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Graphene is considered as a new promising material for IT-applications

and most importantly it might replace silicon in the future. Bilayer graphene

is the most important candidate for latter purpose since one can create a gap

by applying an external electric field and even tune it. Resonant tunneling

diode is one of the electronic devices used in IT-application which can be mod-

elled by a double barrier structure. In this work, we calculate the conductance,

transmission and reflection probabilities of electrons across asymmetric and

symmetric double barrier in graphene bilayer taking into account the full four

band energy spectrum. For energies less than γ1, the interlayer coupling, we

have one channel for transmission which exhibits resonances, even for inci-

dent particles with energies less than the strength of barriers, depending on

the double barrier geometry. In contrast, for higher energies, we obtained

two propagating modes resulting from four possible ways for transmission.

We computed the associated transmission probabilities and their contribution

to the conductance and studied the effect of the double barrier geometry.

xvi



xvi 
 

Abstract (Arabic)      ملخص الرسالة 

 

  عبداالله  حسن محمد حسن:  مــــــالاس

  الخصائص الإنتقالية في الجرافين ثنائي الطبقةالة : ــعنوان الرس

                      

  ماجستيرة العلمية : ــالدرج

  فيزياء:  ص ــــالتخص

  2014يونيو :  اريخ التخرج ــت

 

، حيث يمكن أن تستبدل مادة السيليكون ا في من أهم المواد المكتشفة حديثاتعتبر مادة الجرافين 

كثر ملائمة لهذا يعتبر الجرافين ثنائي الطبقة الأستخدامها في التطبيقات الإلكترونية. لا المستقبل

ه باستخدام مجال كهربائي. ثنائيات النفق الرنانه الطاقفجوة في طيف  تكوينالغرض حيث يمكن 

لتي يمكن ان اوقطع الالكترونية المستخدمة في العديد من التطبيقات التكنولوجية ال ىهي احد

 سة المواصلة الكهربائية واحتماليةبدرافي هذا البحث قمنا نظريا بحاجزي جهد كهربائين.  تحاكى

تماثلة للجرافين المغير الجهود الكهربائية المتماثلة و نفاذ وانعكاس الإلكترونات خلال حاجزين من

> ) نخفضةالم عند الطاقات الية واحدة لنفاذ الالكتروناتهناك احتمنائي الطبقة. ث التي و (  

اما بالنسبة  . حاجز الجهد  ارتفاعتمتلك رنين حتى عندما تكون طاقة الجسيم الساقط اقل من 

< ) للطاقات العالية يوجد نمطين لإنتشار الموجات وبالتالي هناك اربعة احتمالات مختلفة  (  
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Chapter 1

INTRODUCTION

Science develops constantly and improves our understanding of na-

ture. In the 19th century, thermodynamics and electromagnetics were rapidly

developed. However, the beginning of 20th century was the time of the most

important achievements in physics when quantum mechanics and relativity

were born. In 1928, Paul Dirac initiated the beginning of relativistic quan-

tum mechanics by combining these two theories in one equation to describe

particles that move at speeds close to the speed of light in contrast to quan-

tum mechanics.

Until recently the application of the relativistic Dirac equation was

limited to high energy physics. However, with the discovery of graphene in

2004, the story of graphene started with graphite, a material known for its

use in pencil fabrication, in 1947 when P. R. Wallace was trying to theoret-

1



ically study the band structure of 3D graphite to understand the electronic

properties of 3D graphite [1–3]. Later on, Semenoff [4] studied a graphene

in a magnetic field as an analog of (2 + 1) dimensional electrodynamics, the

purpose was to describe anomaly in such system and he obtained the landau

level of this system at the Dirac point which is responsible for the anoma-

lous integer quantum Hall effect that has been realized experimentally using

graphene [5, 6]. In the ’80s, many studies also investigated the possibility of

a relativistic analog with graphene as a condensed matter system [7,8].

The theoretical work concerning graphene was boosted again in the

90th by the discovery of carbon nanotubes [9]. During the last four decades

of the last century, there were many experimental investigations on graphene

and its fabrication. For example, free standing graphene [10], epitaxial

graphene grown on metal [11–13] and intercalation of graphene [14] pro-

cedure well used experimentally. But due to thermal fluctuations, everyone

was convinced that two dimensional crystals cannot exist. However, in the

early days of the 20th century two scientific papers stated that graphene not

only can be fabricated but also one can access its electronic properties using

graphene flakes [15, 16]. This made graphene play a leading role similar to

that of nonotubes, whose electronic properties were already considered out-

standing. Then in 2004, a group of scientists in Manchester University, led by

A. Geim and K. Novoselov, succeeded in producing a stable single layer of car-

bon atoms (Graphene) [17,18]. In 2010, the Nobel Prize in Physics awarded

jointly to A. Geim and K. Novesolov. for their discovery of Graphene.

In such material, carbon atoms are packed in a two-dimensional
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hexagonal lattice connected to each other by covalent bonds. In the last

few years, graphene has risen in the horizon as a new star in the condensed

matter field as a result of its peculiar properties. Now, we will briefly go

through some of them starting from single layer and then to bilayer graphene

for in-depth reviews see [19–23]. Single layer graphene is the thinnest layer

of graphite, with one atom thick, and therefor constitutes a perfect two di-

mensional (2D) crystal. This allowed researchers to investigate its charge

carriers, which acts as two dimensional electron gas (2DEG) with a rela-

tivistic massless fermions. Apart from being the thinnest material, single

layer graphene has a lot of interesting properties. For example, its mechani-

cal robustness makes it a very strong material on the micro-scale, and a single

graphene sheet is nearly considered impenetrable for gas molecules [24,25].

Moreover, single layer graphene has attractive electronic properties

useful for IT-applications, such as large mobility of its charge carriers, low

optical absorption, gapless energy spectrum (and linear at low energies) and

in contrast to the nanotubes, graphene has no backscattering of electrons

and compared to the latter, it has a large contact region which makes it

easier to build electrical contacts, this is very important for potential device

applications.

Furthermore, electrons in graphene behave as massless relativistic

fermions only at low energies. However, it is still possible to test many

fundamental relativistic theories, such as Klein paradox. One of the most

important discoveries in solid state is the quantum Hall effect (QHE) in 2D

system [26] it turns out that graphene is the only material in which QHE is
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realized even at room temperature [27].

Bilayer graphene, which is composed of two graphene layers on top of

each other, also received a lot of attention due to its importance in applica-

tions. As for single layer graphene, the energy spectrum of bilayer graphene

is gapless and quadratic at low energy and is completely different from any

2DEG system. Latter on, scientists were able to open a band gap , and even

tune it, in the energy spectrum of bilayer graphene by applying an external

electric field on the two layers [28, 29]. In the single layer graphene, this is

rather difficult due to the Klein tunneling.

In IT-applications, obtaining a band gap is essential to realize digital

transistors. Another interesting phenomena is that zero field conductivity of

single and bilayer graphene does not vanish in the limit of zero charge carriers,

instead they have a minimum conductivity close to the conductivity quan-

tum e2

h
[18, 30]. Shot noise and conductance of single and bilayer graphene

have been investigated theoretically many years ago for single and multiple

electrostatic barriers with different shapes [31,32]. In bilayer graphene those

studies were restricted to energies and potential strength less than the inter-

layer coupling γ1 [33, 34].

In this work, we investigate the tunneling, shot noise and conduc-

tance through asymmetric double barrier structure. Through this chapter,

we briefly review the carbon structure and its allotropes and how one can

fabricate graphene, then, some applications of graphene are explored. In

chapter 2, the theoretical background of tight binding of the single graphene

and its contuumm limit is explained. Furthermore, the special band struc-
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ture due to the spacial symmetries in graphene are demonstrated. Next,

we display the four band and two (effective) band Hamiltonian for bilayer

graphene and implement them to show the band structure in the presence

of an external electric field. In chapter 3 we will go through ballistic trans-

mission and compute shot noise in graphene and its bilayer. In chapter 4

we present the theoretical model used in our calculation, then we will show

our results with the discussion and compare these results with previous pub-

lished work and point out the relevance of our findings to a systematic study

of the transport properties in double barrier structures. We then conclude

with chapter 5 by summarizing our finding and the possible future work.

1.1 Carbon and its Allotropes

One of the most common elements on the earth is carbon, it is found

everywhere: our foods, clothes, cosmetics, gasoline,...etc. Its name ”Carbon”

comes from the Latin word carbo for coal and charcoal. What makes car-

bon an important element is its strong and stable bonds that can resist in

difficult ambient conditions. It belongs to group fourteen on the periodic

table. Its covalent bond has four electrons with two possible configurations:

ground and excited state configuration 1s2, 2s2 2p2 as shown in Fig. 1.1 [35].

Generally, carbon is found in multi-atomic structure with different molecular

configurations called allotropes. Such as: diamond, graphite and fullerenes

as shown in Fig. 1.2 [Ref. Wikipedia].
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Figure 1.1: Electronic configurations for carbon in the ground and excited states.

Figure 1.2: Some corbon allotropes: a. diamond; b. graphite; c. lonsdaleite; d-f.
fullerences(C60, C540, C70); g. amorphous carbon; h. carbon nanotube

1.1.1 Diamond

The most famous allotrope of carbon is diamond. It has a faced center cu-

bic structure; each carbon atom is bounded to four other neighbor atoms in
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a tetrahedron arrangement which is responsible for many properties of dia-

mond. It has a low electrical conductivity whereas its thermal conductivity

is the highest, but due to its large band gap, it is considered an excellent

insulator. Moreover, it is one of the hardest materials which makes it a good

tool to be used in industrial drilling, cutting, and polishing.

1.1.2 Graphite

Graphite, one of the most common allotropes of carbon, build out of many

stacked layers of carbon atoms; each one is bounded to three other atoms

with strong covalent bonds forming a hexagonal lattice whereas the atoms

in two adjacent layers are weakly bounded by van der Waals force, this form

is used in pencils. A single layer of graphite is called graphene [36]. Among

carbon allotropes, it is the most stable and unlike diamond, graphite is a

very good conductor and it can be transformed into diamond at temperature

well above 1700 K and at pressures in excess of 12 GPa [37].

1.1.3 Fullerene

Any molecules build up of carbon atoms in different forms, such as ellipsoid,

hallow sphere (Spherical and cylindrical fullerenes are called buckyballs and

carbon nanotube, respectively), or tube are called fullerenes. It hs been

discovered by researchers at Rice University in 1985. Regarding its structure,
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it is similar to graphite but it may have pentagonal or heptagonal rings. In

1996, the Nobel Prize in Chemistry was awarded jointly to Robert F, Sir

Harold, and Richard E. for their discovery of fullerenes.

1.1.4 Graphene

Among the carbon allotropes: diamond, graphite and fullerenes, graphene is

considered as the building block for the previous allotropes, see Fig. 1.3 [38].

Graphene is a two dimensional one-atom layer of carbon atoms thick. Its

Figure 1.3: Graphene as the building block of the other carbon allotropes.

structure is hexagonal (honeycomb) arrangement of sp2- bounded carbon

atoms [18]. Its exceptional, electronic, optical, thermal, and mechanical,

properties have potential of applications. Consequently, it becomes a hot re-

search topic in these days. For example, its thermal conductivity is 15 times

larger than that of copper and its electron mobility is about 20 times larger
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than that of GaAs. In addition, it considered as one of the strongest mate-

rials with a Young’s modulus of about 1 TPa, and about 200 times stronger

than structural steel [39]. A comparison between mechanical, electronic and

thermal properties of graphene and other elements is shown in Fig. 1.4 [39].

Next we will give a brief overview on the fabrication of graphene.

1.2 Fabrication of Graphene

graphene has been studied theoretically for decades, but it has not been real-

ized in labs till 2004, because it was considered that two dimensional crystals

cannot exist due to the thermal fluctuation. Surprisingly, the method used

for the first time to isolate single layer graphite was simple, the Manchester

group used mechanical exfoliation or, simply, the Scotch tape technique.

Now, many methods have been attempted to fabricate graphene such as con-

finement controlled sublimation (epitaxial graphene) [40], chemical reduction

of graphene oxide [41], and chemical vapor deposition (CVD) on transition

metal substrates [42–44]. Here, we briefly present some of these techniques.

1.2.1 Mechanical Exfoliation

Mechanical exfoliation is the oldest method used to produce graphene in the

famous experiment at the University of Manchester. In this method one

9



Figure 1.4: A comparison between graphene’s superlative thermal, mechan-
ical and electronic properties with other elements

starts with a thin graphite sample of a highly ordered pyrolytic graphite

(HOPG), then ripping off layers of graphite using scotch tape, finally press-
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ing the tape on a Si/SiO2 substrate with a thickness of 300 nm to deposit

the graphene samples. This means that one first puts the graphite sample

on a piece of adhesive tape and by folding the tape repeatedly one splits the

flake into many thinner flakes. Between these flakes there will occasionally

be some single-layer microscopic parts. In Fig. 1.5 [45,46] we show the steps

of this process. Now, we have layers of different thickness on the substrate

which gives rise to a different reflection intensity, due to the interference be-

tween the layers and the graphene sample one can guess which regions are

likely to consist of single, bilayer, or trilayer graphene using optical micro-

scope. Furthermore, the results from the optical microscope observation can

be verified using other methods such as Raman spectroscopy, atomic force

microscopic Fig 1.5 (b), etc. This method is easy to implement, yields high-

purity and high-quality graphene, and is rather inexpensive. However, it is

impossible to use for mass production, unlike the other methods, and the size

of the samples obtained from this method is limited, typically never larger

than 100× 100µm , which is not suitable for industrial production.

1.2.2 Chemical Vapor Deposition

The chemical vapor deposition (CVD) technique is considered as a promising

technique for graphene syntheses. In the past, experimentalists succeed in

depositing a single-layer graphene, they did it by growing graphene by CVD

of CH4 molecules over large areas on copper substrates [47–49]. The idea
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Figure 1.5: (a) Scotch tap method to put some graphite flakes on the SiO2

wafer. (b) AFM picture of an exfoliated SLG, BLG and TLG flake on 6H-
SiC(0001). (c) Optical microscope picture of graphene residual on a wafer.
(d) Golden wires stuck on graphene.

behind this method is depicted in Fig.1.6 (a) [51], where a metal (Cu) and

nonmetal (amorphous SiO2/Si) substrate is used with remotely provided Cu

vapor during the CVD process [50]. The copper substrate is put into a fur-

nace under low vacuum and heated to around 1000 oC, hydrogen and methane

gases then flow through the furnace. The hydrogen gas helps catalyzing the

reaction between the surface of the substrate and methane, decomposing the

latter in two H2 and C-atom. Carbon atoms can easily move around because

it is weakly bounded to the surface, thereby each carbon atom finds other
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carbon atoms and attaches itself to them via covalent bonds.

Figure 1.6: (a) Schematic view of CVD [50]. (b) Single crystal of graphene
[47]. (c) Samsung’s CVD set-up where the copper foil serves as a substrate.
(d) A transparent ultralarge-area graphene film deposited on a polymer sub-
strate, obtained by Samsung’s method.

One of the advantages of CVD method is producing large single layer graphene

sheet in contrast to micron size flakes from the mechanical exfoliation, see

Fig. 1.6 (b), although during the process defects and grain boundaries are

formed leading to lower mobility. Recently, Samsung used this method to

fabricate large single graphene sheet of the order of meter in size, see Fig.

1.6 (c,d).
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1.3 Applications of Graphene

1.3.1 Gas Sensors

For any detection methods, the most important goal is to achieve a high sen-

sitivity level such that individual quanta, which is in the case of gas sensors

are atoms or molecules, can be resolved. So far, such a resolution is beyond

the ability of any detection method, including solid-state gas sensors. This

limitation in solid-state gas sensors is attributed to the fluctuation due to

defects and thermal motion of charges [52] resulting in intrinsic noise exceed-

ing the signal from individual molecules, by several orders of magnitudes. In

2007 Ref [53] showed that when a gas molecule attaches to or detaches from

graphene surface, electronic properties of graphene is affected in a measurable

way. A typical sensor device layout is depicted in Fig. 1.7 [54].

Figure 1.7: Schematic illustrate sensing gas X diluted in N2 gas flows over
garphene deposited on SiC substrate.
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This means that individual molecule can be detected using micrometer-

size graphene sensor since it can change the local carrier concentration in

graphene resulting in step like changes in the resentence. The secret behind

this high sensitivity is due to the fact that graphene is electronically an ex-

ceptional low-noise material, thereby it is considered a promising candidate

for chemical detectors.

1.3.2 LCD and Flexible Screen

Figure 1.8: (a) Illustration for how much strong graphene is . (b) Trans-
parency measurements on graphene and its bilayer . (c) Graphene-based
touch panel with outstanding flexibility, assembled by Samsung. (d) Sam-
sung’s prototype of graphene-based touch screen
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In 2010, Bonaccorso showed that graphene can be used as a very thin trans-

parent electrode in optoelectronic and electronic devices [56]. Transparent

electrodes play a crucial role as an essential element of many devices, such

as light-emitting diodes, cellular phones, touch screen, and most importantly

liquid crystal displays (LCD) [57]. What makes graphene an ideal candi-

date for transparent electrodes is its unique properties, such as atomic layer

thickness, high chemical stability, mechanical strength Fig. 1.8 (a) [55], high

charge mobility, low resistance, and most importantly high optical trans-

parency. It absorbs 2.3% over a very large range of wavelengths, see Fig.

1.8 (b) [56]. In addition, adding only one percent of graphene to plastic

makes it conductor while it remains transparent. Nowadays, the electronic

devices are based on thin metal oxide films with Indium (Indium Tin Oxide).

But Indium has many disadvantages, such as being expensive, toxic, brittle,

and its supply is expected to finish in the next few years. Hence, graphene

is promising candidate to replace old films, resulting in the fabrication of

flexible LCDs, pure light emitting diodes and touch screens, see Fig. 1.8

(c,d) [51]. For more details, see Ref. [58].

1.3.3 THz Frequency Amplifiers

Recently, many companies, such as IBM and Nokia have put a lot of efforts

in building graphene Field Effect Transistor (FET) as shown in Fig. 1.9 [59],

see [60–64] for a review. The high quality ballistic transport in graphene is
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Figure 1.9: (a) Schematic view of a top-gated graphene transistor. (b) The
cut-off frequency, at room temperature, of the transistor in (c) which is shown
to be 155 GHz. (c) Cross-section TEM picture of a graphene transistor with
a gate .

the main driving force to fabricate transistors, since it allows to fabricate

electronic devices without any heating problems. Furthermore, in contrast

to carbon nonotubes (CNTs) graphene 2D nature allows a large area of

contact, leading to reduction in contact-resistance problems. Due to Klein

tunneling, the realization of the new transistor made from graphene face

a problem with an sufficient on/off ratio. However, this problem is less

important for high frequency applications, such as frequency amplifiers [65]

and transmitters [61] which have been already fabricated [66,67].
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Chapter 2

ELECTRONIC PROPERTIES

OF GRAPHENE

2.1 Electronic Structure of Graphene

The peculiar band structure of graphene is related to the hexagonal

lattice which consists of carbon atoms. Each unit cell has two different atoms

denoted by A and B (Note: both of them are carbon atoms but it means

that we need two carbon atoms at different sites (A,B) in the unit cell to

construct the Bravais lattice). Each atom has six electrons ordered in the

1s2, 2s2 and 2p2 orbitals. These orbitals, of different atoms, are contributing

to make bonds, like σ and π bonds, see Fig 2.1 [68]. σ is a three directional

bond which is necessary to for a hexagonal lattice, in this bond every atom in
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the unit cell participates with three orbitals 2s, 2px and 2py in the bonding,

which is called sp2 hybridization.

Thus, there are six orbitals in each unit cell yielding six bands, three

of which appear in the valance band called σ , and the other three in the

conduction band being referred to as σ∗. The σ bands have a filled shell

which makes its contribution to the transport properties negligible, however,

it is responsible for the robustness of the lattice. The last 2pz orbitals form

the π bonds in the lattice. In contrast to the σ bond, π bond has a half-filled

shell and is weaker than σ bond, hence, the π bonds are important for the

electronic behavior near the Fermi energy, where conduction or transport of

electrons take place. Since we are interested in the transport properties we

will concentrate on the π bands and ignore the other ones.

As we mentioned earlier, graphene has triangular Bravais lattice with

two atoms in the unit cell denoted as A and B atoms, see Fig.2.2(a). The

unit cell in graphene has the folowing lattice vectors:

a1 =
a

2

(√
3, 3
)
, a2 =

a

2

(√
3,−3

)
(2.1)

with a = 0.142 nm is the carbon-carbon atom distance (i.e. between two

neighbors atoms), which is different from the lattice constant (distance be-

tween the same atoms, either A or B atoms), which is given by
√

3a. These

two vectors can be used to generate the positions of the A atoms in the lattice

by PA = n1a1 + n2a2 and for the B atoms by PB = m1a1 +m2a2 + δ1, where
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Figure 2.1: Top: 2s, 2px and 2py form the sp2 orbitals with trigonal symmetry in
the xy− plane; Bottom: sp2 and pz orbitals form σ and π bonds .

ni and mj are integers and.

δ1 =
a

2

(
1,
√

3
)
, δ2 =

a

2

(
1,−
√

3
)
, δ3 =

a

2
(−2, 0) (2.2)
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The corresponding reciprocal lattice in the momentum (k) space, see Fig.2.2(b),

has lattice vectors

b1 =
2π

3
√

3a

(√
3, 3
)
, b2 =

2π

3
√

3a

(√
3,−3

)
(2.3)

Like the Bravais lattice in the real space, the reciprocal lattice in the mo-

a2
z

a1
z

∆3

z

∆1

z

∆2

z

A

B

a

HaL

K

K '

M

b1

z

b2

z

kx

ky

G

HbL

Figure 2.2: (a) A single layer graphene lattice. (b) The first Brillouin zone in the
reciprocal lattice.

mentum space has trigonal structure and a hexagonal Brillouin zone (BZ).

The four red points Γ, M, K and K
′

in the first BZ Fig.2.2(b) are called the

points of high symmetry. The K and K
′

are called Dirac points. Now, we

will employ the tight binding model (TB) to describe the band structure of

graphene. Then, with the continuum approximation we will obtain the TB

Hamiltonian which reduces to the Dirac-Weyl Hamiltonian.
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2.1.1 Tight Binding Model of Single layer Graphene

Tight-binding model is used to study the band structure of solids where the

electrons are strongly bounded to the atoms (localized electrons). The idea

is to write down the wave function as a linear combination of the atomic

orbitals φi , the so-called (LCAO) approximation [69,70].

Ψ(r) =
∑
i

ciφi (2.4)

where the sum runs over all orbitals in the crystal. Since π bond is the only

important one as mentioned above, only one orbital wave function must be

considered per atom. Furthermore, for a the hexagonal lattice of graphene,

where the unit cell contains two atoms, the solution of the total wave function

is a Bloch function which reads:

Ψk(r) = CAΦA
k + CBΦB

k (2.5)

Where

Φj
k(r) =

1√
N

N∑
n=1

eik.R
j
nφ(r −Rj

n), j = A,B (2.6)

are the Bloch functions which obey the Bloch theorem:

Φj
k(r +R) = eik.RΦj

k(r) (2.7)
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and N is the number of unit cells in the crystal. Then, the expectation value

for the energy is

< E >=

∫
Ψ∗k(r)HΨk(r)dr∫
Ψ∗k(r)Ψk(r)dr

=

∑
ij C

∗
i CjHij∑

ij C
∗
i CjSij

(2.8)

Minimizing the energy (variational approuch)1 using ∂E
∂C∗i

= 0, we obtain the

secular equation as,

∑
j

HijCj = E
∑
j

SijCj, ∀i (2.9)

where Hij, Sij are the transfer and overlap matrices which defined by:

Hij =

∫
Φi∗

k (r)HΦj
k(r)dr = 〈Φi

k|H|Φ
j
k〉 (2.10)

Sij =

∫
Φi∗

k (r)Φj
k(r)dr = 〈Φi

k|Φ
j
k〉 (2.11)

Eq. 2.9 is a system of equations which can be written as a general eigenvalue

equation HC = ESC or:

HAA HAB

HBA HBB


CA
CB

 = E

SAA SAB

SBA SBB


CA
CB

 (2.12)

1Note: this variational approach is equivalent to the Schrodinger equation
H|Ψk〉 = E|Ψk〉 , |Ψk〉 =

∑
i Ci|Φi

k〉 and by multiplying both sides by 〈Φj
k| leads to∑

i Ci〈Φj
k|H|Φi

k〉 = E
∑

i Ci〈Φj
k|Φi

k〉
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the components of these matrices can be found as follows:

HAA =

∫
(ΦA

k )∗HΦA
k (r)dr

=
1

N

∫  N∑
n′=1

e
−ik.RA

n
′φ(r −RA

n′
)

(H N∑
n=1

eik.R
A
nφ(r −RA

n )

)
dr

=
1

N

N∑
n′=1

N∑
n=1

∫ (
φ(r −RA

n′
)Hφ(r −RA

n )
)
dr

=

 0, n 6= n
′

ε0, n = n
′

(2.13)

Since Hφ(r − RA
n ) = Eφ(r − RA

n ) is independent of the cell number. ε0 is

the on-site energy of the A atoms. The last integral is zero for n 6= n
′

which

means there is no hoping between A atoms in different unit cells. Similarly

for the component HBB. On the other hand

HAB =

∫
(ΦA

k )∗(r)HΦB
k (r)dr

=
1

N

∫  N∑
n′=1

e
−ik.RA

n
′φ(r −RA

n′
)

(H N∑
n=1

eik.R
B
n φ(r −RB

n )

)
dr

=
1

N

N∑
n′=1

N∑
n=1

e
ik.(RBn−RA

n
′ )
∫ (

φ(r −RA
n′

)Hφ(r −RB
n )
)
dr

= γ0f(k)

(2.14)

where the sum in n runs over all B atoms in the crystal 2(i.e. over all the unit

cells) and taking into account the nearest neighbor interaction, the sum in n
′

2
∑N

n=1

∑N
n′=1 =

∑N
n=1

∑3
<n′> = N

∑3
<n′>
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runs over the three nearest neighbor atoms to the atom B in each unit cell

(n
′

= 1, 2, 3) as depicted in Fig 2.2(a). The coupling between first nearest

neighbors γ0, which assumed to be the same for any two nearest neighbors.

The geometrical factor f(k) and γ1 are defined as:

γ0 =

∫ (
φ(r −RA

n′
)Hφ(r −RB

n )
)
dr (2.15)

f(k) =
3∑

n′=1

eik.δn′ (2.16)

where, δn′ = (RB
n −RA

n′
). repeating the same steps above, we find

HBA = H∗AB = γ0f
∗(k) (2.17)

Similarly, the overlap matrix has the elements:

SBA = S∗AB = sf ∗(k), SAA = SBB = 1 (2.18)

where s =
∫ (

φ(r −RA
n )φ(r −RB

n )
)
dr is the overlap integral . Hence, the

eigenvalue equation in Eq.2.12 becomes

 ε0 γ0f(k)

γ0f
∗(k) ε0


CA
CB

 = E

 1 sf

sf ∗ 1


CA
CB

 (2.19)
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to find a solution to this equation the energy should satisfy det[H −Es] = 0

which leads to∣∣∣∣∣∣∣
ε0 − E (γ0 − Es)f

(γ0 − Es)f ∗ ε0 − E

∣∣∣∣∣∣∣ = 0⇒ (ε0 − E)2 = (γ0 − Es)2 | f(k) |2 (2.20)

and this gives

E± =
ε0 ± γ0|f(k)|
1± s|f(k)|

(2.21)

where γ0 ≈ 0.3eV and s = 0.38 [71]. with

f(k) =
∑
j=1,2,3

eik.δj

= −
[
eik.δ1 + eik.δ2 + eik.δ3

]
= −

[
ei
a
2
(kx+

√
3ky) + ei

a
2
(kx−

√
3ky) + eiakx

]
= −ei

a
2
kx

[
2cos(

√
3

2
aky) + e−3i

a
2
kx

]
(2.22)

where, δ1 = a
2
(1,
√

3), δ2 = a
2
(1,−

√
3) and δ3 = a

2
(−2, 0) then,

|f(k)| =

√√√√[4cos2

(√
3

2
aky

)
+ 1 + 4cos

(√
3

2
aky

)
cos

(
3

2
aky

)]
(2.23)

Since ε0 causes a shift in the energy spectrum, we can put it zero without

affect the physics, and because the influence of s is small around the Dirac

points, which is the region we are interested in, we can neglect it then the
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energy becomes

E± = ±γ0|f(k)| (2.24)

which is shown in Fig.2.3. Remember this spectrum is in the first Brillouin

zone in the reciprocal lattice, the red hexagonal shape at zero energy in

Fig.2.3. In Fig.2.4 we show the first Brillouin zone of the honeycomb lattice

Figure 2.3: Energy spectrum of single layer graphene in the first Brillouin zone.

of graphene with the high symmetry points and how the spectrum look like

along the lines connecting these points (K and K ′ are called Dirac points).
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Figure 2.4: Left: the first Brillouin zone in the reciprocal lattice; right: energy
spectrum along the lines connecting the high symmetry points.

2.1.2 Continuum Approximation and Dirac-Weyl Hamil-

tonian

Since we are interested in the transport properties of graphene, which take

place near the Fermi energy (EF = 0), it is convenient to expand the Hamil-

tonian above (Eq.2.19) near the Fermi energy according to k=K+q. this

can be done using Taylor expansion in the first order which reads:

f(kx, ky) ' f(
2π

3a
,

2π

3
√

3a
)+

d

dkx
f(

2π

3a
,

2π

3
√

3a
)(kx−

2π

3a
)+

d

dky
f(

2π

3a
,

2π

3
√

3a
)(ky−

2π

3a
)

(2.25)
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it is easy to show that

f(2π
3a
, 2π
3
√
3a

) = 0

d
dkx
f(2π

3a
, 2π
3
√
3a

) = 3
4
γ0a(
√

3− i)

d
dky
f(2π

3a
, 2π
3
√
3a

) = 3
4
γ0a(1 + i

√
3)


(2.26)

Now, according to kx = 2π
3a

+ qx and ky = 2π
3
√
3a

+ qy Eq.2.25 becomes

f(qx, qy) =
3

4
γ0a

[
(
√

3− i)qx + (1 + i
√

3)qy

]
(2.27)

this equation can be simplified further to take the following form

f(qx, qy) =
3

2
γ0a (qx + iqy) e

−iπ
6 (2.28)

the extra phase π
6

can be absorbed in the wave function and the Hamiltonian

around the Dirac points becomes

H = vF

 0 (px − ipy)

(px + ipy) 0

 (2.29)

where, vF = 3
2~γ0a ' 106 m

s
and px,y = ~ qx,y. Finally, Eq.2.29 can be written

as

HK = vFσ · p (2.30)
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Here, σ = (σx, σy) Pauli Matrices. Hence, Eq.2.30 is exactly the Dirac-Weyl

equation with c (velocity of light)→ vF . The eigenvalues of the Hamiltonian

in Eq.2.30 are E = ±vF |P | = ±vF~
√
k2x + k2y which is shown in Fig.2.5. So
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Figure 2.5: Energy spectrum of graphene monolayer around one of the Dirac
points

the low energy excitations about the K point in graphene are not described

by the Schrdinger equation, but instead by this equation. In a similar way

we can expand around the K ′ point and find the following equation:

HK′ = vFσ
′ · p (2.31)

where σ′ = (−σx, σy). Note that this is not exactly the same as the Eq.2.30.

2.1.3 Effective Mass

In graphene, the concept ”effective mass” [72] of particle is often a challenge

because particles in graphene behave like massless fermions. In other words,
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graphene has a linear dispersion relation around the Dirac points K and K ′.

This leads to divergence in the most commonly used theoretical expression

of the effective mass in solid state physics m∗ =
(
∂2E
∂p2

)−1
, with p = ~k and k

is the crystal momentum [73,74]. The reason behind this conflict is that the

latter definition is only valid for the parabolic spectrums E(p), whereas gr-

phene has a linear spectrum, and for non-parabolic spectrum there are other

approaches [75, 76]. Recently, V. Ariel and A. Natan [77] derived a general

formula of the effective mass for parabolic and non-parabolic spectrum:

m∗(E, k) = ~2k
(
∂E

∂k

)−1
(2.32)

Accordingly, graphene effective mass is given by

m∗(E, k) =
~k
vf

(2.33)

this means that particles in graphene have an effective mass which is linearly

dependent on the momentum, this was confirmed experimentally by cyclotron

resonance measurements in graphene [19].

2.1.4 Chirality and Helicity

If an object cannot be mapped into its mirror image by only trans-

lation and rotation, we say it is chiral object, such as the famous Möbuis

and Helix. Many other objects which exhibit chirality are gloves, human
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body and shoes. On the other hand, helicity is the projection of the spin of

the particle on its momentum direction (direction of motion). For massless

particle, like fermions in graphene around one of the Dirac points, helicity

and chirality are the same. In graphene , the helicity operator (or chirality)

can be defined using the pseudospin σ of the sublattice

hξ = ξ
σ · p
|p|

(2.34)

Where Here, ξ = +,− for the point K and K ′, respectively.

2.1.5 Klein Tunneling

Klein tunneling (or paradox) was first obtained by Oskar Klein in 1929

when he applied Dirac equation to the problem of electron scattering from 1D

potential barrier. He showed that for normal incidence electrons unimped-

edly tunnel (full transmission) through the barrier even when it approaches

infinity. In graphene, Klein tunneling also holds for normal incidence, but

here it is a consequence of the chirality conservation, see Fig.2.6 [78]. Assume

that an electron is travelling in the positive x-direction, using the Heisenberg

equation one can find its velocity (or velocity operator) as vx ≈ i [H,x]~ = σx,

and the change in velocity is given by dvx
dt
≈ i [H,σx]~ = 2σzky. Hence, for a

normal incidence (ky = 0) the velocity is constant of motion and therefore

backscattering is forbidden.
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Figure 2.6: Illustration of the Klein tunneling through a potential barrier: (a)
Schematic diagram of a single layer graphene spectrum. (b) potential barrier with
hight V0 and width D.

2.2 Bilayer Graphene

Bilayer graphene has many special properties due to its lattice structure,

leading to the peculiar band structure that we will discuss in details in this

section. Bilayer graphene lattice consists of two single layers graphene, with

layer spacing d = 0.334 nm, stacked upon each other such that A atoms

in the first layer are connected to the B atoms in the second layers (Bernal

stacking [79]), see Fig. 2.7. Where γ0 is the coupling between two nearest

neighbors carbon atoms in the same layer (Ai ↔ Bi), γ1 denotes the direct

interlayer coupling between the atoms(A2 ↔ B1), γ3 describes the interlayer

coupling between the atoms (B2 ↔ A1) and γ4 characterizes the interlayer

coupling between (A1 ↔ A2) as well as (B1 ↔ B2). For typical values of
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these parameters in bilayer graphene, γ0 = 3.16 eV, γ1 = 0.381 eV, γ3 = .38

eV, γ4 = 0.14 eV [80], see [81–83] for other determination methods of the

electronic structure of bilayer graphene, such as infrared spectroscopy and

Raman scattering. As in the single layer graphene lattice, bilayer graphene

Figure 2.7: Bilayer graphene lattice structure

has a triangular Bravais lattice as well as reciprocal lattice and a hexagonal

BZ. The calculation of the electronic structure using the TB is similar to

the one of the single layer graphene.

2.2.1 Tight Binding Model

In bilayer graphene, the unit cell contains four inequivalent carbon atoms,

therefore we have four 2pz orbitals wave function. Consequently, the bilayer

TB Hamiltonian is a 4 × 4 matrix, which can be seen as two single layer

Hamiltonian on the diagonal and the other elements represent the hopping
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between atoms in different layers.

H =



εA1 −γ0f(k) γ4f(k) −γ3f ∗(k)

−γ0f ∗(k) εB1 γ1 γ4f(k)

γ4f
∗(k) γ1 εA2 −γ0f ∗(k)

−γ3f(k) γ4f
∗(k) −γ0f(k) εB2


(2.35)

where the new TB parameters defined as:

γ1 = 〈φA2 | H | φB1〉

γ3 = −〈φA1 | H | φB2〉

γ4 = 〈φA1 | H | φA2〉 = 〈φB1 | H | φB2〉 (2.36)

εAi = 〈φAi | H | φAi〉

εBi = 〈φBi | H | φBi〉

where εAi and εBi , i = 1, 2 (first and second layers)represent the on-site

energy. We see that the hopping matrix element (HA2,B1 = HB1,B2 = γ1) does

not contain the factor f(k), which represent the in-plane hopping. This is

because γ1 involves a direct or vertical bond, in contrast to γ3,4 (characterize

none vertical bond ) which involve in-plan orbital components so that they

are associated with the factor f(k). In Fig. 2.8 (a) we show the energy

spectrum in the first BZ along the ky axis where it intersects with the two

Dirac points K and K ′ at the corners, and at the center with the point Γ.

The energy spectrum around the K point is showing in the inset of Fig.
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2.8 (a). The colors (Green and red) in Fig. 2.8 will help us identifying the

different propagating modes in Chapter 4. See [85–89] for more details on TB

of BLG. As we mentioned earlier, we are interested in the band structure
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Figure 2.8: (a) Energy spectrum of Bilayer graphene in the first BZ along ky
intersecting the two Dirac Points K and K ′ at the corners and Γ at the center.
(b) The low energy spectrum showing the trigonal warping at the Dirac point K.
The spectrum in (a) and (b) obtained using Eq. 2.35)

around the Dirac points. Therefore it is useful to expand the Hamiltonian

Eq. 2.35 around one of the Dirac points, say K point. This can be done by

expanding the factor f(k) around the Dirac point, see Eqs. 2.25,2.26,2.27,

which leads to:

H =



εA1 vFπ
† −v4π† v3π

vFπ εB1 γ1 −v4π†

−v4π γ1 εA2 vFπ
†

v3π
† −v4π vFπ εB2


(2.37)
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where v3,4 = 3
2~γ3,4a are related to the hoping parameters, π = ξpx + ipy

and π† = ξpx − ipy. Here, ξ = +,− for the point K and K ′, respectively.

Without the skew parameters γ3 and γ4, the corresponding spectrum of Eq.

2.37 is

Es
± =

1

2

[
±sγ1 + s

√
γ21 + 4p2

]
(2.38)

where the ± sign is negative for the inner bands, which touched at K point,

and positive for the outer bands, s = ± determines wether the energy band

corresponds to the conduction band (s = +) or the valance band (s = −).

The corresponding spectrum of the original Hamiltonian (Eq. 2.35) (Solid

curves) around the K point and its approximated one (Eq. 2.37) (Dashed

curves) are shown in Fig. 2.9, with all interlayer coupling parameters γ1, γ3

and γ4 in Fig. 2.9 (a), and with only γ1 in Fig. 2.9 (b). It shows a good

agreement for the latter one even for high energy, whereas for the first one

a good agreement obtains at low energy. Therefore, the latter Hamiltonian

(2.37) will be used further in this work.

2.2.2 Effective Two Band Hamiltonian

It is useful when studying the low energy transport properties to describe the

system with an effective Hamiltonian. Such Hamiltonian can be obtained as

follows. Considering only the direct interlayer coupling γ1 and an interlayer
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Figure 2.9: A comparison between the energy spectrum obtained using Eq.
2.35 (Solid) Eq. 2.37 (Dashed). (a) with all hoping parameters γ1 = 0.381
eV, γ3 = 0.38 eV and γ4 = 0.14 eV. (b) with γ1 = 0.381 eV, γ3 = γ4 = 0 eV.

potential difference δ, the Hamiltonian then reads

H =



δ vFπ
† 0 0

vFπ δ γ1 0

0 γ1 −δ vFπ
†

0 0 vFπ −δ


(2.39)

with the following change in columns and rows C3 → C1 then R3 → R1, the

latter Hamiltonian can be written as

H =



−δ γ1 0 vFπ
†

γ1 δ vFπ 0

0 vFπ
† δ 0

vFπ 0 0 −δ


=

 H11 H12

H21 H22

 (2.40)
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where Hij is a 2× 2 block. Using Schur determinant identity

Det[H − E] = Det[H11 − E] ·Det
[
H22 − E −H12(H11 − E)−1H21

]
= 0

(2.41)

and with H11 − E → H11 for E << γ1 [90], one obtain

H = Det
[
H22 −H12(H11)

−1H21

]
=

 δ + δπ†π
(−γ21−δ2)

γ1π†
2

(−γ21−δ2)

γ1π2

(−γ21−δ2)
−δ − δππ†

(−γ21−δ2)

 (2.42)

For δ << γ1, (−γ21 − δ2)→ −γ21 , the effective Hamiltonian becomes

Heff =
1

2m

 0 π†
2

π2 0

+ δ

σz − v2F
γ21

 π†π 0

0 −ππ†


 (2.43)

where, m = γ1
2v2F

is the effective mass of electrons in bilayer graphene. An

effective Hamiltonian that also takes trigonal warping (v3) into account can

be obtained in the same manner. The same result can be obtained using

Green function to derive the effective Hamiltonian [88].

Heff =
1

2m

 0 π†
2

π2 0

+v3

 0 π†

π 0

+δ

σz − vF
2

γ12

 π† π 0

0 −π π†




(2.44)

This effective Hamiltonian is applicable for energy range | E |< γ1
4

[88].

We show, in Fig. 2.10, a comparison between the spectrum obtained from

the full Hamiltonian (Eq. 2.37) and the two band Hamiltonian (Eq. 2.44),
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the spectrum on the left includes only γ1 and on the right includes trigonal

warping v3, which will be discuss in the next section.
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Figure 2.10: Left: The energy spectrum obtained from the four band model
(Solid) Eq. 2.37 and the effective two band model (Dashed)Eq. 2.44. Right:
Showing that trigonal warping cannot be obtained using the effective two
band model (Blue dotted) Eq. 2.37. The blue dashed rectangle shows the
region where the two band model is valid

2.2.3 Trigonal Warping

Trigonal warping (TW) is arising from the skew parameter γ3, it affects the

band structure of BLG at the low energy | E |< 1 meV [91] whereas at

the high energy its effect is negligible. The Dirac cone (K point) is splitting

into four cones due to the TW, three legs and one at the centre, see Fig.

2.11. The left and right columns show the band structure at low energy

with and withoutTW, respectively. It has a great influence on the transport

properties of BLG. For example, although conductivity is not depend on the
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strength of the TW, it is 3 times as large as without it [92]. Recently, there

are many studies on the transport properties of BLG take into account the

TW effect, see [93–96].

Figure 2.11: Left column: (Top) 3D plot of the low energy spectrum (trigonal
warping); (Bottom) eque-energy lines of the trigonal warping. Right column:
The same as in the left column but with γ3 = γ4 = 0.
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2.2.4 Electric Field Effect

In BLG the on-site energy can be considered as an extra degree of freedom

when it is different between the two layers. This can be implemented by

adding an extra potential difference term on the diagonal of the Hamiltonian,

see Eq. 2.39. The pristine graphene is considered as a metal, hence it can

not replace silicon. One method to open an energy gap in the spectrum of

BLG is to apply an external electric potential [97]. Then, the corresponding

spectrum in this case is

Es
± = s

[
k2x + k2y + δ2 +

γ21
2
±
√

(k2x + k2y)(4δ + γ21) +
γ41
4

]
(2.45)

In Fig. 2.12, we show the spectrum of the full and two band Hamiltonian on

the left and as a spatial case when γ1 = δ = 0 we recover the SLG spectrum

on the right.
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Figure 2.12: Left: Energy spectrum of bilayer graphene placed in an electric
potential (biased BLG) with δ = 0.2 γ1, blue dotted curves corresponding
to the effective two band model, solid and dashed curves account for the four
band model with and without γ3,4, respectively. Right: energy spectrum of
SLG with δ = γ1 = 0
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Chapter 3

CONDUCTANCE AND SHOT

NOISE IN GRAPHENE AND

ITS BILAYERS

3.1 Introduction

One of the remarkable transport measurements in graphene is the

high electron mobility at the room temperature. Experimental measurements

of conductance show that it is symmetric in energy, so that the mobility for

electrons and holes are nearly the same [18]. Moreover, the dominant mech-

anism of scattering in graphene is due to defects, and therefore mobility is
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independent of temperature [5, 6]. It is really surprising that in the case of

Figure 3.1: Minimum conductivity of grapphene .

vanishing carrier density, near the Dirac points, graphene still has a finite

minimum conductivity which is of the order of the conductivity quantum

4e2

h
[5]. There are many considerations and theories that describe the mini-

mum conductivity of graphene [98] – [104]. Yet, the origin of the minimum

conductivity is still ambiguous. Most theories say that minimum conductiv-

ity is 4e2

πh
, which is π smaller than the experimental value, see Fig. 3.1 [18].

This disagreement between theory and experiment is well known as ”mystery

of missing a π” and it is unclear whether it is attributed to the limited in the

resolution of the experimental equipments or to theoretical approximations.
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3.2 Landauer-Büttiker Formula

The conductance of a single quantum channel is given by G = g e
2

h
T ,

where T is the electron transmission probability and g represents the spin and

valley degeneracy which is g = 4 in graphene. For biased system, the current

fluctuation (shot noise) for a single channel, due to the charge discretization,

is given by 〈(δI)2〉 = 2e〈I〉(1 − T ). Then, for multichannel conductor, the

shot noise can be obtained by summing over all transmission channels

SI =
2e3|V |
h

N−1∑
n=0

Tn(1− Tn) (3.1)

The Poissonian noise induced by random and independent electrons, such

as in tunnel junction, is found at low transparency Tn << 1

SI = SP =
2e3|V |
h

N−1∑
n=0

Tn = 2e〈I〉 (3.2)

Fano factor (F) is defined as the ratio of a measured shot noise to the

Poissonian shot nose, it is the regular way to quantify the shot noise of a

system.

F =
SI
SP

=

∑N−1
n=0 Tn(1− Tn)∑N−1

n=0 Tn
(3.3)

Therefore, in the ballistic regime (i.e Tn → 1) F = 0, while at small trans-

parency (i.e. Tn → 0) F = 1 and F = 1/3 for diffusive systems. For a sample

with width W and length L and in the limit W >> L the summation above

can be replaced by an integral [105–107]. Therefore the Landauer-Büttiker

46



formula for the conductance and Fano Factor can be written as [108]

G = G0
Ly
2π

∫ +∞

−∞
dkyT (3.4)

F =

∫ +∞
−∞ dkyT (1− T )∫ +∞

−∞ dkyT
(3.5)

where Ly is the width of the sample in the y-direction and G0 = 4e2

h
, the

factor 4 is due to the valley and spin degeneracy in graphene. Shot noise and

conductance in graphene has been studied theoretically many years ago [30,

101] and conclude that the evanescent waves are responsible for the transport

at the Dirac point, see also [109–111]. In the next two sections, we briefly

present the conductivity and the fano factor of single layer graphene and its

bilayer.

3.3 Single Layer Graphene

J. Tworzydlo [101], used graphene strip with length L and width W connected

by two electrodes, which can be modelled experimentally by heavily-doped

graphene lead, to study the shot noise and conductivity. By solving

Dirac equation in the desired regions and matching the solutions at the in-

terfaces taking into account the infinite mass boundary conditions [112], he

obtained the transmission probability, Fano factor and conductivity. In Fig.

3.2 (a) [101], the conductivity and Fano factor are plotted as a function of
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(a) (b)

Figure 3.2: Conductivity and Fano factor as a function of: (a) Fermi energy
for a fixed aspect ratio of the graphene strip ; (b) the aspect ratio of the
graphene strip at the Dirac point

the Fermi energy which modelled here by the electric potential energy µ. It

appears that conductivity has a minima at the Dirac point (µ = 0) which

corresponds to a maxima in the Fano factor. These two quantities depend on

the graphene strip geometry as depicted in Fig. 3.2 (b) [101] and both reach

a universal value σmin = G0

π
and Fmax = 1

3
for a wide and short graphene

strip (i.e W/L ≥ 4).

Recently, researchers study also conductance and shot noise for non-

squared potential [113] and the influence of a magnetic filed [114]. Moreover,

a negative differential conductance in graphene has been reported [115].
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3.4 Bilayer Graphene

Since we are interested in the graphene bilayer, we will go through this

section in more details to calculate the transmission probability, conductivity

and Fano factor. We use here the same setup in [105]. Assuming a graphene

sheet in the x − y plane contains three different regions, with two heavily

doped contact regions for x > b and x < 0. Between these two contact

regions is a weakly doped strip with length b and width W. The doping in

these three regions induce a potential profile, see Fig. 3.3, of the form

V (x) =

−V0 , x < 0 or x > b

0 , b > x > 0
(3.6)

x

V

- V0

EF

0

b

Figure 3.3: Schematic of the electric potential applied to the bilayer graphene
strip.
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Bilayer graphen is governed by 4× 4 Hamiltonian which can be written as

H =



V vFπ
† 0 0

vFπ V γ1 0

0 γ1 V vFπ
†

0 0 vFπ V


(3.7)

where π = px + ipy, π
† = px− ipy are the in-plan momenta and its conjugate

with px,y = −i~∂x,y. Since the momentum in the y-direction is a conserved

quantity (i.e. [H, py] = 0) the wave function of the system can be written as

ψ(x, y) = eiky



φA1

φB1

φA2

φB2


(3.8)

and when the Hamiltonian above acts on this wave function, it leads to four

coupled differential equations that can be decoupled and one can obtain the

full solution, see next chapter for more details. After decoupling the four

resulting equations one obtain

[
d2

dx2
+ k2±

]
φB1 = 0 (3.9)

with

k±x =

[
−k2y +

ε2

l2
± ε

l2

]1/2
(3.10)
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Here l =
~vF
γ1

, for real value of k±x we have two propagating modes k+ and

k− . Then, the corresponding energy spectrum of bilayer graphene is given

by

Es
± = ±1

2

[
1 + s

√
1 + (2lkx)2 + (2lky)2

]1/2
(3.11)

In Fig. 3.4, we show the energy bands and the different transmission proba-

bilities corresponding to the different modes. Details about how to calculate

T
+

+

T
-

+

T
+

-

T
-

-

k - k +

Γ1

Figure 3.4: Energy bands and the different transmission probabilities corre-
sponding to the different modes

these transmission probabilities will be provided in the next chapter. Here

we will show directly the results of the transmission, conductivity and Fano

factor using our approach which are exactly the same as in [105] for this sys-

tem. In Fig. 3.5 (a,b,c,d) we show the different transmission channels and

the total transmission probability in Fig. 3.5 (e) which calculated in [105].

The total transmission through the different channels (T+ = T+
+ + T+

− and

T− = T−− +T−+ ) are shown in Fig. 3.6 and the total transmission probability

of the two channel is shown in Fig.3.7. Finally, we show the conductivity
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and Fano factor as a function of the Fermi energy in Fig. 3.8. Comparing to

the single layer graphene, conductivity of the bilayer is twice as much as the

single layer σbilayer = 2σsingle = 2G0/π while the Fano factor is the same for

both Fbilayer = Fsingle = 1/3.
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Figure 3.5: Different transmission channels in bilayer graphene around the
Dirac point (E = 0) with b = 50l
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(a) (b)

Figure 3.6: Density plot of the total transmission through the first mode
T+ = T+

+ + T+
− (left) and through the second mode T− = T−− + T−+ (right)

Figure 3.7: Total transmission probability as a function of the energy E and
the transverse wave vector ky with b = 50 l and V0 = −50 γ1.
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(a)

(b)

Figure 3.8: (a) Conductivity and (b) Fano facto as a function of Fermi energy
with b = 50 l and V0 = −50 γ1.
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Chapter 4

BAND TUNNELING

THROUGH DOUBLE

BARRIER IN GRAPHENE

BILAYER

4.1 Introduction

The most important application of graphene is to possibly replace

silicon in IT-applications. But the biggest obstacle is to create a gap and

control the electron mobility in graphene taking into account the so called
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Klein tunneling which makes the task more complicated [78, 118]. However,

one can create an energy gap in the spectrum in many different ways, such

as by coupling to substrate or doping with impurities [119,120] or in bilayer

graphene by applying an external electric field [28,29,121].

Bilayer graphene is two stacked(Bernal stacking [79]) monolayer graphene

sheets, each with honeycomb crystal structure, with four atoms in the unit

cell, two in each layer. In the first Brillouin zone, the tight binding model

for bilayer graphene [70] predicted four bands, two conduction bands and

two valance bands, each pair is separated by an interlayer coupling energy

of the order γ1 ≈ 0.4 [122]. At the Dirac points, one valance band and one

conduction band touch at zero energy, whereas the other bands are split

away from the zero energy by γ1 [88]. Further details about band struc-

ture and electronic properties of bilayer graphene can be found in the liter-

ature [19,91,123–129].

Tunneling of quasiparticles in graphene, which mimics relativistic

quantum particles such as Dirac fermions in quantum electrodynamics (QED),

plays a major role in scattering theory which allows us to develop a theoretical

framework that allows us to investigate different physical phenomena that are

not present in the non relativistic regime, such as the Klein-paradox [78,118].

In monolayer garphene, there were many studies on the tunneling of electrons

through different potential shapes [32,130–132] while the study of tunneling

electrons in bilayer graphene has been restricted to energies less than the

interlayer coupling parameter γ1 so that only one channel dominates trans-

mission and the two band model is valid [33,34,105,133].
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Recently, tunneling of electrons in bilayer graphene has been stud-

ied using the four band model for a wide range of energies, even for energies

larger than γ1 [134]. Electron transport measurements can be used effectively

to probe the nature of current carriers in graphene devices.

In this chapter, we investigate the band tunneling and conductance

through square double barrier using the four band model in bilayer graphene.

It is organized as follows. In section 2, we establish a theoretical framework

using the four band model leading to four coupled differential equations. In

section 3, by using the transfer matrix at boundaries together with the inci-

dent, transmitted and reflected currents we end up with eight transmission

and reflection probabilities as well as the corresponding conductance. We

deal with two band tunneling and analyze their features with and without

the interlayer potential difference, in section 4. We do the same job in sec-

tion 5 but by considering four band energy and underline the difference with

respect to other case. In section 6, we show the numerical results for the

conductance and investigate the contribution of each transmission channel.

4.2 Theoretical Model

In monolayer graphene, the unit cell has inequivalent atoms (usually called

A and B). Bilayer graphene on the other hand is a two stacked monolayer

graphene (Bernal stacking) and hence has four atoms in the unit cell. The

relevant Hamiltonian near the K point (the boundary of the Brillouin zone),
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can be found using the nearest-neighbor tight binding approximation [19]

H =



V + vFπ
† −v4π† v3π

vFπ V + γ1 −v4π†

−v4π γ1 V − vFπ
†

v3π
† −v4π vFπ V −


(4.1)

where vF = γ0
~

3a
2
≈ 106 m/s is the fermi velocity of electrons in each graphene

layer, a = 0.142 nm is the distance between adjacent carbon atoms, v3,4 =

vF γ3,4
γ0

represent the coupling between the layers, π = px + ipy, π
† = px − ipy

are the in-plan momenta and its conjugate with px,y = −i~∂x,y. γ1 ≈ 0.4 eV

is the interlayer coupling term and V +, V − are the potentials on the first

and second layer, respectively. The skew parameters , γ3 ≈ 0.315 eV and

γ4 ≈ 0.044 eV have negligible effect on the band structure at high energy

[88, 91]. Recently, it was shown that even at low energy these parameters

have also negligible effect on the transmission [134], hence we neglect them

in our calculations.

Under the above approximation and for double barrier potential configuration

in Figure 4.1 our previous Hamiltonian (4.1) can be written as follows in each

potential region where we define regions as follows: j = 1 for x ≤ a, j = 2

for a < x ≤ b, j = 3 for b < x ≤ c, j = 4 for c < x ≤ d and j = 5 for x > d
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a b c d

1 2 3 4 5

U2

U4

Figure 4.1: The parameters of a rectangular double barrier structure.

so that in the j-th region we have

Hj =



V +
j νFπ

† 0 0

νFπ V +
j γ1 0

0 γ1 V −j νFπ
†

0 0 νFπ V −j


(4.2)

We define the potential on the first and second layer by V ±j = Uj± δj, where

Uj is the barrier strength and δj is the electrostatic potential in the j-th

region

V ±j =



0, j = 1

U2 ± δ2, j = 2

0, j = 3

U4 ± δ4, j = 4

0, j = 5

(4.3)

(U2, δ2) and (U4, δ4) are the barrier potential and the electrostatic potential

in regions 2 and 4, respectively.
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The eigenstates of (4.2) are four-components spinors ψj(x, y) = [ψjA1
, ψjB1

, ψjA2
, ψjB2

]†,

here † denotes the transpose of the row vector. For a double barrier we need

to obtain the solution in each regions as shown in Figure 4.1. Since we have

basically two different sectors with zero (1, 3, 5) and nonzero potential (2,

4), a general solution can be obtained in the second sector and then set the

potential V ±j to zero to obtain the solution in the first sector. To simplify

the notation we introducing the length scale l = ~vF
γ1
≈ 1.76 nm allows us to

define the following dimensionless quantities: E ′ = E
γ1

and V ′j =
Vj
γ1

. Since

the momentum along the y-direction is a conserved quantity, i.e [H, py] = 0,

and therefore we can write the spinors as

ψj(x, y) = eikyy[φjA1
, φjB1

, φjA2
, φjB2

]† (4.4)

Now injecting (4.2) and (4.4) in the eigenvalue equation Hjψj = E ′jψj, drop-

ping the prime from now on to avoid cumbersome notation, we obtain



Uj + δj
l
~π
† 0 0

l
~π Uj + δj 1 0

0 1 Uj − δj l
~π
†

0 0 l
~π Uj − δj





φjA1

φjB1

φjA2

φjB2


eiky = Ej



φjA1

φjB1

φjA2

φjB2


eiky

(4.5)
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This gives four coupled differential equations

−il
[
d

dx
+ ky

]
φjB1 = (εj − δj)φjA1 (4.6)

−il
[
d

dx
− ky

]
φjA1 + φjA2 = (εj − δj)φjB1 (4.7)

−il
[
d

dx
+ ky

]
φjB2 + φjB1 = (εj + δj)φ

j
A2 (4.8)

−il
[
d

dx
− ky

]
φjA2 = (εj + δj)φ

j
B2 (4.9)

where ky is the wave vector along the y-direction and we have set εj = Ej−Uj.

It is easy to decouple the first equations to obtain

[
d2

dx2
+ (ksj )

2

]
φjB1 = 0 (4.10)

where the wave vector along the x-direction is

ksj =

[
−k2y +

ε2j + (δj)
2

l2
+ s

1

l2

√
ε2j(1 + 4(δj)2)− (δj)2

]1/2
(4.11)

where s = ±denotes the propagating modes which will be discussed latter

on. Now for each region one can end up with corresponding wave vector

according to Figure 4.1. Indeed, for regions 1, 3 and 5 we have V ±j = 0 and

then we can obtain

ks0 =

[
−k2y +

ε2

l2
+ s

ε

l2

]1/2
(4.12)
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with ε = ε1 = ε3 = ε5, as well as the energy

Es
± = ±1

2

[
−s+

√
1 + (2lks0)

2 + (2lky)2
]

(4.13)

However generally, for any region we can deduce energy from previous anal-

ysis as

εs±,j = ± 1√
2

[
1 + 2l2[(ksj )

2 + k2y] + 2(δj)
2 − s

√
1 + 4l2[(ksj )

2 + k2y](1 + 4(δj)2)
]1/2

(4.14)

The corresponding energy spectrum of the different regions is shown in Figure

4.2. Associated with each real ks0, the wave vector of the propagating wave in
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Figure 4.2: Energy spectrum: (a) in region 1 where V1 = V3 = V5 = 0. (b)
in region 2 for δ2 = 0.2 γ1, U2 = (0.5, 1.2, 1.8) γ1 (red, dashed green, dotted
blue). (c) in region 4 for δ4 = 0.4 γ1, U4 = (0.8, 1.4, 2) γ1 (red, dashed green,
dotted blue). The dashed horizontal lines in (b) and (c) represent the heights
of the barriers U2 and U4, respectively.

the first region, there are two right-going (incident) propagating mode and

two left-going (reflected) propagating mode. For γ1 > E > 0, k+0 is real

while k−0 is imaginary, and therefore the propagation is only possible using

k+0 mode. However when E > γ1, both k±0 are real and then the propagation
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is possible using two modes k+0 and k−0 . In Figure 4.3 we show these different

modes and the associated transmission probabilities through double barrier

structure. Figure 4.4 presents different cases: (a) asymmetric double barrier

Figure 4.3: Schematic representation of different modes and the associated
transmission and reflection probabilities.

structure for U2 < U4, δ2 = δ4 and (b) symmetric for U2 = U4, δ2 = δ4. It

is interesting to note that the Ben results [134] can be recovered from our

results by considering the case (b) by letting b = c in our double barrier. The

different channels of transmission and reflection in Figure 4.3 can be mapped

into all cases in Figure 4.4 since they are related to the band structure on the

both sides of the barriers. However, the effect of the different structure of the

two barriers should appear in the transmission and reflection probabilities.

The solution of (4.10) can be written as a linear combination of plane waves

φjB1 = a1e
ik+j x + a2e

−ik+j x + a3e
ik−j x + a4e

−ik−j x (4.15)

where am (m = 1, 2, 3, 4) are coefficients of normalization. Substituting (4.15)
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a

x , k y

V ,

b

x , k y

V ,

Figure 4.4: Scheme representing the bands inside and outside the barriers
for the same interlayer potential difference. (a) asymmetric for U2 < U4. (b)
symmetric for U2 = U4.

into (4.6 -4.9) we obtain the rest of the spinor components:

φjA1 = a1A
+
−e

ik+j x − a2A+
+e
−ik+j x + a3A

−
−e

ik−j x − a4A−+e−ik
−
j x (4.16)

φjA2 = a1ρ
+eik

+
j x + a2ρ

+e−jk
+
j x + a3ρ

−eik
−
j x + a4ρ

−e−ik
−
j x (4.17)

φjB2 = a1ζ
+
+e

ik+j x − a2ζ+−e−ik
+
j x + a3ζ

−
+e

ik−j x − a4ζ−−e−ik
−
j x (4.18)

where As± =
l(ksj±iky)
εj−δj , ρs = (εj − δj)

[
1− l2((ksj )

2+k2y)

(εj−δj)2

]
and ζs± =

εj−δj
εj+δj

ρsAs±.

Now, we can write the general solution

ψj(x, y) = GjMj(x)Cje
ikyy (4.19)
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in terms of the matrices

Gj =



A+
− −A+

+ A−− −A−+

1 1 1 1

ρ+ ρ+ ρ− ρ−

ζ++ −ζ+− ζ−+ −ζ−−


, Cj =



a1

a2

a3

a4


(4.20)

Mj(x) =



eik
+
j x 0 0 0

0 e−ik
+
j x 0 0

0 0 eik
−
j x 0

0 0 0 e−ik
−
j x



Since we are using the transfer matrix, we are interested in the normalization

coefficients, the components of C, on the both sides of the double barrier. In

other words, we need to specify our spinor in region 1

φ1
A1 = δs,1A

+
−e

ik+0 x − rs+A+
+e
−ik+0 x + δs,−1A

−
−e

ik−0 x − rs−A−+e−ik
−
0 x(4.21)

φ1
B1 = δs,1e

ik+0 x + rs+e
−ik+0 x + δs,−1e

ik−0 x + rs−e
−ik−0 x (4.22)

φ1
A2 = δs,1ρ

+eik
+
1 x + rs+ρ

+e−ik
+
0 x + δs,−1ρ

−eik
−
0 x + rs−ρ

−e−ik
−
0 x (4.23)

φ1
B2 = δs,1ζ

+
+e

ik+0 x − rs+ζ+−e−ik
+
0 x + δs,−1ζ

−
+e

ik−0 x − rs−ζ−−e−ik
−
0 x (4.24)
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as well as region 5

φ5
A1 = ts+A

+
−e

ik+0 x + ts−A
−
−e

ik−0 x (4.25)

φ5
B1 = ts+e

ik+0 x + ts−e
ik−0 x (4.26)

φ5
A2 = ts+ρ

+eik
+
0 x + ts−ρ

−eik
−
0 x (4.27)

φ5
B2 = ts+ζ

+
+e

ik+0 x + ts−ζ
−
+e

ik−0 x (4.28)

Since the potential is zero in regions 1, 3 and 5, we have the relation

G1M1(x) = G3M3(x) = G5M5(x) (4.29)

We will see how the above results will be used to determine different physical

quantities. Specifically we focus on the reflection and transmission probabil-

ities as well as related matters.

4.3 Transmission probabilities and conductance

Implementing the appropriate boundary condition in the context of the trans-

fer matrix approach, one can obtain the transmission and reflection proba-

bilities. Continuity of the spinors at the boundaries gives the components of
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the vector C which are given by

Cs
1 =



δs,1

rs+

δs,−1

rs−


, Cs

5 =



ts+

0

ts−

0


(4.30)

where δs,±1 is the Kronecker delta symbol. The coefficients in the incident

and reflected regions can be linked through the transfer matrix M

Cs
1 = MCs

5 (4.31)

which can be obtained explicitly by applying the continuity at the four

boundaries of Figure 4.1

G1M1(a)C1 = G2M2(a)C2 (4.32)

G2M2(b)C2 = G3M3(b)C3 (4.33)

G3M3(c)C3 = G4M4(c)C4 (4.34)

G4M4(d)C4 = G5M5(d)C5 (4.35)

Solving these four equations by taking into account of the relation (4.29), we

can obtain the transfer matrix M .

Then we can specify the complex coefficients of the transmission ts± and

reflection rs± using the transfer matrix M . Since we need the transmission T
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and reflection R probabilities and because the velocity of the waves scattered

through the two different modes is not the same, it is convenient to use the

current density J to obtain the transmission and reflection probabilities.

J = νFΨ†~αΨ (4.36)

to end up with

T =
|Jtra|
|Jinc|

, R =
|Jref |
|Jinc|

(4.37)

where ~α is a 4 × 4 diagonal matrix, on the diagonal 2 Pauli matrices σx.

From (4.30) and (4.37), we show that the eight transmission and reflection

probabilities are given by [135]

T s± =
k±0
ks0
|ts±|2, Rs

± =
k±0
ks0
|rs±|2 (4.38)

Using the above four transmission probabilities, the conductance can be cal-

culated as a function of the energy. This can be done through the Landauer-

Büttiker formula [108] to write the conductance as

G(E) = G0
Ly
2π

∫ +∞

−∞
dky

∑
s,n=±

T sn(E, ky) (4.39)

where Ly is the width of the sample in the y-direction and G0 = 4 e2

h
, the

factor 4 is due to the valley and spin degeneracy in graphene.

The obtained results will be numerically analyzed to underline our system
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behavior. To do this, we will distinguish different cases in terms of the band

tunneling.

4.4 Two band tunneling (E < γ1)

Let us analyze two interesting cases related to our energy spectrum. Indeed,

at low energies (E < γ1), we have just one mode of propagation k+0 leading

to one transmission T and reflection R channel through the two conduc-

tion bands touching at zero energy on the both sides of the double barrier.

Whereas at higher energy (E > γ1), we have two modes of propagation k+0

and k−0 leading to four transmission T±± and reflection R±± channels, through

the four conduction bands. Therefore we consider each case separately and

underline their relevant properties.

Barbier [33] investigated the transmission and conductance for single and

multiple electrostatic barriers with and without interlayer potential difference

and for E < γ1, however the geometry dependence of the transmission was

not done. In this section, we briefly investigate the resonances resulting

from the available states in the well between the two barriers and how they

influence by the geometry of the system. For a normal incidence and for

δ2 = δ4 = 0 the transmission amplitude is shown in Figure 4.5a for different

values of the distance ∆ between the barriers. The dashed blue curve is for a

single barrier with (∆ = 0) and with width (b1 + b2 = 20 nm), we note that
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the transmission is zero and there are no resonances in this regime of energy

(E < U2 = U4). Unlike the case of the single barrier, the double barrier

structure has resonances in the above mentioned range of energy. These full

transmission peaks can be attributed to the bound electron states in the

well region between the barriers. In agreement with [136], the number of

these resonances depends on the distance between the barriers. Indeed, for

∆ = 5 nm we have one peak in the transmission amplitude, increasing the

distance allows more bound states to emerge in the well, and for ∆ = 10 nm

there are two peaks (green and red curves in Figure 4.5, respectively). Figure

4.5b shows the same results in 4.5a but with different height of the two

barriers such that U2 = 0.4 γ1 and U4 = 0.6 γ1. We see that the asymmetric

structure of the double barrier reduces those resonances resulting from the

bound electrons in the well between the two barriers. For δ2 = δ4 = 0.2 γ1,

we show the transmission probability by choosing U2 = U4 = 0.4 γ1 in

Figure 4.5c and for U2 = 0.4 γ1, U4 = 0.6 γ1 in Figure 4.5d. For single

barrier, there are no resonant peaks inside the induced gap which is not

the case for the double barrier as clarified in Figure 4.5c. Figures 4.6a,4.6c

present a comparison of the density plot of the transmission probability as a

function of the transverse wave vector ky of the incident wave and its energy

E between different structure of the double barrier with U2 = U4 = 0.4 γ1

and U2 = 0.4 γ1 < U4 = 0.6 γ1, respectively, and for δ2 = δ4 = 0 in both. For

non-normal incidence in Figure 4.6a (ky 6= 0) we still have a full transmission,

even for energies less than the height of the barriers, which are symmetric in

ky. Those resonances are reduced and even disappeared in Figure 4.6c due
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Figure 4.5: Transmission for normal incidence with b1 = b2 = 10 nm, and
∆ = 0 (blue dashed), ∆ = 5 nm (green), ∆ = 10 nm (red). (a) for U2 =
U4 = 0.4 γ1. (b) for U2 = 0.4 γ1 and U4 = 0.6 γ1. (c, d) for the same
parameters as in (a, b), respectively, but with δ2 = δ4 = 0.2 γ1.

to the asymmetric structure of the double barrier. In Figures 4.6b,4.6d we

show the density plot of transmission probability, for normal incidence, as

a function of ∆ and E for the same parameters as in Figure 4.6a and 4.6c,

respectively. We note that the number of resonances in Figure 4.6b, due

to the bounded electrons in the well between the barriers, increases as long

as the distance is increasing. They are very sharp for the low energies and

become wider at higher energies. In contrast to Figure 4.6d and as a result

of the asymmetric structure of the double barrier these resonances do not

exist any more for E < U4 = 0.6 γ1.

It is well-known that introducing an interlayer potential difference induces an
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Figure 4.6: Density plot for transmission probability, for δ2 = δ4 = 0, versus:
(a) E and ky for U2 = U4 = 0.4 γ1, and b1 = b2 = ∆ = 10 nm. (b) E
and ∆ with ky = 0 and b1 = b2 = 10 nm. (c) E and ky with U2 = 0.4 γ1,
U4 = 0.6 γ1 and b1 = b2 = ∆ = 10 nm. (d) E and ∆ with U2 = 0.4 γ1,
U4 = 0.6 γ1, ky = 0 and b1 = b2 = 10 nm. White and black dashed lines
represent the band inside and outside the first barrier, respectively.

energy gap in the energy spectrum in bilayer graphene. It is worth to see how

this interlayer potential difference will affect the transmission probability. To

do so, we extend the results presented in Figure 4.6 to the case δ2 = δ4 =

0.2 γ1 to get Figure 4.7. In agreement with [33], Figure 4.7a shows a full

transmission inside the gap in the energy spectrum, which resulting from the

available states in the well between the barriers. In contrast to the single
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Figure 4.7: Density plot for transmission probability, for δ2 = δ4 = 0.2 γ1,
versus: (a) E and ky for U2 = U4 = 0.4 γ1, and b1 = b2 = ∆ = 10 nm. (b)
E and ∆ for the same parameters as in (a) but with ky = 0. (c, d) for the
same parameters as in (a, b), respectively, but for U2 = 0.4 γ1, U4 = 0.6 γ1.
White and black dashed lines represent the band inside and outside the first
barrier, respectively.

barrier case [33, 134], there are full transmission inside the energy gap. In

Figure 4.7b, we show the density plot of the transmission probability as

a function of E and ∆ for fixed thickness of the tow barriers. We note

that the resonances resulting from the bound states in the well are highly

influenced by the interlayer potential difference where it removes part of them

and arises a full transmission at specific value of the energy E ≈ 0.17 γ1,
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which is absent in the case when there is no interlayer potential difference

(δ2 = δ4 = 0 in Figure 4.6b). Figures 4.7c,4.7d show the same result as

in Figures 4.7a,4.7b, respectively, but with different heights of the barriers

U2 = 0.4 γ1 and U4 = 0.6 γ1, which shows a decreasing in the transmission

probability as a results of the asymmetric structure of the two barriers.

In Figure 4.8 we observe how these resonances for normal incidence are af-

fected by the parameters of the barriers. In the first row we fixed the thickness

of the first barrier b1 = 5 nm and set the height of the two barriers to be the

same (U2 = U4 = 0.4 γ1), then we plot the transmission as a function of ∆

and the thickness of the second barrier b2 as depicted in Figure 4.8a. These

resonances occur frequently as ∆ increases where b2 (dashed black line) is

equal to b1 (dashed wight line). Picking up one of these resonances (i.e.

at fixed distance between barriers ∆ = 3.36 nm) and calculating the trans-

mission as a function of b1 and b2 as presented in Figure 4.8b, it becomes

clear that these resonances occur when (b1 = b2) for fixed ∆. In the second

row, we show the transmission for the same parameters as in the first row

but with different heights of the barriers (U2 = 0.4 γ1, U4 = 0.6 γ1). Full

transmission now occur for b1 (dashed black line) 6= b2 (dashed black line)

as shown in Figure 4.8c. It is worth mentioning that for energies less than

the strength of the barriers, and for a fixed ∆, full transmission resonances

occur always when S1 = S2, S1 and S2 being the areas of the first and second

barrier, respectively. Therefore, for fixed b1, the value of b2 where the reso-

nance occur is given by b2 = U2

U4
b1 which is superimposed in Figure 4.8b,4.8d
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Figure 4.8: Density plot for transmission at normal incidence for E = 4
5
U2

and δ2 = δ4 = 0. (a) U2 = U4 = 0.4 γ1, b1 = 5 nm. (b) U2 = U4 = 0.4 γ1,
∆ = 3.36 nm. (c) U2 = 0.4 γ1, U4 = 0.6 γ1, b1 = 5 nm. (d) U2 = 0.4 γ1, U4 =
0.6 γ1, ∆ = 4 nm. The dashed white and black lines in the left column
represent the values of b1 and b2, respectively, where the resonance occur.

(the dashed white line). Moreover, the cloak effect in the double barrier

occur at non-normal incidence for some states which is different from the

single barrier case [137] that occur always at normal incidence. In Figure 4.4

we extend the results in Figure 4.8 but with interlayer potential difference

(δ2 = δ4 = 0.1 γ1) for the same other parameters. As we note the total

transmission probability is decreasing and some of the original resonances
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Figure 4.9: Density plot for transmission at normal incidence for E = 4
5
U2

and δ2 = δ4 = 0.1 γ1. (a) U2 = U4 = 0.4 γ1, b1 = 5 nm. (b) U2 = U4 = 0.4 γ1,
∆ = 3.7 nm. (c) U2 = 0.4 γ1, U4 = 0.6 γ1, b1 = 5 nm. (d) U2 = 0.4 γ1, U4 =
0.6 γ1, ∆ = 4.3 nm. The dashed white and black lines in the left column
represent the values of b1 and b2, respectively, where the resonance occur.

are splitting as a sequence of the induced energy gap. Let us now see how

the transmission probability is affected by the double barrier parameters. In

Figures 4.10a,4.10b we show the density plot of the transmission probability

for U2 = U4, E < U2 = U4 and different values of ∆, as a function of ky

and the thickness of the two barriers L (i.e. with changing the width of the

two barriers simultaneously by setting b1 = b2 = L). For ∆ = 10 nm and
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for small L we have a full transmission for wide range of ky, with increasing

L, transmission probability dramatically decreases however, some resonances

still show up as depicted in Figure 4.10a. In contrast, for ∆ = 15 nm the

transmission probability is completely different where the position and num-

ber of resonant peaks change as depicted in Figure 4.10b. This stress that the

crucial parameters that determine the number of resonant peaks and their

position is the width of the well ∆ not the thickness of the two barriers b1

and b2 [33, 136]. ∆ dependence of the transmission probability is shown in

Figure 4.10c, we note a full transmission frequently occur for normal inci-

dence. Moreover, after certain value of ∆ we start getting a full transmission

for specific value of ky and for all values of ∆. In Figure 4.10d we show how

the transmission probability changes with b2 and ky for fixed ∆ and b1. The

effect of the interlayer potential difference on the transmission probability

with respect to the geometry of the barriers is depicted in Figure 4.11 for

the same parameters as in Figure 4.10 but for δ2 = δ4 = 0.1 γ1, we note that

most of the resonances disappeared as one can conclude from Figure 4.10

due to the gap in the spectrum resulting from the induced electric field.

4.5 Four band tunneling (E > γ1)

For energies larger than γ1, the particles can use the two conduction band

for propagation which gives rise to four channels of transmission and four

for reflection. In Figure 4.12 we present these reflection and transmission
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Figure 4.10: Density plot for the transmission probability versus (a, b) ky
and the width of the two barriers (b1 = b2 = L) for U2 = U4 = 0.6 γ1,
E = 4

5
U4 and ∆ = 10 nm, 15 nm, respectively. (c) ky and ∆ for the same

parameters as in (a) and for b1 = b2 = 10 nm. (d) ky and b2 with b1 = 5 nm
and ∆ = 10 nm.

probabilities for a double barrier structure as a function of ky and E. The

potential barriers heights are set to be U2 = U4 = 3
2
γ1 and the interlayer

potential difference is zero. Different regions are shown up in the spectrum

(E, ky) which appeared as a result of the different propagating modes inside

and outside the barriers. The superimposed dashed curves in the density plot

in Figure 4.12 indicates the borders between these different regions [134]. In
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Figure 4.11: Density plot for the transmission probability versus: (a, b) ky
and the width of the two barriers (b1 = b2 = L) for U2 = U4 = 0.6 γ1,
E = 4

5
U4, δ2 = δ4 = 0.1 γ1 and ∆ = 10 nm, 15 nm, respectively. (c)

ky and the width of the well ∆ for the same parameters as in (a) and for
b1 = b2 = 10 nm. (d) ky and b2 with b1 = 5 nm and ∆ = 10 nm.

the double barrier, the cloak effect [137] in T+
+ and T+

− (T−+ ) occurs in the

region U2 − γ1 < E < U2 for nearly normal incidence ky ≈ 0 where the two

modes k+ and k− are decoupled and therefore no scattering occurs between

them [134]. However, this effect also exist for some states for non-normal

incidence as a result of the available electrons states in the well as mentioned

in the previous section. For non-normal incidence the two modes k+ and
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k− are coupled and hence the electrons can be scattered between them, so

that the transmission T+
+ and T+

− (T−+ ) in the same region are not zero for

non-normal incidence. For energies less than U2− γ1 electrons propagate via

k+ mode inside the barriers which give the resonances in T+
+ in this region.

Increasing (decreasing) the area of the barriers or the well between them will

increase (decrease) the number of these resonances.
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Figure 4.12: Density plot for transmission and reflection probabilities with
U2 = U4 = 1.5 γ1, b1 = b2 = 20 nm and ∆ = 10 nm. The dashed white and
black lines represent the band inside and outside the barrier, respectively.

For T−− electrons propagate via k− mode which is absent inside the barriers so

that the transmission is suppressed in this region and this is equivalent to the

cloak effect [134]. The transmission probabilities T+
− and T−+ are the same just

when the time reversal symmetry holds (in this case when δj = 0, U2 = U4)
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which means that electrons moving in opposite direction (moving from left to

right and scattering from k+ → k− in the vicinity of the first valley or moving

from right to left and scattering from k− → k+ in the vicinity of the second

valley) are the same because of the valley equivalence [134]. Introducing

asymmetric double barrier structure with U2 = 1.3 γ1, U4 = 1.5 γ1 and

without interlayer potential difference will break this equivalence symmetry

such that T+
− 6= T−+ as depicted in Figure 4.13. In contrast, the reflection

probabilities R+
− and R−+ stay the same because the incident electrons return

again in an electron states [134]. In addition, the resonant peaks in T+
+

are less intense comparing to T+
+ with U2 = U4 in Figure 4.12. Now let

see how the interlayer potential difference will affect the different channels

of transmission and reflection. Figure 4.14 reveals the probabilities of the

different transmission and reflection channels as a function of ky and E for

U2 = U4 = 1.5 γ1 and δ2 = δ4 = 0.2 γ1. The general behavior of these different

channels resemble the single barrier case [134] with some major differences,

such as observing extra resonances in the energy region 0 < E < Uj due

to these bounded states in the well. In addition, the induced gap does not

completely suppressed the transmission in the energy region Uj± δj as it the

case in the single barrier [134] and this is also attributed to these bounded

states. With the interlayer potential difference and different height of the

barriers for U2 = 1.3 γ1, U4 = 1.5 γ1 and δ2 = δ4 = 0.2 γ1 we show the

different channels of transmission and reflection probabilities in Figure 4.15.
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Figure 4.13: Density plot for transmission and reflection probabilities with
U2 = 1.3 γ1, U4 = 1.5 γ1, b1 = b2 = 20 nm and ∆ = 10 nm. The dashed
white and black lines represent the band inside and outside the second barrier,
respectively.
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Figure 4.14: Density plot for transmission and reflection probabilities with
U2 = U4 = 1.5 γ1, δ2 = δ4 = 0.2 γ1 and b1 = b2 = ∆ = 10 nm. The dashed
white and black lines represent the band inside and outside the second barrier,
respectively.
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Figure 4.15: Density plot for transmission and reflection probabilities with
U2 = 1.3 γ1, U4 = 1.5 γ1, δ2 = δ4 = 0.2 γ1 and b1 = b2 = ∆ = 10 nm.
The dashed white and black lines represent the band inside and outside the
second barrier, respectively.
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In the same manner, the effect of this different height of the barriers is

reducing the transmission probabilities. However, we note that it becomes

more intens inside the gap and this is because the available states outside

the first barrier which are in the same energy zone of the gap on the second

barrier.

4.6 Conductance

In Figure 4.16 we show the conductance as a function of the energy E. Figure

4.16a shows the conductance of the double barrier structure for U2 = U4 =

1.5 γ1, δ2 = δ4 = 0 for ∆ = 5 nm (dotted curve) and ∆ = 10 nm (solid curve).

The peaks in the conductance of the double barrier have extra shoulders

as a results of the resonances in the transmission probabilities due to the

existence of the bound electron states in the well. These resonances show up

as convex curves, which were absent for the single barrier, in T+
+ in the region

0 < E < U2 = U4 and in T+
− , T

−
+ and T−− in the region γ1 < E < U2 = U4 as

depicted in figure 4.12. For energies larger than U2 + γ1 the channel T−− is

not suppressed (cloaked) any more so that we notice these very pronounced

peaks in the conductance in this regime. The inset of Figure 4.16a show

the contribution of each channel to the conductance for ∆ = 10 nm in the

region γ1 < E < 2γ1. For energies between the interlayer coupling and the

barriers’s height all channel contribute to the conductance, but for energies

larger than the barrier’s height the contribution of T−− is zero due to the cloak
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Figure 4.16: Conductance of the double barrier structure as a function of
energy for b1 = b2 = 20 nm. (a) U2 = U4 = 1.5 γ1, ∆ = 10 nm (solid), ∆ =
5 nm (dotted) and δ2 = δ4 = 0. (b) U2 = U4 = 1.5 γ1 and δ2 = δ4 = 0.2 γ1.
(c) U2 = 1.3 γ1 , U4 = 1.5 γ1, ∆ = 10 nm and δ2 = δ4 = 0. (d) U2 = 1.3 γ1,
U4 = 1.5 γ1, ∆ = 10 nm and δ2 = δ4 = 0.2 γ1.

effect which is clarified in the inset of Figure 4.16a. In Figure 4.16b we show

the conductance of the double barrier with the interlayer potential difference

δ2 = δ4 = 0.2 γ1 and for the same height of the two barriers U2 = U4 = 1.5 γ1.

As a result of the none zero transmission inside the gap (see Figure 4.14) we

also have none zero conductance inside the gap as clarified in the inset of

Figure 4.16b. In Figure 4.16c we represent the result in Figure 4.16a but with

asymmetric double barrier structure such that U2 = 1.3 γ1 and U4 = 1.5 γ1

for δ2 = δ4 = 0, we see that the asymmetric structure of the double barrier
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reduces the conductance and even removing some shoulders of the peaks. The

effect of the asymmetric double barrier structure together with the interlayer

potential difference is presented in Figure 4.16d for U2 = 1.3 γ1, U4 = 1.5 γ1,

δ2 = δ4 = 0.2 γ1. Similarly to the previous case, the conductance here

also decreases and some of the main peaks are removed as a consequence

of this asymmetric structure of the double barriers and the induced gap in

the spectrum. Although the interlayer potential difference is the same on the

both barriers, the gap in the conductance is not anymore 2 δ2 = 2 δ4 = 0.4 γ1

as the case in Figure 4.16c instead it becomes 3 δ2 = 3 δ4 = 0.6 γ1 as depicted

in the inset of Figure 4.16. Moreover, although at E = U2 = U4 = V there

are no available states, the conductance is not zero (in the single and double

barrier) and this is due to the presence of resonant evanescent modes which

are responsible for the pseudo-diffusive transport at the Dirac point [105].

The transmissions coefficients of these evanescent modes are shown in Figure

4.17a,4.17b for a single and double barrier, respectively. At high potential

strength ( U2 = U4 = V � γ1) and for δ2 = δ4 = 0, the four channels

at E = V will give almost identical contributions, T+
+ = T−+ = T+

− = T−− ,

for single and double barrier because the electrons now can not differentiate

between the two modes, see Figure 4.17c,4.17d.

The conductance dependence on the double barriers parameters is shown in

Figure 4.18. For E = 1.5 γ1 and δ2 = δ4 = 0 we show the conductance as a

function of the height of the barriers V (U2 = U4 = V ) in Figure 4.18a. In the

region E >V> 0 the conductance decreases with increasing V , whereas in the
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Figure 4.17: The transmissions coefficients around the Dirac point for (E =
V = 1.5 γ1) and b1 = b2 = 20 nm. (a) single barrier with ∆ = 0. (b) double
barrier with ∆ = 10 nm. (c, d) single and double barrier transmission for the
same parameters as in (a, b), respectively, but for (E = V = 5 γ1). Where
T =

∑
s,n=±(T sn)

region V > E it increases with increasing V till it reaches a Plato constant

value which is an odd behavior. This behavior is attributed to the resonance

in the region E < V since the conductance is minimum at the Dirac point

(in this case E = V ) leading to an increase of the conductance on the both

sides of the Dirac point ( E > V and E < V ) [105]. In contrast, increasing b2

for fixed other parameters decreases the conductance as depicted in Figure

4.18b and the number of resonances appearing in the conductance remains

the same with increasing b2. Finally, in Figure 4.18c we plot the conductance

versus ∆. The conductance is seen to oscillate with increasing width of the
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Figure 4.18: The conductance of the double barrier as a function of: (a)
barriers’s height V (U2 = U4 =V) for E = 1.5 γ1, b1 = b2 = 20 nm and
∆ = 10 nm. (b) b2 for V= 1.5 γ1, E = 1.3 γ1, b1 = 20 nm and ∆ = 10 nm.
(c) ∆ for V= 1.5 γ1, E = 1.3 γ1 and b1 = b2 = 20 nm.

well and then reaches to a constant asymptotic value.
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Chapter 5

CONCLUSION

In conclusion, we have evaluated the reflection and transmission prob-

abilities of electrons through symmetric and asymmetric double barrier po-

tential in a bilayer graphene system. Based on the four band model we found

the solution in each potential region and by matching them at the interface

of each region and obtained the different transmission and reflection coeffi-

cients. Subsequently, the transmission of electrons through symmetric and

asymmetric double barrier structure for various barriers parameters was in-

vestigated for energy ranges E < γ1 and E > γ1 where there occurs one and

two propagating mode, respectively.

We compared our results with previous work [137] (For E < γ1) and showed

that the cloak effect may occur for non-normal incidence and exhibits a

sequence of the resonances in the transmission in the region E < V due to
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bounded electrons in the well between the two barriers. Furthermore, for

normal incidence we found that these resonances, which were absent for the

single barrier, always occur for fixed energy (E < Uj) when S1 = S2 where

S1, S2, that it requires equality of the areas of the first and second barrier.

We also found that the most important parameter that control the position

and the number of these resonances, in both cases E < γ1 or E > γ1, is

the well width between the tow barriers not the thickness of the barriers in

agreement with [33,136].

Introducing the interlayer potential difference open a gap in the density plot

of the transmission probabilities where it is not completely suppressed as

it the case in the single barrier [134]. This is a consequence of the bound

states in the well between the two barriers. The asymmetric structure of the

double potential barrier reduces the transmission probabilities and removes

the sharp resonant peaks. We observed that the resulting conductance for the

double barrier was different from that of the single barrier. This difference

manifests itself through the presence of many extra resonances which are

associated with the bound electron states in the well.

The effect of the interlayer potential difference on the transmission proba-

bilities is reflected on the conductance where we obtain a gap with non zero

conductance. Moreover, the asymmetric structure of the double barrier re-

duces the conductance and removes the shoulders of main peaks. Finally,

we studied the conductance dependance on the double barrier parameters.

The conductance as a function of the height of the barrier showed a region
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where it increases with increasing the potential height, this is an odd behav-

ior which can be correlated to the minimum conductance around the Dirac

point.
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