

iii

© Yasser Ali Khan

2013

iv

Dedication

This thesis is dedicated in the loving memory of my late father Bahbood Ali Khan. He

witnessed the inception of this work, but left this world before its completion. His

aspiration that I pursue graduate studies motivated me to continue this work in the

darkest of times. Words cannot express the efforts he constantly made towards my

education. May Allah (SWT) be pleased with him and grant him highest place in Jannah

(Ameen). The constant prayers of my mother Khalida Khatoon have enabled me to

complete this strenuous journey. I thank my sisters Nadia Khatoon, and Hania Khatoon,

for taking responsibility while I have been away these years. I highly appreciate the

support given by my brother-in-law Afzaal Ahmed Khan towards my career. I dearly miss

my three lovely nieces Raazia Fatima Khatoon, Marzia Fatima Khatoon, and Zaakia

Fatima Khatoon. I love you all, and can’t wait to be home.

v

ACKNOWLEDGMENTS

First of all I would like to thank almighty Allah (Subhanahu Wa Ta'ala) for giving

me the ability to accomplish this thesis. Peace and blessing of Allah (Subhanahu Wa

Ta'ala) be upon his last messenger Mohammed (Sallallahu Alaihi Wasallam), who guided

us on the right path.

I would like to convey my sincere gratitude to my advisor Dr. Mohamed El-Attar

for his guidance and encouragement he provided throughout this research. I feel very

fortunate to have had the opportunity to work under the supervision of Dr. Attar. I fondly

remember the brief chat we had back in November 2011 in which Dr. Attar expressed the

idea for this thesis, and since then there has been no turning back. His immaculate vision

paved the path for the smooth, timely, and successful completion of this thesis. I

extremely appreciate his invaluable advice towards my future academic endeavors. I

consider Dr. Attar not only as an outstanding supervisor, but also as my elder brother.

I would also like to thank the committee members, Dr. Mahmoud Elish and Dr.

Sajjad Mahmood, for their feedback towards this thesis. A number of people that I would

like to thank for taking time out of their busy schedules to review the initial work on

Chapter 4, namely Dr. Mahmoud Elish, Dr. Mohammad Alshayeb and Dr. Jameleddine

Hassine. The remarks from Dr. Sajjad Mahmood towards the initial work on Chapter 5

are also appreciated. Last but not least, I thank Dr. Jameleddine Hassine for his insightful

comments and reviews on Chapter 6.

vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... V

TABLE OF CONTENTS ... VI

LIST OF TABLES .. XII

LIST OF FIGURES ... XIV

LIST OF CODE LISTINGS .. XVIII

LIST OF ABBREVIATIONS ... XX

ABSTRACT (ENGLISH) ... XXIII

ABSTRACT (ARABIC) ... XXV

CHAPTER 1 INTRODUCTION ... 1

1.1 Model Transformation .. 5

1.2 Antipatterns.. 7

1.3 UCM Notation .. 8

1.4 UML 2 AD Notation .. 10

1.5 UML 2 SD Notation ... 11

1.6 Atlas Transformation Language .. 13

1.6.1 ATL Rules .. 14

1.6.2 ATL Helpers ... 16

vii

1.6.3 ATL Execution Modes ... 16

1.6.4 ATL Module Superimposition ... 17

1.7 Research Question ... 19

1.8 Thesis Objectives ... 20

1.9 Research Methodology .. 20

1.10 Thesis Outline .. 23

CHAPTER 2 LITERATURE REVIEW ... 24

2.1 Use Case Quality Improvement .. 24

2.1.1 Using Inspection, Guidelines, and Templates .. 24

2.1.2 Using Automated Verification Tools ... 26

2.1.3 Use Case Refactoring ... 26

2.2 Antipatterns.. 28

2.2.1 Impact of Antipatterns on Quality Attributes ... 28

2.2.2 Antipattern Detection ... 28

2.3 Model Transformation based Model Refactoring ... 30

2.4 Verification of Model Transformations ... 31

2.5 UCM transformations ... 34

CHAPTER 3 A MODEL TRANSFORMATION APPROACH TOWARDS

REFACTORING USE CASE MODELS BASED ON ANTIPATTERNS 36

3.1 Use Case Modeling Antipattern Refactorings ... 39

a1. Accessing a generalized concrete use case ... 39

viii

a2. Accessing an extension use case ... 43

a3. Using extension/inclusion use cases to implement an abstract use case ... 48

a4. Functional Decomposition: Using the include relationship .. 53

a5. Functional Decomposition: Using the extend relationship .. 57

a6. Multiple generalizations of a use case .. 62

a7. Use cases containing common and exceptional functionality ... 64

a8. Multiple actors associated with one use case .. 68

a9. An association between two actors ... 71

a10. An association between use cases .. 72

a11. An unassociated use case ... 74

a12. Two actors with same name ... 75

a13. An actor associated with an unimplemented abstract use case .. 77

3.2 Case Study .. 80

3.2.1 Definition and Motivation .. 81

3.2.2 Formulation .. 81

3.2.3 Model Transformations .. 85

3.3 Evaluation ... 94

CHAPTER 4 AUTOMATED TRANSFORMATION OF USE CASE MAPS TO

UML 2 ACTIVITY DIAGRAMS .. 96

4.1 UCM to UML 2 AD mappings .. 97

4.2 Transformation Rules .. 101

4.2.1 Entry point and Matched Rule .. 101

ix

4.2.2 Lazy Rules .. 102

4.2.3 Called Rules ... 104

4.2.4 Helpers ... 106

4.3 Case Studies .. 106

4.3.1 Elevator Control System .. 106

4.3.2 Mock System .. 109

4.4 Target Model Verification ... 113

CHAPTER 5 DERIVING UML 2 SEQUENCE DIAGRAMS FROM USE CASE

MAP SCENARIO SPECIFICATIONS .. 115

5.1 UCM to UML 2 SD mappings... 116

5.1.1 Components and Responsibilities .. 116

5.1.2 OR-forks ... 120

5.1.3 AND-forks.. 127

5.1.4 Waiting Point ... 128

5.1.5 Timer .. 130

5.1.6 Failure Point ... 132

5.1.7 Nested Components.. 133

5.1.8 Stub .. 134

5.1.9 Dynamic Stubs ... 136

5.2 Transformation Rules .. 137

5.3 Case Study .. 140

5.3.1 Source Model ... 140

x

5.3.2 Scenario Extraction .. 143

5.3.3 Transformation ... 145

CHAPTER 6 A MUTATION FRAMEWORK FOR MODEL

TRANSFORMATIONS ... 154

6.1 ATL Mutation Testing Approach ... 155

6.2 ATL Mutation Operators .. 157

6.2.1 Matched to Lazy (M2L) ... 158

6.2.2 Lazy to Matched (L2M) ... 158

6.2.3 Delete Attribute Mapping (DAM) .. 159

6.2.4 Add Attribute Mapping (AAM) ... 160

6.2.5 Delete Filtering Expression (DFE) ... 161

6.2.6 Add Filtering Expression (AFE) .. 162

6.2.7 Change Source Type (CST) ... 163

6.2.8 Change Target Type (CTT) .. 164

6.2.9 Change Execution Mode (CEM) .. 165

6.2.10 Delete Return Statement (DRS) .. 166

6.3 ATL Mutation Operator Analysis .. 166

6.3.1 Number of Generated ATL Mutants .. 168

6.3.2 Equivalent ATL Mutants .. 169

6.3.3 Other Remarks ... 170

6.4 MuATL (Mutation Toolkit for ATL) ... 171

6.5 Case Study: UCM to UML 2 AD Transformation .. 172

xi

6.5.1 Test Cases... 173

6.5.2 Generated Mutants ... 175

6.5.3 Mutation Analysis Results.. 176

6.5.4 Test Suite Enhancement ... 177

6.6 Discussion ... 180

CHAPTER 7 CONCLUSION AND FUTURE WORK ... 182

7.1 Thesis Summary ... 182

7.2 Future Work... 185

REFERENCES .. 187

APPENDIX A – UCM METAMODEL .. 203

APPENDIX B – UML 2 AD METAMODEL ... 204

VITAE .. 205

xii

LIST OF TABLES

Table 1: Example of matched, lazy, mapping called, non-mapping called rules 16

Table 2: Example of ATL helper and attribute ... 16

Table 3: Example of modules in default mode and refining mode 17

Table 4: Use case antipatterns and their respective refactorings 37

Table 5: Antipatterns matched in the use case models of MAPSTEDI, and the

refactorings applied ... 94

Table 6: All possible scenarios in ECS UCM ... 143

Table 7: Example of a M2L mutation ... 158

Table 8: Example of a L2M mutation ... 159

Table 9: Example of a DAM mutation ... 160

Table 10: Example of an AAM mutation ... 161

Table 11: Example of a DFE mutation ... 162

Table 12: Example of a AFE mutation ... 163

Table 13: Example of a CST mutation ... 164

Table 14: Example of a CTT mutation ... 164

Table 15: Example of a CEM mutation .. 165

Table 16: Example of a DRS mutation ... 166

Table 17: Summary of ATL mutation operators ... 167

xiii

Table 18: Test cases of UCM to UML AD model transformation 173

Table 19: CST and CTT mutant corresponding to lazy rule

Responsibility_To_OpaqueAction ... 176

Table 20: Types of mutants created for the UCM to UML 2 AD model transformation 177

xiv

LIST OF FIGURES

Figure 1: UCM notation .. 9

Figure 2: UML 2 AD notation .. 11

Figure 3: UML2 SD notation .. 13

Figure 4: Overview of ATL model transformations ... 14

Figure 5: Example of Concrete to Abstract refactoring .. 41

Figure 6: Example of Drop Generalized UC Association refactoring 43

Figure 7: Example of Drop Actor-Extension UC Association refactoring 45

Figure 8: Example of Directed Actor-Extension UC Association refactoring 47

Figure 9: Example of Abstract Extended UC to Concrete refactoring 50

Figure 10: Example of Inclusion to Generalization refactoring 52

Figure 11: Example of Drop Functional Decomposition refactoring 55

Figure 12: Example of Drop Functional Decomposition having Inclusion refactoring ... 57

Figure 13: Example of Spilt Extension UC refactoring .. 60

Figure 14: Example of Extension to Generalization refactoring 62

Figure 15: Example of Generalization to Inclusion refactoring 64

Figure 16: Example of Drop Inclusion and Drop Extension refactorings 67

Figure 17: Example of Generalize Actors refactoring .. 70

xv

Figure 18: Example of Drop UC-UC Association refactoring ... 74

Figure 19: Example of Rename Actor refactoring .. 77

Figure 20: Example of Abstract to Concrete refactoring .. 79

Figure 21: Example of Add Concrete UC refactoring .. 80

Figure 22: Use case model of Database Access subsystem .. 83

Figure 23: Use case model of Database Queries subsystem ... 83

Figure 24: Use case model of Database Integrator subsystem ... 84

Figure 25: Use case model of Database Edits subsystem ... 84

Figure 26: Use case model of Administrative Process subsystem 85

Figure 27: Use case model of Database Access subsystem after applying the Generalize

Actors refactoring ... 86

Figure 28: Use case model of Database Queries subsystem after applying the Extension

to Generalization Refactoring ... 87

Figure 29: Use case model of Database Integrator subsystem after applying the Drop

Functional Decomposition refactoring ... 88

Figure 30: Use case model of Database Integrator subsystem after applying the Drop

Functional Decomposition with Include refactoring on the use case model in Figure 29 89

Figure 31: Use case model of Database Edits subsystem after applying the Drop

Functional Decomposition refactoring ... 90

Figure 32: Use case model of Administrative Process subsystem after applying the Split

UCs refactoring ... 91

xvi

Figure 33: Merged use case model of Database Queries and Database Integrator

subsystem .. 92

Figure 34: Use case model of Database Queries and Database Integrator subsystem after

applying the Concrete to Abstract refactoring .. 93

Figure 35: Mapping of UCM to UML 2 AD notation .. 100

Figure 36: Elevator Control System source UCM .. 108

Figure 37: Elevator Control System target AD ... 109

Figure 38: Mock System source UCM ... 111

Figure 39: Mock System Stub NC .. 111

Figure 40: Mock System target AD .. 113

Figure 41: Mapping of components and responsibilities .. 118

Figure 42: Mapping of bounded start and end points ... 120

Figure 43: Mapping of alternate paths .. 122

Figure 44: Mapping of terminating alternate path .. 123

Figure 45: Mapping of a UCM loop ... 125

Figure 46: Alternate mapping of the UCM loop shown in Figure 45 126

Figure 47: Mapping of concurrent paths ... 128

Figure 48: Mapping of waiting points .. 130

Figure 49: Mapping of timers ... 131

Figure 50: Mapping of failure points .. 133

xvii

Figure 51: Mapping of nested components ... 134

Figure 52: Mapping of stubs ... 135

Figure 53: Mapping of dynamic stubs .. 137

Figure 54: Elevator Control System UCM ... 142

Figure 55: Scenarios S1, S5, S8 and S12 of the Elevator Control System UCM 145

Figure 56: Mapping of scenario S1 to SD notation .. 146

Figure 57: Mapping of scenario S5 to SD notation .. 146

Figure 58: Mapping of scenario S8 to SD notation .. 149

Figure 59: Mapping of scenario S12 to SD notation .. 153

Figure 60: ATL mutation process ... 156

Figure 61: MuATL GUI .. 171

Figure 62: AFE Mutant GUI ... 172

Figure 63: Input and expected output models of TC1 .. 174

Figure 64: Input and expected output models of TC2 .. 174

Figure 65: Input and expected output models of TC8 .. 178

Figure 66: Input and expected output models of TC9 .. 178

Figure 67: Input and expected output models of TC10 .. 180

Figure 68: UCM metamodel ... 203

Figure 69: UML 2 AD metamodel .. 204

xviii

LIST OF CODE LISTINGS

Listing 1: ATL rule for applying Concrete to Abstract refactoring 40

Listing 2: ATL rule for applying Drop Actor-Generalized UC Association refactoring . 42

Listing 3: ATL rule for applying Drop Actor-Extension UC Association refactoring 44

Listing 4: ATL rules for applying Directed Actor-Extension UC Association refactoring

 ... 46

Listing 5: ATL rule for applying Abstract Extended UC to Concrete refactoring 49

Listing 6: ATL rule for applying Inclusion to Generalization refactoring 51

Listing 7: ATL rule for applying Drop Functional Decomposition refactoring 54

Listing 8: ATL for applying Split Extension UC refactoring ... 59

Listing 9: ATL rule for applying Extension to Generalization refactoring 61

Listing 10: ATL rule for applying Generalization to Inclusion refactoring 63

Listing 11: ATL rule for applying Drop Inclusion refactoring ... 65

Listing 12: ATL rule for applying Drop Extension refactoring .. 66

Listing 13: ATL rule for applying Generalize Actor refactoring 69

Listing 14: ATL rule for applying Split UCs refactoring ... 71

Listing 15: ATL rule for applying Drop Actor-Actor Association refactoring 72

Listing 16: ATL rule for applying Drop UC-UC Association refactoring 73

Listing 17: ATL rule for applying Drop Unassociated UC refactoring 75

xix

Listing 18: ATL rule for applying Rename Actor refactoring .. 76

Listing 19: ATL rule for applying Abstract to Concrete refactoring 78

Listing 20: ATL rule for applying Add Concrete UC refactoring 80

Listing 21: The entry point rule .. 102

Listing 22: The matched rule .. 102

Listing 23: Lazy rules ... 103

Listing 24: Called rules ... 105

Listing 25: Helper rules .. 106

Listing 26: UCM to UML 2 SD ATL mapping rules ... 140

xx

LIST OF ABBREVIATIONS

AAM : Add Attribute Mapping

AD : Activity Diagram

AFE : Add Filtering Expression

ARBIUM : Automated Risk-Based Inspection of Use-Case Models

ASCC : All Source Classes Criteria

ATL : Atlas Transformation Language

CACA : Classes’ association creation addition

CACD : Classes’ association creation deletion

CFCA : Collection filtering change with addition

CFCD : Collection filtering change with deletion

CEM : Change Execution Mode

CST : Change Source Type

CTT : Change Target Type

DAM : Delete Attribute Mapping

DBG : Denver Botanic Gardens

xxi

DFE : Delete Filtering Expression

DMNS : Denver Museum of Nature and Science

DRS : Delete Return Statement

EC : Elevator Control System

ECS : Elevator Control System

EM : Elevator Manager

EMF : Eclipse Modeling Framework

FRS : Functional Requirements Specification

GUI : Graphical User Interface

KAOS : Knowledge Acquisition in Automated Specification

L2M : Lazy to Matched

MAPSTEDI : Mountains and Plains Spatio-Temporal Database

 Informatics

MDE : Model Driven Engineering

MSC : Message Sequence Chart

MuATL : Mutation Toolkit for Atlas Transformation Language

M2L : Matched to Lazy

xxii

OCL : Object Constraint Language

OMG : Object Management Group

OO : Object-Oriented

QVT-O : Query View Transformation-Operational

QVT-R : Query View Transformation-Relational

ROOM : Real-Time Object-Oriented Modeling

SD : Sequence Diagram

SP : Status and Planner

TC : Test Case

TSeff : Test Set effectiveness

UC : Use Case

UCM : Use Case Maps

UCOM : University of Colorado Museum

UML : Unified Modeling Language

URN : User Requirements Notation

xxiii

ABSTRACT (ENGLISH)

Full Name : Yasser Ali Khan

Thesis Title : Embracing Model Transformations in Functional Requirements

Specification

Major Field : Software Engineering

Date of Degree : May 2013

Functional Requirements Specification (FRS) is a software process activity that

involves documenting the intended behavior of a system-to-be. Use case modeling is a

common approach used in FRS for Object-Oriented systems. Since use case modeling is

performed early in a software development cycle, any defects in a use case model will

propagate to subsequent development phases and artifacts. Therefore, it is crucial to

produce high quality use case models, especially in use case-driven approaches. Previous

work on use case quality improvement performed manual refactoring on use case models.

Use case models of large scale complex software systems usually contain thousands of

use cases. For such use case models, manual refactoring will be prone to human errors,

leading to new defects being injected into the models. In order to avoid this issue, a fully

automated process for carrying out the refactorings is necessary. Another approach used

in FRS is scenario modeling, which is performed in conjunction with use case modeling.

Uses cases are described in natural language as scenarios, which are modeled in detail as

UML activity and sequence diagrams. A large conceptual gap exists between use cases

xxiv

and UML design; consequently, developers may produce UML models that do not

accurately represent the required behavior of a use case. The Use Case Map (UCM)

scenario modeling notation aids in bridging this conceptual gap. However, to date, the

UCM notation is not part of the UML modeling language. As such, there lacks research

in the area of transforming UCMs into UML design models. Model transformation is an

automated technique that can greatly improve several software development activities.

This thesis presents an approach that leverages model transformation to execute use case

model refactorings, and transform UCM scenario specifications into UML 2 activity

diagram and sequence diagram notations. The proposed approach will present a case for

software developers to embrace the notion of model transformation in the context of FRS.

Furthermore, a fault-based technique is proposed for thorough verification of model

transformations. Case studies are presented for evaluating the effectiveness of the proposed

approach. The results obtained show that model transformations can efficiently improve

FRS by saving time and effort.

xxv

ABSTRACT (ARABIC)

 ملخص الرسالة

 ياسر علي خان :الاسم الكامل

 لاعدة تنشيط صناعة أنظمه البرمجيات" تحويل نماذج البرامج"الاستفادة من تقنتة :الرسالةعنوان

 هندسة البرمجيات :التخصص

 ۲۰۱۳مايو :تاريخ الدرجة العلمية

نموذج حالة الاستخدام ،من توثيق الوظائف المطلوبة في النظامضتوصيف متطلبان النظام هي عباره عن عملية تت

بما إن نموذج حالة . تستخدم في توصيف متطلبات النظم غرضية التوجه عن تقنيه او طريقه مشتركه عباره

فإن أي عيوب في نموذج حالة الاستخدام يتم ;الاستخدام يتم تنفيذها في وقت مبكر من دورة تطوير البرمجيات

م إنتاج نماذج حالة استخدام ذات جودة لذا فمن الأهمية بمكان أن يت. نشرها إلى مراحل التطور اللاحق والوثائق

العمل السابق بشأن تحسين جودة حالة الاستخدام .ام طرق ممنهجه لحالات الاستخدامعالية، وخاصة في استخد

نماذج حالة الاستخدام في النظم المعقده في العادة تتكون من آلالاف .بإجراء إعادة صياغه لنماذج حالة الاستخدام

على سبيل المثال حالة الاستخدام و إعادة الصياغ لحالة الاستخدام بشكل يدوي تكون عرضه . اممن حالات الاستخد

يتم عملية من أجل تجنب هذه المشكلة مما يؤدي إلى عيوب جديدة التي يجري حقنها في نماذج, للأخطاء البشرية

هو أخرى في توصيف متطلبات النظام طريقة وهناك .إعادة الصياغ لحالات الاستخدام بطريقة مؤتمتة بالكامل

حالات الإستخدام يتم وصفها . النمذجة باستخدام السيناريو، والتي تتم بالتزامن مع استخدام النمذجة لحالة الاستخدام

توجد .والتي تنموذج بتفصيل باستخدام لغة النمذجة الموحدة والإشكال المتسلسله, بالغة الطبيعية كاسيناريوهات

كبيره بين حالات الاستخدام وتصاميم لغة النمذجة الموحدة وبالتالي فإن المصممون ربما يقومون بإنتاج هناك فجوه

خرائط حالات الإستخدام .نماذج من لغة النمذجه الموحدة والتي لا تمثل بدقة السلوك المطلوب لحالات الاستخدام

. لة الاستخدام لا تعتبر جزء من لغة النمذجة الموحدةومع ذلك، حتى الآن فإن رموز حا. تعمل على سد هذه الفجوة

xxvi

. على هذا النحو فإن عملية التحويل من حالات الإستخدام الى تصاميم لغة النمذجة الموحدة تفتقر لكثير من البحوث

 يقدم هذا. نموذج التحويل هو عباره عن اسلوب آلي يمكن عن طريقه تحسين الكثير من أنشظة تطوير البرمجيات

البحث اسلوب او طريقه تمكن نموذج التحويل من تنفيذ إعادة الصياغ لحالات الاستخدام و تحويل توصيفات

والنهج المقترح .والإشكال المتسلسلة الثانيالسيناريو لحالات الاستخدام إلى مخطط الأنشطة للغة النمذجة الموحودة

 .وظيفية مواصفات المتطلبات تحول النموذجي في سياقتقديم الحال بالنسبة لمطوري البرمجيات لتبني مفهوم ال

تم تقيم فاعلية هذا التكنيك .وعلاوة على ذلك، تم إقتراح تقنية على أساس الخطأ للتحقق من التحولات النماذج

النتائج التي تم الحصول عليها تثبت بإن هذا النموذج لتحويل يساعد في . باستخدام بعض التجارب او درسات الحاله

 تطوير توصيفات متطلبات النظم عن طريق حفظ الوقت والجهد

1

1 CHAPTER 1

INTRODUCTION

Functional Requirements Specification (FRS) is a software process activity that

involves documenting the intended behavior of a system-to-be. Use case modeling is a

common approach used in FRS for Object-Oriented (OO) systems. A UML [159] use

case model provides a visual summary of the use cases, actors and their relationships.

Use cases are descriptions of services provided by the system, and actors represent the

entities that require these services. Since use case modeling is performed early in a

software development cycle, any defects in a use case model will propagate to subsequent

development phases and artifacts. The cost of fixing defects in later phases is three to six

times more than during requirements engineering [154]. Moreover, requirements defects

are most common reason for project failure, and budget overruns [151]. Therefore, it is

crucial to produce high quality use case models, especially in use case-driven approaches.

To this end, early detection of defects in use case models will significantly improve

overall product quality.

Another approach used in FRS is scenario modeling, which is performed in

conjunction with use case modeling. Uses cases are described in natural language as

scenarios, which are modeled in detail as UML activity and sequence diagrams. A

scenario is a sequence of interactions, including invariants, between actor and system that

2

are performed in order to yield an observable result to the actor. A large conceptual gap

exists between use cases and UML design [10]; consequently, developers may produce

UML models that do not accurately represent the required behavior of a use case.

Use case modeling guidelines [111] [157], use case description templates [32] [45],

and automated use case verification tools [29] [160] have been proposed in the literature

as means for improving the quality of use case models. In addition to these approaches,

the concept of source code refactoring has been extended for use case models in order to

improve their quality [40] [158] [188] [191]. In earlier work, El-Attar et al.

 [18] [19] [20] [22] presented an antipatterns based approach to improve quality in use case

models. An antipattern based approach is one that is based on learning from previous

experiences and mistakes. Antipatterns are textually described to help its users

understand, detect and fix designs that are likely to have harmful consequences

downstream. In order to fix problematic designs, an antipattern usually prescribes a set of

refactorings to be applied to the use case model. In their technique, antipattern detection

is performed in a semi-automated manner. However, the required refactoring tasks are

carried out manually. Use case models of large scale complex software systems usually

contain thousands of use cases [29]. For such use case models, performing the prescribed

refactorings manually will be prone to human errors, leading to new defects being

injected into the models. In order to avoid this issue, a fully automated process for

carrying out the refactorings is necessary.

The Use Case Map (UCM) [38] [39] scenario modeling notation aids in bridging the

conceptual gap between natural language scenarios and high-level design. UCMs have

3

been successfully used for documenting scenarios in telecommunication systems [9] [14],

web applications [6], agent based systems [2] [59], and operating systems [31]. Moreover,

UCM is a competitive modeling language, and offers additional benefits compared to

other notations [139]. These benefits include integration with goal models in the URN;

support for modularization of complex scenarios; integration with simple a metamodel,

performance annotations, and a simple action language for analysis. Amyot et al. [10]

proposed an extension of UML 1.3 with UCM core concepts for the purpose of

introducing a new “UCM View” to the existing set of UML views. However, to date, the

proposed “UCM View” is not a UML standard. As such, there lacks research in the area

of transforming UCMs into UML design models.

Model transformation is an automated technique that can greatly improve several

software development activities including model refactoring [169]. Model

transformations approaches have been proposed in the literature for applying design

patterns [190]; refactoring UML class diagrams [119] [153], UML activity diagrams [58],

and KAOS models [42]; and product line evolution [150]. This thesis presents an

approach that leverages model transformation to execute use case model refactorings, and

transform UCM scenario specifications into UML 2 Activity Diagram (AD) and

Sequence Diagram (SD) notations.

Faults in model transformations may result in defective models, and eventually

defective code. Correction of defects at the code level is considered very late and is often

expensive. Hence, defects must be detected and rectified early in the software process.

Uncorrected defects in the models will propagate to other artifacts; thus, adversely affect

4

the quality of the end product. Moreover, defect propagation may result in a system that

does not meet the stakeholders’ requirements. Therefore, model transformations must be

thoroughly tested to maintain product quality while keeping development cost at

reasonable levels. Although, verification of model transformations may benefit from

existing software testing techniques, the nature of the input and output data manipulated

by transformations makes these activities more complex. Indeed, transformation

programs manipulate models, which are complex data structures, making the problem of

test data generation and selection, as well as oracle definitions, very difficult [15]. In the

literature, many model transformation testing approaches have been studied. These

approaches range from partial to full validation of the transformation’s behavior and

associated properties.

The mutation testing technique is considered as the “gold standard” of software

testing. Several studies in the literature have empirically evaluated the effectiveness of

mutation testing on traditional programs [84]. It has been shown that mutation testing

detects more faults than coverage based techniques. Existing literature on testing model

transformations has considered these techniques. Therefore, there is a need to perform

mutation testing of model transformations. In order to do so, mutation operators must be

defined for the various model transformation languages. Previous work [136] on mutation

testing of model transformations defined generic mutation operators that must be adapted

for different model transformation languages. In this thesis, a suite of mutation operators

are proposed for the Atlas Transformation Language (ATL) [85] [175], so that model

transformation developers can practice mutation testing; therefore, gain its benefits.

5

1.1 Model Transformation

Model Driven Engineering (MDE) [89] [162] [172] is an approach to software

development that allows developers to focus on high-level abstractions (models) of

software rather than low-level implementations (code). In MDE, models can be refined to

lower levels of abstraction, refactored to improve maintainability and readability,

transformed to other models, and used to generate code [169]. The MDE approach aims

to provide automated support to carry out these tasks.

One of the key components of the MDE approach is model transformation. A

model transformation is the automated translation of a source model to a target model

based on a set of transformation rules [96]. A rule defines how elements in a source

model map to elements in a target model. The source and target models must conform to

a well defined metamodel, which specifies the language (syntax and semantics) of the

models [64].

Model transformations can be categorized in a number of ways [128]. Based on the

number of source and target models there are one-to-one, one-to-many, many-to-one and

many-to-many model transformations. If the source and target models conform to the

same metamodel, their model transformation is referred as endogenous. The model

transformations presented in Section 3.1 are endogenous. Exogenous model

transformations are transformations between models which conform to distinct

metamodels. For example, a model transformation that derives a UML class diagram

6

from multiple UML SDs is a many-to-one exogenous model transformation. The UCM to

AD, and UCM to SD model transformations presented in Section 4.2 and Section 5.2,

respectively, are exogenous. Endogenous model transformations are further classified

into in-place and out-place. In an in-place transformation, a single model serves as both

source and target; whereas in an out-place transformation, the source is ready only, while

the target model is write only. Exogenous transformations are always out-place since the

source and target models are of distinct type. A vertical model transformation results in

the source and target models at different levels of abstraction, whereas in a horizontal

model transformation, they are at the same level of abstraction [72]. A transformation

that derives source code from a UML class diagram is a vertical model transformation.

Model refactorings are an example of horizontal endogenous model transformations. A

unidirectional model transformation can only transform a source model to a target model,

whereas a bidirectional model transformation can take as input models of target type and

produce models of source type [50].

To implement common model transformation tasks, a number of specialized

transformation languages have been proposed such as ATL [85] [175],

Query/View/Transformation (QVT) [140], Tefkat [108], and Epsilon [178]. Although the

problem domain of these languages is same, they differ in the employed programming

paradigms (declarative, imperative, object-oriented, functional, etc.) [86].

7

1.2 Antipatterns

An antipattern can be defined as a potentially bad solution to a commonly

occurring design problem. Antipatterns are the opposite of design patterns, which

represent good design practices, and result in high quality software. Antipatterns may

occur when inexperienced designers attempt to incorporate design patterns in an incorrect

context. Presence of antipatterns in a given design alerts the modeler of possible design

flaws. Refactoring an antipattern instance changes the flaws into a healthy solution.

Several antipatterns have been documented in the literature such as blob (also known as

god class), functional decomposition, swiss army knife, poltergeists and spaghetti code

 [36]. Bad design practices at the code level are known as bad smells in the literature. Bad

smells are fine-grained, and can be detected from code; on the contrary, antipatterns are

coarse grained, and can be detected at the design level [70]. Several bad smells exist in

the literature such as data class, shotgun surgery, long method, and lazy class [71]. In this

thesis, we focus on bad design practices at the requirements level, i.e. use case modeling

antipatterns, and propose a model transformation approach for their detection and

refactoring.

An antipattern provides means to change a fallacious solution to a proper one by

providing some key information. In the context of use case modeling, an antipattern will

describe an unsound description, and its potential harmful consequences downstream in

the development process. An antipattern description will also explain why such an

unsound structure may have seemed appropriate in the first place. Most importantly, an

8

antipattern description will describe the appropriate structure that should be used instead.

The information used to describe an antipattern should be obtained from actual practice.

Antipatterns are usually described using a template. The templates presented in

 [18] [19] [20] [22] were specifically designed to describe use case antipatterns.

1.3 UCM Notation

A UCM consists of one or more paths each of which represent a use case scenario.

A path starts at a start point (filled circle) and ends at an end point (bar). The actions

performed by the system or use case actor along these paths are responsibilities (cross).

These responsibilities can be bound to components—actors, agents, teams, objects and

processes.

An actor component (rectangle including a stickman) represents a stakeholder who

is associated with the system through a number of usage scenarios. Software agents in

agent-oriented systems can be represented by the agent component (rectangle with a dark

border). Teams (rectangle) represent high level abstract components that can be further

decomposed into multiple levels of other component types. However, objects (box with

rounded corners), which represent instances of a class, cannot be further decomposed.

Processes (slanted rectangle) are executing components of a system and may include

object components.

9

An OR-fork divides a path into one or more alternative paths based on a guard

condition. Concurrent paths emerge from AND-forks (bar). Common paths are merged by

OR-joins and concurrent paths are synchronized by AND-joins (bar). Erroneous situations

that may stop the flow of a path are represented by failure points (ground). Timers (clock)

express the amount of time to wait before a path can progress further. A waiting place

(filled circle and bar) allows a path to wait for another path to finish before it can

continue.

Stubs (diamond) are containers for nested maps. Stubs are useful for refactoring

complex UCMs via modularization. The interested reader may refer to Buhr and

Casselman’s [39] book on UCMs for more details on its notation. Figure 1 summarizes

the UCM notation.

Figure 1: UCM notation

10

1.4 UML 2 AD Notation

An activity in an AD is a directed graph comprising of activity nodes and activity

edges. The Object Management Group’s (OMG) UML superstructure specification [141]

defines three types of activity nodes—action nodes, object nodes and control nodes.

Control flow is an activity edge that represents the transitions between activity nodes.

Action nodes exchange messages with each other through the object flow edge. Both

control and object flows are represented as an arrow.

Action nodes (box with rounded corners) represent the actions to be performed by

the system being modeled within a particular context. The exchange of messages between

actions is modeled by object nodes. Control nodes coordinate the execution of an AD.

The flow of an activity starts at an initial node (solid circle) and stops at a final node

(solid circle surrounded by hollow circle). Concurrent flows of control emerge from fork

nodes. Alternate flows of control initiate from decision nodes. Join nodes synchronize

concurrent flows, and merge nodes combine alternate flows.

Activity partitions or swimlanes are regions on an activity surrounded by parallel

lines, either horizontal or vertical. They group related nodes together, represent

organizational units such as classes [159] and may nest other partitions. A structured

activity node (dashed box with rounded corners) is defined as “an executable activity

node that may have an expansion into subordinate nodes as an ActivityGroup” [141].

ActivityGroup refers to an abstract meta-class in the UML 2.2 metamodel, which groups

a set of activity nodes and edges [185]. Activity partitions and structured activity nodes

11

inherit from this metaclass. The interested reader may refer to the OMG UML 2.2

specification [141] for more details on AD notation. Figure 2 summarizes the UML 2 AD

notation.

Figure 2: UML 2 AD notation

1.5 UML 2 SD Notation

SDs model OO system scenarios as a sequence of interactions between system

objects, represented as lifelines. Actors (users or external systems) that interact with the

system objects are also depicted as lifelines. SD can model scenarios at different levels of

detail; in a high-level SD, a lifeline can be a system, subsystem, or component, whereas

detailed SDs include boundary, controller and entity objects as lifelines.

The different lifelines communicate by passing messages to one another. Messages

are represented as arrows connecting a source and target lifeline. The different types of

messages in the UML 2 notation are synchronous, asynchronous, create, destruct and

reply. If a source lifeline sends a synchronous message, it waits for a response from the

target lifelines. In asynchronous messaging, the source continues its execution after

12

sending a message. Create messages depict initialization of target lifelines, whereas

destruct messages depict their destruction.

InteractionUse allows a SD to reference another one; therefore, enables multiple

SDs to share common interaction sequences. Gates are connection points which pass

messages to or from a SD. External messages coming through a gate initiate execution of

a SD. Terminating messages in a SD are passed out through a gate. State invariants

indicate the state of a lifeline at a particular point of time in a SD’s execution. A state can

indicate the value of an attribute or variable, or constraints on the lifeline.

Fragments are regions on a SD that group related messages together. One or more

operands form the body of a fragment. Each operand has a guard, a boolean expression,

which must evaluate to true for the operand to execute. Twelve different types of

fragments are defined in the UML 2 specification. Alternate flows in a scenario are

represented by the alt fragment. The par fragment represents concurrent execution of

operands. The termination of a break fragment indicates that remainder of the messages

in its enclosing fragment, or SD, will not execute. The loop fragment can depict repeated

behavior in a scenario. The interested reader may refer to the OMG UML 2.2

specification [141] for remainder of the fragments, and more details on the SD notation.

Figure 3 summarizes the UML 2 SD notation.

13

Figure 3: UML2 SD notation

1.6 Atlas Transformation Language

ATL is a model transformation language that provides declarative and imperative

constructs for implementing model-to-model transformations. The input to an ATL

transformation includes one or more source models. The output of an ATL

transformation is, typically, one target model. Figure 4 illustrates an ATL transformation

pattern. In the pattern, a source model Ma is transformed into a target model Mb

according to a transformation definition mma2mmb.atl, written in ATL. The

transformation definition is also regarded as a model. The source and target models, and

the transformation definition conform to their metamodels MMa, MMb, and ATL

respectively. The metamodels conform to the MOF metametamodel [142].

14

Figure 4: Overview of ATL model transformations

1.6.1 ATL Rules

An ATL model transformation is specified in a module, which contains a set of

rules. ATL allows developers to specify two types of rules, declarative and imperative.

Declarative rules are also referred as matched rules in ATL. Imperative rules must be

explicitly invoked in an ATL module by the programmer, whereas matched rules are

implicitly called at runtime. Rule AtoB in Table 1 is an example of a matched rule. In

AtoB rule, s refers to an object of type A, and t refers to an object of type B. A and B are

metaclasses defined in the source and target metamodels, respectively, of AtoB’s

enclosing module. In the mapping statement “b1 <– s.a1”, a1 and b1 refer to attributes of

the classes A and B, respectively.

ATL includes two kinds of imperative rules, lazy rules and called rules. They differ

in their implementations, but their functionalities are identical. Both are defined within

15

the context of their corresponding module; thus, they are invoked using the thisModule

keyword, which is equivalent to Java’s this keyword. The definition of a lazy rule does

not include formal parameters; however, when they are invoked the source object must be

passed as an actual parameter. The mapping statement “b2 <– thisModule.CtoD(s.a2)” in

AtoB (see Table 1) invokes the lazy rule CtoD. The actual parameter passed to CtoD is

s.a2.

Called rules may or may not contain formal parameters. They can be further

classified into mapping and non-mapping. The former contains a mapping from a source

instance to target instance, whereas the latter contains none. For instance, the called rule

EtoF in Table 1, contains a to clause “t: F”, whereas the called rule PrintF does not

contain a to clause. The do block, in called rules, allows developers to specify imperative

statements. For example, f.println() is an imperative statement in rule PrintF (see Table

1). Imperative statements are optional in matched and lazy rules, whereas they are

mandatory in called rules. In mapping called rules, the last statement of the do block

must return the target object. For instance, the statement “t;” returns the target object in

rule EtoF.

16

Table 1: Example of matched, lazy, mapping called, non-mapping called rules

Matched Rule Lazy Rule Mapping Called
Rule

Non-Mapping
Called Rule

rule AtoB {
 from s : A
 to t: B (
 b1 <- s.a1,
 b2 <- thisModule.CtoD(s.a2),
 b3 <- thisModule.EtoF(s.a3)
)
}

lazy rule CtoD
{
 from s : C
 to t: D (
 ……………
)
}

rule EtoF(s: E)
{
 to t: F (
 ……………
)
 do {
 PrintF(t);
 t;
 }
}

rule PrintF(s: F)
{
 do {
 f.println()
 }
}

1.6.2 ATL Helpers

Helpers are the ATL equivalent of methods in the OO paradigm. Helpers are

written in the context of a source metaclass. They enable querying of source model

objects. Helpers differ from rules since they do not create target model objects.

Parameter-less helpers are referred as attributes. Table 2 shows an example of a helper,

and an attribute. The helper findB, defined in the context of metaclass A, is defined to

find object b, of type B, in attribute a1. The attribute isPositive, defined in the context of

A, is defined to determine whether the value of attribute a2 is greater than zero or not.

Table 2: Example of ATL helper and attribute

Helper Attribute
helper context A def: findB(b: B)
 : B = self.a1->any(i | i = b);

helper context A def: isPositive
 : Boolean = self.a2 > 0;

1.6.3 ATL Execution Modes

ATL modules can execute in two modes, default and refining. Default mode is the

normal execution mode of ATL transformations and it is specified by the from keyword.

Default mode is intended for exogenous model transformations; therefore, the UCM to

17

AD, and UCM to SD transformation rules in Section 4.2 and Section 5.2, respectively,

are implemented in default mode. Refining mode is applicable only for endogenous

model transformations; therefore, some of the use case model refactorings presented in

Section 3.1 are implemented in refining mode. Typically in model refactoring, only few

objects of the source model undergo changes, whereas the remaining objects are copied

into the target model. Refining mode allows developers to define rules only for those

objects that need to be transformed; the remaining objects will be implicitly copied into

the output model. Therefore, refining mode is an excellent choice for implementing

model refactorings. However, the use of refining mode is limited as it does not allow

developers to specify imperative rules. Consequently, remainder of the use case model

transformations presented in Section 3.1 are implemented in default mode.

Table 3 shows an example of modules in default mode and refining mode. Module

A is defined in default mode, whereas module B is defined in refining mode.

Table 3: Example of modules in default mode and refining mode

Default mode Refining mode
module A;
create OUT : UML from IN : UML;

module B;
create OUT : UML refining IN : UML;

1.6.4 ATL Module Superimposition

Module superimposition [183] is mechanism that enables the reuse of generic rules

across multiple ATL modules. Let module A contain the set of rules 𝑅𝐴 = {𝑎1,𝑎2,𝑎3},

and module B contain the set of rules 𝑅𝐵 = {𝑏1, 𝑏2, 𝑏3}. If B is superimposed on A, then

18

the superimposed module S will contain set of

rules 𝑅𝑆 = 𝑅𝐴 ∪ 𝑅𝐵 = {𝑎1,𝑎2,𝑎3, 𝑏1, 𝑏2, 𝑏3}. If 𝑎1 and 𝑏1 have the same name, then 𝑏1

will overwrite 𝑎1 resulting in 𝑅𝑆 = { 𝑎2,𝑎3, 𝑏1, 𝑏2, 𝑏3}. The developer must make sure

that superimposition results in a confluent [129] set of rules, in which no two rules must

be applicable on the same source object.

Although refining mode is ideal for defining model refactorings, it cannot be used

in situations where the developer wants to write imperative code. This forces the

developer to implement his desired model refactorings in default mode. In model

refactoring, a large number of model objects remain unchanged, and must be copied from

the source model into the target model. In refining mode, this copying is performed

automatically by the ATL virtual machine. On the other hand, default mode requires the

developer to define trivial rules for copying each unchanged model object. This becomes

tedious when implementing a large suite of model transformations, and results in code

(rule) duplication across the different modules. This problem can be averted using

module superimposition, which allows the implementation of reusable modules.

Therefore, module superimposition is an alternate way to efficiently implement model

refactorings. Module superimposition was used in every default mode model

transformation presented in Section 3.1. ATL rules for copying use case model objects

were defined in separate modules, and superimposed on relevant model transformations.

19

1.7 Research Question

The main research question that we aim to answer in this thesis is the following:

How can model transformation techniques to be used to improve the Functional

Requirements Specification (FRS) activity of a software process?

The research question will be answered in two folds by defining and implementing

model transformations for:

• Improving the quality of use cases

• Deriving high-level design models (ADs and SDs) from UCM scenario
specifications

The proposed model transformations will present a case for software developers to

embrace the notion of model transformation in the context of FRS.

20

1.8 Thesis Objectives

The objectives of this thesis are as follows:

1. Propose a fast, efficient, and scalable technique for improving the FRS activity.
By FRS, we refer to use case modeling and scenario modeling.

2. Implement the proposed technique using various tools

3. Demonstrate the feasibility of the proposed technique on case studies that pertain
to real-world software systems

4. Compare the results of the proposed technique with previous work in order to
identify its significance.

5. Propose and implement a framework for enabling thorough verification of the
proposed technique.

1.9 Research Methodology

The research methodology followed in thesis is as follows:

Literature Review

A literature review was performed to study the existing techniques for improving

FRS. Throughout this work, the literature was rigorously reviewed for understanding the

related work done in this domain.

Propose Model Transformation Techniques

After the initial analysis of existing techniques, a new model transformation

technique for improving FRS was proposed. We improve FRS by enhancing the quality

21

of use case models in an efficient and scalable manner, and by automatic derivation of

high-level design models from UCM scenario specifications.

Implementation of the Proposed Techniques

The tools used for the implementation of the proposed model transformation techniques

are:

1. Integrated Development Environment – Eclipse Indigo [176]

2. Integrated Development Environment – Visual Studio 2012

3. Model Transformation Language – ATL [85] [175]

4. Eclipse based UCM modeling tool – jUCMNav [87]

5. Eclipse based UML modeling tool – UML 2 Tools [177]

6. UML modeling tool – Altova UModel 2008 [181]

Evaluation of the proposed techniques

After successful implementation of the proposed model transformation technique,

its effectiveness was assessed on case studies.

The proposed antipatterns based use case quality improvement technique was

evaluated on the use case models of MAPSTEDI (Mountains and Plains Spatio-Temporal

Database Informatics) system [116]. The MAPSTEDI system is a distributed database

system that integrates biodiversity data collections from three sources, the University of

Colorado Museum, the Denver Museum of Nature and Science, and the Denver Botanic

Gardens. The integrated database contains 285,000 biological specimens. The system will

22

allow geocoders to analyze biodiversity data in the southern and central Rocky

Mountains. A map based GUI is provided by MAPSTEDI to allow users to

geographically reference the specimens.

The UCM to UML 2 AD, and the UCM to UML 2 SD, model transformations were

validated using the UCM of an Elevator Control System (ECS), which is available at [8].

The UCM was adapted from “Designing Concurrent, Distributed and Real-Time

Applications with UML” [74]. Another case study which covers the entire UCM

notational set is also presented for illustrating the UCM to UML 2 AD model

transformation. The framework for thorough validation of the proposed techniques is

validated on the UCM to UML 2 AD model transformation.

Conclusion

The conclusion of the thesis summarizes the research performed, and its benefits. In

addition, future research directions in the area of MDE are discussed.

Thesis Writing

This research was documented in a thesis form which was rigorously updated based

on inputs from the thesis advisor, Dr. Mohamed El-Attar, and committee members, Dr.

Mahmoud Elish and Dr. Sajjad Mahmood. Finally, it was submitted to the Deanship of

Graduate Studies (DGS) once approved.

23

1.10 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 presents related

work on quality improvement of use case models, antipatterns, model transformation

based model refactoring, verification of model transformations, and transformation of

UCMs to other modeling notations. Chapter 3 presents a model transformation approach

for improving the quality of use case models, and presents a real-world case study to

evaluate the effectiveness of the proposed approach. The case study pertains to the use

case model of a bio-diversity database system. Chapter 4 defines a model transformation

for deriving UML 2 ADs from UCMs, and presents two case studies to illustrate the

transformation. The first pertains to an Elevator Control System (ECS), and the second

pertains to a mock system. Chapter 5 defines mappings from UCM constructs to UML 2

SD notation, and defines a model transformation to implement the mappings. A more

refined version of the ECS case study is used to demonstrate the transformation. Chapter

6 proposes a suite of mutation operators for fault based verification of ATL

transformations, and evaluates their effectiveness on the UCM to UML 2 AD model

transformation. Chapter 7 concludes the thesis and discusses future work.

24

2 CHAPTER 2

LITERATURE REVIEW

This chapter presents a survey of the related literature on use case quality

improvement techniques, antipatterns, model transformation based model refactoring,

verification of model transformations, and transformation of UCMs to other modeling

notations.

2.1 Use Case Quality Improvement

2.1.1 Using Inspection, Guidelines, and Templates

Use case inspection is a strongly suggested method for ensuring consistency of use

case models [17] [103] [163]. A checklist-based inspection technique was presented in

 [11] based on best practices provided in [17] [163]. The usage of this technique is limited

as it requires a great deal of use case modeling expertise. Linguistic techniques have been

suggested for detecting defects in use case descriptions [63]. However, they are not

adequate for ensuring correctness and consistency of requirements.

Styling and content related guidelines which enhance consistency in use case

descriptions are presented in [3]. Experimental evaluation revealed that the guidelines in

 [3] do not necessarily improve the correctness of use case descriptions [49]. A

25

“conversational” style for authoring use case descriptions is advocated in [187]. Special

styles for capturing business rules [13], and user interface requirements [30] [46], in use

case descriptions have also been devised. A standard for documenting use cases of

embedded systems is proposed in [149].

A list of critical use case modeling mistakes which led to project failure or delay is

given in [43]. Many common use case modeling mistakes made by inexperienced

practitioners are presented in [111]. The mistakes can be detected early in the

development cycle by performing checklist based reviews. This technique is practical for

small scale systems, which have few number of use cases. However, for complex

systems, containing thousands of use cases, checklist based reviews are cumbersome and

prone to human error. Therefore, an automated technique for improving the quality of use

case models is presented in this thesis. The heuristics behind the use case modeling

mistakes listed in [17] [111] [163], and other best practices from the literature, such as

those presented in [4] [62] [66] [75] [98] [99] [126] [146] [157], are incorporated in the

antipatterns approach.

Templates for writing high quality use case descriptions are described in

 [32] [45] [78] [83] [121]. Anda et al. [12] have shown that using templates significantly

improves understandability of use cases. A machine readable structure for use case

authoring that ensures consistency between use case diagrams and use case descriptions

is presented in [21].

26

2.1.2 Using Automated Verification Tools

Ryndia et al. [160] developed a use case verification tool SusanX, which relies on

detailed knowledge of the system’s domain. The tool may not be useful in the early

stages of a software development cycle because detailed domain knowledge is

unavailable. Moreover, the tool does not consider relationships between use cases. The

approach presented in this thesis does not require domain knowledge; therefore, it can be

applied early in the development cycle. Furthermore, it is based on the antipatterns

approach which considers use case relationships that are not handled by SusanX.

Berenbach [29] described heuristics for constructing verifiable, understandable, correct,

complete and consistent use case models, and incorporated them in an analysis tool,

Design Advisor. Some of the heuristics can be automatically verified, while others require

manual effort. However, the tool does not perform any refactorings itself. The heuristics

presented in [29] are a subset of the heuristics incorporated in the antipatterns approach.

The Requirements Use Case Tool [123] is a web based application that searches a

given use description for a set of risk indicators, which may negatively impact use case

quality attributes. The approach presented in this this does not need to be used

exclusively. In fact, it is recommended that this approach be used in addition to other

quality improving techniques, such as use case templates and authoring guidelines, in

order to leverage their collective advantages.

2.1.3 Use Case Refactoring

Refactoring is the process of enhancing the structure of a software artifact without

changing its intended behavior [71]. Refactoring was first introduced by Opdyke [145]

27

for OO source code. The concept of source code refactoring has been extended for UML

models, including use case models, in order to improve their quality.

The notion of use case refactoring was first considered by Butler et al. [40] within

the context of product line evolution. Use case refactorings were shown to document

product line variability and evolution in [188]. Yu et al. [191] listed 10 use case

refactoring rules based on “episodes”. Source code refactorings from [145] were

extended to use case models in [158]. Five types of primitive refactorings on use case

modeling constructs were defined—create, delete change, move and decompose. These

refactorings were later implemented using a metamodel specification and incorporated in

a graphical tool [189]. In [95], five other primitive use case refactorings, decomposition,

equivalence, generalization, merge, and delete, were defined in the context of service

oriented architectures. In this thesis, several composite use case refactorings, which are

sequences of primitive use case refactorings, are defined and implemented. Moreover, the

refactoring presented in [40] [95] [191] are already incorporated in the antipatterns

approach.

Refactorings that apply on use case descriptions are described in [80] and [155].

The antipatterns based approach incorporates the concept of refactoring use case models;

it can be used in tandem with the use case description refactorings described in [80] and

 [155].

28

2.2 Antipatterns

2.2.1 Impact of Antipatterns on Quality Attributes

The effect of antipatterns and bad smells on quality aspects of software has been

empirically investigated in the literature. In [1], it was revealed that a combination of the

god class and spaghetti code antipatterns adversely affected understandability.

Deligiannis et al. [51] [52] showed that the presence of god classes in a design makes

maintenance activities difficult, and deteriorates the design. Refactoring of god classes

revealed better design comprehensibility in [56]. In [110], it was shown that classes

having antipatterns god class, god method, and shotgun surgery were more fault prone

than other classes. Olbrich et al. [143] analyzed the historical data of two large scale open

source systems, and concluded that classes having antipatterns god class and shotgun

surgery changed more frequently than other classes. Romano et al [156] showed that

classes containing antipatterns are more change-prone than classes free of antipatterns.

In recent work, Khomh et al. [100] analyzed several releases of four software

development tools, and concluded that classes with antipatterns are more change-prone

and fault-prone than others. Hence, there is need for antipattern detection and subsequent

refactoring.

2.2.2 Antipattern Detection

Early antipattern detection and correction significantly improves software quality.

This has prompted several researchers to propose techniques for detecting design level

antipatterns. Wieman [186] developed a heuristics based detection tool for design level

antipatterns, violations of design principles and code smells. Empirical evaluation of the

29

tool on open source projects revealed that design antipatterns exist in OO software. A

metrics based approach for detecting design antipatterns is presented in [70]; this

approach considers structural and behavioral aspects of design, whereas the tool in [186]

considers structural aspects only. A tool that automatically generates algorithms for

detecting design antipatterns is presented in [132].

Ballis et al. proposed a language for specifying both design patterns and

antipatterns in [24], and defined rules for their detection in [23]. A numerical analysis

based technique accurately distinguished between antipatterns and non antipatterns at the

design level in [144]. A logic based detection approach, which used Prolog predicates,

was proposed in [174], and successfully validated on open source projects. Machine

learning techniques, Bayesian networks [101] [170], and support vector machines [115],

have also been used in the literature to detect design level antipatterns. Other detection

approaches found in the literature are based on inspection [179], heuristic search [91],

predicate logic [5], metamodeling [182], visualization [54] [107] [171], and metrics

 [117] [138].

In [61], model checking rules were derived from several antipattern descriptions to

detect undesirable properties in class diagrams. Cortellessa et al. [47] showed how Object

Constraint Language (OCL) queries can be used to detect the blob antipattern in UML

component, sequence, and deployment diagrams. Automatic detection of performance

antipatterns that pertain to architectural models is performed in [16] [48] [180]. This thesis

focusses on antipatterns within the requirements engineering context, more specifically at

the functional requirements specification (use case modeling) level. Furthermore, the

30

refactorings proposed in this thesis are performed at a much earlier phase of a software

process (requirements engineering) compared to existing literature (architecture, design

and code levels).

Liu et al. [113] presented an approach to detect overlapping use cases based on SDs

and state-charts. The proposed approach cannot be applicable early in a software process

as SDs and state-charts may not be specified. In earlier work [22], use case antipattern

detection was automated by describing antipattern designs as constraints using OCL.

However, model transformation provides a more powerful mechanism to detect

antipatterns, which was otherwise not possible to detect when written using OCL.

Therefore, this thesis proposes a model transformation approach for antipattern detection

and refactoring.

2.3 Model Transformation based Model Refactoring

Model transformations can greatly ease several software development activities

including model refactoring [169]. This has prompted several researchers to implement

model transformations for performing model refactoring.

Mens stated that one of the ways to perform model refactoring is the application of

design patterns [127]. Model transformations, implemented in XSLT, were presented in

 [190] for automatically applying design patterns on UML class diagrams. XSLT was

used to implement reusable model transformation in [102]. Similar to XSLT, ATL also

allows reuse via the concept of module superimposition.

31

Demuth et al. [53] showed that XSLT based model transformations can be used for

deriving SQL schemas form UML class diagrams, and reverse engineering UML class

diagrams from code. However, the usage of XSLT for implementing model

transformations is limited since it is fundamentally a declarative language. On the other

hand, ATL is a hybrid language which permits imperative programming styles, in

addition to declarative. Therefore, the model transformations presented in this thesis are

implemented in ATL due to its inherent versatility and reusability (via module

superimposition).

Other refactoring techniques using model transformation were developed but not

for use case modeling. Zhang et al. developed a model transformation engine to perform

generic and domain specific model refactorings [193]. Other model transformations have

been defined for refactoring UML class diagrams

 [69] [97] [109] [118] [119] [133] [152] [153], ADs [57] [58], state-charts [69], KAOS models

 [42], feature models [164], Alloy object models [120], software architectures [81],

executable UML models [55], and Java source code [137].

2.4 Verification of Model Transformations

Model transformation testing is gaining interest within the MDE community, as the

size and complexity of model transformation programs grow. Testing model

transformations exhibits many challenges [25] [26]. Two important challenges that have

been investigated in the literature are the efficient generation/selection of test cases, and

the definition of an oracle function to assess the validity of the transformed models.

32

Fleurey et al. [68] investigated the problem of test data generation for model

transformations, and proposed the use of partition testing to define test criteria to cover

the input metamodels. Lamari [106] used a functional testing approach based on a data

partitioning technique that focuses on the structure of models in order to take into account

the structural aspect of models when generating input test models. Fiorentini et al. [65]

have proposed a uniform framework for treating metamodels, model transformation

specifications, and the automation of test case generation. The proposed technique in [65]

is based on a black-box testing approach of model transformations to validate their

adherence to given specifications. White-box test model generation approaches for ATL

model transformations have been proposed in [76] and [125]. Another white-box

approach, which is based on static analysis of structural information in model

transformations, is presented in [134]. A gray-box testing technique has also been used

by Bauer and Küster [27] for model transformations. Sen et al. [167] presented a tool for

semi-automated generation of test models from knowledge such as requirements, known

faults, and existing inputs.

Lin et al. [112] have presented a framework for test case creation and execution

with a particular focus on the problem of model comparison of expected and actual

outputs models. Wang et al. [184] have proposed structural testing of model

transformations using the metamodel coverage criteria. The types of faults that can occur

while implementing a transformation rule are described in [105]; test case generation for

model transformations should focus on detecting such faults. The unit testing technique

has been demonstrated on QVT-O model transformations in [44]. Cabot et al. [41] have

33

used OCL invariants, derived from transformation rules, to verify model transformations

written in QVT-R and Triple Graph Grammars. Küster et al. [104] proposed a framework

for automated testing of model transformation chains.

The authors in [73] and [124] have used the test driven approach to implement

model transformations. Giner and Pelechano [73] have defined a test-driven method to

capture requirements for transformations in such a way that guides the development and

documentation of model transformations. Requirements were expressed by means of test

cases that can be automatically validated. McGill and Cheng [124] have extended the

JUnit testing framework with assertions that simplify the testing of model

transformations. These extensions are implemented in a tool called Jemtte.

Techniques for assessing the quality of model transformation test cases have been

described in [28] and [67]. Test oracles, which are strategies for determining whether a

test case passes or fails, for model transformations have been discussed in [90] and [135].

In recent work [173], the application of model comparison techniques has been

investigated for defining model transformation test oracles. Automated tools for the

generation of test input have been presented in [35] and [77]. For a detailed survey on the

diverse approaches to model transformation verification, the reader is invited to refer

 [166].

Mottu et al. [136] introduced the application of mutation testing to model

transformations. The authors [136] have identified four semantic classes of faults

(navigation, filtering, output model creation, and input model modification) for model

transformations, and they have defined a set of generic mutation operators to cover these

34

fault classes. The effectiveness of these mutation operators was demonstrated in [168] by

automatic test model generation followed by mutant execution. These generic mutation

operators can be adapted for different model transformation languages. However, there is

a need to define mutation operators that can capture model transformation programming

language specific characteristics. Therefore, in this thesis, a suite of mutation operators

are proposed for ATL.

2.5 UCM transformations

To allow traceability of functional requirements, several studies have proposed

mappings from UCMs to other modeling notations. Bordelau and Cameron [33] defined a

systematic and traceable way of deriving Message Sequence Chart (MSC) scenario

models from UCMs. Miga et al. [130] extended Bordelau and Cameron’s [33] systematic

procedure and implemented a UCM to MSC transformation using a prototype tool. He et

al. [79] illustrated the generation of MSCs from UCMs using an automated tool. Amyot

et al. [7] implemented a model transformation in XSLT for deriving MSCs from UCMs.

Bordeleau and Buhr [34] proposed modeling steps from UCM to ROOM state machines

 [165]. These steps help in bridging the conceptual gap between the notations, and enables

traceability from detailed design to scenarios. A method for deriving SDL diagrams [60]

from UCMs was proposed by Sales and Probert [161]. In [148], an algorithm was

proposed for generating software performance models from UCM specifications. A

prototype tool was presented in [88] for automatic derivation of UCMs from natural

language use case descriptions. Martínez [122] showed how state-charts can be

35

synthesized from the combined information provided by UCMs and UML collaboration

diagrams. Zeng [192] defined a transformation from UCMs to core scenario models,

which allow the quick generation of software performance models. Amyot and

Mussbacher [10] proposed an extension of UML 1.3 with UCM core concepts for the

purpose of introducing a new “UCM View” to the existing set of UML views. To date,

the proposed “UCM View” is not a UML standard. Hence, there is a need for a mapping

between these distinct notations.

To the best of our knowledge, no attempt has been made to propose mappings

between UCM and UML 2 notations. The mappings and model transformations presented

in this thesis can facilitate the transition from requirements to high-level design. This

thesis has also not only proposed mappings between the UCM and UML modeling

notations but also suggests automation of mappings. Automation will enable

requirements traceability, as well as reduce the effort required to derive detailed design

from scenarios represented as UCMs.

36

3 CHAPTER 3

A MODEL TRANSFORMATION APPROACH

TOWARDS REFACTORING USE CASE MODELS

BASED ON ANTIPATTERNS

In this chapter, we present use case antipatterns and define model transformations

for their refactorings. The use case antipatterns are adopted from the work of El-Attar and

Miller [18] [19] [20] [22]. The taxonomy of antipatterns presented in [18] was developed

via a systematic review of current practices for constructing high quality use case models.

A large subset of these antipatterns prescribes refactorings that can be carried out using

model transformation. Table 4 provides a summary of use case antipatterns and the

corresponding refactorings that will be implemented using model transformation.

37

Table 4: Use case antipatterns and their respective refactorings

Use Case Antipattern Refactoring
a1. Accessing a generalized concrete

use case
r1. Concrete to Abstract
r2. Drop Actor-Generalized UC

Association
a2. Accessing an extension use case r3. Drop Actor-Extension UC Association

r4. Directed Actor-Extension UC
Association

a3. Using extension/inclusion use cases
to implement an abstract use case

r5. Abstract Extended UC to Concrete
r6. Inclusion to Generalization

a4. Functional Decomposition: Using
the include relationship

r7. Drop Functional Decomposition
r8. Drop Functional Decomposition

having Inclusion
a5. Functional Decomposition: Using

the extend relationship
r9. Split Extension UC
r10. Extension to Generalization

a6. Multiple generalizations of a use
case

r11. Generalization to Include

a7. Use cases containing common and
exceptional functionality

r12. Drop Inclusion
r13. Drop Extension

a8. Multiple actors associated with one
use case

r14. Generalize Actors
r15. Split UCs

a9. An association between two actors r16. Drop Actor-Actor Association
a10. An association between use cases r17. Drop UC-UC Association
a11. An unassociated use case r18. Drop Unassociated UC
a12. Two actors with same name r19. Rename Actor
a13. An actor associated with an

unimplemented abstract use case
r20. Abstract to Concrete
r21. Add Concrete UC

A source use case model that contains one or more instances of a use case

antipattern is provided as input to its suitable model transformation. A model

transformation detects the model elements involved in an antipattern, and performs

appropriate refactoring; thus, resulting in a target use case model. This target use case

model is free of the use case antipattern present in the source use case model. The

transformations are endogenous, horizontal, out-place, one-to-one, unidirectional model

transformations. The metamodel used for implementing the model transformations is the

38

Eclipse Modeling Framework’s (EMF) [37] implementation of the OMG UML 2.0

specification [141]. The source and target use case models conform to this EMF

metamodel; therefore, the transformations are endogenous. Since refactoring does not

alter the level of abstraction in which the source is expressed, the model transformations

fall in the horizontal category. The model transformations are implemented using ATL

 [86] [175]. In ATL, the source and target models of a given model transformation are

distinct entities; therefore, the transformations are out-place. Because the input to the

transformations is one source, and the output is one target, the model transformations are

one-to-one. An ATL module cannot be used to reverse engineer the source from the

target; therefore, the model transformations are unidirectional. The ATL source code is

available to the interested reader for download at [92].

It is important to note that the existence of an antipattern in a use case model, by

definition, does not prove the presence of a defect. The detection of an antipattern in a

use case model will only prompt the modeler to reconsider their design due to the

likelihood of costly work downstream resulting from the current design. Upon evaluating

the use case model instance based on the information provided by the corresponding

antipattern description, the modeler will then determine whether their design is indeed

defective or not. If the design is considered defective, then refactoring measures are

undertaken to improve the quality of the model; otherwise, no further action is required.

The remainder of this chapter is organized as follows. Section 3.1 describes the

proposed model transformation approach for executing use case refactorings. Section 3.2

39

demonstrates the feasibility of the approach using a case study that pertains to a

biodiversity database system. Finally, Section 3.3 evaluates the results of the case study.

3.1 Use Case Modeling Antipattern Refactorings

a1. Accessing a generalized concrete use case

This antipattern occurs when an actor is associated with a generalized use case in

order to enable indirect access to a framework of services, which are implemented by

specialized use cases. A generalized use case is often incomplete because it contains parts

of common behavior required by the specialized use cases. Therefore, initiation of such a

generalized use case will result in incomplete meaningless behavior.

r1. Concrete to Abstract

This refactoring converts the generalized use case to abstract. The semantics of

abstract use cases are same as the semantics of an abstract entity in the OO paradigm.

Setting a use case as abstract indicates that it cannot be solely performed. Therefore, one

of the specialized use cases will be performed. This guarantees that a complete and

meaningful service will be delivered to the actor. A given use case is involved in this

antipattern if it:

40

• is a concrete generalized use case

• neither includes nor extends any use case

• neither included nor extended by any other use case

• is directly or indirectly associated with an actor

The rule ConcreteToAbstract in Listing 1 checks the above detection conditions for

each use case in a given use case model. If a use case satisfies all the detection

conditions, its isAbstract property is set.

rule ConcreteToAbstract {
 from s: UML!UseCase (
 s.isGeneralization() and s.isConcrete() and not(s.isIncluder() or s.isIncluded()or
 s.isExtension() or s.isExtended()) and (s.isAssociatedWithActor() or
 s.isIndirectlyAssociatedWithActor())
)
 to t: UML!UseCase (
 isAbstract <- true
)
}

Listing 1: ATL rule for applying Concrete to Abstract refactoring

Figure 5 illustrates an example of the Concrete to Abstract refactoring applied on a

use case model of a shoe store system. In the original use case model (Figure 5(a)), use

case Apply Special Offer is a generalized use case which is specialized by uses cases

Dispense Double Airmiles and Apply 10% Discount. The specialized use cases relate to

promotional offers at the shoe store. Actor Shoe Salesman can apply any one of the two

promotional offers on a shoe purchase by performing their corresponding use cases.

Since Apply Special Offer is concrete, it can be performed exclusively by the Shoe

Salesman. However, Apply Special Offer contains incomplete behavior; therefore, its

exclusive execution will result in no special offer applied on a shoe sale. The application

41

of the Concrete to Abstract refactoring will set Apply Special Offer to abstract; thus,

ensuring that is cannot be performed exclusively. The refactored use case model of the

shoe store system is shown in Figure 5(b).

(a) Original UC model

(b) Refactored UC model

Figure 5: Example of Concrete to Abstract refactoring

r2. Drop Actor-Generalized UC Association

This refactoring replaces the association between the actor and generalized use case

with direct associations between the actor and specialized use cases. It will ensure a

service request is performed through one of the specialized use cases. Therefore, the

incomplete behavior in the generalized use case cannot be initiated. An association is

involved in this antipattern if its:

42

• source is an actor

• destination is a concrete generalized use case

• destination neither includes nor extends any use case

• destination is neither included nor extended by any use case

The rule DropAssociation in Listing 2 checks the above detection conditions for

each association in a given use case model. If an association satisfies the detection

conditions, it is deleted from the use case model. The call to rule AddAssociations

introduces associations between the actor and specialized use cases.

rule DropAssociation {
 from s : UML!Association (
 s.isSourceActor() and s.destination().isGeneralization() and
 s.destination().isConcrete() and not(s.destination().isIncluder() or
 s.destination().isIncluded() or s.destination().isExtension() or
 s.destination().isExtended())
)
 to drop
 do {
 thisModule.AddAssociations(s);
 }
}

Listing 2: ATL rule for applying Drop Actor-Generalized UC Association refactoring

Figure 6 illustrates the Drop Actor-Generalized-UC Association refactoring on a

use case model of a shoe store system (Figure 5(a)). The association between Shoe

Salesman and Apply Special Offer is incorrect, since Apply Special Offer contains

incomplete behavior. The Drop Generalized-UC Association replaces this incorrect

association with direct associations between Shoe Salesman and use cases Dispense

Double Airmiles, and Apply 10% Discount.

43

Figure 6: Example of Drop Generalized UC Association refactoring

Any one of the two refactorings can be applied to refactor antipattern a1. The

refactoring r1 preserves the semantics of the original model whereas, refactoring r2 may

cluster the use case model in case of several specialized use cases.

a2. Accessing an extension use case

This antipattern occurs when an actor is associated with an extension use case. Such

a relationship is modeled in order for the actor to convey information to the extension use

case. This is inappropriate because, an extension use case must be provided information

from the base use case. A base use case gets the required information, an extension use

case needs, from the actor, when it is invoked.

r3. Drop Actor-Extension UC Association

This refactoring deletes the association between an actor and extension use case.

This ensures that the extension use case cannot be initiated independently, and the base

use case provides necessary information to the extension use case. A given association

relationship in a use case model is involved in this antipattern if its source is an actor and

destination is an extension use case.

44

The rule DropAssociation in Listing 3 checks for such associations and deletes

them when found.

rule DropAssociation {
 from s : UML!Association (
 s.isSourceActor() and s.isDestinationUseCase() and s.destination().isExtension()
)
 to drop
}

Listing 3: ATL rule for applying Drop Actor-Extension UC Association refactoring

Figure 7 illustrates an example of the Drop Actor-Extension UC Association

refactoring on a use case model of a music store system. In the original use case model

(Figure 7(a)), CD Out Of Stock is an extension use case that executes when a customer

attempts to buy a music CD that is unavailable. Actor Customer is associated with this

extension use case in order to provide it with necessary information. This association is

incorrect because the extension use case must get the necessary information from its base

use case Buy Music CD. The application of the Drop Actor-Extension UC Association

refactoring will delete the association between the extension use case and Customer; thus,

ensuring that CD Out Of Stock cannot be performed exclusively, and it receives necessary

information from Buy Music CD. The refactored use case model of the music store

system is shown in Figure 7(b).

45

(a) Original UC model

(b) Refactored UC model

Figure 7: Example of Drop Actor-Extension UC Association refactoring

r4. Directed Actor-Extension UC Association

Antipattern a2 can also occur when the extension use case would like to inform an

actor when it is invoked. The refactoring for this scenario involves explicitly specifying

the direction of the association. This guarantees that the use case cannot be initiated by

the actor. Unfortunately, UML lacks notation for directed associations. This limitation

can be tackled by annotating the association with a UML comment.

The rule RefactorAssociation in Listing 4 checks for associations between actors

and extension use cases, and annotates them with a comment when found. The comment

contains the string ‘directed towards’ appended with the name of the actor. Moreover, it

swaps the source and destination properties of the association. This is a mere cosmetic

46

change since the modeler cannot see its effect on the use case diagram. However, this

source-destination swap will be reflected in the use case model’s XMI file.

rule RefactorAssociation {
 from s: UML!Association(
 s.isSourceActor() and s. isDestinationUseCase() and s.destination().isExtension()
)
 to t: UML!Association (
 memberEnd <- s.memberEnd,
 navigableOwnedEnd <- dst,
 ownedEnd <- Sequence{src, dst}
),
 src: UML!Property (
 name <- 'src',
 type <- s.destination()
),
 dst : UML!Property (
 name <- 'dst',
 type <- s.source()
)
 do {
 thisModule.AddComment(s);
 t;
 }
}

rule CreateComment(a: UML!Association) {
 to t: UML!Comment (
 annotatedElement <- a,
 body <- 'directed towards ' + a.source().name
)
 do {
 t;
 }
}

Listing 4: ATL rules for applying Directed Actor-Extension UC Association refactoring

Figure 8 illustrates an example of the Directed Actor-Extension UC Association

refactoring on a use case model of an Internet Service Provider (ISP) system. In the

original use case model (Figure 8(a)), Notify Customer of Balance Due is an extension

use case that executes when an ISP employee would like to inform a customer when his

payment is due. Actor Customer is associated with this extension use case. This

association is correct since the extension use case informs Customer when it is invoked.

However, it could also imply that Customer can invoke the extension use case; this is

47

incorrect. In order to avoid this incorrect interpretation, the Directed Actor-Extension UC

Association refactoring is applied on the original use case model. The association

between Customer and the extension use case is annotated with its actual direction, i.e.

towards Customer. The refactored use case model of the ISP system is shown in Figure

8(b).

(a) Original UC model

(b) Refactored UC model

Figure 8: Example of Directed Actor-Extension UC Association refactoring

48

a3. Using extension/inclusion use cases to implement an abstract use case

This antipattern occurs when an extension or inclusion use case is used to

implement an abstract use case. The extension and inclusion use cases describe behavior

different from the abstract use case. Therefore, the modeler does not use generalization

relationship to implement the abstract use case. A service request from an actor to such

an abstract use case will never be performed because no use case realizes its intended

behavior. Hence, it is inappropriate to model such a relationship between abstract and

concrete use cases. This situation is acceptable if the use case model is incomplete, and

the abstract use case will be realized later by a concrete use case.

r5. Abstract Extended UC to Concrete

This refactoring sets the abstract use case to concrete. This ensures that the use

case can be solely performed, and its intended behavior is realized by itself. A use case is

involved in this antipattern if it is:

• abstract and associated with at least one actor

• neither a generalization nor a specialization of any use case

• neither included by any use case nor an extension of any use case

• includes zero or more use cases

• extended by at least one use case

The rule AbstractToConcrete in Listing 5 checks the above detection conditions for

each use case in a given use case model. If a use case satisfies all the detection

conditions, its isAbstract property is unset.

49

rule AbstractToConcrete {
 from s : UML!UseCase (
 s.isAbstract and s.isAssociatedWithActor() and not (s.isIncluded() or
 s.isExtension() or s.isGeneralization() or s.isSpecialization()) and s.isExtended()
)
 to t: UML!UseCase (
 isAbstract <- false
)
}

Listing 5: ATL rule for applying Abstract Extended UC to Concrete refactoring

Figure 9 illustrates an example of the Abstract Extended UC to Concrete

refactoring on a use case model of a vehicle repair system. In the original use case model

(Figure 9(a)), Perform Oil Maintenance is an abstract use case which is implemented by

inclusion use case Check Oil Level, and extension use case Oil System Damaged. Actor

Mechanic is associated the abstract use case. This indicates that the abstract use case can

be performed exclusively. Since abstract use cases are incomplete, Perform Oil

Maintenance cannot provide complete service to Mechanic. Therefore, the Abstract

Extended UC to Concrete refactoring is applied on the original use case model to result in

Perform Oil Maintenance set to concrete. The refactored use case model of the vehicle

repair system is shown in Figure 9(b).

50

(a) Original UC model

(b) Refactored UC model

Figure 9: Example of Abstract Extended UC to Concrete refactoring

r6. Inclusion to Generalization

This refactoring applies in the case when inclusion use cases are used to describe

specialized behavior of the abstract use case. The inclusion relationships are replaced by

generalization relationships directed from the inclusion use cases to the abstract use case.

An include relationship is involved in this antipattern if its includer user case is:

• abstract and associated with at least one actor

• neither a generalization nor a specialization of any use case

• neither included by any use case nor an extension of any use case

• includes at least one use case

51

• not extended by any use case

Detection conditions for this refactoring are similar to those of refactoring r5 except

for they apply on include relationships in a use case model, and the abstract use case

must include at least one use case and should not have any extensions. The rule

DropInclude in Listing 6 checks the above detection conditions for each include

relationship in a given use case model. If an include relationship satisfies all the detection

conditions, it is deleted from the use case model. The call to rule AddGeneralization is

used for introducing generalization relationships from the specializing use cases to the

abstract use case.

rule DropInclude {
 from s: UML!Include (
 s.getIncluder().isAbstract and s.getIncluder().isAssociatedWithActor() and
 not (s.getIncluder().isIncluded() or s.getIncluder().isExtension() or
 s.getIncluder().isExtended() or s.getIncluder().isGeneralization() or
 s.getIncluder().isSpecialization())
)
 to drop
 do {
 thisModule.AddGeneralization(s);
 }
}

Listing 6: ATL rule for applying Inclusion to Generalization refactoring

Figure 10 illustrates an example of the Inclusion to Generalization refactoring on a

use case model of a stock market system. In the original use case model (Figure 10(a)),

Make a Trade is an abstract use case which is implemented by inclusion uses cases Make

a Bonus Trade and Make a Stocks Trade. Actor Trader can perform either of the

inclusion uses cases. However, Trader cannot perform both inclusion use cases at the

same time. Therefore, the inclusion relationships shown in the original use case model

52

are incorrect. The application of the Inclusion to Generalization refactoring on the

original use case model replaces the inclusion relationships with generalization

relationships. The new generalization relationships are directed from uses cases, Make a

Bonus Trade and Make a Stocks Trade, to the abstract use case, Make a Trade. This will

ensure that a trader can either make a bonus trade, or a stocks trade, but not both at the

same time. The refactored use case model of the stock market system is shown in Figure

10(b).

(a) Original UC model

(a) Refactored UC model

Figure 10: Example of Inclusion to Generalization refactoring

53

a4. Functional Decomposition: Using the include relationship

This antipattern represents improper usage of the include relationship. The service

offered by a use case is divided into several inclusion use cases. Moreover, these

inclusion use cases are not directly associated with any actor. They do not represent a

complete service that is offered the system; hence, provide no observable result to a user.

Functional decomposition is acceptable if an inclusion use case provides complete

behavior to another actor and/or is included by another use case.

r7. Drop Functional Decomposition

This refactoring merges the inclusion use cases into the base use case, which

individually provides a complete service to the actor. A use case is involved in this

antipattern if its:

• an inclusion use case which is included by one use case only

• not associated with any actor

• neither including nor extending any use case

• not extended by any use case

• neither a generalization nor a specialization of any use case

The rule DropUseCase in Listing 7 checks for inclusion use cases in a use case

model and deletes them when found. Figure 11 illustrates an example of the Drop

Functional Decomposition refactoring.

54

rule DropUseCase {
 from s: UML!UseCase (
 not (s.isAssociated() or s.isExtension() or s.isExtended() or s.isGeneralization() or
 s.isSpecialization() or s.isIncluder()) and s.isIncluded() and
 s.getIncluders()->size() = 1
)
 to drop
}

Listing 7: ATL rule for applying Drop Functional Decomposition refactoring

Figure 11 illustrates an example of the Drop Functional Decomposition refactoring

on a use case model of a coffee vending system. In the original use case model (Figure

11(a)), use case Prepare Coffee includes three uses cases Add Sugar, Add Cream or Milk,

and Pour Hot Water. All of the inclusion use cases are performed when actor Customer

orders coffee. However, the inclusion use cases are neither associated with any actor nor

related to any use case, other than Prepare Coffee. The inclusion use cases actually

represent functions of their base use case Prepare Coffee. Since each of the inclusion use

cases do not represent a complete service provided by the system, the Drop Functional

Decomposition refactoring is applied on the original use case model. The inclusion use

cases are removed from the use case model, and their behavior is implicitly merged into

the base use case. Figure 11(b) shows the refactored use case model of the coffee vending

system.

55

(a) Original UC model

(b) Refactored UC model

Figure 11: Example of Drop Functional Decomposition refactoring

r8. Drop Functional Decomposition having Inclusion

Functional Decomposition can also occur if the inclusion use case includes other

use case(s). In this case, the refactoring has an additional step. After the inclusion use

case’s deletion, include relationships are added from its base uses case to its inclusion use

cases.

Figure 12 illustrates an example of the Drop Functional Decomposition having

Inclusion refactoring on an enhanced use case model of the coffee vending system,

described in refactoring r7. In the original use case model (Figure 12(a)), the inclusion

use cases Add Sugar, Add Cream or Milk, and Pour Hot Water further include use case

Check Quantity. The inclusion use cases check the quantity of sugar, cream, milk, and

water, by invoking Check Quantity. Actor Serviceman also performs Check Quantity

56

while maintaining the coffee machine. As explained in refactoring r7, each of the

inclusion use cases do not represent a complete service provided by the system. Since

they include a use case, Check Quantity, the Drop Functional Decomposition having

Inclusion refactoring is applied on the original use case model. The inclusion use cases

are removed from the use case model, and their behavior is implicitly merged into the

base use case. Moreover, an include relationships is added from Prepare Coffee to Check

Quantity. This additional step is performed in order to preserve the behavior shown in the

original use case model. Figure 12 (b) shows the refactored use case model of the coffee

vending system.

57

(a) Original UC model

(b) Refactored UC model

Figure 12: Example of Drop Functional Decomposition having Inclusion refactoring

a5. Functional Decomposition: Using the extend relationship

This antipattern represents improper usage of the extend relationship, in which a

single use case extends multiple base use cases. To elaborate, the extension use case is

providing optional behavior which is useful to multiple base use cases. This strongly

indicates that the extension use case has degraded into a function, and cannot properly

provide optional behavior to its base use cases.

58

r9. Split Extension UC

This refactoring splits the extension use case into multiple use cases, each of which

provide optional behavior specific to a single base use case. This will ensure that

exceptional situations are properly handled by the extension use cases. A use case is

involved in this antipattern if it is:

• not associated with any actor

• neither a generalization nor a specialization of any use case

• neither an inclusion use case nor including any use case

• not extended by any use case

• extends more than one use case

The rule DropUseCase in Listing 8 checks for extension use cases that are shared

by multiple base use cases, and deletes them when found. The call to rule AddUseCase

adds specific extension use cases into the use case model for each base use case. The

name of the extension use case is appended with the name of its base use case followed

by ‘Extension’ in parenthesis. This indicates the modeler to rename this use case

appropriately.

59

rule DropUseCase {
 from s: UML!UseCase (
 not(s.isAssociated() or s.isIncluded() or s.isIncluder() or s.isExtended()
 or s.isGeneralization() or s.isSpecialization()) and s.extend->size() > 1;
)
 to drop
 do {
 for(ex in s.extend) {
 thisModule.AddUseCase(ex);
 }
 }
}

Listing 8: ATL for applying Split Extension UC refactoring

Figure 13 illustrates an example of the Split Extension UC refactoring on a use case

model of a sports store system. In the original use case model (Figure 13(a)), Equipment

Damaged is an extension use case of two base use cases, Sell Ball and Sell Racquet. The

extension use case gets invoked when damaged merchandise, either ball or racquet, is

being sold. When the extension use case is invoked by Sell Ball, additional functionality

will be performed for handling the damaged ball. However, redundant functionality will

be performed for handling a damaged racquet, which is not being sold. Similarly, when

the extension use case is invoked by Sell Racquet, redundant functionality is performed

for handling a damaged ball. In order to avoid this redundant functionality, the Split

Extension UC refactoring is applied on the original use case model. The extension use

case is split into new two use cases, each of which provide required optional behavior to

their respective base use cases. The new use cases must be renamed appropriately by the

modeler. Figure 13(b) shows the refactored use case model of the sports store system.

60

(a) Original UC model

(b) Refactored UC model

Figure 13: Example of Spilt Extension UC refactoring

r10. Extension to Generalization

This refactoring is applied in case the extension use case is used to depict

specialized behavior of the base use case. The extend relationship is replaced with an

appropriate generalization relationship. An extend relationship is involved in this

antipattern if its extension use case is:

• not associated with any actor

• neither a generalization nor a specialization of any use case

• neither an inclusion use case nor including any use case

• not extended by any use case

• extends more than one use case

61

Detection conditions for this refactoring are similar to those of refactoring r9 except

for they apply on extend relationships in a use case model. The rule DropExtend in

Listing 9 checks for extend relationships whose extension use case is shared by multiple

base use cases, and deletes them when found. The call to rule AddGeneralization adds a

generalization relationship from the extension use case to its respective base use case.

rule DropExtend {
 from s: UML!Extend (
 not (s.getExtension().isAssociated() or s.getExtension().isIncluded() or
 s.getExtension().isIncluder() or s.getExtension().isExtended() or
 s.getExtension().isGeneralization() or s.getExtension().isSpecialization()) and
 s.getExtension().extend->size() > 1
)
 to drop
 do {
 thisModule.AddGeneralization(s);
 }
}

Listing 9: ATL rule for applying Extension to Generalization refactoring

Figure 14 illustrates an example of the Extension to Generalization refactoring on a

use case model of a notification system. In the original use case model (Figure 14 (a)),

use case Send Notification extends two base use cases Send Email Notification and Send

SMS Notification. The extend relationships are used to represent the hierarchy of

notification services offered by the system. This hierarchy of services is correctly

represented by generalization relationships. Therefore, the Extension to Generalization

refactoring is applied on the original use case model. Figure 14 (b) shows the refactored

use case model of the notification system.

62

(a) Original UC model

(b) Refactored UC model

Figure 14: Example of Extension to Generalization refactoring

a6. Multiple generalizations of a use case

This antipattern occurs when a single use case implements more than one use case.

Common behavior from the base use cases is extracted and represented in a specialized

use case.

r11. Generalization to Inclusion

A use case should not specialize multiple base use cases at the same time. This

strongly indicates that behavioral semantics of the model are violated, and leads to

incorrect implementation of the system. This refactoring replaces generalization

relationships with include relationships directed from the generalized use cases to the

specialized use case.

63

The rule DropGeneralization in Listing 10 deletes a generalization relationship if

its source use case has multiple generalizations. The call to rule CreateInclude introduces

include relationships between generalized and specialized use cases.

rule DropGeneralization {
 from s: UML!Generalization (
 s.refImmediateComposite().hasMultipleGeneralizations())
 to drop
}

rule CopyUseCase {
 from s : UML!UseCase
 to t: UML!UseCase (
 name <- s.name,
 include <- s.include,
 extend <- s.extend,
 generalization <- s.generalization,
 isAbstract <- s.isAbstract
)
 do {
 for(uc in s.getSpecializations()) {
 if(uc.hasMultipleGeneralizations()) {
 t.include <- t.include->including(thisModule.CreateInclude(s, uc));
 }
 }
 t;
 }
}

Listing 10: ATL rule for applying Generalization to Inclusion refactoring

Figure 15 illustrates an example of the Generalization to Inclusion refactoring on a

use case model of an aircraft management system. In the original use case model (Figure

15(a)), use case Clean Aircraft inherits behavior from two generalized use cases, Prepare

Passenger Aircraft for Trip and Prepare Cargo Aircraft for Trip. The modeler intended

to extract the common behavior of the generalized use cases into Clean Aircraft. This

implies that in order to clean an aircraft, a passenger aircraft, and a cargo aircraft must be

prepared. This is incorrect behavior of Clean Aircraft because only one aircraft can be

cleaned at a time. Therefore, the Generalization to Inclusion refactoring is applied on the

original use case model. The refactoring replaces the incorrect generalization

64

relationships with inclusion relationships. This will ensure that proper behavior is

performed when Clean Aircraft is invoked. Figure 15(b) shows the refactored use case

model of the aircraft management system.

(a) Original UC model

(a) Refactored UC model

Figure 15: Example of Generalization to Inclusion refactoring

a7. Use cases containing common and exceptional functionality

This antipattern occurs when a use case is reused by making it an inclusion and

extension for different base use cases. This shared use case contains common and

optional behavior required by multiple use cases. When the shared use case is initiated by

any of the base use cases, extra undesired functionality is performed.

65

r12. Drop Inclusion

If the shared use case represents functionality which is appropriate only for the base

use case it extends, its inclusion relationship should be deleted. A new inclusion use case

is added in order to provide the additional behavior required by the other base use case.

The ATL helper attribute sharedUCs in Listing 11 contains the set of use cases

which are inclusions and extensions. The rule DropInclude deletes an inclusion

relationship if its target use case is a shared use case. The call to rule AddUseCase adds a

new inclusion use case to the use case model. The name of the base use case is copied

into this new use case and appended by ‘Inclusion’ in parenthesis. This indicates the

modeler to rename this use case appropriately.

helper def: sharedUCs : Set(UML!UseCase)
 = UML!Include->allInstances()
 ->collect(uc | uc.addition)->asSet()
 ->select(uc | uc.extend->size() > 0);

rule DropInclude {
 from s: UML!Include (
 thisModule.sharedUCs->includes(s.addition)
)
 to drop
 do {
 thisModule.AddUseCase(s);
 }
}

Listing 11: ATL rule for applying Drop Inclusion refactoring

r13. Drop Extension

If the shared use case represents functionality appropriate only for the base use case

that includes it, its extension relationship should be deleted. A new extension use case is

66

added in order to provide the optional behavior required by the other (extended) base use

case.

The rule DropExtend in Listing 12 deletes an extend relationship if its source use

case is a shared use case. The call to rule AddUseCase adds a new extension use case to

the use case model. The name of the base use case is copied into this new use case and

appended by ‘Extension’ in parenthesis. This indicates the modeler to rename this use

case appropriately.

rule DropExtend {
 from s: UML!Extend (
 thisModule.sharedUCs->includes(s.getExtension())
)
 to drop
 do {
 thisModule.AddUseCase(s);
 }
}

Listing 12: ATL rule for applying Drop Extension refactoring

In case the shared use case does indeed contain both additional and optional

behavior required for the base use cases, it must be split into two separate use cases. The

new use cases provide appropriate functionality to their respective base use cases.

Figure 16 illustrates an example of the Drop Inclusion and Drop Extension

refactoring on a use case model of a car dealership system. In the original use case model

(Figure 16(a)), use case Car Not Found is included by use case Add New Car, and

extends use case Update Car’s Information. When a new car is added into the system, the

actor Car Salesman performs Add New Car. Before a car is added into the system, the

system must check whether it is already available or not. This is represented by the

67

behavior in the shared use case Car Not Found. The Car Salesman can change

information related to a car by performing Update Car’s Information, which requires the

car’s unique identifier. If the car is not found in the system, the shared use case is

performed to generate an error report. The shared use case behaves differently when

invoked by each of its base use cases. This means that redundant functionality will be

performed when either of the base use cases invoke the shared use case. Therefore, the

Drop Inclusion and Drop Extension refactoring are applied on the original use case

model. The refactorings split the shared use case into two use cases, each of which

provide required behavior to their respective base use cases. The new use cases must be

renamed appropriately by the modeler. Figure 16(b) shows the refactored use case model

of the car dealership system.

(a) Original UC model

(b) Refactored UC model

Figure 16: Example of Drop Inclusion and Drop Extension refactorings

68

a8. Multiple actors associated with one use case

This antipattern occurs when a use case is associated with more than one actor. The

actors perform the same role while interacting with the shared use case. This association

is inappropriate since it is against the semantics of an actor. An actor must perform a

unique role while interacting with a shared use case. This eventually results in multiple

implementations of the shared use case for different actors. In case the shared use case

needs to communicate with distinct actors, this situation is acceptable.

r14. Generalize Actors

This refactoring deletes the associations between the actors and shared use case,

introduces a generalized actor, and associates the shared use case with it. The generalized

actor represents the similar roles performed by actors while executing the shared use

case.

A pair of actors is involved in this antipattern if they are associated with at least one

common use case. The call to rule AddGeneralizedActor in Listing 13 adds a generalized

actor to the use case model and associates it with the common use case(s). This actor is

named ‘Super Actor’; the modeler must rename it appropriately.

69

rule CopyPackage {
 from s: UML!Package
 to t: UML!Package (
 name <- s.name,
 packagedElement <- s.packagedElement,
 ownedComment <- s.ownedComment
)
 do {
 for(saps in thisModule.sharedActorPairs) {
 thisModule.AddGeneralizedActor(saps, t);
 }
 }
}

Listing 13: ATL rule for applying Generalize Actor refactoring

Figure 17 illustrates an example of the Generalize Actors refactoring on the use

case model of a banking system. In the original use case model (Figure 17(a)), actor

Manager and Employee are associated with the same use case Perform Transaction. The

actors associated play a similar role when performing the shared use case. In other words,

the actors will communicate with the shared use case in a similar fashion. For example,

the procedure for performing Perform Transaction is the same when performed by

Manager or Employee. Actors should communicate with a use case if they are playing

unique roles while the use case is being performed. Therefore, in the original use case

model, designers will assume that Manager and Employee play different roles when

executing Perform Transaction. Hence, the implementation of the actors with respect to

the execution of the use case will be different, even though they should be the same. This

scenario can be fixed by applying the Generalize Actors refactoring on the original use

case model. The refactoring extracts the overlapping roles between the associated actors,

and creates a new actor, Super Actor, that represents these roles. The involved actors will

generalize the newly created actor. Figure 17(b) shows the refactored use case model of

the banking system.

70

(a) Original UC model

(b) Refactored UC model

Figure 17: Example of Generalize Actors refactoring

r15. Spilt UCs

This refactoring must be applied in case the functionality offered by the shared use

case is too generic for servicing the requests of both actors. The refactoring splits the

shared use case into appropriate use cases for each actor. These new use cases accurately

depict the intended behavior of the system when interacting with each actor.

The rule DropUseCase in Listing 14 checks for shared use cases in a use case

model and deletes them when found. The call to rule AddUseCase adds new use cases

into the use case model for each of its associated actors. The name of the shared use case

71

is copied into the new use cases and appended with its respective actor’s name in

parenthesis. This indicates the modeler to rename this use case appropriately.

rule DropUseCase {
 from s : UML!UseCase (
 thisModule.ucsToBeDroppend->includes(s)
)
 to drop
 do {
 for(ac in s.getAssociatedActors()) {
 thisModule.AddUseCase(s, ac);
 }
 }
}

Listing 14: ATL rule for applying Split UCs refactoring

The refactorings for this antipattern have been implemented for pairs of actor that

share common use case(s). They can be extended for a larger set of actors.

a9. An association between two actors

This antipattern occurs when an association relationship between two actors is

shown in a use case model. Association between actors represents interactions that are

external to the system. A use case model should be concerned only with the interactions

between a system and its actors. Incorporating interactions between external entities adds

unnecessary complexity to a use case model.

r16. Drop Actor-Actor Association

This refactoring deletes an association between a pair of actors. This will ensure

that modelers focus on interactions between a system and its actors, rather than external

interactions.

72

A given association relationship in a use case model is involved in this antipattern

if its source and destination are both actors. The rule DropAssociation in Listing 15

checks for an association whose source and destination are actors, and deletes them when

found.

rule DropAssociation {
 from s: UML!Association (
 s.isSourceActor() and s.isDestinationActor()
)
 to drop
}

Listing 15: ATL rule for applying Drop Actor-Actor Association refactoring

a10. An association between use cases

This antipattern occurs when a use case model contains an association between a

pair of use cases. This association relationship represents communication between the use

cases in order to provide complete service to an actor.

r17. Drop UC-UC association

A use case model must be concerned with interactions between a system and its

actors. Representing internal interactions adds unnecessary complexities into the use case

model. This refactoring merges a pair of associated use cases into a single use case,

which provides a complete and meaningful functionality to system users. Association

relationships between actors and the associated use cases are directed towards the merged

use case.

73

The rule DropAssocation in Listing 16 deletes associations between pairs of use

cases. The call to rule AddUseCase adds a new use case into the use case model. This use

case represents combined functionality of the associated use case. This use case is named

‘Merged UC’ followed by names of the associated use cases in parenthesis. This indicates

the modeler to rename the use case appropriately.

rule DropAssociation {
 from s: UML!Association (
 s.isSourceUseCase() and s.isDestinationUseCase()
)
 to drop
 do {
 thisModule.AddUseCase(s);
 }
}

Listing 16: ATL rule for applying Drop UC-UC Association refactoring

Figure 18 illustrates an example of the Drop UC-UC Association refactoring on a

use case model of a vehicle embedded system. In the source use case model (Figure

18(a)), two use cases Count Shaft Rotations in Trip and Measure Time of Trip are

associated. The former is responsible for calculating the distance traveled during a trip,

whereas the latter tracks the time spent during a trip. These use cases, by themselves, do

not provide any service to the user. They provide the necessary information required for

calculating the average speed of the car during a trip. Therefore, the Drop UC-UC

Association refactoring is applied on the original use case model. The refactoring merges

the two use cases into a single use case, which calculates the average speed of the car

during a trip. The merged use case should be renamed properly by the modeler. Figure 18

(b) shows the refactored use case model of the car dealership system.

74

(a) Original UC model

(b) Refactored UC model

Figure 18: Example of Drop UC-UC Association refactoring

a11. An unassociated use case

This antipattern occurs when a use case model contains a use case that is not

associated with any actor. Such a use case represents functionality that is internal to the

system; therefore, does not provide any service to the system’s user. This situation is

acceptable if the use case model is incomplete.

r18. Drop Unassociated UC

This refactoring deletes an unassociated use case from the use case model. The

purpose of use case modeling is to model the interactions between a system and its actors.

Hence, internal functionality should not be represented in a use case model.

The rule DropUseCase in Listing 17 checks for unassociated use cases in a use case

model, and deletes then when found. Apart from being not associated with any actor, the

use case must not be involved in any inclusion, extension and generalization relationship.

75

rule DropUseCase {
 from s : UML!UseCase (
 not (s.isAssociated() or s.isExtension() or s.isExtended() or s.isIncluder()
 or s.isIncluded() or s.isGeneralization() or s.isSpecialization())
)
 to drop
}

Listing 17: ATL rule for applying Drop Unassociated UC refactoring

a12. Two actors with same name

This antipattern occurs when several actors in the same use case model have

identical names. This situation may occur if an actors’ roles is carried out by different

personnel with similar job titles. This situation is acceptable if several instances of an

actor can enhance the layout of a use case diagram.

r19. Rename Actor

Actors with identical names are a source of confusion in a use case model. The

identical actors should be renamed such that their responsibilities can be distinguished,

and represented more precisely.

The rule RefactorActor in Listing 18 checks for a duplicate actor and renames it

when found. The actor is renamed ‘Duplicate Actor’ followed by the actor’s original

name in parenthesis. This indicates the modeler to consider renaming the actor

appropriately.

76

rule RefactorActor {
 from s : UML!Actor (
 UML!Actor->allInstances()
 ->excluding(s)
 ->collect(a | a.name)
 ->includes(s.name)
)
 to t: UML!Actor (
 name <- 'Duplicate Actor ' + '(' + s.name + ')'
)
}

Listing 18: ATL rule for applying Rename Actor refactoring

Figure 19 illustrates an example of the Rename Actor refactoring. In the original

use case model (Figure 19(a)), two actors have an identical name, Administrator. This

actor’s role is performed by different personnel with identical job titles. The first type of

role is security administration, and the second one is maintenance administration.

Therefore, the Rename Actor refactoring is applied on the original use case model. The

refactoring renames the identical actors in order to indicate the modeler of duplication.

The refactored use case model is shown in Figure 19(b).

77

(a) Original UC model

(b) Refactored UC model

Figure 19: Example of Rename Actor refactoring

a13. An actor associated with an unimplemented abstract use case

This antipattern occurs when an actor is directly associated with an abstract use

case that is not implemented by any specialized use case(s). A service request from an

actor to such a use case will not be performed since the use case cannot be initiated. This

situation is acceptable if the use case model is incomplete. The use case modelers are

expected to later add concrete use case(s) which will implement the abstract use case.

However, assuming that the abstract use case can be initiated to provide service to an

actor is incorrect.

78

r20. Abstract to Concrete

This refactoring converts the abstract use case to concrete. This ensures that the use

case can be performed and intended service will be provided to the actor. A use case is

involved in this antipattern if it is:

• abstract and associated with at least one actor

• neither a generalization nor a specialization of any use case

• neither including nor extending any use case

• neither included nor extended by any use case

The rule AbstractToConcrete in Listing 19 checks the above detection conditions

for each use case in a given use case model. If a use case satisfies all the detection

conditions, its isAbstract property is unset. Figure 20 illustrates an example of the

Abstract to Concrete refactoring.

rule AbstractToConcrete {
 from s: UML!UseCase (
 s.isAssociatedWithActor() and s.isAbstract and not (s.isGeneralization() or
 s.isSpecialization() or s.isIncluder() or s.isIncluded() or s.isExtension() or
 s.isExtended())
)
 to t: UML!UseCase (
 isAbstract <- false
)
}

Listing 19: ATL rule for applying Abstract to Concrete refactoring

79

(a) Original UC model

(b) Refactored UC model

Figure 20: Example of Abstract to Concrete refactoring

r21. Add Concrete UC

This refactoring must be applied in case the abstract use case is indeed incomplete.

A concrete use case that implements the abstract use case is added into the use case

model. A generalization relationship is also added from the concrete use case to the

abstract use case. This guarantees that the abstract use case will not be solely performed.

Therefore, complete and meaningful service is provided to an actor through the concrete

use case.

The rule RefactorUseCase in Listing 20 detects unimplemented use cases in a given

use case model, and refactors them by adding a concrete use case which implements

them. The name of the abstract use case is copied into the concrete use case and

appended with ‘Concrete’ in parenthesis. This indicates the modeler to rename the

concrete use case appropriately. Figure 21 illustrates an example of the Add Concrete UC

refactoring.

80

rule RefactorUseCase {
 from s: UML!UseCase (
 s.isAssociatedWithActor()and s.isAbstract and not (s.isGeneralization() or
 s.isSpecialization() or s.isIncluder() or s.isIncluded() or s.isExtension() or
 s.isExtended())
)
 to t: UML!UseCase (
 name <- s.name,
 isAbstract <- s.isAbstract
)
 do {
 thisModule.AddSpecializedUseCase(s,t);
 }
}

Listing 20: ATL rule for applying Add Concrete UC refactoring

(a) Original UC model

(b) Refactored UC model

Figure 21: Example of Add Concrete UC refactoring

3.2 Case Study

In this section we present a real world case study to demonstrate the feasibility of

the proposed approach.

81

3.2.1 Definition and Motivation

The main research questions posed by this case study are as follow:

R1: Does the model transformation approach have the same antipattern detection

capabilities as the detection technique presented in [19]? If a different set of

antipattern matches are detected then these matches must be investigated to compare the

coverage of the antipattern sets detected. Comparing the coverage of the two sets of

antipattern matches will indicate which detection technique is superior.

R2: Does model transformation apply the refactorings correctly? Given a set of

antipattern matches and an identified set of required refactorings, the refactorings will be

applied using model transformation. The correctness of the refactorings carried out will

be initially verified by examining the target models structurally. Correctness will then be

verified once again by comparing the target models with manually refactored use case

models presented in [19]. Any discrepancy between them will be investigated to decide

which approach is superior.

3.2.2 Formulation

In order to address the above mentioned research questions, the use case model that

was used in the case study presented in [19] will be reused for comparative purposes. The

use case model used in the case study presented in [19] suffered from a set of

documented issues. Antipatterns in the use case model were then searched for using

ARBIUM. The antipattern matches prompted the execution of a set of corresponding

refactorings that were carried out manually, which subsequently resolved the documented

82

list of issues in the use case model. Therefore, in the first phase of this case study, the

proposed approach will be used to detect antipatterns in the same use case model. The

two sets of antipattern matches will then be compared. In the second phase of this case

study, the manually applied refactorings in [19] will be applied using model

transformation. The target models will be examined directly to determine their

correctness. Moreover, the target models will be compared with the target models

presented in [19]. The results of these evaluations are presented in Section 3.3.

The case study pertains to the use case model of the MAPSTEDI (Mountains and

Plains Spatio-Temporal Database Informatics) system [116]. The MAPSTEDI system is a

distributed database system that integrates biodiversity data collections from three

sources; the University of Colorado Museum (UCOM); the Denver Museum of Nature

and Science (DMNS); and the Denver Botanic Gardens (DBG). The integrated database

contains 285,000 biological specimens. The system will allow geocoders to analyze

biodiversity data in the southern and central Rocky Mountains. A map based GUI is

provided by MAPSTEDI to allow users to geographically reference the specimens.

The use case model of MAPSTEDI (Figure 22-Figure 26) consists of five packages,

each of which model the functional requirements of individual subsystems. Each package

is individually checked for presence of antipattern instances. The use case model is

accompanied by textual descriptions for each individual use case. The use case

descriptions are required for determining the validity of the use case model.

83

Figure 22: Use case model of Database Access subsystem

Figure 23: Use case model of Database Queries subsystem

84

Figure 24: Use case model of Database Integrator subsystem

Figure 25: Use case model of Database Edits subsystem

85

Figure 26: Use case model of Administrative Process subsystem

3.2.3 Model Transformations

This section will describe and illustrate antipattern detection, and refactoring on the

use case models of the MAPSTEDI system.

Database Access Subsystem

In the Database Access use case model, two actors are associated with a common

set of use cases. Actors Public User and Research User are both associated with use

cases Download Collections Data, Search Collection Data and Visualize Biodiversity

Analysis. This matches antipattern a8. Now, the question arises which one of the two

refactorings r14 and r15 must be applied to this antipattern instance. The answer to this

question lies in the use case descriptions of the use cases involved in this antipattern.

Analysis of the use case descriptions reveals that actors Public User and Research User

perform similar roles when executing the shared use cases. This suggests that refactoring

 r14 must be applied on the antipattern instance. The refactoring adds an actor Super Actor

to the use case model that generalizes the similar roles performed by actors Public User

86

and Research User. The added actor is associated with the shared use cases Download

Collections Data, Search Collection Data and Visualize Biodiversity Analysis. The

associations from actors Public User and Research User to the shared use cases are

deleted. The actor Super Actor must be renamed appropriately by the modeler. Figure 27

presents the refactored use case model of the Database Access subsystem.

Figure 27: Use case model of Database Access subsystem after applying the Generalize Actors refactoring

Database Queries Subsystem

In the Database Queries use case model extension use cases, Query Database and

Query Remote Database, each provide optional functionality to more than one base use

cases. This matches antipattern a5. Two instances of this antipattern exist in the Database

Queries use case model. In the first instance, use case Query Database extends two use

87

cases, Query Remote Database and Query Local Database. In the second instance, use

case Query Remote Database extends Query DMNS Databases and Query DIGIR

Database. The two instances result in a hierarchy of functional decompositions. Analysis

of the use case descriptions of these extension use cases indicates that this hierarchy is

incorrect. The functionalities provided by the extension use cases are in fact specialized

versions of general behavior described by their respective base use cases. Therefore,

refactoring r10 is applied on the model elements involved in this antipattern. Figure 28

presents the refactored use case model of the Database Queries subsystem.

Figure 28: Use case model of Database Queries subsystem after applying the Extension to Generalization

Refactoring

Database Integrator Subsystem

In the Database Integrator use case model, use case Update Collections Data

includes use case Edit Collections Data, which is neither directly associated with any

88

actor nor included any other use case. This matches antipattern a4. The same antipattern

is similarly matched by use cases Run QC Tests and Upload DBG and UCOM Data.

Therefore, two instances of this antipattern are present in the Database Integrator use

case model. Refactoring r7 is applied on the use case model. Both of the antipattern

instances are refactored in a single execution of the model transformation. This results in

the deletion of use cases Edit Collections Data, and Upload DBG and UCOM Data.

Figure 29: Use case model of Database Integrator subsystem after applying the Drop Functional Decomposition

refactoring

In the refactored use case model in Figure 29, use case Run QC Tests is included by

only one use case, Update Collections Data, and not directly associated with any actor.

This is again matches antipattern a4. Therefore, the Database Integrator use case model

must go through a second iteration of refactoring. Since use case Run QC Tests includes

Query Remote Database, refactoring r8 is applied. This results in the deletion of use case

Run QC Tests and introduction of include relationship between use cases Update

89

Collections Data, and Query Remote Database. Figure 30 presents the resulting use case

model after the second iteration of refactoring.

Figure 30: Use case model of Database Integrator subsystem after applying the Drop Functional Decomposition

with Include refactoring on the use case model in Figure 29

Database Edits Subsystem

Use case Edit Collections Data was merged into use case Update Collections Data

in the previous refactoring step. Edit Collections Data is also part of the Database Edits

use case model. Therefore, use case Edit Collections Data must be replaced by use case

Update Collections Data in the Database Edits use case model. Actors Data Editor and

Database Integrator are now associated with use case Update Collections Data, which

extends use case Geocode Specimen. This matches antipattern a2. Analysis of the

Geocode Specimen use case description revealed that performing database updates is part

of its required functionality. Therefore, the extend relationship is replaced by an include

relationship directed from use case Geocode Specimen to use case Update Collections

Data. The incorrect extend relationship is a mistake made by the modeler rather than the

cause of an antipattern a2 instance. The description of actor Data Editor suggests that it

represents the data editing role of actor Geocoder, which is indirectly associated with use

90

case Update Collections Data through use case Geocode Specimen. Therefore, actor Data

Editor is redundant and must be deleted from the use case model.

Use case Find Locality is included by Geocode Specimen and not associated with

any actor. This matches antipattern a4. Refactoring r7 is applied on the use case model;

thus, resulting in use case Find Locality being deleted. Figure 31 presents the refactored

use case model of the Database Edits subsystem.

Figure 31: Use case model of Database Edits subsystem after applying the Drop Functional Decomposition

refactoring

Administrative Process Subsystem

In the Administrative Process use case model, actors Database Administrator and

ArcIMC Administrator are associated with the same set of use cases. This matches

antipattern a8. Analyzing the use case descriptions of use cases Backup Process, Restore

Process and Install Software Updates reveals that the services provided by them are too

general for either of the actors, Database Administrator and ArcIMC Administrator.

Actor Database Administrator was involved in backing up and restoring bio diversity

data, and installing database updates, whereas actor ArcIMC Administrator was involved

91

in backing up and restoring application code, and installing code updates. Therefore,

refactoring r15 is applied on this antipattern instance. This results in use cases Backup

Process, Restore Process, and Install Software Updates split into two use cases, each of

which provide appropriate service to actors Database Administrator and ArcIMC

Administrator. The new use cases must be renamed appropriately by the modeler. Figure

32 presents the refactored use case model of the Administrative Process subsystem.

Figure 32: Use case model of Administrative Process subsystem after applying the Split UCs refactoring

Merged View

The Database Queries and Database Integrator use case models contain two

overlapping use cases, Query Remote Database and Query Local Database. Therefore,

their refactored use case models must be merged and considered for further refactoring

opportunities. Figure 33 shows the merged use case model.

92

Figure 33: Merged use case model of Database Queries and Database Integrator subsystem

The refactoring performed for the Database Queries subsystem replaced

inappropriate extend relationships with generalization relationships. Actor Database

Integrator is indirectly associated with generalized use case Query Remote Database.

This matches antipattern a1. Refactoring r1 is applied; thus, resulting in use case Query

Remote Database set to abstract. The alternative refactoring for this antipattern, r2,

cannot be applied because the association between actor Database Integrator and use

case Query Remote Database is indirect. Figure 34 shows the refactored use case model.

93

Figure 34: Use case model of Database Queries and Database Integrator subsystem after applying the Concrete

to Abstract refactoring

Table 5 summarizes the antipatterns matched in the use case models of

MAPSTEDI, and the refactorings applied for quality improvement. The modeler must

ensure that a refactoring is behavior preserving before applying it. This can be done by

consulting the use case descriptions of the use case model elements involved in the

antipattern. In the case of the antipattern a2 match in the Database Edits use case model,

the relevant use case descriptions suggested presence of mistakes made by the modeler

rather than that of an antipattern instance.

94

Table 5: Antipatterns matched in the use case models of MAPSTEDI, and the refactorings applied

Package Antipattern Refactoring
Database Access Multiple actors associated with

one use case
Generalize Actors

Database Queries Functional Decomposition:
Using the extend relationship

Extension to Generalization

Database Integrator Functional Decomposition:
Using the include relationship

Drop Functional
Decomposition

Functional Decomposition:
Using the include relationship

Drop Functional
Decomposition having
Inclusion

Database Edits Accessing an extension use case -
Functional Decomposition:
Using the include relationship

Drop Functional
Decomposition

Administrative Process Multiple actors associated with
one use case

Split UCs

Database Queries and
Database Integrator

Accessing a generalized
concrete use case

Concrete to Abstract

3.3 Evaluation

The results of the case study show that model transformations detected the same set

of antipatterns matched in [19]. The target models produced by the model

transformations were found to be consistent with the refactored use case models of

individual MAPSTEDI subsystems presented in [19]. Moreover, the problems caused by

the antipatterns were resolved in the target models, thus improving their understandability

and correctness. However, a discrepancy was noticed in the merged use case model of

Database Queries and Database Integrator subsystems. The target model in Figure 33

shows an include relationship from use case Update Collections Data to use case Query

Remote Database whereas, in [19] an extend relationship is shown between them. The

discrepancy was investigated by consulting the use case descriptions, and interviewing

95

the original author. The extend relationship from use case Update Collections Data to use

case Query Remote Database was determined to be a human error. This suggests that the

model transformation approach is less error prone compared to the manual antipattern

matching approach in [19]. MAPSTEDI is a small scale system containing 20 use cases;

the usage of the antipattern matching approach on MAPSTEDI resulted in one error. For

large scale systems containing thousands of use cases, the antipattern matching approach

may be more error prone. Therefore, the model transformation approach is more efficient,

and appropriate for large scale software systems.

96

4 CHAPTER 4

AUTOMATED TRANSFORMATION OF USE CASE

MAPS TO UML 2 ACTIVITY DIAGRAMS

This chapter proposes a model transformation approach to transform a given UCM

into a UML 2 Activity Diagram (AD). The model transformation approach will

systematically produce a consistent and accurate representation of UCMs in the form of

ADs. Defining a formal model transformation approach has the obvious advantage of

avoiding human errors which would otherwise be injected if the transformation was

performed manually. In OO software development projects, the generated ADs will

greatly ensure that the developed end system accurately represents the behavior modeled

originally in the UCM diagrams.

The remainder of this chapter is organized as follows. Section 4.1 proposes

mappings from UCM to UML 2 AD notation. Section 4.2 presents the most critical

transformation rules and their implementations. Section 4.3 gives presents two case

studies to illustrate the transformation approach. The first pertains to an elevator control

system and, the second pertains to a mock system. Section 4.4 describes verification of

the case studies.

97

4.1 UCM to UML 2 AD mappings

This section outlines the proposed mappings between the UCM and UML 2 AD

notations. The proposed mappings shown in this section were verified by Dr.

Jameleddine Hassine, a prominent researcher in the field of UCM and a professor of

Software Engineering.

UCMs and ADs share similar concepts. The definitions of UCM constructs given

by Buhr and Casselman [39] were used. For AD constructs, the definitions provided in

the OMG UML 2.2 specification [141] were used. The definitions obtained for UCM and

AD constructs were used to propose mappings between the UCM and AD notations.

A UCM is composed of one or more paths. Each path describes a particular

scenario. An activity in an AD can also contain multiple flows of control. Hence,

mappings between UCMs and ADs are proposed. Start points which represent the

initiation of a UCM path are mapped to UML initial nodes. UCM end points which

represent the termination of UCM path are mapped to UML final nodes.

The OMG UML 2.2 specification defines an opaque action as “an action with

implementation-specific semantics”. Since UCM responsibilities are high level

descriptions of system behaviour, they are mapped to opaque actions. Buhr and

Casselman [39] define a timer as “a special kind of responsibility along a path that takes

up real time without taking up processing resources”. Based on this analogy timers are

mapped to opaque actions as well, similar to the mapping of responsibilities except that a

98

‘No Action’ label is appended to the timer’s notation to distinguish it from other opaque

actions. UCM failure points are defined as “points where a path may end abnormally, due

to some failure in the underlying system” [39]. They simply indicate the possible

occurrence of a failure or exception; thus, they are mapped to opaque actions. A label

‘Handle Exception’ is appended to the failure point’s name in order to distinguish it from

other opaque actions.

UCM concurrency and branching constructs, AND-fork and AND-join, are

intuitively mapped to their AD counterparts, fork node and join node, respectively. It

should be noted that concurrent control flows in ADs are required to synchronize at a join

node; however, UCMs have no such restriction [10]. UCM branching constructs, OR-fork

and OR-join are intuitively mapped to their AD counterparts, decision node and merge

node, respectively.

The UCM elements which are bound to components (teams, objects, processes,

actors, and agents) are grouped into activity partitions. This mapping decision is made

since their purpose is to group related activity nodes together and to represent

organizational units such as classes [159]. The difference between these notations is that

UCM components cannot share elements (responsibilities, timers, failure points, etc.)

whereas ADs have no such restriction. ADs allow activity partitions to overlap, enabling

them to share nodes and edges. Hierarchical decomposition of activity partitions in ADs

is similar to that of components in UCMs. In order to determine which type of component

(actor, process, object, etc.) they correspond to, we suggest their names be appended with

99

the type of component they correspond to. Names of activity partitions that correspond to

generic components (of no specific type) are appended with an ‘(Other)’ label.

Stubs which represent nested UCMs are mapped to structured activities, which

cannot share nodes and edges with other structured activities. This mapping decision is

made because stubs are individual UCMs, by themselves, which do not share elements

(responsibilities, timers, failure points, etc.) with parent or child maps. It should be noted

that components inside a stub will be ignored by our mapping, since structured activities

cannot include activity partitions. However, nesting of structured activities is allowed as

is the case with stubs in UCMs. In order to prevent loss of information while using this

mapping, UCM designers should model stubs such that they are contained within a

component.

UCM waiting points are points along a path that indicate that execution flow must

wait for events along another path [39]. There is no such notation in ADs that can allow a

control flow to wait for another one. We propose to use merge nodes with labels

appended by ‘Wait’, to depict such behavior in a flow. It should be noted that the end

point that is connected to a waiting point is discarded during the mapping. Otherwise, it

would be mapped to an activity final node, which would be connected to a merge node

(waiting). This mapping decision is made since a final node stops a flow in an activity. A

visual summary of the mappings is shown in Figure 35.

100

UCM AD

Figure 35: Mapping of UCM to UML 2 AD notation

101

4.2 Transformation Rules

The proposed mapping was implemented using ATL [86] [175], a model

transformation language. ATL provides a hybrid of declarative and imperative

programming styles for defining mappings between source and target models. As such,

both programming capabilities were used to implement this transformation. The rules

were written against the UCM metamodel and UML 2 metamodel shown in Appendix A

and Appendix B, respectively. The remainder of this section presents the different types

of rules that were developed.

4.2.1 Entry point and Matched Rule

The transformation begins with executing an entrypoint rule Main. The entrypoint

rule (see Listing 21) transforms UCM nodes, edges, components and stubs to their

corresponding AD notation by invoking called rules (see Listing 24). Once the entrypoint

rule finishes execution, the matched rule, URNDefinition_To_UMLPackage, is implicitly

invoked. Matched rules define the transformation process in a declarative manner.

URNDefinition_To_UMLPackage was created (see Listing 22) to map the root node of a

source UCM to the corresponding one of a target AD.

102

entrypoint rule Main() {
 do {
 for(ucmNode in thisModule.ucmNodes){
 thisModule.TransformNode(ucmNode);
 }
 for(ucmEdge in thisModule.ucmEdges){
 thisModule.TransformEdge(ucmEdge);
 }
 for(component in thisModule.ucmComponents){
 thisModule.TransformComponent(component);
 }
 for(stub in thisModule.rootMapStubs) {
 thisModule.TransformStub(stub);
 }
 }
}

Listing 21: The entry point rule

rule URNDefinition_To_UMLPackage {
 from d: UCM!"urn::URNspec"
 to p: UML!Package (
 packagedElement <- a
),
 a: UML!Activity (
 name <- thisModule.rootUCM.name,
 node <- thisModule.umlNodes,
 edge <- thisModule.umlEdges,
 group <- thisModule.umlGroups
)
 do {
 p.debug('Transformation done!');
 }
}

Listing 22: The matched rule

4.2.2 Lazy Rules

In ATL, rules that do not state parameters are given the modifier lazy. Lazy rules

facilitate the transformation process in the same manner as matched rules. Unlike

matched rules, lazy rules only execute when called by other rules. Although they are

defined without parameters, they require parameters to be passed while invoking them.

The from and to blocks in a lazy rule are declarative statements that specify the source

and target instance respectively. The following are the lazy rules that have been

103

implemented in order to transform various UCM notations into UML 2 AD notations.

Listing 23 outlines the lazy rules and briefly explains the purpose of each one.

Transforming start point into end node. Transforming end point to final node.
lazy rule StartPoint_To_InitialNode {
 from p: UCM!"ucm::map::StartPoint"
 to n: UML!InitialNode (
 name <- p.name
)
}

lazy rule EndPoint_To_FinalNode {
 from p: UCM!"ucm::map::EndPoint"
 to n: UML!ActivityFinalNode (
 name <- p.name
)
}

Transforming responsibility to action. Transforming timer to action.
lazy rule Responsibility_To_OpaqueAction {
 from r: UCM!"ucm::map::RespRef"
 to a: UML!OpaqueAction (
 name <- r.respDef.name
)
}

lazy rule Timer_To_OpaqueAction {
 from t: UCM!"ucm::map::Timer"
 to n: UML!OpaqueAction (
 name <- t.name + ' (No Action)'
)
}

Transforming waiting place node to merge node. Transforming failure point to action.
lazy rule WaitingPlace_To_MergeNode {
 from w: UCM!"ucm::map::WaitingPlace"
 to n: UML!MergeNode (
 name <- w.name + ' (Wait)'
)
}

lazy rule FailurePoint_To_OpaqueAction {
 from f: UCM!"ucm::map::FailurePoint"
 to n: UML!OpaqueAction (
 name <- f.name + ' (Handle Failure)'
)
}

Transforming AND-fork to fork node. Transforming AND-join to join node.
lazy rule AndFork_To_ForkNode {
 from f: UCM!"ucm::map::AndFork"
 to n: UML!ForkNode (
 name <- f.name + ' (Fork)'
)
}

lazy rule AndJoin_To_JoinNode {
 from f: UCM!"ucm::map::AndJoin"
 to n: UML!ForkNode (
 name <- f.name + ' (Join)'
)
}

Transforming OR-fork to decision node. Transforming OR-Join to merge node.
lazy rule ORFork_To_DecisionNode {
 from o: UCM!"ucm::map::OrFork"
 to n: UML!MergeNode (
 name <- o.name + ' (Decision)'
)
}

lazy rule ORJoin_To_MergeNode {
 from o: UCM!"ucm::map::OrJoin"
 to n: UML!MergeNode (
 name <- o.name + ' (Merge)'
)
}

Listing 23: Lazy rules

It should be noted that in rule AndJoin_To_JoinNode the target object’s type is fork

node rather than join node. This is because the Eclipse UML 2 tools do not contain

notation for join node. The tool also lacks notation for decision nodes. Hence, in rule

ORFork_To_DecisionNode the to block defines an instance of merge node rather than

decision node.

104

4.2.3 Called Rules

Called rules describe part of the transformation process in an imperative manner.

They are referred as called since they must be explicitly invoked by the developer.

Called rules may contain a using block where local variables may be defined. A do block

can be used to write imperative statements. The last statement of the do block must return

the target model instance. In the using and do blocks of these rules, helper functions can

be invoked. Due to space limitations only three called rules are presented in Listing 24.

105

 Initializes an activity partition given a component
rule InitUmlGroup(compRef: UCM!"ucm::map::ComponentRef") {
 using {
 groupName: String = compRef.groupName();
 groupNodes: Sequence(UML!Node) = compRef.getUmlNodes();
 }
 to a: UML!ActivityPartition (
 name <- groupName,
 node <- groupNodes
)
 do {
 if(compRef.hasNoChildren()) {
 a;
 }
 else {
 a.subpartition <- compRef.getUmlSubGroups();
 a;
 }
 }
}
Initializes a structured activity node given a stub
rule InitStaticStrAct(stub:UCM!"ucm::map::Stub") {
 using {
 map: UCM!"ucm::map::UCMmap" = stub.getMap();
 source: UCM!"ucm::map::NodeConnection" = stub.firstPredecessor();
 target: UCM!"ucm::map::NodeConnection" = stub.firstSuccessor();
 }
 to a: UML!StructuredActivityNode (
 incoming <- source.getUmlEdge(),
 outgoing <- target.getUmlEdge(),
 node <- map.getNodes(),
 edge <- map.getEdges(),
 name <- stub.name
)
 do {
 thisModule.ProcessStrActElements(stub, a);
 if(map.hasNoStubs()) {
 a;
 }
 else {
 thisModule.ProcessNestedMaps(map, a);
 a;
 }
 }
}
Initializes a control flow given a node connection
rule InitUmlEdge(ucmEdge: UCM!"ucm::map::NodeConnection") {
 using {
 umlSource: UML!Node = ucmEdge.getSourceUmlNode();
 umlTarget: UML!Node = ucmEdge.getTargetUmlNode();
 label: String = ucmEdge.getLabel();
 }
 to e: UML!ControlFlow (
 source <- umlSource,
 target <- umlTarget,
 name <- label
)
 do {
 thisModule.AddEdgeMap(ucmEdge, e);
 e;
 }
}

Listing 24: Called rules

106

4.2.4 Helpers

A number of ATL helpers were written to facilitate the transformation process. The

helper hasNoParent in Listing 25 determines whether a UCM component (actor, process,

agent, etc.) is nested in another component or not. The helper isDiscardable in Listing 25

determines whether a UCM node may be discarded during the transformation process.

helper context UCM!"urncore::Component" def: hasNoParent(): Boolean =
 self.contRefs>first().parent.oclIsUndefined();
helper context UCM!"ucm::map::PathNode" def: isDiscardable() : Boolean =
 self.oclIsTypeOf(UCM!"ucm::map::DirectionArrow") or
 self.oclIsTypeOf(UCM!"ucm::map::EmptyPoint") or
 self.oclIsTypeOf(UCM!"ucm::map::Stub");

Listing 25: Helper rules

The transformation algorithm was implemented using a total of 45 transformation

rules. Due to space restrictions, this chapter only presents the most critical 17 rules. The

entire ATL source code is available to the interested reader for download at [94].

4.3 Case Studies

In this section two case studies are presented to illustrate the proposed

transformation approach.

4.3.1 Elevator Control System

The implemented ATL transformation is applied to the UCM (Figure 36) of an

Elevator Control System (ECS), which is available at [8]. The UCM was adapted from

107

“Designing Concurrent, Distributed and Real-Time Applications with UML” [74]. It

represents the functionality of an ECS that controls one or more elevators. The two main

responsibilities of the system are to respond to elevator calls from users, and to manage

the motion of the elevators between floors.

A use case begins with a request from the user to call the elevator to go to above or

below levels. The request gets queued with other call requests. Depending on the state of

the elevator whether it is stationary or moving, the system will control motor actions to

move the elevator appropriately. Once the elevator approaches a requested floor, the

motor stops, the door opens, and the corresponding call request is removed from the

queue.

This model was selected since it includes most of the UCM notational set and

represents a complex scenario with multiple alternates. The source model (Figure 36) was

provided as input to the ATL transformation algorithm defined, which resulted in the

generation of the AD shown in Figure 37. The ATL source code, source and target

models are available to the interested reader for download at [94].

108

Figure 36: Elevator Control System source UCM

109

Figure 37: Elevator Control System target AD

4.3.2 Mock System

In this section a mock example is presented to illustrate our implemented mapping.

The need to create this mock system was prompted by the necessity of transforming a

UCM that contains the entire UCM notational set. Such a requirement was not satisfied

by the ECS system, any system available online, or in the literature. In particular, UCM

110

notation such as objects, processes, joins and failure points were not part of the previous

example. This example involves all elements of the UCM and AD notation given in

Figure 35. The remainder of this section describes the source and target model involved

in this example.

Source Model

The source model (Figure 38) is applied as input to the ATL transformation. The

UCM starts at start point SP1, performs several responsibilities and ends at EP1. The

responsibilities can be bounded to a particular component or remain unbounded.

Responsibility RU is an unbounded responsibility, whereas the remaining responsibilities

are bounded to their respective components. Responsibilities RO and RT are bound to

components CO and CT, respectively. Responsibility RAg and failure point FP are bound

to the agent component CAg. The actor component CAc contains a nested process

component CP. Start point SP2, responsibility RAc, end point EP2, and waiting point WP

are bound to CAc, and responsibility RP is bound to CP. The path first performs RU after

which it forks into two concurrent paths at AND-fork AF. They concurrently perform

responsibilities RO and RT in components CO and CT, respectively. They synchronize at

AND-join AJ, after which the path enters stub NM (Figure 39). It performs responsibility

RS and waits for 5 seconds (timer), and renters the main UCM. The remainder of the path

branches into alternate paths at OR-Fork OF based on guard conditions C1 and C2. If C1

is satisfied, the path waits at waiting point WP for actor CAc to perform RAc. Once the

wait is over, process CP executes responsibility RP. If C2 is satisfied, RAg is performed

by agent CAg. The failure point FP bound to CAg indicates an erroneous situation whose

111

occurrence can terminate the path. The alternate paths merge at OR-join OJ, after which

the path terminates at EP1.

Figure 38: Mock System source UCM

Figure 39: Mock System Stub NC

Target Model

The target model in Figure 40 is the output of the ATL transformation when Figure

38 is given as input. It can be seen that components from the source model have been

transformed to activity partitions. Their names have been appended with the type of

component it corresponds to. For example, partition CO is appended with ‘Object’ in

parentheses. Partition CAc contains a sub partition CP, as consistent with corresponding

component in the source model. Responsibilities from the source model were transformed

112

to actions in the target model. It should be noted that bounded responsibilities from the

source model have been grouped into corresponding partitions. Action RU, decision node

OF, merge node OJ, structured activity NM, fork node AF, and join node AJ are not

grouped into any partition, as they were unbounded in the source model. Structured

activity NM includes SP3, RS, a timer and EP3, consistent with the elements of the stub

NM in the source model. The arrows along the map are discarded during the

transformation since they are already depicted by AD control flow.

113

Figure 40: Mock System target AD

4.4 Target Model Verification

The target model was thoroughly inspected and verified by three Software

Engineering professors at the host institution. The proposed mapping (Figure 35) was

114

given to them along with the source and target models. Reviewers indicated confusion

while distinguishing between decision nodes and merge nodes. This confusion is due to

the fact that the Eclipse UML 2 tools do not include separate notation for decision nodes.

Merge nodes are intended to be used in place of decision nodes. Hence, to avoid this

confusion labels are placed on their respective notations. Another reviewer indicated

confusion while interpreting edges coming in and out of fork and join nodes. This was

found to be a layout issue. The transformation results in the model elements being placed

in a default layout. The target model was manually realigned to clear the confusion. The

same reviewer indicated that the proposed mapping did not consider dynamic stubs.

Hence, a mapping for dynamic stubs was implemented in ATL. This can be found in the

available source code.

115

5 CHAPTER 5

DERIVING UML 2 SEQUENCE DIAGRAMS FROM USE

CASE MAP SCENARIO SPECIFICATIONS

This chapter presents a traceable mapping for transforming use case scenarios from

UCM to UML 2 SD notation. Traceability helps in assessing the validity and

completeness of requirements [147]. Similar to SDs, UCMs can be modeled at varying

levels of abstractions. High level UCMs depict components at abstract levels of

granularity; such UCMs can easily be verified by the clients or end users, who are usually

not concerned about the composition of system components. A high level UCM can also

be depicted sans components, which again promotes the verification of scenarios by

clients. Detailed UCMs depict scenario interactions bound to a particular system

component. This promotes architectural reasoning at the functional requirements phase of

a software development process, and serves a reference point for the architecture phase.

UCMs describe scenarios at a higher level of abstraction compared to SDs. UCMs do not

illustrate how system components interact with each other, whereas SDs do so via

message interactions. The approach proposed in this chapter will ease the refinement of

scenarios from UCM to UML 2 SD notation. The chapter also defines model

transformation rules that can semi-automate the transition, and serve as a start-up point

for deriving SDs from UCMs.

116

The remainder of this chapter is organized as follows. Section 5.1 presents

mappings from UCM to UML 2 SD notation and illustrates them with examples. In

Section 5.2 we present a model transformation approach to refine UCMs to SDs. In

Section 5.3, the proposed mappings are applied on a case study that pertains to an

elevator control system.

5.1 UCM to UML 2 SD mappings

In this section, mappings between UCM and SD notation are defined and illustrated

for each UCM notational element.

5.1.1 Components and Responsibilities

UCMs contain causal paths of responsibilities, which are superimposed over one or

more components. SD lifelines can be used to represent a UCM component in a SD. The

responsibilities, which are bound to components, are translated as self messages in the

lifeline that corresponds to its component. The transition of a UCM path from one

component to another is shown in SDs as a generic message passed from a source lifeline

to a target lifeline. UCMs do not describe how components interact with each other; but

SDs can do so. We leave it to the designer to decide how the components interact with

each other. The message can be one of the different types (synchronous, asynchronous,

creation, destruction, synchronous reply and asynchronous reply) of messages in the

UML 2 SD notation. The designer may also specify any parameters that need be passed

along with the message.

117

The unbounded start points and unbounded end points of a UCM are represented as

gates, which allow external messages into or out of the SD. The flow of control from the

start gates is shown as generic messages; which are external events that invoke the

execution of the SD. The flow of control to the end gate is also show as generic

messages; which are events that terminate the SD and are passed outside the SD (possibly

to another one). Unbounded responsibilities, which are events or actions external to any

of the system’s components, will be ignored by this transformation. Unbounded UCMs

are usually used to show high level system behavior to clients and end users. They cannot

be used to derive SD; hence only detailed UCMs, which contain bounded responsibilities,

can be translated to SDs.

Figure 41 illustrates the transformation of a bounded UCM. The source UCM

(Figure 41(a)) contains two components, Component A and Component B, which are

represented as distinct lifelines in the target SD (Figure 41(b)). Their respective

responsibilities are represented as self messages in order of path traversal.

Responsibilities R1 and R3 are translated to self messages R1() and R3(), respectively, in

lifeline Component A, whereas responsibility R2 is translated to self message R2() in

lifeline Component B. The path transitions between Component A and Component B them

are indicated by the messages M2() and M3(). The types and names of these messages

can be changed by the designer as desired. M1() represents a message received by lifeline

Component A from an external entity, whereas M4() represents a message passed to an

external entity. Start point SP and end point EP are translated to start gate SP and end

gate EP, respectively.

118

(a) Source UCM

(b) Target SD

Figure 41: Mapping of components and responsibilities

Bounded Start or End Points

A UCM may contain start points or end points bounded to particular components.

These points are not translated to gates during SD mapping. A bounded start point

indicates a state, of its inclosing component, which initiates the execution of the UCM

119

path; hence, external messages emerging from start gates are not required. They are

represented using state invariants on the enclosing component’s corresponding lifeline. If

a path terminates in a component, an end gate is not required in its corresponding SD.

This indicates the state of the component, as a result of the termination of the path.

Hence, there is no need to pass a message out of the SD (through an end gate). They are

also represented as state invariants on the lifeline that corresponds to its enclosing

component.

Figure 42 illustrates the mapping of a UCM containing bounded start and end

points. Start point SP and end point EP, which are bounded to Component A in the source

UCM (Figure 42(a)), are mapped to state invariants SP and EP, respectively, on lifeline

Component A in the target SD ((Figure 42(b)).

120

(a) Source UCM

(b) Target SD

Figure 42: Mapping of bounded start and end points

5.1.2 OR-forks

Alternate paths in a UCM emerge from OR-forks, which contain a guard condition.

They are represented in a SD using the alt fragment. The fragment must contain two

operators; one for the path that executes when the OR-fork guard evaluates to true, and

another one for the path that executes when the OR-fork guard evaluates to false. The

merging of the alternate paths at an OR-join is the termination of the alt fragment.

121

Figure 43 illustrates the mapping of a UCM that contains alternate paths. The

source UCM (Figure 43(a)) contains an OR-fork OF from which alternate paths emerge.

Each path has a guard condition, which must evaluate to true in order for the path to

proceed. If guard [cond] is satisfied, responsibility R1 is performed; otherwise control is

immediately transferred to Component B. The alternate paths merge at OR-join OJ. In the

target SD (Figure 43(b)), the paths emerging from OF are represented in an alt fragment.

The fragment includes two operators; first one having guard [cond], and second one

having guard [!cond]. The alt fragment terminates either when message M2() is received,

or when self message R2() is called by lifeline Component B.

122

(a) Source UCM

(b) Target SD

Figure 43: Mapping of alternate paths

5.1.2.1 Terminating Alternate Path

An alternate path emerging from an OR-fork may immediately terminate the

execution of the UCM. This is shown in a SD using the break fragment instead of an alt

fragment.

123

Figure 44 illustrates the mapping of a UCM which contains a terminating alternate

path. In the source UCM (Figure 44(a)), a terminating path emerges from OR-fork OF

when guard [!cond] is satisfied. Since end point EP1 is bound to Component A it

represents the terminating state of Component A. This terminating path is enclosed by a

break fragment in the target SD (Figure 44(b)). The fragment also indicates the

terminating state through state invariant EP1.

(a) Source UCM

(b) Target SD

Figure 44: Mapping of terminating alternate path

124

5.1.2.2 Loops

A UCM can also show repeated behavior (loops) using a combination of an OR-

fork and OR-join. An alternate path emerging from an OR-fork is connected backwards

to its main path using an OR-join. This is represented in SDs using a loop fragment and a

break fragment.

Figure 45 illustrates a mapping from a UCM which contains a loop. An alternate

path emerges from OR-fork OF in the source UCM (Figure 45(a)) when guard [!cond] is

satisfied. This alternate path connects back to the main path at OR-join OJ to form a loop.

In the target SD (Figure 45(b)), the UCM loop is represented using a loop fragment

which encloses a break fragment. The loop fragment represents an infinite loop; it has no

guard condition. The break fragment contains the OR-fork‘s guard [cond] which moves

the path further. This allows the flow to break out of the loop fragment. The alternate

path having guard [cond==false], which loops back to main path, is represented in the

remainder of the loop fragment.

125

(a) Source UCM

(b) Target SD

Figure 45: Mapping of a UCM loop

5.1.2.3 Loops (Alternate)

An alternate approach to mapping UCM loops uses the loop fragment in

conjunction with the guard condition of the OR-fork. The break fragment is not required

in this approach.

126

Figure 46 shows the alternate mapping of the UCM in Figure 45. The loop

fragment in the target SD includes the guard [!cond]. Note that message R1() is shown

twice in the target SD, first time before the loop fragment, and second time inside the

loop fragment. This approach may clutter the resulting SD in case of several

responsibilities preceding the OR-fork and succeeding the OR-join.

Figure 46: Alternate mapping of the UCM loop shown in Figure 45

127

5.1.3 AND-forks

Concurrent paths in a UCM emerge from AND-forks; they can be represented in a

SD using the par fragment. The fragment must contain separate operators for each path.

The synchronization of concurrent paths at an AND-join translates to the termination of

the par fragment.

Figure 47 illustrates the mapping of a UCM containing concurrent paths. The

source UCM (Figure 47(a)) contains ANF-fork AF from which two parallel paths

emerge. The first path performs responsibility R1 in Component A, while the second path

performs responsibility R2 in Component B. The paths synchronize at AND-join AJ. The

parallel paths are represented using the par fragment in the target SD (Figure 47(b)). The

fragment has two operators, one for each concurrent path. The receipt of message M2(),

and completion of message R2(), by lifeline Component B terminates the par fragment.

128

(a) Source UCM

(b) Target SD

Figure 47: Mapping of concurrent paths

5.1.4 Waiting Point

On a waiting point, a UCM path waits for another path to finish its execution. This

waiting point is represented in a SD using a state invariant. The path which is being

waited for must be modeled as a separate SD, and referred from the target SD using an

InteractionUse.

129

Figure 48 illustrates the mapping of a UCM containing a waiting point. In the

source UCM (Figure 48(a)), the path emerging from SP1 waits at waiting point WP for

the path starting at SP2 to finish. Let the path starting at SP1 be scenario S1, and the one

starting at SP2 be scenario S2. S2 is translated into a separate SD (Figure 48(c)), which is

referred from the SD of S1 (Figure 48(b)) through the InteractionUse S2. The state

invariant WP on lifeline Component A indicates that its flow must pause until

InteractionUse S2 completes execution.

130

(a) Source UCM

(b) SD of scenario S1

(c) SD of scenario S2

Figure 48: Mapping of waiting points

5.1.5 Timer

A UCM path waits for a specific amount of time at a timer before continuing its

execution. This can be represented in a SD as a state invariant on the lifeline that

corresponds to the timer’s enclosing component.

131

Figure 49 illustrates the mapping of a UCM containing a timer. In the source UCM

(Figure 49(a)), the path emerging from SP waits 5 seconds in Component A before

proceeding to Component B. The wait 5 seconds timer is translated to a state invariant in

the target SD (Figure 49(b)). This indicates that lifeline Component A must wait 5

seconds before transferring control to lifeline Component B.

(a) Source UCM

(b) Target SD

Figure 49: Mapping of timers

132

5.1.6 Failure Point

A UCM path indicates possible occurrence of erroneous or exceptional situations at

failure points. UCMs do not specify how the exceptional conditional can be handled. This

can be represented in SDs by self messages which handle the exception. The message

should be labeled 'Handle' followed by the failure point’s name.

Figure 50 illustrates the mapping of a UCM containing a failure point. In the source

UCM (Figure 50(a)), the path emerging from SP contains a failure point FP in

Component A. FP is translated to a self message HandleFP() on lifeline Component A in

the target SD (Figure 50(b)). This indicates that lifeline Component A handles the

erroneous situation by invoking internal message HandleFP() before transferring control

to lifeline Component B.

133

(a) Source UCM

(b) Target SD

Figure 50: Mapping of failure points

5.1.7 Nested Components

In UCMs, a component may be composed of one or more smaller components. The

UCM paths inside the nested components are represented as separate SDs, which are

referenced from the main SD through InteractionUses.

Figure 51 illustrates the mapping of a UCM containing nested components. The

source UCM (Figure 51(a)) contains Component A, which is composed of two

Components, Component A1 and Component A2. Their behavior is depicted in a separate

SD (Figure 51 (c)), which is referenced from the target SD (Figure 51(b)) through

134

InteractionUse Internal. The InteractionUse is placed on lifeline Component A in order to

indicate its internal structure and to preserve the flow of control depicted in the UCM.

(a) Source UCM

(b) Target SD

(c) Internal SD

Figure 51: Mapping of nested components

5.1.8 Stub

A UCM can be refactored into smaller UCMs using stubs. Similarly, a complex SD

can be modularized using InteractionUse(s). Therefore, stubs can be represened in SDs

using InteractionUses.

135

Figure 52 illustrates the mapping of a UCM containing a stub. The source UCM

(Figure 52(a)) contains a stub ST, whose contents are shown in Figure 52(b). ST is bound

to Component A; this implies that its enclosing responsibility, R1, is also bound to

Component A. The flow inside the stub is represented in a separate SD (Figure 52(d)),

which is referenced from the target SD (Figure 52(c)) through InteractionUse ST.

(a) Source UCM

(b) Stub ST UCM

(c) Target UCM

(d) ST SD

Figure 52: Mapping of stubs

136

5.1.9 Dynamic Stubs

A dynamic stub represents multiple stubs on a UCM path; one of which executes

depending on its guard condition. They can be depicted in SDs using the alt fragment.

For each stub in a dynamic stub, an operand is included in the fragment and its guard

condition. The content of each stub is shown in a different SD and referenced from the

target SD through InteractionUses.

Figure 53 illustrates the mapping of a UCM containing a dynamic stub. The source

UCM (Figure 53(a)) contains a dynamic stub DS. The contents of DS include stubs ST1

(Figure 53(b)) and ST2 (Figure 53(c)). DS is bound to Component A; this implies that its

enclosing responsibilities, R1 and R2, are also bound to Component A. The guard

conditions of DS are [cond] and [!cond] (not shown on figure). ST1 executes when

[cond] is satisfied, whereas ST2 executes when [!cond] is satisfied. The flow inside each

stub is represented in separate SDs (Figure 53(e) and (Figure 53(f)), which are referenced

from the target SD (Figure 53(d)) through InteractionUses ST1 and ST2.

137

(a) Source UCM

(b) Stub ST1 UCM

(c) Stub ST2 UCM

(d) Target SD

(e) ST1 SD

(f) ST2 SD

Figure 53: Mapping of dynamic stubs

5.2 Transformation Rules

In a model-driven software development approach models are automatically

derived from one another to ensure consistency. In this section, we present rules for

automated transformation of UCMs to UML 2 SDs. The proposed mapping was

implemented using the Atlas Transformation Language (ATL), a model transformation

language. The presented rules will map UCM components to UML lifelines, UCM

138

responsibilities to UML internal messages, and path transition between components to

synchronous messages between lifelines. The mapping of alternate paths cannot be

automated due to a severe limitation in the SD metamodel. The CombinedFragment

metaclass which represents SD fragments is not associated with the Message metaclass

which represents SD messages. Hence, the presented model transformation is semi-

automated; it requires the designer to manually group the SD messages into appropriate

fragments based on the proposed mapping. The ATL mapping rules are presented in

Listing 26. The rules were written against the UCM metamodel and UML 2 metamodel

shown in Appendix A and Appendix B, respectively.

139

entrypoint rule Main() {
 using {
 startPoint: UCM!"ucm::map::StartPoint" = thisModule.rootUCM.startPoint();
 endPoint: UCM!"ucm::map::EndPoint" = thisModule.rootUCM.endPoint();
 }
 do {
 thisModule.OrderResps(startPoint);
 thisModule.CreateLifelines();
 thisModule.CreateStartGate(startPoint);
 thisModule.CreateMessages();
 thisModule.CreateEndGate(endPoint);
 }
}

rule CreateModel {
 from d: UCM!"urn::URNspec"
 to p: UML!Model (
 packagedElement <- package
),
 package: UML!Package (
 packagedElement <- collaboration
),
 collaboration: UML!Collaboration (
 ownedBehavior <- interaction
),
 interaction: UML!Interaction (
 lifeline <- thisModule.lifeLines,
 fragment <- thisModule.fragments,
 message <- thisModule.messages,
 formalGate <- thisModule.formalGates
)
}

rule CreateStartGate(sp: UCM!"ucm::map::StartPoint") {
 to g: UML!Gate (
 name <- sp.name
)
 do {
 thisModule.formalGates <- thisModule.formalGates->including(g);
 }
}

rule CreateEndGate(ep: UCM!"ucm::map::EndPoint") {
 to g: UML!Gate (
 name <- ep.name,
)
 do {
 thisModule.formalGates <- thisModule.formalGates->including(g);
 }
}

rule OrderResps(node: UCM!"ucm::map::PathNode") {
 do {
 if(not node.isSuccessorEndPoint() and node.isSuccessorResp()) {
 thisModule.respList <- thisModule.respList->including(node.successor().respDef);
 thisModule.OrderResps(node.successor());
 }
 }
}

rule CreateLifelines() {
 do {
 for(contRef in thisModule.rootUCM.contRefs) {
 thisModule.lifeLines <- thisModule.lifeLines
 ->including(thisModule.CreateLifeline(contRef));
 }
 }
}

140

rule CreateLifeline(compRef: UCM!"ucm::map::ComponentRef") {
 to l: UML!Lifeline (
 name <- compRef.getLifelineName(),
)
 do {
 thisModule.compRefMap <- thisModule.compRefMap->including(compRef, l);
 l;
 }
}

rule CreateMessages() {
 do {
 for(resp in thisModule.respList) {
 thisModule.messages <- thisModule.messages
 ->including(thisModule.CreateMessage(resp));
 }
 }
}

rule CreateMessage(resp: UCM!"urncore::Responsibility") {
 to m: UML!Message (
 messageSort <- 'synchCall',
 sendEvent <- thisModule.respMessageStartMap->get(resp),
 receiveEvent <- thisModule.respMessageEndMap->get(resp),
 name <- resp.name
)
 do {
 m;
 }
}

Listing 26: UCM to UML 2 SD ATL mapping rules

5.3 Case Study

5.3.1 Source Model

In this section, we apply the proposed transformation on a case study that pertains

to the UCM (Figure 54) of an Elevator Control System (ECS), and is taken, with

permission, from [8]. This UCM is a refined version of the UCM used in Chapter 4; it

contains additional components and paths. The ECS contains a set of components that

interact with each other to provide the required functionality. The Service Personnel

Interface (SPI) allows turning on of the ECS. Each elevator’s states (stationary and

moving) are controlled by the Elevator Control (EC) component. When the ECS is turned

on through the SPI, all EC components are in the stationary state. The Elevator Manager

141

(EM) component determines whether an elevator request can be granted or nor. If it can

be granted, it signals the elevator’s EC component to start moving. The Status and

Planner (SP) component maintains and manages the list of all elevators that are being

used. The Elevator component controls an elevator’s motor and door movement. An

Arrival Sensor component on each elevator informs the EC that it is about to approach a

floor. The Status and Planner (SP) also determines whether the floor being approached

by an elevator is the requested one or not. If it is the requested one, the elevator stops and

its door opens. The SP component removes the elevator from the list of elevators that are

being used. The elevator goes back to stationary state and waits for requests from its EM.

User can make requests from outside the elevator or from inside. Requests made from

outside are up and down; above and below are the requests made from inside. Outside

requests are sent to the Scheduler component, which selects an elevator to satisfy the

request, and forwards it to the elevator’s respective EM. Inside requests are directly sent

to an elevator’s EM. The UCM of the ECS is shown in Figure 54.

142

Figure 54: Elevator Control System UCM

143

5.3.2 Scenario Extraction

Before we apply the proposed mapping rules, individual scenarios must be

extracted from the ECS UCM. An individual scenario represents complete the execution

of a UCM path. The benefit of individual scenarios is that they allow the validation of

requirements, and ease the transition from requirements to design [7]. The possible

individual scenarios that can be extracted from the ECS UCM are as show in Table 6.

Table 6: All possible scenarios in ECS UCM

Scenario Sequence
S1 up
S2 down
S3 above
S4 below
S5 approaching floor, moving
S6 at floor, floor input, select elevator, add to list, [on list], already on list
S7 in elevator, elevator input, add to list, [on list], already on list
S8 at floor, floor input, select elevator, add to list, [!on list]
S9 in elevator, elevator input, add to list, [!on list]
S10 switch on, stationary, decide on direction, close door, [up], motor up,

moving, [requested], motor stop, door open, remove from list, <at requested
floor, door closing delay>, stationary

S11 switch on, stationary, decide on direction, close door, [down], motor down,
moving, [requested], motor stop, door open, remove from list, <at requested
floor, door closing delay>, stationary

S12 switch on, stationary, decide on direction, close door, [up], motor up,
moving, [!requested]*, [requested], motor stop, door open, remove from list,
<at requested floor, door closing delay>, stationary

S13 switch on, stationary, decide on direction, close door, [down], motor down,
moving, [!requested]*, [requested], motor stop, door open, remove from list,
<at requested floor, door closing delay>, stationary

* represents a loop

144

Scenario S1 represents the case in which a user chose to go up, whereas scenario S2

represents the case in which the user chose to go down, using the panel outside the

elevator. Scenario S3 represents the case in which a user choose to go up, whereas

scenario S4 represents the case in which a user choose to go down, using the panel inside

the elevator.

 Scenario S5 represents the case in which the elevator is signaled that the

approaching floor is the destination floor. Scenarios S6 and S7 represent the case in

which the elevator selected for satisfying the user’s request is busy. On the contrary,

scenarios S8 and S9 represent the case in which the selected elevator is free to satisfy the

user’s request.

Scenarios S10 and S11 represent the case in which the destination floor is exactly

the next floor (above or below). On the contrary, scenarios S12 and S13 represent the

case in which the destination floor is more than one floor apart (above or below). S12 and

S13 loop at guard condition [! requested] until the floor that is being approached by the

elevator is the destination floor. It should be noted that the source UCM contains an

infinite loop that starts and ends at waiting point stationary. Therefore, scenarios S10,

S11, S12, and S13 end at the second occurrence of stationary.

The paths of scenarios S1, S5, S8 and S12 are combined to produce the UCM in

Figure 55. This combined UCM will be used to demonstrate the mapping of the ECS

UCM to UML 2 SD notation.

145

Figure 55: Scenarios S1, S5, S8 and S12 of the Elevator Control System UCM

5.3.3 Transformation

We apply the mappings defined in Section 5.1 on each of the individual scenarios,

S1, S5, S8, and S12, to produce the target SDs shown in Figure 56-Figure 59.

Scenario S1

On the path of scenario S1, start point up, which is bounded to component User,

indicates that the user selected up as the destination, using the panel outside the elevator.

146

The target SD of S1 (Figure 56) contains a state invariant up, on lifeline User, which

represents the user’s destination selection.

Figure 56: Mapping of scenario S1 to SD notation

Scenario S5

On the path of scenario S5, start point approaching floor, which is bounded to

component Arrival Sensor, signals the elevator that a floor is about to be approached. S5

ends after transferring control to the Elevator Control component. The target SD of S5

(Figure 57) contains state invariant approaching floor, on lifeline Arrival Sensor, and

message M1() passed to lifeline Elevator Control.

Figure 57: Mapping of scenario S5 to SD notation

147

Scenario S8

The path of scenario S8 begins at start point at floor, which is bounded to

component User, and then pauses at waiting point floor input for the user to select up as

the destination, i.e. completion of scenario S1. The target SD of S8 (Figure 58) begins at

state invariant at floor on lifeline User, and then waits, at state invariant floor input, for

scenario S1 to complete its execution. The SD of S1 is referenced using InteractionUse

S1.

After selection of the up destination, control is transferred to the Scheduler

component. This transfer is depicted in target SD by the invocation of message M2() on

lifeline Scheduler. The designer must rename this message appropriately during

refinement of this SD. In order to satisfy the user’s request, Scheduler chooses a free

elevator by performing responsibility select elevator, which is mapped in the target SD as

self message selectElevator(), which invoked by lifeline Scheduler.

After an elevator is selected, control is transferred to the Elevator Manager

component, which further transfers control to the Status and Planner component. This

successive transfer is shown in the target SD as a sequence of messages, M3() and M4().

The destination of M3() is lifeline Elevator Manager, whereas that of M4() is lifeline

Status and Planner.

Status and Planner now adds the selected elevator to the list of elevators in

operation by performing responsibility add to list, and then transfers control back to the

Elevator Manager component. In the target SD, lifeline Status and Planner invokes self

148

message addToList(), and then passes message M5() to lifeline Elevator Manager.

Elevator Manager now forwards control to the Elevator Control component, which then

ends S8. In the target SD, lifeline Elevator Manager passes message M6() to lifeline

Elevator Control, thus ending the SD.

149

Figure 58: Mapping of scenario S8 to SD notation

Scenario S12

The path of scenario S12 begins at start point switch on, which is bounded to

component Service Personnel Interface, and then transfers control to component Elevator

Control. Now, the path pauses, at waiting point stationary, for a free elevator to be

selected, i.e. completion of scenario S8. The target SD of S12 (Figure 59) begins at state

invariant switch on on lifeline Service Personnel Interface, and then passes message M7()

to lifeline Elevator Control, which waits at state invariant stationary for S8 to complete

its execution. The SD of S8 is referenced using InteractionUse S8.

150

After the completion of scenario S8, responsibility decide on direction is performed

in order to determine whether the elevator should go up or down. This is represented on

the target SD as self message decideOnDirection(), which is invoked by lifeline Elevator

Control. In S12, the outcome of decide on direction will always be up because the user

choose to go up.

After the direction of the elevator is determined, control is transferred to the

Elevator component, which shuts the door of the elevator, and then moves the elevator

upwards by performing responsibilities close door and motor up, respectively. In the

target SD, lifeline Elevator Control passes message M8() to lifeline Elevator, which

invokes self messages closeDoor() and motorUp(), in sequence.

After the elevator begins its ascent towards the destination floor, control returns to

the Elevator Control component, which pauses, at waiting point moving, for a floor to be

approached, i.e. completion of scenario S5. In the target SD, lifeline Elevator passes

message M9() to lifeline Elevator Control, which pauses, at state invariant moving, for

InteractionUse S5 to finish its execution.

As the elevator is about to approach a floor, control gets transferred to the Status

and Planner component, which determines whether the floor is the requested one or not.

If guard condition [requested] is satisfied, control is transferred to the Elevator

component; otherwise, control returns back to the Elevator Control component. In

scenario S12, [!requested] holds an indefinite number of time before [requested] is

satisfied. This is shown in the target SD by a loop fragment having guard condition

[!requested]. It should be noted that this mapping is the alternate mapping of UCM loops

151

(see Section 5.1.2.3). Messages M10() and M11() represent the repeated back and forth

transfer of control between lifelines Elevator Control and Status and Planner. When the

guard condition of the loop fragment does not hold, lifeline Status and Planner passes

message M12() to lifeline Elevator.

After the elevator reaches its destination, the Elevator component halts the elevator,

and then opens its door by performing responsibilities motor stop and door open,

respectively. In the target SD, lifeline Elevator invokes self messages motorStop() and

doorOpen(), in sequence.

The elevator must now be removed from the list of elevators busy elevators. This is

achieved by transferring control back to the Status and Planner component, which

performs responsibility remove from list. In the target SD, lifeline Elevator passes

message M13() to lifeline Status and Planner, which invokes self message

removeFromList().

The elevator must now be able to receive another request after its door shuts. This

is achieved by transferring control back to the Elevator Control component, which halts

S12 at timer door closing delay for an arbitrary amount of time. Simultaneously, control

is also transferred to the User component to indicate that the user has reached his

destination. This simultaneous transfer is achieved by AND-fork AF, which is

represented as a par fragment in target SD. The par fragment contains two operators; the

first passes message M14() to lifeline Elevator Control, whereas the second passes

message M15() to lifeline User. The halting of S12 is represented by state invariant door

closing delay on lifeline Elevator Control. After an arbitrary amount of time the Elevator

152

Control component is ready to receive another request while halting at waiting point

stationary. This is represented in the target SD as state invariant stationary on lifeline

Elevator Control. The invocation of M15() triggers state invariant at requested floor on

lifeline User.

153

Figure 59: Mapping of scenario S12 to SD notation

154

6 CHAPTER 6

A MUTATION FRAMEWORK FOR MODEL

TRANSFORMATIONS

The widespread interest in testing model transformation programs provides the

major motivation for this chapter. This chapter, in particular, focuses on investigating the

applicability of fault based testing to model transformations. This chapter serves the

following purposes:

• It proposes a suite of mutation operators for the Atlas Transformation Language
(ATL), so that model transformation developers can gain the benefits of mutation
testing.

• It presents a prototype tool, MuATL, for automatic generation of ATL mutants.

The remainder of this chapter is organized as follows. Our proposed ATL mutation

testing approach is presented in Section 6.1. Section 6.2 introduces a suite of 10 mutation

operators for the ATL transformation language. An analysis of the proposed mutation

operators follows in Section 6.3. An automated tool for ATL mutant generation is

described in Section 6.4. In Section 6.5, we apply the defined mutation operators on the

UCM to UML 2 AD model transformation defined in Chapter 4. A discussion follows in

Section 6.6.

155

6.1 ATL Mutation Testing Approach

Mutation testing is a well-established fault based testing technique, in which faults

are seeded into a syntactically correct program, in order to determine the efficiency of a

test suite. Mutation testing has been successfully applied to various areas and languages:

programming languages (e.g., Fortran, Ada, C, Java), integration testing (e.g., interface

mutation), design models (e.g., Finite State Machines, petri nets, state-charts), web

services, etc. For a comprehensive survey on the development of mutation testing, the

reader is invited to consult [84].

An ATL mutation operator defines how a particular ATL artifact will be changed

in order to seed a fault. Application of a mutation operator results in a defective ATL

program, which is known as a mutant ATL program. If a mutant is syntactically

incorrect, it is considered as an invalid mutant.

Figure 60 illustrates the general mutation process for ATL. An ATL test suite

consists of a synthesis of a number of input models as test cases. The original ATL

program and the generated mutants run on the test cases, and the results are compared

using an oracle. Defining a test oracle for model transformations is a challenging task

 [26] [135]. Indeed, the number of constraints to define can be very large to cover all

transformation possibilities [26].

156

Figure 60: ATL mutation process

A given test case, part of the test suite, is said to kill a mutant if the output model

produced by the mutant is different from that of the original ATL specification. Hence,

the test case is good enough to detect the change between the original and the mutant

ATL program. A test case cannot distinguish between a mutant and the original ATL

program if both produce the same output model for the same input model(s). If a mutant

is not killed (called alive) by a test suite, this usually means that the test suite is not

adequate. However, it may also be that the mutant keeps the program’s semantics

unchanged; thus, cannot be detected by any test case. Such mutants are called equivalent

mutants. Equivalent mutant detection is, in general, one of biggest obstacles for practical

usage of mutation testing. The effort needed to check if mutants are equivalent or not, can

be very high even for small programs [84].

157

ATL Mutants are generated automatically using our prototype tool MuATL (see

Section 6.4). The execution of the test suite and the oracle function are performed

manually. The automation of such activities is out of the scope of this chapter.

The effectiveness of a test suite TSeff is determined by running it on all mutants, and

computing the ratio of killed mutants to total number of non-equivalent mutants. TSeff is

given by the following equation:

𝑇𝑆𝑒𝑓𝑓 =
𝑀𝑘

𝑀𝑡 −𝑀𝑒
 (1)

where Mk is the number of killed ATL mutants, Mt is the total number of generated ATL

mutants, and Me is the number of ATL equivalent mutants. If the score is not acceptable,

the test suite should be improved by adding additional test cases and/or modifying the

existing ones.

6.2 ATL Mutation Operators

In this section, mutation operators are defined for ATL, and code samples are

shown to demonstrate their usage. The number of possible mutants that can be generated

for certain operators is specified. The consequences of applying the mutation operators

are also described. For a brief overview on ATL, the reader may consult Section 1.6.

158

6.2.1 Matched to Lazy (M2L)

ATL gives developers the flexibility to define model transformations in both

declarative and imperative styles. Matched rules are declarative rules that are implicitly

called by the ATL virtual machine at runtime. The M2L operator converts a matched rule

to a lazy rule (which is an imperative rule). The consequence of applying the M2L

operator is that a mutant rule will never be executed, since lazy rules must be explicitly

invoked. The number of M2L mutants that can be created for given ATL module is equal

to the number of matched rules it contains.

An example of a mutation performed by applying the M2L operator is shown in

Table 7. The M2L operator prepends the rule AtoB by the lazy modifier in the mutant rule

AtoB’.

Table 7: Example of a M2L mutation

Original Mutant
rule AtoB {
 from s : A
 to t: B (
 ……………
)
}

lazy rule AtoB’ {
 from s : A
 to t: B (
 ……………
)
}

6.2.2 Lazy to Matched (L2M)

The L2M operator does the opposite of the M2L operator; it converts a lazy rule

into a matched rule. Matched rules cannot be explicitly invoked; therefore, a runtime

failure will occur when a L2M mutant rule is called. However, a L2M mutation cannot be

detected if the mutant rule is not invoked during an execution. The number of L2M

159

mutants that can be created for a given ATL module is equal to the number of lazy rules

it contains.

An example of a mutation performed by applying the L2M operator is shown in

Table 8. The L2M operator deletes the lazy modifier of rule AtoB in the mutant rule

AtoB’.

Table 8: Example of a L2M mutation

Original Mutant
lazy rule AtoB {
 from s : A
 to t: B (
 ……………
)
}

rule AtoB’ {
 from s : A
 to t: B (
 ……………
)
}

6.2.3 Delete Attribute Mapping (DAM)

Attribute mapping(s) in an ATL rule define how a source object will be

transformed into a target object. The DAM operator deletes an attribute mapping from the

definition of a particular rule. It is based on the CACD operator in [136]. The

consequence of applying the DAM operator on a rule is that the attribute, whose mapping

is deleted, will not participate in the transformation process, resulting in a loss of

information. The DAM operator can be applied on matched, lazy and mapping called

rules. The number of DAM mutants that can be created for a given rule is equal to the

number of attribute mappings it contains.

An example of a mutation performed by applying the DAM operator is shown in

Table 9. The DAM operator deletes the mapping of attribute b2 in the mutant rule AtoB’.

160

Table 9: Example of a DAM mutation

Original Mutant
rule AtoB {
 from s : A
 to t: B (
 b1 <- s.a1,
 b2 <- s.a2
)
}

rule AtoB’ {
 from s : A
 to t: B (
 b1 <- s.a1
)
}

6.2.4 Add Attribute Mapping (AAM)

Developers may avoid transforming redundant information from a source model

into a target model. In such a situation, mappings of useless attributes are not specified in

the transformation rule. The AAM operator adds a useless attribute mapping from a

source object to a target object in a given rule. It is based on the CACA operator in [136].

The consequence of applying the AAM operator on a rule is that unnecessary complexity

is added to the output model. The number of AAM mutants that can be created for a

given rule is equal to the product of the number of unmapped attributes in the source and

target objects. An example of a mutation performed by applying the AAM operator is

shown in Table 10. The AAM operator adds the useless mapping “b2 <– s.a2” in the

mutant rule AtoB’.

161

Table 10: Example of an AAM mutation

Original Mutant
rule AtoB {
 from s : A
 to t: B (
 b1 <- s.a1
)
}

rule AtoB’ {
 from s : A
 to t: B (
 b1 <- s.a1,
 b2 <- s.a2
)
}

6.2.5 Delete Filtering Expression (DFE)

Filtering expressions constrain the input objects on which a particular rule can be

applied. If a filtering statement evaluates to true for a given input object, its

corresponding rule will be executed. DFE can only be applied on matched rules, as they

allow filtering of input objects. The DFE operator deletes the filtering statement specified

in the definition of a rule. It is based on the CFCD operator in [136]. The consequence of

applying the DFE operator is that the mutant rule will be executed for incorrect objects of

its source type. DFE operator may cause filtering expressions of multiple rules to

evaluate to true for one source instance. In this case, a runtime failure will occur. The

number of DFE mutants that can be created for a given ATL module is equal to the

number of matched rules that contain a filtering expression.

An example of a mutation performed by applying the DFE operator is shown in

Table 11. The DFE operator removes the filtering expression s.a1 > 0 in mutant rule

AtoB’.

162

Table 11: Example of a DFE mutation

Original Mutant
rule AtoB {
 from s : A (
 s.a1 > 0
)
 to t: B (
 b1 <- s.a1,
 b2 <- s.a2
)
}

rule AtoB’ {
 from s : A
 to t: B (
 b1 <- s.a1,
 b2 <- s.a2
)
}

6.2.6 Add Filtering Expression (AFE)

Based on the CFCA operator in [136], we define the AFE operator which performs

the opposite of the DFE operator. It adds an unnecessary filtering expression to a

matched rule. The consequence of applying the AFE operator is that some objects of the

input model will not participate in the transformation process; thus, resulting in a loss of

information. In order to apply the AFE operator on a rule, the source object must have at

least one attribute. If this condition is satisfied, numerous AFE mutants can be created for

a given matched rule. A mutant generation tool can constrain the possible number of AFE

mutants. Similar to the DFE operator, the AFE operator can also cause a runtime failure.

An example of a mutation performed by applying the AFE operator is shown in

Table 12. The AFE operator adds the filtering expression s.a1 > 0 in mutant rule AtoB’.

a1 is a scalar attribute in source object s.

163

Table 12: Example of a AFE mutation

Original Mutant
rule AtoB {
 from s : A
 to t: B (
 b1 <- s.a1,
 b2 <- s.a2
)
}

rule AtoB’ {
 from s : A (
 s.a1 > 0
)
 to t: B (
 b1 <- s.a1,
 b2 <- s.a2
)
}

6.2.7 Change Source Type (CST)

ATL rules define mappings from source objects to target objects. The CST operator

changes the source type of a given rule. It can be applied on matched and lazy rules. The

consequence of applying the CST operator is that incorrect transformations may be

performed. Indeed, the application of the CST operator on a rule will cause a runtime

failure if the new source type does not contain the attributes which are specified to be

mapped, or if multiple rules are associated with the new source type. The number of CST

mutants that can be created for a given rule is equal to the number of classes in the source

metamodel that participate in the transformation minus one.

An example of a mutation performed by applying the CST operator is shown in

Table 13. The source type of rule AtoB is changed from A to C in the mutant rule AtoB’.

164

Table 13: Example of a CST mutation

Original Mutant
rule AtoB {
 from s : A
 to t: B (
 ……………
)
}

rule AtoB’ {
 from s : C
 to t: B (
 ……………
)
}

6.2.8 Change Target Type (CTT)

The CTT operator changes the target type of a given rule. It can be applied on

matched, lazy, and mapping called rules. The consequence of applying the CTT operator

is that the objects in the input model will be transformed into objects of incorrect type in

the output model. Application of the CTT operator on a rule will cause a runtime

exception if the new target type does not contain the attributes which are specified to be

mapped. The number of CTT mutants that can be created for a given rule is equal to the

number of classes in the target metamodel that participate in the transformation minus

one.

An example of a mutation performed by applying the CTT operator is shown in

Table 14. The target type of rule AtoB is changed to C in the mutant rule AtoB’.

Table 14: Example of a CTT mutation

Original Mutant
rule AtoB {
 from s : A
 to t: B (
 ……………
)
}

rule AtoB’ {
 from s : A
 to t: C (
 ……………
)
}

165

6.2.9 Change Execution Mode (CEM)

ATL modules can execute in two modes, default and refining. Default mode is the

default execution mode of ATL transformations and it is specified by the from keyword.

The refining mode allows developer to specify rules only for those objects that need to be

transformed; remaining objects will be implicitly copied into the output model. It should

be added that refining mode applies only when the source and target models conform to

the same metamodel. We define the CEM operator which switches the execution mode of

an ATL module from default to refining mode. If a module contains imperative code,

which is not allowed in refining mode, application of the CEM operator will result in an

invalid (i.e., syntactically incorrect) mutant. The consequence of the CEM mutation is

that useless objects may be copied into the output model. A single CEM mutant can be

created for a given module.

An example of a mutation performed by applying the CEM operator is shown in

Table 15. The CEM operator changes the execution mode of module A to refining mode

in the mutant module A’.

Table 15: Example of a CEM mutation

Original Mutant
module A;
create OUT : UML from IN : UML;

module A’;
create OUT : UML refining IN : UML;

166

6.2.10 Delete Return Statement (DRS)

The last statement of a do block in a mapping called rule must return the target

object. It is optional to specify a return statement in the do block of matched and lazy

rules. The DRS mutation operator deletes the return statement of a do block. The number

of DRS mutants that can be created for a given rule is equal to the number of return

statements in the do block; a do block may use conditional blocks to have several return

statements.

An example of a mutation performed by applying the DRS operator is shown in

Table 16. The DRS operator deletes the return statement “t;” of the do block of rule AtoB

in mutant rule AtoB’.

Table 16: Example of a DRS mutation

Original Mutant
lazy rule AtoB {
 from s : A
 to t: B (
 ……………
)
 do {
 ……………
 t;
 }
}

lazy rule AtoB’ {
 from s : A
 to t: B (
 ……………
)
 do {
 ……………
 }
}

6.3 ATL Mutation Operator Analysis

Table 17 summarizes the proposed ATL mutation operators. For each operator, we

specify the ATL execution mode in which it is applicable, the type of rules on which the

operator can be applied, and the number of expected mutants per rule.

167

It is worth noting that the Table 17 does not contain operators that can be applied to

non-mapping called rules. Non mapping-called rules are similar to void functions in other

traditional programming languages. So, mutation operators from other traditional

programming languages that pertain to functions can be applied on non-mapping called

rules. Covering such mutants is out of the scope of this chapter.

Table 17: Summary of ATL mutation operators

Operator Execution
Mode

Rules Expected number of generated
mutants per rule

M2L Default Matched 1
L2M Default Lazy 1
DAM Default,

Refining
Matched, Lazy, Mapping
Called

Number of attribute mappings

AAM Default,
Refining

Matched, Lazy, Mapping
Called

Product of number of unmapped
attributes in the source and target
objects

DFE Default,
Refining

Matched 1

AFE Default,
Refining

Matched Many possibilities

CST Default,
Refining

Matched, Lazy Number of classes in the source
metamodel that participate in the
transformation minus one

CTT Default,
Refining

Matched, Lazy, Mapping
Called

Number of classes in the target
metamodel that participate in the
transformation minus one

CEM Default - 1
DRS Default Matched*, Lazy*,

Mapping Called
Number of return statements

* If their do block contains a return statement

168

6.3.1 Number of Generated ATL Mutants

In what follows, we provide the general formulas to compute the maximum number

of mutants relative to the defined operators, when applied to a complete ATL module.

Let Rm, Rl,, and Rmc be the number of matched rules, the number of lazy rules, and

the number of mapping called rules, respectively, in a given ATL module. The maximum

numbers of CST mutants that can be generated for an ATL module is given by the

following equation:

𝑀𝐶𝑆𝑇 = (𝑠𝑐 − 1)(𝑅𝑚 + 𝑅𝑙) (2)

where sc represents the number of source metaclasses that participate in the model

transformation.

The maximum numbers of CTT mutants that can be generated for an ATL module

is given by the following equation:

𝑀𝐶𝑇𝑇 = (𝑡𝑐 − 1)(𝑅𝑚 + 𝑅𝑙 + 𝑅𝑚𝑐) (3)

where tc represents the number of target metaclasses that participate in the model

transformation.

The maximum number of DAM mutants that can be generated for an ATL module

is:

169

𝑀𝐷𝐴𝑀 = � 𝑎𝑚𝑖

𝑅𝑚+𝑅𝑙+𝑅𝑚𝑐

𝑖=0

 (4)

where ami is the number of attribute mappings in a given rule i.

The maximum number of AAM mutants that can be generated for an ATL module

is:

𝑀𝐴𝐴𝑀 = � 𝑢𝑠𝑎𝑖 ∗ 𝑢𝑡𝑎𝑖

𝑅𝑚+𝑅𝑙+𝑅𝑚𝑐

𝑖=0

 (5)

where usai and utai denote the number of unmapped attributes for the source and target

metaclasses, respectively, in a give rule i.

The maximum number of DRS mutants that can be generated for an ATL module

is:

𝑀𝐷𝑅𝑆 = � 𝑟𝑖

𝑅𝑚+𝑅𝑙+𝑅𝑚𝑐

𝑖=0

 (6)

where ri is the number of return statements in the do block of a given rule i.

6.3.2 Equivalent ATL Mutants

Applying the CST operator on lazy rules will always produce equivalent mutants.

Indeed, the incorrect source type of a mutant lazy rule does not affect its execution. The

source type of a lazy rule is decided, at runtime, by the actual parameter passed into it.

The type of the actual parameter becomes the source type of the lazy rule. This implies

170

that the type specified in the from clause of a lazy rule becomes meaningless at runtime.

Therefore, all produced mutants that correspond to lazy rules are considered as equivalent

mutants. Hence, the CST operator is appropriate only for matched rules. This inference

has been confirmed by the case study presented in Section 6.5.

6.3.3 Other Remarks

Based on the operator descriptions, and an analysis of the impact of each mutation

operator, we can infer that:

• CEM operator would produce invalid mutants when applied on a module having
imperative code.

• AFE operator should be applied manually, as there are numerous possible
mutants.

• AAM operator would not produce any mutants for a rule, if all attributes of the
source object are mapped.

• M2L operator cannot be used in refining mode since the resulting rule would
become imperative, which is not allowed in refining mode.

• L2M and DRS operators are not applicable in refining mode (i.e., imperative code
is not allowed in refining mode).

These remarks have been confirmed by the case study presented in Section 6.5. The

DAM and AAM operators are related to the “creation” class of operators in [136].The

DFE and AFE operators are related to the “filtering” class of operators in [136]. The

remaining operators M2L, L2M CST, CTT, CEM, and DRS capture the characteristics

specific to ATL.

171

6.4 MuATL (Mutation Toolkit for ATL)

The ATL mutation operators, presented in Section 6.2, have been implemented in a

prototype tool called MuATL (Mutation Toolkit for ATL). MuATL, a Microsoft .NET C#

based tool, is inspired by MuJava (Mutation System for Java) [114].

Figure 61 illustrates the main graphical user interface of MuATL. The GUI is

composed of two menus: (1) Module, and (2) Mutation. The user starts with loading an

ATL module using the Load menu option. The user can select one of the mutation

operators using the Mutation menu.

Figure 61: MuATL GUI

Mutation operators AFE, AAM, CST, and CTT require user input for mutant

generation. Figure 62 illustrates the GUI where the user can select the rule, and add the

corresponding filtering expression(s) for creating AFE mutants. For each filtering

172

expression entered, a distinct AFE mutant will be created by the tool. Similarly, AAM

requires the user to enter attribute mappings for creating AAM mutants. CST and CTT

require the user to enter source and target types, respectively, of the mutants. The

produced mutants are stored in separate files within separate directories, each named with

the operator name.

Figure 62: AFE Mutant GUI

6.5 Case Study: UCM to UML 2 AD Transformation

In this section, a case study is presented to show the applicability of the developed

set of ATL mutation operators. Furthermore, this experiment aims at assessing the

effectiveness of the proposed operators. The case study pertains to an ATL

transformation program, introduced in previous work [93], which transforms the ITU-T

standard [82] UCMs to UML 2 ADs.

173

6.5.1 Test Cases

The case study is comprised of one ATL module [94] and seven test cases (see

Table 18). The test cases, in Table 18, cover 16 UCM source classes and 10 AD target

classes. Each test case includes the input model, the expected output model, and the

actual output model. For instance, Figure 63 and Figure 64 illustrate the input model and

the expected output model relative to test cases TC1 and TC2, respectively. The selected

test cases satisfy the all-source-classes coverage (ASCC) criteria. This criterion ensures

that all classes of the source metamodel that participate in the model transformation are

covered by the test cases. It is worth noting that the ASCC criterion does not consider

attribute, association, and inheritance coverage. Therefore, it is considered as a weak

coverage criterion.

Table 18: Test cases of UCM to UML AD model transformation

Test
Case

UCM Classes covered* UML Classes covered*

TC1 AndFork, AndJoin,
RespRef,

ForkNode, OpaqueAction

TC2 OrFork, OrJoin, RespRef MergeNode, OpaqueAction
TC3 WaitingPlace MergeNode
TC4 Timer, FailurePoint OpaqueAction
TC5 EmptyPoint,

DirectionArrow
-

TC6 ComponentRef ActivityPartition
TC7 Stub StructuredActivityNode
* All test cases cover classes URNspec,
StartPoint, EndPoint, NodeConnection

* All test cases cover classes Package,
Activity, InitialNode, ActivityFinalNode,
ControlFlow

174

(a) UCM input model

(b) AD expected output model

Figure 63: Input and expected output models of TC1

(a) UCM input model

(b) AD expected output model

Figure 64: Input and expected output models of TC2

175

6.5.2 Generated Mutants

The proposed mutation operators, automatically applied on the module using our

prototype tool, result in 395 mutant modules. The test cases are sequentially executed,

manually, on each mutant. The outcome of a test case execution is determined by

manually comparing the actual output model with the expected output model. A test case

execution fails when the actual and expected models are different, or a runtime exception

occurs. A passed test case execution produces an actual output same as the expected

output. For a given mutant, if a test case execution fails, we conclude that the mutant is

killed, and we move on to the next mutant. If none of the test case executions fail for a

given mutant, we conclude that the mutant is alive.

The module contains 1 matched rule and 10 lazy rules. Therefore, the application of

M2L and L2M operators resulted in the generation of one lazy rule and 10 matched rules,

respectively. The DFE operator was not used because the matched rule

URNDefinition_To_UMLPackage (see Listing 22) did not contain a filtering expression.

The AFE operator also could not be applied on the matched rule because the source

object did not contain any scalar attribute that could be used to create a filtering

expression. Because the module contains declarative rules, the application of the CEM

operator will result in syntactically incorrect mutants. Therefore, the CEM operator was

not used for mutant generation. A DAM mutant was created for each of the 37 attribute

mappings in the module. Because all the source objects had no unmapped attributes, the

AAM mutant was not applicable. Table 19 shows one CST and one CTT mutant created

for the Responsibility_To_OpaqueAction lazy rule (see Listing 23).

176

Table 19: CST and CTT mutant corresponding to lazy rule Responsibility_To_OpaqueAction

CST mutant CTT mutant
lazy rule Responsibility_To_OpaqueAction {
 from r: UCM!"ucm::map::WaitingPoint"
 to a: UML!OpaqueAction (
 name <- r.respDef.name
)
}

lazy rule Responsibility_To_OpaqueAction {
 from r: UCM!"ucm::map::RespRef"
 to a: UML!MergeNode (
 name <- r.respDef.name
)
}

Based on the equations 1 and 2, introduced in Section 6.3, 165 CST mutants (i.e.,

(16-1)*(1+10) = 165) and 171 CTT (i.e., (10-1)*(1+10+8) = 171) mutants are generated.

The number of DRS mutants corresponds to 12 return statements in the original module.

6.5.3 Mutation Analysis Results

The results of the mutation analysis, presented in Table 20, reveal that 177 mutants

are killed by the given seven test cases, and 218 mutants remain alive. The test cases are

able to kill all M2L and L2M mutants. Since matched rules cannot be invoked, L2M

mutants are killed as a result of runtime failures. 12 of the live DAM mutants correspond

to rules which are involved in transforming objects of type Stub having the dynamic

attribute set true. Since the ASCC criterion does not consider attributes, these rules are

not exercised by the test cases; thus, their corresponding mutants stay live. Similarly, 45

CTT mutants and 8 DRS mutants stay live. All the 150 live CST mutants correspond to

lazy rules, and are equivalent mutants; they cannot be killed by any test case.

177

Table 20: Types of mutants created for the UCM to UML 2 AD model transformation

Mutant type Number of generated
mutants

Number of living
mutants

Number of killed
mutants

M2L 1 0 1
L2M 10 0 10
DAM 37 15 22
CST 165 150 15
CTT 171 45 126
DRS 11 8 3
Total 395 218 177

A TSeff score of 72.24% is acquired for the seven test cases. The obtained results

show that the proposed mutation operators can effectively determine inadequacies in a

test suite.

6.5.4 Test Suite Enhancement

The 68 live non-equivalent mutants (i.e., 218-150 = 68) can be killed by adding

new test cases. One DAM mutant will be killed by TC8 (Figure 65), which has a

ComponentRef object CR containing a RespRef object R1. Similarly, two DAM mutants

will be killed by TC9 (Figure 66), which has a Stub object ST containing a RespRef object

R2.

178

(a) UCM input model

(b) AD expected output model

Figure 65: Input and expected output models of TC8

ST plug-in

(a) UCM input model

(b) AD expected output model

Figure 66: Input and expected output models of TC9

179

Adding TC10 (Figure 67), which includes an input model having a dynamic Stub

object DS, and containing RespRef objects, R3 and R4, will kill 63 mutants (12 DAM, 45

CTT, and 6 DRS mutants). The ComponentRef and Stub classes have self associations in

the UCM metamodel. Adding, an additional test case (TC11 not shown here) which

contains nested ComponentRef and nested Stub objects will kill the remaining 2 DRS

mutants. Adding TC8, TC9, TC10, and TC11 to the test suite gave 100% TSeff.

180

DS plug-in 1

DS plug-in 2

(a) UCM input model

(b) AD expected output model

Figure 67: Input and expected output models of TC10

6.6 Discussion

Using the proposed mutation operators, we measured the effectiveness of a test

suite that corresponds to a UCM to UML 2 AD model transformation. The resulting

72.24% TSeff suggests that the model transformation is not thoroughly verified.

181

Intuitively, this result was expected because the test suite satisfied a weak coverage

criterion, ASCC. 12 DAM, 45 CTT, and 8 DRS live mutants correspond to code

fragments, which are not exercised by the test cases. This is an indication that the tester

should redesign his test suite or design additional test cases. As stated in Section 6.3.2,

the application of CST mutation operator on lazy rules will always produce equivalent

mutants. This observation is confirmed in the case study; the 15 killed CST mutants

corresponded to a matched rule. Future work should consider defining an operator that is

applicable on the actual parameter of a lazy rule.

It must be pointed out that the proposed operators do not consider ATL helpers,

which are equivalent to methods in the OO paradigm. The ATL mutation operator set can

be enhanced by adding certain method-based Java operators. A complex model

transformation’s output may make the comparison of expected output and actual output

difficult. This problem can be averted by using test oracles, which help in determining the

outcome of a test case execution. The test oracles presented in [90] and [135] can be used

in conjunction with the approach presented in this paper.

182

7 CHAPTER 7

CONCLUSION AND FUTURE WORK

This chapter concludes the thesis by summarizing its contributions, pointing out its

limitations, and highlighting future directions of research.

7.1 Thesis Summary

The quality of use case models significantly affects the overall quality of a software

product. Defects in a use case model are very likely to propagate to other artifacts, thus

resulting in an incorrect implementation of the system. Correction of use case modeling

defects at later phases of the development cycle is very expensive. Therefore, early defect

correction in use case models is crucial for reducing development costs and improving

overall product quality.

In this thesis, we proposed a new technique for improving the quality of use case

models, and demonstrated its usage on a real world system. The technique can detect

defects in a use case model, and automatically perform improvements. Usage of this

approach early in the development cycle will be very beneficial as it prevents propagation

of defects to other artifacts. Manual refactoring of complex use case models with

hundreds of use cases is susceptible to human error, and is often time consuming. For

such use case models, usage of the proposed model transformations will significantly

183

reduce development time and effort. The application of this technique does not require

knowledge of advanced concepts such as metamodeling and OCL. Therefore,

inexperienced modelers can easily use this technique to improve the quality of their use

case models.

To demonstrate the effectiveness of our approach, a case study that pertains to a

bio-diversity system, MAPSTEDI, is presented. The use case models of MASPTEDI

contain several quality degrading problems (antipatterns). Four of the presented

antipatterns, a2, a4, a5, a8, are detected. This shows that real-world use case models are

prone to low quality design and practices. To improve the quality of MAPSTEDI use

case models, antipatterns are refactored by executing corresponding model

transformations. Antipattern a1 was detected after merging two use case models,

Database Queries and Database Integrator, which contain common entities. The

refactoring r1 is finally applied on the merged model to result in a high quality use case

model. The refactorings r7, r8, and r14 improve the understandability of use case models,

and makes them more analytical. The refactorings r1, r10, and r15 enhance the

correctness and consistency of use case models.

This thesis contributes to the MDE software development methodology, which

relies on automated transformation of software models. Usage of the proposed UCM to

UML 2 AD transformation will enable consistent communication between requirements

engineers and designers/developers involved in a software development project. The

requirements engineers can model use case scenarios using UCMs. The

designers/developers who are not familiar with the UCM notation can use the proposed

184

transformation to convert UCMs to ADs, which are part of UML, the de-facto standard

for documenting design. Moreover, the transformation will aid in minimizing the

conceptual gap between the requirements and design.

Furthermore, we presented traceable mappings from UCM to UML 2 SD notation.

A systematic approach to derive diagrams from one another also promotes traceability in

an OO system. The resulting SDs of the transformation can be refined by the designers,

and eventually be converted to source code. Several tools allow automatic code-skeleton

generation from SDs. The combined usage of UCMs, the proposed mapping, and code

generation tools will allow source code to be easily traced to the scenario definitions.

In a MDE process, model transformations should be thoroughly tested to ensure

product quality, and to reduce costs. Mutation testing has been extensively studied in the

literature and shown to be more effective than coverage based techniques. To support the

usage of mutation testing in MDE, this thesis has defined a set of mutation operators for

the ATL model transformation language. The proposed operators are implemented into a

tool, called MuATL, allowing for automatic generation of ATL mutants. Our approach

has been validated using the UCM to UML 2 AD model transformation. The results have

shown that the proposed ATL operators can successfully detect inadequacies in an

example test suite.

To conclude, this thesis has shown how software developers can embrace the

notion of model transformations in the context of FRS by automated refactoring of use

case models, and automated derivation of high-level design models from scenario

specifications.

185

7.2 Future Work

A use case model may contain instances of different antipatterns. Future work

involves determining an optimal order in which different antipattern instances can be

refactored. An optimal order must ensure that the application of a particular refactoring

does not result in a new antipattern instance. Use case models of a system may contain

common entities (use cases and actors). If one of these models is refactored, it will be

transformed into a state which is inconsistent with the other models. Therefore, these

models must be merged before performing refactoring. We aim to incorporate an

automated model merging technique into our approach. ATL can seamlessly integrate

with Java; this will enable us to create a graphical use case refactoring tool. The tool

should be able to allow users to define their own antipatterns and corresponding

refactorings. In order to determine whether a refactoring is behavior preserving or not, a

modeler must consult the corresponding use case descriptions. This is a limitation of our

approach which can be addressed by Natural Language Processing techniques.

Alternatively, syntax and semantics of use case descriptions can be embedded into an

enhanced use case metamodel. This will enable our approach to confirm the presence of

antipatterns by automatic analysis of use case descriptions, which conform to the

enhanced use case metamodel. Other future work can be directed towards creating model

transformations to refactor misuse case models, which are an extension to use case

models that allows analysts to specify and communicate the functional security

requirements of a system.

186

The target models (ADs) produced by the transformation are specific to the Eclipse

UML 2 tools. Tools, such as Enterprise Architect and Rational Rose allow designers to

import/export platform independent models. Our future work involves implementing this

mapping to produce platform independent ADs, which can be imported into other

platforms. Mapping of UCMs to UML state-chart diagrams is also part of our future

work.

The proposed UCM to SD mappings were partially automated due to severe

limitations in the UML 2 SD metamodel [141]. SD messages depicted inside fragments

are not logically bound to their enclosing fragments. The CombinedFragment metaclass,

which represents fragments, has no reference to its messages. Fragments rely on their

position on the modeling tool’s design surface to enclose their messages. In future work,

a heavy weight extension [131] of the UML 2 metamodel can be performed to remedy

this limitation.

Mutation testing can be more efficiently performed when supported by automated

tools. As a future work, we are planning to develop further our prototype tool, MuATL, to

include a test case execution engine and a test oracle. In addition, we aim at conducting

an empirical study to better assess the usefulness and the effectiveness of the proposed

ATL operators. Furthermore, we will investigate the addition of mutation operators of

traditional programming languages that are relevant to ATL. The idea of mutation testing

will also be explored for other model transformation languages, such as QVT, Tefkat, and

Epsilon.

187

References

[1] M. Abbes, et al., "An empirical study of the impact of two antipatterns, blob and
spaghetti code, on program comprehension," in Software Maintenance and
Reengineering (CSMR), 2011 15th European Conference on, 2011, pp. 181-190.

[2] T. Abdelaziz, et al., "Visualizing a Multiagent-Based Medical Diagnosis System
Using a Methodology Based on Use Case Maps," Multiagent System
Technologies, pp. 545-559, 2004.

[3] C. B. Achour, et al., "Guiding use case authoring: results of an empirical study,"
in Requirements Engineering, 1999. Proceedings. IEEE International Symposium
on, 1999, pp. 36-43.

[4] S. Adolph, et al., Patterns for effective use cases: Addison-Wesley Professional,
2002.

[5] M. Akiyama, et al., "Supporting design model refactoring for improving class
responsibility assignment," Model Driven Engineering Languages and Systems,
pp. 455-469, 2011.

[6] D. Amyot, et al., "UCM-driven testing of web applications," SDL 2005: Model
Driven, pp. 1213-1229, 2005.

[7] D. Amyot, et al., "Generating scenarios from use case map specifications," in
Third International Conference on Quality Software (QSIC'03), 2003, pp. 108-
115.

[8] D. Amyot, “Bridging the gap between requirements and design with use case
maps,” [online] Available:
http://people.scs.carleton.ca/~jeanpier/304/Amyot.PDF, 2001 [Feb. 10, 2013]

[9] D. Amyot and L. Logrippo, "Use case maps and lotos for the prototyping and
validation of a mobile group call system," Computer Communications, vol. 23,
pp. 1135-1157, 2000.

[10] D. Amyot and G. Mussbacher, "On the Extension of UML with Use Case Maps
Concepts," in ≪UML≫ 2000 — The Unified Modeling Language. vol. 1939, A.
Evans, et al., Eds., ed: Springer Berlin Heidelberg, 2000, pp. 16-31.

http://people.scs.carleton.ca/~jeanpier/304/Amyot.PDF�

188

[11] B. Anda, and D. I. K. Sjøberg, "Towards an inspection technique for use case
models," in Proceedings of the 14th international conference on Software
engineering and knowledge engineering, 2002, pp. 127-134.

[12] B. Anda, et al., "Quality and understandability of use case models," ECOOP
2001—Object-Oriented Programming, pp. 402-428, 2001.

[13] E. Anderson, et al., "Use case and business rules: styles of documenting business
rules in use cases," in Conference on Object Oriented Programming Systems
Languages and Applications: Addendum to the 1997 ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and
applications(Addendum), 1997, pp. 85-87.

[14] R. Andrade, "Applying Use Case Maps and Formal Methods to the Development
of Wireless Mobile ATM Networks," in Proc. of the Fifth NASA Langley Formal
Methods Workshop, 2000.

[15] V. Aranega, et al., "Using trace to situate errors in model transformations,"
Software and Data Technologies, pp. 137-149, 2011.

[16] D. Arcelli, et al., "Antipattern-based model refactoring for software performance
improvement," in Proceedings of the 8th international ACM SIGSOFT conference
on Quality of Software Architectures, 2012, pp. 33-42.

[17] F. Armour and G. Miller, Advanced use case modeling: software systems:
Addison-Wesley Professional, 2000.

[18] M. El-Attar and J. Miller, "Constructing high quality use case models: a
systematic review of current practices," Requirements Engineering, vol. 17, pp.
187-201, 2012.

[19] M. El-Attar and J. Miller, "Improving the quality of use case models using
antipatterns," Software and Systems Modeling, vol. 9, pp. 141-160, 2010.

[20] M. El-Attar, "Improving the Quality of Use Case Models and their Utilization in
Software Development," Ph.D. thesis, Department of Electrical and Computer
Engineering, University of Alberta, Edmonton, Alberta, 2009.

[21] M. El-Attar and J. Miller, "Producing robust use case diagrams via reverse
engineering of use case descriptions," Software and Systems Modeling, vol. 7, pp.
67-83, 2008.

189

[22] M. El-Attar and J. Miller, "Matching Antipatterns to Improve the Quality of Use
Case Models," in Requirements Engineering, 14th IEEE International
Conference, 2006, pp. 99-108.

[23] D. Ballis, et al., "A rule-based method to match Software Patterns against UML
Models," Electronic Notes in Theoretical Computer Science, vol. 219, pp. 51-66,
2008

[24] D. Ballis, et al., "A minimalist visual notation for design patterns and
antipatterns," in Information Technology: New Generations, 2008. ITNG 2008.
Fifth International Conference on, 2008, pp. 51-56.

[25] B. Baudry, et al., "Barriers to systematic model transformation testing,"
Communications of the ACM, vol. 53, pp. 139-143, 2010

[26] B. Baudry, et al., "Model transformation testing challenges," in ECMDA
workshop on Integration of Model Driven Development and Model Driven
Testing, 2006.

[27] E. Bauer and J. Küster, "Combining specification-based and code-based coverage
for model transformation chains," Theory and Practice of Model Transformations,
pp. 78-92, 2011.

[28] E. Bauer, et al., "Test suite quality for model transformation chains," Objects,
Models, Components, Patterns, pp. 3-19, 2011.

[29] B. Berenbach, "The evaluation of large, complex UML analysis and design
models," in Software Engineering, 2004. ICSE 2004. Proceedings. 26th
International Conference on, 2004, pp. 232-241.

[30] R. Biddle, et al., "Essential use cases and responsibility in object-oriented
development," Australian Computer Science Communications, vol. 24, pp. 7-16,
2002.

[31] E. A. Billard, "Operating system scenarios as Use Case Maps," ACM SIGSOFT
Software Engineering Notes, vol. 29, pp. 266-277, 2004.

[32] K. Bittner and I. Spence, Use case modeling: Addison-Wesley Professional, 2003.

[33] F. Bordeleau and D. Cameron, "On the relationship between use case maps and
message sequence charts," in 2nd Workshop of the SDL Forum Society on SDL
and MSC (SAM2000), 2000.

190

[34] F. Bordeleau and R. J. A. Buhr, "UCM-ROOM modelling: from use case maps to
communicating state machines," in Engineering of Computer-Based Systems,
1997. Proceedings., International Conference and Workshop on, 1997, pp. 169-
178.

[35] E. Brottier, et al., "Metamodel-based test generation for model transformations:
an algorithm and a tool," in Software Reliability Engineering, 2006. ISSRE'06.
17th International Symposium on, 2006, pp. 85-94.

[36] W. J. Brown, AntiPatterns: refactoring software, architectures, and projects in
crisis: Wiley, 1998.

[37] F. Budinsky, Eclipse modeling framework: a developer's guide: Addison-Wesley
Professional, 2004.

[38] R. J. A. Buhr, "Use case maps as architectural entities for complex systems,"
Software Engineering, IEEE Transactions on, vol. 24, pp. 1131-1155, 1998.

[39] R. J. A. Buhr and R. S. O. Casselman, Use case maps for object-oriented systems:
Prentice Hall, 1996.

[40] G. Butler and L. Xu, "Cascaded refactoring for framework," ACM SIGSOFT
Software Engineering Notes, vol. 26, pp. 51-57, 2001.

[41] J. Cabot, et al., "Verification and validation of declarative model-to-model
transformations through invariants," Journal of Systems and Software, vol. 83, pp.
283-302, 2010.

[42] A. Cailliau, “Automating Model Transformation and Refactoring for Goal-
Oriented Models”, M.S thesis, Department of Computer Engineering, Catholic
University of Louvain, Louvain-la-Neuve, Belgium, 2010.

[43] P. Chandrasekaran, "How use case modeling policies have affected the success of
various projects (or how to improve use case modeling)," in Addendum to the
1997 ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications (Addendum), 1997, pp. 6-9.

[44] A. Ciancone, et al., "Mantra: Towards model transformation testing," in Quality
of Information and Communications Technology (QUATIC), 2010 Seventh
International Conference on the, 2010, pp. 97-105.

[45] A. Cockburn, Writing effective use cases vol. 1: Addison-Wesley Boston, 2001.

191

[46] L. L. Constantine, "Essential modeling: Use cases for user interfaces,"
interactions, vol. 2, pp. 34-46, 1995.

[47] V. Cortellessa, et al., "Digging into UML models to remove performance
antipatterns," in Proc. of the 2010 ICSE Workshop on Quantitative Stochastic
Models in the Verification and Design of Software Systems (Quovadis' 10), Cape
Town, South Africa, 2010.

[48] V. Cortellessa, et al., "Performance antipatterns as logical predicates," in
Engineering of Complex Computer Systems (ICECCS), 2010 15th IEEE
International Conference on, 2010, pp. 146-156.

[49] K. Cox and K. Phalp, "Replicating the CREWS Use Case Authoring Guidelines
Experiment," Empirical Software Engineering, vol. 5, pp. 245-267, 2000.

[50] K. Czarnecki and S. Helsen, "Classification of model transformation approaches,"
in Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in the
Context of the Model Driven Architecture, 2003, pp. 1-17.

[51] I. Deligiannis, et al., "A controlled experiment investigation of an object-oriented
design heuristic for maintainability," Journal of Systems and Software, vol. 72,
pp. 129-143, 2004.

[52] I. Deligiannis, et al., "An empirical investigation of an object-oriented design
heuristic for maintainability," Journal of Systems and Software, vol. 65, pp. 127-
139, 2003.

[53] B. Demuth, et al., "Experiments with XMI based transformations of software
models," in Workshop on Transformations in UML, 2001.

[54] K. Dhambri, et al., "Visual detection of design anomalies," in Software
Maintenance and Reengineering, 2008. CSMR 2008. 12th European Conference
on, 2008, pp. 279-283.

[55] Ł. Dobrzański and L. Kuźniarz, "An approach to refactoring of executable UML
models," in Proceedings of the 2006 ACM symposium on Applied computing,
2006, pp. 1273-1279.

[56] B. Du Bois, et al., "Does God Class Decomposition Affect Comprehensibility?,"
in IASTED International Conference on Software Engineering, 2006.

[57] H. Einarsson and H. Neukirchen, "An approach and tool for synchronous
refactoring of UML diagrams and models using model-to-model transformations,"
in Proceedings of the Fifth Workshop on Refactoring Tools, 2012, pp. 16-23.

192

[58] H. Einarsson, "Refactoring UML Diagrams and Models with Model-to-Model
Transformations," M.S thesis, Faculty of Industrial Engineering, Mechanical
Engineering and Computer Science, University of Iceland, Reykjavík, Iceland,
2011.

[59] M. Elammari and W. Lalonde, "An agent-oriented methodology: High-level and
intermediate models," in Proc. of the 1st Int. Workshop. on Agent-Oriented
Information Systems, 1999, pp. 1-16.

[60] J. Ellsberger, et al., SDL: formal object-oriented language for communicating
systems: Prentice Hall, 1997.

[61] T. v. Enckevort, "Refactoring UML models: using OpenArchitectureWare to
measure UML model quality and perform pattern matching on UML models with
OCL queries," in Proceedings of the 24th ACM SIGPLAN conference companion
on Object oriented programming systems languages and applications, 2009, pp.
635-646.

[62] F. Fabbrini, et al., "The linguistic approach to the natural language requirements
quality: benefit of the use of an automatic tool," in Software Engineering
Workshop, 2001. Proceedings. 26th Annual NASA Goddard, 2001, pp. 97-105.

[63] A. Fantechi, et al., "Application of linguistic techniques for Use Case analysis," in
Requirements Engineering, 2002. Proceedings. IEEE Joint International
Conference on, 2002, pp. 157-164.

[64] M. Favre, "Towards a basic theory to model driven engineering," in 3rd
Workshop in Software Model Engineering, WiSME, 2004.

[65] C. Fiorentini, et al., "A constructive approach to testing model transformations,"
Theory and Practice of Model Transformations, pp. 77-92, 2010.

[66] D. G. Firesmith, "Use case modeling guidelines," in Technology of Object-
Oriented Languages and Systems, 1999. TOOLS 30. Proceedings, 1999, pp. 184-
193.

[67] F. Fleurey, et al., "Qualifying input test data for model transformations," Software
and Systems Modeling, vol. 8, pp. 185-203, 2009.

[68] F. Fleurey, et al., "Validation in model-driven engineering: testing model
transformations," in Model, Design and Validation, 2004. Proceedings. 2004
First International Workshop on, 2004, pp. 29-40.

193

[69] A. Folli and T. Mens, "Refactoring of UML models using AGG," Electronic
Communications of the EASST, vol. 8, 2008.

[70] R. Fourati, et al., "A Metric-Based Approach for Anti-pattern Detection in UML
Designs," Computer and Information Science 2011, pp. 17-33, 2011.

[71] M. Fowler, et al., Refactoring: Improving the Design of Existing Code: Pearson
Education, 2012.

[72] R. France and J. M. Bieman, "Multi-view software evolution: a UML-based
framework for evolving object-oriented software," in Software Maintenance,
2001. Proceedings. IEEE International Conference on, 2001, pp. 386-395.

[73] P. Giner and V. Pelechano, "Test-driven development of model transformations,"
Model Driven Engineering Languages and Systems, pp. 748-752, 2009.

[74] H. Gomaa, Designing concurrent, distributed, and real-time applications with
UML: Addison-Wesley, 2000.

[75] H. Gomaa, "Use cases for distributed real-time software architectures," in Parallel
and Distributed Real-Time Systems, 1997. Proceedings of the Joint Workshop on,
1997, pp. 34-42.

[76] C. González and J. Cabot, "ATLTest: A White-Box Test Generation Approach for
ATL Transformations," Model Driven Engineering Languages and Systems, pp.
449-464, 2012.

[77] E. Guerra, "Specification-driven test generation for model transformations,"
Theory and Practice of Model Transformations, pp. 40-55, 2012.

[78] R. J. Harwood, "Use case formats: Requirements, analysis, and design," JOOP,
vol. 9, pp. 54-57, 1997.

[79] Y. He, et al., "Synthesizing SDL from use case maps: an experiment," SDL 2003:
System Design, pp. 159-159, 2003.

[80] A. Issa, "Utilising refactoring to restructure use-case models," in Proc. of the
World Congress on Engineering, 2007, pp. 523-527.

[81] I. Ivkovic and K. Kontogiannis, "A framework for software architecture
refactoring using model transformations and semantic annotations," in Software
Maintenance and Reengineering, 2006. CSMR 2006. Proceedings of the 10th
European Conference on, 2006, pp. 10 pp.-144.

194

[82] ITU-T, “Recommendation Z.151, User Requirements Notation (URN)” [online]
Available: http://www.itu.int/rec/T-REC-Z.151/en, 2010 [Feb. 10, 2013]

[83] A. Jaaksi, "Our cases with use cases," JOOP, vol. 10, pp. 58-65, 1998.

[84] Y. Jia and M. Harman, "An Analysis and Survey of the Development of Mutation
Testing," Software Engineering, IEEE Transactions on, vol. 37, pp. 649-678,
2011.

[85] F. Jouault, et al., "ATL: A model transformation tool," Science of Computer
Programming, vol. 72, pp. 31-39, 2008.

[86] F. Jouault and I. Kurtev, "Transforming models with ATL," in Satellite Events at
the MoDELS 2005 Conference, 2006, pp. 128-138.

[87] “jUCMNav” [online] Available: http://www.ohloh.net/p/11712, 2013 [Feb. 10,
2013]

[88] J. Kealey and D. Amyot, "Towards the automated conversion of natural-language
use cases to graphical use case maps," in Electrical and Computer Engineering,
2006. CCECE'06. Canadian Conference on, 2006, pp. 2377-2380.

[89] S. Kent, "Model driven engineering," in Integrated Formal Methods, 2002, pp.
286-298.

[90] M. Kessentini, et al., "Example-based model-transformation testing," Automated
Software Engineering, vol. 18, pp. 199-224, 2011.

[91] M. Kessentini, et al., "Deviance from perfection is a better criterion than
closeness to evil when identifying risky code," in Proceedings of the IEEE/ACM
international conference on Automated software engineering, 2010, pp. 113-122.

[92] Y. A. Khan, “Antipattern based Use Case Refactoring” [online] Available:
https://sourceforge.net/projects/apucrefactoring/, 2012 [Feb. 10, 2013]

[93] Y. A. Khan and M. El-Attar, “Automated transformation of use case maps to uml
activity diagrams,” in ICSOFT, S. Hammoudi, M. van Sinderen, and J. Cordeiro,
Eds. SciTePress, 2012, pp. 184–189.

[94] Y. A. Khan, “Transforming UCMs to ADs - the ATL Code” [online] Available:
https://sourceforge.net/projects/ucmtoumlad/, 2012 [Feb. 10, 2013]

[95] Y. Kim and K.-G. Doh, "The service modeling process based on use case
refactoring," in Business information systems, 2007, pp. 108-120.

http://www.itu.int/rec/T-REC-Z.151/en�
http://www.ohloh.net/p/11712�
https://sourceforge.net/projects/apucrefactoring/�
https://sourceforge.net/projects/ucmtoumlad/�

195

[96] A. G. Kleppe, et al., MDA Explained, the Model Driven Architecture: Practice
and Promise: Addison-Wesley, 2003.

[97] D. S. Kolovos, et al., "Update transformations in the small with the epsilon
wizard language," Journal of Object Technology (JOT), 2003.

[98] P. Kroll and P. Kruchten, The rational unified process made easy: a practitioner's
guide to the RUP: Addison-Wesley, 2003.

[99] P. Kruchten, "Modeling component systems with the unified modeling language,"
in International Workshop on Component-Based Software Engineering, 1998.

[100] F. Khomh, et al., "An exploratory study of the impact of antipatterns on class
change-and fault-proneness," Empirical Software Engineering, vol. 17, pp. 243-
275, 2012.

[101] F. Khomh, et al., "BDTEX: A GQM-based Bayesian approach for the detection of
antipatterns," Journal of Systems and Software, vol. 84, pp. 559-572, 2011.

[102] J. Kovse and T. Härder, "Generic XMI-based UML model transformations,"
Object-Oriented Information Systems, pp. 183-190, 2002.

[103] D. Kulak and E. Guiney, Use cases: requirements in context: Addison-Wesley
Professional, 2004.

[104] J. Küster, et al., "Incremental development of model transformation chains using
automated testing," Model Driven Engineering Languages and Systems, pp. 733-
747, 2009.

[105] J. Küster and M. Abd-El-Razik, "Validation of model transformations–first
experiences using a white box approach," Models in Software Engineering, pp.
193-204, 2007.

[106] M. Lamari, "Towards an automated test generation for the verification of model
transformations," in Proceedings of the 2007 ACM symposium on Applied
computing, 2007, pp. 998-1005.

[107] G. Langelier, et al., "Visualization-based analysis of quality for large-scale
software systems," in Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering, 2005, pp. 214-223.

[108] M. Lawley, “Tefkat: The EMF Transformation Engine” [online] Available:
http://tefkat.sourceforge.net/ [Feb. 10, 2013]

http://tefkat.sourceforge.net/�

196

[109] K. Li, et al., "A Generic Technique for Domain-Specific Visual Language Model
Refactoring to Patterns," Electronic Communications of the EASST, vol. 31, 2011.

[110] W. Li and R. Shatnawi, "An empirical study of the bad smells and class error
probability in the post-release object-oriented system evolution," Journal of
Systems and Software, vol. 80, pp. 1120-1128, 2007.

[111] S. Lilly, "Use case pitfalls: top 10 problems from real projects using use cases," in
Technology of Object-Oriented Languages and Systems, 1999. TOOLS 30.
Proceedings, 1999, pp. 174-183.

[112] Y. Lin, et al., "A testing framework for model transformations," Model-Driven
Software Development-Research and Practice in Software Engineering, pp. 219-
236, 2005.

[113] H. Liu, et al., "Detecting overlapping use cases," Software, IET, vol. 1, pp. 29-36,
2007.

[114] Y.-S. Ma, et al., "MuJava: an automated class mutation system: Research
Articles," Softw. Test. Verif. Reliab., vol. 15, pp. 97-133, 2005.

[115] A. Maiga, et al., "SMURF: A SVM-based Incremental Anti-pattern Detection
Approach," in Reverse Engineering (WCRE), 2012 19th Working Conference on,
2012, pp. 466-475.

[116] “MAPSTEDI” [online] Available: http://mapstedi.sourceforge.net/ [Feb. 10,
2013]

[117] R. Marinescu, "Detection strategies: Metrics-based rules for detecting design
flaws," in Software Maintenance, 2004. Proceedings. 20th IEEE International
Conference on, 2004, pp. 350-359.

[118] S. Markovic, "Model refactoring using transformations," Ph.D. thesis, Faculty of
Computer and Communications, Federal Polytechnic School of Lausanne,
Lausanne, Switzerland, 2008.

[119] S. Markovic and T. Baar, "Refactoring OCL annotated UML class diagrams,"
Model Driven Engineering Languages and Systems, pp. 280-294, 2005.

[120] T. Massoni, et al., "Formal model-driven program refactoring," Fundamental
Approaches to Software Engineering, pp. 362-376, 2008.

http://mapstedi.sourceforge.net/�

197

[121] L. Mattingly and H. Rao, "Writing effective use cases and introducing
collaboration cases," Journal of Object Oriented Programming, vol. 11, pp. 77-
84, 1998.

[122] H. Martínez, "Synthesizing state-machine behaviour from UML collaborations
and Use Case Maps," SDL 2005: Model Driven, pp. 1192-1195, 2005.

[123] J. R. McCoy, "Requirements use case tool (RUT)," in Companion of the 18th
annual ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, 2003, pp. 104-105.

[124] M. J. McGill and B. H. C. Cheng, “Test-driven development of a model
transformation with jemtte,” Technical Report, Software Engineering and
Network Systems Laboratory, Department of Computer Science and Engineering,
Michigan State University, 2007.

[125] J. A. McQuillan and J. F. Power, "White-box coverage criteria for model
transformations," Model Transformation with ATL, p. 63, 2009.

[126] N. Medvidovic, et al., "Modeling software architectures in the Unified Modeling
Language," ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 11, pp. 2-57, 2002.

[127] T. Mens, et al., "Challenges in model refactoring," in Proc. 1st Workshop on
Refactoring Tools, University of Berlin, 2007.

[128] T. Mens, et al., "Applying a model transformation taxonomy to graph
transformation technology," Electronic Notes in Theoretical Computer Science,
vol. 152, pp. 143-159, 2006.

[129] T. Mens, et al., "Detecting structural refactoring conflicts using critical pair
analysis," Electronic Notes in Theoretical Computer Science, vol. 127, pp. 113-
128, 2005.

[130] Miga, et al., "Deriving message sequence charts from use case maps scenario
specifications," in SDL 2001: Meeting UML, 2001, pp. 268-287.

[131] M. Misbhauddin and M. Alshayeb, "Extending the UML Metamodel for
Sequence Diagram to Enhance Model Traceability," in Software Engineering
Advances (ICSEA), 2010 Fifth International Conference on, 2010, pp. 129-134.

[132] N. Moha, et al., "DECOR: A method for the specification and detection of code
and design smells," Software Engineering, IEEE Transactions on, vol. 36, pp. 20-
36, 2010.

198

[133] N. Moha, et al., "Evaluation of Kermeta for solving graph-based problems,"
International Journal on Software Tools for Technology Transfer (STTT), vol. 12,
pp. 273-285, 2010.

[134] J.-M. Mottu, et al., "Static Analysis of Model Transformations for Effective Test
Generation," in ISSRE-23rd IEEE International Symposium on Software
Reliability Engineering, 2012.

[135] J. M. Mottu, et al., "Model transformation testing: oracle issue," in Software
Testing Verification and Validation Workshop, 2008. ICSTW'08. IEEE
International Conference on, 2008, pp. 105-112.

[136] J.-M. Mottu, et al., "Mutation analysis testing for model transformations," in
Model Driven Architecture–Foundations and Applications, 2006, pp. 376-390.

[137] O. Muliawan and D. Janssens, "Model refactoring using MoTMoT," International
Journal on Software Tools for Technology Transfer (STTT), vol. 12, pp. 201-209,
2010.

[138] M. J. Munro, "Product Metrics for Automatic Identification of Bad Smells Design
Problems in Java Source-Code" in Software Metrics, 2005. 11th IEEE
International Symposium, 2005, pp. 15-15.

[139] G. Mussbacher and D. Amyot, "Assessing the applicability of use case maps for
business process and workflow description," in e-Technologies, 2008
International MCETECH Conference on, 2008, pp. 219-222

[140] Object Management Group, “Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification,” [online] Available:
http://www.omg.org/spec/QVT/1.1/PDF/, 2011 [Feb. 10, 2013]

[141] Object Management Group, “OMG Unified Modeling Language Superstructure
Specification,” [online] Available:
http://www.omg.org/spec/UML/2.2/Superstructure/PDF/, 2009 [Feb. 10, 2013]

[142] Object Management Group, “Meta Object Facility (MOF) Core Specification,”
[online] Available: http://www.omg.org/spec/MOF/2.0/PDF/, 2006 [Feb. 10,
2013]

[143] S. Olbrich, et al., "The evolution and impact of code smells: A case study of two
open source systems," in Proceedings of the 2009 3rd International Symposium
on Empirical Software Engineering and Measurement, 2009, pp. 390-400.

http://www.omg.org/spec/QVT/1.1/PDF/�
http://www.omg.org/spec/UML/2.2/Superstructure/PDF/�
http://www.omg.org/spec/MOF/2.0/PDF/�

199

[144] R. Oliveto, et al., "Numerical signatures of antipatterns: An approach based on b-
splines," in Software Maintenance and Reengineering (CSMR), 2010 14th
European Conference on, 2010, pp. 248-251.

[145] W. F. Opdyke, Refactoring Object-Oriented Frameworks, Ph.D. thesis, University
of Illinois at Urbana-Champaign, Urbana, Illinois, 1992.

[146] G. Övergaard and K. Palmkvist, Use cases: patterns and blueprints: Addison-
Wesley, 2005.

[147] D. Petriu, et al., "Traceability and evaluation in scenario analysis by use case
maps," Scenarios: Models, Transformations and Tools, pp. 574-575, 2005.

[148] D. Petriu and M. Woodside, "Software performance models from system
scenarios in use case maps," Computer Performance Evaluation: Modelling
Techniques and Tools, pp. 1-8, 2002.

[149] F. Pettersson, et al., "Automotive use case standard for embedded systems," ACM
SIGSOFT Software Engineering Notes, vol. 30, pp. 1-6, 2005.

[150] A. Pleuss, et al., "Model-driven support for product line evolution on feature
level," Journal of Systems and Software, 2011.

[151] K. Pohl, Requirements Engineering: Fundamentals, Principles, and Techniques:
Springer, 2010.

[152] I. Porres, "Rule-based update transformations and their application to model
refactorings," Software and Systems Modeling, vol. 4, pp. 368-385, 2005.

[153] I. Porres, et al., "Model refactorings as rule-based update transformations,"
«UML» 2003-The Unified Modeling Language. Modeling Languages and
Applications, pp. 159-174, 2003.

[154] R. S. Pressman, Software engineering: a practitioner's approach: McGraw-Hill
Higher Education, 2010.

[155] R. Ramos, et al., "Improving the Quality of Requirements with Refactoring," VI
Simpósio Brasileiro de Qualidade de Software–SBQS2007, Porto de Galinhas,
Recife, Pernambuco, Brasil, 2007.

[156] D. Romano, et al., "Analyzing the Impact of Antipatterns on Change-Proneness
Using Fine-Grained Source Code Changes," in Reverse Engineering (WCRE),
2012 19th Working Conference on, 2012, pp. 437-446.

200

[157] D. Rosenberg and K. Scott, Use case driven object modeling with UML: a
practical approach: Addison-Wesley, 1999.

[158] K. Rui and G. Butler, "Refactoring use case models: the metamodel," in
Proceedings of the 26th Australasian computer science conference-Volume 16,
2003, pp. 301-308.

[159] J. Rumbaugh, et al., The unified modeling language reference manual: Addison-
Wesley, 2005.

[160] O. Ryndia and P. Kritzinger, “Improving Requirements Specification Verification
of Use Case Models with Susan,” Technical Report CS04-06-00, Department of
Computer Science, University of Cape Town, 2004.

[161] I. Sales and R. Probert, "From high-level behaviour to high-level design: Use case
maps to specification and description language," SBRC'2000, 18 Simpósio
Brasileiro de Redes de Computadores, 2000.

[162] D. C. Schmidt, "Model-driven engineering," Computer-IEEE Computer Society,
vol. 39, p. 25, 2006.

[163] G. Schneider and J. P. Winters, Applying use cases: a practical guide: Addison-
Wesley, 2001.

[164] S. Segura, et al., "Automated merging of feature models using graph
transformations," Generative and Transformational Techniques in Software
Engineering II, pp. 489-505, 2008

[165] B. Selic, Real-time object-oriented modeling: Wiley & Sons, 1994.

[166] G. M. Selim, et al., "Model transformation testing: the state of the art," in
Proceedings of the First Workshop on the Analysis of Model Transformations,
Innsbruck, Austria, 2012, pp. 21-26.

[167] S. Sen, et al., "Using Models of Partial Knowledge to Test Model
Transformations," Theory and Practice of Model Transformations, pp. 24-39,
2012.

[168] S. Sen, et al., "Automatic model generation strategies for model transformation
testing," Theory and Practice of Model Transformations, pp. 148-164, 2009.

[169] S. Sendall and W. Kozaczynski, "Model transformation: The heart and soul of
model-driven software development," Software, IEEE, vol. 20, pp. 42-45, 2003.

201

[170] D. Settas, et al., "Enhancing ontology-based antipattern detection using Bayesian
networks," Expert Systems with Applications, 2012.

[171] F. Simon, et al., "Metrics based refactoring," in Software Maintenance and
Reengineering, 2001. Fifth European Conference on, 2001, pp. 30-38.

[172] T. Stahl et al., Model-Driven Software Development: Technology, Engineering,
Management: John Wiley & Sons, 2006.

[173] M. Stephan and J. R. Cordy, "Application of model comparison techniques to
model transformation testing," MODELSWARD. to appear, 2013.

[174] A. Stoianov and I. Sora, "Detecting patterns and antipatterns in software using
Prolog rules," in Computational Cybernetics and Technical Informatics (ICCC-
CONTI), 2010 International Joint Conference on, 2010, pp. 253-258.

[175] The Eclipse Foundation, “ATL – A Model Transformation Technology” [online]
Available: http://www.eclipse.org/atl/, 2013 [Feb. 10, 2013]

[176] The Eclipse Foundation, “Eclipse Indigo” [online] Available:
http://www.eclipse.org/indigo/, 2013 [Feb. 10, 2013]

[177] The Eclipse Foundation, “MDT-UML2Tools” [online] Available:
http://wiki.eclipse.org/MDT-UML2Tools, 2013 [Feb. 10, 2013]

[178] The Eclipse Foundation, “Epsilon” [online] Available:
http://www.eclipse.org/epsilon/, 2012 [Feb. 10, 2013]

[179] G. Travassos, et al., "Detecting defects in object-oriented designs: using reading
techniques to increase software quality," ACM Sigplan Notices, vol. 34, pp. 47-56,
1999.

[180] C. Trubiani and A. Koziolek, "Detection and solution of software performance
antipatterns in palladio architectural models," in ACM SIGSOFT Software
Engineering Notes, 2011, pp. 19-30.

[181] UModel - UML tool for software modeling and application development [online]
Available: http://www.altova.com/umodel.html, 2013 [Feb. 10, 2013]

[182] E. Van Emden and L. Moonen, "Java quality assurance by detecting code smells,"
in Reverse Engineering, 2002. Proceedings. Ninth Working Conference on, 2002,
pp. 97-106.

http://www.eclipse.org/atl/�
http://www.eclipse.org/indigo/�
http://wiki.eclipse.org/MDT-UML2Tools�
http://www.eclipse.org/epsilon/�
http://www.altova.com/umodel.html�

202

[183] D. Wagelaar, et al., "Module superimposition: a composition technique for rule-
based model transformation languages," Software and Systems Modeling, vol. 9,
pp. 285-309, 2010.

[184] J. Wang, et al., "Verifying metamodel coverage of model transformations," in
Software Engineering Conference, 2006. Australian, 2006, p. 10 pp.

[185] T. Weilkiens and B. Oestereich, UML 2 certification guide: fundamental and
intermediate exams: Morgan Kaufmann, 2007.

[186] R. Wieman, Anti-Pattern Scanner: An Approach to Detect Anti-Patterns and
Design Violations: LAP Lambert Academic Publishing, 2011.

[187] R. Wirfs-Brock, "Designing scenarios: Making the case for a use case
framework," The Smalltalk Report, vol. 3, 1993.

[188] L. Xu and G. Butler, "Cascaded refactoring for framework development and
evolution," in Software Engineering Conference, 2006. Australian, 2006, p. 10
pp.

[189] L. Xu, et al., "Use case refactoring: a tool and a case study," in Software
Engineering Conference, 2004. 11th Asia-Pacific, 2004, pp. 484-491.

[190] W. Xue-Bin, et al., "Research and implementation of design pattern-oriented
model transformation," in Computing in the Global Information Technology,
2007. ICCGI 2007. International Multi-Conference on, 2007, pp. 24-24.

[191] W. Yu, et al., "Refactoring use case models on episodes," in Automated Software
Engineering, 2004. Proceedings. 19th International Conference on, 2004, pp.
328-335.

[192] Y. X. Zeng, "Transforming Use Case Maps to the Core Scenario Model
Representation," M.S thesis, Ottawa-Carleton Institute for Computer Science,
University of Ottawa, Ottawa, Ontario, 2005.

[193] J. Zhang, et al., "Generic and domain-specific model refactoring using a model
transformation engine," Model-driven Software Development, pp. 199-218, 2005.

203

Appendix A – UCM Metamodel

Figure 68: UCM metamodel

204

Appendix B – UML 2 AD Metamodel

Figure 69: UML 2 AD metamodel

205

Vitae

Name Yasser Ali Khan

Nationality Indian

Date of Birth 3/10/1987

Email ybakhan@gmail.com

Current Address 802-308, KFUPM, 31261, Saudi Arabia

Permanent Address H.No. 16-4-315, Chanchalguda, Hyderabad, 500024,
 Andhra Pradesh, India

Academic Background Bachelor of Science in Computer Science at King Fahd
 University of Petroleum & Minerals, Dhahran, Kingdom of
 Saudi Arabia

Mobile +966 562102680

	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF CODE LISTINGS
	LIST OF ABBREVIATIONS
	ABSTRACT (ENGLISH)
	ABSTRACT (ARABIC)
	1 CHAPTER 1 INTRODUCTION
	1.1 Model Transformation
	1.2 Antipatterns
	1.3 UCM Notation
	1.4 UML 2 AD Notation
	1.5 UML 2 SD Notation
	1.6 Atlas Transformation Language
	1.6.1 ATL Rules
	1.6.2 ATL Helpers
	1.6.3 ATL Execution Modes
	1.6.4 ATL Module Superimposition

	1.7 Research Question
	1.8 Thesis Objectives
	1.9 Research Methodology
	1.10 Thesis Outline

	2 CHAPTER 2 LITERATURE REVIEW
	2.1 Use Case Quality Improvement
	2.1.1 Using Inspection, Guidelines, and Templates
	2.1.2 Using Automated Verification Tools
	2.1.3 Use Case Refactoring

	2.2 Antipatterns
	2.2.1 Impact of Antipatterns on Quality Attributes
	2.2.2 Antipattern Detection

	2.3 Model Transformation based Model Refactoring
	2.4 Verification of Model Transformations
	2.5 UCM transformations

	3 CHAPTER 3 A MODEL TRANSFORMATION APPROACH TOWARDS REFACTORING USE CASE MODELS BASED ON ANTIPATTERNS
	3.1 Use Case Modeling Antipattern Refactorings
	a1. Accessing a generalized concrete use case
	r1. Concrete to Abstract
	r2. Drop Actor-Generalized UC Association

	a2. Accessing an extension use case
	r3. Drop Actor-Extension UC Association
	r4. Directed Actor-Extension UC Association

	a3. Using extension/inclusion use cases to implement an abstract use case
	r5. Abstract Extended UC to Concrete
	r6. Inclusion to Generalization

	a4. Functional Decomposition: Using the include relationship
	r7. Drop Functional Decomposition
	r8. Drop Functional Decomposition having Inclusion

	a5. Functional Decomposition: Using the extend relationship
	r9. Split Extension UC
	r10. Extension to Generalization

	a6. Multiple generalizations of a use case
	r11. Generalization to Inclusion

	a7. Use cases containing common and exceptional functionality
	r12. Drop Inclusion
	r13. Drop Extension

	a8. Multiple actors associated with one use case
	r14. Generalize Actors
	r15. Spilt UCs

	a9. An association between two actors
	r16. Drop Actor-Actor Association

	a10. An association between use cases
	r17. Drop UC-UC association

	a11. An unassociated use case
	r18. Drop Unassociated UC

	a12. Two actors with same name
	r19. Rename Actor

	a13. An actor associated with an unimplemented abstract use case
	r20. Abstract to Concrete
	r21. Add Concrete UC

	3.2 Case Study
	3.2.1 Definition and Motivation
	3.2.2 Formulation
	3.2.3 Model Transformations
	Database Access Subsystem
	Database Queries Subsystem
	Database Integrator Subsystem
	Database Edits Subsystem
	Administrative Process Subsystem
	Merged View

	3.3 Evaluation

	4 CHAPTER 4 AUTOMATED TRANSFORMATION OF USE CASE MAPS TO UML 2 ACTIVITY DIAGRAMS
	4.1 UCM to UML 2 AD mappings
	4.2 Transformation Rules
	4.2.1 Entry point and Matched Rule
	4.2.2 Lazy Rules
	4.2.3 Called Rules
	4.2.4 Helpers

	4.3 Case Studies
	4.3.1 Elevator Control System
	4.3.2 Mock System
	Source Model
	Target Model

	4.4 Target Model Verification

	5 CHAPTER 5 DERIVING UML 2 SEQUENCE DIAGRAMS FROM USE CASE MAP SCENARIO SPECIFICATIONS
	5.1 UCM to UML 2 SD mappings
	5.1.1 Components and Responsibilities
	Bounded Start or End Points

	5.1.2 OR-forks
	5.1.2.1 Terminating Alternate Path
	5.1.2.2 Loops
	5.1.2.3 Loops (Alternate)

	5.1.3 AND-forks
	5.1.4 Waiting Point
	5.1.5 Timer
	5.1.6 Failure Point
	5.1.7 Nested Components
	5.1.8 Stub
	5.1.9 Dynamic Stubs

	5.2 Transformation Rules
	5.3 Case Study
	5.3.1 Source Model
	5.3.2 Scenario Extraction
	5.3.3 Transformation
	Scenario S1
	Scenario S5
	Scenario S8
	Scenario S12

	6 CHAPTER 6 A MUTATION FRAMEWORK FOR MODEL TRANSFORMATIONS
	6.1 ATL Mutation Testing Approach
	6.2 ATL Mutation Operators
	6.2.1 Matched to Lazy (M2L)
	6.2.2 Lazy to Matched (L2M)
	6.2.3 Delete Attribute Mapping (DAM)
	6.2.4 Add Attribute Mapping (AAM)
	6.2.5 Delete Filtering Expression (DFE)
	6.2.6 Add Filtering Expression (AFE)
	6.2.7 Change Source Type (CST)
	6.2.8 Change Target Type (CTT)
	6.2.9 Change Execution Mode (CEM)
	6.2.10 Delete Return Statement (DRS)

	6.3 ATL Mutation Operator Analysis
	6.3.1 Number of Generated ATL Mutants
	6.3.2 Equivalent ATL Mutants
	6.3.3 Other Remarks

	6.4 MuATL (Mutation Toolkit for ATL)
	6.5 Case Study: UCM to UML 2 AD Transformation
	6.5.1 Test Cases
	6.5.2 Generated Mutants
	6.5.3 Mutation Analysis Results
	6.5.4 Test Suite Enhancement

	6.6 Discussion

	7 CHAPTER 7 CONCLUSION AND FUTURE WORK
	7.1 Thesis Summary
	7.2 Future Work

	References
	Appendix A – UCM Metamodel
	Appendix B – UML 2 AD Metamodel
	Vitae

