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An Economic Production Quantity model (EPQ) aims to minimize the total production-

inventory cost by balancing between multiple conflicting costs. In this thesis, we 

introduce two new models in this area; both of them are developed under the conditions 

of linear process deterioration and machine breakdown. Additionally, corrective and 

preventive maintenance actions are performed according to a specific policy. In one 

model, time to failure and time to deterioration are assumed independent, while in the 

other model the two variables are assumed dependent where machine failure can happen 

only if preceded by process deterioration. The proposed two models are formulated under 

general probability distributions, but optimality is proved under selected distributions. 

The two models’ behavior is investigated thoroughly for numerical examples. 

Another two models are developed for determining the optimal quantity to be ordered by 

a retailer from his supplier, in addition to the optimal credit period to be offered by the 

retailer to his customers. Both models are developed under the presence of two-levels of 

trade credit periods, and in which the demand is linked to the credit period offered by the 

retailer to his customers. The two models differ in the payment procedure from the 
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retailer to the supplier. In both models, we made two main assumptions. Firstly, we 

assumed non-instantaneous replenishment from the supplier to the retailer, and secondly 

we assumed a percentage of retailer’s sales are considered bad debt. Two numerical 

examples are solved for joint determination of the optimal order quantity and the optimal 

credit period. 
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1 CHAPTER 1 

INTRODUCTION 

We start this document with an introduction to the area of our work. Two main problems 

in the field of inventory control are investigated. The first problem is about finding the 

optimal production lot sizing policy that would minimize the overall production and 

inventory cost under the conditions of process deterioration and machine breakdown. The 

second problem aims to find the optimal policy in terms of inventory cycle length and the 

length of credit period offered to customers in retailing industry under credit-linked 

demand and two-level credit system. In the following sections, we introduce the two 

problems in detail. 

1.1 Production Lot Sizing and Economic Ordering 

The production lot-sizing problem is originated from the Economic Order Quantity 

(EOQ) model. When first developed by Ford W. Harris at 1913, and later extensively 

applied by the consultant R. H. Wilson, the EOQ model was used to determine the order 

quantity that minimize the total inventory holding costs and the ordering costs. The early 

EOQ model was simple and built on a number of assumptions: 

a) The ordering cost is constant, regardless of the order quantity. 
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b) The demand rate is known and fixed. 

c) The lead-time is known and fixed. 

d) The purchase price of the item is constant, i.e. no volume discount. 

e) The replenishment is made instantaneously; the whole batch is delivered at once. 

f) Only one product is involved. 

The EOQ model aims to minimize the total cost, which is composed of the purchasing 

cost, the ordering cost, and the inventory holding cost, the total cost function is given by: 

 TC � PD � DSQ � HQ2   

The following notation applies: 

• TC is the total cost. 

• P is the purchase unit price 

• D is the annual demand 

• S is the ordering cost 

• Q is the order quantity 

• H is the annual holding cost per unit. 

All variables are assumed constant in the model except the order quantity Q. The total 

cost function for this simple model attains its minimum at: 
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The EOQ model is extended to serve in the area of production scheduling, in which the 

model is used in determining the optimal quantity to be produced in order to minimize 

the total production and inventory costs. The early Economic Production Quantity (EPQ) 

model is very simple in nature and does not include many features of modern production 

systems; also, it lacks the capability of handling the inherent randomness of the involved 

variables. 

A practically useful EPQ model must consider various aspects and variables in relation to 

the modern production systems; quality issues, machine breakdown, random repair times, 

deteriorating items, variable demand, finite production horizon, learning effects, and 

imperfect processes are just few examples. Production lot sizing, or alternatively EPQ 

models mostly share the same objective of minimizing a total cost function by 

determining the optimal production quantity, or alternatively the production run time. In 

the literature review section, we will present some of the production lot sizing models. 

1.2 Process Deterioration and Production Lot Sizing 

Variation is inherent in any process, and manufacturing processes are no exception. There 

are two basic sources of variation in a manufacturing process. 

• Common Cause variation 
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• Special Cause variation 

Common cause variation is created by multiple factors that are commonly part of the 

process, and they are acting at random and in an independent manner. Their origin can 

usually be traced to the key elements of the system in which the process operates. 

(Materials, Equipment, People, Environment, Methods). If only common causes of 

variation are present, the output of a process forms a distribution that is stable over time. 

Special Cause variation is created by a non-random event leading to an unexpected 

change in the process output. The effects are intermittent and unpredictable. If special 

causes of variation are present, the process output is not stable over time and is not 

predictable. All processes must be brought into statistical control by first detecting and 

removing the Special Cause variation. 

Process deterioration, or alternatively process drift is a common occurrence in many 

manufacturing processes where processing parameters degrade, negatively affecting 

production system performance characterized by producing more nonconforming items. 

Common causes of process drift include corrosion, fatigue and cumulative wear (Fei et al 

2009). 

Statistical process control (SPC) tools are used to track process quality to determine when 

the process has gone out of control; i.e. has drifted beyond its specifications. SPC 



5 

 

 
 

depends upon inspecting the parts produced, measuring critical attributes of the parts, and 

using these to determine process quality (Chincholkar et al 2004). 

In some industries, e.g. drug manufacturing, process drift is not acceptable, and strict 

inspection procedures are established in order to instantaneously detect any drift and fix it 

immediately. Some other industries, such as soft drink filling operations, are to some 

extent tolerable toward process drift as the later can only affect profitability. 

Process drift has a great influence on the production lot sizing decisions as it directly 

contributes to producing more items that are defective. The cost of producing defective 

items will be added to a number of conflicting components in determining the optimal 

production lot size. 

Three aspects of any production process need to be clearly defined and distinguished; 

namely, process deterioration, out-of-control and system failure: 

• A production process is said to be in the out-of-control state if it experiences 

special or assignable cause variation in its output, and hence produces defective 

items in greater rate compared to the rate when it is in-control. 

• Process deterioration is the event of shifting from in-control state to out-of-control 

state due to some special cause. After some time of the production run, process 

parameters start to change, i.e. increase or decrease in process mean or variance. 
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• Failure means stoppage of the production process. In some systems failure is 

simply the extreme end of deterioration, while in others, failure is independent 

from deterioration and totally resulted from different causes. 

1.3 Trade Credit Financing and Economic Ordering 

Economic ordering decisions play a vital rule in business success especially in retailing 

industry. In the traditional EOQ model it is assumed that the retailer pays the purchasing 

cost of the products as soon as the products are received which contradicts the reality in 

which the supplier (wholesaler or manufacturer) usually offers a delay period, known as 

trade credit period, to encourage the retailer to order more quantity. 

In cases that the supplier is the manufacturer of the product, and for the sake of better 

production and inventory control, manufacturers prefer less frequent orders with larger 

order sizes to frequent orders with smaller order sizes. In such situation, they offer a 

longer credit period for larger amount of purchase. Their policies are meant to motivate 

the retailer to make order size large enough to avail for a credit period (Soni et al 2010). 

Usually it is assumed that the supplier would offer a fixed credit period to the retailer but 

the retailer in turn would not offer any credit period to its customers, which is unrealistic, 

because in real practice retailer might offer a credit period to his customers in order to 

stimulate his own demand (Jaggi et al 2008). 

The supply chain system in which the supplier offers trade credit to his customer 

(retailer) and the retailer also offers trade credit to his customers is referred to as two-
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levels of trade credit system. Trade credits can be viewed as a kind of price discount, 

since paying later indirectly reduces the purchase cost. In the literature review section, we 

will present some of the work done in the economic ordering problem in the presence of 

one-level and two-levels of trade credit financing. 

1.4 Thesis Objectives 

This research aims to develop four new models in the area of inventory control. The first 

two models are designed to determine the optimal production quantity for an unreliable 

production system, which is subject to random linear process deterioration and random 

machine breakdown. Additionally, preventive and corrective maintenance actions are 

performed according to a specific policy, and their durations are random as well. In one 

model, failure and deterioration are assumed independent, while in the other model, the 

two events are assumed dependent where failure can happen only if preceded by 

deterioration. In both model, process deterioration starts after some random time, at 

which the rate of producing defectives increases linearly with time. 

The other two models are designed to determine the optimal order quantity in retailing 

industry in addition to the optimal credit period offered by the retailer to his customers. 

Both models are designed in the presence of two-level of trade credit periods, in addition 

to the assumption of credit-linked demand. In two-level trade credit systems, the 

wholesaler offers the retailer a period to settle the due payment. Similarly, the retailer 

offers each of his customers a period to settle their payments. In both models, 
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replenishment from the supplier to the retailer is assumed non-instantaneous, additionally 

a percentage of the retailer’s sales are considered as bad debt. The two models differ in 

the payment procedure from the retailer to his supplier. 

1.5 Thesis Organization 

This thesis is presented in seven chapters. In chapter 2, we present the relevant literature 

on the production lot sizing models, and the Economic Order Quantity (EOQ) models in 

retailing industry. 

Chapter 3 presents the first production lot-sizing model, its description, assumptions, 

notation, mathematical formulation, optimality under selected probability distributions, 

and finally numerical results and conclusions. 

Chapter 4 presents the second production lot-sizing model, its description, assumptions, 

mathematical formulation and numerical results and conclusions. 

Chapter 5 presents the first EOQ model in retailing industry, its description, assumptions, 

notation, mathematical formulation, optimality, solution procedure, and finally numerical 

results and conclusions. 

Chapter 6 presents the second EOQ model in retailing industry, its description, 

assumptions, mathematical formulation and numerical results and conclusions. 

Chapter 7 presents thesis conclusions and gives directions for future research. 
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2 CHAPTER 2 

LITERATURE REVIEW 

In this chapter we present some of the notable researches carried out on the two problems 

of our interest; namely the production lot sizing under process deterioration and/or 

machine breakdown, and the economic ordering under one-level and two-level credit 

financing. 

2.1 Production Lot Sizing Models 

As stated earlier, the lot-sizing problem is originated from the classical Economic Order 

Quantity (EOQ) model invented by Ford W. Harris in the year 1913. A tremendous 

amount of research can be found in the literature about this important problem in the area 

of production and inventory planning and control. Our focus is on the lot sizing models 

for unreliable production systems in which machine failure and/or process deterioration is 

present. 

While both process deterioration and machine breakdowns have great influence on 

Economic Manufacturing Quantity (EMQ) decisions, most of the research considers only 

one of the two factors while ignoring the effect of the other. Rahim and Lashkari (1985) 

developed a model for determining the optimal production run time in an industrial 
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process in which process mean and process variance are likely to shift and assume 

different values compared to the initial ones. Arcelus and Banerjee (1987) developed 

optimal production policies for processes where the quality characteristic of the product 

exhibits non-negative shifts in both its mean and its variance and where different rewards 

exist for acceptable, undersized and oversized parts. Rahim and Banerjee (1988) 

considered the problem of selecting the optimal production run for a process with random 

linear drifts. Al-Sultan and Al-Fawzan (1997) extended Rahim and Banerjee (1988) by 

introducing lower and upper specification limits to the model. The new model aims to 

find the optimal initial process mean in addition to the optimal production cycle length. 

Al-Sultan and Raouf (1998) considered a production process with a continuous drift in 

the mean of the quality characteristic of the product. They developed models for the 

problem in which process drift is either, known in advance and constant, or it occurs in a 

random fashion. Kim and Hong (1999) presented an EMQ model that determines the 

optimal production run length in a deteriorating production process. It is assumed that the 

process is subject to random deterioration from an in-control state to an out-of-control 

state with an arbitrary distribution, and thus produces some proportion of defective items. 

Three patterns of process deterioration are considered; constant, linearly increasing and 

exponentially increasing. Chung and Hou (2003) developed a model to determine the 

optimal run time for a deteriorating production system under allowable shortage. It is 

assumed that the elapsed time until the production process shift is arbitrarily distributed. 
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Ben-Daya (2002) dealt with an integrated model for the joint determination of economic 

production quantity and Preventive Maintenance (PM) level for an imperfect process 

having a general deterioration distribution with increasing hazard rate.  The effect of PM 

activities on the deterioration pattern of the process is modeled using the imperfect 

maintenance concept. Hsieh and Lee (2005) considered two EMQ models with un-

repairable and repairable standby key modules.  They determined the economic 

production run length and the economic number of standbys in a deteriorating production 

process. Chiu et al. (2007) studied the optimal lot-sizing decision for a production system 

with rework, random scrap rate, and service level constraint. 

Dagpunar (1996) examined the lot sizing problem with machine time to failure following 

a Weibull distribution; the machine is minimally repaired until the interrupted lot is 

completed; at the end of the production cycle, the machine is restored to as-good-as-new 

condition and a new cycle is started.  Kim and Hong (1997) presented an EMQ model 

that determines the optimal production lot size in failure prone machine. It is assumed 

that time between failures is generally distributed, and machine is repaired 

instantaneously when it fails. Kuhn (1997) suggested a stochastic dynamic programming 

model to determine the optimal lot sizing decision where the equipment is subject to 

stochastic breakdowns.  The analysis considered two cases; first, it is assumed that, after 

the machine breakdown, the setup is totally lost and new setup cost is incurred.  The 

second case considers the situation in which the cost of resuming the production run after 

a failure might be substantially lower than the production set-up cost. 
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Moini and Murthy (2000) developed a production-sizing model for unreliable system 

with machine breakdown and quality variations under alternative repair option strategies. 

Chung (2003) showed that the long-run average cost function per unit of time for the case 

of exponential breakdowns is unimodal but neither convex nor concave, and he obtained 

an approximation for lower and upper bounds on lot sizing under this condition.  

Giri and Dohi (2004) considered the Net Present Value (NPV) approach to determine the 

economic manufacturing quantities for an unreliable production system over an infinite 

planning horizon.  The NPV of the expected total cost was obtained under general 

breakdown time and general repair time.  The criteria for the existence and uniqueness of 

the optimal production time were derived under exponential breakdown and constant/zero 

repair time. 

Giri and Yun (2005) considered an economic manufacturing quantity problem for an 

unreliable manufacturing system where the machine is subject to random breakdown and 

at most two failures can occur in a production cycle.  Upon the first failure; the repair 

action is started immediately and the demand is met first from the on-hand inventory.  If 

shortages take place due to long repair time, then they are backlogged partially by 

resuming the production run after machine repair.  If failure occurs again during the 

backlog period, then the accumulated shortages until completion of the second repair are 

assumed lost.  The model was formulated under general breakdown and general repair 

time distributions. 
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Chiu et al (2007) considered the economic production quantity (EPQ) model with scrap, 

rework, and stochastic machine breakdowns.  El-Ferik (2008) studied the joint 

determination of both economic production quantity and preventive maintenance 

schedules, under the realistic assumption that the production facility is subject to random 

breakdown and the maintenance is imperfect.  The manufacturing system was assumed to 

deteriorate while in operation, with an increasing failure rate.  The system undergoes PM 

either upon failure or after having reached a predetermined age, whichever of them 

occurs first. 

Chiu et al (2011) developed a model for solving manufacturing run time problem with 

random defective rate and stochastic machine breakdown under no-resumption inventory 

policy. Widyadana and Wee (2011) developed a production inventory model with 

random machine breakdown and stochastic repair time for deteriorating items. The model 

assumes the machine repair time is independent of the machine breakdown rate. Das et al 

(2011) developed an economic production lot-sizing model for an item with imperfect 

quality and by considering random machine failure. Jeang (2012) developed a model for 

jointly determine the optimal production lot size and process parameters under the 

possibility of process deterioration and breakdown. 

Boone et al. (2000) was the first to model a production lot sizing problem taking into 

consideration both machine breakdowns and process deterioration. The proposed model 

provided guidelines to choose the appropriate production run times to buffer against both 
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the production of defective items and stoppages occurring due to machine breakdowns. 

The model assumed exponential time to breakdown, uniform time for the process to shift 

from in-control to out-of-control state, and constant rate of producing defectives when the 

process is out-of-control. 

Chakraborty et al. (2008) presented a generalized economic manufacturing quantity 

model for an unreliable production system in which the production facility may shift 

from an ‘in-control’ state to an ‘out-of-control’ state at any random time (when it starts 

producing defective items) and may ultimately break down afterwards. If a machine 

breakdown occurs during a production run, then corrective repair is done; otherwise, 

preventive repair is performed at the end of the production run to enhance the system 

reliability. The proposed model is formulated assuming that the time to machine 

breakdown, corrective and preventive repair times follow arbitrary probability 

distributions. However, the criteria for the existence and uniqueness of the optimal 

production time are derived under general breakdown and uniform repair time (corrective 

and preventive) distributions. 

Chakraborty et al. (2009) developed an integrated production, inventory and maintenance 

models for a deteriorating production system in which the production facility may not 

only shift from an ‘in-control’ state to an ‘out-of-control’ state but also may break down 

at any random point in time during a production run. In case of machine breakdown, 

production of the interrupted lot is aborted and a new production lot is started when the 
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on-hand inventory is depleted after corrective repair. The process is inspected during 

each production run to examine the state of the production process. If it is found in the 

‘in-control’ state then either (a) no action is taken except at the time of last inspection 

where preventive maintenance is done or (b) preventive maintenance is performed. If, 

however, the process is found to be in the ‘out-of-control’ state at any inspection then 

restoration is done. The proposed models are formulated under general shift, breakdown 

and repair time distributions. 

Our work for this problem is an extension and modification to Chakraborty et al. (2008) 

model. 

2.2 EOQ Models under Credit Financing  

As mentioned earlier the EOQ model was first introduced by Ford W. Harris in the 

year1913 and gained researchers attention since then, and it continues to have the same 

level of interest for being a key problem in the area of inventory planning and control as 

it directly affects business success. While many extensions have been made to the 

original EOQ model in order to serve as a decision making tool, our focus in this work is 

the relation between the EOQ and trade credit financing in the retailing industry. 

It is a common practice in business transactions for suppliers to allow a specified credit 

period to the retailers for payment without penalty to stimulate the demand of their 

products. This credit term in financial management is denoted as ‘‘net 30’’. Many 
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research papers have appeared in the literature trying to build inventory models in which 

trade credit financing is involved. Some of the work done in this area is presented below. 

Haley and Higgins (1973) proposed the first model that considers the EOQ under 

conditions of permissible delay in payments with deterministic demand, no shortages, 

and instantaneous delivery. Goyal (1985) established a single item inventory model for 

determining the economic ordering quantity in the case that the supplier offers the retailer 

the opportunity to delay his payment within a fixed period. Chung (1989) presented the 

discounted cash flows (DCF) approach for the analysis of the optimal inventory policy in 

the presence of trade credit. 

Aggarwal and Jaggi (1995) extended Goyal (1985) by introducing deterioration to the 

model and assuming exponential deterioration rate. Jamal et al (2000) generalized the 

model to allow shortages. Teng (2002) revisited Goyal (1985) model and assumed that 

the selling price is not equal to the purchasing price (actually, it can be seen as a 

correction to Goyal’s model as the proposed modification reflects the reality). 

Huang (2003) extended one-level trade credit into two-level trade credit to develop the 

retailer’s replenishment model from the viewpoint of the supply chain. He assumed that 

not only the supplier offers the retailer trade credit but also the retailer offers the trade 

credit to his customers. Huang (2006) incorporated both models of Teng (2002) and 

Huang (2003) by considering two-level trade credit and limitation on retailer’s storage 

space to reflect the real-life situations. Chung and Huang (2007) proposed a two-
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warehouse inventory model for deteriorating items under two-level trade credit. Liao 

(2008) proposed an EOQ model with non-instantaneous delivery and exponentially 

deteriorating items under two-level trade credit. 

Jaggi et al (2008) incorporated the concept of credit-linked demand and developed an 

inventory model under two levels of trade credit policy. In this model, the demand is 

assumed to be positively influenced by the credit period offered by the retailer. Thangam 

and Uthayakumar (2009) extended Jaggi et al (2008) model by assuming that demand 

depends on both the selling price and the credit period. Chen and Kang (2010) also 

assumed sensitivity of demand to retailer’s price in their two-level trade credit inventory 

model and they developed a recursive solution procedure to determine the optimal pricing 

and production/order strategy. 

Ho (2011) proposed a generalized two-level trade-credit inventory model, in which the 

demand rate is a function of both retail price and credit period. Kreng and Tan (2011) 

proposes a production model for a lot-size inventory system with finite production rate 

and defective quality under the condition of two-level trade credit policy and the 

condition that defective items involve both imperfect quality and scrap items. Lin et al. 

(2012) proposed an integrated supplier–retailer inventory model in which both supplier 

and retailer have adopted trade credit policies, and the retailer receives an arriving lot 

containing some defective items. The customer’s market demand rate depends on the 

length of the credit period offered by retailer. The model objectives is to determine the 
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retailer’s optimal order cycle length, the order quantity, and the optimal number of 

shipments per production run from the supplier to the retailer so that the entire supply 

system has maximum profit. Su (2012) proposed a single-supplier, single-retailer 

integrated inventory model that accounts for defective items that arrive in a retailer’s 

order under a full-lot inspection policy. Shortages are allowed and are fully backlogged. 

Only supplier offers trade credit to the retailer. 

Teng et al. (2012) extended the constant demand to a linear non-decreasing demand 

function of time in building their EOQ model with trade credit. Chung (2012) introduced 

the transportation cost in developing a new supplier–retailer inventory model under the 

condition that both supplier and retailer offer trade credits. Zhou et al. (2012) proposed an 

EOQ under conditions of trade credit, inventory dependent demand, and limited 

displayed-shelf space. Thangam (2012) considered a supply chain where the supplier 

offers the retailer a full trade credit period for payments whereas the retailer offers a 

partial trade credit to his customers in addition to another option of price discount if 

advance payment is made. Model objective is to find the optimal price discount and the 

optimal lot-sizing policies for perishable items. Jaggi et al. (2012) proposed a model to 

determine the retailer’s optimal replenishment and credit policies under tow-level of 

credit policy when demand is influenced by credit period. 

Our work for this problem is an extension and modification to Jaggi et al. (2008) model 

and will be presented in the following chapters. 
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2.3 Conclusion 

The surveyed literature on the production lot-sizing problem reveals the scarcity of 

models that jointly considers process deterioration and machine breakdown in 

determining the optimal production quantity. Boone et al. (2000) was the first to devise 

such model followed by Chakraborty et al. (2008) who evolved the model in some 

directions. Our work on this problem is an extension and modification to Chakraborty et 

al. (2008). Our main contribution summarized in introducing the linear process 

deterioration concept, in addition to the assumption of independent deterioration and 

failure events. Please refer to thesis objectives, section 1.4 for more information. 

A tremendous amount of literature found on the EOQ in retailing industry under trade 

credit financing, but none of them covers the case in which replenishment from supplier 

to retailer is non-instantaneous, neither the case of bad debt. Our work on this problem, 

which is an extension and modification to Jaggi et al. (2008), will incorporate those two 

aspects and devise two new models. Please refer to thesis objectives, section 1.4 for more 

information. 
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3 CHAPTER 3 

PRODUCTION LOT SIZING MODEL-I 

3.1 Introduction 

Production systems are unreliable to a significant degree in real life; one source of 

unreliability is process deterioration.  Process deterioration might be stated as the process 

of shifting from an in-control state to an out-of-control state where the production system 

starts to produce more items that are defective.  In addition to deterioration, there is the 

possibility of machine breakdown that causes the abortion of the production lot before 

completion.  Obviously, any breakdown will severely affect plans for meeting customer 

demand.  Building on the previous argument, the need for more realistic modeling of the 

Economic Manufacturing Quantity (EMQ) problem is rising in the manufacturing field.  

Such models should take into consideration many attributes of real life production 

systems including but not limited to, 

a. Time to shift from in-control state to out-of control state, and its probability 

distribution. 

b. Time to machine breakdown, and its probability distribution. 
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c. Corrective maintenance time and its probability distribution (performed after each 

breakdown). 

d. Preventive maintenance time and its probability distribution (performed at the end 

of each successfully completed production run, in our model). 

e. Rate of producing defective items,  we consider production of defectives to take 

place before process deterioration, and we assume that the rate of producing 

defectives increases linearly with time after deterioration is started. 

f. In addition, we should consider a variety of costs corresponding to production, 

inventory and maintenance such as; corrective and preventive repair costs, 

inventory holding cost, shortage penalty cost, cost of producing defective items 

and finally production set-up cost. 

The following notations are used in building model-I: 

� None-negative random variable denoting time to machine breakdown. 

���� Time to breakdown probability density function. 

� Failure rate (parameter for ���� when it is exponentially distributed). 

τ Random variable denoting the time taken by the machine to shift from  

“in-control” state to “out-of-control” state. 

���� The probability density function of the time to shift from in-control to out-

of-control state. 

� Deterioration rate (parameter for ���� when it is exponentially distributed). 
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�� Production run time; a decision variable. 

�� The lower bound on ��. 

�� The upper bound on ��. 

�� None-negative random variable denoting corrective repair time. 

������ Corrective repair time probability density function. 

 � The upper bound on  �� when it’s uniformly distributed. 

�! None-negative random variable denoting preventive repair time. 

�!��!� Preventive repair time probability density function. 

 ! The upper bound on  �! when it’s uniformly distributed. 

" Demand rate, �" # 0�. 
% Production rate, �% # "� 
&' Set up cost for each production run, �&' # 0�. 
&� Corrective repair cost per unit time, �&� # 0�. 
&! Preventive repair cost per unit time, �&! ( &��. 
&) Inventory holding cost per unit product per unit time, �&) # 0�. 
&* Shortage penalty cost per unit product, �&* # 0�. 
&+ Cost of producing a defective item, �&+ # 0�. 

,-.-/0 Expected total cost per production-inventory cycle. 

1-.-/0 Expected length of a production-inventory cycle. 

2 Average cost per unit time. 
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34 Proportion of defectives while process is in-control (before deterioration). 

3. Proportion of defectives while process is out of control (after deterioration). 

5 Process deterioration factor. 

6 Process deterioration timer. 

3.2 Model Formulation 

The model developed in this work is an extension of that in Chakraborty et al (2008). In 

that model, a process starts in control with no defectives generated. After a random 

period, the process deteriorates and defectives are generated at a constant rate.  The 

machine may fail only after deterioration; i.e. every failure is preceded by process 

deterioration.  The time to deteriorate follows a uniform distribution and it is dependent 

on the time to failure or the unknown production cycle time, whichever is shorter.  If 

machine breakdown takes place during a production run, then the interrupted lot is 

aborted and a new lot is started after corrective maintenance is finished and all available 

inventory is depleted (no resumption policy).  On the other hand, if machine breakdown 

does not occur until the end of the planned production run time t8; then preventive 

maintenance is carried out after production run completion to get the machine back to “as 

good as new” condition before the start of the next production run.  Again, the next 

production run will not start until available inventory is totally depleted even if repair has 

finished earlier.  During machine repair, either corrective or preventive, the demand is 

met from the accumulated on-hand inventory.  Shortages may occur due to longer 
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corrective/preventive repair times.  If shortages occur, they are not delivered after the 

machine repair; actually, they are considered as lost sales. 

The model considered in this work extends that work in several directions and replaces 

some assumptions with more practical ones.  We consider a production process which 

may shift from an in-control-state to an out-of-control state at any random time τ during 

the planned production run time t8.  In both states; in-control and out-of-control, 

defective items are produced at different rates.  Once a shift to the out-of-control state has 

occurred at time τ, it is assumed that the proportion of defectives will continue to increase 

following a linear pattern as in the following equation; 

 3. � 34 � 56 (3-1) 

34 is the proportion of defectives before deterioration is started, β > 0 is a known scalar 

and y is time that quantifies the period while process is out of control. 

The increase in defectives’ rate is continued with time until the whole lot has been 

produced or machine breakdown takes place.  We also assume that process deterioration 

and machine failure are independent events; hence, time to failure, �, and time to 

deterioration, �, are two independent random variables.  Therefore, not every machine 

failure is coming after deterioration, and similarly; not every process deterioration 

occurrence is followed by machine failure.  In the case of machine tools, deterioration in 

the process might result from cutting tool wear while machine failure is a result of motor 

or any other mechanical or electrical part failure. 
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Figures 1 to 8 show all possible scenarios that any single production cycle may 

encounter. 

Figure 1 shows the case where both deterioration and failure take place but no shortage. 

In this case, time to deterioration is less than time to failure, which is less than the 

planned production run time; � : � : �� and hence the production process encounters 

deterioration followed by failure. In addition, the corrective repair time is less than the 

time needed to consume the accumulated inventory; �� : �;<=�>=  and hence no shortage is 

encountered. 

Figure 2 shows the case in which deterioration, failure and shortage are encountered. 

Shortage happens because corrective repair action extended for longer time beyond the 

zero-inventory point, �� # �;<=�>=  . 

In figure 3, deterioration takes place but neither failure nor shortage is encountered. In 

this case, time to deterioration is less than the planned production run time, which is less 

than time to failure; � : �� : � and hence the production process encounters 

deterioration but ends successfully without failure. In addition, the preventive repair time 

is less than the time needed to consume the accumulated inventory; �! : �;<=�>?=  and 

hence no shortage is encountered. 
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Figure 1 Deterioration-Failure-No Shortage Case in Model-I 
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Figure 2 Deterioration-Failure-Shortage Case in Model-I 
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Figure 3 Deterioration-No Failure-No Shortage Case in Model-I 
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In figure 4, deterioration and shortage are encountered but no failure takes place. 

Shortage happens because preventive repair action extended for longer time beyond the 

zero-inventory point, �! # �;<=�>?=  . 

In figure 5, failure takes place but neither deterioration nor shortage is encountered. In 

this case, time to failure is less than both; the planned production run time and the time to 

deterioration, � : � : �� @A � : �� : � and hence failure is encountered before process is 

deteriorated. In addition, the corrective repair time is less than the time needed to 

consume the accumulated inventory; �� : �;<=�>=  and hence no shortage is encountered. 

In figure 6, failure and shortage are encountered but no deterioration. Shortage happens 

because corrective repair action extended for longer time beyond the zero-inventory 

point, �� # �;<=�>=  . 

In figure 7, no deterioration, no failure and no shortage are encountered. In this case, the 

planned production run time is less than both; the time to deterioration and the time to 

failure, �� : � : � @A �� : � : � and hence the production run ends successfully before 

experiencing deterioration or failure. In addition, the preventive repair time is less than 

the time needed to consume the accumulated inventory;  �! : �;<=�>?= and hence no 

shortage is encountered. 
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Figure 4 Deterioration-No Failure-Shortage Case in Model-I 
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Figure 5 No Deterioration-Failure-No Shortage Case in Model-I 
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Figure 6 No Deterioration-Failure-Shortage Case in Model-I 
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Figure 7 No Deterioration-No Failure-No Shortage Case in Model-I 
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In figure 8, no deterioration and no failure take place, but shortage is encountered. 

Shortage happens because preventive repair action extended for longer time beyond the 

zero-inventory point, �! # �;<=�>?=  . 

Those 8 figures presented above show all possible scenarios resulting from the 

randomness of time to deterioration, τ, time to failure, t, corrective repair duration, ��, and 

preventive repair duration, �!. 
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Figure 8 No Deterioration-No Failure-Shortage Case in Model-I 
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By conditioning on the time to machine breakdown, the expected length of the 

production-inventory cycle is given by: 

 1-.-/0 � B B C� � �% D "��" E . ������. ����. "��. "��;<=�>/=
/HIJ

>?
>IJ

�B B �� � ���. ������. ����. "��. "�∞

/HI�;<=�>/=
>?
>IJ

�B B C�� � �% D "���" E . �!��!�. ����. "�!. "��;<=�>?/=
/KIJ

∞

>I>?
�B B ��� � �!�. �!��!�. ����. "�!∞

/KI�;<=�>?/=
∞

>I>? . "� 

 

The first term in the expected cycle length represents those cycles that will encounter 

failure but no shortage (Figures 1 and 5). The second term represents the cycles with 

failure and shortage (Figures 2 and 6). The third term represents the cycles with no failure 

and no shortage (Figures 3 and 7). Finally, the last term represents the cycles with no 

failure but with shortage (Figures 4 and 8). The expected production-inventory cycle 

length can be reduced to, 
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The total expected cost per production-inventory cycle is composed of setup cost, repair 

costs (corrective and preventive), inventory holding cost, shortage cost, and the cost due 

to producing defective items: 

 

,-.-/0 � �N�O% ,@P� � ,@AAN&�QRN STQU�NUTU&N ,@P�
� VANRNU�QRN STQU�NUTU&N ,@P� � WURNU�@A6 �@�"QU� ,@P�
� ��@A�T�N ,@P� � �N�N&�QRNP′ ,@P� 

 

The setup cost, &�, is the cost incurred at the start of each production run to get the 

machine ready. Examples of setup costs include the cost of changing tools or dies, 

moving materials or components, testing the initial production output to ensure meeting 

specs, in addition to labor cost of setting up the machine. The measuring unit of &� is 

$/cycle. 
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The corrective maintenance cost is the cost incurred to bring the machine back to as good 

as it was before failure. It is calculated as the expected corrective repair time multiplied 

by the cost per unit time, &�, and finally multiplied by the probability of encountering 

failure �� : ���, and is given by: 

 ,@AAN&�QRN XN%TQA ,@P� � &�. B B ��. ������. ����.∞

/HIJ
>?
>IJ "��. "�  

The preventive maintenance cost is the cost incurred at the end of each successful 

production run to enhance machine reliability. It is calculated as the expected preventive 

repair time multiplied by the cost per unit time, &!, and finally multiplied by the 

probability of finishing the production cycle successfully with no failure �� Y ���, and is 

given by: 

 VANRNU�QRN XN%TQA ,@P� � &!. B B �!. �!��!�. ����.∞

/KIJ
∞

>I>? "�!. "�  

The measuring unit of &� and &! is $ per unit time. 

It is worthy to notice that both corrective and preventive maintenance costs consider only 

the cost of time spent in performing maintenance actions, while the cost of material and 

spare parts is not included. In section 3.5, we modify this assumption by including 

material and spare parts’ cost. 
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The inventory holding cost is the cost incurred to keep and maintain stock in storage; 

examples include space rent, handling, labor, insurance, security and opportunity loss. 

Inventory holding cost is given by: 

WURNU�@A6 �@�"QU� ,@P�
� &)B 12L� � �% D "��" M . �% D "�. �. ����. "�>?

>IJ
� &)B 12L�� � �% D "���" M . �% D "�. ��. ����. "�∞

>I>?  

The first term in the inventory holding cost expression is the average on hand inventory 

for cycles with failure multiplied by the inventory holding cost per unit product per unit 

time. The second term represents the cycles with no failure �� Y ���. The inventory 

holding cost can be reduced to: 

 

WURNU�@A6 �@�"QU� ,@P�
� &)%�% D "�2" . [B �!. ����. "�>?

>IJ � ��!. B ����. "�∞

>I>? \  

The measuring unit of &) is $ per unit product per unit time. 
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The shortage cost is the cost of stock-out situation when there is demand but cannot be 

satisfied. In our model, shortages are considered lost sales and they are not backlogged. 

Shortage cost is given by: 

 

��@A�T�N ,@P�
� &*". ]B B C�� D �% D "��" E . ������. ����∞

/HI�;<=�>=
>?
>IJ . "��. "�^

� &*". ]B B C�! D �% D "���" E . �!��!�. ����∞

/KI�;<=�>?=
∞

>I>? . "�!. "�^ 
 

The first term in the shortage cost expression is the expected length of the shortage period 

multiplied by the demand rate and finally multiplied by the shortage cost per unit product 

for cycles with failure. The second term represents cycles with no failure �� Y ���. 
Shortages in our model are considered lost sales; accordingly, shortage cost is calculated 

based on the maximum shortage in units of the product rather than the average. The 

measuring unit of &* is $ per unit product. 

Defectives’ cost is the cost incurred due to producing less-quality items. Types of cost 

under this category include discounted price and rework. In our model, we consider 

defective parts to be used in filling the demand. 

As stated earlier and due to the adoption of different assumptions than those in 

Chakraborty et al (2008), the cost of defectives is given by: 
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The first term in the defectives cost expression gives the cost of defectives produced 

during the in-control state for cycles in which deterioration is followed by failure (Figure 

1 and 2). The second term gives the cost of defectives produced during the out-of-control 

state for cycles in which deterioration is followed by failure (Figure 1 and 2). 3. is 

defined by equation 3-1. The third term gives the cost of defectives produced during the 

in-control state for cycles in which only deterioration is encountered but no failure 

(Figure 3 and 4). The forth term gives the cost of defectives produced during the out-of-

control state for cycles in which only deterioration is encountered but no failure (Figure 3 
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and 4). The fifth expression gives the cost of defectives produced during the cycles in 

which failure is encountered but no deterioration, and in which the following inequality 

applies � : � : �� (Figure 5 and 6). The sixth expression gives the cost of defectives 

produced during the cycles in which failure is encountered but no deterioration, and in 

which the following inequality applies � : �� : � (Figure 5 and 6). Finally, the last 

expression gives the cost of defectives produced during the cycles in which neither 

deterioration nor failure is encountered, �� : � : � @A �� : � : �  (Figure 7 and 8). The 

measuring unit of &+ is $ per unit product. 

From the renewal reward theorem, the average cost per unit time is given by; 

 2���� � ,-.-/0����1-.-/0����  

In the next section, we consider special cases of the distribution functions and simplify 

the above expressions accordingly.  We also show that the average cost per unit time is a 

quasi-convex function in specific interval for the selected distributions. 

3.3 Optimality under Selected Distributions 

In this section, we will assume that the time to failure follows an exponential distribution 

with failure rate λ, 

 ���� � �N<b>  
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The use of exponential failure can be justified by noticing that the planning horizon in 

our model is only few hours, i.e. the production run time. On the other hand, the aging 

effect, which results in increasing hazard rate over time, affects the manufacturing 

equipment only on the long run, i.e. months or years. Hence, within the planning horizon, 

the risk of having failure can be assumed constant. 

Additionally, we assume time to shift follows an exponential distribution with rate γ, 

 ���� � �N<c_  

Finally, we assume the corrective and preventive repair times to follow uniform 

distributions, 

 ������ �
1
 �

, 0 : �� :  �  

and, 

 �!��!� �
1
 !

, 0 : �! :  !  

After substitution and simplification, the expected production cycle cost can be expressed 

as: 

 

,-.-/0 � e���!N<>?b � e!��N<>?b � ef��!N<>?�cgb� D eh��N<>?�cgb�

D eiN<>?�cgb� � ejN<>?b � ek 
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The constants z� to zk are given by: 
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The expected cycle length can be expressed as: 

 1-.-/0 � R���!N<>?b D R!��N<>?b D RfN<>?b � Rh  

The constants v� to vh are expressed as: 
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Our objective is to determine the optimal production run time t8�  which minimizes the 

average cost per unit time, W�t8�.  In order to avoid unrealistic values of the optimal run 

time, we will assume that t8 : t8�  : t8 where t8 and t8 are the lower and the upper 

bounds on t8, respectively and they are known in advance.  The assumption of known 

lower and upper bonds of production run time can be justified due to many aspects 

including: machine design which prevents prolonged continuous run time to ensure 

safety, and expected customer’s demand which suggests minimum amount to be 

produced. 

In order to prove the existence and uniqueness of the solution for our model, we will 

prove that our cost function per unit time is quasi-convex. For Quasi-Convex functions, 

every local minimum is a global minimum, or otherwise the function is flat (constant) in 

the neighborhood of the local minimum (Greenberg and Pierskalla, 1971).  If the function 

W�t8� is quasi-convex over the set  u t v nt8, t8ow then: 
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2nx��� � �1 D x���!o : yTzn2�����, {���!�o 

For all θ v n0,1o and all t8�, t8! v nt8, t8o. 
 

W�t8� is a Quasi-Convex function over ut8 v nt8, t8ow if  any of the following conditions 

holds, (Greenberg and Pierskalla, 1971): 

1. ,-.-/0 is convex and 1-.-/0 # 0 all over u�� v n�� , ��ow. 

2. ,-.-/0 is concave and 1-.-/0 ( 0 all over u�� v n��, ��ow. 

3. 1-.-/0 is linear and ,-.-/0 : 0 all over u�� v n�� , ��ow. 

4. 1-.-/0 is convex and ,-.-/0 : 0 all over u�� v n�� , ��ow. 

5. 1-.-/0 is concave and ,-.-/0 Y 0 all over u�� v n��, ��ow. 

In what follows, we prove condition 5: 

To prove that the expected production-inventory cycle length; T�����, is concave we need 

to find its second derivative and check its negativeness; 

 
"!1-.-/0
"��!

� N<b>?nR��!��! D �4R�� � R!�!��� � 2R� � 2R!� D Rf�!o  

The sign of the second derivative depends on the sign of the quadratic function in the 

square brackets.  The coefficient of the quadratic term, v�λ!  is positive since the time to 

perform corrective repair is always greater than that needed to perform preventive 
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maintenance, i.e.  b� # b!.  Hence, the quadratic function is convex.  The minimum of 

this function is given by: 

D2v� D
λ!�v!! � 4v�vf�

4v�
 

This is a negative value, hence there is an interval �r�, r!� over which the second 

derivative of  T����� is negative, and hence T����� is concave over this interval.  In fact, 

r� and r! are the roots of the quadratic function of the second derivative, and they are 

given by: 

 r� �
4v�λ � v!λ! D λ�8v�

! � λ!�v!
! � 4v�vf�

2v�λ!
  

and; 

 r! �
4v�λ � v!λ! � λ�8v�! � λ!�v!! � 4v�vf�

2v�λ!
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In conclusion, a unique solution is guaranteed if the following condition is satisfied: 

 r� ( t8 ( t8 ( r! (3-2) 

Figure 9 shows the quasi-convexity of the function W�t8� for selected set of parameters. 
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Figure 9 Quasi-Convexity of the average cost function for model-I 
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3.4 Results and conclusion 

In this section, we use Wolfram Mathematica 8 in order to solve for the optimal 

production run time t8 and its associated average cost.  In all calculations below, failure 

and deterioration are assumed to follow the exponential distribution with rates λ and γ 

respectively.  In addition, corrective and preventive repairs are assumed to follow the 

uniform distribution. 

The lower and upper bounds on the production run time t8 are assumed to imitate the 

normal work shift that extends to 8 hours: 

0 : t8 : 8 

The model parameters are: % � 180, " � 90, &' � 300, &� � 30, &! � 5,  � � 12, 

 ! � 10, &4  �  0.5, &m  �  2, &+ � 3, 5 �  0.1 and  α� � 0.05. 

Table 1 shows the dependency of the optimal production run time and the corresponding 

average cost on failure and deterioration rates; λ and γ respectively.   

Results show that under low deterioration rate (γ = 0.1); the optimal production run time 

increases when the failure rate λ increases. This trend is justified because under low 

deterioration rate, the chances are low for the system to experience process deterioration, 

and hence defectives are unlikely to be generated; accordingly longer production run 

times are suggested by the model even with increasing failure rate. On the other hand, the 
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average cost decreases as the failure rate increases for relatively low values of the failure 

rate (λ < 0.4), but it starts to increase when failure rate assumes relatively higher values. 

Under relatively medium and high values of the deterioration rate (γ ≥ 0.3); the optimal 

production run time decreases when the failure rate increases. This trend is justified 

because under higher deterioration rates, the chances are higher to experience process 

deterioration, and hence defectives are expected to be produced in a higher rate; 

accordingly shorter production run times are suggested by the model in order to reduce 

the instances of process deterioration and machine breakdown. On the other hand, and 

under medium values of the deterioration rate (0.3 ≤ γ ≤ 0.5); the average cost decreases 

as the failure rate increases for relatively low values of the failure rate, but it starts to 

increase when failure rate assumes higher values. Under high values of the deterioration 

rate (γ ≥ 0.7); the average cost consistently increases as the failure rate increases. 

Table number 2 shows that the condition in equation 3-2 is satisfied and all results in 

Table 1 are indeed the unique solutions for the model under different values of failure 

rate λ. 
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TABLE 1 Dependency of the optimal production policy on λ and γ in model-I 

λ 

γ � 0.1 γ � 0.3 γ � 0.5 γ � 0.7 γ � 0.9 

t8�  W�t8�� t8�  W�t8�� t8�  W�t8�� t8�  W�t8�� t8�  W�t8�� 

0.1 1.90 223.4 3.20 201.1 3.18 187.7 3.00 181.2 2.84 177.9 

0.2 2.54 199.8 2.97 190.3 2.91 185.4 2.79 183.1 2.67 182.0 

0.3 2.74 196.2 2.92 191.2 2.82 188.9 2.69 187.9 2.59 187.6 

0.4 2.89 197.3 2.91 194.5 2.76 193.3 2.63 192.9 2.53 192.8 

0.5 3.04 199.8 2.90 198.3 2.72 197.7 2.58 197.6 2.48 197.6 

0.6 3.22 202.8 2.90 202.0 2.69 201.8 2.54 201.8 2.43 201.9 

0.7 3.47 205.9 2.90 205.5 2.65 205.5 2.50 205.6 2.39 205.7 

0.8 3.95 208.8 2.90 208.8 2.62 208.9 2.46 209.0 2.34 209.2 

0.9 7.98 211.6 2.90 211.8 2.59 211.9 2.41 212.1 2.30 212.2 
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TABLE 2 Satisfying the optimality condition in model-I 

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

A� -0.85 -5.56 -7.18 -8.02 -8.54 -8.89 -9.16 -9.36 -9.51 

A! 140.85 75.56 53.85 43.02 36.54 32.23 29.16 26.86 25.07 
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Figure 10 shows how the optimal production run time is affected by changing the 

deterioration rate γ and the deterioration factor β, under a fixed value of failure rate λ = 

0.5. As expected, the optimal production run time tends to decrease when the 

deterioration factor β is increased while fixing the deterioration rate γ.  Similarly, the 

optimal production run time decreases when the deterioration rate γ is increased while 

fixing the deterioration factor β. In both cases, the model is trying to reduce the cost of 

producing defective items by shortening the production run time, and hence reducing the 

time interval while the system is in the out-of-control state. 

Again optimality is guaranteed for calculations in figure 10 based on table 2 as both γ and 

β have no effect on r� and r!. 

Figure 11 shows how the optimal cost is influenced by changing the deterioration rate γ 

and the deterioration factor β. It is obvious that increasing any of the two parameters will 

surely result in increasing the total cost. This result is fairly expected as increasing either 

the deterioration rate or the deterioration factor will increase the rate of producing 

defectives, which has direct effect on the cost function. 

Figure 12 exhibits the same trend as in figure 10, but this time for different values of 

failure rate λ and under a fixed value of the deterioration rate γ = 0.5. 

Figure 13 exhibits the same trend as in figure 11, but this time for different values of 

failure rate λ and under a fixed value of the deterioration rate γ = 0.5. 
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Figure 10 Dependency of the optimal production run time on β under fixed λ 
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Figure 11 Dependency of the optimal production cost on β under fixed λ 
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Figure 12 Dependency of the optimal production run time on β under fixed γγγγ    
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Figure 13 Dependency of the optimal production cost on β under fixed γγγγ 
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Table 3 shows how the optimal production run time is affected by changing the corrective 

repair cost c� under fixed preventive repair cost c!.  An increase in the corrective repair 

cost results in a decrease in the optimal production run time.  Shorter run times mean 

lower possibility of encountering failure, and hence the risk of incurring corrective repair 

cost is minimized. 

Table 4 shows how the optimal production run time is affected by changing the 

preventive repair cost c! under fixed corrective repair cost c�. Increasing the preventive 

repair cost results in increasing the optimal production run time.  Longer run times mean 

lower possibility of successful completion with no failure; in this case, the risk of 

incurring preventive repair cost is minimized. 

Again optimality is guaranteed for calculations in tables 3 and 4 based on table 2; c�, c! 

and γ have no effect on r� and r!. 
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TABLE 3 Sensitivity analysis by changing c1 in model-I 

&! � 5 

&�  

λ � 0.1 

γ � 0.9 

λ � 0.5 

γ � 0.5 

λ � 0.9 

γ � 0.1 

t8�  W�t8� � t8�  W�t8� � t8�  W�t8� � 

10 2.890 174.169 3.060 185.389 8.000 194.946 

15 2.879 175.098 2.979 188.504 8.000 199.103 

20 2.867 176.025 2.895 191.596 8.000 203.259 

25 2.856 176.950 2.811 194.662 8.000 207.416 

30 2.844 177.873 2.724 197.700 7.983 211.572 

35 2.833 178.794 2.635 200.709 3.768 215.695 

40 2.821 179.713 2.544 203.686 2.874 219.701 
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TABLE 4 Sensitivity analysis by changing c2 in model-I 

c� � 30 

&!  

λ � 0.1 

γ � 0.9 

λ � 0.5 

γ � 0.5 

λ � 0.9 

γ � 0.1 

t8�  W�t8� � t8�  W�t8� � t8�  W�t8� � 

5 2.844 177.873 2.724 197.700 7.983 211.572 

9 2.875 179.735 2.824 198.376 8.000 211.574 

13 2.905 181.584 2.922 199.014 8.000 211.576 

17 2.936 183.420 3.018 199.620 8.000 211.578 

21 2.966 185.244 3.113 200.194 8.000 211.580 

25 2.996 187.056 3.206 200.740 8.000 211.583 

29 3.026 188.855 3.297 201.258 8.000 211.585 
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In this chapter, we presented an EMQ model in which process deterioration and machine 

breakdown jointly affects the optimal production policy.  Model is built for general 

failure, deterioration, corrective and preventive repair time distributions, but optimality is 

proved for exponential failure and deterioration times, and uniform corrective and 

preventive repair times.  Process deterioration is assumed to take place gradually where 

the rate of producing defective items starts, at some point, to increase with time following 

a linear pattern. Process deterioration and machine breakdown events are assumed 

independent of each other. Numerical results supported the capability of the proposed 

model to be used as a decision making tool in finding the optimal production policy. The 

work presented here can be extended in many directions; for instance, the process drift 

can be assumed to follow an exponential pattern rather than a linear pattern that might 

suit some applications. Additionally, inspection process can be incorporated in the model 

especially that we already have defectives production and in increasing rate. 

One interesting extension to this model is by considering that machine failure, if 

happened, is always preceded by process deterioration, and hence the system will never 

encounter production cycles with failure but no deterioration. In the following chapter, 

we develop this model and study its behavior.  

3.5 Maintenance material and spare parts costs 

In the primary model, the assumption is made that the cost of maintenance is solely due 

to the time spent in performing it. This assumption might be acceptable in some 
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circumstances in which maintenance does not require spare parts and other consumables. 

In many situations, cost of material required to perform maintenance is significant, 

accordingly we can modify the corrective and preventive maintenance costs as in the 

following: 

 

,@AAN&�QRN yTQU�NUTU&N ,@P�

� &�. B B ��. ������. ����.
∞
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>IJ
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Similarly, the preventive maintenance cost is expressed as: 

 

VANRNU�QRN yTQU�NUTU&N ,@P�
� &!. B B �!. �!��!�. ����.∞

/KIJ
∞

>I>? "�!. "� � &!�B ����. "��
>I>?  

 

&�� and &!�  represent the cost of material needed in performing one corrective or 

preventive maintenance action respectively. It is important to emphasize on the fact that 

in a single production run, either corrective or preventive maintenance action is 

performed once. 
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4 CHAPTER 4 

PRODUCTION LOT SIZING MODEL-II 

4.1 Introduction  

In the previous model (Model-I) we assumed that the process deterioration and machine 

failure are two independent events; hence the two random variables � and � are 

independent.  Therefore, not every machine failure is coming after deterioration, and 

similarly; not every process deterioration occurrence is followed by machine failure.  In 

this chapter, we will develop a production lot sizing model in which process deterioration 

and machine failure are correlated; meaning that machine failure can happen only if 

preceded by process deterioration. 

Same notation as in chapter three will be used here; the only difference is that the time to 

failure � will be considered to start from the time when deterioration starts; i.e. after �, 

instead of starting from the beginning of the production-inventory cycle. 
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4.2 Model Formulation  

The model developed in this chapter is similar to that developed in chapter three, 

accordingly we will not repeat model description and we go directly to building the 

mathematical model. 

The rate of producing defectives starts to increase linearly with time after some random 

time τ. Process transition from in-control to out-of-control state follows the following 

linear equation: 

 3. � 34 � 56  

Figures 14 to 19 show all possible scenarios that any single production cycle may 

encounter. 

Fig.14 shows the case in which both process deterioration and failure take place but no 

shortage is encountered because corrective repair is finished before the inventory is 

completely depleted, �� : �;<=��_g>�= . 

Figure 15 shows the case where process deterioration, failure and shortage are 

encountered. Shortage happens because corrective repair extended for longer time 

beyond the point of zero-inventory, �� # �;<=��_g>�= .  
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Figure 14 Deterioration-Failure-No Shortage Case in Model-II 
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Figure 15 Deterioration-Failure-Shortage Case in Model-II 
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In figure 16, deterioration takes place, but neither failure nor shortage is encountered. In 

this case, the preventive maintenance action is finished before the inventory is completely 

depleted, �! : �;<=�>?= .  

In figure 17, deterioration and shortage are encountered but no failure takes place. 

Shortage happens because the preventive maintenance extended for longer time beyond 

the point of zero-inventory, �! # �;<=�>?= .  

In figure 18 no deterioration, no failure and no shortage are encountered. In this case, the 

preventive maintenance action is finished before the inventory is completely depleted, 

�! : �;<=�>?= . 

In figure 19, no deterioration and no failure take place, but shortage is encountered. 

Shortage happens because the preventive maintenance extended for longer time beyond 

the point of zero-inventory, �! # �;<=�>?= . 

Those 6 figures show all possible scenarios resulting from the randomness of time to shift 

τ, time to failure t, corrective maintenance duration, ��, and preventive maintenance 

duration, �!. We note that, no case in which failure happens without being preceded by 

process deterioration as we stated earlier as an assumption for this model. 
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Figure 16 Deterioration-No Failure-No Shortage Case in Model-II 
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Figure 17 Deterioration-No Failure-Shortage Case in Model-II 
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Figure 18 No Deterioration-No Failure-No Shortage Case in Model-II 
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Figure 19 No Deterioration-No Failure-Shortage Case in Model-II 
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The expected length of a production-inventory cycle is given by: 

1-.-/0 � B B B C� � � � �% D "��� � ��" E�;<=��_g>�=
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The first term in the expected cycle length represents those cycles that will encounter 

deterioration followed by failure but with no shortage (Figure 14). The second term 

represents cycles with deterioration followed by failure and in which shortage is 

encountered due to prolonged corrective repair (Figure 15). The third term represents 

cycles with deterioration but no failure and no shortage (Figure 16). The forth term 

represents cycles with deterioration and shortage but no failure (Figure 17). The fifth 

term represents cycles with no deterioration, no failure and no shortage (Figure 18). The 

last term represents cycles with no deterioration and no failure, but in which shortage is 
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encountered (Figure 19). The expected length of the production-inventory cycle can be 

reduced to: 

1-.-/0 � B B B %" . �� � ���;<=��_g>�=
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The total expected cost per production-inventory cycle is composed of setup cost, repair 

costs (corrective and preventive), inventory holding cost, shortage cost, and the cost due 

to producing defective items: 

 

,-.-/0 � �N�O% ,@P� � ,@AAN&�QRN XN%TQA ,@P�
� VANRNU�QRN XN%TQA ,@P� � WURNU�@A6 �@�"QU� ,@P�
� ��@A�T�N ,@P� � �N�N&�QRNP′ ,@P� 
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The corrective repair cost is simply the expected corrective repair time multiplied by the 

cost per unit time and finally multiplied by the probability of encountering deterioration 

followed by failure (Figures 14 and 15). The corrective repair cost is given by: 
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The preventive repair cost is given by: 
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The first term in the preventive repair cost is simply the expected preventive repair time 

multiplied by the cost per unit time and finally multiplied by the probability of 

encountering deterioration but no failure (Figures 16 and 17). The second term represents 

cycles with no deterioration and no failure (Figures 18 and 19). 

The inventory holding cost is given by: 
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The first term in the inventory holding cost expression is the inventory holding cost per 

unit product per unit time multiplied by the average on hand inventory for cycles with 

deterioration followed by failure (Figures 14 and 15). The second term represents cycles 

with deterioration but no failure, � Y �� D � (Figures 16 and 17). The last term represents 

cycles in which neither deterioration nor failure is encountered. The inventory holding 

cost can be reduced to, 
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The shortage cost is given by, 
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The first term in the shortage cost expression is the expected length of the shortage period 

multiplied by the demand rate and finally multiplied by the shortage cost per unit product 

for cycles with deterioration followed by failure and in which shortage is encountered 

(Figure 15). The second term represents cycles with deterioration and shortage, but no 

failure (Figure 17). The last term represents cycles in which shortage is encountered but 

neither deterioration nor failure is encountered (Figure 19). Shortages in our model are 

considered as lost sales; accordingly, shortage cost is calculated based on the maximum 

shortage in units of the product rather than the average. 

The defectives cost is given by; 
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The first term in the defectives cost expression gives the cost of defectives produced 

during the in-control state for cycles in which deterioration is followed by failure 

(Figures 14 and 15). The second term gives the cost of defectives produced during the 

out-of-control state for cycles in which deterioration is followed by failure (Figures 14 

and 15). The third term gives the cost of defectives produced during the in-control state 

for cycles in which only deterioration is encountered but no failure (Figures 16 and 17). 

The forth term gives the cost of defectives produced during the out-of-control state for 

cycles in which only deterioration is encountered but no failure (Figure 16 and 17). 

Finally, the last term gives the cost of defective produced during cycles in which neither 

deterioration nor failure is encountered (Figures 18 and 19). 

We assume the following probability distributions for failure, deterioration, corrective 

repair and preventive repair times respectively as given below: 
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From renewal theory, the average cost per unit time is given by, 

 2���� � ,-.-/0����1-.-/0����  

4.3 Results and Conclusion 

In this section, we use Wolfram Mathematica 8 in order to solve for the optimal 

production run time t8 and the corresponding average cost.  In all calculations below, 

failure and deterioration are assumed to follow the exponential distribution with rates λ 

and γ respectively.  In addition, corrective and preventive repairs are assumed to follow 

the uniform distribution. 

The lower and upper bounds on the production run time t8 are assumed to imitate the 

normal work shift that extends to 8 hours: 

0 : t8 : 8 

We chose the following parameters: % � 180, " � 90, &'  �  300, &�  �  30, &!  �  5, 

 �  �  12,  ! � 10, &4 � 0.5, &m � 2, &+ � 3, 5 � 0.1 and  α� � 0.05. 
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Table 5 shows the dependency of the optimal production run time and the corresponding 

average cost on failure and deterioration rates, λ and γ respectively.  

In general, table five shows that the average cost always increases by increasing the 

failure rate λ regardless of the value of deterioration rate γ, but it is worthy to notice that 

as γ getting larger; the average cost increased in greater rate over the given range of λ. 

For instance; under � � 0.1 the average cost increases only by 3.7 over λ changing 

between 0.1 and 0.9; on the other hand, the average cost increased by 19.6 under � � 0.9 

over the same range of λ. This behavior can be explained by noticing that in this model 

we assume that failure, if happened, is always preceded by deterioration, and hence when 

γ assumes larger values not only the chances for deterioration are increased but also the 

chances for failure increases as well. 

Results from table 5 also show that under low deterioration rate (γ = 0.1) the optimal 

production run time increases when the failure rate λ increases. This trend is justified 

because under low deterioration rate, the chances are low for the system to experience 

process deterioration, and hence defectives are unlikely to be generated; accordingly 

longer production run times are suggested by the model even with increasing failure rate. 

Another point of view comes again from the assumption of failure is always preceded by 

deterioration, and hence as deterioration is unlikely to happen, failure is even more 

unlikely to happen, and so the model suggests longer run times even with increasing the 

failure rate. 
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Table 5 also shows that under high values of the deterioration rate (γ = 0.9); the optimal 

production run time consistently decreases when the failure rate increases. This trend is 

justified because under higher deterioration rates, the chances are higher for the system to 

experience process deterioration, and hence defectives are expected to be produced in a 

higher rate; accordingly shorter production run times are suggested by the model in order 

to reduce the instances of process deterioration and machine failure. 

Finally, table 5 shows that for intermediate values of deterioration rate (γ = 0.3 and 0.5); 

the optimal production run time decreases then start to increase by increasing the failure 

rate λ. In this case, the model is trying to balance between the effect of process 

deterioration and machine failure and their associated costs. 

Table 6 shows how the optimal production run time and the corresponding average cost 

are affected by changing the corrective repair cost c�.  Results show that an increase in 

the corrective repair cost leads to consistent decrease in the optimal production run time.  

Shorter run times mean lower chances of encountering failure, and hence the risk of 

incurring corrective repair cost is minimized. Increasing the corrective repair cost results 

in increasing the average cost, which is fairly expected. 
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TABLE 5 Dependency of the optimal production policy on λ and γ in model-II 

λ 
γ � 0.1 γ � 0.3 γ � 0.5 γ � 0.7 γ � 0.9 

W�t8� � t8�  W�t8� � t8�  W�t8� � t8�  W�t8� � t8�  W�t8� � t8�  

0.1 151.71 3.03 157.07 2.79 160.72 2.64 163.39 2.55 165.43 2.48 

0.2 152.44 3.04 158.96 2.78 163.41 2.62 166.68 2.52 169.17 2.44 

0.3 153.07 3.05 160.57 2.78 165.74 2.61 169.51 2.49 172.39 2.41 

0.4 153.61 3.05 161.97 2.79 167.75 2.60 171.98 2.47 175.20 2.38 

0.5 154.07 3.06 163.19 2.79 169.51 2.60 174.14 2.45 177.66 2.35 

0.6 154.47 3.07 164.25 2.80 171.06 2.60 176.04 2.44 179.82 2.33 

0.7 154.82 3.08 165.19 2.82 172.43 2.60 177.72 2.44 181.74 2.31 

0.8 155.13 3.09 166.01 2.83 173.64 2.61 179.22 2.43 183.45 2.30 

0.9 155.40 3.10 166.74 2.84 174.72 2.62 180.55 2.43 184.98 2.29 
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TABLE 6 Sensitivity analysis by changing c1 in model-II 

&! � 5 

&�  

λ � 0.1 

γ � 0.9 

λ � 0.5 

γ � 0.5 

λ � 0.9 

γ � 0.1 

W�t8� � t8�  W�t8� � t8�  W�t8� � t8�  

10 163.32 2.54 163.59 2.81 152.78 3.18 

15 163.85 2.52 165.11 2.76 153.44 3.16 

20 164.38 2.51 166.61 2.70 154.10 3.14 

25 164.91 2.49 168.07 2.65 154.75 3.12 

30 165.43 2.48 169.51 2.60 155.40 3.10 

35 165.96 2.47 170.93 2.54 156.04 3.08 

40 166.47 2.45 172.32 2.49 156.68 3.06 
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Table 7 shows how the optimal production run time and the corresponding average cost 

are affected by changing the preventive repair cost c!. Increasing the preventive repair 

cost results in increasing the optimal production run time.  Longer run times mean lower 

possibility of successful completion with no failure; in this case, the risk of incurring 

preventive repair cost is minimized. Again and as expected, increasing the preventive 

repair cost results in increasing the average cost. 
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TABLE 7 Sensitivity analysis by changing c2 in model-II 

c� � 30 

&!  

λ � 0.1 
γ � 0.9 

λ � 0.5 

γ � 0.5 

λ � 0.9 

γ � 0.1 

W�t8�� t8�  W�t8� � t8�  W�t8� � t8�  

5 165.43 2.48 169.51 2.60 155.40 3.10 

9 167.65 2.51 171.10 2.66 157.32 3.15 

13 169.85 2.55 172.64 2.73 159.21 3.20 

17 172.04 2.58 174.13 2.80 161.09 3.24 

21 174.20 2.62 175.59 2.87 162.95 3.29 

25 176.35 2.65 177.00 2.94 164.79 3.34 

29 178.48 2.68 178.38 3.01 166.61 3.39 
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In this chapter, we presented an EMQ model in which process deterioration and machine 

breakdown jointly affects the optimal production policy.  Model is built for general 

failure, deterioration, corrective and preventive repair time distributions, but numerical 

analysis is carried out under exponential failure and deterioration times, and uniform 

corrective and preventive repair times.  Process deterioration is assumed to take place 

gradually where the rate of producing defective items starts, at some point, to increase 

with time following a linear pattern. Process deterioration and machine breakdown events 

are assumed dependent in the sense that machine failure, if happened, is preceded by 

process deterioration and it cannot happen alone. Numerical results supported the 

capability of the proposed model to be used as a decision making tool in finding the 

optimal production policy.  
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5 CHAPTER 5 

EOQ IN RETAILING INDUSTRY MODEL-I 

5.1 Introduction 

In retailing industry, suppliers tend to offer a fixed credit period to settle the account in 

order to stimulate retailer’s demand. During the credit period, retailers start selling to 

their direct customers and accumulate revenue. If the retailer fails to settle the account by 

the due time, the supplier charges interest. This “buy now and pay later” agreement is 

beneficial for both parties involved. From supplier’s point of view; trade credits 

encourage the retailer to buy more and it can be seen as an effective promotional tool that 

attracts new customers (retailers). On the other hand, trade credits help retailers in 

lowering their overall cost and increasing profit thru earning interest on revenue collected 

during the credit period. Credit period is also offered by retailers to their direct customers 

in order to positively influence the demand. 

In this chapter, we will develop an EOQ model in which the supplier offers credit period 

to his customer (retailer); also, the retailer offers a credit period to his direct customers 

(end consumers). Demand is assumed to depend on the length of the credit period offered 
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by the retailer to his customers. The purpose of the model is to determine the optimal 

order quantity that would maximize the retailer’s profit. 

The following notations are used in developing the mathematical model: 

D Demand rate 

R Replenishment rate 

N Credit period offered by the retailer to his customers 

M Credit period offered by the supplier to the retailer 

T Inventory cycle length 

A Ordering cost per order 

C Unit purchase price of the item 

P Unit selling price of the item 

I Inventory carrying cost per unit of the item per unit time 

W0 Interest rate that can be earned per unit currency per unit time 

W; Interest rate payable per unit currency per unit time 

α Bad debt ratio 

r Rate of saturation of demand 

��)� Minimum demand  

���� Maximum demand 

��1,�� Retailer’s profit per unit time 

The following assumptions are made to develop the mathematical model: 

1. The replenishment rate R form the supplier to the retailer is finite and it is greater 

than the maximum demand rate ����. 
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2. The supplier offers a fixed credit period S to the retailer to settle the accounts. As 

the relenishemet rate is finite; we assume counting for S to start at the point when 

delivery of the whole lot is completed. 

3. The retailer offers a fixed credit period � to each of his customers to settle their 

acounts. However we assume a percentage of sales 3 will never be collected and 

it is considered as bad debts. 

4. The demand rate is a function of the customer’s credit period offered by the 

retailer ���, and is given by (Jaggi et al 2008): 

� � ���� D ����� D ��)���1 D A�� 

In which ���� is the maximum possible demand, ��)� is the minimum demand 

and A is the saturation rate of demand, and all are constant quantities and can be 

estimated using market conditions and past data. Figure 20 shows the demand 

function for different values of saturation rate A with ��)� � 50 and ���� �
100. 

5. Shortages are not allowed. 

6. Sales revenue after deducting the bad debts is still greater than the purchasing 

cost, i.e.  �1 D 3�V Y , 
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Figure 20 Credit linked demand function 

  

40

50

60

70

80

90

100

5 10 15 20 25 30 35 40 45 50 55

D
e

m
a

n
d

N (Days)

r = 0.12 r = 0.09 r = 0.06



91 

 

 
 

5.2 Model Formulation 

The retailer receives the whole lot by time 
 ¡
¢  (Figure 21). The payment of the whole lot 

to the supplier is due at time 
 ¡
¢  �  M.  The retailer starts to collect revenue from his 

customers at time N and it continues until time N� T.  There are three cases to be 

considered here.  In the first case, the payment to the supplier is due some time after the 

retailer has already started to collect revenue i.e. N :  ¡¢ �M and before the retailer 

receives all the revenue i.e. 
 ¡¢ �M : T � N. In the second case the payment to the 

supplier is due after the retialer has received all revenue from sales to his customers, i.e. 

T � N :  ¡¢ �M.  The last case is when the payment to the supplier is due before the 

retailer receives any revenue, i.e.  ¡¢ �M : N.  We discuss these cases in the following 

sections. 

The retailer’s profit per unit time is defined by sales revenue, ordering cost, purchasing 

cost, inventory-holding cost, and finally interest earned and/or paid depending on the 

time at which supplier payment is due. 
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Sales revenue per unit time is the demand rate multiplied by the unit-selling price, and 

finally multiplied by �1 D 3� to exclude bad debts. Sales revenue is expressed as: 

 �T�NP XNRNUON � �1 D 3��V (5-1) 

Ordering cost per unit time is simply the cost of ordering divided by the inventory cycle 

length: 

 ¥A"NAQU� ,@P� � ¦1 (5-2) 

Purchasing cost per unit time is simply the unit-purchasing price multiplied by the 

demand rate: 

 VOA&�TPQU� ,@P� � ,� (5-3) 

Inventory holding cost per unit time is the average inventory multiplied by the inventory 

holding cost per unit of the product per unit time; W (Figure 21): 

 WURNU�@A6 �@�"QU� ,@P� � 12 W�1 L1 D �XM (5-4) 

As mentioned earlier, different cases arise depending on the due time for the supplier 

payment. All three cases have the terms in equations (5-1) to (5-4) in their profit 

functions, accordingly we define �� as:   
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 �� � �1 D 3��V D ¦1 D ,� D 12 W�1 L1 D �XM  

Interest earned and interest payable differs for each of the three cases and they are 

explained in the following sub-sections. 

5.2.1 Case I 

In this case (Figure 22), the retailer starts getting actual sales revenue at time N, until 

time 
 ¡¢ �M retailer earns interest on average sales revenue for the time period 

 
 ¡¢ �MD N. From time 

 ¡¢ �M  until time 1 � � supplier charges interest on (a) the 

average quantity of items with their debt successfully collected from end users, and (b) 

the full quantity of items considered as bad debt. 

Case I happens when the following condition applies: 

 L� : �1X �S M& L�1X �S : 1 � �M  
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Figure 22 Case I 
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It should be clear that under case I an assumption is made implying that the retailer pays 

the supplier according to the following procedure: 

a. At time 
 ¡¢ �M, the retailer pays the supplier for the quantity that their debt is 

collected successfully by that time. 

b. During the time period 1 � � D  ¡¢ DM, the retailer continuously (i.e. at the end 

of each day) pays the supplier for quantities that their debt is successfully 

collected, in addition to interests due on their value. 

c. At the end of debt collection period; i.e. �1 � ��, the retailer pays the supplier for 

the bad debt quantity in addition to interests due on their value. 

Interest earned per unit time is given by: 

 W0�1 D 3�V� ¨�1X �S D�©!21   

Interest payable per unit time by the retailer to the supplier is given by: 

12 W;�1 D 3�,� ¨1 � � D �1X DS©! � W;3,�1 ¨1 � � D �1X DS©1  

Interest payable can be reduced to: 
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,�W; ¨X D �X 1 � � DS©C�1 D 3� ªX D �X 1 � � DS« � 231E

21   

Accordingly, the retailer’s profit per unit time in this case is given by: 

���1, �� � �� � WU�NANP� ¬TAUN" D WU�NANP� VT6T �N 

���1, �� � �� � W0�1 D 3�V� ¨�1X �S D�©!21
D ,�W; ¨X D �X 1 � � DS©C�1 D 3� ªX D �X 1 � � DS« � 231E

21  
  

5.2.2 Case II 

In this case (Figure 23), the retailer earns interest on average sales revenue during the 

period �N, T � N� and on full sales revenue for the time period ¨ ¡¢ �MD T D N©. Under 

case II, the retailer makes a single payment to the supplier at time 
 ¡¢ �M of value ,�1 

with no extra interest as he makes the payment on the due time with no delay. 

Case II happens when the following condition applies: 

 1 � � : �1X �S  
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Interest earned per unit time is given by: 

12 �1 D 3�W0V�1! � �1 D 3�W0V�1 ¨�1X �S D 1 D �©1  

Interest earned can be reduced to: 

 �1 D 3��W0V L2� D X2X 1 � S D�M  

Accordingly, the retailer’s profit per unit time in this case is given by: 

�!�1, �� � �� � WU�NANP� ¬TAUN" 

 �!�1, �� � �� � �1 D 3��W0V L2� D X2X 1 �S D �M  

5.2.3 Case III  

In this case, (Figure 24), the supplier payment is due even before the retailer start 

collecting debt from his customers. In this case the retailer earns no interest but pays 

interest on full order quantity for a period of � D +­® DS, and for a period of 1 he pays 

interest on (a) average quantity of items with their debt successfully collected, and (b) the 

full quantity of items considered as bad debt. 



100 

 

 
 

DT

NT NT +

DTα

DT)1( α−

M

R

DT
+

D)
1(

α−D

 

Figure 24 Case III 

  



101 

 

 
 

Case III happens if the following condition applies: 

 
�1X �S : �  

Under case III, the retailer pays the supplier according to the following procedure: 

a. During the time period extending from � to 1 � �, the retailer continuously (i.e. 

at the end of each day) pays the supplier for quantities that their debt is 

successfully collected, in addition to interests due on their value.  

b. At the end of debt collection period; i.e. �1 � ��, the retailer pays the supplier for 

the bad debt quantity in addition to interests due on their value. 

Interest payable per unit time by the retailer to the supplier is given by: 

W;,�1 ¨� D �1X DS© � 3W;,�1! � 12 �1 D 3�W;,�1!
1  

Interest payable is reduced to, 

 ,�W; C�1 � 3�X D 2�2X 1 � � DSE  

Accordingly, the retailer’s profit per unit time in this case is given by: 

�f�1, �� � �� D WU�NANP� VT6T �N 
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 �f�1, �� � �� D ,�W; C�1 � 3�X D 2�2X 1 � � DSE  

5.2.4 Retailer’s Profit Function 

Combining the results from the three cases discussed above, the retailer’s profit function 

is given by: 

 ��1, �� �
°̄±
°²���1, ��, � : �1X �S : 1 � �
�!�1, ��, 1 � � : �1X �S
�f�1, ��, �1X � S : �

³  

which is a function of two variables 1 and � where 1 is continuous and � is discrete. 

5.3 Optimality 

Our problem is to determine the optimum values of T and N which maximizes the 

retailer’s profit Z�T, N�. For a fixed value of N, we find the second derivatives of 

Z��T, N�, Z!�T, N� and Zf�T, N� with respect to T, we get: 

 ��′′�1, �� � D2¦ D �1 D 3���S D ��!µ,W; D VW0¶1f   

and: 

 �!′′�1, �� � D2¦1f   
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and, 

 �f′′�1, �� � D2¦1f   

For a fixed N, Z!�T, N� and Zf�T,N� are concave on T # 0. However Z��T, N� is concave 

on T # 0 if the following condition applies: 

 �1 D 3���S D ��!µ,W; D VW0¶ # D2¦ (5-5) 

It is worthy to notice that if CI¸ # VI�, then the concavity of Z��T, N� is guaranteed, 

otherwise condition 5-5 should be tested to conclude if Z��T, N� is concave or not. 

5.4 Solution Procedure 

In order to jointly optimize T and N, we propose the following algorithm: 

1. Set � � 1. 

2. Search for the optimal values of 1 �Q. N. 1��, 1!� TU" 1f�� which maximize 

Z��T, N�, Z!�T, N� and Zf�T, N� respectively on 1 # 0. 

3. If ¨� : +­H�® �S : 1�� ��©; set 1� � 1�� and �� � ��� then go to step 4. If the 

condition is not satisfied go to step 5. 

4. If ���1, �� # ���1, � D 1�, increment the value of � by 1 and go to step 2, else 

previous value of � �Q. N. � D 1� is optimal and its corresponding values of 1 and 

��1,�� are retrieved and algorithm is terminated. 
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5. If ¨1!� �� : +­K�® �S©; set 1� � 1!� and �� � �!� then go to step 4. If the 

condition is not satisfied go to step 6. 

6. If ¨+­¹�® �S : �©; set 1� � 1f� and �� � �f� then go to step 4. 

The aforementioned algorithm is coded in Mathematica 8 to produce numerical results 

presented in the following section. 

5.5 Results and Conclusion 

We chose the following values of model parameters: R � 150, D»¼½ � 100, D»¾¿ � 30, 

r � 0.12, A � 1000, C � 30, P � 40, I� � 10%, I¸ � 15%, I � 20 and α � 0.05.  

Table 8 shows the effect of changing S on the optimal policy (T� and N��  and the 

associated cost. The optimal cycle length is slightly affected by increasing S. Mainly 

three types of cost affect the behavior of the model. Ordering-cost pushes the model for 

higher values of cycle length. Inventory holding cost demands shorter cycle lengths. 

Interest payable is defined by the location of supplier payment due time 
 ¡�¢ �M which is 

governed by the cycle length and the supplier credit period S. Increasing S helps in 

deferring the supplier payment and hence the cycle length can stay almost unchanged to 

keep the balance between ordering cost and inventory holding cost. 

The retailer’s credit period � is also slightly affected by increasing S. Increasing 

� positively affects the demand which is in turn helps in increasing sales revenue and 
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deferring the supplier payment due time ¨ ¡�¢ �M©. But that effect is limited as explained 

by the demand function, and the demand rate almost attains its maximum at N � 32 and 

there is no tangible benefit by increasing �. Also increasing � in larger magnitudes 

would render the model in case III, which is not preferable in terms of interest payable as 

the supplier payment might be due even before the retailer start collecting debt from his 

customers.  

Finally the retailer’s profit increases consistently by increasing S which is self explained 

as this leads to deferring supplier payment due time with no extra interest. 

Table 9 shows the effect of changing the ordering cost A on the optimal policy. 

Obviously increasing A results in increasing the optimal cycle length in order to distribute 

the ordering cost over larger quantity. On the other hand, retailer’s credit period is not 

affected by increasing A. As expected, retailer’s profit decreases by increasing the 

ordering cost. 
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TABLE 8 Effect of changing M on the optimal policy 

S 1� �� � 
�1�X �S Case ��1�, ��� 

0 36.26 32 98.83 23.89 III 696.48 

10 36.16 32 98.83 33.83 I 708.66 

20 35.86 33 98.97 43.66 I 720.62 

30 35.68 33 98.97 53.54 I 732.26 

40 35.72 33 98.97 63.57 I 743.54 

50 36.38 34 99.10 74.03 II 754.27 
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TABLE 9 Effect of changing A on the optimal policy 

¦ 1� �� ��1�, ��� 
500 25.236 33 748.679 

1000 35.6788 33 732.263 

1500 43.6932 33 719.664 
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Table 10 shows the effect of changing the saturation rate A on the optimal policy. 

Increasing A leads to decreasing �; larger values of A requires smaller values of � in 

order to achieve the maximum demand as explained by the demand function. Increasing A 

has tiny effect on the optimal cycle length. Retailer’s profit increases with A; higher 

values of A means high demand rate while still offering relatively short credit period. 

Shorter credit periods mean early collection of debt from retailer’s customers. 

Table 11 shows the effect of changing X on the optimal policy. Increasing the 

replenishment rate leads to a decrease in the optimal cycle length. Increasing X leads to 

an increase in the inventory holding cost, and hence the model suggests shorter values of 

cycle length in order to overcome this effect. Increasing X has tiny effect on �. Retailer’ 

profit decreases by increasing X which is fairly expected as supplier payment due time 

¨ ¡�¢ �M© is becoming earlier. 

Table 12 shows the effect of changing the bad debt ratio α on the optimal policy. 

Increasing α results in a marginal decrease in both 1 and �. Retailer’s profit decreases by 

increasing α which is expected as sales revenue decreases. 
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TABLE 10 Effect of changing r on the optimal policy 

A 1� �� ��1�, ��� 
0.09 35.6337 41 719.283 

0.12 35.6788 33 732.263 

0.15 35.7911 28 740.468 
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TABLE 11 Effect of changing R on the optimal policy 

X 1� �� ��1�, ��� 
125 60.2143 34 755.019 

150 35.6788 33 732.263 

175 29.5076 33 720.496 
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TABLE 12 Effect of changing αααα on the optimal policy 

3 1� �� ��1�, ��� 
0.025 36.0731 34 831.8 

0.05 35.6788 33 732.263 

0.075 35.2937 32 632.85 
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The model in this chapter is designed to determine the optimal order quantity and the 

optimal trade credit period that can be followed in the retailing industry to maximize the 

retailer’s profit. In the following chapter, we present a modified version of this model; in 

which, the retailer pays the wholesaler according to a different procedure. 
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6 CHAPTER 6 

EOQ IN RETAILING INDUSTRY MODEL-II 

6.1 Introduction 

In this chapter, we develop a model similar to that in chapter 5. The main difference in 

this model is the procedure in which the retailer pays the supplier; and this is thoroughly 

explained in the following sections. Same assumptions apply as those in chapter five, 

with the exception of the procedure of paying the supplier as mentioned before. 

Concerning notation, same used as in chapter 5 with addition of the following 2: 

S Supplier profit per unit product 

2 Supplier’s profit per unit time 

6.2 Model Formulation 

The retailer receives the whole lot by time 
 ¡¢  (Figure 21, Ch5). The payment of the 

whole lot to the supplier is due at time 
 ¡¢  �  M.  The retailer starts to collect revenue 

from his customers at time N and it continues until time N� T.  There are three cases to 

be considered here.  In the first case, the payment to the supplier is due sometime after 

the retailer has already started to collect revenue i.e. N :  ¡¢ �M and before the retailer 
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receives all the revenue i.e. 
 ¡¢ �M : T � N. In the second case the payment to the 

supplier is due after the retailer has received all revenue from sales to his customers, i.e. 

T � N :  ¡¢ �M.  The last case is when the payment to the supplier is due before the 

retailer receives any revenue, i.e.  ¡¢ �M : N.  We discuss these cases and their sub-

cases in the following sections. 

The retailer’s profit per unit time is defined by sales revenue, ordering cost, purchasing 

cost, inventory-holding cost, and finally interest earned and/or paid depending on the 

time at which supplier payment is due. 

Sales revenue, ordering cost, purchasing cost and inventory holding cost in this model are 

similar to those in chapter 5, and they are combined together in one expression: 

�� � �1 D 3��V D ¦1 D ,� D 12 W�1 L1 D �XM 
Interest earned and interest payable differs for each case and they are explained in the 

following sections. 

6.2.1 Case 1 

In this case (Figure 25), the retailer starts getting actual sales revenue from time N to 

 ¡¢ �M and earns interest on average sales revenue for the time period 
 ¡¢ �MD N. At 

time 
 ¡¢ �M accounts should be settled with the supplier; total purchasing cost of value 
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CDT is due at this time. If the sum of sales revenue and interest earned accumulated by 

that time is less than the purchasing cost, then the retailer pays the accumulated cash and 

the rest of the payment is considered as a loan. This loan to be paid off with interest at the 

end of debt collection period �1 � ��. On the other hand; if the accumulated cash equals 

or exceeds the purchasing cost, then the retailer pays to the supplier in full.  

Case 1 happens when the following condition applies: 

 L� : �1X �S M& L�1X �S : 1 � �M  

Accumulated sales revenue ($) at time 
 ¡¢ �M is given by: 

 �1 D 3�V� L�1X �S D �M  

Accumulated interest earned ($) at time 
 ¡¢ �M is given by: 

 
12 �1 D 3�W0V� L�1X �S D�M!  
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Figure 25 Case 1 
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Accordingly, the loan value (if needed) is given by: 

,�1 D �1 D 3�V� L�1X �S D�M D 12 �1 D 3�W0V� L�1X �S D�M! 

The loan expression can be reduced to, 

 ,�1 D �1 D 3�V� L�1X �S D �M L1 � 12 W0 Å�1X �S D �ÆM  

The loan function above is quadratic in 1 and can be expressed as: 

 Ç@TU � R�1! � R!1 � Rf  

R�, R! and Rf are expressed as: 

 R� � D�1 D 3�VW0�f
2X!  

R! � �X, D �1 D 3�V�!�1 � W0nS D �o�X  

Rf � D�1 D 3�2 V��S D ���2 � W0nS D �o� 

 

Since v� is a negative quantity, the quadratic function is concave. The roots of this 

quadratic function are given by: 



118 

 

 
 
 

 A� � DR! ��R!! D 4R�Rf2R�   

and 

 A! � DR! D�R!! D 4R�Rf2R�   

Not that r� ( r! since v� is negative, also r! can be negative; and hence both roots can be 

negative when both v! and vf are negative (which is already possible). Figure 26 shows 

all possible scenarios for the loan function in terms of the location of its roots. In case (a), 

both roots are negative; and hence the loan function is never positive over positive values 

of T. In (b) the loan is positive over some period from zero to r!. In (c) the loan is 

positive over the period from r� to r!. Finally, in (d) the loan function is always negative 

and there is no real roots for the loan function. 
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Figure 26 The loan function 
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Based on the loan function, two sub-cases under case one are considered and they are 

explained below in the following two sub-sections. 

6.2.1.1 Case 1.1  

In this sub-case the accumulated cash at retailer’s hand at time 
+­® �S is less than the 

purchasing cost �,�1�, accordingly a loan should be arranged. Case 1.1 happens when 

the following condition applies: 

 �4R�Rf ( R!!�& �A� : 1 : A!�  

The loan is paid off with its interests when all debt is collected from customers at time 

T � N (excluding bad debts). Consequently, interest payable per unit time is given by: 

 
W; ¨1 � � D �1X DS© . Ç@TU

1  
 

The retailer earns interest on average sales revenue from time N to  
 ¡¢ �M. After paying 

the accumulated cash at time 
 ¡¢ �M, the retailer earns interest on average sales revenue 

from time 
 ¡¢ �M until the end of debt collection period  �T � N�. Consequently, interest 

earned per unit time is given by:  

 
�1 D 3�W0V�2T CLDTR � MD NM! � L1 � � D �1X DSM!E  
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The retailer’s profit per unit time in this sub-case is given by: 

 

��.� � �� � WU�NANP� ¬TAUN" D WU�NANP� VT6T �N 

��.� � �� � �1 D 3�W0V�2T CLDTR �M D NM! � L1 � � D �1X DSM!E

D W; ¨1 � � D �1X DS© . Ç@TU
1  

 

Under this sub-case, the supplier profit per unit time is given by: 

 2�.� � �� � W; ¨1 � � D �1X DS© . Ç@TU
1  

 

S is the supplier profit per unit product. The supplier profit comes from selling his 

product to the retailer; the first term, and from interest paid by the retailer in case a loan 

is needed; the second term. 

6.2.1.2 Case 1.2 

In this case the accumulated cash at retailer’s hand at time 
 ¡¢ �M equals or exceeds the 

purchasing cost �CDT�, accordingly no loan is needed and the supplier is paid in full from 

sales revenue and interest earned generated by that time. Case 1.2 happens when the 

following condition applies: 



122 

 

 
 
 

 �4R�Rf Y R!!� ¥A �1 : A�� ¥A �1 Y A!�  

The retailer earns interest on average sales revenue from time N to  
 ¡¢ �M. After settling 

the accounts with the supplier the retailer earns interest on average sales revenue from 

time 
 ¡¢ �M until the end of debt collection period �T � N�. Additionally the retailer 

earns interest on cash amount which remains after settling the accounts over the period 

¨T � N D  ¡¢ DM© . Interest earned per unit time in this sub-case is given by: 

�1 D 3�W0V�2T CLDTR � MD NM! � L1 � � D �1X DSM!E

� W0 ¨1 � � D �1X DS©C�1 D 3�V� ¨�1X �S D �©¨1 � 12 W0 ª�1X �S D �«© D ,�1E
1  

 

Moreover, the retailers profit per unit time is given by: 

��.! � �� � WU�NANP� ¬TAUN" 

��.! � �� � �1 D 3�WNV�2T CLDTR � M D NM2 � L1 � � D �1X D SM2E

� WN ¨1 � � D �1X D S©C�1 D 3�V� ¨�1X � S D �© ¨1 � 12 WN ª�1X � S D �«© D ,�1E
1  

Under this sub-case, the supplier profit per unit time is given by: 
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 2�.! � ��  

The supplier earns no iterest from the retailer in this sub-case.  

6.2.2 Case 2 

In this case (Figure 27), the retailer earns interest on average sales revenue collected 

during the period �N, T � N� and on full sales revenue for a period of 

 ¨ ¡¢ �M D T D N©. Case 2 happens when the following condition applies: 

 1 � � : �1X �S  
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Figure 27 Case 2 
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Interest earned per unit time under case 2 is given by: 

12 �1 D 3�W0V�1! � �1 D 3�W0V�1 ¨�1X �S D 1 D �©
1  

This reduces to: 

 �1 D 3��W0V L2� D X2X 1 � S D�M  

the retailer profit per unit time in this case is given by: 

�! � �� � WU�NANP� ¬TAUN" 

 �! � �� � �1 D 3��W0V L2� D X2X 1 � S D�M  

The supplier profit per unit time under this case is given by: 

 2! � ��  

Again, the supplier earns no interest from the retailer under this case. 

6.2.3 Case 3 

In this case (Figure 28), the supplier payment is due even before the retailer start 

collecting debt from his customers, accordingly a loan of value ,�1 (total purchasing 

cost) is arranged and to be paid off with its interest when debt collection period is over 

(i.e. at time 1 � �). Case 3 happens when the following condition applies: 
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�1X �S : �  

Interest payable per unit time in this case is given by: 

 
W;,�1 ¨1 � � D �1X DS©

1  
 

On the other hand, retailer earns interest on average sales revenue over the debt collection 

period �� , 1 � ��. Interest earned per unit time is given by: 

 
�1 D 3�W0V�T2   
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Figure 28 Case 3 
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The retailer profit per unit time is given by: 

�f � �� � WU�NANP� ¬TAUN" D WU�NANP� VT6T �N 

 �f � �� � �1 D 3�W0V�T2 D W;,�1 ¨1 � � D �1X DS©
1  

 

The supplier profit function in this case is given by: 

 2f � �� � W;,�1 ¨1 � � D �1X DS©
1  

 

In this case, the supplier earns interest from the retailer. 

6.2.4 Retailer and supplier’s profit functions 

Combining results from the previous cases and sub-cases, the retailer’s profit function per 

unit time is given by: 

� �
°̄°
±
°°
²��.�, L� : �1X �S : 1 � �M  & �4R�Rf ( R!!� & �A� : 1 : A!�
��.!, L� : �1X �S : 1 � �M  & u�4R�Rf Y R!!� ¥X �1 : A�� ¥X �1 Y A!�w
�!, 1 � � : �1X �S
�f, �1X �S : �

³  

and the supplier profit function per unit time is given by: 
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2 �
°̄°
±
°°
²2�.�, L� : �1X �S : 1 � �M  & �4R�Rf ( R!!� & �A� : 1 : A!�
2�.!, L� : �1X �S : 1 � �M  & u�4R�Rf Y R!!� ¥X �1 : A�� ¥X �1 Y A!�w
2!, 1 � � : �1X �S
2f, �1X �S : �

³  

In order to investigate the concavity of the retailer’s profit function, we find its second 

derivative: 

��.�′′
� �1 D 3�W0W;V�f�X D ��1f D �1 D 3�V�µ2W; D 2W0 �SW;W0 D �W;W0¶�S D ��!Xf D 2¦Xf

Xf1f  

��.!′′ � �1 D 3�V�fW0!�X D ��1f D �1 D 3�V�W0!�S D ��fXf D 2¦Xf
Xf1f  

�!′′ � �f′′ � D2¦1f  

Both �! and �f are concave on 1 # 0. However, the concavity of ��.� and ��.! is highly 

sensitive to model parameters, accordingly we propose a different approach for numerical 

analysis other than trying to maximize the retailer’s profit function. 

6.3 Results and Conclusion 

We will try to help both the retailer and the supplier in finding an efficient solution for 

both of them. Under a specific value of supplier credit period S, and for each 

 � � u1: 120w, we generate two arrays of profit function values for 1 � u1: 120w. One 
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array represent the supplier’s profit and the other represent the retailer’s profit. 

Combining supplier’s profit arrays in one matrix, and retailer’s profit arrays in another 

matrix, we create two matrices of dimension 120 É 120 each. Analogous entries in the 

supplier and the retailer’s profit matrices share the same values of � and 1, and certainly 

same value of S. 

From each pair of profit matrices (linked to a specific S), we extract the list of efficient 

points. An efficient point is a pair of supplier and retailer’s profit. For an efficient point, 

no improvement is possible on one of the two profits without worsening the other. The 

list of efficient points is plotted for each S. Supplier’s profit is shown on the horizontal 

axis while the retailer’s profit is on the vertical axis. 

We chose the following set of parameters: R � 120, D»¼½ � 80, D»¾¿ � 30, r � 0.12, 

A � 1000, C � 30, P � 40, I� � 10%, I¸ � 15%, I � 20, α � 0.05 and � � 5. 

Figure 29 shows the efficient front under M � 5. At N � 120 and T � 120, the supplier 

earns the maximum possible profit of 553 while the retailer earns only 441. At N � 30 

and T � 47, the retailer earns the maximum possible profit of 557 while the supplier 

earns only 428. A total of 975 efficient points found under M � 5. Supplier and retailer’s 

profit differs for each efficient point. Both parties should agree on the most suitable point 

on which they should operate. For instance, they might chose the point at which they earn 

equal profit of 502 with N � 90 and T � 56. 
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Figure 29 Efficient front (M=5) 
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Figure 30 shows the efficient fronts for different values of S. As S increases, the 

maximum profit that would be gained by the supplier decreases, and the maximum 

possible profit for the retailer increases. This observation is fairly expected as increasing 

S allows the retailer to earn more interest on sales revenue before the due time of 

supplier payment. 

The model developed in this chapter provides the supplier and the retailer with a tool that 

would help in achieving an optimal integrated policy of ordering (i.e.T) and offering trade 

credits (i.e. N and M). 
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Figure 30 Efficient fronts for different M’s 

441

461

481

501

521

541

561

581

397 447 497 547

R
e

ta
il

e
r 

P
ro

fi
t 

(Z
)

Supplier Profit (W)

M=5

M=15

M=30

M=45



 
 

134 
 

7 CHAPTER 7 

CONCLUSION AND FUTURE RESEARCH 

In chapter 3, we developed an EPQ model in which process deterioration and machine 

breakdown jointly affects the optimal production policy.  The model is built for general 

failure, deterioration, corrective and preventive repair time distributions, but optimality is 

proved for exponential failure and deterioration times, and uniform corrective and 

preventive repair times.  Process deterioration is assumed to take place gradually where 

the rate of producing defective items starts, at some point, to increase with time following 

a linear pattern. Process deterioration and machine breakdown events are assumed 

independent of each other. Numerical results supported the capability of the proposed 

model to be used as a decision making tool in finding the optimal production policy.  

In chapter 4, we developed an EPQ model similar to that in chapter 3. The proposed 

model assumes that process deterioration and machine breakdown are dependent events, 

in the sense that machine failure, if happened, should be preceded by process 

deterioration. 

The two models in chapters 3 and 4 can be extended in many directions; for instance, the 

process drift can be assumed to follow an exponential pattern rather than a linear pattern, 
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which might suit some applications. Additionally, inspection process can be incorporated 

in the model, especially that the model already assumes an increasing rate of defectives’ 

production. Hence, the decision maker might be interested in interrupting the production 

process if defectives’ rate reaches a predefined level. Moreover, numerical examples for 

the two models can be solved under failure time following the Weibull distribution 

instead of the exponential distribution. 

The other two models in chapters 5 and 6 are designed to determine the optimal order 

quantity in retailing industry, in addition to the optimal credit period offered by the 

retailer to his customers. Both models are designed in the presence of two-level of trade 

credit periods, in addition to the assumption of credit-linked demand. In both models, 

replenishment from the supplier to the retailer is assumed non-instantaneous, additionally 

a percentage of the retailer’s sales are considered as bad debt. The two models differ in 

the payment procedure from the retailer to his supplier. 

The two models in chapters 5 and 6 can be extended in several directions. One interesting 

extension is by allowing shortage. Under this assumption, shortages can be considered 

either as lost sales or to be backlogged. Another realistic extension is to consider demand 

to depend on both the credit period and the selling price to the end consumers. Moreover, 

randomness can be introduced to the model, as by now all model variables are assumed 
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deterministic. For instance, demand can be assumed random following some probability 

distribution. 
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