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THESIS ABSTRACT

NAME: Khaled Abdulaziz Goblan Al-Hujaili

TITLE OF STUDY: Effect of input correlation on (normalized) adaptive filters

MAJOR FIELD: Electrical Engineering Department

DATE OF DEGREE: December 2013

The aim of this work is to give more insight about the performance of Adaptive

Filters. Studying this performance will help researchers to understand the influ-

ences that will affect this. This work can be divided into two parts as follows :

In the first part, we used the majorization theory as a mathematical tool to study

the effect of the input correlation scenarios on the performance of adaptive filters.

With this, we provide a mechanism to assess their performance. Also, with ma-

jorization theory, vector comparison is carried out and their order is preserved

through Schur’s functions. Each correlation scenario can be totally described by

the eigenvalues of the covariance matrix Ru. Thus, a comparison between these

scenarios can be done and a comparison between the responses of adaptive filters

to these scenarios can also be done. In the second part, a new approach for study-

ing the steady state performance of the Recursive Least Square (RLS) adaptive
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filter for a circularly correlated Gaussian input. The mean-square analysis of the

RLS filter in the steady state relies on the moment of the random variable ‖ui‖2
Pi

,

where ui is input to the RLS filter and Pi is the estimate of the inverse of input

covariance matrix. Earlier approaches evaluate this moment by assuming that ui

and Pi are independent which could result in negative value of the steady-state

Excess Mean Square Error (EMSE). In this work, we avoid this assumption and

derive a closed from expression for this moment. This derivation is based on

finding the cumulative distribution function (CDF) of the random variable of the

form 1
γ+||u||2D

, where u is correlated circular Gaussian input and D is a diagonal

matrix. As a result, we obtain more accurate estimate of the EMSE of the RLS

algorithm.
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CHAPTER 1

INTRODUCTION

1.1 Adaptive Filters

Adaptive filters are playing an important role in modern communication systems.

The adaptive filters comprise an important part in statistical signal processing.

When the signals come from an unknown statistics of an environment, the use of

the adaptive filters offers a good solution to this problem. Adaptive filters can

be used to perform many tasks inside the telecommunication system such that

equalization [1, 2], noise cancellation [3] and system identification [1] .

The most widely used adaptive filter algorithm is the Least Mean Squares (LMS)

which is the stochastic approximation of the Steepest Descent (SD) algorithm.

The SD algorithm provides a solution to the Wiener criteria by minimizing the

mean square value of error using equation (1.1)

min
w
E|d− uw|2 (1.1)

1



The target from the estimation problem in (1.1) is to find the column weight vec-

tor w that will make the quantity uw is the best estimate of the desired signal

d in the linear least squares sense. Where u is a row vector. The LMS has low

computational complexity with order of the filter length M , where the number

of operations per iterations relatively low, but on the other hand it has a slow

convergence, especially on highly correlated signals. Overcoming this problem can

be done by using the Normalized LMS algorithm (NLMS) [4]. In this algorithm

the input signal is normalized by its power.

There are many algorithms belong to the LMS family such as Sign-error LMS [5],

in which the error signal is replaced by its signed version and Leaky LMS [6].

Another approach to improve the performance of the LMS algorithm is by using

a time varying step size [7]. The idea of variable step size is to use large step size

when the algorithm is far from the solution to speed up the convergence and use

small step size when the algorithm approaches to the solution to achieve small

error.

Another type of adaptive filters families is the Recursive Least Squares (RLS)

algorithms [8]. RLS can be classified as a stochastic gradient approximation to a

Steepest Descent algorithm, in RLS a sophisticated approximation for the covari-

ance matrix of the input Ru = E[u∗u] is used. However, its significance is more

obvious if it’s considered as the exact solution to this estimation problem

min
w
‖y −Hw‖2 (1.2)

2



where y is a column vector which is consisting of the observed signals and the

matrix H is consisting of the regressors u vectors. The RLS algorithm is more

costly than LMS-family algorithms [1, 8], where an order of M2 operations per

iteration is needed. However, it converges faster than LMS [1].

1.2 Applications of Adaptive Filters

There are a great number of different applications for adaptive filters. They

could be applied in different fields such as, telecommunications, Radar, sonar,

video-audio signal processing and noise reduction. The difference between these

applications depends on the method of generating the desired signal d(i). Some

applications of adaptive filters are briefed in this section to assert their diversity

and necessity.

1.2.1 System Identification

System identification is a way to model an unknown system. In Figure 1.1 the

unknown system and the adaptive filter are excited by the sequence ui. The

output from the unknown system is described by (1.3)

d(i) = uic+ v(i) (1.3)

where the column vector c is the impulse response of the unknown system and

v(i) is a random noise.

3



At each time instant i the output d(i) is compared with the output from the

adaptive filter d̂(i) = uiwi−1. The error signal e(i) = d(i)− d̂(i) is used to adjust

the adaptive filter coefficients after each iteration. In steady states the error

signal will be small (if the stability conditions are satisfied) or the output from

the adaptive filter will be close to the output from the unknown system. This

convergence assumes that the adaptive filter characteristics will be closed to the

unknown system [1].

Figure 1.1: Adaptive filter for system identification

1.2.2 Linear Prediction

Linear prediction provides the best prediction of the signal at a future time. This

application is used in speech processing applications such as speech coding in

cellular telephony, speech enhancement and speech recognition. In this method

the input of the adaptive filter is the delayed version of the desired signal. The

error signal e(i) = d(i) − d̂(i) is used to adjust the coefficients of the adaptive

filter after each iteration.

4



Figure 1.2: Adaptive filter for linear prediction

In steady states the error signal will be small (if the stability conditions are satis-

fied) or the output from the adaptive filter will be close to desired signal [9]. The

linear prediction system is shown in Figure 1.2.

1.2.3 Inverse modeling or Equalization

Figure 1.3: Adaptive channel equalizer

In Figure 1.3 at each time instant i the signal d(i) = s(i−4) is compared with the

output from the adaptive filter ŝ(i−4) and the error signal e(i) = d(i)−uiwi−1 is

generated. This signal error will be used in adjusting the adaptive filter coefficients

after each iteration. In steady states the error signal will be small (if the stability

5



conditions are satisfied) or the output from the adaptive filter ŝ(i − 4) will be

close to the output from the delay system s(i−4). This convergence assumes that

characteristics of the adaptive filter will be close to the inverse of the unknown

system [1].

1.2.4 Line Echo Cancellation

Figure 1.4: Adaptive Line Echo Canaller (LEC)

The signal d in Figure 1.3 travels back to point A as an echo plus the signal from

the user. This echo results from the mismatch in circuitry. To overcome this

problem an adaptive line echo canaller (LEC) is employed. At the user end the

input to the adaptive LEC is the signal coming from A while the reference signal

is its reflected version. The adaptive LEC generates a signal similar to d. Thus,

it cancels its own echo and a clean signal is transmitted back to A [1].
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1.3 Effect of Input Correlation on the Perfor-

mance of Adaptive Filters

Studying the performance of adaptive filters is important; this study either in the

transient or in the steady state will help researchers to understand the influences

that will affect the performance of adaptive filters, to improve them and to com-

pare between them.

Many researchers tried to study the behavior of adaptive filters from several as-

pects. However, due to the nature of these filters, they are time-variant and

nonlinear systems, these studies often face some challenges. To overcome these

challenges, they must rely on some assumptions that will facilitate this task. Such

assumptions are small step size, separation principle, Gaussian assumption and

long filters.

The performance studies of the adaptive filters in literature are classified under

two regions; steady state and transient behavior.

The steady state analysis relies on the Energy conservation relation which

was originally derived in [10] and the variance relation derived from the energy

relation [11,12].

There are a lot of studies done before these relations, and using these relations

will give the same results. For LMS filter, the same result of the work in [13] was

achieved by employing theses relations and the small step size assumption. Also,

by applying the separation principle, the same result that obtained in [14] was

derived by using theses relations.
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For the NLMS filter the result that obtained in [15] for the EMSE was achieved

by using this energy relation.

After that, new weighted versions of the Energy conservation relation and the

variance relation were derived in [16], this weighted relations helped many re-

searchers to investigate the transient part as well as the steady state part in the

performance analysis. These relations are described in equations (1.4) and (1.5).

E‖w̃i‖2
σ = E‖w̃i‖2

diag{Fσ} + µσ2
vE

[
‖ui‖2

σ

g2[ui]

]
(1.4)

F = I − µA+ µ2B (1.5)

where F is an M ×M matrix, σ is a row vector M × 1, A = 2E
[u∗iui
g[ui]

]
, B =

E
[
‖ui‖2σu∗iui

g[ui]

]
, ‖w̃i‖2

diag{Fσ} = w̃∗i
(
diag{Fσ}

)
w̃i, g[ui] is a nonlinear function of

the regressor ui, µ is the step size and σ2
v is the nose variance.

From the weighted energy relation, we can derive the EMSE and MSD learning

curves as well as the steady state values. For example, in order to compute the

EMSE leaning curve we chose σ = q where q = [1 , 1 , . . . , 1]T and for the

steady state EMSE, it can be obtained by choosing this vector as σ = (I−F )−1q.

From this, we can see that the performance of any adaptive filter depends on the

matrices of moments A and B which depend on the statistics of the input. So, it

is worthwhile to investigate effect of input correlation on the performance of the

adaptive filters.
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1.4 Thesis Objectives and Organization

The main objective of this work is to study the behavior of adaptive filters. This

study is divided into two parts; the first part is to find a mathematical link between

the input correlation scenarios and the performance of the adaptive filters. The

second part of this thesis is deriving and studying the steady state performance

of the RLS filter. According to these objectives the organization of this thesis will

be as follows:

1.4.1 Correlation Effects and Majorization

The first part of this thesis (chapter 2 - chapter 4) is organized to fulfill this

objective. Chapter 2 presents a description of the procedure of developing the

stochastic gradient approximations or algorithms from the steepest descent meth-

ods. The steepest descent itself is also introduced as an iterative solution of the

Wiener solution. These stochastic gradient algorithms results from the steepest

descent methods by replacing the exact gradient vector and Hessian matrices with

instantaneous approximations. Moreover, this chapter also describes the perfor-

mance of the adaptive filters by deriving the mathematical expressions for the

performance measures [1]. In chapter 3, a description of the majorization theory

is presented by introducing the basic concepts and the main features that will help

in this study [17]. While in chapter 4 the utilizing of the majorization theory and

its techniques is introduced. In this chapter, the performance of some adaptive

algorithms is studied using majorization theory.
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1.4.2 Performance Analysis of the RLS Filter

In this part from the thesis (chapter 5 and chapter 6), a new approach for studying

the steady state performance of the Recursive Least Square (RLS) adaptive filter

for a circularly1 correlated Gaussian input is presented. The mean-square analysis

of the RLS relies on the moment of the random variable ‖ui‖2
P i

, where P i is the

estimate of the inverse of input covariance matrix. Earlier approaches evaluate

this moment by assuming that the ui and P i are independent which could result

in negative value of the steady state Excess Mean Square Error (EMSE). In this

work, this assumption is avoided and a closed form expression for this moment is

derived. This derivation is based on finding the cumulative distribution function

(CDF) of the random variable of the form 1
γ+||u||2D

, where u is circular correlated

Gaussian input and D is a diagonal matrix. As a result, more accurate estimation

of the EMSE of the RLS filter is obtained. Simulation results corroborate the

analytical findings.

1The following complex random variable z = x + jy is circular Gaussian random
variable if x and y are real-valued Gaussian random variables with zero means,Rx = Ry
and Rxy = −Ryx. Where Rx = E[xx∗], Ry = E[yy∗] and Rxy = E[xy∗]. This type
of random variables is used in any two dimensions case, e.g., in Quadrature amplitude
modulation (QAM) modulation and in Image Processing.
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CHAPTER 2

ADAPTIVE FILTERING

ALGORITHMS

An adaptive filter is an iterative algorithm. In each iteration i the adaptive filter

updates its coefficients vector wi (M × 1) to reach the optimal solution wo as

i→∞.

A general form for the adaptive filters to update wi is given by

wi = wi−1 + F (ui, e(i), µ) (2.1)

e(i) = d(i)− uiwi−1 (2.2)

Here, ui is a (1×M) zero mean random input sequence, d(i) is the desired signal,

the parameter µ is the step size and F (·) is a function of all these quantities. The

quantity e(i) is the estimation error between the desired value d(i) and the filter

output at time i (uiwi−1).
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In general, adaptive algorithms can be classified according to the estimation

problem that will be solved by either of the two objective functions (cost

functions) listed in Table 2.1.

Table 2.1: Classification of the adaptive algorithms

Algorithms Objective function for estimation problem Examples

Least mean algorithms min
w
E|d− uw|2 LMS and variations of LMS

Least squares algorithms min
w
‖y −Hw‖2 RLS and Exponentially Weighted RLS

In the next section, we present the procedure to evaluate the adaptive filter’s

weights of some of the algorithms based on objective functions mentioned in Table

2.1. Moreover, we also investigate the different performance measures of these

adaptive algorithms.

2.1 Least Mean Algorithms

The purpose of this section is to introduce the family of Least Mean Squares

algorithms. The Wiener filter provides an optimum solution to the least mean

objective function. The Steepest Decent method (SD) is an iterative solution for

Wiener Solution. This iterative procedure will start from an initial guess for the

solution and will give a better approximation as time progresses. Then, the Least

Mean Squares is obtained from the Steepest Decent method by replacing the exact

gradient vectors and Hessian matrices by some instantaneous approximations.

These three classes of algorithms will be described in the following subsections.
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2.1.1 The Wiener Solution

Let d be zero-mean scalar-valued random variable with variance σ2
d, and let u be

1 ×M zero-mean random row vector with a positive definite covariance matrix

Ru. The target is to estimate d from u in the linear least mean squares sense by

implementing the following optimization problem as mentioned in Table 2.1

min
w

J(w) = min
w

E|d− uw|2 (2.3)

= min
w

E
(
|d|2 +w∗u∗uw − d∗uw −w∗u∗d

)
(2.4)

= min
w

(
σ2
d +w∗Ruw −Rudw −w∗Rdu

)
(2.5)

where w is an M × 1 defined as the weight vector which gives an estimate of

optimum weights given ahead in equation (2.7), Ru = Eu∗u and Rdu = Edu∗.

The complex gradient vector of J(w) with respect to w is

∇wJ(w) = w∗Ru − Ed∗u (2.6)

By equating (2.6) to zero and solving for w, the minimizer or the desired solution

for this optimization problem (denoted as wo) is given by

wo = R−1
u Rdu (2.7)

13



The resulting minimum mean square error or Jmin will be [1]

m.m.s.e = Jmin = σ2
d −RudR

−1
u Rdu (2.8)

2.1.2 Implementation of the Wiener Solution

The solution wo in equation (2.7) is given in closed form. Sometimes it is not

possible to find this solution in closed form for different performance criteria,

i.e., performance criteria different from that of (2.3), other than the mean square

error criterion [1]. Then, an approximation for the solution wo can be found in

an iterative way.

This iterative procedure can be in the form:

(new guess of wo) = (old guess of wo) + (a correction term)

or

wi = wi−1 + µp , i ≥ 0 (2.9)

where wi is a guess for the solution wo at iteration i, p is the update direction

vector and the positive scalar µ is called the step size. The success of this iterative

method depends on effective choices of p and the step size µ.

The target from this iterative algorithm is to guarantee that the cost function

J(wi) is reduced along the direction p with each iteration, i.e.,

J(wi) < J(wi−1) (2.10)
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Starting from the objective function J(wi) in (2.5) and by replacing w by its

value in (2.9) to relate J(wi) and J(wi−1) as

J(wi) = σ2
d +w∗iRuwi −Rudwi −w∗Rdu (2.11)

= σ2
d + (wi−1 + µp)∗Ru(wi−1 + µp)−Rud(wi−1 + µp)− (wi−1 + µp)∗Rdu

(2.12)

= J(wi−1) + µ(w∗i−1Ru −R∗du)p+ µp∗(Ruwi−1 −Rdu) + µ2p∗Rup

(2.13)

= J(wi−1) + 2µRe[∇wJ(wi−1)p] + µ2p∗Rup (2.14)

where ∇wJ(wi−1) = w∗i−1Ru −R∗du.

From (2.14) the term (µ2p∗Rup) is positive for all nonzero p since Ru > 0, then

the condition that we need for the case in (2.10) to be satisfied is

Re[∇wJ(wi−1)p] < 0 (2.15)

There are many choices of vector p that satisfy (2.15). For example, any p of the

form [1]:

p = −B[∇wJ(wi−1)]∗ (2.16)

for any Hermitian positive definite matrix B will satisfy (2.15).
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In the Steepest Descent (SD) method, B is simply the identity matrix I [1,18].

Then, the update direction vector p will be

p = −[∇wJ(wi−1)]∗

= Rdu −Ruwi−1

(2.17)

with this vector p the recursion in (2.9) will be

wi = wi−1 + µ[Rdu −Ruwi−1] , w−1 = 0 (2.18)

Introducing the weight error vector w̃i = wo − wi. Subtracting both sides of

(2.18) from wo yields

w̃i = [I − µRu]w̃i−1 (2.19)

Analyzing this recursion will give the following condition on the step size µ to

ensure the convergence (w̃i → 0 or wi → wo as i→∞) if and only if

0 < µ <
2

λmax
(2.20)

and the optimal step size represented by µo [1], is given by

µo <
2

λmax + λmin
(2.21)

where λmax and λmin are the largest and the smallest eigenvalues of Ru respec-

tively.
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In the Newton’s Method the matrix B in (2.16) is the inverse of the exact

Hessian [∇2
wJ(wi−1)]−1, then the recursion (2.9) will be

wi = wi−1 + µR−1
u [Rdu −Ruwi−1] , w−1 = 0 (2.22)

The weight error recursion for the Newton’s Method is

w̃i = (1− µ)w̃i−1 (2.23)

The condition on the step size to ensure convergence will be

|1− µ| < 1⇔ 0 < µ < 2 (2.24)

which is independent of Ru. Furthermore, the convergence will be guaranteed for

a single iteration if the step size is chosen as µ = 1 [1,18].

Sometimes the Hessian matrix [∇2
wJ(wi−1)] is close to a singular. To avoid this

scenario we can use regularization. Thus, in Regularized Newton’s method the

matrix B in (2.16) is set to

B = [εI +∇2
wJ(wi−1)]−1

for ε > 0, the recursion (2.1) becomes

wi = wi−1 + µ[εI +Ru]−1[Rdu −Ruwi−1] , w−1 = 0 (2.25)
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2.2 Stochastic Gradient Approximations of

Steepest Descent

Stochastic gradient algorithms are obtained from the previous algorithms by re-

placing gradient vectors and the Hessian matrix by some approximations. We

need this to avoid the need of the exact signal statistics (covariance and cross-

covariance e.g. Rdu and Ru) which are in general not available practically, and

we can’t implement these algorithms without these statistics.

One of the simplest approximations for these moments is to drop the expectation

operator and instead employ the instantaneous values as follows

Rdu ≈ d(i)u∗i , Ru ≈ u∗iui (2.26)

where d(i) ∈ {d(0) , d(1) , d(2) , . . .} and ui ∈ {u0 , u1 , u2 , . . .}.

2.2.1 Least-Mean-Square algorithm (LMS)

Using these approximations of (2.26) in the Steepest Descent recursion in (2.18)

yields the Least Mean Squares (LMS) algorithms.

wi = wi−1 + µu∗i e(i) , w−1 = 0 (2.27)

where e(i) = d(i)− uiwi−1
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2.2.2 Normalized Least-Mean-Square algorithm (NLMS)

By using these approximations, recursion (2.25) becomes

wi = wi−1 + µ[εI + u∗iui]
−1u∗i [d(i)− uiwi−1] (2.28)

Using the matrix inversion lemma to simplify the term [εI + u∗iui]
−1 yields

[εI + u∗iui]
−1 = ε−1I − ε−2

1 + ε−1‖ui‖2
u∗iui (2.29)

multiplying both sides of (2.29) by u∗i from the right yields

[εI + u∗iui]
−1u∗i = ε−1u∗i −

ε−2

1 + ε−1‖ui‖2
u∗i ‖ui‖2 (2.30)

=
u∗i

ε+ ‖ui‖2
(2.31)

Using this result in equation (2.28), we obtain

wi = wi−1 +
µ

ε+ ‖ui‖2
u∗i [d(i)− uiwi−1] , i ≥ 0 ,w−1 = 0 (2.32)

This stochastic gradient approximation is known as the ε-Normalized LMS (ε-

NLMS) algorithm [1]. If the parameter ε is set to zero the resulting algorithm is

known as NLMS algorithm.

Remark:

The update recursions in (2.27) and (2.32) are both special cases of the following
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general form

wi = wi−1 + µ
u∗i
g[ui]

e(i) (2.33)

e(i) = d(i)− uiwi−1 (2.34)

Several adaptive filters algorithms can be extracted from this general form by

changing the generic function g[ui] of the regression vector ui . Examples of these

filters are listed in Table 2.2.

Table 2.2: Different variations of Least Mean Squares algorithms

Algorithm g[ui]

LMS 1

NLMS ‖ui‖2

ε-NLMS ε+ ‖ui‖2

Other adaptive filters with error nonlinearity can be derived from the following

general form

wi = wi−1 + µu∗i f [e(i)] (2.35)

Examples of these filters [1, 12, 19–21] are listed in Table 2.3.
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Table 2.3: Different variations of Least Mean Squares algorithms

Algorithm f [e(i)]

LMS [22] e(i)

LMF [20] e(i)|e(i)|2

NLMF [23] e(i)|e(i)|2
‖ui‖2

LMMN [24] e(i)(α + (1− α)|e(i)|2)

Sign-error [25] csgn[e(i)]

2.3 Performance Measures of Adaptive Filters

It is important to test the performance of these adaptive filters algorithms in order

to classify or compare them. In this work a common performance measure will be

used. Four quantities for measuring the performance will be considered. These

quantities can be either functions of i (iteration time to generate the learning

curves) or in terms of the steady state values (as i→∞).

The performance measures are:

1. The Mean Square Error (MSE)

MSE(i) = E|d(i)− uiwi−1|2 = J(wi) (2.36)

where Jmin = σ2
d −RudR

−1
u Rdu.
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2. The Excess Mean Square Error (EMSE)

EMSE(i) = MSE(i)− Jmin (2.37)

3. The Missadjustment M(i)

M(i) = EMSE(i)/Jmin (2.38)

4. The Mean Square Deviation (MSD)

MSD(i) = E‖wo −wi‖2 (2.39)

2.3.1 Performance Analysis of Steepest Descent algorithm

and Newton’s Method

The original problem is in the case of Steepest Descent and Newton’s Method is

to minimize the following objective function

J(w) = E|d− uw|2

Dealing with J(w) as a function i and using wi as an estimate of w will give a

useful information about the behavior of these two filters.

The learning curve (it is also known as the mean square error (MSE) curve)

and denoted by J(wi) will be used to represent the behavior of theses algorithms.
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Starting from the definition of J(wi) as

J(wi) = E|d− uwi|2 (2.40)

= σ2
d +w∗Ruw −Rudw −w∗Rdu (2.41)

=

[
1 w∗i

] σ2
d −Rud

−Rdu Ru


 1

wi

 (2.42)

from [1] the center matrix can be factorized as

 σ2
d −Rud

−Rdu Ru

 =

1 −RudR−1
u

0 1


σ2

d −RudR
−1
u Rdu 0

0 Ru


 1 0

−RudR−1
u 1


(2.43)

substituting this in (2.42) will give

J(wi) = (σ2
d −RudR

−1
u Rdu) + (wi −R−1

u Rdu)∗R−1
u (wi −RuRdu) (2.44)

= Jmin + w̃∗iRuw̃i (2.45)

Introducing the Eigen-decomposition of Ru = UΛU ∗ and replacing w̃i by Uxi,

equation (2.45) will be

J(wi) = Jmin + w̃∗iUΛU ∗w̃i (2.46)

= Jmin + x∗iU
∗UΛU ∗Uxi (2.47)

= Jmin +
M∑
k=1

λk|xk(i)|2 (2.48)
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where xk(i) is the kth entry of xi and UU ∗ = U ∗U = I.

The vector xi can be derived from (2.19) by multiplying both sides by U ∗ from

the right and by replacing Ru by its decomposition to get

xi = [I − µΛ]xi−1 (2.49)

From (2.49), the kth entry of xi will be

xk(i) = (1− µλk)xk(i− 1) (2.50)

= (1− µλk)i+1xk(−1) (2.51)

Substituting this in (2.48) yields

J(wi) = Jmin +
M∑
k=1

λk(1− µλk)2(i+1)|xk(−1)|2 (2.52)

Using the same procedure above, the learning curve for Newton’s algorithm can

be shown to be

J(wi) = E|d− uwi|2 (2.53)

= Jmin +
M∑
k=1

λk|xk(i)|2 (2.54)

= Jmin + (1− µ)2(i+1)

M∑
k=1

λk|xk(−1)|2 (2.55)
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where the kth entry of xi will be in this case

xk(i) = (1− µ)i+1xk(−1) (2.56)

Taking the limit as i → ∞ for the two learning curves in (2.52) and (2.55) will

give the same result for both SD and Newton’s algorithms as

lim
i→∞

J(wi) = Jmin (2.57)

this conclusion is constrained by choosing the step size µ according to the con-

ditions that mentioned in (2.20) and (2.24) for SD and Newton’s method respec-

tively.

2.3.2 Performance Analysis of Least Mean Squares (LMS)

As mentioned in Chapter 1, the analysis of the stochastic gradient algorithms

relies on the energy relation and its weighted version. The steady state analysis of

the LMS filter can be done by utilizing the energy relation, but going in this way

will not give exact expressions. Using the weighted version of the energy relation

can be used to find the transient and the steady state behaviors. Moreover, the

steady state analysis will be accurate and without relying on any assumptions,

such as small step size and separation assumption.
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The weighted energy conservation relation [10] is given by

‖w̃i‖2
Σ +
|eΣ
a (i)|2

‖ui‖2
Σ

= ‖w̃i−1‖2
Σ +
|eΣ
p (i)|2

‖ui‖2
Σ

(2.58)

and the weighted variance relation [11,12] is

E‖w̃i‖2
Σ = E‖w̃i‖2

Σ′ + µ2σ2
vE

(
‖ui‖2

Σ

g2[ui]

)
(2.59)

Σ′ = Σ− µΣ
u∗iui
g[ui]

− µu
∗
iui

g[ui]
Σ + µ2‖ui‖2

Σ

g[ui]
u∗iui (2.60)

where the notation

‖x‖2
Σ = x∗Σx (2.61)

for some Hermitian positive definite weighting matrix Σ, σ2
v is the noise variance

and g[ui] is a positive valued function of ui.

For the LMS filter where g[ui] = 1, the variance relation in (2.59) and (2.60) will

be

E‖w̄i‖2
Σ̄ = E‖w̄i‖2

Σ̄
′ + µ2σ2

vE‖ūi‖2
Σ̄ (2.62)

Σ̄
′

= Σ̄− µΣ̄u∗iui − µū∗i ūiΣ̄ + µ2‖ūi‖2
Σ̄ū
∗
i ūi (2.63)
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where in the last equations, the following transformation is used

w̄i = U ∗w̃i, ūi = wiU , Σ̄ = U ∗ΣU (2.64)

Assuming that ūi is circular Gaussian with a diagonal covariance matrix Λ, the

variance relation in (2.62) and (2.63) can be rewritten as

E‖w̄i‖2
Σ̄ = E‖w̄i‖2

Σ̄
′ + µ2σ2

vTr(ΛΣ̄) (2.65)

Σ̄
′

= Σ̄− µΣ̄Λ− µΛΣ̄ + µ2[ΛTr(Σ̄Λ) + ΛΣ̄Λ] (2.66)

Now introduce the following (M × 1) vectors

σ̄ = diag{Σ̄}, λ = diag{Λ} (2.67)

with these new vectors, the relations in (2.65) and (2.66) can be written as

E‖w̄i‖2
diag{σ̄} = E‖w̄i−1‖2

diag{F̄ σ̄} + µ2σ2
v(λ

T σ̄) (2.68)

E‖w̄i‖2
σ̄ = E‖w̄i−1‖2

F̄ σ̄ + µ2σ2
v(λ

T σ̄) (2.69)

where σ̄′ = F̄ σ̄, F̄ = (I − 2µΛ + µ2Λ2) + µ2λλT and the diag{} is dropped for

compactness of notation.

The MSD learning curve which is defined in (2.39) is

MSD(i) = E‖wo −wi‖2 = E‖w̄i‖2
q (2.70)
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by setting the vector σ̄ in (2.68) to

σ̄ = diag{I} = [1 , . . . , 1]T = q (2.71)

and iterating from i = 0 with w̄−1 = wo, we obtain the following expression for

the MSD learning curve of the LMS filter

MSD(i) = ‖wo‖2

diag{F̄ i+1
q} + µ2σ2

v

i∑
k=0

λT F̄
k
q

= ‖wo‖2

F̄
i+1
q

+ µ2σ2
v

i∑
k=0

λT F̄
k
q , i ≥ 0

(2.72)

Figure 2.1 shows a comparison between the MSD learning curves from

(2.72) and from simulation. In this simulation, these curves are generated

by using the following λ = [1.2090, 1.0910, 1.0000, 0.9000, 0.8000]T , wo =

[0.1348, 0.2697, 0.4045, 0.5394, 0.6742]T , µ = 0.05 and σ2
v = 0.001.

0 50 100 150 200 250 300
−40

−35

−30

−25

−20

−15

−10

−5

0

 Iterations i

 M
S

D
 (

d
B

)

 MSD

 

 
 Simulation
 Calculated

Figure 2.1: LMS learning curves
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In steady state the recursion (2.69) will be

E‖w̄∞‖2
(I−F̄ )σ̄ = µ2σ2

v(λ
T σ̄) (2.73)

by setting the vector σ̄ in (2.75) to

σ̄ = (I − F̄ )−1q (2.74)

and use this value for the vector σ̄ to make the weight in the left hand side of

equation (2.75) equal to q, i.e.,

E‖w̄∞‖2
q = µ2σ2

v(λ
Tq) (2.75)

By setting the weight to q, we obtain the MSD for the LMS filter, i.e.,

MSD =

σ2
vµ

M∑
k=1

1

2− µλk

1− µ
M∑
k=1

λk
2− µλk

(2.76)

Also by setting the vector σ̄ in (2.75) to

σ̄ = (I − F̄ )−1λ (2.77)
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We recover steady state EMSE of the LMS filter as

EMSE =

σ2
vµ

M∑
k=1

λk
2− µλk

1− µ
M∑
k=1

λk
2− µλk

(2.78)

From equations (2.76) and (2.78), the steady state errors MDS and EMSE will not

go to zero anymore because the weight error vector w̃i 9 0 (wi 9 wo) as i→∞

due to the gradient noise (using instantaneous values instead of the quantities

{Rdu,Ru} as in (2.26)).

Figure 2.2 shows the MSE learning curves for the Steepest Descent and its stochas-

tic approximation algorithm LMS. The difference between the EMSE for both

filters are shown also.

Also, a comparison between the MSD learning curves for the Steepest Descent

and its stochastic approximation algorithm LMS is shown in Figure 2.3.

In generating these curves, the following parameters are used: the input regressor

is i.i.d. Gaussian random variable with covariance matrix Ru = diag{5, 4, 3, 2, 1},

wo = [0.1348, 0.2697, 0.4045, 0.5394, 0.6742]T , µ = 0.05 and σ2
v = 0.001.
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CHAPTER 3

MAJORIZATION THEORY

Majorization is a partial ordering on vectors which determines the degree of sim-

ilarity between the vector elements. Functions that translate the ordering of vec-

tors to a standard scalar ordering are known as Schur’s functions (Schur-convex

or Schur-concave functions).

Many problems arising in signal processing and communications involve compar-

ing vector-valued strategies or solving optimization problems with vector-valued

or matrix-valued variables. Majorization theory is a key tool that allows us to

solve or simplify these problems. In this chapter, a brief introduction about the

majorization theory and Schur’s functions will be presented [17,26,27].

3.1 Basic Concepts

Definition 3.1 (Majorization) For any two vectors x,y ∈ RM with descending

order components x1 ≥ x2 ≥ . . . ≥ xM ≥ 0 and y1 ≥ y2 ≥ . . . ≥ yM ≥ 0, then the
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vector x majorizes the vector y written as x � y if

k∑
i=1

xi ≥
k∑
i=1

yi , k = 1, . . . ,M − 1 (3.1)

and

M∑
i=1

xi =
M∑
i=1

yi (3.2)

For example, it is easy to see from the definition that these M × 1 vectors with

sum S

(
S

M
,
S

M
, . . . ,

S

M

)
≺ (S, 0, . . . , 0) (3.3)

In fact we can prove that these two vectors are upper/lower bounds in the sense

that

(
S

M
,
S

M
, . . . ,

S

M

)
≺ (a1, a2, . . . , aM) ≺ (S, 0, . . . , 0) (3.4)

whenever ai ≥ 0,
∑
ai = S

Definition 3.2 (Weak Majorization) For any two vectors x,y ∈ RM with de-

scending order components x1 ≥ x2 ≥ . . . ≥ xM ≥ 0 and y1 ≥ y2 ≥ . . . ≥ yM ≥ 0,

then the vector x weakly majorizes the vector y written as x w � y if

k∑
i=1

xi ≥
k∑
i=1

yi , k = 1, . . . ,M − 1 (3.5)
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From definitions 3.1 and 3.2 we can see that

x � y ⇒ x w � y (3.6)

Definition 3.3 (Majorization Equivalents) The following conditions are equiva-

lent to the majorization conditions in definition 3.1:

1. If x = yP for some doubly stochastic matrix P , then x � y.

2. If
∑
φ(xi) ≤

∑
φ(yi) for all continuous convex functions φ, then x � y.

Note that the components of a vector x might not be order in a descending order.

So, when we would like to compare two vectors, we first order their components

in a descending order before actually comparing them.

3.2 Order-Preserving Functions: Schur Func-

tions

Functions that preserve the ordering of majorization are known as Schur-convex

(concave) functions. Next, we discuss some of their properties.

Definition 3.4 (Schur-convex(concave) functions) A real function φ : RM → R

is said to be Schur-convex (concave)

x � y ⇒ φ(x) ≥ (≤) φ(y) (3.7)
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There are many characterizations of Schur-convex (concave) functions but the

simplest one is described in the following Lemma.

Lemma 3.1 The necessary and sufficient condition for a symmetric1 function

φ(x) to be Schur-convex(concave) is

(x1 − x2)

[
∂φ(x)

∂x1

− ∂φ(x)

∂x2

]
≥ (≤)0 (3.8)

Sometimes it will be convenient to use the following sufficient condition to test

the Schur’s convexity:

Lemma 3.2 If g(xk) is convex then

φ(x) =
M∑
i=1

g(xk) (3.9)

is Schur-convex. If g(xk) is concave, then φ(x) is Schur-concave.

Examples of Schur-convex (concave) functions:

1. The function V (x) =
M∑
k=1

xk ln(xk) is Schur-convex function ∀x ∈ RM
+ . The

condition in the Lemma (3.1) can be used to proof the Schur-convexity. Note

first that V (x) is symmetric under any arbitrary permutation of the input

1A function φ(x1, x2, . . . , xM ) is symmetric if the argument vector (x1, x2, . . . , xM )
can be arbitrarily permuted without changing the value of the function.
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vector x. Now, the partial derivatives of V (x) with respect to x1 and x2 are

∂ V (x)

∂x1

= ln(x1) + 1 ,
∂ V (x)

∂x2

= ln(x2) + 1

Thus, we can write

(x1 − x2)

(
∂ V (x)

∂x1

− ∂ V (x)

∂x2

)
= (x1 − x2)

[
ln(x1) + 1− ln(x2)− 1

]

= (x1 − x2)

[
ln(x1)− ln(x2)

]
= (x1 − x2) ln

(
x1

x2

)
≥ 0

(3.10)

This always true for x1 ≥ x2 and the function V (x) is a Schur’s-convex

function. For the following two vectors

x = [10, 8, 4, 2, 1], y = [10, 5, 5, 4, 1]

It can be easy to show that x � y. The value of V (x) with these vectors x

and y will be

V (x) = 46.5929, V (y) = 44.6654

2. The function F (x) = sin(x1) + sin(x2) + . . . + sin(xM) is Schur-concave on

[0, π]. Here, the condition in Lemma (3.2) will be enough to proof the Schur-

concavity of this function. This is because F (x) is a sum of M identical and

concave functions g(xk) = sin(xk) on [0, π] .
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CHAPTER 4

MAJORIZATION PROPERTIES

OF ADAPTIVE FILTERS

4.1 Motivation

As we saw in Section 2.3, the performance of adaptive filters can be described

in the form of scalar measures (e.g., MSE, MSD and learning curves). These

functions are affected by several parameters such as, the step size, the variance of

the noise and the eigenvalues of the covariance matrix of the input signal Ru.

In literature, there are many studies about the effect of the eigenvalues and the

eigenvalues spread χ(Ru) = λmax
λmin

of the matrixRu on the performance of adaptive

filters, where λmax and λmin are the largest and the smallest eigenvalues of the

matrixRu respectively. In [8, p. 215], an experiment was done to test the effect of

the eigenvalues spread on the performance of the Steepest Decent algorithm. They

conclude from this experiment that the SD algorithm converges faster when χ(Ru)
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is small (λmax and λmin are almost equal). In contrast, when χ(Ru) increases

(the input samples become more correlated) the convergence become slower. In

[28–30], a study about the effect of normalization on the convergence rate and

the eigenvalues spread for the NLMS by simplifying the matrices of moments.

Analyzing these functions is the aim of this chapter. As explained in the last

chapter, the majorization theory offers a method for analyzing the performance of

adaptive filters with respect to the correlation scenario of the input signal. Any

change in the correlation of the input signal will totally appear in the eigenvalues

of the covariance matrix Ru. In this work, each correlation scenario will be

represented by (1×M) vector as follows

Λk = [Λk(1) , Λk(2) , . . . , Λk(M)] (4.1)

= [λk1 , λ
k
2 , . . . , λ

k
M ] (4.2)

where all λ′s are positive and arranged in a descending order λ1 ≥ λ2 ≥ . . . ≥ λM .

For any two correlation scenarios, there is one vector for each one of them. In

majorization, the comparison between them can be achieved. Moreover, these

comparisons can be preserved through Schur’s functions. As a result, it can be

shown which correlation will lead to better performance.

For each adaptive filter, the performance measures such as the EMSE will be

tested by Schur’s conditions. In this chapter, the analysis for the following filters

will be studied;
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1. Steepest Descent Algorithm.

2. Newton’s Algorithm.

3. Least-Mean-Square algorithm (LMS).

4.2 Majorization Properties of Steepest Descent

The learning curve for Steepest Descent from equation (2.52) is

J(wi) = Jmin +
M∑
k=1

λk(1− µλk)2(i+1)|xk(−1)|2

= Jmin + C
M∑
k=1

g(λk)

(4.3)

where g(λk) = λk(1 − µλk)2(i+1). From (4.3), the learning curve for the SD is a

sum of an M identical functions. According to the Schur’s test in lemma (3.1),

it will be enough if the convexity or concavity of g(λk) is proved. The function

g(λk) will be convex if its second derivative is positive.

The second derivative of g(λk) is

g
′′
(λk) = 2µ(i+ 1)(1− µλk)2i[(3 + 2i)µλk − 2] (4.4)

From (4.4) the function g(λk) is convex if :

λk ≥
2

(2i+ 3)µ
(4.5)
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or equivalently

µ ≥ 2

(2i+ 3)λk
(4.6)

For Λk = [λk1 ≥ λk2 ≥ . . . ≥ λkM ] then :

2

(2i+ 3)λkM
≤ µ ≤ 2

λk1
(4.7)

The condition in (4.7) is sufficient but not a necessary condition for J(wi) to be

Schur-convex function.

For Λ1 � Λ2 � . . . � ΛN a sufficient condition for Schur-convexity is

2

(2i+ 3)min{λ1
M , λ

2
M , . . . , λ

N
M}
≤ µ ≤ 2

λ1
1

(4.8)

It can be seen from (4.8) that the range of the step size µ at any time instant (i)

is a subset of the range at the time instant (i+ 1). Such as at i = 0 and at i = 1

{
2

(3)min{λ1
M , λ

2
M , . . . , λ

N
M}
≤ µ ≤ 2

λ1
1

}
∈

{
2

(5)min{λ1
M , λ

2
M , . . . , λ

N
M}
≤ µ ≤ 2

λ1
1

}

So it will be enough if the step size µ is selected from the range at time i = 0, but

in some cases this condition will not be satisfied (due to the stability conditions

of the SD algorithm), hence the need for going up to time i = 1 or more to satisfy

this range or condition. If µ is selected from the suitable range (for example at

i), the majorization will be satisfied for any time instant greater than or equal i.
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Simulation results

Consider the following two vectors which represent two correlation scenarios:

Λ1 = [Λ1(1) , Λ1(2) , Λ1(3) , Λ1(4) , Λ1(5)] (4.9)

= [37.7343 , 35.4682 , 32.3157 , 24.4882 , 22.2793] (4.10)

Λ2 = [Λ2(1) , Λ2(2) , Λ2(3) , Λ2(4) , Λ2(5)] (4.11)

= [34.0957 , 30.9876 , 29.6801 , 29.3734 , 28.1489] (4.12)

It can be easily verified that Λ1 � Λ2, by applying the definition 3.1 which

calculates the partial sums

SUMΛ1 =
[ 1∑
k=1

Λ1(k) ,
2∑

k=1

Λ1(k) ,
3∑

k=1

Λ1(k) ,
4∑

k=1

Λ1(k) ,
5∑

k=1

Λ1(k)
]

(4.13)

= [37.7343 , 73.2026 , 105.5182 , 130.0064 , 152.2858] (4.14)

SUMΛ2 =
[ 1∑
k=1

Λ2(k) ,
2∑

k=1

Λ2(k) ,
3∑

k=1

Λ2(k) ,
4∑

k=1

Λ2(k) ,
5∑

k=1

Λ2(k)
]

(4.15)

= [34.0957 , 65.0833 , 94.7635 , 124.1369 , 152.2858] (4.16)

By comparing the entries in (4.13) with (4.16) it is easy to see that Λ1 � Λ2.

If the step size µ is selected according to the condition in (4.8) with i = 0 as

2

(3)× 22.2793
≤ µ ≤ 2

37.7343

0.0299 ≤ µ ≤ 0.0530
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Then J(wi,Λ1) ≥ J(wi,Λ2) ∀ i. This is demonstrated in Figure 4.1 which shows

that the MSE learning curves for two scenarios with Λ1 � Λ2.
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Figure 4.1: Learning curves for Steepest Descent with (Λ1 � Λ2 )

4.3 Majorization Properties of Newton’s Algo-

rithm

The learning curve for Newton Method’s Algorithm from equation (2.53) is

J(wi) = E|d− uwi|2 (4.17)

= Jmin +
M∑
k=1

λk|xk(i)|2 (4.18)

= Jmin + C(1− µ)2(i+1)

M∑
k=1

λk (4.19)
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From (4.19) it can be shown that the learning curve depends on the sum of the

whole vector (
∑M

k=1 λk), and it will be both Schur-convex and Schur-concave as

concluded in [27] and [26]. Thus, J(wi,Λm) = J(wi,Λn) for any Λm � Λn.

This is demonstrated for the two extreme cases Λ1 = [M , 0 , 0 , . . . , 0] and

Λ1 = [1 , 1 , . . . , 1] in Figure 4.2.
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Figure 4.2: Learning curves for Newton’s Method for (Λ1 � Λ2 )

43



4.4 Majorization Properties of Least Mean

Square (LMS)

In this section we study the majorization properties of the LMS filter in steady

state.

4.4.1 Steady States (EMSE)

From equation (2.78) the steady state EMSE is fully described by the following

expression [1] :

EMSE =

σ2
vµ

M∑
k=1

λk
2− µλk

1− µ
M∑
k=1

λk
2− µλk

=
σ2
vµ S

1− µ S

(4.20)

where S =
M∑
k=1

λk
2− µλk

.

Applying the test in (3.8) on the EMSE to check the Schur’s convexity as follows:

Partial derivative of the numerator of (4.20)

∂

∂λ1

[
σ2
vµ

M∑
k=1

λk
2− µλk

]
=

[
2σ2

vµ

(2− µλ1)2

]
(4.21)
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Partial derivative of the denominator of (4.20)

∂

∂λ1

[
1− µ

M∑
k=1

λk
2− µλk

]
=

[
−2µ

(2− µλ1)2

]
(4.22)

Then:

∂EMSE

∂λ1

=

[(
1− µS

) 2σ2
vµ

(2−µλ1)2
−
(
σ2
vµS

) −2µ

(2−µλ1)2

(1− µS)2

]

=
2σ2

vµ

(2− µλ1)2

[(
1− µS + µS

)
(1− µS)2

]

=

[ 2σ2
vµ

(2−µλ1)2

(1− µS)2

]
(4.23)

and

∂EMSE

∂λ2

=

[ 2σ2
vµ

(2−µλ2)2

(1− µS)2

]
(4.24)

Using these results and applying the Schur’s test in (3.8) with λ1 ≥ λ2 yields:

(λ1 − λ2)
(∂EMSE

∂λ1

− ∂EMSE

∂λ2

)
= (λ1 − λ2)

[ 2σ2
vµ

(2−µλ1)2(
1− µS

)2 −
2σ2
vµ

(2−µλ2)2(
1− µS

)2

]

=
2σ2

vµ(λ1 − λ2)(
1− µS)2

[
1

(2− µλ1)2 −
1

(2− µλ2)2

]

(4.25)

Now investigate sign of the RHS in equation (4.25) as

2σ2
vµ(λ1 − λ2)(
1− µS)2

[
1

(2− µλ1)2 −
1

(2− µλ2)2

]
R 0 (4.26)
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(λ1 − λ2)

[
1

(2− µλ1)2 −
1

(2− µλ2)2

]
R 0 (4.27)

Since λ1 ≥ λ2 the LHS in (4.27) is always positive. From this result and by

utilizing the condition in (3.8), then the EMSE of the LMS is a Schur-convex

function for any step size µ. Thus, for Λ1 � Λ2 the performance can be ordered

as

EMSE(Λ1) ≥ EMSE(Λ2)

4.4.2 Steady States (MSD)

From equation (2.76) the steady state MSD is given by:

MSD =
σ2
vµ
∑M

k=1
1

2−µλk

1− µ
M∑
k=1

λk
2− µλk

=
σ2
vµ
∑M

k=1
1

2−µλk
1− µ S

(4.28)

where S =
M∑
k=1

λk
2− µλk

.

Following the same steps that used in proving the Schur’s convexity for the EMSE.

Partial derivative of the numerator of (4.28)

∂

∂λ1

[
σ2
vµ

M∑
k=1

1

2− µλk

]
=

[
σ2
vµ

2

(2− µλ1)2

]
(4.29)
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Partial derivative of the denominator of (4.28)

∂

∂λ1

[
1− µ

M∑
k=1

λk
2− µλk

]
=

[
−2µ

(2− µλ1)2

]
(4.30)

Then:

∂MSD

∂λ1

=

[ σ2
vµ

2

(2−µλ1)2

(
1− µS

)
+ 2σ2

vµ
2

(2−µλ1)2

M∑
k=1

1

2− µλk
(1− µS)2

]

=
σ2
vµ

2

(2− µλ1)2

[1− µ
M∑
k=1

λk
2− µλk

+ 2
M∑
k=1

1

2− µλk
(1− µS)2

]

=
σ2
vµ

2

(2− µλ1)2(1− µS)2

[
1 +

M∑
k=1

2− µλk
2− µλk

]

=
σ2
vµ

2(1 +M)

(2− µλ1)2(1− µS)2

(4.31)

and

∂MSD

∂λ2

=
σ2
vµ

2(1 +M)

(2− µλ2)2(1− µS)2
(4.32)

Using these results and applying the Schur’s test in (3.8) yields:

(λ1 − λ2)
(∂MSD

∂λ1

− ∂MSD

∂λ2

)
= (λ1 − λ2)

[
σ2
vµ

2(1 +M)

(2− µλ1)2(1− µS)2
− σ2

vµ
2(1 +M)

(2− µλ2)2(1− µS)2

]

(4.33)

=
σ2
vµ

2(1 +M)(λ1 − λ2)(
1− µS)2

[
1

(2− µλ1)2 −
1

(2− µλ2)2

]

(4.34)
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Now investigate sign of the RHS in equation (4.33) as

σ2
vµ

2(1 +M)(λ1 − λ2)(
1− µS)2

[
1

(2− µλ1)2 −
1

(2− µλ2)2

]
R 0 (4.35)

(λ1 − λ2)

[
1

(2− µλ1)2 −
1

(2− µλ2)2

]
R 0 (4.36)

Since λ1 ≥ λ2 the LHS in (4.36) is always positive. The same conclusion of the

EMSE case can be drawn for the MSD case. The MSD of the LMS is a Schur-

convex function for any step size µ. For Λ1 � Λ2 the performance can be ordered

as

MSD(Λ1) ≥MSD(Λ2)

Example 1 (Numerical illustration): The following six vectors represent the

sets of the eigenvalues for six different inputs to the LMS filter with different

correlations scenarios:

Λ1 =
[

5 , 0 , 0 , 0 , 0
]

(4.37)

Λ2 =
[

4.8889 , 0.1000 , 0.0100 , 0.0010 , 0.0001
]

(4.38)

Λ3 =
[

3.6000 , 0.8900 , 0.3000 , 0.2000 , 0.0100
]

(4.39)

Λ4 =
[

2.8000 , 1.1000 , 0.6000 , 0.4500 , 0.0500
]

(4.40)

Λ5 =
[

1.2090 , 1.0910 , 1.0000 , 0.9000 , 0.8000
]

(4.41)

Λ6 =
[

1 , 1 , 1 , 1 , 1
]

(4.42)
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In Λ1 we have the worst case (highly correlated signal), while Λ6 represents the

best case (white signal). It can be shown that

Λ1 � Λ2 � Λ3 � Λ4 � Λ5 � Λ6

In Table 4.1 the values of the steady state EMSE and MSD of the LMS filter for

each scenario with two values of the step size µ. These two values of µ are chosed

acoording to the following condition for the LMS filter [1].

M∑
k=1

λkµ

2− λkµ
< 1 (4.43)

This table shows that the order of majorization is preserved as

EMSE(Λ1) ≥ EMSE(Λ2) ≥ EMSE(Λ3) ≥ EMSE(Λ4) ≥ EMSE(Λ5) ≥ EMSE(Λ6)

and

MSD(Λ1) ≥MSD(Λ2) ≥MSD(Λ3) ≥MSD(Λ4) ≥MSD(Λ5) ≥MSD(Λ6)
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Table 4.1: EMSE and MSD for the LMS with different scenarios

EMSE(dB) MSD(dB)

Λk µ = 0.005 µ = 0.1 µ = 0.005 µ = 0.1

Λ1 −48.9209 −33.0103 −48.9209 −33.0103

Λ2 −48.9234 −33.0931 −48.9209 −33.0103

Λ3 −48.9456 −33.8483 −48.9209 −33.0103

Λ4 −48.9550 −34.1570 −48.9209 −33.0103

Λ5 −48.9650 −34.4649 −48.9209 −33.0103

Λ6 −48.9653 −34.4716 −48.9209 −33.0103

Example 2 (Eigenvalues Spread): The following five vectors represent the

sets of the eigenvalues for five different scenarios. Here in this example the

five vectors have the same eigenvalues spread χ(Ru) = λmax
λmin

= 30
1

= 30 and

Λ1 � Λ2 � Λ3 � Λ4 � Λ5:

Λ1 =
[

30.0 , 30.0 , 17.0 , 1.00 , 1.00 , 1.00 , 1.00
]

(4.44)

Λ2 =
[

30.0 , 30.0 , 5.00 , 5.00 , 5.00 , 5.00 , 1.00
]

(4.45)

Λ3 =
[

30.0 , 20.0 , 15.0 , 5.00 , 5.00 , 5.00 , 1.00
]

(4.46)

Λ4 =
[

30.0 , 15.0 , 15.0 , 10.0 , 5.00 , 5.00 , 1.00
]

(4.47)

Λ5 =
[

30.0 , 10.0 , 10.0 , 10.0 , 10.0 , 10.0 , 1.00
]

(4.48)

In Table 4.2 the values of the steady state EMSE and MSD of the LMS filter for
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each scenario.

EMSE(dB) MSD(dB)

Λk µ = 0.005 µ = 0.01 µ = 0.005 µ = 0.01

Λ1 −35.1751 −29.1077 −46.1379 −40.4449

Λ2 −35.2411 −29.3231 −46.1563 −40.5755

Λ3 −35.3636 −29.7999 −46.1900 −40.8554

Λ4 −35.4015 −29.9306 −46.2003 −40.9299

Λ5 −35.4381 −30.0501 −46.2101 −40.9972

Table 4.2: EMSE and MSD with different scenarios with same eigenvalues spread
χ(Ru)

From this example, all Λ′s with the same eigenvalues spread but with different

performances. Real indication of which input to the adaptive filter result in better

performance is which vector is majorizes the other.

4.5 How general is the relation between Ma-

jorization and adaptive filters ?

In this work, we investigate the majorization properties for the Steepest Decent

algorithm, Newton’s algorithm and steady state performance for the LMS filter.

But how general is this?

In the following subsections we will investigate the majorization properties for the

transient performance of the LMS filter and steady state NLMS by simulation
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only. The work on the mathematical proof will be part of the future work in this

area.

4.5.1 Transient behavior of LMS

Conducting simulation on the LMS filter yields the MSD learning curves in Figure

4.3. From this figure, the ordering between the learning curves of the LMS filter

coincides with the majorization order between the input vectors, i.e., if

Λ1 � Λ2 � Λ3 � Λ4

then

MSD(i,Λ1) ≥MSD(i,Λ2) ≥MSD(i,Λ3) ≥MSD(i,Λ4)
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Figure 4.3: Learning Curve for LMS filter with (Λ1 � Λ2 � Λ3 � Λ4 and
µ = 0.005)
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4.5.2 Steady state EMSE of the NLMS

Studying the majorization properties of the NLMS is not an easy task because

applying the majorization tests on the expression of this filter is difficult even for

the approximated versions.

In [1] an approximation of the EMSE of the NLMS filter is given by

EMSE =
µσ2

v

2− µ
Tr(Ru)E

(
1

‖u‖2

)
(4.49)

=
µσ2

v

2− µ

M∑
k=1

λkE

(
1

‖u‖2

)
(4.50)

where the moment E
(

1
‖u‖2

)
is calculated in [31] and given by

E

(
1

‖u‖2

)
=

M∑
m=1

λM−1
m ln(λm)

|Λ|
∏M

i=1,i 6=m(λm
λi
− 1)

(4.51)

using the value of this moment in (4.49) yields

EMSE =
µσ2

v

2− µ

M∑
k=1

λk

M∑
m=1

λM−1
m ln(λm)

|Λ|
∏M

i=1,i 6=m(λm
λi
− 1)

(4.52)
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Calculating the EMSE of NLMS in (4.52) with the following five vectors

Λ1 =
[

30.0 , 30.0 , 17.0 , 1.00 , 1.00 , 1.00 , 1.00
]

(4.53)

Λ2 =
[

30.0 , 30.0 , 5.00 , 5.00 , 5.00 , 5.00 , 1.00
]

(4.54)

Λ3 =
[

30.0 , 20.0 , 15.0 , 5.00 , 5.00 , 5.00 , 1.00
]

(4.55)

Λ4 =
[

30.0 , 15.0 , 15.0 , 10.0 , 5.00 , 5.00 , 1.00
]

(4.56)

Λ5 =
[

30.0 , 10.0 , 10.0 , 10.0 , 10.0 , 10.0 , 1.00
]

(4.57)

The values of the EMSE are listed in Table 4.3. The same observation

Λk EMSE(dB)

Λ1 −42.7632

Λ1 −43.3351

Λ1 −43.7685

Λ1 −43.8716

Λ1 −43.9471

Table 4.3: EMSE of NLMS with Λ1 � Λ2 � Λ3 � Λ4 � Λ5

From this table we can see that the majorization theory is applicable also for the

NLMS.
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CHAPTER 5

PERFORMANCE ANALYSIS

OF THE RECURSIVE LEAST

SQUARES (RLS) FILTER

The RLS is one of the important algorithms from the adaptive filter’s family.

Motivation for the RLS adaptive filters relies on the fact that it provides a solution

to the least square error minimization problem in (5.1). The RLS algorithms are

more costly than the basic families such as the Leat mean squares family (LMS)

but with much faster convergence speed. Analyzing the performance of the RLS

algorithm is not an easy task due to the presence of the input covariance matrix

and its inverse which depends on current and past input regressors. As such, only

a few works considered the performance of the RLS and its variants [1, 8, 32–40].

The simplest approach is based on the energy relation [1,41] which (with the aid

of separation principle [1]) can be used to state that the EMSE is a function of
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the moment E[||ui||2P i ], where ui is the input regressor and Pi is the estimate of

the inverse of input covariance matrix. Another separation principle is then used

to write E[||ui||2P i ] = Tr(E[u∗iui]P i). But this approach is not rigorous as ui and

P i are dependent. Other approaches use the idea of random matrix to study the

performance of the RLS [38,39]. In addition to requiring much more sophisticated

machinery, these approaches are valid for filters relatively larger sizes.

In this work, a new approach for studying the steady state performance of the

Recursive Least Square (RLS) adaptive filter for a circularly correlated Gaussian

input is presented. The mean-square analysis of the RLS relies on the moment

of the random variable ‖ui‖2
P i

, where P i is the estimate of the inverse of input

covariance matrix. Earlier approaches evaluate this moment by assuming that the

ui and P i are independent which could result in negative value of the steady state

Excess Mean Square Error (EMSE). In this work, this assumption is avoided and

a closed form expression for this moment is derived. This derivation is based on

finding the cumulative distribution function (CDF) of the random variable of the

form 1
γ+||u||2D

, where u is circular correlated Gaussian input and D is a diagonal

matrix. As a result, more accurate estimation of the EMSE of the RLS filter is

obtained. Simulation results corroborate the analytical findings.
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5.1 Least Squares Algorithms

Given an (i + 1 × 1) measurements vector yi , and an (i + 1 ×M) data matrix

H i where

yi =



d(0)

d(1)

...

d(i)


, H i =



u0

u1

...

ui


as mentioned in table 2.1 the idea of the least squares algorithms is to minimize

the following estimation problem

min
w
‖yi −H iw‖2 (5.1)

This minimization problem can be considered as a minimization of the average

of the error signal e(i) = d(i) − uiwi−1 , this idea is explained in the following

relation

E|d− uw|2 ≈ 1

N

i−1∑
j=0

|d(j)− ujwj−1|2 = ‖yi −H iw‖2 (5.2)
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5.2 Exponentially Weighted Recursive Least

Squares (RLS)

Instead of the problem in (5.1), the exponentially weighted RLS attempts to solve

the following problem

min
w

[
γ(i+1)w∗Πw + (yi −H iw)∗Γi(yi −H iw)

]
(5.3)

where Γi = diag{γi , γi−1 , . . . , γ , 1} is an (i+1× i+1) is a diagonal weighting

matrix defined in terms of the forgetting factor γ (0 � γ ≤ 1), and Π is an

(M ×M) positive definite matrix. It can be shown that the solution of (5.3) is

given by

wi = P iH
∗
iΓiyi (5.4)

The RLS allows to obtain the solution of (5.3) in a recursive manner. Specifically,

wi = wi−1 + P iu
∗
i [d(i)− uiwi−1] (5.5)

where

P i =
[
γ(i+1)Π +H∗iΓiH i

]−1 (5.6)
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inverting both sides in (5.6) yields

P−1
i = γ(i+1)Π +H∗iΓiH i (5.7)

= γi+1Π + γH∗i−1Γi−1H i−1 + u∗iui (5.8)

= γ
(
γiΠ +H∗i−1Γi−1H i−1

)
+u∗iui (5.9)

= γP−1
i−1 + u∗iui (5.10)

by applying the following matrix inversion identity on (5.10) to find P i

(A+BCD)−1 = A−1B(C−1 +DA−1B)−1DA−1 (5.11)

the result will be

P i = γ−1

[
P i−1 −

P i−1u
∗
iuiP i−1

γ + uiP i−1u∗i

]
(5.12)

5.3 Steady State Using The Energy Relation

In the system identification model, the measurement d(i) takes the form

d(i) = u∗iw
o + v(i) (5.13)

where v(i) is an additive noise and wo is the system coefficients. The update

recursion in (5.5) can be rewritten in terms of weight error vector w̃i = wo −wi
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as

w̃i = w̃i−1 − P iu
∗
i e(i) (5.14)

where e(i) = d(i) − uiwi−1 which is called the estimation error, to other errors

are the a priori and a posteriori estimation errors defined by, respectively, ea(i) =

uiw̃i−1 and ep(i) = uiw̃i. Multiply both sides of (5.14) by ui from the left the

result will be

ep(i) = ea(i)− ‖ui‖2
P i

(5.15)

Next, combining (5.14) and (5.15) will led to

w̃i +
P iu

∗
i

‖ui‖2
P i

ea(i) = w̃i−1 +
P iu

∗
i

‖ui‖2
P i

ep(i) (5.16)

evaluating the energies of both sides will led to the well known The Energy

Conservation Relation [1] given by

‖w̃i‖2
P−1
i

+
|ea(i)|2

‖ui‖2
P i

= ‖w̃i−1‖2
P−1
i

+
|ep(i)|2

‖ui‖2
P i

(5.17)

By taking the expectation of both sides in (5.17), yields the following result in

steady state (i.e. as i→∞)

E
|ea(i)|2

‖ui‖2
P i

= E
|ep(i)|2

‖ui‖2
P i

(5.18)
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where the following fact in steady state is used E‖w̃i‖2
P−1
i

= ‖w̃i−1‖2
P−1
i

.

Using (5.15) and the fact that e(i) = ea(i)+v(i) yields to the variance relation

(as i→∞)

σ2
vE‖ui‖2

P i
+ E

(
‖ui‖2

P i
· |ea(i)|2

)
= 2E|ea(i)|2 (5.19)

This relation can be used to evaluate E|ea(i)|2. To do so however, the use of the

separation condition is necessary to separate the moment E
(
‖ui‖2

P i
· |ea(i)|2

)
.

This is usually done as

E
(
‖ui‖2

P i
· |ea(i)|2

)
≈ E‖ui‖2

P i
E|ea(i)|2 (5.20)

Substituting this in (5.19) and solving for E|ea(i)|2 yields

lim
i→∞

E|ea(i)|2 =
σ2
v limi→∞E‖ui‖2

P i

2− limi→∞E‖ui‖2
P i

(5.21)

From (5.21), it is clear that to evaluate the EMSE, the limit limi→∞E‖ui‖2
P i

must

be evaluated.

The common approach in literature [1,8] is to calculate the limit limi→∞E‖ui‖2
P i

is done by assuming that P i and ui are independent and the value of this limit
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will be

lim
i→∞

E[||ui||2P i ] = Tr(E[u∗iui]P i) (5.22)

= Tr(RuP ) (5.23)

and the EMSE will be

lim
i→∞

E|ea(i)|2 =
σ2
vTr(RuP )

2− Tr(RuP )
(5.24)

this expression of the EMSE will give negative values for wide range of the for-

getting factor γ as we can see from Figure for M = 5 and M = 10
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Figure 5.1: EMSE using Tr(RuP ) with M = 10, 5 Vs γ

To overcome this unrealistic values for the EMSE we can start by multiplying
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equation (5.12) from left and right by ui and u∗i respectively. This yields after

taking the expectations of both sides

E‖ui‖2
P i

= γ−1E

[
uiP i−1u

∗
i −

uiP i−1u
∗
iuiP i−1u

∗
i

γ + uiP i−1u∗i

]
(5.25)

= γ−1E‖ui‖2
P i−1
− γ−1E

[ (
‖ui‖2

P i−1

)2

γ + ‖ui‖2
P i−1

]
(5.26)

= γ−1E‖ui‖2
P i−1
− γ−1E

[
‖ui‖2

P i−1
−

γ‖ui‖2
P i−1

γ + ‖ui‖2
P i−1

]
(5.27)

= E

[
‖ui‖2

P i−1

γ + ‖ui‖2
P i−1

]
(5.28)

= 1− γE

[
1

γ + ‖ui‖2
P i−1

]
(5.29)

Now, at steady state (5.25) can be rewritten as

lim
i→∞

E‖ui‖2
P i

= 1− γE

[
1

γ + ‖ui‖2
P

]
(5.30)

where P = limi→∞P i−1 which will be assumed in this work to be known. Note

that the right hand side of (5.30) follows the fact that P i−1 and ui are indepen-

dent.

Substituting (5.30) in (5.21) yields

lim
i→∞

E|ea(i)|2 =
σ2
v

(
1− E

[
γ

γ+‖ui‖2P

])
1 + E

[
γ

γ+‖ui‖2P

] (5.31)

Now the RHS of (5.31) is always positive as the both numerator and denominator

are always positive in contrast to the result of [1] which gives negative value of
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EMSE for (1 − γ)M greater than 2. Assuming that P is available, the EMSE

calculation boils down to evaluating the moment of random variable Z defined as

Z
4
=

1

γ + ‖ui‖2
P

(5.32)

5.4 Evaluating the CDF and Moment of Z

In this work, a correlated circular complex Gaussian input is consider, that is,

ui ∼ CN (0,R) such that {ui} are i.i.d. Now, since P i−1 is a function of {uj}j=i−1
j=0 ,

it follows that ui and P i−1 are independent. Thus, as explained above, it is

possible to write

lim
i→∞

E‖ui‖2
P i

= 1− E

[
γ

γ + ‖ui‖2
P

]
(5.33)

Let ūi be the whitened version of ui, that is1, ūi = uiR
− 1

2 . The random variable

Z can be written as

Z =
1

γ + ‖ūi‖2

R
1
2PR

H
2

=
1

γ + ‖ūi‖2
A

(5.34)

1 where R
H
2 and R−

1
2 are short notations for (R

1
2 )H and (R

1
2 )−1, respectively
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where A = R
1
2PR

H
2 . Now, if A = UFUH denote the eigenvalues decomposition

of A and F = diag{f1, f2, . . . , fM}, then

Z =
1

γ + ‖ūi‖2
UFUH

=
1

γ + ‖ũi‖2
F

(5.35)

where ũi = ūiU which is a white Gaussian vector and F = diag{f1, f2, . . . , fM}.

In this approach, the moment of Z can be evaluated from its CDF which will be

derived in the following section.

5.4.1 CDF of the Random Variable Z

By using the definition of random variable Z, its CDF can be formulated as

FZ(z) = Pr{Z ≤ z}

= Pr(zγ + z‖ũi‖2
F − 1 ≥ 0)

(5.36)

which can be set up as

FZ(z) =

∞∫
−∞

p(ũ) step(zγ + z‖ũi‖2
F − 1)dũ (5.37)

wherep(ũ) is the pdf of ũ and for M-dimensional circular Gaussian regressor with

an identity covariance matrix it will be

p(ũ) =
1

πM
e−‖ũ‖

2

(5.38)
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and step(x) is the unit step function defined as

step(x) =
1

2π

∞∫
−∞

ex(jw+β)

jw + β
dw (5.39)

Substituting (5.38) and (5.39) into equation (5.37) yields the following integral

FZ(z) =
1

2πM+1

∞∫
−∞

e−‖ũ‖
2

×
∞∫

−∞

e

(
zγ+z‖ũi‖2F−1

)
(jw+β)

(jw + β)
dw dũ

=
1

2πM+1

∞∫
−∞

∞∫
−∞

e−ũ
(
I−zF (jw+β)

)
ũ∗dũ

× e(zγ−1)(jw+β)

(jw + β)
dw

(5.40)

The inner integral is nothing but the Gaussian integral. Thus, intuition suggest

that (see [42] for a formal proof)

1

πM

∞∫
−∞

e−ũ
(
I−zF (jw+β)

)
ũ∗dũ =

1

I − zF (jw + β)|
(5.41)

Eventually the CDF of Z is reduced to following integral

FZ(z) =
1

2π

∞∫
−∞

e(zγ−1)(jw+β)

|I − yF (jw + β)|(jw + β)
dw (5.42)
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To evaluate this integral, the fraction that appears above must be expanded as a

partial fraction expansion as the follows

1

|I − zF (jw + β)|(jw + β)

=
A0

(jw + β)

+
M∑
m=1

Am
[1− zfm(jw + β)]

(5.43)

where the constants A0, Ak are given by

A0 = 1 (5.44)

Am =
fmz∏M

i=1
6=m

[1− fi
fm

]
(5.45)

By substituting (5.43) into (5.42), the integral in (5.42) is decomposed into the

sum of M + 1 integrals as

FZ(z) =
A0

2π

∞∫
−∞

e(zγ−1)(jw+β)

(jw + β)
dw

+
M∑
m=1

Am
2πfm

∞∫
−∞

e(zγ−1)(jw+β)

[ 1
zfm
− (jw + β)]

dw

(5.46)

In evaluating these integrals, the following two formulas from [43] will be used

∞∫
−∞

(β + ix)−νe−iyxdx =
2π(−y)ν−1eβy

Γ(ν)
step(−y) (5.47)
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and

∞∫
−∞

(β − ix)−νe−iyxdx =
2πyν−1e−βy

Γ(ν)
step(y) (5.48)

Then the CDF of Z can be expressed in closed form as

FZ(z) =
M∑
m=1

e
−(1−zγ)
zfm∏M

i=1
6=m

[1− fi
fm

]
[step(z)− step(zγ − 1)] (5.49)

Figure 5.2 shows the empirical and analytical CDF of the random variable Z. The

figure shows excellent match between the analytical expression and the simulated

CDF.
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Figure 5.2: Empirical CDF Vs calculated CDF of Z
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5.4.2 Moment of the Random Variable Z

Since the random variable Z is always positive, its first moment can be expressed

in terms of its CDF as

E[Z] =

∞∫
−∞

(1− FZ(z))dy (5.50)

Now, from the definition of Z in (5.32), it can be shown that the actual support

of this random variable is 0 ≤ z ≤ 1
γ
. Thus, the integration in (5.53) can be

E[Z] =

1
γ∫

0

(1− FZ(z))dz (5.51)

=

1
γ∫

0

[
1−

M∑
m=1

e
−(1−zγ)
zfm∏M

i=1
6=m

[1− fi
fm

]

]
dz (5.52)

=
1

γ
−

M∑
m=1

[
1∏M

i=1
6=m

[1− fi
fm

]

1
γ∫

0

e
−(1−zγ)
zfm dz

]
(5.53)

=
1

γ
−

M∑
m=1

[
E2( γ

fm
)e

γ
fm

γ
∏M

i=1
6=m

[1− fi
fm

]

]
(5.54)

where En(x) =
∞∫
1

e−xt

tn
dt is the exponential integral function [43].

Figure 5.3 shows a comparison between the mean of the random variable Z ob-

tained in (5.54) and the simulated one.
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5.4.3 The Steady State Value of the Moment E‖ui‖2P and

EMSE of the RLS

After substituting the E[Z] from (5.54) into (5.30), the required moment

limi→∞E‖ui‖2
P will be

lim
i→∞

E‖ui‖2
P i

= 1− γ

[
1

γ
−

M∑
m=1

[
E2( γ

fm
)e

γ
fm

γ
∏M

i=1
6=m

[1− fi
fm

]

]]

= γ
M∑
m=1

[
E2( γ

fm
)e

γ
fm

γ
∏M

i=1
6=m

[1− fi
fm

]

] (5.55)
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Finally, the steady-state value of EMSE for the RLS algorithm can be evaluated

after substituting the above moment in (5.21).

lim
i→∞

E|ea(i)|2 =

σ2
vγ

M∑
m=1

[
E2( γ

fm
)e

γ
fm

γ
∏M

i=1
6=m

[1− fi
fm

]

]

2− γ
M∑
m=1

[
E2( γ

fm
)e

γ
fm

γ
∏M

i=1
6=m

[1− fi
fm

]

] (5.56)

5.5 Steady State Value of P i

At steady state (i.e. i→∞)

P i = P i−1 = P (5.57)

using this in equation (5.12) yields

P = γ−1

[
P − Pu∗iuiP

γ + uiPu∗i

]
(5.58)

= γ−1

[
P − Pu∗iuiP

γ + ‖ui‖P

]
(5.59)

Since the matrix P i is positive definite matrix [1, p. 287] also its steady sate P

will be a positive definite. Then, P can be written as P = P
H
2 P

1
2 = P

1
2P

H
2 and
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equation (5.59) with this decomposition will be

(1− γ)P
H
2 P

1
2 = E

[
P

H
2 P

1
2u∗iuiP

H
2 P

1
2

γ + ‖ui‖2
P

]
(5.60)

(1− γ)I = E

[
P

1
2u∗iuiP

H
2

γ + ‖ui‖2
P

]
(5.61)

= E

[
F

1
2UHū∗i ūiUF

H
2

γ + ‖ūi‖2
UFUH

]
(5.62)

= E

[
F

1
2 ũ∗i ũiF

H
2

γ + ‖ũi‖2
F

]
(5.63)

where ũi ∼ CN (0, I). Going from (5.61) to (5.62) done by employing the following

decomposition

R
1
2P i−1R

H
2 = Ui−1F i−1U

∗
i−1 (5.64)

P
1
2R

H
2 = F

1
2UH (5.65)

R
1
2P

H
2 = UF

H
2 (5.66)

Multiplying equation (5.63) by F
H
2 from left and F

1
2 from right, the result will

be

(1− γ)F = E

[
F ũ∗i ũiF

γ + ‖ũi‖2
F

]
(5.67)

or

E

[
F ũ∗i ũi

γ + ‖ũi‖2
F

]
= (1− γ)I (5.68)
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Now defining the following moment matrix E = E

[
F ũ∗i ũi
γ+‖ũi‖2F

]
. For this moment

matrix the off-diagonal entries given by Ekk′ = E
[fkũi(k)∗ũi(k′)

γ+‖ũi‖2F

]
are zeros because

Ekk′ is an odd function of ũi(k) which has a symmetric probability density function

(pdf) and independent of the rest of the elements of ũi. So the moment matrix E

is diagonal matrix.

The kth entry in the main diagonal of E is

E

[
fk|ũ(k)|2

γ + ‖ũi‖2
F

]
= E

[
fk|ũ(k)|2

γ +
∑M

j=1 fj|ũ(j)|2

]
= E

[
Yk
]

(5.69)

where Yk is given by

Yk =
fk|ũ(k)|2

γ + ‖ũ‖2
F

(5.70)

It is clear from (5.70) that the first moment of Yk is a function of the diagonal

entries of the matrix F . These entries of F can be found by solving an M

nonlinear equations as

E[Y1] = (1− γ)

E[Y2] = (1− γ)

...

E[YM ] = (1− γ)

(5.71)
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5.5.1 CDF of the Random Variable Yk

Following the same steps that are used for the random variable Z in the previous

subsection. The CDF of the random variable Yk is given by

FYk(y) = Pr(Yk ≤ y)

=

∞∫
−∞

p(ũ) step(yγ + y‖ũ‖2
F − fk|ũ(k)|2)dũ

=

∞∫
−∞

p(ũ) step(yγ + y‖ũ‖2
F − ‖ũ‖2

Bk
)dũ

(5.72)

where Bk = diag{0 , . . . , fk , . . . , 0}.

Replacing p(ũ) and step(x) by their values in (5.38) and (5.39) respectively yields

to the following integral

FYk(y) =
1

2πM+1

∞∫
−∞

e−‖ũ‖
2

×
∞∫

−∞

e

(
yγ+y‖ũ‖2F−‖ũ‖

2
Bk

)
(jw+β)

(jw + β)
dw dũ

=
1

2πM+1

∞∫
−∞

∞∫
−∞

e−ũ
(
I−(yF−Bk)(jw+β)

)
ũ∗dũ

× eyγ(jw+β)

(jw + β)
dw

=
1

2π

∞∫
−∞

eyγ(jw+β)

|I − (yF −Bk)(jw + β)|(jw + β)
dw

(5.73)
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The partial expansion of the fraction that appears above is

1

|I − (yF −Bk)(jw + β)|(jw + β)

=
A0

(jw + β)

+
Ak

[1− fk(y − 1)(jw + β)]

+
M∑

m=1,
6=k

Am
[1− yfm(jw + β)]

(5.74)

where the constants A0, Ak and Am ( m = 1 , 2 , . . . , M, m 6= k ) are given by

A0 = 1 (5.75)

Ak =
fk(1− y)∏M

m=1
6=k

[1− yfm
fk(1−y)

]
(5.76)

Am =
fmy∏M

i=1
6=k 6=m

[1− fi
fm

]
(5.77)

By substituting (5.74) into (5.73), the integral in (5.73) is decomposed into the

sum of M + 1 integrals as

FYk(y) =
A0

2π

∞∫
−∞

eyγ(jw+β)

(jw + β)
dw

+
Ak

2πfk(1− y)

∞∫
−∞

eyγ(jw+β)

[ 1
fk(1−y)

+ (jw + β)]
dw

+
M∑

m=1,
6=k

Am
2πfm

∞∫
−∞

eyγ(jw+β)

[ 1
yfm
− (jw + β)]

dw

(5.78)
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Ultimately the CDF of Yk can be expressed in closed form as

FYk(y) = step(y) +
Ake

−yγ
fk(1−y)

fk(y − 1)
[step(y)− step(1− y)]

= step(y) +
e
−yγ

fk(1−y)∏M
m=1
6=k

[1− yfm
fk(1−y)

]
[step(y)− step(y − 1)]

(5.79)

5.5.2 Moment of the Random Variable Yk

The random variable Yk is positive, its first moment can be expressed in terms of

the CDF using integration by parts as

E[Yk] =

∞∫
−∞

(1− FYk(y))dy (5.80)

The support of the Yk is 0 ≤ y ≤ 1 and the integration in (5.80) can be rewritten

as

E[Yk] =

∞∫
−∞

e
−yγ

fk(1−y1)∏M
m=1
6=k

[1− yfm
fk(1−y)

]
[step(y)− step(y − 1)]dy (5.81)

=

1∫
0

e
−yγ

fk(1−y)∏M
m=1
6=k

[1− yfm
fk(1−y)

]
dy (5.82)

Let ν = y
y−1

, then the above integration will be

E[Yk] =

∞∫
0

e
−νγ
fk∏M

m=1
6=k

[1 + νfm
fk

]

dν

(ν + 1)2 (5.83)
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To proceed the inner fraction will written in partial fraction form as

1

(ν + 1)2
∏M

m=1
6=k

[1 + νfm
fk

]
=

C1

(v + 1)
+

C2

(v + 1)2

+
M∑
m=1
6=k

Cm

[1 + vfm
fk

]

(5.84)

where the coefficients C1, C2 and Cm are given by

C1 =

−
[
d
dv

∏M
m=1
6=k

(1 + v fm
fk

)

]
v=−1[∏M

m=1
6=k

(1− fm
fk

)

]2

C2 =
1∏M

m=1
6=k

(1− fm
fk

)

Cm =
1

(1− fk
fm

)2
∏M

l=1
6=m,k

(1− fl
fm

)

(5.85)

Using these coefficients in (5.83) to find the moment E[Yk] as

E[Yk] = C1

∫ 1

0

e
− vγ
fk

(v + 1)
dv + C2

∫ 1

0

e
− vγ
fk

(v + 1)2
dv

+
M∑
m=1
6=k

∫ 1

0

Cm e
− vγ
fk

[1 + v fm
fk

]
dv

= C1 e
γ
fk E1

(
γ

fk

)
+C2 e

γ
fk E2

(
γ

fk

)
+

M∑
m=1
6=k

fk
fm

CM e
γ
fm E1

(
γ

fm

)
(5.86)

We need to solve the M nonlinear equations in (5.71) to find the entries of the

matrix F .
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5.6 Tracking Analysis

In non-stationary environment, the weight vector wo will be time dependent and

it will have the following model

wo
i = wo

i−1 + qi (5.87)

where qi is an i.i.d., zero mean random sequence with covariance matrix

E[qiq
∗
i ] = Q (5.88)

also it can be shown that

Ewo
i = Ewo

i−1 = wo (5.89)

The update recursion in (5.5) can be rewritten in terms of weight error vector

w̃i = wo
i −wi as

wo
i −wi = (wo

i −wi−1)− P iu
∗
i e(i) (5.90)

Following the same arguments that presented in Section 5.3 will lead to the fol-

lowing The Energy Conservation Relation [1] given by

‖wo
i −wi‖2

P−1
i

+
|ea(i)|2

‖ui‖2
P i

= ‖wo
i −wi−1‖2

P−1
i

+
|ep(i)|2

‖ui‖2
P i

(5.91)
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or

E‖w̃i‖2
P−1
i

+ E
|ea(i)|2

‖ui‖2
P i

= E‖w̃i−1‖2
P−1
i

+ E‖qi‖2
P−1
i

+ E
|ep(i)|2

‖ui‖2
P i

(5.92)

where ea(i) = ui(w
o
i −wi−1), ep(i) = ui(w

o
i −wi).

The variance relation for the RLS filter in the non-stationary environment will be

σ2
vE‖ui‖2

P i
+ E

(
‖ui‖2

P i
· |ea(i)|2

)
+E‖qi‖2

P−1
i

= 2E|ea(i)|2 (5.93)

Employing the separation condition to separate the following moment E
(
‖ui‖2

P i
·

|ea(i)|2
)

as

E
(
‖ui‖2

P i
· |ea(i)|2

)
≈ E‖ui‖2

P i
E|ea(i)|2 (5.94)

substituting this in (5.93) and solving for the E|ea(i)|2 yields

lim
i→∞

E|ea(i)|2 =
σ2
v limi→∞E‖ui‖2

P i
+ E‖qi‖2

P−1
i

2− limi→∞E‖ui‖2
P i

(5.95)

the sequence qi is independent of all regressors and it will be also independent of

P−1
i , thus

E‖qi‖2
P−1
i

= E‖qi‖2
P−1 = Tr(QP−1) =

1

(1− γ)
Tr(QRu) (5.96)
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using this in (5.95) yields

lim
i→∞

E|ea(i)|2 =
σ2
v limi→∞E‖ui‖2

P i
+ 1

(1−γ)
Tr(QRu)

2− limi→∞E‖ui‖2
P i

(5.97)

It is known from (5.55) that the value of limi→∞E‖ui‖2
P is

lim
i→∞

E‖ui‖2
P = γ

M∑
m=1

[
E2( γ

fm
)e

γ
fm

γ
∏M

i=1
6=m

[1− fi
fm

]

]
(5.98)

Substituting this in (5.97) yields

lim
i→∞

E|ea(i)|2 =

σ2
vγ

M∑
m=1

[
E2( γ

fm
)e

γ
fm

γ
∏M

i=1
6=m

[1− fi
fm

]

]
+

1

(1− γ)
Tr(QRu)

2− γ
M∑
m=1

[
E2( γ

fm
)e

γ
fm

γ
∏M

i=1
6=m

[1− fi
fm

]

] (5.99)
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5.7 Simulation Results

In simulations, the steady-state performance of the RLS algorithm

is investigated for an unknown system identification with wo =

[0.13484 , 0.26968 , 0.40452 , 0.53936 , 0.67420]T . The noise is zero mean

i.i.d with variance σ2
v = 0.001. Input to the adaptive filter and to the unknown

system is correlated circular complex Gaussian having correlation R(i, j) = α
|i−j|
c

(0 < αc < 1). First, we study the steady-state performance of the RLS algorithm

by evaluating the required moment E[‖ui‖2
P] and the steady-state EMSE. This

study assumes that the steady-state value of the matrix P is available from the

simulation of actual RLS recursion. Using this P, we first evaluate the moment

E[‖ui‖2
P] using (5.18) and compare the result with the one from simulation and

the analytical one proposed in [1] (i.e., using Tr(RP)) in Figure 5.4. It can be

seen that the proposed moment calculation has a very good match with the

simulation one as compared to the one proposed in [1]. Next, in analyzing the

EMSE, we evaluate the EMSE using (5.56) with available P and compare its

result from the EMSE results via actual RLS recursion, via analytical EMSE

using moment from simulation. This comparison is reported in Figure 5.5. In

Figure 5.6 we have the same curves in Figure 5.5 plus the EMSE using the

moment proposed in [1]. It can be depicted from the figures that the proposed

EMSE result has a good match with the simulation for larger values of γ (say

γ > 0.8) but it gives a poor estimate for smaller values of γ. Same behavior is

observed for the EMSE obtained via the moment from simulation. Reasons for
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this deviation will be reported in the next section. On the other hand, the EMSE

using the moment proposed in [1] gives positive values only for larger forgetting

factor i.e., γ ≥ 9. This is because of the fact that the EMSE expression given

in [1] becomes unrealistic (negative or infinity) for (1 − γ)M ≥ 2. In contrast,

our approach is valid for all values of γ and M .
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Figure 5.4: Moment value Vs γ
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5.8 Improved Steady State Analysis

Recalling equation (5.17) in chapter (5)

‖w̃i‖2
P−1
i

+
|ea(i)|2

‖ui‖2
P i

= ‖w̃i−1‖2
P−1
i

+
|ep(i)|2

‖ui‖2
P i

(5.100)

Using the following assumption in steady state in equation (5.100)

E‖w̃i‖2
P−1
i
≈ E‖w̃i−1‖2

P−1
i

(5.101)

will give the following variance relation.

σ2
vE‖ui‖2

P i
+ E

(
‖ui‖2

P i
· |ea(i)|2

)
= 2E|ea(i)|2 (5.102)

But, from Figure 5.7 it can be seen that this assumption is not accurate for a

wide range of the forgetting factor γ. This disparity between the RHS and LFS

of (5.102) appears because of that E‖w̃i‖2
P−1
i

is not equal to E‖w̃i−1‖2
P−1
i

in the

steady state, as shown in Figure 5.8.
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To overcome this issue it is better if the following two quantities are assumed to

be equal in steady state, as we can see from Figure 5.9

E‖w̃i‖2
P−1
i

= ‖w̃i−1‖2
P−1
i−1

(5.103)
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If the time index of the matrix P−1
i in the RHS of (5.101) is changed from i to

i− 1 it will be coincide with the time index of w̃i−1.

From equation (5.10), the relation between P−1
i and P−1

i−1 is

P−1
i = γP−1

i−1 + u∗iui (5.104)

By using this value of P−1
i , the moment E‖w̃i−1‖2

P−1
i

can be rewritten as

E‖w̃i−1‖2
P−1
i

= Ew̃∗i−1P
−1
i w̃i−1 (5.105)

= Ew̃∗i−1(γP−1
i−1 + u∗iui)w̃i−1 (5.106)

= γEw̃∗i−1P
−1
i−1w̃i−1 + Ew̃∗i−1u

∗
iuiw̃i−1 (5.107)

= γE‖w̃i−1‖2
P−1
i−1

+ E|ea(i)|2 (5.108)

Taking the expectation of both sides in (5.100) and using this equivalent expression
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for the moment E‖w̃i−1‖2
P−1
i

, yields the following result in steady state (i.e. as

i→∞)

(1− γ)E‖w̃i‖2
P−1
i

+ E
|ea(i)|2

‖ui‖2
P i

= E|ea(i)|2 + E
|ep(i)|2

‖ui‖2
P i

(5.109)

where the fact that E‖w̃i‖2
P−1
i

= E‖w̃i−1‖2
P−1
i−1

is steady state is used. Using (5.15)

and the fact that e(i) = ea(i) + v(i) yields (as i→∞)

σ2
vE‖ui‖2

P i
+ E

(
‖ui‖2

P i
· |ea(i)|2

)
= E|ea(i)|2 + (1− γ)E‖w̃i‖2

P−1
i

(5.110)

The plots of the RHS and the LHS of equation (5.110) are plotted in Figure 5.10.
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Figure 5.10: RHS and LHS of (5.110) Vs γ

In contrast to Figure 5.7 which plots the two sides of (5.102) the two sides of

(5.110) coincide as we can see from the above figure.
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The EMSE derived from an old variance relatione (5.102) is given by

E|ea(i)|2 =
σ2
v limi→∞E‖ui‖2

P i

2− limi→∞E‖ui‖2
P i

(5.111)

and the EMSE derived from the new one (5.110) will be

E|ea(i)|2 =
σ2
v limi→∞E‖ui‖2

P i
− (1− γ)E‖w̃i‖2

P−1
i

1− limi→∞E‖ui‖2
P i

(5.112)

In Figure 5.11, we have plots of the EMSE obtained from simulation and from

equations (5.111) and (5.112).
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Using the new variance relation to study the steady state performance of the RLS

filter will give better results than using an old one. This study relies on calculating

the new moment E‖w̃i‖2
P−1
i

that appears in equation (5.110). This calculation

will be a part of the future work in this topic.
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CHAPTER 6

THESIS CONTRIBUTIONS,

CONCLUSION AND FUTURE

WORK

6.1 Thesis Contributions

This work has successfully presented a majorization theory as mathematical tool

to study the performance of adaptive filters. To our knowledge, this use of ma-

jorization theory in adaptive filters is the first connection between these two fields.

For the Recursive Least Squares (RLS) adaptive filter, the proposed idea for cal-

culating its steady state performance gives good results for the whole range of the

forgetting factor γ, in contrast to the available results in literature.
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6.2 Conclusion

In the first part of this thesis, we investigate the effect of input correlation on

the performance of some well known adaptive algorithms; specifically, Steepest

Decent, Newton’s Method and LMS. This investigation is done by employing

the majorization theory and its techniques. In majorization theory we can order

between vectors and preserve this order through Schur’s functions. In adaptive

filters, the correlation of the input repressor can be totally described by the eigen-

values of the covariance matrix Ru. By describing each input correlation scenario

by the eigenvalues of its matrix (each eigenvalue λk ∈ Λ = {λ1 , λ2 , . . . , λM}),

we can order theses scenarios between the best and the worst scenarios. By test-

ing the response of any adaptive filter by Schur’s conditions, we can say which

scenario will give better transient or steady state performance.

For the Steepest Descent method, we derived a condition on the step size µ for its

learning curve to be Schur-convex. Also, for the Newton’s method we saw that

its learning curve is neither Schur-convex nor concave, because it is a function

of the sum of the eigenvalues. In other words, by testing its learning curve with

the best or with the worst scenarios will give the same behaviors. Finally, for the

LMS filter the Schur’ convexity is shown for its MSD learning curve with small

step size as well as its proved also for the steady state EMSE.

In the second part, we analyze the RLS algorithm at steady state for correlated

complex Gaussian input and we evaluate its EMSE by calculating the moment

E[‖ui‖2
P i

]. The novelty of the work resides in the evaluation of this moment which
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is based on the derivation of a closed form expression for the CDF and moment

of random variable of the form 1
γ+‖u‖D2

. Moreover, our approach employs the

independence between ui and P i−1 (which comes from i.i.d. nature of {ui}) in

contrast to the existing approaches which use independence between ui and P i

(which is not true and could give negative value of EMSE). Hence, unlike the

previous work, our approach is valid for a wide range of forgetting factor γ and

filter’s length M . Theoretical results are validated by simulations.

6.3 Future Work

In Chapter 4, the majorization theory was applied to the Steepest Descent, New-

ton’s Method and steady state measures of the LMS filter. Many directions of

future research in this way could be investigated, such these directions are

� Applying the majorization theory to the transient behaviour of the LMS

filter.

� Applying the majorization theory to the class of adaptive filters with general

data non-linearity. As a special case, applying this technique for the well

known NLMS algorithm.

� Applying the majorization study to a large class of adaptive filters.

The performance of the RLS filter in steady state has been improved in Chapter

5. Future work can be done in the following directions:
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� Calculating the EMSE of the RLS filter from the new variance relation

(5.110) by calculating the new moment E‖w̃i‖2
P−1
i

.

� Performing the improved analysis for the steady state MSD of the RLS filter.

� How can this improved analysis be used to enhance the study of transient

analysis for the RLS filter?
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