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An Economic Production Quantity model (EPQ) aims to minimize the total production-
inventory cost by balancing between multiple conflicting costs. In this thesis, we
introduce two new models in this area; both of them are developed under the conditions
of linear process deterioration and machine breakdown. Additionally, corrective and
preventive maintenance actions are performed according to a specific policy. In one
model, time to failure and time to deterioration are assumed independent, while in the
other model the two variables are assumed dependent where machine failure can happen
only if preceded by process deterioration. The proposed two models are formulated under
general probability distributions, but optimality is proved under selected distributions.

The two models’ behavior is investigated thoroughly for numerical examples.

Another two models are developed for determining the optimal quantity to be ordered by
a retailer from his supplier, in addition to the optimal credit period to be offered by the
retailer to his customers. Both models are developed under the presence of two-levels of
trade credit periods, and in which the demand is linked to the credit period offered by the

retailer to his customers. The two models differ in the payment procedure from the

X1



retailer to the supplier. In both models, we made two main assumptions. Firstly, we
assumed non-instantaneous replenishment from the supplier to the retailer, and secondly
we assumed a percentage of retailer’s sales are considered bad debt. Two numerical
examples are solved for joint determination of the optimal order quantity and the optimal

credit period.
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CHAPTER 1

INTRODUCTION

We start this document with an introduction to the area of our work. Two main problems
in the field of inventory control are investigated. The first problem is about finding the
optimal production lot sizing policy that would minimize the overall production and
inventory cost under the conditions of process deterioration and machine breakdown. The
second problem aims to find the optimal policy in terms of inventory cycle length and the
length of credit period offered to customers in retailing industry under credit-linked
demand and two-level credit system. In the following sections, we introduce the two

problems in detail.

1.1 Production Lot Sizing and Economic Ordering

The production lot-sizing problem is originated from the Economic Order Quantity
(EOQ) model. When first developed by Ford W. Harris at 1913, and later extensively
applied by the consultant R. H. Wilson, the EOQ model was used to determine the order
quantity that minimize the total inventory holding costs and the ordering costs. The early

EOQ model was simple and built on a number of assumptions:

a) The ordering cost is constant, regardless of the order quantity.

1



b) The demand rate is known and fixed.

¢) The lead-time is known and fixed.

d) The purchase price of the item is constant, i.e. no volume discount.

e) The replenishment is made instantaneously; the whole batch is delivered at once.
f) Only one product is involved.

The EOQ model aims to minimize the total cost, which is composed of the purchasing

cost, the ordering cost, and the inventory holding cost, the total cost function is given by:

TC—PD+DS+HQ
= Q 5

The following notation applies:

e TC is the total cost.

e P is the purchase unit price
¢ D is the annual demand

e S is the ordering cost

e Qis the order quantity

® His the annual holding cost per unit.

All variables are assumed constant in the model except the order quantity Q. The total

cost function for this simple model attains its minimum at:



The EOQ model is extended to serve in the area of production scheduling, in which the
model is used in determining the optimal quantity to be produced in order to minimize
the total production and inventory costs. The early Economic Production Quantity (EPQ)
model is very simple in nature and does not include many features of modern production
systems; also, it lacks the capability of handling the inherent randomness of the involved

variables.

A practically useful EPQ model must consider various aspects and variables in relation to
the modern production systems; quality issues, machine breakdown, random repair times,
deteriorating items, variable demand, finite production horizon, learning effects, and
imperfect processes are just few examples. Production lot sizing, or alternatively EPQ
models mostly share the same objective of minimizing a total cost function by
determining the optimal production quantity, or alternatively the production run time. In

the literature review section, we will present some of the production lot sizing models.

1.2 Process Deterioration and Production Lot Sizing

Variation is inherent in any process, and manufacturing processes are no exception. There

are two basic sources of variation in a manufacturing process.

e Common Cause variation



e Special Cause variation

Common cause variation is created by multiple factors that are commonly part of the
process, and they are acting at random and in an independent manner. Their origin can
usually be traced to the key elements of the system in which the process operates.
(Materials, Equipment, People, Environment, Methods). If only common causes of

variation are present, the output of a process forms a distribution that is stable over time.

Special Cause variation is created by a non-random event leading to an unexpected
change in the process output. The effects are intermittent and unpredictable. If special
causes of variation are present, the process output is not stable over time and is not
predictable. All processes must be brought into statistical control by first detecting and

removing the Special Cause variation.

Process deterioration, or alternatively process drift is a common occurrence in many
manufacturing processes where processing parameters degrade, negatively affecting
production system performance characterized by producing more nonconforming items.
Common causes of process drift include corrosion, fatigue and cumulative wear (Fei et al

2009).

Statistical process control (SPC) tools are used to track process quality to determine when

the process has gone out of control; i.e. has drifted beyond its specifications. SPC



depends upon inspecting the parts produced, measuring critical attributes of the parts, and

using these to determine process quality (Chincholkar et al 2004).

In some industries, e.g. drug manufacturing, process drift is not acceptable, and strict
inspection procedures are established in order to instantaneously detect any drift and fix it
immediately. Some other industries, such as soft drink filling operations, are to some

extent tolerable toward process drift as the later can only affect profitability.

Process drift has a great influence on the production lot sizing decisions as it directly
contributes to producing more items that are defective. The cost of producing defective
items will be added to a number of conflicting components in determining the optimal

production lot size.

Three aspects of any production process need to be clearly defined and distinguished;

namely, process deterioration, out-of-control and system failure:

® A production process is said to be in the out-of-control state if it experiences
special or assignable cause variation in its output, and hence produces defective
items in greater rate compared to the rate when it is in-control.

® Process deterioration is the event of shifting from in-control state to out-of-control
state due to some special cause. After some time of the production run, process

parameters start to change, i.e. increase or decrease in process mean or variance.



e Failure means stoppage of the production process. In some systems failure is
simply the extreme end of deterioration, while in others, failure is independent

from deterioration and totally resulted from different causes.

1.3 Trade Credit Financing and Economic Ordering

Economic ordering decisions play a vital rule in business success especially in retailing
industry. In the traditional EOQ model it is assumed that the retailer pays the purchasing
cost of the products as soon as the products are received which contradicts the reality in
which the supplier (wholesaler or manufacturer) usually offers a delay period, known as

trade credit period, to encourage the retailer to order more quantity.

In cases that the supplier is the manufacturer of the product, and for the sake of better
production and inventory control, manufacturers prefer less frequent orders with larger
order sizes to frequent orders with smaller order sizes. In such situation, they offer a
longer credit period for larger amount of purchase. Their policies are meant to motivate

the retailer to make order size large enough to avail for a credit period (Soni et al 2010).

Usually it is assumed that the supplier would offer a fixed credit period to the retailer but
the retailer in turn would not offer any credit period to its customers, which is unrealistic,
because in real practice retailer might offer a credit period to his customers in order to

stimulate his own demand (Jaggi et al 2008).

The supply chain system in which the supplier offers trade credit to his customer

(retailer) and the retailer also offers trade credit to his customers is referred to as two-



levels of trade credit system. Trade credits can be viewed as a kind of price discount,
since paying later indirectly reduces the purchase cost. In the literature review section, we
will present some of the work done in the economic ordering problem in the presence of

one-level and two-levels of trade credit financing.

1.4 Thesis Objectives

This research aims to develop four new models in the area of inventory control. The first
two models are designed to determine the optimal production quantity for an unreliable
production system, which is subject to random linear process deterioration and random
machine breakdown. Additionally, preventive and corrective maintenance actions are
performed according to a specific policy, and their durations are random as well. In one
model, failure and deterioration are assumed independent, while in the other model, the
two events are assumed dependent where failure can happen only if preceded by
deterioration. In both model, process deterioration starts after some random time, at

which the rate of producing defectives increases linearly with time.

The other two models are designed to determine the optimal order quantity in retailing
industry in addition to the optimal credit period offered by the retailer to his customers.
Both models are designed in the presence of two-level of trade credit periods, in addition
to the assumption of credit-linked demand. In two-level trade credit systems, the
wholesaler offers the retailer a period to settle the due payment. Similarly, the retailer

offers each of his customers a period to settle their payments. In both models,



replenishment from the supplier to the retailer is assumed non-instantaneous, additionally
a percentage of the retailer’s sales are considered as bad debt. The two models differ in

the payment procedure from the retailer to his supplier.

1.5 Thesis Organization

This thesis is presented in seven chapters. In chapter 2, we present the relevant literature
on the production lot sizing models, and the Economic Order Quantity (EOQ) models in

retailing industry.

Chapter 3 presents the first production lot-sizing model, its description, assumptions,
notation, mathematical formulation, optimality under selected probability distributions,

and finally numerical results and conclusions.

Chapter 4 presents the second production lot-sizing model, its description, assumptions,

mathematical formulation and numerical results and conclusions.

Chapter 5 presents the first EOQ model in retailing industry, its description, assumptions,
notation, mathematical formulation, optimality, solution procedure, and finally numerical

results and conclusions.

Chapter 6 presents the second EOQ model in retailing industry, its description,

assumptions, mathematical formulation and numerical results and conclusions.

Chapter 7 presents thesis conclusions and gives directions for future research.



CHAPTER 2

LITERATURE REVIEW

In this chapter we present some of the notable researches carried out on the two problems
of our interest; namely the production lot sizing under process deterioration and/or
machine breakdown, and the economic ordering under one-level and two-level credit

financing.

2.1 Production Lot Sizing Models

As stated earlier, the lot-sizing problem is originated from the classical Economic Order
Quantity (EOQ) model invented by Ford W. Harris in the year 1913. A tremendous
amount of research can be found in the literature about this important problem in the area
of production and inventory planning and control. Our focus is on the lot sizing models
for unreliable production systems in which machine failure and/or process deterioration is

present.

While both process deterioration and machine breakdowns have great influence on
Economic Manufacturing Quantity (EMQ) decisions, most of the research considers only
one of the two factors while ignoring the effect of the other. Rahim and Lashkari (1985)

developed a model for determining the optimal production run time in an industrial
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process in which process mean and process variance are likely to shift and assume
different values compared to the initial ones. Arcelus and Banerjee (1987) developed
optimal production policies for processes where the quality characteristic of the product
exhibits non-negative shifts in both its mean and its variance and where different rewards
exist for acceptable, undersized and oversized parts. Rahim and Banerjee (1988)
considered the problem of selecting the optimal production run for a process with random
linear drifts. Al-Sultan and Al-Fawzan (1997) extended Rahim and Banerjee (1988) by
introducing lower and upper specification limits to the model. The new model aims to

find the optimal initial process mean in addition to the optimal production cycle length.

Al-Sultan and Raouf (1998) considered a production process with a continuous drift in
the mean of the quality characteristic of the product. They developed models for the
problem in which process drift is either, known in advance and constant, or it occurs in a
random fashion. Kim and Hong (1999) presented an EMQ model that determines the
optimal production run length in a deteriorating production process. It is assumed that the
process is subject to random deterioration from an in-control state to an out-of-control
state with an arbitrary distribution, and thus produces some proportion of defective items.
Three patterns of process deterioration are considered; constant, linearly increasing and
exponentially increasing. Chung and Hou (2003) developed a model to determine the
optimal run time for a deteriorating production system under allowable shortage. It is

assumed that the elapsed time until the production process shift is arbitrarily distributed.
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Ben-Daya (2002) dealt with an integrated model for the joint determination of economic
production quantity and Preventive Maintenance (PM) level for an imperfect process
having a general deterioration distribution with increasing hazard rate. The effect of PM
activities on the deterioration pattern of the process is modeled using the imperfect
maintenance concept. Hsieh and Lee (2005) considered two EMQ models with un-
repairable and repairable standby key modules. They determined the economic
production run length and the economic number of standbys in a deteriorating production
process. Chiu et al. (2007) studied the optimal lot-sizing decision for a production system

with rework, random scrap rate, and service level constraint.

Dagpunar (1996) examined the lot sizing problem with machine time to failure following
a Weibull distribution; the machine is minimally repaired until the interrupted lot is
completed; at the end of the production cycle, the machine is restored to as-good-as-new
condition and a new cycle is started. Kim and Hong (1997) presented an EMQ model
that determines the optimal production lot size in failure prone machine. It is assumed
that time between failures 1is generally distributed, and machine is repaired
instantaneously when it fails. Kuhn (1997) suggested a stochastic dynamic programming
model to determine the optimal lot sizing decision where the equipment is subject to
stochastic breakdowns. The analysis considered two cases; first, it is assumed that, after
the machine breakdown, the setup is totally lost and new setup cost is incurred. The
second case considers the situation in which the cost of resuming the production run after

a failure might be substantially lower than the production set-up cost.
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Moini and Murthy (2000) developed a production-sizing model for unreliable system
with machine breakdown and quality variations under alternative repair option strategies.
Chung (2003) showed that the long-run average cost function per unit of time for the case
of exponential breakdowns is unimodal but neither convex nor concave, and he obtained

an approximation for lower and upper bounds on lot sizing under this condition.

Giri and Dohi (2004) considered the Net Present Value (NPV) approach to determine the
economic manufacturing quantities for an unreliable production system over an infinite
planning horizon. The NPV of the expected total cost was obtained under general
breakdown time and general repair time. The criteria for the existence and uniqueness of
the optimal production time were derived under exponential breakdown and constant/zero

repair time.

Giri and Yun (2005) considered an economic manufacturing quantity problem for an
unreliable manufacturing system where the machine is subject to random breakdown and
at most two failures can occur in a production cycle. Upon the first failure; the repair
action is started immediately and the demand is met first from the on-hand inventory. If
shortages take place due to long repair time, then they are backlogged partially by
resuming the production run after machine repair. If failure occurs again during the
backlog period, then the accumulated shortages until completion of the second repair are
assumed lost. The model was formulated under general breakdown and general repair

time distributions.



13

Chiu et al (2007) considered the economic production quantity (EPQ) model with scrap,
rework, and stochastic machine breakdowns. El-Ferik (2008) studied the joint
determination of both economic production quantity and preventive maintenance
schedules, under the realistic assumption that the production facility is subject to random
breakdown and the maintenance is imperfect. The manufacturing system was assumed to
deteriorate while in operation, with an increasing failure rate. The system undergoes PM
either upon failure or after having reached a predetermined age, whichever of them

occurs first.

Chiu et al (2011) developed a model for solving manufacturing run time problem with
random defective rate and stochastic machine breakdown under no-resumption inventory
policy. Widyadana and Wee (2011) developed a production inventory model with
random machine breakdown and stochastic repair time for deteriorating items. The model
assumes the machine repair time is independent of the machine breakdown rate. Das et al
(2011) developed an economic production lot-sizing model for an item with imperfect
quality and by considering random machine failure. Jeang (2012) developed a model for
jointly determine the optimal production lot size and process parameters under the

possibility of process deterioration and breakdown.

Boone et al. (2000) was the first to model a production lot sizing problem taking into
consideration both machine breakdowns and process deterioration. The proposed model

provided guidelines to choose the appropriate production run times to buffer against both
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the production of defective items and stoppages occurring due to machine breakdowns.
The model assumed exponential time to breakdown, uniform time for the process to shift
from in-control to out-of-control state, and constant rate of producing defectives when the

process is out-of-control.

Chakraborty et al. (2008) presented a generalized economic manufacturing quantity
model for an unreliable production system in which the production facility may shift
from an ‘in-control’ state to an ‘out-of-control’ state at any random time (when it starts
producing defective items) and may ultimately break down afterwards. If a machine
breakdown occurs during a production run, then corrective repair is done; otherwise,
preventive repair is performed at the end of the production run to enhance the system
reliability. The proposed model is formulated assuming that the time to machine
breakdown, corrective and preventive repair times follow arbitrary probability
distributions. However, the criteria for the existence and uniqueness of the optimal
production time are derived under general breakdown and uniform repair time (corrective

and preventive) distributions.

Chakraborty et al. (2009) developed an integrated production, inventory and maintenance
models for a deteriorating production system in which the production facility may not
only shift from an ‘in-control’ state to an ‘out-of-control’ state but also may break down
at any random point in time during a production run. In case of machine breakdown,

production of the interrupted lot is aborted and a new production lot is started when the



15

on-hand inventory is depleted after corrective repair. The process is inspected during
each production run to examine the state of the production process. If it is found in the
‘in-control’ state then either (a) no action is taken except at the time of last inspection
where preventive maintenance is done or (b) preventive maintenance is performed. If,
however, the process is found to be in the ‘out-of-control’ state at any inspection then
restoration is done. The proposed models are formulated under general shift, breakdown

and repair time distributions.

Our work for this problem is an extension and modification to Chakraborty et al. (2008)

model.

2.2 EOQ Models under Credit Financing

As mentioned earlier the EOQ model was first introduced by Ford W. Harris in the
year1913 and gained researchers attention since then, and it continues to have the same
level of interest for being a key problem in the area of inventory planning and control as
it directly affects business success. While many extensions have been made to the
original EOQ model in order to serve as a decision making tool, our focus in this work is

the relation between the EOQ and trade credit financing in the retailing industry.

It is a common practice in business transactions for suppliers to allow a specified credit
period to the retailers for payment without penalty to stimulate the demand of their

products. This credit term in financial management is denoted as ‘‘net 30’’. Many
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research papers have appeared in the literature trying to build inventory models in which

trade credit financing is involved. Some of the work done in this area is presented below.

Haley and Higgins (1973) proposed the first model that considers the EOQ under
conditions of permissible delay in payments with deterministic demand, no shortages,
and instantaneous delivery. Goyal (1985) established a single item inventory model for
determining the economic ordering quantity in the case that the supplier offers the retailer
the opportunity to delay his payment within a fixed period. Chung (1989) presented the
discounted cash flows (DCF) approach for the analysis of the optimal inventory policy in

the presence of trade credit.

Aggarwal and Jaggi (1995) extended Goyal (1985) by introducing deterioration to the
model and assuming exponential deterioration rate. Jamal et al (2000) generalized the
model to allow shortages. Teng (2002) revisited Goyal (1985) model and assumed that
the selling price is not equal to the purchasing price (actually, it can be seen as a

correction to Goyal’s model as the proposed modification reflects the reality).

Huang (2003) extended one-level trade credit into two-level trade credit to develop the
retailer’s replenishment model from the viewpoint of the supply chain. He assumed that
not only the supplier offers the retailer trade credit but also the retailer offers the trade
credit to his customers. Huang (2006) incorporated both models of Teng (2002) and
Huang (2003) by considering two-level trade credit and limitation on retailer’s storage

space to reflect the real-life situations. Chung and Huang (2007) proposed a two-
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warehouse inventory model for deteriorating items under two-level trade credit. Liao
(2008) proposed an EOQ model with non-instantaneous delivery and exponentially

deteriorating items under two-level trade credit.

Jaggi et al (2008) incorporated the concept of credit-linked demand and developed an
inventory model under two levels of trade credit policy. In this model, the demand is
assumed to be positively influenced by the credit period offered by the retailer. Thangam
and Uthayakumar (2009) extended Jaggi et al (2008) model by assuming that demand
depends on both the selling price and the credit period. Chen and Kang (2010) also
assumed sensitivity of demand to retailer’s price in their two-level trade credit inventory
model and they developed a recursive solution procedure to determine the optimal pricing

and production/order strategy.

Ho (2011) proposed a generalized two-level trade-credit inventory model, in which the
demand rate is a function of both retail price and credit period. Kreng and Tan (2011)
proposes a production model for a lot-size inventory system with finite production rate
and defective quality under the condition of two-level trade credit policy and the
condition that defective items involve both imperfect quality and scrap items. Lin et al.
(2012) proposed an integrated supplier-retailer inventory model in which both supplier
and retailer have adopted trade credit policies, and the retailer receives an arriving lot
containing some defective items. The customer’s market demand rate depends on the

length of the credit period offered by retailer. The model objectives is to determine the
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retailer’s optimal order cycle length, the order quantity, and the optimal number of
shipments per production run from the supplier to the retailer so that the entire supply
system has maximum profit. Su (2012) proposed a single-supplier, single-retailer
integrated inventory model that accounts for defective items that arrive in a retailer’s
order under a full-lot inspection policy. Shortages are allowed and are fully backlogged.

Only supplier offers trade credit to the retailer.

Teng et al. (2012) extended the constant demand to a linear non-decreasing demand
function of time in building their EOQ model with trade credit. Chung (2012) introduced
the transportation cost in developing a new supplier-retailer inventory model under the
condition that both supplier and retailer offer trade credits. Zhou et al. (2012) proposed an
EOQ under conditions of trade credit, inventory dependent demand, and limited
displayed-shelf space. Thangam (2012) considered a supply chain where the supplier
offers the retailer a full trade credit period for payments whereas the retailer offers a
partial trade credit to his customers in addition to another option of price discount if
advance payment is made. Model objective is to find the optimal price discount and the
optimal lot-sizing policies for perishable items. Jaggi et al. (2012) proposed a model to
determine the retailer’s optimal replenishment and credit policies under tow-level of

credit policy when demand is influenced by credit period.

Our work for this problem is an extension and modification to Jaggi et al. (2008) model

and will be presented in the following chapters.
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2.3 Conclusion

The surveyed literature on the production lot-sizing problem reveals the scarcity of
models that jointly considers process deterioration and machine breakdown in
determining the optimal production quantity. Boone et al. (2000) was the first to devise
such model followed by Chakraborty et al. (2008) who evolved the model in some
directions. Our work on this problem is an extension and modification to Chakraborty et
al. (2008). Our main contribution summarized in introducing the linear process
deterioration concept, in addition to the assumption of independent deterioration and

failure events. Please refer to thesis objectives, section 1.4 for more information.

A tremendous amount of literature found on the EOQ in retailing industry under trade
credit financing, but none of them covers the case in which replenishment from supplier
to retailer is non-instantaneous, neither the case of bad debt. Our work on this problem,
which is an extension and modification to Jaggi et al. (2008), will incorporate those two
aspects and devise two new models. Please refer to thesis objectives, section 1.4 for more

information.



CHAPTER 3

PRODUCTION LOT SIZING MODEL-I

3.1 Introduction

Production systems are unreliable to a significant degree in real life; one source of
unreliability is process deterioration. Process deterioration might be stated as the process
of shifting from an in-control state to an out-of-control state where the production system
starts to produce more items that are defective. In addition to deterioration, there is the
possibility of machine breakdown that causes the abortion of the production lot before
completion. Obviously, any breakdown will severely affect plans for meeting customer
demand. Building on the previous argument, the need for more realistic modeling of the
Economic Manufacturing Quantity (EMQ) problem is rising in the manufacturing field.
Such models should take into consideration many attributes of real life production

systems including but not limited to,

a. Time to shift from in-control state to out-of control state, and its probability
distribution.

b. Time to machine breakdown, and its probability distribution.

20
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Corrective maintenance time and its probability distribution (performed after each
breakdown).

Preventive maintenance time and its probability distribution (performed at the end
of each successfully completed production run, in our model).

Rate of producing defective items, we consider production of defectives to take
place before process deterioration, and we assume that the rate of producing
defectives increases linearly with time after deterioration is started.

In addition, we should consider a variety of costs corresponding to production,
inventory and maintenance such as; corrective and preventive repair costs,
inventory holding cost, shortage penalty cost, cost of producing defective items

and finally production set-up cost.

The following notations are used in building model-I:

f@®

h(7)

None-negative random variable denoting time to machine breakdown.
Time to breakdown probability density function.

Failure rate (parameter for f(t) when it is exponentially distributed).
Random variable denoting the time taken by the machine to shift from
“in-control” state to “out-of-control” state.

The probability density function of the time to shift from in-control to out-
of-control state.

Deterioration rate (parameter for h(t) when it is exponentially distributed).



t, Production run time; a decision variable.

t, The lower bound on ¢,.

The upper bound on ¢,.

L None-negative random variable denoting corrective repair time.
g1(l;)  Corrective repair time probability density function.

b, The upper bound on [; when it’s uniformly distributed.

L, None-negative random variable denoting preventive repair time.

g>(l;)  Preventive repair time probability density function.

b, The upper bound on [, when it’s uniformly distributed.

d Demand rate, (d > 0).

p Production rate, (p > d)

Co Set up cost for each production run, (c¢y > 0).

c1 Corrective repair cost per unit time, (¢; > 0).

Cy Preventive repair cost per unit time, (¢, < ¢;).

C Inventory holding cost per unit product per unit time, (c; > 0).
Cs Shortage penalty cost per unit product, (c¢s > 0).

Cp Cost of producing a defective item, (cp > 0).

Ceycle Expected total cost per production-inventory cycle.
Teycie Expected length of a production-inventory cycle.

w Average cost per unit time.

22
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a; Proportion of defectives while process is in-control (before deterioration).
ay Proportion of defectives while process is out of control (after deterioration).
B Process deterioration factor.

y Process deterioration timer.

3.2 Model Formulation

The model developed in this work is an extension of that in Chakraborty et al (2008). In
that model, a process starts in control with no defectives generated. After a random
period, the process deteriorates and defectives are generated at a constant rate. The
machine may fail only after deterioration; i.e. every failure is preceded by process
deterioration. The time to deteriorate follows a uniform distribution and it is dependent
on the time to failure or the unknown production cycle time, whichever is shorter. If
machine breakdown takes place during a production run, then the interrupted lot is
aborted and a new lot is started after corrective maintenance is finished and all available
inventory is depleted (no resumption policy). On the other hand, if machine breakdown
does not occur until the end of the planned production run time t,; then preventive
maintenance is carried out after production run completion to get the machine back to “as
good as new” condition before the start of the next production run. Again, the next
production run will not start until available inventory is totally depleted even if repair has
finished earlier. During machine repair, either corrective or preventive, the demand is

met from the accumulated on-hand inventory. Shortages may occur due to longer
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corrective/preventive repair times. If shortages occur, they are not delivered after the

machine repair; actually, they are considered as lost sales.

The model considered in this work extends that work in several directions and replaces
some assumptions with more practical ones. We consider a production process which
may shift from an in-control-state to an out-of-control state at any random time t during
the planned production run time t,. In both states; in-control and out-of-control,
defective items are produced at different rates. Once a shift to the out-of-control state has
occurred at time T, it is assumed that the proportion of defectives will continue to increase

following a linear pattern as in the following equation;

ay =a; +py (3-1)

a; is the proportion of defectives before deterioration is started, B > 0 is a known scalar
and y is time that quantifies the period while process is out of control.

The increase in defectives’ rate is continued with time until the whole lot has been
produced or machine breakdown takes place. We also assume that process deterioration
and machine failure are independent events; hence, time to failure, t, and time to
deterioration, 7, are two independent random variables. Therefore, not every machine
failure is coming after deterioration, and similarly; not every process deterioration
occurrence is followed by machine failure. In the case of machine tools, deterioration in
the process might result from cutting tool wear while machine failure is a result of motor

or any other mechanical or electrical part failure.
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Figures 1 to 8 show all possible scenarios that any single production cycle may

encounter.

Figure 1 shows the case where both deterioration and failure take place but no shortage.
In this case, time to deterioration is less than time to failure, which is less than the
planned production run time; T < t < t, and hence the production process encounters

deterioration followed by failure. In addition, the corrective repair time is less than the

time needed to consume the accumulated inventory; [; <

-d)t .
@ . ) and hence no shortage is

encountered.

Figure 2 shows the case in which deterioration, failure and shortage are encountered.

Shortage happens because corrective repair action extended for longer time beyond the

. . -d
zero-inventory point, [; > o)t .

In figure 3, deterioration takes place but neither failure nor shortage is encountered. In
this case, time to deterioration is less than the planned production run time, which is less
than time to failure; 7 <t, <t and hence the production process encounters

deterioration but ends successfully without failure. In addition, the preventive repair time

(p_d)to and

is less than the time needed to consume the accumulated inventory; [, < m

hence no shortage is encountered.
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Figure 1 Deterioration-Failure-No Shortage Case in Model-I
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Figure 2 Deterioration-Failure-Shortage Case in Model-1
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In figure 4, deterioration and shortage are encountered but no failure takes place.
Shortage happens because preventive repair action extended for longer time beyond the

. . -d
zero-inventory point, [, > % .

In figure 5, failure takes place but neither deterioration nor shortage is encountered. In
this case, time to failure is less than both; the planned production run time and the time to
deterioration, t < 7 < t, or t < t, < T and hence failure is encountered before process is
deteriorated. In addition, the corrective repair time is less than the time needed to

(p—d)t

consume the accumulated inventory; [; < and hence no shortage is encountered.

In figure 6, failure and shortage are encountered but no deterioration. Shortage happens

because corrective repair action extended for longer time beyond the zero-inventory

point, [; > (p_dd)t )

In figure 7, no deterioration, no failure and no shortage are encountered. In this case, the
planned production run time is less than both; the time to deterioration and the time to
failure, t, <t < tort, <t < tand hence the production run ends successfully before
experiencing deterioration or failure. In addition, the preventive repair time is less than

(p—d)to
I, < =2k

the time needed to consume the accumulated inventory; and hence no

shortage is encountered.
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Figure 5 No Deterioration-Failure-No Shortage Case in Model-I
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Figure 7 No Deterioration-No Failure-No Shortage Case in Model-I
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In figure 8, no deterioration and no failure take place, but shortage is encountered.
Shortage happens because preventive repair action extended for longer time beyond the

. . -d
zero-inventory point, [, > % .

Those 8 figures presented above show all possible scenarios resulting from the
randomness of time to deterioration, t, time to failure, t, corrective repair duration, /;, and

preventive repair duration, [,.
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By conditioning on the time to machine breakdown, the expected length of the

production-inventory cycle is given by:

(p-ad)t/d —d
Tcycle f f < p d )t> gl(ll).f(t).dll.dt
t=0"Y1

1—0

f f (¢ + 1. g1 (1) F©). dly. dt
t=0 /1, =(p-d)t/d
(p d)to/d _d o
f f ( %)gz(zz).f@).dzz.dt
t=ty Jlp=
i f f (to + 1). g2(Lo). £ (). dLy . dt
t=ty VI, (p d)to/d

The first term in the expected cycle length represents those cycles that will encounter
failure but no shortage (Figures 1 and 5). The second term represents the cycles with
failure and shortage (Figures 2 and 6). The third term represents the cycles with no failure
and no shortage (Figures 3 and 7). Finally, the last term represents the cycles with no
failure but with shortage (Figures 4 and 8). The expected production-inventory cycle

length can be reduced to,
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(r- d)t/d
Tcycle J f .gl(ll) f(t) dll dt

t=0"1;=
f ,[ (¢ +11).9:(1)- (). dly. dt
t=01;=(p-d)t/d

-ty /d pt
f f ) g2(L). f (). dly. dt
t=to J1,=

i f f (to + 12).g2(L). f(2).dl; . dt

t=to Jl=(p—d)to/d

The total expected cost per production-inventory cycle is composed of setup cost, repair
costs (corrective and preventive), inventory holding cost, shortage cost, and the cost due

to producing defective items:

Ceycle = Setup Cost + Corrective Maintenance Cost

+ Preventive Maintenance Cost + Inventory Holding Cost

+ Shortage Cost + Defectives' Cost

The setup cost, c,, is the cost incurred at the start of each production run to get the
machine ready. Examples of setup costs include the cost of changing tools or dies,
moving materials or components, testing the initial production output to ensure meeting
specs, in addition to labor cost of setting up the machine. The measuring unit of ¢, is

$/cycle.
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The corrective maintenance cost is the cost incurred to bring the machine back to as good
as it was before failure. It is calculated as the expected corrective repair time multiplied
by the cost per unit time, ¢y, and finally multiplied by the probability of encountering

failure (t < t,), and is given by:
to 0
Corrective Repair Cost = C1-j f l.g.(L). f(t).dl,.dt
t=0 ll=0

The preventive maintenance cost is the cost incurred at the end of each successful
production run to enhance machine reliability. It is calculated as the expected preventive
repair time multiplied by the cost per unit time, c,, and finally multiplied by the
probability of finishing the production cycle successfully with no failure (t > t,), and is
given by:

(e 0]
Preventive Repair Cost = cz.f
t=t,

[ g r@.d.ae
1,=0

The measuring unit of ¢; and ¢, is $ per unit time.

It is worthy to notice that both corrective and preventive maintenance costs consider only
the cost of time spent in performing maintenance actions, while the cost of material and
spare parts is not included. In section 3.5, we modify this assumption by including

material and spare parts’ cost.
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The inventory holding cost is the cost incurred to keep and maintain stock in storage;
examples include space rent, handling, labor, insurance, security and opportunity loss.

Inventory holding cost is given by:

Inventory Holding Cost

= ¢ f;o()%<t+@).(p —d).t. f(t).dt

+¢; j:t %(to +(p_dﬂ).(p —d).t,.f(t).dt

The first term in the inventory holding cost expression is the average on hand inventory
for cycles with failure multiplied by the inventory holding cost per unit product per unit
time. The second term represents the cycles with no failure (t = t,). The inventory

holding cost can be reduced to:

Inventory Holding Cost

= w. U:Otz.f(t).dt +t,2. ) f(t).dt]

t=t,

The measuring unit of ¢; is $ per unit product per unit time.
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The shortage cost is the cost of stock-out situation when there is demand but cannot be
satisfied. In our model, shortages are considered lost sales and they are not backlogged.

Shortage cost is given by:

Shortage Cost

I (p—dt
- ad| ft ) jl e <11 _ T) 9.1 £(O) .dl,. dt]

[ 0 0 —d
+eyd. f f o, <12 - (pd—)t"> 9o(L). f () .dlz.dt]
| Je=t, J1,="2=Dlo

The first term in the shortage cost expression is the expected length of the shortage period
multiplied by the demand rate and finally multiplied by the shortage cost per unit product
for cycles with failure. The second term represents cycles with no failure (t >t,).
Shortages in our model are considered lost sales; accordingly, shortage cost is calculated
based on the maximum shortage in units of the product rather than the average. The

measuring unit of cg is $ per unit product.

Defectives’ cost is the cost incurred due to producing less-quality items. Types of cost
under this category include discounted price and rework. In our model, we consider

defective parts to be used in filling the demand.

As stated earlier and due to the adoption of different assumptions than those in

Chakraborty et al (2008), the cost of defectives is given by:
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Defectives Cost

to rt
= ) .h(7). dr.d
peoa; f f T h@). (). dr.dt

=0

to ,t t-T
+pcD.f j f ay.dy.h(z). f(t) .dr.dt
t=0J7=0"Yy=0

+ pepay. jw j "L (D). f(O). dr. dt
= =0

t=t,

© to to—T
+pcD.f f f ay.dy.h(z).f(t).dr.dt
t=to Jt=0Jy=0

+ocpar | h(r).(fT t.f(t).dt).dr
t

=0 =0

%) to

+ pepa;. h(T).dT.f t.f(t).dt

T=t, t=0

o0

+pcDa,.to.f h(t).dt. ) f(t).dt

T=t, t=t,

The first term in the defectives cost expression gives the cost of defectives produced
during the in-control state for cycles in which deterioration is followed by failure (Figure
1 and 2). The second term gives the cost of defectives produced during the out-of-control
state for cycles in which deterioration is followed by failure (Figure 1 and 2). a,, is
defined by equation 3-1. The third term gives the cost of defectives produced during the
in-control state for cycles in which only deterioration is encountered but no failure
(Figure 3 and 4). The forth term gives the cost of defectives produced during the out-of-

control state for cycles in which only deterioration is encountered but no failure (Figure 3
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and 4). The fifth expression gives the cost of defectives produced during the cycles in
which failure is encountered but no deterioration, and in which the following inequality
applies t <7 < t, (Figure 5 and 6). The sixth expression gives the cost of defectives
produced during the cycles in which failure is encountered but no deterioration, and in
which the following inequality applies t < t, < 7 (Figure 5 and 6). Finally, the last
expression gives the cost of defectives produced during the cycles in which neither
deterioration nor failure is encountered, t, <t < tort, <t <t (Figure 7 and 8). The

measuring unit of cp is $ per unit product.
From the renewal reward theorem, the average cost per unit time is given by;

Ccycle (to)

W(tO) B Tcycle (to)

In the next section, we consider special cases of the distribution functions and simplify
the above expressions accordingly. We also show that the average cost per unit time is a

quasi-convex function in specific interval for the selected distributions.

3.3 Optimality under Selected Distributions

In this section, we will assume that the time to failure follows an exponential distribution

with failure rate A,

f@) =2
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The use of exponential failure can be justified by noticing that the planning horizon in
our model is only few hours, i.e. the production run time. On the other hand, the aging
effect, which results in increasing hazard rate over time, affects the manufacturing
equipment only on the long run, i.e. months or years. Hence, within the planning horizon,

the risk of having failure can be assumed constant.
Additionally, we assume time to shift follows an exponential distribution with rate vy,
h(t) =ye™ "

Finally, we assume the corrective and preventive repair times to follow uniform

distributions,

and,

After substitution and simplification, the expected production cycle cost can be expressed

as:

Coyete = Z1to2e "0t + zyt et + 736,27t — 7,1 et (r+A)

— z5e D) 4 77t 4 7



The constants z, to z, are given by:

_ cs(by — by)(d — p)?

Z = 2b,byd
d—p)|bic;p+cs(p—d
( p)[by gzd s(p )] — cppf

Zz = /,{

Z3 = Cppa;
cppa;(A—1)

Zy = —/,{

2 cppPB

Ty + A

(d —p)[bicip + cs(p — )]

1
Zg = E [—b1(01 + Csd) + b2 (Cz + Csd)] +

b,dA?
" cs(p—d) B coplBly — ) + a;v]
A yA?
1 (d —p)lesd — (byc; + c)p]l  ¢s(d —p)
Z7 = Co +§b1(cl+c5d)+ bLdl + F
cpplBy + Ay + D]
Ay+2)
The expected cycle length can be expressed as:
Teycle = vyt 2e "t — y t e tor — preTtod 4y,

The constants v; to v, are expressed as:
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(by — by)(d — p)*

171=

2b,b,d?
o p)?
27 p,d2A
b, — b, (d—P)Z 1
173 =

+ —_
2 b,d?2?> 2
b d—-p)3? 1
2 byd?az A
Our objective is to determine the optimal production run time ty which minimizes the
average cost per unit time, W(t,). In order to avoid unrealistic values of the optimal run

time, we will assume thatt, <t} <t, where t, and t, are the lower and the upper

bounds on t,, respectively and they are known in advance. The assumption of known
lower and upper bonds of production run time can be justified due to many aspects
including: machine design which prevents prolonged continuous run time to ensure
safety, and expected customer’s demand which suggests minimum amount to be

produced.

In order to prove the existence and uniqueness of the solution for our model, we will
prove that our cost function per unit time is quasi-convex. For Quasi-Convex functions,
every local minimum is a global minimum, or otherwise the function is flat (constant) in

the neighborhood of the local minimum (Greenberg and Pierskalla, 1971). If the function

W(t,) is quasi-convex over the set {t € [t,, t,]} then:
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W[0t, + (1 — 0)ty,] < max[W(t,1), w(ts2)]

For all © € [0,1] and all tyy, tyz € [to, to]-

W(t,) is a Quasi-Convex function over {t, € [t,,t,]} if any of the following conditions

holds, (Greenberg and Pierskalla, 1971):

1. Ceycie is convex and T¢y¢e > 0 all over {t, € [t,, t,]}

2. Ceycie is concave and T¢y,e < 0 all over {t, € [to, to]}-

3. Teycie is linear and Cpyce < 0 all over {t, € [t,,t,]}-

4. Teycre is convex and Cey e < 0 all over {t, € [t,, t,]}.

5. T¢ycle is concave and Ceyce = 0 all over {t, € [to, tol}-

In what follows, we prove condition 5:

To prove that the expected production-inventory cycle length; Ty e, is concave we need

to find its second derivative and check its negativeness;

2
d Tcycle

o e Mo[v, 2%t — (4vy A + v,A%)t, + 20y + 20,4 — v3A7]
o

The sign of the second derivative depends on the sign of the quadratic function in the
square brackets. The coefficient of the quadratic term, v;A? is positive since the time to

perform corrective repair is always greater than that needed to perform preventive
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maintenance, i.e. b; > b,. Hence, the quadratic function is convex. The minimum of

this function is given by:

A2 (vE + 4vyvs)
4v,

This is a negative value, hence there is an interval (ry,r,) over which the second
derivative of Tcye is negative, and hence Tey e is concave over this interval. In fact,

r; and r, are the roots of the quadratic function of the second derivative, and they are

given by:

AV A+ v - MW 8VZ 4+ A2(vZ + 4v,v3)
1= 2v,\?

and;

AV A+ VoA M 8VZ + A2(VZ + 4v,v3)
2= 2v,\?
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In conclusion, a unique solution is guaranteed if the following condition is satisfied:
1 <ty <t,<r, (3-2)

Figure 9 shows the quasi-convexity of the function W(t,) for selected set of parameters.
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Figure 9 Quasi-Convexity of the average cost function for model-I
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3.4 Results and conclusion

In this section, we use Wolfram Mathematica 8 in order to solve for the optimal
production run time t, and its associated average cost. In all calculations below, failure
and deterioration are assumed to follow the exponential distribution with rates A and y
respectively. In addition, corrective and preventive repairs are assumed to follow the

uniform distribution.

The lower and upper bounds on the production run time t, are assumed to imitate the

normal work shift that extends to 8 hours:

0<t,<8

The model parameters are: p = 180, d = 90, ¢, = 300, ¢; =30, ¢, =5, by =12,

b, =10,¢c; = 05,¢5 = 2,cp =3, = 0.1 and a; = 0.05.

Table 1 shows the dependency of the optimal production run time and the corresponding

average cost on failure and deterioration rates; A and y respectively.

Results show that under low deterioration rate (y = 0.1); the optimal production run time
increases when the failure rate A increases. This trend is justified because under low
deterioration rate, the chances are low for the system to experience process deterioration,
and hence defectives are unlikely to be generated; accordingly longer production run

times are suggested by the model even with increasing failure rate. On the other hand, the



51

average cost decreases as the failure rate increases for relatively low values of the failure

rate (A < 0.4), but it starts to increase when failure rate assumes relatively higher values.

Under relatively medium and high values of the deterioration rate (y > 0.3); the optimal
production run time decreases when the failure rate increases. This trend is justified
because under higher deterioration rates, the chances are higher to experience process
deterioration, and hence defectives are expected to be produced in a higher rate;
accordingly shorter production run times are suggested by the model in order to reduce
the instances of process deterioration and machine breakdown. On the other hand, and
under medium values of the deterioration rate (0.3 <y < 0.5); the average cost decreases
as the failure rate increases for relatively low values of the failure rate, but it starts to
increase when failure rate assumes higher values. Under high values of the deterioration

rate (y > 0.7); the average cost consistently increases as the failure rate increases.

Table number 2 shows that the condition in equation 3-2 is satisfied and all results in
Table 1 are indeed the unique solutions for the model under different values of failure

rate A.



TABLE 1 Dependency of the optimal production policy on A and y in model-I

y=0.1 y=0.3 y=05 y=0.7 y=0.9
Al W) |ty | W) |t | W) |t | W) |t | W)
0] 1.90 | 2234 | 320 | 201.1 | 3.18 | 1877 | 3.00 | 1812 | 2.84 | 1779
02| 254 | 1998 | 297 | 1903 | 291 | 1854 | 279 | 183.1 | 2.67 | 182.0
03] 274 | 1962 | 292 | 1912 | 2.82 | 1889 | 2.69 | 1879 | 259 | 187.6
04| 289 | 1973 | 291 | 1945 | 276 | 1933 | 2.63 | 1929 | 253 | 192.8
05| 3.04 | 1998 | 290 | 1983 | 272 | 1977 | 2.58 | 1976 | 248 | 197.6
06| 322 | 2028 | 290 | 2020 | 2.69 | 201.8 | 2.54 | 201.8 | 243 | 2019
07| 347 | 2059 | 299 | 2055 | 2.65 | 2055 | 2.50 | 2056 | 239 | 2057
08 | 395 | 2088 | 290 | 2088 | 2.62 | 2089 | 246 | 2090 | 234 | 209.2
09| 798 | 2116 | 299 | 2118 | 259 | 2119 | 241 | 2121 | 230 | 2122
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TABLE 2 Satisfying the optimality condition in model-I

53

A 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
n -0.85 -5.56 -7.18 -8.02 -8.54 -8.89 -9.16 -9.36 -9.51
T 140.85 75.56 53.85 43.02 36.54 | 32.23 29.16 | 26.86 25.07
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Figure 10 shows how the optimal production run time is affected by changing the
deterioration rate y and the deterioration factor B, under a fixed value of failure rate A =
0.5. As expected, the optimal production run time tends to decrease when the
deterioration factor B is increased while fixing the deterioration rate y. Similarly, the
optimal production run time decreases when the deterioration rate y is increased while
fixing the deterioration factor {3. In both cases, the model is trying to reduce the cost of
producing defective items by shortening the production run time, and hence reducing the

time interval while the system is in the out-of-control state.

Again optimality is guaranteed for calculations in figure 10 based on table 2 as both y and

B have no effect on r; and r,.

Figure 11 shows how the optimal cost is influenced by changing the deterioration rate vy
and the deterioration factor B. It is obvious that increasing any of the two parameters will
surely result in increasing the total cost. This result is fairly expected as increasing either
the deterioration rate or the deterioration factor will increase the rate of producing

defectives, which has direct effect on the cost function.

Figure 12 exhibits the same trend as in figure 10, but this time for different values of

failure rate A and under a fixed value of the deterioration rate y = 0.5.

Figure 13 exhibits the same trend as in figure 11, but this time for different values of

failure rate A and under a fixed value of the deterioration rate y = 0.5.
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Table 3 shows how the optimal production run time is affected by changing the corrective
repair cost ¢; under fixed preventive repair cost ¢,. An increase in the corrective repair
cost results in a decrease in the optimal production run time. Shorter run times mean
lower possibility of encountering failure, and hence the risk of incurring corrective repair

cost 1s minimized.

Table 4 shows how the optimal production run time is affected by changing the
preventive repair cost ¢, under fixed corrective repair cost ¢;. Increasing the preventive
repair cost results in increasing the optimal production run time. Longer run times mean
lower possibility of successful completion with no failure; in this case, the risk of

incurring preventive repair cost is minimized.

Again optimality is guaranteed for calculations in tables 3 and 4 based on table 2; cq, C,

and y have no effect on r; and r,.



TABLE 3 Sensitivity analysis by changing c; in model-I

;=5

A=0.1 A=0.5 A=0.9

¢ =09 y=05 y=0.1
t w(t;) t W(ts) t) W(ts)
1012890 | 174.169 | 3.060 | 185.389 | 8.000 | 194.946
1512879 | 175.098 | 2.979 | 188.504 | 8.000 | 199.103
201 2,867 | 176.025 | 2.895 | 191.596 | 8.000 | 203.259
25| 2856 | 176.950 | 2.811 | 194.662 | 8.000 | 207.416
30\ 2844 | 177.873 | 2.724 | 197.700 | 7.983 | 211.572
35| 2.833 | 178.794 | 2.635 | 200.709 | 3.768 | 215.695
401 2821 | 179.713 | 2.544 | 203.686 | 2.874 | 219.701
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TABLE 4 Sensitivity analysis by changing c, in model-I

c; =30

C2

A=0.1
y=0.9

A=0.5
vy=0.5

A=09
y=0.1

to

W(t5)

to

W(t5)

to

W(t5)

2.844

177.873

2.724

197.700

7.983

211.572

2.875

179.735

2.824

198.376

8.000

211.574

13

2.905

181.584

2.922

199.014

8.000

211.576

17

2.936

183.420

3.018

199.620

8.000

211.578

21

2.966

185.244

3.113

200.194

8.000

211.580

25

2.996

187.056

3.206

200.740

8.000

211.583

29

3.026

188.855

3.297

201.258

8.000

211.585
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In this chapter, we presented an EMQ model in which process deterioration and machine
breakdown jointly affects the optimal production policy. Model is built for general
failure, deterioration, corrective and preventive repair time distributions, but optimality is
proved for exponential failure and deterioration times, and uniform corrective and
preventive repair times. Process deterioration is assumed to take place gradually where
the rate of producing defective items starts, at some point, to increase with time following
a linear pattern. Process deterioration and machine breakdown events are assumed
independent of each other. Numerical results supported the capability of the proposed
model to be used as a decision making tool in finding the optimal production policy. The
work presented here can be extended in many directions; for instance, the process drift
can be assumed to follow an exponential pattern rather than a linear pattern that might
suit some applications. Additionally, inspection process can be incorporated in the model

especially that we already have defectives production and in increasing rate.

One interesting extension to this model is by considering that machine failure, if
happened, is always preceded by process deterioration, and hence the system will never
encounter production cycles with failure but no deterioration. In the following chapter,

we develop this model and study its behavior.

3.5 Maintenance material and spare parts costs

In the primary model, the assumption is made that the cost of maintenance is solely due

to the time spent in performing it. This assumption might be acceptable in some
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circumstances in which maintenance does not require spare parts and other consumables.
In many situations, cost of material required to perform maintenance is significant,
accordingly we can modify the corrective and preventive maintenance costs as in the

following:
Corrective maintenance Cost
to 0 to
= Cl'.[ f ll'gl(ll)'f(t)' dll. dt + Clm.f f(t). dt
t=0 ll=0 t=0

Similarly, the preventive maintenance cost is expressed as:

Preventive maintenance Cost

= Cz-j j lr. g2(15)- f(0). dly. dt + com f(t).dt
t=t, J1,=0

t=t,

C1m and ¢, represent the cost of material needed in performing one corrective or
preventive maintenance action respectively. It is important to emphasize on the fact that
in a single production run, either corrective or preventive maintenance action is

performed once.



CHAPTER 4

PRODUCTION LOT SIZING MODEL-II

4.1 Introduction

In the previous model (Model-I) we assumed that the process deterioration and machine
failure are two independent events; hence the two random variables t and 7 are
independent. Therefore, not every machine failure is coming after deterioration, and
similarly; not every process deterioration occurrence is followed by machine failure. In
this chapter, we will develop a production lot sizing model in which process deterioration
and machine failure are correlated; meaning that machine failure can happen only if

preceded by process deterioration.

Same notation as in chapter three will be used here; the only difference is that the time to
failure t will be considered to start from the time when deterioration starts; i.e. after T,

instead of starting from the beginning of the production-inventory cycle.

64
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4.2 Model Formulation

The model developed in this chapter is similar to that developed in chapter three,
accordingly we will not repeat model description and we go directly to building the

mathematical model.

The rate of producing defectives starts to increase linearly with time after some random
time t. Process transition from in-control to out-of-control state follows the following

linear equation:
ay =a;+ By

Figures 14 to 19 show all possible scenarios that any single production cycle may

encounter.

Fig.14 shows the case in which both process deterioration and failure take place but no
shortage is encountered because corrective repair is finished before the inventory is

completely depleted, [; < %.

Figure 15 shows the case where process deterioration, failure and shortage are

encountered. Shortage happens because corrective repair extended for longer time

(p—d)(z+t)

beyond the point of zero-inventory, [; > "
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Figure 14 Deterioration-Failure-No Shortage Case in Model-11
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In figure 16, deterioration takes place, but neither failure nor shortage is encountered. In
this case, the preventive maintenance action is finished before the inventory is completely

depleted, [, < %.

In figure 17, deterioration and shortage are encountered but no failure takes place.

Shortage happens because the preventive maintenance extended for longer time beyond

(r-d)t,o

the point of zero-inventory, [, > n

In figure 18 no deterioration, no failure and no shortage are encountered. In this case, the
preventive maintenance action is finished before the inventory is completely depleted,

(p—dto
I, < @2,

In figure 19, no deterioration and no failure take place, but shortage is encountered.
Shortage happens because the preventive maintenance extended for longer time beyond

(p—d)to

the point of zero-inventory, [, > m

Those 6 figures show all possible scenarios resulting from the randomness of time to shift
T, time to failure t, corrective maintenance duration, l;, and preventive maintenance
duration, [,. We note that, no case in which failure happens without being preceded by

process deterioration as we stated earlier as an assumption for this model.
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The expected length of a production-inventory cycle is given by:

(p-d)(T+t) d) (+8)

fo=t p—d)(T+
Tcycle = .[ Ojt ( +t+ %) gl(ll)f(t) h(T) dll dt.dt

0o Ji,=0

to to ©
+f fto fz @)+ Tt g:1()f©).h(@). dly.dt.dr

=0

(p- d)o

to [e9) _d
.[ .[ f ( @ d o ) g2(lL). f(t). h(z).dl,.dt.dt
=0Jt=to—7“1,=0

to [e9) 0
.[_ f_ f _(p-dt, (to +12).g2(l). f (). h(7).dl,. dt.dt

0 2(pd

—+

+

(p—-Dt,

<to + %) .9,(1). h(¥). dl,. dt

I A GRS R RO R

The first term in the expected cycle length represents those cycles that will encounter
deterioration followed by failure but with no shortage (Figure 14). The second term
represents cycles with deterioration followed by failure and in which shortage is
encountered due to prolonged corrective repair (Figure 15). The third term represents
cycles with deterioration but no failure and no shortage (Figure 16). The forth term
represents cycles with deterioration and shortage but no failure (Figure 17). The fifth
term represents cycles with no deterioration, no failure and no shortage (Figure 18). The

last term represents cycles with no deterioration and no failure, but in which shortage is
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encountered (Figure 19). The expected length of the production-inventory cycle can be

reduced to:

(p—d)(T+t) d) (t+ t)

to—T
f f - (T +t).9.(L).-f().h(7).dl;.dt. dT
=0Jt=0 Ji=

1=

to to— o)
+f, ft f @-a)a+t) T T+ 1) g1(L)-f(©). h(z). dly. dt. dT

=0 0 ll

t oo
? p
+ j f E.to.gz(lz).f(t).h(T).dlz.dt.dT
7=07t=ty,—7 ’1,=0
to [es) %)
+ f f (to +15).92(,). f(t). h(T).dl,.dt.dT
T=0Yt=ty,—T 12=(p ;)t
. (p—-Dt,
a p
+f E'tO'gZ(ZZ)'h(T)'dZZ'dT
T—to 12—0

* .[ j At (to +12).92(1x). h(7).dly. dt
Iy —O
d

The total expected cost per production-inventory cycle is composed of setup cost, repair
costs (corrective and preventive), inventory holding cost, shortage cost, and the cost due

to producing defective items:

Ceycie = Setup Cost + Corrective Repair Cost

+ Preventive Repair Cost + Inventory Holding Cost

+ Shortage Cost + Defectives' Cost
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The corrective repair cost is simply the expected corrective repair time multiplied by the
cost per unit time and finally multiplied by the probability of encountering deterioration

followed by failure (Figures 14 and 15). The corrective repair cost is given by:

Corrective Repair Cost

to to—T po©
= Cl'.[ f f ll.gl(ll).f(t).h(T).dll.dt. dT
=0t ll=0

=0

The preventive repair cost is given by:
Preventive Repair Cost
to [ee) [e9)
= Cz.j .[ f lz.gz(lz).f(t).h(T).dlz.dt. dt
T=0"Yt=t,—7Y1,=0

+cz.f f l.9,(13). h(7).dl,. dt
T=to 12=0

The first term in the preventive repair cost is simply the expected preventive repair time
multiplied by the cost per unit time and finally multiplied by the probability of
encountering deterioration but no failure (Figures 16 and 17). The second term represents

cycles with no deterioration and no failure (Figures 18 and 19).

The inventory holding cost is given by:
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Inventory Holding Cost

to to—T —
_ Ci'Lo LO %.<T+t+ @ d)a'l(f”)) (0 —d). (T + 1) . F(©). h(r). dt. dr

to o 1 (P _d)to
+ ci.fT:OLto_Tz. <t0 +T>.(p —d).t,.f(t).h(r).dt. dt

+ ci.jio % <to + %) (p — d)ty h(2). dr

The first term in the inventory holding cost expression is the inventory holding cost per
unit product per unit time multiplied by the average on hand inventory for cycles with
deterioration followed by failure (Figures 14 and 15). The second term represents cycles
with deterioration but no failure, t = t, — 7 (Figures 16 and 17). The last term represents
cycles in which neither deterioration nor failure is encountered. The inventory holding

cost can be reduced to,

Inventory Holding Cost

B to to—‘L'l p
= CilL:o-’t:o > (p—d).(r + )% f(t).h(r).dt.dT

to © 1
+ Ci.f f .
=0 Jt=t,—7T 2

©° 1
+ ci.j 5.%.@ —d).t,2 h(o).dt
T=t,

QU3

(p—d).t,%. f(t).h(r).dt.dt

The shortage cost is given by,
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Shortage Cost

_ fo [tomt (p-d)(@+t)
= ¢,.d. f _ ft _ fl . (11 —f) g.(1y). F(£). h(z). dly. dt. dv

N @ (p —d)t,
+ cg. d. l, —————|.g2(L). f(t).h(7).dl,. dt.dT
=0 Jt=t. ¢ J,=@=Dto d
o 2 d

Y (p —d)t,
+ Cs. d. tho fzz(p—;)to (lz - T .gz(lz). h(T). dlz. dt

The first term in the shortage cost expression is the expected length of the shortage period
multiplied by the demand rate and finally multiplied by the shortage cost per unit product
for cycles with deterioration followed by failure and in which shortage is encountered
(Figure 15). The second term represents cycles with deterioration and shortage, but no
failure (Figure 17). The last term represents cycles in which shortage is encountered but
neither deterioration nor failure is encountered (Figure 19). Shortages in our model are
considered as lost sales; accordingly, shortage cost is calculated based on the maximum

shortage in units of the product rather than the average.

The defectives cost is given by;
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Defectives Cost

to rto—T
=Dp.Cp. al-f f 7. f(t). h(7).dt. dt

=0Yt=0

to rto—T pt
+p. CD.f f f ay .dy. f(t).h(r).dt.dt
=07t y=0

=0

to o
+p.cp. a,.f f T.f(t). h(7).dt.dt
T=0Jt=t,—T

to oo to—T
+p.cD.f f f a,.dy.f(t).h(z).dt.dt
T=0Yt=t,—7 “y=0

0

+p.cp.qa;. to.f h(t).dt

T=t,
The first term in the defectives cost expression gives the cost of defectives produced
during the in-control state for cycles in which deterioration is followed by failure
(Figures 14 and 15). The second term gives the cost of defectives produced during the
out-of-control state for cycles in which deterioration is followed by failure (Figures 14
and 15). The third term gives the cost of defectives produced during the in-control state
for cycles in which only deterioration is encountered but no failure (Figures 16 and 17).
The forth term gives the cost of defectives produced during the out-of-control state for
cycles in which only deterioration is encountered but no failure (Figure 16 and 17).
Finally, the last term gives the cost of defective produced during cycles in which neither

deterioration nor failure is encountered (Figures 18 and 19).

We assume the following probability distributions for failure, deterioration, corrective

repair and preventive repair times respectively as given below:
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f(t) =1e M

h(t) = ye™ "

1
A b_'O <L <bh
1

1
g.(1y) = b_'O <l < b,
2

From renewal theory, the average cost per unit time is given by,

Ccycle (to)

W(tO) B Tcycle (to)

4.3 Results and Conclusion

In this section, we use Wolfram Mathematica 8 in order to solve for the optimal
production run time t, and the corresponding average cost. In all calculations below,
failure and deterioration are assumed to follow the exponential distribution with rates A
and vy respectively. In addition, corrective and preventive repairs are assumed to follow

the uniform distribution.

The lower and upper bounds on the production run time t, are assumed to imitate the

normal work shift that extends to 8 hours:
0<t, <8

We chose the following parameters: p = 180, d =90, ¢, = 300, ¢; = 30, ¢; = 5,

b1 = 12, b2 = 10, Cr = 05, Cg = 2, Cp = 3, ‘8 = 0.1 and o = 0.05.
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Table 5 shows the dependency of the optimal production run time and the corresponding

average cost on failure and deterioration rates, A and y respectively.

In general, table five shows that the average cost always increases by increasing the
failure rate A regardless of the value of deterioration rate vy, but it is worthy to notice that
as y getting larger; the average cost increased in greater rate over the given range of A.
For instance; under y = 0.1 the average cost increases only by 3.7 over A changing
between 0.1 and 0.9; on the other hand, the average cost increased by 19.6 under y = 0.9
over the same range of A. This behavior can be explained by noticing that in this model
we assume that failure, if happened, is always preceded by deterioration, and hence when
y assumes larger values not only the chances for deterioration are increased but also the

chances for failure increases as well.

Results from table 5 also show that under low deterioration rate (y = 0.1) the optimal
production run time increases when the failure rate A increases. This trend is justified
because under low deterioration rate, the chances are low for the system to experience
process deterioration, and hence defectives are unlikely to be generated; accordingly
longer production run times are suggested by the model even with increasing failure rate.
Another point of view comes again from the assumption of failure is always preceded by
deterioration, and hence as deterioration is unlikely to happen, failure is even more
unlikely to happen, and so the model suggests longer run times even with increasing the

failure rate.
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Table 5 also shows that under high values of the deterioration rate (y = 0.9); the optimal
production run time consistently decreases when the failure rate increases. This trend is
justified because under higher deterioration rates, the chances are higher for the system to
experience process deterioration, and hence defectives are expected to be produced in a
higher rate; accordingly shorter production run times are suggested by the model in order

to reduce the instances of process deterioration and machine failure.

Finally, table 5 shows that for intermediate values of deterioration rate (y = 0.3 and 0.5);
the optimal production run time decreases then start to increase by increasing the failure
rate A. In this case, the model is trying to balance between the effect of process

deterioration and machine failure and their associated costs.

Table 6 shows how the optimal production run time and the corresponding average cost
are affected by changing the corrective repair cost c;. Results show that an increase in
the corrective repair cost leads to consistent decrease in the optimal production run time.
Shorter run times mean lower chances of encountering failure, and hence the risk of
incurring corrective repair cost is minimized. Increasing the corrective repair cost results

in increasing the average cost, which is fairly expected.



TABLE 5 Dependency of the optimal production policy on A and y in model-IT
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N y=0.1 y=03 y=05 y=0.7 y=09
W(ts) t W(t5) to W(ts) to W(ts) to W(ts) to

0.1 | 151.71| 3.03 | 157.07 | 2.79 |160.72 | 2.64 | 163.39 | 2.55 | 165.43 | 2.48
02 |152.44 | 3.04 |158.96 | 2.78 |163.41| 2.62 |166.68 | 2.52 |169.17 | 2.44
0.3 | 153.07 | 3.05 | 160.57 | 2.78 |165.74 | 2.61 |169.51 | 2.49 |172.39| 241
04 |153.61| 3.05 |161.97 | 2.79 |167.75| 2.60 | 17198 | 2.47 | 175.20 | 2.38
0.5 |154.07 | 3.06 | 163.19| 2.79 |169.51 | 2.60 |174.14 | 2.45 |177.66| 2.35
0.6 |154.47 | 3.07 |164.25| 2.80 |171.06| 2.60 | 176.04 | 2.44 | 179.82 | 2.33
0.7 | 154.82 | 3.08 |165.19 | 2.82 |172.43 | 2.60 |177.72 | 2.44 |181.74| 2.31
0.8 | 155.13 | 3.09 | 166.01 | 2.83 |173.64 | 2.61 |179.22 | 2.43 |183.45| 2.30
09 (15540 | 3.10 |166.74 | 2.84 |174.72 | 2.62 | 180.55| 2.43 | 184.98 | 2.29




TABLE 6 Sensitivity analysis by changing ¢; in model-II

¢, =5

A=0.1 A=05 A=09
o y=09 y=0.5 y=0.1

W(ts) to W(t5) to W(ts) to

10 1 163.32 | 2.54 |163.59| 2.81 |152.78| 3.18
151163.85| 252 |165.11| 2.76 |153.44| 3.16
20 | 164.38 | 2.51 |166.61| 2.70 |154.10| 3.14
25116491 | 249 |168.07| 265 |154.75| 3.12
30 | 165.43 | 2.48 |169.51| 2.60 |155.40| 3.10
35116596 | 2.47 |17093| 254 |156.04| 3.08
40 | 166.47 | 2.45 |[172.32| 249 |156.68| 3.06
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Table 7 shows how the optimal production run time and the corresponding average cost
are affected by changing the preventive repair cost c,. Increasing the preventive repair
cost results in increasing the optimal production run time. Longer run times mean lower
possibility of successful completion with no failure; in this case, the risk of incurring
preventive repair cost is minimized. Again and as expected, increasing the preventive

repair cost results in increasing the average cost.



TABLE 7 Sensitivity analysis by changing c, in model-II

c; =30

A=0.1 A=10.5 A=109

c, y=09 y=0.5 y=0.1
W(t5) to W(ts) ts W(ts) to

5 116543 | 248 169.51| 2.60 |155.40| 3.10
9 |167.65| 2.51 171.10| 2.66 | 157.32| 3.15
13 1169.85 | 2.55 172.64 | 2.73 159.21| 3.20
17 1 172.04 | 2.58 17413 | 2.80 |161.09| 3.24
21 | 17420 | 2.62 175.59 | 2.87 162.95| 3.29
25 1176.35| 2.65 177.00 | 294 |164.79| 3.34
29 | 178.48 | 2.68 178.38 | 3.01 166.61 | 3.39
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In this chapter, we presented an EMQ model in which process deterioration and machine
breakdown jointly affects the optimal production policy. Model is built for general
failure, deterioration, corrective and preventive repair time distributions, but numerical
analysis is carried out under exponential failure and deterioration times, and uniform
corrective and preventive repair times. Process deterioration is assumed to take place
gradually where the rate of producing defective items starts, at some point, to increase
with time following a linear pattern. Process deterioration and machine breakdown events
are assumed dependent in the sense that machine failure, if happened, is preceded by
process deterioration and it cannot happen alone. Numerical results supported the
capability of the proposed model to be used as a decision making tool in finding the

optimal production policy.



CHAPTER 5

EOQ IN RETAILING INDUSTRY MODEL-I

5.1 Introduction

In retailing industry, suppliers tend to offer a fixed credit period to settle the account in
order to stimulate retailer’s demand. During the credit period, retailers start selling to
their direct customers and accumulate revenue. If the retailer fails to settle the account by
the due time, the supplier charges interest. This “buy now and pay later” agreement is
beneficial for both parties involved. From supplier’s point of view; trade credits
encourage the retailer to buy more and it can be seen as an effective promotional tool that
attracts new customers (retailers). On the other hand, trade credits help retailers in
lowering their overall cost and increasing profit thru earning interest on revenue collected
during the credit period. Credit period is also offered by retailers to their direct customers

in order to positively influence the demand.

In this chapter, we will develop an EOQ model in which the supplier offers credit period
to his customer (retailer); also, the retailer offers a credit period to his direct customers

(end consumers). Demand is assumed to depend on the length of the credit period offered

87



88

by the retailer to his customers. The purpose of the model is to determine the optimal

order quantity that would maximize the retailer’s profit.

The following notations are used in developing the mathematical model:

~ v A > N9 =z x U

~ —~
< [

a
r
Dmin

Dmax

Demand rate

Replenishment rate

Credit period offered by the retailer to his customers
Credit period offered by the supplier to the retailer
Inventory cycle length

Ordering cost per order

Unit purchase price of the item

Unit selling price of the item

Inventory carrying cost per unit of the item per unit time
Interest rate that can be earned per unit currency per unit time
Interest rate payable per unit currency per unit time

Bad debt ratio

Rate of saturation of demand

Minimum demand

Maximum demand

Z(T,N) Retailer’s profit per unit time

The following assumptions are made to develop the mathematical model:

1.

The replenishment rate R form the supplier to the retailer is finite and it is greater

than the maximum demand rate D, .
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. The supplier offers a fixed credit period M to the retailer to settle the accounts. As
the relenishemet rate is finite; we assume counting for M to start at the point when
delivery of the whole lot is completed.
. The retailer offers a fixed credit period N to each of his customers to settle their
acounts. However we assume a percentage of sales a will never be collected and
it is considered as bad debts.
. The demand rate is a function of the customer’s credit period offered by the
retailer (N), and is given by (Jaggi et al 2008):

D = Dimax = (Dmax = Dmin) (1 = 1)V
In which Dy, 4, is the maximum possible demand, D,,;,, is the minimum demand
and 7 is the saturation rate of demand, and all are constant quantities and can be
estimated using market conditions and past data. Figure 20 shows the demand
function for different values of saturation rate r with D,,;,, = 50 and D, 4, =
100.
Shortages are not allowed.
Sales revenue after deducting the bad debts is still greater than the purchasing

cost,ie. (1—a)P=>C
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Figure 20 Credit linked demand function
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5.2 Model Formulation

The retailer receives the whole lot by time % (Figure 21). The payment of the whole lot

o . DT . .
to the supplier is due at time = 1 M. The retailer starts to collect revenue from his

customers at time N and it continues until time N 4+ T. There are three cases to be

considered here. In the first case, the payment to the supplier is due some time after the

. . DT .
retailer has already started to collect revenue i.e. N < =71 M and before the retailer

. . DT
receives all the revenue i.e. =71 M < T+ N. In the second case the payment to the
supplier is due after the retialer has received all revenue from sales to his customers, i.e.

T+N< % + M. The last case is when the payment to the supplier is due before the

. . . DT . . .
retailer receives any revenue, i.e. =71 M < N. We discuss these cases in the following
sections.

The retailer’s profit per unit time is defined by sales revenue, ordering cost, purchasing

cost, inventory-holding cost, and finally interest earned and/or paid depending on the

time at which supplier payment is due.



A Inventory Level

[
[
[
D | -D
R |
|
[
: Time
. |
¢ DT N
b d
R

Figure 21 Inventory Level
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Sales revenue per unit time is the demand rate multiplied by the unit-selling price, and

finally multiplied by (1 — a) to exclude bad debts. Sales revenue is expressed as:

Sales Revenue = (1 — a)DP (5-1)
Ordering cost per unit time is simply the cost of ordering divided by the inventory cycle
length:

A
Ordering Cost = T (5-2)

Purchasing cost per unit time is simply the unit-purchasing price multiplied by the

demand rate:
Purchasing Cost = CD (5-3)

Inventory holding cost per unit time is the average inventory multiplied by the inventory

holding cost per unit of the product per unit time; I (Figure 21):

1 D
Inventory Holding Cost = - IDT (1 — E) (5-4)

As mentioned earlier, different cases arise depending on the due time for the supplier
payment. All three cases have the terms in equations (5-1) to (5-4) in their profit

functions, accordingly we define Z, as:
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Z, = (1-a)DP — 2 ¢D 1IDT(1 D)
0= @ T 2 R

Interest earned and interest payable differs for each of the three cases and they are

explained in the following sub-sections.

5.2.1 Casel
In this case (Figure 22), the retailer starts getting actual sales revenue at time N, until

. DT . . . .
time —+ M retailer earns interest on average sales revenue for the time period
DT . DT o . .

=71 M — N. From time =71 M until time T + N supplier charges interest on (a) the
average quantity of items with their debt successfully collected from end users, and (b)

the full quantity of items considered as bad debt.

Case I happens when the following condition applies:

DT DT
(NS?'FM)&(?'FM ST+N)
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It should be clear that under case I an assumption is made implying that the retailer pays

the supplier according to the following procedure:

a. At time DT(T + M, the retailer pays the supplier for the quantity that their debt is
collected successfully by that time.
b. During the time period T + N — DT(T — M, the retailer continuously (i.e. at the end

of each day) pays the supplier for quantities that their debt is successfully
collected, in addition to interests due on their value.
c. At the end of debt collection period; i.e. (T + N), the retailer pays the supplier for

the bad debt quantity in addition to interests due on their value.

Interest earned per unit time is given by:

I,(1 — @)PD (%T +M— N)2

2T

Interest payable per unit time by the retailer to the supplier is given by:

%Ip(l—a)CD(T+N—%—M)2+IpaCDT(T+N—%—M)
T

Interest payable can be reduced to:
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CDI,,(R%)T+N—M)<(1—a)[REDT+N—M]+2aT>

2T

Accordingly, the retailer’s profit per unit time in this case is given by:

Z{(T,N) = Z, + Interest Earned — Interest Payable

I,(1 - a)PD (%T +M - N)2

2T

Z(T,N) =Z, +

CDIp(REDT+N—M)<(1—0()[REDT+N—M]+2aT>

2T

5.2.2 Casell

In this case (Figure 23), the retailer earns interest on average sales revenue during the
period (N, T 4+ N) and on full sales revenue for the time period (% +M-T- N). Under
case II, the retailer makes a single payment to the supplier at time % + M of value CDT

with no extra interest as he makes the payment on the due time with no delay.

Case II happens when the following condition applies:

DT
T+N<—+M
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Interest earned per unit time is given by:

%(1 — &)I,PDT? + (1 — a)I,PDT (% +M—T— N)
T
Interest earned can be reduced to:
2 —
(1—a)DIeP< T+M—N)

Accordingly, the retailer’s profit per unit time in this case is given by:

Z,(T,N) = Z, + Interest Earned

2
ZZ(T,N):ZO+(1—a)DIeP< T+M—N)

5.2.3 Case III

In this case, (Figure 24), the supplier payment is due even before the retailer start

collecting debt from his customers. In this case the retailer earns no interest but pays
. . . DT .
interest on full order quantity for a period of N — - M, and for a period of T he pays

interest on (a) average quantity of items with their debt successfully collected, and (b) the

full quantity of items considered as bad debt.
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Case III happens if the following condition applies:
T +M<N
R <

Under case III, the retailer pays the supplier according to the following procedure:

a. During the time period extending from N to T + N, the retailer continuously (i.e.
at the end of each day) pays the supplier for quantities that their debt is
successfully collected, in addition to interests due on their value.

b. At the end of debt collection period; i.e. (T + N), the retailer pays the supplier for

the bad debt quantity in addition to interests due on their value.

Interest payable per unit time by the retailer to the supplier is given by:

1,CDT (N - LU M) + al,CDT? +2(1 - @),CDT?
T

Interest payable is reduced to,

. (1+a)R —2D
p 2R

T+N—M>

Accordingly, the retailer’s profit per unit time in this case is given by:

Z3(T,N) = Z, — Interest Payable
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(1+a)R—-2D
2R

Z3(T,N)=ZO—CDIp< T+N—M>

5.2.4 Retailer’s Profit Function
Combining the results from the three cases discussed above, the retailer’s profit function

is given by:

DT
Z(T,N), NSF+MST+N
DT
Z(T,N) =1 Z,(T,N), T+N<—+M
DT
Z3(T,N), +M<N

which is a function of two variables T and N where T is continuous and N is discrete.

5.3 Optimality

Our problem is to determine the optimum values of T and N which maximizes the
retailer’s profit Z(T,N). For a fixed value of N, we find the second derivatives of
Z,(T,N), Z,(T,N) and Z3 (T, N) with respect to T, we get:

—24—- (1 -a)D(M — N)?(CIL, — P1,)
T3

Z{(T,N) =

and:

. —24
Z,(T,N) =
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and,

For a fixed N, Z, (T, N) and Z;(T, N) are concave on T > 0. However Z, (T, N) is concave

on T > 0 if the following condition applies:
(1-a)D(M — N)?(CI, — P1,) > —24 (5-5)

It is worthy to notice that if CI, > Pl,, then the concavity of Z; (T,N) is guaranteed,

otherwise condition 5-5 should be tested to conclude if Z; (T, N) is concave or not.

5.4 Solution Procedure

In order to jointly optimize T and N, we propose the following algorithm:

1. SetN =1.
2. Search for the optimal values of T (i.e. Ty, T, and T5) which maximize
Z,(T,N), Z,(T,N) and Z5 (T, N) respectively on T > 0.

DT

3, If(NS :

+M<T] + N); set T* =Ty and Z* = Z; then go to step 4. If the
condition is not satisfied go to step 5.

4. It Z*(T,N) > Z*(T,N — 1), increment the value of N by 1 and go to step 2, else
previous value of N (i.e. N — 1) is optimal and its corresponding values of T and

Z(T,N) are retrieved and algorithm is terminated.
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DT;

5.1 (T3 +N <2

+ M); set T* =T, and Z* = Z, then go to step 4. If the

condition is not satisfied go to step 6.

DT}
R

6. If( +M < N); set T* = T3 and Z* = Z3 then go to step 4.

The aforementioned algorithm is coded in Mathematica 8 to produce numerical results

presented in the following section.

5.5 Results and Conclusion

We chose the following values of model parameters: R = 150, D, = 100, Dp,;, = 30,

r=0.12,A=1000,C=30,P=40,I, =10%, I, = 15%, I = 20 and a = 0.05.

Table 8 shows the effect of changing M on the optimal policy (T*and N*) and the
associated cost. The optimal cycle length is slightly affected by increasing M. Mainly
three types of cost affect the behavior of the model. Ordering-cost pushes the model for

higher values of cycle length. Inventory holding cost demands shorter cycle lengths.

DT*
R

Interest payable is defined by the location of supplier payment due time + M which is

governed by the cycle length and the supplier credit period M. Increasing M helps in
deferring the supplier payment and hence the cycle length can stay almost unchanged to

keep the balance between ordering cost and inventory holding cost.

The retailer’s credit period N is also slightly affected by increasing M. Increasing

N positively affects the demand which is in turn helps in increasing sales revenue and
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deferring the supplier payment due time (DTT* + M). But that effect is limited as explained

by the demand function, and the demand rate almost attains its maximum at N = 32 and
there is no tangible benefit by increasing N. Also increasing N in larger magnitudes
would render the model in case III, which is not preferable in terms of interest payable as
the supplier payment might be due even before the retailer start collecting debt from his

customers.

Finally the retailer’s profit increases consistently by increasing M which is self explained

as this leads to deferring supplier payment due time with no extra interest.

Table 9 shows the effect of changing the ordering cost A on the optimal policy.
Obviously increasing A results in increasing the optimal cycle length in order to distribute
the ordering cost over larger quantity. On the other hand, retailer’s credit period is not
affected by increasing A. As expected, retailer’s profit decreases by increasing the

ordering cost.



TABLE 8 Effect of changing M on the optimal policy
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M T* N* D D;* +M | Case Z(T*,N*)
0 36.26 32 98.83 23.89 11 696.48
10 | 36.16 32 98.83 33.83 I 708.66
20 | 35.86 33 98.97 43.66 I 720.62
30 | 35.68 33 98.97 53.54 I 732.26
40 | 3572 33 98.97 63.57 I 743.54
50 | 36.38 34 99.10 74.03 I 754.27




TABLE 9 Effect of changing A on the optimal policy

A T* N* Z(T*,N*)
500 | 25.236 33 748.679
1000 | 35.6788 33 732.263
1500 | 43.6932 33 719.664
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Table 10 shows the effect of changing the saturation rate r on the optimal policy.
Increasing r leads to decreasing N; larger values of r requires smaller values of N in
order to achieve the maximum demand as explained by the demand function. Increasing r
has tiny effect on the optimal cycle length. Retailer’s profit increases with r; higher
values of r means high demand rate while still offering relatively short credit period.

Shorter credit periods mean early collection of debt from retailer’s customers.

Table 11 shows the effect of changing R on the optimal policy. Increasing the
replenishment rate leads to a decrease in the optimal cycle length. Increasing R leads to
an increase in the inventory holding cost, and hence the model suggests shorter values of
cycle length in order to overcome this effect. Increasing R has tiny effect on N. Retailer’

profit decreases by increasing R which is fairly expected as supplier payment due time

(DTT* + M) is becoming earlier.

Table 12 shows the effect of changing the bad debt ratio o on the optimal policy.
Increasing a results in a marginal decrease in both T and N. Retailer’s profit decreases by

increasing o which is expected as sales revenue decreases.



TABLE 10 Effect of changing r on the optimal policy

r T* N* Z(T*,N*)
0.09 | 35.6337 41 719.283
0.12 | 35.6788 33 732.263
0.15 | 35.7911 28 740.468
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TABLE 11 Effect of changing R on the optimal policy

R T* N* Z(T*,N*)
125 | 60.2143 34 755.019
150 | 35.6788 33 732.263
175 | 29.5076 33 720.496
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TABLE 12 Effect of changing o on the optimal policy

a T* N* Z(T*,N*)
0.025 | 36.0731 34 831.8
0.05 | 35.6788 33 732.263
0.075 | 35.2937 32 632.85
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The model in this chapter is designed to determine the optimal order quantity and the
optimal trade credit period that can be followed in the retailing industry to maximize the
retailer’s profit. In the following chapter, we present a modified version of this model; in

which, the retailer pays the wholesaler according to a different procedure.



CHAPTER 6

EOQ IN RETAILING INDUSTRY MODEL-II

6.1 Introduction

In this chapter, we develop a model similar to that in chapter 5. The main difference in
this model is the procedure in which the retailer pays the supplier; and this is thoroughly
explained in the following sections. Same assumptions apply as those in chapter five,
with the exception of the procedure of paying the supplier as mentioned before.

Concerning notation, same used as in chapter 5 with addition of the following 2:

S Supplier profit per unit product

w Supplier’s profit per unit time

6.2 Model Formulation

The retailer receives the whole lot by time % (Figure 21, ChS). The payment of the

L . DT .
whole lot to the supplier is due at time Y + M. The retailer starts to collect revenue

from his customers at time N and it continues until time N + T. There are three cases to

be considered here. In the first case, the payment to the supplier is due sometime after

. . DT .
the retailer has already started to collect revenue i.e. N < =7t M and before the retailer

113
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. . DT
receives all the revenue i.e. =t M < T+ N. In the second case the payment to the
supplier is due after the retailer has received all revenue from sales to his customers, i.e.

T+N< % + M. The last case is when the payment to the supplier is due before the

) ) . DT ) .
retailer receives any revenue, i.e. Y + M < N. We discuss these cases and their sub-

cases in the following sections.

The retailer’s profit per unit time is defined by sales revenue, ordering cost, purchasing
cost, inventory-holding cost, and finally interest earned and/or paid depending on the

time at which supplier payment is due.

Sales revenue, ordering cost, purchasing cost and inventory holding cost in this model are

similar to those in chapter 5, and they are combined together in one expression:

Z = (1—a)DP —2_¢D 1IDT<1 D)
0= @ T 2 R

Interest earned and interest payable differs for each case and they are explained in the

following sections.

6.2.1 Casel

In this case (Figure 25), the retailer starts getting actual sales revenue from time N to

DT . . ., DT
=1 M and earns interest on average sales revenue for the time period =71 M —N. At

time % + M accounts should be settled with the supplier; total purchasing cost of value
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CDT is due at this time. If the sum of sales revenue and interest earned accumulated by
that time is less than the purchasing cost, then the retailer pays the accumulated cash and
the rest of the payment is considered as a loan. This loan to be paid off with interest at the
end of debt collection period (T + N). On the other hand; if the accumulated cash equals

or exceeds the purchasing cost, then the retailer pays to the supplier in full.

Case 1 happens when the following condition applies:

Accumulated sales revenue ($) at time DT(T + M is given by:
DT
(1—0()PD <?+M—N>

. . DT .
Accumulated interest earned ($) at time =1 M is given by:

2

1 DT
5(1 - (X)IePD (7+M —N)
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Accordingly, the loan value (if needed) is given by:

2

DT 1 DT
CDT—(l—a)PD<?+M—N)—E(l—a)IePD<?+M—N>

The loan expression can be reduced to,
DT 1 [DT
CDT — (1 —(X)PD(?-I'M—N)(l +§Ie [?-FM—N])

The loan function above is quadratic in T and can be expressed as:
Loan = v;T? + v,T + v

V4, VU, and vy are expressed as:

(1 — a)PI,D?
Y P
DRC — (1 — @)PD?(1 + I[M — N])
v, =
R
vy = — a ; @) PD(M — N)(2 + I,[M — N])

117

Since v; is a negative quantity, the quadratic function is concave. The roots of this

quadratic function are given by:
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—Vy + V3% — 4V 1,

21,

and

—V, — V22 — 4v1v5

21,

Not that r; < r, since v4 is negative, also r, can be negative; and hence both roots can be
negative when both v, and v3 are negative (which is already possible). Figure 26 shows
all possible scenarios for the loan function in terms of the location of its roots. In case (a),
both roots are negative; and hence the loan function is never positive over positive values
of T. In (b) the loan is positive over some period from zero to r,. In (c) the loan is
positive over the period from r; to r,. Finally, in (d) the loan function is always negative

and there is no real roots for the loan function.
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Figure 26 The loan function
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Based on the loan function, two sub-cases under case one are considered and they are

explained below in the following two sub-sections.

6.2.1.1 Casel.l

. ) . DT .
In this sub-case the accumulated cash at retailer’s hand at time = + M is less than the

purchasing cost (CDT), accordingly a loan should be arranged. Case 1.1 happens when

the following condition applies:
(4vv3 < v,)& (i < T <1y)

The loan is paid off with its interests when all debt is collected from customers at time

T + N (excluding bad debts). Consequently, interest payable per unit time is given by:

1,,(T+N—%T—M).Loan

T

. . . DT .
The retailer earns interest on average sales revenue from time N to =71 M. After paying
. DT . .
the accumulated cash at time = + M, the retailer earns interest on average sales revenue

from time % + M until the end of debt collection period (T + N). Consequently, interest

earned per unit time is given by:

%((DT:+M_N)Z+(T+N—E—M)Z>
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The retailer’s profit per unit time in this sub-case is given by:

Zi1 = Z, + Interest Earned — Interest Payable

2, =z, 4 37 PD (DT+M N)2+(T+N bT M)Z
1.1 — %o ZT R R

I (T + N~ 25— M). Loan

T

Under this sub-case, the supplier profit per unit time is given by:

Ip(T+N—%—M).Loan

T

W1_1 = SD +

S is the supplier profit per unit product. The supplier profit comes from selling his
product to the retailer; the first term, and from interest paid by the retailer in case a loan

18 needed; the second term.

6.2.1.2 Case 1.2

. . . DT
In this case the accumulated cash at retailer’s hand at time =1 M equals or exceeds the

purchasing cost (CDT), accordingly no loan is needed and the supplier is paid in full from
sales revenue and interest earned generated by that time. Case 1.2 happens when the

following condition applies:
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(4vv3 = v,2)0r (T <1r) Or (T =1,)

The retailer earns interest on average sales revenue from time N to % + M. After settling
the accounts with the supplier the retailer earns interest on average sales revenue from
time % + M until the end of debt collection period (T + N). Additionally the retailer
earns interest on cash amount which remains after settling the accounts over the period

(T +N-— % - M) . Interest earned per unit time in this sub-case is given by:

(1-a)I,PD (DT M N>2 N (T N DT M)Z
2T R R

Ie(T+N—%—M)((1—a)PD(%+M—N)(1+%Ie[%+M—ND—CDT>

+
T

Moreover, the retailers profit per unit time is given by:

Zi, = Z, + Interest Earned

(1 - a)I,PD [ /DT 2 DT 2
Zipg =2y +——— <—+M—N) +<T+N———M>
2T R R

Ie(T+N—%—M)<(1—a)PD(%+M—N)(1+%19[%+M—ND—CDT>

+

T

Under this sub-case, the supplier profit per unit time is given by:
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W1.2 = SD
The supplier earns no iterest from the retailer in this sub-case.

6.2.2 Case?2

In this case (Figure 27), the retailer earns interest on average sales revenue collected

during the period (N,T+N) and on full sales revenue for a period of

(% +M-T- N). Case 2 happens when the following condition applies:

DT
T+NS?+M
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Interest earned per unit time under case 2 is given by:

%(1 — &)I,PDT? + (1 — a)I,PDT (% +M-T-— N)
T
This reduces to:
2 —
(1—a)DIeP< T+M—1v)

the retailer profit per unit time in this case is given by:

Z, = Z, + Interest Earned

2
22:Z0+(1—a)DIeP( T+M—N)

The supplier profit per unit time under this case is given by:
W, =SD
Again, the supplier earns no interest from the retailer under this case.

6.2.3 Case3

In this case (Figure 28), the supplier payment is due even before the retailer start
collecting debt from his customers, accordingly a loan of value CDT (total purchasing
cost) is arranged and to be paid off with its interest when debt collection period is over

(i.e. at time T + N). Case 3 happens when the following condition applies:
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DT+M<N
R <

Interest payable per unit time in this case is given by:

et (T+N 27 — )
T

On the other hand, retailer earns interest on average sales revenue over the debt collection

period (N, T + N). Interest earned per unit time is given by:

(1 - a)I,PDT
2
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The retailer profit per unit time is given by:

Zs = Z, + Interest Earned — Interest Payable

DT
s e g 4 L= @LPDT IpCDT(T+N_T_M)
3 — 4o 5 -
The supplier profit function in this case is given by:
DT
IpCDT(T+N _T‘M)

W, = SD +

T

In this case, the supplier earns interest from the retailer.
6.2.4 Retailer and supplier’s profit functions
Combining results from the previous cases and sub-cases, the retailer’s profit function per

unit time is given by:

DT
(Zl.l' (NS?+MST+N>&(4U1v3<v22)&(T1§TS7”2)

DT
Zis (N S +MST+ N) & {(4v,v; = 1,2) OR (T <11) OR (T = 1,)}

DT
Z,, T+NSF+M

DT
Z3, ?'{'MSN

and the supplier profit function per unit time is given by:
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DT
Wi4, (NSF-FMST-FN) &(41}11;3 <V22)&(T'1 STSTZ)
DT
Wi, (N SF-FM < T+N) &{(41]11;3 > UZZ) OR (T < 7’1) OR (T ZTZ)}

DT
w,, T+NS7+M

DT
W3, 7+MSN

In order to investigate the concavity of the retailer’s profit function, we find its second

derivative:

"
Zl.l

(1 - a)II,PD3*(R — D)T? — (1 — a)PD(21, — 21, + MI,I, — NI,1,)(M — N)?R® — 2AR?

R3T3
., (1 -a)PD3L,*R~-D)T?*—-(1—a)PDI,*(M — N)3R® — 24R3
., =24
Z, =173 = 3

Both Z, and Z; are concave on T > 0. However, the concavity of Z; ; and Z; , is highly
sensitive to model parameters, accordingly we propose a different approach for numerical

analysis other than trying to maximize the retailer’s profit function.

6.3 Results and Conclusion

We will try to help both the retailer and the supplier in finding an efficient solution for
both of them. Under a specific value of supplier credit period M, and for each

N = {1:120}, we generate two arrays of profit function values for T = {1: 120}. One
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array represent the supplier’s profit and the other represent the retailer’s profit.
Combining supplier’s profit arrays in one matrix, and retailer’s profit arrays in another
matrix, we create two matrices of dimension 120 X 120 each. Analogous entries in the
supplier and the retailer’s profit matrices share the same values of N and T, and certainly

same value of M.

From each pair of profit matrices (linked to a specific M), we extract the list of efficient
points. An efficient point is a pair of supplier and retailer’s profit. For an efficient point,
no improvement is possible on one of the two profits without worsening the other. The
list of efficient points is plotted for each M. Supplier’s profit is shown on the horizontal

axis while the retailer’s profit is on the vertical axis.

We chose the following set of parameters: R = 120, Dy,.x = 80, Dpyjn = 30, r = 0.12,

A =1000,C=30,P =40, =10%, [, = 15%, [ = 20, « = 0.05and § = 5.

Figure 29 shows the efficient front under M = 5. At N = 120 and T = 120, the supplier
earns the maximum possible profit of 553 while the retailer earns only 441. At N = 30
and T = 47, the retailer earns the maximum possible profit of 557 while the supplier
earns only 428. A total of 975 efficient points found under M = 5. Supplier and retailer’s
profit differs for each efficient point. Both parties should agree on the most suitable point
on which they should operate. For instance, they might chose the point at which they earn

equal profit of 502 with N = 90 and T = 56.
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Figure 30 shows the efficient fronts for different values of M. As M increases, the
maximum profit that would be gained by the supplier decreases, and the maximum
possible profit for the retailer increases. This observation is fairly expected as increasing
M allows the retailer to earn more interest on sales revenue before the due time of

supplier payment.

The model developed in this chapter provides the supplier and the retailer with a tool that
would help in achieving an optimal integrated policy of ordering (i.e.T) and offering trade

credits (i.e. N and M).
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CHAPTER 7

CONCLUSION AND FUTURE RESEARCH

In chapter 3, we developed an EPQ model in which process deterioration and machine
breakdown jointly affects the optimal production policy. The model is built for general
failure, deterioration, corrective and preventive repair time distributions, but optimality is
proved for exponential failure and deterioration times, and uniform corrective and
preventive repair times. Process deterioration is assumed to take place gradually where
the rate of producing defective items starts, at some point, to increase with time following
a linear pattern. Process deterioration and machine breakdown events are assumed
independent of each other. Numerical results supported the capability of the proposed

model to be used as a decision making tool in finding the optimal production policy.

In chapter 4, we developed an EPQ model similar to that in chapter 3. The proposed
model assumes that process deterioration and machine breakdown are dependent events,
in the sense that machine failure, if happened, should be preceded by process

deterioration.

The two models in chapters 3 and 4 can be extended in many directions; for instance, the

process drift can be assumed to follow an exponential pattern rather than a linear pattern,
134
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which might suit some applications. Additionally, inspection process can be incorporated
in the model, especially that the model already assumes an increasing rate of defectives’
production. Hence, the decision maker might be interested in interrupting the production
process if defectives’ rate reaches a predefined level. Moreover, numerical examples for
the two models can be solved under failure time following the Weibull distribution

instead of the exponential distribution.

The other two models in chapters 5 and 6 are designed to determine the optimal order
quantity in retailing industry, in addition to the optimal credit period offered by the
retailer to his customers. Both models are designed in the presence of two-level of trade
credit periods, in addition to the assumption of credit-linked demand. In both models,
replenishment from the supplier to the retailer is assumed non-instantaneous, additionally
a percentage of the retailer’s sales are considered as bad debt. The two models differ in

the payment procedure from the retailer to his supplier.

The two models in chapters 5 and 6 can be extended in several directions. One interesting
extension is by allowing shortage. Under this assumption, shortages can be considered
either as lost sales or to be backlogged. Another realistic extension is to consider demand
to depend on both the credit period and the selling price to the end consumers. Moreover,

randomness can be introduced to the model, as by now all model variables are assumed
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deterministic. For instance, demand can be assumed random following some probability

distribution.
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