DISTRIBUTED KALMAN FILTERING

BY

MUHAMMAD HARIS KHALID

A Dissertation Presented to the
DEANSHIP OF GRADUATE STUDIES
KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

SYSTEMS ENGINEERING
KING FAHD UNIVERSITY
OF PETROLEUM & MINERALS
Dhahran, Saudi Arabia
SEPTEMBER 18, 2012
KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAH- 31261, SAUDI ARABIA
DEANSHIP OF GRADUATE STUDIES

This dissertation, written by MUHAMMAD HARIS KHALID under the direction of his dissertation advisor and approved by his dissertation committee, has been presented and accepted by the Dean of Graduate Studies, in partial fulfillment of the requirements for the degree of **DOCTOR OF PHILOSOPHY IN SYSTEMS ENGINEERING**.

Dissertation Committee

Dr. Fouad Al-Sunni
Department Chairman

Dr. Salam A. Zummo
Dean of Graduate Studies

Dr. Magdi S. Mahmoud
(Advisory)

Dr. Shokri Selim
(Member)

Dr. Moustafa El-Shafei
(Member)

Dr. Abdul-Wahid Al-Saif
(Member)

Dr. Mohammad Ali Abido
(Member)
DISTRIBUTED KALMAN FILTERING

by

MUHAMMAD HARIS KHALID

A Thesis Presented to the
DEANSHIP OF GRADUATE STUDIES

In Partial Fulfillment of the Requirements
for the degree

DOCTOR OF PHILOSOPHY

IN

SYSTEMS ENGINEERING

KING FAHD UNIVERSITY
OF PETROLEUM & MINERALS

Dhahran, Saudi Arabia

SEPTEMBER 18, 2012
Dedicated to my loving Parents, Brother & Sister
ACKNOWLEDGMENTS

In the name of Allah, the Most Beneficent Most Merciful

With deep humility, I thank Almighty Allah, the merciful and beneficent, for his constantly reliable help and his everlasting inspiration. I would like to express my deepest thanks and appreciation to my dissertation advisor, Distinguished Professor Dr. Magdi S. Mahmoud, for his consistent help, guidance and attention that he devoted throughout the course of this work. His valuable suggestions and useful discussions to maintain the research quality made this work interesting to me. His support and words of encouragement gave a new life to my efforts in hard times. Without his help and valuable directions, this work would have never seen the light. I am equally grateful to my dissertation committee members Prof. Dr. Shokri Selim, Prof. Dr. Moustafa El-Shafei, Prof. Dr. Mohammad Ali Abido and Dr. Abdul-Wahid Al-Saif who have deeply guided me on the critical aspects of the work. I am also thankful to the Chairman of my Department, Prof. Dr. Fouad Al-Sunni who has been always supportive and provided enormous help in the support of this research. I wish to thank him from the depth of my heart.

I would also like to thank the Deanship of Scientific Research (DSR) at KFUPM for financial support through research group project RG-1105-1. The support and facilities
provided by King Fahd University of Petroleum and Minerals for completing this work are highly appreciated.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>LIST OF FIGURES</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT (ENGLISH)</td>
<td>xii</td>
</tr>
<tr>
<td>ABSTRACT (ARABIC)</td>
<td>xv</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>xvi</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Distributed Kalman Filtering 1
1.2 Research Objectives and Methodology 4
 1.2.1 Problem Statement 4
1.3 Dissertation Structure .. 5
1.4 Contribution .. 5

2 BIBLIOGRAPHIC REVIEW

2.1 An Overview .. 7
2.2 Introduction .. 7
2.3 DKF Methods and their Applications 11
 2.3.1 DKF methods ... 11
 2.3.2 DKF with applications 15
2.4 Diffusion-Based DKF ... 18
CONTENTS

2.5 Distributed OOSM 22
2.6 MSDF Systems 23
2.7 DNs ... 31
2.8 Mathematical Design in Track-to-Track Fusion 33
2.9 DC-Based Estimation 36
2.10 DPF .. 38
2.11 ST-Based Distributed Fusion Kalman Filter 41

3 APPROXIMATE DISTRIBUTED ESTIMATION 44
3.1 An Overview 44
3.2 Introduction 44
3.3 Problem Formulation 46
3.4 Bayesian-based FB Kalman Filter Fusion with Complete Prior Information 51
 3.4.1 Modified Filter with Complete Prior Information 54
 3.4.2 Approximating the Filter for Complete Prior Information 57
3.5 Bayesian-Based FB Kalman Filter Fusion without Prior Information 62
 3.5.1 Modified Kalman Filter Without Prior Information 64
 3.5.2 Approximating the Kalman Filter for Without Prior Information 65
3.6 Bayesian-Based FB Kalman Filter Fusion with Incomplete Prior Information 68
 3.6.1 Modified Kalman Filter With Incomplete Prior Information 70
 3.6.2 Approximating the Kalman Filter for Incomplete Prior Information 71
3.7 Fusion Algorithm 74
3.8 Evaluation and Testing 76
 3.8.1 Evaluation of results 79
 3.8.2 Time Computation 83

4 A DISTRIBUTED EM-BASED KALMAN SMOOTHER 95
4.1 An Overview 95
LIST OF FIGURES

2.1 A general structure of DKF 8
2.2 Classification of Distributed Kalman Filter* 10

3.1 Proposed Data Fusion Design 74
3.2 Architecture of LTIP in distributed control network 77
3.3 Comparison of Covariance for complete prior information for Controller Fault .. 84
3.4 Comparison of Estimates for complete prior information for Leakage Fault .. 84
3.5 Comparison of Estimates for complete prior information for Controller Fault .. 85
3.6 Comparison of Covariance for complete prior information for Leakage Fault with Upper Bound Modified Filter 85
3.7 Comparison of Covariance for complete prior information for Controller Fault with Upper Bound Modified Filter 86
3.8 Comparison of Covariance for complete prior information for Controller Fault with Lower Bound Modified Filter 86
3.9 Comparison of Estimates for complete prior information for Leakage Fault with Lower Bound Modified Filter 87
3.10 Comparison of Estimates for complete prior information for Controller Fault with Lower Bound Modified Filter 87
3.11 Comparison of Estimates for Incomplete prior information for Controller Fault .. 88
3.12 Comparison of Covariance for Incomplete prior information for Leakage Fault with Upper Bound Modified Filter 88
3.13 Comparison of Covariance for without prior information for Leakage Fault .. 89
3.14 Comparison of Covariance for without prior information for Controller Fault .. 89
3.15 Comparison of Estimates for without prior information for Controller Fault ... 90
3.16 Comparison of Covariance for without prior information for Leakage Fault with Upper Bound Modified Filter 90
3.17 Comparison of Covariance for without prior information for Controller Fault with Upper Bound Modified Filter 91
3.18 Comparison of Covariance for without prior information for Leakage Fault with Lower Bound Modified Filter 91
3.19 Comparison of Covariance for without prior information for Controller Fault with Lower Bound Modified Filter 92
3.20 Comparison of Estimates for without prior information for Leakage Fault with Lower Bound Modified Filter 92
3.21 Comparison of Estimates for without prior information for Controller Fault with Lower Bound Modified Filter 93

4.1 Estimates of Kalman-like particle and Basic Kalman smoother 101
4.2 Mean Square Error: Kalman-like particle and basic Kalman smoother 101
4.3 Power System Lab .. 127
4.4 Estimates for full-order smoother for Phase 3: DC motor drive Load 132
4.5 Estimates for full-order smoother for Phase 3: Linear Load 132
4.6 Estimates for full-order smoother for Phase 3: Nonlinear Load 133
4.7 Estimates for reduced-order smoother for Phase 1: DC motor drive Load 133
4.8 Estimates for reduced-order smoother for Phase 2: DC motor drive Load 134
4.9 Estimates for reduced-order smoother for Phase 3: DC motor drive Load 134
4.10 Estimates for various reduced-order smoothers: DC motor Load 135
4.11 Estimates for reduced-order smoother for Phase 1: Linear Load 135
4.12 Estimates for reduced-order smoother for Phase 2: Linear Load 136
4.13 Estimates for reduced-order smoother for Phase 3: Linear Load 136
4.14 Estimates for various reduced-order smoothers: Linear Load 137
4.15 Estimates for reduced-order smoother for Phase 1: Nonlinear Load ... 137
4.16 Estimates for reduced-order smoother for Phase 2: Nonlinear Load ... 138
4.17 Estimates for reduced-order smoother for Phase 3: Nonlinear Load ... 138
4.18 Estimates for various reduced-order smoothers: Nonlinear Load 139
4.19 Mean Square Error: EM-Based full and reduced-order smoothers 139

5.1 Estimates of Kalman-like particle and Basic Kalman filter 162
5.2 Mean Square Error: Kalman-like particle and basic Kalman filter 162
5.3 Measurement fusion employed for information-based sensor 170
5.4 State vector fusion employed for information-based sensor 170
5.5 Schematic Diagram of an Industrial Utility Boiler 181
5.6 Covariance Intersection: Complete Feedback Comparison 186
5.7 Covariance Intersection: Partial Feedback Comparison 186
5.8 Covariance Intersection: No Feedback Comparison 187
5.9 Covariance Intersection: Feedback Comparison 187
5.10 Weighted Covariance: Complete Feedback Comparison 188
5.11 Weighted Covariance: Partial Feedback Comparison 188
5.12 Weighted Covariance: Feedback Comparison 189
5.13 Kalman-like Particle Filter: Complete Feedback Comparison 189
5.14 Kalman-like Particle Filter: Partial Feedback Comparison 190
5.15 Kalman-like Particle Filter: Feedback Comparison 190
5.16 Kalman-like Particle Filter: Complete Feedback with measurement fu-

sion method .. 191
THESIS ABSTRACT

NAME: Muhammad Haris Khalid

TITLE OF STUDY: Distributed Kalman Filtering

MAJOR FIELD: Systems Engineering

DATE OF DEGREE: September 18, 2012

In recent years, a compelling need has arisen to understand the effects of distributed information structures on estimation and filtering. In this thesis, distributed Kalman filtering has been on focus with various perspectives. Firstly, a bibliographical review on distributed Kalman filtering (DKF) is provided. A classification of different approaches and methods involved to DKF has been elaborated, followed by the applications of DKF are also discussed and explained separately. A comparison of different approaches is briefly carried out. Focuses on the contemporary research are also addressed with emphasis on the practical application of the techniques. An exhaustive list of publications, linked directly or indirectly to DKF in the open literature, is compiled to provide an overall picture of different developing aspects of this area.
Secondly, an approximate distributed estimation within distributed networked control formalism has been proposed. This is made possible by using Bayesian-based forward-backward (FB) system with generalized versions of Kalman filter. The analytical treatment is presented for cases with complete, incomplete or no prior information with bounds and then followed by estimation fusion for all three cases. The proposed scheme is validated on a rotational drive-based electro-hydraulic system and the ensuing results ensured the effectiveness of the scheme underpinning it.

The thesis proposes distributed expectation maximization (EM)-based reduced-order singular evolutive extended Kalman (SEEK) smoother. Optimal reduced-order smoothers complement the computation by doing re-analysis to correct the state of a dynamic system. The nature of order reduction of the SEEK smoother is fulfilling this phase, and made more precise by injecting the Kalman-like particle nature of the filter. The proposed scheme is first evaluated with its distributed full-order EM-based smoother version, followed by its reduced order version. The EM algorithm plays its role to identify and improve the estimate of process noise covariance Q in each case. The proposed scheme is then validated on a power quality system with various kinds of loads, ensuring the effectiveness and applicability of the scheme underpinning it.

An approach for distributed estimation algorithm is proposed using information matrix filter on a distributed tracking system in which N number of sensors are tracking the same target. The approach incorporates proposed engineered versions of information matrix filter derived from covariance intersection, weighted covariance and Kalman-like particle filter (KLPF) respectively. The steady performance of these filters
is evaluated with different feedback strategies, moreover employing them with commonly used measurement fusion methods i.e. measurement fusion and state-vector fusion respectively to complete the picture. The proposed filters are then validated on an industrial utility boiler, ensuring the effectiveness and applicability of the scheme underpinning it.

Keywords: DKF, Bayesian approach, prior information, distributed estimation, approximate estimation, electro-hydraulic system, expectation maximization, power system quality, EM smoother, information matrix filter, covariance intersection, weighted covariance, KLPF, industrial utility boiler.
المملوكة

تزايدت في الآونة الأخيرة الحاجة الملحة لاستيعاب التأثيرات المتعددة لهياكل المعلومات الموزعة على ترشيح الأسئلة وتقديراتها. ومن هذا المنطلق تفرد هذه الاتجاهات لدراسة معاينة "ترشيحات كالمان الموزعة" من جوانب متنوعة. وبإذ ذى بدء تقدم الاتجاهات عرض بملوغرافيا مستفيدة للمراجع والبحث المنشور والمداخلة حيث تم إبراز تقسيمات فنية للطرق واساليب البحث ثم استعرضت التطبيقات المتعددة وأجرت دراسة مقارنة ممتدة في الجوانب بين البحوث.

وتطلّق الاتجاهات لمناقشة موضوع هام يختص بالتقديرات الموزعة التقريبية من خلال الهياكل الحاكمة للشبكات الموزعة ومستخدمة لأسلوب "بای" ذو الاتجاهين مع منظور عام لمرشح كالمان. ويفترض هذا الفصل للمعالجات الرياضية التحليلية في حالات توافر كامل للمعلومات أو توافر جزئي للمعلومات أو غياب المعلومات مع تبيان دور تدفق المعلومات ومعدلاتها.

ويتشرّف بالوصول التالي في موضوع تطبيقات التوقعات الموزعة بالاستناد الى صور مصغره ل"منجم كالمان المتصل المفرد" ويقدّم الفصل منعمات مثالية مصغّره لتقييم الحال المذكور لنظم.

ثم تتناول الاتجاهات بعد ذلك موضوع مرشح مصغّر للمعلومات حيث تستميت خوارزمي جديد للتقديرات الموزعة من خلال نظام تتمتع موزع ذو كفاءة عالية وتتفق فيه مجموعة محدودة من المشاعر ليحدد هدف واحد بناءً على التقاطع المثمر للتبين المشترك. وقد تم اختيار أداء الخوارزمي في ضوء وسائل انبعاث ممتعة.

وقد أفردت الاتجاهات فصول خاصة للمحاكاة على نماذج لعمليات عمله وصناعية تشمل نظام كروم هيدروديناميكي ونظام توزيع للطاقة الكهربائي ومرافق صناعية. وبينت النتائج مدى فاعليّة النظام المسبّط في الأطراف.
NOMENCLATURE

ABBREVIATIONS

DKF : Distributed Kalman Filtering
EM : Expectation Maximization
KLPF : Kalman-like Particle Filter
OOSM : Out-of-Sequence Measurements
MSDF : Multi-Sensor Data Fusion
DN : Distributed Networks
DC : Distributed Consensus
DPF : Distributed Particle Filtering
ST : Self Tuning
EKF : Extended Kalman filtering
UKF : Unscented Kalman filtering
MSE : Mean Squared Error
MMSE : Minimum Mean Squared Error
1 INTRODUCTION

1.1 DISTRIBUTED KALMAN FILTERING

In recent years, a compelling need has arisen to understand the effects of distributed information structures on estimation and filtering. Technological advances in hardware and software over the past few decades have enabled cheap and small, yet powerful, communication and computation devices leading to this field. The distributed system architecture, on the whole, is very powerful since it allows the design of the individual units or components to be much simpler, while not compromising too much on the performance. Additional benefits include increased robustness to component loss, increased flexibility in that the components can be reconfigured for many different tasks and so on. However, the design of such systems challenges various problems of assumptions, handling, fusing the architecture of such systems.

Distributed Kalman Filtering (DKF) in general shows scheme or class of schemes which employs Kalman filter either interconnected or spatially distributed. If the system by definition, employs sensor network, can process to employ Kalman filter, advancements (mass produced), in order to develop for multi-sensor network, multi-sensor data
fusion, for this Kalman filter is an old scheme, and we need revised version of Kalman filters. Therefore in some cases, the conditions of standard Kalman filtering are violated and the regular recursive formulation can not be derived directly from the Kalman filtering theory and we have to propose methods for uncertain observations, passive packet loss, finite-time correlated noises etc.

Many advanced systems now make use of large number of sensors in practical applications ranging from aerospace and defense, robotics and automation systems, to the monitoring and control of a process generation plants. For example, an important practical problem in the above systems is to find an optimal state estimator given the observations. Moreover, DKF using applications of sensor fusion filter, federated square root filter, network of wireless cameras, multi-user detection problems, formation flying satellites, sparse large-scale systems, estimation on quantized observations etc. gives the route to DKF with applications.

The idea of distributing the computations involved in estimation problems using Kalman filters in sensor networks has been a subject of research since the late 1970s [1]. This section presents some of the recent contributions in this area.

OlfatiSaber [2] presented a distributed Kalman filter wherein a system with an -dimensional measurement vector is first split into subsystems of -dimensional measurement vectors, then these subsystems are individually processed by micro Kalman filters in the nodes of the network. In this system, the sensors compute an average inverse covariance and average measurements using consensus filters. These averaged values are then used by each node to individually compute the estimated state of the
1.1. DISTRIBUTED KALMAN FILTERING

system using the information form of the Kalman filter. Even though this approach is effective in an environment monitoring application where the state vector is partially known by each node in the network, it is not valid for an object tracking application where, at a given time, each node in a small number of nodes knows the entire state vector (although possibly not accurately).

Nettleton et al. [3] proposed a tree-based architecture in which each node computes the update equations of the Kalman filter in its information form and sends the results to its immediate predecessor in the tree. The predecessor then aggregates the received data and computes a new update. Node asynchrony is handled by predicting asynchronously received information to the current time in the receiving node. This approach is scalable since the information transmitted between any pair of nodes is fixed. However, the size of the information matrix is proportional to , where is the dimension of the state vector. In a sensor network setting, this information may be too large to be transmitted between nodes; therefore, methods to effectively quantize this information may need to be devised.

Regarding quantization, the work by Ribeiro et al. [4], studied a network environment wherein each node transmits a single bit per observation, the sign of innovation (SOI), at every iteration of the filter. The system assumes an underlying sensor-scheduling mechanism so that only one node transmits the information at a time. It also assumes the update information (i.e., the signs of innovations) to be available to each node of the network. They showed that the mean squared error of their SOI Kalman filter is closely related to the error of a clairvoyant Kalman filter, which has access to
1.2 RESEARCH OBJECTIVES AND METHODOLOGY

all of the data in analog form. There is an interesting tradeoff between the works by
Nettleton et al. and Ribeiro et al. The former presents a high level of locality (i.e.,
each node only needs information about its immediate neighbors). On the other hand,
a reasonably large amount of information must be transmitted by each node. The later,
by its turn, requires the transmission of a very small amount of information by each
node; however, the algorithm does not present locality since the information must be
propagated throughout the network. This kind of tradeoff must be carefully considered
when designing an algorithm for real wireless sensor network applications.

To the best of our knowledge, the only work that applies Kalman filtering to a
cluster-based architecture for object tracking using camera networks is that proposed
by Goshorn et al. [5]. Their system assumes that the network is previously partitioned
into clusters of cameras with similar fields of view. As the target moves, information
within a cluster is handed off to a neighboring cluster.

1.2 RESEARCH OBJECTIVES AND METHODOLOGY

From the filtering and estimation perspective that we propose in this dissertation, the
following is the main reason why the distributed filtering and estimation fusion problem
is difficult.

1.2.1 PROBLEM STATEMENT

In distributed estimation problems, parallelism arises naturally due to the data obtained
from different local sensors or subsystems located at various dispersed locations. Un-
fortunately, due to limited communication bandwidth, or to increase survivability of the system in a poor environment, such as a war situation or in mission critical systems, every local sensor has to carry out filtering upon its own observations first for local requirement, and then transmit the processed data local state estimate to a fusion center. Therefore, the fusion center now needs to fuse all received local estimates to yield a globally optimal state estimate. Moreover, when the fusion takes place, the filtering job gets more challenging.

1.3 DISSERTATION STRUCTURE

The following is the dissertation structure for the chapters to follow. In chapter 2, we deal with the bibliographic literature survey of the distributed Kalman filtering, followed by chapter 3, which has the approximate distributed estimation of distributed Kalman filtering, followed by chapter 4, which has distributed EM-Based Kalman smoother. Chapter 5 contains the distributed estimation via information matrix approach. In the end is chapter 6 where conclusions and future perspectives are made.

1.4 CONTRIBUTION

The following are the research originalities and contributions of this dissertation.

- A comprehensive bibliographic review has been made where distributed Kalman filtering has been divided into eight classification.

- Bayesian-Based Forward Backward Kalman Filter has been derived, followed
by three cases of Prior Information derived for Bayesian-Based Forward Backward Kalman Filter. Then two Techniques of Upper Bound and Lower Bound have been applied on three cases of Prior Information. In the simulation, various comparison simulations for electro-hydraulic system with faults have been made. In the end, time computation comparison of different techniques applied has been shown.

- Kalman-like particle smoother has been derived, followed by derivation and implementation of full-order Kalman-like particle smoother with EM algorithm, then the derivation and implementation of reduced-order Kalman-like particle smoother with EM algorithm has been made. In the simulation, power quality system simulation with comparison for full-order system and reduced-order system respectively have been made.

- Derivations and implementations have been made for the covariance intersection-based information matrix filter, weighted covariance-based information matrix filter and Kalman-like particle filter-based information matrix filter respectively. In the simulation, industrial utility boiler simulation with comparison for various feedback strategies and measurement fusion methods has been made.
2 Bibliographic Review

2.1 An Overview

This chapter presents a bibliographic literature survey and technical review on Distributed Kalman Filtering.

2.2 Introduction

In hi-tech environment, a strict surveillance unit is required for an appropriate supervision. It often utilizes a group of distributed sensors which provide information of the local targets. Comparing with the centralized Kalman filtering (CKF), which can be used in mission critical scenarios, where every local sensor is important with its local information, the distributed fusion architecture has many advantages. There is no second thought that in certain scenarios, centralized Kalman filter plays a major role, and it involves minimum information loss. A general structure for the DKF can be seen in figure (see Fig. 2.1).

The distributed system architecture, on the whole, is very powerful since it allows the design of the individual units or components to be much simpler, while not compro-
Figure 2.1: A general structure of DKF
mising too much on the performance. Additional benefits include increased robustness
to component loss, increased flexibility in that the components can be reconfigured for
many different tasks and so on. However, the design of such systems challenges var-
ious problems of assumptions, handling, fusing the architecture of such systems. Our
purpose is to provide a bibliographic survey on DKF and its architectures, comprising
of distribution, fusion, filtering and estimation. A classification of such an architecture
can be seen in the figure (see Fig. 2.2), which shows the vision of filtering and estima-
tion under the umbrella of DKF. DKF methods have been categorized into eight main
divisions which are then further categorized into other several subdivisions.

Therefore, in this paper, we present a bibliographic literature survey and technical
review of DKF. The remaining part of the paper is organized as follows: Bibliographic
review and technical survey of DKF and its applications are presented in Section II,
diffusion-based DKF in Section III, followed by Distributed OOSM in Section IV,
MSDF systems in section V, followed by DN in section VI, mathematical design in
track-to-track fusion in Section VII, DC-based estimation in Section VIII, DPF in Sec-
section IX, ST-based distributed fusion Kalman filter in Section X. Finally some conclud-
ing remarks are given in Section XI. It should be noted that remark has been generated
at the end of every section, showing the generic formulation generation explanation of
a particular approach in that specific section.

3 The Fig. 2 is showing the classification of distributed Kalman filter, where KF stands for
Kalman filter, DKF stands for distributed Kalman filter, EKF stands for extended Kalman filter,
DC stands for distributed consensus, MSDF stands for multi-sensor data fusion, OOSM stands
for out-of-sequence measurements, SN stands for sensor network, ST stands for self tuning,
DPF stands for Distributed particle filter, DN stands for distributed networks.
Figure 2.2: Classification of Distributed Kalman Filter*
2.3 DKF METHODS AND THEIR APPLICATIONS

2.3.1 DKF METHODS

DKF can be introduced through different methods promoting to a better filtering approach, also considering various scenarios. A list of publications focusing on DKF methods and their applications is summarized in Table 2.1 and Table 2.2. In Table 2.1, the most recent references are [335] and [31], where in [335], a method is discussed under uncertain observations, including measurement with a false alarm probability as a special case. Moreover, it is proved that under a mild condition the fused state estimate is equivalent to the centralized Kalman filtering. In [31], consensus strategies of DKF are discussed where the problem of estimating the state of a dynamical system from distributed noisy measurements is considered with the help of a two-stage strategy for estimation. Other DKF methods and their applications can be seen in [7], [8], [9], [10], [101], [151], [152], [158], [162], [202], [203], [204], [205], [206], [276], [297], [298] and [300].

In Table 2.2, the most recent references are [25] and [33], where in [25], the estimation of sparsely connected, large scale systems is reported, moreover full distribution of Kalman filter is achieved. In [33], a network is modeled as a Bernoulli random topology and establish necessary and sufficient conditions for mean square sense and almost sure convergence of average consensus when network links fail. Other DKF methods and its applications can be seen in [26], [27], [28], [29], [30], [31], [32], [123], [153], [218], [219] and [220].
Remark 2.3.1 In [162], an ℓ-sensor distributed dynamic system is described by:

\[
\begin{align*}
x_{k+1} &= \phi_k x_k + v_k, k = 0, 1, ..., \tag{2.1} \\
y_{i}^k &= H_{i}^k x_k + w_{i}^k, i = 1, ..., \ell \tag{2.2}
\end{align*}
\]

where ϕ_k is a matrix of order $r \times r$, $x_k, v_k \in \mathcal{R}^r$, $H_{i}^k \in \mathcal{R}^{N_{i} \times r}$, $y_{i}^k, w_{i}^k \in \mathcal{R}^{N_{i}}$.

The process noise v_k and measurement noise w_{i}^k are both zero-mean random variables independent of each other temporally but w_{i}^k and w_{j}^k may be cross-correlated for $i \neq j$ at the same time instant k.

To compare performances between the centralized and distributed filtering fusion, the stacked measurement equation is written as:

\[
y_k = H_k x_k + w_k \tag{2.3}
\]

where

\[
y_k = (y_{1}^t, ..., y_{\ell}^t)^t, H_k = (H_{1}^t, ..., H_{\ell}^t)^t,
\]

\[
w_k = (w_{1}^t, ..., w_{\ell}^t)^t \tag{2.4}
\]

and the covariance of the noise w_k is given by:

\[
\text{Cov}(w_k) = R_k, R_{i}^k = \text{Cov}(w_{i}^k), \quad i = 1, ..., \ell \tag{2.5}
\]

where R_k and R_{i}^k are both invertible for all i. According to the standard results of
Kalman filtering, the local Kalman filtering at the i-th sensor is expressed as:

\[
\hat{K}_i^k = \hat{P}_i^{k/k} H_i^t \hat{R}_i^{k-1}
\]

(2.6)

\[
\hat{x}_i^{k/k} = \hat{x}_i^{k/k-1} + \hat{K}_i^k (y_k - H_i^k \hat{x}_i^{k/k-1})
\]

(2.7)

\[
\hat{P}_i^{k/k} = \hat{P}_i^{k/k-1} - \hat{K}_i^k H_k \hat{P}_i^{k/k-1}
\]

(2.8)

where, the covariance of filtering error can be stated as:

\[
\hat{P}_i^{k/k-1} = \hat{P}_i^{k/k-1} + H_k^t \hat{R}_i^{k-1} H_k
\]

(2.9)

with

\[
\hat{x}_i^{k/k-1} = \hat{\Phi}_k \hat{x}_i^{k-1/k-1},
\]

\[
\hat{P}_i^{k/k} = E[(\hat{x}_i^{k/k} - \hat{x}_k)(\hat{x}_i^{k/k} - \hat{x}_k)^t]
\]

(2.10)

Similarly, the centralized Kalman filtering with all sensor data is given by:

\[
\hat{K}_k = \hat{P}_k^{k/k} H_k^t \hat{R}_k^{-1}
\]

(2.11)

\[
\hat{x}_k^{k/k} = \hat{x}_k^{k/k-1} + \hat{K}_k (y_k - H_k \hat{x}_k^{k/k-1})
\]

(2.12)

\[
\hat{P}_k^{k/k} = \hat{P}_k^{k/k-1} - \hat{K}_k H_k \hat{P}_k^{k/k-1}
\]

(2.13)
where, the covariance of filtering error can be described as:

\[
\hat{P}_{k/k}^{-1} = \hat{P}_{k/k-1}^{-1} + H_k^t \hat{R}_k^{-1} H_k
\]

(2.14)

with

\[
\hat{x}_{k/k-1} = \hat{\Phi}_k \hat{x}_{k-1/k-1},
\]

\[
\hat{P}_{k/k} = E[(\hat{x}_{k/k} - \hat{x}_k)(\hat{x}_{k/k} - \hat{x}_k)^t]
\]

\[
\hat{P}_{k/k-1} = E[(\hat{x}_{k/k-1} - \hat{x}_k)(\hat{x}_{k/k-1} - \hat{x}_k)^t]
\]

(2.15)

It is quite clear when the sensor noises are cross-dependent that

\[
H_k^t \hat{R}_k^{-1} H_k = \sum_{i=1}^l H_i^t \hat{R}_k^{-1} H_i
\]

(2.16)

Likewise, the centralized filtering and error matrix could be explicitly expressed in terms of the local filtering and error matrices as follows:

\[
\hat{P}_{k/k}^{-1} = \hat{P}_{k/k-1}^{-1} + \sum_{i=1}^l (\hat{P}_{k/k}^{i-1} - \hat{P}_{k/k-1}^{i-1})
\]

(2.17)

and

\[
\hat{P}_{k/k}^{-1} \hat{x}_{k/k} = \hat{P}_{k/k-1}^{-1} \hat{x}_{k/k-1} + \sum_{i=1}^l (\hat{P}_{k/k}^{i-1} \hat{x}_{k/k}^{i} - \hat{P}_{k/k-1}^{i-1} \hat{x}_{k/k-1}^{i})
\]

(2.18)
2.3. DKF METHODS AND THEIR APPLICATIONS

Also,

$$H_k^{i_k} R_k^{-1} y_k = P_k^{-1} \hat{x}_k - P_{k-1}^{i_k} \hat{x}_{k-1}$$

(2.19)

Proposition 2.1 In what follows is the detailed bibliographic review of DKF methods which have been explained comprehensively in Table 2.1 and Table 2.2 respectively. The recent references have been explained and others have been cited in the tables. In the end [162] considering the distributed dynamic systems for DKF has been explained as a particular case.

2.3.2 DKF WITH APPLICATIONS

This section shows the characterization of DKF with various applications. A list of publications in some application-oriented research is summarized in Table 2.3 and Table 2.4 respectively. As it can be seen, a large amount of research has been carried out in the framework of modified filters. In Table 2.3, the most recent ones are as follows.

In [186], the synthesis of a distributed algorithm is made to compute weighted least squares estimates with sensor measurements correlated. In [199], distributed object tracking system which employs a cluster-based Kalman filter in a network of wireless cameras is presented. In [211] [212], distributed recursive mean-square error optimal quantizer-estimator based on the quantized observations is presented. Other DKF applications can be seen in [335], [336], [338], [339], [38], [39], [40], [41], [42], [43], [44], [105], [106], [109], [114], [119], [156], [179], [191], [197], [213], [214], [215], [216], [221], [233], [237], [238] and [242].
2.3. DKF METHODS AND THEIR APPLICATIONS

Table 2.1: DKF Methods I

<table>
<thead>
<tr>
<th>DKF Design Approaches Used</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Under uncertain observations, including measurement with a false alarm probability</td>
<td>[335]</td>
</tr>
<tr>
<td>• Under uncertain observations, randomly variant dynamic systems with multiple models</td>
<td>[7]</td>
</tr>
<tr>
<td>• Optimal centralized and distributed fusers are algebraically equivalent in this case</td>
<td>[8]</td>
</tr>
<tr>
<td>• Power systems: mode estimation. A trust-based DKF approach to estimate the modes of power systems</td>
<td>[9]</td>
</tr>
<tr>
<td>• Using Standard Kalman filter locally, together with a consensus step in order to ensure that the local estimates agree</td>
<td>[10]</td>
</tr>
<tr>
<td>• Frequency-domain characterization of the distributed estimator’s steady-state performance</td>
<td>[101]</td>
</tr>
<tr>
<td>• EKF to globally optimal KF for the dynamic systems with finite-time correlated noises</td>
<td>[151]</td>
</tr>
<tr>
<td>• Distributed Kalman-type processing scheme essentially makes use of the fact that the sensor measurements do not enter into the update equation for the estimation error covariance matrices</td>
<td>[152]</td>
</tr>
<tr>
<td>• DKF fusion with weighted covariance approach</td>
<td>[158]</td>
</tr>
<tr>
<td>• DKF fusion with passive packet loss or initiative intermittent communications from local estimators to a fusion center while the process noise does exist</td>
<td>[162]</td>
</tr>
<tr>
<td>• For each Kalman update, an infinite number of consensus steps to restricted to one</td>
<td>[202] [203]</td>
</tr>
<tr>
<td>• For each Kalman update, state estimates are additionally exchanged</td>
<td>[204]</td>
</tr>
<tr>
<td>• Only the estimates at each Kalman update over-head are exchanged</td>
<td>[205]</td>
</tr>
<tr>
<td>• Analyzes the number of messages to exchange between successive updates in DKF</td>
<td>[206]</td>
</tr>
<tr>
<td>• Global Optimality of DKF fusion exactly equal to the corresponding centralized optimal Kalman filtering fusion</td>
<td>[276]</td>
</tr>
<tr>
<td>• A parallel and distributed state estimation structure developed from an hierarchical estimation structure</td>
<td>[297]</td>
</tr>
<tr>
<td>• A computational procedure to transform an hierarchical Kalman filter into a partially decentralized estimation structure</td>
<td>[298]</td>
</tr>
<tr>
<td>• Optimal DKF based on a-priori determination of measurements</td>
<td>[300]</td>
</tr>
</tbody>
</table>
2.3. DKF METHODS AND THEIR APPLICATIONS

Table 2.2: DKF Methods II

<table>
<thead>
<tr>
<th>DKF</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Estimate sparsely connected, large scale systems</td>
<td>[25]</td>
</tr>
<tr>
<td>• n-th order with multiple sensors</td>
<td>[26]</td>
</tr>
<tr>
<td>• Data-fusion over arbitrary communication networks</td>
<td>[27]</td>
</tr>
<tr>
<td>• Iterative consensus protocols</td>
<td>[28]</td>
</tr>
<tr>
<td>• Using bipartite fusion graphs</td>
<td>[29]</td>
</tr>
<tr>
<td>• Local average consensus algorithms</td>
<td>[30]</td>
</tr>
<tr>
<td>• Based on consensus strategies</td>
<td>[31]</td>
</tr>
<tr>
<td>• Semi-definite programming -based consensus Iterations</td>
<td>[32]</td>
</tr>
<tr>
<td>• Converge Speed of consensus strategies</td>
<td>[33]</td>
</tr>
<tr>
<td>• Distributed Kalman filtering, with focus on limiting the</td>
<td>[123]</td>
</tr>
<tr>
<td>required communication bandwidth</td>
<td></td>
</tr>
<tr>
<td>• Distributed Kalman-type processing scheme, which provides</td>
<td>[153]</td>
</tr>
<tr>
<td>optimal track-to-track fusion results at arbitrarily chosen</td>
<td></td>
</tr>
<tr>
<td>instants of time</td>
<td></td>
</tr>
<tr>
<td>• Distributed architecture of track-to-track fusion for computing</td>
<td>[218]</td>
</tr>
<tr>
<td>the fused estimate from multiple filters</td>
<td></td>
</tr>
<tr>
<td>tracking a maneuvering target with the simplified maximum</td>
<td></td>
</tr>
<tr>
<td>likelihood estimator</td>
<td></td>
</tr>
<tr>
<td>• Original batch form of the Maximum Likelihood (ML) estimator</td>
<td>[219]</td>
</tr>
<tr>
<td>• Modified Probabilistic Neural Network</td>
<td>[220]</td>
</tr>
</tbody>
</table>
In Table 2.4, the most recent one are as follows. Low-power DKF based on a fast polynomial filter is shown in [267]. Distributed 'Kriged' Kalman filtering is addressed in [272]. Decoupled distributed Kalman fuser presented by using Kalman filtering method and white noise estimation theory is shown in [281]. Decomposition of a linear process model into a cascade of simpler subsystems is given in [282]. Other applications can be seen in [7], [338], [247], [248], [268], [269], [270], [271], [273], [275], [283], [284], [299], [321], [323], and [324] respectively.

Proposition 2.2 In what follows is the detailed bibliographic review of DKF methods with applications which have been explained comprehensively in Table 2.3 and Table 2.4 respectively. The recent references have been explained and others have been cited in the tables.

2.4 DIFFUSION-BASED DKF

The publications of diffusion-based DKF are classified in Table 2.5. Recent ones in this area are as follows. Diffusion-based distributed expected maximization (EM) algorithm for Gaussian mixtures is shown in [50]. Diffusion-based Kalman filtering and smoothing algorithm is shown in [51]. Diffusion Kalman filtering for every measurement and for every node, a local state estimate using the data from the neighborhood is provided in [178]. Other publications classified with diffusion-based DKF are [97], [99], [173], [174], [175], [176] and [177] respectively.

Remark 2.4.1 In the paper [50], a diffusion scheme of EM (DEM) algorithm for Gaussian mixtures in Wireless Sensor Networks (WSNs) is proposed. At each iteration, the
Table 2.3: DKF with Applications I

<table>
<thead>
<tr>
<th>DKF with Applications</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Multi-sensor networks amenable to parallel processing</td>
<td>[38]</td>
</tr>
<tr>
<td>• Two sensors fusion filter</td>
<td>[39]</td>
</tr>
<tr>
<td>• Federated square root filter</td>
<td>[40]</td>
</tr>
<tr>
<td>• Fusion filter for LTI systems with correlated noises</td>
<td>[41]</td>
</tr>
<tr>
<td>• Fusion filter for multichannel ARMA signals</td>
<td>[42]</td>
</tr>
<tr>
<td>• Fusion de-convolution estimators for the input white noise</td>
<td>[43]-[44]</td>
</tr>
<tr>
<td>• DKF for cooperative localization by reformulating as a parameter estimation problem</td>
<td>[105]</td>
</tr>
<tr>
<td>• DKF techniques for multi-agent localization</td>
<td>[106][109]</td>
</tr>
<tr>
<td>• Collaborative processing of information, and gathering scientific data from spatially distributed sources</td>
<td>[114]</td>
</tr>
<tr>
<td>• Particle filter implementations use Gaussian approximations</td>
<td>[119]</td>
</tr>
<tr>
<td>• Channel estimation method based on the recent methodology of distributed compressed sensing (DCS) and frequency domain Kalman filter</td>
<td>[156]</td>
</tr>
<tr>
<td>• Algorithm for DKF, where global information about the state covariances is required</td>
<td>[179]</td>
</tr>
<tr>
<td>• The synthesis of a distributed algorithm to compute weighted least squares estimates with sensor measurements correlated</td>
<td>[186]</td>
</tr>
<tr>
<td>• Distributive and efficient computation of linear MMSE for the multiuser detection problem</td>
<td>[191]</td>
</tr>
<tr>
<td>• A statistical approach derived, calculating the exact PDF approximated by EKF</td>
<td>[197]</td>
</tr>
<tr>
<td>• Distributed object tracking system which employs a cluster-based Kalman filter in a network of wireless cameras</td>
<td>[199]</td>
</tr>
<tr>
<td>• Distributed recursive MSE optimal quantizer-estimator based on the quantized observations</td>
<td>[211][212]</td>
</tr>
<tr>
<td>• Design a communication access protocol for wireless sensor networks tailored to converge rapidly to the desired estimate and provides scalable error performance</td>
<td>[213][214]</td>
</tr>
<tr>
<td>• Decentralized versions of the Kalman filter</td>
<td>[215]</td>
</tr>
<tr>
<td>• DKF estimator based on quantized measurement innovations</td>
<td>[216]</td>
</tr>
<tr>
<td>• Novel distributed filtering/smoothing approach, flexible to trade-off estimation delay for MSE reduction, while exhibiting robustness</td>
<td>[221]</td>
</tr>
<tr>
<td>• Distributed estimation agents designed with a bank of local KFs using consensus method</td>
<td>[233]</td>
</tr>
<tr>
<td>• State estimation of dynamical stochastic processes based on severely quantized observations</td>
<td>[237][238]</td>
</tr>
<tr>
<td>• Scheme for approximate DKF based on reaching an average-consensus</td>
<td>[242]</td>
</tr>
</tbody>
</table>
Table 2.4: DKF with Applications II

<table>
<thead>
<tr>
<th>DKF with Applications</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>• When no feedback from the fusion center to local sensors, a distributed Kalman</td>
<td>[247]</td>
</tr>
<tr>
<td>filtering fusion formula under a mild condition</td>
<td></td>
</tr>
<tr>
<td>• Rigorous performance analysis for KF fusion with feedback</td>
<td>[248]</td>
</tr>
<tr>
<td>• Low-power DKF based on a fast polynomial filter</td>
<td>[267]</td>
</tr>
<tr>
<td>• Consensus Problem and their special cases</td>
<td>[268]</td>
</tr>
<tr>
<td>• DKF for sparse large-scale systems monitored by sensor networks</td>
<td>[269]</td>
</tr>
<tr>
<td>• DKF to estimate actuator faults for deep space formation flying satellites</td>
<td>[270]</td>
</tr>
<tr>
<td>• Internal model average consensus estimator for DKF</td>
<td>[271]</td>
</tr>
<tr>
<td>• Distributed Kriged Kalman filtering</td>
<td>[272]</td>
</tr>
<tr>
<td>• The behavior of the distributed Kalman filter varies smoothly from a centralized</td>
<td>[273]</td>
</tr>
<tr>
<td>Kalman filter to a local Kalman filter with average consensus update</td>
<td></td>
</tr>
<tr>
<td>• Track fusion formulas with feedback are, like the track fusion without feedback</td>
<td>[275]</td>
</tr>
<tr>
<td>• Decoupled distributed Kalman fuser presented by using Kalman filtering method and</td>
<td>[281]</td>
</tr>
<tr>
<td>white noise estimation theory</td>
<td></td>
</tr>
<tr>
<td>• Decomposition of a linear process model into a cascade of simpler subsystems</td>
<td>[282]</td>
</tr>
<tr>
<td>• Distributed fusion steady-state Kalman filtering by using the modern time series</td>
<td>[283]</td>
</tr>
<tr>
<td>analysis method</td>
<td></td>
</tr>
<tr>
<td>• Distributed Kalman filtering with weighted covariance transfer function describing</td>
<td>[284]</td>
</tr>
<tr>
<td>the error behavior of the DKF in the case of stationary noise processes</td>
<td>[299]</td>
</tr>
<tr>
<td>• DKF approach for distributed parametric systems, for deep space formations, for</td>
<td>[321][323]</td>
</tr>
<tr>
<td>unreliable information, for false alarms respectively</td>
<td></td>
</tr>
</tbody>
</table>

[324][326]
time-varying communication network is modeled as a random graph. A diffusion-step (D-step) is implemented between the E-step and the M-step. In the E-step, sensor nodes compute the local statistics by using local observation data and parameters estimated at the last iteration. In the D-step, each node exchanges local information only with its current neighbors and updates the local statistics with exchanged information. In the M-step, the sensor nodes compute the estimation of parameter using the updated local statistics by the D-step at this iteration. Compared with the existing distributed EM algorithms, the proposed approach can extensively save communication for each sensor node while maintain the estimation performance. Different from the linear estimation methods such as the least-squares and the least-mean squares estimation algorithms, each iteration of EM algorithm is a nonlinear transform of measurements. The steady-state performance of the proposed DEM algorithm can not be analyzed by linear way. Instead, we show that the DEM algorithm can be considered as a stochastic approximation method to find the maximum likelihood estimation for Gaussian Mixtures. In this regard, we have in mind a network of M sensor nodes is considered, each of which has N_m data observations $\{y_{m,n}\}$, $m = 1, 2, \ldots, M$, $n = 1, 2, \ldots, N_m$. These observations are drawn from a K Gaussian mixtures with mixture probabilities $\alpha_1, \ldots, \alpha_k$.

\[y_{m,n} \sim \sum_{j=1}^{K} \alpha_j N(\mu_j, \Sigma_j) \] (2.20)

where $N(\mu, \Sigma)$ denote the Gaussian density function with mean μ and covariance Σ. Let $z \in \{1, 2, \ldots, K\}$ denote the missing data where Gaussian y comes from.

Proposition 2.3 In what follows is the detailed bibliographic review of diffusion-based
Diffusion-Based DKF

<table>
<thead>
<tr>
<th>Diffusion Approaches Used</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Diffusion-Based Distributed EM algorithm for Gaussian mixtures</td>
<td>[50]</td>
</tr>
<tr>
<td>• Diffusion-Based Kalman filtering and smoothing algorithm</td>
<td>[51]</td>
</tr>
<tr>
<td>• Distributed EM algorithm over sensor networks, consensus filter used to diffuse local sufficient statistics to neighbors and estimate global sufficient statistics in each node</td>
<td>[97]</td>
</tr>
<tr>
<td>• Consensus filter diffusion of local sufficient statistics over the entire network through communication with neighbor nodes</td>
<td>[99]</td>
</tr>
<tr>
<td>• Diffusion Kalman filtering, where nodes communicate only with their neighbors, and no fusion center is present</td>
<td>[173]</td>
</tr>
<tr>
<td>• DKF proposed in the context of diffusion estimation</td>
<td>[174][175]</td>
</tr>
<tr>
<td>• DKF proposed in the context of average consensus</td>
<td>[176][177]</td>
</tr>
<tr>
<td>• Diffusion Kalman filtering for every measurement and for every node, a local state estimate using the data from the neighborhood</td>
<td>[178]</td>
</tr>
</tbody>
</table>

DKF methods which have been explained comprehensively in Table 2.5. The recent references have been explained and others have been cited in the Table. In the end [50] considering the diffusion scheme for Gaussian mixture in wireless sensor network has been explained as a particular case.

2.5 DISTRIBUTED OOSM

This section shows the discussion on distributed OOS. Typically OOSM behavior is caused by deterministic transmission system, where the transmission time of a message vary very much. Distributed OOSM-based list of publications are classified in Table 2.6. The most recent publications in distributed OOSM are [138]-[143], [164], [194] and [279], where efficient incorporation of OOSMs in Kalman filters is developed in [138]-[143]. Counterpart of the OOSM update problem, needed to remove an
earlier measurement from the flight path, is analyzed in [164]. Focus on centralized update problem for multiple local sensor systems with asynchronous OOSMs is treated in [194]. A globally optimal state trajectory update algorithm for a sequence with arbitrary delayed OOSMs including the case of interlaced OOSMs with less storages is given in [279]. Other publications classified with distributed OOSM are [61], [62], [63], [64], [81], [82], [83], [84], [85], [86], [87], [88], [89], [90], [141], [163], [165], [166], [167], [168], [188], [195], [207], [208], [224], [225], [225]-[229], [230], [231], [280], [301] and [302].

Proposition 2.4 In what follows is the bibliographic review of OOSM, a subdivision of DKF which have been explained comprehensively in Table 2.6. The recent references have been explained and others have been cited in the Table.

2.6 MSDF SYSTEMS

This section shows the discussion on another division of DKF with respect to MSDF systems. In Tables 2.7, 2.8 and 2.9, MSDF systems-based list of publications are classified respectively. The most recent of the publications described in these tables are as follows. Sensor noises of converted system cross-correlated, and also correlated with the original system is treated in [335]. Centralized fusion center, expressed by a linear combination of the local estimates is presented in [336]. Bayesian framework for adaptive quantization, fusion-center feedback, and estimation of a spatial random field and its parameters are treated in [65]. A framework for alternates to quantile quantizer and fusion center is provided in [66]. Median fusion and information fusion, not based
Table 2.6: OOSM

<table>
<thead>
<tr>
<th>OOSM Approaches</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Recursive BLUE without prior</td>
<td>[61]</td>
</tr>
<tr>
<td>• Cases of prior information about the OOSM</td>
<td>[62] [208]</td>
</tr>
<tr>
<td>• Dating the state estimate globally optimally</td>
<td>[63] [64]</td>
</tr>
<tr>
<td>• Minimum storage at the current time to guarantee a globally optimal update</td>
<td>[81] [90] [141]</td>
</tr>
<tr>
<td>• Updating the state estimate globally optimally with an OOSM within one step</td>
<td></td>
</tr>
<tr>
<td>• Multi-step OOSM updating using augmented state smoothing</td>
<td>[82] [84] [85] [86]</td>
</tr>
<tr>
<td>• Multi-step update in OOSM</td>
<td>[83]</td>
</tr>
<tr>
<td>• Multi-sensor OOSM problem in a cluttered environment</td>
<td>[85] [87] [88]</td>
</tr>
<tr>
<td>• One-step suboptimal updating algorithms with a nonsingular state transition</td>
<td></td>
</tr>
<tr>
<td>• Efficient incorporation of OOSMs in KFs</td>
<td>[82] [89]</td>
</tr>
<tr>
<td>• A globally optimal flight path update algorithm with OOSMs</td>
<td>[138] [143]</td>
</tr>
<tr>
<td>• Counterpart of the OOSM update problem, needed to remove an earlier</td>
<td>[163]</td>
</tr>
<tr>
<td>• One-step solution for the general OOSM problem in tracking presented</td>
<td>[164] [165] [166]</td>
</tr>
<tr>
<td>• Distributed fusion update for the local sensors with OOSMs</td>
<td></td>
</tr>
<tr>
<td>• OOSM with practical applications</td>
<td>[167] [168]</td>
</tr>
<tr>
<td>• Optimal analysis of one-step OOSM filtering algorithms in target tracking</td>
<td>[188]</td>
</tr>
<tr>
<td>• Focus on centralized update problem for multiple local sensor systems</td>
<td></td>
</tr>
<tr>
<td>• The (l) step algorithm developed for OOSM</td>
<td></td>
</tr>
<tr>
<td>• Optimal distributed estimation fusion with OOSM at local sensors</td>
<td>[207]</td>
</tr>
<tr>
<td>• Two new algorithms for solving the out-of-sequence data problem for the case</td>
<td></td>
</tr>
<tr>
<td>• When the delays and the sequence of arrival of all the information are not</td>
<td></td>
</tr>
<tr>
<td>• Out-Of-Sequence Problem (OOSP) developed for linear systems</td>
<td>[224] [225] [229]</td>
</tr>
<tr>
<td>• OOSP developed for non-linear systems</td>
<td>[225] [229]</td>
</tr>
<tr>
<td>• A globally optimal state trajectory update algorithm for a sequence with</td>
<td></td>
</tr>
<tr>
<td>• OOSM with more applications</td>
<td>[279]</td>
</tr>
<tr>
<td>• OOSM processing for tracking ground target using particle filters</td>
<td>[280]</td>
</tr>
<tr>
<td>• Comparison of the KF and particle filter based OOSM filtering algorithms</td>
<td>[301] [302]</td>
</tr>
</tbody>
</table>
on weighted sums of local estimates, are presented in [92]. Optimal distributed estimation fusion algorithm with the transformed data is proposed in [125]. Corresponding distributed fusion problem, proposed based on a unified data model for linear unbiased estimator is presented in [128]. An algorithm, fuses one step predictions at both the fusion center and all current sensor estimates is given in [129]. In multi-sensor linear dynamic system, several efficient algorithms of centralized sensor fusion, distributed sensor fusion, and multi-algorithm fusion to minimize the Euclidian estimation error of the state vector are documented in [130]. Problem of data fusion in a decentralized and distributed network of multi-sensor processing nodes is contained in [193]. Fusion algorithm based on multi-sensor systems and a distributed multi-sensor data fusion algorithm based on Kalman filtering is presented in [274].

Other related publications cited in the Table 2.7 are [338]-[339], [337], [332], [333, 334], [37], [46], [47], [48], [48], [60], [59, 58], [57], [56], [55], [54], [53], [52]. Other related publications cited in the Table 2.8 are [67], [68], [91], [93, 94], [95], [115], [116], [117], [124], [125], [127] and [128]. Other related publications cited in the Table 2.9 are [131], [169, 170], [170, 171, 172], [183], [187], [200], [240], [241], [244], [249], [252], [253], [254, 255, 256], [257], [259], [275], [277], [278], [304] and [307].

Remark 2.6.1 In [332], using estimators of white measurement noise, an optimal information fusion distributed Kalman smoother is given for multichannel ARMA signals with correlated noise. The work on ARMA signal and information fusion is also done in [333] and [334]. Basically it has a three-layer fusion structure with fault tolerant, and robust properties. The first fusion layer and the second fusion layer both have nested
parallel structures to determine the prediction error cross-covariance of the state and
the smoothing error cross-covariance of the ARMA signal between any two faultless
sensors at each time step. And the third fusion layer is the fusion centre to determine the
optimal matrix weights and obtain the optimal fusion distributed smoother for ARMA
signals. The computation formula of smoothing error cross-covariance matrix between
any two sensors is given for white measurement noise. The computation formula of
smoothing error cross-covariance matrix between any two sensors is given for white
measurement noise. The discrete time multi-channel ARMA signal system considered
here with \(L \) sensors is:

\[
B(q^{-1})s(t) = C(q^{-1})w(t) \tag{2.21}
\]

\[
y_i(t) = s(t) + \nu_i(t), \quad i = 1, \ldots, L \tag{2.22}
\]

where \(s(t) \in \mathbb{R}^m \) is the signal to estimate, \(y_i(t) \in \mathbb{R}^m \) is the measurement of the \(i \)th
sensor, \(w(t) \in \mathbb{R}^r \) is the process noise, \(\nu_i(t) \in \mathbb{R}^m \) is the measurement noise of the
\(i \)th sensor, \(L \) is the number of sensors, and \(B(q^{-1}), C(q^{-1}) \) are polynomial matrices
having the form

\[
X(q^{-1}) = X_0 + X_1(q^{-1}) + \ldots + X_{n_x} q^{-n_x}
\]

where the argument \(q^{-1} \) is the back shift operator, that is, \(q^{-1} x(t) = x(t-1) \), \(X_i, \quad i = 0, 1, \ldots, n_x \) are the coefficient matrices, the degree of \(X(q^{-1}) \) is denoted by \(n_x \).

In the multi-sensor random parameter matrices case, sometimes, even if the origi-
nal sensor noises are mutually independent, the sensor noises of the converted system are still cross-correlated. Hence, such multi-sensor system seems not satisfying the conditions for the distributed Kalman filtering fusion as given in [338, 339]. In the paper [335], it was proved that when the sensor noises or the random measurement matrices of the original system are correlated across sensors, the sensor noises of the converted system are cross-correlated. Even if so, similarly with [336], centralized random parameter matrices Kalman filtering, where the fusion center can receive all sensor measurements, can still be expressed by a linear combination of the local estimates. Therefore, the performance of the distributed filtering fusion is the same as that of the centralized fusion under the assumption that the expectations of all sensor measurement matrices are of full row rank. Numerical examples are given which support our analysis and show significant performance loss of ignoring the randomness of the parameter matrices. The following discrete time dynamic system is considered:

\[
\begin{align*}
x_{k+1} &= F_k x_k + v_k \\
y_k &= H_k x_k + \omega_k, \quad k = 0, 1, 2, 3, \ldots
\end{align*}
\]

(2.23)

(2.24)

where \(x_k \in \mathbb{R}^r \) is the system state, \(y_k \in \mathbb{R}^N \) is the measurement matrix, \(v_k \in \mathbb{R}^r \) is the process noise, and \(\omega_k \in \mathbb{R}^N \) is the measurement noise. The subscript \(k \) is the time index. \(F_k \in \mathbb{R}^{r \times r} \) and \(H_k \in \mathbb{R}^{N \times r} \) are random matrices.

Proposition 2.5 In what follows is the detailed bibliographic review of MSDF methods which have been explained comprehensively in Table 2.7, Table 2.8 and Table 2.9 re-
Table 2.7: MSDF Systems I

<table>
<thead>
<tr>
<th>MSDF Design Approaches</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Sensor noises of converted systems cross-correlated, whilst original system independent</td>
<td>[338]-[339]</td>
</tr>
<tr>
<td>• Sensor noises of converted system cross-correlated, whilst original system also correlated</td>
<td>[335]</td>
</tr>
<tr>
<td>• Centralized fusion center, expressed by a linear combination of the local estimates</td>
<td>[336]</td>
</tr>
<tr>
<td>• No centralized fusion center, but algorithm highly resilient to lose one or more sensing nodes</td>
<td>[337]</td>
</tr>
<tr>
<td>• Discrete smoothing fusion with ARMA Signals LMV with information fusion filter</td>
<td>[332][333][334]</td>
</tr>
<tr>
<td>• Deconvolution estimation of ARMA signal with multiple sensors</td>
<td>[37]</td>
</tr>
<tr>
<td>• Fusion criterion weighted by scalars</td>
<td>[46]</td>
</tr>
<tr>
<td>• Functional equivalence of two measurement fusion methods</td>
<td>[47]</td>
</tr>
<tr>
<td>• Centralized filter, data processed/communicated centrally</td>
<td>[48]</td>
</tr>
<tr>
<td>• New performance bound for sensor fusion with model uncertainty</td>
<td>[48]</td>
</tr>
<tr>
<td>• All prior fusion results with Asynchronous Measurements</td>
<td>[60]</td>
</tr>
<tr>
<td>• Unified fusion model and unified batch fusion rules</td>
<td>[59][58]</td>
</tr>
<tr>
<td>• Unified rules by examples</td>
<td>[57]</td>
</tr>
<tr>
<td>• Computing formulation for cross-covariance of the local estimation</td>
<td>[56]</td>
</tr>
<tr>
<td>• Conditions for centralized and distributed fusers to be identical</td>
<td>[55]</td>
</tr>
<tr>
<td>• Relationships among the various fusion rules</td>
<td>[54]</td>
</tr>
<tr>
<td>• Optimal rules for each sensor to compress its measurements</td>
<td>[53]</td>
</tr>
<tr>
<td>• Various issues unique to fusion for dynamic systems</td>
<td>[52]</td>
</tr>
<tr>
<td>• Bayesian framework for adaptive quantization,</td>
<td>[65]</td>
</tr>
<tr>
<td>fusion-center feedback, and estimation of a spatial random field and its parameters</td>
<td></td>
</tr>
<tr>
<td>• Framework for alternates to quantile quantizer and fusion center</td>
<td>[66]</td>
</tr>
</tbody>
</table>
Table 2.8: MSDF II

<table>
<thead>
<tr>
<th>MSDF Design Approaches</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Diagonal weighting matrices</td>
<td>[67]</td>
</tr>
<tr>
<td>• Different fusion rates for the different states</td>
<td>[68]</td>
</tr>
<tr>
<td>• Optimal distributed estimation fusion in the LMV estimation</td>
<td>[91]</td>
</tr>
<tr>
<td>• Median fusion and information fusion, not based on weighted sums of local estimates</td>
<td>[92]</td>
</tr>
<tr>
<td>• Distributed filtering algorithms, optimal in mean square sense linear combinations</td>
<td>[93][94]</td>
</tr>
<tr>
<td>• Closed form analytical solution of steady fused covariance</td>
<td></td>
</tr>
<tr>
<td>• Of information matrix fusion with arbitrary number of sensor derived</td>
<td></td>
</tr>
<tr>
<td>• Focus on various issues unique to fusion for dynamic systems, present a general</td>
<td>[95]</td>
</tr>
<tr>
<td>data model for discretized asynchronous multi-sensor systems</td>
<td></td>
</tr>
<tr>
<td>• Recursive BLUE fusion without prior information</td>
<td>[115]</td>
</tr>
<tr>
<td>• Statistical interval estimation fusion</td>
<td>[116]</td>
</tr>
<tr>
<td>• Fused estimate communicated to a central node to be used for some task</td>
<td>[117]</td>
</tr>
<tr>
<td>• Optimal distributed estimation fusion algorithm with the transformed data is proposed</td>
<td></td>
</tr>
<tr>
<td>which is actually equivalent to the centralized estimation fusion</td>
<td>[124]</td>
</tr>
<tr>
<td>• State estimation fusion algorithm, optimal in the sense of MAP</td>
<td>[125]</td>
</tr>
<tr>
<td>• Corresponding distributed fusion problem, proposed based on a unified data model for</td>
<td></td>
</tr>
<tr>
<td>linear unbiased estimator</td>
<td>[127]</td>
</tr>
<tr>
<td>• An algorithm, fuses one step predictions at both the fusion center and all current</td>
<td></td>
</tr>
<tr>
<td>sensor estimates</td>
<td>[128]</td>
</tr>
<tr>
<td>• In multi-sensor linear dynamic system, several efficient algorithms of centralized</td>
<td></td>
</tr>
<tr>
<td>sensor fusion, distributed sensor fusion, and multi-algorithm fusion to minimize the</td>
<td>[130]</td>
</tr>
<tr>
<td>Euclidian estimation error of the state vector</td>
<td></td>
</tr>
</tbody>
</table>
Table 2.9: MSDF III

<table>
<thead>
<tr>
<th>MSDF Design Approaches</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derivation of approximation technique for arbitrary probability densities, providing distributable fusion structure as the linear information filter</td>
<td>[131]</td>
</tr>
<tr>
<td>Multi-sensor distributed fusion filters based on three weighted algorithms, applied to the systems with uncertain observations and correlated noises</td>
<td>[169] [170]</td>
</tr>
<tr>
<td>MSDF in state estimation fields, and easy fault detection, isolation and more reliability</td>
<td>[170][171][172]</td>
</tr>
<tr>
<td>CKF algorithm, obtained by combining all measurement data</td>
<td>[183]</td>
</tr>
<tr>
<td>Design of general and optimal asynchronous recursive fusion estimator for a kind of multi-sensor asynchronous sampling system</td>
<td>[187]</td>
</tr>
<tr>
<td>Problem of data fusion in a decentralized and DN of multi-sensor processing nodes</td>
<td>[193]</td>
</tr>
<tr>
<td>To assure the validity of data fusion, a centralized trust rating system</td>
<td>[200]</td>
</tr>
<tr>
<td>White noise filter weighted by scalars based on Kalman predictor</td>
<td>[240]</td>
</tr>
<tr>
<td>White noise de-convolution estimators</td>
<td>[241]</td>
</tr>
<tr>
<td>Optimal information fusion distributed Kalman smoother given for discrete time ARMA signals</td>
<td>[244]</td>
</tr>
<tr>
<td>Optimal dimensionality reduction of sensor data by using the matrix decomposition, pseudo-inverse, and eigenvalue techniques</td>
<td>[249]</td>
</tr>
<tr>
<td>Multi-sensor Information fusion distributed KF and applications</td>
<td>[252]</td>
</tr>
<tr>
<td>Based on analysis of the fused state estimate covariances of the two measurement fusion methods</td>
<td>[253]</td>
</tr>
<tr>
<td>MSDF approaches to resolve problem of obtaining a joint state-vector estimate</td>
<td>[254][255][256]</td>
</tr>
<tr>
<td>Decentralized multi-sensor EKF which has been divided up into modules</td>
<td>[257]</td>
</tr>
<tr>
<td>A distributed reduced-order fusion Kalman filter (DRFKF)</td>
<td>[259]</td>
</tr>
<tr>
<td>Fusion algorithm based on multi-sensor systems and a distributed MSDF algorithm based on KF</td>
<td>[274]</td>
</tr>
<tr>
<td>Track fusion formulas with feedback are, like the track fusion without feedback</td>
<td>[275]</td>
</tr>
<tr>
<td>The optimal distributed KF fusion algorithms for the various cases</td>
<td>[277]</td>
</tr>
<tr>
<td>General optimal linear fusion</td>
<td>[278]</td>
</tr>
<tr>
<td>Information fusion in distributed SN</td>
<td>[304]</td>
</tr>
<tr>
<td>Multi-scale Recursive Estimation, Data Fusion, and Regularization</td>
<td>[307]</td>
</tr>
</tbody>
</table>
spectively. The recent references have been explained and others have been cited in the Tables. In the end [332] considering the optimal information fusion distributed Kalman smoother has been explained as a particular case.

2.7 DNs

This section describes the area of DNs in DKF. The list of publications on DNs is classified in Table 2.10. Some recent publications in this area are as follows. Distributed expectation maximization (EM) algorithm over sensor networks, consensus filter used to diffuse local sufficient statistics to neighbors and estimate global sufficient statistics in each node are developed in [97]. Modified adaptive Kalman filter for sensor-less current control of a three-phase inverter based distributed generation system is proposed in [196]. Distributed estimation scheme for tracking the state of a Gauss-Markov model by means of observations at sensors connected in a network is the subject of [201]. A message-passing version of the Kalman consensus filter (KCF) is considered in [209]. For decentralized tracking applications, DKF and smoothing algorithms are derived for any-time MMSE optimal consensus-based state estimation using Wireless Sensor Networks are considered in [217]. Other publications cited in Table 2.10 are [69], [70], [98, 100], [99], [132], [154], [155], [192], [210], [223], [232], [234], [313]-[319] and [325].

Remark 2.7.1 In literature, a single plant is usually assumed for an NCS and the links between the plant and the estimator or controller channel. This notion is extended by a distributed networked control system (DNCS) in which there are multiple agents
communicating over a lossy communication channel [69]. A DNCS extends an NCS to model a distributed multi-agent system such as the Vicsek model. The best examples of such system include ad-hoc wireless sensor networks and a network of mobile agents. The exact state estimation method based on the Kalman filter is introduced in [69]. However, the time complexity of the exact method can be exponential in the number of communication links are closed by a common (unreliable) communication. In the paper [70], this issue is addressed by developing two approximate filtering algorithms for estimating states of a DNCS. The approximate filtering algorithms bound the state estimation error of the exact filtering algorithm and the time complexity of approximate methods is not dependent on the number of communication links. The stability of estimators under a lossy communication channel is studied in [309], [310]. However, the extension of the result to the general case with an arbitrary number of lossy communication links is unknown. While computing the exact communication link probabilities required for stable state estimation is non-trivial, the general conditions for stable state estimation using jump linear system theory are described. The following first distributed control system consisting of N agents is considered, in which there is no communication loss. The discrete-time linear dynamic model of the agent j can be described as following:

$$x_j(k + 1) = \sum_{i=1}^{N} A_{ij} x_i(k) + G_j w_j(k) \quad (2.25)$$

where $k \in \mathbb{Z}^+$, $x_j(k) \in \mathbb{R}^{n_x}$ is the state of the agent j at time k, $w_j(k) \in \mathbb{R}^{n_w}$ is a white noise process, $A_{ij} \in \mathbb{R}^{n_x \times n_x}$, and $G_j \in \mathbb{R}^{n_x \times n_w}$. Hence, the state of the
agent j is governed by the previous states of all N agents. It can also be considered that $A_{ij}x_i(k)$ as a control input from the agent i to the agent j for $i \neq j$.

Proposition 2.6 In what follows is the detailed bibliographic review of DN methods which have been explained comprehensively in Table 2.10. The recent references have been explained and others have been cited in the Table. In the end, [69] has been considered using distributed networked control system over a lossy communication as a particular case.

2.8 Mathematical Design in Track-to-Track Fusion

Track fusion (TF)-based list of publications are classified in Table 2.11. Some recent publications in this area are as follows. Track fusion measurement is given in [18]. Performance of various track-to-track fusion algorithms from aspects of fusion accuracy, feedback and process noises are treated in [263]. Perform track fusion optimally for a multiple-sensor system with a specific processing architecture is treated in [295]. Other work cited in Table 2.11 are [338], [15, 22, 23, 24], [16], [17], [19], [21], [20], [71], [72], [73-[74], [75-[76], [77], [78-[79], [124], [126], [260], [261, 262], [264, 265], [266], [296], [303], [305] and [306].

Proposition 2.7 In what follows is the detailed bibliographic review of TF-based methods which have been explained comprehensively in Table 2.11. The recent references have been explained and others have been cited in the Table.
2.8. MATHEMATICAL DESIGN IN TRACK-TO-TRACK FUSION

Table 2.10: DNs

<table>
<thead>
<tr>
<th>Design Approaches Used in DN</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Distributed networked control system (DNCS) with multiple nodes</td>
<td>[69]</td>
</tr>
<tr>
<td>• Two approximate filtering algorithms for estimating states of a DNCS</td>
<td>[70]</td>
</tr>
<tr>
<td>• Distributed EM algorithm over sensor networks, consensus filter used to diffuse local sufficient statistics to neighbors and estimate global sufficient statistics</td>
<td>[97]</td>
</tr>
<tr>
<td>• Density estimation and unsupervised clustering, first step in exploratory data analysis</td>
<td>[98][100]</td>
</tr>
<tr>
<td>• Consensus filter diffusion of local sufficient statistics over the entire network</td>
<td>[99]</td>
</tr>
<tr>
<td>• Distributed fusion of multiple sensor data to networks</td>
<td>[132]</td>
</tr>
<tr>
<td>• Robust distributed state estimation against false data injection</td>
<td>[154]</td>
</tr>
<tr>
<td>• Distributed SN, consisting of a set of spatially scattered sensors</td>
<td>[155]</td>
</tr>
<tr>
<td>• SN with noisy fading wireless channels</td>
<td>[192]</td>
</tr>
<tr>
<td>• Modified adaptive KF for sensor-less current control of a three-phase inverter</td>
<td>[196]</td>
</tr>
<tr>
<td>• Distributed estimation scheme for tracking the state of a Gauss-Markov model by means of observations at sensors connected in a network</td>
<td>[201]</td>
</tr>
<tr>
<td>• A message-passing version of the Kalman-Consensus Filter (KCF)</td>
<td>[209]</td>
</tr>
<tr>
<td>• A peer-to-peer (P2P) architecture of DKF that rely on reaching a consensus on estimates of local KFs</td>
<td>[210]</td>
</tr>
<tr>
<td>• For decentralized tracking applications, DKF and smoothing algorithms are derived for any-time MMSE optimal consensus-based state estimation using WSN</td>
<td>[217]</td>
</tr>
<tr>
<td>• Trade-off between the estimation performance and the number of communicating nodes</td>
<td>[223]</td>
</tr>
<tr>
<td>• DNCS consisting of multiple agents communicating over a lossy communication channel</td>
<td>[232]</td>
</tr>
<tr>
<td>• Impact of the network reliability on the performance of the feedback loop</td>
<td>[234]</td>
</tr>
<tr>
<td>• SN-based distributed H_{∞} state estimation, filtering for time-varying class, state estimation for uncertain Markov, H_{∞} stochastic sampled-data approach and non-linear systems, discrete time, robust fault detection and modeling and analysis respectively.</td>
<td>[313]-[319][325]</td>
</tr>
</tbody>
</table>
Table 2.11: Mathematical Design in Track-to-Track Fusion

<table>
<thead>
<tr>
<th>Track-to-Track Fusion Approaches</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Track fusion with information filter</td>
<td>[338]</td>
</tr>
<tr>
<td>• Track fusion optimality with ML</td>
<td>[15][22][23][24]</td>
</tr>
<tr>
<td>• Two track estimates cross-covariance</td>
<td>[16]</td>
</tr>
<tr>
<td>• Track fusion local estimate dependency</td>
<td>[17]</td>
</tr>
<tr>
<td>• Track fusion measurement</td>
<td>[18]</td>
</tr>
<tr>
<td>• Track fusion multi-sensor algorithm</td>
<td>[19]</td>
</tr>
<tr>
<td>• Track fusion cross-covariance with independent noises</td>
<td>[21]</td>
</tr>
<tr>
<td>• Steady-state fusing problem</td>
<td>[20]</td>
</tr>
<tr>
<td>• Steady state fused covariance for hierarchical track fusion architecture with feedback</td>
<td>[71]</td>
</tr>
<tr>
<td>• Cross-covariance of the local track</td>
<td>[72]</td>
</tr>
<tr>
<td>• Weighted covariance state-vector Track fusion</td>
<td>[73]-[74]</td>
</tr>
<tr>
<td>• Pseudo-measurement state-vector Track fusion</td>
<td>[75]-[76]</td>
</tr>
<tr>
<td>• Steady state fused covariance matrix</td>
<td>[77]</td>
</tr>
<tr>
<td>• Various architectures for track association and fusion</td>
<td>[78]-[79]</td>
</tr>
<tr>
<td>• Fused estimate communicated to a central node to be used for some task</td>
<td>[124]</td>
</tr>
<tr>
<td>• Track-to-track fusion algorithm, optimal in the sense of ML for more than 2 sensors</td>
<td>[126]</td>
</tr>
<tr>
<td>• Measurement Fusion and State vector track fusion</td>
<td>[260]</td>
</tr>
<tr>
<td>• State vector track fusion with pseudo-measurement</td>
<td>[261][262]</td>
</tr>
<tr>
<td>• Performance of various track-to-track fusion algorithms from aspects of fusion accuracy, feedback and process noises</td>
<td>[263]</td>
</tr>
<tr>
<td>• Fuse state vectors using Weighted Covariance (WC)</td>
<td>[264][265]</td>
</tr>
<tr>
<td>• Weighted covariance algorithm turns out to be a ML estimate</td>
<td>[266]</td>
</tr>
<tr>
<td>• Perform track fusion optimally for a multiple-sensor system with a specific processing architecture</td>
<td>[295]</td>
</tr>
<tr>
<td>• Track-to-track fusion for multi-sensor data fusion</td>
<td>[296]</td>
</tr>
<tr>
<td>• Common process noise on the two-sensor fused-track covariance</td>
<td>[303]</td>
</tr>
<tr>
<td>• Track association and track fusion with non-deterministic target dynamics</td>
<td>[305]</td>
</tr>
<tr>
<td>• Comparison of two-sensor tracking methods based on state vector fusion and measurement fusion</td>
<td>[306]</td>
</tr>
</tbody>
</table>
2.9 DC-BASED ESTIMATION

DC-based estimation list of publications are classified in Table 2.12. Some recent work in this area is as follows. Recent work [32] is based on consensus Iterations. Distributed EM algorithm over sensor networks, consensus filter used to diffuse local sufficient statistics to neighbors and estimate global sufficient statistics in each node are the subject of [97]. A novel state estimation algorithm for linear stochastic systems, proposed on the basis of overlapping system decomposition, implementation of local state estimators by intelligent agents, application of a consensus strategy providing the global state estimates are detailed in [110]. Consensus-based distributed approached Kalman filters for linear systems [121, 122]. Other publications cited in Table 2.12 are [28], [30], [31, 180], [33], [80], [10], [99], [102], [103], [104], [111], [112, 113], [118], [209], [210], [222], [243], [322], [327], [328] and [320] respectively.

Remark 2.9.1 In the paper [97], the number of Gaussian components is given. In the next step, distributed unsupervised clustering approach is used to select the number of Gaussian components, or it can use a distributed algorithm to estimate this number and run EM algorithm simultaneously. A well-fitted approach to this integration is the one proposed in [311]. The proposed distributed EM algorithm in the paper [97] handles this difficulty through estimating the global sufficient statistics using local information and neighbors local information. It calculates the local sufficient statistics in the E-step as usual first. Then, it estimates the global sufficient statistics. Finally, it updates the parameters in the M-step using the estimated global sufficient statistics.
2.9. DC-BASED ESTIMATION

The estimation of global sufficient statistics is achieved by using an average consensus filter. The consensus filter can diffuse the local sufficient statistics over the entire network through communication with neighbor nodes [27, 28, 312] and estimate the global sufficient statistics using local information and neighbors local information. By using the estimated global sufficient statistics, each node updates the parameters in the M-step in the same way as in the standard EM algorithm. Because the consensus filter only requires local communication, that is, each node only needs to communicate with its neighbors and gradually gains global information, this distributed algorithm is scalable. It is shown that the equations of parameter estimation in this algorithm are not related to the number of sensor nodes. Thus, it is also robust. Failures of any nodes do not affect the algorithm performance given the network is still connected. Eventually, the estimated parameters can be accessed from any nodes in the network. In this paper, section, we a network of M sensors is considered, each of which has N_m data observations $y_{m,n}(m = 1, ..., M, n = 1, \ldots, N_m)$. The environment is assumed to be a Gaussian mixture setting with K mixture probabilities $\alpha_{m,k}, (k = 1, \ldots, K)$. The unobserved state is denoted as z and z_k represents $z = k$. For each unobserved state z_k, observation $y_{m,n}$ follows a Gaussian distribution with mean μ_k and variance Σ_k:

$$p(y_{m,n} | \mu_k, \Sigma_k) = \frac{1}{\sqrt{2\pi||\Sigma_k||^2}} e^{-\frac{1}{2}(y_{m,n}-\mu_k)^T\Sigma_k^{-1}(y_{m,n}-\mu_k)}$$ \hspace{1cm} (2.26)$$

The Gaussian mixture distribution for observation $y_{m,n}$ is:

$$p(y_{m,n} | \theta) = \sum_{k=1}^{K} \alpha_{m,k}p(y_{m,n} | \mu_k, \Sigma_k)$$ \hspace{1cm} (2.27)$$
where \(\theta \) is the set of the distribution parameters to be estimated \(\theta = \{\alpha_{m,k}, \mu_k, \Sigma_k; k = 1, \ldots, K, m = 1, \ldots, M\} \).

Proposition 2.8 In what follows is the detailed bibliographic review of DC-based estimation methods which have been explained comprehensively in Table 2.12. The recent references have been explained and others have been cited in the Table. In the end, [97] has been considered using Gaussian components.

2.10 DPF

A DPF list of publications are classified in Table 2.13. Some recent work in this area is described as follows. A novel framework for delay-tolerant particle filtering, with delayed OOSM is treated in [137]. A number of heuristic metrics to estimate the utility of delayed measurements is proposed in [149]. Other recent publication in this area cited in Table 2.13 are [118], [133], [134], [135, 136], [144], [145], [146], [148], [150], [181], [198], [235], [236], [250], [251], [301] and [302].

Proposition 2.9 In what follows is the detailed bibliographic review of DPF methods which have been explained comprehensively in Table 2.13. The recent references have been explained and others have been cited in the Table.
Table 2.12: DC-Based Estimation

<table>
<thead>
<tr>
<th>Design Approaches used in DC</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Iterative consensus protocols</td>
<td>[28]</td>
</tr>
<tr>
<td>- Local average consensus algorithms</td>
<td>[30]</td>
</tr>
<tr>
<td>- Based on consensus strategies</td>
<td>[31][180]</td>
</tr>
<tr>
<td>- Based consensus Iterations</td>
<td>[32]</td>
</tr>
<tr>
<td>- Converge Speed of consensus strategies</td>
<td>[33]</td>
</tr>
<tr>
<td>- Dynamic consensus problems regarding fusion of the measurements and covariance information with consensus filters</td>
<td>[80]</td>
</tr>
<tr>
<td>- Using Standard KF locally with a consensus step</td>
<td>[10]</td>
</tr>
<tr>
<td>- Distributed EM algorithm over sensor networks, consensus filter used to diffuse local sufficient statistics to neighbors and estimate global sufficient statistics in each node</td>
<td>[97]</td>
</tr>
<tr>
<td>- Distributed EM algorithm over SNs, consensus filter used to diffuse local sufficient statistics</td>
<td>[97]</td>
</tr>
<tr>
<td>- Consensus filter diffusion of local sufficient statistics over the entire network through communication with neighbor nodes</td>
<td>[99]</td>
</tr>
<tr>
<td>- Consensus-based distributed linear filtering problem</td>
<td>[102]</td>
</tr>
<tr>
<td>- The interaction between the consensus matrix and the Kalman gain for scalar systems</td>
<td>[103]</td>
</tr>
<tr>
<td>- KF with a consensus filter, ensuring estimates asymptotically converge to the same value</td>
<td>[104]</td>
</tr>
<tr>
<td>- Novel state estimation algorithm for linear stochastic systems, proposed on the basis of overlapping system decomposition, implementation of local state estimators by intelligent agents, application of a consensus strategy providing the global state estimates</td>
<td>[110]</td>
</tr>
<tr>
<td>- Average-consensus algorithm for n measurements of noisy signals obtained from n sensors in the form of a distributed low-pass filter</td>
<td>[111]</td>
</tr>
<tr>
<td>- Average-consensus algorithm for n constant values</td>
<td>[112][113]</td>
</tr>
<tr>
<td>- Consensus-Based distributed implementation of the unscented particle filter</td>
<td>[118]</td>
</tr>
<tr>
<td>- Consensus-based distributed approached KFs for linear systems</td>
<td>[121][122]</td>
</tr>
<tr>
<td>- A message-passing version of the Kalman-Consensus Filter (KCF)</td>
<td>[209]</td>
</tr>
<tr>
<td>- A peer-to-peer (P2P) architecture of DKF that rely on reaching a consensus on estimates of local KFs</td>
<td>[210]</td>
</tr>
<tr>
<td>- Consensus-based suboptimum KF scheme</td>
<td>[222]</td>
</tr>
<tr>
<td>- Distributed filter that allows the nodes of a SN to track the average of n sensor measurements</td>
<td>[243]</td>
</tr>
<tr>
<td>- DC-Based estimation for networks of agents, uncertain systems, jump Markov Systems and SN with delay</td>
<td>[322][327][328][320]</td>
</tr>
</tbody>
</table>
Design Approaches used in DPF

<table>
<thead>
<tr>
<th>Description</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consensus-Based distributed implementation of the unscented particle filter (UPF)</td>
<td>[118]</td>
</tr>
<tr>
<td>Particle filtering transformation into continuous representations</td>
<td>[133]</td>
</tr>
<tr>
<td>Consensus-based, distributed implementation of the UPF</td>
<td>[134]</td>
</tr>
<tr>
<td>Particle filter implementations using Gaussian approximations for the local posteriors</td>
<td>[135][136]</td>
</tr>
<tr>
<td>A novel framework for delay-tolerant particle filtering, with delayed OOSM</td>
<td>[137]</td>
</tr>
<tr>
<td>An approach that stores sets of particles for the last l time steps, where l is the predetermined maximum delay</td>
<td>[144]</td>
</tr>
<tr>
<td>Markov chain Monte Carlo (MCMC) smoothing step for OOSM</td>
<td>[145]</td>
</tr>
<tr>
<td>Approximate OOSM particle filter based on retrodiction (predicts backward)</td>
<td>[146]</td>
</tr>
<tr>
<td>Also uses retrodiction (predicts backward), but employs the Gaussian particle filter</td>
<td>[146]</td>
</tr>
<tr>
<td>Recent advances in particle smoothing, storage-efficient particle filter</td>
<td>[148]</td>
</tr>
<tr>
<td>Proposed a number of heuristic metrics to estimate the utility of delayed measurements</td>
<td>[149]</td>
</tr>
<tr>
<td>Proposed a threshold based procedure to discard uninformative delayed measurements, calculating their informativeness</td>
<td>[150]</td>
</tr>
<tr>
<td>Optimal estimation using quantized innovations, with application to distributed estimation over SNs using Kalman-like particle filter</td>
<td>[181]</td>
</tr>
<tr>
<td>SOI-Particle-Filter (SOI-PF) derived to enhance the performance of the distributed estimation procedure</td>
<td>[198]</td>
</tr>
<tr>
<td>Problem of tracking a moving target in a multi-sensor environment DPFs</td>
<td>[235]</td>
</tr>
<tr>
<td>Optimal fusion method, introduced to fuse the collected GMMs with different number of components</td>
<td>[236]</td>
</tr>
<tr>
<td>Two distributed particle filters to estimate and track the moving targets in a WSN</td>
<td>[250]</td>
</tr>
<tr>
<td>Updating the complete particle filter on each individual sensor nodes</td>
<td>[251]</td>
</tr>
<tr>
<td>Out-of-sequence measurement processing for tracking ground target using PFs</td>
<td>[301]</td>
</tr>
<tr>
<td>Comparison of the KF and PF based OOSM filtering algorithms</td>
<td>[302]</td>
</tr>
</tbody>
</table>
2.11 ST-BASED DISTRIBUTED FUSION KALMAN FILTER

This section explains the ST-based distributed fusion Kalman filter, another categorization for DKF. A list of publications in this regard is classified in Table 2.14. Some of the recent work in this area is as follows. Self-tuning decoupled fusion Kalman predictor is proposed in [160] and self-tuning weighted measurement Kalman filter is included in [161]. Self-tuning measurement system using the correlation method, can be viewed as the least-squares (LS) fused estimator and found in [285]. Self-tuning distributed (weighed) measurement fusion Kalman filters is shown in [292, 293, 294]. Other recent publication in this area cited in Table 2.14 are [157], [159], [182], [184, 185], [189], [190], [239], [245], [246], [258], [286]-[289], [290] and [291].

Remark 2.11.1 For self-tuning decoupled fusion Kalman predictor, the following multisensor linear discrete time-invariant stochastic system is considered in the paper [308]:

\[
x(t + 1) = \Phi x(t) + \Gamma w(t) \quad \cdots \quad (2.28)
\]

\[
y_i(t) = H_i x(t) + v_i(t) , \ i = 1, \ldots, L \quad \cdots \quad (2.29)
\]

where \(x(t) \in \mathbb{R}^n, y_i(t) \in \mathbb{R}^{m_i}, \ w(t) \in \mathbb{R}^r \) and \(v_i(t) \in \mathbb{R}^{m_i} \) are the state, measurement, process and measurement noises of the \(i \)th sensor subsystem, respectively, and \(\Phi, \Gamma \) and \(H_i \) are constant matrices with compatible dimensions.

Proposition 2.10 In what follows is the detailed bibliographic review of ST-based dis-
Table 2.14: ST-Based Distributed Fusion Kalman Filter

<table>
<thead>
<tr>
<th>ST Design Approaches</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Multi-sensor systems with unknown model parameters and noise variances, by the information matrix approach, the ST distributed state fusion information filter is presented.</td>
<td>[157]</td>
</tr>
<tr>
<td>• ST distributed state fusion Kalman filter with weighted covariance approach.</td>
<td>[159]</td>
</tr>
<tr>
<td>• ST decoupled fusion Kalman predictor.</td>
<td>[160]</td>
</tr>
<tr>
<td>• ST weighted measurement Kalman filter.</td>
<td>[161]</td>
</tr>
<tr>
<td>• Multi-sensor systems with unknown noise variances, a new ST weighted measurement fusion Kalman filter is presented, which has asymptotic global optimality.</td>
<td>[182]</td>
</tr>
<tr>
<td>• Weighted ST state fusion filters.</td>
<td>[184][185]</td>
</tr>
<tr>
<td>• Sign of Innovation- Particle Filter (SOI-PF) improves the tracking performance when the target moves according to a linear and a gaussian model.</td>
<td>[189]</td>
</tr>
<tr>
<td>• Efficiency of the SOI-PF in a nonlinear and a non gaussian case, considering a jump-state Markov model for the target trajectory.</td>
<td>[190]</td>
</tr>
<tr>
<td>• ST information fusion reduced-order Kalman predictor with a two-stage fusion structure based on linear minimum variance.</td>
<td>[239]</td>
</tr>
<tr>
<td>• Optimal ST smoother.</td>
<td>[245]</td>
</tr>
<tr>
<td>• Optimal ST fix-lag smoother.</td>
<td>[246]</td>
</tr>
<tr>
<td>• A new convergence analysis method for ST Kalman Predictor.</td>
<td>[258]</td>
</tr>
<tr>
<td>• ST measurement system using the correlation method, can be viewed as the least-squares (LS) fused estimator.</td>
<td>[285]</td>
</tr>
<tr>
<td>• ST filtering for systems with unknown model and/or noise variances.</td>
<td>[286]-[289]</td>
</tr>
<tr>
<td>• ST distributed state fusion Kalman estimators.</td>
<td>[290][291]</td>
</tr>
<tr>
<td>• ST distributed (weighed) measurement fusion Kalman filters.</td>
<td>[292][293][294]</td>
</tr>
</tbody>
</table>
tributed KF methods which have been explained comprehensively in Table 2.14. The recent references have been explained and others have been cited in the Table. In the end, [308] has been considered using decoupled fusion Kalman predictor.

3 APPROXIMATE DISTRIBUTED ESTIMATION

3.1 AN OVERVIEW

In this chapter, we have discussed approximate distributed estimation, where we have derived the distributed estimation for different prior cases with the help of Bayesian-based Forward Backward (FB) Kalman filter.

3.2 INTRODUCTION

Distributed and decentralized estimations have been the point of attraction in the past with a large associated literature. When tackling the distributed structure, problems do encounter regarding fusion of the data coming from various sensor of the plant or network. Data fusion techniques combine data from multiple sensors and related information to achieve more specific inferences than could be achieved by using a single, independent sensor. The classic work of Rao and Durrant-Whyte [381]
presents an approach to decentralized Kalman filtering which accomplishes globally optimal performance in the case where all sensors can communicate with each other. Further, this design failed gracefully, as individual sensors are removed from the network due to its distributed design. Sensor noises of converted systems cross-correlated, whilst original system independent is shown in [338]-[339]. Sensor noises of converted system cross-correlated, whilst original system also correlated is presented in [335]. Centralized fusion center, expressed by a linear combination of the local estimates is pictured in [336]. No centralized fusion center, but algorithm highly resilient to lose one or more sensing nodes is shown in [337]. Discrete smoothing fusion with ARMA signals is shown in [332]. Linear minimum variance with information fusion filter is shown in [333][334]. A dense attention has been devoted to multi-sensor data fusion for both military and civilian applications. For civilian applications, monitoring of manufacturing processes, robotics, medical applications/environmental monitoring are considered. For military applications, target recognition, guidance for autonomous vehicles and battle field surveillance are considered.

Estimation problem has also been dealt with consensus algorithms. Consensus problems [340], [341] and their special cases have been the subject of intensive studies by several researchers [342], [343], [344], [345], [346], [347], [348] in the context of formation control, self-alignment, and flocking [349] in networked dynamic systems.

In distributed estimation and fusion, Kalman filtering is a fundamental tool, and it is an essential element to provide functionality particularly in sensor networks. An in-depth comparison between the distributed Kalman filter and the existing decentralized
sensor fusion algorithms both with and without fusion centers are presented in [350], [351], [352], [353] respectively.

In this paper, we have derived an approximate distributed estimation for different prior cases for dynamic systems, with the help of Bayesian-based FB Kalman filter. The estimation is derived on a distributed networked control system [330]. Then, to reduce the time complexity, upper bound and lower bound methods for time complexity reduction have been derived on all three cases of prior knowledge. After achieving estimates, we have used a data fusion technique to consider it for a distributed structure. The proposed scheme is then validated on a network structure of a rotational drive-based electro-hydraulic system, where various types of faults were introduced, and then different fault profile data are considered for the evaluation of the proposed scheme.

The remainder of this paper is structured as follows. Problem formulation is described in Section II. The Bayesian-based FB Kalman filter with complete prior information is derived and discussed in Section III, the Bayesian-based FB Kalman filter without prior information is derived and discussed in Section IV, followed by derivation of Bayesian-based FB Kalman filter with incomplete prior information in Section V. Evaluation and testing is made in Section VI. Finally some conclusion is described in Section VII.

3.3 PROBLEM FORMULATION

Consider a distributed control system as in [330] consisting of N agents, in which there is no communication loss. The discrete-time linear dynamic model of the agent j can
be described as:

\[x_j(k+1) = \sum_{i=1}^{N} A_{ij} x_i(k) + G_j w_j(k) \quad (3.1) \]

where \(k \in \mathbb{Z}^+ \), \(x_j(k) \in \mathbb{R}^{n_x} \) is the state of the agent \(j \) at time \(k \), \(w_j(k) \in \mathbb{R}^{n_w} \) is a white noise process, \(A_{ij} \in \mathbb{R}^{n_x \times n_x} \), and \(G_j \in \mathbb{R}^{n_x \times n_w} \). Hence, the state of the agent \(j \) is governed by the previous states of all \(N \) agents. We can also consider \(A_{ij} x_i(k) \) as a control input from the agent \(i \) to the agent \(j \), where \(i \neq j \).

Now consider a distributed networked control system (DNCS), in which agents communicate with each other over a lossy communication channel. We assume an erasure channel between a pair of agents. At each time \(k \), a packet sent by the agent \(i \) is correctly received by the agent \(j \) with probability \(p_{ij} \). We form a communication matrix \(P_{com} = [p_{ij}] \). Let \(Z_{ij}(k) \in \{0, 1\} \) be a Bernoulli random variable, such that \(Z_{ij}(k) = 1 \) if a packet sent by the agent \(i \) is correctly received by the agent \(j \) at time \(k \), otherwise, \(Z_{ij}(k) = 0 \). Since there is no communication loss within an agent, \(p_{ii} = 1 \) and \(Z_{ii}(k) = 1 \) for all \(i \) and \(k \). For each \((i, j)\) pair, \(\{Z_{ij}(k)\} \) are i.i.d. (independent identically distributed) random variables such that \(P(Z_{ij}(k) = 1) = p_{ij} \) for all \(k \); and \(Z_{ij}(k) \) are independent from \(Z_{lm}(k) \) for \(l \neq i \) or \(m \neq j \). Then we can write the dynamic model of the agent \(j \) under lossy links as:

\[x_j(k+1) = \sum_{i=1}^{N} Z_{ij}(k) A_{ij} x_i(k) + G_j w_j(k) \quad (3.2) \]

where \(Z_{ij} \) is a random Bernoulli variable.
Let \(x(k) = [x_1(k)^T, \ldots, x_N(k)^T]^T \) and \(w(k) = [w_1(k)^T, \ldots, w_N(k)^T]^T \), where \(y^T \) is a transpose of \(y \). Let \(\bar{A}_{ij} \) be a \(N_{nx} \times N_{nx} \) block matrix. The entries of \(\bar{A}_{ij} \) are all zeros except the \((j, i)\)th block is \(A_{ij} \). For example, when \(N = 2 \).

\[
\bar{A}_{12} = \begin{bmatrix}
0_{nx} & 0_{nx} \\
A_{12} & 0_{nx}
\end{bmatrix}
\]

where \(0_{nx} \) is a \(n_x \times n_x \) zero matrix. Then the discrete-time linear dynamic model of the DNCS with lossy links can be represented as following:

\[
x(k+1) = (\sum_{i=1}^{N} \sum_{j=1}^{N} Z_{ij}(k) \bar{A}_{ij}) x(k) + G w(k) \tag{3.3}
\]

where \(G \) is a block diagonal matrix of \(G_1, \ldots, G_N \). For notational convenience, we introduce a new index \(n \in 1, \ldots, N_2 \) such that \(ij \) is indexed by \(n = N(i-1) + j \). With this new index \(n \), the dynamic model (3.3) can be rewritten as:

\[
x(k+1) = (\sum_{n=1}^{N^2} Z_n(k) \bar{A}_n) x(k) + G w(k) \tag{3.4}
\]

By letting \(A(k) = (\sum_{n=1}^{N^2} Z_n(k) \bar{A}_n) \) we see that (3.4) is a time-varying linear dynamic model:

\[
x(k+1) = A(k) x(k) + G w(k) \tag{3.5}
\]

Until now we have assumed that \(\bar{A}_n \) is fixed for each \(n \). Now suppose a more
general case where the matrix A is time-varying and its values are determined by the communication link configuration $Z(k) = [Z_1(k), \ldots, Z_{N^2}(k)]^T$. Hence, A is a function of $Z(k)$ and this general case can be described as:

$$x(k+1) = A(Z(k))x(k) + Gw(k)$$ \hspace{1cm} (3.6)

The dynamic model (3.6) or (3.4) is a special case of the linear hybrid model or a jump linear system [355] since $A(k)$ takes an element from a set of a finite number of matrices. We will call the dynamic model (3.4) as the “simple” DNCS dynamic model and (3.6) as the “general” DNCS dynamic model.

In the following sections, we will derive Kalman filter fusion with cases of prior information, and their modifications which can bound the covariance matrices [330]. The Bayesian-based FB Kalman filter is expressed as follows (See Equation (3.7-3.15)), where the simple Bayesian-based optimal Kalman filter is expressed in [329], where the basic version of Bayesian-based Kalman filter is derived, from which the Bayesian-based FB Kalman and its versions for different prior knowledge have then been derived
3.3. PROBLEM FORMULATION

and formulated here.

Forward Run: For \((k = 0; k < T; +k)\)

\[
R_{e,i} = R_i + H_k P_{k+1/k} H_k^T \tag{3.7}
\]

\[
\hat{K}_{f,i} = F_{k+1/k} \hat{P}_{k+1/k} H_k^T (H_k \hat{P}_{k/k-1} H_k^T + R_{e,i}^{-1}) \tag{3.8}
\]

\[
\hat{x}_{k/k}^{\text{MAP}} = \hat{x}_{k+1/k} + \hat{K}_{f,i} (y_k - H_k \hat{x}_{k+1/k}) \tag{3.9}
\]

\[
\hat{x}_{k+1/k} = F_k \hat{x}_{k+1/k} \tag{3.10}
\]

\[
\hat{P}_{k+1/k} = F_{k+1/k} P_{k+1/k} F_k^T + G_i Q G_i^* - \hat{K}_{p,i} R_{e,i} \hat{K}_{p,i}^* \tag{3.11}
\]

\[
\hat{P}_{k/k} = \hat{P}_{k+1/k} - F_{k/k+1} \hat{K}_k H_k \hat{P}_{k+1/k} \tag{3.12}
\]

Backward Run: For \((k = T - 1; t \geq 0; -k)\)

\[
\hat{J}_{k-1/T} = \hat{P}_{k-1/T} F_k^T \hat{P}_{k-1/T}^{-1} \tag{3.13}
\]

\[
\hat{x}_{k-1/T} = \hat{x}_{k-1/k-1} + \hat{J}_{k-1} (\hat{x}_{k-1/T} - \hat{x}_{k-1/k}) \tag{3.14}
\]

\[
\hat{P}_{k-1/T} = \hat{P}_{k-1/k-1} + \hat{J}_{k-1} (\hat{J}_{k-1/T} - \hat{P}_{k-1/k}) \hat{J}_{k-1}^T \tag{3.15}
\]

where \(R_{e,i}\) is the covariance matrix of residual, \(P_{k+1/k}\) is the \textit{a-posteriori} error covariance matrix, \(H_k\) is the observation model, \(\hat{K}_{f,i}\) is the system gain, \(Q\) is the covariance of the process noise, and \(F_k\) is the state-transition model for each time-step \(k\).

It should be noted that smoother is being employed here to reduce noise effect and
have more clear results in the approximate estimation of various prior information versions due to its nature of choosing the most refined covariance error matrix P_k from the last iteration instant of forward run and considering it as the first iteration in the backward run. Note that it is the designers choice whether to use smoothing equations or not. For example, during an on-line analysis, the Kalman smoother will give estimates only after the end of the experiment, which may not be acceptable. But for an off-line analysis, getting the estimates after the experiment may not matter.

3.4 Bayesian-based FB Kalman Filter Fusion with Complete Prior Information

In this section, generalized version of Kalman filter is presented with complete prior information. Consider the generalized DNCS dynamic model (3.6) where $w(k)$ is a Gaussian noise with zero mean and covariance Q, and measurement model (3.16) where $y(k) \in \mathbb{R}^{n_y}$ is a measurement at time t, $C \in \mathbb{R}^{n_y \times N_{nx}}$ and $\nu(k)$ is a Gaussian noise with zero mean and covariance k.

$$y(k) = Cx(k) + \nu(k) \quad (3.16)$$

The following theorem presents the Bayesian-based FB Kalman filter with complete prior information:
Theorem 3.1

Forward Run: For \((k = 0; k < T; +k)\)

\[
\hat{x}_{k/k} = F_k \hat{x}_{k} + K_{p,k}[y_i - H_k \hat{x}_{k+1/k} - \tilde{\nu}] \tag{3.17}
\]

\[
\hat{x}_{k+1/k} = F_k \hat{x}_{k+1/k} + K_{p,k} \nu_k \tag{3.18}
\]

\[
\hat{R}_{e,k} = R_k + H_k P_{k+1/k} H_k^* + H C_{xv} + (H C_{xv})' \tag{3.19}
\]

\[
K_k = (F_k P_{k+1/k} H^* + G_k S_k)(H_k P_k H_k^* + R_{e,k})^{-1} \tag{3.20}
\]

\[
\hat{P}_{k+1/k} = F_k P_{k+1/k} F_k^* + G Q_i G^* - F_{k+1/k} K_{p,k} \hat{R}_{e,k} K_{p,k}^* \tag{3.21}
\]

\[
\hat{P}_{k/k} = F_k P_k F_k^* - K_k H_k P_{k+1/k} \tag{3.22}
\]

Backward Run: For \((k = 0; k < T; +k)\)

\[
\hat{J}_{k-1/T} = \hat{P}_{k-1/T} F_k^T \hat{P}_{k-1/T}^{-1} \tag{3.23}
\]

\[
\hat{x}_{k-1/T} = \hat{x}_{k-1/k-1}^i + \hat{J}_{k-1} (\hat{x}_{k-1/T} - \hat{x}_{k-1/k}) \tag{3.24}
\]

\[
\hat{P}_{k-1/T} = \hat{P}_{k-1/k-1} \tag{3.25}
\]
where \(S_k \) is the covariance of \(\tilde{y}_k \). The error covariance and the gain matrices have the following alternative forms (See Eqns. (3.26) and (3.27)):

\[
P = FP_{k+1/k+1} F' + KR_{e,k} K' - FP K' - (FBK')' \tag{3.26}
\]
\[
K = (F_k P_{k+1/k} H^* + P_{k/k})(KR_{e,k} K + HP_{k/k})^{-1} \tag{3.27}
\]

where \(B_k \) is the control-input model.

Proof. For linear estimation of \(x \) using data \(y \) with linear model \(y = Hx + \nu \), the prior information consists of \(\bar{x} \) and \(\bar{\nu} \), and \(C_x = \text{cov}(x) \), \(C_\nu = \text{cov}(\nu) \), and \(C_{x\nu} = \text{cov}(x, \nu) \).

When we talk about prior information, we mean prior information about \(x \), that is \(\bar{x} \), \(C_x \), and \(C_{x\nu} \).

For dynamic case, as in Kalman filter,

\[
\hat{x}_{k/k} = E^*[x_k|y^k] = [\bar{x}_k|y^k]
\]
\[
= \bar{x}_k + C_{x_k} y^k C^+ (y^k - \bar{y}^k), \quad \bar{x}_k = E[x_k]
\]
\[
P_{k/k} = \text{MSE}(\hat{x}_{k/k}) = \Delta E[(x_k - \hat{x}_{k/k})(x_k - \hat{x}_{k/k})']
\]
\[
= C_{x_k} - C_{x_k} y^k C_{y^k}^+ C_{x_k} y^k
\]

With few exceptions, however, it is unrealistic since its computational burden increases rapidly with time (method for decreasing time computation complexity is applied in the
next section using modified kalman filter functions of upper bound and lower bound).

$$\hat{x}_{k/k} = E^*[x_k|y^k] = E^*[x_k|y_k, y^{k-1}] = \hat{x}_{k/k-1} + K_k\tilde{y}_{k/k-1}$$

$$P_{k/k} = \text{MSE}(\hat{x}_{k/k}) = \text{MSE}(\hat{x}_{k/k-1}) - K_kC\tilde{y}_{k/k-1}K_k'$$

Let $A = P_{k/k}$ and $F_k = \zeta$. Equation (3.27) follows from the following:

$$(\zeta PH' + A)(C + HA)^{-1}$$

$$= \{\zeta[C_x - (C_xH' + A)(HC_xH' + C + HA + (HA)')^{-1} \cdot (C_xH' + A')H' + A](C + HA)^{-1}$$

$$= (\zeta C_x + H' + A)[I - (HC_xH' + C + HA + (HA)')^{-1} \cdot (HC_xH' + (HA)')(C + HA)^{-1}$$

$$= (\zeta C_xH' + A)(HC_xH' + C + HA + (HA)')^{-1} \cdot (C + HA)(C + HA)^{-1}$$

$$= (\zeta C_xH' + A)(C_y + HA)^{-1}$$

3.4.1 Modified Filter with Complete Prior Information

Based on general DNCS dynamic model (3.6), where $Z(k)$ is independent from $Z(t)$ for $t \neq k$, we derive an optimal linear filter.

The following terms are defined to describe the modified Bayesian-Based FB Kalman
filter.

\[
\hat{x}_{k/k} = \mathbf{E}[x(k)|y_k]
\]

\[
P(k|k) = \mathbf{E}[e(k)e(k)^T|y_k]
\]

\[
\hat{x}(k + 1|k) = \mathbf{E}[x(k + 1)|y_k]
\]

\[
P(k + 1|k) = \mathbf{E}[e(k + 1|k)e(k + 1|k)^T|y_k]
\]

\[
J(k - 1|T) = \mathbf{E}[J(k - 1|T)|P_{k/k}]
\]

\[
\hat{x}(k - 1|T) = \mathbf{E}[e(k - 1|T)|y_k]
\]

\[
P(k - 1|T) = \mathbf{E}[e(k - 1|T)e(k - 1|T)^T|y_k]
\] (3.28)

where \(y_k = \{y(t) : 0 \leq t \leq k\}\), \(e(k|k) = x(k) - \hat{x}(k|k)\), and \(e(k + 1|k) = x(k + 1) - \hat{x}(k + 1|k)\).

Suppose that we have estimates \(\hat{x}(k|k)\) and \(P(k|k)\) from time \(k\). At time \(k + 1\), a new measurement \(y(k + 1)\) is received and our goal is to estimate \(\hat{x}(k + 1|k + 1)\) and \(P(k + 1|k + 1)\) from \(\hat{x}(k|k)\), \(P(k|k)\) and \(y(k + 1)\). First, we compute \(\hat{x}(k + 1|k)\) and \(P(k + 1|k)\).

\[
\hat{x}(k + 1|k) = \mathbf{E}[x(k + 1)|y_k]
\]

\[
= \mathbf{E}[A(Z)x(k) + G\omega(k)|y_k]
\]

\[
= \hat{A}\hat{x}(k|k)
\] (3.29)
where

\[
\hat{A} = \sum_{z \in Z} p_z A(z) \quad (3.30)
\]

is the expected value of \(A(Z)\). Here \(p_z = P(Z = z)\), and \(Z\) is a set of all possible communication link configurations.

The prediction covariance can be computed as:

\[
P(k + 1|k) = \mathbf{E}[e(k + 1|k)e(k + 1|k)^T|y_k] = GQG^T + \sum_{z \in Z} p_z A(z)P(k|k)A(z)^T \]

\[
-K_{p,k}R_{e,k}K_{p,k}^* + \sum_{z \in Z} p_z A(z)\hat{x}(k|k)\hat{x}(k|k)^T \times (A(z) - \hat{A})^T \quad (3.31)
\]

Given \(\hat{x}(k + 1|k)\) and \(P(k + 1|k)\), \(\hat{x}(k + 1|k + 1)\) and \(P(k + 1|k + 1)\) are computed as in the standard Kalman filter (See Eqn. (3.32) and (3.33)).

\[
\hat{x}(k + 1|k + 1) = F_k\hat{x}(k + 1|k) + K(k + 1)(y(k + 1) - H\hat{x}(k + 1|k)) - \nu_i \quad (3.32)
\]

\[
P(k + 1|k + 1) = F_kP(k + 1|k)F_k^* - F_{k/k-1}K_k(k + 1)HP(k + 1|k) \quad (3.33)
\]

where \(K(k + 1) = (FPk + 1|kH^T + GS)(HPk|kH^T + R)^{-1}\).
3.4.2 APPROXIMATING THE FILTER FOR COMPLETE PRIOR INFORMATION

The modified KF proposed in Section 3.4.1 for the general DNCS is an optimal linear filter but the time complexity of the algorithm can be exponential in N since the size of Z is $O(2^{N(N-1)})$ in the worst case, i.e., when all agents can communicate with each other. In this section, we describe two approximate Kalman filtering methods for the general DNCS dynamic model (6) which are more computationally efficient than the modified KF by avoiding the enumeration over Z. Since the computation of $P(k+1|k)$ is the only time-consuming process, we propose two filtering method which can bound $P(k+1|k)$. We use the notation $A \geq 0$ if A is a positive definite matrix and $A \geq 0$ if A is a positive semi-definite matrix.

Lower-Bound KF: Complete Prior Information Case

The lower-bound KF (lb-KF) is the same as the modified KF described in Section III, except we approximate $P(k+1|k)$ by $P(k+1|k)$ and $P(k|k)$ by $P(k|k)$. The covariances are updated as:

$$P(k+1|k) = \hat{A}P(k|k)\hat{A}^T + GQG^T$$

$$-K_{p,k}R_{e,k}K_{p,k}$$

(3.34)

$$P(k+1|k+1) = F_kP(k+1|k)$$

$$-F_{k/k-1}K(k+1)H_kP(k+1|k)$$

(3.35)
where \(\hat{A} \) is the expected value of \(A(Z) \) and \(K(k+1) = F_{k+1/k}P(k+1|k)H^T (H_kP(k+1|k)H_k^* + R)^{-1} \). Notice that \(\hat{A} \) can be computed in advance and the lb-KF avoids the enumeration over \(Z \).

Lemma 3.1 If \(P(k|k) \leq P(k|k) \), then \(P(k+1|k) \leq P(k+1|k) \).

Proof. Using (3.31), we have

\[
P(k+1|k) - P(k+1|k) = E[A(Z)P(k|k)A(Z)^T] \\
+ E[A(Z)\hat{x}(k|k)\hat{x}(k|k)^T A(Z)^T] \\
- \hat{A}\hat{x}(k|k)\hat{x}(k|k)^T \hat{A}^T - \hat{A}P(k|k)\hat{A}^T \\
- K_{p,k}R_{e,k}K_{p,k} + K_{p,k}R_{e,k}K_{p,k}
\]

\[
P_1 + P_2 \quad (3.36)
\]

where \(P_1 = E[A(Z)P(k|k)A(Z)^T] - \hat{A}P(k|k)\hat{A}^T - K_{p,k}R_{e,k}K_{p,k} \) and \(P_2 = E[A(Z)\hat{x}(k|k)\hat{x}(k|k)^T A(Z)^T] - \hat{A}\hat{x}(k|k)\hat{x}(k|k)^T \hat{A}^T + K_{p,k}R_{e,k}K_{p,k} \).

If \(P_1 \geq 0 \) and \(P_2 \geq 0 \), then \(P(k+1|k) - P(k+1|k) \geq 0 \)

\[
P_1 = E[A(Z)P(k|k)A(Z)^T] - \hat{A}P(k|k)\hat{A}^T - K_{p,k}R_{e,k}K_{p,k}^* \\
- \hat{A}P(k|k)\hat{A}^T + \hat{A}P(k|k)\hat{A}^T \\
= E[A(Z)P(k|k)A(Z)^T] - \hat{A}P(k|k)\hat{A}^T \\
+ \hat{A}(P(k|k) - P(k|k))\hat{A}^T - K_{p,k}R_{e,k}K_{p,k}^* \quad (3.37)
\]

Since \(P(k|k) \) is a symmetric matrix, \(P(k|k) \) can be decomposed into \(P(k|k) = \)
3.4. BAYESIAN-BASED FB KALMAN FILTER FUSION WITH COMPLETE PRIOR INFORMATION

$U_1 D_1 U_1^T$, where U_1 is a unitary matrix and D_1 is a diagonal matrix. Hence,

$$
P_1 = \mathbb{E}[(A(Z)U_1 D_1^{1/2})(A(Z)U_1 D_1^{1/2})^T]
$$

$$
- \mathbb{E}[(A(Z)U_1 D_1^{1/2})] \mathbb{E}[(A(Z)U_1 D_1^{1/2})]^T
$$

$$
+ \tilde{A}(P(k|k) - \underline{P}(k|k)) \tilde{A}^T - K_{p,k} R_{e,k} K_{p,k}^*
$$

$$
= \text{Cov}[(A(Z)U_1 D_1^{1/2}) + \tilde{A}(P(k|k) - \underline{P}(k|k)) \tilde{A}^T
$$

$$
- K_{p,k} R_{e,k} K_{p,k}]
$$

(3.38)

where $\text{Cov}[H]$ denotes the covariance matrix of H. Since a covariance matrix is positive definite and $P(k|k) - \underline{P}(k|k) \geq 0$ by assumption, $P_1 \geq 0$. P_2 is a covariance matrix since $\hat{x}(k|k)\hat{x}(k|k)^T$ is symmetric, hence $P_2 \geq 0$.

Lemma 3.2 If $\underline{P}(k + 1|k) \leq P(k + 1|k)$, then $\underline{P}(k + 1|k + 1) \leq P(k + 1|k + 1)$.

Proof. Here, we will use matrix inversion lemma which says that $(A + UCV)^{-1} = A^{-1} - A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1}$ where A, U, C and V all denote matrices of the correct size. Applying the matrix inversion lemma to (3.33), we have

$$
P(k + 1|k + 1) = (P(k + 1|k)^{-1} + C^T R^{-1} C)^{-1}.
$$

Let $P = P(k + 1|k)$ and $\underline{P} = \underline{P}(k + 1|k)$. Then

$$
P \geq \underline{P} \Rightarrow P^{-1} \leq \underline{P}^{-1}
$$

and

$$
P^{-1} + C^T R^{-1} C \leq \underline{P}^{-1} + C^T R^{-1} C \Rightarrow (P^{-1} + C^T R^{-1} C)^{-1} \geq (\underline{P}^{-1} + C^T R^{-1} C)^{-1}
$$

and

$$
P(k + 1|k + 1) \geq \underline{P}(k + 1|k + 1)
$$

Finally, using Lemma 3.1, Lemma 3.2, and the induction hypothesis, we have the
3.4. BAYESIAN-BASED FB KALMAN FILTER FUSION WITH COMPLETE PRIOR INFORMATION

Following theorem showing that the lb-KF maintains the state error covariance which is upper-bounded by the state error covariance of the modified KF.

Theorem 3.2 If the lb-KF starts with an initial covariance \(P(0|0) \), such that \(P(0|0) \leq P(0|0) \), then \(P(k|k) \leq P(k|k) \) for all \(k \geq 0 \).

Upper-bound KF: Complete Prior Information Case

Similar to the lb-KF, the upper-bound KF (ub-KF) approximates \(P(k+1|k) \) by \(\bar{P}(k+1) \) and \(P(k|k) \) by \(\bar{P}(k|k) \). Let \(\lambda_{\text{max}} = \lambda_{\text{max}}(\bar{P}(k|k)) + \lambda_{\text{max}}(\hat{x}(k|k)\hat{x}(k|k)^T) \), where \(\lambda_{\text{max}}(S) \) denotes the maximum eigenvalue of \(S \). The covariances are updated as following:

\[
\bar{P}(k+1|k) = \lambda_{\text{max}} \mathbf{E}[A(Z)A(Z)^T] - \bar{K}_p \bar{R}_{e,k} \bar{K}_p^T
\]

\[
- \hat{A}\hat{x}(k|k)\hat{x}(k|k)^T \bar{A}^T + GQG^T \tag{3.39}
\]

\[
\bar{P}(k+1|k+1) = F\bar{P}(k+1|k)
\]

\[
- F\bar{K}(k+1)H\bar{P}(k+1|k) \tag{3.40}
\]

where \(\hat{A} \) is the expected value of \(A(Z) \) and \(\bar{K}(k+1) = (F\bar{P}(k+1|k)H^T + GS)(H\bar{P}(k+1|k)H^T + R)^{-1} \). In the ub-KF, \(\mathbf{E}[A(Z)A(Z)^T] \) can be computed in advance but we need to compute \(\lambda_{\text{max}} \) at each step of the algorithm. But if the size of \(Z \) is large, it is more efficient than the modified KF. (Notice that the computation of \(\lambda_{\text{max}} \) requires a polynomial number of operations in \(N \) while the size of \(Z \) can be exponential in \(N \).)

Lemma 3.3 If \(\bar{P}(k|k) \geq P(k|k) \), then \(\bar{P}(k+1|k) \geq P(k+1|k) \).
3.4. BAYESIAN-BASED FB KALMAN FILTER FUSION WITH COMPLETE PRIOR INFORMATION

Proof. Let $M = \hat{x}(k|k) \hat{x}(k|k)^T$ and I be an identity matrix. Then using (3.31), we have

$$
\overline{P}(k|k) - P(k|k) = \lambda_{\max} E[A(Z)A(Z)^T] \\
- E[A(Z)P(k|k)A(Z)^T] - E[A(Z)MA(Z)^T] \\
- K_p R_{e,k} K_p^* + \overline{K}_p R_{e,k} \overline{K}_p^* \\
= E[A(Z)(\lambda_{\max}(\overline{P}(k|k))I - P(k|k))A(Z)^T] \\
+ E[A(Z)(\lambda_{\max}(M)I - M)A(Z)^T] \\
- K_p R_{e,k} K_p^* + \overline{K}_p R_{e,k} \overline{K}_p^* \quad (3.41)
$$

Since, $\overline{P}(k|k) \geq P(k|k)$ and $\lambda_{\max}(S)I - S \geq 0$ for any symmetric matrix S, $\overline{P}(k|k) - P(k|k) \geq 0$.

Using Lemma 3.3, Lemma 3.2, and the induction hypothesis, we obtain the following theorem. The ub-KF maintains the state error covariance which is lower-bounded by the state error covariance of the modified KF.

Theorem 3.3 If the ub-KF starts with an initial covariance $\overline{P}(0|0)$, such that $\overline{P}(0|0) \geq P(0|0)$, then $\overline{P}(k|k) \geq P(k|k)$ for all $k \geq 0$.

Convergence

The following theorem shows a simple condition under which the state error covariance can be unbounded.

Theorem 3.4 If $(E[A(Z)]^T, E[A(Z)]^T C^T)$ is not stabilizable, or equivalently, $(E[A(Z)], CE[A(Z)])$
is not detectable, then there exists an initial covariance \(P(0|0) \) such that \(P(k|k) \) diverges as \(k \to \infty \).

Proof. Let us consider the lb-KF. Let \(P_k = P_{k|k} \). \(\psi = GQG^T \), \(\hat{A} = E[A] \), and \(F = -(C\hat{A}P_k\hat{A}^TC^T + C\psi C^T + R)^{-1}(C\psi + C\hat{A}P_k\hat{A}^T) \).

Then based on Riccati difference equation [356], we can express \(P_{k+1} \) as:

\[
P_{k+1} = \hat{A}P_k\hat{A}^T + \psi - F^T(C\hat{A}P_k\hat{A}^TC^T + C\psi C^T + R)F = (\hat{A}^T + \hat{A}^TC^TF)P_k(\hat{A}^T + \hat{A}^TC^TF) + F^T(C\psi C^T + R)F + \psi C^TF + F^TC\psi + \psi
\]

(3.42)

Hence, if \((\hat{A}^T + \hat{A}^TC^TF)\) is not a stability matrix, for some \(P_0 \leq P(0|0) \), \(P_k \) diverges as \(k \to \infty \). Since the state error covariance of the lb-KF diverges and \(P(k|k) \leq P(k|k) \) for all \(k \geq 0 \) (Theorem 3.2), \(P(k|k) \) diverges as \(k \to \infty \). Here \(P(k|k) \) can be \(F_kP_{k+1/k}F_k^* - K_kH_kP_{k+1/k} \) for ‘complete’ prior case and \(K_kH_kP_{k/k-1} \) for ‘without’ prior and ‘incomplete’ prior cases respectively.

3.5 Bayesian-Based FB Kalman Filter Fusion Without Prior Information

The Bayesian-Based FB Kalman filter rule of theorem 3.1 is not applicable if either there is no prior information about the estimatee, the information is incomplete (e.g.
the prior covariance is not known or does not exist), or the estimatee is not random. In these cases, the estimation formulas are not clearly applicable.

The following theorem presents the Bayesian-based FB Kalman filter for without prior information:

Theorem 3.5

Forward Run: For \((k = 0; k < T; +k)\)

\[
\hat{x}_{k/k} = K_{p,i}[y_i - \bar{\nu}] \tag{3.43}
\]

\[
\hat{x}_{k+1/k} = F_k \hat{x}_{k+1/k} - K_p H_k \hat{x}_{k+1/k} + k_p y - k_p \nu \tag{3.44}
\]

\[
\hat{P}_{k/k} = K_k H_k P_{k/k-1} \tag{3.45}
\]

\[
K_k = H_k^+ \left[I - P_{k/k-1} ((I - HH') (P_{k/k-1}) \right. \]

\[
. (I - HH')) \left.^+ \right] \tag{3.46}
\]

\[
\bar{K} = K + B'(I - HH') \tag{3.47}
\]

\[
P_{k+1/k} = K_{p,k} R_e,k K_{p,k}^* \tag{3.48}
\]

Backward Run: For \((k = 0; k < T; +k)\)

\[
\tilde{J}_{k-1/T} = \tilde{P}_{k-1/T} F_k^T \tilde{P}_{k-1/T}^{-1} \tag{3.49}
\]

\[
\tilde{x}_{k-1/T} = \tilde{x}_{k-1/k-1} + \tilde{J}_{k-1}(\tilde{x}_{k-1/T} - \tilde{x}_{k-1/k}) \tag{3.50}
\]

\[
\tilde{P}_{k-1/T} = \tilde{P}_{k-1/k-1} \tag{3.51}
\]

\[\quad + \tilde{J}_{k-1}(\tilde{J}_{k-1/T} - \tilde{P}_{k-1/k}) J_{k-1} \]
3.5. BAYESIAN-BASED FB KALMAN FILTER FUSION WITHOUT PRIOR INFORMATION

where \(B \) is any matrix of compatible dimensions satisfying \(P_{k/k-1}^{\frac{1}{2}}(I - HH^+)B = 0 \), \(P_{k/k-1}^{\frac{1}{2}} \) is any square root matrix of \(P_{k/k-1} \). The optimal gain matrix \(\tilde{K} \) is given uniquely by:

\[
\tilde{K} = K = H^+[I - P_{k/k-1}(I - HH^+)^{\frac{1}{2}}((I - HH^+)^{\frac{1}{2}})]^{-1}(I - HH^+)^{\frac{1}{2}}
\]

(3.52)

if and only if \([H, P_{k/k-1}^{\frac{1}{2}}]\) has full row rank, where \((I - HH^+)^{\frac{1}{2}}\) is a full-rank square root of \(T \). Note that in \(\hat{x}_{k/k}, \bar{x}_k \) is not carried because of no prior information, and all other variables are derived according with condition of \(H \) as full row rank.

3.5.1 MODIFIED KALMAN FILTER WITHOUT PRIOR INFORMATION

In this section, we outline the case without prior information. As Section 3.5 is discussed for complete prior information, the modification of the kalman filter is focused towards the prediction covariance computing of that case.

Hence, the prediction covariance in the case of no prior information can be computed as following:

\[
P(k + 1|k) = \mathbb{E}[e(k + 1|k)e(k + 1|k)^T|y_k] = -K_p R_{e,k} K_p^* + \sum_{z \in \mathbb{Z}} p_z A(z) \bar{x}(k|k) \bar{x}(k|k)^T (A(z) - \tilde{A})^T
\]

(3.53)
3.5. BAYESIAN-BASED FB KALMAN FILTER FUSION WITHOUT PRIOR INFORMATION

And here also, given \(\hat{x}(k+1|k) \) and \(P(k+1|k) \), \(\hat{x}(k+1|k+1) \) and \(P(k+1|k+1) \) are computed as in the standard Kalman filter.

\[
\begin{align*}
\hat{x}(k+1|k+1) &= K(k+1)[y(k+1) - \nu] \\
P(k+1|k+1) &= K(k+1)H(k+1)P(k+1)
\end{align*}
\] (3.54, 3.55)

where \(K(k+1) = H(k+1)^{\dagger}[I - P(k+1)((I - HH^{T})(Pk + 1)).

3.5.2 APPROXIMATING THE KALMAN FILTER FOR WITHOUT PRIOR INFORMATION

Likewise in Section 3.4.2, since the computation of \(P(k+1|k) \) is the only time-consuming process, we propose two filtering method which can bound \(P(k+1|k) \).

The same notations have been followed as in Section 3.4.2.

Lower-Bound KF: Without Prior Information Case

The lower-bound KF (lb-KF) is the same as the modified KF described in Section 3.5.1, except we approximate \(P(k+1|k) \) by \(\underline{P}(k+1|k) \) and \(P(k|k) \) by \(\underline{P}(k|k) \). The covariances are updated as following:

\[
\begin{align*}
\underline{P}(k+1|k) &= \underline{K}(k+1)\underline{R}
\end{align*}
\] (3.56, 3.57)

where \(\underline{K}(k+1) = H^{\dagger}[I - \underline{P}(k+1|k)((I - HH^{T})(Pk + 1)).

65
Lemma 3.4 If $P(k|k) \leq P(k|k)$, then $P(k + 1|k) \leq P(k + 1|k)$.

Proof. Using (3.53), we have

\[
P(k + 1|k) - P(k + 1|k) = E[A(Z)\hat{x}(k|k)\hat{x}(k|k)^T A(Z)^T] - K_{p,k} R_{e,k} K_{p,k}^*
\]

\[
- \hat{A}\hat{x}(k|k)\hat{x}(k|k)^T \hat{A}^T - K_{p,k} R_{e,k} K_{p,k}^*
\]

\[
= P_1 + P_2
\]

(3.58)

where $P_1 = K_{p,k} R_{e,k} K_{p,k}^*$ and $P_2 = E[A(Z)\hat{x}(k|k)\hat{x}(k|k)^T A(Z)^T] - \hat{A}\hat{x}(k|k)\hat{x}(k|k)^T \hat{A}^T - K_{p,k} R_{e,k} K_{p,k}^*$.

Since $P(k|k)$ is a symmetric matrix, $P(k|k)$ can be decomposed into $P(k|k) = U_1 D_1 U_1^T$, where U_1 is a unitary matrix and D_1 is a diagonal matrix, but there is no $P(k|k)$ for P_1 here. Hence,

\[
P_1 = -K_{p,k} R_{e,k} K_{p,k}^*
\]

(3.59)

Upper-bound KF: Without Prior Information Case

Similar to the lb-KF, the upper-bound KF (ub-KF) approximates $P(k + 1|k)$ by $P(k + 1|k)$ and $P(k|k)$ by $P(k|k)$. Let $\lambda_{\text{max}} = \lambda_{\text{max}}(P(k|k)) + \lambda_{\text{max}}(\hat{x}(k|k)\hat{x}(k|k)^T)$, where $\lambda_{\text{max}}(S)$ denotes the maximum eigenvalue of S. The covariances are updated as fol-
following:

\[
\overline{P}(k+1|k) = \lambda_{\text{max}} \mathbf{E}[A(Z)A(Z)^T] + K_{p,k} R_{e,k} K^*_p,k
\]

(3.60)

\[
\overline{P}(k+1|k+1) = K(k+1)H\overline{P}(k+1|k)
\]

(3.61)

where \(K(k+1) = H^+[I - \overline{P}(k+1|k)(I - HH')(\overline{P}(k+1|k))]. \) In the ub-KF, \(\mathbf{E}[A(Z)A(Z)^T] \) can be computed in advance but we need to compute \(\lambda_{\text{max}} \) at each step of the algorithm.

Lemma 3.5 If \(\overline{P}(k|k) \geq P(k|k) \), then \(\overline{P}(k+1|k) \geq P(k+1|k) \).

Proof. Let \(M = \hat{x}(k|k)\hat{x}(k|k)^T \) and \(I \) be an identity matrix. Then using (3.53), we have (See Eqn. (3.62)).

\[
\overline{P}(k|k) - P(k|k) = \lambda_{\text{max}} \mathbf{E}[A(Z)A(Z)^T] - \mathbf{E}[A(Z)MA(Z)^T] - \mathbf{E}[\hat{A}M\hat{A}^T] + \mathbf{E}[\hat{A}M\hat{A}^T] + K_{p,k} R_{e,k} K^*_p,k
\]

(3.62)

Since, \(\overline{P}(k|k) \geq P(k|k) \) and \(\lambda_{\text{max}}(S)I - S \geq 0 \) for any symmetric matrix \(S \), \(\overline{P}(k|k) - P(k|k) \geq 0 \).

Using Lemma 3.5, Lemma 3.2, and the induction hypothesis, we obtain the follow-
The ub-KF maintains the state error covariance which is lower-bounded by the state error covariance of the modified KF.

Theorem 3.6 If the ub-KF starts with an initial covariance $\mathbf{P}(0|0)$, such that $\mathbf{P}(0|0) \geq P(0|0)$, then $\mathbf{P}(k|k) \geq P(k|k)$ for all $k \geq 0$.

Convergence

The convergence will same as followed in Section 3.4.2 and in Theorem 3.4.

3.6 Bayesian-Based FB Kalman Filter Fusion with Incomplete Prior Information

In practice, it is sometimes the case when prior information of some of all the states of system parameters but not all the components of \bar{x} are not available. For example, tracking the positioning of a vehicle, it is easy to determine the prior position vector of the vehicle (it must be within a certain position range) with certain covariance, but not the velocity of the vehicle, i.e. at what speed it is traveling. Such an incomplete prior problem is presented in this section using Bayesian-based FB Kalman filter.

The following theorem presents the Bayesian-Based FB Kalman filter with incomplete prior information:
3.6. BAYESIAN-BASED FB KALMAN FILTER FUSION WITH INCOMPLETE PRIOR INFORMATION

Theorem 3.7

Forward Run: For \((k = 0; k < T; +k)\)

\[
\hat{x}_{k/k} =VK_{p,i}V_{1}^T\bar{x} + VK_{p,i}[y_i - \bar{v}]
\] (3.63)

\[
\hat{x}_{k+1/k} = VK_{p,i}V_{1}^T\bar{x}_{k+1/k} + VK_{p,k}y_k - VK_{p,k}V'
\] (3.64)

\[
\hat{P}_{k/k} = K_kH_kP_{k/k-1}
\] (3.65)

\[
K_k = H_k^+[I - P_{k/k-1}((I - HH')(P_{k/k-1})
\]

\[
.((I - HH'))^+]
\] (3.66)

\[
P_{k+1/k} = G_iQ_iG_i^* - K_{p,k}R_{e,k}K_{p,k}^*
\] (3.67)

Backward Run: For \((k = 0; k < T; +k)\)

\[
\hat{J}_{k-1/T} = \hat{P}_{k-1/T}F_k^T\hat{P}_{k-1/T}^{-1}
\] (3.68)

\[
\hat{x}_{k-1/T} = \hat{x}_{k-1/k-1} + \hat{J}_{k-1}(\hat{x}_{k-1/T} - \hat{x}_{k-1/k})
\] (3.69)

\[
\hat{P}_{k-1/T} = \hat{P}_{k-1/k-1}
\]

\[
+\hat{J}_{k-1}(\hat{J}_{k-1/T} - \hat{P}_{k-1/k})J_{k-1}^*
\] (3.70)

Proof. By Theorem 3.5, the problem can be converted to without prior information with \(H\) and \(C\) replaced by the \(\tilde{H}\) and \(\tilde{C}\) respectively, where, from the proof of Theorem 3.5, the estimatee is \(u = V'x\), where \(V\) is an orthogonal matrix. This means that Theorem 3.5 is applicable now to \(u\). Therefore, all formulas in this theorem follows
from Theorem 3.5 and the relationship:

\[
\hat{x} = V\hat{u}, \quad P = \text{VMSE}(\hat{u})V'
\]

The uniqueness result thus follows from Theorem 3.5.

3.6.1 Modified Kalman Filter With Incomplete Prior Information

In this section, we outline the case with incomplete prior information. As Section 3.6 is discussed for incomplete prior information, the modification of the Kalman filter is focused towards the prediction covariance computing of that case.

The prediction covariance in the case of incomplete prior information can be computed as following:

\[
P(k + 1|k) = \mathbf{E}[e(k + 1|k)e(k + 1|k)^T|y_k]
\]

\[
= GQG^T - K_{p}R_{e,k}K_{p}^*
\]

\[
+ \sum_{z \in Z} p_{z}A(z)\hat{x}(k|k)\hat{x}(k|k)^T (A(z) - \hat{A})^T
\]

(3.71)

And here also, given \(\hat{x}(k + 1|k)\) and \(P(k + 1|k)\), \(\hat{x}(k + 1|k + 1)\) and \(P(k + 1|k + 1)\)
are computed as in the standard Kalman filter (See Eqn. (3.72) and (3.72)).

\[
\hat{x}(k + 1|k + 1) = K(k + 1)[y(k + 1) - \tilde{v}] \\
P(k + 1|k + 1) = K(k + 1)H(k + 1)P(k + 1)
\] (3.72)

where \(K(k + 1) = \tilde{H}(k + 1)^+ [I - \tilde{P}(k + 1|k)(I - \tilde{H}\tilde{H}^T)(\tilde{P}k + 1|k)]\).

3.6.2 APPROXIMATING THE KALMAN FILTER FOR INCOMPLETE PRIOR INFORMATION

Likewise in Section 3.4.2, since the computation of \(P(k + 1|k)\) is the only time-consuming process, we propose two filtering methods which can bound \(P(k + 1|k)\). The same notations have been followed as in Section 3.4.2.

Lower-Bound KF: Incomplete Prior Information Case

The lower-bound KF (lb-KF) is the same as the modified KF described in Section 3.6.1, except we approximate \(P(k + 1|k)\) by \(\underline{P}(k + 1|k)\) and \(P(k|k)\) by \(\underline{P}(k|k)\). The covariances are updated as following:

\[
\underline{P}(k + 1|k) = GQG^T - K_{p,k}R_{e,k}K_{p,k}^* \\
\underline{P}(k + 1|k + 1) = VK(k + 1)H_k\underline{P}(k + 1|k)^*V^T
\] (3.74)

where \(K_{p}(k + 1) = \tilde{H}_k^+ [I - \tilde{P}(k + 1|k)(I - \tilde{H}\tilde{H}^T)(\tilde{P}(k + 1|k))].\)

Lemma 3.6 If \(\underline{P}(k|k) \preceq P(k|k)\), then \(\underline{P}(k + 1|k) \preceq P(k + 1|k)\).
3.6. BAYESIAN-BASED FB KALMAN FILTER FUSION WITH INCOMPLETE PRIOR INFORMATION

Proof. Using (3.71), we have

\[
P(k + 1|k) - P(k + 1|k) = E[A(Z)\hat{x}(k|k)\hat{x}(k|k)^T A(Z)^T] - K_{p,k}R_{e,k}K_{p,k}^* - \hat{A}\hat{x}(k|k)\hat{x}(k|k)^T \hat{A}^T + K_{p,k}R_{e,k}K_{p,k}^* = P_1 + P_2 \tag{3.76}
\]

where \(P_1 = -K_{p,k}R_{e,k}K_{p,k}^* \) and \(P_2 = E[A(Z)\hat{x}(k|k)\hat{x}(k|k)^T A(Z)^T] - \hat{A}\hat{x}(k|k)\hat{x}(k|k)^T \hat{A}^T - K_{p,k}R_{e,k}K_{p,k}^* \).

Note: Here we have simply used (3.71), subtract lower bound covariance from the nominal covariance and assign their names as \(P_1 \) and \(P_2 \) respectively. Sections 3.4.1 and 3.4.2 can be seen for more basic details.

Since \(P(k|k) \) is a symmetric matrix, \(P(k|k) \) can be decomposed into \(P(k|k) = U_1D_1U_1^T \), where \(U_1 \) is a unitary matrix and \(D_1 \) is a diagonal matrix, but here there is no \(P(k|k) \) for \(P_1 \).

Upper-bound KF: Incomplete Prior Information Case

Similar to the lb-KF, the upper-bound KF (ub-KF) approximates \(P(k + 1|k) \) by \(\overline{P}(k + 1|k) \) and \(P(k|k) \) by \(\overline{P}(k|k) \). Let \(\lambda_{\text{max}} = \lambda_{\text{max}}(\overline{P}(k|k)) + \lambda_{\text{max}}(\hat{x}(k|k)\hat{x}(k|k)^T) \), where \(\lambda_{\text{max}}(S) \) denotes the maximum eigenvalue of \(S \). The covariances are updated as fol-
3.6. BAYESIAN-BASED FB KALMAN FILTER FUSION WITH INCOMPLETE PRIOR INFORMATION

Following:

\[
P(k + 1|k) = \lambda_{\text{max}} \mathbb{E}[A(Z)A(Z)^T] \\
+ \overline{K}_{p,k} \overline{R}_{e,k} \overline{K}_{p,k}^*
\]

(3.77)

\[
P(k + 1|k + 1) = \overline{K}(k + 1)H\overline{P}(k + 1|k)
\]

(3.78)

where \(\overline{K}(k + 1) = \overline{H}^+[I - \overline{P}(k + 1|k)(I - \overline{H} \overline{H}')(\overline{P}(k + 1|k))]. \) In the ub-KF, \(\mathbb{E}[A(Z)A(Z)^T] \) can be computed in advance but we need to compute \(\lambda_{\text{max}} \) at each step of the algorithm.

Lemma 3.7 If \(\overline{P}(k|k) \geq P(k|k) \), then \(\overline{P}(k + 1|k) \geq P(k + 1|k) \).

Proof. Let \(M = \hat{x}(k|k)\hat{x}(k|k)^T \) and \(I \) be an identity matrix. Then using (3.71), we have

\[
\overline{P}(k|k) - P(k|k) = \mathbb{E}[A(Z)(\lambda_{\text{max}}(M)I - M)A(Z)^T] \\
+ \hat{A}M\hat{A}^T + \overline{K}_{p,k} \overline{R}_{e,k} \overline{K}_{p,k}^* \\
- K_{p,k} R_{e,k} K_{p,k}^* \\
+ GQG^T
\]

(3.79)

Since, \(\overline{P}(k|k) \geq P(k|k) \) and \(\lambda_{\text{max}}(S)I - S \geq 0 \) for any symmetric matrix \(S \), \(\overline{P}(k|k) - P(k|k) \geq 0 \).

Using Lemma 3.7, Lemma 3.2, and the induction hypothesis, we obtain the following theorem. The ub-KF maintains the state error covariance which is lower-bounded by the state error covariance of the modified KF.
3.7 FUSION ALGORITHM

Theorem 3.8 If the ub-KF starts with an initial covariance $P(0|0)$, such that $P(0|0) \geq P(0|0)$, then $P(k|k) \geq P(k|k)$ for all $k \geq 0$.

Convergence

The convergence will be the same as followed in Section 3.4.2 and in Theorem 3.4.

3.7 FUSION ALGORITHM

The information captured in each priori cases are designed for a distributed structure. The idea is taken from [357]. Suppose there is X number of sensors. For every measurement coming from these sensors that is received in fusion center, there is a corresponding estimation based solely on one sensors that taken is so called virtual sensor (VS). Every estimation from Single VS then is processed through the fusion algorithm to get optimal estimation of the state. Overall diagram of fusion process using multiple sensors can be seen in Fig. 3.1.
When estimate of the states are available, based on their prior knowledge, now the problem turn how to combine these different estimations to get the optimal result. Fused estimation based on the series of particular sensors are computed every sampling time T_s, where the fused estimation $\hat{x}(k|k)$ is no more than an estimation coming from each sensor $\hat{x}_i(k|k)$ (See Theorem 3.9 where equation no. 3.81–3.84 comprise the fusion algorithm).

Theorem 3.9 For any $k = 1, 2, ...,$ the estimate and the estimation error covariance of $x(k)$ based on all the observations before time kT are denoted by $\hat{x}(k|k)$ and $P(k|k)$, then they can be generated by use of the following formula:

\[
\hat{x}(k|k) = \sum_{i=1}^{N} \alpha_i(k)\hat{x}_{N|i}(k|k) \\
P(k|k) = \left(\sum_{i=1}^{N} P^{-1}_{N|i}(k|k)\right)^{-1}
\]

where,

\[
\alpha_i(k) = P(k|k)P^{-1}_{N|i}(k|k)
\]

where $\hat{x}_{N|i}(k|k)$ is state estimation at the highest sample rate based on estimation from VS i and $P_{N|i}(k|k)$ is it’s error covariance.

From equation (3.82), it can be verified that:

\[
P(k|k) \leq P_{N|i}(k|k)
\]
which means that the fused estimation error from estimation of different sensors are always be less or equal to the estimation error of each sensor.

3.8 EVALUATION AND TESTING

The evaluation and testing has been made on an electro-hydraulic system [358]. A networked control system with wired communication has been developed in a Matlab environment as can be seen in the Fig. 3.2. In simulation, we study the performance of the modified Kalman filtering algorithms developed for various types of prior information against the standard Bayesian-Based Kalman smoother which assumes no communication errors. Then we provide motivating results showing the effectiveness of the lb-KF and ub-KF. Our simulation is based on a Matlab environment developed for multiple fault scenarios in a wired networked control system. For each test case, we will run the modified Bayesian-Based KF and the standard Bayesian-KF and show their comparisons for various cases, moreover compute the mean square error (MSE) of state estimates and show the results in Table I, II, and III respectively.

Fault scenarios are created by using the rotational hydraulic drive in the simulation program. In these scenarios leakage fault and controller fault are being considered.

Scenario I: Leakage Fault In this scenario, while the system is working in real time, leakage faults is being introduced in the hydraulic fluid flow linked to the servo-valve of the system. The leakage fault is considered as $\omega_hC_{leakage}x_3(t)$ in state 3.
Figure 3.2: Architecture of LTIP in distributed control network
Scenario II: Controller Fault In this scenario, while the system is working in real time and getting the input for driving the dynamics of the system, a fault has been introduced by increasing the torque load in the hydraulic drive, then effecting the controller, $-\frac{\omega_h}{\alpha} t_{L fault}$ is considered in state 2 of the system. Following [358] and the fault scenarios, the fault model of the system can be described in state space form as:

\[
\begin{align*}
\dot{x}_1(t) &= \omega_{max} x_2(t) \\
\dot{x}_2(t) &= -\gamma \frac{\omega_h}{\alpha} x_2(t) + \frac{\omega_h}{\alpha} x_3(t) - \\
&\quad \frac{\omega_h}{\alpha} t_L - \frac{\omega_h}{\alpha} t_{L fault} \\
\dot{x}_3(t) &= -\alpha \omega_h x_2(t) - \omega_h C_L x_3(t) \\
&\quad + \alpha \omega_h x_4(t) \sqrt{1 - x_3(t) \text{sigm}(x_4(t))} \\
&\quad - \omega_h C_{L \text{leakage}} x_3(t) \\
\dot{x}_4(t) &= -\frac{1}{\tau_v} x_4(t) + \frac{i(t)}{\tau_v}
\end{align*}
\]
where

\[
\begin{align*}
 x_1(t) &= \theta(t), \quad x_2(t) = \frac{\dot{\theta}(t)}{\omega_{\text{max}}}, \\
 x_3(t) &= \frac{P_L(t)}{P_s}, \quad x_4(t) = \frac{A_v(t)}{A_v^{\text{max}}}, \\
 u_1(t) &= i(t) = \frac{I(t)}{I_{\text{max}}}, \quad u_2 = t_L = \frac{T_L}{P_s D_m}, \\
 \gamma &= \frac{B \omega_{\text{max}}}{P_s D_m}, \\
 \omega_h &= \sqrt{\frac{2 \beta D_m^2}{J V}}, \\
 \alpha &= \frac{(C_d A_v^{\text{max}} \sqrt{P_s \rho}) J \omega_h}{P_s D_m^2}, \\
 c_L &= \frac{J C_L \omega_h}{D_m^2}
\end{align*}
\]

and \(C_{\text{leakage}}\) is the leakage fault considered in state 3, \(t_{L_{\text{fault}}}\) is the controller fault in the form of torque load in state 2.

Using the sign convention for \(A_v(t)\) and the definition of \(x_3(t)\), it follows that \(0 \leq x_3(t) \text{sigm}(x_4(t)) \leq 1\). It is also noted here that \(0 \leq x_3(t) \text{sigm}(x_4(t)) \leq 1\), because \(P_1(t)\) and \(P_2(t)\) are both positive and the condition \(x_3(t) \text{sigm}(x_4(t)) = 1\) implies that \(P_1(t) = P_s\) and \(P_2(t) = 0\) or \(P_2(t) = P_s\) and \(P_1(t) = 0\), indicating zero pressure drop across the open ports of the servo-valve and thus, no flow to or from the actuator, a situation that would occur if the rotational motion of the drive is impeded.

3.8.1 Evaluation of results

In what follows, we present simulation results for the proposed distributed approximate estimation with three cases of prior knowledge. The experiment has been performed on
the rotational hydraulic drive system. Two sets of faults have been considered here, that is, the leakage fault in state 3 and controller fault. Firstly, the data collected from the plant has been initialized and the parameters have been being optimized which comprises of the pre-processing and normalization of the data. The comparison of results for the distributed estimation, and estimation generated from various levels of faults, and the basic profile of that particular fault has been compared. Moreover, same pattern of comparison has been followed for modified estimation filters with lower bound and upper bound. Later, computational time comparison has been shown for different results showing the effectiveness of the modified filter in all cases.

Fault 1 (Leakage): Estimates and covariance comparison of distributed estimation with complete prior information, with lower and upper bound filter versions

The Bayesian-Based FB Kalman filter has been simulated here for the leakage fault of the plant. Simulations have been made for the x-estimate and the covariance of each case. In the simulation, comparison of various levels of leakage, that is, no, small, and medium intensity of leakage faults, and distributed estimation has been shown. It can be seen for the estimate profile in Fig. 3.4 that the distributed structure is clearly performing well as compared to the other profiles for complete prior information, when it comes to the covariance of modified filter implementation with upper bound, see Fig. 3.6 and lower bound, see Fig. 3.9 for estimate of lower bound scheme, it is performing equally well for distributed structure. Actually, the advantage of using the modified upper and lower bound filters can be seen more clearly when we talk about the time computation as discussed in the next Section.
Fault 1 (Leakage): Estimates and covariance comparison of distributed estimation with incomplete prior information, with its lower and upper bound filter versions

In case of incomplete prior information with leakage fault, when it comes to the covariance and estimate of modified filter implementation with upper bound, see Fig. 3.12 it performs well for distributed structure. Actually, the advantage of using the modified upper and lower bound filters can be seen more clearly when we talk about the time computation as discussed in the next Section.

Fault 1 (Leakage): Estimates and covariance comparison of distributed estimation without prior information, with its lower and upper bound filter versions

In case of estimation without prior information but with leakage fault, it can be seen for the covariance profile, see Fig. 3.13, that the distributed structure is clearly performing well as compared to the other profiles for without prior information, which is the worst scenario case chosen among all three as far as the prior information is concerned. It is only because of the full rank of the H matrix in the gain K_k that it managed to show the performance, in particular with distributed case, likewise, when it comes to the covariance and estimate of modified filter implementation with upper bound, see Fig. 3.16 for covariance of upper bound scheme and lower bound, see Fig. 3.18 for covariance of lower bound scheme, it appears to be performing equally well for distributed structure. It is due to this factor of poor prior information that rise in the y-axis (estimate) can be seen. A comparison of computation time will be reported later.
Fault 2 (Controller): Estimates and Covariance Comparison of Distributed Estimation with Complete Prior Information, with its lower and upper bound filter versions

The Bayesian-Based FB Kalman filter has been simulated here for the controller fault of the plant, which has been introduced by increasing the torque load in the hydraulic drive, then effecting the controller. Simulations have been made for the x-estimate and the covariance of each case. In the simulation, comparison of various levels of controller faults, that is, no, small, and medium intensity of faults, and distributed estimation has been shown. It can be seen for the covariance profile, see Fig. 3.3 and estimate, see Fig. 3.5 that the distributed structure is clearly performing well as compared to the other profiles for complete prior information, when it comes to the covariance and estimate of modified filter implementation with upper bound, see Fig. 3.7 for covariance of upper bound scheme and lower bound, see Fig. 3.8 for covariance of lower bound scheme and see Fig. 3.10 for estimate of lower bound scheme, it is performing equally well for distributed structure.

Fault 2 (Controller): Estimates and Covariance Comparison of Distributed Estimation with Incomplete Prior Information, with its lower and upper bound filter versions

In case of incomplete prior information with controller fault, it can be seen for the estimate profile, see Fig. 3.11 that the distributed structure is clearly performing well as compared to the other profiles even for incomplete prior information. A comparison
of computation time will be reported later.

Fault 2 (Controller): Estimates and covariance comparison of distributed estimation without prior information, with its lower and upper bound filter versions

In case of estimation without prior knowledge but with controller fault, it can be seen for the covariance profile, see Fig. 3.14 and estimate, see Fig. 3.15 that the distributed structure is clearly performing well as compared to the other profiles for without prior information, which is the worst scenario case chosen among all three as far as the prior information is concerned. It is only because of the full rank of the H matrix in the gain K_k that it managed to show the performance, in particular with distributed case, likewise, when it comes to the covariance and estimate of modified filter implementation with upper bound, see Fig. 3.19 for covariance of lower bound scheme and see Fig. 3.21 for estimate of lower bound scheme, it is performing equally well for distributed structure. The advantage of using the modified upper and lower bound filters can be seen more clearly when we talk about the time computation as discussed in the next Section.

3.8.2 TIME COMPUTATION

The time computation of different methods is evaluated using an HP COMPAQ labtop, n × 7300 INTEL (R) core (TM) 2 CPU T 7200 @ 2 GHz with 2.5 GB ram and 500 Hard disk. An equal number of 5 iterations have been run for achieving each and every of the estimate. For the case of complete prior information, it can be seen from Table 3.1, that iteration time of the basic bayesian-based FB Kalman filter, though it
Figure 3.3: Comparison of Covariance for complete prior information for Controller Fault

Figure 3.4: Comparison of Estimates for complete prior information for Leakage Fault
3.8. EVALUATION AND TESTING

Figure 3.5: Comparison of Estimates for complete prior information for Controller Fault

Figure 3.6: Comparison of Covariance for complete prior information for Leakage Fault with Upper Bound Modified Filter
3.8. EVALUATION AND TESTING

Figure 3.7: Comparison of Covariance for complete prior information for Controller Fault with Upper Bound Modified Filter

Figure 3.8: Comparison of Covariance for complete prior information for Controller Fault with Lower Bound Modified Filter
3.8. EVALUATION AND TESTING

Figure 3.9: Comparison of Estimates for complete prior information for Leakage Fault with Lower Bound Modified Filter

Figure 3.10: Comparison of Estimates for complete prior information for Controller Fault with Lower Bound Modified Filter
3.8. EVALUATION AND TESTING

Figure 3.11: Comparison of Estimates for Incomplete prior information for Controller Fault

Figure 3.12: Comparison of Covariance for Incomplete prior information for Leakage Fault with Upper Bound Modified Filter
Figure 3.13: Comparison of Covariance for without prior information for Leakage Fault

Figure 3.14: Comparison of Covariance for without prior information for Controller Fault
Figure 3.15: Comparison of Estimates for without prior information for Controller Fault

Figure 3.16: Comparison of Covariance for without prior information for Leakage Fault with Upper Bound Modified Filter
3.8. EVALUATION AND TESTING

Figure 3.17: Comparison of Covariance for without prior information for Controller Fault with Upper Bound Modified Filter

Figure 3.18: Comparison of Covariance for without prior information for Leakage Fault with Lower Bound Modified Filter
3.8. EVALUATION AND TESTING

Figure 3.19: Comparison of Covariance for without prior information for Controller Fault with Lower Bound Modified Filter

Figure 3.20: Comparison of Estimates for without prior information for Leakage Fault with Lower Bound Modified Filter
3.8. EVALUATION AND TESTING

Figure 3.21: Comparison of Estimates for without prior information for Controller Fault with Lower Bound Modified Filter

is very much optimal in nature due to its structure than the regular Kalman filter, is taking the maximum number of time for the computation, whereas both modified filters of upper bound and lower bound are performing well with less computation time for leakage fault (fault 1) and controller fault (fault 2) respectively. Likewise are the cases of incomplete prior information, see Table 3.2 and without prior information in Table 3.3 which are even more crucial and critical because of their structures, and here the basic Bayesian-based FB Kalman filter is taking comparatively more time than the likes of modified lower bound and upper bound filters. The performance of the modified filters was consistent even here for both leakage fault (fault 1) and controller fault (fault 2) respectively. In the tables, Bayesian FB KF+ means with upper bound and Bayesian FB KF- corresponds to with lower bound
3.8. Evaluation and Testing

Table 3.1: Case I: Time Computation Comparison for Complete Prior Information

<table>
<thead>
<tr>
<th>FILTER</th>
<th>LEAKAGE FAULT</th>
<th>CONTROLLER FAULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- BAYESIAN FB KF</td>
<td>14.81</td>
<td>12.53</td>
</tr>
<tr>
<td>2- BAYESIAN FB KF+</td>
<td>12.23</td>
<td>12.22</td>
</tr>
<tr>
<td>3- BAYESIAN FB KF-</td>
<td>12.09</td>
<td>12.26</td>
</tr>
</tbody>
</table>

Table 3.2: Case II: Time Computation Comparison for Incomplete Prior Information

<table>
<thead>
<tr>
<th>FILTER</th>
<th>LEAKAGE FAULT</th>
<th>CONTROLLER FAULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- BAYESIAN FB KF</td>
<td>13.503922</td>
<td>12.492827</td>
</tr>
<tr>
<td>2- BAYESIAN FB KF+</td>
<td>12.732579</td>
<td>12.191222</td>
</tr>
<tr>
<td>3- BAYESIAN FB KF-</td>
<td>12.939255</td>
<td>12.166062</td>
</tr>
</tbody>
</table>

Table 3.3: Case III: Time Computation Comparison for Without Prior Information

<table>
<thead>
<tr>
<th>FILTER</th>
<th>LEAKAGE FAULT</th>
<th>CONTROLLER FAULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- BAYESIAN FB KF</td>
<td>23.463690</td>
<td>22.445465</td>
</tr>
<tr>
<td>2- BAYESIAN FB KF+</td>
<td>22.926070</td>
<td>12.165139</td>
</tr>
<tr>
<td>3- BAYESIAN FB KF-</td>
<td>22.366596</td>
<td>21.970777</td>
</tr>
</tbody>
</table>
4 A DISTRIBUTED EM-BASED KALMAN SMOOTHER

4.1 AN OVERVIEW

In this chapter, we have discussed Distributed Expectation Maximization(EM)-Based Kalman smoother, where distributed EM-based smoother estimation is derived for both cases of full and reduced-order respectively.

4.2 INTRODUCTION

Estimation in distributed structures of different types often provide complementary and overlapping coverage on targets. Estimation using filters and their application in different fields is a wide area of research with intense science. Considering the papers of estimation using filters, [360] presents a procedure for design and tuning of reduced orders H_{∞} feed-forward compensators for active vibration control systems subject to wide band disturbances. The procedure took in account the inherent positive feedback coupling between the compensator system and the measurement of the image for
disturbance. In [361], an open-loop observer is designed that estimates each wheel’s orientation of the wheelchair based only on the rear wheels’ kinematics. The model has been validated by propelling the wheelchair on three different floors (vinyl, carpet, and concrete) with five different normal forces between the caster wheels and the ground. In [362], estimator is implemented on a reduced order version i.e. a linear Kalman filter based on a reduced order electrochemical model is designed to estimate internal battery potentials, concentration gradients, and state-of-charge from external current and voltage measurements. A non-linear version of the estimator is used in [363], where an extended Kalman filter observer is presented to estimate manipulator states and couple these estimates to an adaptive rigid-link flexible-joint controller.

When it comes to application of estimators, fault detection and isolation is one of the main areas. In [364], investigation is made on the leakage fault diagnosis problem for a physical internet-based three-tank system. In [365], the problem of designing and developing a hybrid fault detection and isolation scheme for a network of unmanned vehicles is dealt, subject to large environmental disturbances.

In essence, the driving force of estimation in dynamical estimation methods is Kalman filter [366]. Optimal linear smoothers stemming from the estimation theory can be considered as an extension of the Kalman filter, because they take future observations into account. Actually, all optimal linear smoother algorithms involve the Kalman smoother, perhaps because of its property of depending on the a-prior knowledge. A detailed description of the various types of smoothers based on Kalman’s theory, and their algorithms can be found in [367] and [368]. For the sequential approach of the
4.2. INTRODUCTION

smoothing, as in [369] and [370], the Kalman filter analysis follows a retrospective approach, that is done by making corrections of the past state estimates using the Kalman filter innovation. In this paper, we have derived distributed EM-based smoother estimation for both cases of full and reduced-order respectively. It is done with the help of Kalman-like particle filter. The estimation is derived on a stochastic singular system [371]. After achieving a full and reduced-order distributed structure, we have stemmed EM algorithm in each case. The proposed scheme is then validated on a power quality system implemented in an experimental laboratory, where different types of loads were introduced, and then different load profile data were considered for the evaluation of the proposed scheme.

The main contribution of this paper is Kalman-like particle smoother which has been derived and implemented as full-order and reduced-order respectively with EM algorithm tunes for model parameters. The proposed smoothers have been implemented on a data from power quality system with various comparison of results for three types of loads.

The remainder of this paper is structured as follows. Problem formulation is described in Section II. The distributed full-order EM-based smoother is derived and discussed in Section III, followed by the distributed reduced-order EM-based smoother, derived and discussed in Section IV. Evaluation and testing is made in Section V. Finally some conclusion is described in Section VI.
4.3 PROBLEM FORMULATION

Consider the discrete-time stochastic singular linear system, as in [371] with multiple sensors given by:

\[
M x_{k+1} = \Phi x_k + \Gamma \omega_k
\]

\[
y_k^{(i)} = H^{(i)} x_k + \nu_k^{(i)}, \quad i = 1, 2, \ldots, l
\]

where the state \(x_k \in \mathbb{R}^n\), the measurements \(y_k^{(i)} \in \mathbb{R}^{m(i)}, \quad i = 1, 2, \ldots, l\), \(\omega_k \in \mathbb{R}^r\) and \(\nu_k^{(i)} \in \mathbb{R}^{m(i)}, \quad i = 1, 2, \ldots, l\) are independent white noises with zero mean and variance \(Q_{\omega}\) and \(Q_{\nu(i)}\). \(M, \Phi, \Gamma, H^{(i)}\) are the constant matrices with compatible dimensions, \(l\) is the number of sensors, and the superscript \((i)\) denotes the \(i\)th sensor.

Assumption 1. \(M\) is a singular square matrix, \(\text{rank } M = n_1 < n, \text{rank } \Phi \geq n_2\) and \(n_1 + n_2 = n\).

Assumption 2. System (4.1) is regular, i.e., \(\det (z M - \Phi) \neq 0\) where \(z\) is an arbitrary complex.

Assumption 3. The initial state \(x(0)\) with mean \(\mu_0\) and variance \(P_0\) is independent of \(w(t)\) and \(v^{(i)}(t), \quad i = 1, 2, \ldots, l\).

Our aim is to find the distributed reduced-order fusion Kalman smoother \(\hat{x}^{(i)}(t|t)\) of the state \(x(t)\) based on measurements \((y^{(i)}(t), \quad y^{(i)}(1)), \quad i = 1, 2, \ldots, l\).
For system (4.1) and (4.2), there are nonsingular matrices L and $R^{[15]}$, such that:

\[
LMR = \begin{bmatrix}
M_1 & 0 \\
M_2 & 0
\end{bmatrix}, \quad L\Phi R = \begin{bmatrix}
\Phi_1 & 0 \\
\Phi_2 & \Phi_3
\end{bmatrix},
\]

\[
L\Gamma R = \begin{bmatrix}
\Gamma_1 \\
\Gamma_2
\end{bmatrix}, \quad H^{(i)} R = \begin{bmatrix}
H_1^{(i)} & H_2^{(i)}
\end{bmatrix}
\] (4.3)

where $M_1 \in \mathbb{R}^{n_1 \times n_2}$ is non-singular lower-triangular, $\Phi_1 \in \mathbb{R}^{n_1 \times n_1}$ is quasi-lower-triangular, $\Phi_3 \in \mathbb{R}^{n_2 \times n_2}$ is non-singular lower-triangular. By introducing the transformation $x(t) = R \begin{bmatrix} x_1^T(t) \\ x_2^T(t) \end{bmatrix}^T$ with $x_1(t) \in \mathbb{R}^{n_1}$ and $x_2(t) \in \mathbb{R}^{n_2}$, where T denotes the transpose.

The singular system (4.1) and (4.2) is transferred into the following two reduced-order subsystems:

\[
\begin{cases}
x_{1(k+1)} = \Phi_0 x_1(t) + \Gamma_0 \omega(t) \\
y_k^{(i)} = \bar{H}^{(i)} x_{1(k)} + \eta_k^{(i)} \\
x_{2(k)} = B x_{1(k)} + C \omega_k
\end{cases}
\] (4.4)

\[
x_{2(k)} = B x_{1(k)} + C \omega_k
\] (4.5)

where $\Phi_0 = M_1^{-1} \Phi_1$, $\Gamma_0 = M_1^{-1} \Gamma_1$, $\bar{H}^{(i)} = H_1^{(i)} + H_2^{(i)} B$, $\eta_k^{(i)} = \Gamma_3^{(i)} \omega_k + \nu_k^{(i)}$, $\Gamma_3^{(i)} = H_2^{(i)} C$, $B = \Phi_3^{-1} M_2 M_1^{-1} \Phi_1 - \Phi_3^{-1} \Phi_2$, $C = \Phi_3^{-1} M_2 M_1^{-1} \Gamma_1 - \Phi_3^{-1} \Gamma_2$.

99
Also, we have

\[
E\{ \begin{bmatrix} \omega(t) \\ \eta^{(i)}(t) \end{bmatrix}, \begin{bmatrix} \omega^T(k) & \eta^{(j)}^T(k) \end{bmatrix} \} = Q^{(ij)} \delta_{tk},
\]

where \(S^{(i)} = Q_\omega \Gamma_3^{(i)} \), \(Q_{\eta^{(i)}} = \Gamma_3^{(i)} Q_\omega \Gamma_3^{(i)} + Q_{\nu^{(i)}} \) and \(Q_{\eta^{(ij)}} = \Gamma_3^{(j)} Q_\omega \Gamma_3^{(i)} \), \(i \neq j \). \(E \) is the expectation, and \(\delta_{tk} \) is the Kronecker delta function.

4.4 Full-Order EM-Based Fusion Smoothers

In this Section, and the Section coming ahead i.e. Section 4.5, we will derive Kalman-like particle smoother fusion with full-order and reduced order respectively. The Kalman-like particle smoother is expressed as follows with \(i \)th sensor (See Equation (4.7-4.13)), where the simple Kalman-like particle filter is expressed in [414]. A question arises here that why Kalman-like particle smoother has been preferred on a basic Kalman smoother? The justification for the approach w.r.t filter is given in [414], moreover, it is preferred here as a smoother on the basic kalman smoother because of the following.

(See Fig. 4.1 for the comparison of estimates of a basic kalman smoother and Kalman-like particle smoother. See Fig. 4.2 where it can be seen, how the mean square error is reduced in less number of iterations for particle smoother as compared to a regular Kalman smoother):
Figure 4.1: Estimates of Kalman-like particle and Basic Kalman smoother

Figure 4.2: Mean Square Error: Kalman-like particle and basic Kalman smoother
4.4. FULL-ORDER EM-BASED FUSION SMOOTHERS

Initialization: \(x^a_0 \) and \(P_0 \)

Forecast Step:

\[
x^f_{k/k-1} = \Phi_{k-1,k} x^a_{k-1/k-1}, \quad I \in \Sigma_k
\]

(4.7)

\[
P^{f,a}_{k,i/k-1} = \Phi_{k-1/k} P^{a,a}_{k-1,i|k-1}, \quad i \in \Sigma_k;
\]

(4.8)

\[
P^{f}_{k/k-1} = \Phi_{k-1/k} (P^{f,a}_{k,k-1|k-1})^T + Q_{k-1/k},
\]

(4.9)

Smoother Analysis Step:

\[
d_k = y_k - H_k x^f_{k/k-1}, \quad i \in \Sigma_k
\]

(4.10)

\[
x^{a_i}_{i|k} = x^{a_i}_{i|k-1} + \frac{P^{f,a_i}_{i}(H_k)^T}{H_k^i P^{a,a}_k H_k^{iT} + \sigma^2_{\nu}} d_k, \quad i \in \Sigma_k
\]

(4.11)

\[
P^{a,a}_{k,i/k} = (I - \frac{P^{a,a}_{i}(H_k)^T}{H_k^i P^{a,a}_k H_k^{iT} + \sigma^2_{\nu}} H_k^i)
\]

(4.12)

\[
P^{f,a}_{i,i|k-1}, \quad i \in \Sigma_k
\]

\[
P^{a}_{i/i|k-1} = P^{a}_{i|i-1} - \frac{P^{a}_{i}(H_k)^T}{H_k^i P^{a,a}_k H_k^{iT} + \sigma^2_{\nu}} H_k^i P^{f,a}_{i,i|k-1}
\]

, \(i \in \Sigma_k
\]

(4.13)

Notations: Smoothers are initialized as the Kalman filter is. In this case of fix-lag smoothers, for example, while \(k \) is lower than the lag \(L \), the retrospective analysis is performed only to the \(k - 1 \) previous states. The smoother is initialized with an analysis state vector \(x^{a_i}_0 \) and the associated error covariance matrix \(P^{a_i}_0 \). The subscript and superscript notations are those of [372]. Superscripts \(f \) and \(a \) mean ‘forecast’ and
4.4. FULL-ORDER EM-BASED FUSION SMOOTHERS

‘analysis’ respectively. \(k - 1 \) and \(k \) indicate two consecutive time, \(t_{k-1} \) and \(t_k \), at which observations are available. The subscript notation \(k/k - 1 \) is inherited from the estimation theory. \(x_{k/k-1}^{fi} \) represents the forecast state for \(i \)-th sensor at time \(t_k \), i.e. the state estimate at time \(t_k \) given the observations up to time \(t_{k-1} \). \(x_{k/k}^{ai} \) is the analysis state of \(i \)-th sensor at time \(t_k \), i.e. the state estimate at time \(t_k \) given the observations up to time \(t_k \). For smoother, the analysis state at \(t_I \) that includes information of all observations till time \(t_k \) is noted \(x_{I,k}^{ai} \), for \(i \)-th sensor \(P_{k/k-1}^{fi} \) and \(P_{k/k}^{ai} \) are the associated state error covariance matrices at \(i \)-th sensor. Equation (4.7), (4.8) and (4.9) perform the propagation between times \(t_{k-1} \) and \(t_k \). They involve the linear, dynamical model \(\Phi_{k-1,k} \) and the model error covariance matrix \(Q_{k-1,k} \). The equations (4.10)-(4.13) perform the observational updates of the state estimate and error statistics at time \(t_k \). They use the observation vector \(y_k \), the observation error covariance matrix \(\sigma_v \), the observation operator \(H_k \). The innovation \(d_k \) is internally defined. \(\Sigma_k \), the set of time, indices at which the retrospective analysis is produced, i.e. the ensemble that \(I \) must span when the observations at \(t_k \) is considered. The nature of \(\Sigma_k \) determines the type of smoother. If \(\Sigma_k \) is a singleton, it corresponds to the fixed-point smoother. If \(\Sigma_k \) is a fixed and homogeneous series, \(\Sigma_k = \{0, 1, \ldots, M - 1, M\} \) for instance, the smoother is of the fixed-interval type. Note that in the paper \(i \) is used for the \(i \)-th sensor and \(k \) is used for the span of observations.

For every sensor subsystem of system (4.3) with multiple sensors, using [373], we can obtain the local Kalman filter \(\hat{x}_1^{(i)}(t|t) \) for the reduced-order state \(x_1(t) \), the filtering error covariance \(P_1^{(i)}(t|t) \), innovation \(\varepsilon^{(i)}(t) \) with covariance \(Q_{\varepsilon^{(i)}}(t) \) and the white
noise filter $\hat{w}(t|t)$, and smoothing $P^{S(i)}(i|k)$. So, from (4.4), we have the filter of the reduced-order state $x_2(t)$ as:

$$
\hat{x}_2^{(i)}(k|k) = B\bar{x}_1^{(i)}(k|k) + C\hat{\omega}^{(i)}(k|k) \tag{4.14}
$$

4.4.1 Computation of Cross Covariance

From (4.4)-(4.14), we can obtain the Kalman-like particle filter based filtering and smoothing error equations as follows:

$$
\dot{x}_1^{(i)}(k+1|k) = \Phi_0^{(i)}[I_{n_1} - \frac{P_k^i(H_k)^T}{H_k^T P_k^i H_k^T + \sigma_\nu^2}\bar{H}^{(i)}]x_1^{(i)}(k|k-1) + \Gamma_0 \omega_k - (\Phi_0^{(i)} \frac{P_k^i(H_k)^T}{H_k^T P_k^i H_k^T + \sigma_\nu^2} + J^i)\eta_k \tag{4.15}
$$

$$
x_1^{(i)}(k|k) = [I_{n_1} - \frac{P_k^i(H_k)^T}{H_k^T P_k^i H_k^T + \sigma_\nu^2}\bar{H}^{(i)}]x_1^{(i)}(k|k-1) - \frac{P_k^i(H_k)^T}{H_k^T P_k^i H_k^T + \sigma_\nu^2}\eta_k \tag{4.16}
$$

$$
x_2^{(i)}(k|k) = \Phi_k^{(i)}x_1^{(i)}(k|k-1) + D^{(i)}(k)[\omega_k^T, \eta_k^T]^T \tag{4.17}
$$

where $\dot{x}_1^{(i)}(k|k-1) = x_1^{(i)}(k) - \bar{x}_1^{(i)}(k|k-1)$, $\bar{x}_1^{(i)}(k|k) = x_1^{(i)}(k) - \bar{x}_1^{(i)}(k|k)$, $\bar{x}_2^{(i)}(k|k) = x_2^{(i)}(k)$, $\Phi_0^{(i)} = \Phi_0 - J^{(i)}\bar{H}^{(i)}$, $J^{(i)} = \Gamma_0 S^{(i)} Q^{-1}_{\nu^{(i)}}$, $\Phi_k^{(i)} = B(I_{n_1} - \frac{P_k^i(H_k)^T}{H_k^T P_k^i H_k^T + \sigma_\nu^2}\bar{H}^{(i)}) - C S^{(i)} Q^{-1}_{\nu^{(i)}}(k) H^{(i)}$ and $D^{(i)} = [C - B \frac{P_k^i(H_k)^T}{H_k^T P_k^i H_k^T + \sigma_\nu^2} - C S^{(i)} Q^{-1}_{\nu^{(i)}}(k)]$. I_{n_1} is an $n_1 \times n_1$ identity matrix. Using (4.15)-(4.17), and projection theory, the following Lemmas 4.1, 4.2 and 4.3 can be obtained for prediction, filtering and smoothing respectively.
4.4. FULL-ORDER EM-BASED FUSION SMOOTHERS

Cross covariance of Prediction and Filtering Errors

Lemma 4.1 For system (4.4) with multiple sensors, the cross-covariance matrices of prediction and filtering errors for state $x_1(k)$ between the ith and the jth sensor subsystems are given by (See Eqn. (4.18)-(4.19)):

$$P_{1}^{ij}(k+1|k) = \Phi_0^{(i)}[I_{n_1} - \frac{P_i^i(H_k)^T}{H_k^i P_i^i H_k^i + \sigma^2_k} \bar{H}^{(i)}] P_1^{ij}(k|k-1)$$

$$[I_{n_1} - \frac{P_i^j(H_k)^T}{H_k^j P_j^j H_k^j + \sigma^2_k} \bar{H}^{(j)}]^T + [\Gamma_0 - \Phi_0^{(i)} \frac{P_i^i(H_k)^T}{H_k^i P_i^i H_k^i + \sigma^2_k} \bar{H}^{(i)}] P_1^{ij}(k|k-1) - J^{(i)} Q^{(i)}\Gamma_0 - \Phi_0^{(j)} \frac{P_i^j(H_k)^T}{H_k^j P_j^j H_k^j + \sigma^2_k} \bar{H}^{(j)}]^T$$

$$P_{1}^{ij}(k|k) = [I_{n_1} - \frac{P_i^j(H_k)^T}{H_k^j P_j^j H_k^j + \sigma^2_k} \bar{H}^{(j)}] P_1^{ij}(k|k-1)$$

$$[I_{n_1} - \frac{P_i^j(H_k)^T}{H_k^j P_j^j H_k^j + \sigma^2_k} \bar{H}^{(j)}]^T + \frac{P_i^j(H_k)^T}{H_k^j P_j^j H_k^j + \sigma^2_k} Q^{(i,j)} + \frac{P_i^j(H_k)^T}{H_k^j P_j^j H_k^j + \sigma^2_k} D^{(i)} + \frac{P_i^j(H_k)^T}{H_k^j P_j^j H_k^j + \sigma^2_k} Q^{(j)} (4.18)$$

with the initial value $P_{1}^{ij}(0|1) = P_0$ where P_0 is the first $n_1 \times n_1$ block of $R^{-1} P_0 R^{-T}$.

Lemma 4.2 For system (4.5) with multiple sensors, the covariance matrix of the filtering errors for state $x_2(k)$ between the ith and the jth sensor subsystems is given by (See Eqn. (4.20)):

$$P_{2}^{ij}(k|k) = \Phi^{(i)}(k) P_1^{ij}(k|k-1) \Phi^{(j)T}(k) + D^{(i)}(k) Q^{(j)}$$

$$D^{(j)T}(k) (4.20)$$

where $P_{2}^{ij}(k|k)$ is the filtering error covariance of $x_2(k)$ based on the i-th sensor i.e.
4.4. FULL-ORDER EM-BASED FUSION SMOOTHERS

\[P_s^{(i)}(k|k) \]

Cross covariance of Smoothing

Lemma 4.3 For system (4.4)-(4.5) with multiple sensors, the covariance of smoothing between the \(i\)-th and \(j\)-th subsystem are given by:

\[
\hat{x}(i|k) = \hat{x}(i|k - 1) + P^{ij}(k|k - 1)r^{ij}(i|K) \tag{4.21}
\]

\[
r^{ij}(i|K) = \Phi_p^{(i)T}[I_n - \frac{P^{ij}(H_k)^T}{H_k P^{ij} H_k^T + \sigma^2} \bar{H}^{(j)}]r(i + 1|K) + H^{(j)T} \\
\left[H^{(j)} P^{ij}(k|k - 1) H^{(j)T} + R(k)\right]^{-1}(\tilde{y}_{k+1}^{(j)} - \bar{H}^{(j)} \tilde{x}_{k+1}^{(j)}) \tag{4.22}
\]

\[
P^{ij}(k, i|T) = P^{ij}(k|k - 1) - P^{ij}(k|k - 1)P^{ij}(k|k - 1)
\]

\[
P^{\Sigma_{ij}}(i|K)P^{ij}(k|k - 1)
\]

\[
P^{\Sigma_{ij}}(i|K) = \Phi_p^{(i)T}[I_n - \frac{P^{ij}(H_k)^T}{H_k P^{ij} H_k^T + \sigma^2} \bar{H}^{(j)}]T
\]

\[
P^{\Sigma_{ij}}(i + 1|K)\Phi_p^{(j)}[I_n - \frac{P^{ij}(H_k)^T}{H_k P^{ij} H_k^T + \sigma^2} \bar{H}^{(j)}]
\]

\[
+ H^{(j)T}[H^{(j)} P(i|k - 1) H^{(j)T} + R_k]^{-1} H^{(j)} \tag{4.24}
\]

where \(k = N - 1, N - 2, ..., 1\), and \(n \times n\) vector \(r\) satisfies the backward recursive equation, and \(\Phi_p(k + 1, k) = \Phi(k + 1, k)\bar{I} - K(k) H(k)\) and \(j = N, N - 1, ..., 1\) and \(r(N + 1|N) = 0\), also \(n \times n\) matrix \(P^{\Sigma_{ij}}(i|K)\), which is the covariance matrix of \(r(i|K)\) satisfying the backward recursive equation. For state \(x_k\) between \(i\)-th and \(j\)-th
sensor, the cross-covariance matrices for smoothing are:

\[
P^{(S_{ij})}_{1,k} = I_{n_1}P_{a_{ij}}^{1,k}I_{n_1}^T + (H^{(i)}P(j|j-1)H^{jT})^{-1} \tag{4.25}
\]

\[
P^{(S_{ij})}_{2,k} = F^{(i)}(k)P_{a_{ij}}^{1,k}F^{jT}(k) + D^{i}(k)(H^{i}P(j|j-1)H^{jT})^{-1} \tag{4.26}
\]

where \(P^{(S_{ii})}_{2,k}(k|k)\) is the smoothing error covariance of \(x_2(k)\) based on the \(i\)-th sensor i.e. \(P^{(S_{ii})}_{2}(k|k)\).

4.4.2 Estimation of the Model Parameters Using an EM Algorithm

In this section, we describe the estimation of model parameters with an EM algorithm. The objective is to compute an estimate of \(\Theta\), where all the model parameters are denoted by \(\Theta = \{A, \sigma^2_\nu, Q, \mu_0, \Sigma_0\}\). Note that because of the dependence on the states, which are not available, direct maximization is not possible. The problem is to maximize the likelihood with respect to two unknowns: states and model parameters.

The EM algorithm takes an iterative approach by first maximizing the likelihood with respect to the states in the \(E\)-step, and then maximizing with respect to the parameters in the \(M\)-step. The \(E\)-step maximum is given by the expected value of the complete log-likelihood function as follows:

\[
Q = E_{X|Y}[\log p(Y_{1:K}X_{1:K}|\Theta)] \tag{4.27}
\]
where \(p(Y_{1:K}, X_{1:K}|\Theta) \) is the probability density function of the measurement, and \(Y_{1:K} \) is the sequence of measurements as \(Y_{1:K} \equiv \{ y_1, ..., y_K \} \). The M-step involves the direct differentiation of \(Q \) to find the values of the parameters. These computations are done iteratively and convergence of the algorithm is guaranteed [376]. We now describe an EM algorithm for our case to stem it into the full-order Kalman-like particle smoother.

E-Step

This step involves the computation of \(Q \) given the measurements \(Y_{1:K} \), which is the future estimation where \(K \) is a fixed positive integer. and an estimate of the model parameter from the previous iteration, \(\hat{\Theta}_k \). The computation of \(Q \) depends on the following three quantities:

\[
\hat{x}_k^a|_K = E(x_k^a|Y_{1:K})
\]
\[
\Xi_k|_K = E(x_k^a x_k^{aT}|Y_{1:K}) = P_k|_K + \hat{x}_k^a \hat{x}_k^{aT}
\]
\[
\Xi_{k,k-1}|_K = E(x_k^a x_{k-1}^{aT}|Y_{1:K}) = P_{k,k-1}|_K + \hat{x}_k^a \hat{x}_{k-1}^{aT}
\]

where \(x_k^a \) is the value from the smoother analysis step. The first two quantities can be obtained using the Kalman smoother as described in equation (4.11) and (4.13). The last quantity can be obtained with the following equation:

\[
P_{k,k-1}|_K = J_{k-1} P_k|_K
\]
where \(J_k = P^{a_i}_{1,k} \Phi_{k-1,k} P^{f,a_i}_{k,1/k-1} \). \(Q \) is then obtained using equation (4.33) given in the next section.

Log-Likelihood derivation and M-Step: Joint probability distribution of \(X_{1:K} \), \(Y_{1:K} \) can be written as:

\[
p(X_{1:K}, Y_{1:K} | \Phi) = p(x_1^a) \prod_{k=2}^{K} p(x_k^a | x_{k-1}) \\
\cdot \prod_{k=1}^{K} p(y_k | x_k^a, H_k) \tag{4.32}
\]

Taking log and expectation, we get the expectation of joint log-likelihood with respect to the conditional expectation:

\[
Q = E_{X|Y}[\log p(X_{1:K}, Y_{1:K} | \Theta)]
\]

\[
= -\frac{K}{2} \ln \sigma_v^2 - \frac{1}{2\sigma_v^2} \sum_{k=1}^{K} [y_{k/K}^2 - 2H_k^T \tilde{x}_{a_i/k} y_t + H_k^T \Xi_{k|K} H_k] \\
- \frac{1}{2} \sum_{k=2}^{K} \text{trace}[Q^{-1}(\Xi_{k|K} - \Phi_{k-1,k} \Xi_{k-1|K} \Phi_{k-1,k}^T) \Phi_{k-1,k}^T] \\
+ \frac{1}{2} \text{trace}[V_1^{-1}(P_{k|K} - 2\pi_1 \tilde{x}_{a_i}^T + \pi_1^T \pi_1^T) - \frac{1}{2} \ln |V_1|] \\
- \frac{K-1}{2} \ln |Q| - \frac{(p+1)K}{2} \ln 2\pi \tag{4.33}
\]

where \(y_k \) is a particular output measurement at instant \(K \). For \(M \)-step, we take the derivative of \(Q \) with respect to each model parameter, and set it to zero to get the
estimate, e.g., an update for $\Phi_{k-1,k}$ can be found as:

$$\frac{\partial Q}{\partial \Phi} = -\frac{1}{2} \sum_{k=2}^{K} [-2\Xi_{k,k-1|K} + 2\Phi \Xi_{k-1|K}] = 0 \quad (4.34)$$

which gives,

$$\Phi_{k+1}^{k-1,k} = \left(\sum_{k=2}^{K} \Xi_{k,k-1|K} \right) \left(\sum_{k=2}^{K} \Xi_{k-1,K} \right)^{-1} \quad (4.35)$$

Updates for other parameters can be obtained similarly.

M-Step

By direct differentiation of Q, we get the following expressions of the model parameter estimates:

$$\hat{\Phi}_{k-1,k}^{k+1} = \left(\sum_{k=2}^{K} \Xi_{k,k-1|K} \right) \left(\sum_{k=2}^{K} \Xi_{k-1,K} \right)^{-1} \quad (4.36)$$

$$\hat{Q}_{k-1,k}^{k+1} = \frac{1}{K-1} \left(\sum_{k=2}^{K} \Xi_{k|K} - \hat{\Phi}_{k-1,k}^{k+1} \sum_{k=2}^{K} \Xi_{k-1|K} \right) \quad (4.37)$$

$$\hat{\sigma}_{v}^{k+1} = \frac{1}{K} \sum_{k=1}^{K} \left[y_{k}^{2} - 2H_{k}^{T} \hat{x}_{a|k}^{k} y_{k} + H_{k}^{T} \Xi_{k|K} H_{k} \right] \quad (4.38)$$

$$\hat{\mu}_{1}^{k+1} = \hat{x}_{1|K}^{k} \quad (4.39)$$

$$\hat{\Sigma}_{0}^{k+1} = \Xi_{1} - \hat{x}_{1|K}^{k} \hat{x}_{1|K}^{T} \quad (4.40)$$

where k denotes the current iteration. We denote all these estimates together as $\hat{\Theta}^{k+1}$.

Both E and M steps are iterated, and convergence is monitored with the conditional
likelihood function obtained as follows:

\[
\log p(Y_{1:K} | \hat{\Theta}^k) = \sum_{k=1}^{K} \log(N(H_k' \hat{x}_{k|k-1}, H_k^T P_{k|k-1} H_k + \sigma^2))
\] (4.41)

The algorithm is said to have converged if the relative increase in the likelihood at the current time step compared to the previous time is below a certain threshold. The values of \(\hat{\Phi}^{k+1}_{k-1,k}\) and \(\hat{Q}^{k+1}_{k-1,k}\) obtained from \(M\)-step is then fed into the Kalman-like particle smoother resulting in more efficient results.

The above algorithm can be easily extended to multiple measurements. Assuming trials to be i.i.d., the Kalman smoother estimates need to be averaged over all measurement sequences. Substitution in \(M\)-step equations will then give the estimate of the parameters corresponding to the multiple measurements.

4.4.3 Full-Order Fusion

Theorem 4.1 For singular system (4.1) and (4.2) with multiple sensors, we have the distributed full-order optimal fusion filter

\[
\hat{x}^0(k|k) = \sum_{i=1}^{l} \bar{A}^{(i)}(k) \bar{x}^{(i)}(k|k)
\] (4.42)

The optimal matrix weights \(\bar{A}(i)(k), i = 1, 2, \ldots, l\) are computed by:

\[
\bar{A}(k) = \Upsilon^{-1}(k)e(e^{T}\Upsilon^{-1}(k)e)^{-1}
\] (4.43)
where $\tilde{A}(k) = [\tilde{A}^{(1)}(k), \ldots, \tilde{A}^{(l)}(k)]^T$ and $\bar{e} = [I_n I_n]^T$ are both $nl \times n$ matrices. $\Upsilon(k) = (P^{(ij)}(k|k))_{nl \times nl}$ is an $nl \times nl$ matrix. Covariance matrix $P^{(ij)}(k|k)$ between $\tilde{x}^{(i)}(k|k)$ and $\tilde{x}^{(j)}(k|k)$ is computed by:

$$P^{(ij)}(k|k) = R \begin{bmatrix} P^{(ij)}(k|k) & P^{(ij)}_{12}(k|k) \\ P^{(ij)}_{21}(k|k) & P^{(ij)}(k|k) \end{bmatrix} R^T$$

(4.44)

where the correlated matrix $P^{(ij)}_{12}(k|k)$ between $\tilde{x}^{(i)}_1(k|k)$ and $\tilde{x}^{(j)}_2(k|k)$ is computed by:

$$P^{(ij)}_{12}(k|k) = (I_{n_1} - K^{(i)}(k)\bar{H}^{(i)})P^{(ij)}(k|k-1)F^{(j)}(k)$$

$$+ [0, -K^{(i)}(k)]Q^{(ij)} D^{(j)}$$

(4.45)

with $P^{(ij)}_{12}(k|k) = P^{(ji)}_{21}(k|k)$. $\hat{x}^{(i)}(k|k)$ is computed by:

$$\hat{x}^{(i)}(k|k) = R[\hat{x}^{(i)}_1(k|k), \hat{x}^{(i)}_2(k|k)^T]$$

(4.46)

and the variance matrix of the optimal fusion filter $\hat{x}^{0}(k|k)$ is computed by:

$$P^{0}(k|k) = (e^T \Upsilon^{-1}(k)e)^{-1}$$

(4.47)

and we have $P^{0}(k|k) \leq P^{(i)}(k|k), i = 1, 2, \ldots, l$.

Proof. Taking projection on $x(k) = R[x^{(1)}_1(k) \ldots x^{(i)}_l(k)]^T$ gives (18). We have the filtering
4.4. FULL-ORDER EM-BASED FUSION SMOOTHERS

error:

\[\hat{x}^{(i)}(k|k) = R[\hat{x}^{(1)}_1(k|k) + \hat{x}^{(2)}_2(k|k)]^T \quad (4.48) \]

From (4.48) we have the covariance matrix of the filtering errors as (4.44). Using (4.16) and (4.17) gives (4.45). Using the optimal fusion algorithm[14], we have (4.42), (4.43), and (4.44). It should be noted that theorem 4.1 sets for the filter, and the theorem 4.2 sets for the smoother.

Theorem 4.2 For singular system (4.1) and (4.2) with multiple sensors, we have the distributed full-order optimal fusion smoother

\[\hat{x}^{S_0}(k|k) = \sum_{i=1}^l \bar{A}^{(i)}(k)\hat{x}^{(S_i)}(k|k) \quad (4.49) \]

In case of the full-order smoother fusion, all the other formulation is same except the covariance matrix. Covariance matrix \(P^{(S_{ij})}(k|k) \) between \(\tilde{x}^{(S_i)}(k|k) \) and \(\tilde{x}^{(S_j)}(k|k) \) is computed by:

\[
P^{(S_{ij})}(k|k) = R \begin{bmatrix} P^{(S_i)}_1(k|k) & P^{(S_{ij})}_1(k|k) \\ P^{(S_{ij})}_1(k|k) & P^{(S_{ij})}_2(k|k) \end{bmatrix} R^T \quad (4.50)
\]

where the correlated matrix \(P^{(S_{ij})}_{12}(k|k) \) between \(\tilde{x}^{(S_i)}_1(k|k) \) and \(\tilde{x}^{(S_j)}_2(k|k) \) is computed
4.5. REDUCED-ORDER EM-BASED SEEK SMOOTHER

by:

\[
P_{12}^{S_{ij}}(k|k) = (I_{n_i}) P_1^{(S_{ij})}(k|k-1) E^{(j)T}(k) + ([0, -H_k^{(i)}] P^{(S_{ij})} D^{(j)T})^{-1} \tag{4.51}
\]

with \(P_{12}^{(S_{ij})}(k|k) = P_{21}^{(S_{ji})T}(k|k) \).

EM-based full-order Kalman smoother is summarized in Table 4.1.

4.5 REDUCED-ORDER EM-BASED SEEK SMOOTHER

Theorem 4.1 gives a distributed full-order optimal fusion Kalman filter. It requires the inverse of an \(nl \times nl \) high dimension matrix \(\Upsilon(t) \). To reduce the computational burden, we will give a distributed reduced-order fusion Kalman filter.

4.5.1 SEEK SMOOTHER: A REDUCED-ORDER KALMAN

The SEEK filter is a Kalman filter in which the dimension of the state error space is reduced. It is designed to be applied to large systems. It was founded by Pham [377], based on earlier ideas of Cohn and Todling [378][379], and Verlaan and Heemink [380]. The integration of the matrix \(P \), where \(P \) comes from the propagation of error covariance matrix is made possible by the order reduction. This matrix is real and symmetric (thus Hermitian), and is therefore diagonalizable, with real eigenvalues and
4.5. REDUCED-ORDER EM-BASED SEEK SMOOTHER

Table 4.1: Equations of the EM-Based Kalman-Like Particle Smoother

Initialization:

\[
x^a_0 = \frac{P^i_{k|k-1}(0)H_k(0)^T}{H_k(0)P^i_{k|k-1}(0)(H_k(0))^T + \sigma^2_v}y_k(0) \text{ and } P^a_0
\]

Forecast Step:

\[
x^f_{k,|k-1} = \Phi_{k-1,k}x^a_{k-1|k-1}
\]

\[
P^f_{k,|k-1} = \Phi_{k-1,k}(P^f_{k-1|k-1})^T + Q_{k-1|k}
\]

Filter Analysis Step:

\[
G_k = H_k(H_k P^a_{k|k-1})^T + Q_{k-1|k}
\]

\[
d_k = y_k - H_k x^a_{k|k-1}
\]

\[
x^a_{k|k} = x^a_{k|k-1} + \frac{P^a_i(H_k)^T}{H_k P^a_i H_k^T + \sigma^2_v}d_k, \; i \in \Sigma_k
\]

\[
P^a_{k|k} = P^a_{k|k-1} - \frac{P^a_i(H_k)^T}{H_k P^a_i H_k^T + \sigma^2_v}H_k P^a_i, \; i \in \Sigma_k
\]

Smoother Analysis Step:

\[
x^a_{i|k} = x^a_{i|k-1} + \frac{P^a_i(H_k)^T}{H_k P^a_i H_k^T + \sigma^2_v}d_k, \; i \in \Sigma_k
\]

\[
S^a_{i|k} = S^a_{i|k-1}[I + H_k]^T - 1/2, \; i \in \Sigma_k
\]

E-Step:

\[
\hat{x}_{i|k} = E(x^a_{i|k}|Y_{1:k})
\]

\[
\Xi_{i|k} = E(x^a_{i|k}x^a_{i|k}^T|Y_{1:k}) = P_{k|k} + \hat{x}^a_{i|k}|\hat{x}^a_{i|k}^T
\]

\[
\Xi_{k,|k-1|k} = E(x^a_{k|k-1}x^a_{k|k-1}^T|Y_{1:k}) = P_{k,|k-1|k} + \hat{x}^a_{k|k-1}|\hat{x}^a_{k|k-1}^T
\]

M-Step:

\[
\hat{\Phi}^{k+1}_{k,|k-1} = (\sum_{k=2}^K \Xi_{k,|k-1|k})(\sum_{k=2}^K \Xi_{k-1,|k-1})^{-1}
\]

\[
\hat{Q}^{k+1} = \frac{1}{K-1}(\sum_{k=2}^K \Xi_{k,|k-1|k} - \hat{\Phi}^{k+1}_{k,|k-1} \sum_{k=2}^K \Xi_{k-1,|k-1})
\]

\[
\hat{\sigma}^{k+1}_v = \frac{1}{K} \sum_{k=1}^K \left[y_k^2 - 2H_k^T \hat{x}^a_{k|k}y_k + H_k^T \Xi_{k|k} H_k \right]
\]

\[
\hat{\mu}^{k+1} = \frac{2}{K} \sum_{k=1}^K \hat{x}^a_{k|k}
\]

\[
\hat{\Sigma}^{k+1}_0 = \Xi_{1|k} - \hat{x}^a_{1|k}|\hat{x}^a_{1|k}^T
\]

Full-Order Fusion:

\[
P^{ij}(k|k)
\]

\[
P(S_{ij})(k|k)
\]

State Propagation

Error Propagation

Innovation Error Covariance Matrix

Innovation

Filter analysis

Filter analysis (cov.)

Smoother analysis

Smoother analysis (cov.)

Computation of Q quantities

Direct Differentiation of Q, model parameters

Filtering covariance Matrix

Smoothing covariance Matrix
orthogonal eigen vectors. It can be written as:

\[P = NBN^T \] \hspace{1cm} (4.52)

where \(B \) is a diagonal matrix of order \(n \) (\(n \) being the dimension of the dynamical system) containing the eigenvalues of \(P \) and \(N \) is a matrix containing its eigenvectors. The reduction of order consists of usually only a small number \(r \) of eigenvectors for expressing \(P \), i.e., using a matrix \(N \) of order \(n \times r \) rather than \(n \times n \).

In this section, SEEK-like particle smoother is derived using [372]. To establish the SEEK smoother equations, we proceed recursively i.e. starting from the outputs of a Kalman filter analysis at a time \(t_{k-1} \), we apply the smoother forecast and analysis equations at the observation time \(t_k \). We elaborate the generalized SEEK smoother equations here.

Forecast Step

Introducing the square-root decomposition of the Kalman filter anaylsis covariance matrix, the smoother forecast equations (4.7)-(4.9) yield:

\[
x^f_{k/k-1} = \Phi_{k-1,k}x^a_{k-1/k-1} \hspace{1cm} (4.53)
\]

\[
P^f_{k,k-1|k-1} = \Phi_{k-1,k}S^a_{k-1/k-1}S^a_{k-1/k-1}^T = S^f_{k|k-1}S^a_{k-1/k-1}^T, \hspace{1cm} (4.54)
\]

\[
P^f_{k|k-1} = \Phi_{k-1,k}S^a_{k-1/k-1}S^f_{k|k-1} = S^f_{k|k-1}S^f_{k|k-1}^T, \hspace{1cm} (4.55)
\]
where $S^f_{k|k-1}$ is defined by $S^f_{k|k-1} = \Phi_{k-1,k} S^a_{k-1|k-1}$. It should be noted that the cross-covariance matrix $P^f_{k,k-1|k-1}$ is determined only from the outputs of the filter.

Analysis Step

We now focus on the smoother analysis components.

Smoother State: The smoothed state $x^a_{k-1|k}$ is directly computed using the equation (4.11).

Analysis covariance: Introducing the decompositions of $P^a_{k-1|k-1}$ and $P^f_{k,k-1|k-1}$, into the smoother equation (4.13), we compute:

$$P^a_{k-1|k} = S^a_{k-1|k-1}(S^a_{k-1|k-1})^T$$

$$- \frac{P^f_{k-1|k}}{(H^T_k P^f_{k-1|k} H^T_k + \sigma^2_v)} H^T_k S^f_{k|k-1}(S^a_{k-1|k-1})^T$$

$$= S^a_{k-1|k-1}(S^a_{k-1|k-1})^T$$

$$- \frac{S^f_{k|k-1} S^f_{k-1|k}^T H^T_k H^T_k S^a_{k-1|k-1} S^a_{k-1|k-1}^T}{(H^T_k S^f_{k|k-1} S^f_{k-1|k}^T H^T_k + \sigma^2_v)}$$

$$= S^a_{k-1|k-1}(I - \frac{\zeta + \sigma^2_v}{\Gamma})^{-1} S^a_{k-1|k-1}^T \quad (4.56)$$

where $\zeta = H^T_k S^f_{k|k-1} S^f_{k-1|k} H^T_k$, and the Sherman-Morrison-Woodbury formula for matrix inversion is used to derive the SEEK smoother, where Sherman-Morrison-Woodbury
formula states that:

\[
(A + UDV)^{-1} = A^{-1} - A^{-1}U(D^{-1} + VA^{-1})^{-1}V A^{-1}
\]

(4.57)

where \(A \equiv R_k \), \(U \equiv H_k S^{f}_{k|k-1} \), \(V \equiv U^T \) and \(D \equiv I \), the identity matrix.

and \(\Gamma_k \) is:

\[
\Gamma_k = (H_k S^{f}_{k|k-1})^T R_k^{-1} (H_k S^{f}_{k|k-1})
\]

(4.58)

Now defining

\[
S^a_{k-1|k} = S^a_{k-1|k-1} [I + \Gamma_k]^{-1/2}
\]

(4.59)

a square-root decomposition of the smoother error covariance is obtained.

Analysis cross-covariances: Introducing again the composition (4.54) of \(P^{f_a}_{k,k-1|k-1} \) from the forecast step, into the smoother expression (4.12) gives:

\[
P^{aa}_{k,k-1|k} = (I - \frac{P_{k|k} H_k^T H_k P_{k|k} H_k^T + \sigma_v^2 H_k}{H_k P_{k|k} H_k^T} S^a_{k-1|k-1}) S^a_{k-1|k-1}^T
\]

\[
= S^f_{k|k-1} [I + \Gamma_k]^{-1} S^a_{k-1|k-1}^T
\]

(4.60)
and using the definition (4.59), it appears that the cross-covariance matrix $P_{k,k-1|k}$ can be decomposed using the square roots of $P_{k|k}$ and $P_{k-1|k}$:

$$P_{k,k-1|k} = S_{k|k}^a S_{k-1|k}^a T \quad (4.61)$$

At the end of the analysis step cycle, the analysis covariance and cross-covariance matrices of the smoother are fully determined with the square root matrices $S_{k|k}^a$ and $S_{k-1|k}^a$.

Past states estimates

The smoothed analysis state vector and square root error covariance matrix are determined for time t_{k-1} given observations at t_k. The strong point is that the square root matrices not only lead to the covariance matrices, but also provide the cross-covariance matrix. Proceeding then recursively, the smoother estimates $x_{i|k}^a$ and $S_{i|k}^a (i < k - 1)$ from the filter estimate $x_{k-1|k-1}^a$, $S_{k-1|k-1}^a$, and the smoother estimates $x_{i|k-1}^a$ and $S_{i|k-1}^a (i < k - 1)$. The smoother equations may be applied involving the smoother estimate at time t_i. This strictly follows the step of Sections 4.5.1 and 4.5.1. The forecast/analysis cross-covariance is given by:

$$P_{k,i|k-1}^f = \Phi_{k-1,k} S_{k-1|k-1}^a S_{i|k-1}^a T = S_{k|k-1}^f S_{i|k-1}^a T, \quad (4.62)$$

and the square root error covariance matrix of the smoothed estimate are computed as:

$$S_{i|k}^a = S_{i|k-1}^a [I + \Gamma_k]^{-1/2} \quad (4.63)$$
Finally, it can be verified that the analysis error covariance and cross-covariance matrices are decomposed as:

\[P_{ai|k} = S_{ai|k} S_{ai|k}^T \]
\[P_{aa|k} = S_{k|k} S_{ai|k}^T \]

This finalizes the full set of the SEEK smoother equations with a perfect model summarized in Table 4.2.

4.5.2 Estimation of the Model Parameters Using an EM Algorithm

In this section, we describe the estimation of model parameters for SEEK smoother with an EM algorithm. The problem is to maximize the likelihood with respect to two unknowns: states and model parameters. We now describe an EM algorithm for the reduced-order SEEK smoother as follows.

E-Step

This step involves the computation of \(Q \) given the measurements \(Y_{1:K} \) and an estimate of the model parameter from the previous iteration, \(\hat{\Phi}_k \). \(Q \) depends on the following
three quantities:

\[\hat{x}_k | K = E(x_k | Y_{1:K}) \]
\[\Xi_k | K = E(x_k x_k^T | Y_{1:K}) = S^a_{i|k} + \hat{x}_k | K \hat{x}_k | K \]
\[\Xi_{k,k-1} | K = E(x_k x_{k-1}^T | Y_{1:K}) = S^a_{k,k-1} + \hat{x}_k | K \hat{x}_{k-1} | K \]

The first two quantities can be obtained using the smoother analysis equation smoother analysis (cov.) equation respectively from Table 4.2. The last quantity obtained with the following equation:

\[S^f_{i,i-1|k} = J_{k-1} S^a_{i|k} \]

where \(J_{k-1} = S^a_{i|k} \Phi_{k-1,k} S^f_{k,k-1}^{-1} \). \(Q \) is then obtained using equation (4.71) given in the next section.

Log-Likelihood derivation and M-Step : Joint probability distribution of \(X_{1:K} \), \(Y_{1:K} \) can be written as:

\[
p(X_{1:K}, Y_{1:K}|\Phi) = p(x_1^o) \prod_{k=2}^{K} p(x_k^a | x_{k-1}^a) \cdot \prod_{k=1}^{K} p(y_k | x_k^a, H_k)
\]

(4.70)
Taking log and expectation, we get the expectation of joint log-likelihood with respect to the conditional expectation:

\[
Q = E_{X|Y}[\log p(X_{1:K}, Y_{1:K}|\Theta)]
\]

\[
= -\frac{K}{2} \ln \sigma_v^2 - \frac{1}{2\sigma_v^2} \sum_{k=1}^{K} [y_k^2 - 2H_k^T \hat{x}_k^a y_k + H_k^T \Xi_{k|K} H_k]
\]

\[
- \frac{1}{2} \sum_{k=2}^{K} \text{trace}[Q^{-1}(\Xi_{k|K} - \Phi_{k-1,k} \Xi_{k-1|T} \Phi_{k-1,k}^T)]
\]

\[
+ \Phi_{k-1,k} \Xi_{k-1|K} \Phi_{k-1,k}^T
\]

\[
- \frac{1}{2} \text{trace}[V_1^{-1}(S_1^a - 2\pi_1 \hat{x}_1^a + \pi_1') - \frac{1}{2} \ln |V_1|]
\]

\[
- \frac{K - 1}{2} \ln |Q| - \frac{(p + 1)}{2} \ln 2\pi
\]

(4.71)

For M-step, we take the derivative of Q with respect to each model parameter, and set it to zero to get the estimate, e.g., an update for $\Phi_{k-1,k}$ can be found as:

\[
\frac{\partial Q}{\partial \Phi} = -\frac{1}{2} \sum_{k=2}^{K} [-2\Xi_{k-1|K} + 2\Phi_{k-1,k} \Xi_{k-1|K}] = 0
\]

(4.72)

which gives,

\[
\Phi_{k-1,k}^{k+1} = (\sum_{k=2}^{K} \Xi_{k,k-1|K}) (\sum_{k=2}^{K} \Xi_{k-1,K})^{-1}
\]

(4.73)

Updates for other parameters can be obtained similarly.
M-Step

By direct differentiation of Q, we get the following expressions of the model parameter estimates:

$$
\hat{\Phi}_{k-1,k}^{k+1} = \left(\sum_{k=2}^{K} \Xi_{k,k-1|K} \right) \left(\sum_{k=2}^{K} \Xi_{k-1,k|K} \right)^{-1} \tag{4.74}
$$

$$
\hat{Q}^{k+1} = \frac{1}{K-1} \left(\sum_{k=2}^{K} \Xi_{k|k} - \hat{\Phi}_{k-1,k}^{k+1} \sum_{k=2}^{K} \Xi_{k-1,k|K} \right) \tag{4.75}
$$

$$
\hat{\sigma}_v^{k+1} = \frac{1}{K} \sum_{k=1}^{K} \left[y_k^2 - 2H_k^T \hat{x}_a y_k + H_k^T \Xi_{k|K} H_k \right] \tag{4.76}
$$

$$
\hat{\mu}_1^{k+1} = \hat{x}_{1|K} \tag{4.77}
$$

$$
\hat{\Sigma}_{0}^{k+1} = \Xi_{1} - \hat{x}_{1|K} \hat{x}_a^T \tag{4.78}
$$

where k denotes the current iteration. We denote all these estimates together as $\hat{\Theta}^{k+1}$.

Both E and M steps are iterated, and convergence is monitored with the conditional likelihood function obtained as in (4.41).

4.5.3 Reduced-Order Fusion

The estimates from SEEK smoother are fed into the E-step for computation of Q and M-step for direct differentiation of Q and the model estimates. It is an iterative algorithm. Full set of reduced-order EM-based SEEK smoother is summarized in Table 4.2.

Remark 4.5.1 It should be noted that there is no reduced-order fusion step involved in the formulation of Table 4.2 that is EM-based Kalman-like particle SEEK smoother. It
4.5. REDUCED-ORDER EM-BASED SEEK SMOOTHER

Table 4.2: Equations of the EM-Based Kalman-Like Particle SEEK Smoother

Initialization:

\[
\begin{align*}
\bar{x}_0 & = \frac{S_{f|k-1}(0)S_{k|k-1}(0)^T H_k(0)^T}{H_k(0)S_{f|k-1}(0)S_{k|k-1}(0)^T (H_k(0))^T + \sigma_v^2} y_k(0) \quad \text{and} \quad S_0^a \\
\end{align*}
\]

Forecast Step:

\[
\begin{align*}
x^f_{k/k-1} & = \Phi_{k-1,k} \bar{x}_k^a \\
S^a_{k/k-1} & = \Phi_{k-1,k} S^a_{k|k-1} \quad \text{State Propagation} \\
\end{align*}
\]

Filter Analysis Step:

\[
\begin{align*}
\Gamma_k & = (H_k S^f_{k|k-1})^T R_k^{-1} (H_k S^f_{k|k-1}) \\
d_k & = y_k - H_k x^f_{k|k-1} \\
x^a_{k/k} & = x^f_{k/k-1} + S^f_{k|k}[I + \Gamma_k]^{-1} (H_k S^f_{k|k}) R_k^{-1} d_k, \quad i \in \Sigma_k \\
S^a_{k/k} & = S^f_{k|k-1}[I + \Gamma_k]^{-1/2}, \quad i \in \Sigma_k \\
\text{Innovation} & \quad \text{Filter analysis} \\
\end{align*}
\]

Smoother Analysis Step:

\[
\begin{align*}
x^a_{i|k} & = x^a_{i|k-1} + S^f_{i|k}[I + \Gamma_k]^{-1} (H_k S^f_{i|k}) R_k^{-1} d_k, \quad i \in \Sigma_k \\
S^a_{i|k} & = S^a_{i|k-1}[I + \Gamma_k]^{-1/2}, \quad i \in \Sigma_k \\
\text{Smoothing analysis} & \quad \text{Smoothing analysis (cov.)} \\
\end{align*}
\]

E-Step:

\[
\begin{align*}
\hat{\Xi}_{k|K} & = E(x^a_{k|K}|Y_{1:K}) \\
\Xi_{k,-1|K} & = E(x^a_{k-1|K}|Y_{1:K}) = S^a_{k-1|K} + \hat{\Xi}_{k-1|K} X^a_{k-1|K} \\
\text{Computation of } Q \text{ quantities} & \quad \text{Direct differentiation of } Q, \\
\end{align*}
\]

M-Step:

\[
\begin{align*}
\hat{\Phi}_{k+1} & = \left(\sum_{k=2}^{K} \Xi_{k-1|K} \right) \left(\sum_{k=2}^{K} \Xi_{k-1|K} \right)^{-1} \\
\hat{\Psi}_{k+1} & = \frac{1}{K} \left(\sum_{k=2}^{K} \Xi_{k|K} \right) - \hat{\Phi}_{k+1} \left(\sum_{k=2}^{K} \Xi_{k|K} \right) \\
\hat{\Sigma}_{0} & = \frac{1}{K} \sum_{k=1}^{K} [y_k^2 - 2H_k \hat{\Xi}_1^a y_k + H_k^T \Xi_1 H_k] \\
\hat{\mu}_{k+1} & = \hat{\Sigma}_{1}^a X_{1|K} \\
\text{model parameters} & \quad \text{Direct differentiation of } Q, \\
\end{align*}
\]
is the embedded nature of the SEEK filter that it treats the covariance of the system in the form of reduced-order, which was not the case when we were dealing with the basic Kalman smoother as formulated in Table 4.1. In the following section, we will do the evaluation of the proposed smoother schemes.

4.6 EVALUATION AND TESTING

4.6.1 DESCRIPTION OF THE POWER QUALITY LAB

The evaluation and testing has been made on an power lab designed as a utility plant in Electrical Engineering department at KFUPM. The layout of the system can be seen in Fig 4.3. The main idea behind the design of the system is that we have one AC Power source which is considered as a utility, and different units, which are considered to be as the consumers. The purpose of the system is to monitor and measure the voltage and current, and to control the active filter. The following are the units of the set-up:

Programmable AC Source

There is a programmable AC Source of 18 kVA which is supplying a 3 phase of current and 400 Volts with cycle of 60 Hertz.

Main Panel for Switching

There is a main panel for switching which connects and controls all the transmission lines, breakers and multiple feeders.
Active Power Filter

There is an active power filter which is a 3 phase filters. Its function is to mitigate the harmonics.

Digital Signal Processing (DSP) Filter

There is a DSP filter. Its function is to implement for active filter.

DSP Setup

DSP setup is planned basically in the National Instruments Lab-view to implement advance signal processing.

Adjustable Speed Drive (ASD)

ASD is used for the motor drive implementation. It gives non-linear current because it generate harmonics.

Electronic Loads

This is an AC/DC electronic load model. We can build any non-linear/dynamic load to the capacity of 1.8kW here.

Resistor Bank

This is a resistive bank for the load. It carries linear load, which has no distortion and harmonics.
4.6.2 Load Scenarios

Load scenarios are created by using the power quality laboratory. In these scenarios, DC motor drive load, linear load and non-linear load fault are being considered.

Scenario I: DC Motor Load In this scenario, while the system is working in real time, DC Motor load is being introduced in the system by using the ASD. With the help of lab-view, we were able to collect the data of the 3 phases of voltage. The data is collected at a fixed sampling time 100 milliseconds.

Scenario II: Linear load In this scenario, while the system is working in real time, linear load is being introduced in the system by using the resistor bank. With the help of lab-view, we were able to collect the data of the 3 phases of voltage. The data is...
collected at a fixed sampling time 100 milliseconds.

Scenario III: non-linear load In this scenario, while the system is working in real time, linear load is being introduced in the system by using the electronic loads which is capable of generating dynamic loads. With the help of lab-view, we were able to collect the data of the 3 phases of voltage. The data is collected at a fixed sampling time 100 milliseconds.

4.6.3 Evaluation of results

In what follows, we present simulation results for the proposed EM-Based smoother with versions of full and reduced order respectively. The experiments have been performed on the power quality system. Three sets of loads have been considered here, that is, the DC-motor drive load, linear load and non-linear load. Firstly, the data collected from the plant has been initialized and the parameters have been being optimized which comprises of the pre-processing and normalization of the data. The comparison of results for the distributed smoother estimation, and smoother estimation generated from various levels of loads, and the basic profile of that particular load has been compared. Moreover, same pattern of comparison has been followed for full-order and reduced-order showing the effectiveness of the proposed smoother in all cases.
4.6. EVALUATION AND TESTING

Load 1 (DC-Motor Drive): Estimates comparison of distributed estimation with full-order and reduced order EM-Based Smoothers

The Kalman-like particle smoother has been simulated here for the DC-motor drive load of the plant. Simulations have been made for the estimate of each case. In the simulation, comparison of various phases of DC-motor drive load i.e. phase 1, phase 2, and phase 3, and distributed estimation has been shown. It can be seen from the estimate profile in Fig. 4.4 for full-order EM based smoother that the EM results are trying to coop well with the estimates and even the original profile of the load. This is due to the EM implementation made on the Q, σ_v, and $\hat{\Phi}_k$ parameters. When it comes to the reduced-order implementation, it can be seen from Fig. 4.7 for DC motor drive phase 1 load, Fig. 4.8 for DC motor drive phase 2 load and Fig. 4.9 for DC motor drive phase 3 load that reduced-order of the SEEK filter is performing very well as compared to the full-order version of Fig. 4.4. This is due to the reduced-order nature of the filter that it is treating the covariances seperately. In the case of reduced order EM implementation, the estimate is almost over-writing the original profile of the load without estimate, thus showing the effectiveness of the proposed scheme. The distributed version of the reduced-order smoother is even more succinct as can be seen from Fig. 4.10.

Load 2 (Linear): Estimates comparison of distributed estimation with full-order and reduced order EM-Based Smoothers

In case of load 2, it can be seen for the estimate profile in Fig. 4.5 for full-order EM based smoother that the EM results are trying to coop well with the estimates and even
4.6. EVALUATION AND TESTING

the original profile of the load. When it comes to the reduced-order implementation, it can be seen from Fig. 4.11 for linear phase 1 load, Fig. 4.12 for linear phase 2 load and Fig. 4.13 for linear phase 3 load that reduced-order of the SEEK filter is performing very well as compared to the full-order version of Fig. 4.5. The distributed version of the reduced-order smoother is even more succinct as can be seen from Fig. 4.14.

Load 3 (Non-linear): Estimates comparison of distributed estimation with full-order and reduced order EM-Based Smoothers

In case of non-linear load 3, it can be seen for the estimate profile in Fig. 4.6 for full-order EM based smoother that the EM results are trying to coop well with the estimates and even the original profile of the load. When it comes to the reduced-order implementation, it can be seen from Fig. 4.15 for non-linear phase 1 load, Fig. 4.16 for non-linear phase 2 load and Fig. 4.17 for non-linear phase 3 load that reduced-order of the SEEK filter is performing very well as compared to the full-order version of Fig. 4.6. The distributed version of the reduced-order smoother is even more succinct as can be seen from Fig. 4.18.

Mean Square Error Comparison

In this section, we have made a comparison of the full versions of both full and reduced-order respectively. Though both versions are having a mean square error value near to zero. But when it comes to precision in the performance, it can be seen from the Fig. 4.19 that how the full-order filter has a dead-end for the reduction of error. After 2 iterations, it almost the same level of mean square error. However, the reduced-order
version has better results at every iteration, thus leading almost to a value near to zero at 5th iteration. The quantitative error comparison can be seen in the Table 4.3.

Table 4.3: Quantitative Error Comparison Table

<table>
<thead>
<tr>
<th>ITERATIONS</th>
<th>DISTRIBUTED FULL ORDER</th>
<th>DISTRIBUTED REDUCED ORDER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00508</td>
<td>0.00525</td>
</tr>
<tr>
<td>2</td>
<td>0.00507</td>
<td>0.00521</td>
</tr>
<tr>
<td>3</td>
<td>0.00507</td>
<td>0.00491</td>
</tr>
<tr>
<td>4</td>
<td>0.00507</td>
<td>0.00489</td>
</tr>
<tr>
<td>5</td>
<td>0.00507</td>
<td>0.00488</td>
</tr>
</tbody>
</table>
Figure 4.4: Estimates for full-order smoother for Phase 3: DC motor drive Load

Figure 4.5: Estimates for full-order smoother for Phase 3: Linear Load
4.6. EVALUATION AND TESTING

Figure 4.6: Estimates for full-order smoother for Phase 3: Nonlinear Load

Figure 4.7: Estimates for reduced-order smoother for Phase 1: DC motor drive Load
4.6. EVALUATION AND TESTING

Figure 4.8: Estimates for reduced-order smoother for Phase 2: DC motor drive Load

Figure 4.9: Estimates for reduced-order smoother for Phase 3: DC motor drive Load
4.6. EVALUATION AND TESTING

Figure 4.10: Estimates for various reduced-order smoothers: DC motor Load

Figure 4.11: Estimates for reduced-order smoother for Phase 1: Linear Load
4.6. EVALUATION AND TESTING

Figure 4.12: Estimates for reduced-order smoother for Phase 2: Linear Load

Figure 4.13: Estimates for reduced-order smoother for Phase 3: Linear Load
Figure 4.14: Estimates for various reduced-order smoothers: Linear Load

Figure 4.15: Estimates for reduced-order smoother for Phase 1: Nonlinear Load
4.6. EVALUATION AND TESTING

Figure 4.16: Estimates for reduced-order smoother for Phase 2: Nonlinear Load

Figure 4.17: Estimates for reduced-order smoother for Phase 3: Nonlinear Load
4.6. EVALUATION AND TESTING

Figure 4.18: Estimates for various reduced-order smoothers: Nonlinear Load

Figure 4.19: Mean Square Error: EM-Based full and reduced-order smoothers
5 Distributed Estimation via Information Matrix Approach

5.1 An Overview

In this chapter, we have discussed distributed estimation via information matrix approach, where it is derived with various versions of information matrix filter. The estimation is derived on a distributed tracking system.

5.2 Introduction

Estimation is one of the precise solution in providing a strict surveillance system for an appropriate supervision. One of the methods to achieve such sort of estimation often requires a group of distributed sensors which provide information of the local targets. The classic work of Rao and Durrant-Whyte [381] presents an approach to decentralized Kalman filtering which accomplishes globally optimal performance in the case where all sensors can communicate with all other sensors. Other estimation methods can be a sensor-less approach [382][383], or a derivative-free filtering estimation [384],
5.2. INTRODUCTION

a least-squares-Kalman technique [386], a robot-based autonomous estimation and detection [385], H_∞ filtering-based estimation made for stochastic incomplete measurements [387] etc.

During estimation, the problem of multi-target tracking utilizing information from multiple sensors employed has been in focus since last many years [388]-[396]. While achieving this approach, many fusion algorithms and filters were derived to combine local estimates [397][398][399][400] to prove better efficiency and effectiveness. For example, the state vectors can be fused using weighted covariance [406][407][408], information matrix [401], and covariance intersection [402][403]. The algorithms differ with the method they treat the covariance. As for the performance of different algorithms, [404] shows that the performance of weighted covariance algorithm is consistently worse as compared to the measurement fusion method. Moreover, it has been pointed out in [405] that results of weighted covariance algorithm are showing the behavior to be a maximum likelihood estimate. At the same time, Chang indicates that information matrix approach is optimal when the tracking systems are deterministic (i.e. process noise is zero) or when full-rate communication (i.e. two sensors exchange information each time when they receive new measurements and update their respective track files) is employed [405]. Covariance intersection avoids cross-covariance computation and its fusion result will be a consistent estimate, but its conservative estimates reduce performance [403]. However, covariance intersection is also being used for simultaneous localization and mapping to maintain the full correlation structure.
In this chapter, we have derived distributed estimation with various versions of information matrix filter. The estimation is derived on a distributed tracking system. After achieving a distributed estimation with various versions, we have stemmed two methods for measurement fusion. The proposed scheme is then validated on an industrial utility boiler system, where different types of faults were introduced and were considered for the evaluation of the proposed scheme.

The remainder of this chapter is structured as follows. Problem formulation is described in Section II. The information-based covariance intersection filter is derived and discussed in Section III, followed by the information-based weighted covariance filter and Kalman-like particle filter derived and discussed in Section IV and Section V respectively. Measurement fusion algorithm is discussed in Section VI, followed by some evaluation and testing in Section VII. Finally some conclusion is made in Section VIII.

5.3 **Problem Formulation**

Consider a distributed tracking system, as in [410] in which \(N (N \geq 2) \) sensors are tracking the same target. The mathematical model describing target dynamic is assumed to be linear time invariant and of the form:

\[
x_{k+1} = Fx_k + Gv_k, \quad k = 0, 1, 2, \ldots
\]

(5.1)
5.3. PROBLEM FORMULATION

where \(x_k \in \mathbb{R}^{n_1} \) is state vector of target at time \(k \) and \(F \) is state transition matrix, \(v_k \in \mathbb{R}^{n_2} \) is zero mean white Gaussian process noise with known covariance \(Q \), and \(G \) is the input matrix. The target is tracked by \(N \) sensors, where measurement model of sensor \(j = 1, \ldots, N \) is described by:

\[
 z_j^k = H_j^k x_k + w_j^k \tag{5.2}
\]

where \(w_j^k \in \mathbb{R}^{n_3} \) is zero-mean white Gaussian measurement noise with covariance \(\mathcal{R}_j^k \).

It is assumed that local track estimates, \(\hat{x}_{j|k}^j \) and \(P_{j|k}^j \), where \(j = 1, \ldots, N \) are obtained by each sensor’s information-based filter based on measurement sequence \(Z_k^j = \{ z_i^j, i = 1, 2, \ldots, k \} \) and are optimal in the sense of minimum variance. At the end of each \(n \) sampling interval, each sensor transmits its local estimate to fusion center where track association and fusion are performed. For fused estimate, there are two choices: either be sent back to sensor to improve local estimation performance or to store on fusion center. For the sake of simplicity, the dimension of the fused track and all local tracks are assumed to be the same. The distributed track fusion problem is to generate an “optimal” estimate \(\hat{x}_{k|k} \) from all local track information, i.e. \(\hat{x}_{j|k}^j \) and \(P_{j|k}^j \), and prior information about local and fused estimation if possible [396]. The following sections work on the derived versions of information-based filters for the distributed tracking system.
5.4 COVARIANCE INTERSECTION

According to the standard results of covariance intersection in [412], the covariance intersection at the sensor is:

\[
\hat{x}_{k|k} = P_{k|k}(\omega P_{k|k}^{-1} x_{i|k}^i + (1 - \omega) P_{k|k}^{-1} x_{j|k}^j)
\]

(5.3)

\[
K_1 = \omega P_{k|k} P_{i|k}^{-1}
\]

(5.4)

\[
K_2 = (1 - \omega) P_{k|k} P_{j|k}^{-1}
\]

(5.5)

where \(K_1\) and \(K_2\) are the gains and \(\omega \in [0, 1]\) and it manipulates the weights which are assigned to \(x_{i|k}^i\) and \(x_{j|k}^j\) respectively. The covariance of filtering error is given by:

\[
P_{k|k} = (\omega P_{k|k}^{-1} + (1 - \omega) P_{k|k}^{-1})^{-1}
\]

(5.6)

Or

\[
P_{k|k}^{-1} = (\omega P_{k|k}^{-1} + (1 - \omega) P_{k|k}^{-1})
\]

(5.7)

where \(\omega = (K_1/P_{k|k}).P_{i|k}^{-1}\) and \(1 - \omega = (K_2/P_{k|k}).P_{j|k}^{-1}\), where \(P_{i|k}\) and \(P_{j|k}\) are error covariance matrices.

Thus substituting (5.4), (5.5), (5.7) into (5.3) yields

\[
P_{k|k}^{-1} x_{k|k} = \omega P_{k|k}^{-1} x_{i|k}^i + (1 - \omega) P_{k|k}^{-1} x_{j|k}^j
\]

(5.8)
The main agenda is to bring two equations of inverse covariance and its product with the state from every covariance technique derived.

Remark 5.4.1 Different choices of ω can be used to optimize the update with respect to different performance criteria such as minimizing the trace or determinant of $P_{k|k}$.

5.4.1 INFORMATION-BASED COVARIANCE INTERSECTION FILTER ALGORITHM

For the case of deriving information-based covariance intersection filter, the target dynamic model of (5.1) and (5.2) will be of the form:

\[
x_{k+1} = Fx_k^i + Fx_k^j + G\nu_k
\]

\[
z_k^j = K_1x_k^i + K_2x_k^j + w_k
\]

The key idea of the information matrix filter is to identify the common information shared by estimates that are to be fused, and then removing the information or de-correlation is implemented. It will take into consideration the common information but not the common process noise. Under the assumption of no feedback, the estimation
5.4. COVARIANCE INTERSECTION

using information-based filter in the case of covariance intersection is as follows:

\[
P^{-1}_{k|k} \hat{x}_{k|k} = P^{-1}_{k|k-n} \hat{x}_{k|k-n} + \omega P^{-1}_{k|k} \hat{x}_{k|k} - \omega P^{-1}_{k|k-n} \hat{x}_{k|k-n} + (1 - \omega) P^{-1}_{k|k} \hat{x}_{k|k}
\]

\[
- \omega P^{-1}_{k|k-n} \hat{x}_{k|k-n} + (1 - \omega) P^{-1}_{k|k} \hat{x}_{k|k}
\]

\[
- (1 - \omega) P^{-1}_{k|k-n} \hat{x}_{k|k-n}
\]

\[
(5.11)
\]

\[
P^{-1}_{k|k} = P^{-1}_{k|k-n} + \omega P^{-1}_{k|k-n} \hat{x}_{k|k-n} - \omega P^{-1}_{k|k} \hat{x}_{k|k} + (1 - \omega) P^{-1}_{k|k} \hat{x}_{k|k}
\]

\[
- (1 - \omega) P^{-1}_{k|k-n} \hat{x}_{k|k-n}
\]

\[
(5.12)
\]

where the \(n \) step fusion state prediction is:

\[
x_{k|k-n} = F \hat{x}^i_k + F \hat{x}^j_k
\]

\[
(5.13)
\]

The associated covariance is explained by the following theorem.

Theorem 5.1 Following [413], since \(v_k \) is assumed to be \(m \times 1 \) zero-mean white noise process, and \(x_k \) the \(n \times 1 \) so-called state vector, it can be easily seen from \(x_{k+1} = F \hat{x}^i_k + F \hat{x}^j_k + G v_k \) that covariance matrix of \(x_k \) obeys the recursion,

\[
\Pi_{i+1} = F \Pi_k F^* + F \Pi_k F^* + G Q_i G^*
\]

\[
(5.14)
\]

where \(\Pi_k = E x^i_k x^i_k^* \) and \(\Pi^j_k = E x^j_k x^j_k^* \).

Likewise, since \(\hat{x}_{k|k-n} = F \hat{x}^i_k + F \hat{x}^j_k \), then it satisfies the recursion,

\[
\Sigma_{i+1} = F \Sigma_{i} F^* + F \Sigma_{i} F^* \]

\[
(5.15)
\]
where $\Sigma^i_k = \mathbb{E}\hat{x}^i_{k|k-1}\hat{x}^i_{k|k-1}$ and $\Sigma^j_k = \mathbb{E}\hat{x}^j_{k|k-1}\hat{x}^j_{k|k-1}$ with initial condition $\Sigma_0 = 0$. Now the orthogonal decomposition $x_i = \hat{x}_{i|k-1}$ with $\hat{x}_{i|i-1}$, shows that $\Pi_i = \Sigma^i_k + \Sigma^j_k + P_{k|k-1}$. It is then immediate to conclude that $P_{k+1|k} = \Sigma_{k+1} - \Sigma^i_k + \Sigma^j_k$ satisfies the recursion

$$P_{k+1|k} = F^i_k P_{k|k-1} F^i_k + G_i Q_i G^*_i$$

(5.16)

As for the distributed tracking system, the communication network is considered to be large, therefore, the fused state estimate and associated covariance depends upon the local estimates as:

$$\hat{x}^i_{k|k-n} + \hat{x}^j_{k|k-n} = \hat{x}_{k|k-n}$$

(5.17)

$$P^i_{k|k-n} + P^j_{k|k-n} = P_{k|k-n}$$

(5.18)

5.4.2 Information-Based Covariance Intersection Filter:

Complete Feedback Case

For the case of complete feedback, closed form analytical solution of steady fused covariance of information-based covariance intersection filter with N sensors is derived
below. From (5.9) and (5.10), it is easy to show that the following two equations hold,

\[
x_k = F_k^i x_{k-n} + F_k^j x_{k-n} + \sum_{i=1}^{n} F^{n-i} G v_{k-n+i} \tag{5.19}
\]

\[
z_k^j = K_1 F^i x_{k-n} + K_2 F^j x_{k-n} + w_{k-n} + K_1 F^i G v_{k-n+i} + K_2 F^j G v_{k-n+j} \tag{5.20}
\]

For the two local sensors in covariance intersection i.e. \(i\) and \(j\), it is possible to write

\[
x_{k|k} = \omega P_{k|k} P_{k|k}^{-1} F x_{k|k}^i + (1 - \omega) P_{k|k} P_{k|k}^{-1} F x_{k|k}^j \tag{5.21}
\]

Using (5.21) and (5.17), we have

\[
\hat{x}_{k|k} = A_n x_{k|k}^i + B_i x_{k|k}^j \tag{5.22}
\]

where, \(\forall i = 1, \ldots, n\), we have \(A_0 = I\), \(A_i = \omega A_{i-1} P_{k|k} P_{k|k}^{-1} F\), \(B_i = (1-\omega) A_{i-1} P_{k|k} P_{k|k}^{-1} F\).

Under the assumption of complete feedback, (5.11) and (5.12) can be re-written as:

\[
P_{k|k}^{-1} \hat{x}_{k|k} = -(N-1) P_{k|k}^{-1} \hat{x}_{k|k-n} + \omega P_{k|k}^{-1} x_{k|k}^i + (1 - \omega) P_{k|k}^{-1} x_{k|k}^j \tag{5.23}
\]

\[
P_{k|k}^{-1} = -(N-1) P_{k|k}^{-1} + \omega P_{k|k}^{-1} + (1 - \omega) P_{k|k}^{-1} \tag{5.24}
\]
To compute the steady state error covariance of fused state estimate, subtracting $P^{-1}_{k|k} x_k$, from both sides of (5.23), and substituting (5.22) yields

$$
P^{-1}_{k|k}(\hat{x}_{k|k} - x_k) = -P^{-1}_{k|k} x_k - (N - 1) P^{-1}_{k|k-n} \hat{x}_{k|k-n}
+ \omega P^{-1}_{k|k} \hat{x}_{k|k} + (1 - \omega) P^{-1}_{k|k} \hat{x}_{k|k}
= -(N - 1) P^{-1}_{k|k-n} F^n (\hat{x}_{k|k-n} - x_{k-n})
+ P^{-1}_{k|k} x_k - (N - 1) P^{-1}_{k|k-n} F^n x_{k-n}
+ P^{-1}_{k|k} [A_n \hat{x}_{k|k} + B_i \hat{x}_{k|k}]$$

(5.25)

Through simple algebra manipulation and substituting (5.20) into (5.25) as:

$$
P^{-1}_{k|k}(\hat{x}_{k|k} - x_k) = \{-(N - 1) P^{-1}_{k|k-n} F^n + P^{-1}_{k|k} A_n\}
\cdot (\hat{x}_{k-n|k-n} - x_{k-n}) + P^{-1}_{k|k} A_n \hat{x}_{k-n}
+ P^{-1}_{k|k} x_k - (N - 1) P^{-1}_{k|k-n} F^n x_{k-n}
+ P^{-1}_{k|k} B_i \hat{x}_{k|k}
= \{-(N - 1) P^{-1}_{k|k-n} F^n + P^{-1}_{k|k} A_n\}
\cdot (\hat{x}_{k-n|k-n} - x_{k-n}) + P^{-1}_{k|k} A_n \hat{x}_{k-n}
+ (N - 1) P^{-1}_{k|k-n} F^n x_{k-n}
+ P^{-1}_{k|k} B_i \hat{x}_{k|k} - P^{-1}_{k|k} x_k
+ P^{-1}_{k|k} B_i w_{k-n+i} - P^{-1}_{k|k} x_k
+ P^{-1}_{k|k} B_i (K_1 F^i \hat{x}_{k-n} + K_2 F^j \hat{x}_{k-n})
+ P^{-1}_{k|k} B_i \sum_{h=1}^{i} (K_1 + K_2)
\cdot F^{i-h} G \hat{u}_{k-n+h}$$

(5.26)
It has been proven in [394] that A_n satisfies the following identity

$$A_n = -\sum_{i=1}^{n} B_i K F^i + F^n \quad (5.27)$$

Substituting (5.27) and (5.24) into (5.26), we have

$$P^{-1}_{k|k}(\hat{x}_{k|k} - x_k) = \{- (N - 1) P^{-1}_{k|k-n} F^n + P^{-1}_{k|k} A_n \}$$

$$\cdot (\hat{x}_{k-n|k-n} - x_{k-n}) + P^{-1}_{k|k} A_n x_{k-n}$$

$$- (N - 1) P^{-1}_{k|k-n} F^n \hat{x}_{k-n} + P^{-1}_{k|k} B_i w_{k-n+i}$$

$$- P^{-1}_{k|k} x_k + P^{-1}_{k|k} (F^n - A_n) x_{k-n}$$

$$+ P^{-1}_{k|k} B_i \sum_{h=1}^{i} F^{i-h} G v_{k-n+h}$$

$$= \{- (N - 1) P^{-1}_{k|k-n} F^n + P^{-1}_{k|k} A_n \}$$

$$\cdot (\hat{x}_{k-n|k-n} - x_{k-n}) + P^{-1}_{k|k} B_i w_{k-n+i}$$

$$+ (P^{-1}_{k|k} B_i \sum_{h=1}^{n} (K_1 + K_2) F^{h-i} - P^{-1}_{k|k}$$

$$\cdot F^{n-i}) G v_{k-n+i} \quad (5.28)$$

Using (5.28), showing a Lyapunov form as follows

$$\Omega_x = C_f \Omega_x C_f' + \Omega_f \quad (5.29)$$
5.4. COVARIANCE INTERSECTION

where

\[C_f = \lim_{k \to \infty} P_{k|k}(-(N-1)P_{k|k-n}^{-1}F^n + P_{k|k}^{-1}A_{n} + P_{k|k}^{-1}A_{n}^i), \]

\[\Omega_f = W_s(k)R W_s(k) + V_s(k)G Q G' V_s(k), \]

\[W_s(k) = \lim_{k \to \infty} P_{k|k} P_{k|k}^{-1} B_i, \]

\[V_s(k) = \lim_{k \to \infty} P_{k|k} P_{k|k}^{-1} B_i \sum_{h=1}^{n} (K_1 + K_2) F^{h-i} - P_{k|k} P_{k|k}^{-1} F^{n-i} \] (5.30)

5.4.3 INFORMATION-BASED COVARIANCE INTERSECTION FILTER:

PARTIAL FEEDBACK CASE

In the case of partial feedback, (5.11) and (5.12) can be formulated as follows:

\[P_{k|k}^{-1} \hat{x}_{k|k} = P_{k|k}^{-1} \hat{x}_{k|k-n} + \omega P_{k|k}^{-1} \hat{x}_{k|k-n}^i + \omega P_{k|k}^{-1} \hat{x}_{k|k-n}^j + (1 - \omega) P_{k|k}^{-1} \hat{x}_{k|k-n} \] (5.31)

\[P_{k|k}^{-1} = P_{k|k-n}^{-1} + \omega P_{k|k}^{-1} - \omega P_{k|k-n}^{-1} + (1 - \omega) P_{k|k}^{-1} \] (5.32)

Note that changing the value of \(N \) does not alter the forms of (5.31) and (5.32) and only length of summation item need to be adjusted. Like the case of complete feedback,
there is also a discrete Lyapunov equation,

\[\Omega_x = C_p \Omega_x C'_p + \Omega_p \] \hspace{1cm} (5.33)

where

\[C_p = \lim_{k \to \infty} P_{k|k}[P_{k|k}^{-1} A_n^i + P_{k|k}^{-1} A_n^j - P_{k|k-n}^{-1} F^n - P_{k|k-n}^{-1} F^n] \] \hspace{1cm} (5.34)

with \(\Omega_p \) has the same definition of \(\Omega_f \) in (5.30).

5.5 WEIGHTED COVARIANCE

According to the standard results of covariance intersection in [412], the weighted covariance at the sensor is:

\[\hat{x}_{k|k} = A^i_k \hat{x}_{k|k}^i + A^j_k \hat{x}_{k|k}^j \] \hspace{1cm} (5.35)

where the weighted matrices of two local estimates are calculated as:

\[A^i_k = (P^i_{k|k} - \Sigma^i_{k|k})(P^i_{k|k} + P^j_{k|k} - \Sigma_{k|k}^{ij} - \Sigma^i_{k|k})^{-1} \] \hspace{1cm} (5.36)

\[A^j_k = (P^i_{k|k} - \Sigma^i_{k|k})(P^i_{k|k} + P^j_{k|k} - \Sigma_{k|k}^{ij} - \Sigma^i_{k|k})^{-1} \] \hspace{1cm} (5.37)
And covariance of fused estimate is computed as:

\[P_{k|k} = P^i_{k|k} - (P^i_{k|k} - \Sigma^{i,i}_{k|k})(P^i_{k|k} + P^j_{k|k} - \Sigma^{i,j}_{k|k} - \Sigma^{j,i}_{k|k})^{-1} \]

\[\cdot (P^j_{k|k} - \Sigma^{j,i}_{k|k})^T \]

(5.38)

Or

\[P^{-1}_{k|k} = (P^j_{k|k} - (P^j_{k|k} - \Sigma^{j,i}_{k|k})(P^i_{k|k} + P^j_{k|k} - \Sigma^{i,j}_{k|k} - \Sigma^{j,i}_{k|k})^{-1} \]

\[\cdot (P^j_{k|k} - \Sigma^{j,i}_{k|k})^T)^{-1} \]

(5.39)

where \(\Sigma^{i,j}_{1|1} = (I - K^i_1 H^i_1)Q_0(I - K^i_1 H^i_1)^T \), \(\Sigma^{i,j}_{k|k} = (I - K^i_k H^i_k)F_{k-1}\Sigma^{i,j}_{k-1|k-1}F^T_{k-1}(I - K^i_k H^i_k)^T + (I - K^i_k H^i_k)Q_{k-1}(I - K^i_k H^i_k)^T \), and \(\Sigma^{j,i}_{k|k} = (\Sigma^{i,j}_{k|k})^T \). Multiplying (5.39) with (5.35) gives:

\[P^{-1}_{k|k} \tilde{x}_{k|k} = (P^j_{k|k} - (P^j_{k|k} - \Sigma^{j,i}_{k|k})(P^i_{k|k} + P^j_{k|k} - \Sigma^{i,j}_{k|k} - \Sigma^{j,i}_{k|k})^{-1} \]

\[\cdot (P^j_{k|k} - \Sigma^{j,i}_{k|k})^T)^{-1} \]

\[\cdot (A^i_{k|k} \tilde{x}^i_{k|k} + A^j_{k|k} \tilde{x}^j_{k|k}) \]

(5.40)
5.5.1 Information-Based Weighted Covariance Filter Algorithm

For the case of deriving information-based weighted covariance filter, the target dynamic model of (5.1) and (5.2) will be of the form:

\[x_{k+1} = Fx_k + Gw_k \] \hspace{1cm} (5.41)

\[z_k = H^i x_k + H^j x_k + v_i + v_j \] \hspace{1cm} (5.42)

The key idea of the information matrix filter is to identify the common information shared by estimates that are to be fused, and then removing the information or decorrelation is implemented. It will take into consideration the common information but not the common process noise. Under the assumption of no feedback, the estimation
using information-based filter in the case of weighted covariance is as follows:

\[
P^{-1}_{k|k-1} \hat{x}_{k|k-1} = P^{-1}_{k|k-1} \hat{x}_{k|k-1} + \left(P^i_{k|k} - (P^i_{k|k} - \Sigma^i_{k|k}) \right) \text{.}
\]

\[
\cdot \left(P^j_{k|k} + P^j_{k|k} - \Sigma^{ij}_{k|k} - \Sigma^{ji}_{k|k} \right)^{-1} (P^j_{k|k} - \Sigma^{ji}_{k|k})
\]

\[
- \Sigma^{ji}_{k|k} \hat{x}_{k|k-1} + \Sigma^{ji}_{k|k} \hat{x}_{k|k-1} - (P^j_{k|k-1} - \Sigma^{ij}_{k|k-1}) A_{k|k}^j \hat{x}_{k|k-1}
\]

\[
+ A_{k|k}^j \hat{x}_{k|k-1}
\]

(5.43)

\[

P^{-1}_{k|k} = P^{-1}_{k|k-1} + \left(P^j_{k|k} - (P^j_{k|k} - \Sigma^{ij}_{k|k}) \right) (P^j_{k|k} + P^j_{k|k})
\]

\[
- \Sigma^{ij}_{k|k} - \Sigma^{ji}_{k|k} \right)^{-1} (P^j_{k|k} - \Sigma^{ji}_{k|k} \hat{x}_{k|k-1}) - (P^j_{k|k-1} - \Sigma^{ij}_{k|k-1} A_{k|k}^j \hat{x}_{k|k-1})
\]

\[
- \Sigma^{jii}_{k|k-1} \left(P^j_{k|k-1} - \Sigma^{ji}_{k|k-1} \right)^{-1} (A_{k|k}^j \hat{x}_{k|k-1})
\]

\[
(5.44)
\]

The \(n \) step fusion state prediction and associated covariance from Theorem 5.1 is shown as:

\[
\hat{x}_{k|k-1} = F^i_{k} \hat{x}_{k-1|k-1} + F^j_{k} \hat{x}_{k-1|k-1}
\]

(5.45)

\[
P_{k+1|k} = F^i_{k} P_{k|k-1} F^i_{k} + Q_{k} G_{k} G^*_{k}
\]

(5.46)
The fused state estimate and associated covariance depends upon the local estimates as:

\[
\hat{x}_{k|k-n}^i + \hat{x}_{k|k-n}^j = \hat{x}_{k|k-n} \\
P_{k|k-n}^i + P_{k|k-n}^j = P_{k|k-n}
\]

(5.47)
(5.48)

5.5.2 Information-Based Weighted Covariance Filter: Complete Feedback Case

For the case of complete feedback, closed form analytical solution of steady fused covariance of information-based covariance intersection filter with \(N \) sensors is derived below. From (5.41) and (5.42), it is easy to show that the following two equations hold,

\[
x_k = F_k^i x_{k|k-n} + F_k^j x_{k|k-n} + \sum_{i=1}^{N} F^{n-i} i G_{v_{k-n+i}} \\
z_k = H_k^i F_k^i x_{k|k-n} + H_k^j F_k^j x_{k|k-n} + w_{k-n+i} + w_{k-n+j} \\
+ H_k^i F_k^i G_{v_{k-n+i}} + H_k^j F_k^j G_{v_{k-n+j}}
\]

(5.49)
(5.50)

For the local sensors, it is possible to write weighted covariance as:

\[
\hat{x}_{k|k} = P_{k|k}(P_{k|k}^j F_{k|k-n} + (P_{k|k}^j - \Sigma_{k|k}^j)(P_{k|k}^i + P_{k|k}) \\
- \Sigma_{k|k}^j - \Sigma_{k|k}^j)^{-1}(P_{k|k}^j - \Sigma_{k|k}^j)^T)^{-1} P_{k|k} \\
. (A_k^i F_{k|k-n}^i + A_k^j F_{k|k-n}^j)
\]

(5.51)
Using \((5.51)\) and \((5.49)\), we have

\[
\hat{x}_{k|k} = A_n P_{k|k} A_i^T F \hat{x}_{i|k} + A_n P_{k|k} A_i^T F \hat{x}_{j|k} \tag{5.52}
\]

where, \(\forall i = 1, \ldots, n\), we have \(A_0 = I, A_i = A_{i-1} P_{k|k} (P_{ji} + (P_{ji} - \Sigma_{ji}) (P_{ji} - \Sigma_{ji})^T)^{-1}\) Under the assumption of complete feedback, \((5.43)\) and \((5.44)\) can be re-written as:

\[
P_{k|k}^{-1} \hat{x}_{k|k} = -(N-1) P_{k|k}^{-1} \hat{x}_{k-n} + (P_{ji} - (P_{ji} - \Sigma_{ji}) (P_{ji} - \Sigma_{ji})^T)^{-1} A_i^T \hat{x}_{i|k} + A_j^T \hat{x}_{j|k} \tag{5.53}
\]

\[
P_{k|k}^{-1} = -(N-1) P_{k|k}^{-1} + (P_{ji} - (P_{ji} - \Sigma_{ji}) (P_{ji} - \Sigma_{ji})^T)^{-1} \tag{5.54}
\]
To compute the steady state error covariance of fused state estimate, subtracting $P_{k|k}^{-1}x_k$ from both sides of (5.53) and substituting (5.52) yields

$$P_{k|k}^{-1}(\hat{x}_{k|k} - x_k) = -P_{k|k}^{-1}x_k - (N - 1)P_{k|k-n}^{-1}\hat{x}_{k|k-n}$$

$$- (N - 1)P_{k|k-n}^{-1}\hat{x}_{k|k-n} + (P_k^j - P_k^j_k)$$

$$- \Sigma_{k|k}^i (P_k^i + P_k^j - \Sigma_{k|k}^i - \Sigma_{k|k}^j)^{-1}$$

$$\cdot (P_k^i_k - \Sigma_{k|k}^j)^T \cdot (A_k^i \hat{x}_{k|k} + A_k^j \hat{x}_{k|k})$$

$$= -(N - 1)P_{k|k-n}^{-1}F^n(\hat{x}_{k-n|k-n} - x_{k-n})$$

$$- P_{k|k-n}^{-1}x_k - (N - 1)P_{k|k-n}^{-1}F^n x_{k-n}$$

$$+ P_{k|k}^{-1}(A_n P_{k|k} A_k^i F \hat{x}_{k|k}$$

$$+ A_n P_{k|k} A_k^j F \hat{x}_{k|k})$$

(5.55)

Through simple algebra manipulations and substituting (5.50), we can re-write (5.55) as

$$P_{k|k}^{-1}(\hat{x}_{k|k} - x_k) = (-(N - 1)P_{k|k-n}^{-1}F^n + P_{k|k}^{-1}A_n P_{k|k} A_k^i F$$

$$+ P_{k|k}^{-1}A_n P_{k|k} A_k^j F). (\hat{x}_{k-n|k-n} - \hat{x}_{k|k}$$

$$- \hat{x}_{k|k} + P_{k|k}^{-1}A_n P_{k|k} A_k^i F \hat{x}_{k-n} + P_{k|k}^{-1}$$

$$\cdot A_n P_{k|k} A_k^j F \hat{x}_{k|k} - P_{k|k}^{-1}x_k$$

$$- (N - 1)P_{k|k-n}^{-1}F^n x_{k-n}$$

(5.56)
Using (5.56), showing a Lyapunov form as follows:

\[
\Omega_x = C_f \Omega_x C_f' + \Omega_f
\]

where

\[
C_f = \lim_{k \to \infty} P_{k|k} \left(-(N - 1)P_{k|k-n}F^n + P_{k|k}^{-1}A_n \right.
\]

\[
\qquad \cdot P_{k|k}A_kiF + P_{k|k}^{-1}A_nP_{k|k}A_kjF')
\]

\[
\Omega_f = W_s(k)RW_s(k)',
\]

\[
W_s(k) = \lim_{k \to \infty} P_{k|k}P_{k|k}^{-1}A_nP_{k|k}(A_ki + A_kj)
\]
In the case of partial feedback, (5.43) and (5.44) can be formulated as follows:

\[
P_{k|k-n}^{-1} \hat{x}_{k|k-n} = P_{k|k-n}^{-1} \hat{x}_{k|k-n} + (P_{k|k}^i - (P_{k|k}^j - \Sigma_{k|k})^{-1}(P_{k|k})^T \Sigma_{k|k}^{-1}(P_{k|k}^T)) + (P_{k|k}^j - \Sigma_{k|k})^{-1}(P_{k|k})^T \Sigma_{k|k}^{-1}(P_{k|k}^T)
\]

\[
P_{k|k}^{-1} = P_{k|k-n}^{-1} + (P_{k|k}^j - (P_{k|k}^j - \Sigma_{k|k})^{-1}(P_{k|k})^T \Sigma_{k|k}^{-1}(P_{k|k}^T)) + (P_{k|k}^j - \Sigma_{k|k})^{-1}(P_{k|k})^T \Sigma_{k|k}^{-1}(P_{k|k}^T)
\]

Note that changing the value of \(N \) does not alter the forms of (5.59) and (5.60) and only length of summation item need to be adjusted. Like the case of complete feedback, there is also a discrete Lyapunov equation,

\[
\Omega_x = C_p \Omega_x C_p^T + \Omega_p
\]
where

\[
C_p = \lim_{k \to \infty} P_{k|k} [P_{k|k}^{-1} A_n^k P_{k|k} A_n^k F + P_{k|k}^{-1} A_n^j P_{k|k} A_n^j F - P_{k|k-n}^{-1} F^n - P_{k|k-n}^{-1} F^n + P_{k|k-n}^{-1} (5.62)
\]

with \(\Omega_p\) has the same definition of \(\Omega_f\) in (5.58).

5.6 Kalman-Like Particle Filter

In this Section, we will derive information-based Kalman-like particle filter, where the simple Kalman-like particle filter is expressed in [414]. A question arises here that why Kalman-like particle filter has been preferred on a basic Kalman filter? The justification for the approach w.r.t filter is given in [414], moreover, it is preferred here on the basic Kalman filter because of the following. (See Fig. 5.2 for the comparison of estimates of a basic Kalman filter and Kalman-like particle filter. See Fig. 5.2 where it can be seen, how the mean square error is reduced in less number of iterations for particle filter as compared to a regular Kalman filter): According to the standards results of Kalman-like particle filter in [414], the Kalman-like particle filter at sensor is:

\[
\hat{x}_{k|k} = \hat{x}_{k|k-1} + \frac{P_k H_k^T}{H_k P_k H_k^T + \sigma_v^2} (y_k - H_k \hat{x}_{k|k-1})
\]

\[
= (I - \frac{P_k H_k^T}{H_k P_k H_k^T + \sigma_v^2} H_k) \hat{x}_{k|k-1} + \frac{P_k H_k^T}{H_k P_k H_k^T + \sigma_v^2} y_k (5.63)
\]
5.6. KALMAN-LIKE PARTICLE FILTER

Figure 5.1: Estimates of Kalman-like particle and Basic Kalman filter

Figure 5.2: Mean Square Error: Kalman-like particle and basic Kalman filter
with covariance of filtering error given by

\[P_{k|k} = (I - \frac{P_k H_k^T}{H_k P_k H_k^T + \sigma_v^2}) P_{k|k-1} \]

\[P_{k|k-1}^{-1} = P_{k|k}^{-1}(I - \frac{P_k H_k^T}{H_k P_k H_k^T + \sigma_v^2}) \] (5.64)

or

\[P_{k|k}^{-1} = P_{k|k-1}^{-1} + P_{k|k}^{-1} \frac{P_k H_k^T H_k}{H_k P_k H_k^T + \sigma_v^2} \] (5.65)

Thus substituting (5.64) into (5.63) yields

\[P_{k|k}^{-1} \hat{x}_{k|k} = P_{k|k-1}^{-1} \hat{x}_{k|k-1} + P_{k|k}^{-1} \cdot (\frac{P_k H_k^T H_k}{H_k P_k H_k^T + \sigma_v^2}) \hat{x}_{k|k} \] (5.66)

5.6.1 INFORMATION-BASED KALMAN-LIKE PARTICLE FILTER ALGORITHM

The key idea of the information matrix filter is to identify the common information shared by estimates that are to be fused, and then removing the information or de-correlation is implemented. It will take into consideration the common information but not the common process noise. Under the assumption of no feedback, the estimation
using information-based filter in the case of Kalman-like particle filter is as follows:

\[
P_{k|k}^{-1} \hat{x}_{k|k} = P_{k|k-1}^{-1} \hat{x}_{k|k-1} + P_{k|k}^{j^{-1}}
\]

\[
\cdot \left(\frac{P_{k|k} H_{k}^{jT} H_{k}^{j}}{H_{k}^{jT} P_{k|k} H_{k}^{j} + \sigma_v^2} \right) \hat{x}_{j|k}^{j}
\]

\[
- P_{k|k-n}^{-1} \left(\frac{P_{k|k} H_{k}^{jT} H_{k}^{j}}{H_{k}^{jT} P_{k|k} H_{k}^{j} + \sigma_v^2} \right) \hat{x}_{j|k-n}^{j}
\]

(5.67)

\[
P_{k|k}^{-1} = P_{k|k-1}^{-1} + P_{k|k}^{j^{-1}}
\]

\[
\cdot \left(\frac{P_{k|k} H_{k}^{jT} H_{k}^{j}}{H_{k}^{jT} P_{k|k} H_{k}^{j} + \sigma_v^2} \right)
\]

\[
- P_{k|k-n}^{-1} \left(\frac{P_{k|k} H_{k}^{jT} H_{k}^{j}}{H_{k}^{jT} P_{k|k} H_{k}^{j} + \sigma_v^2} \right)
\]

(5.68)

The \(n\) step fusion state prediction and associated covariance from Theorem 5.1 is shown as:

\[
x_{k|k-n} = F^n \hat{x}_{k-n|k-n}
\]

(5.69)

\[
P_{k|k-n} = F^n P_{k-n|k-n} F^{n*} + F^n G Q G^* F^{n-i*}
\]

(5.70)

where the \(n\) step fusion state prediction and associated covariance is written as:

\[
\hat{x}_{j|k-n} = \hat{x}_{k|k-n}
\]

(5.71)

\[
P_{j|k-n} = P_{k|k-n}
\]

(5.72)
5.6.2 INFORMATION-BASED KALMAN-LIKE PARTICLE FILTER: COMPLETE FEEDBACK CASE

For the case of complete feedback, closed form analytical solution of steady fused covariance of information-based Kalman-like particle filter with N sensors is derived below. From (5.1) and (5.2), it is easy to show that the following two equations hold,

\begin{align*}
x_k &= F^i_{k}x_{k-n} + F^{n-i}_{k}Gv_{k-n+i} \\
\hat{z}^j_{k-n+i} &= H^j F^j x_{k-n} + w^j_{k-n+i} + \sum_{h=1}^{i} H^j F^{i-h} Gv_{k-n+h}
\end{align*}

(5.73) (5.74)

For the two local sensor in Kalman-like particle filter, it is possible to write as:

\begin{align*}
\hat{x}^j_{k|k} &= P_{k|k} P_{k|k}^{-1} F \hat{x}^j_{k|k-1} + P_{k|k} P_{k|k}^{-1} \\
&\quad \cdot \frac{P_{k|k} H^j H^j_k}{H_k^j P_{k|k} H^j_k + \sigma_v^2} \hat{x}^j_{k|k} \\
\end{align*}

(5.75)

Utilizing (5.71) and (5.75), we have

\begin{align*}
\hat{x}^j_{k|k} &= A^j_{n} \hat{x}^j_{k-n|k-n} + \sum_{i=1}^{n} B^j_{i} \hat{x}^j_{k|k} \\
\end{align*}

(5.76)

where, $\forall i = 1, \ldots, n$, we have $A^j_{0} = I$, $A^j_{i} = P_{k-i+1|k-i+1} P_{k-i+1|k-i+1}^{-1} F$, $B^j = A^j_{i-1}$

\begin{align*}
P_{k-i+1|k-i+1} P_{k-i+1|k-i+1}^{-1} (P_{k} H^j_k H^j_k (H_k^j P_{k} H^j_k + \sigma_v^2)) F.
\end{align*}
5.6. KALMAN-LIKE PARTICLE FILTER

Under the assumption of complete feedback, (5.67) and (5.68) can be re-written as:

\[
P_{k|k}^{-1} \hat{x}_{k|k} = -(N - 1) P_{k|k-n}^{-1} \hat{x}_{k|k-n}
+ \sum_{j=1}^{N} P_{k|k}^{-1} \frac{P_k H_k^T H_k}{H_k P_k H_k^T + \sigma_v^2} \hat{x}_{k}^j
\]

(5.77)

\[
P_{k|k}^{-1} = -(N - 1) P_{k|k-n}^{-1}
+ \sum_{j=1}^{N} P_{k|k}^{-1} \frac{P_k H_k^T H_k}{H_k P_k H_k^T + \sigma_v^2}
\]

(5.78)

To compute the steady state error covariance of fused state estimate, subtracting \(P_{k|k}^{-1} x_k \) from both sides of (5.78) and substituting (5.76) yields

\[
P_{k|k}^{-1}(\hat{x}_{k|k} - x_k) = -P_{k|k}^{-1} x_k - (N - 1) P_{k|k-n}^{-1} \hat{x}_{k|k-n}
+ \sum_{j=1}^{N} P_{k|k}^{-1} \frac{P_k H_k^T H_k}{H_k P_k H_k^T + \sigma_v^2} \hat{x}_{k|k}^j
\]

\[
= -(N - 1) P_{k|k-n}^{-1} F^{n} (\hat{x}_{k|k-n} - x_{k-n})
- P_{k|k}^{-1} x_k - (N - 1) P_{k|k-n}^{-1} F^{n} x_{k-n}
+ \sum_{j=1}^{N} P_{k|k}^{-1} \frac{P_k H_k^T H_k}{H_k P_k H_k^T + \sigma_v^2}
\cdot [A_j^T \hat{x}_{k-n|k-n} + \sum_{i=1}^{n} B_j^i x_{k|i}]
\]

(5.79)

Through simple algebra manipulation and substituting (5.75), we can re-write (5.79)
5.6. KALMAN-LIKE PARTICLE FILTER

as:

\[
P_{k|k}(\hat{x}_{k|k} - x_k) = \begin{pmatrix} - (N - 1) P_{k|k-n}^{-1} F^n \\
+ \sum_{j=1}^{N} P_{j|k}^{-1} \left(\frac{P_k H_k^T H_k}{H_k P_k H_k^T + \sigma_v^2} A_j^i \right) \end{pmatrix} \nonumber
\]

\[
\cdot (\hat{x}_{k-n|k-n} - x_{k-n}) + \sum_{j=1}^{N} P_{j|k}^{-1} \nonumber
\]

\[
\cdot \left(\frac{P_k H_k^T H_k}{H_k P_k H_k^T + \sigma_v^2} A_j^i x_{k-n} - P_{k|k}^{-1} x_k \right) \nonumber
\]

\[
- (N - 1) P_{k|k-n}^{-1} F^n x_{k-n} \nonumber
\]

\[
+ \left(\sum_{j=1}^{N} P_{j|k}^{-1} \sum_{i=1}^{n} B_i^j x_{k|k} \right) \nonumber
\]

(5.80)

Using (5.80), showing a Lyapunov form as follows:

\[
\Omega_x = C_f \Omega_x C_f' + \Omega_f \nonumber
\]

(5.81)

where

\[
C_f = \lim_{k \to \infty} \sum_{k=1}^{n} \left(- (N - 1) P_{k|k-n}^{-1} F^n + \sum_{j=1}^{N} P_{j|k}^{-1} \right) \nonumber
\]

\[
\cdot \left(\frac{P_k H_k^T H_k}{H_k P_k H_k^T + \sigma_v^2} A_j^i \right), \nonumber
\]

\[
\Omega_f = \sum_{j=1}^{N} \sum_{k=1}^{n} W_j^i(k) R^j W_j^i(k)', \nonumber
\]

\[
W_j^i(k) = \sum_{k=1}^{\infty} P_{k|k}^{-1} B_i^j \nonumber
\]

(5.82)
5.6.3 Information-Based Kalman-Like Particle Filter: Partial Feedback Case

In the case of partial feedback, (5.67) and (5.68) can be formulated as follows:

\[
P_{k|k}^{-1} \hat{x}_{k|k} = P_{k|k-n}^{-1} \hat{x}_{k|k-n} + \sum_{j=1}^{N} P_{j|k}^{-1} \frac{P_k H_k^T H_k}{H_k P_k H_k^T + \sigma_v^2} \hat{x}_j^{j} - P_{j|k}^{-1} \frac{P_k H_k^T H_k}{H_k P_k H_k^T + \sigma_v^2} \hat{x}_j^{j} (5.83)
\]

\[
P_{k|k}^{-1} = P_{k|k-n}^{-1} + \sum_{j=1}^{N} P_{j|k}^{-1} \left(\frac{P_k H_k^T H_k}{H_k P_k H_k^T + \sigma_v^2} \right) - P_{j|k}^{-1} \frac{P_k H_k^T H_k}{H_k P_k H_k^T + \sigma_v^2} (5.84)
\]

Note that changing the value of \(N \) does not alter the forms of (5.83) and (5.84) and only length of summation item need to be adjusted. Like the case of complete feedback, there is also a discrete Lyapunov equation,

\[
\Omega_x = C_p \Omega_x C_p^T + \Omega_p (5.85)
\]

where

\[
C_p = \lim_{k \to \infty} P_{k|k} \left[\sum_{j=1}^{n} \left(\frac{P_{k|k}^{-1} P_k H_k^T H_k}{H_k P_k H_k^T + \sigma_v^2} A_j^{j} - P_{j|k-n}^{-1} F^n \right) \right] + P_{k|k-n}^{-1} F^n (5.86)
\]
with Ω_p has the same definition of Ω_f in (5.82).

5.7 MEASUREMENT FUSION ALGORITHM

The information captured in each of the information-based filter cases are designed for a distributed structure. The idea is taken from the fusion methods in [411].

Suppose there is X number of sensors. For every measurement coming from these sensors that is received in fusion center, there is a corresponding estimation based solely on these individual sensors. The information can be structured as estimated information or prior estimated information in the following two ways which are measurement fusion method and state-vector fusion method as shown in the Fig. 5.3 and 5.4 respectively.

Measurement Fusion Method The measurement fusion method integrates the sensor measurement information by augmenting the observation vector as follows:

\[
g(k) = y^{mf}(k) = [y_1(k) \ldots y_N(k)]^T
\] (5.87)

\[
C(k) = C^{mf}(k) = [C_1(k) \ldots C_N(k)]^T
\] (5.88)

\[
R(k) = R^{mf}(k) = \text{diag}[R_1(k) \ldots R_N(k)]
\] (5.89)

where the superscript mf stands for the measurement fusion.
5.7. MEASUREMENT FUSION ALGORITHM

Figure 5.3: Measurement fusion employed for information-based sensor

Figure 5.4: State vector fusion employed for information-based sensor
5.8. ON FUNCTIONAL EQUIVALENCE OF TWO MEASUREMENT FUSION METHODS

State-vector Fusion Method The state-vector fusion method obtains the fused measurement information by weighted observation as follows:

\[y(k) = y^{(sf)}(k) = \left[\sum_{j=1}^{N} R_j^{-1}(k) \right]^{-1} \sum_{j=1}^{N} R_j^{-1}(k)y_j(k) \]

(5.90)

\[C(k) = C^{(sf)}(k) = \left[\sum_{j=1}^{N} R_j^{-1}(k) \right]^{-1} \sum_{j=1}^{N} R_j^{-1}(k)C_j(k) \]

(5.91)

\[R(k) = R^{(sf)}(k) = \left[\sum_{j=1}^{N} R_j^{-1}(k) \right]^{-1} \]

(5.92)

where the superscript \(sf \) stands for state-vector fusion.

5.8 **ON FUNCTIONAL EQUIVALENCE OF TWO MEASUREMENT FUSION METHODS**

Comparing (5.87)-(5.89) with (5.90)-(5.92), we note that the treatment in the measurement fusion schemes is quite different. With reference to [411], we will show here that their exists a functional equivalence between the two methods.

Theorem 5.2 If the \(N \) sensors used for data fusion with different and independent noise characteristics, have identical measurement matrices, i.e. \(C_1(k) = C_2(k) = \ldots = C_N(k) \), then the measurement fusion method is functionally equivalent to the state-vector fusion.
5.8. ON FUNCTIONAL EQUIVALENCE OF TWO MEASUREMENT FUSION METHODS

Proof. The following formula in linear algebra will be used to cope with the inversion of matrices:

\[
\begin{bmatrix}
A_1 & A_2 \\
A_3 & A_4
\end{bmatrix}^{-1} = \begin{bmatrix} B_1 & B_2 \\
B_3 & B_4 \end{bmatrix}
\]

\[(5.93)\]

\[
(A + HBH^T)^{-1} = A^{-1} - A^{-1}H(B^{-1} + H^TA^{-1})H^TA^{-1}
\]

\[(5.94)\]

where \(B_1 = (A_1 - A_2A_4^{-1}A_3)^{-1}\), \(B_2 = -B_1A_2A_4^{-1}\), \(B_3 = -A_4^{-1}A_3B_1\), and \(B_4 = A_4^{-1}A_3B_1A_2A_4^{-1}\). If the information-based covariance intersection filter is used, in order to demonstrate the functional equivalence of the two measurement fusion methods, we only need to check whether the terms \((K_1 + K_2)C_k\) and \((K_1 + K_2)(k)y(k)\) in measurement fusion method are functionally equivalent to those in state-vector fusion method. Alternatively, if the information filter is used, then we need to check the functional equivalence between terms \(C^T(k)R^{-1}(k)C(k)\) and \(C^T(k)R^{-1}(k)y(k)\) in both methods.

Consider the case when the information-based covariance intersection filter is applied, and \((K_1 + K_2)^{(mf)}\) is:

\[
(K_1 + K_2)^{(mf)}(k) =
\omega P^{(mf)}(k|k - 1)(C^{(sf)})^T(C(k)P^i(k|k - 1)C(k)
\]

\[+(1 - \omega)P^{(mf)}(k|k - 1)(C^{(sf)})^T\]

\[+(C(k)P^i(k|k - 1)C(k) + R(k))^{-1}\]

\[(5.95)\]
5.8. ON FUNCTIONAL EQUIVALENCE OF TWO MEASUREMENT FUSION METHODS

where \(\Xi_i^{(mf)} = (C(k) P_i(k|k-1) C(k) + R(k))^{-1} \) and \(\Xi_j^{(mf)} = (C(k) P_j(k|k-1) C(k) + R(k))^{-1} \).

\[
(K_1 + K_2)^{(mf)}(k) = \\
\omega P^{(mf)}(k|k - 1)(C^{(sf)})^T \\
\cdot \begin{bmatrix}
R_1 + \Xi_i^{(mf)} & \Xi_i^{(mf)} \\
\Xi_i^{(mf)} & R_2 + \Xi_i^{(mf)}
\end{bmatrix}^{-1} \\
+ (1 - \omega) P^{mf}(k|k - 1)(C^{(sf)})^T \\
\cdot \begin{bmatrix}
R_1 + \Xi_j^{(mf)} & \Xi_j^{(mf)} \\
\Xi_j^{(mf)} & R_2 + \Xi_j^{(mf)}
\end{bmatrix}^{-1}
\]

(5.96)
5.8. ON FUNCTIONAL EQUIVALENCE OF TWO MEASUREMENT FUSION METHODS

\[
(K_1 + K_2)^{(mf)}(k) = \\
\omega P^{(mf)}(k|k - 1)(C)^T[(R_2 + \Xi_i^{(mf)})^{-1} \times R_2 \\
\times \left(\frac{R_1 + \Xi_i^{(mf)} - \Xi_i^{(mf)}(R_2 + \Xi_i^{(mf)})^{-1}}{A_1} \right)
\times \left(\frac{R_2 + \Xi_i^{(mf)}}{A_4} \right)^{-1} - \left(\frac{R_2 + \Xi_i^{(mf)}}{A_1} \right)^{-1} \\
\times \left(\frac{R_3 [R_1 + \Xi_i^{(mf)} - \Xi_i^{(mf)}(R_2 + \Xi_i^{(mf)})^{-1}]^{-1}}{A_2} \right)
\times \left(\frac{\Xi_i^{(mf)}(R_2 + \Xi_i^{(mf)})^{-1} + (1 - \omega)P^{(mf)}(k|k - 1)C^T}{A_4} \right) \\
\times \left(\frac{(R_2 + \Xi_j^{(mf)})^{-1} \times R_2[R_1 + \Xi_j^{(mf)}] - \Xi_j^{(mf)}(R_2 + \Xi_j^{(mf)})^{-1}}{A_4} \right) \\
\times \left(\frac{\Xi_j^{(mf)}(R_2 + \Xi_j^{(mf)})^{-1}}{A_4} \right) - \left(\frac{R_2 + \Xi_j^{(mf)}}{A_1} \right)^{-1} \\
\times \left(\frac{R_2 [R_1 + \Xi_j^{(mf)} - \Xi_j^{(mf)}(R_2 + \Xi_j^{(mf)})^{-1}]^{-1}}{A_2} \right)
\times \left(\frac{\Xi_j^{(mf)}(R_2 + \Xi_j^{(mf)})^{-1}}{A_4} \right).
\]

(5.97)

where as proved in [411],

\[
(R_2 + \Xi_i^{(mf)})^{-1} R_2[R_1 + \Xi^{(mf)} \\
- \Xi_i^{(mf)}(R_2 + \Xi_i^{(mf)})^{-1} \Xi_i^{(mf)}]^{-1} \\
= [\Xi_i^{(mf)} + R_1(R_1 + R_2)^{-1}R_2]^{-1}R_2(R_1 + R_2)^{-1}
\]

(5.98)
5.8. ON FUNCTIONAL EQUIVALENCE OF TWO MEASUREMENT FUSION METHODS

\[(R_2 + \Xi^{(mf)}_i)^{-1} - (R_2 + \Xi^{(mf)}_i)^{-1} R_2 \times [R_1 + \Xi^{(mf)}_i] - \Xi^{(mf)} \]
\[\times (R_2 + \Xi^{(mf)}_i)^{-1} \Xi^{(mf)}_i (R_2 + \Xi^{(mf)}_i)^{-1} \]
\[= \Xi^{(mf)}_i + R_1 (R_1 + R_2)^{-1} R_2]^{-1} R_1 (R_1 + R_2)^{-1} \quad (5.99) \]

likewise for \(\Xi^{(mf)}_j \) from equation (5.98) and (5.99). Based on (5.97)-(5.99), we have

\[(K_1 + K_2)^{(mf)}(k) = \]
\[\omega P^{(mf)}(k|k - 1) C^T \times [C P^{(mf)}(k|k - 1) C^T] + R_1 (R_1 + R_2)^{-1} R_2]^{-1} \times [R_2 (R_1 + R_2)^{-1}, \]
\[R_1 (R_1 + R_2)^{-1}] + (1 - \omega) P^{(mf)}(k|k - 1) C^T \]
\[\times [C P^{(mf)}(k|k - 1) C^T] + R_1 (R_1 + R_2)^{-1} R_2]^{-1} \times [R_2 (R_1 + R_2)^{-1}, \]
\[R_1 (R_1 + R_2)^{-1}] \quad (5.100) \]
\[(K_1 + K_2)^{(mf)}(k)C^{(mf)}(k) = \]
\[\omega P^{(mf)}(k|k - 1)C^T \times [CP^{(mf)}(k|k - 1)\]
\[. \ C^T + R_1(R_1 + R_2)^{-1}R_2]^{-1}C\]
\[+ (1 - \omega) P^{(mf)}(k|k - 1)C^T \]
\[\times [CP^{(mf)}(k|k - 1)C^T\]
\[+ R_1(R_1 + R_2)^{-1}R_2]^{-1}C \quad (5.101)\]

\[(K_1 + K_2)^{(mf)}(k)y^{(mf)}(k) = \]
\[\omega P^{(mf)}(k|k - 1)C^T \times [CP^{(mf)}(k|k - 1)\]
\[. \ C^T + R_1(R_1 + R_2)^{-1}R_2]^{-1} \]
\[\times [R_2(R_1 + R_2)^{-1}\]
\[. \ y_1(t) + R_1(R_1 + R_2)^{-1}y_2(t)] + (1 - \omega)\]
\[. \ P^{(mf)}(k|k - 1)C^T \times [CP^{(mf)}(k|k - 1)C^T\]
\[+ R_1(R_1 + R_2)^{-1}R_2]^{-1} \times [R_2(R_1 + R_2)^{-1}\]
\[. \ y_1(t) + R_1(R_1 + R_2)^{-1}y_2(t)] \quad (5.102)\]

If \(C_1 = C_2 = C\), then \(C^{(II)} = C\), and we obtain the Kalman gain in state-vector method
as follows:

\[(K_1 + K_2)^{sf}(k) = \]

\[\omega P^{(sf)}(k|k - 1)C^T \times [C P^{(sf)}(k|k - 1)C^T \]

\[+ R_1(R_1 + R_2)^{-1}R_2^{-1} + (1 - \omega) P^{(sf)}(k|k - 1)C^T \]

\[\times [C P^{(sf)}(k|k - 1)C^T \]

\[+ R_1(R_1 + R_2)^{-1}R_2^{-1} \] \hspace{1cm} (5.103)
and we can derive the terms $K^{(sf)}(k)C^{(sf)}(k)$ and $K^{(sf)}(k)y^{(sf)}(k)$:

\[
(K_1 + K_2)^{(sf)}(k)C^{(sf)}(k) = \\
\omega P^{(sf)}(k|k-1)C^T \times [CP^{(sf)}(k|k-1)C^T \times \left(C^T + R_1(R_1 + R_2)^{-1}R_2 \right)^{-1}C + (1 - \omega) \times P^{(sf)}(k|k-1)C^T \times [CP^{(sf)}(k|k-1)C^T \times \left(C^T + R_1(R_1 + R_2)^{-1}R_2 \right)^{-1}C \times \left(R_1(R_1 + R_2)^{-1}R_2 \right)^{-1} \times \left(R_2(R_1 + R_2)^{-1} \times \left[y_1(t) + R_1(R_1 + R_2)^{-1}y_2(t) \right] + (1 - \omega) \times P^{(sf)}(k|k-1)C^T \times \left(C^T + R_1(R_1 + R_2)^{-1}R_2 \right)^{-1}C \times \left(R_1(R_1 + R_2)^{-1}R_2 \right)^{-1} \times \left[y_1(t) + R_1(R_1 + R_2)^{-1}y_2(t) \right] \right)
\]

\[
(K_1 + K_2)^{(sf)}(k)y^{(sf)}(k) = \\
\omega P^{(sf)}(k|k-1)C^T \times [CP^{(sf)}(k|k-1)C^T \times \left(C^T + R_1(R_1 + R_2)^{-1}R_2 \right)^{-1}C \times \left(R_1(R_1 + R_2)^{-1}R_2 \right)^{-1} \times \left[y_1(t) + R_1(R_1 + R_2)^{-1}y_2(t) \right] + (1 - \omega) \times P^{(sf)}(k|k-1)C^T \times \left(C^T + R_1(R_1 + R_2)^{-1}R_2 \right)^{-1}C \times \left(R_1(R_1 + R_2)^{-1}R_2 \right)^{-1} \times \left[y_1(t) + R_1(R_1 + R_2)^{-1}y_2(t) \right] \right)
\]

Note that (5.101) and (5.104) are in the same form and that (5.102) and (5.105) are also in the same form. Therefore, with the same initial conditions, i.e., $P^{(mf)}(0|0) = P^{(sf)}(0|0)$ and $\hat{x}^{(mf)}(0|0) = \hat{x}^{(sf)}(0|0)$, the Kalman filters based on the observation information generated by (5.87-5.89) and (5.90–5.92), irrespectively, will result in the same state estimate $\hat{x}(k|k)$. This means that the two measurement fusion methods are functionally equivalent in the sensor-to-sensor case.
Now, consider the case when the information filter is applied. From (5.87)(5.92), it is easy to prove the following equalities:

\[
\begin{align*}
[C^{(mf)}(k)]^T[R^{(mf)}(k)]^{-1}C^{(mf)}(k) \\
= \sum_{j=1}^{N} C_j^T R_j^{-1} C_j \\
\sum_{j=1}^{N} C_j^T R_j^{-1} y_j
\end{align*}
\] (5.106)

\[
\begin{align*}
[C^{(sf)}(k)]^T[R^{(sf)}(k)]^{-1}C^{(sf)}(k) \\
= \sum_{j=1}^{N} C_j^T R_j^{-1} y_j
\end{align*}
\] (5.107)

\[
\begin{align*}
[C^{(mf)}(k)]^T[R^{(mf)}(k)]^{-1}y^{(mf)}(k) \\
= \left(\sum_{j=1}^{N} R_j^{-1}\right)^{-1} \sum_{j=1}^{N} R_j^{-1} C_j \\
\sum_{j=1}^{N} R_j^{-1} y_j
\end{align*}
\] (5.108)

\[
\begin{align*}
[C^{(sf)}(k)]^T[R^{(sf)}(k)]^{-1}y^{(sf)}(k) \\
= \left(\sum_{j=1}^{N} R_j^{-1}\right)^{-1} \sum_{j=1}^{N} R_j^{-1} y_j
\end{align*}
\] (5.109)

If \(C_j = C, j = 1, 2, \ldots, N \), then we have

\[
\begin{align*}
[C^{(mf)}(k)]^T[R^{(mf)}(k)]^{-1}C^{(mf)}(k) \\
= [C^{(sf)}(k)]^T[R^{(sf)}(k)]^{-1}C^{(sf)}(k) \\
[C^{(mf)}(k)]^T[R^{(mf)}(k)]^{-1}y^{(mf)}(k) \\
= [C^{(sf)}(k)]^T[R^{(sf)}(k)]^{-1}y^{(sf)}(k)
\end{align*}
\] (5.110)

\[
\begin{align*}
[C^{(mf)}(k)]^T[R^{(mf)}(k)]^{-1}y^{(mf)}(k)
\end{align*}
\] (5.111)

Remark 5.8.1 The functional equivalence is proved here with considering the gain \(K \) as the center of existence for all the calculations, which can be the case for information-
based weighted covariance filter too, but not for information-based Kalman-like particle filter where the gain \(K \) is not present.

5.9 Evaluation and Testing

5.9.1 Utility Boiler

The evaluation and testing has been made on an industrial utility boiler [415]. In the system, the principal input variables are \(u_1 \), feedwater flow rate (kg/s); \(u_2 \), fuel flow rate (kg/s); and \(u_3 \), attemperator spray flow rate (kg/s), the states are \(x_1 \), fluid density, \(x_2 \), drum pressure, \(x_3 \), water flow input, \(x_4 \), fuel flow input, \(x_5 \), spray flow input. The principal output variables are \(y_1 \), drum level (m); \(y_2 \), drum pressure kPa; and \(y_3 \), steam temperature \(C^0 \). The schematic diagram of the utility boiler can be seen in Fig. 5.5.

Fault model for utility boiler

Fault model for the utility boiler is being developed. The mathematical model of the faulty utility boiler can be given as follows where fault of steam pressure are there in state 4 (fuel flow input) and 5 (spray flow input) respectively (See Eqns. (5.112)-(5.116)).

In the utility boiler, the steam temperature must be kept at a certain level to avoid overheating of the super-heaters. By applying a step to the water flow input (state 3), steam temperature increases and the steam temperature dynamics behaves like a fist order system. Applying a step to the fuel flow input (state 4), the steam temperature increases and the system behaves like a second order system. Applying a step to the
spray flow input (state 5), steam temperature decreases and the system behaves like a first order system. Then, a third order system is selected for the steam temperature model. Steam pressure is added there in state 4 and 5 resulting in a more uncontrolled non-linear system. Following [415] and the proposed fault scenarios, the fault model
of the system can be described as:

\[
\dot{x}_1(t) = \frac{u_1 - 0.03\sqrt{x_2^2 - (6306)^2}}{155.1411} \quad (5.112)
\]

\[
\dot{x}_2(t) = (-1.8506 \times 10^{-7} x_2 - 0.0024)\sqrt{x_2^2 - (6306)^2} - 0.0404u_1 + 3.025u_2 \quad (5.113)
\]

\[
\dot{x}_3(t) = -0.0211\sqrt{x_2^2 - (6306)^2} + x_4 - 0.0010967u_1 + 0.0475u_2 + 3.1846u_3 \quad (5.114)
\]

\[
\dot{x}_4(t) = 0.0015\sqrt{x_2^2 - (6306)^2} + x_5 - 0.001u_1 + 0.32u_2 - 2.9461u_3 + (a_{st_{pr}})\sqrt{x_2^2 - (6306)^2} \quad (5.115)
\]

\[
\dot{x}_5(t) = -1.278 \times 10^{-3}\sqrt{x_2^2 - (6306)^2} - 0.00025831 x_3 - 0.29747 x_4 - 0.8787621548 x_5 - 0.00082 u_1 - 0.2652778 u_2 + 2.491 u_3 + (a_{st_{pr}})\sqrt{x_2^2 - (6306)^2} \quad (5.116)
\]

5.9.2 Evaluation of Results

In what follows, we present simulation results for the proposed information-based versions of filters. The simulations have been performed on the utility boiler system where the faults due to steam pressure have been introduced in state 4 and 5 respectively. Firstly, the data generated from the simulation of the plant has been initialized and the
parameters have been being optimized which comprises of the pre-processing and normalization of the data. The comparison of results for the distributed estimation, and normal estimation with different feedbacks generated from faults, and the basic profile of that particular state has been compared. Moreover, same pattern of comparison has been followed for all the versions of information-based filters.

Information-Based Covariance Intersection filter

The information-based covariance intersection filter has been simulated here for the utility boiler steam pressure fault of state 4. Simulations have been made for the estimate of each case using state-vector fusion method. In the simulation, comparison of various profiles have been made i.e. profile of normal fault-free state, estimate of normal fault-free state, estimate of faulty state, distributed estimate based on state-vector fusion for different feedback strategies. The comparison of profiles mentioned above for complete feedback, partial feedback and no feedback profile can be seen in Fig. 5.6-5.8 respectively. Moreover, the one on one full comparison for all the feedback strategies can be seen in Fig. 5.9. It can be seen that here in case of information-based covariance intersection, the complete feedback case is performing better than the partial and no feedback case.

Information-Based Weighted Covariance filter

The information-based weighted covariance filter has been simulated here for the utility boiler steam pressure fault of state 4. Simulations have been made for the estimate of each case using state-vector fusion method. In the simulation, comparison of various
profiles have been made i.e. profile of normal fault-free state, estimate of normal fault-free state, estimate of faulty state, distributed estimate based on state-vector fusion for different feedback strategies. The comparison of profiles mentioned above for complete feedback and partial feedback profile can be seen in Fig. 5.10 and 5.11 respectively. Moreover, the one on one full comparison for all the feedback strategies can be seen in Fig. 5.12. It can be seen that here in case of information-based weighted covariance, the no feedback case is performing better than the partial feedback, and complete feedback has the lowest performance.

Information-Based Kalman-like Particle filter

The information-based Kalman-like particle filter has been simulated here for the utility boiler steam pressure fault of state 4. Simulations have been made for the estimate of each case using state-vector fusion method. In the simulation, comparison of various profiles have been made i.e. profile of normal fault-free state, estimate of normal fault-free state, estimate of faulty state, distributed estimate based on state-vector fusion for different feedback strategies. The comparison of profiles mentioned above for complete feedback and partial feedback profile can be seen in Fig. 5.13 and 5.14 respectively. Moreover, the one on one full comparison for all the feedback strategies can be seen in Fig. 5.15. It can be seen that here in case of information-based Kalman-like particle filter, the partial feedback case is performing better than the complete feedback, and no feedback has the lowest performance. Also, a profile comparison for the measurement fusion method can be seen in Fig. 5.16 for a complete feedback case.
Table 5.1: MSE Comparison for All Information-Based Filters*

<table>
<thead>
<tr>
<th>FILTER</th>
<th>COMPLETE FB</th>
<th>PARTIAL FB</th>
<th>NO FB</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI</td>
<td>6.424</td>
<td>8.2759</td>
<td>8.411</td>
</tr>
<tr>
<td>WC</td>
<td>1.031×10^{-3}</td>
<td>1.0273×10^{-3}</td>
<td>1.0275×10^{-3}</td>
</tr>
<tr>
<td>KLPF</td>
<td>0.565</td>
<td>0.703</td>
<td>0.6223</td>
</tr>
</tbody>
</table>

Mean Square Error Comparison

In this section, we have made a comparison of the all versions of information-based filters with complete, partial and no feedback respectively. It can be seen from Table 5.1 that how the feedback versions are performing differently for a particular case of information-based filter. The mean square error value of complete feedback is the minimum in the case of information-based covariance intersection filter and Kalman-like particle filter respectively, whereas partial feedback is performing well in the case of information-based weighted covariance filter.

* The table is showing the comparison of all the versions of information-based filters, where MSE stands for mean square error, FB stands for feedback, CI stands for covariance intersection, WC stands for weighted covariance and KLPF stands for Kalman-like Particle filter.
5.9. EVALUATION AND TESTING

Figure 5.6: Covariance Intersection: Complete Feedback Comparison

Figure 5.7: Covariance Intersection: Partial Feedback Comparison
5.9. EVALUATION AND TESTING

Figure 5.8: Covariance Intersection: No Feedback Comparison

Figure 5.9: Covariance Intersection: Feedback Comparison
5.9. EVALUATION AND TESTING

Figure 5.10: Weighted Covariance: Complete Feedback Comparison

Figure 5.11: Weighted Covariance: Partial Feedback Comparison
5.9. EVALUATION AND TESTING

Figure 5.12: Weighted Covariance: Feedback Comparison

Figure 5.13: Kalman-like Particle Filter: Complete Feedback Comparison
5.9. EVALUATION AND TESTING

Figure 5.14: Kalman-like Particle Filter: Partial Feedback Comparison

Figure 5.15: Kalman-like Particle Filter: Feedback Comparison
Figure 5.16: Kalman-like Particle Filter: Complete Feedback with measurement fusion method
6 CONCLUSIONS AND PERSPECTIVES

6.1 RESEARCH CONCLUSIONS

This dissertation proposes a different perspective for distributed Kalman filtering. It has the following conclusion.

Firstly, the distributed system architecture, on the whole, is very powerful since it allows the design of the individual units or components to be much simpler, while not compromising too much on the performance. A brief technical review and bibliography listing on the advances in DKF have been presented in the chapter 2. The current and previous approaches have been reported in this chapter. DKF comprising of OOSM approaches, Diffusion-Based approaches, Consensus Based Estimation, Self-Tuning designs and various applications of DKF have been classified. Some open problems and current research activities have been discussed and around 300 references have been categorized. We apologize in advance for any omission of publications, in spite of our best effort.

Secondly, approximate distributed estimation has been proposed in explicit forms using Bayesian-based FB Kalman filter for estimating states of a network control sys-
tem for an arbitrary number of sensors with complete, incomplete, or no prior information. The approximate estimation presents all the prior cases with an effort to minimize time complexity and cases showing dependency of prior knowledge. Then, the algorithms were being made effective by data fusion of all the knowledge in a distributed filtering architecture. The proposed scheme has been evaluated on a rotational drive-based electro-hydraulic system using various fault scenarios, thus ensuring the effectiveness of the approach with different prior cases.

Thirdly, smoother extension to the SEEK filter with Kalman-like particle filter and EM implementation has been presented. The iterative process of EM helps the smoother to improve the covariance. The results show that the distributed filter of such kind has performed even better. Due to the EM implementation, the estimate almost mimics the original profile of the loads. The results have been then compared with the full-order version of such kind, thus ensuring its effectiveness.

Finally in the end, distributed estimation has been proposed using various versions of information matrix filter. Different feedback strategies were evaluated and the focal point is relation of performance and number of sensors. It is shown that for algorithms, the feedback strategies are performing differently i.e. information-based covariance intersection and Kalman-like particle filter is performing better with complete feedback case, whereas information-based weighted covariance is performing better with partial feedback case. The proposed scheme has been evaluated on a industrial boiler using fault scenarios, thus ensuring a thorough performance evaluation of the proposed filters with measurement fusion.
6.2 Future Research Work

The following are the possible future research work which can be extended from this dissertation.

- **Development of Test Bed Showing Approximate Estimation Based on Prior Information** - A test bed to be designed based on real time prototype system for approximate estimation (using Bayesian-based Kalman filter), and the proposed approximate estimation filters with upper and lower bounds should be applied based on situations of complete, incomplete and no prior knowledge respectively. This estimation is to be extended to ensemble Kalman filtering presenting the case of large number of variables in interconnected system or multi-sensor data fusion.

- **Development of Smoothers Using Various Type of Signals Such as ARMA Signals** - A robust smoother based on the a-priori knowledge of different signal types such as auto-regressive moving average (ARMA) and auto-regressive (AR) signals proposed to handle the smoothing process for every signal type.

- **Development of a Fault Tolerant Control Scheme Considering Distributed Estimation** - Design of a fault tolerant control scheme which comprises of two steps, where the first step estimates and detects the error using a heavy non-linear a-priori knowledge-based filter, and the second step designs a reconfigurable controller which can control the plant with an error scenario being calculated from the filter in the first step. These type of systems are employed in mission critical situations, aircrafts etc. For example, during a flight of an aircraft, if one of the engine fails, how
the second engine of the aircraft maneuvers itself to sustain a full load capacity of the plane and make a safe landing.
BIBLIOGRAPHY

[95] Xiangdong, Q., and Kuochu, C., ‘Information matrix fusion with feedback versus number of sensors’, CiteSeerX, 10.1.1.63.6672.

time correlated noises’, *49th IEEE Conference on Decision and Control*, December
15-17, 2010, Hilton Atlanta Hotel, Atlanta, GA, USA, pp. 5007–5012.

[152] Govaers, F., and Koch, W., ‘Distributed Kalman filter fusion at arbitrary instants
of time’, *2010 13th Conference on Information Fusion (FUSION)*, 26-29 July 2010,
Sensor Data and Inf. Fusion, Univ. of Bonn, Bonn, Germany, pp. 1–8.

[153] Koch, W., ‘Exact update formulae for distributed Kalman filtering and retrod-
iction at arbitrary communication rates’, In: *Proc. of the 12th ISIF International

[154] Zheng, S., Jiang, T., Baras, J. S., ‘Robust state estimation Under false data in-
jection in distributed sensor networks’, *IEEE Globecom 2010 Proceedings*, Miami,

[155] Saber, O., R., ‘Distributed Kalman filter with embedded consensus filters’, In:
*Proceedings of 44th IEEE Conference on Decision and Control, 2005 and 2005
European Control Conference (CDC-ECC 05)*, 2005.

based On Kalman filtering and distributed compressed sensing’, *2010 IEEE 21st
International Symposium on Personal Indoor and Mobile Radio Communications*,
pp. 1080–1090.

[295] Fong, L. W., ‘Multi-sensor track-to-track fusion via linear minimum variance

[296] Fong, L. W., ‘Integrated track-to-track fusion with modified probabilistic neural

parallel and distributed Kalman filtering’, *Proc. 12th Brazilian Automatic Control
Conference*, Uberlandia-MG, Brazil, 14-18 de Setembro de 1998.

[299] Spanos, D. P., Saber, O., R., Murray, R. M., ‘Distributed Kalman filtering in sen-
sor networks with quantifiable performance’, In: *2005 Fourth International Sym-
posium on Information Processing in Sensor Networks (IPSN)*, 2005, pp. 133–139.

[301] Mallick, M., Kirubarajan, T., and Arulampalam, S., ‘Out-of-sequence measure-
ment processing for tracking ground target using particle flters’, In: *Proceedings
1809–1818.

[302] Mallick, M., and Marrs, A., ‘Comparison of the KF and particle flter based out-
of-sequence measurement fltering algorithms’, In: *Proceedings of the Sixth Inter-

[329] Chen, Z., ‘Bayesian filtering: From Kalman filters to particle filters and beyond’,
adaptive Syst Lab McMaster Univ Hamilton ON Canada, Citeseer, 2003, pp. 9–13,
25–46.

1002.

[332] Li, S., ‘Optimal multi-sensor kalman smoothing fusion for discrete multi-
2, pp. 168–172.

[333] Sun, S., ‘Multi-sensor optimal information fusion Kalman filter for discrete mul-
tichannel ARMA signals’, *Proc. of 2003 IEEE Int. Symposium on Intelligent Con-
trol*, Chicago : Institute of Electrical and Electronic Engineers Inc., Houston , Oc-
tober 2003, pp. 377 - 382.

[334] Sun, S., Deng, Z., ‘Multi-sensor optimal information fusion Kalman filter’, *Au-

multisensor distributed random parameter matrices kalman filtering fusion with ap-

[415] Marquez, H., Riaz, M., ‘Robust state observer design with application to an
industrial boiler system’, Control Engineering Practice, vol. 13, 2005, pp. 713-
728.
• Haris M. Khalid

• Received Bachelors of Science (B.S.) degree in Mechatronics and Control Engineering from University of Engineering and Technology, Lahore, Pakistan in 2007.

• Received Masters of Science (M.S.) degree in Control Systems Engineering from King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia in 2009.

• Completed Doctor of Philosophy (PhD) degree in Control Systems Engineering in September 2012.

• Email: harism.khalid@yahoo.com