
vs is the number of 1’s in the ad-
jacency matrix A(/,.J) represent-
ing the cluster S; and M(S;) is
the average of S; to the power r,

M(S;) = Zeetiel

where e;; is the cluster size; and
a; is the number of edges that has
an endpoint in the cluster ¢ to the
total number of links in the net-
work.

Pizzuti [34] F = YF Q(S;) Social Net-
(2008) works

Tasgen F =% .(eii—a?)  Different Com-
and plex Networks
Bingol[32]

(2007)

Anirban fi= N(J?q) PPI Network
et al [19]

(2012)

f2 — Ziep ZjEP S(ivj)

p

This method based on two fitness
functions f; and fy, where f; is
the fitness value of a cluster C,
E is the number of edges in the
cluster C; and N is the number
of nodes in C.

where S is the similarity ma-
trix of each pair of proteins;
s;; is an element of the matrix
S; and the similarity matrix is
constructed using three semantic
similarity measures proposed by
Lin [35], Jiang and Conrath [36],
and Kappa [37].
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In our case, the fitness value of an individual reflects the intra-cohesion of each
cluster proposed by the individual as well as the inter-cluster coupling of those
clusters. The goal is to maximize intra-cohesion and minimize inter-coupling. We
represent intra-cohesion and inter-coupling by the number of edges within and
across clusters, respectively. In this thesis, we designed a new fitness function and
we also used three objective functions [33] proposed in the literature to capture
the goodness of a partition of the networks and to evaluate the quality of possible
cluster structures. Here, GA is to optimize those objective functions in order to
find an optimal solution. The clusters in the potentially good solution should
contain more internal links among the nodes inside the clusters than external
links to other clusters. We compare the clustering achieved using these objective
functions to the one achieved by our proposed objective function. We also compare

clustering of all four objective functions to MIPS and CYC2008.

e Ratio cut objective function:

_lal

Rcut(Cl,..., W C C

(4.1)
1=1,57#1

where k is the number of clusters, |C;| is the number of nodes in the cluster
C; and W(C;, C)) is the number of edges that has just one endpoint in the

cluster C;.

Ratio cut based on the size of the clusters which is the number of vertices in
the cluster. Assume the clusters of an individual look like the cluster shown

in figure 4.3. According to ratio cut measure such individual gets high value,
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Figure 4.3: A Cluster representing ratio cut limitation.

though its clusters contain many separated nodes and many disconnected

components.

e Normalized cut objective function:

Ncut(Cl,...,Ck) - m
R

i=1,ji

(4.2)

where Vol(C;) is the degree of every node in the cluster C;. Normalized cut

Figure 4.4: A Cluster representing normalized cut limitation.

based on the volume of the clusters which is the the degree of each vertex
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in the cluster. Assume the clusters of an individual look like the cluster
shown in figure 4.4. According to normalized cut measure such individual
gets high value, though its clusters contain many separated nodes and many

disconnected components.

e Min-Max-cut objective function

k

Mo (Chy oo Ci) = Y

i=1,j#i

W(C;, C;)

—W( )’ (4.3)

<

where W(C;, C;) is the number of edges inside the cluster C;. As shown

Figure 4.5: A Cluster representing max-min cut limitation.

in figure 4.5, the same issue in the Min-Max-cut objective function, if the
number of internal links are much more than the external links the cluster get

high fitness value even though it contains many disconnected components.

We designed a new fitness function to compute the fitness value for each individual
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as follows:

W(C;, C;)

Dcut(cla---ack) = A—|—W(C C)
i iy Vg

i=1,j#i

(4.4)

where W (C;, C;) is the number of edges inside the cluster C;, W(C;, C;) is the
number of edges that has one endpoint in C; and A; is the maximum possible
number of edges in the cluster C;.

We added the term A; to make sure we are pushing for maximizing the cluster
cohesion and W (C;, C;) to make sure we are pushing for minimizing the cluster
coupling. Thus, according to this measure, any groups with high value represent
a good clustering because they are well-connected to each other and sparse con-
nected to the rest of the network. The comparative results of those four objective
functions performance is discussed in Chapter 5.

Table 4.1 shows an example of the four objective functions used in this study.
It is clearly that the proposed fitness function (density cut) capture the goodness
of a cluster better than the others. Based on density cut, cluster (b) gets higher
value than cluster (a) as it is more cohesive and does not include neither separated
nodes nor disconnected components. On the other hand, ratio cut, normalized
cut and max-min cut give higher values for the cluster (a) even though it is sparse

and involves many disconnected components
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Table 4.2: An illustrative example of the four objective functions used.

Objective Function
Density Cut

cluster (b)

Ein 17 _ 1
Ai+|Eout| 17143 — 0.10 1543 — 0.61
Ratio Cut

|Ci] 19 _ 6 _
‘Eout‘ ? - 63 § - 2

Normalized Cut

Vol(C) 37 _ 25 _
Bt S = 12.3 T = 8.3
Max-Min Cut

Ein 17 11
‘Eou,t‘ ? — 57 ? — 37

4.2.4 Genetic Operators

The most common operations used in genetic algorithm are selection, crossover
and mutation. Here, we exclude the crossover operation as it resulted in too much
exploration and disturbed the exploiting potentially good solutions. Regarding the
parent selection defined as the process of selecting individuals from the current
population to create offsprings for the next generation. This process aims to
emphasize that the individuals with high fitness values are chosen in hopes that
their offsprings will have higher fitness as well. There are many ways to select
parents, individuals, from the current population for reproduction. Algorithm 4

illustrates in detail the parent selection method used.
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Algorithm 4 Selection Process.

1:
2:

W

10:
11:

sort the individuals according to their fitness values.
select n individuals called - elite parents - having the highest fitness values to
the next generation without mutation, we set the elite rate to 0.20.

: calculate the cumulative sum S, of all the individuals’ fitness values.
: for N times do > let N be the size of the population minus the number of

the elitism parents.
generate a real random number r between 0 and S.

while s < r do
go through the population and summing cumulative values.
end while
select the individual corresponding to the cumulative sum value s.
end for

Mutation operation is defined as performing some changes in the values of a

specific chromosome, individual. Consequently, the GA may reach to a better

solution with the obtained individuals. We adapt the mutation operator used in

[19] and modify it in such a case to be suited and more efficient to our problem.

This operation can be described as follows: after selecting an individual to be

mutated, its nodes are either moved from one cluster to another as shown in

Figure 4.6 or some nodes of the graph G are added to the selected individual as

shown in Figure 4.7. Algorithm 5 illustrates in detail the mutation operator used.

40



Algorithm 5 Mutation Process.

1: for n times do > Let n be the number of clusters in the selected parent.
2 generate a real random number ry.
3 if 7 is less than the mutation rate (0.4) then
4 for N times do > N is the number of changes.
5: generate a real random number 75 between 0 and 1.
6
7 if rq is less than a threshold 7 then
8 move a random selected node from the cluster ¢;
9: to another cluster ¢; as illustrated in Figure 4.6
10: else
11: add the adjacent nodes of the selected node
12: to ¢; as shown in Figure 4.7.
13: end if
14: end for
15: end if
16: end for

K )
S
.\ .xw\./
e / \\\\i‘\.
o ~ N
e
(a) (b)

Figure 4.6: Mutation operation. (a) shows the selected node of the cluster ¢;. (b)
shows the cluster c¢; after the mutation operator.
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Figure 4.7: Mutation operation. (a) shows the selected node of the cluster ¢;.
Figure (b) illustrates the cluster ¢; after adding the selected node’s neighbors
from the graph G.
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CHAPTER 5

EXPERIMENTS AND

RESULTS

5.1 GA parameters setup and optimization

In using GA, the parameters of GA must be initialized in advance. Table 5.1 shows
the values for all GA parameters used in our clustering approach. Those values
were selected subjectively as follows: initially, we follow the mostly used values
according to the previous published works [19][34][38] to initialize the population
size, number of generations, mutation rate and elitism rate. Then, we gradu-
ally refined such values in the subsequent experiments according to the feedback

reported from the preceding experiment.
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Table 5.1: GA parameters setup using four different objective functions to com-
pute the fitness values of the population.

No Parameter Do Moy News BRew
1 Population Size 50 50 50 50
2 Chromosome Size 200 200 200 300
3 No. of Generations 30 30 30 30
4 Mutation Rate 04 04 04 04
5 Elitism Rate 0.2 0.2 0.2 0.2

5.2 Results Analysis

5.2.1 Data Set

We study protein interaction network from yeast organism since there are
abundant high-confidence data sets for the yeast PPI network as well as there
are high-confidence reference complex sets. In our experiment, we applied our
clustering algorithm on the Collins PPI network [39] extracted from BioGrid data
set. This network has 8319 interactions among 1004 proteins. It has an average
degree (16.57) where the degree of a node in a network is the number of links
connected to the node; the density of this network is 0.016 (density is ratio between
the total number of connections and the potential connections that can exist in
the network). In order to validate the resulted clusters whether they have any
biological meaning we use two common approaches: (7)using two hand-curated
gold-standard complex sets: CYC2008 [40] which includes 408 protein complexes
and MIPS [41] catalog consisting of 203 protein complexes and (74) using cellular
components from GO terms. We present the clusters validation in the following

subsections.
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5.2.2 Cluster validation based on known complexes

We use three quantity measures: precision, recall and F-score to evaluate the
performance of different clustering algorithms in terms of the similarity rate be-
tween the identified clusters and a set of validation protein complexes derived from
CYC2008 and MIPS catalogs. For each predicted cluster C| let true positive (TP)
be the set of proteins shared between the cluster C' and a reference protein com-
plex G while false positive (FP) is defined as the set of proteins existed only in the
cluster C' and true negative (TN) is defined as the proteins that are members of
the reference complex G but not found in the cluster C. Hence, Recall, precision

and F-measure scores are calculated according to the following equations:

TP
Recall = m—m (51)
. TP
Precision = TPUFP (5.2)

Precision X Recall
F— =9 ) 5.3
measure % Precision + Recall (5:3)

As stated in Chapter 4, we use two different ways to create the initial pop-
ulation while four objective functions are used to calculate the fitness values for
each individual. In order to assess the performance of the proposed clustering
method, we compared our clustering approach to three competing clustering algo-
rithms: one exclusive clustering method (MCL [9]) and two overlapping clustering

approaches (MCODE [11] and ClusterOne [12]). First, we employed the previ-
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ous validation measures on each predicted cluster resulting from the considered
algorithms. Then, the averaged value for each measure are calculated and re-
ported. Table 5.2 shows the overall results of the comparison according to the
three evaluation scores: recall, precision and F-measure and using two reference
protein complexes CYC2008 and MIPS. In general, as also graphically shown in
Figures 5.1-5.3, among the considered algorithms, we note that none of these
methods surpasses all the others in terms of the three validation scores and using
CYC2008 and MIPS reference complexes. To summarize, our method which based
on density cut objective function outperforms MCL and ClusterOne methods on
the three validation scores on both CYC2008 and MIPS reference sets. On the
other hand, although our method which based on the clusters resulting from spec-
tral algorithm to initialize population and using ratio cut as an objective function
outperforms all the others in terms of recall score using CYC2008 reference set, it
obtains lower precision and f-measure values compared with the other approaches
using CYC2008 and MIPS complexes. MCODE also outperforms all the other
methods in terms of precision metric, but it predicts a fewer number of clusters
and discard a high proportion of the proteins in the original network compared

with the other approaches.
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Figure 5.1: Comparative results of the considered clustering approaches using
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We also illustrate the number of complexes and the percentage of the proteins
covered in the predicted clusters resulted from all the considered algorithms in
Table 5.2. It is obvious that our clustering method usually discovers more com-
plexes while MCODE predicts fewer complexes since it tends to search for a high
density clusters. And the other approaches, MCL & ClusterOne, predict fewer
modules than our methods and more complexes than MCODE. Regarding the
percentage of the proteins covered in the predicted clusters, it is obvious that
our method which based on the clusters resulting from spectral algorithm to cre-
ate initial population and using density cut objective function outperforms all
the other approaches and gets the lowest percentage of the discarded proteins as
shown in Figure 5.4; high value of coverage indicates that a high proportion of
the proteins in the considered PPI network are clustered. On the other hand,
MCODE algorithm obtains the highest percentage of discarded proteins. So, a
high percentage of proteins are lost in the clustered network. Regarding the other
methods, the percentage of covered proteins is almost similar, meaning that the

same proportion of proteins in the original network are assigned to the clusters.
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We evaluated the distribution of the recall, precision, f-measure and the per-
centage of discarded proteins values over many experiments. Actually, once we
selected the values of GA parameters, as shown in Table 5.1, we run our algorithm
using four fitness functions 40 times (10 times for each fitness function) and we
calculated recall, precision, f-measure and the percentage of discarded proteins in
each experiment. Then, we evaluated the distribution of the results. Table 5.4
and Table 5.3 show the values of some statistical measures used, as shown in those
tables, the proposed fitness function (density cut) performs better than the others
and it got good recall, precision and f-measure average values. Moreover, it got
low percentage average value of the discarded proteins. The standard deviation
values are very small which are good and mean that the values of those measures

in each experiments are close to the average values.
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Table 5.3: The average, standard deviation, max and min of the recall, precision
and f-measure validation scores used to validate the resulted clusters of 5 runs[the
1st population of GA is generated randomly].

Fitness Function \ Measure \ Recall \ Precision \ F-measure \ Discard
Density Cut Mean 0.72 0.58 0.65 %12
Standard deviation | 0.01 0.03 0.02 0.03
Max 0.74 0.61 0.67 0.18
Min 0.71 0.54 0.61 0.10
Max-Min Cut Mean 0.70 0.57 0.63 %18
Standard deviation | 0.02 0.07 0.04 0.05
Max 0.73 0.62 0.66 0.26
Min 0.67 0.45 0.55 0.11
Normalized Cut | Mean 0.69 0.58 0.63 %17
Standard deviation | 0.02 0.02 0.02 0.03
Max 0.71 0.60 0.65 0.21
Min 0.66 0.56 0.61 0.14
Ratio Cut Mean 0.67 0.57 0.62 %14
Standard deviation | 0.04 0.03 0.03 0.03
Max 0.72 0.61 0.66 0.18
Min 0.61 0.52 0.58 0.10
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Table 5.4: The average, standard deviation, max and min of the recall, precision
and f-measure validation scores used to validate the resulted clusters of 5 runs
[the 1st population of GA is generated using the clusters resulting from spectral
clustering algorithm].

Fitness Function \ Measure \ Recall \ Precision \ F-measure \ Discard
Density Cut Mean 0.74 0.56 0.64 %07
Standard deviation | 0.01 0.03 0.02 0.04
Max 0.76 0.59 0.66 0.14
Min 0.73 0.53 0.61 0.05
Max-Min Cut Mean 0.69 0.51 0.58 %14
Standard deviation | 0.02 0.03 0.02 0.05
Max 0.71 0.55 0.61 0.21
Min 0.67 0.48 0.57 0.08
Normalized Cut | Mean 0.68 0.53 0.59 %14
Standard deviation | 0.01 0.03 0.02 0.04
Max 0.69 0.56 0.62 0.19
Min 0.67 0.50 0.57 0.10
Ratio Cut Mean 0.67 0.49 0.56 %11
Standard deviation | 0.06 0.06 0.04 0.04
Max 0.74 0.55 0.61 0.16
Min 0.61 0.38 0.50 0.06
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Figure 5.5 describes the best fitness values within 50 generations for arbitrarily
chosen run. We observe that the population converges more quickly in the case
with density cut objective function (using two methods, random and spectral
clustering, to create the first population) and ratio cut objective function (us-
ing spectral clustering method to initialize the population) than ratio objective
function (using random method to initialize the population), normalized objective
function and max-min objective function. To be clarified, we can not increase the
number of generations because, during the experiments, we noticed that when
using more than 50 generations the approach is occasionally resulted in too much
exploration of the search space which leads to produce clusters with large size and
high overlapping degree distribution (the overlapping degree of a cluster is the
number of other clusters that share common proteins).

Figure 5.6 and Figure 5.7 describe the average and standard deviation of fitness
values within 50 generation for arbitrarily chosen run. It is obvious that the indi-
viduals are really intending to more exploitation of the search space particularly
in the case with density cut objective function.

Figure 5.8 shows the average of the best fitness values within 50 generations
over 10 runs for the considered objective functions (density cut, max-min cut,
normalized cut and ratio cut). As seen in this figure, the approach based on
density cut fitness function has approximately the same best fitness values within
50 generations over 10 runs, i.e , the best fitness values in the i¢th generation are

approximately similar over 10 runs, while the best fitness values computed by
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using the other objective functions (max-min cut, normalized cut and ratio cut
are slightly different, (see Figure 5.8 there are a slight fluctuating).

Figure 5.9 shows the standard deviation of the best fitness values within 50
generations over 10 runs for the considered objective functions (density cut, max-
min cut, normalized cut and ratio cut). As seen in this figure, considering the
density cut objective function, in the first 15 generations the variety of the fitness
values are considerably higher (more fluctuation more variation) then the variety
becomes lower until reaching to the 45th generation it becomes stable. On the
other hand, using the other objective functions (max-min cut, normalized cut and
ratio cut), the standard deviation does not reach to stability even after 50 gener-
ations, i.e, there exist variety among the best fitness values within 50 generations

over 10 runs for each objective function.
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Figure 5.5: Best fitness value of four objective functions for a particular run.
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Figure 5.9: Standard deviation of the best fitness values of four objective functions
over 10 runs.
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5.2.3 Cluster validation based on functional homogeneity

Indeed, the available reference protein complexes are still uncompleted. In our
study, we utilized the cellular component terms from the Gene Ontology (GO) to
evaluate the quality of the identified complexes based on the fact that a group of
proteins that exert their biological functions in the same cellular component can
form a protein complex. We found that our method identifies several significant
complexes in the Collins network. We give a snapshot of those complexes resulting
from our method which based on the clusters resulting from spectral algorithm
to create initial population and using density cut objective function (with size
< 3 & p-value cutoff is 107 ) in Table 5.5 . We use GO term finder [42] to get
the most significant GO-terms, GO-id and P-values for a list of genes (predicted
complex). Here, p-value is used to determine whether a specified group of genes is
annotated by any GO terms at a frequency greater than that would be expected by
chance. Lower p-value indicates biological significant cluster. p-value is calculated

according to the following hypergeometric distribution:

| M| [N = [M]
k-1 i |C| —i
p —value =1 — Z (5.4)
N
€]

Where N is the total number of genes, M is a list of genes that marked to the

term of interest; C' is the the predicted cluster and k is the number of genes that
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are components of C' and M.

Table 5.5: A few of the clusters in Collins network with the lowest p—values with
GO components.

No. Size GO-ID GO-Term P-value Num-Annotated
1 17 GO:0030880 RNA polymerase complex  3.30986E-39 100.0%
2 8 G0O:0044428 nuclear part 3.70274E-05 100.0%
3 7 GO:0030126 COPI vesicle coat 1.37069E-21 100.0%
4 14 GO:0044428 nuclear part 7.2315E-10 100.0%
5 27 GO:0005739 mitochondrion 9.82318E-22 100.0%
6 29 GO:0044424 intracellular part 0.007226397 96.6%
718 GO:0000502 Proteasome complex (sensu ) ooonzp 40 100.0%

Eukaryota)
8 12 GO:0005634 nucleus 3.9035E-06 100.0%
9 7 GO:0030008 TRAPP complex 1.02802E-20 100.0%
11 21 GO:0005634 nucleus 2.04087E-10 100.0%
12 10 GO:0044425 membrane part 4.18992E-10 100.0%
13 5 GO:0035097 Mstone  methyltransferase ) o) 000 4 100.0%
complex
14 5 GO:0030126 COPI vesicle coat 1.18247E-14 100.0%
15 9 GO:0016585 ;?er}‘zmatm remodeling com- o 2r6h6m 17 100.0%
16 15 GO:0000502 Proteasome complex (sensu o opozep o9 100.0%
Eukaryota)
1713 GO:0043189 TA/H2A histone “acetyl o) eomp g 100.0%
transferase complex
20 12 GO:0016514 SWI/SNF complex 4.9815E-37 100.0%
21 60 GO:0005634 nucleus 2.15384E-32 100.0%
22 81 GO:0043227 membrane-bound organelle 4.87516E-23 100.0%
23 4  GO:0031011 INOS8O complex 4.13601E-07 75.0%
24 63 GO:0044464 cell part 3.42642E-05 98.4%
25 9 GO:0044445 cytosolic part 2.39611E-05 55.6%
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In the context of clustering PPI network, the lack of essential priori knowledge
about cluster size is one of the key challenges for demonstrating the effectiveness of
the developed clustering algorithm. As shown in Figure 5.10, we can address that
most of the clusters resulted from MCL, MCODE, ClsusterOne and our algorithm
based on the density cut objective function identify smaller-sized compared with
the clusters predicted from our algorithm based on the other objective functions
(ratio cut, max-min cut and normalized cut).

Figure 5.11 provides the density distribution of the clusters predicted from
all considered approaches. Although the density of each cluster resulting from
the density-based clustering method such as MCODE is very high, such methods
discard numerous number of nodes and lose a lot of information in the considered
PPI network. In general, we observe that our approach which based on density cut
objective function outperforms all the others and obtains more than 100 clusters
with density > 0.50, that is, our method can more precisely identify the modular
structure in PPI network.

As stated in Chapter 1, each distinct biological function in the cell is carried
out by a group of proteins (functional modules). Furthermore, there are some
proteins be involved in multi-functional modules. Some of the clustering meth-
ods considered in this work can identify such overlapping functional modules.
Figure 5.12 shows the overlapping among predicted clusters for each clustering

method.
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CHAPTER 6

CYTOSCAPE PLUGIN

(BIOCM)

The easy access to our clustering method for scientific communities is one of our
goals. Thus, we have developed a user friendly Cytoscape plugin that packages
all the developed algorithms required to analyze a PPI network and detect the
community structure of that network. In the following sections, we provide an
overview and instructions that must be followed in order to use our Bioinspired

Clustering Method (BioCM) plugin.

6.1 Installation

To use the BioCM plugin, you must first get and download Cytoscape platform
from the link bellow:

http://www.cytoscape.org/

Cytoscape is an open source platform used to integrate, analyze and visualize
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different complex networks. It provides more than 172 plugin which developed by
the community[43]. After downloading, installing and verifying that Cytoscape

works correctly, you can install the BioCM plugin as follows:

1. Go to Apps — App Manager, click on this, App Manager window will pop

up as shown in Figure 6.1.

£ s tesseron T T VIR T Y R T T T e |

File Edit View Select Layout Apps Tools Help
) ™ ] 7L
® 4 eHa el i meeee|
Cantrol Panel g o
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% s ne
G i e vt ®
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® CyTargetiinker

® CytoCluster
® Cytokegg
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Node Table | Edge Table | Network Table
7 Memory: OK
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Figure 6.1: Plugin manager in Cytoscape.
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2. Click the button at the lift bottom of the App Manager window and select

the BioCM jar file as illustrated in Figure 6.2.

File Edit View ct Layout Apps Tools Help
ERAJdeEdElimeces

Control Panel ox

}fg Network | Style Select|

Network Nodes  Edgef|

s
\";

s °
o _ axz %
Sl i Cae
ol 5

BioCM-v 1.0.jar

Network s oftype: [l es

Install from File...

Node Table | Edge Table | Network Table |

Figure 6.2: The installation of BioCM plugin.

Once you have installed BioCM on Cytoscape, make sure of two things: (i) sub-
menu named (BioCM) is added to the menu (Apps); and (ii) the panel tab named
(BioCM Panel) is added to the left-hand control panel of Cytosacpe. as shown in

Figure 6.3.
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Figure 6.3: The installed BioCM plugin.
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6.2 Running BioCM

1. The input of BioCM is the imported network file to the Cytoscape as shown
in Figure 6.4.
File — import — Network — file.

Each line in the imported file specifies a source node and a destination node.

[ session: New Sessio =

File Edit View Select Layout Apps Tools Help

A HeHE el R W Qe e & gy
Control Panel . Import Network Fron
| %5 Network | style | selectffl select a Network Coliection
This is Bioinspirel)|  Network Collection | Create new network collection |
Mapping Column for New Network: | shared name - ]
Mapping Column for Existing Network: :snared name -
Interaction Definition
Source Interaction Interaction Type Target Interaction
Column 1 - €¥ |Default Interaction -| € column 2 2

@ Columns in BLUE will be loaded as EDGE ATTRIBUTES.

Advanced
[] Bhow Text File Import Options
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Figure 6.4: The input of BioCM plugin.
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2. To analyze the imported network using our clustering method, goto — Open
BioCM, then, goto the main BioCM panel appeared in the control panel of

the Cytoscape shown in Figure 6.5.

3. Initialize the GA parameters and click the bottom Analyze. The result of the

analyzing, as shown in Figure 6.6, is a text file including a set of overlapping

clusters. Each line specifies a protein complex.
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Figure 6.5: Running BioCM plugin.
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Figure 6.6: SnapShot of the output of BioCM plugin.
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Figure 6.7: SnapShot of a visualization of the predicted clusters [using Matlab
and Mathematica functions].
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CHAPTER 7

CONCLUSION AND FUTURE

WORK

We developed an approach for identifying protein complexes (i.e., clusters)
in PPI networks using genetic algorithm technique. Our approach is capable of
detecting densely and sparsely overlapping clusters.

We designed an objective function to allow, in overall, maximizing intra-cluster
cohesion and minimizing inter-cluster couping. Experimental results have shown
that our objective function performs better than other objective functions pro-
posed in the literature to partitioning the networks. In general, our clustering
approach is more effective than existing methods (i.e., MCL, ClusterOne, and
MCODE) when compared against two reference sets: MIPS and CY(C2008 using
three validation measures: recall, precision and f-measure. Our approach also
outperformed competing approaches and is capable of effectively detecting both

dense and sparsely connected biologically relevant functional modules with fewer

7



discards.
Future work will consider other databases and networks from other organisms,
including human. Future work will also consider artificial intelligence techniques

other than genetic algorithms (e.g., Swarm Intelligence) and assess performance.
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