

iii

© Mahmoud Salman Jassem AL-Saba

2013

iv

Dedication

v

ACKNOWLEDGEMENTS

Praise and Thanksgiving to Allah for the strengths and his blessing to complete this

thesis. Second, I would like to thank all those who helped me throughout my work,

specially the thesis committee for their guidance and help. I would like also to

express my thanks to the thesis advisor Dr. Farag Azzedin for his time and effort.

Not to forget my family for the support and encouragement they provided me with

all the time.

I also would like to thank The King Fahd University of Petroleum & Minerals

(KFUPM) for supporting my study and King Abdul-Aziz City for Science and

Technology (KACST) for funding the project under the National Science and

Technology Plan (project number 08-INF97-4).

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. V

TABLE OF CONTENTS ... VI

LIST OF TABLES .. IX

LIST OF FIGURES .. X

LIST OF ABBREVIATIONS ... XIV

ABSTRACT .. XVI

الرسالة ملخص .. XVII

CHAPTER 1 INTRODUCTION ... 1

1.1. DOMAIN NAME SYSTEM EVOLUTION ... 4

1.2. CURRENT DOMAIN NAME SYSTEM STRUCTURE .. 6

1.3. THESIS STRUCTURE .. 9

CHAPTER 2 PROBLEM STATEMENT ... 10

2.1. THESIS CONTRIBUTION .. 12

CHAPTER 3 RELATED WORK ... 13

3.1. DNS WEAKNESSES .. 13

3.2. SOLUTIONS TO DNS PROBLEMS ... 17

3.2.1. DNS Tuning ... 17

3.2.2. Restructuring DNS Solutions ... 19

3.2.3. DNS Protection with DoS Defense Strategies ... 25

vii

3.3. CHORD: A SCALABLE PEER-TO-PEER LOOKUP PROTOCOL FOR INTERNET APPLICATIONS 27

3.3.1. Enhance Chord Performance ... 30

3.3.2. Balance Load among Nodes .. 33

CHAPTER 4 TWO LAYERS P2P SOLUTION ... 35

4.1. STRUCTURE OF THE PROPOSED SOLUTION ... 35

4.1.1. Local Overlay Network (LON) .. 37

4.1.2. Global Overlay Network (GON) ... 38

4.1.3. Cached Records Expiration .. 40

4.1.4. Request Scenario .. 41

4.2. ADVANTAGES ... 42

4.3. LIMITATIONS ... 45

4.4. ASSUMPTIONS ... 46

CHAPTER 5 SIMULATOR .. 47

5.1. SIMULATOR’S DESIGN ... 47

5.2. SIMULATOR’S ASSUMPTION .. 49

5.3. SIMULATION MEASURES ... 50

5.3.1. Load Balance .. 50

5.3.2. Path Length... 50

5.4. PERFORMANCE METRICS .. 53

5.5. SIMULATOR’S VALIDATION... 55

5.5.1. Load Balance .. 55

5.5.2. Path Length... 56

5.5.3. Simultaneous Node Failures .. 59

5.5.4. Lookups during Stabilization .. 59

CHAPTER 6 SIMULATION AND RESULTS ANALYSIS .. 63

viii

6.1. SIMULATION SCENARIOS FOR PROPOSED STRUCTURE ... 63

6.2. SIMULATION RESULTS .. 69

6.2.1. Worst Case Scenario with no Request Repetition .. 69

6.2.2. Worst Case Scenario with Zipf Distributed Requests ... 77

6.2.3. Best Case Scenario with Zipf Distributed Requests ... 86

6.3. RESULTS COMPARISON ... 95

6.3.1. Load Balance .. 95

6.3.2. Path Length... 96

6.3.3. Simultaneous Node Failures .. 97

6.3.4. Lookups during Stabilization .. 98

6.3.5. Node Blockage .. 100

CHAPTER 7 FUTURE WORK AND CONCLUSION ... 103

7.1. CONCLUSION ... 103

7.2. FUTURE WORK ... 104

REFERENCES ... 105

VITAE ... 109

ix

LIST OF TABLES

Table 3-1: Domain name samples percentage in TLD ... 15

Table 5-1: Finger table for node n ... 57

Table 6-1: Simulation configuration ... 68

Table 6-2: Predicted and simulated results for the average load for normal Chord

simulation .. 80

Table 6-3: Predicted and simulated average load for LON and GON in the case of

Zipf distributed requests. Each of LON and GON contains 50% of total TLP2P nodes.

 .. 80

Table 6-4: Simulated and predicted values for the path length for TLP2P 82

Table 6-5: Predicted and simulated results of the average load for LON network

which is 5% of TLP2P total network size. .. 88

Table 6-6: Predicted and simulated path length for TLP2P (5% LON – 95% GON)

with Zipf distributed requests. .. 89

x

LIST OF FIGURES

Figure 1.1: An example of resolving the host name “www.google.com” with

recursive DNS lookup. .. 4

Figure 1.2: Iterative DNS lookup with first query being recursive while resolving

the host name “www.google.com”. .. 4

Figure 1.3: Manual installation of the mapping file on hosts. 5

Figure 1.4: Host to IP mapping file is hosted on one server and clients download it

locally to resolve hostnames. ... 6

Figure 1.5: DNS tree .. 7

Figure 3.1: Impact of TTL on hit rate with different number of clients sharing the

cache .. 16

Figure 3.2: Routing table for node in Chord network. ... 29

Figure 3.3: An example of a Chord network with three nodes (A, B, C), showing the

difference in the identifier space. .. 34

Figure 4.1: An example of 4 local overlay networks served by a global overlay

network ... 36

Figure 4.2: Local Overlay Network Flowchart ... 38

Figure 4.3: Global Overlay Network Flowchart.. 40

Figure 5.1: Simulator Design Layers. The two columns at the middle of the layer

stack is for the two different structure of simulated networks (proposed solution

and normal Chord) ... 48

Figure 5.2: The mean, 1st and 99th percentiles of the number of keys stored per node

in 10,000 nodes network ... 55

Figure 5.3: Average path length, 1st and 99th percentiles of lookups with varying

number of nodes ... 56

Figure 5.4: Average path length, 1st and 99th percentiles of lookups with random

node failed before start resolving lookups ... 59

xi

Figure 5.5: Average path length, 1st and 99th percentiles of lookups while node

joining and leaving the network .. 61

Figure 5.6: Average, 1st and 99th percentiles of timed out requests while nodes

leaving and joining the Chord network .. 61

Figure 5.7: Average, minimum and maximum of failed lookups while nodes leaving

and joining the Chord network .. 62

Figure 6.1: Path length in term of network size, p = . The

total number of nodes is 100 and the point shown repersents the heighest path

length when GON and LON size is 100/2 and lowest path length when either

network having only one node. ... 67

Figure 6.2: The plot of the average load with fix number of nodes and varying

number of queries. The plot represents for each query load three results which are

pure node, LON and GON. .. 70

Figure 6.3: Load fairness results for the three networks normal Chord, GON and

LON... 71

Figure 6.4: Path length measures for normal Chord simulation and LON and GON as

well as the total in TLP2P simulation with different network size and query load. . 72

Figure 6.5: Path length measures for node failures scenario. The plot has four

results normal Chord, LON, GON and the total for the TLP2P. 73

Figure 6.6: Path length for stabilization scenario comparing normal Chord and

TLP2P (LON and GON). .. 74

Figure 6.7: Time out experienced by the lookup during the stabilization scenario for

the three networks normal Chord, LON and GON in addition to TLP2P total. 75

Figure 6.8: Number of failed requests in 10,000 requests within stabilization

scenario for the three networks normal Chord, LON and GON in addition to TLP2P

total. ... 75

Figure 6.9: Path length for the case of blocked nodes scenarios for Chord network

and TLP2P (GON and LON) with uniform requests. .. 77

Figure 6.10: Average load between nodes for the case of blocked nodes scenarios

for Chord network, GON and LON with uniform requests. ... 77

xii

Figure 6.11: Average keys per node for normal Chord and TLP2P networks with

Zipf distributed requests for networks with 10,000 peers. .. 81

Figure 6.12: Path length results for normal Chord and TLP2P (50% LON – 50%

GON) with the two overlay netowrks. Request distribution is Zipf. 82

Figure 6.13: Path length of the two architectures while the networks are

experiencing node failures. Networks received a Zipf distributed requests. 83

Figure 6.14: Stabilization path length for the two designs normal Chord and TLP2P

(50% LON – 50% GON) with Zipf distributed requests. ... 84

Figure 6.15: Lookups’ time out for the stabilization case of the two designs normal

Chord and TLP2P (50% LON – 50% GON) simulated with Zipf distributed requests.

 .. 84

Figure 6.16: number of failed request’s within 10,000 Zipf distributed requests for

the stablization case. The plot represents the two designs results normal Chord and

TLP2P (50% LON – 50% GON). ... 85

Figure 6.17: Path length, 1st and 99th percentile for Chord network and worst case of

TLP2P (including GON and LON) with Zipf distributed requests. 86

Figure 6.18: Average keys per node, 1st and 99th percentile for Chord network, GON

and LON in worst case TLP2P and Zipf distributed requests. 86

Figure 6.19: Average load of Zipf distributed requests simulations for the two

design normal Chord and TLP2P (5% LON – 95% GON). ... 88

Figure 6.20: Path length for normal Chord and TLP2P (5% LON - 95% GON) with

Zipf distributed requests. ... 90

Figure 6.21: Path length for Zipf distributed requests to the two designs normal

Chord and TLP2P (5% LON - 95% GON) after node failure. 91

Figure 6.22: Simulation result of the path length for the two designs normal Chord

and TLP2P (5% LON - 95% GON) receiving Zipf distributed request. 92

Figure 6.23: Simulation result of the time out for the two designs normal Chord and

TLP2P (5% LON - 95% GON) receiving Zipf distributed request. 92

Figure 6.24: The results for number of failed lookups out of the 10,000 Zipf

distributed requests for normal Chord and TLP2P (5% LON - 95% GON). 93

xiii

Figure 6.25: Path length, 1st and 99th percentile for Chord network and best case of

TLP2P (including GON and LON) with Zipf distributed requests. 94

Figure 6.26: Average load, 1st and 99th percentile for Chord network, GON and LON

in best case TLP2P with Zipf distributed requests. ... 94

Figure 6.27: Number of keys per node simulation for the case of 500,000 Zipf

distributed requests (a) Presents record distrbution for LON network (5% of

TLP2P nodes) (b) Presents pure Chord and GON (95% of TLP2P nodes). 96

Figure 6.28: Average path length for the simulated scenario. 97

Figure 6.29: Average path length for node failure scenario. 98

Figure 6.30: Average path length for stabilization scenario. 99

Figure 6.31: Average time out for stabilization scenario. ... 99

Figure 6.32: Average number of lookup failures for stabilization scenario. 100

Figure 6.33: Average path length of the node blockage scenario. 101

Figure 6.34: Number of keys stored per node in the case of node blockage

simulation for the case of 50% of nodes are blocked with Zipf distributed requests

(a) Presents record distrbution for LON network (5% of TLP2P nodes) (b) Presents

pure Chord and GON (95% of TLP2P nodes) ... 102

xiv

LIST OF ABBREVIATIONS

ccTLD : country code TLD

com : commercial

DDoS : Distributed Denial of Service

DHT : Distributed Hash Tables

DNS : Domain Name System

DoS : Denial of Service

edu : education

GNP : Global Network Positioning

GON : Global Overlay Network

gTLD : generic TLD

ISP : Internet Service Providers

LFU : Least Frequently Used

LLCHORD : Low Latency Chord

LON : Local Overlay Network

LRU : Least Recently Used

net : network

xv

P2P : Peer to Peer

RTT : Round Trip Time

SHA : Secure Hash Algorithm

TLP2P : Two Layers Peer-to-Peer

TTL : Time to Live

USDC : United States Department of Commerce

xvi

ABSTRACT

Full Name: MAHMOUD SALAMAN JASSEM AL-SABA

Thesis Title: TWO LAYERS PEER-TO-PEER (P2P) DOMAIN NAME SYSTEM
(DNS)

Major Field: COMPUTER NETWORKS

Date of Degree: 29/5/2013

The domain name system (DNS) is a critical service for survival of all other hosted

services on the Internet. Some incidents show that the whole Internet can be halted

by defecting DNS functionality. The incidents were caused by exploiting the

weaknesses in the current DNS structure. The main weakness that lead to these

incidents is the root DNS servers, where all DNS queries will start with to be

resolved if the answer is not cached in clients’ local DNS servers. These root servers

are the targeted point by attackers. In addition, the servers are owned and

controlled by one committee which has the authority to stop serving queries

coming from any region for political reasons. The aim of this research is to present

the new Two Layers Peer-to-Peer (TLP2P) DNS structure which is based on Peer-

to-Peer (P2P) model. While there are other solutions that developed structures

resistant to denial of service attacks, the new solution targets the problem of

ownership of the root DNS servers by one committee. The simulation and analysis

results have proven that the proposed design tackled the ownership problem of

root DNS servers with lower number of hops than Chord network. Also, the results

show that it is a flexible structure with many advantages.

xvii

 ملخص الرسالة

 محمود سلمان جاسم السبع :الكامل الاسم

 حجب الوصول للانترنت من قبل مزود خدمة الانترنت الدولية عنوان الرسالة:

 هندسة شبكات التخصص:

 ٩١٠٢\٥\٩٢ :العلمية الدرجة تاريخ

 ان . حيثعبارة عن خدمة أساسيه للوصول للخدمات المتواجوده على الانترنت (DNS) نظام أسماء النطاقات

و وظيفة شبكة الإنترنت وبالكامل. ايقاف اثبتت انها قادرة على لهذا النظامفي الماظي عض الاعطال التي حصلت ب

الحاليه. وأساسا هذا الضعف هو جذر النظامستغلال نقاط الضعف في بنية هاجمون بأملتعطيل هذا النظام يقوم ال

هذه ا بهذه الجذور إذا لم تحل عن طريق الخوادم المحليه.حيث كافة الاستعلامات تبد نظام أسماء النطاقات ملقمات

الخوادم الجذرية هي النقطة المستهدفة من قبل المهاجمين، وهي كذلك مملوكة و تسيطر عليها لجنة واحدة والتي

لنظام أسماء الهدف من هذا البحث هو تقديم هيكل جديد لديها السلطة لوقف الخدمة عن اي عملاء من أي منطقة.

في حين أن هناك حلول أخرى وضعت هياكل .P2Pطبقتان من الند لند يتكون من الذيو (TLP2P)لنطاقاتا

لخوادم الجذرية لنظام أسماء النطاقات. اثبتت نتائج مشكلة تملك ا يستهدفمقاومة لهجوم حجب الخدمة، الحل الجديد

 الهجمات وبأداء جيد وانه مرن مع العديد من المزايا.المحاكاة والتحليل في هذا البحث أن التصميم يستطيع مقاومة

1

CHAPTER 1

INTRODUCTION

The evolution of the Internet has brought a global expansion to the

communication era. In this globalization advent, the importance of the Internet has

grown tremendously. This growth has continued and driven by the ever great

online piles of information, electronic commerce, entertainment and social

networking. The Internet basically creates a new layer of functionality and usage in

the era of technology. This motivated world-class leading organizations such as

Google, Yahoo, eBay, and Amazon to utilize the Internet in providing their day-to-

day services [7] [44] [47].

The domain name system (DNS) plays a vital role in the Internet

connectivity by converting domain names into IP addresses that can be used by

network devices. The domain name space consists of a tree of domain names. Each

node or leaf in the tree has zero or more resource records, which hold information

associated with the domain name. The tree sub-divides into zones beginning at the

root zone. The DNS consists of a hierarchy of DNS servers with 13 root

nameservers at the top of the hierarchy. The IP addresses of the 13 root

nameservers are hard coded in root hints file in every recursive or caching DNS

server [37] [22]. The second important type of name servers is the Top Level

Domain (TLD) which is divided into two categories: the generic TLDs (gTLDs) and

the country code TLDs (ccTLDs). From TLDs, the rest of the DNS servers extend in

http://en.wikipedia.org/wiki/Social_networking
http://en.wikipedia.org/wiki/Social_networking
http://en.wikipedia.org/wiki/Tree_data_structure
http://en.wikipedia.org/wiki/DNS_root_zone

2

tree-structure into multiple zones [22] [2]. The DNS server that is responsible for

adding, removing, or updating the resource records that belong to its zone is called

an authoritative name server.

DNS provides a critical and a core service and its absence has a severe

impact on other application-layer protocols such as HTTP, FTP, and SMTP.

Therefore, for any organization, DNS provides a vital service without which the

organization is deemed isolated and hence blocked from using Internet services.

With the current DNS structure, there is no centralized source of data

containing all DNS information; rather it is distributed over the authoritative

servers in each domain. The authoritative servers for each level domain are

required to store the information about the next level domain. For example, root

servers store the information about all gTLD and cc-TLD servers and so on.

Resolving queries require traversing through multiple servers to reach the

authoritative server of the queried host name which can answer with the IP

address. The design of the DNS is hierarchal and queries follow the hierarchal path

starting from the root. Usually at the Internet Service Providers (ISPs), there are

caching DNS servers to cache frequently queried host names to reduce the traffic

going to the Internet and also to enhance the response time. When a client requests

to resolve a host name, it forwards the request to the local ISP caching DNS. If the

answer is already cached, then the local DNS server answers directly from the

cache. Otherwise, the local DNS server fetches the answer from the authoritative

DNS server. To know the authoritative DNS server of the requested host, the local

DNS server contacts any root DNS server. The root DNS server will respond with

3

the TLD server responsible for the TLD domain in the host name. The TLD server

will also answer with the responsible of the organization domain or the next TLD

authoritative server depending on the requested host name. The process is

repeated until the authoritative DNS server is reached and answers with the IP

address or a failure response is received from any of the contacted servers. While

the local ISP DNS server uses its cache to answer DNS queries, it is also possible

that an intermediate DNS server resolves the query from cache [22].

To illustrate the concept of resolving DNS queries, we provide the following

example as shown in Figure 1.1 and Figure 1.2. In this example, we assume that the

local caching DNS server is contacting all authoritative DNS servers for each

domain to resolve the host name. However, in reality the communication by the

caching servers is not always carried out that way, because there are two types of

DNS queries namely, recursive and iterative. Typically, clients submit recursive

queries and depending on the configuration of the authoritative DNS servers, the

query might be forwarded iteratively or recursively. The difference between

recursive and iterative queries is that servers accepting recursive requests should

either answer with the IP address or a failure. While using iterative queries, the

initiator will carry the subsequent interactions with all authoritative DNS servers

based on the information it receives. Figure 1.1 shows an example of resolving the

host name “www.google.com” with recursive DNS lookup, while Figure 1.2 shows

the same example with iterative DNS lookup [23].

4

Figure 1.1: An example of resolving the host name “www.google.com” with recursive DNS
lookup.

Figure 1.2: Iterative DNS lookup with first query being recursive while resolving the host
name “www.google.com”.

1.1. Domain Name System Evolution

At the start of the Internet, the size of the network was limited and a small

database can contain the table of all hostnames to IP entries. To resolve a

hostname, a simple solution was implemented to satisfy the needs at that time. It

5

was simply storing the database on each host. Whenever there is a request to

initiate a communication with a remote host, the name is first resolved by matching

the host name with the entries in the local database and fetching the IP address as

shown in Figure 1.3. But with the growth of the network, this solution did not scale.

Large network size indicates more possibility of nodes updating their IP addresses

and hence increased number of obsolete records in the database. Consequently, this

results in frequent manual updates to the database. To eliminate this tremendous

overhead of frequent and repetitive manual process, a centralized server was

hosting the DNS database and clients download the database whenever they need

as shown in Figure 1.4 [28] [2].

Figure 1.3: Manual installation of the mapping file on hosts.

With further increase in the network size, other problems start to surface.

First, the rate of hosts updating their IP addresses was large, resulting in many

obsolete entries in the database in a short period of time. Second, the database size

started to increase rapidly and that negatively affected the time it takes the clients

to download the database. Third, the server hosting the database got overloaded

6

causing increased response time. Fourth, the downloaded database consumed large

storage, at the client side, while only small part of the database is being utilized. [2]

Figure 1.4: Host to IP mapping file is hosted on one server and clients download it locally to
resolve hostnames.

1.2. Current Domain Name System Structure

Newer design proposals were introduced to restructure the DNS. These DNS

design proposals, after many enhancements resulted in the current DNS structure

[2]. Currently, DNS is structured as a hieratical tree. Each node of the tree is either a

branch to a new level or a leaf node. The root node is the root domain and it is

represented by an empty string in the host name. It consists of root DNS servers.

There are 13 root DNS servers named with [a to m].root-servers.net. However there

are many replicas which are distributed globally as anycast root servers. Anycast

servers are servers with the same IP address distributed over many locations and

the packets targeting the IP address will be directed to the nearest topologically

server. The root zone is controlled by United States Department of Commerce

(USDC). Any changes to this zone require approval from USDC. The next level in the

7

DNS hierarchy tree is the top-level domain (TLD). It consists of over 300 domains

including country code top-level domains (cc-TLD). Example of general top level

domains are com (commercial), net (network) and edu (education). Examples of

country code top level domains are sa for Saudi Arabia and ae for Arab Emirates.

The next level is the second level domain which is registered to organizations such

as King Fahd University of Petroleum and Minerals (KFUPM). The next level is the

fourth level and it can be a sub-domain within an organization and can be used to

refer to different parts of the organization such as departments. Also this level can

be the last part of the hostname string which is the name of the leaf node. For

example, scholar.google.com is the full host name and scholar is the name of the

host in Google organization. Figure 1.5 shows an example of the DNS tree. It should

be noted that the number of domains in a host name is not limited to 4 domains

only, it can have larger number of domains but the host name must not exceed the

maximum number of 255 characters including the dots.

Figure 1.5: DNS tree

""

ROOT

com net org edu gov

google

ae

nasa

www mail www gcmd

8

While DNS main function is resolving host name to IP address, it is also

being utilized to act as a load balancer to share the load between servers. Load

balancing is simply achieved by having multiple IP addresses for the same host

name. Every time the domain name replies to client requests, it replies with

different IP address. However, this is not always an effective way to load balance

the requests due to caching [9]. A clients’ request goes first to the clients’ local DNS.

If the request is cached then the local DNS will reply from the cached data.

Otherwise, it will fetch the data from the domain server and will respond to the

client with the response. Also, a cached copy of the answer will be stored on the

caching server. As such, caching DNS servers will have different round robin cycles

resulting in more requests targeting some servers than others, ending up with

servers not receiving equal loads. Solutions attempted to omit cache effect by

specifying zero time-to-live (TTL) value. Each entry in the DNS has TTL value which

indicates the time limit for the entry to be used before it expires. With zero TTL

value, cached entries will be immediately obsolete. But even with this solution,

some caching DNS has a predefined minimum TTL value for all records and will not

adhere to the specified TTL by the domain server making this solution ineffective.

DNS also requires specifying primary and backup servers for the domain

name. In case one fails the other can handle the requests. Web servers for example

can take advantage of this by acting as the primary name server for its own

hostname. If the web server goes down then the client request for web server’s IP

address will get no answer. The client will initiate new request to the backup server

which will respond with the IP address of the second web server and ending up

9

with a successful request. All of this process is hidden for the end user in a way that

he/she will not notice any change in the service as if the response was fetched from

the primary server [9].

1.3. Thesis Structure

The rest of the thesis is structured as follows. Chapter two discusses the

motivation of this research and sheds light on the problem statement. Chapter

three presents the state-of-the-art related work to the denial of service attacks

against DNS and their general solutions. For completeness and clarity purposes, we

outline the Chord protocol in chapter four. In chapter five, a detailed explanation of

the proposed solution is presented with a discussion of the solution advantages.

The structure of the implemented simulation is explained in chapter six. Chapter

six also provides verification and correctness studies of our simulator. Chapter

seven discusses the simulation results of the proposed solution while chapter eight

concludes the research conducted in this thesis and envisions future work.

10

CHAPTER 2

PROBLEM STATEMENT

In this thesis, we were motivated by the fact that DNS is vulnerable to

blockage while it is a critical system for the Internet survival. As discussed in the

literature [14] [30] [36] [45], DNS service can be interrupted by a range of attacks

such as misconfiguration, denial of service (DoS), cache poisoning, and

compromised data. To address such attacks, researches put forward various

solutions spanning from using DNS security extensions [24] [35], using “Anycast

routing” [37], manipulating the Time-To-Live (TTL) value [34], and increasing the

efficiency of DNS caching [33].

The problem of the DNS blockage results in halting the services provided by

the DNS system including resolving host names to IP addresses. The blockage can

happen in two ways, by DoS attacks or by the DNS higher nameservers. The higher

nameservers have the authority to reject queries initiated by clients [37] [38] and

with the current DNS design the resolution process can be broken intentionally

through those servers for political reasons. The two vulnerabilities exist because

DNS structures servers in a hierarchal manner and the job of the root servers is

routing DNS requests to the next level which is the top level domain servers. The

top level domain servers will also route the requests to the next level and this

process is repeated until the requests reach a domain name server which in turn

answers the request. If the request is not directed by root DNS servers at the start

11

of the resolution process, then it will turn out with no answer. There were two

incidents where a number of root DNS systems were attacked resulting in an

outage of their service [38]. That led to unusable Internet with no accessible

service. Prior to these incidents, an incident due to a technical problem in seven of

the root DNS servers resulted in one day Internet outage [38]. In addition to these

incidents, the resolvers need to go through the higher nameserves (i.e., root and/or

TLDs) to resolve the client’s request. This raises the level of risk as these higher

nameservers can stop serving specific region for political or malicious reasons [13]

[29] [31] [36] [45]. Although the idea of malicious and hence intentional denial of

service by higher nameservers seems unlikely at first, there are several reasons

that may force a root nameserver to become malicious and perform Internet access

denial against a specific organization or country. For example, Internet access

denial can be driven by political motivations, as governments may force higher

nameservers to block Internet access to a specific region or country in an attempt

to establish an Internet embargo on the targeted region. Many large services and

networks have been attacked recently for political motivations. On December 2009,

Gmail, for example, had many attacks targeting email accounts of Chinese human

rights activists [16] [43]. Twitter, a popular social network, has also been attacked

during 2009 by hackers from Iran [1]. Another prime example of political

motivations to deny Internet access to an organization are the recent attempts by

many governments to pressure service providers (e.g., DNS service) to block access

to WikiLeaks [3] [4]. Such types of attacks are driven by political motives.

12

2.1. Thesis Contribution

 Resolve DNS blockage problem caused by the international Internet service

provider.

 Restructure DNS to two levels Peer-to-Peer overlay networks.

 Implement a recursive Chord peer-to-peer simulator with Java and comparing

the obtained results with the presented results in Chord paper for the iterative

simulator.

13

CHAPTER 3

RELATED WORK

This chapter will explore some of the weaknesses in the current DNS system

and some of the proposed solutions to Denial of Service attack against DNS as well

as the general architecture to tackle DoS and DDoS attack. For the purpose of clarity

and completion, we included in section 3.3 a discussion about Chord peer-to-peer

protocol with some of the proposed enhancements because it is related to our

work.

3.1. DNS Weaknesses

DoS and DDoS are two forms of attacks that aim to disable services provided

on the Internet by saturating a targeted service with huge amount requests so it

cannot respond to legitimate requests. With the new technologies, clients are

becoming more powerful increasing the threat for all published services [40] [43].

As mentioned, two outage incidents of DNS service were caused by DDoS attacks.

To find the threat of this type of attack, several studies and measures have been

conducted [38]. In 2001, different measurements in different times have been

performed in the ‘f’ root server ‘f.root-servers.net’ and the results show surprising

numbers. In all of the results, 60-85% of the received queries were repeated from

14

the same hosts and more than 14% of the queries were violating DNS standards.

Many requests were unanswerable, like the requester IP address is in the private

address space (ex, 10.*, 192.168.*) or asking for invalid top-level-domain. Also, the

DNS servers are utilized to act as a reflector for DoS attacks by spoofing the source

IP address to be the victim machine. Also, the study shows some hosts were trying

to update the root DNS server IP address and sending up to 15000 update requests

within one day. The statistics in one of the measures showed 20% out of 10

millions queries were for invalid TLD and 16.5% of the servers just asking for

invalid queries. This illustrates how the DoS and DDoS attack is all the time active

and consuming servers’ resources [26].

In 2002, different measures were done at the clients’ side in different

locations. The study focuses on the response time and considers only non-cached

names in collected statistics as they experience the longest response time. The

results show a wide range in the response time which varies from 0.95 seconds to

2.31 seconds. gTLD servers account for 13.9% to 28.9% of the response time and

they are queried at 60% of the lookup at each site. Root DNS servers have a very

low response time and account for 1.5% to 3.4% of the response time. They are

queried during 7% of the lookups at each site. The response time is found to be

effected by two factors, i.e., caching and location. The study also collected a large

number of domain names using Larbin crawler with 8 different starting points. The

number of collected names is around 100,000 names, and after the filtration of

invalid names due to typo mistakes and removing duplicate names based on the

second level domain, the number of names became 14,983. The names then were

15

categorized based on the gTLD and ccTLD and the percentage is shown in Table

3-1. It is clear that the variation is very large between TLDs. [30]

Table 3-1: Domain name samples percentage in TLD

TLD
category

Percentage of names in
category

com 50%

org 14%

net 9%

edu 6%

de 3%

ru 2%

fr 1%

ca 1%

gov 1%

it 1%

151 others less than 1% each

Jung, Sit, and Balakrishnan performed different measures by collecting

extensive packet traces to find the effectiveness of caching and to infer different

DNS usage from the associated TCP packets. The observations found are that one

quarter of all DNS lookups do not get any answer and at most it requires 2 to 3

times of retransmission to receive a successful answer. While a lack of answer

causes a larger number of retransmissions which results in traversing wide area.

The results also show that small TTL values of A-records does not degrade DNS

scalability, because the hit rate is almost the same for both small and large TTL

value for the same set of clients that share the same cache (See Figure 3.1) [14].

16

Figure 3.1: Impact of TTL on hit rate with different number of clients sharing the cache

In 2009, RIPE Network Coordination Centre (one of five regional Internet

registries) reported a case with increase of query load in the k-root, a root DNS

server, which the center supports. The load was not posing a problem to block the

traffic and for analysis purposes, all the packets has been collected. However, the

load was distributed over other replica of the k-root servers to eliminate drops, as

small drops appeared at the start of the queries load. The reason behind the drops

is internal bandwidth limitation. Moreover, large amount of queries were

originating from large network targeting one anycast server making anycast not

effective as usual. The analysis shows that the load was caused by queries for only

one hostname which belongs to the .com domain. Tracking the source IP address of

the queries shows that the top 8 networks querying for the host name are from

China. Further analysis shows a low number of queries per IP address, which

makes this incident not accurately to be classified as DDoS attack. Measurements

17

within 30 minutes found that about 60,000 to 65,000 distinct IP addresses are

sending queries. With this information, the speculation of the cause of traffic load is

that the queries are either for a misconfigured software that are related to the

Chinese language or a capability test for a botnet [45].

3.2. Solutions to DNS Problems

DNS attracted many researchers as it is a critical service for the Internet.

This section will outline some of the proposed solutions to enhance DNS

robustness. The researches are either proposing a totally new DNS structure or

proposing some additions to the current DNS system to tackle some of the existing

issues. Also, many researches have been conducted to find a solution to DoS and

DDoS attacks, because they are the common type of attacks against services

published in the Internet.

3.2.1. DNS Tuning

Vasilis, Dan, and Lixia found that the existing DNS system can be enhanced

without making significant changes to design architecture. This can be achieved by

setting longer time-to-live (TTL) values to some classified DNS records. The

classification of DNS records depends on how many zone records are queried. This

is used in different techniques for increasing the TTL value. The techniques are TTL

Refresh, TTL Renewal, Long TTL, and combination of these. The TTL Refresh

18

technique refreshes the TTL value every time the record is invoked even if it is not

expired. The TTL Renewal tries to keep the popular records cached by refetching

and renewing the TTL value just before they expire. The proposed ways of

determining which records should be renewed are the least recently used (LRU),

least frequently used (LFU), and adaptive of both of these renewal methods. The

long TTL technique is making the TTL values long and this can be done by the zone

administrator. The last is a combination of more than one method to reduce the

overhead that exists in each.

The test was made with different techniques and the results show the

following: 1) TTL Refresh has a better resilience than the existing system. 2) A

combination of TTL Refresh and Renewal results show that the TTL Refresh with A-

LFU (adaptive least frequently used) has the best result compared with other

Renewal methods. As an order LRU is the best, then LFU, then A-LRU, and at the last

is A-LFU. 3) TTL Refresh and Long-TTL provide almost the same resilience as TTL

Refresh and A-LFU. The value for Long-TTL used is 5 and 7 days while this might

cause obsolete DNS records. 4) The last technique used in the test is the

combination of all, TTL Refresh, Renewal, and Long-TTL. The achieved resilience in

the last test was the best. Even though the results show better resilience to DoS

attacks than the legacy DNS system, these methods cannot provide resilience like

the peer-to-peer networks [34].

Increasing TTL value will help to withstand the service outage in root DNS

servers for a short period, but it will also increase the number of obsolete records.

19

Besides, it will not help in case of long time outage and specially the case of the

intentional disabling of root DNS services.

3.2.2. Restructuring DNS Solutions

3.2.2.1. Dynamic Round-Robin Peer-To-Peer (P2P) Domain Name System

(DNS)

Fahd [5] developed a solution based on Chord protocol and round robin. The

solution depends on the current DNS system to resolve all the requests. It responds

from the cache in case the same query was resolved earlier by a peer before the

expiration of the record. The query submission to the legacy system is done in

round robin to achieve good load balance and with only one hop. First, the network

is constructed as specified in the Chord protocol with minor modification to the

“find successor” algorithm in order to filter out the blocked peers. Also, the “closest

predecessor” and “notify neighbors” algorithms have been changed to consider the

blocked peers. The first will account for the new type of peers, the blocked peers,

and will deals with them as living peers. The second algorithm will be executed by a

node once it gets blocked. The peer with the second function will notify its

neighbors that its status has changed from active to blocked or that it wants to

leave the network. The round robin has a lookup window to limit the number of

trials to resolve a query. Introducing the window meant to resolve the large delays

that might be caused by the blocked or dead nodes in the routing table. The size of

the window can be ‘one’, which means contacting only the next node to resolve the

query; and if it fails, the query fails. The window size can go up to the size of the

20

routing table and by increasing window size it would increase the likelihood to

resolve the query through different node in case the resolution trial with the first

node fails. With windows size ‘n’ the node tries ‘n’ times to contact different nodes

sequentially in the routing table before reporting a failed query. The limitation

mentioned in the study is the network cannot be in the consistent state. In other

words not all entries in the routing tables will point to the correct nodes and have

the right node status. This is due to the natural behavior of the peers as they i.e.,

join and leave the network and this limitation is inherited from Chord. The

simulation results showed that the configuration best performance is to have the

window size equals to the size of the routing table and in the simulation case of 4

virtual nodes per real node was the best [5]. It has better performance than the

pure Chord, however the solution does not utilize the caches and the dependency

increased on the legacy DNS system. Also, hosts published by the authoritative DNS

servers in a blocked region are not resolvable outside its region.

3.2.2.2. The Case for Pushing DNS

Mark and Adam [19] construct a DNS structure with a goal to have a robust

DNS System invulnerable to attacks. The DNS servers are peers constructing an

overlay network distributed over the world at thousands of ISPs distributing DNS

name server records. This assumes there is a single master DNS organization that

has the authority to access all the name server records existing in the root zone and

all the top level domains. This organization should have a public key known by all

the DNS servers in the peer-to-peer network. The master site takes all the DNS NS

records, and creates a single file. It then signs this file using its private key, and

21

distributes the signed file to the peers. When the peers receive this file, they use

their built-in public key to check the signature on the file. If the signature is valid,

then the node caches the file and uses the file as a DNS database to answer DNS

requests. It also passes the exact file to other peers. All nodes will do the same

processing to end up with the nodes capable of answering the DNS requests. In

case there is a node in the network corrupted the file or modified it, other nodes

will check the signature and refuse to talk to that peer again and will discard the

received file. The updates to records is designed to be incremental, that is the

master DNS will regenerate the entire DNS record file weekly and send it to the

peers in addition to the updated records that are sent hourly [19].

The result of the experiment shows that the design is robust against attacks

and as the number of the learned malicious peers by normal node is less than 30%

(compared to non-malicious peers) the infrastructure robustness will not be

degraded [19]. The drawbacks are huge data transfer between peers and also the

records will be obsolete. Also, having a master DNS organization will introduce the

same problem as the one that exist, in the current DNS system with the root server

which will make the organization the targeted point for the attack.

3.2.2.3. Overlook: Scalable Name Service on an Overlay Network

Marvin and Michael [21] developed a new DNS system structure utilizing the

scalability and the fault tolerance of the overlay (Peer-to-Peer). It can support large

number of clients, and allows large numbers of concurrent lookups for the same

records while the lookup latencies are measured in seconds. Furthermore,

hundreds of updated records can be visible to the public within seconds. The

22

overlay network (Peer-to-Peer protocol) selected for the implementation was

Pastry, while there are others which can be as well used without affecting the

performance. The main function of the Pastry protocol is that given a request it

routes the request to the destination home node [21].

Pastry network design requires every node in the network to have a unique

128-bit node Id and the set of existing node Ids must be uniformly distributed. The

node Id can be generated by hashing the node public key or the IP address. To

reach the destination, Pastry uses the targeted node Id as an input for nodes in the

route. Each node that receives the message will look for a destination node Id and

will send it to the node that is numerically closer to the destination Id. For a node

to know which other nodes have ids closer to the destination Id, it should maintain

a list of nodes with Ids numerically closer to its Id. The list is called the routing

table and should have at least O(log N) entries, where N is the number of nodes in

the network. Each entry is a mapping of a node Id to a node’s IP address. With this

design, it can cost a message to hop through O(log N) to reach its destination node

which can cause a delay. To reduce the lookup time and the latency resulted due to

large number of hops, a replica strategy of records is used [21].

The testing experiment was done in simulation. The number of stations used

is 600 in the core network and 60,000 LAN nodes connected to different link

capacities. The result shows even with only 100Mbps links capacity and system of

about 10,000 servers the network can have message processing service times of 0.5

milliseconds, handling request loads of 560,000 requests per second. However, the

aggregate CPU overhead of processing multiple application-level and the

23

forwarding hops per lookup request makes the contribution of each new server

adds no value in reducing the lookup latency. Also if a node with low CPU capacity

and connection bandwidth is connected to participate with the peers nodes, it will

decrease the performance of the overall system. [21]

3.2.2.4. The Design and Implementation of a Next Generation Name Service

for the Internet

Venugopalan and Emin [33] redesigned the DNS system to be of a high

performance, resilient to attacks, fast update propagation, and can replace the

existing DNS system without making changes to the clients. It is a peer-to-peer

solution and it uses distributed hash tables (DHT) structure. The nodes and records

are assigned random identifiers and the records are stored at the home node

(nearest node in the identifier space). This solution uses Beehive to reduce the

latency time of the lookup but requires more space and bandwidth by automatically

replicating the DNS mappings throughout the network to match the anticipated

demand and provides a strong performance. It is done by locally measuring the

access frequency of each record, and periodically aggregating them with other

nodes at every aggregation interval. Then, each node aggregates values gathered

from nodes one level higher in the routing table till it reaches the home node. The

home node computes a final aggregate and propagates it to all replicas in the

system. For the replication process, the home node determines the replication level

to know which node should have a replica. The record does not have TTL values. If

the record has changed, the home node will send the updated records to other

nodes which have the replica. Home nodes ensure the correctness of the records

24

through DNSSEC standard protocol and also through a centralized authority to sign

records fetched from the legacy DNS. The test was done with 75 nodes and the

average query per second for the system was 6.5. The results show that the average

bandwidth was 12.2 KB/s and the average number of records per node was 4127

(13 MB), while the experiment started with no records stored in the nodes. This

means that the load is evenly balanced across the nodes. Also, the update

propagation is taking less than one second to reach 98% of the replicas and for the

worst case scenario it takes less than a minute. So, this solution provides an

effective resilience to attacks and has low update latencies [33]. But, this solution

does not tackle the intentional disabling of DNS service by root DNS committee.

3.2.2.5. Serving DNS using a Peer-to-Peer Lookup Service

Russ et al. [32] used Chord peer-to-peer network protocol as a design to the

DNS system to have a solution that is fault-tolerant, load balanced and eliminates

the need of many administrations as it is the case of the existing DNS system. It uses

the same resource record sets as the existing DNS system and also the DNSSEC

protocol to ensure the authentication of data it receives. In this peer-to-peer

structure, the distribution of the records over peer nodes is done using DHash (a

hashing algorithm). To verify the effectiveness of the solution, a simulation was

done with 1000 nodes and no record replication algorithm is applied and with no

node failure. The result shows that the solution did an adequate job in balancing

records among the nodes, but the response time was worse than the legacy DNS

system. The average response time they had was 350ms while in the legacy DNS is

43ms. [32]

25

3.2.3. DNS Protection with DoS Defense Strategies

There are many researches that have been made for DoS and DDoS, and

there are many proposed defense systems to tackle these two common attacks. In

this section, two of the proposed solutions will be discussed. They depend on the

middleware software technology which allows the inter-process communication

between different systems by hiding the heterogeneity among them. Wei et al. [35]

showed a DoS preventing system for a distributed heterogeneous environment. The

structure of this solution is to install two components in the network that operate

in a virtual private environment. The two components are middleware box and

domain agent. They are special devices inserted at various locations in the network.

Middleware boxes have generic primitive functionality that can be reprogrammed

to change their roles and functionality to suit the network condition in preventing

DoS attacks. The domain agent is the controller, which controls the middleware

boxes in its domain and also it has the capability to communicate with other

domain agents to cooperate in case of DoS attack. Middleware boxes belong to only

one domain and each domain is controlled by one domain agent. The middleware

boxes will monitor, intercept, and filter the packets. When it detects potential

events, it will alert the domain agent with some information about the event. The

domain agent will store the events in its database and will check the alert with its

intrusion detection system. If the result of this process indicates an attack, then

with the information it has about the network and aggregated events it will take the

optimal decision. The decision can be changing the role of the middleware boxes or

26

sending the intrusion report to other domain agents to cooperate and mitigate the

effect of a DoS attack [35].

To enable the middleware boxes to communicate with each other, detect the

attack, and change their policy and behavior, it needs to have at least these modules

as specified in the paper: Attack detection module, signalling module, policy parser

module, policy integration module, and traffic processing module. The proposed

layers for the domain agent are: (1) Link Layer, which provides the controlling

signals. (2) Device Layer, the controller of a single middleware box. (3) Aggregator

Layer, which aggregates intrusion reports from different middleware boxes and

allocates different middleware boxes to cooperate in case of attack. (4) Feature

Services Layer, which provides the virtual private operation environment services

like VPN and DDoS prevention. For the signalling protocols, there are four which

are: (1) Secured Topology Auto-Discovery, at the start of deployment, the domain

agents create the self organized virtual network with middleware boxes. (2)

Secured Software Download, which enables the middleware to download required

or updated software from the domain agent using this protocol. (3) Run-Time

Control Protocol, which specifies the message format between a middleware box

and a domain agent. (4) Multiple Domain Support, which allows for the inter-

domain communication. This solution has three advantages. First it is transparent:

the middleware hides the heterogeneity for the application, providing upward and

downward compatibility. Second, the solution is efficient: with the limited defense

resources, the system uses all of its capability to prevent the DDoS. Also, it can

utilize the resources in different domains for this purpose. The third advantage is

27

the effectiveness: the solution can detect and prevent attacks without noticeable

service degradation by the end users [35].

Mudhakar et al. [24] and Ling developed a middleware protection system for

application level DoS. The solution uses middleware on the server side, and its

operation is divided to server’s firewall and application layer. The proposed

solution does not try to detect the DoS attack, but rather it determines the amount

of used resources to satisfy a request. The evaluation of the request is used to

prioritize clients. When the evaluation indicates high resources consumption, the

client priority is decreased, giving the chance for the higher priority clients; thus,

controlling the number of requests per unit time a client can issue. If the client

exceeds this limit, the requests are filtered [24].

Depending on the size of the network to be protected and the service

provided, this defense system can be adapted to mitigate the DoS attack. In this

research, no defense strategy is used, but any defense strategy can be used as an

extra layer of protection to enhance the DNS system and make it more robust to

DDoS attack.

3.3. Chord: A Scalable Peer-to-peer Lookup Protocol for Internet

Applications

Chord is a structured peer-to-peer network protocol that maps keys to

nodes. The Chord system is designed to efficiently assign nodes with suitable

records of data to simplify the process of finding records among peer nodes. It is

28

also scalable with no need for centralized management to handle the joining and

leaving nodes. The architecture of this protocol depends on the uses of consistent

hashing to assign keys to nodes. With consistent hashing, the load (number of

records) between nodes tends to be balanced and when nodes join or leave, there

would be little movement of data. For a Chord node to perform a lookup to map a

key to a node, it needs to communicate with other nodes based on routing

information. Each node builds the routing table once it joins the Chord network.

The table contains information about the other nodes. Each row in the table stores

information about a node, which are node’s IP address and its hashed value. Node’s

hashed value is the hashing result of the node’s IP address. In Chord network

consisting of N nodes, the number of rows in the table is O(log N). In Chord paper

[10], the routing table is called finger table and the i-th row is called finger i. Each

finger has a value which is the result of adding the node’s hashed value with 2i,

where i is the finger number. A finger table is populated with nodes’ information by

finding the home node of each finger. To achieve that, for every finger a lookup is

generated to find the home node of the finger value. Once the home node for a

finger is found, the home node information is stored within the finger. An example

of how the finger table is created is shown in Figure 3.2. The structure of the finger

table has two advantages, first it stores information about small number of nodes

and the seconds it knows more about the nearer nodes and less about far nodes. To

make the system function as desired, the finger table should be updated

periodically to avoid inconsistency in the network. Different algorithms need to be

29

executed regularly to correct the finger table for any new joining or leaving node

from the system.

Figure 3.2: Routing table for node in Chord network.

To locate the home node of a request, any node receiving a request will

forward it to the node in its finger table that satisfies this condition: its hashed

value is the largest among the others and smaller than the request hashed value in

the identifier space. This process is repeated at each node till the request reaches

the home node which responds to the requester directly. Locating the home node

requires passing through intermediate nodes each having latency. That is, each

node will introduce more delay resulting in larger response time. The response

time will differ from one request to another depending on the number of nodes the

requests will pass through. In the worst case, it is O(log N). If the network size is

very large, then it can lead to a large response time. Chord can maintain additional

30

routing information to reduce the number of hopping, but at the expense of more

complexity.

A simulation has been performed and the results show good performance

even in the face of concurrent node arrivals and departures and it continues to

function correctly, although at a degraded performance. At this performance

condition, the nodes’ finger table is not fully update to point to the right nodes,

which yield to larger number of timeouts and number of hops. The test also shows

that the best frequency of running the stabilization algorithm is the same as the

frequency of leaving and joining nodes [10].

3.3.1. Enhance Chord Performance

Chord performance is directly affected by the size of the network. As the

network size increases, the path length for the lookup increases which in turn

increases the latency for the lookups. Yi and Jinyuan [46] worked on creating

improved Chord protocol, which is a low latency Chord (LLCHORD). LLCHORD

reduces the query latency while retaining the same number of hops for the lookup.

To reduce the latency, LLCHORD looked to two concerns in Chord, i.e., number of

hops to resolve the lookup and query latency between peers. For the first concern,

LLCHORD reduces the average number of hops by maintaining the nodes’

information in the counter clockwise in addition to clockwise that is maintained by

Chord. The finger table in this case is populated with clockwise and counter

clockwise nodes, and the information gathered for both is the same except for the

use of subtraction instead of addition in the case of counter clockwise. This

31

additional information will make it possible for a lookup to be routed in the counter

clockwise direction too; and in this case, the path to the destination will require

fewer hops. For the other concern which deals with query latency between peers, it

is caused by the mismatch between nodes’ physical locations and the peer-to-peer

overlay network. There are many solutions to localize nodes on the Internet among

the other nodes. One solution is the IDMap which uses the trace to find the latency

between the peers and then advertise the results to them. Another solution is the

Global Network Positioning (GNP) model which uses Landmark nodes to measure

the round trip time (RTT) between nodes to create a 2D space of their locations.

With this model peers can find their locations in the 2D space by measuring the

RTT to the landmark nodes. The two mentioned solutions can be used in LLCHORD,

but usually these kinds of services are not easy to get in peer-to-peer environments

since they requires either a centralized node or third party nodes to perform the

measurements. LLCHORD can depend on simple measurements such as finding

only the RTT between the node and nodes in its finger table. After the collection of

these measurements, they are stored in another table called the neighbor table.

With the new design, the routing is no longer the same as Chord, but it requires

extra steps. The routing starts by finding the successor of the key in clockwise or

counter clockwise directions. Then, find the nearest node in the neighbor table to

the successor node. That node should also be nearer in key space to the destination

than the current node. The process is repeated till the destination node is reached.

The ideal case is finding the destination node in the neighbor table and the query

can be routed directly. While this approach will reduce query latency, it will

32

eventually result in larger number of lookup hops; and with the bidirectional query,

the lookup hops will tend to be the same as in Chord. A simulation is made for this

study and the results indicate larger number of hops in LLCHORD than in Chord. In

a Chord network, the average path length is 5.62 whereas in LLCHORD it is 6.94. On

the other hand the average lookup latency in LLCHORD is 79.87 ms and in Chord it

is 85.2 ms [46].

Yu et al. [48] reformate Chord link to enhance the lookup performance and

also minimize the influence of the dynamic network. Besides this, the load

balancing can be obtained as well. The proposed structure makes a group of nodes

as the basic unit in the Chord ring. Each group consists of one or more nodes, and

lookups will be traversing groups instead of the nodes which is the case in Chord.

Grouping will scale down the network size to result in shorter path length. Nodes

with similar bits in the range (25, 32) of their IP addresses will belong to the same

group and the group identifier will be the result of hashing those bits. Keys are

distributed over groups; and in a group with multiple nodes, the key is assigned to a

node with good capability. Also, in each group there is a representative node

responsible for storing and updating the group table. The group table is

constructed like the finger table in Chord, but each row has a group identifier and

the IP address of the representative node. To make it possible for a lookup to locate

a key, another table is required which is GroupIN table. It contains the information

about the nodes in the group, such as node identifier, node IP address, key location,

and the representative node. All the nodes will communicate with each other from

time to time to have the updated GroupIN table. Simulation runs have been

33

performed with maximum group size is 4 nodes and the results show improvement

in the average path length compared to the original Chord. The difference is about

0.9 in all scenarios of different network sizes [48].

3.3.2. Balance Load among Nodes

Chord simulation outputs, for the case of load balance, as shown in [10]

Figure 8, shows large variation in the number of keys assigned to nodes. In these

simulation runs there were nodes storing no key while other nodes store more than

450 keys. The explanation to this phenomenon is explained clearly in [10]. For the

purpose of completion and clarification, we re-iterate this explanation here. Nodes

position within Chord is based on the output of the hashing algorithm SHA-1 which

is random. This randomness of the nodes distribution over the identifier space

causes ununiformed gaps between nodes. The consequence is that nodes far from

the predecessor in the identifier space will have large key assignments; on the

other hand, nodes nearer to their predecessors will result in less key assignments.

Figure 3.3 illustrate the inconsistency of key assignment with an example of a

Chord network consisting of three nodes (A, B, C). In this example the difference

between node B and its predecessor (A) is 10, while the difference between C and B

is 72. Again, as the hashing used (SHA-1) for keys is uniform the probability of keys

assigned to C will be higher and that indicates more loads targeting C than B.

Chord proposed a solution to the unbalanced load problem by introducing a

mechanism to re-map the identifier space to the nodes. Virtual nodes are used here

to map the identifier space to the real nodes. Each of the virtual nodes will be

34

assigned a random key which is independent and unrelated to each other. As in the

case of real node each of the virtual nodes will be responsible for the keys in its

range. Then randomly map multiple of those virtual nodes to each real node. The

simulation results showed a better balance as the number of virtual nodes per real

node increased. With 20 virtual nodes mapped to one real node, the range of keys

per node is [50, 160] whereas it is [0, 480] without virtual nodes. [10]

Figure 3.3: An example of a Chord network with three nodes (A, B, C), showing the
difference in the identifier space.

A
05

B
15

C
87

B – A = 10

C – B = 72

35

CHAPTER 4

TWO LAYERS P2P SOLUTION

This chapter describes our proposed Two Layers P2P (TLP2P) solution and

its structure. This chapter also includes the advantages and limitations of the

solution with the assumptions for the design to function as required.

4.1. Structure of the Proposed Solution

Structured peer-to-peer networks are self managed, fault tolerant and

robust against the DoS attack [19] [21]. The proposed design uses a structured

peer-to-peer network to inherit its advantages. By making the design based on

peer-to-peer, it will be self managed eliminating the need for a centralized control

over the system which is the main issue we want to tackle. The new structure

consists of two levels of overlay networks and both are based on Chord protocol.

The selection of Chord was based on the simplicity of its design, provable

correctness and provable performance. Also by comparing Chord with Pastry which

is another P2P protocol, it shows that Chord has better resistance against DoS and

location hiding. However, the Content-Addressable Network (CAN) P2P protocol is

better in these two criteria compared to the other two P2P protocols, but CAN

requires more computation and complexity [8]. In addition, in Chord the load

36

balance and lookup path length are more consistent than CAN which makes Chord a

good selection for this problem [10].

The new structure consists of two overlay networks namely local overlay

network (LON) and global overlay network (GON). A blocked region will construct

a LON to serve client requests while GON will server LON to answer the request

through the legacy system. Figure 4.1 explains the concept which shows multiple

LONs consisting of different number of nodes and GON serving all LONs. The next

sections will have further explanation of the two overlay networks along with the

difference between the nodes.

Figure 4.1: An example of 4 local overlay networks served by a global overlay network

37

4.1.1. Local Overlay Network (LON)

LON consists of nodes belonging to the blocked region and they are not

expected to be able to resolve DNS queries from the legacy DNS system. The

function of those nodes is to answer DNS requests coming from clients in the

blocked region. To answer DNS requests, they need to have the answer in the cache

or direct the request to the second layer which is GON. When the request is directed

to the second layer, the answer comes back to LON in which the home node for the

request will cache the answer and send a copy to the client. Figure 4.2 shows the

flowchart of the mentioned lookup process in LON.

38

Figure 4.2: Local Overlay Network Flowchart

4.1.2. Global Overlay Network (GON)

The nodes in this layer are of two types, resolver nodes and gateway nodes.

Resolver nodes’ main job is to resolve DNS queries coming from LON by forwarding

39

the requests to the legacy DNS system. They are expected to be able to resolve DNS

queries through the existing DNS system. The other type of nodes is the gateway

nodes which participate in both layers and as they are part of LON then they are not

expected to be resolving DNS queries from legacy DNS system. They work as a

gateway between the two layers and their existence in GON is mandatory to direct

unresolved queries from LON to GON. Their other function is acting as the

authoritative DNS servers for all authoritative DNS servers in their region. This will

enable clients to resolve DNS names for authoritative servers in the blocked region.

GON serves multiple LONs and has at least one gateway node from each LON. When

a query comes from LON, it will be passed through the gateway node for that LON.

A lookup process will find the home node for the request which will answer either

from its cache or the legacy DNS system. The home node in this case has to be a

resolver node, otherwise the request needs to be routed to the first successor

resolver node, see Figure 4.3 for the steps as a flowchart to resolve query coming

from LON.

40

Figure 4.3: Global Overlay Network Flowchart

4.1.3. Cached Records Expiration

To ensure the availably of the answers to clients’ request, the behavior of

peers in GON with respect to DNS records will depend on the source of the answer.

41

The DNS answers can be coming from the legacy DNS system or from an

authoritative DNS server in GON or LON. When answers are received from the

legacy DNS system, GON caches them with their TTL values. While if the

authoritative DNS server is part of GON or LON, then all its records are stored in

GON without their TTL value. With this way, any changes to a record will trigger the

authoritative DNS server to publish the changes to the home node of the record

which will make the necessary actions to reflect the update. LON peers always store

the TTL value unless the authoritative DNS server is in its LON. In the case the peer

in LON stores the TTL value, it will prioritize the records based on the number of

requests to determine the updating mechanism for cached records. Cached records

with high priority will be updated with a proactive cache which refreshes the

records whenever they expire. On the other hand, lower priority cached records

will be in the passive cache, in which an expired record will not be updated unless a

client requests it. This will ensure faster update propagation of obsolete records to

LON and GON, where only two peers need to be updated, and will reduce the traffic

that can be caused with the expiration of the TTL while no change has occurred.

Also, the proactive caching will enhance the response time for highly queried

records.

4.1.4. Request Scenario

A scenario of a client who wants to resolve a name to IP will start by sending

the DNS query to LON. Any peer can serve the request and start the process of the

lookup. When the request reaches the home node, it will check the cache and if it

42

has an answer it will reply with the cached answer. Otherwise, the node will

forward the request to the gateway node. The gateway node will start the lookup

process to find the resolver home node for the request in the GON. Once the home

node is found it will either reply with an answer from the cache if it exists or will

direct the request to the legacy DNS system. For the second case, the home node

would receive an answer from the legacy DNS system in the normal case. Then it

will reply to the home node in LON which in turn will cache the answer and will

forward a copy to the client.

It might be thought that when LON has only one node, TLP2P will behave

like pure Chord. However, when LON has one node the lookup to find the home

node is zero and the cache result is found immediately, whereas in the case of the

Chord the lookup will be on overage

 to find the home nodes.

4.2. Advantages

Building the structure as two overlay networks has many advantages over

the existing system. One of the gained advantages is more effective caching. It has

been achieved by splitting the blocked areas by their geographical location into

overlay networks, since people belonging to the same area will more likely have the

same interest which will increase the possibility of accessing the same records. It is

supported by the fact that members of the same culture or subculture will have

similar behavior and activity in the Internet [11] [20]. As a result, the cache will

have a higher hit rate and the effect over the whole system is better response time.

43

Also the peers with this design will be near each other which will have less

communication latency between them. In addition, LON can increase cache

utilization by implementing a replication algorithm to replicate DNS records on

multiple peers, but it will not be discussed in this research.

It is also good to mention that splitting culture will limit the set size of DNS

records allowing a small size memory to cache all favorite records. In other words if

Least Recently Used caching algorithm is used then the algorithm most likely will

not discard a frequently requested record with nowadays memory size in case of

full cache. Along with these mentioned advantages LON size can be elastic based on

the demand. For example, we can increase the number of peers when performance

starts degrading or reduce the number of peers if the utilization is low.

In summary, our proposed solution has the following advantages:

1. Self-managing structure: the structure is based on peer-to-peer. The system

automatically manages the joining and leaving nodes as well as the allocation of

DNS records and locating them.

2. Harder to detect the cooperating nodes by enemies: the structure requires

cooperating nodes to be known only by the GON peers which are gateway nodes

and cooperating nodes. To identify the peers, the enemy must be in GON. In

addition, Chord protocol has a good location hiding [8].

3. More resilient to DoS attack: in this design, there is no single point of failure.

To halt the system, all the peers in the network need to be attacked and that will

require large amount of resources to make the attack successful. In addition, to

start the attack, the peers need to be known first which will not be an easy task.

44

If in any case the first layer has been attacked and the network became not

accessible, the second layer can serve from the cache.

4. Faster update to obsolete records: records are cached in two locations which

are GON and LON. Any update to the records will need to be reflected in these

two locations only, which makes it easier and faster to propagate the update.

5. All peers in TLP2P will be able to resolve hostnames belonging to the

served blocked regions: in case a region is blocked by the international

Internet service provider, any DNS queries will not be processed by higher DNS

servers. This includes resolution queries, registration of new DNS domain, and

update requests. By that, all hostnames for the hosts in the blocked regions will

be unresolvable. However, if the clients join TLP2P, then they will be able to

resolve all the hostnames, because the authoritative DNS servers’ will publish

the updates within TLP2P as discussed earlier, and clients in TLP2P will be able

to resolve the hostnames normally.

6. Better utilization of the cache in LON which results in lower response

time: LONs are created based on the geographical locations and users belonging

to the same location will more likely share the same interests, which increases

the likelihood of using the same services on the Internet. This will limit the

number of popular records and will increase cache hit rate resulting in lower

response time.

7. Different replication algorithm of popular records can be used in LON

based on the culture activity: a replication algorithm can be applied to

45

increase the hit rate and reduce the response time. The replication algorithm

can be different from one LON to another to suit the needs.

8. Virtual nodes can be used to distribute Loads evenly: the new design uses

Chord protocol which can achieve good load balance by introducing the virtual

nodes in the Chord network, as discussed in Chord paper [10].

9. No change to client side: the client will use the same DNS protocol to resolve

hostnames. The difference is in the resolution of the query which is transparent

to the client.

10. Advantages of the current DNS are inherited by our design: there are many

advantages in the current DNS system like the security layer DNSSEC and

multiple IPs as a load balance approach to service providers. Any advantage that

is not related to the design structure can be implemented in the new design

with no or minimal modification.

Advantages 1 to 4 are inherited from Chord and the rest are based on the proposed

solution.

4.3. Limitations

The main concern with the new design is the number of hops to resolve a

query. Chord network has an average of hops for lookups where N is the

number of nodes in the network. However, the proposed solution consists of two

overlay networks which can result in larger number of hops. To have control over

46

the number of hops, LON size should be kept small and this cannot be achieved

without a full control over LON. Also, as the load increases, new peers need to join

the network. As a solution, LON can be split into two smaller LONs, but it is not a

simple task especially in an active system.

4.4. Assumptions

The assumptions for the proposed solution to function correctly are:

 There are some cooperating nodes which can resolve a DNS query on behalf of

other nodes. In the simulation, the system was functioning in a good condition

with only 100 resolvers out of 1000 nodes, that is 10% of the nodes were

resolvers.

 Resolver nodes are trusted and are not behaving maliciously.

47

CHAPTER 5

SIMULATOR

This chapter discusses the implementation of the simulator to evaluate the

proposed structure. It also includes simulator results of Chord protocol to verify its

correctness by comparing results obtained with results presented in Chord paper

[10].

5.1. Simulator’s Design

The simulator is developed with Java programming language. The approach

used for lookup is recursive lookup in which a received lookup will be forwarded to

the next node based on the information in the finger table and the process is

repeated till the home node is found. On the other hand, the simulator used in the

Chord paper [10] is based on an iterative lookup. In the iterative lookup, when a

node receives a request, it will communicate with other nodes to retrieve

information from their finger table to find the home node. Each of the two methods

should have the same result and the simulators should generate the same output as

we don’t consider the network latency in the simulation. [10]

48

Figure 5.1: Simulator Design Layers. The two columns at the middle of the layer stack is for
the two different structure of simulated networks (proposed solution and normal Chord)

The design of the developed simulator is made of five different layers as

shown in the Figure 5.1 and these layers are composed of multiple classes. The core

layer consists of the Chord protocol and part of it is the Chord algorithms like the

stabilization algorithm and the lookup algorithm. The second layer creates the

Chord network by initializing the Chord nodes first and then linking them by

building the finger and successor tables as well as the other parameters. The third

layer extends the simulator capability to have another overlay network acting as

the global overlay network when simulating the proposed solution. However, when

simulating the normal Chord network, this layer is skipped to the next layer. The

next layer is the simulator engine which consists of random generator, query

generator, queue manager, and the processor. The random generators follow

different distributions and there are three different generators for each, i.e.,

Core(Chord Protocol)

Chord Network

TLP2P

Simulator

Engine
Simulator

Engine

Simulator

49

uniform, Poisson, and Zipf. The query generator part generates random queries

using a different random generator depending on the simulation scenario. When

queries are generated, they are filled in a queue and only one global queue for all

nodes exists in the simulator. The queue is managed by the queue manager which

also manages the stabilization queue. The stabilization queue is for stabilization

algorithms and it is invoked at every stabilization period which is stored in the

request state of the stabilization request. The last part of this layer deals with

request processing, like lookup request and stabilization requests. The top layer in

the design is the simulator layer and it is the layer responsible to start the

simulation runs. It initializes the other layers based on the scenario. Once the

simulator is started, collecting measures starts till the completion of the simulation.

5.2. Simulator’s Assumption

There are three assumptions while designing the simulator and they are:

 No TTL value for DNS names.

 No query processing time.

 Only one query is resolved at a time.

50

5.3. Simulation Measures

5.3.1. Load Balance

To study how keys are distributed over nodes with a consistent hashing

(SHA), a number of simulations are carried out with different number of keys while

having the same number of nodes. The number of nodes in the network is 10,000

and the number of keys varied starting from 10,000 to 1000,000 with an increment

of 10,000. The size of bit identifier m is 160 and it is same for all scenarios. As the

simulation in Chord [10], for each simulation setting, the simulation was repeated

19 times generating a total of 200 outputs. The measure collected were the number

of keys resolved by each node.

5.3.2. Path Length

The number of hops is one of the main factors affecting Chord protocol

performance. Resolving queries in Chord network depends on distributed hashing

tables. This requires query lookup to traverse through multiple nodes and

depending on 1) the starting node, 2) the state of the intermediate nodes and their

hashing table, and 3) the location of the home node in the Chord network, the

number of hopes differs from one lookup to another. To find the effect of each of

network size, node failures, and node join/leave on path length, multiple of

simulations are performed.

51

5.3.2.1. Varying Network Size

For the case of network size, the simulation starts with a network consisting

of 8 nodes and 800 lookups were generated. Doubling for each simulation the

number of nodes and lookups to reach to and lookups. For each

value, a separate simulation was implemented and repeated for 19 times.

Simulation inputs are the number of nodes which equals to and the number of

keys , where k = [3, 14]. The output of those simulations is the path lengths

of the lookups.

5.3.2.2. Simulation with Nodes Failure

Failure simulation is performed to experiment the effect of changing the

node status from active to failed on the path length. The simulations start with a

network consisting of 1000 nodes in a stable state. That is, all nodes are active and

the finger tables point to the correct nodes as well as the successor list which is of

size 20. Then, random nodes failed simultaneously with a probability of 10% with

increment of 10% in the rest of the simulations up to 50% for the last. To evaluate

the impact of massive node failures, the stabilization algorithms are disabled and

10000 lookups were issued randomly. At the start of node failures, none of the

active nodes knows about any failed node. But while resolving lookups active nodes

will try to forward the request to the next nodes based on their finger table. If the

next node is a failed node, then the communication will time out indicating a failed

node and resulting in removing the failed node from the node’s finger table. The

52

output of these simulations is the path length which will include the time out as

well. For each of the 5 failing probabilities scenarios, a separate simulation was

performed and was repeated for 4 times.

5.3.2.3. Simulation with Nodes Joining and Leaving

The last case of simulation is the excessive joining and leaving of nodes

while resolving lookups. The simulator configuration is as follows:

 Network size is 1000.

 Successor list size is 20.

 Lookups generated with Poisson process of a rate one per second.

 Joining and leaving rate follow Poisson distribution.

 8 different simulations with different rates. The simulations start with 0.05

'join' and 'leave' per second and the last simulation has a 'join' and 'leave' rate of

0.40. The increment in each simulation is 0.05.

 Nodes run the stabilization algorithm at a uniform time interval [15, 45].

Collected outputs are path length (hops + timeout), timeouts, and failed lookups.

The simulation scenarios have been repeated for 4 times.

5.3.2.4. Simulation with Node Blockage

For the purpose of testing the proposed solution, an additional scenario will

be simulated to find the effectiveness of TLP2P in the case of resolver nodes in GON

got blocked. The scenario will measure the path length and the load balance while a

53

portion of the nodes are blocked at the start of the simulation. The number of

blocked nodes will vary in each simulation by 10%, starting in the first simulation

with 10% of the nodes blocked and ending with 90%. The number of nodes in the

network is 1000 and the number of lookups generated is 10,000.

5.4. Performance Metrics

The simulation results will discuss five different measures that will be

explained in this section. Some of these measures are calculated on GON and LON

level as well as the total of the two whenever applicable. In all measures the 1st and

99th percentiles are calculated too. The pth percentile is the value that falls at the

p% of the result set.

1. Load Balance: has two measures

o Number of records stored per node:

Average Load =
∑

 , where n =

number of nodes and i represents nodes.

The 1st and 99th percentiles presented with the average load in the

simulation results, will indicate how balanced the load is.

o Load fairness between nodes. The resulted value by evaluating the

equation can be in the range of 0 to 1. Closer value to 1 indicates

better load fairness among the nodes.

54

Fairness =
(∑)

 ∑(

)
 , where Ni is the number of keys resolved

by the ith node and 'count' is the number of nodes.

2. Path length: is the number of nodes hopped for the request to find the

home node.

Path length =
∑

 , where n = Total number of

requests and i represents requests.

For the scenarios where there are failing or departing nodes, the path

length accounts for timeout requests as well. So, it will be:

Path length =
∑

3. Timeout: is the number of times a node is trying to connect to a non-

existing node (failed or left the network) while resolving a request.

Timeout =
∑

 , where n = Total number of

requests and i represents requests.

4. Lookup Failure: is the number of mapped lookups to an incorrect home

node.

Lookup Failure =

.

5. Hit Count: is the number of resolved lookups from the cache. When the

lookup is resolved at LON without going to GON, it is considered as a hit.

Hit Count = Total number of hits.

55

5.5. Simulator’s Validation

The four simulation scenarios in Chord paper will be simulated using the

implemented simulator. Each of the following subsections will discuss and compare

results obtained with results presented in Chord [10].

5.5.1. Load Balance

Figure 5.2 shows the comparison of the two results, the Chord paper and

implemented simulator. It is clear from the graph that both simulators have the

same results.

Figure 5.2: The mean, 1st and 99th percentiles of the number of keys stored per node in
10,000 nodes network

0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100

N
u

m
b

e
r

o
f

K
e

ys
 p

e
r

n
o

d
e

Total Number of Keys (x 10,000)

Keys per Nodes

Chord [10]

Simulation Results

56

5.5.2. Path Length

In path length scenario, the outputs are identical as shown in Figure 5.3. The

difference in percentiles is normal and it is due to the randomness of inputs to the

simulations.

Figure 5.3: Average path length, 1st and 99th percentiles of lookups with varying number of
nodes

The proof of the average path length has been explained in Chord [10], but a

detailed explanation will be presented here as well since in the next chapter, we

will depend on this result to create the simulation scenarios.

Proof of average path length

0

2

4

6

8

10

12

2 4 6 8 10 12 14

P
at

h
 L

e
n

gt
h

Number of Nodes (2x)

Path Length

Chord [10]

Simulation Results

57

Let node n generate a random lookup for a key k. Recall that each node has a

finger table and each entry i stores the home node of n + 2i.

Table 5-1: Finger table for node n

i Home node of Home node must be in

1 n + 20 [n + 20, n)

2 n + 21 [n + 21, n)

3 n + 22 [n + 22, n)

.

.
.
.

.

.

m n + 2m-1 [n + 2m-1, n)

With this information, let us find the worst case where .

With this condition, n will forward the request to the home of (n + 2m-1) and let us

call it n1. As , node n1 will not forward the request to the home

node of (n1 + 2m - 1), which is finger number m, because finger m will cover the

interval [n, n1). In other words, it covers the interval [n, n + 2m-1) and this interval

does not overlap with key interval in the first assumption which is .

So, for the worst case scenario, node n1 will forward the query to the home node of

finger number (m – 1). The process is repeated by forwarding the received query to

the next node, which is the finger m – 2 of the receiving node. In summary, the

request will be forwarded as follows: node n (finger m) node n1 (finger m – 1)

node n2 (finger m – 2) … … … node nm-1 (finger 1 = successor) the number of

58

hops for worst case scenario is m – 1. From this result, we can say that, after x hops,

there are at most 2m/2x – 1 nodes to reach the home node. In case of a network with

N uniformly distributed random nodes, there should be only one node after

hopping 2m/N - 1 nodes with a high probability. In other words, after hops,

there is only one node to reach the home node with a high probability. For the

average path length, it equals to (maximum + minimum)/2, because the nodes are

distributed over Chord ring based on SHA algorithm which follows uniform

distribution as well as the key and assigned node are uniformly random. The

minimum path length is for the case where the home node is the successor node of

the requester which does not require any hop and the maximum as found

is . So, the average path length =

 . The results in Figure 5.3 show

that the average path length is the same as the proofed theoretical average.

Another proof of the average path length is using the difference in bits

between node hash identifier and key identifier. Let k be the key that is queried to

find its home node. Depending on the difference between the node and the key in

binary, the node will determine which finger to follow. Let us assume the most

significant bit is i. If i is 1, then the lookup will be forwarded to the home node of

the ith finger and by that the 1 is flipped to 0. The other case is where the ith bit is 0,

then no forward is performed at this stage, rather the next bit is examined. The

process goes again for the next bit and the same process is repeated till the home

node is reached. This means that the number of hops (path length) is the number of

ones in binary that differ between home node identifier and the key. Since the node

identifiers are distributed randomly, then the expected number of ones are half of

59

the bit on average average path length =

 . The part came from

the number of bits to test.

5.5.3. Simultaneous Node Failures

In Figure 5.4, the path length is shown for both simulators for the node

failure scenario. Again, both simulators have the same average path length and the

difference in percentile is due to randomness of the inputs.

Figure 5.4: Average path length, 1st and 99th percentiles of lookups with random node failed
before start resolving lookups

5.5.4. Lookups during Stabilization

In this scenario, the measures have three results which are the path length,

timeout, and failed lookups. In Figure 5.5 and Figure 5.6, the outputs look the same

0

2

4

6

8

10

12

-0.1 0 0.1 0.2 0.3 0.4 0.5

P
at

h
 L

e
n

gt
h

Fraction of Failed Nodes (X * 1000)

Node Failing Path Length

Chord [10]

Simulation Results

60

for the two simulators and the minor difference in 99th percentile is expected and it

is as stated before because of the random query and nodes. The output presented in

Figure 5.7 is for the number of failed lookups. It is unlike the other figures, and it

presents the average number of failed requests with the minimum and maximum

values for the different runs. The results shows a difference between the two

simulators outputs, but also the same difference appears in the simulator

developed in [5] which is presented in [5] Figure 6.10. The reason of the

dissimilarity is the randomness of four random variables that account into the

lookup failure. To know these random variables, it would be better to understand

first how a lookup is resolved to an incorrect home node. A failed lookup occurs

when the predecessor (np) of the home node (nh) receive the request and nh has

just joined while np is not aware of the newly joining home node. In such a case, np

will map falsely to the successor of nh as the home node of the request, which

results in a failed lookup. The four random variables in this case are the request,

time of the request, the home node, and the time of joining. The inconsistency in the

failed lookup outputs can also be noticed in Chord simulator output, the rate 0.40

has a lower number of failed lookups than the rate 0.35, while the expectation of a

higher join and leave rate is a higher number of failed requests.

61

Figure 5.5: Average path length, 1st and 99th percentiles of lookups while node joining and
leaving the network

Figure 5.6: Average, 1st and 99th percentiles of timed out requests while nodes leaving and
joining the Chord network

0.00

2.00

4.00

6.00

8.00

10.00

12.00

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

P
at

h
 L

e
n

gt
h

Node Join/Leave Rate per Second

Stabilization Path Length

Chord [10]

Simulation Results

0

1

2

3

4

5

6

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

N
u

m
b

e
r

o
f

Ti
m

e
 O

u
t

Node Join/Leave Rate per Second

Stabilization Time Out

Chord [10]

Simulation Results

62

Figure 5.7: Average, minimum and maximum of failed lookups while nodes leaving and
joining the Chord network

The implemented simulator has almost an exact output compared to the

Chord simulator in all cases, except for some difference in one output which is

acceptable due to the nature of the inputs as explained in the previous paragraph.

The simulator will be used to implement the proposed solution to study the

behavior of the new design with the same simulation scenario ran in this chapter.

0

2

4

6

8

10

12

14

16

18

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

N
u

m
b

e
r

o
f

Fa
ile

d
 L

o
o

ku
p

s

Node Join/Leave Rate per Second

Stabilization Lookup Failures

Chord [10]

Simulation Results

63

CHAPTER 6

SIMULATION AND RESULTS ANALYSIS

Simulation results will be presented in this chapter for the proposed

solution. Three different scenarios are simulated with different requests

distributions. Out of the three, there are two worst cases, one with request

repetition and the other with no repetition. The third case scenario is for the best

case with request repetition.

6.1. Simulation Scenarios for Proposed Structure

In the designed structure, a GON can serve multiple LONs, however in all

simulation scenarios there will be one GON serving only one LON. This is a

limitation due to the time and memory required for simulation. To study the

effectiveness of the solution, it will be compared with normal Chord network. The

same nodes number in normal Chord network simulations will be distributed over

GON and LON in TLP2P simulation. The aim is to have a fair comparison between

the two designs. In the nodes distribution the consideration is to form a worst case

scenario while the second modeling the best case scenario. As stated before, the

path length is the main factor determining the performance of the design and hence

the node distribution will be evaluated to find the highest path length.

64

To find the highest path length lets define some variables:

 n : number of nodes in LON

 N : number of nodes in GON

 t : total number of nodes in LON and GON

 p : average path length. Path length for LON and GON

With this information
 =

From last chapter, the path length for TLP2P should be:

p =

 =

 =

The derivative of p:

 =

 =

To find the global maxima, first find the critical point by solving the derivative for

zero.

 = 0

 = 0

 =

 =

65

 =

 (critical point)

Now the critical point needs to be examined to find out whether it is global maxima

or global minima. For that the second derivative need to be found.

 =

 =

Evaluate the critical point in the second derivative

 (

) =

 =

 =

The result is negative which indicates it is a global maxima. So the highest path

length occurs when LON and GON size is t/2. Now let us find the local minima. First,

the critical point is found as a global maxima. The other points to check are the

boundary points. The interval of the network size for GON and LON is [1, t – 1].

 =

 =

 =

 =

 =

66

 =

 =

 (

)

By this result, the local minima is at 1 and (t – 1). In other words, the minimum path

length will occur in case of number of LON’s nodes is 1 or t – 1.

To ensure the results are as found, Figure 6.1 shows the plot of path length

which is in the Z-axis and LON and GON size in X and Y-axis respectively. The plot

illustrates the points and gives a view of how the path length changes as the

number of nodes changes in LON and GON. The shape of the plot is almost half a

circle having the highest point in the middle and decreases toward the edges of the

interval. In this plot, the number of nodes as total is 100 and the interval for both

networks is [1, 99]. The plot supports the results obtained for the global maxima

and local minima.

67

Figure 6.1: Path length in term of network size, p =

 . The total number of

nodes is 100 and the point shown repersents the heighest path length when GON and LON
size is 100/2 and lowest path length when either network having only one node.

The simulation scenarios are summarized in Table 6-1 and they are:

 Scenario#1: 50% of total nodes will be distributed over the two overlay

networks and it will be compared to normal Chord simulation. The request

distribution will follow the uniform distribution and no request repetition.

 Scenario#2: Same as the first scenario but the request distribution will follow

Zipf distribution which has a request repetition. The results will be compared

with normal Chord simulation but with a Zipf distributed requests.

 Scenario#3: LON will contain 5% of the total number of nodes while GON will

have 95%. The simulation again will be compared with normal Chord

simulation that had Zipf distributed request as in the previous scenario.

68

For each of the simulation configuration the five scenarios stated earlier will

be simulated and they are:

 Load Balance

 Path Length

 Node Failure

 Join & Leave

 Node Blockage

Table 6-1: Simulation configuration

Request Distribution

Configuration Uniform Zipf

Chord √ √

TLP2P Worst Case √ √

TLP2P Best Case

√

The intention of simulating the TLP2P solution with uniform distributed

request is to study how the TLP2P can utilize the cache to reduce the path length

and thus the dependency on the legacy DNS system. For this reason, the simulations

were run for only one simulations configuration that is uniform worst case.

The selection of Zipf distribution for the simulation was based on many

researches. It has been proven by many measurements of real life traffic that

human behaviors follow Zipf distribution. However, the number of users’

communities and the size can make a difference in the distribution. Smaller

communities follow Zipf-like distribution while if the communities are very large

the distribution will be Zipf. In the simulated scenarios, the assumption is that the

69

system is serving a very large number of communities, and thus the Zipf

distribution is the right one for these simulations [18].

The reason of simulating the best case scenario with 5% of nodes in LON

and 95% in GON is due to the join & leave scenario where the number of leaving

nodes is 12 per stabilization period. If the calculated best case is used in the

simulation which is LON will have only one node then LON will be totally empty.

For that, the size of LON is increased to meet the requirement for the join & leave

scenario to run.

While the solution has mentioned the possibility of having a replication

algorithm to enhance the lookup hops and also having virtual peers to increase the

load balance between nodes, neither of these enhancements were implemented.

Also, in all cases of the simulations, the nodes start with empty caching regardless

of request distribution and requests repetition.

6.2. Simulation Results

6.2.1. Worst Case Scenario with no Request Repetition

6.2.1.1. Load Balance

The load is doubling by cutting the network size by half, in general the

average load is represented by dividing the number of requests by the number of

nodes in Chord network. Figure 6.2 also shows that the load in 99th percentile is

doubling by dividing the size of the network by half. The results shown for LON and

70

GON in the figure have the same average number of keys per node since they have

the exact setting and they are receiving the same query load. However, the average

load in LON and GON networks differ from normal Chord network because Chord

network has twice the size of GON and LON network. Figure 6.3 presents the load

fairness between nodes for each of the three networks. The fairness is the same for

all and it is almost 0.5. These results indicate that, pure Chord and TLP2P are

identical in term of load fairness. For the coming two scenarios, the fairness results

are not presented because all fairness results have almost the same output as

Figure 6.3.

Figure 6.2: The plot of the average load with fix number of nodes and varying number of
queries. The plot represents for each query load three results which are pure node, LON

and GON.

0

100

200

300

400

500

600

700

800

900

1000

0 10 20 30 40 50 60 70 80 90 100

N
u

m
b

er
 o

f
K

ey
s

p
er

 n
o

d
e

Total Number of Keys (x 10,000)

Keys per Node

Pure Chord 50% Uniform LON 50% Uniform GON

71

Figure 6.3: Load fairness results for the three networks normal Chord, GON and LON.

6.2.1.2. Path Length

Figure 6.4 displays the simulation results which show that the path length is

also affected by the network size as discussed and proven earlier in this chapter.

The results for LON and GON show both networks have equal average path length.

This is due to the same configuration is being set for both networks and they have

the same network size. Also, the same queries are passed from LON to GON which

yield to same average path length. However, the difference occurs between the

overlays networks in TLP2P and normal Chord which can be explained by the path

length formula. The difference basically equals

to

 , since the size of the network

in normal Chord network is double the size of LON, the formula can be rewritten in

this way

 which equals to

 which is 0.5. So the difference in

path length between LON or GON and normal Chord scenario is 0.5, which is as the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900 1000

Lo
ad

 F
ai

rn
e

ss

Number of Keys (x1000)

Load Fairness

Pure Chord 50% Uniform LON 50% Uniform GON

72

case obtained in the simulation results. Of course, the total path length for the

TLP2P network is the addition of the path length of LON and GON.

Figure 6.4: Path length measures for normal Chord simulation and LON and GON as well as
the total in TLP2P simulation with different network size and query load.

6.2.1.3. Simultaneous Node Failures

In this scenario, the path length increases as the failure fraction is increased.

The increase in both LON and GON is almost the same as the normal Chord network

(see results in Figure 6.5).

0

2

4

6

8

10

12

14

16

18

2 3 4 5 6 7 8 9 10 11 12 13 14

P
at

h
 L

en
gt

h

Number of Nodes (2x)

Path Length

Pure Chord 50% Uniform LON 50% Uniform GON TLP2P Total

73

Figure 6.5: Path length measures for node failures scenario. The plot has four results
normal Chord, LON, GON and the total for the TLP2P.

6.2.1.4. Lookups during Stabilization

The path length has a minor variation with increasing the 'join' and 'leave'

rate. This is occurring for the two simulations and with about 0.2 higher in LON and

GON than in the normal Chord network (see Figure 6.6). The average query failure

in this scenario has different results for GON and LON as seen in Figure 6.7, which

we would expect it to have the same results since they use the same setting and

configuration. This can be explained by knowing the query lookup path. In LON, the

queries are submitted randomly to any node in the network which makes queries

travel with equal possibility through any node. While when the query cannot be

resolved in LON, it is sent to GON through the gateway node. That is, the starting

node in GON is always the gateway node for all queries, which makes any updates

occurring in gateway’s successor list or finger table to be reflected quickly. On the

0

2

4

6

8

10

12

14

16

-0.1 0 0.1 0.2 0.3 0.4 0.5

P
at

h
 L

e
n

gt
h

Fraction of Failed Nodes (X * 1000)

Node Failing Path Length

Pure Chord 50% Uniform LON 50% Uniform GON TLP2P Total

74

other hands, other nodes have lower probability to update their finger and

successor tables. This reduces the number of timeouts, but the consequent of un-

updated finger and successor tables is larger failing requests as shown in Figure

6.8. This has been examined by re-simulating the same case but with submitting all

the queries to only one starting node in LON and the results for all of the three

measures were the same for GON and LON.

Figure 6.6: Path length for stabilization scenario comparing normal Chord and TLP2P (LON
and GON).

0

2

4

6

8

10

12

14

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
at

h
 L

en
gt

h

Node Join/Leave Rate per Second

Stabilization Path Length

Pure Chord 50% Uniform LON 50% Uniform GON TLP2P Total

75

Figure 6.7: Time out experienced by the lookup during the stabilization scenario for the
three networks normal Chord, LON and GON in addition to TLP2P total.

Figure 6.8: Number of failed requests in 10,000 requests within stabilization scenario for
the three networks normal Chord, LON and GON in addition to TLP2P total.

0

1

2

3

4

5

6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
at

h
 L

en
gt

h

Node Join/Leave Rate per Second

Stabilization Time Out

Pure Chord 50% Uniform LON 50% Uniform GON TLP2P Total

0

2

4

6

8

10

12

14

16

18

20

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

N
u

m
b

er
 o

f
Fa

ile
d

 L
o

o
ku

p
s

Node Join/Leave Rate per Second

Stabilization Lookup Failures

Pure Chord 50% Uniform LON 50% Uniform GON TLP2P Total

76

6.2.1.5. Node Blockage

In this scenario, the path length has a minor effect as the number of blocked

nodes increases, which can be seen in the two network simulation outputs in Figure

6.9. This is due to nodes at the beginning of the simulation are not aware of the

blocked nodes, thus nodes' successor lists are not updated with the blocked nodes.

When a node receives a request, it will try to forward the request to the nodes in its

successor list assuming they are able to answer the query through the legacy DNS.

If a node in the successor list is blocked, then it will create another lookup request

yielding a longer lookup process and affecting the average path length. But over

time the nodes will know which of the nodes are blocked and will update their

successor list accordingly. That will reduce the unneeded lookup generated to

blocked nodes and will reduce the impact on the average path length.

 For the average load outputs, the difference appears in Chord and GON with

the increase of blocked nodes, however there is no difference between simulation

results for LON as seen in Figure 6.10. This is due to LON nodes not resolving DNS

queries and they are utilized for caching only, thus there is no difference for LON in

case of blockage or not. The average keys per node in this scenario is simply

dividing the number of unblocked nodes by the number of keys and in the case of

LON is just dividing the number of LON nodes by the number of keys. For the whole

simulation runs in this scenario there were no request timeouts or failures.

77

Figure 6.9: Path length for the case of blocked nodes scenarios for Chord network and
TLP2P (GON and LON) with uniform requests.

Figure 6.10: Average load between nodes for the case of blocked nodes scenarios for Chord
network, GON and LON with uniform requests.

6.2.2. Worst Case Scenario with Zipf Distributed Requests

The normal Chord is re-simulated with Zipf distributed requests. The

simulation results are almost similar to the uniform distribution except for the load

balance which is explained in the following sections.

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90

P
at

h
 L

en
gt

h

Percentage of Blocked Nodes

Node Blockage - Path Length

Pure Chord Uniform 50% Uniform LON 50% Uniform GON TLP2P Total

0

100

200

300

400

500

600

700

800

900

1000

0 10 20 30 40 50 60 70 80 90

N
u

m
b

er
 o

f
K

ey
s

p
er

 n
o

d
e

Percentage of Blocked Nodes

Node Blockage - Keys per Node

Pure Chord Uniform 50% Uniform LON 50% Uniform GON

78

6.2.2.1. Load Balance

In this scenario, the average load between peers differs from the uniform

scenario. As stated before, the average load is simply dividing the number of

requests over the number of nodes and since Zipf distribution has requests

repetition, it is expected to have a lower load among the peers than the uniform

distribution. The difference can be seen in Figure 6.2 and Figure 6.11. So, to predict

the average number of keys per node for this scenario, the estimate of the number

of unique requests in Zipf distribution needs to be found first.

Zipf’s law representing a frequency of elements is:

∑

 Where k is the element rank, s is the exponent to characterize the distribution, and

N is the number of elements. As the used distribution in the simulation is pure Zipf,

then s = 1 and the law can be rewritten as:

∑

To find the number of unique requests, there will be two steps. First, we need to

find the rank which will have the frequency of one or more. Second, we need to add

the rank to the sum of frequencies that are lower than one.

Step one, finding the rank with frequency of 1 or more:

79

 (solving for k)

 ∑

∑

Let ∑

 ⁄ , in other words the elements from 1 to R occur 1 or more

times.

Step two, the sum of frequency that is lower than 1 = ∑

So, the estimated number of unique requests = ∑

Table 6-2 lists the predicted and simulated results for normal Chord

simulation. The difference is small as shown in the last column. The average load

results for LON and GON are the same, but it is twice as the normal Chord load.

Likewise LON and GON have close results compared to the predicated values,

please refer to Table 6-3.

80

Table 6-2: Predicted and simulated results for the average load for normal Chord
simulation

Number of
Requests

Predicted
Average Load

Simulated
Average Load

Difference in
Percentage

100000 2.88869976 2.71038 1.78%

200000 5.55130991 5.21814 1.67%

300000 8.14197427 7.66918 1.58%

400000 10.68821262 10.06792 1.55%

500000 13.20256797 12.46334 1.48%

600000 15.69215393 14.81138 1.47%

700000 18.1614886 17.15196 1.44%

800000 20.61386921 19.4699 1.43%

900000 23.05152615 21.79372 1.40%

1000000 25.4763291 24.08972 1.39%

Table 6-3: Predicted and simulated average load for LON and GON in the case of Zipf
distributed requests. Each of LON and GON contains 50% of total TLP2P nodes.

Number of
Requests

Predicted
Average Load

Simulated Average
Load for LON.

(LON has same
results as GON)

Difference in
Percentage

100000 5.77739952 5.41892 1.79%

200000 11.10261982 10.43836 1.66%

300000 16.28394854 15.33208 1.59%

400000 21.37642524 20.14212 1.54%

500000 26.40513594 24.90532 1.50%

600000 31.38430786 29.63576 1.46%

700000 36.3229772 34.29892 1.45%

800000 41.22773842 38.95204 1.42%

900000 46.1030523 43.56248 1.41%

1000000 50.9526582 48.15928 1.40%

81

Figure 6.11: Average keys per node for normal Chord and TLP2P networks with Zipf
distributed requests for networks with 10,000 peers.

6.2.2.2. Path Length

While the results are the same for normal Chord for the two scenarios,

uniform and Zipf, it is different for TLP2P simulation. The two overlay networks in

TLP2P experienced the same query path length, but the difference is the overall

path length in TLP2P, as seen in Figure 6.12. This makes sense as repeated requests

are resolved in LON while non-cached requests in LON are resolved through GON.

To predict the path length for TLP2P for this scenario, other calculations need to be

performed. From last subsection,

u = number of unique requests = ∑

r = number of repeated request = N – unique requests

 []

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90 100

N
u

m
b

er
 o

f
K

ey
s

p
er

 n
o

d
e

Total Number of Keys (x 10,000)

Keys per Node

Pure Chord Zipf 50% Zipf LON 50% Zipf GON

82

Table 6-4: Simulated and predicted values for the path length for TLP2P

Network
Size 2x

Predicted
Path Length

Simulated
Path Length

Difference in
Percentage

3 1.4116 1.38825 1.65%

4 2.0802 2.164625 4.06%

5 2.7305 2.547563 6.70%

6 3.3659 3.214313 4.50%

7 3.9887 3.712609 6.92%

8 4.6005 4.472234 2.79%

9 5.2033 5.033566 3.26%

10 5.7981 5.671568 2.18%

11 6.386 6.240034 2.29%

12 6.9678 6.836242 1.89%

13 7.5442 7.367047 2.35%

14 8.1158 7.905904 2.59%

Table 6-4 lists the predicted values for the path length in TLP2P design and

the simulation results. It is clear that the values are close to each other and that

gives a good indication of the validity of the results obtained from the simulator.

Figure 6.12: Path length results for normal Chord and TLP2P (50% LON – 50% GON) with
the two overlay netowrks. Request distribution is Zipf.

0

2

4

6

8

10

12

14

2 3 4 5 6 7 8 9 10 11 12 13 14

P
at

h
 L

en
gt

h

Number of Nodes (2x)

Path Length

Pure Chord Zipf 50% Zipf LON 50% Zipf GON TLP2P Total

83

6.2.2.3. Simultaneous Node Failures

Nodes failing affect the path length of the two designs and it can be noticed

in the presented Figure 6.13 that the two designs have almost the same

degradation of performance. The two overlay networks in TLP2P are almost

identical.

Figure 6.13: Path length of the two architectures while the networks are experiencing node
failures. Networks received a Zipf distributed requests.

6.2.2.4. Lookups during Stabilization

As expected, the path length is increasing as the rate of joining and leaving

nodes increases. Also, this is the case for the number of timeouts and failed

requests as shown in Figure 6.14, Figure 6.15, and Figure 6.16. Unlike the uniform

scenario, GON is having lower timeout and requests failure than LON, because the

number of received requests is lower as all repeated requests were resolved in

0

2

4

6

8

10

12

14

-0.1 0 0.1 0.2 0.3 0.4 0.5

P
at

h
 L

en
gt

h

Fraction of Failed Nodes (X * 1000)

Node Failing Path Length

Pure Chord Zipf 50% Zipf LON 50% Zipf GON TLP2P Total

84

LON. Overall, the performance of TLP2P in this scenario is better than the uniform

scenario.

Figure 6.14: Stabilization path length for the two designs normal Chord and TLP2P (50%
LON – 50% GON) with Zipf distributed requests.

Figure 6.15: Lookups’ time out for the stabilization case of the two designs normal Chord
and TLP2P (50% LON – 50% GON) simulated with Zipf distributed requests.

0

2

4

6

8

10

12

14

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
at

h
 L

en
gt

h

Node Join/Leave Rate per Second

Stabilization Path Length

Pure Chord Zipf 50% Zipf LON 50% Zipf GON TLP2P Total

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
at

h
 L

en
gt

h

Node Join/Leave Rate per Second

Stabilization Time Out

Pure Chord Zipf 50% Zipf LON 50% Zipf GON TLP2P Total

85

Figure 6.16: number of failed request’s within 10,000 Zipf distributed requests for the
stablization case. The plot represents the two designs results normal Chord and TLP2P

(50% LON – 50% GON).

6.2.2.5. Node Blockage

The effect of the blockage nodes on the path length is the same as the case of

the uniform distribution. Figure 6.17 shows small changes in the path length as the

node blockage increases. However, the utilization of the cache in LON drops the

average path length, unlike the simulation with uniform distributed request where

there are no cache hits. Also, the behavior for the average load per node is identical

to the uniform simulation. The average number of keys per nodes increases as the

number of blocked nodes increases (see Figure 6.18). Again, the number of

timeouts and failed requests for all blockage cases are zero.

0

10

20

30

40

50

60

70

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

N
u

m
b

er
 o

f
Fa

ile
d

 L
o

o
ku

p
s

Node Join/Leave Rate per Second

Stabilization Lookup Failures

Pure Chord Zipf 50% Zipf LON 50% Zipf GON TLP2P Total

86

Figure 6.17: Path length, 1st and 99th percentile for Chord network and worst case of TLP2P
(including GON and LON) with Zipf distributed requests.

Figure 6.18: Average keys per node, 1st and 99th percentile for Chord network, GON and
LON in worst case TLP2P and Zipf distributed requests.

6.2.3. Best Case Scenario with Zipf Distributed Requests

The presented graphs in this section for the normal Chord simulation are the

same as the previous section. The simulation is with Zipf distributed requests. The

difference in this scenario from the previous one is the size of LON and GON. The

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90

P
at

h
 L

en
gt

h

Percentage of Blocked Nodes

Node Blockage - Path Length

Pure Chord Zipf 50% Zipf LON 50% Zipf GON TLP2P Total

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90

N
u

m
b

er
 o

f
K

ey
s

p
er

 n
o

d
e

Percentage of Blocked Nodes

Node Blockage - Keys per Node

Pure Chord Zipf 50% Zipf LON 50% Zipf GON

87

total number of nodes in TLP2P is the same, but the difference is the distribution of

the nodes over the two overlay networks. 5% of the total nodes are in LON and the

rest (95%) are in GON.

6.2.3.1. Load Balance

Figure 6.19 presents the load distribution of the new rearrangement of

nodes in TLP2P and the normal Chord. The results in the figure show a slight

variation between normal Chord and GON network as they are almost having the

same size. However, they have much lower average load than LON, since its size is

much smaller than GON and normal Chord networks. 5% of 10,000 nodes is 500

nodes and that explains the reason behind the large variation. The values can be

again predicted with the same way used in the previous section (worst case

scenario) and the comparison is presented in Table 6-5 which shows close results

too.

88

Table 6-5: Predicted and simulated results of the average load for LON network which is
5% of TLP2P total network size.

Number of
Requests

Predicted
Average Load

Simulated
Average Load

Difference in
Percentage

100000 57.7739952 54.2032 1.79%

200000 111.0261982 104.3956 1.66%

300000 162.8394854 153.2968 1.59%

400000 213.7642524 201.4952 1.53%

500000 264.0513594 249.1736 1.49%

600000 313.8430786 296.23 1.47%

700000 363.229772 343.0744 1.44%

800000 412.2773842 389.4624 1.43%

900000 461.030523 435.7748 1.40%

1000000 509.526582 481.7204 1.39%

Figure 6.19: Average load of Zipf distributed requests simulations for the two design
normal Chord and TLP2P (5% LON – 95% GON).

6.2.3.2. Path Length

For the path length simulations, the network sizes start with a small number

of nodes 8, 16, 32 and so on. The size of LON network is 5% of the total nodes,

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70 80 90 100

N
u

m
b

er
 o

f
K

ey
s

p
er

 n
o

d
e

Total Number of Keys (x 10,000)

Keys per Node

Pure Chord Zipf 5% Zipf LON 95% Zipf GON

89

which means the LON size for the first case is 0.4 nodes. To correct the size, the

celling is taken for the calculated percentage to find a logical LON size. Figure 6.20

shows the lookup path length for the two designs and it is 0 for the first two cases

for LON, this is because there is only one node in LON which is the home node of all

requests. The path length increases when LON size increases and thus affecting the

TLP2P total path length. To calculate the predicated path length for this scenario,

the same equation is applied as the worst case scenario in the previous section.

Table 6-6 shows the predicted as well as simulated path length for all network sizes

simulated. The results are close and the small variation is expected due to the

nature of randomness of the queries and nodes hashed value.

Table 6-6: Predicted and simulated path length for TLP2P (5% LON – 95% GON) with Zipf
distributed requests.

Network
Size 2x

Predicted
Path Length

Simulated
Path Length

Difference in
Percentage

3 0.57777 0.5198 10.03%

4 0.75563 0.6723375 11.02%

5 1.3962 1.46398125 4.85%

6 2.0229 1.917469 5.21%

7 2.5438 2.299703 9.60%

8 3.0962 3.041438 1.77%

9 3.6926 3.480258 5.75%

10 4.2817 4.02052 6.10%

11 4.8575 4.694207 3.36%

12 5.4311 5.147848 5.22%

13 6.003 5.769342 3.89%

14 6.5706 6.344525 3.44%

90

Figure 6.20: Path length for normal Chord and TLP2P (5% LON - 95% GON) with Zipf
distributed requests.

6.2.3.3. Simultaneous Node Failures

The LON network size is 50 for all the simulations in this scenario. From

Figure 6.21, it can be seen that LON is not affected by node failures. The reason

behind it is that the network is small, which means, in the worst case only 25 nodes

will fail. In 10,000 requests, this small number of failed node will not make any

difference to the lookup path length. Moreover, it might reduce slightly the path

length as noticed in the presented figure, because it will reduce the size of the

network with negligible effect of failed nodes on the lookups, and the result is a

lower path length. On the other hand, GON and normal Chord are having a similar

effect by the node failure, since the network size for both is large and almost the

same. The total path length of TLP2P is slightly affected by the node failure.

0

2

4

6

8

10

12

14

16

2 3 4 5 6 7 8 9 10 11 12 13 14

P
at

h
 L

en
gt

h

Number of Nodes (2x)

Path Length

Pure Zipf Chord 5% Zipf LON 95% Zipf GON TLP2P Total

91

Figure 6.21: Path length for Zipf distributed requests to the two designs normal Chord and
TLP2P (5% LON - 95% GON) after node failure.

6.2.3.4. Lookups during Stabilization

All the networks average path lengths are proportionally affected by the

increase of nodes’ join and departure rate. As seen in Figure 6.22, the path length is

increasing with the instability of the nodes. Also, the timeout is increasing as the

'join' and 'leave' increases, and the effect on GON is less in this case since it receives

only non-cached requests (see Figure 6.23). In other words, GON receives new

requests or the caching node in LON lefts without transferring its cache to its

successor, as explained in Chord paper, resulting in re-fetching the answer from

GON. LON is having a larger number of failed requests, that is about 8% in the

worst case, which is illustrated in Figure 6.24. Obviously, this is occurring because

it is a small size network experiencing frequent joining and leaving nodes and the

consequence is incorrect entries in the finger tables and the successor lists. This

0

2

4

6

8

10

12

14

-0.1 0 0.1 0.2 0.3 0.4 0.5

P
at

h
 L

e
n

gt
h

Fraction of Failed Nodes (X * 1000)

Node Failing Path Length

Pure Chord Zipf 5% Zipf LON 95% Zipf GON TLP2P Total

92

also might have led to inconsistency in the network which caused the large number

of failing lookups.

Figure 6.22: Simulation result of the path length for the two designs normal Chord and
TLP2P (5% LON - 95% GON) receiving Zipf distributed request.

Figure 6.23: Simulation result of the time out for the two designs normal Chord and TLP2P
(5% LON - 95% GON) receiving Zipf distributed request.

0

2

4

6

8

10

12

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
at

h
 L

en
gt

h

Node Join/Leave Rate per Second

Stabilization Path Length

Pure Chord Zipf 5% Zipf LON 95% Zipf GON TLP2P Total

0

1

2

3

4

5

6

7

8

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
at

h
 L

en
gt

h

Node Join/Leave Rate per Second

Stabilization Time Out

Pure Chord Zipf 5% Zipf LON 95% Zipf GON TLP2P Total

93

Figure 6.24: The results for number of failed lookups out of the 10,000 Zipf distributed
requests for normal Chord and TLP2P (5% LON - 95% GON).

6.2.3.5. Node Blockage

The influence of the node blockage in the best case TLP2P scenario is the

same as the other blockage cases. Figure 6.25 shows slight changes in the path

length as the node blockage increases, and Figure 6.26 shows the average keys per

node with the varied averages in Chord and GON networks.

0

200

400

600

800

1000

1200

1400

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

N
u

m
b

er
 o

f
Fa

ile
d

 L
o

o
ku

p
s

Node Join/Leave Rate per Second

Stabilization Lookup Failures

Pure Chord Zipf 5% Zipf LON 95% Zipf GON TLP2P Total

94

Figure 6.25: Path length, 1st and 99th percentile for Chord network and best case of TLP2P
(including GON and LON) with Zipf distributed requests.

Figure 6.26: Average load, 1st and 99th percentile for Chord network, GON and LON in best
case TLP2P with Zipf distributed requests.

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60 70 80 90

P
at

h
 L

en
gt

h

Percentage of Blocked Nodes

Node Blockage - Path Length

Pure Chord Zipf 5% Zipf LON 95% Zipf GON TLP2P Total

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80 90

N
u

m
b

er
 o

f
K

ey
s

p
er

 n
o

d
e

Percentage of Blocked Nodes

Node Blockage - Keys per Node

Pure Chord Zipf 5% Zipf LON 95% Zipf GON

95

6.3. Results Comparison

6.3.1. Load Balance

The results in the load balance simulation have two indications, i.e., how the

records are distributed between peers and how the nodes are utilized. The

distributions of records among the peers for LON, GON, and pure Chord are plotted

in Figure 6.27. The figure only shows the result for the 500,000 Zipf requests case

with nodes distribution in TLP2P as 5% in LON and 95% in GON. Clearly, the

number of records stored within peers in LON vary more, and the range is [0, 2000]

while for the larger networks it is [0, 180]. But more than 80% of nodes are storing

500 records or less. For the utilization concerns, LON has only 0.64% of nodes with

no records while it is 7.39% in pure Chord. Also, the results in the figure show that

LON is more utilized and this is an advantage in TLP2P over the pure Chord. The

LON size can be increased to meet the requirements whenever the load threshold is

reached. And, as LON is controlled locally, its size is elastic and it can be scaled up

or down to satisfy the requirements. The uniform simulation has the same trend as

the pure Chord and GON, but with fewer nodes having no keys, since all the

requests are unique in the uniform distribution.

96

(a) (b)

Figure 6.27: Number of keys per node simulation for the case of 500,000 Zipf distributed
requests (a) Presents record distrbution for LON network (5% of TLP2P nodes) (b)

Presents pure Chord and GON (95% of TLP2P nodes).

6.3.2. Path Length

TLP2P in the best scenario has the best results, but TLP2P in worst case

scenario with uniform requests was having the worst results. In the same scenario,

but with Zipf requests, TLP2P performed better and the results was close to pure

Chord. TLP2P is structured to utilize the caching layer, however in the case of

uniform simulation all requests are unique and no query is resolved from the cache.

Also, the node distribution between LON and GON meant to increase the path

length which all of these factors contributed to end up with the highest path length

in the worst case scenario with uniform requests. In the best case simulation, the

increase in path length is due to the increase in LON size. If the LON size was fixed

to a low number of nodes, then the path length will even be better than the results

obtained as can be inferred from the path length equation found earlier in this

chapter.

0

2

4

6

8

10

12

14

16

18

0 500 1000 1500 2000 2500

N
u

m
b

e
r

o
f

N
o

d
e

s

Number of Keys

Keys per Node - 5% LON with
Zipf Distributed Requsts

0

1000

2000

3000

4000

0 50 100 150 200

N
u

m
b

er
 o

f
N

o
d

es

Number of Keys

Keys per Node - Pure Chord and
95% GON with Zipf Distributed

Requsts

Pure Chord GON (95% of TLP2P)

97

Figure 6.28: Average path length for the simulated scenario.

6.3.3. Simultaneous Node Failures

As in the previous measures, TLP2P in the best case simulation has the best

path length in the node failure scenario. Also, unlike the other designs and settings,

the effect on path length with the increase in the node failure is minor. TLP2P in the

worst case scenario with Zipf requests is similar to normal Chord, while the same

scenario with uniform distribution is having the highest path length.

0

2

4

6

8

10

12

14

2 4 6 8 10 12 14

P
at

h
 L

en
gt

h

Number of Nodes (2^x)

Path Length

Uniform Pure Chord Uniform TLP2P (50% LON - 50% GON)

Zipf Pure Chord Zipf TLP2P (50% LON - 50% GON)

Zipf TLP2P (5% LON - 95% GON)

98

Figure 6.29: Average path length for node failure scenario.

6.3.4. Lookups during Stabilization

TLP2P in the best case simulation experienced network inconsistency as

discussed in the last section. Even though it has the lowest path length, the pure

Chord performed better in this scenario. This is because it has the lowest number of

lookup failures and lower timeout compared to TLP2P results. TLP2P also has good

results in term of path length, timeout, and lookup failures when receiving Zipf

requests in the worst case scenario. But in the uniform request distribution

scenario, TLP2P has the longest path to home nodes and high timeout.

0

1

2

3

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5

P
at

h
 L

en
gt

h

Fraction of Failed Nodes (X * 1000)

Node Failing Path Length

Uniform Pure Chord Uniform TLP2P (50% LON - 50% GON)

Zipf Pure Chord Zipf TLP2P (50% LON - 50% GON)

Zipf TLP2P (5% LON - 95% GON)

99

Figure 6.30: Average path length for stabilization scenario.

Figure 6.31: Average time out for stabilization scenario.

0

1

2

3

4

5

6

7

8

9

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
at

h
 L

en
gt

h

Node Join/Leave Rate per Second

Stabilization Path Length

Uniform Pure Chord Uniform TLP2P (50% LON - 50% GON)

Zipf Pure Chord Zipf TLP2P (50% LON - 50% GON)

Zipf TLP2P (5% LON - 95% GON)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

N
u

m
b

er
 o

f
Ti

m
e

O
u

t

Node Join/Leave Rate per Second

Stabilization Time Out

Uniform Pure Chord Uniform TLP2P (50% LON - 50% GON)

Zipf Pure Chord Zipf TLP2P (50% LON - 50% GON)

Zipf TLP2P (5% LON - 95% GON)

100

Figure 6.32: Average number of lookup failures for stabilization scenario.

6.3.5. Node Blockage

The results obtained for the three blockage scenarios show small changes in

the path length as an effect of the increase in the number of blocked nodes (see

Figure 6.33). The reason behind the increase is because nodes’ successor lists at the

start of the simulation are not updated with blocked nodes which lead into more

lookups. Overall, the increase in the path length is not large, please refer to section

6.2.1.5 for more explanation of this behavior. In general, the results give a good

indication of the effectiveness of the solution as the increase in path length is minor

besides the number of timeouts and request failures are zeros. For the loads on the

peers, LON has no impact as the nodes get blocked. However, Chord and GON has

almost the same performance in the best case TLP2P scenario (see Figure 6.34). But

in the worst case TPL2P scenario, GON nodes store almost double the number of

0

100

200

300

400

500

600

700

800

900

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

N
u

m
b

er
 o

f
Fa

ile
d

 L
o

o
ku

p
s

Node Join/Leave Rate per Second

Stabilization Lookup Failures

Uniform Pure Chord Uniform TLP2P (50% LON - 50% GON)

Zipf Pure Chord Zipf TLP2P (50% LON - 50% GON)

Zipf TLP2P (5% LON - 95% GON)

101

keys stored in Chord nodes. This is due to the simulation configuration which

indicates 50% of TLP2P nodes are in GON and that is half Chord network size. So,

the number of resolver nodes is different between the two networks which results

in more loads in GON than Chord, but if the number of resolver nodes was the same

in both networks then they will end up with the same average load.

Figure 6.33: Average path length of the node blockage scenario.

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90

P
at

h
 L

en
gt

h

Percentage of Blocked Nodes

Node Blockage Path Length

Pure Chord Uniform Uniform TLP2P (50% LON - 50% GON)

Pure Chord Zipf Zipf TLP2P (50% LON - 50% GON)

Zipf TLP2P (5% LON - 95% GON)

102

(a) (b)

Figure 6.34: Number of keys stored per node in the case of node blockage simulation for
the case of 50% of nodes are blocked with Zipf distributed requests (a) Presents record

distrbution for LON network (5% of TLP2P nodes) (b) Presents pure Chord and GON (95%
of TLP2P nodes)

Overall, TLP2P has the best performance when LON was of small size to

satisfy the requirements while being fully utilized. This is a logical view as LON will

be locally controlled and elastic based on the goals to be achieved. If each of these

simulated scenarios were considered as a real scenario being faced, then LON can

be adapted to meet better results than the normal Chord.

0

2

4

6

8

10

12

14

0 100 200 300 400

N
u

m
b

e
r

o
f

N
o

d
e

s

Number of Keys

Keys per Node - 5% LON with Zipf
Distributed Requsts

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60

N
u

m
b

e
r

o
f

N
o

d
e

s

Number of Keys

Keys per Node - Pure Chord and 95% GON
with Zipf Distributed Requsts

Pure Chord GON (95% of TLP2P)

103

CHAPTER 7

FUTURE WORK AND CONCLUSION

7.1. Conclusion

In this thesis, three types of solutions have been presented to mitigate or

prevent the DoS attack targeting the DNS system. One of the discussed solutions

proposes a new DNS structure (Dynamic Round-Robin P2P) as a countermeasure to

the control of root DNS servers by United States Department of Commerce (USDC).

However, in this thesis, the proposed design (TLP2P) overcomes the dis-efficiencies

and limitations that exist in the Dynamic Round-Robin P2P system. For example,

query resolution is not optimized by utilizing the cached answers which implies

large dependency on the legacy DNS system. Also, the authoritative domain name

server within a blocked region cannot publish hostnames to be served by Dynamic

Round-Robin P2P system. The analyzed simulation results showed that TLP2P has

less dependency on the legacy DNS system by utilizing the cached responses. Also,

the theoretical analysis and simulation results have proven that TLP2P resolved the

blockage problem with enhanced performance in terms of path length, even in

unstable networks. TLP2P has other advantages too, like its dynamic structure

where the local overlay network can be adjusted online to attain user satisfaction

while the global overlay network is automated and uncontrolled by an owner. Also,

better load balance can be achieved by introducing virtual nodes into the system.

104

Finally, this solution can be extended by implementing other advanced layers, like

record duplication and query prioritization that will be used to enhance the

performance.

7.2. Future Work

The future work improvements will look into the following three aspects:

reduce the path length, balance the load between nodes, and countermeasure

malicious peers. For the first two aspects, there have already been solutions

presented in this thesis and they just need to be implemented in the current design

to validate the added values. For malicious peers, further investigation and

research need to be done to find the threats raised by such peers and how to tackle

them.

To enhance the simulation, the simulator should account for the cached

records expiration. Each record should have a Time-To-Live (TTL) value, and

records should become obsolete when their expiration time is reached. Expired

records need to be updated based on the update mechanism as discussed in TLP2P

design. Also, query latency should be considered to measure the overall resolution

time. Moreover, the solution should be simulated with malicious peers to have a

better prediction of TLP2P behavior in real life.

105

References

[1] BCC News. (2009, December) [cited Aug. 3, 2012] 'Iranian cyber army' hits Twitter.

http://news.bbc.co.uk/2/hi/technology/8420233.stm.

[2] Bill Stewart. (2010) [cited Dec. 4, 2010] Domain Name System (DNS) History. [Online].

http://www.livinginternet.com/i/iw_dns_history.htm.

[3] Charles Arthur and Josh Halliday. (2010, December) [cited Aug. 3, 2012] WikiLeaks fights to

stay online after US company withdraws domain name. [Online].

http://www.guardian.co.uk/media/blog/2010/dec/03/wikileaks-knocked-off-net-dns-

everydns.

[4] David Schneider. (2010, December) [cited Aug. 3, 2012] WikiLeaks Demonstrates Web

Resiliency. [Online]. http://spectrum.ieee.org/tech-talk/telecom/internet/wikileaks-

demonstrates-web-resiliency.

[5] Fahd A. Abdulhameed (2010). Dynamic Round-Robin Peer-To-Peer (P2P) Domain Name

System (DNS). King Fahd University Of Petroleum & Minerals, Dhahran, Saudi Arabia.

[6] Geoff Huston. (2001, May) [cited Sept. 12, 2011] The Unreliable Internet. [Online].

http://www.potaroo.net/ispcol/2001-05/2001-05-reliable.html.

[7] Google. [cited Jun.25, 2012] Company Overview. [Online].

http://www.google.com/about/company/.

[8] Hakem Beitollahi, Geert Deconinck, "Comparing Chord, CAN, and Pastry overlay networks

for resistance to DoS attacks," CRiSIS 2008: 261-266.

[9] Helen McDevitt. (2000, November) [cited Dec. 4, 2010] Load Sharing with DNS. [Online].

http://ntrg.cs.tcd.ie/undergrad/4ba2.01/group8/DNS.html.

[10] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, "Chord: A scalable peer-

to-peer lookup protocol for internet applications," IEEE/ACM Transactions on Networking,

vol. 11, no. 1, pp. 17–32, 2003.

[11] Ian W. Marshall and Chris Roadknight, "Linking cache performance to user behaviour,"

Computer Networks and ISDN Systems, 30 (22-23). pp. 2123-2130, 1998.

[12] IANA. [cited Jan. 2, 2012] Root Zone Database. [Online].

http://www.iana.org/domains/root/db/.

106

[13] ICANN. (2007, March) [cited Aug. 3, 2012] Factsheet for Root server attack on 6 February

2007. [Online]. http://www.icann.org/en/about/learning/factsheets/factsheet-dns-attack-

08mar07-en.pdf.

[14] J. Jung, E. Sit, H. Balakrishnan, “DNS Performance and the Effectiveness of Caching,”

IEEE/ACM Transactions on Networking, V. 10, N. 5, October 2002.

[15] J. Mirkovic, E. Arikan, S. Wei, S. Fahmy, R. Thomas, and P. Reiher. Benchmarks for DDoS

Defense Evaluation. In MILCOM, 2006.

[16] Jeanne Meserve and Mike Ahlers. (2010, January) [cited Aug. 3, 2012] Google reports

China-based attack, says pullout possible. [Online]. http://articles.cnn.com/2010-01-

12/tech/google.china_1_google-search-engine-david-drummond.

[17] K. Poulsen. [Cited Jan.19, 2011] FBI busts alleged DDoS mafia.

www.securityfocus.com/news/9411, 2004.

[18] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web Caching and Zipf-like

Distributions: Evidence and Implications,” Proc. IEEE INFOCOM, 1999.

[19] M. Handley and A. Greenhalgh, "The Case for Pushing DNS," in Proc. of Hotnets-IV, 2005.

[20] M. Recabarren, M. Nussbaum and C. Leiva, "Cultural divide and the Internet," Computers in

Human Behavior, 24, 2917-2926, 2008.

[21] Marvin Theimer, Michael B. Jones, "Overlook: Scalable Name Service on an Overlay

Network," ICDCS 2002: pp. 52-61.

[22] Microsoft. (2003, March) [cited Oct. 11, 2011] How DNS Works. [Online].

http://technet.microsoft.com/en-us/library/cc772774%28WS.10%29.aspx.

[23] Microsoft. (2005, January) [cited Oct. 18, 2011] How DNS Query Works. [Online].

http://technet.microsoft.com/en-us/library/cc775637%28WS.10%29.aspx.

[24] Mudhakar Srivatsa, Arun Iyengar, Jian Yin, and Ling Liu, “A Middleware System for

Protecting Against Application Level Denial of Service Attacks” M. van Steen and M.

Henning (Eds.): Middleware 2006, LNCS 4290, pp. 260–280, 2006. IFIP International

Federation for Information Processing 2006.

[25] N. Brownlee and I. Ziedins. Response time distributions for global name servers. In

Proceedings of PAM 2002 Workshop, Mar. 2002.

[26] N. Brownlee, kc Claffy, and E. Nemeth, "DNS Measurements at a Root Server," In

107

Globecom, Nov. 2001.

[27] Nevil Brownlee. (2006, March) [cited Dec. 4, 2010] Root/gTLD DNS Performance Plots.

[Online]. http://www.caida.org/cgi-bin/dns_perf/main.pl.

[28] P.Mockapetris and k. Dunlap. Development of the Domain Name System. In Proc.

ACMSIGCOMM, Stanford, CA, 1988.

[29] Paul Vixie, Gerry Sneeringer and Mark Schleifer. (2002, November) [cited Aug. 3, 2012]

Events of 21-Oct-2002. [Online]. http://d.root-servers.org/october21.txt.

[30] R. Liston, S. Srinivasan, and E. Zegura, "Diversity in DNS Performance Measures," In

Proceedings of the ACM SIGCOMMInternet Measurement Workshop, 2002.

[31] Robert Lemos and Jim Hu. (2004, June) [cited Aug. 3, 2012] 'Zombie' PCs caused Web

outage, Akamai says. [Online]. http://news.cnet.com/2100-1038_3-5236403.html.

[32] Russ Cox, Athicha Muthitacharoen, Robert Morris, "Serving DNS Using a Peer-to-Peer

Lookup Service," 2002, pp. 155-165.

[33] V. Ramasubramanian and E. G. Sirer, "The design and implementation of a next generation

name service for the Internet," In SIGCOMM, August 2004.

[34] Vasilis Pappas, Dan Massey, Lixia Zhang, "Enhancing DNS Resilience against Denial of

Service Attacks," IEEE/IFIP Dependable Systems and Networks (DSN), June 2007.

[35] Wei Yu, Dong Xuan and Wei Zhao, "Middleware based Approach for Preventing Distributed

Denial of Service Attacks," in Proc. of IEEE Military Communications (MILCOM), Octoper

2002.

[36] Wikimedia. (2010, September) [cited Dec.4, 2010] Distributed denial of service attacks on

root nameservers. [Online].

http://en.wikipedia.org/wiki/Distributed_denial_of_service_attacks_on_root_nameservers.

[37] Wikipedia. (2010, November) [cited Dec. 4, 2010] Root nameserver. [Online].

http://en.wikipedia.org/wiki/Root_nameserver.

[38] Wikipedia. (2010, September) [cited Dec.4, 2010] Distributed denial of service attacks on

root nameservers. [Online].

http://en.wikipedia.org/wiki/Distributed_denial_of_service_attacks_on_root_nameservers.

[39] Wikipedia. (2011, November) [cited Dec. 2, 2011] Zipf's law. [Online].

http://en.wikipedia.org/wiki/Zipf's_law.

108

[40] Wikipedia. (2011, October) [cited Oct. 18, 2011] Denial-of-Service attack. [Online].

http://en.wikipedia.org/wiki/Denial-of-service_attack.

[41] Wikipedia. (2011, October) [cited Oct. 18, 2011] History of the Internet. [Online].

http://en.wikipedia.org/wiki/History_of_the_Internet.

[42] Wikipedia. (2011, September) [cited Oct. 18, 2011] Hostname. [Online].

http://en.wikipedia.org/wiki/Hostname.

[43] Wikipedia. (2012, April) [cited Jun.25, 2012] Operation Aurora. [Online].

http://en.wikipedia.org/wiki/Operation_Aurora.

[44] Wikipedia. (2012, June) [cited Jun.25, 2012] Yahoo! [Online].

http://en.wikipedia.org/wiki/Yahoo!

[45] Wolfgang Nagele, Emile Aben, Daniel Karrenberg (2011, July) [cited Oct. 19, 2011] Analysis

of Increased Query Load on Root Name Servers. [Online].

https://labs.ripe.net/Members/wnagele/analysis-of-increased-query-load-on-root-name-

servers.

[46] Y. Jiang and J. You, "A low latency Chord routing algorithm for DHT," in: Proceedings of the

1st International Symposium on Pervasive Computing and Applications, August 2006, pp.

825-830.

[47] Yahoo. [cited Jun.25, 2012] Yahoo Products. [Online].

http://info.yahoo.com/privacy/us/yahoo/products.html.

[48] Yu Dan, Chen XinMeng and Chang YunLei, "An improved P2P model based on chord,"

PDCAT 2005: Sixth International Conference on Parallel and Distributed Computing,

Applications and Technologies, Proceedings on 2005, pp. 825-830, August 2006.

109

Vitae

Name : Mahmoud Salman Al-Saba

Nationality : Saudi

Date of Birth : 9/24/1984

 Email : saba2006@gmail.com

Address : Dhahran 31311 P.O.Box 10318

Academic Background : Information & Computer Science

