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 ABSTRACT 

Full Name : Mohammed Abdullah Hussein Al-Yaari 

Thesis Title : Pressure Drop Reduction of Stable Water-in-Oil Emulsion Flow in 

Pipes 

Major Field : Chemical Engineering 

Date of Degree : June, 2013 

Emulsified acids provide significant benefits in stimulating oil and gas wells by slowing 

the reaction rate with carbonates and reducing corrosion in the tubular goods. However, 

high pressure drop, caused by friction losses, can be a problem while pumping 

emulsified acid. As a result, lower emulsified acid rates are pumped and thus limited job 

efficiency is achieved. Consequently, methods of pressure drop reduction are highly 

desired. Therefore, this experimental study aims to investigate a possible friction 

reduction at different pipe diameters through the control of water fraction, water salinity 

and the use of drag reducing polymers (DRP) and nanomaterials. 

The results demonstrated a shear thinning behavior for the emulsions being investigated. 

In addition, at low water salinity, oil-in-water (O/W) emulsions were produced, and their 

stability decreased with increasing salinity. Increasing the aqueous phase salinity 

resulted in producing water-in-oil (W/O) emulsions. Moreover, as water fraction and 

salinity increased, W/O emulsion stability increased. Furthermore, a significant 

reduction in emulsion viscosity and pressure drop with decreasing water fraction and 
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salinity was observed. Moreover, for a given water fraction and salinity, the friction 

factor of stable W/O emulsions  was found to be less in smaller pipe diameter. 

As for the use of DRP, the results showed a significant increase in the emulsion stability 

with adding the proper DRP (which is soluble in the emulsion external phase) and this 

effect was enhanced as DRP molecular weight increased. In addition, injecting the right 

DRP resulted in a pressure drop reduction for all tested stable emulsions types and this 

effect increased as DRP concentration increased. However, injecting DRP which is 

soluble in the internal (dispersed) phase showed a drag reduction effect only for unstable 

emulsion but with less extent.  

Furthermore, as for the nanomaterial use, the results showed a significant reduction in 

the emulsion viscosity with adding all the tested nano-additives and this effect was 

enhanced as nano-additives concentration increased. In addition, for the case of 

concentrated W/O emulsions, the addition of Cloisite 15A resulted in a clear reduction 

(about 25 %) in the emulsion pressure drop in both test sections. Also, for the stable 

W/O emulsion with only 0.3 water volume fraction, although no pressure drop reduction 

was observed in laminar region, it was detected in turbulent region and such effect 

became clearer as Reynolds number and Cloisite 15A concentration increased. 

Furthermore, for stable W/O emulsions with 0.3 volume fraction of the dispersed phase, 

although all laminar friction factor data were in good agreement with single phase 

theoretical values, they fell below the theoretical values of single phase flow in turbulent 

region. 
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Once well permeability has been recovered, all the attentions will be diverted to oil 

production. Oil is produced generally with water and methods that can facilitate 

separation between oil and water are highly desired. Therefore, water soluble polymer 

was tested in this regard for oil-water stratified horizontal flows. It has been reported 

that the injection of tiny amount of such polymer resulted in a reduction in the pressure 

drop. Such reduction was accompanied with stratification effect (more separation).    
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 ملخص الرسالة

 
 بــداللـه حســين اليــعـــريـمحمـــد ع :الاسم الكامل

 

 تخفيض الهبوط في الضغط لمستحلبات الماء في الزيت الثابتة أثناء جريانها في الأنابيب :عنوان الرسالة

 

 هندسة كيميائية  :التخصص

 

 3102يونيو  :العلميةتاريخ الدرجة 

 

في تحفيز آبار النفط والغاز لأنها تبطئ سرعة التفاعل بين  (حامض في زيت) تستخدم المستحلبات الحامضية

لكنه لا يمكن . بالحوامض المستخدمة" الحامض و الصخور الكربونية و تقلل من التآكل في الأنابيب المعدنية مقارنة

لذلك فهذه الدراسة المعملية تهدف للبحث عن . و هذا يقلل من كفاءتها مرتفعةالللزوجتها " ضخها بسرعة عالية نظرا

 .لتقليل إحتكاك المستحلبات أثناء جريانها في الأنابيب وسائل

في هذه الدراسة تمت دراسة تأثير بعض العوامل على خصائص المستحلبات كثباتيتها، موصليتها، الخواص  

و الهبوط في الضغط أثناء جريانها في أنابيب  (الداخلي)الريولوجية لها، حجم و توزيع قطرات الطور المتشتت 

رات الخافضة للضغط، و إستخدام بعض ام المبلم  هذه العوامل تشمل نسبة الماء، ملوحة الماء، إستخد. مخلتفة الأقطار

 (.المتناهية الصغر)المواد النانوية 

فيما يخص تأثير الماء و ملوحته، فقد أظهرت الدراسة أن نقصان نسبة و ملوحة الماء تقلل من لزوجة و ثباتية 

فيضه و ذلك بالضخ في أنابيب أن الإحتكاك يمكن تخ" و أظهرت أيضا. أثناء الجريان االمستحلبات و بالتالي إحتكاكه

عن طريق التحكم في نسبة و ( ماء في زيت أو زيت في ماء)ويمكن التحكم في نوع المستحلب . صغيرة الأقطار

 .ملوحة الماء
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رات الخافضة للضغط والتي تذوب في الطور الخارجي للمستحلب تزيد من كما أظهرت الدراسة أن إضافة المبلم  

الذائبة في الطور الخارجي )رات و حقن هذه المبلم   .راتتأثير بزيادة الوزن الجزيئي للمبلم  ثباتيته، و يزداد هذا ال

لا إضافتها هو الأفضل لخفض الهبوط في الضغط أثناء جريان المستحلبات و يزداد التأثير الإيجابي ( للمستحلب

فإنّ حقن  (ن الطبقي للماء والزيتحالة الجريا)غير المستحل بات  كما أظهرت الدراسة أنهّ في .هابزيادة تركيز

رات التي تذوب في الماء تساهم في فصله عن الزيت  .المبلم 

" و فيما يخص إستخدام المواد النانوية المتناهية الصغر، فقد أظهرت الدراسة نجاح بعض الأطيان المعدلة عضويا

 .في تخفيض الهبوط في الضغط أثناء جريان المستحلبات المركزة و المخففة
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CHAPTER 1 

INTRODUCTION 

1.1 EMULSION FUNDAMENTALS 

Emulsions can be encountered in everyday life. Especially, they can be found in all 

stages in the petroleum production and recovery and processing industry such as drilling 

fluids, production, process plant, and transportation. In each case, the presence and 

nature of emulsions, which have important desirable and undesirable properties, 

determine both the economic and technical successes of the concerned industrial 

process. 

Some of the crude oil components can form films at oil surfaces, and others are surface 

active. As a result, the formation of stable and unstable emulsions varies greatly among 

different oils. 

The widespread importance of emulsions, in general, and scientific interest in their 

formation, stability, and properties gave a wealth of published literature on this subject. 

However, all types of emulsions have the same basic principles of colloid science which 

governs the nature, stability, and other emulsions properties.  
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1.1.1 Interfacial Tension 

When two immiscible liquids are mixed together in a container and then shaken, one of 

the two phases becomes a collection of dispersed droplets in the other phase.  As a 

result, an emulsion is formed. 

The inequality in the van der Waals forces, between molecules in the interfacial region 

and other molecules in droplet, pulls the interfacial molecules toward the interior of the 

droplet. Therefore, droplet tends to adopt a spherical shape, since this shape reduces the 

surface free energy. 

Surface and interfacial tension can be defined as the free energy required creating new 

surface area or the force per unit length around a surface. Interfacial tension is frequently 

a value between the surface tensions values of the two liquids. When impure liquids are 

used to form emulsion, appreciable changes can take place with time at the interfaces. 

Surfactants have dual solubility because they have one part that has an affinity for the oil 

and one part for water. Therefore, the energetically most favorable orientation for 

surfactants is at the oil-water interface to allow both parts to reside in the solvent for 

which it has the greatest affinity. 

According to the nature of the polar (hydrophilic) part of the molecule, surfactants are 

classified as: anionic, cationic, nonionic and zwitterionic. 



 

3 

 

1.1.2 Definitions 

Colloidal systems have at least one dimension between about 1 nm and 1 μm. Emulsions 

are a special type of colloidal system but emulsion droplets often exceed the size limit of 

colloidal system.  

In petroleum emulsions, one of the liquid is aqueous, and the other is organic. 

Depending upon which kind of liquids forms the continuous phase, two types of 

emulsion are distinguished: oil-in-water (O/W) and water-in-oil (W/O) when water and 

oil forms the continuous phase respectively.  

When the dispersion medium is water, colloid system is divided into lyophobic and 

lyophilic (Schramm, 1992). Lyophilic colloids are formed spontaneously when the two 

phases are brought together since the dispersion is thermodynamically more stable than 

the separated phases. On the other hand, lyophobic colloids, including all petroleum 

emulsions except microemulsions, are only formed by some means since they are 

thermodynamically unstable compared with the original separated phases. 

Most petroleum emulsions contain oil, water and an emulsifying agent (emulsifier). The 

emulsifier could be: inorganic electrolytes, surfactants, macromolecules, or fine solids. 

Emulsifier is needed to reduce interfacial tension, increase the interfacial area with a 

minimum mechanical energy input, and/or to prevent droplets from coalescence by 

forming films around droplet surfaces. 

When a co-surfactant is added to some systems containing oil, water and surfactant, the 

interfacial tension is reduced to a value near to zero (on the order of 10
-3

 to 10
-4

 mN/m). 
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The low interfacial tension allows spontaneous emulsification to very small droplet sizes 

(≤ 10 nm). As a result, micro-emulsions are formed. Microemulsions are usually thought 

to be stable, appear to be transparent and do not break on centrifuging. 

Phase inversion is a less mechanical energy method used to change W/O emulsion to 

O/W emulsion and vice versa. For example, if a W/O emulsion is desired, then a coarse 

O/W emulsion is first prepared by mixing, and the oil content is gradually increased. At 

some volume fraction above 60-70 %, the emulsion will suddenly invert and produce a 

W/O emulsion of much smaller water droplet sizes than were the oil droplets in the 

original O/W emulsion. 

1.1.3 Emulsions Physical Characteristics   

Some physical characteristics of emulsions, reported by Schramm in 1992, are 

summarized as: 

A. Appearance: 

Depending upon the droplet sizes and the difference in refractive indices between the 

two phases, emulsion may show a wide range of appearance. For example, if refractive 

indices of the two phases are the same or if the droplets size is very small compared with 

the illuminating light, emulsion is transparent rather than milky. In addition, nature of an 

emulsion frequently reflects that of the external phase. Furthermore, the occurrence of 

multiple emulsions, of the types W/O/W and O/W/O is possible. 
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B. Droplet Sizes: 

Characterizing an emulsion in terms of a given droplet size is very common but 

inappropriate since there is a size distribution which is usually represented by a 

histogram of sizes. The droplet size distribution has an important effect on viscosity.  

If the droplet size is large enough, optical microscopy can be used to determine the size 

and size distribution. However, emulsions with smaller sizes can be characterized by 

scanning electron microscopy (SEM). For droplets in a non-concentrated emulsion, light 

scattering technique can be used. 

C. Conductivity: 

O/W and W/O emulsions can be distinguished from each other by conductivity 

measurements since emulsion conductivity reflects that of the continuous phase.  

D. Rheology:   

a. Bulk Viscosity. Viscosity is one of the most important properties of 

emulsion. A proper way to represent the emulsion flow properties is by 

plotting flow curves of shear stress versus shear rate. Emulsions are 

frequently pseudo-plastic (shear thinning): as shear rate increases, viscosity 

decreases. Also, an emulsion may exhibit a yield stress (the shear rate 

remains zero until a threshold shear stress is reached. If the internal phase has 

a sufficiently high volume fraction, the emulsion viscosity increases because 

of droplets crowding. The maximum possible internal volume fraction of 
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uniform and incompressible spheres is 74%, although emulsions with higher 

(99%) internal volume fraction are made (Griffin, 1995). 

b. Interfacial Viscosity.  It can be thought as bulk viscosity but operative in the 

oil-water interface region. As droplets become closer, the thinning the films 

between the droplets, and their resistance to rupture, are thought to be of 

great importance to the ultimate stability of the emulsion. Hence, a high 

interfacial viscosity can promote emulsion stability by retarding the rate of 

droplet coalescence. 

 

1.2 EMULSION FORMATION 

Stable emulsions contain: oil, water, an emulsifier to create small droplets by reducing 

the interfacial tension and another emulsifier to stabilize the created droplets. Casual 

mixing of these components can seldom produce stable emulsion for any length of time. 

However, in the classical method of emulsion preparation, emulsifier is dissolved in one 

phase, the second phase is added, and the whole mixture is vigorously agitated. The 

agitation is crucial to producing sufficiently small droplets, and frequently, after an 

initial mixing, a second mixing with very high applied mechanical shear forces is 

required which can be provided by a colloid mill or an ultrasound agitator. 

The larger interfacial area will have a significant total free energy which is obtained by 

multiplying the total area by the interfacial tension. Such energy has to be added to the 

system to achieve the emulsification. If this amount of energy cannot be provided by 
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mechanical shear, then another alternative is to use surfactant to lower the interfacial 

tension and then the interfacial free energy. 

The process of emulsification is governed by the surface forces. The free energy of 

formation of droplets from a bulk liquid (ΔGform) is given by: 

confform STAG  12
 

 where: ΔA = the increase in interfacial area 

   12  = the interfacial tension between the two liquids 

TΔSconf = the entropy contribution in configurational entropy when a large 

number of droplets is formed. 

Emulsification is a non-spontaneous   process since confSTA  12
. However, the 

energy required for emulsification process is orders of magnitudes larger than the 

thermodynamic energy ( 12A ) for creating a new surface. The presence of surfactant, 

which lowers the interfacial tension, lowers the energy required for emulsification. 

The phenomenon of droplet breakup is of great importance in the preparation of 

emulsions. Any dispersion process is affected by the viscosity of each phase, the shear in 

the system and the interfacial energy. In tubular Poiseuille flow, where the shear is non-

uniform, droplet breakup can be related to the bulk rheological properties of the 

dispersed and continuous phases and the critical Weber number (Wec) as shown in the 

figure below. We is a dimensionless group and is defined as 
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12

.

1



 R
We e  

where:  

η1 and η2 = the viscosities of the continuous and dispersed phases, respectively 

.

e = the rate of extension defined as the shear rate multiplied by deformation 

parameter 

R = the radius of the particle 

12  = the interfacial tension between the two liquids 

At a given η1/η2, lowering γ12 using surfactants lowers the energy, described by the Wec, 

required for droplet breakup. As shown in Figure 1.1, the greater the viscosity ratio 

(η1/η2), the easier it is to form the emulsion. Therefore, in heavy oil reservoirs, W/O 

emulsions are produced in preference to O/W emulsions. 
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Figure 1.1 Droplet breakup as a function of viscosity ratio (Isaacs, E. and Chow, R. 

1992) 

   

While for O/W emulsions, the interfacial charge contributes the stability, in W/O 

emulsions, the strength of the interfacial film of oil that forms between the water 

droplets is of prime concern. Surfactants, asphaltenes, prophyrinic compounds and finely 

divided solids such as sand, wax crystals and clay particles can play a significant role in 

hindering the thinning and rupture of the liquid films and acts as a structural barrier to 

coalescence of water droplets. (Menon and Wasan, 1988) 
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1.3 EMULSION STABILITY 

Encounters between particles in dispersion can occur frequently. The stability of the 

dispersion depends upon how the particles interact when these encounters happen. While 

the electrostatic repulsion between like-charge objects is the main cause of repulsion, the 

van der Waals forces are the main attractive forces. 

Emulsion stability is considered against three different processes: creaming or 

sedimentation, aggregation and coalescence. Creaming and sedimentation, which are 

two opposite processes, result from a difference in the two liquids densities. 

Aggregation, referred sometimes as coagulation or flocculation occurs when two or 

droplets clump together and touching only at a certain points with almost no change in 

the total surface area. However, when two or more droplets fuse together to form a 

single large droplet with a reduced total surface area coalescence process occurs. 

Determination of emulsion stability is one of the emulsion characterization features with 

which selection of the appropriate demulsification treatment and the cost of treatment 

cannot be achieved unless it is known. In addition, the effectiveness of any demulsifier 

depends upon the degree of stabilization. 

It is simply involves monitoring the oil and water phase separation as a function of time. 

Bottle and centrifuge tests are the most common methods, to monitor phase separation 

with time. However, microscopic techniques can be utilized for the droplet coalescence 

monitoring. 
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In bottle and centrifuge tests, settling and separation of oil and water phases depends on 

the dispersed phase droplets size, density difference and the continuous phase viscosity 

as described by settling velocity (Stokes’ law).  

Emulsion stability can be determined simply by the simple bottle test. In this method, 

first emulsion viscosity is reduced, if required, by emulsion dilution with a proper 

solvent. Then, after shaking the emulsion sample to make it homogeneous, phase 

separation rate is monitored. Depending on the emulsion viscosity, phase separation can 

be enhanced by temperature or centrifugation.  This test can give information about the 

clarity of the separated water. 

In addition, centrifuge tests provide similar information to those obtained from the 

stability bottle tests at higher gravity or centrifugal force. Special centrifugal bottles are 

used in this technique and phase separation is monitored. Emulsion dilution is not 

necessary in this technique even for high viscous emulsion samples. 

 

1.4 EMULSION CHARACTERIZATION 

Complete characterization of an emulsion involved detailed chemical and physical 

analysis of all of the emulsion components: oil, water and surfactant. Also, it involves 

any bulk properties that might be of interest such as viscosity, density and etc. 

Therefore, emulsion characterization contains: quantification of the present phases, 

determination of the nature and size distribution of the dispersed phase, and 

measurements of the dispersed phase. 
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A fundamental understanding of the emulsion components interaction is usually 

valuable. In addition, interfacial properties, film rigidity or strength, and surface tension 

between the different emulsion phases are very important in stability determination of 

the dispersed phase. 

For the emulsion characterization purpose, it is vital to determine the amount of each 

phase, the nature of the continuous and dispersed phases, and the size distribution of the 

dispersed phase. In addition, emulsion stability is another important property that can be 

measured (monitored) in terms of the phase separation over time. However, emulsion 

stability is directly related to the emulsion components’ chemistry, physics and their 

interactions. 

1.4.1 Bulk Properties 

The bulk compositions or properties can be dealt as the index by which one can get an 

indication of the process efficiency. Therefore, accurate determination of the emulsion 

components is one of the important issues in emulsion characterization. 

A. Continuous Phase Identification 

Knowledge of the dispersed phase nature is critical in determining an effective 

treatment. The nature of the dispersed phase is quite clear in most emulsion systems. 

However, identification of the emulsion continuous phase, in some emulsions, cannot be 

achieved simply by naked eyes and in some cases it depends upon where in sample one 

looks. 
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Identification of dispersed phase nature cannot be achieved by knowing the oil to water 

ratio alone since the presence of emulsifier can dramatically affect the amount of the 

distributed dispersed phase in a given amount of the continuous phase.  

Identification of the continuous phase nature can be achieved by different techniques. 

These techniques include: 

a. Dilution method.  In this technique, one or two emulsion droplets are added to 

water. If the emulsion droplet remains as a droplet, oil is the continuous phase 

(W/O emulsion). However, if the emulsion droplet spreads and disperses, water is 

the continuous phase (O/W emulsion).  

Emulsion phase inversion should be avoided while doing the dilution test. For 

example, W/O emulsion may invert to O/W emulsion because of the interaction 

of water dispersed phase with the dropper hydrophilic glass wall (Mikula, 1992). 

b. Dyeing. Another way to identify the emulsion continuous phase nature is to 

dye the continuous phase by using suitable water or oil soluble dyes. This method 

is very useful for the microscope observations. If the oil soluble dye does not 

color the emulsion, water is the continuous phase (O/W emulsion). Unfortunately, 

the applicability of this method is limited because of the opaque oil field 

emulsions. 

c. Emulsion capacitance or electrical conductivity. Since O/W emulsion is 

much higher conductive than a similar W/O emulsion, emulsion capacitance or 
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electrical conductivity technique can be used to indicate whether the continuous 

phase is oil or water (whether emulsion is W/O or O/W). 

This method is the basis of many sensors and it can used to monitor the emulsion 

phase inversion while changing concentration of any emulsion components (water, 

oil and/or surfactant). The presence of solids in emulsion may affect the accuracy 

of this method (Bhatnagar, 1920). 

B. Emulsion Water Content 

Several techniques can be used to measure emulsion water content (as well as emulsion 

oil content). These techniques include: 

a. Centrifugation. A simple centrifuge test can be used to determine oil and 

water contents and it is one of the most commonly used technique for field 

evaluation of water contents since it is fast and reliable. In this test, first, 

emulsion is diluted with a given amount of solvent (Mikula, 1992). Then, it is 

centrifuged, in a centrifuge tube, for a fixed time. After that, the volume of water 

can be determined. Mikula also reported that this technique might not be useful 

for very high water content. 

b. Karl Fischer Titration. This technique is reported as a fast and accurate 

method for water content determination (Mikula, 1992). In this method, the Karl 

Fischer reagent, which consists of mixture of iodine (I2), SO2 and pyridine 

dissolved in methanol, is used to titrate the emulsion sample since most 

substances are inert to this reagent. 
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In this method, in the presence of water, I2 is reduced by SO2 to form HI and SO3 

which are complex and neutralized by the pyridine. After reacting all of the 

water, the sample conductivity increases because of the appearance of highly 

conductive free I2. As a result, water content can be determined. 

c. Electrical conductivity and dielectric constant. Since the electrical 

conductivity and dielectric constants of water and oil are quite different, these 

differences can be measured accurately by capacitance probe and correlated to 

the water content in oil pipeline. 

d. Gamma-ray. The density of the emulsion, which can be correlated to the 

emulsion water content, can be measured by gamma-ray attenuation.  This 

technique is quite common in process monitoring. Schweitzer and Ellis in 1988 

reported that gamma-ray density meter is very useful to characterize emulsion 

especially when the solids content is zero or constant. This technique is 

applicable to field situations and on-line monitoring. 

e. Microwave-based meters. Mikula in 1992 reported microwave-based meters 

can be used to monitor emulsion water content. In this technique, the microwave 

radiation due to the absorption of the water phase is measured. Also, capacitance 

or resonance changes in a microwave cavity are noted instead.  Like the gamma-

ray adsorption method, discussed earlier, this technique is sensitive to the solids 

content and it is applicable to field situation and on-line monitoring. 
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1.4.2 Emulsion Dispersed Phase Size Distribution 

For emulsion characterization, determination of the dispersed phase chemical and 

physical properties is very important to measure most of the emulsion bulk properties.  

Different dispersed phase size distributions can result from various ways of emulsion 

formation from a fixed proportion of oil, water and surfactant. As a result, different 

emulsions, with different viscosities and stabilities, can be formed with the same 

compositions. Determination of the size distribution of the dispersed phase is an 

important requirement for the selection of the proper technique for specified purpose. 

Determination of the emulsion dispersed phase size distribution can be achieved by 

different techniques which can be divided into three main groups: techniques that 

depend on the differences between the electrical properties of oil and water, techniques 

that result in a physical separation of the dispersed droplets, and techniques that depend 

on scattering phenomena due to the presence of the dispersed phase (Mikula, 1992).  

Also, Mikula (1992) reported other techniques such as near-infrared spectroscopy (NIR) 

and differential scanning calorimetry (DSC) as techniques that can be used for emulsion 

characterization purposes. 

Azzopardi (1979) published an extensive study, which reviewed methods for the 

measurement of the size of drops in any system. Special review dealt with petroleum 

emulsion dispersed phase droplets size was reported by Mikula in 1992.  
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1.5 PROBLEM DEFINITION 

Emulsion technology has been utilized to the acid treatment of reservoir rocks in the 

region near the well bore. Sometimes, the pore structure near the well bore is plugged 

either by particulates from drilling process or by production precipitation deposits 

caused by pressure or temperature changes. As a result, permeability is reduced as well 

as the well productivity. 

To remove these unwanted deposits, acid stimulation is used. Wells in formations with 

naturally occurring low permeability can also be stimulated by using acid stimulation, 

but applied to the original rock matrix. This process is referred to as matrix stimulation. 

The matrix acidizing process consists of injecting suitable acid, depending on the type of 

the formation, into the formation pore space. While hydrochloric acid is used for 

limestones, hydrochloric-hydrofluoric acid is used for sandstones. The acid reacts with 

and dissolves portions of rock matrix and hence permeability is increased. The 

effectiveness of the treatment depends on the depth that the acid penetrates into the 

formation. For carbonate matrix, acid consumption occurs very rapidly at elevated 

temperature according to the equation: 

OHCOXXCOH 22

2

32  

 

where X is mainly calcium or magnesium. 

The rate of dissolution is limited by mass transfer (depends on the rate at which acid 

diffuses to the surface of the formation). Acid is consumed very quickly, since the rate 
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of mass transfer through the rock matrix is high, and it causes corrosion in the metal 

tubular goods. Therefore, deep penetration of the acid and corrosion rate reduction is a 

target. 

Reservoir dominant flow channels or worm holes are randomly distributed through the 

formation. The longer the worm holes, the better will be the results. Therefore, loss of 

acid (leak-off) through the walls of the reservoir flow channels results in short worm 

holes and the effective stimulation requires retardation of the dissolution rate. 

One method to achieve such retardation is the use of the emulsified acid where the 

hydrochloric acid is injected as a W/O emulsion. By doing so, the diffusion rate of the 

dispersed aqueous acid to the matrix formation is slower than that of acid from a totally 

aqueous system. As a result, the dissolution rate of limestone is retarded.  

However, high pressure drop, caused by friction losses, can be a problem while pumping 

emulsified acid. As a result, lower emulsified acid rates are pumped and thus limited job 

efficiency is achieved. Consequently, methods of pressure drop reduction are highly 

desired.  

 

1.6 DISSERTATION OBJECTIVES 

The objectives of this experimental research can be summarized as follows: 

1. Designing and constructing suitable flow loop facilities to be used for the study 

of unstable and surfactant-stabilized W/O as well as O/W emulsions. 
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2. Investigating the surfactant-stabilized W/O emulsion flow characteristics. This 

includes: 

a) Emulsion stability 

b) Emulsion rheology 

c) Emulsion pressure drop 

3. Studying the water fraction effect on stable W/O emulsion flow characteristics. 

In addition, investigating a possible friction reduction method by changing the 

dispersed phase fraction at different pipe diameters. 

4. Investigating the aqueous phase salinity effect on stable emulsions flow 

characteristics. In addition, studying a possible friction reduction method through the 

control of water salinity at different pipe diameters. 

5. Using the flow loop facilities to study the effect of polymer drag reducing agents 

(PDRA) on stable emulsions flow characteristics (stability, rheology and 

microscopy). Moreover, investigating a possible friction reduction method by adding 

and/or injecting PDRA at different pipe diameters.  

6. Studying the effect of nano-additives on stable emulsions viscosities. Moreover, 

investigating a possible friction reduction method through the use of nano-additives. 

7. Once well permeability has been recovered, all the attentions will be diverted to 

oil production. Oil is produced generally with water and methods that can 

facilitate separation between oil and water are highly desired. Therefore, water 
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soluble polymer is tested in this regard for oil-water stratified horizontal flows to 

seek for a possible stratification effect. In particular, investigating the effect of 

drag reducing polymers on water holdup for an oil-water horizontal flow has 

been conducted.    

This thesis is divided into nine chapters. Chapter 1, the current one, is this introduction. 

The descriptions of the following eight chapters are as follows: 

Chapter 2 presents a literature review on the unstable and surfactant-stabilized oil-water 

emulsions flow in horizontal pipes; especially the effect of water fraction on the pressure 

gradient. Chapter 3 gives a description of the experimental setup, the instrumentation 

used and testing procedures. The effect of the water fraction on the surfactant-stabilized 

W/O emulsions flow characteristics is reported in chapter 4. Chapter 5 is presenting the 

effect of the aqueous phase salinity on stable emulsions (W/O & O/W) flow 

characteristics. Moreover, effect of polymer drag reducing agents and some nano-

additives on the surfactant-stabilized emulsions are given in chapter 6 and chapter 7, 

respectively. In addition, chapter 8 presents effect of drag reducing polymers on water 

holdup in an oil-water horizontal flow. Finally, based on the experimental findings, 

conclusions and some recommendations for future work are presented in chapter 9. 

Each chapter of the main five chapters (4-8) is designed to stand for itself. Therefore, 

each chapter begins with introduction giving background about one specific objective 

and reviewing the previous related work done in the first section of each chapter. After 

that, the experimental setup and procedures for conducting the experiments are 
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described in the 2
nd

 section. Then, results are presented and discussed in the 3
rd

 section. 

Finally, in the 4
th

 section of each chapter the main conclusions are highlighted.   
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CHAPTER 2 

LITERATURE REVIEW 

Under certain conditions, the injection of water into a crude oil pipeline results in a 

significant reduction of pressure loss, thereby facilitating oil transportation. Therefore, 

cocurrent flow of oil and water in pipelines has attracted the interest of researchers 

(Russel et al. (1959), Charles et al. (1961), Hasson et al. (1970), Oglesby et al. (1979), 

Arirachakaran et al. (1989), Valle and Kvandal (1995), Beretta et al. (1997), Angeli and 

Hewitt (2000), Soleimani et al. (2000) and Al-Yaari et al. (2008 & 2009)). However, the 

majority of studies reported in the literature, is mainly focused on either oil-water flow 

patterns or separated flows (annular and stratified flow of oil and water phases). The 

pipeline flow behavior of W/O and/or O/W emulsions has received less attention. 

This chapter aims to highlight the flow characteristics of surfactant stabilized W/O 

emulsion. In particular, understanding the flow behavior of such emulsion in horizontal 

pipelines is targeted. Consequently, pressure drop reduction can be achieved. Therefore, 

in this chapter, works addressed the issue of horizontal pipeline flow behavior of 

unstable or stable emulsions are reviewed. Attention is not limited to W/O emulsion 

flow only but also works done to investigate the flow behavior of O/W emulsion is 

highlighted. Therefore, this chapter is divided into two sections. Horizontal pipeline 

flow behavior of unstable emulsions researches are reviewed in section 2.1 and 
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surfactant stabilized emulsion flow characteristics in horizontal pipeline works are 

summarized in section 2.2. 

 

2.1 UNSTABLE EMULSIONS (DISPERSIONS) 

This section is limited to review works which addressed flow behavior of unstable 

emulsions (without surfactant). 

Baron et al. (1953) studied experimentally the turbulent flow behavior of unstable 

emulsions in pipelines. They used tap water and carbon tetrachloride to make O/W 

emulsions. They assumed that the emulsion is pseudo-homogenous to use simplified 

single phase flow equations using averaged fluid properties. They calculated the 

effective viscosities of emulsions from the single-phase friction factor vs. Reynolds 

number relation using the experimental data of pressure loss vs. flow rate.  

In addition, laminar and turbulent flow behaviors of unstable O/W emulsions were 

studied by Cengel et al. (1962). They measured pressure drop and used Hagen-Poiseuille 

equation in laminar flow, and Blasius equation in turbulent flow to calculate the 

effective viscosities. They reported that emulsions exhibited drag reduction behavior in 

turbulent region since their friction factor fell below that for Blasius equation. 

Furthermore, they argued that such drag reduction increased as the dispersed phase 

fraction increased.  

In 1987, the laminar and turbulent flow behaviors for unstable O/W emulsions studied 

by Pal. His flowloop had three different horizontal smooth pipes. Similarly, he used 
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Blasius equation to calculate the effective viscosities in the turbulent regime. Such 

calculated viscosities were found to be lower than those obtained in the laminar region 

using the Hagen-Poiseuille equation. As a result, he concluded that emulsions exhibited 

drag reduction behavior in turbulent flow. Finally, he reported that such difference in 

viscosities increased when dispersed phase volume fraction increased. 

However, the laminar and turbulent pipeline flow behavior of unstable W/O emulsions 

was studied by Pal in 1993. Tap water and oil with 780 kg/m
3 

density and viscosity of 

2.41 mPa.s at 25 
o
C were used. He used Hagen-Poiseuille equation to calculate the 

effective viscosities in the laminar regime and he reported that the emulsion viscosity 

was found to increase with an increase in the dispersed phase volume fraction. In 

addition, he found that at a water volume fraction of 41.7% volume, a sudden jump in 

the emulsion viscosity occurred and he attributed that to the phase inversion from W/O 

emulsion to O/W emulsion. Further increase in water volume fraction resulted in 

decreasing the viscosity due to dilution effect as he reported.  

In addition, Pal (1993) reported that while the relative viscosities obtained from laminar 

data varied with dispersed phase volume fraction, they were a function of Reynolds 

number and the dispersed phase volume fraction, and pipe diameter in the turbulent 

region. Furthermore, he argued that unstable W/O emulsions exhibited strong drag 

reduction characteristics, as the measured friction factor fell well below the Blasius 

equation, in the turbulent flow and such drag reduction increased with the dispersed 

phase volume fraction increase. Moreover, he reported that smaller diameter pipe gave 
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larger drag reduction. The degree of drag reduction in O/W emulsions was reported to be 

less than that in the case of W/O emulsions at the same dispersed phase volume fraction. 

Finally, he argued that drag reduction in emulsions occurs due to turbulence 

modification of the continuous-phase liquid when droplets are introduced. 

Angeli and Hewitt (1998) also studied the pipeline behavior of unstable W/O emulsions. 

Tap water and oil with a dynamic viscosity of 1.6 mPa.s were used. Their horizontal 

pipeline test sections were made from stainless steel and acrylic resin. They reported 

emulsions drag reduction behavior in both pipes and the degree of drag reduction was 

strongly influenced by the pipe material. The acrylic-resin pipe exhibited a higher degree 

of drag reduction as they argued. 

Masalova et al. (2003) studied the pipeline flow behavior of W/O emulsions with water 

volume fraction of 0.9 in two different pipe diameters. They reported that the pressure 

drop data for pipe with smaller diameter fell lower than that for bigger pipe and they 

concluded that while that wall slip for pipes of large diameter can be neglected, wall slip 

must be considered for small diameter pipes. 

Pal (2007) proposed another mechanism for drag reduction observed in the pipeline flow 

of unstable emulsions. He proposed that because of a significant decrease in emulsion 

viscosity when the flow regime is changed from laminar to turbulent, emulsions exhibit 

drag reduction. Also, in turbulent flow, viscosity reduction occurs because of stretching 

and elongation of droplets as he argued.  

Al-Yaari et al. (2009) studied the effect of drag-reducing polymers on the horizontal 
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flow of unstable W/O and O/W emulsions in a 2.54 cm inside diameter acrylic pipe. Tap 

water and oil with a viscosity of 1.57 mPa.s and density of 780 kg/m
3
 were used. Such 

oil-water system was reported to have a phase inversion point at around 0.34 input water 

volume fraction.  

Omer and Pal (2010) studied the effect of the water soluble polymer addition on the 

pipeline flow behavior of unstable W/O emulsions.  They reported that unstable W/O 

emulsions were exhibited strong drag reduction behavior in turbulent flow and such 

reduction in the pressure drop decreased with the increase in the oil continuous phase 

viscosity.  

 

2.2 SURFACTANT-STABILIZED EMULSIONS 

The transport of emulsified acid through pipes requires the formation of stable 

emulsions in order to avoid corrosion, that may be faced in metallic tubular goods and to 

retard the reaction rate between HCl acid and the carbonate formations.  

Generally W/O or O/W emulsions are unstable thermodynamically. As the water/oil 

droplets are hydrophilic/ hydrophobic they tend to separate from the oil/ water 

continuous phase. In order to form a stable emulsion, a surfactant (emulsifier) must be 

used to reduce the interfacial tension and this makes the formation of smaller droplets 

easier.  

This section is limited to review works addressing flow behavior of surfactant stabilized 

emulsions (with surfactant or emulsifier). 
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Rose and Marsden (1970) studied experimentally the flow behavior of Triton X-14 

surfactant stabilized O/W emulsions with 0.25-0.6 oil volume fraction. Brine and 

Prudhoe Bay oil, with 80 mPa.s viscosity at 65 °C, were used. Their test section was 

copper tubing with ID of 0.635 cm. They found that the created O/W emulsions had 

much lower viscosities than the oil itself and the emulsion viscosity increased 

exponentially with increasing the oil volume fraction. 

The laminar and turbulent flow behaviors of surfactant stabilized O/W emulsions, with 

oil volume fraction between 0.5 and 0.75 were investigated by Zakin et al. (1979). They 

reported that the emulsions were non-Newtonian in laminar regime as indicated by 

rheological data and modified Hagen-Poiseuille equation (where Reynolds number is 

replaced by generalized Reynolds number) was used. They also observed drag reduction 

behavior in the turbulent regime, and they attributed it to be due to viscoelastic effects in 

emulsions, where individual droplets or a microstructure formed between the droplets 

can introduce viscoelastic effects in emulsions.  

Pal (1993) also investigated the influence of surfactant on the pipeline flow behavior of 

W/O and O/W emulsions. Emulsions were prepared using Bayol-35 oil (refined mineral 

oil), with 780 kg/m
3
 density and 2.41 mPa.s viscosity at 25 

o
C, and tap water. Phase 

inversion point for the surfactant-stabilized W/O and O/W emulsions were reported at 

around 0.26 and 0.72 water and oil volume fractions respectively. Before those points, 

while W/O emulsions behaved like Newtonian fluids, O/W emulsions were Newtonian 

up to an oil volume fraction of 0.55 and non-Newtonian shear thinning up to 0.72, at 
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which emulsion showed the presence of a yield stress. In addition, he reported little or 

no drag reduction exhibited by the stabilized emulsions (in the laminar regime the 

friction factor data from various diameter pipes follows the Hagen-Poiseuille equation 

and in turbulent regime the friction data follows the Blasius equation as well).  

Omer and Pal (2010) studied also the effect of surfactant concentration on the pipeline 

flow behavior of W/O emulsions. They reported that the presence of a surfactant in the 

oil phase results in the creation of stable water-in-oil emulsions with little or no drag 

reduction. In addition, they argued that the presence of a surfactant is expected to 

increase the rigidity of the droplets, leading to higher emulsion viscosity. Furthermore, 

they found that the relative viscosity of the stable emulsions increased with the increase 

in the dispersed-phase fraction. Finally, they reported that as the droplets of the stable 

W/O emulsions were small and stable with respect to coalescence, they behaved more 

like rigid particles and, therefore, no reduction in viscosity occurred upon a change in 

the flow regime from laminar to turbulent. 
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CHAPTER 3 

EXPERIMENTAL SETUP & PROCEDURE 

Experiments reported in this dissertation were performed to study the flow 

characteristics of surfactant stabilized W/O and O/W emulsions. Such study is 

mandatory to achieve the main goal of this research, to reduce the pressure drop of 

stable W/O emulsions. All experiments in this study were conducted using a flow loop 

described in section 3.1. 

All flowloop experiments reported in this work were achieved by using water (with 

different NaCl concentration) as the aqueous phase and a type of kerosene known as 

SAFRA D60 (oil phase), produced in Saudi Arabia. Some physical properties of the oil 

phase are presented in Table 3.1. 

 

Table 3.1 Properties of SAFRA D60 

Product Name SAFRA D60 

Flash Point 67 C 

Density 780 kg/m
3
 

Viscosity 1.57 mPa.s at 25 C 

Interfacial Tension Oil-Water 0.017 N/m  at 20 C 
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3.1 DESCRIPTION OF THE FLOW LOOP 

A photograph and schematic layout of the emulsion flow loop are shown in Figure 3.1 

and Figure 3.2, respectively. As shown in these figures, the flow loop consists of the 

following: 

1. Two small tanks made from PVC with a volume of 70 liters each. These tanks can 

be used together at the same time. 

2. Two centrifugal pumps; one is produced by PEDROLLO with 1 HP power to be 

used for low pumping rates. The other one is produced by Semnan Co. with 2.5 HP to be 

used for high pumping rates. 

3. Two OMEGA turbine flowmeters; one for the 1-in piping system and the other 

for the ½-in piping system. Both flowmeters cover the volumetric flowrates range 

between 0 gallon per minute (gpm) and 50 gpm. Flowrates can be read directly from 

flowmeter screen or can be read and stored in PC.  

4. Two horizontal pipe test sections with inside diameter of 0.0254 m and 0.0127 m 

made from acrylic resin to allow visual observation. Each test section consists of 3 

acrylic tubes with lengths of 1.5 m, 2 m and 1.5 m connected together in this order with 

flanges and fixed on a strong steel structure, giving a total length of 5 m. Other pipes 

were made from CPV with length of 6 m. Therefore, the total length of the flowloop is 

11 m. 
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5. Tow Smart Differential Pressure Transducers made by ROSEMOUNT Company. 

Both transducers have a built-in screen with four digits to monitor pressure difference 

between two points in the pipe 1 m a-part from each other. They work with 24 V; 

Therefore they are connected firstly to a transformer and then to the main power supply. 

The pressure transducers are connected to test sections either as shown in Figure 3.1 and 

Figure 3.2 or as shown in Figure 3.3 and Figure 3.4. In order to avoid errors in the 

pressure drop measurements, the whole transducer system and its connecting lines 

should be filled with water and no burrs in the pipe wall of all connecting pipes. The 

first pressure tap is located 8 m apart from the entrance to be sure that the flow is fully 

developed. Both pressure transducers are connected to PC through a data acquisition 

(DAc) system to display and store all data. 

6. Conductivity measurements cell, which is used to detect the emulsion type and to 

measure emulsion conductivity while flowing in the 1-in piping system. Such system is 

powered by AC power supply and conductivity measurements are monitored by PC 

through a data acquisition system. 

7.  Cooling system, to maintain temperature at the desired temperature (25 
o
C); It 

consists of a brass coiled tubing, placed in one of the tanks, connected to a Recirculator 

used to control the cooling fluid (water) temperature. 
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Figure 3.1 A photograph of the flowloop 
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Figure 3.2 A Schematic layout of the flowloop 

 

 

Figure 3.3 Schematic layout of one possible design of the pressure transducer system 
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Figure 3.4 A photograph of the pressure transducer systems 

 

 

3.2 STABILITY TEST 

Bottle test is used to achieve stability tests for all formed emulsions by monitoring 

percentage of separated oil and/or water layer with time. Such test can give an indication 

about emulsion quality. In other words, it can tell qualitatively about the average size of 

the dispersed phase droplets. The smaller the droplets average size, the more stable the 

emulsion. 
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3.3 EMULSION TYPE 

Dilution test was used to identify the emulsion continuous (external) phase. In this test, 

one droplet of the formed emulsion is injected in an oil or water pure phase. If droplet 

disperses, emulsion continuous (external) phase is the same as the used fluid for the test 

and vice versa. For example, W/O emulsion droplet will disperse in oil rather than water. 

Also, emulsion type can be detected by measuring its conductivity either statically by a 

conductivity meter or in-line (dynamically) by the designed conductivity measurements 

system as mentioned in section 3.6. This test is based on the fact that brine is conductive 

and oil is nonconductive and emulsion continuous phase is dominating emulsion 

conductivity. 

 

3.4 DISPERSED PHASE DROPLET SIZE MEASUREMENTS 

Such task is achieved using Leica-300 camera, connected to a Leica DM2000 

microscope with 6 different lenses (5x, 10x, 20x, 40x, 50x, and 100x). Camera is also 

connected to a computer and all images can be produced by imaging software.  This 

setup is illustrated in Figure 3.5. 

 

3.5 RHEOLOGICAL TEST 

All rheological measurements were conducted using the Rheologica StressTech 

rheometer, shown in Figure 3.6. The rheometer has a torque range from 3.0x10
-8

 to 

2.0x10
-1

 N.m with a torque resolution of 1.0x10
-10

 N.m. The bob/cup set, where bob is 



 

36 

 

the rotating part, was used to conduct steady shear rate sweep tests. The tested emulsion 

volume is 15.9 cm
3
. 

 

 

 

Figure 3.5 A photograph of the micrographic measurements setup 
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Figure 3.6 A photograph of the rheological test setup 

 

3.6 CONDUCTIVITY MEASUREMENTS 

Stability test is used to be conducted using bottle or centrifugal bottle tests, using naked 

eyes to monitor phase separation volume with time. However, some phase separation 

might occur without detection by naked eyes. Therefore, here, conductivity 

measurement system is proposed to be used to specify emulsion quality and to detect 

emulsion separation with time and to be used to identify the emulsion type (emulsion 

external phase). An AC power supply is used to supply 10 V. Current will pass through 

emulsion using a conductivity cell and measuring voltage across a resister (580 Ω), 

placed in series with emulsion. Conductivity cell has two brass wires placed in the same 

x (direction of the flow) but perpendicular to the flow. Such setup is presented in Figure 



 

38 

 

3.7 and Figure 3.8. Also, in-line conductivity measurements of different tap water/oil 

compositions are illustrated in Figure 3.9. 

 

 

Figure 3.7 Schematic layout of the conductivity test setup 

 

 

Figure 3.8 A photograph of the conductivity measurements setup 
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Figure 3.9 In-line conductivity measurements of water/oil system 

 

3.7 EXPERIMENTAL PROCEDURE 

3.7.1 Definitions 

1. The friction factor (f) is a function of the Reynolds number of the flow and the 

relative roughness of the pipe (k/D). For a horizontal pipe flow, Darcy friction factor can 

be calculated from the following relation: 
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    L:   The distance between the two pressure taps (m) 
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   : Fluid density (kg/m
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  u: In-situ average velocity of the fluid (m/s) 
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However, for single phase laminar flow (Reynolds number less than 2300) in tubes, a 

well known correlation proposed by Hagen-Poiseuille can be used: 

Re/64f                                                   (2) 

In addition, for single phase turbulent flow (Reynolds number up to 10
5
) in smooth 

pipes, a very widely used empirical equation, giving a very good approximation of the 

friction factor, is a correlation proposed by Blasius: 

25.0Re316.0 f                                             (3) 

In addition, the turbulent friction factor can be determined using other correlations, such 

as the Zigrang & Sylvester (1985) correlation defined in equation (4), or by using a 

Moody's chart. 
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2. The wall shear stress ( ) can be estimated as follows: 

4

D

L

P
                                      (5) 

3. At a given flow rate, the pressure drop reduction percentage (PDR %) resulted 

from any change can be calculated in terms of friction factor, shear stress or pressure 

drop as follows: 
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3.7.2 Calibration 

After finishing building the emulsion flow loop, all required calibrations were conducted 

as follows: 

1. Both flowmeters were calibrated. The calibration curves of the flowmeter of the 

one inch piping system are shown in Figure 3.10 and Figure 3.11. However, the 

calibration curves of that used in the half inch piping system are shown in Figure 3.12 

and 3.13. While the first curves represent the flowrate calibration, the second ones 

represent the flowmeters signals calibration. In Figure 3.10 and Figure 3.12, manual 

measurements of the flowrates were conducted by measuring the average time required 

to collect specific water volume. 

 

Figure 3.10 The one inch pipe flowmeter calibration 
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Figure 3.11 The one inch pipe flowmeter signal calibration 

 

Figure 3.12 The half inch pipe flowmeter calibration  
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Figure 3.13 The half inch pipe flowmeter signal calibration 

 

2.  Pressure transducers were calibrated by using a calibrator.  The pressure 

transducer, connected to the one inch piping system, has a range of 0 – 0.8 PSI and its 

calibration curve is shown in Figure 3.14. However, the pressure transducer, used for the 

half inch piping system, is ranging from 0 to 1.8 PSI and its calibration curves are shown 

in Figure 3.15 and Figure 3.16. 
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Figure 3.14 Calibration of the pressure transducer used for the one inch piping system 

 

 

 

Figure 3.15 Calibration of the pressure transducer used for the half inch piping system 
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Figure 3.16 Signal calibration of the pressure transducer used for the half inch piping 

system 
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correlation (equation (4)) for different roughness (see Table 3.2). A log-log figure of 
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from the measured values. Therefore, the roughness of the pipe was 1x10
-5

 m which can 

be considered as a smooth pipe. 

For checking, experimental single phase data of water and oil in both pipes with those 

from Blasius form were compared. Results showed a close agreement between 

experimental data and Blasius data (see Figure 3.18 and Figure 3.19) and that means that 

pipes are smooth. 

 

 

Table 3.2 Single phase water friction factors 

Water 

flowrate 

(m
3
/s) 

Reynolds 

Number 

Experimental 

friction factor 

(Eq. 1) 

Blasius 

friction 

factor 

(Eq. 3) 

Zigrang & Sylvester 

friction factor (Eq. 4) 

k=0.1mm k=0.01mm k=1µm 

 

1.26E-04 6262 0.0372 0.0355 0.0396 0.0356 0.0351 

2.52E-04 12524 0.0301 0.0299 0.0351 0.0298 0.0292 

3.79E-04 18786 0.0272 0.027 0.0332 0.0271 0.0264 

5.05E-04 25047 0.0259 0.0251 0.0321 0.0255 0.0246 

6.31E-04 31309 0.0235 0.0238 0.0315 0.0243 0.0234 

7.57E-04 37571 0.0225 0.0227 0.031 0.0235 0.0224 

8.83E-04 43833 0.022 0.0218 0.0306 0.0228 0.0217 

1.01E-03 50095 0.0207 0.0211 0.0304 0.0223 0.0211 
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Figure 3.17 Friction factors vs. Reynolds number of water flow 
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Figure 3.18 Friction factor vs. Reynolds number of single phase flow in 1-in pipe 

 

 

Figure 3.19 Friction factor vs. Reynolds number of single phase flow in 0.5-in pipe 

0.01 

0.10 

1000 10000 100000 

F
ri

ct
io

n
 F

a
ct

o
r,

 f
 

Reynolds Number, Re 

Blasius Equation DI Water (Exp.) Oil (Exp.) 

0.01 

0.10 

1000 10000 100000 

F
ri

ct
io

n
 F

a
ct

o
r,

 f
 

Reynolds Number, Re 

Blasius Equation DI Water (Exp.) Oil (Exp.) 



 

49 

 

 

3.7.3 Emulsion Preparation 

Surfactant stabilized W/O and O/W emulsions were made as follows: 

The dispersed phase (either Bine (with specific wt% NaCl) or oil) was added at 1 L/min 

to the emulsified external phase. Stable emulsions were prepared as follows: 

1. Specific volume of the external phase is put in a 36 L container.  

2. 0.6 volume % of emulsifier is then added. 

3. After that, specific volume % of dispersed phase was added at 1 L/min while 

mixing at 8000 RPM by using high power homogenizer. This homogenizer was 

produced by IKA in Germany and it has a power of 1100 W.  

4. Emulsion quality is then tested by dilution and conductivity measurements tests as 

discussed earlier.  

 

3.7.4 Operation of the Flow Loop 

Once emulsion is already made, before any experiments, the followings should be 

checked: 

1. All lines in the pressure transducer systems, illustrated in Figure 3.3 and Figure 

3.4, are filled with water and no vacuum pressure exists in the flowloop pipes, pumps 

and tanks. 

1. When measuring pressure drop, all valves should be checked. 

2. No air bubbles exist in all connection lines in the pressure transducer systems 
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since air bubbles will affect pressure drop measurements. 

3. When using only one differential pressure transducer, as shown in Figure 3.3, 

during pressure drop measurements through the 1-in pipe, the valves VT2 and VT4 are 

open while the remaining valves are closed. However, when emulsion is flowing inside 

0.5-in pipe, VT5 and VT6 are open while the remaining valves are closed. The emulsion 

pump is turned on and the volumetric flowrate is controlled via a control valve. 

A fully developed flow must be achieved before all experiments reported in this 

dissertation. Theoretically, Coulson et al. (1980) reported that a single-phase fully 

developed flow can be reached at the distance of 50-100 pipe diameters at the low 

Reynolds number of 2500. Therefore, for these particular test sections with 0.0254 m 

and 0.0127 m inside diameter, a fully developed single phase flow could be achieved at 

less than 2.54 m and 1.27 m from the entrance for both pipes respectively. However, a 

fully developed turbulent flow could be obtained at a pipe length smaller than 1.27 m 

from the entrance section. Therefore, since the distance between the tee-section and the 

first pressure tap is about 8 m, there is no problem to achieve a fully developed flow 

before pressure drop measurements. 

Once stabilized pressure transducer readings and flowrates are achieved, pressure drop is 

recorded. Then, three emulsion samples are taken for stability, droplet size 

measurements and rheological tests. 
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3.8 UNCERTAINTY ANALYSIS 

Error limits and the experimental data quality can be described by a technique known as 

uncertainty analysis. Each measurement is associated with error which can be defined as 

the difference between the true and measured values. Errors can be divided into two 

groups: random and systematic. While random uncertainty was calculated based on the 

data standard deviation, systematic uncertainty was calculated based on the equipment 

calibration errors. Therefore, the combination of the random and systematic 

uncertainties is known as the combined uncertainty. More details of this technique are 

explained extensively by Dieck (2007). 

The flowmeters and differential pressure transmitters and viscometer information and 

accuracies are presented in Table 3.3. All uncertainties were calculated within the 95 % 

confidence level using method described by Dieck (2007).  
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Table 3.3 Instruments information and accuracies 

     

Measurements Uncertainty for 95% Confidence 

     

Low Re High Re 

Parameter 
Test 

Section 
Instrument Supplier Range 

Random 

Uncertainty 

Systematic 

Uncertainty 

Combined 

Uncertainty 

Random 

Uncertainty 

Systematic 

Uncertainty 

Combined 

Uncertainty 

Flowrate 

1.27-cm 

pipe Digital 

Flowmeter 
OMEGA 

0 - 50 

gal/min 

0.151% 0.04% 0.305% 0.117% 0.04% 0.237% 

2.54-cm 

pipe 
0.046% 0.58% 0.587% 0.010% 0.58% 0.580% 

Pressure 

Drop 

1.27-cm 

pipe 
Smart 

Rosemount 

Pressure 

Transmitter 

Emerson 

0 - 1.8 PSI 0.172% 0.01% 0.344% 0.219% 0.01% 0.438% 

2.54-cm 

pipe 
0 - 0.8 PSI 0.675% 0.06% 1.351% 0.047% 0.06% 0.112% 

Viscosity N/A Rheometer 
Rheologica 

StressTech 

3.0x10
-8

 to 

2.0x10
-1

 

N.m 

0.00007% 0.099% 0.099% 0.00002% 0.099% 0.099% 
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CHAPTER 4  

EFFECT OF WATER FRACTION ON SURFACTANT-

STABILIZED WATER-IN-OIL EMULSION FLOW 

CHARACTERISTICS  

 

4.1 INTRODUCTION 

One of the common occurrences in the petroleum industry during transportation and 

production is oil-water flow in pipes. Moreover, two-phase liquid-liquid flow is common 

in the process and petrochemical industries. Although the accurate prediction of oil-water 

flow is essential, oil-water flow in pipes has not been explored as much as gas-liquid 

flow. The majority of studies reported in literature, have mainly focused on oil-water 

segregated flow patterns (annular and stratified flow). The pipeline flow behavior of 

water-in-oil (W/O) and/or oil-in-water (O/W) emulsions has received less attention. 

Emulsion technology has been utilized in the acid treatment of reservoir rocks in the 

region near well bore. Sometimes, the pore structure near the well bore is plugged either 

by particulates from drilling process or by production precipitation deposits caused by 

pressure or temperature changes. As a result, permeability is reduced as well as the well 

productivity. To remove these unwanted deposits, acid stimulation is used. The carbonate 

matrix acidizing process consists of injecting hydrochloric acid into the formation pore 

space. The acid reacts with and dissolves portions of rock matrix and hence permeability 
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is increased. The effectiveness of the treatment depends on the penetration depth of the 

acid into the formation. 

Acid is consumed very quickly and it causes corrosion in the metallic tubular goods. 

Therefore, deep penetration of the acid a well as corrosion rate reduction is the target. 

One method to achieve such retardation and to avoid corrosion is the use of the 

emulsified acid where the hydrochloric acid is injected as a W/O emulsion. To maintain 

hydrochloric acid as the dispersed phase, it is necessary to use a composition that sits 

near the oil apex of the pseudo ternary diagram as reported by Hoefner and Fogler (1985) 

to form stable emulsion. 

Generally, water-in-oil (W/O) or oil-in-water (O/W) emulsions are unstable 

thermodynamically. As the water/oil droplets are hydrophilic/ hydrophobic they tend to 

separate from the oil/ water continuous phase. In order to form a stable emulsion, a 

surfactant (emulsifier) must be used to reduce the interfacial tension and promote the 

formation of smaller droplets. High pressure drop, caused by friction losses, can be a 

problem while pumping emulsified acid. As a result, emulsified acid is pumped at low 

flowrates and thus limited job efficiency is achieved. Consequently, methods of pressure 

drop reduction are highly desired.  

Laminar and turbulent flow behaviors of unstable O/W and W/O emulsions in pipes have 

received a considerable attention (Baron et al. (1953), Cengel et al. (1962), Pal (1987), 

Pal (1993), Angeli and Hewitt (1998), Masalova et al. (2003), Pal (2007), Al-Yaari et al. 

(2009) and Omer and Pal (2010)). The emulsion effective viscosities were calculated 
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form single phase Hagen-Poiseuille equation and Blasius equation for laminar and 

turbulent flow, respectively. Since emulsion effective viscosity calculated for turbulent 

flow is lower than that for laminar flow or since the measured turbulent pressure drop is 

lower than that calculated from Blasius equation, drag reduction was claimed (Cengel et 

al. (1962), Pal (1987), Pal (1993), and Omer and Pal (2010)). In addition, it was reported 

that such drag reduction increases with: the increase in the dispersed phase fraction (Pal 

(1987) and Pal (1993)); the decrease in pipe diameter (Pal (1993) and Masalova et al. 

(2003)) and the decrease in the viscosity of oil continuum (Omer and Pal (2010)). 

Moreover, drag reduction is a function of emulsion type (Pal 1993) and pipe material 

(Angeli and Hewitt (1998)). Droplets stretching and elongation, in turbulent regime, is 

proposed as a mechanism of the reported drag reduction of studied unstable emulsions 

(Pal (2007)). Furthermore, phase inversion of unstable emulsions was also reported (Pal 

(1993) and Al-Yaari et al. (2009)). 

However, pipeline flow behaviors of stable O/W and W/O emulsions have received less 

attention. While drag reduction was reported for surfactant stabilized O/W emulsions 

(Rose and Marsden (1970) and Zakin et al. (1979)), little or no drag reduction was 

addressed for surfactant stabilized W/O emulsions (Pal (1993) and Omer and Pal (2010)). 

In addition, as dispersed phase fraction increased, phase inversion and an increase in 

emulsion effective viscosities, calculated from the single phase equations, were reported 

(Pal (1993) and Omer and Pal (2010)).  

This chapter aims at studying the flow characteristics of surfactant stabilized W/O 

emulsions. The influence of water (dispersed phase) fraction on emulsion stability, 
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droplet size, viscosity and pressure drop is investigated. Also, it aims to examine a 

possible friction reduction through the control of water fraction. In addition, stable W/O 

emulsions dependency on pipe diameter is studied. 

 

4.2 EXPERIMENTAL SETUP & PROCEDURE 

Surfactant-stabilized W/O emulsions were prepared using brine (with 50 kppm NaCl) as 

the aqueous phase and a type of kerosene known as SAFRA D60 produced in Saudi 

Arabia as the oil phase. Some physical properties of the oil are presented in Table 3.1. 

ARMAC T, from Akzo Nobel, was used as the emulsifying agent and some of its 

physical properties are presented in Table 4.1. 40 wt % of the emulsifying agent (solid) 

was dissolved in naphtha to form the liquid phase. 

 

Table 4.1 Emulsifying agent properties 

Commercial Name ARMAC T 

Common Name Tallowalkylamine acetates 

Appearance at 25 
o
C Solid 

Hydropile- Lipophile Balance (HLB)  6.8  

  

A schematic layout of the flow loop is shown in Figure 3.2. The flow loop consists of two 

small 70-L PVC tanks.  Two centrifugal pumps are used for low and high pump rates. 

The test sections are two acrylic resin horizontal pipes (2.54-cm and 1.27-cm ID) that 

allow visual observation.  Flow rate is measured by two OMEGA turbine flowmeters. 
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The total length of the flowloop test sections is 11 m. Emulsion pressure drop is 

measured by two smart differential pressure transmitters manufactured by the 

Rosemount, Inc. A fully developed flow must be achieved before all experiments 

reported in this chapter. Theoretically, Coulson et al. (1980) reported that a single-phase 

fully developed flow can be reached at the distance of 50-100 pipe diameters at the low 

Reynolds number of 2500. Therefore, for this particular test sections with 0.0254 m and 

0.0127 m inside diameters, a fully developed single phase flow could be achieved at less 

than 2.54 m and 1.27 m from the entrance for both pipes respectively. However, a fully 

developed turbulent flow could be obtained at a pipe length smaller than 1.27 m from the 

entrance section. Therefore, since the distance between the tee-section and the first 

pressure tap is about 8 m, there is no problem to achieve a fully developed flow before 

pressure drop measurements. In addition, the flow loop contains a conductivity 

measurements cell that is used to detect the emulsion type and to measure emulsion 

conductivity while flow takes place in the 2.54-cm piping system. The conductivity 

measurements are monitored by PC through a data-acquisition system. Furthermore, 

emulsion temperature was maintained at 25 
o
C by the cooling system illustrated in Figure 

3.2.  

 

Emulsion Preparation 

36 liters of surfactant-stabilized W/O emulsions were made by adding the required 

volume % of brine at 1 L/min to the emulsified oil (oil with 0.6 volume % emulsifier) 

while mixing at 8,000  rev/min (RPM) using high power homogenizer (Ultra Turrax T 50 
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basic, WERKE IKA, Germany). Emulsion quality was tested by dilution and conductivity 

measurements.   Emulsions were then transferred to one of the flow loop tanks. This 

procedure was used in preparing all the emulsions but with different brine-volume 

fractions. 

Stability Test 

A bottle test was used to achieve stability tests for all formed emulsions by monitoring 

the percentage of separated oil and/or water layer with time. Such a test can give an 

indication about emulsion quality. In other words, it can determine qualitatively the 

average size of the dispersed phase (brine) droplets. As a rule of thumb, the smaller the 

droplets, the more stable the emulsion if other conditions are same.  

Emulsion Type 

A dilution test was used to identify the emulsion continuous (external) phase. In this test, 

a droplet of the formed emulsion was injected into an oil or water sample. If the injected 

droplet was found to disperse, the emulsion continuous (external) phase is the same as the 

fluid used for the test. For example, W/O emulsion droplets will disperse in an oil sample 

rather than a water sample. Also, the emulsion type was detected by measuring its 

conductivity. This test is based on the fact that a brine solution is conductive, oil is 

nonconductive, and the emulsion continuous phase dominates the emulsion conductivity. 

Rheological Test 

All rheological measurements were conducted using the Rheologica StressTech 

rheometer. The rheometer has a torque range from 3.0 x 10
-8

 to 2.0 x 10
-1

 N.m with a 
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torque resolution of 1.0 x 10
-10

 N.m. The bob and cup set where the bob is the rotating 

part was used to conduct steady shear-rate sweep tests. The tested emulsion volume was 

15.9 cm
3
. 

Once W/O emulsions have been produced, steady shear rate sweep tests were conducted 

to produce emulsion viscosity curves at different water fractions. In this test, 15.9 cm
3
 of 

the emulsion sample, containing specific water composition, was sheared gradually with 

increasing the bob rotating speed till a level where the emulsion sample started spelling 

out of the cup. The shear rate at this point (upper shear rate), for all the tested emulsions, 

was ≥ 1000 s
-1

.  The upper shear rate increases as emulsion viscosity increases. 

 

4.3 RESULTS AND DISCUSSIONS 

Emulsion Stability 

To investigate the effect of water fraction on emulsion stability, emulsions with different 

water to oil volume % (10/90 (a), 40/60 (b), 50/50 (c), 60/40 (d) and 70/30 (e)) were 

used.  Brine with 5 wt% NaCl (50 kppm) was used as an aqueous phase. After preparing 

such emulsions, stability tests were carried out using bottle test, by monitoring phase 

separation with time. These results are presented in Figures 4.1 and 4.2. Although the 

emulsion preparation procedure is the same (including the emulsification time and 

intensity and the adding rate of brine), an increase in the volume fraction of the dispersed 

phase (water) resulted in more concentrated emulsion. In addition, the chance for the 
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dispersed phase droplets to sediment was lower and the separation occurred only from the 

oil side.  

As shown in these figures, increasing water fraction resulted in more stable emulsion. As 

water fraction increased, the dispersed phase droplets size became smaller (see Figure 

4.3). This is acceptable because when diluted system is mixed, the probability of the 

dispersed phase droplets to break is lower than that for concentrated systems. Thus, stable 

W/O emulsion with water of 70 volume % was the most stable one compared with the 

other emulsions covered in this chapter. 

Emulsion Type and Conductivity 

Emulsion type and conductivity tests were conducted by performing dilution tests and 

conductivity measurement, respectively. The emulsion conductivity test was conducted 

under static conditions after preparing the emulsion by using a conductivity meter. All of 

the tested emulsions were W/O with a conductivity of 0 μS/cm (static test), which was 

confirmed by dilution tests. 

Emulsion Droplet Size Distribution 

Some microscopic photos were taken for all tested emulsions. Since all emulsions were 

milky, careful use of cover slips were mandatory to get representative micrographs. 

These photos are shown in Figure 4.3. As shown in this figure, increasing the water 

(dispersed phase) fraction resulted in tight emulsion with smaller droplet size distribution 

which enhances emulsion stability.  
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Figure 4.1 Effect of water volume fraction on water-in-oil emulsion stability 
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Figure 4.2 Water-in-oil emulsion stability (after 2 hours) at different water volume fractions; (a)  

0.1, (b)  0.4, (c)  0.5, (d)  0.6 and (e)  0.7 
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Figure 4.3 Water-in-oil emulsion droplets size and distribution at different water volume 

fractions; (a) 0.1, (b) 0.4, (c) 0.5, (d) 0.6 and (e) 0.7  

 

Emulsion Rheology 

Viscosity curves for all surfactant-stabilized W/O emulsions were obtained using a bob 

and cup viscometer. As shown in Figure 4.4, almost all emulsions showed a shear 

thinning behavior. Shear-rate dependency of the viscosity increases as brine (dispersed 

phase) volume fraction increases. Steady shear rate viscosities were used to calculate 

emulsion Reynolds numbers (Re) at different shear rates (flowrates).   
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Figure 4.4 Effect of water fraction on water-in-oil emulsion viscosity 

 

 

Power-law or Ostwald-de Waele model represents the fluid viscosity as a function of shear 

rate (    as shown in equation (1) where k and n are the consistency and the power-law 

index, respectively. It can be used for shear thinning fluids for the shear rate range within 

which viscosity decreases as shear rate increases. W/O emulsions behaved as shear 

thinning fluids when water volume fraction was ≥ 0.4 (see Table 4.2). 

 

The true wall shear rate and the behavior index (n) were calculated using equations (2) and 

(3), respectively (Wilkes, 2010). However,    and     are related to the power-law constants 
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as shown in equations (4) and (5), respectively (Wilkes, 2010). In addition, zero-shear rate 

viscosity ( o ) as well as infinite-shear rate viscosity (  ) of all emulsions were calculated 

from data fittings using Cross model (R
2
 ≥ 0.99), expressed by equation (6). Behavior 

index (n, n’), consistency index (k, k’), ηo and η∞ shear rate viscosities are reported in 

Table 4.2. 

 

   where      = True wall shear rate 

       = Volumetric flowrate 

       = Pipe radius 

      = Wall shear stress 

The term in brackets in equation (2) is the Robinowitsch correction for non-Newtonian 

fluids.        

   =
4  

𝜋  3
  

3

4
+ 

1

4
 
𝑑(ln  )

𝑑(ln   )
                                 2  

𝑑(ln  )

𝑑(ln   )
=  1

                                                      3  
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   where    = Emulsion viscosity 

     ηo = Emulsion zero shear rate viscosity 

  η∞= Emulsion infinite shear rate viscosity 

    = Shear rate 

  λ, m = constants 

By fitting data presented in Figure 4.5, ηo and η∞ for stable W/O emulsion can be related 

to water volume fraction (xw) as shown in equations (7) and (8), respectivelly.  

 

 

    

  –  ∞

 𝑜−  ∞
=

1

1 + (𝜆 )
𝑚

 
                                        6  

ηo =  ηoil *e5.8344 xw                                       (7) 

 ∞ =   𝑜𝑖𝑙 ∗ 𝑒4.3504 𝑥                                      (8) 
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where   

      ηo = Emulsion zero shear rate viscosity 

  η∞= Emulsion infinite shear rate viscosity 

                                                = Oil viscosity 

     𝑥  = Water volume fraction 

 

The mixture viscosity (η) of immiscible liquids can be expressed by the Fluidity-Additivity 

equation (Equation (9)) as reported by Bingham (1922). Lin (1979) introduced slip factor 

(λ) to account for slippage effect in polymer liquids (Equation (10)). However, those 

equations did not account for the presence of emulsifier and hence underestimate W/O 

emulsion viscosities at different water fraction. Therefore, a viscosity enhancement factor 

(β) is introduced (Equation (11)). This factor, expressed by equation (12), is a strong 

function of water fraction and at low shear rates (flowrates) it depends on shear rate as 

well. Figure 4.6 shows a comparison between the Fluidity-Additivity model and the 

proposed model to predict stable W/O emulsion viscosities. The proposed model fits the 

experimental data very well.  

 

    

1

 
=  

𝑥 

  
+  

𝑥𝑜

 𝑜
                                             (9) 
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 where      = Emulsion or mixture viscosity 

    𝑥  = Water volume fraction 

    𝑥𝑜 = Oil volume fraction 

       =Water viscosity 

     𝑜 = Oil viscosity 

 

 

 

The majority of the proposed models to predict emulsion viscosities are for low capillary 

numbers (Nca  0), where the emulsion droplets are almost spherical and under creeping 

flow conditions (Re  0) (Hatschek (1911), Richardson (1933), Broughton and Squires 

(1938), Eilers (1941) and Pal and Rhodes (1989)). Therefore, their models are not 

function of shear rate. 

     
      

 
                                        

   where      = Viscosity of the continuous phase 

  Rd = Droplet radius 

                                               = Interfacial tension 

1

 
=   1 + 𝜆  (𝑥 𝑥𝑜)0.5  

𝑥 

  
+  

𝑥𝑜

 𝑜
                         (10) 

1

 
=   1 −  𝛽   𝑥 𝑥𝑜 

0.5  
𝑥 

  

+ 
𝑥𝑜

 𝑜

                            11  

𝛽 = 1.2381 𝑒0.7721 𝑥                                               (12) 
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 However, in our proposed model the shear rate effect is considered. In addition, other 

proposed models such as that proposed by Pal (2003); although it is not for zero capillary 

No., it is more complicated and additional information such as interfacial tension, droplet 

radius, etc are required to be used. 

 

Table 4.2 Rheological parameters of water-in-oil emulsions at 25 °C 

Water 

Volume 

Fraction 

(xw) 

Behavior Index Consistency Index 

Zero-Shear 

Rate 

Viscosity, Pa.s 

Infinite-

Shear Rate 

Viscosity, 

Pa.s 

n n' k k' ηo η∞ 

0.7 0.614 0.614 0.4502 0.27052 0.09515 0.0336 

0.6 0.586 0.586 0.3302 0.19415 0.05642 0.022 

0.5 0.403 0.403 0.703 0.38561 0.02246 0.0118 

0.4 0.346 0.346 0.4437 0.24216 0.019071 0.0101 

0.1 N/A N/A N/A N/A 0.00281 0.00243 
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Figure 4.5 Effect of water fraction on emulsion zero and infinite shear-rate viscosities at 

25 
o
C 
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Figure 4.6 Comparison of experimental data of stable water-in-oil emulsion viscosities 

with predictions using Fluidity Additivity and the proposed model 

  

Emulsion Pressure Drop 

The pressure drop of all prepared surfactant-stabilized W/O emulsions were measured at 

different flow rates in both pipes test sections. All measurements were conducted at steady-

state conditions. The emulsion temperature was maintained at 25 
o
C. Based on the pipe 

flow shear rate (Eq. (1)), the emulsion viscosity was extracted from rheological 

measurements and used to calculate Re for the emulsion flow. Reynolds number (Re) and 

friction factor (f) were defined as shown in equations (13) and (14), respectively. 
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   where     = Emulsion density at 25 
o
C 

      = Emulsion average velocity 

      = Pipe diameter 

  = Emulsion viscosity extracted from the steady shear rate sweep test data at the 

flow corresponding shear calculated by equation (1) at 25 
o
C  

  
  

  
 = Fully developed pressure gradient 

Pressure drop measurement results for emulsion flow in the 2.54-cm pipe are presented in 

Figure 4.7 and Figure 4.8. However, the pressure drop results for emulsion flow in the 

1.27-cm pipe are shown in Figure 4.9. 
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Figure 4.7 Effect of water fraction on water-in-oil emulsion pressure drop in the 2.54-cm 

pipe 

 

 

Figure 4.8 Effect of water fraction on water-in-oil emulsion pressure drop in the 2.54-cm 

pipe  
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Figure 4.9 Effect of water fraction on water-in-oil emulsion pressure drop in the 1.27-cm 

pipe 

 

As water (dispersed phase) fraction increased, the emulsion frictional pressure drop in 

both test sections increased. This increase is due to emulsion crowding at high-dispersed 

phase-volume fractions. In addition, surfactant-stabilized dispersed phase droplets have 

strong interfaces; therefore, emulsion viscosity as well as stability was enhanced with 

increasing water fraction. 

Understanding surfactant-stabilized W/O emulsions will help to achieve one of the 

important goals, which is pressure-drop reduction of such stable emulsions. Based on the 

results presented in this chapter, pressure-drop reduction of surfactant-stabilized W/O 

emulsions can be achieved by controlling the water fraction and pipe diameter. 
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Initially, the pressure drop reduction of stable W/O emulsions can be achieved by 

decreasing the water fraction (at least for the studied range of Re values).  As an example, 

for acidizing purposes, emulsified acid contains 70 volume % aqueous phase. Therefore, 

if the water fraction is reduced to 60 volume %, pressure drop could be reduced by (78% 

to 48%) in the 2.54-cm pipe and by (63% to 41%) in the 1.27-cm pipe for Re ranges of 

100 to 1000.  

If water volume fraction was reduced from 0.7 to lesser values, the percentages of 

emulsion pressure drop reduction in both test sections are shown in Figure 4.10 and 

Figure 4.11. The pressure drop reduction relative to the 70 volume % case (water) is 

defined as follows: 

brine

brinexbrine

P

PP

%70

%%70Reduction  Drop essurePr



      (16) 

 where  

  ΔP70% brine = Pressure drop of Emulsion containing 70 volume % water 

  ΔPx% brine = Pressure drop of Emulsion containing x volume % water  

 

In the carbonate acidizing process, a higher acid volume fraction is preferable to  

successfully perform the job. Therefore, emulsified acid with only 10 % volume fraction 

of acid cannot be used although the pressure drop is very low. 
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Figure 4.10 Emulsion pressure drop reduction in the 2.54-cm pipe by changing the water 

volume fraction from 0.7 to lesser values 

 

Figure 4.11 Emulsion pressure drop reduction in the 1.27-cm pipe by changing the water 

volume fraction from 0.7 to lesser values 
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Secondly, as presented in Figures 4.12-4.14, surfactant-stabilized W/O emulsions showed 

emulsion friction factor reduction with decreasing pipe diameter.  Also, this effect 

increases with increasing water fraction. This result can be attributed to the shear thinning 

effect of highly concentrated emulsions. At the same Re, the calculated shear rate for 

emulsion flow in the 1.27-cm pipe was almost four times that calculated for emulsion 

flow in the 2.54-cm pipe. As a result, droplets elongation and breakup are more 

pronounced in the 1.27-cm pipe test section and thus viscosity is smaller. 

Finally, if the initial point is intended to be used, surfactant-stabilized W/O emulsions 

pressure drop reduction increases for emulsion flow in large diameter pipe as shown in 

Figure 4.15. 
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Figure 4.12 Friction factor of stable W/O emulsion with 0.1 water volume fraction 

 

 

Figure 4.13 Friction factor of stable W/O emulsion with 0.5 water volume fraction 
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Figure 4.14 Friction factor of stable W/O emulsion with 0.7 water volume fraction 

 

 

Figure 4.15 Emulsion pressure drop reduction as a function of pipe diameter 
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4.4 CONCLUSIONS  

Emulsion flow characteristics of surfactant-stabilized water-in-oil (W/O) emulsions at 

different water fractions and pipe diameters have been studied. Such emulsion features 

include stability, type, conductivity, viscosity, and pressure drop.  At different pipe 

diameters, as the dispersed phase (water) fraction decreases, emulsion stability and 

viscosity as well as pressure drop decreases for all emulsions reported in this chapter.  

Stable W/O emulsions pressure drop can be reduced by reducing the brine (dispersed 

phase) volume fraction.  In addition, friction factor of stable W/O emulsion can be 

reduced by pumping fluids in small pipe diameters due to the shear effect of the highly 

concentrated stable emulsions. To complete the picture, it is highly recommended to 

investigate such effects at high Reynolds number. The stable W/O emulsion with 70 

volume % of brine is the most stable compared with the other tested emulsions. The 

rheology of surfactant-stabilized W/O emulsions was modeled with a modified Fluidity- 

Additivity model as shown in Eq. 11 and 12. Additional studies are continuing to characterize 

and predict this behavior at actual field conditions. 
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CHAPTER 5 

EFFECT OF WATER SALINITY ON SURFACTANT-

STABILIZED EMULSIONS FLOW CHARACTERISTICS  

 

5.1 INTRODUCTION 

When two immiscible liquids are mixed together, the droplet formation of one phase 

(dispersed or internal phase) in the continuous (or external phase) of the other, is known 

as a dispersion (unstable emulsion) process.  

Generally, water-in-oil (W/O) or oil-in-water (O/W) emulsions are unstable 

thermodynamically. As the water-oil droplets are hydrophilic or hydrophobic, they tend 

to separate from the oil-water continuous phase. To create stable emulsion, showing 

stability for a certain period of time, an emulsifier (surface active agent) is used to reduce 

the interfacial tension and promote the formation of smaller droplets (Binks and Rocher 

(2009), Guo, et al. (2006)).  

Emulsifiers are believed to be able to create a viscoelastic barrier to droplets coalescence 

by creating a cross linked three dimensional networks of aggregates on the droplet 

surface (Binks and Rocher (2009), Guo, et al. (2006)). Emulsions rigid interfacial films 

on the dispersed droplets surface are reported to have the ability to prevent the 

coalescence process (Kokal (2005)). These interfacial films consist of some surface 

active species such as fine solids (Mclean and Kilpatrick (1997)). W/O and O/W 

emulsions represent the dispersion of water droplets in oil and the dispersion of oil 
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droplets in water, respectively. Each emulsion type has its own morphology and 

characteristics and they can be converted to each other by changing some parameters 

through a phase inversion process. 

W/O emulsions phase separation is preceded by three steps: flocculation, sedimentation 

and coalescence. When water droplets aggregate, they sediment because of gravity effect. 

Then, the aggregated droplets coalesce to form larger droplets which will result in a 

phase separation. (Graham, et al. (2008)) However, the coalescence process might be 

delayed by fine solid particles acting as stabilizing agent (Graham, et al. (2008), Sjoblom, 

et al. (2003)).  

Emulsion technology has been used in the acid treatment of reservoir rocks in the region 

near the wellbore. Occasionally, the pore structure near the wellbore is plugged either by 

particulates from the drilling process or by deposits from precipitation caused by pressure 

or temperature changes. As a result, permeability is reduced in addition to the well 

productivity. To remove these unwanted deposits, acid stimulation is used. The acid 

reacts with and dissolves portions of the rock matrix; hence, permeability is increased. 

The effectiveness of the treatment depends on the penetration depth of the acid into the 

formation. The rate of dissolution is limited by mass transfer and acid is consumed very 

quickly; therefore, deep penetration of the acid and reduction in the corrosion rate are 

process goals. One method to achieve such retardation and to avoid corrosion is the use 

of the emulsified acid where the hydrochloric acid is injected as a W/O emulsion. A high-

pressure drop caused by friction losses can be a problem when pumping emulsified acid. 
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Hence, lower emulsified acid rates are pumped; and thus, limited job efficiency is 

achieved. Consequently, methods that reduce pressure losses are highly desired. 

In addition, stable W/O emulsions, produced naturally from water and oil mixtures, are 

targeted to be treated to avoid the related operational issues during crude oil production. 

Therefore, this problem has to be resolved in the field and before crude oil transportation 

to refineries. This goal is attempted to be achieved by different operational procedures 

and equipment. These techniques involve the use of chemical demulsifier (Jones et al. 

(1978), Staiss et al. (1991), and Mikula and Munoz (2000)), centrifugation (Lissant 

(1983) and Leopold (1992)), large vessels (Manning and Thompson (1995)), electrical 

effect (Eow et al (2001)) and filtration (Lissant (1983) and Manning and Thompson 

(1995)). Therefore, investigating an inexpensive, easy to implement and widely 

applicable method to demulsify water is highly desirable. 

Pipeline laminar and turbulent flow behaviors of unstable O/W and W/O emulsions have 

received considerable attention over the years (Baron et al. (1953), Cengel et al. (1962), 

Pal (1987), Pal (1993), Angeli and Hewitt (1998), Masalova et al. (2003), Pal (2007), Al-

Yaari et al. (2009) and Omer and Pal (2010)). Furthermore, phase inversion of unstable 

emulsions was also reported (Pal (1993) and Al-Yaari et al. (2009)). However, pipeline 

flow behavior of stable O/W and W/O emulsions has received less attention. Some of 

these works aimed to explore the drag reduction phenomenon of stable O/W emulsions 

(Rose and Marsden (1970) and Zakin et al. (1979)) and stable W/O emulsions (Pal (1993) 

and Omer and Pal (2010)).   Furthermore, effect of the dispersed phase fraction of stable 
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W/O emulsion on its flow characteristics was studied (Pal (1993), Omer and Pal (2010) 

and Al-Yaari et al (2013a, 2013b)).  

This chapter presents results of the flow characteristics of surfactant-stabilized W/O and 

O/W emulsions. In particular, the influence of the aqueous phase salinity on emulsion 

stability, type, droplet size, viscosity, and pressure drop is investigated. Furthermore, a 

possible friction reduction through the control of water salinity is examined. 

 

5.2 EXPERIMENTAL SETUP & PROCEDURE 

Surfactant-stabilized emulsions were prepared using brine (with 0, 5, 20, 50 and 200 

kppm NaCl) as the aqueous phase and a type of kerosene known as SAFRA D60 (oil 

phase) produced in Saudi Arabia. Some physical properties of the oil were presented in 

Table 3.1. ARMAC T, from Akzo Nobel, was used as the emulsifying agent and some of 

its physical properties are presented in Table 4.1. A schematic layout of the flow loop is 

shown in Figure 3.2 and its description is explained in details in Chapter 3.  

 

Emulsion Preparation 

36 liters of surfactant-stabilized (W/O and O/W) emulsions were prepared by adding 70 

volume % of brine at 0.5 L/min to the emulsified oil (oil with 0.6 volume % emulsifier) 

while mixing at 8,000 rev/min using a high-power homogenizer (Ultra Turrax T 50 

Basic, IKA WERKE, GERMANY) for 40 minutes. Emulsion quality was tested by 

dilution and conductivity measurements.   Emulsions were then transferred to one of the 
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flow loop tanks. This procedure was used in preparing all of the emulsions with different 

brine salinity. 

Emulsion Type 

A dilution test (or emulsion drop test) was used to identify the emulsion’s continuous 

(external) phase. In this test, a droplet of the formed emulsion was placed on water or oil 

sample. If the placed droplet was found to disperse, then the external phase is the same as 

the fluid used for the test. For example, W/O emulsion droplets dispersed in oil sample 

rather than water sample. Also, the emulsion type was detected by measuring its 

conductivity which increased with increasing water fraction of the external phase (see 

Figure 5.1). This test is based on the fact that brine solution is conductive, oil is 

nonconductive, and the emulsion’s continuous phase dominates the emulsion 

conductivity. 
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Figure 5.1 Oil-water conductivity measurements at different water fractions 

 

Stability Test 

A bottle test was used to achieve stability tests for all formed emulsions by monitoring 

the percentage of separated oil and/or water layer with time. Such a test can give an 

indication about emulsion quality.  

Rheological Test 

All rheological measurements were conducted at 25 
o
C using Rheologica StressTech 

rheometer. The rheometer has a torque range from 3.0 x 10
-8

 to 2.0 x 10
-1

 N.m with a 

torque resolution of 1.0 x 10
-10

 N.m. The bob and cup set where the bob is the rotating 

part was used to conduct steady shear-rate sweep tests. The tested emulsion volume was 

15.9 cm
3
. 
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5.3 RESULTS AND DISCUSSIONS 

Emulsion Type 

Emulsified acid used in the carbonate acid fracturing and matrix acidizing is formed with 

aqueous to oil volume ratio of 70/30, in order to pump the highest acid rate, and 

stabilized with an emulsifier. Therefore, in this chapter, all emulsions were prepared with 

70/30 water to oil volume ratio. All formed emulsions were tested using dilution test (or 

emulsion drop test). As shown in Figure 5.2, at low water salinity (≤ 5 kppm), O/W 

surfactant-stabilized emulsions were formed [see Figure 5.2 (a and b)]. The formed 

emulsion did not disperse in oil but dispersed in water, as shown in Figures 5.2a and 5.2b, 

respectively. This observation suggest that the external phase was water (i,e. O/W 

emulsions, O/W). Conversely, emulsions of high aqueous phase salinity (≥ 20 kppm) did 

not disperse in water; hence, surfactant-stabilized W/O emulsions were obtained (see 

Figure 5.2 (c-e)).  

At low water salinity (≤ 5 kppm), it is acceptable to have O/W emulsion since water 

phase represents 70 % of the emulsion volume. For low water salinity, when water 

droplets were added to the emulsified oil (oil + emulsifier) W/O emulsion began to form. 

With the increase in water fraction, water droplets coalesced and formed a continuous 

phase and established O/W system. The formation of O/W emulsion was likely due to the 

absence of the electrostatic charges that maintain stable droplets.  
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On the other hand, at high enough water salinity (≥ 20 kppm), added water droplets were 

dispersed and stabilized in the oil continuous phase and their stability enhanced with 

increasing salt concentration as discussed in the emulsion stability section. 

 

 

Figure 5.2 Surfactant-stabilized emulsion types at different water salinity; (a) (O/W) 

Emulsion with DI water, (b) (O/W) Emulsion with 5 kppm brine, (c) (W/O) Emulsion 

with 20 kppm brine, (d) (W/O) Emulsion with 50 kppm brine and (e) (W/O) Emulsion 

with 200 kppm brine 
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Emulsion Stability 

To investigate the effect of water salinity on emulsion stability, emulsions with different 

water salinities (0 kppm (a), 5 kppm (b), 20 kppm (c), 50 kppm (d) and 200 kppm (e)), 

but with fixed water volume fraction of 0.7, were tested.  After preparing such emulsions, 

stability tests were carried out using the bottle test by monitoring phase separation with 

time. These results were presented in Figure 5.3.  After one hour, results of bottle test for 

all emulsions were shown in Figure 5.4. Separated oil layer was shown between two 

redlines. The volume of the oil separated layer was 1 %, 17.4 %, 1 %, 0.2 % and 0 % of 

the emulsion total volume for systems (a), (b), (c), (d) and (e), respectively. 

At low water salinity (≤ 5 kppm), an increase in the external phase (water) salinity 

resulted in smaller double layer indicated by a lower interfacial tension (Aveyard, et al. 

(1989)). Further increase in water salinity resulted in phase inversion from O/W to W/O 

(Winsor (1948)). Therefore, increasing the water salinity from 0 to 5 kppm salinity 

resulted in less stable O/W emulsions. This could be attributed to the late phase inversion 

occurrence (from W/O to O/W) and then to the negative interaction between the charges 

available in the external phase (brine) and the used emulsifier. As a result, a non-uniform 

distribution of the oil dispersed droplets were observed when water salinity increased 

from 0 ppm to 5 kppm as shown in Figure 5.5 (a and b).  

However, at high enough water salinity (≥ 20 kppm), as the water salinity increased, W/O 

emulsion viscosity as well as film rigidity of the dispersed phase (brine) droplets were 

enhanced; as a result, water droplets double layer increased, which can be indicated by an 

increase in the interfacial tension (Aveyard, et al. (1989)) and hence droplet size 
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increased with increasing salt concentration of W/O emulsions (see Figure 5.5 (c, d and 

e)). In addition, in stable (W/O) emulsions, emulsifier is more soluble in oil (external 

phase); therefore, an increase in water salinity decreases the medium hydrophilicity and 

then emulsion stability increases (Strassner, (1968) and Fortuny, et al. (2007)). It is likely 

that increasing the aqueous phase salinity increases the water dispersed droplets film 

rigidity (Mclean and Kilpatrick (1997)) which can be indicated by increase in the 

emulsion stability as shown in Figures 5.3 and 5.4 (c-e).   

Emulsion Rheology 

Viscosity curves for all surfactant-stabilized O/W and W/O emulsions were obtained 

using a bob and cup viscometer. As shown in Figure 5.6, generally, as water salinity 

increased emulsion viscosity increased and this is could be due to the increase in droplet 

size with salinity as shown in Figure 5.5. However, the emulsion phase inversion (from 

O/W to W/O) due to the aqueous phase salinity increase resulted in a dramatic increase in 

emulsion viscosity. This is a direct result of having the more viscous component of the 

emulsion (oil) as the external phase. Therefore, the matrix phase viscosity and droplets 

size contribute to the viscosity enhancement as a result of phase inversion. Salt type and 

concentration strongly influence the interfacial tension; hence, the stability of the 

droplets. Therefore, their impact would be better assessed through the measurement of 

the interfacial tension. 
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Figure 5.3 Effect of water salinity on surfactant-stabilized emulsion stability;  (a) (O/W) 

Emulsion with DI water, (b) (O/W) Emulsion with 5 kppm brine, (c) (W/O) Emulsion 

with 20 kppm brine, (d) (W/O) Emulsion with 50 kppm brine and (e) (W/O) Emulsion 

with 200 kppm brine  
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Figure 5.4 Effect of water salinity on surfactant-stabilized emulsion stability (after 1 hr); 

(a) (O/W) Emulsion with DI water, (b) (O/W) Emulsion with 5 kppm brine, (c) (W/O) 

Emulsion with 20 kppm brine, (d) (W/O) Emulsion with 50 kppm brine and (e) (W/O) 

Emulsion with 200 kppm brine  
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Figure 5.5 Effect of water salinity on surfactant-stabilized emulsion droplet size and 

distribution; (a) (O/W) Emulsion with DI water, (b) (O/W) Emulsion with 5 kppm brine, 

(c) (W/O) Emulsion with 20 kppm brine, (d) (W/O) Emulsion with 50 kppm brine and (e) 

(W/O) Emulsion with 200 kppm brine  

 

Furthermore, while W/O emulsions showed a shear thinning behavior, almost over the 

whole shear rate covered in this study; O/W emulsions showed two distinct shear-

independent viscosities. The shear dependent viscosity is limited to the range 300-400 s
-1

. 

For a salinity of less than 20 kppm, the viscosity results at low shear rates suggest two 

distinct and stable morphologies in the range 100-300 s
-1

 while a different morphology is 

depicted in the range 400-1000 s
-1

. However, for salinities higher than 20 kppm the 

stability of the emulsion and the large droplet size resulted into more shear thinning 

which is likely due to the breakup of droplets due to shear. 

The behavior index (n) and the consistency index (k) were calculated using the power law 

model fittings represented by Eq. (1) with fitting accuracy ≥ 0.997.  In Eqs. (2) and (3), n’ 
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and k’ are related to the power-law constants (n and k). In addition, zero shear-rate 

viscosity ( o ) as well as infinite shear-rate viscosity (  ) for all emulsions were 

calculated by data fitting using Cross model (R
2
 ≥ 0.99) expressed by Eq. (4). The 

behavior index (n, n’), consistency index (k, k’), and ηo and η∞ shear-rate viscosities were 

presented in Table 5.1.  

 

 

Figure 5.6 Effect of water salinity on surfactant-stabilized emulsion viscosity; (a) (O/W) 

Emulsion with DI water, (b) (O/W) Emulsion with 5 kppm brine, (c) (W/O) Emulsion 

with 20 kppm brine, (d) (W/O) Emulsion with 50 kppm brine and (e) (W/O) Emulsion 

with 200 kppm brine  
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where   = emulsion viscosity 

     = shear rate 
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The term in brackets in Eq. (3) is the Robinowitsch correction for non-Newtonian fluids. 

 

Table 5.1 Rheological parameters of surfactant-stabilized emulsions at 25 °C 

Water Salinity 

(kppm) 

Behavior Index Consistency Index 
o , Pa.s  , 

Pa.s n n' k k' ηo η∞ 

200 0.5451 0.5451 0.83884 0.93 N/A N/A 

50 0.4767 0.4767 0.82204 0.922 N/A N/A 

20 0.3513 0.3513 1.40371 1.604 0.0635 0.0274 

5 N/A N/A N/A N/A 0.0188 0.0094 

0 N/A N/A N/A N/A 0.0179 0.00786 

  

Emulsion Pressure Drop 

The pressure drop of all prepared surfactant-stabilized O/W and W/O emulsions was 

measured at different flow rates in the 2.54-cm and 1.27-cm pipes. All measurements 
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were conducted at steady-state conditions. The emulsion temperature was maintained at 

25 
o
C.  

The results of the pressure drop measurement for emulsions in the 2.54-cm pipe and the 

1.27-cm pipe were given in Figures 5.7 and 5.8, respectively. As shown in these figures, 

increasing the aqueous phase salinity resulted in an increase in the emulsion flow 

pressure drop regardless of the identity of the emulsion (O/W or W/O).  This observation 

was a direct result of the increase in the viscosity and the dispersed phase droplet size as 

discussed earlier.  

At low water salinity (≤ 5 kppm), a slight increase in the salinity (before the phase 

inversion) resulted in a slight increase in the pressure drop. This is could be due to the 

slight increase in the emulsion viscosity as a result of the increase in droplet size.  

However, a large enough increase in the aqueous phase salinity (≥ 20 kppm) resulted in 

phase inversion from O/W to W/O emulsion. In this case, because of the phase inversion 

phenomenon, a sharp increase in the emulsion flow pressure drop was observed.  

Friction factor ( f ) for W/O emulsion was calculated using equation (5). The results 

(Figure 5.9) showed dependency of f on pipe diameter. A decrease in pipe diameter 

resulted in a decrease in the emulsion friction factor and such effect increased with 

increasing Reynolds number (Re). This effect can be attributed to the fact that at the same 

Re, although the flowrate in 1.27-cm pipe is almost half of that in the 2.54-cm pipe, the 

shear rate in 1.27-cm pipe is almost four times that in the 2.54-cm pipe. Consequently, 

the average droplet size of the emulsion in the 1.27-cm pipe is smaller (around 4.7 μm) 
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compared with that for 2.54-cm pipe flow (around 9.9 μm).  For example, for the same 

Re of 1000, the corresponding shear in 2.54-cm and 1.27-cm pipes were 442 s
-1

 and 1553 

s
-1

, respectively. The corresponding micrographs were presented in Figure 5.10. Thus 

reducing the pipe diameter from 2.54-cm ID to 1.27-cm ID resulted in up to 36.4% 

reduction in the friction factor at low Re (≤ 2000). If higher Re could be reached, we 

anticipate such reduction in friction factor to increase as a result of the formation of 

smaller and stable droplets. However, this anticipation needs to be verified. 

 

 

Figure 5.7 Effect of water salinity on surfactant-stabilized emulsions pressure drop in the 

2.54-cm pipe 
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 where    = Darcy friction factor 

  
  

  
= Pressure gradient (Pa/m) 

    = Pipe diameter (m) 

    = Emulsion density (kg/m
3
) 

    = Emulsion average velocity (m/s) 

   

  

Figure 5.8 Effect of water salinity on surfactant-stabilized emulsions pressure drop in the 

1.27-cm pipe  
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This finding might help a lot while dealing with some of the petroleum processes. For 

example, adding fresh water to control salinity can be a key solution if there is a need for 

phase inversion to decrease the W/O emulsion viscosity. Conversely, changing O/W 

emulsions to W/O emulsions and/or the need to increase the emulsion viscosity for any 

purpose, could be met using smart water (salty water) and proper types of surfactants. 

Also, adding fresh water to stable W/O emulsions could help in phase inversion. In 

particular, this smart water could be used as an inexpensive, easy to implement technique 

for W/O emulsion separation or for converting O/W to W/O or vice versa.In addition, 

further increase in the aqueous phase salinity resulted in an increase in the W/O emulsion 

pressure drop. Therefore, based on the results presented in this chapter, pressure-drop 

reduction of surfactant-stabilized W/O emulsions can be achieved by controlling water 

salinity. 
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Figure 5.9 Effect of pipe diameter on W/O emulsion friction factor at different water 

salinity; (1) using 20 kppm brine, (2) using 50 kppm brine, (3) using 200 kppm brine 
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Figure 5.10 Effect of pipe diameter on W/O emulsion dispersed phase droplet size at 

1000 Reynolds no.; (i) sheared at 442 s
-1

, and (ii) sheared at 1553 s
-1

  

 

5.4 CONCLUSIONS  

The role of the aqueous phase salinity on surfactant-stabilized water-in-oil (W/O) as well 

as oil-in-water (O/W) emulsions flow characteristics was investigated experimentally in 

this study. In particular, dependency of emulsions type, stability, average droplet size of 

the dispersed phase, viscosity and pressure drop dependency on water salinity was 

studied in 2.54-cm and 1.27-cm pipes.  

Surfactant-stabilized emulsions of 70/30 water to oil volume ratio were prepared. For low 

water salinity range (≤ 5 kppm), W/O emulsion was produced and its stability decreased 

as water salinity increased. However, emulsion viscosity as well as the average droplet 

size of the oil dispersed phase increased as the aqueous phase salinity increased. For high 

water salinity range (≥ 20 kppm), W/O emulsion was formed and its stability, viscosity as 

well as the average droplet size of the water dispersed phase increased with the increase 

in aqueous phase salinity. Also, the increase in water salinity resulted in an increase in 
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the pressure drop. In particular, phase inversion from O/W to W/O resulted in a sharp 

increase in the pressure drop. In addition, surfactant stabilized W/O emulsion friction 

factor showed a pipe diameter dependency and smaller diameter gave lower friction 

factor as a result of smaller droplet size. 

Therefore, based on the results presented in this chapter, pressure-drop reduction of 

surfactant-stabilized W/O emulsions can be achieved by controlling water salinity as well 

as droplet size through the use of pipes of smaller diameters. In addition, controlling 

water salinity could be used as an inexpensive, easy to implement technique for phase 

inversion of W/O or O/W emulsions. 
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CHAPTER 6 

EFFECT OF DRAG REDUCING POLYMERS ON 

SURFACTANT-STABILIZED WATER-OIL EMULSIONS 

FLOW CHARACTERISTICS 

 

6.1 INTRODUCTION 

Friction reducing agents, or drag reducing additives, have been used to increase the 

through put of oil and gas pipelines.  Typically a dilute polymer solution is continuously 

injected into the pipe lines resulting in a drag reduction of up to 70 % (Al-Yaari et al, 

2008 and 2009). 

The phenomenon of drag reduction by polymer additives, whereby dilute solutions of 

linear, flexible, high molecular-weight polymers exhibit frictional resistance to flow 

much lower than that of the pure solvent, has almost exclusively been studied within the 

context of turbulent flows since the pioneering work of Toms in 1948. A broader 

discussion of the single phase drag reduction literature can be found in the survey by 

Manfield et al. (1999).  

Compared to the huge amount of work on the drag reduction phenomenon by polymer 

additives in single phase flow, there is comparatively less published literatures on the 

subject of drag reduction in multiphase flow. 

Greskovich et al. (1971) were the first who studied the effect of drag reducing polymers 

(DRP) in gas-liquid flow. A 50 wppm polymer solution of Polyox was used in an air-

water and a 50 wppm solution of Visanex L-200 was used in a mixture of nitrogen-
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kerosene to study slug flow in an acrylic pipe with inside diameter of 0.038 m. They 

reported that during the air-water slug flow, the percentage of drag reduction was 

approximately 40 %. However, only one data point was reported for the nitrogen-

kerosene slug flow and the drag reduction percentage was between 25 % and 29 %.  

Sylvester and Brill (1976) studied the effect of DRP on annular gas-liquid flow for air-

water in a horizontal pipe with a diameter of 0.0127 m and a length of 6.1 m. A polymer 

solution with 100 wppm of polyethylene oxide was used. The percent change in the 

pressure gradient from what was observed in the absence of polymer varied from zero to 

about 37 without explanation of these changes. 

Al-Sarkhi & Hanratty (2001a) studied the effect of DRP on annular air-water flow in a 

horizontal pipe with a diameter of 0.0953 m and 23 m long. Their polymer solution was a 

co-polymer of polyacrylamide and sodium-acrylate (Percol 727) in water. The injection 

of polymer solution (without using a pump) produced drag reduction of 48 % with 

concentrations of only 10-15 wppm in water. Also, they found that annular flow regime is 

changed to a stratified pattern at large drag reductions. Al-Sarkhi & Hanratty (2001b) 

studied the effect of pipe diameter on the performance of DRP in annular air-water flows 

by varying the diameter of the pipe from 0.0953 m to 0.0254 m. Up to 63 % drag 

reductions were observed in the 0.0254 m pipe compared with 48 % previously achieved 

in the 0.0953 m pipe. 

Soleimani et al. (2002) injected a co-polymer of polyacrylamide and sodium acrylate 

solution into a stratified flow of air and water in a horizontal 0.0254 m pipe. A damping 

of waves and an increase in the liquid holdup were observed. Those changes, in turn, 
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caused an increase in the gas velocity and a decrease of the interfacial drag. Transition to 

slug flow was found to occur at larger liquid flows. 

Baik and Hanratty (2003) studied how the addition of polymers can influence wave 

structure of stratified flow. Their experiments of air-water system were conducted in a 

horizontal Plexiglas pipe that had a diameter of 0.0953 m and a length of 23 m. 

Magnafloc 1011 was mixed with water. The concentration of the master polymer solution 

was 1000 wppm. It was injected into the flow loop through a hole with a diameter of 10 

mm that was located at the bottom of the pipe, 2.9 m downstream of the tee section. The 

mixed concentration in the flow loop was 50 wppm. They found that the wave amplitude 

decreased dramatically when a 50 wppm polymer solution was used (superficial liquid 

velocity (Usl) = 0.15 m/s) at low superficial gas velocity (Usg) and the addition of 

polymers also delayed the transition to slug flow. However, no effect of polymers on the 

critical Usl for the transition to slugging was observed for Usg = 5 m/s (high superficial 

gas velocity). 

Al-Sarkhi and Soleimani (2004) studied the effect of the addition of DRP on air-water 

flow patterns in a horizontal pipe of 0.0254 m diameter and 17 m long. The additive was 

a copolymer of polyacrylamide and sodium acrylate (formally sold under the trade named 

Percol 727 but now called Magnafloc 101l). They used the same mixing technique that 

first used by Warholic (1999). They described the characteristics of two phase flow with 

and without DRP. They reported that the addition of DRP is accompanied by changes in 

the flow pattern map and pressure drop reduction occurs in almost all flow pattern 
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configurations. Their study indicated that maximum drag reduction usually occurs when a 

slug, pseudo-slug or annular flow changes to stratified flow by adding DRP. 

Fernandes et al. (2004) achieved experimental measurements of drag reduction of a 

horizontal annular two phase flow. The experiments were conducted in a high-pressure 

(10 bar) two-phase flow of methane (CH4) and a condensate sample with thermo-physical 

properties close to that of decane (C10H22) in 0.019 m inside diameter pipe. The drag 

reducers were high molecular weight poly-alpha-olefin polymers. They argued that the 

reduction of frictional drag in an annular flow was primarily due to the modification of 

the flow regime or flow pattern. Also, they noticed that, in annular flow regime, for a 

fixed superficial gas velocity, the magnitude of drag reduction increased with increasing 

superficial liquid velocity (USL). Beyond a threshold USL (approximately USL = 0.2 m/s) 

the drag reduction reached a maximum and remained constant for increasing USL for all 

the examined USL (up to 0.7 m/s). However, for superficial gas velocities which result in 

an annular flow, the maximum drag reduction decreased with increasing superficial gas 

velocity (USG) (as the USG increased from 10.4 to 21.3 m/s the maximum drag reduction 

decreased from 62% to 44%). Finally, they concluded that for low superficial liquid 

velocities, the overall drag reduction is generally dominated by the reduction of 

interfacial friction.  

Al-Sarkhi and Abu-Nada (2005) studied the effect of DRP on an annular air-water flow 

in a horizontal pipe. Pipe with inside diameter of 0.0127 m and a length of 7 m was used. 

Magnafloc 101l (polyacrylamide) was mixed with water in a 150-liter tank with a 

concentration of 1000 wppm. The injection of polymer solution (without using a pump) 
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produced drag reduction of 47 % with concentrations of only 40 wppm in water. Also, 

they found that annular flow pattern was changed to a stratified pattern at large drag 

reductions and the effectiveness of the drag-reducing polymer was sensitive to the gas 

and liquid flow rates.  

Mowla and Naderi (2005) studied the effect of the presence of a polymer drag reducing 

agent (PDRA) on the pressure drop in co-current horizontal pipes carrying slug two phase 

flow of air and crude oil. Their test section of the experimental set-up was consisted of: a 

smooth pipe of polycarbonate with 10.3 m long and 0.0254 m ID (inside diameter), a 

rough pipe of galvanized iron with 8.8 m long and 0.0254 m ID and a rough pipe of 

galvanized iron with 8.8 m long and 0.0127 m ID. The employed PDRA was a 

Polyalpha-olefin (Polyisobutylene). Their results showed that the addition of PDRA 

could be effective up to some doses of PDRA after which the pressure drop was kept 

constant. A drag reduction percentage of about 40 was obtained for some experimental 

conditions. Also, they reported that PDRA are more effective in rough pipe than in 

smooth pipe and the drag reduction in 0.0127 m inside diameter pipe was more. 

Dass and Bleyle (2006) did experimental work in 0.1 m ID horizontal pipes utilizing 

carbon dioxide as the gas phase and two types of oil with different viscosities; namely 2.5 

mPa.s (density = 800 kg/m
3
)  and 50 mPa.s (density = 830 kg/m

3
) , as the liquid phase. 

They studied the influence of oil viscosity on the magnitude of total pressure drop and the 

effectiveness of PDRA in decreasing the pressure in two-phase oil–gas slug flow. They 

concluded that the PDRA was more effective in reducing the total pressure drop and its 
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components in the 2.5 mPa.s oil, but the magnitude of drag reduction was higher in the 

50 mPa.s oil. 

Al-Yaari et al (2008, 2009) studied the effect of PDRA on oil water flow characteristics 

in a horizontal acrylic pipe with inside diameter of 0.0254 m and a length of 11 m. 

SAFRA D60 ( known type of kerosene produced in Saudi Arabia) with a density of 780 

Kg/m
3
 and a viscosity of 1.57 mPa.s and tap water were used. He used Magnafloc 1011 

(partially hydrolyzed polyacrylamide) and polyethylene oxide with different molecular 

weights and concentrations. The effect of the polymer concentration and molecular 

weight, mixture velocity, water fraction and salt on the performance of polymers as drag 

reducing agents was experimentally investigated.  

Emulsified acids provide significant benefits in stimulating oil and gas wells by slowing 

the reaction rate with carbonates and reducing corrosion in the tubular goods.  However, 

pumping emulsified acids can result in high friction losses.  Stimulation treatments thus 

require lower pumping rates hence reducing stimulation efficiency.  Therefore, reducing 

friction pressure loss is an important factor in expanding the application of emulsified 

acids.   

For stimulations, water based gels or oil based gels are used not only to increase viscosity 

for fracture width creation, leak-off prevention, proppant suspension, and diversion, but 

also are used because of their friction reduction capability.  The macro-structure of the 

polymers dampens the development of turbulence at high pumping rate such that the 

friction loss is reduced and the Reynolds stresses at the wall goes to zero or close to zero.  
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This chapter aimed at studying the effect of DRP on flow characteristics of stable and 

unstable water-in-oil (W/O) and oil-in-water (O/W) emulsions in different pipe 

diameters. The influence of polymer type, concentration and molecular weight on 

emulsion stability, viscosity and pressure drop was investigated.  

  

6.2 EXPERIMENTAL SETUP & PROCEDURE 

All tested surfactant stabilized W/O and O/W were prepared using brine (with 20 kppm 

NaCl) as the aqueous phase and a type of kerosene, known as SAFRA D60 produced in 

Saudi Arabia, as the oil phase. Some physical properties of the oil are presented in Table 

3.1. ARMAC T, from Akzo Nobel, was used as the emulsifying agent and some of its 

physical properties are presented in Table 4.1. 

In addition, Polyacrylamide (PAM) and Polyethylene oxide (PEO) were used as water 

soluble DRP and some of their physical properties are presented in Table 6.1 and Table 

6.2, respectively. Also, Polyisobutylene, with physical properties reported in Table 6.3, 

was used as oil soluble DRP. A schematic layout of the flow loop is shown in Figure 3.2 

and its description is explained in details in chapter 3. 
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Table 6.1 Physical properties of polyacrylamide (PAM) 

Product name MAGNAFLOC 1011 

Supplier Ciba Specialty chemicals 

Molecular Weight 7×10
6
 g/mol 

Description Anionic polyacrylamide flocculant ; white granular powder 

Specific Gravity 0.7 

Solubility Water soluble 

 

 

Table 6.2 Physical properties of polyethylene oxied (PEO) 

Product name Poly(ethylene oxide)  

Supplier Polysciences, Inc. 

Molecular Weight 5×10
6
 g/mol 

Description white granular powder 

Specific Gravity 1.2  

Solubility Water soluble 

 

 

Table 6.3 Physical properties of polyisobutylene (PIB) 

Product name Polyisobutylene  

Supplier Scientific Polymer Products, Inc. 

Molecular Weight 0.85×10
6
 g/mol, 2.8×10

6
 g/mol and 4.7×10

6
 g/mol 

Description Odorless clear slab 

Specific Gravity 0.92 at 20 
o
C 

Solubility Oil soluble 
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36 liters of surfactant stabilized W/O emulsions with 70/30 water to oil volume ratio were 

made by adding the internal phase (in this case water) at 1 L/min to the emulsified 

external phase (here oil with 0.6 volume % emulsifier) while mixing at 8000 RPM (for 30 

minutes) by using high power homogenizer (Ultra Turrax T 50 basic, WERKE IKA, 

Germany). Emulsion quality was tested by dilution and conductivity measurements tests. 

Emulsions were then transferred to one of the flowloop tanks. Same procedure was 

followed for stable W/O and O/W with 0.3 dispersed phase volume fraction. 

Dilution test was used to identify the emulsion external phase. Also, emulsion type was 

detected by measuring its conductivity. In addition, bottle test was used to achieve 

stability tests by monitoring percentage of separated oil and/or separated water layers 

with time at 22 
o
C, 44 

o
C and 60 

o
C.  Also, all rheological measurements were conducted 

using Rheologica StressTech rheometer.  

Polymer solutions were prepared and then transferred to stainless steel tanks (pressurized 

tanks). Then, the pressurized tank is compressed with air till reaching the sufficient 

pressure required to get a maximum flowrate of polymer solution injection for that 

experiment. A pressure of 4×10
5
 Pa is sufficient for all experiments reported in this work. 

After that, polymer solution was injected into the test section, as shown in Figure 3.2. 

This method for transferring the concentrated polymer solution (master solution) is used 

in order to avoid the degradation that would have occurred if a pump is used (Al-Sarkhi 

and Hanratty (2001a) and Al-Sarkhi and Abu-Nada (2005)). To check the possible 

polymer degradation when using centrifugal pumps, oil with 200 ppm PIB was re-

circulated in the flowloop using one of the centrifugal pumps. As illustrated in Figure 6.1, 
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with continuous shear, pressure drop increased to the level of that for pure oil which 

proves the degradation of the DRP if a centrifugal pump was used. Therefore, polymer 

solution was recommended to be injected rather than added. 

 

 

Figure 6.1 Polymer degradation by mechanical shear (centrifugal pump) 

 

Pressure drop of all prepared emulsions were measured at different flowrates in both 

2.54-cm and 1.27-cm pipes. All measurements were conducted at steady state conditions. 

Emulsion temperature was maintained at 25 
o
C. Based on the pipe flow shear rate Eq. (1), 

emulsion viscosity were extracted from rheological measurements and used to calculate 

Reynolds number (Re) for emulsion. The term in brackets in equation (1) is the 

Robinowitsch correction for non-Newtonian fluids.   The pressure drop reduction 

percentage (DR %) was defined as presented in Eq. (2). 
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where  

   ΔPwithout DRP = Emulsion pressure drop before drag reducing polymer injection 

   ΔPwith DRP = Emulsion pressure drop after drag reducing polymer injection  

 

6.3 RESULTS AND DISCUSSIONS 

Emulsion stability 

Stability of surfactant-stabilized W/O emulsions, with 0.7 water volume fraction, without 

and with 50 ppm of different DRP types and molecular weights was tested using bottle 

test at 22 
o
C, 44 

o
C and 60 

o
C. Two ovens were used for the tests at 44 

o
C and 60 

o
C. Five 

samples, at each temperature, were used for the test. These samples contains: (a) no 

polymer, (b) 50 ppm of PIB with 4.7×10
6
 g/mol molecular weight, (c) 50 ppm of PIB 

with 2.8×10
6
 g/mol molecular weight, (d) 50 ppm of PIB with 0.85×10

6
 g/mol molecular 

weight and (e) 50 ppm of PEO with 5×10
6
 g/mol molecular weight. 
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As shown in Figure 6.2 and 6.3, although adding PIB polymers enhanced W/O emulsion 

stability, added PEO DRP sedimented to form a water layer. It is worthy to recall that oil 

constitutes the emulsion external layer and adding PIB DRP, which is oil soluble 

polymer, increased oil viscosity and hence emulsion stability. However, adding PEO 

DRP, which is soluble in the emulsion internal phase (water), to the emulsion sample had 

no chance to interact with the emulsion dispersed phase droplets and because of its higher 

density it settled down to form water separated layer (see Figure 6.3).   

In addition, increasing PIB DRP molecular weight enhanced the W/O emulsion stability 

and this is could be attributed to the increase of oil viscosity as well as emulsion elasticity 

with increasing PIB DRP molecular weight. 

At higher temperatures (44 
o
C and 60 

o
C), as presented in Figures 6.4 – 6.7, as PIB DRP 

molecular weight increased, emulsion stability was improved but with a less extent 

compared with that at 22 
o
C. This is can be explained in terms of oil viscosity drop with 

temperature increase.  

Furthermore, as temperature increased emulsion stability decreased because of the 

viscosity drop of both phases and the surfactant solubility reduction in either phase 

(Ghannam, M. (2005)) and due to the loss modulus drop (Andre, et al (2003). This effect 

is illustrated in Figure 6.8.  
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Figure 6.2 Effect of 50 ppm polymer additives on W/O emulsion stability at 22 
o
C; (a) 

no polymer, (b) with PIB (4.7×10
6
 g/mol), (c) with PIB (2.8×10

6
 g/mol), (d) with PIB 

(0.85×10
6
 g/mol) and (e) with PEO (5×10

6
 g/mol) 
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Figure 6.3 W/O emulsion stability test after 110 hrs at 22 
o
C with 50 ppm of different 

polymers; (a) no polymer, (b) with PIB (4.7×10
6
 g/mol), (c) with PIB (2.8×10

6
 g/mol), 

(d) with PIB (0.85×10
6
 g/mol) and (e) with PEO (5×10

6
 g/mol) 
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Figure 6.4 Effect of 50 ppm polymer additives on W/O emulsion stability at 44 
o
C; (a) 

no polymer, (b) with PIB (4.7×10
6
 g/mol), (c) with PIB (2.8×10

6
 g/mol), (d) with PIB 

(0.85×10
6
 g/mol) and (e) with PEO (5×10

6
 g/mol) 
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Figure 6.5 W/O emulsion stability test after 110 hrs at 44 
o
C with 50 ppm of different 

polymers; (a) no polymer, (b) with PIB (4.7×10
6
 g/mol), (c) with PIB (2.8×10

6
 g/mol), 

(d) with PIB (0.85×10
6
 g/mol) and (e) with PEO (4.7×10

6
 g/mol) 
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Figure 6.6 Effect of 50 ppm polymer additives on W/O emulsion stability at 60 
o
C; (a) 

no polymer, (b) with PIB (4.7×10
6
 g/mol), (c) with PIB (2.8×10

6
 g/mol), (d) with PIB 

(0.85×10
6
 g/mol) and (e) with PEO (5×10

6
 g/mol) 
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Figure 6.7 W/O emulsion stability test after 110 hrs at 60 
o
C with 50 ppm of different 

polymers; (a) no polymer, (b) with PIB (4.7×10
6
 g/mol), (c) with PIB (2.8×10

6
 g/mol), 

(d) with PIB (0.85×10
6
 g/mol) and (e) with PEO (4.7×10

6
 g/mol) 
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Figure 6.8 Effect of temperature on W/O emulsion stability with 50 ppm of different 

polymers; (a) no polymer, (b) with PIB (4.7×10
6
 g/mol), (c) with PIB (2.8×10

6
 g/mol), 

(d) with PIB (0.85×10
6
 g/mol) and (e) with PEO (4.7×10

6
 g/mol) 
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Emulsion Rheology 

Effect of polymer concentration and molecular weight on W/O emulsion viscosity was 

studied using a Bob and Cup viscometer. PIB DRP with different concentrations (50, 200 

and 400 ppm) and molecular weights (0.85×10
6
 g/mol, 2.8×10

6
 g/mol and 4.7×10

6
 g/mol) 

was added to the formed W/O emulsion having 0.7 water volume fraction. These results 

are illustrated in Figures 6.9 - 6.11.  

As shown in these figures, at low DRP concentration (50 ppm) emulsion viscosity 

increased after adding PIB polymers with different molecular weights. In addition, 

although low concentration DRP with high molecular weights (2.8×10
6
 g/mol and 

4.7×10
6
 g/mol) showed shear thinning effect, DRP with low molecular weight might be 

dispersed instead of showing a drag reducing effect.    

However, as DRP concentration increased shear thinning effect became clearer and this 

effect was enhanced as DRP molecular weight increased. At steady shear rate sweep test, 

emulsion sample (without PIB additives) was spilled off of the viscometer cup at 1012 s
-1

 

shear rate. However, adding 200 ppm of DRP facilitated the shearing in the viscometer 

cup as emulsion viscosity was reduced; thus emulsion sample was thrown out earlier (at 

low shear rate). In addition, as DRP concentration as well as molecular weight increased, 

shear thinning effect increased. This impact is illustrated in Figure 6.12, where y-axis 

represents the shear rate required to push emulsion sample out of the viscometer cup.  

Also, this effect was confirmed by microscopic test (see Figure 6.13). While emulsion 

sample without DRP showed a fixed droplets micrograph, addition of 100 ppm of PIB 
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DRP (with 4.7×10
6
 g/mol molecular weight) resulted in a significant movement of the 

dispersed phase droplets. 

 

 

Figure 6.9 Effect of 50 ppm of PIB on concentrated W/O emulsion viscosity at different 

molecular weights; (a) no polymer, (b) with PIB (4.7×10
6
 g/mol), (c) with PIB (2.8×10

6
 

g/mol), and (d) with PIB (0.85×10
6
 g/mol)  
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Figure 6.10 Effect of 200 ppm of PIB on concentrated W/O emulsion viscosity at 

different molecular weights; (a) no polymer, (b) with PIB (4.7×10
6
 g/mol), (c) with PIB 

(2.8×10
6
 g/mol), and (d) with PIB (0.85×10

6
 g/mol)  
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Figure 6.11 Effect of 400 ppm of PIB on concentrated W/O emulsion viscosity at 

different molecular weights; (a) no polymer, (b) with PIB (4.7×10
6
 g/mol), (c) with PIB 

(2.8×10
6
 g/mol), and (d) with PIB (0.85×10

6
 g/mol)  
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Figure 6.12 Polymer shear thinning effect on W/O emulsion at different PIB molecular 

weights; (a) no polymer, (b) with PIB (4.7×10
6
 g/mol), (c) with PIB (2.8×10

6
 g/mol), and 

(d) with PIB (0.85×10
6
 g/mol)  

 

 

Figure 6.13 Effect of polymer shear thinning on W/O emulsion; (A) without polymer and 

(B) with 100 ppm PIB (with 4.7×10
6
 g/mol) 
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Pressure Drop Measurements 

Single phase flow 

The performance of both oil soluble polymer (PIB with 4.7×10
6
 g/mol molecular weight) 

and water soluble polymer (PAM with 7×10
6
 g/mol molecular weight) was checked by 

injecting 200 ppm of PIB and PAM in oil and water single phase flow in 1.27-cm pipe, 

respectively. 

As shown in Figure 6.14, at the same Reynolds number of 41000, while injecting 200 

ppm of PAM reduced water pressure drop by 33.3 % (A), injecting 200 ppm of PIB 

resulted in 50 % oil pressure drop reduction (B). These values are lower than those 

reported in the literature. For example, Al-Yaari (2008) reported more 70 % drag 

reduction due to the use of only 100 ppm PAM for the same Reynolds number but for 

fresh water. This could be attributed to the polymer injection point location as well as 

water salinity. Since PAM is partially anionic, as water salinity increases, its performance 

as a drag reducing agent decreases (Al-Yaari et al (2008 and 2009)). 

 

Figure 6.14 Performance of injected DRP for single phase flow in 1.27-cm pipe; (A) 

water with 200 ppm of PAM  and (B) oil with 200 ppm PIB 
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Stable W/O emulsion with 0.7 water volume fraction  

Pressure drop measurements of surfactant-stabilized W/O emulsion were conducted in 

both flowloop pipe test sections (See Figure 6.15). For each flowrate, true shear rate was 

calculated by Eq. (1) and then the corresponding apparent viscosity was used to calculate 

Re. As shown in Figure 6.15, because of the emulsion viscosity, pump power and 

flowloop design, the maximum Re reached was about 2100 and 2700 for emulsion flow 

in the 1.27-cm and 2.54-cm pipe test sections, respectively.  

Since oil is the external phase of the W/O emulsions, PIB DRP with 4.7×10
6
 g/mol 

molecular weight was injected to investigate any possible drag reduction of such 

concentrated emulsion at low Re. PIB DRP at different pipeline concentration (50, 100 

and 200 ppm) was tested as drag reducing polymer for such emulsion flows in both test 

sections at 25 
o
C. 

As shown in Figures 6.16 and 6.17, for the same Re (Re = 1800), although injection of 

PIB DRP with low concentration (50 & 100 ppm) showed no drag reducing effect in both 

pipes, injection of PIB DRP with 200 ppm concentration resulted in 12±2 % pressure 

drop reduction. This is could be because of some reasons including the shear thinning 

effect at higher concentration as mentioned earlier. 

Since DRP are believed to work fine at high Re (high turbulent flow), W/O as well as 

O/W emulsions with low dispersed phase fraction were made and DRP performance for 

such dilute system was then tested as shown in the following sections. 
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Figure 6.15 Pressure drop measurements of stable W/O emulsion with 0.7 water volume 

fraction 

 

 

 

Figure 6.16 Effect of injected PIB (oil soluble) on concentrated W/O emulsion pressure 

drop in 1.27-cm pipe (Re =1800) at different concentrations; (a) 100 ppm, and (b) 200 

ppm 
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Figure 6.17 Effect of injected PIB (oil soluble) on concentrated W/O emulsion pressure 

drop in 2.54-cm (Re = 1800) pipe at different concentrations; (a) 50 ppm, (b) 100 ppm, 

and (c) 200 ppm 
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Stable W/O emulsion with 0.3 water volume fraction  

W/O emulsion with 0.3 water (brine with 20 kppm NaCl) volume fraction was made with 

the same procedure mentioned earlier. Its pressure drop measurements in both pipe test 

sections are illustrated in Figure 6.18. Since oil is the external phase and constituting 70 

% of the emulsion volume, PIB DRP with 4.7×10
6
 g/mol molecular weight was used. 

DRP was injected at different concentrations (50, 100, 200 and 400 ppm) while emulsion 

flow in both test sections (with pipe ID of 1.27-cm and 2.54-cm) at the same Re of 8500.  

DRP performance in both pipes is presented in Figure 6.19 and Figure 6.20. As shown in 

these figures, as DRP concentration increased, its performance as a drag reducing agent 

increased in both pipes.  

Summary of the PIB DRP performance when used for stable W/O emulsion with 0.3 

water volume fraction is presented in Figure 6.21.  While high shear may cause high 

dispersion at low DRP concentration, high shear is required for the polymer to be in its 

expanded form which is the preferable form to work as drag reducing agent; therefore, as 

DRP concentration increased, its efficiency increased.  In addition, as shown in Figure 

6.21, almost there was no significant effect on the DRP performance due to the pipe 

diameter for the flow at the same Re. 
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Figure 6.18 Pressure drop measurements of stable W/O emulsion with 0.3 water volume 

fraction 
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Figure 6.19 Effect of injected PIB (oil soluble) on W/O emulsion pressure drop in 1.27-

cm pipe at different concentrations; (a) 100 ppm, (b) 200 ppm and (c) 400 ppm 
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Figure 6.20 Effect of injected PIB (oil soluble) on W/O emulsion pressure drop in 2.54-

cm pipe at different concentrations; (a) 50 ppm, (b) 100 ppm, (c) 200 ppm and (d) 400 

ppm 

 

Figure 6.21 PIB DRP performance when used for W/O emulsion with 0.3 water volume 

fraction 
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Stable O/W emulsion with 0.3 oil volume fraction  

O/W emulsion with 0.3 oil volume fraction was made with the same procedure 

mentioned earlier. Its pressure drop measurements in both pipe test sections are 

illustrated in Figure 6.22. Since water, constituting 70 % of the emulsion volume, is the 

external phase, PAM DRP was used. DRP was injected at different concentrations (50, 

100, 200 and 400 ppm) while emulsion flow in both test sections (with pipe ID of 1.27-

cm and 2.54-cm) at the same Re of 16700.  

DRP performance in both pipes is presented in Figure 6.23 and Figure 6.24. As shown in 

these figures, at low DRP concentration (≤ 200 ppm), although slight drag reduction was 

observed in the 1.27-cm pipe test section, there was no effect in the 2.54-cm pipe test 

section. However, maintaining higher DRP concentration (400 ppm) in both test sections, 

emulsion pressure drop was reduced by almost 39 %. 

In addition, although the external phase was water, PIB DRP (oil soluble) performance 

was checked in the 1.27-cm pipe test section to check for any possible interaction 

between the DRP and the internal phase (oil). As shown in Figure 6.25, no effect was 

detected (see Figure 6.25 a-c) and at high concentration (400 ppm) negative effect was 

monitored (see Figure 6.25 d). This is acceptable since PIB DRP is insoluble in the 

external phase (water) and its preferable phase is dispersed. Therefore, no enough space 

for such long molecules to interact with the turbulence eddies at the high shear rate 

region (near the wall) and at high concentration such molecules were dispersed and 

created additional energy loss. 
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Figure 6.22 Pressure drop measurements of stable O/W emulsion with 0.3 oil volume 

fraction 
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Figure 6.23 Effect of injected PAM (water soluble) on O/W emulsion pressure drop in 

1.27-cm pipe at different concentrations; (a) 100 ppm, (b) 200 ppm and (c) 400 ppm  
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Figure 6.24 Effect of injected PAM (water soluble) on O/W emulsion pressure drop in 

2.54-cm pipe at different concentrations; (a) 100 ppm, (b) 200 ppm and (c) 400 ppm 
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Figure 6.25 Effect of injected PIB (oil soluble) on O/W emulsion pressure drop in 1.27-

cm pipe at different concentrations; (a) 50 ppm, (b) 100 ppm, (c) 200 ppm and (d) 400 

ppm 
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Unstable W/O emulsion with 0.3 water volume fraction  

Stable W/O emulsion with 0.7 water (brine with 20 kppm NaCl) volume fraction was left 

till the initiation of the emulsion separation occurrence. This separation was detected by 

the inline conductivity cell through a sharp drop in the emulsion resistance and by static 

conductivity measurements through a sharp increase in emulsion conductivity from 0 

μS/cm to 8 mS/cm. Because of that, this emulsion was considered as unstable emulsion. 

Then, PIB DRP with pipeline concentration of 400 ppm was injected while emulsion 

turbulent flow (Re = 16700) in both test sections separately and its performance is 

illustrated in Figure 6.26. Emulsion pressure drop was reduced by almost 22 % in both 

pipes compared with no effect in the case of stable O/W emulsion (see Figure 6.25). This 

is could be attributed to the formation of the preferable phase (oil) at the high shear rate 

region (near the wall) for the case of unstable emulsion flow.  

 

 

Figure 6.26 Effect of 400 ppm injected PIB (oil soluble) on unstable O/W emulsion 

pressure drop at different pipe diameters; (a) 1.27-cm pipe, and (b) 2.54-cm pipe 
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6.4 CONCLUSIONS  

The effect of DRP on the flow characteristics of surfactant stabilized water-oil emulsions 

was investigated experimentally. Oil soluble polymers as well as water soluble polymers 

were tested as drag reducing agents for stable and unstable water-in-oil (W/O) and oil-in-

water (O/W) emulsions. Pressure drop measurements were conducted in 2.54-cm and 

1.27-cm horizontal pipes. The influence of DRP type, concentration and molecular 

weights on emulsion stability, viscosity and pressure drop were reported.  

The results showed a significant increase in the emulsion stability with adding the proper 

DRP (DRP) and this effect was enhanced as DRP molecular weight increased at ambient 

temperature. In addition, emulsion stability as well as DRP effect on emulsion stability 

was reduced as temperature increased. Furthermore, DRP showed shear thinning effect 

and this effect becomes more dominant as DRP molecular weight increased. Injecting the 

right DRP (DRP which is soluble in emulsion external phase) resulted in a pressure drop 

reduction for all tested emulsion types (stable concentrated W/O, stable O/W and stable 

W/O) and this effect increased as DRP concentration increased. However, injecting DRP 

which is soluble in the internal phase showed a drag reduction effect for unstable 

emulsion only but with less extent. Moreover, injecting all types of DRP for emulsion 

flow with the same turbulence intensity (same Re) showed almost no dependency on the 

pipe diameter.  
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CHAPTER 7 

PRESSURE DROP REDUCTION OF STABLE EMULSIONS 

BY ORGANO-CLAYS 

 

7.1 INTRODUCTION 

Emulsified acids provide significant benefits in stimulating oil and gas wells by slowing 

the reaction rate with carbonates and reducing corrosion in the tubular goods. The 

emulsified acid is essentially a mixture of up to 70 % acid emulsified in a 30 % 

continuous diesel phase. However, pumping emulsified acids can result in high friction 

losses. Such losses limit the matrix acidizing job efficiency by reducing the penetration 

depth. Therefore, reducing friction pressure loss is an important factor in extending the 

application of emulsified acids to deeper targets. 

Friction reducing agents, or drag reducing additives, have been used to increase the 

through put of oil and gas pipelines.  Typically a dilute polymer solution is continuously 

injected into the pipe lines resulting in a drag reduction of up to 70 % (Al-Yaari, et al., 

2008; 2009 and 2012).  For stimulations, water based gels or oil based gels are used not 

only to increase viscosity for fracture width creation, leak-off prevention, proppant 

suspension, and diversion, but also are used because of their friction reduction capability.  

The macro-structure of the polymers dampens the development of turbulence at high 

pumping rate such that the friction loss is reduced and Reynolds stresses at the wall goes 

to zero or close to zero. 
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It is known that the addition of drag reducing polymers (DRP); such as polyethylene 

oxide (PEO), or others, reduces eddies viscosity; hence reduces turbulence, at high water 

flowrate (typical to those used in firefighting). Addition of less than 0.5 % of PEO to 

water under turbulent conditions could result in a significant reduction in friction factor. 

In addition, the use of DRPs is a well-known practice in oil transportation.  

New nanomaterials showed high performance in polymer nano-composites due to their 

high aspect ratio and the high surface area of the dispersed nano-sized particles. Various 

nanomaterials are currently being developed; however, layered silicate clay minerals are 

the most popular due to their availability (natural source), low cost and more importantly 

environmentally friendly . Of particular interest, organically modified layered silicate 

showed significant enhancement of a large number of physical properties (Sinha Ray, et 

al. (2005a), and Sinha-Ray and Bousmina (2005b)). The main reason for these improved 

properties in polymer/layered silicate nano-composites is the high surface area of the 

organically modified layered silicate particles as opposed to conventional fillers (Chen et 

al. (2002)). Layered silicates generally have layer thickness in the order of 1 nm and very 

high aspect ratios (length over thickness) in the range 10–1000.  

Most of the polymer literature has focused mainly on improvement in mechanical 

properties of nano-composites. However, in polymer literature, known instabilities 

associated with polymer flow such as sharkskin and melt fracture (Boger (1987), White et 

al. (1987), Binding and Walters (1988) and Binding (1991)) have been significantly 

reduced and flow rates have increased by the addition of nano-clays.  

The impact of nanomaterials on polymer flow was limited to rheological tests. However, 

Hatzikiriakos et al. (2005) found that nano-clay additives had a significant effect on the 
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extrudate appearance of polyethylene. It eliminated surface instabilities and postponed 

the critical shear rate for the onset of gross melt fracture to significantly higher values 

depending on resin type, temperature, and additive concentration (typically 0.05 to 0.5 wt 

%). The authors observed that the presence of nano-clays suppressed the development of 

extensional stresses to such high levels that can cause a shift in melt fracture 

phenomenon. Also, it was reported that the combination of nano-clays with traditional 

processing aids such as fluoro-polymers produce an enhanced processing aid that can 

increase the critical shear rates for the onset of melt fracture to levels much higher than 

the individual constituents when they are used independently.  

Adesina and Hussein (2012) studied the effect of organoclay on high density 

polyethylene (HDPE) rheology and extrusion. It was reported that the addition of ≤ 0.1 wt 

% of clay resulted in reduction in extensional strain and stress growth of HDPE. Also, the 

addition of such small amount of organoclay eliminated the gross melt fracture in HDPE 

and reduced the extrusion pressure; hence more throughputs were reported. Therefore, 

they concluded that the addition of platy-like organoclay can result in melt flow 

streamlining. They reported that the transient stress overshoot, normal stress difference, 

zero shear viscosity, onset of shear thinning, and extrusion pressure of polyethylene was 

reduced by the addition of only 0.05 wt % of the organoclay and such reduction was for 

both shear and extensional flows. 

Research and experimentation into the application of nano-additives for emulsified acid 

system may result in a cost-effective solution for reduction of surface treating pressures. 

Potential applications extend from stimulation treatments to downhole or surface 

chemical injection wherever emulsified oil-water solutions can exist. For example, in 
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downhole electric submersible pumps or gas lifted well applications the additional fluid 

flow friction from emulsion causes excessive back pressure to the system. It is known 

that the addition of a long molecule reduces single phase turbulence in the flow of a small 

molecule. Therefore, the use of organoclays is expected to behave like the classical 

DRPs. 

This chapter aims at exploring the possibility of using organoclays, for the first time, as 

drag reducing agents. Here, we look for reduction of pressure drop in stable W/O 

emulsions using different pipe diameters. The influence of organoclay type and 

concentration on emulsion viscosity and frictional losses was investigated. 

 

7.2 EXPERIMENTAL SETUP & PROCEDURE 

All tested surfactant stabilized W/O and O/W emulsions were prepared using brine (with 

20 kppm NaCl) as the aqueous phase and a type of kerosene, known as SAFRA D60 

produced in Saudi Arabia, as the oil phase. Some physical properties of the oil are 

presented in Table 3.1. ARMAC T, from Akzo Nobel, was used as the emulsifying agent 

and some of its physical properties are presented in Table 4.1. In addition, Cloisite 15A 

(OC1) and Cloisite 30B (OC2) were used as surface active organoclays and their physical 

properties are given in Table 7.1 and Table 7.2, respectively. A schematic layout of the 

flow loop is shown in Figure 3.2 and its description is explained in details in chapter 3. 

The flowmeters, differential pressure transmitters and rheometer information and 

accuracies are presented in Table 7.3. All uncertainties were calculated within the 95 % 

confidence level using method described by Dieck (2007). Summarized uncertainty 
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values in Table 7.3 are representing the combined uncertainties of random and systematic 

uncertainties. 

Table 7.1  Physical properties of Cloisite 15A (OC1) 

Product name Ditallowdimethylammonium Salts with Bentonite 

Supplier Southern Clay Products, Inc. 

Description Cream powder 

Specific Gravity 1.6 – 1.8  

Solubility Oil soluble 

 

Table 7.2  Physical properties of Cloisite 30B (OC2) 

Product name Alkyl Quaternary Ammonium Salts with Bentonite 

Supplier Southern Clay Products, Inc. 

Description Cream powder 

Specific Gravity 1.9 – 2.1  

Solubility Oil soluble 

 

            Table 7.3 Some instruments information and accuracies 

Parameter Test Section Instrument Supplier Range Uncertainty 

Flowrate 

1.27-cm 

pipe Magnetic 

Flowmeter 
OMEGA 0 - 50 gal/min 

0.001% 

2.54-cm 

pipe 
0.584% 

Pressure 

Drop 

1.27-cm 

pipe 
Smart 

Rosemount 

Pressure 

Transmitter 

Emerson 

0 - 1.8 PSI 0.391% 

2.54-cm 

pipe 
0 - 0.8 PSI 0.732% 

Viscosity N/A Rheometer Rheologica 3.0x10
-8

- 0.2 N∙m 

 
0.099% 
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36 liters of surfactant stabilized W/O emulsions with 70/30 water to oil volume ratio were 

prepared by adding the internal phase (in this case water) to the emulsified external phase 

(here oil with 0.6 volume % emulsifier) at a rate of 1 L/min while mixing at 8000 RPM 

(for 30 minutes) by using high power homogenizer (Ultra Turrax T 50 basic, WERKE 

IKA, Germany). Emulsion type was tested by stability drop test where emulsion droplets 

were injected in a pure phase. If emulsion droplets disperse, the emulsion external phase 

is the same as the used phase for the test and such results were confirmed by conductivity 

measurements. Emulsions were then transferred to one of the flowloop tanks. The same 

procedure was followed for stable W/O with 0.3 dispersed phase (water) volume fraction. 

All rheological measurements were conducted using Rheologica Stress Tech rheometer. 

Pressure drop measurements of the prepared emulsion were performed first in both 1.27-

cm pipe and 2.54-cm pipe test sections. Then, organo-clays were added to the prepared 

emulsion in one of the flowloop tanks to produce a specific concentration. After that, 

emulsion with nano-additives was remixed to get a homogeneous distribution of the 

nano-additives within the emulsion system. Finally, pressure drop measurements of the 

emulsion with organo-clays were conducted in both test sections. 

Pressure drop for all emulsions was measured at different flow rates in both test sections. 

All measurements were conducted at steady state conditions. Emulsion temperature was 

maintained at 25 
o
C. Based on the pipe flow shear rate (equation (1)), emulsion viscosity 

(η) was extracted from rheological measurements and used to calculate Reynolds number 

(Re) for emulsion. The term in brackets in equation (1) is the Robinowitsch correction for 
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non-Newtonian fluids.   In addition, emulsion friction factor ( f ) was calculated using 

equation (2) and the pressure drop reduction (PDR) was defined by equation (3). 

    
   

   
  
 

 
  

 

 
 
      

       
                                                                      

 

where      = True wall shear rate (s
-1

) 

     = Volumetric flowrate (m
3
/s) 

    = Pipe radius (m) 

      = Wall shear stress (Pa); η =        

    

  

  
        

    
                                                                              

 

 where  f = Darcy friction factor 

   
  

  
= Pressure gradient (Pa/m) 

    = Pipe diameter (m) 

    = Emulsion density (kg/m
3
) 

    = Emulsion average velocity (m/s) 

    

      
                    

−                  
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  where 

                                    
=Emulsion pressure drop before the addition of organo-clays 

                               
 = Emulsion pressure drop after the addition of organo-clays 

 

 

7.3 RESULTS AND DISCUSSIONS 

Emulsion Rheology 

Effect of nano-additives (organoclays) on W/O emulsion viscosity was studied using a 

Bob and Cup viscometer. OC1 and OC2 with different concentrations (50, 200 and 400 

wppm) were added to the emulsion containing 70 volume % water. This test was 

performed to determine the optimum loading that can produce a pressure drop reduction 

in the flowloop experiments and results are given in Figures 7.1 and 7.2.  

As shown in these figures, adding 0.005 wt % of all nano-additives showed no effect on 

emulsion viscosity (see Figures 7.1 and 7.2 (b)). However, as the loading increased, 

emulsion viscosity decreased for all nano-additives as illustrated in Figures 7.1 and 7.2 (c 

and d).  To explain these observations, we should recall that all used nano-additives 

(organoclays) are soluble in both phases. Therefore, they behave like surfactants. As a 

result, they may reduce the interfacial tension more to end up with smaller droplets (see 

next section) and hence lower viscosity. Also, they may reduce transverse flow 

(Hatzikiriakos, et al. (2005), Arumugam, et al. (2011), Adesina and Hussein (2012), and 

Adesina, et al. (2012)). Based on these results, 400 wppm concentration was the 

minimum loading to be tested for the flowloop emulsion flow. In addition, although OC1 
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and OC2 showed almost the same performance in terms of emulsion viscosity reduction, 

OC1 showed better dispersion in oil and thus it was recommended for the flowloop tests. 

 

 

Figure 7.1 Viscosity curve of stable W/O emulsion at 25
 o
C with Cloisite 15A (OC1) at 

different loadings; (a) 0, (b) 50 wppm, (c) 200 wppm and (d) 400 wppm 
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Figure 7.2 Viscosity curve of stable W/O emulsion at 25
o
C with Cloisite 30B (OC2) at 

different loadings; (a) 0, (b) 50 wppm, (c) 200 wppm and (d) 400 wppm 
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Pressure Drop Measurements 

Stable O/W emulsion with 0.7 water volume fraction  

Pressure drop measurements of surfactant-stabilized W/O emulsion were conducted in the 

two flowloop test sections. The internal phase (water) constitutes 70 % of the emulsion 

volume. For each flow rate, true shear rate was calculated by equation (1) and then the 

corresponding apparent viscosity was used to calculate Re. However, Darcy fraction 

factor was calculated using equation (2).  

Since oil is the external phase of the produced W/O emulsions, 0.04 wt % of OC1 

(organoclay Cloisite 15A) was added to the emulsion and mixed outside the flowloop 

tank. Then, the nanofluid sample was mixed with the emulsion in the flowloop tank. 

Pressure drop in both test sections was measured for the concentrated emulsion flow at 25 

o
C. The relationship between Re and the true shear rate for the emulsion flow in both test 

sections before and after the addition of 400 wppm of OC1 is illustrated in Figures 7.3 

and 7.4, respectively. As shown in these figures, at the same shear rate, Re number in the 

2.54-cm pipe test section is almost 4 times that for the flow in the 1.27-cm pipe test 

section. In other words, at the same Re number, the shear rate in the 1.27-cm pipe test 

section is about 4 times that in the 2.54-cm pipe test section. Pressure drop measurements 

of this concentrated W/O emulsion before and after the addition of 400 wppm of OC1 in 

the flowloop are illustrated in Figures 7.5 and 7.6. Due to emulsion viscosity, pump 

power and flowloop design, the maximum Re reached was about 1800 and 2000 for the 

flow in the 1.27-cm and 2.54-cm pipes, respectively.  
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In addition, as presented in these figures, introducing 400 wppm of OC1 resulted in a 

reduction of 25 % in emulsion friction factor. Most likely, organoclay has worked as a 

surfactant where the organoclay part is expected to be in the oil phase and the clay part in 

water. Thus, the organoclay emulsifier has the capability to reduce the interfacial tension; 

and hence reduces the average droplet size as shown in Figure 7.7. As a result, emulsion 

friction factor was reduced due to the addition of only 400 wppm of OC1 and a better 

performance is believed to be achieved when an optimum concentration is used. 

 

 

Figure 7.3 Viscosity curve of concentrated W/O emulsion without organo-clays and the 

corresponding Re at both test sections: (a) 1.27-cm pipe and (b) 2.54-cm pipe 
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Figure 7.4 Viscosity curve of concentrated W/O emulsion with 400 ppm of Cloisite 15A 

and the corresponding Re at both test sections: (a) 1.27-cm pipe and (b) 2.54-cm pipe 

 

Furthermore, stable W/O emulsions showed a decrease in the emulsion friction factor ( f ) 

with decreasing pipe diameter (see Figure 7.8). As shown earlier in Figures 7.3 and 7.4, 

at the same Re number, the true shear rate in the 1.27-cm pipe is almost four times that in 

the 2.54-cm; as a result the emulsion dispersed phase droplets are smaller in the smaller 

diameter pipe as proved by microscopic images shown in Figure 7.9. 

Although our results are limited to laminar flow regime (as per the criterion for single 

phase), it is believed that at high Re organoclay may orient in the direction of flow 

leading to more reduction in fluid friction. In multiphase flow, the organoclay is expected 

to work as a surfactant to reduce emulsion droplet size. In addition, the platy-like surface 

of the clay part will help in reducing drag at high Re. 
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Figure 7.5 Effect of OC1 (Cloisite 15A) on the W/O emulsion friction factor while 

flowing in the 1.27-cm pipe test section 

 

 

Figure 7.6 Effect of OC1 (Cloisite 15A) on the W/O emulsion friction factor while 

flowing in the 2.54-cm pipe test section 
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Figure 7.7 Droplet size distribution of W/O emulsion with 0.7 water volume fraction; 

(A): without organoclays and (B): with 400 wppm Cloisite 15A 

 

  

 

Figure 7.8 Effect of pipe diameter on the W/O emulsion friction factor 
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Figure 7.9 Droplet size distribution of W/O emulsion with 0.7 water volume fraction 

while flowing at the same Re number (Re = 1000) at different pipe diameters; (A) flow in 

2.54-cm pipe and (B) flow in 1.27-cm pipe  
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Stable W/O emulsion with 0.3 water volume fraction  

W/O emulsion with 0.3 volume fraction of water (brine with 20 kppm NaCl) was 

prepared following the same procedure mentioned earlier. OC1 performance, as a 

pressure drop reducing agent for this multiphase system, at different concentrations (400, 

600, 800 and 1000 wppm) was measured. The required mass of OC1 was mixed with the 

prepared emulsion which is available in one of the flowloop tanks.  

Emulsion pressure drop measurements, before and after the addition of OC1, in both pipe 

test sections are illustrated in Figures 7.10-7.13. As shown in Figures 7.10 and 7.11, 

slight reduction in the emulsion pressure drop was observed after the addition of 400 and 

600 wppm of OC1 and such reduction became clearer as OC1 concentration increased. At 

low concentrations, the effect of the nano-additives was so small and difficult to detect. 

However, at high concentrations such molecules might work as emulsifiers leading to a 

decrease in the droplet size and the pressure drop. 

In addition, as shown in Figures 7.11 and 7.13, it is interesting to observe that the 

measured friction factors of stable emulsions, in laminar region, with and without 

organoclays are in a good agreement with the single phase theoretical friction factor 

calculated from Hagen-Poiseuille equation (equation (4)). However, in turbulent region, 

the emulsion friction factors, with and without nano-additives, fell below the single phase 

theoretical values calculated from Blasius equation (equation (5)). For unstable emulsions 

(oil/water mixtures without surfactant), different mechanisms were proposed. Omer and 

Pal (2010) claimed that the size of the droplets were bigger than the length scale of 
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turbulence. Furthermore, it was attributed to the turbulent viscosity reduction due to the 

stretching and elongation of droplets (Pal (2007)) or due to the dispersed phase droplets 

effect on the turbulence characteristics of the single external phase when droplets are 

introduced (Pal (1993)). However, for stable emulsion, in some literatures Re numbers 

were calculated based on the laminar flow viscosity using equation (4) and thus it was 

reported that emulsion friction factor (in laminar and turbulent regions) could be 

predicted reasonably well by the usual single phase equation (Pal (1993), and  Omer and 

Pal (2010)). It is believed that such approach was not correct since viscosity is changing 

with flow rate (shear rate or Re) rather than constant.   
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Figure 7.10 Pressure drop measurements of stable W/O emulsion (with 0.3 water volume 

fraction) in the 1.27-cm pipe test section at different OC1 loadings 

 

Figure 7.11 Stable W/O emulsion (with 0.3 water volume fraction) friction factor in the 

1.27-cm pipe test section at different OC1 loadings 
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Figure 7.12 Pressure drop measurements of stable W/O emulsion (with 0.3 water volume 

fraction) in the 2.54-cm pipe test section at different OC1 loadings 

 

 

Figure 7.13 Stable W/O emulsion (with 0.3 water volume fraction) friction factor in the 

2.54-cm pipe test section at different OC1 loadings 
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7.4 CONCLUSIONS  

The potential application of nanomaterials for friction reduction and particularly in 

emulsified acid solutions has a potential in extending the capabilities of stimulation 

treatment applications. This chapter aimed mainly to investigate a possible pressure drop 

reduction of stable water-in-oil (W/O) emulsion using nano-additives. The influence of 

nano-additives type and concentration on emulsion viscosity was reported. Organoclays 

were tested as pressure drop reducing agents for stable W/O emulsions with 0.7 and 0.3 

water volume fractions. Pressure drop measurements were conducted in 2.54-cm and 

1.27-cm horizontal pipes.  

The results showed a significant reduction in the emulsion viscosity with adding all the 

tested nano-additives and this effect was enhanced as the nano-additives concentration 

was increased. In addition, for the case of concentrated W/O emulsions, the addition of 

organoclays resulted in a reduction of ~ 25 % in the emulsion pressure drop. Also, for the 

stable W/O emulsion with only 0.3 water volume fraction, although no pressure drop 

reduction was observed in the laminar region, it was detected in the turbulent region and 

such effect became pronounced at high Re number and organoclay concentration. Such 

results were explained in terms of emulsion dispersed phase droplet size. 

In addition, for stable W/O emulsions with 0.3 volume water fraction, all laminar friction 

factor data (with and without nano-additives) was in a good agreement with single phase 

predictions. However, the measured emulsion friction factors fell below the single phase 

predictions in the turbulent regime. Finally, organo-clays proved to work as drag 
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reducing agents. However, further research is needed to explain such observation in detail 

and highlight the mechanisms of drag reduction in multiphase flow. 
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CHAPTER 8 

 

EFFECT OF DRAG REDUCING POLYMERS ON WATER 

HOLDUP IN AN OIL-WATER HORIZONTAL FLOW 

 

8.1 INTRODUCTION 

Since the fascinating discovery of Toms (1948) of drag reduction by polymers, 

extensive research works have been done on the influence of high molecular weight 

polymers on the frictional drag in single phase liquid flows. The effect of such drag-

reducing additives on gas–liquid flow has received more attention than liquid-liquid 

flow. A summary of work in this area is presented in a literature review by Al-Sarkhi 

(2010).  

Al-Sarkhi and Hanratty (2001 and 2002) showed that the injection of solution of DRP 

into a horizontal flow of air and water causes a change from an annular flow to a 

stratified flow by destroying the disturbance waves on the liquid film. Drag reductions 

of up to 48 % were realized for a 9.53-cm pipe and up to 63 % for a 2.54-cm pipe.  

Recent studies on gas-liquid flows (Al-Sarkhi et al. (2006), Al-Sarkhi and Soleimani 

(2004), Soleimani et al. (2002), Fernandes, et al. (2004), Baik and Hanratty (2003))  

have revealed how the flow patterns and pressure drop of air-water flows differ after 

adding water soluble drag-reducing polymers to the flow. 

Recent studies from this laboratory (Al-Yaari et al. (2009)) showed that the injection of 

water soluble polymer solution into oil-water flows in a 2.54-cm horizontal pipe in 
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some cases produced drag reduction of about 65 % with concentration of only 10–15 

wppm (weight basis). The results showed a significant reduction in frictional pressure 

loss due to DRP especially at high mixture velocity which was accompanied by a clear 

change in the flow pattern. Phase inversion point, indicated by its pressure drop peak, 

in the dispersed flow regime disappeared by injecting only 5 wppm of the used drag 

reducing polymer (DRP). Effect of DRP concentration and molecular weight on flow 

patterns and pressure drops were also presented in this study.  

Al-Wahaibi et al. (2007) studied the effect of DRP on oil–water flow in a relatively 

small 1.4-cm diameter horizontal pipe. Oil (5.5 mPa s, 828 kg/m
3
) and a co-polymer 

(Magnafloc 1011) of polyacrylamide and sodium acrylate were used. The results 

showed a strong effect of DRP on flow patterns. The presence of DRP extended the 

region of stratified flow and delayed transition to slug flow. The addition of the 

polymer clearly damped interfacial waves. The DRP caused a decrease in pressure 

gradient and a maximum drag reduction of about 50 % was found when the polymer 

was introduced into an annular flow. 

Sifferman and Greenkorn (1981) studied drag reduction of three types of polymers 

(carboxymethyl cellulose, polyethylene oxide, and guar gum) in three different fluid 

flow systems: single-phase dilute polymer-water solutions, two-phase liquid-solid, and 

three-phase immiscible liquid-liquid-solid solutions. Drag reduction was observed for 

all three flow systems studied.  

The present chapter focuses on the effect of DRP on the liquid holdup in a horizontal 

pipe.  All experiments were conducted at the same mixture velocity with varying the 

oil-water volumetric flow rate ratio. Significant difference between the water holdup 
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before and after the injection of DRP was observed. This variation is linked to the flow 

pattern changes due to the injection of DRP. In particular, it aims to seek for a possible 

method facilitating oil-water separation through the use of water soluble drag reducing 

polymers. 

  

8.2 EXPERIMENTAL SETUP & PROCEDURE  

The experiments were conducted in a horizontal Plexiglas pipe that has a diameter of 

2.54-cm and a length of 10 m. The schematic of the flowloop is shown in Figure 8.1 

and polymer injection system setup and procedure details used in this study is 

explained in a paper by Al-Yaari et al. (2009). Tap water and oil, with average 

properties given in Table 3.1, were the test fluids. The specification of the DRP used in 

this experiment is given in Table 8.1.  Each phase is transferred with a pump from the 

respective storage tank to the test section via variable area flowmeters. The test section 

consists of a 10 m long acrylic horizontal pipe with 2.54-cm ID. The conductivity probe 

(for water holdup measurement) was located 8.2 m apart from the mixing point and its 

calibration is shown in Figure 8.2. The mixture returns via a PVC pipe to a separator 

tank, which allows the phases to separate and the dispersed drops to coalesce. Within 

each run the fluids are not recycled. At the end of a run the separated oil returns to its 

storage tank, while fresh water is used for each run more details can be found in Al-

Yaari et al. (2009).  Some specifications of the used pressure transducer and flowmeters 

were tabulated in Table 8.2. 
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All experiments conducted at same mixture velocity of 1 m/s (the mixture velocity is 

the summation of the superficial water (USW) and the superficial oil (USO) velocities at 

different volumetric flow ratio of water and oil. The test matrix and the flow patterns of 

the water-oil flow without DRP and after injecting the DRP are shown in Table 8.3 and 

Figure 8.3. 

 

 

                         Figure 8.1 Schematic layout of the flow loop  
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Figure 8.2 Conductivity probe calibration 

 

  

 

Figure 8.3 Oil-water flow patterns in a horizontal pipe with 2.54-c m ID at mixture 

velocity of 1 m/s 

 

0 

0.5 

1 

1.5 

2 

2.5 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

V
o
lt

a
g
e,

 V
 

Water Volume Fraction 



 

169 

 

 

 

 

 

 

Table 8.1 Physical properties of drag reducing polymer MAGNAFLOC 1011   

Product name Ciba MAGNAFLOC 1011  

Specialty chemicals 

Molecular Weight 10
7
 g/mol 

Description Anionic polyacrylamide flocculant ; white granular powder 

Bulk density 0.7 g/cm
3
 

 

 

 

 

Table 8.2 Specifications of the used pressure transducer and flowmeters 

Item Pressure Transducer Flow Meters 

Producer ROSEMOUNT KING Instrument Co. 

Model 3051S  

with SUPERMODULE 

HART 4-20 mA 

7510-6A  

(One calibrated for water (Sp. Gr.=1) and the 

other for oil (Sp. Gr.=0.78)) 
Full Scale 0 – 0.8 PSI 0-11.4 GPM 

Uncertainty 0.0001 PSI 0.2 GPM 
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Table 8.3 Experimental matrix and flow patterns 

USW, m/s USO, m/s Flow pattern without DRP Flow pattern with DRP 

0.15 0.85 SW S 

0.2 0.8 SW S 

0.25 0.75 SW SW 

0.3 0.7 SW SW 

0.35 0.65 SWD SW 

0.4 0.6 SWD SW 

0.45 0.55 SWD SW 

0.5 0.5 SWD SW 

0.55 0.45 3L SW 

0.6 0.4 3L SWD 

0.65 0.35 3L SWD 

0.7 0.3 3L SWD 

0.75 0.25 SMW SWD 

0.8 0.2 SMW SWD 

0.85 0.15 SMW SWD 

0.9 0.1 SMW SWD 

S: Smooth Stratified flow 

SW: Stratified Wavy flow 

SWD: Stratified Wavy flow with some droplets in the interface region 

SMW: Stratified flow (mixed layer in the upper part of the tube and separated water layer 

in the bottom part) 

3L:  Three layers flow. There are clear oil and water layers at the top and bottom of the 

pipe respectively with a dispersed layer between them. 
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8.3 RESULTS AND DISCUSSION  

Figure 8.4 and Figure 8.5 show the real time water hold up signal with the observed 

flow patterns before and after the DRP addition. All the 16 cases studied are for one 

mixture velocity equal to 1 m/s. The volumetric flow rate of water was increased and 

the volumetric flow rate of oil was decreased to get the total mixture velocity of 1 m/s 

for all runs. It can be seen from this figure that the fluctuating value over the mean for 

the case of oil-water with DRP is relatively less than that for the case of oil-water only 

(without DRP) specially for the cases of low USW (USW < 0.4 m/s). The water holdup 

for these cases in the presence of water soluble DRP is always larger than that for oil-

water without DRP. For USW between 0.4 m/s and less or equal 0.5 m/s almost both 

holdups are the same. This means that there are no differences in the velocity of water 

for the case with DRP and the corresponding one without DRP. However, for the cases 

when the USW is larger than USO (USW > 0.5 m/s), the water holdup of oil-water with 

DRP is less than that without DRP. Recall that this is a water soluble DRP and for large 

superficial water velocity the DRP damped the high amplitude waves and the water 

moved faster than before.  

The water holdup is presented as the time average water height measured by the 

conductivity probe to the pipe diameter hw/D. Understanding this figure should be 

connected to the flow pattern changes before and after the injection of the DRP 

presented in Table 8.3.  
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Figure 8.4 Water holdup signal measurement (Thick line: with DRP; thin line without 

DRP; USW ≤ USO) 
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Figure 8.5 Water holdup signal measurement (Thick line: with DRP; thin line without 

DRP; USW > USO) 
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Figure 8.6 shows clearly the relation between the water holdup before and after the 

injection of DRP and the percentage of drag reduction achieved. 

 

Figure 8.6  Average water holdup in oil-water flow with and without DRP 

 

For the low values of USW (< 0.5 m/s) without DRP the flow pattern was either 

stratified wavy (SW) or stratified wavy flow with some droplets in the interface region 

(SWD) and the final flow pattern after the injection was either smooth stratified or 

stratified with some waves. The final water holdup after the injection of DRP was 

larger than before. This leads to a conclusion that the DRP damped some waves and 

then the water holdup seen by the conductivity probe became larger than before and 

also killed the turbulence at the interface. Finally, in the case of oil-water with DRP 

there was not enough turbulence at the interface to form water droplets in the interface 

region then these droplets coalesced and contributed to the water phase and as a result 

the water holdup increased.    
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The second case when both oil and water holdups are about the same, the changes in 

the flow pattern are not significant. The flow pattern was stratified wavy with droplets 

in the interface region (SWD) and after the injection becomes stratified wavy (SW) 

which means that droplets could be oil droplets and because of the smoother interface, 

caused by the addition of the DRP, oil droplets were not created. As a result, holdup is 

still almost the same. 

For the large values of USW (> 0.5 m/s) case, without DRP the flow pattern was either 

stratified flow with mixed layer in the upper part of the pipe and separated water layer 

in the bottom part (SMW) or three layers flow with clear oil and water layers at the top 

and bottom of the pipe respectively with a dispersed layer between them (3L). After the 

injection of the DRP, the flow became stratified wavy flow with some droplets in the 

interface region (SWD). That means with this high reduction in pressure drop the water 

was flowing faster than before and most of the oil droplets contributed to oil holdup 

and at the end few droplets of both oil and water exist at the interface region and as a 

result the water holdup was less. The results promote the idea that DRP effects is also 

contributing to oil water separation by reducing the turbulence activities in the interface 

layer between the oil and water enhancing the droplet coalescence due to the lack of 

enough mixing turbulent energy.   

 

8.4  CONCLUSIONS  

Holdup measurements in oil-water flow with and without DRP polymers were 

conducted using conductivity probe technique. The set of experiments performed at 
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same mixture velocity by varying the water volumetric flow rate to the total liquid flow 

rate ratio. Water holdup is not the same for both cases with and without DRP for the 

same inlet conditions. Drag reduction accompanied with changing in the flow patterns 

by damping the high amplitude waves and reducing the turbulence activities which 

control the droplets formation mechanism. The results showed that the water holdup for 

the case of oil water with DRP is larger than that for the case of without DRP for USW < 

0.5 and less for USW > 0.5 m/s. The results showed the possibility of using DRP for 

separating and changing the distributions of oil-water droplets mixture.      

An explanation of how polymers affect interfacial waves and, in particular, affecting 

the droplets of oil-water mixture formation-deformation process is introduced. It 

emerges as a fundamental problem in understanding how drag reducing polymers 

influence oil–water stratified flows. The main rheological property of the dilute 

polymer solution, linked with drag reduction in single phase flow, is that it exhibits 

large elongational viscosities is playing a significant part in the drag reduction process 

too. However, wave growth and structure could also be affected by shear thinning 

(Khomami (1990)) and by the injection technique (Al-sarkhi and Hanratty (2001)) 

which creates coherent entanglements polymer threads. 

  



 

177 

 

 

CHAPTER 9 

CONCLUSIONS & RECOMMENDATIONS 

 

Emulsions can be encountered in everyday life. Especially, they can be found in all stages 

in the petroleum production, recovery and processing industry. In each case, the presence 

and nature of emulsions, which have important desirable and undesirable properties, 

determine both the economic and technical successes of the concerned industrial process. 

Emulsion technology has been utilized to the acid treatment of reservoir rocks in the 

region near well bore. Sometimes, the pore structure near the well bore is plugged either 

by particulates from drilling process or by production precipitation deposits caused by 

pressure or temperature changes. As a result, permeability is reduced as well as the well 

productivity. To remove these unwanted deposits, acid stimulation is used. 

Emulsified acid is essentially a mixture of up to 70 volume % acid emulsified in a 30 

volume % continuous diesel phase. They provide significant benefits in stimulating oil 

and gas wells by slowing the reaction rate with carbonates and reducing corrosion in the 

tubular goods.  However, pumping emulsified acids can result in high friction losses. 

Such losses limit the matrix acidizing job efficiency. Therefore, reducing friction 

pressure loss is an important factor in expanding the application of emulsified acids. 

Therefore, this experimental investigation aims to study possible friction reduction 

methods for stable emulsions at different pipe diameters through the control of water 
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fraction and salinity, the injection of drag reducing polymers (DRP) and the addition of 

nanomaterials. 

For this purpose, a multiphase flow loop with two test sections (with 1.27-cm and 2.54-

cm pipe ID), polymer injection systems and pressure transducer systems were constructed 

to investigate the effect of water fraction and salinity, the injection of drag reducing 

polymers (DRP) and the addition of nanomaterials on water-in-oil (W/O) flow 

characteristics. Such features include emulsion stability, conductivity, type, viscosity, 

dispersed phase average droplet size and pressure drop measurements. 

As for the water fraction effect, surfactant-stabilized W/O emulsions, with different water 

volume fractions (0.1, 0.4, 0.5, 0.6 and 0.7), were examined. In addition, to investigate 

the possibility of pressure drop reduction of stable emulsions via the aqueous phase 

salinity control, stable emulsions with different water salinities (0, 5, 20, 50, 100 and 200 

wkppm) were studied. Moreover, oil soluble polymers as well as water soluble polymers 

with different concentrations and molecular weights were tested as drag reducing agents 

for stable W/O and O/W at different internal phase volume fractions. Furthermore, some 

organo-clays, with specific distinguished features at different loadings, were tested to 

explore any possible friction reduction findings for W/O emulsions at different dispersed 

phase (water) volume fractions. 

This chapter is divided into two sections. Section 9.1 presents the main conclusions of the 

work described in this dissertation. Some recommendations for future work are given in 

section 9.2. 
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9.1 CONCLUSIONS 

Based on experimental findings, the following conclusions can be concluded.  

9.1.1 Influence of Water Fraction  

Emulsion flow characteristics of surfactant stabilized W/O emulsions at different water 

fractions and pipe diameters have been studied. Such emulsion features include: stability, 

type, conductivity, viscosity and pressure drop.  Stable W/O emulsion with 70 volume % 

of brine was the most stable one compared with the other tested emulsions and showed 

the highest pressure drop at the same flowrate. As the dispersed phase (water) fraction 

decreased, emulsion stability, viscosity as well as pressure drop decreased for all 

emulsions reported in this study at different pipe diameters. Therefore, surfactant 

stabilized W/O emulsions pressure drop can be reduced by reducing brine (dispersed 

phase) fraction.  In addition, decreasing pipe inside diameter from 2.54-cm to 1.27-cm 

resulted in up to 74% reduction in emulsion friction factor and such dependency was 

clearer as water fraction increased. Therefore, stable W/O emulsions friction factor can 

be reduced by pumping fluids in small pipe diameters due to the shear thinning effect of 

the high concentrated stable emulsions. Furthermore, stable W/O emulsions viscosity was 

modeled with a modified Fluidity-Additivity model. 

9.1.2 Influence of Water Salinity  

The role of the aqueous phase salinity on surfactant-stabilized W/O as well as O/W 

emulsions flow characteristics has been investigated. In particular, stable emulsions type, 

stability, average droplet size of their dispersed phase, viscosity and pressure drop, in 

2.54-cm and 1.27-cm pipes, dependency on water salinity has been studied.  
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Based on the present results, which conducted for surfactant-stabilized emulsions with 

70/30 water to oil volume ratio, some findings can be summarized. First, for low water 

salinity range (≤ 5 kppm), O/W emulsion was produced and its stability decreased with 

increasing water salinity. However, emulsion viscosity as well as the average droplet size 

of the oil dispersed phase increased as the aqueous phase salinity increased. Second, for 

high water salinity range (≥ 20 kppm), W/O emulsion was produced and its stability, 

viscosity as well as the average droplet size of the water dispersed phase increased as the 

aqueous phase salinity increased. Third, an increase in the water salinity resulted in an 

increase in the emulsion pressure drop measurements. In particular, changing from O/W 

to W/O emulsions through phase inversion resulted in a dramatic increase in the pressure 

drop measurements due to the change in the dispersed phase volume fraction from 0.3 to 

0.7 and due to the increase of the external phase viscosity. In addition, stable W/O 

emulsion friction factor showed a pipe diameter dependency and smaller diameter gave 

lower friction factor. 

Therefore, based on the results presented for this objective, pressure-drop reduction of 

surfactant-stabilized W/O emulsions can be achieved by controlling the water salinity as 

well as pipe diameter. In addition, controlling water salinity could be used as an 

inexpensive, easy to implement technique for W/O emulsion separation or changing to 

O/W emulsion. 

9.1.3 Influence of Drag Reducing Polymers 

The effect of DRP on the flow characteristics of stable W/O emulsions was investigated 

experimentally. Oil soluble polymers as well as water soluble polymers were tested as 
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drag reducing polymers (DRP) for stable and unstable W/O and O/W emulsions. The 

influence of DRP type, concentration and molecular weights on emulsion stability, 

viscosity and pressure drop were reported.  

The results showed a significant increase in the emulsion stability with adding the proper 

DRP and this effect was enhanced as DRP molecular weight increased at ambient 

temperature. In addition, emulsion stability as well as DRP effect on emulsion stability 

was reduced as temperature increased. Furthermore, DRP showed shear thinning effect 

and this effect becomes more dominant as DRP molecular weight increased. Injecting the 

right DRP (DRP which is soluble in emulsion external phase) resulted in a pressure drop 

reduction for all tested emulsion types (stable concentrated W/O, stable O/W and stable 

W/O) and this effect increased as DRP concentration increased. However, injecting DRP 

which is soluble in the internal phase showed a drag reduction effect for unstable 

emulsion only but with less extent. Moreover, injecting all types of DRP for emulsion 

flow with the same turbulence intensity (same Re) showed almost no dependency on the 

pipe diameter.  

9.1.4 Influence of Organoclays 

The potential application of nanomaterials for friction reduction in particularly to 

emulsified acid solutions has a potential in extending the capabilities of stimulation 

treatment applications. This objective aimed mainly to investigate a possible pressure 

drop reduction of stable W/O emulsion using organoclays. The influence of organoclays 

type and concentration on emulsion viscosity was reported. Cloisite 15A was tested as a 
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pressure drop reducing agent for stable W/O emulsions (with 0.7 and 0.3 water volume 

fractions).  

The results showed a significant reduction in the emulsion viscosity with adding all the 

tested nano-additives and this effect was enhanced as organoclays concentration 

increased at ambient temperature. In addition, for the case of concentrated W/O 

emulsions, the addition of Cloisite 15A resulted in a clear reduction (about 25 %) in the 

emulsion pressure drop in both test sections. Also, for the stable W/O emulsion with only 

0.3 water volume fraction, although no pressure drop reduction was observed in laminar 

region, it was detected in turbulent region and such effect became clearer as Re number 

and Cloisite 15A concentration increased. Such results were explained in terms of 

emulsion dispersed phase droplet size. 

In addition, for stable W/O emulsions with 0.3 volume fraction of the dispersed phase, all 

laminar friction factor data (with and without nano-additives) were in a good agreement 

with single phase theoretical values. However, the measured emulsion friction factors fell 

below the theoretical values of single phase flow in turbulent region. Further research is 

needed to explain such behavior. 

9.1.5 Influence of Drag Reducing Polymers on Water Holdup 

Holdup measurements in oil-water flow with and without DRP polymers were conducted 

using conductivity probe technique. The set of experiments performed at same mixture 

velocity by varying the water volumetric flow rate to the total liquid flow rate ratio. 

Water holdup is not the same for both cases with and without DRP for the same inlet 

conditions. Drag reduction accompanied with changing in the flow patterns by damping 
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the high amplitude waves and reducing the turbulence activities which control the 

droplets formation mechanism. The results showed that the water holdup for the case of 

oil water with DRP is larger than that for the case of without DRP for USW < 0.5 and less 

for USW > 0.5 m/s. The results showed the possibility of using DRP for separating and 

changing the distributions of oil-water droplets mixture. In particular, DRP can be used 

as a means to facilitate oil-water separation.      
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9.2 RECOMMENDATIONS 

Based on the results presented in this study, the following recommendations are made to 

improve the quality of the data and to extend the scope of the research area: 

1. Collecting all the data presented in this study to end up with a useful model to predict 

emulsion friction factors for pipe flow at different compositions and conditions. 

2. Correlating all reported results, in this dissertation, to the emulsion dispersed phase 

droplets size and distribution using a suitable laser particle analyzer. 

3. Implementing all the findings to the real emulsified acid. 

4. Exploring the influence of the recommended results on emulsified acid reactivity. 

5. Modifying the flow loop and using higher power pumps to reach high Reynolds 

number. Then, all studied parameters (water fraction, water salinity, drag reducing 

polymers performance and nanomaterials performance) can be investigated in the 

turbulent regime. 

6. Performing inline measurements of the true emulsion dispersed phase droplet size 

while emulsion flow in pipes. 

7. Investigating the effect of droplets interaction on emulsion pressure drop.  
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