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 خلاصة الرسالة

 
 سمير حسين أرسطو      :              الإسم

 ن سرب الجسيمات الموزعة للشبكات الإستشعارية اللاسلكيةمحس        :  عنوان الرسالة

 ماجستير      :   الدرجة العلمية

 تصاااتهندسة الإ      :         التخصص

 م 2102 فبراير       :    تاريخ التخرج

 

عامل متغير ( يبشكل تعاون)لتقدير  (DPSO)تم إقتراح خوارزمية لتحقيق أمثلية إنتشار سرب الجسيمات , في هذا العمل

 (DPSO)كل عقدة إستشعارية مجهزة بخوارزمية . (WSN)ستشعارية في شبكة إستشعار لاسلكية مراقب بواسطة عقد إ

تم إستخدام مخطط إنتشار جديد لتقدير المعامل بمشاركة أفضل جسيم محلي والقيمة الخاطئة للجسم . لتقدير المعامل المطلوب

الأنواع , لكلذ. (PSO) بتطبيق تعزيزات مختلفة للخوارزمية  (DPSO)  تم تحسين أداء الخوارزمية. الموافق للعقد المجاورة

-DPSO)بواسطة معامل قصور ذاتي متغير  DPSO))خوارزمية : هي  (DPSO)من خوارزمية المختلفة المقترحة 

VIW) , خوارزمية(DPSO) امل إنقباض متغير عمع م(DPSO-VCF) , خوارزمية((PSO   الإنتشار المعدلة

(DMPSO) ,خوارزمية مهجنة, وأخيرآ (LMS (DPSO- .  نتائج المحاكاة أظهرت تحسينات كبيرة بواسطة خوارزمية

((DPSO  مقارنة مع الخوارزميات غير التعاونية((NCPSO-LMS , خوارزمية إنتشار مربعات الوسط الصغرى

(DLMS) , المربعات الصغرى التكرارية وأيضا خوارزمية إنتشار(DRLS) . 

 

خوارزمية إنتشار مربعات , (PSO)خوارزمية أمثلية إنتشار السرب , (WSN)شبكة إستشعار لاسلكية  : كلمات دلالية

, معامل القصور الذاتي, بروتوكول الإنتشار, (RLS)خوارزمية المربعات الصغرى التكرارية , (LMS)الوسط الصغرى 
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CHAPTER 1

INTRODUCTION

In recent years, the rapid growth in wireless communication and elec-

tronic industry has enabled the development of power-efficient, low-cost and multi-

functional wireless sensor networks [1]. This research area has become quite de-

manding as WSN are being used in numerous applications like environment and

habitat monitoring, structural health monitoring, health care, home automation,

traffic surveillance, just to name a few. These applications commonly require

to estimate certain parameters such as temperature, concentration of chemicals,

pressure, speed and position of target object.

The sensor nodes can perform multiple operations like data acquisition from

the surrounding physical media, signal processing tasks, control signaling with

the central node or with the neighboring nodes and communicate relevant data

collected through wireless transceivers. Usually in a WSN there is a group of

sensors nodes in target sensing areas like battle fields, forests etc with limited

1



communication and power capability. In such environments, it becomes difficult

to replenish the resources like the battery power of the sensor node, therefore the

available resources have to be utilized efficiently. The limited resources can be

optimally utilized in a distributed network as it reduces multi hop or long range

communication required in the centralized network to send the data to the central

nodes for data processing.

By adapting a distributed processing in ad-hoc sensor network the data trans-

mission to the central nodes can be reduced and thus the available resources can

be used in an optimal manner. There has been extensive research done and several

adaptive filtering algorithms [13]-[20] proposed to exploit the spatial and temporal

diversity of the sensor network to improve performance of the network.

1.1 Background

1.1.1 Wireless Sensor Networks

A wireless sensor network is a collection of sensor nodes placed in a pre-determined

or in a random manner in the sensing location. In a sensor network the sensors

coordinate among themselves to form a communication network which is either

single hop or multi-hop or a hierarchical network with several cluster or cluster

heads. In a centralized network the signal processing takes place at the central

location known as the fusion center (FC) and in an ad-hoc network the processing

2



happens among sensor nodes. In the former case the sensor nodes do not process

the data collected and at the sensor node the data is quantized, encoded and

transmitted over the wireless channel to the fusion center which has a larger

processing and storage capability than the sensor nodes. The data collected from

all the nodes is processed at the fusion center and the parameters are estimated.

In the latter case each sensor nodes process the information collected from

the neighboring nodes which are within the communication range. The collected

information is combined at the sensor node and required signal processing is done

to estimate the parameter of interest. This process is repeated over several it-

erations, with each iteration improving the previously estimated result. As each

sensor does the signal processing independently its estimates may vary with re-

spect to its neighboring sensor nodes. So by using an interactive algorithm all

the sensors can be made to reach a mutually agreeable estimate. The estimate

can be made to reach only asymptotically but the network behaves in a self or-

ganized manner without the need of the fusion center. The Fusion center (FC)

based topologies benchmark the performance of all ad-hoc network based topolo-

gies implemented using WSNs. As all the data from all the nodes is available at

the a central location for processing, a common estimate can be derived for all

the nodes, but in case of ad-hoc network the estimated evaluated at each node

spreads via single hop exchange among the neighboring nodes, which results in

some time delay till all the nodes reach to a common parameter estimate. Thus

3



the quality of the estimates is lower when compared to the FC network.

But there is some major limitations in fusion center topologies like if the FC

fails then the whole network will fail. The sensor nodes located far apart consumes

more power for communicating with the fusion center. This problem can be

mitigated with multi-hop system but at the cost of additional complexity to the

system which will also consume additional power due to the complex system. In

spite of alternative solutions the FC network is not as robust ad-hoc network. On

the other hand, these limitations do not apply to the ad-hoc network; if any node

fails there is some performance degradation but it does not affect the functioning of

entire network. Each sensor node communicates only with its nearby neighboring

node, so the power consumption is lower and battery life is longer in comparison

with the sensor nodes in FC topology network.

1.1.2 Particle Swarm Optimization Algorithm

Particle swarm optimization is a modern heuristic algorithm, which belongs to

the category of swarm intelligence methods. It was first introduced by Kennedy

and Eberhart [2] and was initially simulated on a simplified social system where

each particle position is assumed to be a state of mind with particular setting of

abstract variables which represents the individual beliefs and attitude [3]. The

movement of the particles represents the change of these abstract variables. The

swarms evaluate their position through external stimuli and compare it with ex-
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isting knowledge and replace the existing values with the best fit. There are

three important properties of human and animal social behavior, i.e., evaluation,

comparison and imitation used by particle swarm to adapt to the environmental

changes [3].

The particle swarm is an ad-hoc system where each particle is on its own and

acts upon its local information, but as a group of particles, the swarm of particles

is capable of self organizing to perform complex task. Due to inter communication

among the particles, formation of complex structures is possible at swarm level,

which helps in solving complex optimization problems.

Kennedy and Eberhart laid down five basic principle of Swarm Intelligence [2]

and the PSO algorithm follows all these principles. These five basic principles are:

Proximity: The swarm should be able to perform simple space and time cal-

culations.

Quality: The swarm should be able to react to quality factors in the environ-

ment.

Diverse response: The swarm should not hold on to activities along excessive

narrow channels.

Stability: The swarm should not be very sensitive to environmental changes.

Adaptability: The swarm should be able to adapt to the environmental stimuli

when it is worth the computational price.

The PSO algorithm is a robust and fast algorithm and can provide better so-

5



lutions to nonlinear, not differential, multi-modal problems. It has been applied

in wide variety of scientific field [4] due to its high-quality solution, lower com-

putational cost than other evolutionary algorithms and also stable convergence

characteristics. The Evolutionary algorithm (EA) uses genetic operations like se-

lection, mutation and crossover to search for the global minimum, whereas for

PSO algorithm, position update and velocity update equations are used by the

particles at each iteration to update their position. At every iteration each par-

ticle learns from its own experience and also from its neighbors experience and

adjust its position in the search space. Unlike in EA algorithm where particles

are replaced at each generation, in PSO algorithm the particles stay alive and are

restricted to move within the search space for the whole run. Another major dif-

ference is that , EA algorithm does competitive search whereas as PSO algorithm

does a cooperative search for optimal solution.

PSO algorithm is a population based algorithm and is used to optimize contin-

uous and real-valued function in the m-dimensional space Rm. The population is

also known as swarm, consists of particles which move in predefined search space.

A swarm consists of group of particles and each particle position in the search

space represents a potential solution to the problem. The PSO algorithm selects

the optimal solution through iterative and probabilistic modification of the exist-

ing solutions. The commonly used PSO algorithm [3] is discussed here. Consider

a swarm population size of k particles. A particle is considered as a point in the
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m - dimensional search space. The different elements of PSO are discussed as

follows,

Particle position Xi(t): The particle is the potential solution represented by

an m-dimensional real-valued vector. The ith particle at time t is given as

Xi(t) = (xi,1(t), xi,2(t), xi,3(t), ...xi,M(t)), where xi,j(t) is the position of the ith

particle in the jth dimension.

Particle velocity Vi(t): It is the velocity of moving particles and is repre-

sented by m-dimensional real-valued vector. The ith particle velocity at time t is

given as Vi(t) = (vi,1(t), vi,2(t), ..., vi,M (t)), where vi,j(t) is the velocity of the ith

particle in the jth dimension.

Inertia weight iw(t): It is parameter to control the effect of previous particle

velocity on the current velocity. It influences the global and local exploration

abilities of the particles.

Particle best X∗(t): As the particle moves through the search space it eval-

uates its error value at every position and compares it with its individual best

error value attained at any time up to the current time. The position of the

particle corresponding to best error value is saved as particle best (pbest). The

error for every particle position is calculated using the objective function J , if

Ji(t) < J∗

i (t − 1), i = 1, 2, ..., k; then pbest is updated as X∗

i (t) = Xi(t) corre-

sponding to the error J∗

i (t) = Ji(t) else the values are updated for current time

as X∗

i (t) = X∗

i (t − 1) and J∗

i (t) = J∗

i (t − 1).
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Global best X∗∗(t): It is best position among all the pbest of the particles

and the global best (gbest) at time t is evaluated as follows. First search for

the minimum error value among all J∗

i (t), i = 1, 2, ..., k and denote the minimum

error as Jmin(t) and the corresponding particle as Xmin(t). If Jmin(t) < J∗∗(t− 1)

then update global best as X∗∗(t) = Xmin(t) and J∗∗(t) = Jmin(t) else update

J∗∗(t) = J∗∗(t − 1) and X∗∗(t) = X∗∗(t − 1) . The global best is expressed as

X∗∗(t) = (x∗∗

1
(t), x∗∗

2
(t), ..., x∗∗

m (t)),

Stopping criteria: The search for global minimum needs to terminate either

after attaining the global minimum or closer to it or after completing pre-specified

number of iterations, so that the algorithm works within the feasible computa-

tional cost. The search for global minimum in the search space is terminated if

any of the following condition is satisfied.

1. There is no change in global best for pre-specified iterations.

2. The maximum number of allowable iterations is reached.

The particle velocity is constrained to improve the local exploration of the

problem space. The particle velocity in jth dimension is limited as: vmax =

vc xmax, where vc is the velocity constraint factor.

The particles positions and velocities are updated using the following equation,
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velocity update for i = 1,2,3...,P and j = 1,2,..M

vi,j (t + 1) = iw vi,j (t) (1.1)

+c1r1

(

x∗

i,j (t) − xi,j (t)
)

+c2r2

(

x∗∗

j (t) − xi,j (t)
)

position update,

xi,j (t + 1) = xi,j (t) + vi,j (t + 1) (1.2)

The above execution steps of PSO algorithm is given in the Fig. 1.1 as follows:

1.2 Literature Review

In target sensing areas like battle fields, forests etc it is not feasible to replenish

the resources of the sensor node easily, so the available resources have to be uti-

lized in an optimal way. Distributed computing has attracted many researchers

to apply to WSNs, as it enables low-cost estimation of the parameters and also

its robustness to node failure. Distributed parameter estimation can be done ei-

ther by cooperatively estimating the parameter of interest by data sharing among

the neighboring sensor nodes or by non-cooperative estimation where the sen-

9



Yes

No

Initialize the particle swarm size
P, particle velocity Vi, particle
position Xi, inertia weight iw and
acceleration constants c1 and c2

Evaluate cost fuction Ji(t) for every particle and
determine the particle best Xi

*(t) of every particle and
global best X**(t) of the swarm.

Update particle velocity Vi(t) and also restrict the
velocity to predefined limits [-vmax vmax] for all
particles

Update all particle position Xi(t) and also restrict their
position to predefined limits [xmin xmax] for all
particles

Is stopping

criteriamet?

Stop

t=t+1

Figure 1.1: Execution steps of basic PSO algorithm

sor nodes independently estimates the parameter without any data sharing to its

neighboring nodes. An improved performance can be achieved by collaboration in

a cooperative distributed network because it exploits the spatial and temporal di-

versity of the network to reduce the estimation error whereas the non-cooperative

network can only exploit the temporal diversity of the network. A lot of research

is carried out on consensus-based distributed signal processing [5] -[12]. In all the

suggested schemes, the data is collected by sensor at once and then consensus
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is reached by locally sharing messages. A theoretical framework for analysis of

consensus algorithms and different areas of application has been well illustrated

in [12]. The drawback of consensus-based algorithms is that they are not robust

enough to tackle the problem of estimating time-varying signals or dynamic sys-

tems. Recently, distributed parameter estimation for dynamic systems such as

ad-hoc WSNs have received lot of attention. In [13] the authors have proposed a

diffusion scheme for distributed Kalman filtering where the data between neigh-

boring sensors is diffused before each sensor updates its own estimate using a

Kalman filter, thus improving the overall performance of the system. Further

improvement to potential problems have been suggested in [14] - [15].

A sequential scheme was suggested, where the information circulated through

a topological cycle and LMS adaptive filters are used at each sensor to adapt to

variations in the signal statistics [16]. The network adopts a Hamiltonian cycle

where the sensor node updates the weight using its local data and sends the

updated weights to the next sensor in the cycle to get the next better quality

estimate of the weights. The sensor is able to account for any time variations in

the process as the sensors use newly acquired data at each iteration to update

the estimate. This distributed scheme provides a faster convergence of solution

than a centralized system and also attains a low steady-state error at a lower

computational complexity. However, if any sensor node in the cycle fails then the

network is broken and would stop functioning until the cycle is restored. In [17]
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the author suggested a solution to the node failure problem but the computational

complexity of the algorithm is increased at the cost of performance degradation.

To overcome the drawbacks of the incremental algorithm especially the topological

constraints in [16] and also to fully exploit the distributed nature of the network a

new algorithm was proposed known as the diffusion LMS algorithm (DLMS) [18].

The computational cost was higher but was able to take advantage of temporal

and spatial diversity of the network. In diffusion LMS the network topology was

such that every sensor is able to communicate with its nearby sensor nodes. So

the sensor received the updated weight from all the neighboring sensors and did

a convex combination of the received local estimates. Using LMS recursion the

sensor updates the local estimate and this process is repeated for each sensor. In

[19] the author suggested an improved version of this algorithm where the process

is reversed, that is, first the LMS recursion updates the local estimate at each

sensor and then the convex combination of the estimates of the nearby neighbors

is taken. To improve the convergence speed RLS algorithm is suggested in place

of LMS algorithm but at the cost of higher computational complexity [20]. These

adaptive algorithms does not have the hill climbing capability to avoid the local

minima and are held in the local minimum of the search space.

Particle swarm optimization technique is simple and effective and has been

used by researchers in addressing WSNs problems such as optimal deployment

of the sensor node to achieve desired coverage, connectivity and energy efficiency
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with minimal number of sensor nodes [21], location identification of the sensor

nodes with respect to pre-determined location [22], energy efficient clustering of

sensor nodes to have minimal communication with the fusion centers [23] and data

aggregation of voluminous distributed data of large scale deployed sensor nodes

in an optimal way [24].

The WSNs faces some technical challenges such as dynamic topology, dense

ad-hoc deployment, spatial distribution and limitations in memory, bandwidth,

computational resources and energy. As traditional optimization techniques such

as linear, non-linear quadratic programming, Newton based techniques and inte-

rior point method requires enormous computational efforts. The PSO algorithm is

found to be more suitable in addressing these issues because of its inherent advan-

tages such as ease of hardware and software implementation, available guidelines

for choosing its parameters, ability to overcome local minimum problem and faster

convergence than other heuristic algorithms such as genetic algorithm, differential

evolution and bacterial foraging algorithm.

PSO has been applied to a large number of problems and systems as it is

able to optimize a wide array of functions of different types. In [25] the author

proposed a hybrid-PSO, which is a combination of Evolutionary algorithm with

the basic PSO. Similar scheme has been suggested to integrate the PSO and Ge-

netic Algorithm (GA) methods in parallel and in series. Both the algorithms were

able to perform better than standard PSO algorithm on a series of benchmark
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functions [26]. To achieve global minimum quickly and without premature con-

vergence, proper tuning of the PSO algorithm parameters is required. This matter

has been discussed and the effects of the tuning and parameter values are studied

in numerous papers [27] - [31].

The idea of sharing information with the neighboring particles was first sug-

gested by Kennedy [32], to enhance the search space and achieve better conver-

gence. The entire swarm is divided into smaller swarm topologies and each swarm

evaluates its local best. Unlike the standard PSO, particle position is updated

using the local best instead of the global best. A cooperative particle swarm op-

timizer (CPSO) which reduced the convergence time significantly was discussed

in [33], [34]. In this technique the solution vector of n dimension is split into n

one dimensional vector and each sub-vector is optimized using a separate PSO

algorithm. The global solution of all the swarms was concatenated to get the

final solution vector. A hybrid CPSO which is a combination of standard PSO

and CPSO was proposed to improve the convergence time. An extended PSO

(EPSO) algorithm was suggested in [35]. In this algorithm the particle velocity is

calculated using both local as well as global best positions of the particles velocity

at each iteration. The advantages of both global best and local best are combined

but needs further tuning of weight assignments (c’s), and topology for local best.

Kennedy in his paper [36] has discussed the good practices to be adopted and the

bad practices to be ignored. He gave an informal discussion of the algorithm and
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its different parameters and emphasizes that the real research goal is not to make

the algorithm more complicated. In fact, the goal is to strip it down to its essen-

tials, at least while this paradigm is still young, and avoid suboptimal methods.

The drawbacks of these earlier proposed PSO algorithms are that they require

large particle population size and are more suitable for centralized networks due

to higher computational complexity.

1.3 Thesis Contributions

In the earlier proposed PSO algorithms for WSN networks [37], the particle pop-

ulation size and the data window size used at every node for estimating the pa-

rameter were quite large, which increased the computational complexity at the

node. By using distributed estimation techniques, particle population size and

input data window size used in PSO algorithm can be reduced. Thus leading to

reduction in overall computational complexity of the network. A novel diffusion

scheme is proposed for data sharing among the sensor nodes. The four different

distributed estimation algorithms proposed in this thesis are as follows: First, in

DPSO-VIW algorithm, PSO algorithm uses a linearly decreasing inertia weight

instead of a constant inertia weight to improve the global and local exploration

capability of the particle [38]. Next, in DPSO-VCF algorithm, a linearly decreas-

ing constriction factor suggested in [39] is used to the improve the convergence
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speed and performance. Then in DMPSO algorithm, inertia is made the function

of the change in error value of the particle as proposed in [40]. Finally in DPSO-

LMS algorithm a hybrid technique is proposed, which combines the advantages

of the PSO algorithm and LMS algorithm with some increase in computational

complexity but it has shown a good improvement in performance.

1.4 Thesis Layout

The remainder of this thesis is organized as follows. Chapter 2 describes the

system model, the problem statement and the proposed algorithm. Chapter 3

explains the different enhancements done to the proposed algorithm to improve

the network performance. In Chapter 4, all the proposed algorithms are simulated

under a common experimental setup and a sensitivity analysis is carried out on

different network and particle swarm parameters to identify the optimum values .

Then in Chapter 5, the performance of all the proposed algorithms are compared

with each other and also with DLMS and DRLS algorithms and conclusions are

drawn on their performance and computational complexity. Finally in Chapter 6

the thesis contributions and future work is stated.
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CHAPTER 2

DISTRIBUTED ESTIMATION

PROBLEM AND ALGORITHM

FORMULATION

In this work, different algorithms have been developed to address the

problem of distributed estimation of monitored parameter in the WSNs. This

chapter begins with the overview of the system model of a WSN, followed by the

problem statement and finally an algorithm is formulated as a solution for the

stated problem.
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2.1 System Model

Consider a network of S sensor nodes randomly distributed in a normalized area

of (1 × 1) square units as shown in the Fig. 2.1. The nodes are placed in such

a way that every node has some sensors in close proximity and each node is

interconnected only to its neighboring nodes. Each node forms a communication

link with its neighbors to share information in a single hop. The communication

range r is set based on the amount of transmitting power each node is allowed.

So the nodes that are within the range r of any node s comprise the neighbors of

that node. It is also assumed that the communication between nodes is noise free.

Consider a system as shown in Fig. 2.2. The system block is considered at every

{d2(t) , U2(t)}

{ds(t) , Us(t)}

{d1(t) , U1(t)}

{dS(t) , US(t)}

Node 2

Node s
Node S

Node 1 {X1
**
(t) , J1

**
(t)}

{XS
**
(t) , JS

**
(t)}

{X2
**
(t) , J2

**
(t)}

Figure 2.1: A sensor network of S nodes

sensor node where an unknown system parameter w0 is estimated. The unknown

system parameter w0 is represented by a column vector of order (M × 1). The
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input and output of the system at time t is defined by Us(t) and ds(t), respectively.

The input data matrix Us(t) is of order (N × M) and is a group of row vectors

us(t) of order (1 × M) formed using the input data block as follows:

Us(t) = col{us(t − N + 1),us(t − N + 2), . . . ,us(t)} (2.1)

and output ds(t) is a column vector of length N × 1 and is expressed as follows:

ds(t) = Us(t)w
o + vs(t), (2.2)

where vs(t) is an additive white noise vector at every node.

Figure 2.2: System model diagram
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2.2 Problem Statement

The purpose of the nodes in the network is to estimate the value of a certain

parameter of interest w0. The simplest solution to this estimation problem is for

each node to estimate the unknown vector using only its own set of data. Such

a case is termed as the no cooperation case as the nodes are not communicating

with each other. In a non-cooperative sensor network, only temporal diversity of

the network is exploited. The spatial diversity of the nodes is not being utilized

here and so this case is counter productive as the poor performance of the nodes

with low SNR will result in poor performance of the network. In order to exploit

the spatial diversity of the network, the information about the estimated param-

eter at every node should be shared. Therefore by receiving better parameter

estimate from the neighboring node the performance of poor performing node can

be improved and thus the overall performance of the network can be improved.

2.3 Algorithm Formulation

A distributed PSO algorithm is proposed to improve the performance of the net-

work by exploiting both the spatial and temporal diversity of the network. A

PSO algorithm is considered at every node s to estimate the desired parameter

wo and for data sharing,a novel data diffusion scheme is proposed. In the pro-

posed diffusion scheme the sensor nodes share its local best particle position X∗∗

s
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and the corresponding local best error J∗∗

s with its neighboring nodes as shown

in Fig. 2.1. The information shared from the neighboring nodes is used to reduce

the estimation error at every node.

Generally a PSO algorithm works efficiently for batch type optimization prob-

lems where the entire input data is available off line. But in an online processing

scenario the entire input data is not available, so an input data block of size N

is taken at every iteration. The data window slides at every iteration by one step

which will add a new data point and exclude the oldest data point in the data

window so that the window size remains constant.

In the Fig 2.2, the estimation block uses a PSO algorithm at each node to

minimize error given by the objective function as:

Js,i(t) = [||ds(t) − Us(t)Xs,i(t)||2]/N, (2.3)

where Xs,i(t) is the ith particle position vector of node s. This objective function

defines the search space and the position of every particle in the search space

is assumed to be the potential estimate of the unknown parameter w0. The

computational complexity is also lowered by using smaller swarm size at every

node in comparison to the non-cooperative PSO algorithms used in the WSNs.

The steps of the proposed algorithm are as follows:

1. Initialization: At t = 0, initialize k particles Xs,i(0), i = 1, 2, . . . , k of
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dimension M at each node, where

Xs,i(0) = [xs,i,1(0), xs,i,2(0), . . . , xs,k,M(0)]. The coefficients xs,i,j(0), j =

1, 2, . . . ,M of every particle is uniformly distributed in the range [xmin, xmax].

Similarly, initialize the velocities Vs,i(0), i = 1, 2, . . . , k of all the node par-

ticles , where Vs,i(0) = [vs,i,1(0), vs,i,2(0), . . . , vs,k,M(0)]. The velocity co-

efficients vs,i,j(0) are uniformly distributed in the range [−vmax, vmax]. The

velocity coefficients are limited in a certain range to explore the search space

more effectively and the maximum velocity coefficient vmax is defined as [42]

vmax = vc xmax, (2.4)

where vc is the velocity constraint factor.

2. Particle error calculation: Calculate the estimation error for every par-

ticle using the objective function given in (2.3).

3. Particle best position: Only in first iteration (t = 0), set the particle best

position X∗

s,i(0) to the current position of the particle Xs,i(0) and particle

best error J∗

s,i(0) to the corresponding particle error value Js,i(0). For t > 0,

check: If Js,i(t) < J∗

s,i(t−1), i = 1, 2, . . . , k then set J∗

s,i(t) = Js,i(t), X∗

s,i(t) =

Xs,i(t) and continue; else set J∗

s,i(t) = J∗

s,i(t − 1), X∗

s,i(t) = X∗

s,i(t − 1) and

continue.
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4. Local best particle position: Search for the minimum among all particle

best error J∗

s,i(t), i = 1, 2, . . . , k and assign it to Js,min(t), then set Xs,min(t)

to the particle position corresponding to the error Js,min(t). If t > 0 and

Js,min(t) < J∗∗

s (t − 1), then update local best particle error as J∗∗

s (t) =

Js,min(t) and local best particle position as X∗∗

s (t) = Xs,min(t) and continue;

else set J∗∗

s (t) = J∗∗

s (t − 1), X∗∗

s (t) = X∗∗

s (t − 1) and continue.

5. Diffusion: If a node has p neighboring nodes including itself then share

its local best particle error J∗∗

s (t) and corresponding local best particle po-

sition X∗∗

s (t) to its p − 1 neighboring nodes. Using the error values re-

ceived from its neighbors, as shown in Fig. 2.1, identify the minimum lo-

cal best error among itself and p − 1 neighboring nodes and set J∗∗

s (t) =

min(J∗∗

s (t), J∗∗

1
(t), . . . , J∗∗

p−1
(t)) and then update the local best particle po-

sition X∗∗

s (t) to the particle position corresponding to the error J∗∗

s (t).

6. Velocity update: For the next iteration update the particle velocity us-

ing the current particle velocity, the local best particle position X∗

s,i(t) and

particle best position X∗∗

s,i(t). The ith particle velocity coefficient in the jth
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dimension is updated according to

vs,i,j (t + 1) = iw (t) vs,i,j (t)

+c1r1

(

x∗

s,i,j (t) − xs,i,j (t)
)

+c2r2

(

x∗∗

s,j (t) − xs,i,j (t)
)

, (2.5)

where c1 and c2 are acceleration constants and r1 and r2 are uniformly

distributed random numbers in [0, 1].

7. Position update: Using the updated velocities, then update the particle

position according to:

xs,i,j (t + 1) = xs,i,j (t) + vs,i,j (t + 1) . (2.6)

Goto step 11.

8. Stopping criteria: If the maximum number of allowable iterations is

reached then stop; else continue.

9. Time update: Update the time counter t = t + 1.

Goto step 2.

Repeat steps 2 to 12 at every node s, s = 1, 2, · · · , S.
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CHAPTER 3

PROPOSED ALGORITHMS

The PSO algorithm is mainly affected by stagnancy of particles at the local mini-

mum. To overcome the problem of stagnancy, different enhancements done to al-

gorithm proposed in Chapter 2. The four different enhancements of the proposed

algorithm is illustrated in this chapter. This chapter starts with the detail de-

scription of the DPSO-VIW algorithm, followed by description of the DPSO-VCF

algorithm, then DMPSO algorithm and finally a hybrid algorithm DPSO-LMS

algorithm is described.
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3.1 Diffusion Particle Swarm Optimization Al-

gorithm with Variable Inertia Weight (DPSO-

VIW)

A linearly decreasing inertia weight proposed in [38] is used in the proposed algo-

rithm in Chapter 2. The inertia weight function is defined in (3.1).

iw(t) = α iw(t − 1) (3.1)

where α is the weight decreasing factor and iw(t) is inertia weight at time t. The

execution steps of the DPSO-VIW algorithm is shown in the Fig. 3.1

3.2 Diffusion Particle Swarm Optimization Al-

gorithm with Variable Constriction Factor

(DPSO-VCF)

This algorithm uses a time varying factor to update the particle velocity in order

to guarantee the convergence of the PSO algorithm. The PSO algorithm with

a constriction factor was initially proposed in [41] and [42] and was later used
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in many applications because of its better performance than the standard PSO

algorithm. A time dependent constriction factor was later proposed in [39] for

non-linear system, where the constriction factor was varied at every iteration by

varying kc as shown in ( 3.5). In the proposed algorithm, the velocity update equa-

tion (3.9) is modified by introducing a variable constriction factor K suggested in

[39]. The modified velocity update equation is shown in (3.2) .

vs,i,j (t) = K (t) (vs,i,j (t − 1)

+c1r1

(

x∗

s,i,j (t − 1) − xs,i,j (t − 1)
)

+c2r2

(

x∗∗

s,j (t − 1) − xs,i,j (t − 1)
)

) (3.2)

where K is given as

K(t) =
kc(t)

∣

∣2 − Φ −
√

Φ2 − 4Φ
∣

∣

, (3.3)

where

Φ = c1 + c2, Φ > 4 (3.4)

and

kc(t) = kmin + (kmax − kmin)
R − t

R − 1
(3.5)

where the variable R is the maximum number of iterations and t is the current
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iteration.

The proposed modification of K can be intuitively explained by noting that

as the particle gets closer to global minimum, it undergoes a process similar to a

”cooling” one which results in a stabilizing effect on the swarm and which therefore

calls for the use of a lower value of the constriction factor. The general DPSO

algorithm proposed in Chapter 2 is used and a velocity update with constriction

factor is applied as given in (3.2). The execution steps of DPSO-VCF algorithm

is shown in the Fig. 3.2

3.3 Diffusion Modified Particle Swarm Optimiza-

tion (DMPSO) Algorithm

In this algorithm the speed and efficiency of the search is improved by indepen-

dently adjusting the inertia weight of each particle according to the change in the

error value of that particle. The inertia weight is made adaptable i.e. it is either

maintained at same value or changed when a better fit position is encountered in

order to move the particle more closer to the favorable position. If the particle

does not attain a lower estimation error, its inertia influence is reduced. This

modification, however, does not prevent the hill climbing capabilities of PSO, it

merely increases the influence of potentially fruitful inertia directions, while de-

creasing the influence of potentially unfavorable inertia directions. The inertia
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weight function suggested in [40] is shown as:

iws,i(t) =
1

(

1 + e
−∆Js,i(t)

Sl

) , (3.6)

where iwk,i(t) is the inertia weight of the ith particle of node k, ∆Jk,i(t) is the

change in particle error between the current and last generation, and Sl is the slope

constant used to adjust the transition slope based on the expected error range.

This relation limits the inertia weight to the interval (0,1), with the midpoint of

0.5 corresponding to zero change in error. Consequently, increase in error will

lead to inertia weight larger than the recommended fixed experimental value of

0.5, and decrease in error will lead to inertia weight smaller than 0.5. The DMPSO

algorithm execution steps is shown Fig. 3.3
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3.4 Diffusion Particle Swarm Optimization - Least

Mean Squares (DPSO-LMS) Algorithm

The performance can be further enhanced if PSO is hybridized with another al-

gorithm e.g., LMS algorithm [43]. In [44], a hybrid PSO-LMS algorithm was

proposed to overcome the problem of stagnation of swarm particles in the search

space. In this algorithm, there is no clear indication when to increase the influ-

ence of the LMS component to prevent stagnation of the particles in the learning

process and therefore there is an overhead to select the appropriate scaling factors

to control the effect of the two algorithms on the particle’s position update. This

difficulty can be overcome by separately using both algorithms at different time

periods and thus avoiding the usage of an additional factor to control the effect

either algorithm on the particle position update.

Initially, a PSO algorithm with inertia weight update function proposed in [40]

can be used globally explore the search space and converge to the solution faster.

As soon as the global best of the swarm becomes stagnant the particle position can

be updated using an LMS recursion to effectively search for the solution locally in

the search space. In the earlier proposed PSO algorithms for WSN network [37],

the sensor nodes estimated the unknown parameter non-cooperatively and used

large particle population size at every node, which increased the computational

complexity. Hence, in this work, cooperative estimation is carried out using a
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diffusion scheme which reduces the particle population size at every node, leading

to a substantial reduction in computational complexity. Initially the estimation

error is minimized using the PSO algorithm. As the particles comes closer to the

global minimum of the objective function (2.3), the local best of the node stagnates

due to lack of finer search capability of the PSO algorithm. This drawback is

overcome by updating the particle position using the LMS recursion with a smaller

step size. The steps of the proposed algorithm are as follows:

1. Initialization: At t = 0, initialize k particles Xs,i(0), i = 1, 2, . . . , k of

dimension M at each node, where

Xs,i(0) = [xs,i,1(0), xs,i,2(0), . . . , xs,k,M(0)]. The coefficients xs,i,j(0), j =

1, 2, . . . ,M of every particle is uniformly distributed in the range [xmin, xmax].

Similarly, initialize the velocities Vs,i(0), i = 1, 2, . . . , k of all the node par-

ticles, where Vs,i(0) = [vs,i,1(0), vs,i,2(0), . . . , vs,k,M (0)]. The velocity coeffi-

cients vs,i,j(0) are uniformly distributed in the range [−vmax, vmax]. The ve-

locity coefficients are limited in a certain range to explore the search space

more effectively and the maximum velocity coefficient vmax is defined as [42]

vmax = vc xmax, (3.7)

where vc is the velocity constraint factor.

2. Particle error calculation: Calculate the estimation error for every par-

31



ticle using the objective function given in (2.3).

3. Particle best position: Only in first iteration (t = 0), set the particle best

position X∗

s,i(0) to the current position of the particle Xs,i(0) and particle

best error J∗

s,i(0) to the corresponding particle error value Js,i(0). For t > 0,

check: If Js,i(t) < J∗

s,i(t−1), i = 1, 2, . . . , k then set J∗

s,i(t) = Js,i(t), X∗

s,i(t) =

Xs,i(t) and continue; else set J∗

s,i(t) = J∗

s,i(t − 1), X∗

s,i(t) = X∗

s,i(t − 1) and

continue.

4. Local best particle position: Search for the minimum among all particle

best error J∗

s,i(t), i = 1, 2, . . . , k and assign it to Js,min(t), then set Xs,min(t)

to the particle position corresponding to the error Js,min(t). If t > 0 and

Js,min(t) < J∗∗

s (t − 1), then update local best particle error as J∗∗

s (t) =

Js,min(t) and local best particle position as X∗∗

s (t) = Xs,min(t) and continue;

else set J∗∗

s (t) = J∗∗

s (t − 1), X∗∗

s (t) = X∗∗

s (t − 1) and continue.

5. Diffusion: If a node has p neighboring nodes including itself then share

its local best particle error J∗∗

s (t) and corresponding local best particle po-

sition X∗∗

s (t) to its p − 1 neighboring nodes. Using the error values re-

ceived from its neighbors, as shown in Fig.2.1, identify the minimum lo-

cal best error among itself and p − 1 neighboring nodes and set J∗∗

s (t) =

min(J∗∗

s (t), J∗∗

1
(t), . . . , J∗∗

p−1
(t)) and then update the local best particle po-

sition X∗∗

s (t) to the particle position corresponding to the error J∗∗

s (t).
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6. inertia weight update: Update the inertia weight according to [40]:

iws,i(t) =
1

(

1 + e
−∆Js,i(t)

Sl

) , (3.8)

7. Stagnancy test: If the local best X∗∗

s (t) of the node is not same as the

prior value then goto step 8 else goto step 10

8. Velocity update: For the next iteration update the particle velocity us-

ing the current particle velocity, the local best particle position X∗

s,i(t) and

particle best position X∗∗

s,i(t). The ith particle velocity coefficient in the jth

dimension is updated according to

vs,i,j (t + 1) = iws,i (t) vs,i,j (t)

+c1r1

(

x∗

s,i,j (t) − xs,i,j (t)
)

+c2r2

(

x∗∗

s,j (t) − xs,i,j (t)
)

, (3.9)

where c1 and c2 are acceleration constants and r1 and r2 are uniformly

distributed random numbers in [0, 1].

9. Position update: Using the updated velocities, then update the particle

position according to:

xs,i,j (t + 1) = xs,i,j (t) + vs,i,j (t + 1) . (3.10)
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Goto step 11.

10. Position update (LMS): As the particles comes closer to the global min-

ima of the objective function (2.3), the local best fitness value of the node

stagnates due to lack of finer search capability of the PSO algorithm. This

drawback is overcome by updating the particle position using the LMS re-

cursion with a smaller step size. The particle position update is done using

the LMS algorithm

Xs,i(t + 1) = Xs,i(t) + µ[ds(t) − us(t)Xs,i(t)]us(t), (3.11)

where µ is the step size, us(t) is the input data vector as shown in (2.1) and

ds(t) is the output of the unknown system obtained as follows:

ds(t) = us(t)w
o + vs(t), (3.12)

where vs(t) is white Gaussian noise and wo is the unknown system parameter

vector. At every iteration the particle position update is performed for all

the input vectors us(t) in input data matrix Us(t) sequentially.

11. Stopping criteria: If the maximum number of allowable iterations is

reached then stop; else continue.

12. Time update: Update the time counter t = t + 1.
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Goto step 2.

Repeat steps 2 to 12 at every node s, s = 1, 2, · · · , S. Finally, Fig. 3.4 summarizes

the execution steps of the diffusion PSO-LMS algorithm.
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*
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**(t) of every node.

Share the local best Xs
**(t) and its corresponding error

Js
**(t) of the node to its neighboring nodes

find min{ J1
**(t), J2

**(t), .. , Jp
**(t)} and update local

best position Xs
** corrosponding to minimum error.

Update the particle velocity Vs,i and also restrict the
velocity to predefined limits [-vmax vmax] for every
particle

update the inertia weight as iw(t) = α iw(t-1)

Is stopping

criteriamet?

Stop

t=t+1

Update the particle position Xs,i and also restrict its
position to predefined limits [xmin xmax] for every
particle

Figure 3.1: Execution steps of DPSO-VIW algorithm.
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Figure 3.2: Execution steps of DPSO-VCF algorithm.
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Figure 3.3: Execution steps of DMPSO algorithm.
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Figure 3.4: Execution steps of DPSO-LMS algorithm.
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CHAPTER 4

SENSITIVITY ANALYSIS OF

THE PROPOSED

ALGORITHMS

In this chapter all the proposed algorithms are simulated using a common

simulation setup. The MSE and MSD curves are plotted to evaluate the perfor-

mance of all the algorithms proposed in Chapter 3. Sensitivity analysis of all the

proposed algorithms is performed on different network and particle swarm param-

eters and optimum swarm parameter values are identified. This chapter begins

with the simulation setup, followed by the sensitivity analysis on the swarm pa-

rameters of DPSO-VIW, DPSO-VCF and DMPSO algorithm. Then in the next
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section, the sensitivity analysis on different network parameters such as network

size, particle swarm size and input data window size is performed for all the four

proposed algorithm.

4.1 Simulation Setup

A wireless sensor network is setup with network size of S = 20 sensor nodes as

shown in the Fig.4.1, with each node sharing its data with other neighboring nodes

in its communication range. A correlated input data block size of N = 10 is used

at every iteration and a new data point is replaced with the oldest data value

at every iteration as explained previously in System model section of Chapter 2.

The noise is assumed to be white. The unknown vector w0 (M × 1) is initialized

as col {1, 1, ..., 1} /
√

M , and the tap size is set to M = 4. At every node a

particle swarm size of k = 5 particles is initialized. The dimension coefficients

of the particles is assumed to be uniformly distributed in the range of [0, 1]. For

performance evaluation the mean-square-deviation (MSD) and mean-square-error

(MSE). The MSD is defined as the mean squared error between the estimated

parameter X∗∗

s and the unknown parameter wo and is given as:

MSD = E||wo − X∗∗

s (t)||2. (4.1)

and mean-square-error(MSE) is calculated at every node using the local best
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particle position X∗∗

s using the equation given as:

MSE = [||ds − Us(t)X
∗∗

s (t)||2]/N (4.2)

Figure 4.1: A 20 node network

4.2 Sensitivity analysis on the swarm parame-

ters of DPSO-VIW algorithm

The sensitivity analysis is performed for different swarm parameters such as ac-

celeration constants c1 and c2, inertia weight iw and velocity constraint factor vc

and the results are shown for all these parameters in Fig. 4.2, Fig. 4.3 and Fig.

4.4 respectively. The acceleration constants are varied in range of 0.1 to 2 in steps

of 0.1, velocity constraint factor vc from 0.1 to 0.6 in steps of 0.05, inertial weight
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constant iw from 0.1 to 2 in steps of 0.1. Using the sensitivity analysis results, the

optimum values of swarm parameters are identified and acceleration constants c1

and c2, the inertia weight iw and the velocity constraint factor vc are set to the

values given in table 4.1.

parameters opt. values

c1 1.2
c2 1.2
iw 0.8
vc 0.2

Table 4.1: Optimum parameter values of DPSO-VIW algorithm

4.3 Sensitivity analysis on swarm parameters of

DPSO-VCF algorithm

The sensitivity analysis is carried out for different parameters of DPSO-VCF al-

gorithm using the same the network size, the population size of the particles, the

input data window size and the Signal-to-Noise ratio (SNR) used for the DPSO

algorithm. The acceleration constants are varied in range of 0.1 to 2 in steps of 0.1,

velocity constraint factor vc from 0.1 to 0.6 in steps of 0.05 and the constriction

factor kmin and kmax is varied in steps of 2. The sensitivity analysis of different

parameters such as acceleration constants c1 and c2, the velocity constraint factor

vc and the constriction factor kmin and kmax are shown in Fig. 4.5, Fig. 4.7 and

Fig. 4.6 respectively. Thus the the swarm parameters are set to the optimum
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values obtained from the analysis i.e. the acceleration constants c1 and c2, the

velocity constraint factor vc and the constriction factor kmin and kmax are set to

the values shown in table 4.2.

parameters opt. values

c1 2.5
c2 2.5

kmin 2
kmax 5
vc 0.5

Table 4.2: Optimum parameter values of DPSO-VCF algorithm

4.4 Sensitivity analysis on swarm parameters of

DMPSO algorithm

The sensitivity analysis for different parameters such as acceleration constants c1

and c2, slope constant Sl and velocity constraint factor vc as shown in the Fig.

4.8, Fig. 4.9 and Fig. 4.10 respectively. The swarm parameters are set to the

optimum values obtained from the sensitivity analysis of the swarm parameter

i.e. the acceleration constants c1 and c2, the slope constant Sl and the velocity

constraint factor vc are set the values shown in the table 4.3.
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parameters opt. values

c1 1.8
c2 1.8
Sl 1.2
vc 0.1

Table 4.3: Optimum parameter values of DMPSO algorithm

4.5 Sensitivity analysis on the network parame-

ters for all the proposed algorithms

Using the optimum swarm parameters given in table 4.1, 4.2, 4.3 for DPSO-VIW,

DPSO-VCF, DMPSO and DPSO-LMS respectively, MSD curves are plotted for

different network size S, particle size k and input data window size N . In the

first scenario, for all the four proposed algorithm, the network size S is increased

in steps of 5 nodes ranging from 5 to 100 and the MSD curves are plotted as

shown in the Fig. 4.11, Fig. 4.14, Fig. 4.17 and Fig. 4.20. From the figures it

is inferred that, as the network size of sensor nodes in a given area increases, the

number of neighbors to a node also increases. Thus more information is shared

among the nodes which increases the performance but at the cost of high data

processing at every node, since more information is received from the neighboring

nodes. In the second scenario the particle population size k is varied in step of 1

particle ranging from 2 to 20 particles. In the Fig. 4.12, Fig. 4.15, Fig. 4.18, Fig.

4.21 it is shown that as the particle size increases the performance also increases

because the increase in the particle density increases the chance of finding the
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global minimum easily as larger size of swarm can do an extensive search in the

search space and can also help the solution to converge faster. In the final scenario,

the data window size is increased in steps of 5 data points ranging from 5 to 100

. In the Fig. 4.13, Fig. 4.16, Fig. 4.19, Fig. 4.22 it is shown that as as the

input data window size increases the performance also improves. A large input

data window means the estimation error is averaged over larger number of error

values which leads to much better error approximation and hence the network

performance increases.
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Figure 4.2: MSD curves of DPSO-VIW algorithm for different acceleration con-
stant values at 20 dB SNR.
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Figure 4.3: MSD curves of DPSO-VIW algorithm for different values of inertia
weight at 20 dB SNR.
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Figure 4.4: MSD curves of DPSO-VIW algorithm for different values of velocity
constraint factor at 20 dB SNR.

49



0 50 100 150 200 250 300 350 400 450 500
−35

−30

−25

−20

−15

−10

−5

0

 

 
c

1
=0.5, c

2
=0.5

c
1
=1.5, c

2
=1.5

c
1
=0.25, c

2
=0.25

c
1
=0.35, c

2
=0.35

c
1
=0.45, c

2
=0.45

Figure 4.5: MSD curves of DPSO-VCF algorithm for different values of accelera-
tion constant at 20 dB SNR.
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Figure 4.6: MSD curves of DPSO-VCF algorithm for different values of constric-
tion factor limit at 20 dB SNR.
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Figure 4.7: MSD curves of DPSO-VCF algorithm for different values of velocity
constraint factor at 20 dB SNR.

52



0 50 100 150 200 250 300 350 400 450 500
−35

−30

−25

−20

−15

−10

−5

 

 
c

1
=0.2, c

2
=0.2

c
1
=0.5, c

2
=0.5

c
1
=0.9, c

2
=0.9

c
1
=1.4, c

2
=1.4

c
1
=1.8, c

2
=1.8

c
1
=2, c

2
=2

Figure 4.8: MSD curves of DMPSO algorithm for different acceleration constant
values at 20 dB SNR.
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Figure 4.9: MSD curves of DMPSO algorithm for different values of slope con-
stants at 20 dB SNR.
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Figure 4.10: MSD curves of DMPSO algorithm for different values of velocity
constraint factor at 20 dB SNR.
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Figure 4.11: MSD curves of DPSO-VIW algorithm for different network size at
20 dB SNR.
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Figure 4.12: MSD curve of DPSO-VIW algorithm for different particle swarm size
at 20 dB SNR.
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Figure 4.13: MSD curve of DPSO-VIW algorithm for different input data window
size at 20 dB SNR.
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Figure 4.14: MSD curves of DPSO-VCF algorithm for different network size at
20 dB SNR.
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Figure 4.15: MSD curves of DPSO-VCF algorithm for different particle swarm
size at 20 dB SNR.
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Figure 4.16: MSD curves of DPSO-VCF algorithm for different input data window
size at 20 dB SNR.
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Figure 4.17: MSD curves of DMPSO algorithm for different network size at 20 dB
SNR.
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Figure 4.18: MSD curves of DMPSO algorithm for different particle swarm size
at 20 dB SNR.
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Figure 4.19: MSD curves of DMPSO algorithm for different input data window
size at 20 dB SNR.
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Figure 4.20: MSD curves of DPSO-LMS algorithm for different network size at
20 dB SNR.
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Figure 4.21: MSD curves of DPSO-LMS algorithm for different particle swarm
size at 20 dB SNR.
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Figure 4.22: MSD curves of DPSO-LMS algorithm for different input data window
size at 20 dB SNR.
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CHAPTER 5

COMPARISON OF THE

PROPOSED ALGORITHMS

In this chapter the performance curves of the proposed algorithms are

compared with each other and also with the non-cooperative PSO algorithm, the

DLMS algorithm and the DRLS algorithm. This chapter begins with the compar-

ison of performance curves of cooperative and non-cooperative PSO algorithm.

Then, the performance curves of all the proposed algorithms, DLMS and DRLS

algorithms are compared in both training and testing phase of the algorithm. Fur-

ther, in the next section the steady state error values at each node is compared.

In the final section the computational complexity of all the proposed algorithms

is calculated and compared.
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5.1 Comparison of cooperative and non-cooperative

PSO algorithm

In Fig. 5.1 and Fig. 5.2, the MSD and MSE curve of the DPSO-VIW algorithm

and NCPSO-VIW algorithm are compared. Figure 5.1 depicts the performance

of the DPSO-VIW algorithm as compared to that of the non-cooperative PSO

algorithm (NCPSO-VIW). As can be seen from this figure, a 15 dB improvement

is brought about by the DPSO-VIW algorithm over the NCMPSO-VIW algorithm

at both 10 dB and 20 dB SNR. The poor performance of the NCMPSO-VIW al-

gorithm is due to its convergence to a local minimum. The cooperative estimation

improves the performance as the proposed algorithm exploits both the spatial and

temporal diversity of the network.

The DPSO-VIW algorithm also reduces the computational complexity and

improves the performance of PSO algorithm by using smaller swarm size at sensor

nodes. This is demonstrated by a scenario where 100 particles at each node is

used in a non-cooperative sensor network and 5 particles at each node is used

in a cooperative sensor network. For the non-cooperative network the PSO-VIW

algorithm is used and for cooperative network DPSO-VIW algorithm is used. The

results are reported in Fig. 5.3 and Fig. 5.4. This figure shows that by doing

cooperative estimation the computational complexity can be reduced without any

performance degradation of the network. This shows that using small population
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size of swarms at every node the computational complexity is reduced 20 times

without degradation in performance of the DPSO algorithm. Thus cooperative

estimation reduces the computational complexity and improve the performance

of PSO-VIW algorithm by employing smaller swarm size at sensor nodes.

5.2 Comparison of algorithms in training phase

The performance of previously proposed diffusion algorithms such as diffusion

LMS [18] and diffusion RLS [20] algorithms are compared with the newly proposed

diffusion algorithms such as DPSO-VIW, DPSO-VCF, DMPSO and DPSO-LMS.

The MSD and MSE curves for both 10 dB an 20 dB signal-to-noise (SNR) ratio

are plotted in Fig. 5.5, Fig. 5.6, Fig. 5.7 and Fig. 5.8 respectively.

The MSD curves in the Fig. 5.5 and Fig. 5.7 shows that DPSO-VIW algo-

rithm performs about 5 dB better than DRLS algorithm, DPSO-VCF algorithm

performs about 2-dB better than DPSO-VIW algorithm, DMPSO algorithm per-

forms about 3.5 dB better than DPSO-VCF algorithm and DPSO-LMS algorithm

outperforms all the algorithms by a wide margin.

The MSE curves in the Fig. 5.6 and Fig. 5.8 shows about 0.5 dB better

performance for DPSO-VIW algorithm than DRLS algorithm, 0.3 dB better per-

formance for DPSO-VCF algorithm than DPSO-VIW algorithm, DPSO-LMS al-

gorithm shows about 0.5 dB better performance than DPSO-VCF algorithm and
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and DMPSO algorithm. The steady state MSD and MSE values at both 10-dB

and 20-dB SNR are summarized in the table 5.1 for better comparison of the er-

ror values. The DPSO-LMS algorithm outperforms DLMS algorithm and DRLS

algorithm at the cost of higher computational complexity.

Algorithms
SNR = 10-dB SNR = 20-dB

MSD (dB) MSE (dB) MSD (dB) MSE (dB)

DLMS -10 -9 -20 -18.85
DRLS -14 -9.4 -24 -19.4
DPSO-VIW -19 -9.6 -29 -19.7
DPSO-VCF -21 -9.8 -31 -19.9
DMPSO -22.5 -9.9 -33.5 -20
DPSO-LMS -31 -10.1 -41.5 -20.4

Table 5.1: Steady state MSD and MSE values of DPSO-LMS compared to other
algorithms at 10-dB and 20-dB SNR

5.3 Comparison of the algorithms in testing phase

The parameter estimated by the proposed algorithms are tested for varying input

data. The Fig. 5.9 and Fig. 5.10 shows MSE curves obtained in the testing phase

for all the proposed algorithms at both 10 dB and 20 dB SNR respectively. When

compared to the steady state error values shown in Fig. 5.6 and Fig 5.8,all the

proposed algorithm in testing phase shows similar performance. This confirms

the accuracy of the estimated parameter value and functioning of the proposed

algorithms.
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5.4 Comparison of the algorithms in steady state

The steady state MSD and MSE values at each node in the network is calculated

for proposed algorithms using simulation setup given in Chapter 4. As shown in

Fig 5.11, 5.13, Fig 5.12 and 5.14 the steady state MSD and MSE values are plotted

at both 10 dB and 20 dB SNR for the DLMS, DRLS and the newly proposed

algorithms. The figures shows that MSD remains constant at all nodes for all

the diffusion PSO algorithms whereas for DLMS algorithm and DRLS algorithm

there is about 5-dB of error variation at the nodes.

5.5 Comparison of computational complexity

The computational complexity of all the proposed algorithms is evaluated by

computing the number of multiplications and additions required at each node for

all the proposed algorithms. The approximate number of multiplications (Nm) and

additions (Na) for every iteration of the proposed algorithms at a node is given

in the table as: In order to compare the computational complexity of different

Algorithms Nm Na

NCPSO-VIW k(N(M + 1) + 3M) + 5 k(N(M − 1) + N + 3M) + (2k + 4Mk + 1)
DPSO-VIW k(N(M + 1) + 3M) + 5 k(N(M − 1) + N + 3M) + (2k + 4Mk + p + 1)
DPSO-VCF k(N(M + 1) + 3M) + 12 k(N(M − 1) + N + 3M) + (2k + 4Mk + p + 8)
DMPSO k(N(M + 1) + 3M) + 7 k(N(M − 1) + N + 3M) + (2k + 4Mk + p + 3)
DPSO-LMS k(N(2M + 1)) + 7 k(2NM) + (2k + 4Mk + p + 3)

Table 5.2: Number of computations required by the proposed algorithms
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proposed algorithms, network parameter values used in prior simulations are used.

Therefore the input window size of N = 10, particle swarm size of k = 5, particle

dimension of M = 4 and number of neighboring nodes p = 4 are substituted in

the equations given in table 5.2 to compute the number of Multiplication and

number of additions required by each of the proposed algorithm at a node. The

calculated computations for each of the proposed algorithm are listed in table 5.3.

The values in the table 5.3 shows that the computational complexity of all the

proposed algorithms remains more or less the same except for the DPSO-LMS

algorithms which requires some additional computations. However DPSO-LMS

algorithm outperforms other proposed algorithms by a greater margin as shown

in the Fig 5.8.

NCPSO-VIW DPSO-VIW DPSO-VCF DMPSO DPSO-LMS
Nm 315 315 322 317 457
Na 351 355 362 357 497

Table 5.3: Computational cost of the proposed algorithms
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Figure 5.1: Comparison of MSD curves of NCPSO-VIW (k=5) algorithm with
DPSO-VIW (k=5) algorithm at network size of 20 nodes
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Figure 5.2: Comparison of MSE curves of DPSO-VIW (k=5) algorithm with
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Figure 5.4: Comparison of MSE curves of NCPSO-VIW algorithm (k=100) with
DPSO-VIW algorithm (k=5) at 20 dB SNR and at network size of 20 nodes.
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Figure 5.7: Comparison of MSD curves of different algorithms at 20 dB SNR and
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Figure 5.8: Comparison of MSE curves of different algorithms at 20 dB SNR and
at network size of 20 nodes.
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Figure 5.9: Comparison of testing phase of different algorithms at 10 dB SNR and
at network size of 20 nodes.
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Figure 5.10: Comparison of testing phase of different algorithms at 20 dB SNR
and at network size of 20 nodes.
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Figure 5.11: Comparison of steady state MSD of different algorithms at 10 dB
SNR and at network size of 20 nodes.
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Figure 5.12: Comparison of steady state MSE of different algorithms at 10 dB
SNR and at network size of 20 nodes.
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Figure 5.13: Comparison of steady state MSD of different algorithms at 20 dB
SNR and at network size of 20 nodes.
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Figure 5.14: Comparison of steady state MSE of different algorithms at 20 dB
SNR and at network size of 20 nodes.
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CHAPTER 6

CONCLUSION

6.1 Contributions

A distributed estimation algorithm is proposed which uses a PSO algorithm at

every sensor node for parameter estimation and uses a diffusion scheme for co-

operative estimation by exploiting the spatial and temporal diversity of the net-

work. The proposed algorithm reduces the computational complexity by using

smaller particle swarm size and input data window size compared to prior pro-

posed PSO algorithms. The cooperative estimation improves the performance of

the algorithm when compared non-cooperative algorithms. The performance of

the proposed diffusion PSO algorithm is further improved by applying different

particle position update equations to the proposed diffusion PSO algorithm. The
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four different variants of DPSO algorithm are as follows.

1. In the DPSO-VIW algorithm, the inertia weight factor in the velocity equa-

tion is varied linearly to enhance the local and global search capability of the

algorithm. The results showed better performance than the earlier proposed

diffusion adaptive algorithms.

2. In DPSO-VCF, a variable constriction factor in the proposed diffusion PSO

is used to control the velocity of the particle, the results showed faster and

better convergence of the steady state error.

3. In DMPSO algorithm, the inertia weight is varied proportional to the change

in particle error to improve the performance further.

4. In the hybrid DPSO-LMS algorithm, the advantages of both PSO and LMS

algorithm were used fruitfully. This algorithm outperformed all the pre-

viously proposed algorithms but at the cost of increase in computational

complexity.

6.2 Future Work

In future work, these proposed algorithms can be applied to complex optimiza-

tion problems in WSNs. The proposed algorithms can also used for non-linear

systems as PSO is known to perform better than other adaptive and evolutionary
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algorithms.

The computational complexity of the algorithm can be reduced by reducing

the particle swarm size.

Finally, new hybrid algorithms can be implemented by using other adaptive

algorithms.
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