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ABSTRACT (ENGLISH) 

 

Full Name : Yasser Ali Khan 

Thesis Title : Embracing Model Transformations in Functional Requirements 

Specification 

Major Field : Software Engineering 

Date of Degree : May 2013 

 

Functional Requirements Specification (FRS) is a software process activity that 

involves documenting the intended behavior of a system-to-be. Use case modeling is a 

common approach used in FRS for Object-Oriented systems. Since use case modeling is 

performed early in a software development cycle, any defects in a use case model will 

propagate to subsequent development phases and artifacts. Therefore, it is crucial to 

produce high quality use case models, especially in use case-driven approaches. Previous 

work on use case quality improvement performed manual refactoring on use case models. 

Use case models of large scale complex software systems usually contain thousands of 

use cases. For such use case models, manual refactoring will be prone to human errors, 

leading to new defects being injected into the models. In order to avoid this issue, a fully 

automated process for carrying out the refactorings is necessary. Another approach used 

in FRS is scenario modeling, which is performed in conjunction with use case modeling. 

Uses cases are described in natural language as scenarios, which are modeled in detail as 

UML activity and sequence diagrams. A large conceptual gap exists between use cases 



 

xxiv 

 

and UML design; consequently, developers may produce UML models that do not 

accurately represent the required behavior of a use case. The Use Case Map (UCM) 

scenario modeling notation aids in bridging this conceptual gap. However, to date, the 

UCM notation is not part of the UML modeling language. As such, there lacks research 

in the area of transforming UCMs into UML design models. Model transformation is an 

automated technique that can greatly improve several software development activities. 

This thesis presents an approach that leverages model transformation to execute use case 

model refactorings, and transform UCM scenario specifications into UML 2 activity 

diagram and sequence diagram notations. The proposed approach will present a case for 

software developers to embrace the notion of model transformation in the context of FRS. 

Furthermore, a fault-based technique is proposed for thorough verification of model 

transformations. Case studies are presented for evaluating the effectiveness of the proposed 

approach. The results obtained show that model transformations can efficiently improve 

FRS by saving time and effort.  
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ABSTRACT (ARABIC) 

 ملخص الرسالة

 

 

 ياسر علي خان :الاسم الكامل

 

 لاعدة تنشيط صناعة أنظمه البرمجيات" تحويل نماذج البرامج"الاستفادة من تقنتة  :الرسالةعنوان 

 

 هندسة البرمجيات :التخصص

 

 ۲۰۱۳مايو  :تاريخ الدرجة العلمية

 
نموذج حالة الاستخدام  ،من توثيق الوظائف المطلوبة في  النظامضتوصيف متطلبان النظام  هي عباره عن  عملية تت

بما إن نموذج حالة . تستخدم في توصيف متطلبات النظم غرضية التوجه عن تقنيه او طريقه مشتركه عباره

فإن أي عيوب في نموذج حالة الاستخدام يتم   ;الاستخدام يتم تنفيذها في وقت مبكر من دورة تطوير البرمجيات 

م إنتاج نماذج حالة استخدام ذات جودة لذا فمن الأهمية بمكان أن يت. نشرها إلى مراحل التطور اللاحق والوثائق

العمل السابق بشأن تحسين جودة حالة الاستخدام   .ام طرق ممنهجه لحالات الاستخدامعالية، وخاصة في استخد

نماذج حالة الاستخدام في النظم المعقده في العادة تتكون من آلالاف  .بإجراء إعادة صياغه لنماذج حالة الاستخدام

على سبيل المثال حالة الاستخدام و إعادة الصياغ  لحالة الاستخدام بشكل يدوي تكون عرضه . اممن حالات الاستخد

يتم عملية   من أجل تجنب هذه المشكلة مما يؤدي إلى عيوب جديدة التي يجري حقنها في نماذج, للأخطاء البشرية 

هو  أخرى في توصيف متطلبات النظام طريقة وهناك  .إعادة الصياغ  لحالات الاستخدام بطريقة  مؤتمتة بالكامل

حالات الإستخدام يتم وصفها .  النمذجة باستخدام السيناريو، والتي تتم بالتزامن مع استخدام النمذجة لحالة الاستخدام

توجد  .والتي تنموذج بتفصيل باستخدام لغة النمذجة الموحدة والإشكال المتسلسله, بالغة الطبيعية كاسيناريوهات 

كبيره بين حالات الاستخدام وتصاميم لغة النمذجة الموحدة  وبالتالي فإن المصممون ربما  يقومون بإنتاج  هناك فجوه

خرائط حالات الإستخدام  .نماذج من لغة النمذجه الموحدة  والتي لا تمثل بدقة السلوك المطلوب لحالات الاستخدام

. لة الاستخدام لا تعتبر جزء من لغة النمذجة الموحدةومع ذلك، حتى الآن  فإن رموز حا. تعمل على سد هذه الفجوة
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. على هذا النحو  فإن عملية التحويل من حالات الإستخدام الى تصاميم لغة النمذجة الموحدة تفتقر لكثير من البحوث

 يقدم هذا. نموذج التحويل هو عباره عن  اسلوب آلي  يمكن عن طريقه تحسين  الكثير من أنشظة تطوير البرمجيات

البحث اسلوب او طريقه تمكن نموذج التحويل من تنفيذ إعادة الصياغ لحالات الاستخدام و تحويل توصيفات 

والنهج المقترح  .والإشكال المتسلسلة الثانيالسيناريو لحالات الاستخدام إلى  مخطط الأنشطة للغة النمذجة الموحودة 

  .وظيفية مواصفات المتطلبات تحول النموذجي في سياقتقديم الحال بالنسبة لمطوري البرمجيات لتبني مفهوم ال

تم تقيم فاعلية هذا التكنيك  .وعلاوة على ذلك، تم إقتراح تقنية على أساس الخطأ للتحقق من التحولات النماذج

النتائج التي تم الحصول عليها تثبت بإن هذا النموذج لتحويل يساعد في . باستخدام بعض التجارب او درسات الحاله

 تطوير توصيفات متطلبات النظم عن طريق حفظ الوقت والجهد
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1 CHAPTER 1 

INTRODUCTION 

Functional Requirements Specification (FRS) is a software process activity that 

involves documenting the intended behavior of a system-to-be. Use case modeling is a 

common approach used in FRS for Object-Oriented (OO) systems. A UML  [159] use 

case model provides a visual summary of the use cases, actors and their relationships. 

Use cases are descriptions of services provided by the system, and actors represent the 

entities that require these services. Since use case modeling is performed early in a 

software development cycle, any defects in a use case model will propagate to subsequent 

development phases and artifacts. The cost of fixing defects in later phases is three to six 

times more than during requirements engineering  [154]. Moreover, requirements defects 

are most common reason for project failure, and budget overruns  [151]. Therefore, it is 

crucial to produce high quality use case models, especially in use case-driven approaches. 

To this end, early detection of defects in use case models will significantly improve 

overall product quality. 

Another approach used in FRS is scenario modeling, which is performed in 

conjunction with use case modeling. Uses cases are described in natural language as 

scenarios, which are modeled in detail as UML activity and sequence diagrams. A 

scenario is a sequence of interactions, including invariants, between actor and system that 
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are performed in order to yield an observable result to the actor. A large conceptual gap 

exists between use cases and UML design  [10]; consequently, developers may produce 

UML models that do not accurately represent the required behavior of a use case.  

Use case modeling guidelines  [111] [157], use case description templates  [32] [45], 

and automated use case verification tools  [29] [160] have been proposed in the literature 

as means for improving the quality of use case models. In addition to these approaches, 

the concept of source code refactoring has been extended for use case models in order to 

improve their quality  [40] [158] [188] [191]. In earlier work, El-Attar et al. 

 [18] [19] [20] [22] presented an antipatterns based approach to improve quality in use case 

models. An antipattern based approach is one that is based on learning from previous 

experiences and mistakes. Antipatterns are textually described to help its users 

understand, detect and fix designs that are likely to have harmful consequences 

downstream. In order to fix problematic designs, an antipattern usually prescribes a set of 

refactorings to be applied to the use case model. In their technique, antipattern detection 

is performed in a semi-automated manner. However, the required refactoring tasks are 

carried out manually. Use case models of large scale complex software systems usually 

contain thousands of use cases  [29]. For such use case models, performing the prescribed 

refactorings manually will be prone to human errors, leading to new defects being 

injected into the models. In order to avoid this issue, a fully automated process for 

carrying out the refactorings is necessary. 

The Use Case Map (UCM)  [38] [39] scenario modeling notation aids in bridging the 

conceptual gap between natural language scenarios and high-level design. UCMs have 



 

3 

 

been successfully used for documenting scenarios in telecommunication systems  [9] [14], 

web applications  [6], agent based systems  [2] [59], and operating systems  [31]. Moreover, 

UCM is a competitive modeling language, and offers additional benefits compared to 

other notations  [139]. These benefits include integration with goal models in the URN; 

support for modularization of complex scenarios; integration with simple a metamodel, 

performance annotations, and a simple action language for analysis. Amyot et al.  [10]  

proposed an extension of UML 1.3 with UCM core concepts for the purpose of 

introducing a new “UCM View” to the existing set of UML views.  However, to date, the 

proposed “UCM View” is not a UML standard. As such, there lacks research in the area 

of transforming UCMs into UML design models.  

Model transformation is an automated technique that can greatly improve several 

software development activities including model refactoring  [169]. Model 

transformations approaches have been proposed in the literature for applying design 

patterns  [190]; refactoring UML class diagrams  [119] [153], UML activity diagrams  [58], 

and KAOS models  [42]; and product line evolution  [150]. This thesis presents an 

approach that leverages model transformation to execute use case model refactorings, and 

transform UCM scenario specifications into UML 2 Activity Diagram (AD) and 

Sequence Diagram (SD) notations. 

Faults in model transformations may result in defective models, and eventually 

defective code. Correction of defects at the code level is considered very late and is often 

expensive. Hence, defects must be detected and rectified early in the software process. 

Uncorrected defects in the models will propagate to other artifacts; thus, adversely affect 
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the quality of the end product. Moreover, defect propagation may result in a system that 

does not meet the stakeholders’ requirements. Therefore, model transformations must be 

thoroughly tested to maintain product quality while keeping development cost at 

reasonable levels. Although, verification of model transformations may benefit from 

existing software testing techniques, the nature of the input and output data manipulated 

by transformations makes these activities more complex. Indeed, transformation 

programs manipulate models, which are complex data structures, making the problem of 

test data generation and selection, as well as oracle definitions, very difficult  [15]. In the 

literature, many model transformation testing approaches have been studied. These 

approaches range from partial to full validation of the transformation’s behavior and 

associated properties.  

The mutation testing technique is considered as the “gold standard” of software 

testing. Several studies in the literature have empirically evaluated the effectiveness of 

mutation testing on traditional programs  [84]. It has been shown that mutation testing 

detects more faults than coverage based techniques. Existing literature on testing model 

transformations has considered these techniques. Therefore, there is a need to perform 

mutation testing of model transformations. In order to do so, mutation operators must be 

defined for the various model transformation languages. Previous work  [136] on mutation 

testing of model transformations defined generic mutation operators that must be adapted 

for different model transformation languages. In this thesis, a suite of mutation operators 

are proposed for the Atlas Transformation Language (ATL)  [85] [175], so that model 

transformation developers can practice mutation testing; therefore, gain its benefits.     
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1.1 Model Transformation 

Model Driven Engineering (MDE)  [89] [162] [172] is an approach to software 

development that allows developers to focus on high-level abstractions (models) of 

software rather than low-level implementations (code). In MDE, models can be refined to 

lower levels of abstraction, refactored to improve maintainability and readability, 

transformed to other models, and used to generate code  [169]. The MDE approach aims 

to provide automated support to carry out these tasks.  

One of the key components of the MDE approach is model transformation. A 

model transformation is the automated translation of a source model to a target model 

based on a set of transformation rules  [96]. A rule defines how elements in a source 

model map to elements in a target model. The source and target models must conform to 

a well defined metamodel, which specifies the language (syntax and semantics) of the 

models  [64].  

Model transformations can be categorized in a number of ways  [128]. Based on the 

number of source and target models there are one-to-one, one-to-many, many-to-one and 

many-to-many model transformations. If the source and target models conform to the 

same metamodel, their model transformation is referred as endogenous. The model 

transformations presented in Section  3.1 are endogenous. Exogenous model 

transformations are transformations between models which conform to distinct 

metamodels. For example, a model transformation that derives a UML class diagram 
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from multiple UML SDs is a many-to-one exogenous model transformation. The UCM to 

AD, and UCM to SD model transformations presented in Section  4.2 and Section  5.2, 

respectively, are exogenous. Endogenous model transformations are further classified 

into in-place and out-place. In an in-place transformation, a single model serves as both 

source and target; whereas in an out-place transformation, the source is ready only, while 

the target model is write only. Exogenous transformations are always out-place since the 

source and target models are of distinct type. A vertical model transformation results in 

the source and target models at different levels of abstraction, whereas in a horizontal 

model transformation, they are at the same level of abstraction  [72]. A transformation 

that derives source code from a UML class diagram is a vertical model transformation. 

Model refactorings are an example of horizontal endogenous model transformations. A 

unidirectional model transformation can only transform a source model to a target model, 

whereas a bidirectional model transformation can take as input models of target type and 

produce models of source type  [50].  

To implement common model transformation tasks, a number of specialized 

transformation languages have been proposed such as ATL  [85] [175], 

Query/View/Transformation (QVT)  [140], Tefkat  [108], and Epsilon  [178]. Although the 

problem domain of these languages is same, they differ in the employed programming 

paradigms (declarative, imperative, object-oriented, functional, etc.)  [86].  
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1.2 Antipatterns 

An antipattern can be defined as a potentially bad solution to a commonly 

occurring design problem. Antipatterns are the opposite of design patterns, which 

represent good design practices, and result in high quality software. Antipatterns may 

occur when inexperienced designers attempt to incorporate design patterns in an incorrect 

context. Presence of antipatterns in a given design alerts the modeler of possible design 

flaws. Refactoring an antipattern instance changes the flaws into a healthy solution. 

Several antipatterns have been documented in the literature such as blob (also known as 

god class), functional decomposition, swiss army knife, poltergeists and spaghetti code 

 [36]. Bad design practices at the code level are known as bad smells in the literature. Bad 

smells are fine-grained, and can be detected from code; on the contrary, antipatterns are 

coarse grained, and can be detected at the design level  [70]. Several bad smells exist in 

the literature such as data class, shotgun surgery, long method, and lazy class  [71]. In this 

thesis, we focus on bad design practices at the requirements level, i.e. use case modeling 

antipatterns, and propose a model transformation approach for their detection and 

refactoring. 

An antipattern provides means to change a fallacious solution to a proper one by 

providing some key information. In the context of use case modeling, an antipattern will 

describe an unsound description, and its potential harmful consequences downstream in 

the development process. An antipattern description will also explain why such an 

unsound structure may have seemed appropriate in the first place. Most importantly, an 
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antipattern description will describe the appropriate structure that should be used instead. 

The information used to describe an antipattern should be obtained from actual practice. 

Antipatterns are usually described using a template. The templates presented in 

 [18] [19] [20] [22] were specifically designed to describe use case antipatterns. 

 

1.3 UCM Notation 

A UCM consists of one or more paths each of which represent a use case scenario. 

A path starts at a start point (filled circle) and ends at an end point (bar). The actions 

performed by the system or use case actor along these paths are responsibilities (cross). 

These responsibilities can be bound to components—actors, agents, teams, objects and 

processes.  

An actor component (rectangle including a stickman) represents a stakeholder who 

is associated with the system through a number of usage scenarios. Software agents in 

agent-oriented systems can be represented by the agent component (rectangle with a dark 

border). Teams (rectangle) represent high level abstract components that can be further 

decomposed into multiple levels of other component types. However, objects (box with 

rounded corners), which represent instances of a class, cannot be further decomposed. 

Processes (slanted rectangle) are executing components of a system and may include 

object components.  
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An OR-fork divides a path into one or more alternative paths based on a guard 

condition. Concurrent paths emerge from AND-forks (bar). Common paths are merged by 

OR-joins and concurrent paths are synchronized by AND-joins (bar). Erroneous situations 

that may stop the flow of a path are represented by failure points (ground). Timers (clock) 

express the amount of time to wait before a path can progress further. A waiting place 

(filled circle and bar) allows a path to wait for another path to finish before it can 

continue.  

Stubs (diamond) are containers for nested maps. Stubs are useful for refactoring 

complex UCMs via modularization. The interested reader may refer to Buhr and 

Casselman’s  [39] book on UCMs for more details on its notation. Figure 1 summarizes 

the UCM notation. 

 

 

Figure 1: UCM notation 
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1.4 UML 2 AD Notation 

An activity in an AD is a directed graph comprising of activity nodes and activity 

edges. The Object Management Group’s (OMG) UML superstructure specification  [141] 

defines three types of activity nodes—action nodes, object nodes and control nodes. 

Control flow is an activity edge that represents the transitions between activity nodes. 

Action nodes exchange messages with each other through the object flow edge. Both 

control and object flows are represented as an arrow.  

Action nodes (box with rounded corners) represent the actions to be performed by 

the system being modeled within a particular context. The exchange of messages between 

actions is modeled by object nodes. Control nodes coordinate the execution of an AD. 

The flow of an activity starts at an initial node (solid circle) and stops at a final node 

(solid circle surrounded by hollow circle). Concurrent flows of control emerge from fork 

nodes. Alternate flows of control initiate from decision nodes. Join nodes synchronize 

concurrent flows, and merge nodes combine alternate flows.  

Activity partitions or swimlanes are regions on an activity surrounded by parallel 

lines, either horizontal or vertical. They group related nodes together, represent 

organizational units such as classes  [159] and may nest other partitions. A structured 

activity node (dashed box with rounded corners) is defined as “an executable activity 

node that may have an expansion into subordinate nodes as an ActivityGroup”  [141]. 

ActivityGroup refers to an abstract meta-class in the UML 2.2 metamodel, which groups 

a set of activity nodes and edges  [185]. Activity partitions and structured activity nodes 
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inherit from this metaclass. The interested reader may refer to the OMG UML 2.2 

specification  [141] for more details on AD notation. Figure 2 summarizes the UML 2 AD 

notation. 

 

 
Figure 2: UML 2 AD notation 

 

1.5 UML 2 SD Notation 

SDs model OO system scenarios as a sequence of interactions between system 

objects, represented as lifelines. Actors (users or external systems) that interact with the 

system objects are also depicted as lifelines. SD can model scenarios at different levels of 

detail; in a high-level SD, a lifeline can be a system, subsystem, or component, whereas 

detailed SDs include boundary, controller and entity objects as lifelines.  

The different lifelines communicate by passing messages to one another. Messages 

are represented as arrows connecting a source and target lifeline. The different types of 

messages in the UML 2 notation are synchronous, asynchronous, create, destruct and 

reply. If a source lifeline sends a synchronous message, it waits for a response from the 

target lifelines. In asynchronous messaging, the source continues its execution after 
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sending a message. Create messages depict initialization of target lifelines, whereas 

destruct messages depict their destruction. 

InteractionUse allows a SD to reference another one; therefore, enables multiple 

SDs to share common interaction sequences. Gates are connection points which pass 

messages to or from a SD. External messages coming through a gate initiate execution of 

a SD. Terminating messages in a SD are passed out through a gate. State invariants 

indicate the state of a lifeline at a particular point of time in a SD’s execution. A state can 

indicate the value of an attribute or variable, or constraints on the lifeline.        

Fragments are regions on a SD that group related messages together. One or more 

operands form the body of a fragment. Each operand has a guard, a boolean expression, 

which must evaluate to true for the operand to execute. Twelve different types of 

fragments are defined in the UML 2 specification. Alternate flows in a scenario are 

represented by the alt fragment. The par fragment represents concurrent execution of 

operands. The termination of a break fragment indicates that remainder of the messages 

in its enclosing fragment, or SD, will not execute. The loop fragment can depict repeated 

behavior in a scenario. The interested reader may refer to the OMG UML 2.2 

specification  [141] for remainder of the fragments, and more details on the SD notation. 

Figure 3 summarizes the UML 2 SD notation.  
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Figure 3: UML2 SD notation 

 

1.6 Atlas Transformation Language 

ATL is a model transformation language that provides declarative and imperative 

constructs for implementing model-to-model transformations. The input to an ATL 

transformation includes one or more source models. The output of an ATL 

transformation is, typically, one target model. Figure 4 illustrates an ATL transformation 

pattern. In the pattern, a source model Ma is transformed into a target model Mb 

according to a transformation definition mma2mmb.atl, written in ATL. The 

transformation definition is also regarded as a model. The source and target models, and 

the transformation definition conform to their metamodels MMa, MMb, and ATL 

respectively. The metamodels conform to the MOF metametamodel  [142].  
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Figure 4: Overview of ATL model transformations 

 

1.6.1 ATL Rules 

An ATL model transformation is specified in a module, which contains a set of 

rules. ATL allows developers to specify two types of rules, declarative and imperative. 

Declarative rules are also referred as matched rules in ATL. Imperative rules must be 

explicitly invoked in an ATL module by the programmer, whereas matched rules are 

implicitly called at runtime. Rule AtoB in Table 1 is an example of a matched rule. In 

AtoB rule, s refers to an object of type A, and t refers to an object of type B. A and B are 

metaclasses defined in the source and target metamodels, respectively, of AtoB’s 

enclosing module. In the mapping statement “b1 <– s.a1”, a1 and b1 refer to attributes of 

the classes A and B, respectively.  

ATL includes two kinds of imperative rules, lazy rules and called rules. They differ 

in their implementations, but their functionalities are identical. Both are defined within 
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the context of their corresponding module; thus, they are invoked using the thisModule 

keyword, which is equivalent to Java’s this keyword. The definition of a lazy rule does 

not include formal parameters; however, when they are invoked the source object must be 

passed as an actual parameter. The mapping statement “b2 <– thisModule.CtoD(s.a2)” in 

AtoB (see Table 1) invokes the lazy rule CtoD. The actual parameter passed to CtoD is 

s.a2.  

Called rules may or may not contain formal parameters. They can be further 

classified into mapping and non-mapping. The former contains a mapping from a source 

instance to target instance, whereas the latter contains none. For instance, the called rule 

EtoF in Table 1, contains a to clause “t: F”, whereas the called rule PrintF does not 

contain a to clause. The do block, in called rules, allows developers to specify imperative 

statements. For example, f.println() is an imperative statement in rule PrintF (see Table 

1). Imperative statements are optional in matched and lazy rules, whereas they are 

mandatory in called rules. In mapping called rules, the last statement of the do block 

must return the target object. For instance, the statement “t;” returns the target object in 

rule EtoF. 
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Table 1: Example of matched, lazy, mapping called, non-mapping called rules 

Matched Rule Lazy Rule Mapping Called 
Rule 

Non-Mapping 
Called Rule 

rule AtoB { 
  from s : A  
  to t: B ( 
    b1 <- s.a1, 
    b2 <- thisModule.CtoD(s.a2), 
    b3 <- thisModule.EtoF(s.a3) 
  ) 
} 

lazy rule CtoD  
{ 
  from s : C  
  to t: D ( 
    …………… 
  ) 
} 

rule EtoF(s: E)  
{ 
  to t: F ( 
    …………… 
  ) 
  do { 
    PrintF(t); 
    t;   
  } 
} 

rule PrintF(s: F) 
{ 
  do { 
    f.println()   
  } 
} 

1.6.2 ATL Helpers 

Helpers are the ATL equivalent of methods in the OO paradigm. Helpers are 

written in the context of a source metaclass. They enable querying of source model 

objects. Helpers differ from rules since they do not create target model objects. 

Parameter-less helpers are referred as attributes. Table 2 shows an example of a helper, 

and an attribute. The helper findB, defined in the context of metaclass A, is defined to 

find object b, of type B, in attribute a1. The attribute isPositive, defined in the context of 

A, is defined to determine whether the value of attribute a2 is greater than zero or not.          

 
Table 2: Example of ATL helper and attribute 

Helper Attribute 
helper context A def: findB(b: B) 
  : B = self.a1->any(i | i = b); 

helper context A def: isPositive 
  : Boolean = self.a2 > 0;  

  

1.6.3 ATL Execution Modes 

ATL modules can execute in two modes, default and refining. Default mode is the 

normal execution mode of ATL transformations and it is specified by the from keyword. 

Default mode is intended for exogenous model transformations; therefore, the UCM to 
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AD, and UCM to SD transformation rules in Section  4.2 and Section  5.2, respectively, 

are implemented in default mode. Refining mode is applicable only for endogenous 

model transformations; therefore, some of the use case model refactorings presented in 

Section  3.1 are implemented in refining mode. Typically in model refactoring, only few 

objects of the source model undergo changes, whereas the remaining objects are copied 

into the target model. Refining mode allows developers to define rules only for those 

objects that need to be transformed; the remaining objects will be implicitly copied into 

the output model. Therefore, refining mode is an excellent choice for implementing 

model refactorings. However, the use of refining mode is limited as it does not allow 

developers to specify imperative rules. Consequently, remainder of the use case model 

transformations presented in Section  3.1 are implemented in default mode.  

Table 3 shows an example of modules in default mode and refining mode. Module 

A is defined in default mode, whereas module B is defined in refining mode. 

     
Table 3: Example of modules in default mode and refining mode 

Default mode Refining mode 
module A; 
create OUT : UML from IN : UML; 

module B; 
create OUT : UML refining IN : UML; 

 

1.6.4 ATL Module Superimposition 

Module superimposition  [183] is mechanism that enables the reuse of generic rules 

across multiple ATL modules. Let module A contain the set of rules 𝑅𝐴 = {𝑎1,𝑎2,𝑎3}, 

and module B contain the set of rules 𝑅𝐵 = {𝑏1, 𝑏2, 𝑏3}. If B is superimposed on A, then 
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the superimposed module S will contain set of 

rules 𝑅𝑆 = 𝑅𝐴 ∪ 𝑅𝐵 = {𝑎1,𝑎2,𝑎3, 𝑏1, 𝑏2, 𝑏3}. If 𝑎1 and 𝑏1 have the same name, then 𝑏1 

will overwrite 𝑎1 resulting in 𝑅𝑆 = { 𝑎2,𝑎3, 𝑏1, 𝑏2, 𝑏3}. The developer must make sure 

that superimposition results in a confluent  [129] set of rules, in which no two rules must 

be applicable on the same source object. 

Although refining mode is ideal for defining model refactorings, it cannot be used 

in situations where the developer wants to write imperative code. This forces the 

developer to implement his desired model refactorings in default mode. In model 

refactoring, a large number of model objects remain unchanged, and must be copied from 

the source model into the target model. In refining mode, this copying is performed 

automatically by the ATL virtual machine. On the other hand, default mode requires the 

developer to define trivial rules for copying each unchanged model object. This becomes 

tedious when implementing a large suite of model transformations, and results in code 

(rule) duplication across the different modules. This problem can be averted using 

module superimposition, which allows the implementation of reusable modules. 

Therefore, module superimposition is an alternate way to efficiently implement model 

refactorings. Module superimposition was used in every default mode model 

transformation presented in Section  3.1. ATL rules for copying use case model objects 

were defined in separate modules, and superimposed on relevant model transformations.  
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1.7 Research Question 

The main research question that we aim to answer in this thesis is the following: 

How can model transformation techniques to be used to improve the Functional 

Requirements Specification (FRS) activity of a software process? 

The research question will be answered in two folds by defining and implementing 

model transformations for: 

• Improving the quality of use cases 

• Deriving high-level design models (ADs and SDs) from  UCM scenario 
specifications 

The proposed model transformations will present a case for software developers to 

embrace the notion of model transformation in the context of FRS. 
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1.8 Thesis Objectives 

The objectives of this thesis are as follows: 

1. Propose a fast, efficient, and scalable technique for improving the FRS activity. 
By FRS, we refer to use case modeling and scenario modeling.  

2. Implement the proposed technique using various tools 

3. Demonstrate the feasibility of the proposed technique on case studies that pertain 
to real-world software systems 

4. Compare the results of the proposed technique with previous work in order to 
identify its significance.  

5. Propose and implement a framework for enabling thorough verification of the 
proposed technique. 

 

1.9 Research Methodology 

The research methodology followed in thesis is as follows: 

Literature Review 

A literature review was performed to study the existing techniques for improving 

FRS. Throughout this work, the literature was rigorously reviewed for understanding the 

related work done in this domain.  

Propose Model Transformation Techniques 

After the initial analysis of existing techniques, a new model transformation 

technique for improving FRS was proposed. We improve FRS by enhancing the quality 



 

21 

 

of use case models in an efficient and scalable manner, and by automatic derivation of 

high-level design models from UCM scenario specifications.   

Implementation of the Proposed Techniques 

The tools used for the implementation of the proposed model transformation techniques 

are: 

1. Integrated Development Environment – Eclipse Indigo  [176] 

2. Integrated Development Environment –  Visual Studio 2012 

3. Model Transformation Language – ATL  [85] [175] 

4. Eclipse based UCM modeling tool – jUCMNav  [87] 

5. Eclipse based UML modeling tool – UML 2 Tools  [177] 

6. UML modeling tool – Altova UModel 2008  [181] 

 

Evaluation of the proposed techniques 

After successful implementation of the proposed model transformation technique, 

its effectiveness was assessed on case studies.  

The proposed antipatterns based use case quality improvement technique was 

evaluated on the use case models of MAPSTEDI (Mountains and Plains Spatio-Temporal 

Database Informatics) system  [116]. The MAPSTEDI system is a distributed database 

system that integrates biodiversity data collections from three sources, the University of 

Colorado Museum, the Denver Museum of Nature and Science, and the Denver Botanic 

Gardens. The integrated database contains 285,000 biological specimens. The system will 
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allow geocoders to analyze biodiversity data in the southern and central Rocky 

Mountains. A map based GUI is provided by MAPSTEDI to allow users to 

geographically reference the specimens. 

The UCM to UML 2 AD, and the UCM to UML 2 SD, model transformations were 

validated using the UCM of an Elevator Control System (ECS), which is available at  [8]. 

The UCM was adapted from “Designing Concurrent, Distributed and Real-Time 

Applications with UML”  [74]. Another case study which covers the entire UCM 

notational set is also presented for illustrating the UCM to UML 2 AD model 

transformation. The framework for thorough validation of the proposed techniques is 

validated on the UCM to UML 2 AD model transformation. 

Conclusion  

The conclusion of the thesis summarizes the research performed, and its benefits. In 

addition, future research directions in the area of MDE are discussed. 

Thesis Writing  

This research was documented in a thesis form which was rigorously updated based 

on inputs from the thesis advisor, Dr. Mohamed El-Attar, and committee members, Dr. 

Mahmoud Elish and Dr. Sajjad Mahmood. Finally, it was submitted to the Deanship of 

Graduate Studies (DGS) once approved. 
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1.10 Thesis Outline 

The remainder of this thesis is organized as follows. Chapter 2 presents related 

work on quality improvement of use case models, antipatterns, model transformation 

based model refactoring, verification of model transformations, and transformation of 

UCMs to other modeling notations. Chapter 3 presents a model transformation approach 

for improving the quality of use case models, and presents a real-world case study to 

evaluate the effectiveness of the proposed approach. The case study pertains to the use 

case model of a bio-diversity database system. Chapter 4 defines a model transformation 

for deriving UML 2 ADs from UCMs, and presents two case studies to illustrate the 

transformation. The first pertains to an Elevator Control System (ECS), and the second 

pertains to a mock system. Chapter 5 defines mappings from UCM constructs to UML 2 

SD notation, and defines a model transformation to implement the mappings. A more 

refined version of the ECS case study is used to demonstrate the transformation. Chapter 

6 proposes a suite of mutation operators for fault based verification of ATL 

transformations, and evaluates their effectiveness on the UCM to UML 2 AD model 

transformation. Chapter 7 concludes the thesis and discusses future work.  



 

24 

 

2 CHAPTER 2 

LITERATURE REVIEW 

This chapter presents a survey of the related literature on use case quality 

improvement techniques, antipatterns, model transformation based model refactoring, 

verification of model transformations, and transformation of UCMs to other modeling 

notations.  

 

2.1 Use Case Quality Improvement 

2.1.1 Using Inspection, Guidelines, and Templates  

Use case inspection is a strongly suggested method for ensuring consistency of use 

case models  [17] [103] [163]. A checklist-based inspection technique was presented in 

 [11] based on best practices provided in  [17] [163]. The usage of this technique is limited 

as it requires a great deal of use case modeling expertise. Linguistic techniques have been 

suggested for detecting defects in use case descriptions  [63]. However, they are not 

adequate for ensuring correctness and consistency of requirements.  

Styling and content related guidelines which enhance consistency in use case 

descriptions are presented in  [3]. Experimental evaluation revealed that the guidelines in 

 [3] do not necessarily improve the correctness of use case descriptions  [49]. A 
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“conversational” style for authoring use case descriptions is advocated in  [187]. Special 

styles for capturing business rules  [13], and user interface requirements  [30] [46], in use 

case descriptions have also been devised. A standard for documenting use cases of 

embedded systems is proposed in  [149].   

A list of critical use case modeling mistakes which led to project failure or delay is 

given in  [43]. Many common use case modeling mistakes made by inexperienced 

practitioners are presented in  [111]. The mistakes can be detected early in the 

development cycle by performing checklist based reviews. This technique is practical for 

small scale systems, which have few number of use cases. However, for complex 

systems, containing thousands of use cases, checklist based reviews are cumbersome and 

prone to human error. Therefore, an automated technique for improving the quality of use 

case models is presented in this thesis. The heuristics behind the use case modeling 

mistakes listed in  [17] [111] [163], and other best practices from the literature, such as 

those presented in  [4] [62] [66] [75] [98] [99] [126] [146] [157], are incorporated in the 

antipatterns approach.     

Templates for writing high quality use case descriptions are described in 

 [32] [45] [78] [83] [121]. Anda et al.  [12] have shown that using templates significantly 

improves understandability of use cases. A machine readable structure for use case 

authoring that ensures consistency between use case diagrams and use case descriptions 

is presented in  [21].  
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2.1.2 Using Automated Verification Tools 

Ryndia et al.  [160] developed a use case verification tool SusanX, which relies on 

detailed knowledge of the system’s domain. The tool may not be useful in the early 

stages of a software development cycle because detailed domain knowledge is 

unavailable. Moreover, the tool does not consider relationships between use cases. The 

approach presented in this thesis does not require domain knowledge; therefore, it can be 

applied early in the development cycle. Furthermore, it is based on the antipatterns 

approach which considers use case relationships that are not handled by SusanX. 

Berenbach  [29] described heuristics for constructing verifiable, understandable, correct, 

complete and consistent use case models, and incorporated them in an analysis tool, 

Design Advisor. Some of the heuristics can be automatically verified, while others require 

manual effort. However, the tool does not perform any refactorings itself. The heuristics 

presented in  [29] are a subset of the heuristics incorporated in the antipatterns approach.  

The Requirements Use Case Tool  [123] is a web based application that searches a 

given use description for a set of risk indicators, which may negatively impact use case 

quality attributes. The approach presented in this this does not need to be used 

exclusively. In fact, it is recommended that this approach be used in addition to other 

quality improving techniques, such as use case templates and authoring guidelines, in 

order to leverage their collective advantages. 

2.1.3 Use Case Refactoring 

Refactoring is the process of enhancing the structure of a software artifact without 

changing its intended behavior  [71]. Refactoring was first introduced by Opdyke  [145] 



 

27 

 

for OO source code. The concept of source code refactoring has been extended for UML 

models, including use case models, in order to improve their quality. 

The notion of use case refactoring was first considered by Butler et al.  [40] within 

the context of product line evolution. Use case refactorings were shown to document 

product line variability and evolution in  [188]. Yu et al.  [191] listed 10 use case 

refactoring rules based on “episodes”. Source code refactorings from  [145] were 

extended to use case models in  [158]. Five types of primitive refactorings on use case 

modeling constructs were defined—create, delete change, move and decompose. These 

refactorings were later implemented using a metamodel specification and incorporated in 

a graphical tool  [189]. In  [95], five other primitive use case refactorings, decomposition, 

equivalence, generalization, merge, and delete, were defined in the context of service 

oriented architectures. In this thesis, several composite use case refactorings, which are 

sequences of primitive use case refactorings, are defined and implemented. Moreover, the 

refactoring presented in  [40] [95] [191] are already incorporated in the antipatterns 

approach. 

Refactorings that apply on use case descriptions are described in  [80] and  [155]. 

The antipatterns based approach incorporates the concept of refactoring use case models; 

it can be used in tandem with the use case description refactorings described in  [80] and 

 [155]. 
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2.2 Antipatterns 

2.2.1 Impact of Antipatterns on Quality Attributes 

The effect of antipatterns and bad smells on quality aspects of software has been 

empirically investigated in the literature. In  [1], it was revealed that a combination of the 

god class and spaghetti code antipatterns adversely affected understandability. 

Deligiannis et al.  [51] [52] showed that the presence of god classes in a design makes 

maintenance activities difficult, and deteriorates the design. Refactoring of god classes 

revealed better design comprehensibility in  [56]. In  [110], it was shown that classes 

having antipatterns god class, god method, and shotgun surgery were more fault prone 

than other classes. Olbrich et al.  [143] analyzed the historical data of two large scale open 

source systems, and concluded that classes having antipatterns god class and shotgun 

surgery changed more frequently than other classes. Romano et al  [156] showed that 

classes containing antipatterns are more change-prone than classes free of antipatterns.  

In recent work, Khomh et al.  [100] analyzed several releases of four software 

development tools, and concluded that classes with antipatterns are more change-prone 

and fault-prone than others. Hence, there is need for antipattern detection and subsequent 

refactoring.   

2.2.2 Antipattern Detection 

Early antipattern detection and correction significantly improves software quality. 

This has prompted several researchers to propose techniques for detecting design level 

antipatterns. Wieman  [186] developed a heuristics based detection tool for design level 

antipatterns, violations of design principles and code smells. Empirical evaluation of the 
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tool on open source projects revealed that design antipatterns exist in OO software. A 

metrics based approach for detecting design antipatterns is presented in  [70]; this 

approach considers structural and behavioral aspects of design, whereas the tool in  [186] 

considers structural aspects only. A tool that automatically generates algorithms for 

detecting design antipatterns is presented in  [132].  

Ballis et al. proposed a language for specifying both design patterns and 

antipatterns in  [24], and defined rules for their detection in  [23]. A numerical analysis 

based technique accurately distinguished between antipatterns and non antipatterns at the 

design level in  [144]. A logic based detection approach, which used Prolog predicates, 

was proposed in  [174], and successfully validated on open source projects. Machine 

learning techniques, Bayesian networks  [101] [170], and support vector machines  [115], 

have also been used in the literature to detect design level antipatterns. Other detection 

approaches found in the literature are based on inspection  [179], heuristic search  [91], 

predicate logic  [5], metamodeling  [182], visualization  [54] [107] [171], and metrics 

 [117] [138].   

In  [61], model checking rules were derived from several antipattern descriptions to 

detect undesirable properties in class diagrams. Cortellessa et al.  [47] showed how Object 

Constraint Language (OCL) queries can be used to detect the blob antipattern in UML 

component, sequence, and deployment diagrams. Automatic detection of performance 

antipatterns that pertain to architectural models is performed in  [16] [48] [180]. This thesis 

focusses on antipatterns within the requirements engineering context, more specifically at 

the functional requirements specification (use case modeling) level. Furthermore, the 
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refactorings proposed in this thesis are performed at a much earlier phase of a software 

process (requirements engineering) compared to existing literature (architecture, design 

and code levels).    

Liu et al.  [113] presented an approach to detect overlapping use cases based on SDs 

and state-charts. The proposed approach cannot be applicable early in a software process 

as SDs and state-charts may not be specified. In earlier work  [22], use case antipattern 

detection was automated by describing antipattern designs as constraints using OCL. 

However, model transformation provides a more powerful mechanism to detect 

antipatterns, which was otherwise not possible to detect when written using OCL. 

Therefore, this thesis proposes a model transformation approach for antipattern detection 

and refactoring. 

 

2.3 Model Transformation based Model Refactoring 

Model transformations can greatly ease several software development activities 

including model refactoring  [169]. This has prompted several researchers to implement 

model transformations for performing model refactoring. 

Mens stated that one of the ways to perform model refactoring is the application of 

design patterns  [127]. Model transformations, implemented in XSLT, were presented in 

 [190] for automatically applying design patterns on UML class diagrams. XSLT was 

used to implement reusable model transformation in  [102]. Similar to XSLT, ATL also 

allows reuse via the concept of module superimposition.  
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Demuth et al.  [53] showed that XSLT based model transformations can be used for 

deriving SQL schemas form UML class diagrams, and reverse engineering UML class 

diagrams from code. However, the usage of XSLT for implementing model 

transformations is limited since it is fundamentally a declarative language. On the other 

hand, ATL is a hybrid language which permits imperative programming styles, in 

addition to declarative. Therefore, the model transformations presented in this thesis are 

implemented in ATL due to its inherent versatility and reusability (via module 

superimposition). 

Other refactoring techniques using model transformation were developed but not 

for use case modeling. Zhang et al. developed a model transformation engine to perform 

generic and domain specific model refactorings  [193]. Other model transformations have 

been defined for refactoring UML class diagrams 

 [69] [97] [109] [118] [119] [133] [152] [153], ADs  [57] [58], state-charts  [69], KAOS models 

 [42], feature models  [164], Alloy object models  [120], software architectures  [81], 

executable UML models  [55], and Java source code  [137].    

 

2.4 Verification of Model Transformations 

Model transformation testing is gaining interest within the MDE community, as the 

size and complexity of model transformation programs grow. Testing model 

transformations exhibits many challenges  [25] [26]. Two important challenges that have 

been investigated in the literature are the efficient generation/selection of test cases, and 

the definition of an oracle function to assess the validity of the transformed models. 
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Fleurey et al.  [68] investigated the problem of test data generation for model 

transformations, and proposed the use of partition testing to define test criteria to cover 

the input metamodels. Lamari  [106] used a functional testing approach based on a data 

partitioning technique that focuses on the structure of models in order to take into account 

the structural aspect of models when generating input test models. Fiorentini et al.  [65] 

have proposed a uniform framework for treating metamodels, model transformation 

specifications, and the automation of test case generation. The proposed technique in  [65] 

is based on a black-box testing approach of model transformations to validate their 

adherence to given specifications. White-box test model generation approaches for ATL 

model transformations have been proposed in  [76] and  [125]. Another white-box 

approach, which is based on static analysis of structural information in model 

transformations, is presented in  [134]. A gray-box testing technique has also been used 

by Bauer and Küster  [27] for model transformations. Sen et al.  [167] presented a tool for 

semi-automated generation of test models from knowledge such as requirements, known 

faults, and existing inputs.    

Lin et al.  [112] have presented a framework for test case creation and execution 

with a particular focus on the problem of model comparison of expected and actual 

outputs models. Wang et al.  [184] have proposed structural testing of model 

transformations using the metamodel coverage criteria. The types of faults that can occur 

while implementing a transformation rule are described in  [105]; test case generation for 

model transformations should focus on detecting such faults. The unit testing technique 

has been demonstrated on QVT-O model transformations in  [44]. Cabot et al.  [41] have 
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used OCL invariants, derived from transformation rules, to verify model transformations 

written in QVT-R and Triple Graph Grammars. Küster et al.  [104] proposed a framework 

for automated testing of model transformation chains.  

The authors in  [73] and  [124] have used the test driven approach to implement 

model transformations. Giner and Pelechano  [73] have defined a test-driven method to 

capture requirements for transformations in such a way that guides the development and 

documentation of model transformations. Requirements were expressed by means of test 

cases that can be automatically validated. McGill and Cheng  [124] have extended the 

JUnit testing framework with assertions that simplify the testing of model 

transformations. These extensions are implemented in a tool called Jemtte. 

Techniques for assessing the quality of model transformation test cases have been 

described in  [28] and  [67]. Test oracles, which are strategies for determining whether a 

test case passes or fails, for model transformations have been discussed in  [90] and  [135]. 

In recent work  [173], the application of model comparison techniques has been 

investigated for defining model transformation test oracles. Automated tools for the 

generation of test input have been presented in  [35] and  [77]. For a detailed survey on the 

diverse approaches to model transformation verification, the reader is invited to refer 

 [166].  

Mottu et al.  [136] introduced the application of mutation testing to model 

transformations. The authors  [136] have identified four semantic classes of faults 

(navigation, filtering, output model creation, and input model modification) for model 

transformations, and they have defined a set of generic mutation operators to cover these 
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fault classes. The effectiveness of these mutation operators was demonstrated in  [168] by 

automatic test model generation followed by mutant execution. These generic mutation 

operators can be adapted for different model transformation languages. However, there is 

a need to define mutation operators that can capture model transformation programming 

language specific characteristics. Therefore, in this thesis, a suite of mutation operators 

are proposed for ATL. 

 

2.5 UCM transformations 

To allow traceability of functional requirements, several studies have proposed 

mappings from UCMs to other modeling notations. Bordelau and Cameron  [33] defined a 

systematic and traceable way of deriving Message Sequence Chart (MSC) scenario 

models from UCMs. Miga et al.  [130] extended Bordelau and Cameron’s  [33] systematic 

procedure and implemented a UCM to MSC transformation using a prototype tool. He et 

al.  [79] illustrated the generation of MSCs from UCMs using an automated tool. Amyot 

et al.  [7] implemented a model transformation in XSLT for deriving MSCs from UCMs. 

Bordeleau and Buhr  [34] proposed modeling steps from UCM to ROOM state machines 

 [165]. These steps help in bridging the conceptual gap between the notations, and enables 

traceability from detailed design to scenarios. A method for deriving SDL diagrams  [60] 

from UCMs was proposed by Sales and Probert  [161]. In  [148], an algorithm was 

proposed for generating software performance models from UCM specifications. A 

prototype tool was presented in  [88] for automatic derivation of UCMs from natural 

language use case descriptions. Martínez  [122] showed how state-charts can be 
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synthesized from the combined information provided by UCMs and UML collaboration 

diagrams. Zeng  [192] defined a transformation from UCMs to core scenario models, 

which allow the quick generation of software performance models. Amyot and 

Mussbacher  [10] proposed an extension of UML 1.3 with UCM core concepts for the 

purpose of introducing a new “UCM View” to the existing set of UML views.  To date, 

the proposed “UCM View” is not a UML standard. Hence, there is a need for a mapping 

between these distinct notations.  

To the best of our knowledge, no attempt has been made to propose mappings 

between UCM and UML 2 notations. The mappings and model transformations presented 

in this thesis can facilitate the transition from requirements to high-level design. This 

thesis has also not only proposed mappings between the UCM and UML modeling 

notations but also suggests automation of mappings. Automation will enable 

requirements traceability, as well as reduce the effort required to derive detailed design 

from scenarios represented as UCMs.   
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3 CHAPTER 3 

A MODEL TRANSFORMATION APPROACH 

TOWARDS REFACTORING USE CASE MODELS 

BASED ON ANTIPATTERNS  

In this chapter, we present use case antipatterns and define model transformations 

for their refactorings. The use case antipatterns are adopted from the work of El-Attar and 

Miller  [18] [19] [20] [22]. The taxonomy of antipatterns presented in  [18] was developed 

via a systematic review of current practices for constructing high quality use case models. 

A large subset of these antipatterns prescribes refactorings that can be carried out using 

model transformation. Table 4 provides a summary of use case antipatterns and the 

corresponding refactorings that will be implemented using model transformation.  
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Table 4: Use case antipatterns and their respective refactorings 

Use Case Antipattern Refactoring 
a1. Accessing a generalized concrete 

use case 
r1. Concrete to Abstract 
r2. Drop Actor-Generalized UC 

Association 
a2. Accessing an extension use case r3. Drop Actor-Extension UC Association 

r4. Directed Actor-Extension UC 
Association 

a3. Using extension/inclusion use cases 
to implement an abstract use case 

r5. Abstract Extended UC to Concrete 
r6. Inclusion to Generalization 

a4. Functional Decomposition: Using 
the include relationship 

r7. Drop Functional Decomposition 
r8. Drop Functional Decomposition 

having Inclusion 
a5. Functional Decomposition: Using 

the extend relationship 
r9. Split Extension UC 
r10. Extension to Generalization 

a6. Multiple generalizations of a use 
case 

r11. Generalization to Include 

a7. Use cases containing common and 
exceptional functionality 

r12. Drop Inclusion 
r13. Drop Extension 

a8. Multiple actors associated with one 
use case 

r14. Generalize Actors  
r15. Split UCs 

a9. An association between two actors r16. Drop Actor-Actor Association 
a10. An association between use cases r17. Drop UC-UC Association 
a11. An unassociated use case r18. Drop Unassociated UC 
a12. Two actors with same name r19. Rename Actor 
a13. An actor associated with an 

unimplemented abstract use case 
r20. Abstract to Concrete 
r21. Add Concrete UC 

 

A source use case model that contains one or more instances of a use case 

antipattern is provided as input to its suitable model transformation. A model 

transformation detects the model elements involved in an antipattern, and performs 

appropriate refactoring; thus, resulting in a target use case model.  This target use case 

model is free of the use case antipattern present in the source use case model. The 

transformations are endogenous, horizontal, out-place, one-to-one, unidirectional model 

transformations. The metamodel used for implementing the model transformations is the 
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Eclipse Modeling Framework’s (EMF)  [37] implementation of the OMG UML 2.0 

specification  [141]. The source and target use case models conform to this EMF 

metamodel; therefore, the transformations are endogenous. Since refactoring does not 

alter the level of abstraction in which the source is expressed, the model transformations 

fall in the horizontal category. The model transformations are implemented using ATL 

 [86] [175]. In ATL, the source and target models of a given model transformation are 

distinct entities; therefore, the transformations are out-place. Because the input to the 

transformations is one source, and the output is one target, the model transformations are 

one-to-one. An ATL module cannot be used to reverse engineer the source from the 

target; therefore, the model transformations are unidirectional. The ATL source code is 

available to the interested reader for download at  [92]. 

It is important to note that the existence of an antipattern in a use case model, by 

definition, does not prove the presence of a defect. The detection of an antipattern in a 

use case model will only prompt the modeler to reconsider their design due to the 

likelihood of costly work downstream resulting from the current design. Upon evaluating 

the use case model instance based on the information provided by the corresponding 

antipattern description, the modeler will then determine whether their design is indeed 

defective or not. If the design is considered defective, then refactoring measures are 

undertaken to improve the quality of the model; otherwise, no further action is required.   

The remainder of this chapter is organized as follows. Section  3.1 describes the 

proposed model transformation approach for executing use case refactorings. Section  3.2 
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demonstrates the feasibility of the approach using a case study that pertains to a 

biodiversity database system. Finally, Section  3.3 evaluates the results of the case study.                

3.1 Use Case Modeling Antipattern Refactorings 

a1. Accessing a generalized concrete use case 

This antipattern occurs when an actor is associated with a generalized use case in 

order to enable indirect access to a framework of services, which are implemented by 

specialized use cases. A generalized use case is often incomplete because it contains parts 

of common behavior required by the specialized use cases. Therefore, initiation of such a 

generalized use case will result in incomplete meaningless behavior. 

r1. Concrete to Abstract 

This refactoring converts the generalized use case to abstract. The semantics of 

abstract use cases are same as the semantics of an abstract entity in the OO paradigm. 

Setting a use case as abstract indicates that it cannot be solely performed. Therefore, one 

of the specialized use cases will be performed. This guarantees that a complete and 

meaningful service will be delivered to the actor. A given use case is involved in this 

antipattern if it: 
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• is a concrete generalized use case 

• neither includes nor extends any use case 

• neither included nor extended by any other use case 

• is directly or indirectly associated with an actor 

The rule ConcreteToAbstract in Listing 1 checks the above detection conditions for 

each use case in a given use case model. If a use case satisfies all the detection 

conditions, its isAbstract property is set.  

 
rule ConcreteToAbstract { 
  from s: UML!UseCase ( 
    s.isGeneralization() and s.isConcrete() and not(s.isIncluder() or s.isIncluded()or 
    s.isExtension() or s.isExtended()) and (s.isAssociatedWithActor() or 
    s.isIndirectlyAssociatedWithActor()) 
  ) 
  to t: UML!UseCase ( 
    isAbstract <- true 
  ) 
} 

Listing 1: ATL rule for applying Concrete to Abstract refactoring  

 

Figure 5 illustrates an example of the Concrete to Abstract refactoring applied on a 

use case model of a shoe store system. In the original use case model (Figure 5(a)), use 

case Apply Special Offer is a generalized use case which is specialized by uses cases 

Dispense Double Airmiles and Apply 10% Discount. The specialized use cases relate to 

promotional offers at the shoe store. Actor Shoe Salesman can apply any one of the two 

promotional offers on a shoe purchase by performing their corresponding use cases. 

Since Apply Special Offer is concrete, it can be performed exclusively by the Shoe 

Salesman. However, Apply Special Offer contains incomplete behavior; therefore, its 

exclusive execution will result in no special offer applied on a shoe sale. The application 
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of the Concrete to Abstract refactoring will set Apply Special Offer to abstract; thus, 

ensuring that is cannot be performed exclusively. The refactored use case model of the 

shoe store system is shown in Figure 5(b).  

 
(a) Original UC model 

 
(b) Refactored UC model 

Figure 5: Example of Concrete to Abstract refactoring 

 

r2. Drop Actor-Generalized UC Association 

This refactoring replaces the association between the actor and generalized use case 

with direct associations between the actor and specialized use cases. It will ensure a 

service request is performed through one of the specialized use cases. Therefore, the 

incomplete behavior in the generalized use case cannot be initiated. An association is 

involved in this antipattern if its: 
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• source is an actor 

• destination is a concrete generalized use case 

• destination neither includes nor extends any use case 

• destination is neither included nor extended by any use case 

The rule DropAssociation in Listing 2 checks the above detection conditions for 

each association in a given use case model. If an association satisfies the detection 

conditions, it is deleted from the use case model. The call to rule AddAssociations 

introduces associations between the actor and specialized use cases.  

 
rule DropAssociation { 
  from s : UML!Association (  
    s.isSourceActor() and s.destination().isGeneralization() and 
    s.destination().isConcrete() and not(s.destination().isIncluder() or 
    s.destination().isIncluded() or s.destination().isExtension() or 
    s.destination().isExtended())  
  ) 
  to drop 
  do { 
    thisModule.AddAssociations(s); 
  } 
} 

Listing 2: ATL rule for applying Drop Actor-Generalized UC Association refactoring 

 

Figure 6 illustrates the Drop Actor-Generalized-UC Association refactoring on a 

use case model of a shoe store system (Figure 5(a)). The association between Shoe 

Salesman and Apply Special Offer is incorrect, since Apply Special Offer contains 

incomplete behavior. The Drop Generalized-UC Association replaces this incorrect 

association with direct associations between Shoe Salesman and use cases Dispense 

Double Airmiles, and Apply 10% Discount.  
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Figure 6: Example of Drop Generalized UC Association refactoring 

 

Any one of the two refactorings can be applied to refactor antipattern a1. The 

refactoring  r1 preserves the semantics of the original model whereas, refactoring  r2 may 

cluster the use case model in case of several specialized use cases. 

a2. Accessing an extension use case 

This antipattern occurs when an actor is associated with an extension use case. Such 

a relationship is modeled in order for the actor to convey information to the extension use 

case. This is inappropriate because, an extension use case must be provided information 

from the base use case. A base use case gets the required information, an extension use 

case needs, from the actor, when it is invoked.    

r3. Drop Actor-Extension UC Association 

This refactoring deletes the association between an actor and extension use case. 

This ensures that the extension use case cannot be initiated independently, and the base 

use case provides necessary information to the extension use case. A given association 

relationship in a use case model is involved in this antipattern if its source is an actor and 

destination is an extension use case.  
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The rule DropAssociation in Listing 3 checks for such associations and deletes 

them when found.  

 
rule DropAssociation { 
  from s : UML!Association (  
    s.isSourceActor() and s.isDestinationUseCase() and s.destination().isExtension()  
  ) 
  to drop 
} 

Listing 3: ATL rule for applying Drop Actor-Extension UC Association refactoring 

 

Figure 7 illustrates an example of the Drop Actor-Extension UC Association 

refactoring on a use case model of a music store system. In the original use case model 

(Figure 7(a)), CD Out Of Stock is an extension use case that executes when a customer 

attempts to buy a music CD that is unavailable. Actor Customer is associated with this 

extension use case in order to provide it with necessary information. This association is 

incorrect because the extension use case must get the necessary information from its base 

use case Buy Music CD. The application of the Drop Actor-Extension UC Association 

refactoring will delete the association between the extension use case and Customer; thus, 

ensuring that CD Out Of Stock cannot be performed exclusively, and it receives necessary 

information from Buy Music CD. The refactored use case model of the music store 

system is shown in Figure 7(b).  
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(a) Original UC model 

 

(b) Refactored UC model 

Figure 7: Example of Drop Actor-Extension UC Association refactoring 

 

r4. Directed Actor-Extension UC Association 

Antipattern  a2 can also occur when the extension use case would like to inform an 

actor when it is invoked. The refactoring for this scenario involves explicitly specifying 

the direction of the association. This guarantees that the use case cannot be initiated by 

the actor. Unfortunately, UML lacks notation for directed associations. This limitation 

can be tackled by annotating the association with a UML comment. 

The rule RefactorAssociation in Listing 4 checks for associations between actors 

and extension use cases, and annotates them with a comment when found. The comment 

contains the string ‘directed towards’ appended with the name of the actor. Moreover, it 

swaps the source and destination properties of the association. This is a mere cosmetic 
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change since the modeler cannot see its effect on the use case diagram. However, this 

source-destination swap will be reflected in the use case model’s XMI file.  

 
rule RefactorAssociation { 
  from s: UML!Association(  
    s.isSourceActor() and s. isDestinationUseCase() and s.destination().isExtension() 
  ) 
  to t: UML!Association ( 
    memberEnd <- s.memberEnd, 
    navigableOwnedEnd <- dst, 
    ownedEnd <- Sequence{src, dst} 
  ), 
  src: UML!Property ( 
    name <- 'src', 
    type <- s.destination() 
  ), 
  dst : UML!Property ( 
    name <- 'dst', 
    type <- s.source() 
  ) 
  do { 
    thisModule.AddComment(s); 
    t; 
  } 
} 
 
rule CreateComment(a: UML!Association) { 
  to t: UML!Comment ( 
    annotatedElement <- a, 
    body <- 'directed towards ' + a.source().name 
  ) 
  do { 
    t; 
  } 
} 

Listing 4: ATL rules for applying Directed Actor-Extension UC Association refactoring 

 

Figure 8 illustrates an example of the Directed Actor-Extension UC Association 

refactoring on a use case model of an Internet Service Provider (ISP) system. In the 

original use case model (Figure 8(a)), Notify Customer of Balance Due is an extension 

use case that executes when an ISP employee would like to inform a customer when his 

payment is due. Actor Customer is associated with this extension use case. This 

association is correct since the extension use case informs Customer when it is invoked. 

However, it could also imply that Customer can invoke the extension use case; this is 
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incorrect. In order to avoid this incorrect interpretation, the Directed Actor-Extension UC 

Association refactoring is applied on the original use case model. The association 

between Customer and the extension use case is annotated with its actual direction, i.e. 

towards Customer. The refactored use case model of the ISP system is shown in Figure 

8(b).  

 

 

(a) Original UC model 

 

(b) Refactored UC model 

Figure 8: Example of Directed Actor-Extension UC Association refactoring 
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a3. Using extension/inclusion use cases to implement an abstract use case 

This antipattern occurs when an extension or inclusion use case is used to 

implement an abstract use case. The extension and inclusion use cases describe behavior 

different from the abstract use case. Therefore, the modeler does not use generalization 

relationship to implement the abstract use case. A service request from an actor to such 

an abstract use case will never be performed because no use case realizes its intended 

behavior. Hence, it is inappropriate to model such a relationship between abstract and 

concrete use cases. This situation is acceptable if the use case model is incomplete, and 

the abstract use case will be realized later by a concrete use case.   

r5. Abstract Extended UC to Concrete 

This refactoring sets the abstract use case to concrete. This ensures that the use 

case can be solely performed, and its intended behavior is realized by itself. A use case is 

involved in this antipattern if it is: 

• abstract and associated with at least one actor 

• neither a generalization nor a specialization of any use case 

• neither included by any use case nor an extension of any use case 

• includes zero or more use cases   

• extended by at least one use case 

The rule AbstractToConcrete in Listing 5 checks the above detection conditions for 

each use case in a given use case model. If a use case satisfies all the detection 

conditions, its isAbstract property is unset.  
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rule AbstractToConcrete { 
  from s : UML!UseCase (   
    s.isAbstract and s.isAssociatedWithActor() and not (s.isIncluded() or 
    s.isExtension() or s.isGeneralization() or s.isSpecialization()) and s.isExtended()  
  ) 
  to t: UML!UseCase ( 
    isAbstract <- false 
  ) 
} 

Listing 5: ATL rule for applying Abstract Extended UC to Concrete refactoring 

 

Figure 9 illustrates an example of the Abstract Extended UC to Concrete 

refactoring on a use case model of a vehicle repair system. In the original use case model 

(Figure 9(a)), Perform Oil Maintenance is an abstract use case which is implemented by 

inclusion use case Check Oil Level, and extension use case Oil System Damaged. Actor 

Mechanic is associated the abstract use case. This indicates that the abstract use case can 

be performed exclusively. Since abstract use cases are incomplete, Perform Oil 

Maintenance cannot provide complete service to Mechanic. Therefore, the Abstract 

Extended UC to Concrete refactoring is applied on the original use case model to result in 

Perform Oil Maintenance set to concrete. The refactored use case model of the vehicle 

repair system is shown in Figure 9(b).  
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(a) Original UC model 

 
(b) Refactored UC model 

Figure 9: Example of Abstract Extended UC to Concrete refactoring 

 

r6. Inclusion to Generalization 

This refactoring applies in the case when inclusion use cases are used to describe 

specialized behavior of the abstract use case. The inclusion relationships are replaced by 

generalization relationships directed from the inclusion use cases to the abstract use case. 

An include relationship is involved in this antipattern if its includer user case is:    

• abstract and associated with at least one actor 

• neither a generalization nor a specialization of any use case 

• neither included by any use case nor an extension of any use case 

• includes at least one use case   
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• not extended by any use case 

Detection conditions for this refactoring are similar to those of refactoring  r5 except 

for they apply on include relationships in a use case model, and the abstract use case 

must include at least one use case and should not have any extensions. The rule 

DropInclude in Listing 6 checks the above detection conditions for each include 

relationship in a given use case model. If an include relationship satisfies all the detection 

conditions, it is deleted from the use case model. The call to rule AddGeneralization is 

used for introducing generalization relationships from the specializing use cases to the 

abstract use case.  

 
rule DropInclude { 
  from s: UML!Include (  
    s.getIncluder().isAbstract and s.getIncluder().isAssociatedWithActor() and 
    not (s.getIncluder().isIncluded() or s.getIncluder().isExtension() or 
    s.getIncluder().isExtended() or s.getIncluder().isGeneralization() or 
    s.getIncluder().isSpecialization()) 
  ) 
  to drop 
  do { 
    thisModule.AddGeneralization(s); 
  } 
} 

Listing 6: ATL rule for applying Inclusion to Generalization refactoring   

 

Figure 10 illustrates an example of the Inclusion to Generalization refactoring on a 

use case model of a stock market system. In the original use case model (Figure 10(a)), 

Make a Trade is an abstract use case which is implemented by inclusion uses cases Make 

a Bonus Trade and Make a Stocks Trade. Actor Trader can perform either of the 

inclusion uses cases. However, Trader cannot perform both inclusion use cases at the 

same time. Therefore, the inclusion relationships shown in the original use case model 
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are incorrect. The application of the Inclusion to Generalization refactoring on the 

original use case model replaces the inclusion relationships with generalization 

relationships. The new generalization relationships are directed from uses cases, Make a 

Bonus Trade and Make a Stocks Trade, to the abstract use case, Make a Trade. This will 

ensure that a trader can either make a bonus trade, or a stocks trade, but not both at the 

same time. The refactored use case model of the stock market system is shown in Figure 

10(b).    

 

 
(a) Original UC model 

 
(a) Refactored UC model 

Figure 10: Example of Inclusion to Generalization refactoring 
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a4. Functional Decomposition: Using the include relationship 

This antipattern represents improper usage of the include relationship. The service 

offered by a use case is divided into several inclusion use cases. Moreover, these 

inclusion use cases are not directly associated with any actor. They do not represent a 

complete service that is offered the system; hence, provide no observable result to a user. 

Functional decomposition is acceptable if an inclusion use case provides complete 

behavior to another actor and/or is included by another use case.     

r7. Drop Functional Decomposition 

This refactoring merges the inclusion use cases into the base use case, which 

individually provides a complete service to the actor. A use case is involved in this 

antipattern if its: 

• an inclusion use case which is included by one use case only  

• not associated with any actor  

• neither including nor extending any use case 

• not extended by any use case 

• neither a generalization nor a specialization of any use case 

The rule DropUseCase in Listing 7 checks for inclusion use cases in a use case 

model and deletes them when found. Figure 11 illustrates an example of the Drop 

Functional Decomposition refactoring. 
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rule DropUseCase { 
  from s: UML!UseCase (  
    not (s.isAssociated() or s.isExtension() or s.isExtended() or s.isGeneralization() or 
    s.isSpecialization() or s.isIncluder()) and s.isIncluded() and 
    s.getIncluders()->size() = 1 
  )  
  to drop 
} 

Listing 7: ATL rule for applying Drop Functional Decomposition refactoring 

 

Figure 11 illustrates an example of the Drop Functional Decomposition refactoring 

on a use case model of a coffee vending system. In the original use case model (Figure 

11(a)), use case Prepare Coffee includes three uses cases Add Sugar, Add Cream or Milk, 

and Pour Hot Water. All of the inclusion use cases are performed when actor Customer 

orders coffee. However, the inclusion use cases are neither associated with any actor nor 

related to any use case, other than Prepare Coffee. The inclusion use cases actually 

represent functions of their base use case Prepare Coffee. Since each of the inclusion use 

cases do not represent a complete service provided by the system, the Drop Functional 

Decomposition refactoring is applied on the original use case model. The inclusion use 

cases are removed from the use case model, and their behavior is implicitly merged into 

the base use case. Figure 11(b) shows the refactored use case model of the coffee vending 

system.            
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(a) Original UC model 

 
(b) Refactored UC model 

Figure 11: Example of Drop Functional Decomposition refactoring 

 

r8. Drop Functional Decomposition having Inclusion 

Functional Decomposition can also occur if the inclusion use case includes other 

use case(s). In this case, the refactoring has an additional step. After the inclusion use 

case’s deletion, include relationships are added from its base uses case to its inclusion use 

cases.  

Figure 12 illustrates an example of the Drop Functional Decomposition having 

Inclusion refactoring on an enhanced use case model of the coffee vending system, 

described in refactoring r7. In the original use case model (Figure 12(a)), the inclusion 

use cases Add Sugar, Add Cream or Milk, and Pour Hot Water further include use case 

Check Quantity. The inclusion use cases check the quantity of sugar, cream, milk, and 

water, by invoking Check Quantity. Actor Serviceman also performs Check Quantity 
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while maintaining the coffee machine. As explained in refactoring r7, each of the 

inclusion use cases do not represent a complete service provided by the system. Since 

they include a use case, Check Quantity, the Drop Functional Decomposition having 

Inclusion refactoring is applied on the original use case model. The inclusion use cases 

are removed from the use case model, and their behavior is implicitly merged into the 

base use case. Moreover, an include relationships is added from Prepare Coffee to Check 

Quantity. This additional step is performed in order to preserve the behavior shown in the 

original use case model. Figure 12 (b) shows the refactored use case model of the coffee 

vending system. 
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(a) Original UC model 

 
(b) Refactored UC model 

Figure 12: Example of Drop Functional Decomposition having Inclusion refactoring 

 

a5. Functional Decomposition: Using the extend relationship 

This antipattern represents improper usage of the extend relationship, in which a 

single use case extends multiple base use cases. To elaborate, the extension use case is 

providing optional behavior which is useful to multiple base use cases. This strongly 

indicates that the extension use case has degraded into a function, and cannot properly 

provide optional behavior to its base use cases.    
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r9. Split Extension UC 

This refactoring splits the extension use case into multiple use cases, each of which 

provide optional behavior specific to a single base use case. This will ensure that 

exceptional situations are properly handled by the extension use cases. A use case is 

involved in this antipattern if it is: 

• not associated with any actor 

• neither a generalization nor a specialization of any use case 

• neither an inclusion use case nor including any use case  

• not extended by any use case 

• extends more than one use case 

The rule DropUseCase in Listing 8 checks for extension use cases that are shared 

by multiple base use cases, and deletes them when found. The call to rule AddUseCase 

adds specific extension use cases into the use case model for each base use case. The 

name of the extension use case is appended with the name of its base use case followed 

by ‘Extension’ in parenthesis. This indicates the modeler to rename this use case 

appropriately. 

 



 

59 

 

rule DropUseCase { 
  from s: UML!UseCase  ( 
    not(s.isAssociated() or s.isIncluded() or s.isIncluder() or s.isExtended()  
    or s.isGeneralization() or s.isSpecialization()) and s.extend->size() > 1; 
  ) 
  to drop 
  do { 
    for(ex in s.extend) { 
      thisModule.AddUseCase(ex); 
    } 
  } 
} 

Listing 8: ATL for applying Split Extension UC refactoring 

 

Figure 13 illustrates an example of the Split Extension UC refactoring on a use case 

model of a sports store system. In the original use case model (Figure 13(a)), Equipment 

Damaged is an extension use case of two base use cases, Sell Ball and Sell Racquet. The 

extension use case gets invoked when damaged merchandise, either ball or racquet, is 

being sold. When the extension use case is invoked by Sell Ball, additional functionality 

will be performed for handling the damaged ball. However, redundant functionality will 

be performed for handling a damaged racquet, which is not being sold. Similarly, when 

the extension use case is invoked by Sell Racquet, redundant functionality is performed 

for handling a damaged ball. In order to avoid this redundant functionality, the Split 

Extension UC refactoring is applied on the original use case model. The extension use 

case is split into new two use cases, each of which provide required optional behavior to 

their respective base use cases. The new use cases must be renamed appropriately by the 

modeler. Figure 13(b) shows the refactored use case model of the sports store system. 
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(a) Original UC model 

 
(b) Refactored UC model 

Figure 13: Example of Spilt Extension UC refactoring 

 

r10. Extension to Generalization 

This refactoring is applied in case the extension use case is used to depict 

specialized behavior of the base use case. The extend relationship is replaced with an 

appropriate generalization relationship. An extend relationship is involved in this 

antipattern if its extension use case is: 

• not associated with any actor 

• neither a generalization nor a specialization of any use case 

• neither an inclusion use case nor including any use case  

• not extended by any use case 

• extends more than one use case 
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Detection conditions for this refactoring are similar to those of refactoring  r9 except 

for they apply on extend relationships in a use case model. The rule DropExtend in 

Listing 9 checks for extend relationships whose extension use case is shared by multiple 

base use cases, and deletes them when found. The call to rule AddGeneralization adds a 

generalization relationship from the extension use case to its respective base use case.  

 
rule DropExtend { 
  from s: UML!Extend   ( 
    not (s.getExtension().isAssociated() or s.getExtension().isIncluded() or 
    s.getExtension().isIncluder() or s.getExtension().isExtended() or 
    s.getExtension().isGeneralization() or s.getExtension().isSpecialization()) and 
    s.getExtension().extend->size() > 1        
  ) 
  to drop 
  do { 
    thisModule.AddGeneralization(s); 
  } 
} 

Listing 9: ATL rule for applying Extension to Generalization refactoring 

 

Figure 14 illustrates an example of the Extension to Generalization refactoring on a 

use case model of a notification system. In the original use case model (Figure 14 (a)), 

use case Send Notification extends two base use cases Send Email Notification and Send 

SMS Notification. The extend relationships are used to represent the hierarchy of 

notification services offered by the system. This hierarchy of services is correctly 

represented by generalization relationships. Therefore, the Extension to Generalization 

refactoring is applied on the original use case model. Figure 14 (b) shows the refactored 

use case model of the notification system. 
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(a) Original UC model 

 

(b) Refactored UC model 

Figure 14: Example of Extension to Generalization refactoring 

 

a6. Multiple generalizations of a use case 

This antipattern occurs when a single use case implements more than one use case. 

Common behavior from the base use cases is extracted and represented in a specialized 

use case.  

r11. Generalization to Inclusion 

A use case should not specialize multiple base use cases at the same time. This 

strongly indicates that behavioral semantics of the model are violated, and leads to 

incorrect implementation of the system. This refactoring replaces generalization 

relationships with include relationships directed from the generalized use cases to the 

specialized use case.    
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The rule DropGeneralization in Listing 10 deletes a generalization relationship if 

its source use case has multiple generalizations. The call to rule CreateInclude introduces 

include relationships between generalized and specialized use cases.  

 
rule DropGeneralization { 
  from s: UML!Generalization (  
    s.refImmediateComposite().hasMultipleGeneralizations()) 
  to drop 
} 
 
rule CopyUseCase { 
  from s : UML!UseCase   
  to t: UML!UseCase  ( 
    name <- s.name, 
    include <- s.include, 
    extend <- s.extend, 
    generalization <- s.generalization, 
    isAbstract <- s.isAbstract 
  )  
  do { 
    for(uc in s.getSpecializations()) { 
      if(uc.hasMultipleGeneralizations()) { 
        t.include <- t.include->including(thisModule.CreateInclude(s, uc)); 
      } 
    } 
    t; 
  } 
} 

Listing 10: ATL rule for applying Generalization to Inclusion refactoring 

 

Figure 15 illustrates an example of the Generalization to Inclusion refactoring on a 

use case model of an aircraft management system. In the original use case model (Figure 

15(a)), use case Clean Aircraft inherits behavior from two generalized use cases, Prepare 

Passenger Aircraft for Trip and Prepare Cargo Aircraft for Trip. The modeler intended 

to extract the common behavior of the generalized use cases into Clean Aircraft. This 

implies that in order to clean an aircraft, a passenger aircraft, and a cargo aircraft must be 

prepared. This is incorrect behavior of Clean Aircraft because only one aircraft can be 

cleaned at a time. Therefore, the Generalization to Inclusion refactoring is applied on the 

original use case model. The refactoring replaces the incorrect generalization 
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relationships with inclusion relationships. This will ensure that proper behavior is 

performed when Clean Aircraft is invoked. Figure 15(b) shows the refactored use case 

model of the aircraft management system.  

 

 

(a) Original UC model 

 

(a) Refactored UC model 

Figure 15: Example of Generalization to Inclusion refactoring 

 

a7. Use cases containing common and exceptional functionality 

This antipattern occurs when a use case is reused by making it an inclusion and 

extension for different base use cases. This shared use case contains common and 

optional behavior required by multiple use cases. When the shared use case is initiated by 

any of the base use cases, extra undesired functionality is performed. 
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r12. Drop Inclusion 

If the shared use case represents functionality which is appropriate only for the base 

use case it extends, its inclusion relationship should be deleted. A new inclusion use case 

is added in order to provide the additional behavior required by the other base use case. 

The ATL helper attribute sharedUCs in Listing 11 contains the set of use cases 

which are inclusions and extensions. The rule DropInclude deletes an inclusion 

relationship if its target use case is a shared use case. The call to rule AddUseCase adds a 

new inclusion use case to the use case model. The name of the base use case is copied 

into this new use case and appended by ‘Inclusion’ in parenthesis. This indicates the 

modeler to rename this use case appropriately.  

 
helper def: sharedUCs : Set(UML!UseCase)  
  = UML!Include->allInstances() 
     ->collect(uc | uc.addition)->asSet() 
     ->select(uc | uc.extend->size() > 0); 
 
rule DropInclude { 
  from s: UML!Include ( 
    thisModule.sharedUCs->includes(s.addition)  
  ) 
  to drop 
  do { 
    thisModule.AddUseCase(s); 
  } 
} 

Listing 11: ATL rule for applying Drop Inclusion refactoring 

 

r13. Drop Extension 

If the shared use case represents functionality appropriate only for the base use case 

that includes it, its extension relationship should be deleted. A new extension use case is 
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added in order to provide the optional behavior required by the other (extended) base use 

case. 

The rule DropExtend in Listing 12 deletes an extend relationship if its source use 

case is a shared use case. The call to rule AddUseCase adds a new extension use case to 

the use case model. The name of the base use case is copied into this new use case and 

appended by ‘Extension’ in parenthesis. This indicates the modeler to rename this use 

case appropriately.  

 
rule DropExtend { 
  from s: UML!Extend (  
    thisModule.sharedUCs->includes(s.getExtension()) 
  ) 
  to drop 
  do { 
    thisModule.AddUseCase(s); 
  } 
} 

Listing 12: ATL rule for applying Drop Extension refactoring 

 

In case the shared use case does indeed contain both additional and optional 

behavior required for the base use cases, it must be split into two separate use cases. The 

new use cases provide appropriate functionality to their respective base use cases.  

Figure 16 illustrates an example of the Drop Inclusion and Drop Extension 

refactoring on a use case model of a car dealership system. In the original use case model 

(Figure 16(a)), use case Car Not Found is included by use case Add New Car, and 

extends use case Update Car’s Information. When a new car is added into the system, the 

actor Car Salesman performs Add New Car. Before a car is added into the system, the 

system must check whether it is already available or not. This is represented by the 
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behavior in the shared use case Car Not Found. The Car Salesman can change 

information related to a car by performing Update Car’s Information, which requires the 

car’s unique identifier. If the car is not found in the system, the shared use case is 

performed to generate an error report. The shared use case behaves differently when 

invoked by each of its base use cases. This means that redundant functionality will be 

performed when either of the base use cases invoke the shared use case. Therefore, the 

Drop Inclusion and Drop Extension refactoring are applied on the original use case 

model. The refactorings split the shared use case into two use cases, each of which 

provide required behavior to their respective base use cases. The new use cases must be 

renamed appropriately by the modeler. Figure 16(b) shows the refactored use case model 

of the car dealership system.  

           

 
(a) Original UC model 

 

(b) Refactored UC model 

Figure 16: Example of Drop Inclusion and Drop Extension refactorings 
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a8. Multiple actors associated with one use case 

This antipattern occurs when a use case is associated with more than one actor. The 

actors perform the same role while interacting with the shared use case. This association 

is inappropriate since it is against the semantics of an actor. An actor must perform a 

unique role while interacting with a shared use case. This eventually results in multiple 

implementations of the shared use case for different actors. In case the shared use case 

needs to communicate with distinct actors, this situation is acceptable.  

r14. Generalize Actors 

This refactoring deletes the associations between the actors and shared use case, 

introduces a generalized actor, and associates the shared use case with it. The generalized 

actor represents the similar roles performed by actors while executing the shared use 

case.  

A pair of actors is involved in this antipattern if they are associated with at least one 

common use case. The call to rule AddGeneralizedActor in Listing 13 adds a generalized 

actor to the use case model and associates it with the common use case(s). This actor is 

named ‘Super Actor’; the modeler must rename it appropriately. 
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rule CopyPackage { 
  from s: UML!Package  
  to t: UML!Package ( 
    name <- s.name, 
    packagedElement <- s.packagedElement, 
    ownedComment <- s.ownedComment 
  ) 
  do { 
   for(saps in thisModule.sharedActorPairs) { 
    thisModule.AddGeneralizedActor(saps, t); 
   } 
  } 
} 

Listing 13: ATL rule for applying Generalize Actor refactoring 

 

Figure 17 illustrates an example of the Generalize Actors refactoring on the use 

case model of a banking system. In the original use case model (Figure 17(a)), actor 

Manager and Employee are associated with the same use case Perform Transaction. The 

actors associated play a similar role when performing the shared use case. In other words, 

the actors will communicate with the shared use case in a similar fashion. For example, 

the procedure for performing Perform Transaction is the same when performed by 

Manager or Employee. Actors should communicate with a use case if they are playing 

unique roles while the use case is being performed. Therefore, in the original use case 

model, designers will assume that Manager and Employee play different roles when 

executing Perform Transaction. Hence, the implementation of the actors with respect to 

the execution of the use case will be different, even though they should be the same. This 

scenario can be fixed by applying the Generalize Actors refactoring on the original use 

case model. The refactoring extracts the overlapping roles between the associated actors, 

and creates a new actor, Super Actor, that represents these roles. The involved actors will 

generalize the newly created actor. Figure 17(b) shows the refactored use case model of 

the banking system.  
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(a) Original UC model 

 

(b) Refactored UC model 

Figure 17: Example of Generalize Actors refactoring  

 

r15. Spilt UCs 

This refactoring must be applied in case the functionality offered by the shared use 

case is too generic for servicing the requests of both actors. The refactoring splits the 

shared use case into appropriate use cases for each actor. These new use cases accurately 

depict the intended behavior of the system when interacting with each actor. 

The rule DropUseCase in Listing 14 checks for shared use cases in a use case 

model and deletes them when found. The call to rule AddUseCase adds new use cases 

into the use case model for each of its associated actors. The name of the shared use case 
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is copied into the new use cases and appended with its respective actor’s name in 

parenthesis. This indicates the modeler to rename this use case appropriately. 

 
rule DropUseCase { 
  from s : UML!UseCase (  
    thisModule.ucsToBeDroppend->includes(s)  
  ) 
  to drop 
  do { 
    for(ac in s.getAssociatedActors()) { 
      thisModule.AddUseCase(s, ac); 
    } 
  } 
} 

Listing 14: ATL rule for applying Split UCs refactoring 

 

The refactorings for this antipattern have been implemented for pairs of actor that 

share common use case(s). They can be extended for a larger set of actors.   

a9. An association between two actors 

This antipattern occurs when an association relationship between two actors is 

shown in a use case model. Association between actors represents interactions that are 

external to the system. A use case model should be concerned only with the interactions 

between a system and its actors. Incorporating interactions between external entities adds 

unnecessary complexity to a use case model. 

r16. Drop Actor-Actor Association 

This refactoring deletes an association between a pair of actors. This will ensure 

that modelers focus on interactions between a system and its actors, rather than external 

interactions. 
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A given association relationship in a use case model is involved in this antipattern 

if its source and destination are both actors. The rule DropAssociation in Listing 15 

checks for an association whose source and destination are actors, and deletes them when 

found. 

 
rule DropAssociation { 
  from s: UML!Association  ( 
    s.isSourceActor() and s.isDestinationActor() 
  ) 
  to drop 
} 

Listing 15: ATL rule for applying Drop Actor-Actor Association refactoring 

 

a10. An association between use cases 

This antipattern occurs when a use case model contains an association between a 

pair of use cases. This association relationship represents communication between the use 

cases in order to provide complete service to an actor.  

r17. Drop UC-UC association 

A use case model must be concerned with interactions between a system and its 

actors. Representing internal interactions adds unnecessary complexities into the use case 

model. This refactoring merges a pair of associated use cases into a single use case, 

which provides a complete and meaningful functionality to system users. Association 

relationships between actors and the associated use cases are directed towards the merged 

use case. 
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The rule DropAssocation in Listing 16 deletes associations between pairs of use 

cases. The call to rule AddUseCase adds a new use case into the use case model. This use 

case represents combined functionality of the associated use case. This use case is named 

‘Merged UC’ followed by names of the associated use cases in parenthesis. This indicates 

the modeler to rename the use case appropriately.  

 
rule DropAssociation { 
 from s: UML!Association (  
   s.isSourceUseCase() and s.isDestinationUseCase() 
 ) 
 to drop 
 do { 
   thisModule.AddUseCase(s); 
 } 
} 

Listing 16: ATL rule for applying Drop UC-UC Association refactoring 

 

Figure 18 illustrates an example of the Drop UC-UC Association refactoring on a 

use case model of a vehicle embedded system. In the source use case model (Figure 

18(a)), two use cases Count Shaft Rotations in Trip and Measure Time of Trip are 

associated. The former is responsible for calculating the distance traveled during a trip, 

whereas the latter tracks the time spent during a trip. These use cases, by themselves, do 

not provide any service to the user. They provide the necessary information required for 

calculating the average speed of the car during a trip. Therefore, the Drop UC-UC 

Association refactoring is applied on the original use case model. The refactoring merges 

the two use cases into a single use case, which calculates the average speed of the car 

during a trip. The merged use case should be renamed properly by the modeler. Figure 18 

(b) shows the refactored use case model of the car dealership system.  
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(a) Original UC model 

 

(b) Refactored UC model 

Figure 18: Example of Drop UC-UC Association refactoring 

 

a11. An unassociated use case 

This antipattern occurs when a use case model contains a use case that is not 

associated with any actor. Such a use case represents functionality that is internal to the 

system; therefore, does not provide any service to the system’s user. This situation is 

acceptable if the use case model is incomplete.  

r18. Drop Unassociated UC 

This refactoring deletes an unassociated use case from the use case model. The 

purpose of use case modeling is to model the interactions between a system and its actors. 

Hence, internal functionality should not be represented in a use case model.  

The rule DropUseCase in Listing 17 checks for unassociated use cases in a use case 

model, and deletes then when found. Apart from being not associated with any actor, the 

use case must not be involved in any inclusion, extension and generalization relationship. 
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rule DropUseCase { 
  from s : UML!UseCase  ( 
    not (s.isAssociated() or s.isExtension() or s.isExtended() or s.isIncluder() 
    or s.isIncluded() or s.isGeneralization() or s.isSpecialization()) 
  ) 
  to drop 
} 

Listing 17: ATL rule for applying Drop Unassociated UC refactoring 

 

a12. Two actors with same name 

This antipattern occurs when several actors in the same use case model have 

identical names. This situation may occur if an actors’ roles is carried out by different 

personnel with similar job titles. This situation is acceptable if several instances of an 

actor can enhance the layout of a use case diagram.   

r19. Rename Actor 

Actors with identical names are a source of confusion in a use case model. The 

identical actors should be renamed such that their responsibilities can be distinguished, 

and represented more precisely.  

The rule RefactorActor in Listing 18 checks for a duplicate actor and renames it 

when found. The actor is renamed ‘Duplicate Actor’ followed by the actor’s original 

name in parenthesis. This indicates the modeler to consider renaming the actor 

appropriately.  
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rule RefactorActor { 
  from s : UML!Actor (  
    UML!Actor->allInstances() 
      ->excluding(s) 
      ->collect(a | a.name) 
      ->includes(s.name) 
  ) 
  to t: UML!Actor ( 
    name <- 'Duplicate Actor ' + '(' + s.name + ')'   
  ) 
}  

Listing 18: ATL rule for applying Rename Actor refactoring 

 

Figure 19 illustrates an example of the Rename Actor refactoring. In the original 

use case model (Figure 19(a)), two actors have an identical name, Administrator. This 

actor’s role is performed by different personnel with identical job titles. The first type of 

role is security administration, and the second one is maintenance administration.  

Therefore, the Rename Actor refactoring is applied on the original use case model. The 

refactoring renames the identical actors in order to indicate the modeler of duplication. 

The refactored use case model is shown in Figure 19(b).        
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(a) Original UC model 

 
(b) Refactored UC model 

Figure 19: Example of Rename Actor refactoring 

 

a13. An actor associated with an unimplemented abstract use case  

This antipattern occurs when an actor is directly associated with an abstract use 

case that is not implemented by any specialized use case(s). A service request from an 

actor to such a use case will not be performed since the use case cannot be initiated. This 

situation is acceptable if the use case model is incomplete. The use case modelers are 

expected to later add concrete use case(s) which will implement the abstract use case. 

However, assuming that the abstract use case can be initiated to provide service to an 

actor is incorrect.    
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r20. Abstract to Concrete 

This refactoring converts the abstract use case to concrete. This ensures that the use 

case can be performed and intended service will be provided to the actor. A use case is 

involved in this antipattern if it is: 

• abstract and associated with at least one actor 

• neither a generalization nor a specialization of any use case 

• neither including nor extending any use case 

• neither included nor extended by any use case 

The rule AbstractToConcrete in Listing 19 checks the above detection conditions 

for each use case in a given use case model. If a use case satisfies all the detection 

conditions, its isAbstract property is unset. Figure 20 illustrates an example of the 

Abstract to Concrete refactoring.  

 
rule AbstractToConcrete { 
  from s: UML!UseCase ( 
    s.isAssociatedWithActor() and s.isAbstract and not (s.isGeneralization() or 
    s.isSpecialization() or s.isIncluder() or s.isIncluded() or s.isExtension() or 
    s.isExtended()) 
  ) 
  to t: UML!UseCase ( 
    isAbstract <- false 
  ) 
} 

Listing 19: ATL rule for applying Abstract to Concrete refactoring 
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(a) Original UC model 

 
(b) Refactored UC model 

Figure 20: Example of Abstract to Concrete refactoring 

 

r21. Add Concrete UC 

This refactoring must be applied in case the abstract use case is indeed incomplete. 

A concrete use case that implements the abstract use case is added into the use case 

model. A generalization relationship is also added from the concrete use case to the 

abstract use case. This guarantees that the abstract use case will not be solely performed. 

Therefore, complete and meaningful service is provided to an actor through the concrete 

use case.    

The rule RefactorUseCase in Listing 20 detects unimplemented use cases in a given 

use case model, and refactors them by adding a concrete use case which implements 

them. The name of the abstract use case is copied into the concrete use case and 

appended with ‘Concrete’ in parenthesis. This indicates the modeler to rename the 

concrete use case appropriately. Figure 21 illustrates an example of the Add Concrete UC 

refactoring. 
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rule RefactorUseCase { 
  from s: UML!UseCase  ( 
    s.isAssociatedWithActor()and s.isAbstract and not (s.isGeneralization() or 
    s.isSpecialization() or s.isIncluder() or s.isIncluded() or s.isExtension() or 
    s.isExtended()) 
  ) 
  to t: UML!UseCase  ( 
    name <- s.name, 
    isAbstract <- s.isAbstract 
  ) 
  do { 
    thisModule.AddSpecializedUseCase(s,t); 
  } 
} 

Listing 20: ATL rule for applying Add Concrete UC refactoring 

 

 
(a) Original UC model 

 
(b) Refactored UC model 

Figure 21: Example of Add Concrete UC refactoring 

 

3.2 Case Study 

In this section we present a real world case study to demonstrate the feasibility of 

the proposed approach. 
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3.2.1 Definition and Motivation 

The main research questions posed by this case study are as follow: 

R1: Does the model transformation approach have the same antipattern detection 

capabilities as the detection technique presented in  [19]? If a different set of 

antipattern matches are detected then these matches must be investigated to compare the 

coverage of the antipattern sets detected. Comparing the coverage of the two sets of 

antipattern matches will indicate which detection technique is superior. 

R2: Does model transformation apply the refactorings correctly? Given a set of 

antipattern matches and an identified set of required refactorings, the refactorings will be 

applied using model transformation. The correctness of the refactorings carried out will 

be initially verified by examining the target models structurally. Correctness will then be 

verified once again by comparing the target models with manually refactored use case 

models presented in  [19]. Any discrepancy between them will be investigated to decide 

which approach is superior. 

3.2.2 Formulation 

In order to address the above mentioned research questions, the use case model that 

was used in the case study presented in  [19] will be reused for comparative purposes. The 

use case model used in the case study presented in  [19] suffered from a set of 

documented issues. Antipatterns in the use case model were then searched for using 

ARBIUM. The antipattern matches prompted the execution of a set of corresponding 

refactorings that were carried out manually, which subsequently resolved the documented 
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list of issues in the use case model. Therefore, in the first phase of this case study, the 

proposed approach will be used to detect antipatterns in the same use case model.  The 

two sets of antipattern matches will then be compared. In the second phase of this case 

study, the manually applied refactorings in  [19] will be applied using model 

transformation. The target models will be examined directly to determine their 

correctness. Moreover, the target models will be compared with the target models 

presented in  [19]. The results of these evaluations are presented in Section  3.3.  

The case study pertains to the use case model of the MAPSTEDI (Mountains and 

Plains Spatio-Temporal Database Informatics) system  [116]. The MAPSTEDI system is a 

distributed database system that integrates biodiversity data collections from three 

sources; the University of Colorado Museum (UCOM); the Denver Museum of Nature 

and Science (DMNS); and the Denver Botanic Gardens (DBG). The integrated database 

contains 285,000 biological specimens. The system will allow geocoders to analyze 

biodiversity data in the southern and central Rocky Mountains. A map based GUI is 

provided by MAPSTEDI to allow users to geographically reference the specimens.  

The use case model of MAPSTEDI (Figure 22-Figure 26) consists of five packages, 

each of which model the functional requirements of individual subsystems. Each package 

is individually checked for presence of antipattern instances. The use case model is 

accompanied by textual descriptions for each individual use case. The use case 

descriptions are required for determining the validity of the use case model.  
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Figure 22: Use case model of Database Access subsystem 

 

 
Figure 23: Use case model of Database Queries subsystem 
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Figure 24: Use case model of Database Integrator subsystem 

 

 
Figure 25: Use case model of Database Edits subsystem 
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Figure 26: Use case model of Administrative Process subsystem 

 

3.2.3 Model Transformations 

This section will describe and illustrate antipattern detection, and refactoring on the 

use case models of the MAPSTEDI system.  

Database Access Subsystem 

In the Database Access use case model, two actors are associated with a common 

set of use cases. Actors Public User and Research User are both associated with use 

cases Download Collections Data, Search Collection Data and Visualize Biodiversity 

Analysis. This matches antipattern  a8. Now, the question arises which one of the two 

refactorings  r14 and  r15 must be applied to this antipattern instance. The answer to this 

question lies in the use case descriptions of the use cases involved in this antipattern. 

Analysis of the use case descriptions reveals that actors Public User and Research User 

perform similar roles when executing the shared use cases. This suggests that refactoring 

 r14 must be applied on the antipattern instance. The refactoring adds an actor Super Actor 

to the use case model that generalizes the similar roles performed by actors Public User 



 

86 

 

and Research User. The added actor is associated with the shared use cases Download 

Collections Data, Search Collection Data and Visualize Biodiversity Analysis. The 

associations from actors Public User and Research User to the shared use cases are 

deleted. The actor Super Actor must be renamed appropriately by the modeler. Figure 27 

presents the refactored use case model of the Database Access subsystem. 

 

 
Figure 27: Use case model of Database Access subsystem after applying the Generalize Actors refactoring 

 

Database Queries Subsystem 

In the Database Queries use case model extension use cases, Query Database and 

Query Remote Database, each provide optional functionality to more than one base use 

cases. This matches antipattern  a5. Two instances of this antipattern exist in the Database 

Queries use case model. In the first instance, use case Query Database extends two use 
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cases, Query Remote Database and Query Local Database. In the second instance, use 

case Query Remote Database extends Query DMNS Databases and Query DIGIR 

Database. The two instances result in a hierarchy of functional decompositions. Analysis 

of the use case descriptions of these extension use cases indicates that this hierarchy is 

incorrect. The functionalities provided by the extension use cases are in fact specialized 

versions of general behavior described by their respective base use cases. Therefore, 

refactoring  r10 is applied on the model elements involved in this antipattern. Figure 28 

presents the refactored use case model of the Database Queries subsystem. 

 

 
Figure 28: Use case model of Database Queries subsystem after applying the Extension to Generalization 

Refactoring    

 

Database Integrator Subsystem 

In the Database Integrator use case model, use case Update Collections Data 

includes use case Edit Collections Data, which is neither directly associated with any 
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actor nor included any other use case. This matches antipattern  a4. The same antipattern 

is similarly matched by use cases Run QC Tests and Upload DBG and UCOM Data. 

Therefore, two instances of this antipattern are present in the Database Integrator use 

case model. Refactoring  r7 is applied on the use case model. Both of the antipattern 

instances are refactored in a single execution of the model transformation. This results in 

the deletion of use cases Edit Collections Data, and Upload DBG and UCOM Data.  

 

 
Figure 29: Use case model of Database Integrator subsystem after applying the Drop Functional Decomposition 

refactoring 

 

In the refactored use case model in Figure 29, use case Run QC Tests is included by 

only one use case, Update Collections Data, and not directly associated with any actor. 

This is again matches antipattern  a4. Therefore, the Database Integrator use case model 

must go through a second iteration of refactoring. Since use case Run QC Tests includes 

Query Remote Database, refactoring  r8 is applied. This results in the deletion of use case 

Run QC Tests and introduction of include relationship between use cases Update 
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Collections Data, and Query Remote Database. Figure 30 presents the resulting use case 

model after the second iteration of refactoring. 

 
Figure 30: Use case model of Database Integrator subsystem after applying the Drop Functional Decomposition 

with Include refactoring on the use case model in Figure 29 

 

Database Edits Subsystem 

Use case Edit Collections Data was merged into use case Update Collections Data 

in the previous refactoring step. Edit Collections Data is also part of the Database Edits 

use case model. Therefore, use case Edit Collections Data must be replaced by use case 

Update Collections Data in the Database Edits use case model. Actors Data Editor and 

Database Integrator are now associated with use case Update Collections Data, which 

extends use case Geocode Specimen. This matches antipattern  a2. Analysis of the 

Geocode Specimen use case description revealed that performing database updates is part 

of its required functionality. Therefore, the extend relationship is replaced by an include 

relationship directed from use case Geocode Specimen to use case Update Collections 

Data. The incorrect extend relationship is a mistake made by the modeler rather than the 

cause of an antipattern  a2 instance. The description of actor Data Editor suggests that it 

represents the data editing role of actor Geocoder, which is indirectly associated with use 
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case Update Collections Data through use case Geocode Specimen. Therefore, actor Data 

Editor is redundant and must be deleted from the use case model.  

Use case Find Locality is included by Geocode Specimen and not associated with 

any actor. This matches antipattern  a4. Refactoring  r7 is applied on the use case model; 

thus, resulting in use case Find Locality being deleted. Figure 31 presents the refactored 

use case model of the Database Edits subsystem.   

 
Figure 31: Use case model of Database Edits subsystem after applying the Drop Functional Decomposition 

refactoring 

 

Administrative Process Subsystem 

In the Administrative Process use case model, actors Database Administrator and 

ArcIMC Administrator are associated with the same set of use cases. This matches 

antipattern  a8. Analyzing the use case descriptions of use cases Backup Process, Restore 

Process and Install Software Updates reveals that the services provided by them are too 

general for either of the actors, Database Administrator and ArcIMC Administrator. 

Actor Database Administrator was involved in backing up and restoring bio diversity 

data, and installing database updates, whereas actor ArcIMC Administrator was involved 
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in backing up and restoring application code, and installing code updates. Therefore, 

refactoring  r15 is applied on this antipattern instance. This results in use cases Backup 

Process, Restore Process, and Install Software Updates split into two use cases, each of 

which provide appropriate service to actors Database Administrator and ArcIMC 

Administrator. The new use cases must be renamed appropriately by the modeler. Figure 

32 presents the refactored use case model of the Administrative Process subsystem. 

 

 
Figure 32: Use case model of Administrative Process subsystem after applying the Split UCs refactoring 

 

Merged View 

The Database Queries and Database Integrator use case models contain two 

overlapping use cases, Query Remote Database and Query Local Database. Therefore, 

their refactored use case models must be merged and considered for further refactoring 

opportunities. Figure 33 shows the merged use case model. 
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Figure 33: Merged use case model of Database Queries and Database Integrator subsystem 

 

The refactoring performed for the Database Queries subsystem replaced 

inappropriate extend relationships with generalization relationships. Actor Database 

Integrator is indirectly associated with generalized use case Query Remote Database. 

This matches antipattern  a1. Refactoring  r1 is applied; thus, resulting in use case Query 

Remote Database set to abstract. The alternative refactoring for this antipattern,  r2, 

cannot be applied because the association between actor Database Integrator and use 

case Query Remote Database is indirect. Figure 34 shows the refactored use case model. 
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Figure 34: Use case model of Database Queries and Database Integrator subsystem after applying the Concrete 

to Abstract refactoring 

 

Table 5 summarizes the antipatterns matched in the use case models of 

MAPSTEDI, and the refactorings applied for quality improvement. The modeler must 

ensure that a refactoring is behavior preserving before applying it. This can be done by 

consulting the use case descriptions of the use case model elements involved in the 

antipattern. In the case of the antipattern  a2 match in the Database Edits use case model, 

the relevant use case descriptions suggested presence of mistakes made by the modeler 

rather than that of an antipattern instance.  
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Table 5: Antipatterns matched in the use case models of MAPSTEDI, and the refactorings applied         

Package Antipattern Refactoring 
Database Access Multiple actors associated with 

one use case 
Generalize Actors 

Database Queries Functional Decomposition: 
Using the extend relationship 

Extension to Generalization 

Database Integrator Functional Decomposition: 
Using the include relationship 

Drop Functional 
Decomposition 
 

Functional Decomposition: 
Using the include relationship 

Drop Functional 
Decomposition having 
Inclusion 

Database Edits Accessing an extension use case - 
Functional Decomposition: 
Using the include relationship 

Drop Functional 
Decomposition 

Administrative Process Multiple actors associated with 
one use case 

Split UCs 

Database Queries and 
Database Integrator 

Accessing a generalized 
concrete use case 

Concrete to Abstract 

 

3.3 Evaluation 

The results of the case study show that model transformations detected the same set 

of antipatterns matched in  [19]. The target models produced by the model 

transformations were found to be consistent with the refactored use case models of 

individual MAPSTEDI subsystems presented in  [19]. Moreover, the problems caused by 

the antipatterns were resolved in the target models, thus improving their understandability 

and correctness. However, a discrepancy was noticed in the merged use case model of 

Database Queries and Database Integrator subsystems. The target model in Figure 33 

shows an include relationship from use case Update Collections Data to use case Query 

Remote Database whereas, in  [19] an extend relationship is shown between them. The 

discrepancy was investigated by consulting the use case descriptions, and interviewing 
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the original author. The extend relationship from use case Update Collections Data to use 

case Query Remote Database was determined to be a human error. This suggests that the 

model transformation approach is less error prone compared to the manual antipattern 

matching approach in  [19]. MAPSTEDI is a small scale system containing 20 use cases; 

the usage of the antipattern matching approach on MAPSTEDI resulted in one error. For 

large scale systems containing thousands of use cases, the antipattern matching approach 

may be more error prone. Therefore, the model transformation approach is more efficient, 

and appropriate for large scale software systems. 
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4 CHAPTER 4 

AUTOMATED TRANSFORMATION OF USE CASE 

MAPS TO UML 2 ACTIVITY DIAGRAMS  

This chapter proposes a model transformation approach to transform a given UCM 

into a UML 2 Activity Diagram (AD). The model transformation approach will 

systematically produce a consistent and accurate representation of UCMs in the form of 

ADs. Defining a formal model transformation approach has the obvious advantage of 

avoiding human errors which would otherwise be injected if the transformation was 

performed manually. In OO software development projects, the generated ADs will 

greatly ensure that the developed end system accurately represents the behavior modeled 

originally in the UCM diagrams.  

The remainder of this chapter is organized as follows. Section  4.1 proposes 

mappings from UCM to UML 2 AD notation. Section  4.2 presents the most critical 

transformation rules and their implementations. Section  4.3 gives presents two case 

studies to illustrate the transformation approach. The first pertains to an elevator control 

system and, the second pertains to a mock system. Section  4.4 describes verification of 

the case studies.   
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4.1  UCM to UML 2 AD mappings 

This section outlines the proposed mappings between the UCM and UML 2 AD 

notations. The proposed mappings shown in this section were verified by Dr. 

Jameleddine Hassine, a prominent researcher in the field of UCM and a professor of 

Software Engineering. 

UCMs and ADs share similar concepts. The definitions of UCM constructs given 

by Buhr and Casselman  [39] were used. For AD constructs, the definitions provided in 

the OMG UML 2.2 specification  [141] were used. The definitions obtained for UCM and 

AD constructs were used to propose mappings between the UCM and AD notations. 

A UCM is composed of one or more paths. Each path describes a particular 

scenario. An activity in an AD can also contain multiple flows of control.  Hence, 

mappings between UCMs and ADs are proposed. Start points which represent the 

initiation of a UCM path are mapped to UML initial nodes. UCM end points which 

represent the termination of UCM path are mapped to UML final nodes.  

The OMG UML 2.2 specification defines an opaque action as “an action with 

implementation-specific semantics”. Since UCM responsibilities are high level 

descriptions of system behaviour, they are mapped to opaque actions. Buhr and 

Casselman  [39] define a timer as “a special kind of responsibility along a path that takes 

up real time without taking up processing resources”. Based on this analogy timers are 

mapped to opaque actions as well, similar to the mapping of responsibilities except that a 
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‘No Action’ label is appended to the timer’s notation to distinguish it from other opaque 

actions. UCM failure points are defined as “points where a path may end abnormally, due 

to some failure in the underlying system”  [39]. They simply indicate the possible 

occurrence of a failure or exception; thus, they are mapped to opaque actions. A label 

‘Handle Exception’ is appended to the failure point’s name in order to distinguish it from 

other opaque actions.  

UCM concurrency and branching constructs, AND-fork and AND-join, are 

intuitively mapped to their AD counterparts, fork node and join node, respectively. It 

should be noted that concurrent control flows in ADs are required to synchronize at a join 

node; however, UCMs have no such restriction  [10]. UCM branching constructs, OR-fork 

and OR-join are intuitively mapped to their AD counterparts, decision node and merge 

node, respectively. 

The UCM elements which are bound to components (teams, objects, processes, 

actors, and agents) are grouped into activity partitions. This mapping decision is made 

since their purpose is to group related activity nodes together and to represent 

organizational units such as classes  [159]. The difference between these notations is that 

UCM components cannot share elements (responsibilities, timers, failure points, etc.) 

whereas ADs have no such restriction. ADs allow activity partitions to overlap, enabling 

them to share nodes and edges. Hierarchical decomposition of activity partitions in ADs 

is similar to that of components in UCMs. In order to determine which type of component 

(actor, process, object, etc.) they correspond to, we suggest their names be appended with 
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the type of component they correspond to. Names of activity partitions that correspond to 

generic components (of no specific type) are appended with an ‘(Other)’ label.  

Stubs which represent nested UCMs are mapped to structured activities, which 

cannot share nodes and edges with other structured activities. This mapping decision is 

made because stubs are individual UCMs, by themselves, which do not share elements 

(responsibilities, timers, failure points, etc.) with parent or child maps. It should be noted 

that components inside a stub will be ignored by our mapping, since structured activities 

cannot include activity partitions. However, nesting of structured activities is allowed as 

is the case with stubs in UCMs. In order to prevent loss of information while using this 

mapping, UCM designers should model stubs such that they are contained within a 

component. 

UCM waiting points are points along a path that indicate that execution flow must 

wait for events along another path  [39]. There is no such notation in ADs that can allow a 

control flow to wait for another one. We propose to use merge nodes with labels 

appended by ‘Wait’, to depict such behavior in a flow. It should be noted that the end 

point that is connected to a waiting point is discarded during the mapping. Otherwise, it 

would be mapped to an activity final node, which would be connected to a merge node 

(waiting). This mapping decision is made since a final node stops a flow in an activity. A 

visual summary of the mappings is shown in Figure 35.    
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Figure 35: Mapping of UCM to UML 2 AD notation 
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4.2 Transformation Rules 

The proposed mapping was implemented using ATL  [86] [175], a model 

transformation language. ATL provides a hybrid of declarative and imperative 

programming styles for defining mappings between source and target models. As such, 

both programming capabilities were used to implement this transformation. The rules 

were written against the UCM metamodel and UML 2 metamodel shown in Appendix A 

and Appendix B, respectively. The remainder of this section presents the different types 

of rules that were developed. 

4.2.1 Entry point and Matched Rule 

The transformation begins with executing an entrypoint rule Main. The entrypoint 

rule (see Listing 21) transforms UCM nodes, edges, components and stubs to their 

corresponding AD notation by invoking called rules (see Listing 24). Once the entrypoint 

rule finishes execution, the matched rule, URNDefinition_To_UMLPackage, is implicitly 

invoked. Matched rules define the transformation process in a declarative manner. 

URNDefinition_To_UMLPackage was created (see Listing 22) to map the root node of a 

source UCM to the corresponding one of a target AD. 
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entrypoint rule Main() { 
  do { 
    for(ucmNode in thisModule.ucmNodes){   
      thisModule.TransformNode(ucmNode); 
    } 
    for(ucmEdge in thisModule.ucmEdges){  
      thisModule.TransformEdge(ucmEdge); 
    }  
    for(component in thisModule.ucmComponents){ 
     thisModule.TransformComponent(component); 
    } 
    for(stub in thisModule.rootMapStubs) { 
     thisModule.TransformStub(stub); 
    }  
  } 
} 

Listing 21: The entry point rule 

 
rule URNDefinition_To_UMLPackage { 
  from d: UCM!"urn::URNspec" 
  to p: UML!Package ( 
    packagedElement <- a 
  ), 
  a: UML!Activity ( 
    name <- thisModule.rootUCM.name, 
    node <- thisModule.umlNodes, 
    edge <- thisModule.umlEdges, 
    group <- thisModule.umlGroups 
  ) 
  do { 
    p.debug('Transformation done!'); 
  } 
} 

Listing 22: The matched rule 

 

4.2.2 Lazy Rules 

In ATL, rules that do not state parameters are given the modifier lazy. Lazy rules 

facilitate the transformation process in the same manner as matched rules. Unlike 

matched rules, lazy rules only execute when called by other rules. Although they are 

defined without parameters, they require parameters to be passed while invoking them. 

The from and to blocks in a lazy rule are declarative statements that specify the source 

and target instance respectively. The following are the lazy rules that have been 
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implemented in order to transform various UCM notations into UML 2 AD notations. 

Listing 23 outlines the lazy rules and briefly explains the purpose of each one. 

 
Transforming start point into end node. Transforming end point to final node. 
lazy rule StartPoint_To_InitialNode { 
  from p: UCM!"ucm::map::StartPoint" 
  to n: UML!InitialNode ( 
    name <- p.name 
  ) 
} 

lazy rule EndPoint_To_FinalNode { 
  from p: UCM!"ucm::map::EndPoint" 
  to n: UML!ActivityFinalNode ( 
    name <- p.name 
  ) 
} 

Transforming responsibility to action. Transforming timer to action. 
lazy rule Responsibility_To_OpaqueAction { 
  from r: UCM!"ucm::map::RespRef" 
  to a: UML!OpaqueAction ( 
    name <- r.respDef.name 
  ) 
} 

lazy rule Timer_To_OpaqueAction { 
  from t: UCM!"ucm::map::Timer" 
  to n: UML!OpaqueAction ( 
    name <- t.name + ' (No Action)' 
  ) 
} 

Transforming waiting place node to merge node. Transforming failure point to action. 
lazy rule WaitingPlace_To_MergeNode { 
  from w: UCM!"ucm::map::WaitingPlace" 
  to n: UML!MergeNode ( 
    name <- w.name + ' (Wait)' 
  ) 
} 

lazy rule FailurePoint_To_OpaqueAction { 
  from f: UCM!"ucm::map::FailurePoint" 
  to n: UML!OpaqueAction ( 
    name <- f.name + ' (Handle Failure)'   
  ) 
} 

Transforming AND-fork to fork node. Transforming AND-join to join node. 
lazy rule AndFork_To_ForkNode { 
  from f: UCM!"ucm::map::AndFork" 
  to n: UML!ForkNode ( 
    name <- f.name + ' (Fork)' 
  ) 
} 

lazy rule AndJoin_To_JoinNode { 
  from f: UCM!"ucm::map::AndJoin" 
  to n: UML!ForkNode ( 
    name <- f.name + ' (Join)'   
  ) 
} 

Transforming OR-fork to decision node. Transforming OR-Join to merge node. 
lazy rule ORFork_To_DecisionNode { 
  from o: UCM!"ucm::map::OrFork" 
  to n: UML!MergeNode ( 
    name <- o.name + ' (Decision)' 
  ) 
} 

lazy rule ORJoin_To_MergeNode { 
  from o: UCM!"ucm::map::OrJoin" 
  to n: UML!MergeNode ( 
    name <- o.name + ' (Merge)' 
  ) 
} 

Listing 23: Lazy rules 

 

It should be noted that in rule AndJoin_To_JoinNode the target object’s type is fork 

node rather than join node. This is because the Eclipse UML 2 tools do not contain 

notation for join node. The tool also lacks notation for decision nodes. Hence, in rule 

ORFork_To_DecisionNode the to block defines an instance of merge node rather than 

decision node. 
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4.2.3 Called Rules 

Called rules describe part of the transformation process in an imperative manner. 

They are referred as called since they must be explicitly invoked by the developer.  

Called rules may contain a using block where local variables may be defined. A do block 

can be used to write imperative statements. The last statement of the do block must return 

the target model instance. In the using and do blocks of these rules, helper functions can 

be invoked. Due to space limitations only three called rules are presented in Listing 24. 
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 Initializes an activity partition given a component 
rule InitUmlGroup(compRef: UCM!"ucm::map::ComponentRef") { 
  using { 
    groupName: String =  compRef.groupName(); 
    groupNodes: Sequence(UML!Node) = compRef.getUmlNodes(); 
  } 
  to a: UML!ActivityPartition ( 
    name <- groupName, 
    node <- groupNodes 
  ) 
  do { 
    if(compRef.hasNoChildren()) { 
      a;  
    } 
    else {         
      a.subpartition <- compRef.getUmlSubGroups(); 
      a; 
    }  
  } 
} 
Initializes a structured activity node given a stub 
rule InitStaticStrAct(stub:UCM!"ucm::map::Stub") { 
 using { 
  map: UCM!"ucm::map::UCMmap" =  stub.getMap(); 
  source: UCM!"ucm::map::NodeConnection" = stub.firstPredecessor(); 
  target: UCM!"ucm::map::NodeConnection" = stub.firstSuccessor();  
  } 
  to a: UML!StructuredActivityNode ( 
    incoming <- source.getUmlEdge(), 
    outgoing <- target.getUmlEdge(), 
    node <- map.getNodes(),  
    edge <- map.getEdges(), 
    name <- stub.name 
  ) 
  do { 
    thisModule.ProcessStrActElements(stub, a); 
    if(map.hasNoStubs()) { 
      a; 
    } 
    else {   
      thisModule.ProcessNestedMaps(map, a); 
      a;  
    } 
  } 
} 
Initializes a control flow given a node connection  
rule InitUmlEdge(ucmEdge:   UCM!"ucm::map::NodeConnection") { 
  using { 
    umlSource: UML!Node = ucmEdge.getSourceUmlNode(); 
    umlTarget: UML!Node = ucmEdge.getTargetUmlNode(); 
    label: String = ucmEdge.getLabel(); 
  } 
  to e: UML!ControlFlow ( 
    source <- umlSource,  
    target <- umlTarget, 
    name <- label 
  ) 
  do { 
    thisModule.AddEdgeMap(ucmEdge, e); 
    e;  
  } 
} 

Listing 24: Called rules 
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4.2.4 Helpers 

A number of ATL helpers were written to facilitate the transformation process. The 

helper hasNoParent in Listing 25 determines whether a UCM component (actor, process, 

agent, etc.) is nested in another component or not. The helper isDiscardable in Listing 25 

determines whether a UCM node may be discarded during the transformation process.  

 
helper context UCM!"urncore::Component" def: hasNoParent(): Boolean =  
  self.contRefs>first().parent.oclIsUndefined(); 
helper context UCM!"ucm::map::PathNode" def: isDiscardable() : Boolean =   
  self.oclIsTypeOf(UCM!"ucm::map::DirectionArrow") or 
  self.oclIsTypeOf(UCM!"ucm::map::EmptyPoint") or 
  self.oclIsTypeOf(UCM!"ucm::map::Stub");  

Listing 25: Helper rules 

 

The transformation algorithm was implemented using a total of 45 transformation 

rules. Due to space restrictions, this chapter only presents the most critical 17 rules. The 

entire ATL source code is available to the interested reader for download at  [94].  

 

4.3 Case Studies 

In this section two case studies are presented to illustrate the proposed 

transformation approach.  

4.3.1 Elevator Control System 

The implemented ATL transformation is applied to the UCM (Figure 36) of an 

Elevator Control System (ECS), which is available at  [8]. The UCM was adapted from 
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“Designing Concurrent, Distributed and Real-Time Applications with UML”  [74]. It 

represents the functionality of an ECS that controls one or more elevators. The two main 

responsibilities of the system are to respond to elevator calls from users, and to manage 

the motion of the elevators between floors. 

A use case begins with a request from the user to call the elevator to go to above or 

below levels. The request gets queued with other call requests. Depending on the state of 

the elevator whether it is stationary or moving, the system will control motor actions to 

move the elevator appropriately. Once the elevator approaches a requested floor, the 

motor stops, the door opens, and the corresponding call request is removed from the 

queue. 

This model was selected since it includes most of the UCM notational set and 

represents a complex scenario with multiple alternates. The source model (Figure 36) was 

provided as input to the ATL transformation algorithm defined, which resulted in the 

generation of the AD shown in Figure 37. The ATL source code, source and target 

models are available to the interested reader for download at  [94]. 
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Figure 36: Elevator Control System source UCM 
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Figure 37: Elevator Control System target AD  

 

4.3.2 Mock System 

In this section a mock example is presented to illustrate our implemented mapping. 

The need to create this mock system was prompted by the necessity of transforming a 

UCM that contains the entire UCM notational set. Such a requirement was not satisfied 

by the ECS system, any system available online, or in the literature. In particular, UCM 
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notation such as objects, processes, joins and failure points were not part of the previous 

example. This example involves all elements of the UCM and AD notation given in 

Figure 35. The remainder of this section describes the source and target model involved 

in this example.  

Source Model 

The source model (Figure 38) is applied as input to the ATL transformation. The 

UCM starts at start point SP1, performs several responsibilities and ends at EP1. The 

responsibilities can be bounded to a particular component or remain unbounded. 

Responsibility RU is an unbounded responsibility, whereas the remaining responsibilities 

are bounded to their respective components. Responsibilities RO and RT are bound to 

components CO and CT, respectively. Responsibility RAg and failure point FP are bound 

to the agent component CAg. The actor component CAc contains a nested process 

component CP. Start point SP2, responsibility RAc, end point EP2, and waiting point WP 

are bound to CAc, and responsibility RP is bound to CP. The path first performs RU after 

which it forks into two concurrent paths at AND-fork AF. They concurrently perform 

responsibilities RO and RT in components CO and CT, respectively. They synchronize at 

AND-join AJ, after which the path enters stub NM (Figure 39). It performs responsibility 

RS and waits for 5 seconds (timer), and renters the main UCM. The remainder of the path 

branches into alternate paths at OR-Fork OF based on guard conditions C1 and C2. If C1 

is satisfied, the path waits at waiting point WP for actor CAc to perform RAc. Once the 

wait is over, process CP executes responsibility RP. If C2 is satisfied, RAg is performed 

by agent CAg. The failure point FP bound to CAg indicates an erroneous situation whose 
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occurrence can terminate the path. The alternate paths merge at OR-join OJ, after which 

the path terminates at EP1. 

 
Figure 38: Mock System source UCM 

 

 
Figure 39: Mock System Stub NC  

 

Target Model 

The target model in Figure 40 is the output of the ATL transformation when Figure 

38 is given as input. It can be seen that components from the source model have been 

transformed to activity partitions. Their names have been appended with the type of 

component it corresponds to. For example, partition CO is appended with ‘Object’ in 

parentheses. Partition CAc contains a sub partition CP, as consistent with corresponding 

component in the source model. Responsibilities from the source model were transformed 
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to actions in the target model. It should be noted that bounded responsibilities from the 

source model have been grouped into corresponding partitions. Action RU, decision node 

OF, merge node OJ, structured activity NM, fork node AF, and join node AJ are not 

grouped into any partition, as they were unbounded in the source model. Structured 

activity NM includes SP3, RS, a timer and EP3, consistent with the elements of the stub 

NM in the source model. The arrows along the map are discarded during the 

transformation since they are already depicted by AD control flow.  
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Figure 40: Mock System target AD 

 

4.4 Target Model Verification 

The target model was thoroughly inspected and verified by three Software 

Engineering professors at the host institution. The proposed mapping (Figure 35) was 
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given to them along with the source and target models. Reviewers indicated confusion 

while distinguishing between decision nodes and merge nodes. This confusion is due to 

the fact that the Eclipse UML 2 tools do not include separate notation for decision nodes. 

Merge nodes are intended to be used in place of decision nodes. Hence, to avoid this 

confusion labels are placed on their respective notations. Another reviewer indicated 

confusion while interpreting edges coming in and out of fork and join nodes. This was 

found to be a layout issue. The transformation results in the model elements being placed 

in a default layout. The target model was manually realigned to clear the confusion. The 

same reviewer indicated that the proposed mapping did not consider dynamic stubs. 

Hence, a mapping for dynamic stubs was implemented in ATL. This can be found in the 

available source code.  
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5 CHAPTER 5 

DERIVING UML 2 SEQUENCE DIAGRAMS FROM USE 

CASE MAP SCENARIO SPECIFICATIONS  

This chapter presents a traceable mapping for transforming use case scenarios from 

UCM to UML 2 SD notation. Traceability helps in assessing the validity and 

completeness of requirements  [147]. Similar to SDs, UCMs can be modeled at varying 

levels of abstractions. High level UCMs depict components at abstract levels of 

granularity; such UCMs can easily be verified by the clients or end users, who are usually 

not concerned about the composition of system components. A high level UCM can also 

be depicted sans components, which again promotes the verification of scenarios by 

clients. Detailed UCMs depict scenario interactions bound to a particular system 

component. This promotes architectural reasoning at the functional requirements phase of 

a software development process, and serves a reference point for the architecture phase. 

UCMs describe scenarios at a higher level of abstraction compared to SDs. UCMs do not 

illustrate how system components interact with each other, whereas SDs do so via 

message interactions. The approach proposed in this chapter will ease the refinement of 

scenarios from UCM to UML 2 SD notation. The chapter also defines model 

transformation rules that can semi-automate the transition, and serve as a start-up point 

for deriving SDs from UCMs. 
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The remainder of this chapter is organized as follows. Section  5.1 presents 

mappings from UCM to UML 2 SD notation and illustrates them with examples. In 

Section  5.2 we present a model transformation approach to refine UCMs to SDs. In 

Section  5.3, the proposed mappings are applied on a case study that pertains to an 

elevator control system.  

 

5.1 UCM to UML 2 SD mappings 

In this section, mappings between UCM and SD notation are defined and illustrated 

for each UCM notational element.  

5.1.1 Components and Responsibilities 

UCMs contain causal paths of responsibilities, which are superimposed over one or 

more components. SD lifelines can be used to represent a UCM component in a SD. The 

responsibilities, which are bound to components, are translated as self messages in the 

lifeline that corresponds to its component. The transition of a UCM path from one 

component to another is shown in SDs as a generic message passed from a source lifeline 

to a target lifeline. UCMs do not describe how components interact with each other; but 

SDs can do so. We leave it to the designer to decide how the components interact with 

each other. The message can be one of the different types (synchronous, asynchronous, 

creation, destruction, synchronous reply and asynchronous reply) of messages in the 

UML 2 SD notation. The designer may also specify any parameters that need be passed 

along with the message.  
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The unbounded start points and unbounded end points of a UCM are represented as 

gates, which allow external messages into or out of the SD. The flow of control from the 

start gates is shown as generic messages; which are external events that invoke the 

execution of the SD. The flow of control to the end gate is also show as generic 

messages; which are events that terminate the SD and are passed outside the SD (possibly 

to another one). Unbounded responsibilities, which are events or actions external to any 

of the system’s components, will be ignored by this transformation. Unbounded UCMs 

are usually used to show high level system behavior to clients and end users. They cannot 

be used to derive SD; hence only detailed UCMs, which contain bounded responsibilities, 

can be translated to SDs.  

Figure 41 illustrates the transformation of a bounded UCM. The source UCM 

(Figure 41(a)) contains two components, Component A and Component B, which are 

represented as distinct lifelines in the target SD (Figure 41(b)). Their respective 

responsibilities are represented as self messages in order of path traversal. 

Responsibilities R1 and R3 are translated to self messages R1() and R3(), respectively, in 

lifeline Component A, whereas responsibility R2 is translated to self message R2() in 

lifeline Component B. The path transitions between Component A and Component B them 

are indicated by the messages M2() and M3(). The types and names of these messages 

can be changed by the designer as desired. M1() represents a message received by lifeline 

Component A from an external entity, whereas M4()  represents a message passed to an 

external entity. Start point SP and end point EP are translated to start gate SP and end 

gate EP, respectively.  
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(a) Source UCM 

 
(b) Target SD 

Figure 41: Mapping of components and responsibilities 

 

Bounded Start or End Points 

A UCM may contain start points or end points bounded to particular components. 

These points are not translated to gates during SD mapping. A bounded start point 

indicates a state, of its inclosing component, which initiates the execution of the UCM 
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path; hence, external messages emerging from start gates are not required. They are 

represented using state invariants on the enclosing component’s corresponding lifeline. If 

a path terminates in a component, an end gate is not required in its corresponding SD. 

This indicates the state of the component, as a result of the termination of the path. 

Hence, there is no need to pass a message out of the SD (through an end gate). They are 

also represented as state invariants on the lifeline that corresponds to its enclosing 

component.  

Figure 42 illustrates the mapping of a UCM containing bounded start and end 

points. Start point SP and end point EP, which are bounded to Component A in the source 

UCM (Figure 42(a)), are mapped to state invariants SP and EP, respectively, on lifeline 

Component A in the target SD ((Figure 42(b)).  
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(a) Source UCM 

 
(b) Target SD 

Figure 42: Mapping of bounded start and end points 

 

5.1.2 OR-forks 

Alternate paths in a UCM emerge from OR-forks, which contain a guard condition. 

They are represented in a SD using the alt fragment. The fragment must contain two 

operators; one for the path that executes when the OR-fork guard evaluates to true, and 

another one for the path that executes when the OR-fork guard evaluates to false. The 

merging of the alternate paths at an OR-join is the termination of the alt fragment.  
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Figure 43 illustrates the mapping of a UCM that contains alternate paths. The 

source UCM (Figure 43(a)) contains an OR-fork OF from which alternate paths emerge. 

Each path has a guard condition, which must evaluate to true in order for the path to 

proceed. If guard [cond] is satisfied, responsibility R1 is performed; otherwise control is 

immediately transferred to Component B. The alternate paths merge at OR-join OJ. In the 

target SD (Figure 43(b)), the paths emerging from OF are represented in an alt fragment. 

The fragment includes two operators; first one having guard [cond], and second one 

having guard [!cond]. The alt fragment terminates either when message M2() is received, 

or when self message R2() is called by lifeline Component B. 
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(a) Source UCM 

 
(b) Target SD 

Figure 43: Mapping of alternate paths 

 

5.1.2.1 Terminating Alternate Path 

An alternate path emerging from an OR-fork may immediately terminate the 

execution of the UCM. This is shown in a SD using the break fragment instead of an alt 

fragment.  
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Figure 44 illustrates the mapping of a UCM which contains a terminating alternate 

path. In the source UCM (Figure 44(a)), a terminating path emerges from OR-fork OF 

when guard [!cond] is satisfied. Since end point EP1 is bound to Component A it 

represents the terminating state of Component A. This terminating path is enclosed by a 

break fragment in the target SD (Figure 44(b)). The fragment also indicates the 

terminating state through state invariant EP1.     

 

 
(a) Source UCM 

 
(b) Target SD 

Figure 44: Mapping of terminating alternate path 
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5.1.2.2 Loops 

A UCM can also show repeated behavior (loops) using a combination of an OR-

fork and OR-join. An alternate path emerging from an OR-fork is connected backwards 

to its main path using an OR-join. This is represented in SDs using a loop fragment and a 

break fragment.  

Figure 45 illustrates a mapping from a UCM which contains a loop. An alternate 

path emerges from OR-fork OF in the source UCM (Figure 45(a)) when guard [!cond] is 

satisfied. This alternate path connects back to the main path at OR-join OJ to form a loop. 

In the target SD (Figure 45(b)), the UCM loop is represented using a loop fragment 

which encloses a break fragment. The loop fragment represents an infinite loop; it has no 

guard condition. The break fragment contains the OR-fork‘s guard [cond] which moves 

the path further. This allows the flow to break out of the loop fragment. The alternate 

path having guard [cond==false], which loops back to main path, is represented in the 

remainder of the loop fragment.  
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(a) Source UCM 

 
(b) Target SD 

Figure 45: Mapping of a UCM loop 

 

5.1.2.3 Loops (Alternate) 

An alternate approach to mapping UCM loops uses the loop fragment in 

conjunction with the guard condition of the OR-fork. The break fragment is not required 

in this approach.  
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Figure 46 shows the alternate mapping of the UCM in Figure 45. The loop 

fragment in the target SD includes the guard [!cond]. Note that message R1() is shown 

twice in the target SD, first time before the loop fragment, and second time inside the 

loop fragment. This approach may clutter the resulting SD in case of several 

responsibilities preceding the OR-fork and succeeding the OR-join.   

 

 
Figure 46: Alternate mapping of the UCM loop shown in Figure 45 
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5.1.3 AND-forks 

Concurrent paths in a UCM emerge from AND-forks; they can be represented in a 

SD using the par fragment. The fragment must contain separate operators for each path. 

The synchronization of concurrent paths at an AND-join translates to the termination of 

the par fragment.  

Figure 47 illustrates the mapping of a UCM containing concurrent paths. The 

source UCM (Figure 47(a)) contains ANF-fork AF from which two parallel paths 

emerge. The first path performs responsibility R1 in Component A, while the second path 

performs responsibility R2 in Component B. The paths synchronize at AND-join AJ. The 

parallel paths are represented using the par fragment in the target SD (Figure 47(b)). The 

fragment has two operators, one for each concurrent path. The receipt of message M2(), 

and completion of message R2(), by lifeline Component B terminates the par fragment.   
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(a) Source UCM 

 
(b) Target SD 

Figure 47: Mapping of concurrent paths 

 

5.1.4 Waiting Point 

On a waiting point, a UCM path waits for another path to finish its execution. This 

waiting point is represented in a SD using a state invariant. The path which is being 

waited for must be modeled as a separate SD, and referred from the target SD using an 

InteractionUse.  
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Figure 48 illustrates the mapping of a UCM containing a waiting point. In the 

source UCM (Figure 48(a)), the path emerging from SP1 waits at waiting point WP for 

the path starting at SP2 to finish. Let the path starting at SP1 be scenario S1, and the one 

starting at SP2 be scenario S2. S2 is translated into a separate SD (Figure 48(c)), which is 

referred from the SD of S1 (Figure 48(b)) through the InteractionUse S2. The state 

invariant WP on lifeline Component A indicates that its flow must pause until 

InteractionUse S2 completes execution. 
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(a) Source UCM 

 

(b) SD of scenario S1 

 

(c) SD of scenario S2 

Figure 48: Mapping of waiting points 

 

5.1.5 Timer 

A UCM path waits for a specific amount of time at a timer before continuing its 

execution. This can be represented in a SD as a state invariant on the lifeline that 

corresponds to the timer’s enclosing component.  
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Figure 49 illustrates the mapping of a UCM containing a timer. In the source UCM 

(Figure 49(a)), the path emerging from SP waits 5 seconds in Component A before 

proceeding to Component B. The wait 5 seconds timer is translated to a state invariant in 

the target SD (Figure 49(b)). This indicates that lifeline Component A must wait 5 

seconds before transferring control to lifeline Component B.  

 

 
(a) Source UCM 

 
(b) Target SD 

Figure 49: Mapping of timers 
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5.1.6 Failure Point 

A UCM path indicates possible occurrence of erroneous or exceptional situations at 

failure points. UCMs do not specify how the exceptional conditional can be handled. This 

can be represented in SDs by self messages which handle the exception. The message 

should be labeled 'Handle' followed by the failure point’s name.  

Figure 50 illustrates the mapping of a UCM containing a failure point. In the source 

UCM (Figure 50(a)), the path emerging from SP contains a failure point FP in 

Component A. FP is translated to a self message HandleFP() on lifeline Component A in 

the target SD (Figure 50(b)). This indicates that lifeline Component A handles the 

erroneous situation by invoking internal message HandleFP() before transferring control 

to lifeline Component B.  
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(a) Source UCM 

 
(b) Target SD 

Figure 50: Mapping of failure points 

 

5.1.7 Nested Components 

In UCMs, a component may be composed of one or more smaller components. The 

UCM paths inside the nested components are represented as separate SDs, which are 

referenced from the main SD through InteractionUses.  

Figure 51 illustrates the mapping of a UCM containing nested components. The 

source UCM (Figure 51(a)) contains Component A, which is composed of two 

Components, Component A1 and Component A2. Their behavior is depicted in a separate 

SD (Figure 51 (c)), which is referenced from the target SD (Figure 51(b)) through 
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InteractionUse Internal. The InteractionUse is placed on lifeline Component A in order to 

indicate its internal structure and to preserve the flow of control depicted in the UCM.   

 

 
(a) Source UCM 

 
(b) Target SD 

 
(c) Internal SD 

Figure 51: Mapping of nested components 

 

5.1.8 Stub 

A UCM can be refactored into smaller UCMs using stubs. Similarly, a complex SD 

can be modularized using InteractionUse(s). Therefore, stubs can be represened in SDs 

using InteractionUses.  
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Figure 52 illustrates the mapping of a UCM containing a stub. The source UCM 

(Figure 52(a)) contains a stub ST, whose contents are shown in Figure 52(b). ST is bound 

to Component A; this implies that its enclosing responsibility, R1, is also bound to 

Component A. The flow inside the stub is represented in a separate SD (Figure 52(d)), 

which is referenced from the target SD (Figure 52(c)) through InteractionUse ST.  

 

 
(a) Source UCM 

 
(b) Stub ST UCM 

 
(c) Target UCM 

 
(d) ST SD  

Figure 52: Mapping of stubs 
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5.1.9 Dynamic Stubs 

A dynamic stub represents multiple stubs on a UCM path; one of which executes 

depending on its guard condition. They can be depicted in SDs using the alt fragment. 

For each stub in a dynamic stub, an operand is included in the fragment and its guard 

condition. The content of each stub is shown in a different SD and referenced from the 

target SD through InteractionUses.  

Figure 53 illustrates the mapping of a UCM containing a dynamic stub. The source 

UCM (Figure 53(a)) contains a dynamic stub DS. The contents of DS include stubs ST1 

(Figure 53(b)) and ST2 (Figure 53(c)). DS is bound to Component A; this implies that its 

enclosing responsibilities, R1 and R2, are also bound to Component A. The guard 

conditions of DS are [cond] and [!cond] (not shown on figure). ST1 executes when 

[cond] is satisfied, whereas ST2 executes when [!cond] is satisfied. The flow inside each 

stub is represented in separate SDs (Figure 53(e) and (Figure 53(f)), which are referenced 

from the target SD (Figure 53(d)) through InteractionUses ST1 and ST2. 
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(a) Source UCM 

 
(b) Stub ST1 UCM 

 
(c) Stub ST2 UCM 

 
(d) Target SD 

 
(e) ST1 SD 

 
(f) ST2 SD 

Figure 53: Mapping of dynamic stubs 

 

5.2 Transformation Rules 

In a model-driven software development approach models are automatically 

derived from one another to ensure consistency. In this section, we present rules for 

automated transformation of UCMs to UML 2 SDs. The proposed mapping was 

implemented using the Atlas Transformation Language (ATL), a model transformation 

language. The presented rules will map UCM components to UML lifelines, UCM 
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responsibilities to UML internal messages, and path transition between components to 

synchronous messages between lifelines. The mapping of alternate paths cannot be 

automated due to a severe limitation in the SD metamodel. The CombinedFragment 

metaclass which represents SD fragments is not associated with the Message metaclass 

which represents SD messages. Hence, the presented model transformation is semi-

automated; it requires the designer to manually group the SD messages into appropriate 

fragments based on the proposed mapping. The ATL mapping rules are presented in 

Listing 26. The rules were written against the UCM metamodel and UML 2 metamodel 

shown in Appendix A and Appendix B, respectively.  
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entrypoint rule Main() { 
  using { 
    startPoint: UCM!"ucm::map::StartPoint" = thisModule.rootUCM.startPoint(); 
    endPoint: UCM!"ucm::map::EndPoint" = thisModule.rootUCM.endPoint(); 
  } 
  do { 
    thisModule.OrderResps(startPoint);   
    thisModule.CreateLifelines();   
    thisModule.CreateStartGate(startPoint);   
    thisModule.CreateMessages();     
    thisModule.CreateEndGate(endPoint);     
  } 
} 
 
rule CreateModel { 
  from d: UCM!"urn::URNspec" 
  to p: UML!Model ( 
    packagedElement <- package  
  ), 
  package: UML!Package ( 
    packagedElement <- collaboration 
  ), 
  collaboration: UML!Collaboration ( 
    ownedBehavior <- interaction  
  ), 
  interaction: UML!Interaction ( 
    lifeline <- thisModule.lifeLines, 
    fragment <-  thisModule.fragments, 
    message <- thisModule.messages, 
    formalGate <- thisModule.formalGates 
  ) 
} 
 
rule CreateStartGate(sp: UCM!"ucm::map::StartPoint") { 
  to g: UML!Gate ( 
    name <- sp.name 
  ) 
  do { 
    thisModule.formalGates <- thisModule.formalGates->including(g);  
  } 
} 
 
rule CreateEndGate(ep: UCM!"ucm::map::EndPoint") { 
  to g: UML!Gate ( 
    name <- ep.name, 
  ) 
  do { 
    thisModule.formalGates <- thisModule.formalGates->including(g);  
  } 
} 
 
rule OrderResps(node: UCM!"ucm::map::PathNode") { 
  do { 
    if(not node.isSuccessorEndPoint() and node.isSuccessorResp()) { 
      thisModule.respList <- thisModule.respList->including(node.successor().respDef); 
      thisModule.OrderResps(node.successor()); 
    }                             
  } 
} 
 
rule CreateLifelines() { 
  do { 
    for(contRef in thisModule.rootUCM.contRefs) { 
      thisModule.lifeLines <- thisModule.lifeLines 
        ->including(thisModule.CreateLifeline(contRef)); 
    } 
  } 
} 
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rule CreateLifeline(compRef: UCM!"ucm::map::ComponentRef") { 
  to l: UML!Lifeline ( 
    name <- compRef.getLifelineName(), 
  ) 
  do { 
    thisModule.compRefMap <- thisModule.compRefMap->including(compRef, l); 
    l; 
   } 
} 
 
rule CreateMessages() { 
  do { 
    for(resp in thisModule.respList) {  
      thisModule.messages <- thisModule.messages 
        ->including(thisModule.CreateMessage(resp)); 
    } 
  } 
} 
 
rule CreateMessage(resp: UCM!"urncore::Responsibility") { 
  to m: UML!Message ( 
  messageSort <- 'synchCall', 
  sendEvent <- thisModule.respMessageStartMap->get(resp), 
  receiveEvent <- thisModule.respMessageEndMap->get(resp), 
  name <- resp.name 
 ) 
 do { 
   m; 
 } 
} 

Listing 26: UCM to UML 2 SD ATL mapping rules     

 

5.3 Case Study 

5.3.1 Source Model 

In this section, we apply the proposed transformation on a case study that pertains 

to the UCM (Figure 54) of an Elevator Control System (ECS), and is taken, with 

permission, from  [8]. This UCM is a refined version of the UCM used in Chapter 4; it 

contains additional components and paths. The ECS contains a set of components that 

interact with each other to provide the required functionality. The Service Personnel 

Interface (SPI) allows turning on of the ECS. Each elevator’s states (stationary and 

moving) are controlled by the Elevator Control (EC) component. When the ECS is turned 

on through the SPI, all EC components are in the stationary state. The Elevator Manager 
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(EM) component determines whether an elevator request can be granted or nor. If it can 

be granted, it signals the elevator’s EC component to start moving. The Status and 

Planner (SP) component maintains and manages the list of all elevators that are being 

used. The Elevator component controls an elevator’s motor and door movement. An 

Arrival Sensor component on each elevator informs the EC that it is about to approach a 

floor. The Status and Planner (SP) also determines whether the floor being approached 

by an elevator is the requested one or not. If it is the requested one, the elevator stops and 

its door opens. The SP component removes the elevator from the list of elevators that are 

being used. The elevator goes back to stationary state and waits for requests from its EM. 

User can make requests from outside the elevator or from inside. Requests made from 

outside are up and down; above and below are the requests made from inside. Outside 

requests are sent to the Scheduler component, which selects an elevator to satisfy the 

request, and forwards it to the elevator’s respective EM. Inside requests are directly sent 

to an elevator’s EM. The UCM of the ECS is shown in Figure 54.  
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Figure 54: Elevator Control System UCM 
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5.3.2 Scenario Extraction 

Before we apply the proposed mapping rules, individual scenarios must be 

extracted from the ECS UCM. An individual scenario represents complete the execution 

of a UCM path. The benefit of individual scenarios is that they allow the validation of 

requirements, and ease the transition from requirements to design  [7]. The possible 

individual scenarios that can be extracted from the ECS UCM are as show in Table 6. 

  
Table 6: All possible scenarios in ECS UCM 

Scenario Sequence 
S1  up 
S2  down 
S3  above 
S4  below 
S5  approaching floor, moving 
S6  at floor, floor input, select elevator, add to list, [on list], already on list  
S7  in elevator, elevator input, add to list, [on list], already on list    
S8  at floor, floor input, select elevator, add to list, [!on list] 
S9  in elevator, elevator input, add to list, [!on list]  
S10  switch on, stationary, decide on direction, close door, [up], motor up, 

moving, [requested], motor stop, door open, remove from list, <at requested 
floor, door closing delay>, stationary 

S11  switch on, stationary, decide on direction, close door, [down], motor down, 
moving, [requested], motor stop, door open, remove from list, <at requested 
floor, door closing delay>, stationary 

S12  switch on, stationary, decide on direction, close door, [up], motor up, 
moving, [!requested]*, [requested], motor stop, door open, remove from list, 
<at requested floor, door closing delay>, stationary 

S13  switch on, stationary, decide on direction, close door, [down], motor down, 
moving, [!requested]*, [requested], motor stop, door open, remove from list, 
<at requested floor, door closing delay>, stationary 

* represents a loop 
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Scenario S1 represents the case in which a user chose to go up, whereas scenario S2 

represents the case in which the user chose to go down, using the panel outside the 

elevator. Scenario S3 represents the case in which a user choose to go up, whereas 

scenario S4 represents the case in which a user choose to go down, using the panel inside 

the elevator.  

 Scenario S5 represents the case in which the elevator is signaled that the 

approaching floor is the destination floor. Scenarios S6 and S7 represent the case in 

which the elevator selected for satisfying the user’s request is busy. On the contrary, 

scenarios S8 and S9 represent the case in which the selected elevator is free to satisfy the 

user’s request.  

Scenarios S10 and S11 represent the case in which the destination floor is exactly 

the next floor (above or below). On the contrary, scenarios S12 and S13 represent the 

case in which the destination floor is more than one floor apart (above or below). S12 and 

S13 loop at guard condition [! requested] until the floor that is being approached by the 

elevator is the destination floor. It should be noted that the source UCM contains an 

infinite loop that starts and ends at waiting point stationary. Therefore, scenarios S10, 

S11, S12, and S13 end at the second occurrence of stationary. 

The paths of scenarios S1, S5, S8 and S12 are combined to produce the UCM in 

Figure 55. This combined UCM will be used to demonstrate the mapping of the ECS 

UCM to UML 2 SD notation.    
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Figure 55: Scenarios S1, S5, S8 and S12 of the Elevator Control System UCM  

5.3.3 Transformation 

We apply the mappings defined in Section  5.1 on each of the individual scenarios, 

S1, S5, S8, and S12, to produce the target SDs shown in Figure 56-Figure 59.  

Scenario S1 

On the path of scenario S1, start point up, which is bounded to component User, 

indicates that the user selected up as the destination, using the panel outside the elevator. 
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The target SD of S1 (Figure 56) contains a state invariant up, on lifeline User, which 

represents the user’s destination selection. 

 

 
Figure 56: Mapping of scenario S1 to SD notation 

 

Scenario S5 

On the path of scenario S5, start point approaching floor, which is bounded to 

component Arrival Sensor, signals the elevator that a floor is about to be approached. S5 

ends after transferring control to the Elevator Control component. The target SD of S5 

(Figure 57) contains state invariant approaching floor, on lifeline Arrival Sensor, and 

message M1() passed to lifeline Elevator Control.        

 

 
Figure 57: Mapping of scenario S5 to SD notation 
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Scenario S8 

The path of scenario S8 begins at start point at floor, which is bounded to 

component User, and then pauses at waiting point floor input for the user to select up as 

the destination, i.e. completion of scenario S1. The target SD of S8 (Figure 58) begins at 

state invariant at floor on lifeline User, and then waits, at state invariant floor input, for 

scenario S1 to complete its execution. The SD of S1 is referenced using InteractionUse 

S1.  

After selection of the up destination, control is transferred to the Scheduler 

component. This transfer is depicted in target SD by the invocation of message M2() on 

lifeline Scheduler. The designer must rename this message appropriately during 

refinement of this SD. In order to satisfy the user’s request, Scheduler chooses a free 

elevator by performing responsibility select elevator, which is mapped in the target SD as 

self message selectElevator(), which invoked by lifeline Scheduler.  

After an elevator is selected, control is transferred to the Elevator Manager 

component, which further transfers control to the Status and Planner component. This 

successive transfer is shown in the target SD as a sequence of messages, M3() and M4(). 

The destination of M3() is lifeline Elevator Manager, whereas that of M4() is lifeline 

Status and Planner.  

Status and Planner now adds the selected elevator to the list of elevators in 

operation by performing responsibility add to list, and then transfers control back to the 

Elevator Manager component. In the target SD, lifeline Status and Planner invokes self 
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message addToList(), and then passes message M5() to lifeline Elevator Manager. 

Elevator Manager now forwards control to the Elevator Control component, which then 

ends S8. In the target SD, lifeline Elevator Manager passes message M6() to lifeline 

Elevator Control, thus ending the SD.  
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Figure 58: Mapping of scenario S8 to SD notation 

 

Scenario S12 

The path of scenario S12 begins at start point switch on, which is bounded to 

component Service Personnel Interface, and then transfers control to component Elevator 

Control. Now, the path pauses, at waiting point stationary, for a free elevator to be 

selected, i.e. completion of scenario S8. The target SD of S12 (Figure 59) begins at state 

invariant switch on on lifeline Service Personnel Interface, and then passes message M7() 

to lifeline Elevator Control, which waits at state invariant stationary for S8 to complete 

its execution. The SD of S8 is referenced using InteractionUse S8.  
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After the completion of scenario S8, responsibility decide on direction is performed 

in order to determine whether the elevator should go up or down. This is represented on 

the target SD as self message decideOnDirection(), which is invoked by lifeline Elevator 

Control. In S12, the outcome of decide on direction will always be up because the user 

choose to go up.   

After the direction of the elevator is determined, control is transferred to the 

Elevator component, which shuts the door of the elevator, and then moves the elevator 

upwards by performing responsibilities close door and motor up, respectively. In the 

target SD, lifeline Elevator Control passes message M8() to lifeline Elevator, which 

invokes self messages closeDoor() and motorUp(), in sequence.         

After the elevator begins its ascent towards the destination floor, control returns to 

the Elevator Control component, which pauses, at waiting point moving, for a floor to be 

approached, i.e. completion of scenario S5. In the target SD, lifeline Elevator passes 

message M9() to lifeline Elevator Control, which pauses, at state invariant moving, for 

InteractionUse S5 to finish its execution. 

As the elevator is about to approach a floor, control gets transferred to the Status 

and Planner component, which determines whether the floor is the requested one or not. 

If guard condition [requested] is satisfied, control is transferred to the Elevator 

component; otherwise, control returns back to the Elevator Control component. In 

scenario S12, [!requested] holds an indefinite number of time before [requested] is 

satisfied. This is shown in the target SD by a loop fragment having guard condition 

[!requested]. It should be noted that this mapping is the alternate mapping of UCM loops 
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(see Section  5.1.2.3). Messages M10() and M11() represent the repeated back and forth 

transfer of control between lifelines Elevator Control and Status and Planner. When the 

guard condition of the loop fragment does not hold, lifeline Status and Planner passes 

message M12() to lifeline Elevator.        

After the elevator reaches its destination, the Elevator component halts the elevator, 

and then opens its door by performing responsibilities motor stop and door open, 

respectively. In the target SD, lifeline Elevator invokes self messages motorStop() and 

doorOpen(), in sequence. 

The elevator must now be removed from the list of elevators busy elevators. This is 

achieved by transferring control back to the Status and Planner component, which 

performs responsibility remove from list. In the target SD, lifeline Elevator passes 

message M13() to lifeline Status and Planner, which invokes self message 

removeFromList(). 

The elevator must now be able to receive another request after its door shuts. This 

is achieved by transferring control back to the Elevator Control component, which halts 

S12 at timer door closing delay for an arbitrary amount of time. Simultaneously, control 

is also transferred to the User component to indicate that the user has reached his 

destination. This simultaneous transfer is achieved by AND-fork AF, which is 

represented as a par fragment in target SD. The par fragment contains two operators; the 

first passes message M14() to lifeline Elevator Control, whereas the second passes 

message M15() to lifeline User. The halting of S12 is represented by state invariant door 

closing delay on lifeline Elevator Control. After an arbitrary amount of time the Elevator 
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Control component is ready to receive another request while halting at waiting point 

stationary. This is represented in the target SD as state invariant stationary on lifeline 

Elevator Control. The invocation of M15() triggers state invariant at requested floor on 

lifeline User.       
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Figure 59: Mapping of scenario S12 to SD notation 
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6 CHAPTER 6 

A MUTATION FRAMEWORK FOR MODEL 

TRANSFORMATIONS 

The widespread interest in testing model transformation programs provides the 

major motivation for this chapter. This chapter, in particular, focuses on investigating the 

applicability of fault based testing to model transformations. This chapter serves the 

following purposes: 

• It proposes a suite of mutation operators for the Atlas Transformation Language 
(ATL), so that model transformation developers can gain the benefits of mutation 
testing. 

• It presents a prototype tool, MuATL, for automatic generation of ATL mutants. 

The remainder of this chapter is organized as follows. Our proposed ATL mutation 

testing approach is presented in Section  6.1. Section 6.2 introduces a suite of 10 mutation 

operators for the ATL transformation language. An analysis of the proposed mutation 

operators follows in Section  6.3. An automated tool for ATL mutant generation is 

described in Section 6.4. In Section 6.5, we apply the defined mutation operators on the 

UCM to UML 2 AD model transformation defined in Chapter 4. A discussion follows in 

Section 6.6.  
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6.1 ATL Mutation Testing Approach 

Mutation testing is a well-established fault based testing technique, in which faults 

are seeded into a syntactically correct program, in order to determine the efficiency of a 

test suite. Mutation testing has been successfully applied to various areas and languages: 

programming languages (e.g., Fortran, Ada, C, Java), integration testing (e.g., interface 

mutation), design models (e.g., Finite State Machines, petri nets, state-charts), web 

services, etc. For a comprehensive survey on the development of mutation testing, the 

reader is invited to consult  [84]. 

An ATL mutation operator defines how a particular ATL artifact will be changed 

in order to seed a fault. Application of a mutation operator results in a defective ATL 

program, which is known as a mutant ATL program. If a mutant is syntactically 

incorrect, it is considered as an invalid mutant. 

Figure 60 illustrates the general mutation process for ATL. An ATL test suite 

consists of a synthesis of a number of input models as test cases. The original ATL 

program and the generated mutants run on the test cases, and the results are compared 

using an oracle. Defining a test oracle for model transformations is a challenging task 

 [26] [135]. Indeed, the number of constraints to define can be very large to cover all 

transformation possibilities  [26]. 

 



 

156 

 

 
Figure 60: ATL mutation process 

 

A given test case, part of the test suite, is said to kill a mutant if the output model 

produced by the mutant is different from that of the original ATL specification. Hence, 

the test case is good enough to detect the change between the original and the mutant 

ATL program. A test case cannot distinguish between a mutant and the original ATL 

program if both produce the same output model for the same input model(s). If a mutant 

is not killed (called alive) by a test suite, this usually means that the test suite is not 

adequate. However, it may also be that the mutant keeps the program’s semantics 

unchanged; thus, cannot be detected by any test case. Such mutants are called equivalent 

mutants. Equivalent mutant detection is, in general, one of biggest obstacles for practical 

usage of mutation testing. The effort needed to check if mutants are equivalent or not, can 

be very high even for small programs  [84]. 
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ATL Mutants are generated automatically using our prototype tool MuATL (see 

Section  6.4). The execution of the test suite and the oracle function are performed 

manually. The automation of such activities is out of the scope of this chapter. 

The effectiveness of a test suite TSeff is determined by running it on all mutants, and 

computing the ratio of killed mutants to total number of non-equivalent mutants. TSeff is 

given by the following equation: 

𝑇𝑆𝑒𝑓𝑓 =
𝑀𝑘

𝑀𝑡 −𝑀𝑒
 (1) 

where Mk is the number of killed ATL mutants, Mt is the total number of generated ATL 

mutants, and Me is the number of ATL equivalent mutants. If the score is not acceptable, 

the test suite should be improved by adding additional test cases and/or modifying the 

existing ones. 

 

6.2 ATL Mutation Operators 

In this section, mutation operators are defined for ATL, and code samples are 

shown to demonstrate their usage. The number of possible mutants that can be generated 

for certain operators is specified. The consequences of applying the mutation operators 

are also described. For a brief overview on ATL, the reader may consult Section  1.6. 
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6.2.1 Matched to Lazy (M2L) 

ATL gives developers the flexibility to define model transformations in both 

declarative and imperative styles. Matched rules are declarative rules that are implicitly 

called by the ATL virtual machine at runtime. The M2L operator converts a matched rule 

to a lazy rule (which is an imperative rule). The consequence of applying the M2L 

operator is that a mutant rule will never be executed, since lazy rules must be explicitly 

invoked. The number of M2L mutants that can be created for given ATL module is equal 

to the number of matched rules it contains. 

An example of a mutation performed by applying the M2L operator is shown in 

Table 7. The M2L operator prepends the rule AtoB by the lazy modifier in the mutant rule 

AtoB’. 

 
Table 7: Example of a M2L mutation 

Original Mutant 
rule AtoB { 
  from s : A  
  to t: B ( 
    …………… 
  ) 
} 

lazy rule AtoB’ { 
  from s : A  
  to t: B ( 
    …………… 
  ) 
} 

 

6.2.2 Lazy to Matched (L2M) 

The L2M operator does the opposite of the M2L operator; it converts a lazy rule 

into a matched rule. Matched rules cannot be explicitly invoked; therefore, a runtime 

failure will occur when a L2M mutant rule is called. However, a L2M mutation cannot be 

detected if the mutant rule is not invoked during an execution. The number of L2M 
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mutants that can be created for a given ATL module is equal to the number of lazy rules 

it contains.  

An example of a mutation performed by applying the L2M operator is shown in 

Table 8. The L2M operator deletes the lazy modifier of rule AtoB in the mutant rule 

AtoB’. 

 
Table 8: Example of a L2M mutation 

Original Mutant 
lazy rule AtoB { 
  from s : A  
  to t: B ( 
    …………… 
  ) 
} 

rule AtoB’ { 
  from s : A  
  to t: B ( 
    …………… 
  ) 
} 

 

6.2.3 Delete Attribute Mapping (DAM) 

Attribute mapping(s) in an ATL rule define how a source object will be 

transformed into a target object. The DAM operator deletes an attribute mapping from the 

definition of a particular rule. It is based on the CACD operator in  [136]. The 

consequence of applying the DAM operator on a rule is that the attribute, whose mapping 

is deleted, will not participate in the transformation process, resulting in a loss of 

information. The DAM operator can be applied on matched, lazy and mapping called 

rules. The number of DAM mutants that can be created for a given rule is equal to the 

number of attribute mappings it contains. 

An example of a mutation performed by applying the DAM operator is shown in 

Table 9. The DAM operator deletes the mapping of attribute b2 in the mutant rule AtoB’. 
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Table 9: Example of a DAM mutation 

Original Mutant 
rule AtoB { 
  from s : A  
  to t: B ( 
    b1 <- s.a1, 
    b2 <- s.a2 
  ) 
} 

rule AtoB’ { 
  from s : A  
  to t: B ( 
    b1 <- s.a1 
  ) 
} 

 

6.2.4 Add Attribute Mapping (AAM) 

Developers may avoid transforming redundant information from a source model 

into a target model. In such a situation, mappings of useless attributes are not specified in 

the transformation rule. The AAM operator adds a useless attribute mapping from a 

source object to a target object in a given rule. It is based on the CACA operator in  [136]. 

The consequence of applying the AAM operator on a rule is that unnecessary complexity 

is added to the output model. The number of AAM mutants that can be created for a 

given rule is equal to the product of the number of unmapped attributes in the source and 

target objects. An example of a mutation performed by applying the AAM operator is 

shown in Table 10. The AAM operator adds the useless mapping “b2 <– s.a2” in the 

mutant rule AtoB’.  
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Table 10: Example of an AAM mutation 

Original Mutant 
rule AtoB { 
  from s : A  
  to t: B ( 
    b1 <- s.a1 
  ) 
} 

rule AtoB’ { 
  from s : A  
  to t: B ( 
    b1 <- s.a1, 
    b2 <- s.a2 
  ) 
} 

 

6.2.5 Delete Filtering Expression (DFE) 

Filtering expressions constrain the input objects on which a particular rule can be 

applied. If a filtering statement evaluates to true for a given input object, its 

corresponding rule will be executed. DFE can only be applied on matched rules, as they 

allow filtering of input objects. The DFE operator deletes the filtering statement specified 

in the definition of a rule. It is based on the CFCD operator in  [136]. The consequence of 

applying the DFE operator is that the mutant rule will be executed for incorrect objects of 

its source type. DFE operator may cause filtering expressions of multiple rules to 

evaluate to true for one source instance. In this case, a runtime failure will occur. The 

number of DFE mutants that can be created for a given ATL module is equal to the 

number of matched rules that contain a filtering expression. 

An example of a mutation performed by applying the DFE operator is shown in 

Table 11. The DFE operator removes the filtering expression s.a1 > 0 in mutant rule 

AtoB’. 
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Table 11: Example of a DFE mutation 

Original Mutant 
rule AtoB { 
  from s : A ( 
    s.a1 > 0 
  )  
  to t: B ( 
    b1 <- s.a1, 
    b2 <- s.a2 
  ) 
} 

rule AtoB’ { 
  from s : A  
  to t: B ( 
    b1 <- s.a1, 
    b2 <- s.a2 
  ) 
} 

 

6.2.6 Add Filtering Expression (AFE) 

Based on the CFCA operator in  [136], we define the AFE operator which performs 

the opposite of the DFE operator. It adds an unnecessary filtering expression to a 

matched rule. The consequence of applying the AFE operator is that some objects of the 

input model will not participate in the transformation process; thus, resulting in a loss of 

information. In order to apply the AFE operator on a rule, the source object must have at 

least one attribute. If this condition is satisfied, numerous AFE mutants can be created for 

a given matched rule. A mutant generation tool can constrain the possible number of AFE 

mutants. Similar to the DFE operator, the AFE operator can also cause a runtime failure. 

An example of a mutation performed by applying the AFE operator is shown in 

Table 12. The AFE operator adds the filtering expression s.a1 > 0 in mutant rule AtoB’. 

a1 is a scalar attribute in source object s.   
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Table 12: Example of a AFE mutation 

Original Mutant 
rule AtoB { 
  from s : A  
  to t: B ( 
    b1 <- s.a1, 
    b2 <- s.a2 
  ) 
} 

rule AtoB’ { 
  from s : A ( 
    s.a1 > 0 
  )    
  to t: B ( 
    b1 <- s.a1, 
    b2 <- s.a2 
  ) 
} 

 

6.2.7 Change Source Type (CST) 

ATL rules define mappings from source objects to target objects. The CST operator 

changes the source type of a given rule. It can be applied on matched and lazy rules. The 

consequence of applying the CST operator is that incorrect transformations may be 

performed. Indeed, the application of the CST operator on a rule will cause a runtime 

failure if the new source type does not contain the attributes which are specified to be 

mapped, or if multiple rules are associated with the new source type. The number of CST 

mutants that can be created for a given rule is equal to the number of classes in the source 

metamodel that participate in the transformation minus one. 

An example of a mutation performed by applying the CST operator is shown in 

Table 13. The source type of rule AtoB is changed from A to C in the mutant rule AtoB’. 
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Table 13: Example of a CST mutation 

Original Mutant 
rule AtoB { 
  from s : A  
  to t: B ( 
    …………… 
  ) 
} 

rule AtoB’ { 
  from s : C  
  to t: B ( 
    …………… 
  ) 
}  

 

6.2.8 Change Target Type (CTT) 

The CTT operator changes the target type of a given rule. It can be applied on 

matched, lazy, and mapping called rules. The consequence of applying the CTT operator 

is that the objects in the input model will be transformed into objects of incorrect type in 

the output model. Application of the CTT operator on a rule will cause a runtime 

exception if the new target type does not contain the attributes which are specified to be 

mapped. The number of CTT mutants that can be created for a given rule is equal to the 

number of classes in the target metamodel that participate in the transformation minus 

one.  

An example of a mutation performed by applying the CTT operator is shown in 

Table 14. The target type of rule AtoB is changed to C in the mutant rule AtoB’. 

 
Table 14: Example of a CTT mutation 

Original Mutant 
rule AtoB { 
  from s : A  
  to t: B ( 
    …………… 
  ) 
} 

rule AtoB’ { 
  from s : A  
  to t: C ( 
    …………… 
  ) 
} 
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6.2.9 Change Execution Mode (CEM) 

ATL modules can execute in two modes, default and refining. Default mode is the 

default execution mode of ATL transformations and it is specified by the from keyword. 

The refining mode allows developer to specify rules only for those objects that need to be 

transformed; remaining objects will be implicitly copied into the output model. It should 

be added that refining mode applies only when the source and target models conform to 

the same metamodel. We define the CEM operator which switches the execution mode of 

an ATL module from default to refining mode. If a module contains imperative code, 

which is not allowed in refining mode, application of the CEM operator will result in an 

invalid (i.e., syntactically incorrect) mutant. The consequence of the CEM mutation is 

that useless objects may be copied into the output model. A single CEM mutant can be 

created for a given module. 

An example of a mutation performed by applying the CEM operator is shown in 

Table 15. The CEM operator changes the execution mode of module A to refining mode 

in the mutant module A’. 

 
Table 15: Example of a CEM mutation 

Original Mutant 
module A; 
create OUT : UML from IN : UML; 

module A’; 
create OUT : UML refining IN : UML; 
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6.2.10 Delete Return Statement (DRS) 

The last statement of a do block in a mapping called rule must return the target 

object. It is optional to specify a return statement in the do block of matched and lazy 

rules. The DRS mutation operator deletes the return statement of a do block. The number 

of DRS mutants that can be created for a given rule is equal to the number of return 

statements in the do block; a do block may use conditional blocks to have several return 

statements. 

An example of a mutation performed by applying the DRS operator is shown in 

Table 16. The DRS operator deletes the return statement “t;” of the do block of rule AtoB 

in mutant rule AtoB’. 

 
Table 16: Example of a DRS mutation 

Original Mutant 
lazy rule AtoB { 
  from s : A  
  to t: B ( 
    …………… 
  ) 
  do { 
    ……………  
    t;   
  } 
} 

lazy rule AtoB’ { 
  from s : A  
  to t: B ( 
    …………… 
  ) 
  do { 
    ……………    
  } 
} 

 

6.3 ATL Mutation Operator Analysis 

Table 17 summarizes the proposed ATL mutation operators. For each operator, we 

specify the ATL execution mode in which it is applicable, the type of rules on which the 

operator can be applied, and the number of expected mutants per rule. 
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It is worth noting that the Table 17 does not contain operators that can be applied to 

non-mapping called rules. Non mapping-called rules are similar to void functions in other 

traditional programming languages. So, mutation operators from other traditional 

programming languages that pertain to functions can be applied on non-mapping called 

rules. Covering such mutants is out of the scope of this chapter. 

 
Table 17: Summary of ATL mutation operators 

Operator Execution 
Mode 

Rules Expected number of generated 
mutants per rule 

M2L Default Matched 1 
L2M Default Lazy 1 
DAM Default, 

Refining  
Matched, Lazy, Mapping 
Called 

Number of attribute mappings 

AAM Default, 
Refining 

Matched, Lazy, Mapping 
Called 

Product of number of unmapped 
attributes in the source and target 
objects 

DFE Default, 
Refining 

Matched 1 

AFE Default, 
Refining 

Matched Many possibilities 

CST Default, 
Refining 

Matched, Lazy Number of classes in the source 
metamodel that participate in the 
transformation minus one 

CTT Default, 
Refining 

Matched, Lazy, Mapping 
Called 

Number of classes in the target 
metamodel that participate in the 
transformation minus one 

CEM Default - 1 
DRS Default Matched*, Lazy*, 

Mapping Called 
Number of return statements 

* If their do block contains a return statement 
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6.3.1 Number of Generated ATL Mutants 

In what follows, we provide the general formulas to compute the maximum number 

of mutants relative to the defined operators, when applied to a complete ATL module.  

Let Rm, Rl,, and Rmc be the number of matched rules, the number of lazy rules, and 

the number of mapping called rules, respectively, in a given ATL module. The maximum 

numbers of CST mutants that can be generated for an ATL module is given by the 

following equation: 

𝑀𝐶𝑆𝑇 = (𝑠𝑐 − 1)(𝑅𝑚 + 𝑅𝑙)   (2) 

where sc represents the number of source metaclasses that participate in the model 

transformation.  

The maximum numbers of CTT mutants that can be generated for an ATL module 

is given by the following equation: 

𝑀𝐶𝑇𝑇 = (𝑡𝑐 − 1)(𝑅𝑚 + 𝑅𝑙 + 𝑅𝑚𝑐) (3) 

where tc represents the number of target metaclasses that participate in the model 

transformation. 

The maximum number of DAM mutants that can be generated for an ATL module 

is: 
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𝑀𝐷𝐴𝑀 = � 𝑎𝑚𝑖

𝑅𝑚+𝑅𝑙+𝑅𝑚𝑐

𝑖=0

 (4) 

where ami is the number of attribute mappings in a given rule i. 

The maximum number of AAM mutants that can be generated for an ATL module 

is: 

𝑀𝐴𝐴𝑀 = � 𝑢𝑠𝑎𝑖 ∗ 𝑢𝑡𝑎𝑖

𝑅𝑚+𝑅𝑙+𝑅𝑚𝑐

𝑖=0

 (5) 

where usai and utai denote the number of unmapped attributes for the source and target 

metaclasses, respectively, in a give rule i. 

The maximum number of DRS mutants that can be generated for an ATL module 

is: 

𝑀𝐷𝑅𝑆 = � 𝑟𝑖

𝑅𝑚+𝑅𝑙+𝑅𝑚𝑐

𝑖=0

 (6) 

where ri is the number of return statements in the do block of a given rule i. 

6.3.2 Equivalent ATL Mutants 

Applying the CST operator on lazy rules will always produce equivalent mutants. 

Indeed, the incorrect source type of a mutant lazy rule does not affect its execution. The 

source type of a lazy rule is decided, at runtime, by the actual parameter passed into it. 

The type of the actual parameter becomes the source type of the lazy rule. This implies 
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that the type specified in the from clause of a lazy rule becomes meaningless at runtime. 

Therefore, all produced mutants that correspond to lazy rules are considered as equivalent 

mutants. Hence, the CST operator is appropriate only for matched rules. This inference 

has been confirmed by the case study presented in Section  6.5. 

6.3.3 Other Remarks 

Based on the operator descriptions, and an analysis of the impact of each mutation 

operator, we can infer that: 

• CEM operator would produce invalid mutants when applied on a module having 
imperative code. 

• AFE operator should be applied manually, as there are numerous possible 
mutants. 

• AAM operator would not produce any mutants for a rule, if all attributes of the 
source object are mapped. 

• M2L operator cannot be used in refining mode since the resulting rule would 
become imperative, which is not allowed in refining mode. 

• L2M and DRS operators are not applicable in refining mode (i.e., imperative code 
is not allowed in refining mode). 

These remarks have been confirmed by the case study presented in Section  6.5. The 

DAM and AAM operators are related to the “creation” class of operators in  [136].The 

DFE and AFE operators are related to the “filtering” class of operators in  [136]. The 

remaining operators M2L, L2M CST, CTT, CEM, and DRS capture the characteristics 

specific to ATL.    
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6.4 MuATL (Mutation Toolkit for ATL) 

The ATL mutation operators, presented in Section  6.2, have been implemented in a 

prototype tool called MuATL (Mutation Toolkit for ATL). MuATL, a Microsoft .NET C# 

based tool, is inspired by MuJava (Mutation System for Java)  [114]. 

Figure 61 illustrates the main graphical user interface of MuATL. The GUI is 

composed of two menus: (1) Module, and (2) Mutation. The user starts with loading an 

ATL module using the Load menu option. The user can select one of the mutation 

operators using the Mutation menu.  

 

Figure 61: MuATL GUI 

Mutation operators AFE, AAM, CST, and CTT require user input for mutant 

generation. Figure 62 illustrates the GUI where the user can select the rule, and add the 

corresponding filtering expression(s) for creating AFE mutants. For each filtering 
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expression entered, a distinct AFE mutant will be created by the tool. Similarly, AAM 

requires the user to enter attribute mappings for creating AAM mutants. CST and CTT 

require the user to enter source and target types, respectively, of the mutants. The 

produced mutants are stored in separate files within separate directories, each named with 

the operator name.  

 
Figure 62: AFE Mutant GUI 

 

6.5 Case Study: UCM to UML 2 AD Transformation 

In this section, a case study is presented to show the applicability of the developed 

set of ATL mutation operators. Furthermore, this experiment aims at assessing the 

effectiveness of the proposed operators. The case study pertains to an ATL 

transformation program, introduced in previous work  [93], which transforms the ITU-T 

standard  [82] UCMs to UML 2 ADs. 
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6.5.1 Test Cases 

The case study is comprised of one ATL module  [94] and seven test cases (see 

Table 18). The test cases, in Table 18, cover 16 UCM source classes and 10 AD target 

classes. Each test case includes the input model, the expected output model, and the 

actual output model. For instance, Figure 63 and Figure 64 illustrate the input model and 

the expected output model relative to test cases TC1 and TC2, respectively. The selected 

test cases satisfy the all-source-classes coverage (ASCC) criteria. This criterion ensures 

that all classes of the source metamodel that participate in the model transformation are 

covered by the test cases. It is worth noting that the ASCC criterion does not consider 

attribute, association, and inheritance coverage. Therefore, it is considered as a weak 

coverage criterion. 

 
Table 18: Test cases of UCM to UML AD model transformation 

Test 
Case 

UCM Classes covered* UML Classes covered* 

TC1 AndFork, AndJoin, 
RespRef, 

ForkNode, OpaqueAction 

TC2 OrFork, OrJoin, RespRef  MergeNode, OpaqueAction 
TC3 WaitingPlace MergeNode 
TC4 Timer, FailurePoint OpaqueAction 
TC5 EmptyPoint, 

DirectionArrow 
- 

TC6 ComponentRef ActivityPartition 
TC7 Stub StructuredActivityNode 
* All test cases cover classes URNspec, 
StartPoint, EndPoint, NodeConnection 

* All test cases cover classes Package, 
Activity, InitialNode, ActivityFinalNode, 
ControlFlow 
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(a) UCM input model 

 
(b) AD expected output model 

Figure 63: Input and expected output models of TC1  

 

 
(a) UCM input model 

 
(b) AD expected output model 

Figure 64: Input and expected output models of TC2 
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6.5.2 Generated Mutants 

The proposed mutation operators, automatically applied on the module using our 

prototype tool, result in 395 mutant modules. The test cases are sequentially executed, 

manually, on each mutant. The outcome of a test case execution is determined by 

manually comparing the actual output model with the expected output model. A test case 

execution fails when the actual and expected models are different, or a runtime exception 

occurs. A passed test case execution produces an actual output same as the expected 

output. For a given mutant, if a test case execution fails, we conclude that the mutant is 

killed, and we move on to the next mutant. If none of the test case executions fail for a 

given mutant, we conclude that the mutant is alive. 

The module contains 1 matched rule and 10 lazy rules. Therefore, the application of 

M2L and L2M operators resulted in the generation of one lazy rule and 10 matched rules, 

respectively. The DFE operator was not used because the matched rule 

URNDefinition_To_UMLPackage (see Listing 22) did not contain a filtering expression. 

The AFE operator also could not be applied on the matched rule because the source 

object did not contain any scalar attribute that could be used to create a filtering 

expression. Because the module contains declarative rules, the application of the CEM 

operator will result in syntactically incorrect mutants. Therefore, the CEM operator was 

not used for mutant generation. A DAM mutant was created for each of the 37 attribute 

mappings in the module. Because all the source objects had no unmapped attributes, the 

AAM mutant was not applicable. Table 19 shows one CST and one CTT mutant created 

for the Responsibility_To_OpaqueAction lazy rule (see Listing 23). 
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Table 19: CST and CTT mutant corresponding to lazy rule Responsibility_To_OpaqueAction 

CST mutant CTT mutant 
lazy rule Responsibility_To_OpaqueAction { 
  from r: UCM!"ucm::map::WaitingPoint" 
  to a: UML!OpaqueAction ( 
    name <- r.respDef.name 
  ) 
} 

lazy rule Responsibility_To_OpaqueAction { 
  from r: UCM!"ucm::map::RespRef" 
  to a: UML!MergeNode ( 
    name <- r.respDef.name 
  ) 
} 

 

Based on the equations 1 and 2, introduced in Section 6.3, 165 CST mutants (i.e., 

(16-1)*(1+10) = 165) and 171 CTT (i.e., (10-1)*(1+10+8) = 171) mutants are generated. 

The number of DRS mutants corresponds to 12 return statements in the original module. 

 

6.5.3 Mutation Analysis Results 

The results of the mutation analysis, presented in Table 20, reveal that 177 mutants 

are killed by the given seven test cases, and 218 mutants remain alive. The test cases are 

able to kill all M2L and L2M mutants. Since matched rules cannot be invoked, L2M 

mutants are killed as a result of runtime failures. 12 of the live DAM mutants correspond 

to rules which are involved in transforming objects of type Stub having the dynamic 

attribute set true. Since the ASCC criterion does not consider attributes, these rules are 

not exercised by the test cases; thus, their corresponding mutants stay live. Similarly, 45 

CTT mutants and 8 DRS mutants stay live. All the 150 live CST mutants correspond to 

lazy rules, and are equivalent mutants; they cannot be killed by any test case. 
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Table 20: Types of mutants created for the UCM to UML 2 AD model transformation 

Mutant type Number of generated 
mutants 

Number of living 
mutants  

Number of killed 
mutants   

M2L 1 0 1 
L2M 10 0 10 
DAM 37 15 22 
CST 165 150 15 
CTT 171 45 126 
DRS 11 8 3 
Total 395 218 177 

 

A TSeff score of 72.24% is acquired for the seven test cases. The obtained results 

show that the proposed mutation operators can effectively determine inadequacies in a 

test suite.  

6.5.4 Test Suite Enhancement 

The 68 live non-equivalent mutants (i.e., 218-150 = 68) can be killed by adding 

new test cases. One DAM mutant will be killed by TC8 (Figure 65), which has a 

ComponentRef object CR containing a RespRef object R1. Similarly, two DAM mutants 

will be killed by TC9 (Figure 66), which has a Stub object ST containing a RespRef object 

R2.   
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(a) UCM input model 

 
(b) AD expected output model 

Figure 65: Input and expected output models of TC8 

 

 

 

 
ST plug-in  

(a) UCM input model 

 
(b) AD expected output model 

Figure 66: Input and expected output models of TC9 
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Adding TC10 (Figure 67), which includes an input model having a dynamic Stub 

object DS, and containing RespRef objects, R3 and R4, will kill 63 mutants (12 DAM, 45 

CTT, and 6 DRS mutants). The ComponentRef and Stub classes have self associations in 

the UCM metamodel. Adding, an additional test case (TC11 not shown here) which 

contains nested ComponentRef and nested Stub objects will kill the remaining 2 DRS 

mutants. Adding TC8, TC9, TC10, and TC11 to the test suite gave 100% TSeff.  
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DS plug-in 1 

 

 

 
DS plug-in 2 

(a) UCM input model 

 
(b) AD expected output model 

Figure 67: Input and expected output models of TC10 

 

6.6 Discussion 

Using the proposed mutation operators, we measured the effectiveness of a test 

suite that corresponds to a UCM to UML 2 AD model transformation. The resulting 

72.24% TSeff suggests that the model transformation is not thoroughly verified. 
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Intuitively, this result was expected because the test suite satisfied a weak coverage 

criterion, ASCC. 12 DAM, 45 CTT, and 8 DRS live mutants correspond to code 

fragments, which are not exercised by the test cases. This is an indication that the tester 

should redesign his test suite or design additional test cases. As stated in Section  6.3.2, 

the application of CST mutation operator on lazy rules will always produce equivalent 

mutants. This observation is confirmed in the case study; the 15 killed CST mutants 

corresponded to a matched rule. Future work should consider defining an operator that is 

applicable on the actual parameter of a lazy rule. 

It must be pointed out that the proposed operators do not consider ATL helpers, 

which are equivalent to methods in the OO paradigm. The ATL mutation operator set can 

be enhanced by adding certain method-based Java operators. A complex model 

transformation’s output may make the comparison of expected output and actual output 

difficult. This problem can be averted by using test oracles, which help in determining the 

outcome of a test case execution. The test oracles presented in  [90] and  [135] can be used 

in conjunction with the approach presented in this paper. 
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7 CHAPTER 7 

CONCLUSION AND FUTURE WORK 

This chapter concludes the thesis by summarizing its contributions, pointing out its 

limitations, and highlighting future directions of research. 

7.1 Thesis Summary 

The quality of use case models significantly affects the overall quality of a software 

product. Defects in a use case model are very likely to propagate to other artifacts, thus 

resulting in an incorrect implementation of the system. Correction of use case modeling 

defects at later phases of the development cycle is very expensive. Therefore, early defect 

correction in use case models is crucial for reducing development costs and improving 

overall product quality.          

In this thesis, we proposed a new technique for improving the quality of use case 

models, and demonstrated its usage on a real world system. The technique can detect 

defects in a use case model, and automatically perform improvements. Usage of this 

approach early in the development cycle will be very beneficial as it prevents propagation 

of defects to other artifacts. Manual refactoring of complex use case models with 

hundreds of use cases is susceptible to human error, and is often time consuming. For 

such use case models, usage of the proposed model transformations will significantly 
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reduce development time and effort. The application of this technique does not require 

knowledge of advanced concepts such as metamodeling and OCL. Therefore, 

inexperienced modelers can easily use this technique to improve the quality of their use 

case models.  

To demonstrate the effectiveness of our approach, a case study that pertains to a 

bio-diversity system, MAPSTEDI, is presented. The use case models of MASPTEDI 

contain several quality degrading problems (antipatterns). Four of the presented 

antipatterns,  a2,  a4,  a5,  a8, are detected. This shows that real-world use case models are 

prone to low quality design and practices. To improve the quality of MAPSTEDI use 

case models, antipatterns are refactored by executing corresponding model 

transformations. Antipattern  a1 was detected after merging two use case models, 

Database Queries and Database Integrator, which contain common entities. The 

refactoring  r1 is finally applied on the merged model to result in a high quality use case 

model. The refactorings  r7,  r8, and  r14 improve the understandability of use case models, 

and makes them more analytical. The refactorings  r1,  r10, and  r15 enhance the 

correctness and consistency of use case models.                      

This thesis contributes to the MDE software development methodology, which 

relies on automated transformation of software models. Usage of the proposed UCM to 

UML 2 AD transformation will enable consistent communication between requirements 

engineers and designers/developers involved in a software development project. The 

requirements engineers can model use case scenarios using UCMs. The 

designers/developers who are not familiar with the UCM notation can use the proposed 
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transformation to convert UCMs to ADs, which are part of UML, the de-facto standard 

for documenting design. Moreover, the transformation will aid in minimizing the 

conceptual gap between the requirements and design.  

Furthermore, we presented traceable mappings from UCM to UML 2 SD notation. 

A systematic approach to derive diagrams from one another also promotes traceability in 

an OO system. The resulting SDs of the transformation can be refined by the designers, 

and eventually be converted to source code. Several tools allow automatic code-skeleton 

generation from SDs. The combined usage of UCMs, the proposed mapping, and code 

generation tools will allow source code to be easily traced to the scenario definitions. 

In a MDE process, model transformations should be thoroughly tested to ensure 

product quality, and to reduce costs. Mutation testing has been extensively studied in the 

literature and shown to be more effective than coverage based techniques. To support the 

usage of mutation testing in MDE, this thesis has defined a set of mutation operators for 

the ATL model transformation language. The proposed operators are implemented into a 

tool, called MuATL, allowing for automatic generation of ATL mutants. Our approach 

has been validated using the UCM to UML 2 AD model transformation. The results have 

shown that the proposed ATL operators can successfully detect inadequacies in an 

example test suite. 

To conclude, this thesis has shown how software developers can embrace the 

notion of model transformations in the context of FRS by automated refactoring of use 

case models, and automated derivation of high-level design models from scenario 

specifications.  



 

185 

 

7.2 Future Work 

A use case model may contain instances of different antipatterns. Future work 

involves determining an optimal order in which different antipattern instances can be 

refactored. An optimal order must ensure that the application of a particular refactoring 

does not result in a new antipattern instance. Use case models of a system may contain 

common entities (use cases and actors). If one of these models is refactored, it will be 

transformed into a state which is inconsistent with the other models. Therefore, these 

models must be merged before performing refactoring. We aim to incorporate an 

automated model merging technique into our approach. ATL can seamlessly integrate 

with Java; this will enable us to create a graphical use case refactoring tool. The tool 

should be able to allow users to define their own antipatterns and corresponding 

refactorings. In order to determine whether a refactoring is behavior preserving or not, a 

modeler must consult the corresponding use case descriptions. This is a limitation of our 

approach which can be addressed by Natural Language Processing techniques. 

Alternatively, syntax and semantics of use case descriptions can be embedded into an 

enhanced use case metamodel. This will enable our approach to confirm the presence of 

antipatterns by automatic analysis of use case descriptions, which conform to the 

enhanced use case metamodel. Other future work can be directed towards creating model 

transformations to refactor misuse case models, which are an extension to use case 

models that allows analysts to specify and communicate the functional security 

requirements of a system. 
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The target models (ADs) produced by the transformation are specific to the Eclipse 

UML 2 tools. Tools, such as Enterprise Architect and Rational Rose allow designers to 

import/export platform independent models. Our future work involves implementing this 

mapping to produce platform independent ADs, which can be imported into other 

platforms. Mapping of UCMs to UML state-chart diagrams is also part of our future 

work.  

The proposed UCM to SD mappings were partially automated due to severe 

limitations in the UML 2 SD metamodel  [141]. SD messages depicted inside fragments 

are not logically bound to their enclosing fragments. The CombinedFragment metaclass, 

which represents fragments, has no reference to its messages. Fragments rely on their 

position on the modeling tool’s design surface to enclose their messages. In future work, 

a heavy weight extension  [131] of the UML 2 metamodel can be performed to remedy 

this limitation. 

Mutation testing can be more efficiently performed when supported by automated 

tools. As a future work, we are planning to develop further our prototype tool, MuATL, to 

include a test case execution engine and a test oracle. In addition, we aim at conducting 

an empirical study to better assess the usefulness and the effectiveness of the proposed 

ATL operators. Furthermore, we will investigate the addition of mutation operators of 

traditional programming languages that are relevant to ATL. The idea of mutation testing 

will also be explored for other model transformation languages, such as QVT, Tefkat, and 

Epsilon. 
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Appendix A – UCM Metamodel 

 

Figure 68: UCM metamodel 
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Appendix B – UML 2 AD Metamodel 

 

Figure 69: UML 2 AD metamodel  
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