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Compressors are at the heart of most petrochemical and industrial power plants. 

These plants require fluids at high energy (High pressures and velocities), and due to this 

requirement compressors are used as the primary means of raising the fluid to a higher 

energy state.

Of the various types of compressors, centrifugal compressors are most commonly 

used in Saudi Arabia due to their continuous flow operation and moderation head 

capacity. Despite their common usage, centrifugal compressors are often major noise 

generators due to their high horsepower and high tip speeds. This noise is undesirable for 

people living close to installation and also can potentially cause structural failures in the 

piping. Particular attention is given to the modified solution using the Helmholtz 

Resonator concept. A comparison of the noise reduction results between the developed 

solution and the existing solution is made. A thorough numerical simulation of acoustic 

wave propagation for one and two degrees of freedom Helmholtz resonators is presented 

and is validated with experimental results from the available literature. The calculated 

resonant frequencies for different geometries of one and two degrees of freedom 

resonators agree well with the experimental results .The effect of end-correction factors 

has also been incorporated in this study. The results from published papers are 

reproduced and validated using COMSOL, FEM based software.
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Attention is also given to the effect of geometry shape of the Helmholtz resonator on 

its resonant frequency and on its noise attenuation capability. The theory of resonant 

frequency depending on the shape of the vessel of the resonator is verified numerically 

using COMSOL. The Numerical simulation is supported with an experimental validation 

too. Some new configurations of the resonator arrays are also simulated and presented 

with significant improved results in comparison to those already in practice.
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CHAPTER 1                                                       

INTRODUCTION

Compressors have been identified as major noise sources, and this is understandable. 

Large numbers of compressors, of all types, are used in refineries, chemical plants, 

generating stations, and other major industries. Certain types of compressors generate 

relatively high noise levels even above those permitted by the Occupational Safety and 

Health Act, and therefore need attention[12] In many developed countries, such as United 

Sates, France, Germany and Australia, governments have stepped in to protect citizens 

from this aural assault with regulations that set maximum sound levels for machineries, 

vehicles, and airplanes. Switzerland has gone so far as to prohibit aircraft departures 

between 11:30 p.m. and 5:00 a.m., except in unusual and unforeseen cases. The problem 

has also found its way into the Saudi Arabian industrial areas. 

Huge amount of noises is generated from the rotating equipments and machineries 

especially from the centrifugal compressors used in a number of refining units of Saudi 

Aramco. These circumstances create problems for the employees working in some of the 

refineries such as they are unable to hear the fire and safety alarms, due to the high
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intensity of noise generated by the compressors. They are prone to hearing impairment, 

hypertension, vasoconstriction and other cardiovascular impacts.

It is obvious that compressor sound control is needed, and this requires an 

understanding of the noise generating process. Various techniques have been found to be 

effective in reducing the noise of centrifugal, axial, and reciprocating compressors. The 

biggest impact of this noise is the discomfort of the personnel working at the facility as 

observed in practice. The noise levels in compressors vary over a wide range from 70 –

120 dBA [1, 2, 3]. As the compressor operates over its lifetime, the noise and vibration 

levels expectedly increase, since centrifugal compressors are continuous flow machines 

and are extensively used in Saudi Arabia at crude oil processing facilities such as Saudi 

Aramco, maintenance is periodic and stopping the operation every time noise levels 

exceed the desired threshold can be very expensive. 

This imperilment can be subdued by following noise reduction procedures. Noise 

Reduction can be achieved by two different methods. The first one consists of 

using passive means which are based on the absorption and reflection of noise and has 

excellent noise cancellation properties for frequencies above 1 KHz. The other method 

consists of using active means, which can show considerable noise cancellation 

performance for noise frequencies below 1 KHz.

In this work I tried to explore these methods of noise reduction and come up with a 

practical add on solution to this menace. The development of an efficient noise attenuator 

is not just a benefit for the employees working around it. Quiet, smooth running 
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machines, or industrial processes, provides a commercial edge over competitors, and 

enables customers to fulfill stringent regulatory conditions. It enhances communication,

improves transfer of instructions, improves efficiency, enhances safety, and minimizes

hearing losses. It is not something which can’t be ignored and its urgent need and the 

numerous benefits behind it call for its proper and timely implementation in each and 

every industry suffering noise hazards. 

1.1 BACKGROUND

Sounds consist of pressure waves. The intensity of sound is known as the sound 

pressure level, or in short SPL. The human ear can detect a wide range of sound pressure 

levels. Sounds can be very soft, such as the ticking of a wristwatch, or very loud, such as 

a top fuel dragster doing a burnout. The intensity of sound pressure can be measured, and 

is expressed as decibels, or dB. Alexander Graham Bell founded the concept of decibels 

and formulated a logarithmic scale based on 10. “Deci” refers to the base 10 log scale, 

and “Bel” refers to Alexander Bell.

Figure 1.1 shows some sources of noise for comparison purposes. It can be seen that 

120 dB is equivalent to the sound of an airplane on the runway. This level of noise barely 

lies below the Human Pain Threshold and may lead to permanent and irreparable 

damage, especially with consistent exposure over long periods of time. Above 120 dB is 

the threshold of pain and human ear is unable to sustain noise at that frequency Fig 1.2
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Figure 1.1 Chart displaying a comparison of Noise levels [55]

Figure 1.2 Chart displaying a comparison of Noise levels with frequency [56]
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1.2 WAVE EQUATION

Sound waves in a lossless medium are governed by the following equation for the 

acoustic pressure, p (SI unit: Pa): 

2

2 2

1 1. ( )p p q Q
c t� �

� ��
�� � � � 	
 �� � 


(1.1)

where � refers to the density, and c denotes the speed of sound. The dipole source q

and the monopole source Q are both optional. The combination ��2is called the adiabatic 

bulk modulus, commonly denoted by k In terms of acoustic potential funct����q���	���r	�

equation can also be written in the form [33, 34]

2
2

2 2

1
c t

�� �� �� 	 
 � �� 

(1.2)

1.2.1 Plane Waves

For the case of plane wave propagation, only one spatial dimension, x, the direction 

of propagation is required to describe the acoustic field. An example of plane wave 

propagation is sound propagating along the center line of a rigid wall tube. In this case, 

Eqn. (1.2) written in terms of the potential function � reduces to,

2 2

2 2 2

1
x c t
� �� �� �	 
 �� �� 


(1.3)
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1.3 SOUND FIELDS 

In order to predict or model noise from equipment we need to understand, or better, 

define the sound fields and the predicted sound level associated with those fields. The 

near field, far field, free field and reverberant field are the most common. The regions 

that describe the sound fields and sound propagation are illustrated in Fig 1.2.

Figure 1.3 Definition of Sound Fields

The near field region is probably the most difficult to predict as this describes the 

region where noise propagation is not well developed and construction techniques and 

equipment installation details that are generally unknown This affect the amount of noise 

around the equipment or structure. The far field starts where the sound field becomes 

more stable and propagation is fairly uniform. This location is frequency (wavelength) 

dependent and is usually two to four major source dimensions (width and height as you 

look at the source) away from the noise source. The free field describes where sound 
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freely propagates and spreads uniformly. The sound level decreases approximately six 

decibels for every doubling of distance. As you get farther away from the source the 

decay rate starts to flatten out once the sound from the source approaches the ambient or 

background sound level as illustrated in the right section of the Fig 1.2. The reverberant 

field occurs where freely propagating sound waves are reflected back from a wall, a 

ceiling, or other surfaces again causing variation in sound levels as illustrated. 

1.4 PROPAGATION MODELING OF SOUND 

The radiation of sound comes from various sources: the aero/fluid-dynamic path from 

a fan, engine, turbine or flow regulating device; or, from the structural path from the 

engine body, duct wall, pipe wall, valve body, or enclosure wall. The radiation of sound 

may be generally described (modeled) by the following expression [57],

210 , : 20
4p w i

QL L Log A dB re Pa
r

�
�

� �	 � � �
 �
� 


� (1.4)

Here re: 20� Pa refers to the reference pressure taken for the calculations. This 

method is also commonly referred to as ray tracing, that is, the sound ray (path) is 

���	�	��st��� �	�����u	��	����� �	���� vwxyz�2{����� ����	�� v|Ai ) . Eqn (1.1) is the basic 

form and predicts the sound level Lp at a distance r (meters), where Q defines the 

reflective surfaces that are around the source of noise having a sound power, LW}�|Ai is 

the term used to account for all the elements that can affect the sound level (directivity, 

atmospheric loss, barriers, ground effects, trees, etc.). 
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Absent from Eqn. (1.4) is the functional descriptor for frequency. This expression is 

applied for each frequency band of interest. Each source of noise may have up to ten 

octave bands or up to 27 one-third octave bands. Eqn. (1.4) is applied to each band, and 

the overall sound level determined from the all the octave or one-third octave band sound 

pressure levels. 

Q accounts for the reflective planes that bound the source of noise. These planes act 

as reflectors focusing the sound or bounding the sound to a certain area. It is also referred 

to as the solid angle of propagation (D~) and by other descriptors. 

Directivity of a specific nature may be introduced if known which is a measure of the 

sound level relative to the averaged sound level in a given direction and is called the 

Directivity Index, 

p pDI L L dB� �	 � (1.5)

Where, Lp is the predicted or averaged sound level at the distance r versus the 

measured sound, L��. This enables the use of a specific Directivity Index applicable to the 

source of noise in order to predict sound levels from the source in a specific direction. 

Directivity is critically important 

Sound measurements are most commonly done in Sound Pressure Levels (DB)., 

which can be defined as [35],
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2

10 210 [ ]p
re

pL Log dB
p

� �
	 
 �

� 

(1.6)

Where, 

p= root mean square (rms) sound Pressure (Pa)

pre=international reference pressure of 2.0 x 10-5 Pa

Eqn.(1.6) can also be written in a simpler form which is

5
1020 94[ ( : 2.0 10 )]pL Log p dB re x Pa�	 � (1.7)

1.5 MOTIVATION BEHIND PRESENT WORK

In this work I tried to explore these methods of noise reduction and come up with a 

practical add-on solution to this menace. The development of an efficient noise attenuator 

is not just a benefit for the employees working around it. Quiet, smooth running 

machines, or industrial processes, provides a commercial edge over competitors, and 

enables customers to fulfill stringent regulatory conditions. It enhances communication,

improves transfer of instructions, improves efficiency, enhances safety, and minimizes

hearing losses. It is not something which can’t be ignored and its urgent need and the 

numerous benefits behind it call for its proper and timely implementation in each and 

every industry suffering noise hazards. 
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1.6 OBJECTIVES OF THIS WORK

The objectives of the thesis study are listed below:

1) Design of One and Two Degree of freedom Helmholtz resonators for maximum 

possible noise reduction in ducts and pipelines based on real plant configuration.

2) Study of geometry effects on the resonant frequency of the Helmholtz 

Resonators.

3) Experimental, analytical as well as numerical validation of the designed 

resonators.

4) Study of the behavior of a non homogeneous array of Helmholtz Resonators on 

noise reduction.
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CHAPTER 2                                                        

LITERATURE REVIEW

2.1 SOURCES OF NOISE IN COMPRESSORS

Noise originates from various sources within compressors. The most critical source of 

noise in centrifugal compressors is considered to be the blade passing frequency. This 

noise arises from the interaction between the impeller blade and the stationary diffuser 

vanes [1,2,3]. It is widely known that Blade Passing Frequency (BPF) noise components 

come from the circumferential flow distortions upstream and downstream of the impeller 

[4]. The interaction between the impeller blades as it passes by the stationary diffuser 

vane causes a pressure pulsation which leads to the development of vortices. 

Figure 2.1 Source of Noise in compressor line

  UUtilities 

Compressor

Pipeline
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The interaction of these vortices as they move along the flow path creates the discrete 

frequency noises of the Blade Passing Frequency. Conventionally the BPF falls between 

1000 Hz to 4500 Hz, usually depending on the speed of the compressor and the number 

of impeller blades [1]. This range falls within human hearing sensitivity which adds to 

the irritating nature of this noise. Although the BFP may be considered to be the most 

annoying aspect of compressor noise, at supersonic flow conditions another source of 

noise arises in the form of buzz saw noise. The BPF noise and the buzz saw noise 

coupled together can lead to structural failure due to fatigue especially at pipe nipples, 

stubs, and instrumentation connections.

In any centrifugal compressor as the fluid flow exits the impeller, the flow 

distribution is distorted. Specifically, such distorted flow is characterized by a low angle 

(relative to a tangent to the impeller circumference) fluid flow exiting most prominently 

adjacent to the shroud side of the diffuser. In the past, this distorted flow has been shown 

to cause severe compressor performance problems [5]

Due to the design of the compressor, the inlet and discharge pipes are relatively more 

susceptible to noise transmission that the compressor casing itself. Noise propagates 

through the medium of least resistance and since the piping at the inlet has thinner walls 

when compared to the compressor casing, this provides a path of lower resistance for 

noise propagation. Between the inlet and the discharge, investigations have found that 

higher vibration and noise levels emanate from the discharge. At the inlet the primary 
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source of noise is the rotor-alone noise, while at the diffuser the BPF noise is dominant 

[2].

Some other sources affecting the noise produced by the compressors are turbulence 

which produces noise using a combination of two affects i.e. Vortex shedding, and 

upstream turbulence. Increasing the radial distance between impeller blades and diffusers 

reduces noise. Rotational speed also has a definite effect on noise. For any particular 

design, the sound level will increase anywhere from 20 to 50 times the logarithm of the 

speed ratio. Another point that cannot be missed is the number of stages of the 

compressor. The noise generated by centrifugal compressors can be reduced by 

decreasing the work per stage that is, by increasing the number of stages. Head-capacity 

operating point also plays a very important role in the noise generation phenomenon in 

the centrifugal compressor. Mass flow and discharge pressure both have a profound 

effect on the noise produced by a compressor. As the mass flow is reduced the noise 

decreases until a point near surge is reached. Beyond this point the noise increases

rapidly.

2.2 ACOUSTIC PREDICTION

Sound propagation in a duct with a uniform flow has been investigated by researchers 

[37-41] and they have presented a theoretical development, accompanied by an 

experimental check, of the attenuation in acoustically lined ducts with no flow. Fischer 

and Anderson [43] have investigated sound attenuation in a lined rectangular duct 
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without flow. The case of a duct carrying shear flow also has been investigated 

thoroughly to check for a solution of noise reduction due to the flow [44-53]

It is proved already that the dipole due to the unsteady pressure fluctuation is the 

dominant source of the centrifugal compressor noise. The most prominent source of the 

dipole in the centrifugal compressor is the rotating impeller. FW–H equation of the point 

dipole assumption is used to define the noise source of the centrifugal compressor 

impeller where p(x, t) is the acoustic pressure, x is the observer position vector, t is the 

observer time, Cos � is the directivity factor, f is the source strength, � is the radiated 

frequency, r is the distance between the source and the observer point,  and c is the speed 

of sound. The near- and far-field components are seen explicitly as 1/r2 and 1/r terms, 

respectively. [35]

2

1( , ) ( / )
4

icos f ip x t e t r c
rc r

�� �
�

� �	 � �� �
� �

(2.1)

2.3 NOISE REDUCTION TECHNIQUES

Noise reduction techniques fall under three broad categories: Primary noise reduction, 

Secondary noise reduction and Tertiary noise reduction. Primary noise reduction involves 

reducing noise at the source; this usually means a complete redesign of the component or 

an add-on solution within the compressor itself. Secondary solutions include externally 

blocking noise; acoustic lagging, sound insulation, sound enclosures and sound reduction
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in transmission are some examples. Tertiary solutions are solutions based on blocking 

noise on the receiving side, these can be in the form of ear plugs or some kind of ear 

protection for the personnel working around the facility. Normally in most industrial 

environments either tertiary or secondary noise reduction solutions are employed [2]. 

Device Mechanism Effective 
frequency 

range 

Critical Dimension Dependence of 
Performance on 
end conditions �����������������	 

Length Width 

1. Lumped Suppressive Band D<1/8 D<1/8 Critical 

2. Side Branch 
resonator 

Suppressive Narrow Band D<1/4 D<1/8 Critical 

3. Transmission 
Line 

Suppressive Narrow Band D>1/8 D<1/4 Critical 

4.Lined Duct Dissipative Broadband Unbounded Slightly 
Dependent 

5.Lined Bend Dissipative Broadband D>1/2 D>1/2 Not Critical 

6.Plenum 
Chamber 

Dissipative/ 
Suppressive 

Broadband D>1 D>1 Not Critical 

7. Water Injection Dissipative Broadband Unbounded Not Critical 

Table 1: Classification of Mufflers[12]

2.3.1 Helmholtz Principle

However in recent years an add-on solution using the Helmholtz concept has been 

developed in the form of Helmholtz Resonators. Helmholtz resonance is the phenomenon 

of air resonance in a cavity, when air is forced into a cavity, the pressure inside increases. 

When the external force pushing the air into the cavity is removed, the higher-pressure air 

inside will flow out. This surge of air flowing out tends to over-compensate, due to the 

inertia of the air in the neck, and the cavity will be left at a pressure slightly lower than 

the outside, causing air to be drawn back in. This process repeats with the magnitude of 

the pressure changes decreasing each time.
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There exist many variations of the Helmholtz Resonators in the form of quarter-

wavelength resonator [6], branched type resonator [5] and Duct resonators [1, 2]. Some 

of them are listed with some of their characteristics in T�s�	�����	�	�����������	���	��	��t��

speed of sound, wavelength and the critical dimension respectively [9]. Theoretically D is 

unbounded but practically it has a bound which is D< ¼. The study here focuses on 

Lumped element model of Helmholtz Resonators.

2.3.2 Lumped element model of the Helmholtz resonator

The Helmholtz resonator is said to act as an acoustic filter element. If the dimensions 

of the Helmholtz resonator are smaller than the acoustic wavelength, then the dynamic 

behavior of the Helmholtz resonator can be modeled as a lumped system. 

Essentially the system can be approximated as a mass-spring system and 

consequently it can be treated mathematically as such. The large volume of air is taken as 

a spring element and the air in the neck is considered as an oscillating mass. Damping 

appears in the form of radiation losses at the neck ends and viscous losses due to friction 

of the oscillating air in the neck. Fig. 1.3 shows this analogy between Helmholtz 

resonator and a vibration absorber.
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Figure 2.2 One Degree of Freedom Helmholtz resonator and vibration absorber

2.3.3 Analytical analysis of Single Helmholtz resonators 

For a neck which is flanged at both ends [10], the effective length is approximately:

1.7effL L a	 � . (2.2)

Which includes a correction factor for mass-loading due to air entrapment near the 

neck extremities, where ‘a’ is the radius of the neck .The acoustic mass of a Helmholtz 

resonator is given by

a effM L S�	 (2.3)

Where S is the cross –sectional area of the neck, � is the density of the fluid. If ‘y’ 

denote the displacement of in the positive direction pointing inwards along the neck axis 

Fig. 1.3 then the stiffness of the resonator is defined as the reciprocal of the compliance, 

and it is defined as:



18

r
dFK
dy

	 (2.4)

where

F PS	 (2.5)

Where ‘F’ is the force applied in the ‘+y’ direction at the resonator neck entrance, P is 

the pressure at the neck entrance.  For adiabatic system with air as an ideal gas, the 

thermodynamic process equation for the resonator is

PV C� 	 (2.6)

Where C is a constant, � is the ratio of specific heats; V is the cavity volume of the 

resonator. Differentiating this equation gives

1 0V dP P V dV� �� �� 	 (2.7)

Form Eqn. (2.5) the differential change in pressure dP is given by 

dFdP
S

	 (2.8)

The change in the cavity volume is

dV Sdy	 � (2.9)

which is negative since the air in the volume is compressed. Substituting these into 

differential equation, it can be re-casted as
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1 0dFV P V Sdy
S

� �� �� 	 (2.10)

This becomes,

2

r
dF p S K
dy V

�
	 	 (2.11)

or considering P RT�	 and c RT�	 , resonator stiffness is then:

2 2

r
c SK
V

�
	 (2.12)

where c is the speed of sound.

Two sources of damping in the Helmholtz resonator can be considered: sound 

radiation from the neck and viscous losses in the neck, which in many cases can be 

neglected compared to radiation losses.

Sound radiation resistance is a function of the outside neck geometry. For a flanged 

pipe, the radiation resistance is theoretically determined and is approximately [10]

2 2

2r
ck SR �
�

	 (2.13)

Where k is the wave number, k
c
�

	

On the other hand the mechanical resistance due to viscous losses can be considered 

as [11]
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( )2v S
L aR R S

ca�
�

	 (2.14)

Where ‘L’ is the neck length, ‘a’ is the neck radius. Rs for a sufficiently large neck 

diameter is

0.00083
2SR �
�

	 (2.15)

where w is the excitation frequency.

The mechanical impedance of the mechanical system is defined as the ratio of the 

driving force and the velocity of the system at the driving point. The mechanical 

impedance of a driven mass-spring–damper system is [10]

^
^

^ ( )r
m m

F KZ R j m
u

�
�

	 	 � � (2.16)

Where Rm denotes viscous damping, ‘m’ is the mass element, and ‘Kr’ is the stiffness 

of the spring element. According to the analogy between Helmholtz resonator and mass-

spring–damper system (vibration absorber), the mechanical impedance of a Helmholtz 

resonator is obtained by replacing mass and damping from Helmholtz resonator system in 

above equation:

2 2 2 2^
( ) ( )

2mres v eff
ck S c SZ R j L S

V
� ���

� �
	 � � � (2.17)

The natural frequency of a Helmholtz resonator “�0” is the frequency for which the 

reactance is zero:
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0
eff

Sc
L V

� 	 (2.18)

And the acoustic impedance of the side branch Helmholtz resonator is

^
^

2
mres

res
ZZ
S

	 (2.19)

For an accurate prediction of the resonant frequency in one Degree of Freedom 

(DOF) cylindrical resonators the following Eqn. (2.20) can be used [8].

2

3 3 3

3. 3. 3
2 2 2

n c n c

n n n c

L L L Lcf
L L L L

� � �
�

� �� �
	 � � �
 �

� 

(2.20)

w�	�	��������	������������	������������	�����������	��	���������	�r����	�����Lc , Ln are 

the lengths of the cavity and the neck respectively. The only restriction in the above 

mentioned formulae is diameter must be less than a wavelength at the resonance 

frequency. The transmission loss (TL) for one DOF can also be calculated using the 

equation [7].

2

10

(1/ ) tan( . ) tan( . )
10 1

2. (1/ ) tan( . ) tan( . ) 1
ncn

d n c

k L k LaTL Log
a k L k L

�
�

� ��� �
� �	 � 
 ��� �� 
 !

(2.21)

Where k is the wave number and an and ad are the area of cross section of the duct and 

neck respectively.
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A formula for resonant frequencies was developed in the late nineteenth century 

which includes the effect of the geometry of the resonators [21].

1 1 1 1
1 2

1 1

2 1 11.21( ) ( ) 1 [ ]
2 3

N

N O N O N O N O
N v N O O

N O N O

c Ff
V h V V l l V V l lV V l l l l

V V V h l l V h V h
�

	 "
� �� � � � � �� �� � � � � � � � �� �
 �� �� � � � � 
 !� �

(2.22)

0

( )
( )

h
N

v
F xV xl dx
Vh F x

	 # (2.23)

(here F(x) is the area of a cross-section of the resonator expressed as a function of 

distance x from the bottom and

0
( ) ( )

x
V x F d$ $	 # (2.24)

lO1, 1O2 = two parts of the total end-correction length due to the motion of gas 

particles outside the resonator .Generally the values lO1 = lO2 = 0.24r, where r is the radius 

of the neck or opening of the resonator.

VO1 = volume of the hypothetical elongation of the neck due to the motion of gas 

particles outside the resonator (VOl = FNlO1).

2.3.4 Form factor (lv) for fundamental forms of volumes in 1 DOF configuration

Form factor is calculated to calculate the effects of forms of volumes of the resonator. 

Following are the different form factors for volumes [21].
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1. Sphere.

Figure 2.3 Spherical Helmholtz resonator

2

2 3

1 1 1 2 4 2ln
2 3 2( 1) ( 1) ( 1) 1v

rl
R A A A A A

� �
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(2.25)

Where, 21 ( / )A r R	 �

2. Frustum of a cone

Figure 2.4 Conical Helmholtz resonator

3

2

1 1 ln
( / ) ( / ) 1 3 2 ( )v
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3. Cylinder

Figure 2.5Cylindrical Helmholtz resonator

3
N

v
V

F hl
F

	 (2.27)

2.3.5 Analytical analysis of Two Degree of Freedom (Dual) Helmholtz resonators

In light of the low frequencies of interest in the present study, the geometrical dimensions 

considered here are significantly smaller than the relatively long wavelengths. Hence, the 

spatial resolution is ignored next to develop expressions for both the resonance 

frequencies and transmission loss for a dual Helmholtz resonator installed in a side 

branch orientation as shown in Fig. 2.6.

The resonance frequencies of Two DOF (Dual) Helmholtz resonators are calculated 

using the Eqn. (1.29)

2

1 2 2 1 2 2 1 2
1,2 ' ' ' ' ' ' ' '

1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 2

4
2 2

C C C C C C C C

C C C C C C C C

c A A A A A A A Af
l V l V l V l V l V l V l V l V�

� � � �
	 � � % � � �
 � 
 �

� 
 � 

(2.28)

The Transmission loss of the Two DOF (Dual) Helmholtz resonator is then expressed 

as  

h

R

x

FNFV

r
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(2.29)

The resonant frequencies for the different geometries with equal volume can be 

calculated by the formula 

' '
1,2 1 2( , )

2 2 c c
c Af f l l

V�
	 (2.30)

Where, 

1
1 2

2 2
' '

1 2 ' ' ' ' ' '
1 2 1 2 1 2

1 2 1 2 4( , )
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f l l
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� �
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 � 
 �� �
� �� 
 � 
� � !

 !

(2.31)

In order to combine the effects of end correction factors [10], Eqns. (2.35) and (2.36)

can be considered.

An end correction that accounts for the higher order wave propagation between the 

neck and the cavity is given by Eqn. (2.35) and the higher order wave propagation effects 

between the circular neck and main pipe, the end correction is approximated by Eqn. 

(2.36). [11]
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Figure 2.6 Schematic display of a branched 2DOF(Dual) Helmholtz Resonator [8]

A= Area of cross-section of the neck

V=Volume of the resonator

c=Speed of sound

lc1
’=Corrected length of the neck of the first geometry 

lc2
’=Corrected length of the neck of the second geometry

'
1 1c c v pl l & &	 � � (2.32)

'
2 2 2c c vl l &	 � (2.33)
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0.82
2
neck

p
R& 	 (2.35)

The classic lumped approach approximates this resonator as an equivalent spring 

(cavity) and mass (neck) system, and yields the expressions for the resonator frequency 

and the transmission loss [11,12], [19-21]. A number of studies [13,15], [22-24]have also 

developed a one-dimensional analytical approach to investigate the wave attenuation 

properties. To account for the non-planar wave propagation in both the neck and the 

cavity, multi-dimensional analytical approaches have also been employed to predict the 

sound attenuation in Helmholtz resonators with circular concentric cavity [24], circular 

asymmetric cavity [25], extended neck [26], and lined with absorbing material. To

improve the sound attenuation performance, Helmholtz resonators with a variety of 

modifications have been examined. Selamet and Lee [26] studied the effect of length, 

shape, and perforation of the neck extension on the resonance frequency and transmission

loss of concentric circular Helmholtz resonators with extended neck. Selamet et al. [27]

developed a closed-form, 2D analytical solution to investigate the effect of density and 

thickness of the fibrous material in the cavity on the resonance frequency and

transmission loss of circular Helmholtz resonators lined with absorbent. Tang [28]

experimentally and theoretically investigated the Helmholtz resonators with tapered 

necks with the cross-sectional area increasing towards cavity. Griffin et al. [29]
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developed an analytical model for a single, coupled resonator system mounted on a one-

dimensional duct. The proposed mechanically-coupled resonators produced a particular 

transmission loss response, provided a wider bandwidth of attenuation, and adapted the

transmission loss characteristics of a structure to attenuate disturbances of varying 

frequency. Wan and Soedel [30] derived an expression for the resonance frequencies of 

2- DOF Helmholtz resonator using a lumped analysis. They obtained the resonance 

frequencies and compared them to the computational results and measurements. De 

Bedout et al. [31] proposed a tunable Helmholtz resonator with a feedback.

2.4 PROBLEM STATEMENT

Currently Dresser-Rand uses Duct Resonator arrays (DR arrays) as an add-on

solution [1, 2]. The solution was applied successfully to a 2528 PSIG (172 BARG) 

multistage centrifugal compressor on a platform in the North Sea and was shown to 

successfully give a reduction of up to 12 dBA. Over the last few years, Dresser Rand has 

revamped more than 61 centrifugal compressors, both single stage and multistage [1, 2], 

with the DR arrays. Although the Dresser Rand arrays give appreciable noise reduction, 

our work is focused on how to reduce noise coming out of the compressor and 

transmitted into the pipelines. Keeping in mind the research done in this field, the current 

scenario calls for a design methodology which can be used for designing the one and two 

degree of freedom resonators for maximum noise reduction. No such effort has been 

made so far and that will somehow aid the industrial engineers to design such a thing 

with minimal efforts from research point of view. Another important thing is the response 
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of different geometrical configurations on the noise reduction process which also 

demands attention. The method of noise reduction using Helmholtz resonator has to be 

investigated thoroughly to search for a possible solution for noise transmitted in the 

pipelines.

2.5 CONCLUSION

A thorough literature review has been done on sources of noise generation in 

compressors and the various techniques developed so far for its attenuation. Helmholtz 

resonators principle is described in detail with analysis of both one and two degree of 

freedom Helmholtz resonators. Our focus in this study is lumped element model of the 

Helmholtz resonator. Various researches done in this field of Helmholtz resonators and 

other ways of noise reduction is also covered in this chapter. The problem statement is 

defined and a solution has been proposed in the upcoming chapters. The accuracy of the 

proposed solutions were validated using finite element method and with experimental 

results in some cases.
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CHAPTER 3                                                        

ANALYTICAL DERIVATION OF TRANSMISSION 

LOSS OF ONE AND TWO DEGREE OF FREEDOM 

RESONATORS

Transfer matrix or Four-Pole parameter method is used for the derivation of 

Transmission Loss of the Resonators. According to this method all the elements of the 

acoustics filter can be written in the form of elements of transfer matrix. 

3.1 ONE DEGREE OF FREEDOM 

Adopting acoustic Pressure p and mass velocity v as the two state variables, the 

following matrix relation can be written so as to relate state variables [12],[16]. 

1

1

2 2
m mth

m m

A matrix
p p

for the m
v v

element

�

�

"� �
� � � �� �	� � � �� �
 !  !� � !

(3.1)
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on the two sides of the element . [pm , vm] is called the state vector at the upstream 

point m and [pm -1, vm-1] called the state vector at the downstream point m-1 [17]. The 

transfer matrix for the mth element can be denoted by [Tm] which is,[35]

' ( 11 12

21 22
m

A A
T

A A
� �� �

	 � �
 �
� 
 !

(3.2)

On making use of standing wave relation Munjal(1987) derived the four parameters 

which resulted in closed form relationship[12],

1

1

( ) ( )
/ ( ) ( )

m mo m m o m

m o m o mm m

p pCos k l jY Sin k l
j Y Sin k l Cos k lv v
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�

� �� � � �� �
	 � �
 �� � � �

� 
 !  ! !
(3.3)

Where, Ym is the characteristic impedance, k is the wave number, j is the imaginary 

number and lm is the effective length of the element.

On applying the continuity condition for velocity and pressure Fig 3.1,

) * ) * ) *t rV x V x V xi 	 � (3.4)

( ) ( ) ( )i t rP x P x P x	 	 (3.5)

In matrix form, Eqns. (3.4) and (3.5) can be written as[33]

1 0
/ 1

i t

r ti t

P P
V PV V

� � � �� �
	� � � �� �

 ! !  !
(3.6)
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Figure 3.1 A one degree of freedom Helmholtz resonator attached to a circular duct

Since,

( ) ( )t rP x P x	 (3.7)

And 

/r r rZ V P	 (3.8)

Eqn. (3.6) can be written as 

1 0
1/ 1

i t

ri t

P P
ZV V

� � � �� �
	� � � �� �

 ! !  !
(3.9)
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Where the matrix 
1 0

1/ 1rZ
� �
� �
 !

represents the transfer matrix of the Helmholtz 

Resonator. Zr is the impedance at the opening of the attached Helmholtz Resonator, 

which can be calculated by following the same method as discussed. Taking area of cross 

section of the neck as ‘a’, area of cross section of the volume as , ‘av’, length of the neck 

as ‘Le’ , length of the volume as ‘Lv’, the input impedance of the resonator comes out to 

be,

( ) ( ) ( / ) ( ) ( )
( / ) ( ) ( ) ( / ) ( ) ( )

e v v e v
r

v e v e v

Cos kL Cos kL a a Sin kL Sin kLZ
i a c Cos kL Sin kL i a c Cos kL Sin kL

�
	

�
(3.10)

The complete transfer matrix of the duct HR system shown in Fig.(3.1) can be 

represented by the equation 

2 2 2 2 2 2
1 2

i t

i t

P PA matrix A matrix A matrix
V of theelement of theelement r of theelement V

" " "� � � �� � � � � �
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 !  !  ! !  !
(3.11)

Where the four poles for any element m with length ‘lm’ , and characteristic 

impedance ‘Zm’is given by[12]
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(3.12)

On taking ‘ad’ as the duct cross section area and solving we derive the equation in the 

form,
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Now the four parameters in the final transfer matrix can be used to calculate the 

transmission loss of the Helmholtz resonator. According to Munjal (1987), the 

transmission loss for the equation [12]
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(3.14)

is given by Eqn. (2.15)
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On calculating the TL from the equation mentioned above, it comes out to be 

2 2 2 2
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The TL for ‘n’ resonators can also be calculated using the same procedure, but in that 

case the final transfer matrix will have the form,

2 2 2 2 2 2
1 1

i t

i t

P PA matrix A matrix A matrix
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(3.17)
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3.2 TWO DEGREE OF FREEDOM

The above mentioned procedure can be used again for formulation of TL equation 

of two degree of freedom resonators (neck–cavity–neck– cavity).On evaluating 

the Transmission loss the result has similar solutions as obtained from the 

published equation Eq. (3.18) where the values can be correlated with Fig. 1.7 

[10]

1

1
10

' 1 2 2
2 '

1 2 2 2 1 2 1 2

120log 1
2

1C

C

P C C

C C C

ATL
A A A ViKl

iKV A V A V V V K l

	 �
� �

� �
 �� �� 


(3.18)
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CHAPTER 4                                                        

DESIGN PROCEDURE FOR ONE AND TWO DOF 

RESONATORS

4.1 DESIGN OF 1-DOF RESONATORS

It is known from Selamet [8] and [10] that resonating frequency and transmission loss 

for one DOF Helmholtz resonator are represented by Eqn.(4.3) & (4.4). The design 

parameters are four: Lc, Ln, ac, an. Relationships need to be defined to proceed with 

suitable design. The design procedure to estimate optimal size for the resonator needs to 

satisfy a couple of conditions derived from the frequency equation and the transmission 

loss equation. We call the initial condition as a necessary condition which relates the 

parameters and is given here.

0.2756
c

cf
L

+ (4.1)
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The second equation is the necessary condition derived from the optimum 

transmission loss [8]

tan( ).tan( )n
n c

c

a k L k L
a

� 	 	 (4.2)

The resonant frequency for 1 DOF resonators can be calculated using the formula[8]
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3 3 3
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� 

(4.3)

The only restriction in the above mentioned formulae is that cavity diameter must be 

less than a wavelength at the resonance frequency. And the Transmission loss can be 

calculated using [10]

2
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Where,

2 fk
c
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Figure 4.1Simple One DOF Helmholtz Resonator

A one degree of freedom Helmholtz resonator Fig (4.1) was designed using the 

design procedure and the values from published papers [10] were used to test the 

accuracy of the design. The values of the parameters are also mentioned in Fig (4.1). 

Procedure:

, Assume r���	��������������	����u	����0 to 1.

, Approximate the maximum value of Lc from Eqn.(4.1)

, Calculate the values of Ln from the Eqn.(4.2)

, In order to combine the effects of end correction factors [10] the following 

equations are considered 

a

lc = 6.2 mm

ln = 2.5 mm

ac = 32.17 mm2

flow

ln 

lc 

ad 

ac 

an 

lc = 6.2 mm

ln = 2.5 mm

ac = 32.17 mm2

an = 19.63 mm2

ad=1963.5 mm2
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1 2n nl L & &	 � �
(4.5)

, Assuming a value for an allowable radius of the neck calculate an and using 

that an end correction that accounts for the higher order wave propagation 

is[11]

) *2 0.48 1 1.25na& �	 � (4.6)

, To account for the higher order wave propagation effects between the circular 

neck and main pipe (one direction being infinite, while the size of the other 

direction is close to that of the neck), the end correction is approximated by 

1 0.46
2

na
& 	 (4.7)

, Define a minimal r���	������������u��������we calculate a set of values of Ln

by applying the equation Lc= Lc- �}

, To close the choice of dimensions, the set of values giving the maximum 

value for transmission loss Eqn. (4.4) are the most suitable design parameters.
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4.2 DESIGN OF A TWO DEGREE OF FREEDOM RESONATOR

                                           Figure 4.2 Dual Helmholtz Resonator [11]

Procedure:

Let the frequency to be attenuated as f1,2

, Following the procedure for two DOF resonators calculate the values of the 

radius, neck length and the volume of the first resonator i.e. Rn1 , ln1 ,V1 .

Calculate the ratio  (�a /�l ) which satisfies the necessary condition derived 

from (Eqn. A5) (See Appendix)

2 2
1 2

2 2
2 1

22 1 a

l

f f
f f

�
�

� �
� - �
 �

� 

(4.8)

where 

ln1 = 8.5 cm

an1= 12.57 cm2

ln2 = 7.62 cm

an2= 9.62 cm2

V1 =ac1. lc1= 3706 cm3

V2 =ac2. lc2= 1853 cm3

ad=18.48 cm2

a

ac1

an1

an2ln21

ln11

lc11

lc21

ad

ac2

Flow
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and an1, an2 are the area of cross sections of the first and the second neck. 

, Let .= �� 1

�� 1
and /= �� 2

�� 2

��

��
can be determined from Eq.(4.1) and since it is equal to 

�

	
, this ratio can also be 

calculated accordingly

, By using the below mentioned frequency equation, V1 and V2 can be 

calculated in terms of 	 and �.

2

1,2
1 1 2 1 1 2 1 2
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(4.9)

Now the transmission loss can be calculate using Eqn. (4.3) but rewritten and plotted 

w.r.t 	 and �, for getting the optimum 
�

	
for maximum transmission loss. The corrected 

lengths can be converted to original lengths used for design by following step (vi) of the 

one degree of freedom design procedure.
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where , ad is the cross section area and k is the wave number. 

This method has been applied to design a two DOF resonator for a pipeline. Referring 

to Fig. 4.2, the values can be correlated. The corresponding volume of the first and 

second cavities we simulated as being V1 = 3706 cm3 and V2 = 1853cm3 respectively. 

Fig. 4.2 and Fig. 4.3 shows the transmission loss distribution depending on the 

dimensional parameters ratios . and /. An in-depth analysis of the level of transmission 

loss that could be achieved shows that optimization can be done based on the acceptable 

manufactured necks in terms of diameters and lengths. As an estimation, 15-20 % away 

from the maximum transmission loss leads to a manufacturable shape of the resonator’s 

neck.
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4.3 SIMULATION RESULTS FOR ONE AND TWO DOF 

RESONATORS

4.3.1 Simulation for one degree of freedom resonator.

The following example is applied to an industrial plant. A cylindrical Helmholtz 

resonator was designed using the design procedure for one degree of freedom discussed 

earlier. The blade passing frequency that was attenuated was measured at the suction pipe 

of a compressor situated at Shedgum plant of Saudi Aramco Fig. (4.5). The simulation is 

shown in Fig. (4.7), where the pipe with the array of resonators is able to attenuate the 

noise by about 30 dB max. 

The dimensions that were taken to model the resonators were foun���������}� which 

are rneck= 1 mm, lneck=3.74 mm, rvolume=3.16 mm, lvolume=6.21 mm. On comparing the pipe 

with the resonator array with the pipe without the arrays a sudden decrease in the sound 

pressure levels can be visualized Fig. 4.7. The pipe shown in fig 4.7 is able to attenuate 

noise by approximately 25-30 dB which can be considered an efficient design of the 

resonators. The transmission loss offered by the resonators can also be visualized by the 

peak of the curve at the designed frequency Fig 4.6.
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Figure 4.3 A 3D plot showing the variation of Transmission loss with respect to ���������	
������

Helmholtz Resonator resonating at 5000 Hz.

Figure 4.4A 3D plot showing the variation of Transmission loss with respect to ���������	
������

Helmholtz Resonator resonating at 3000 Hz.
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When more identical resonators are added on the same location around the perimeter 

of the pipe (Fig.4.9) it was observed that the sound pressure attenuation has improved by 

about 5%. This shows the advantage of using an array of resonators rather than a single 

resonator however the attenuation offered by the array has a very limited incremental 

range as shown in Fig.4.11. When comparing the results for the two configurations of 

arrays, i.e. one and four sets of resonators, the frequency for which they are designed 

doesn’t match accurately showing a little difference of around 30-50 Hz Fig 4.11 It also 

shows the comparison of the degree of attenuation obtained between one and four sets of 

resonators. This happens because when array of resonators are put around their 

resonating frequencies some of them resonate for a particular value while others couldn’t 

achieve full resonance for that value and this happens due to different orientations of the 

resonators and their slight misplacement around the sound carrying duct. This 

phenomenon can be perceived from Fig. 4.12 or for a closer look Fig. 4.13 can be 

viewed, where different SPL are encountered for a particular designed frequency in the 

resonators.

Another notable feature is that when using one resonator the reduction of noise takes 

a while Fig. 4.8, while in the case of four resonators the reduction is almost instant Fig. 

4.10.This is evident from the sudden change in the contour colors which represents the 

sound pressure levels for each figure. The pattern followed by the sound waves inside the 

transmission duct is due to the small dimensions taken for the transmission duct Fig. 4.8. 

Also since plane wave assumption is taken in the simulations, the travelling waves gets 

reflected from the region where the resonator is fitted due to impedance mismatch, hence, 
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regions with varying sound pressure levels are encountered before the resonator Fig. 4.8. 

In the case of one resonator the crest of the waveform is unable to reach the resonator and 

therefore maximum possible reduction is not achieved Fig. 4.8, while in the case of four 

resonators the crest of the transmitted waves impinges exactly on the resonator neck and 

thereby due to resonance the reduction in noise achieved is of higher order Fig. 4.10.

The resonance mentioned above can be visualized by the sky blue circles formed 

around the necks of the resonators Fig. 4.10. In comparison to these circles the pipe fitted 

with just one resonator doesn’t have any such phenomenon happening inside due to the 

reason already mentioned.

Figure 4.5 Suction Pipe Narrowband Sound Pressure Level of a measured compressor (DR).
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Figure 4.6 Sound Pressure levels at the another extreme of the pipe with and without the designed 

resonators.

Figure 4.7 Sound Pressure levels distribution at 3556 Hz on the surface of the pipe with and 

without 1 DOF designed resonators.
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Figure 4.8 A closer view of the tuned resonator at 3556 Hz 

Figure 4.9: SPL distribution at 3556 Hz on the surface of the pipe with and without an array of 

one DOF designed resonators.

Wave propagation 

Wave propagation
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Figure 4.10 A closer view of the tuned resonator at 3556 Hz

Figure 4.11 Comparison of Sound Pressure levels at the another extreme of the pipe with one 

and four one DOF designed resonators.

Wave propagation
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4.3.2 Simulation for two degrees of freedom resonator

A 2 DOF cylindrical Helmholtz resonator was designed using the design procedure. 

This time two highest peaks from Fig. 4.5 were taken to be attenuated by designing 

resonators. The simulation shown in Fig. 4.12 and Fig. 4.15 gives an idea of the degree of 

attenuation received where the pipes with the array of resonators is able to attenuate the 

noise by around  30-40 dB for both frequencies. Fig. 4.12 shows the performance of the 

designed resonator for 3556 Hz while Fig. 4.14 shows the performance of the designed 

resonators for the other peak of 2712 Hz.  Fig. 4.13 and Fig. 4.14 shows a closer view of 

the phenomenon taking place inside the resonators. The values of 	 ��� � taken are 1.2 

and 0.07142 so as to satisfy Eqn. (4.1) i.e. the ratio   
  �

 �
� 0.07522, for frequencies 

3556 and 2712 Hz. 

The pattern followed by the sound waves inside the transmission duct is due to the 

small dimensions taken for the transmission duct Fig. 4.13 and Fig. 4.15. Again, since 

plane wave assumption is taken in the simulations, the travelling waves gets reflected

from the region where the resonator is fitted due to impedance mismatch, hence, regions 

with varying sound pressure levels are encountered before the resonator Fig. 4.13. In the 

case of resonator tuned to 3556 Hz the crest of the waveform is unable to reach the 

resonator and therefore maximum possible reduction is not achieved Fig. 4.13, while in 

the case of resonators tuned to 2712 Hz the crest of the transmitted waves impinges 
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exactly on the resonator neck and thereby due to resonance the reduction in noise 

achieved is of higher order Fig. 4.15.

The resonance mentioned above can be visualized by the sky blue circles formed 

around the necks of the resonators Fig. 4.15. In comparison to these circles the pipe fitted 

with resonator tuned to 3556 Hz doesn’t have any such phenomenon happening inside 

due to the reason already mentioned. Another notable feature, which can be visualized 

from Fig. 4.13, is the variation of sound pressure levels inside the two DOF resonators. 

The sound pressure levels of the two chambers of a two DOF resonators depends on the 

amount of noise absorbed by the respective chambers, i.e. the chamber which is tuned to 

the frequency will absorb more amount of noise and will thereby exhibit higher sound 

pressure levels and vice versa .

Figure 4.12 Sound Pressure levels distribution at 3556 Hz on the surface of the pipe with and 

without 2 DOF designed resonators.

Wave propagation 
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Figure 4.13 A closer view of Sound Pressure levels distribution at 3556 Hz on the surface of the 

pipe with and without 2 DOF designed resonators.

Figure 4.14 Sound Pressure levels distribution at 2712 Hz on the surface of the pipe with and 

without 2 DOF designed resonators.

Wave propagation

Wave propagation 
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Figure 4.15 A closer view of Sound Pressure levels distribution at 2712 Hz on the surface of the 

pipe with and without 2 DOF designed resonators.

4.4 VALIDATION OF RESULTS 

4.4.1 Numerical Validation

The Dual Resonators used by Selamet et al [10] was used as a benchmark test to 

validate the analytical design method described previously. The same dual resonator was 

used in COMSOL simulation to validate the level of transmission loss obtained 

analytically. Fig 4.2

The main duct was taken to have a square cross-section of 4.3cm x 4.3cm. The square 

main duct is then connected to a circular impedance tube with smooth transitions that 

retain a constant cross-sectional area development. The following figures show the results 

Wave propagation
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of simulation as generated by COMSOL. The input frequency was varied and the 

acoustic response of the system was recorded.

As shown in fig 4.16, there is a noticeable reduction in noise levels. There is nearly a 

20 dB decrease in noise levels at the 73Hz resonant frequency and a 25dB decrease in 

noise levels at the 166Hz resonant frequency. The noise response of the Dual Helmholtz

Resonator versus frequency is shown plotted in Fig. 4.18. Using the stated equations for

two DOF resonators the results match the analytically calculated values with an error of 

% 1.The transmission loss obtained numerically has negative values in the case when the 

resonators exhibit anti-resonance. This is evident from fig 4.18 in the range of 120 Hz to 

175 Hz. The negative values of the sound pressure levels indicate that the reference 

pressure used for the computations is more than the measured sound pressure level which 

can be improved by decreasing the sound pressure levels. After generating and solving a 

a variety of meshes this solution was obtained where the analytical and the experimental 

values seem to be very close to each other Fig. 4.18..
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.

Figure 4.16 Sound Pressure levels at the resonating frequency 73 Hz.

Figure 4.17 Sound Pressure levels at the resonating frequency 166 Hz.
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4.4.2 Experimental Validation

The main duct has a square cross section and was connected to a circular impedance 

tube .The apparatus used in the experiments  to measure the transmission loss is based on 

two-microphone technique applied on the impedance-tube setup [15]. 

Along with the random sound input, B&K 3550 multichannel analysis system has 

been used. Throughout the frequency range of interest, the reflection coefficient 

measured on the downstream side of the resonator was ensured, by an appropriate 

termination, to remain below 0.1 which translates to accurately measured transmission 

loss.

4.5 CONCLUSION

A new design procedure has been proposed and validated in this chapter for noise 

attenuation using Helmholtz resonators in pipelines. Applied to one and two of 

Helmholtz resonators, the designed models of resonators have been verified numerically 

using COMSOL. All analytical and numerical results were validated using experimental 

results from published data. Attenuation of around 40 db has been achieved which proves 

not only the efficiency of the proposed design procedure but also the straightforward 

method to dimension the resonators.
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Figure 4.18 A comparison of Transmission Loss with published experimental results for a single 2 

DOF resonator.
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CHAPTER 5                                                        

SHAPE EFFECTS OF ONE DOF HELMHOLTZ 

RESONATORS                                                     

5.1 INTRODUCTION

In this chapter the effect of geometry shape of the Helmholtz resonator on its resonant 

frequency and on its noise attenuation capability is discussed. The theory of resonant 

frequency depending on the shape of the vessel of the resonator is verified analytically 

and numerically using COMSOL for one and two degrees of freedom. The simulation 

was validated experimentally and has shown very good agreements.  Various shapes of 

the resonators were compared in arrays. A better understanding of the shape effect is 

shown through simulations.
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5.2 EXPERIMENTAL SET UP

Three different geometries of resonators were designed, modeled and manufactured 

using rapid prototyping process Fig 5.11,12,13. Due to some problems in the rapid 

prototyping set up the final prototypes of the spherical resonators had holes and therefore 

couldn’t be used for the experiments A 100 mm pipe was also manufactured on which the 

conical and the cylindrical resonators were fixed and used for the experiments Fig 5.14 to 

Fig 5.16. 

A preliminary test was made using a straight one meter pipe of PVC with no 

resonators to see the effect of natural damping due to the air itself. The pipe was attached 

to the insulation and mounted on a stand while the generated noise level was varied 

between 800 to 2000 Hz on one side of the pipe and similar level was collected on the 

other end, implying that there was little to no damping within the pipe. The four 

resonators were assembled on a polymeric part of pipe and attached in the middle of the 

main pipe cut in two parts using epoxy glue as shown in Fig 5.11 to Fig 5.13. Finally the 

duct tape was added as a precaution to hold it in place Fig 5.1 shows a picture of the 

experimental set up used for the test. 

The aim was to find the range over which the resonator is effective along with the 

resonant frequency of the resonator and gives maximum noise attenuation. Initially the 

starting frequency was set at 800 Hz .The noise source was a speaker generating a sine 

wave with maximum SPL of 121 dB was verified and then the pipe was attached to the 
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noise source. A check was made along the pipe using the sound meter to identify any 

acoustic leakage. To verify any acoustic leakage, a noise measurement at the outlet was

taken. A noise decrease of 2 dB was observed. Then the process was continued varying 

the frequency systematically, first increasing at regular intervals and then decreasing, 

whilst recording the sound level until the noise levels of the source were reached, and 

consequently no attenuation was found. This has established a range of values around 

which the resonator provided some level of attenuation. By varying the frequency it was 

found that the resonant frequency of the conical arrangement was nearly 840 Hz, around 

which a reduction of around 8 dB was observed. The noise level was found to be 106 dB. 

There was another check made using the noise level meter to check for acoustic leakages 

along the pipe and verify the source noise levels, and it was found that such leakages 

were completely negligible. Next was the testing of the cylindrical pipe arrangement. A 

similar sweep was performed using the sound meter to check for leakages and it was 

found that there were minor leakages around the connection region that might tamper 

with the experimental results. A sleeve made of cotton cloth was made to blanket the 

noise levels at these locations. The points of leakage were checked and it was found that 

the cotton cloth successfully blocked any acoustic leakage. On repeating the test for 

cylindrical resonators the resonant frequency was found to be around 1150 dB. The 

spherical case couldn’t be tested since the spherical resonators had pores due to some 

defects in the rapid prototyping process during their manufacturing. The tests were also a 

part of Senior Design Project done by Mechanical Engineering students at King Fahd 
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University. They aided in the manufacturing of the resonators and procurement of the 

measuring instruments. 

5.3 ONE DEGREE OF FREEDOM SIMULATIONS 

A single 1 DOF cylindrical resonator was simulated numerically as shown in Fig. 4.4 

and validated analytically in Fig 4.8. Both analytical and numerical simulation show good 

agreement. Numerical simulations have been performed for three various shapes of the 

resonator Cylindrical, conical and spherical. The following results were obtained with 

three different blade passing frequencies acting at the pipe inlet. The simulations show 

clear noise reduction for each shape depending on the BPF considered. Fig.5.2 shows 

four resonators mounted at the middle way of the pipe with clear reduction of sound

Figure 5.1 A picture of the experimental setup established to measure the noise attenuation 

offered by the modeled resonators
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(>40dBA) using spherical resonators. They can achieve a transmission loss of around 35 

dB which can visualized from the color of legend changing from dark orange to sky 

blue.. Fig 5.4 and Fig 5.6 depict the resonance phenomenon in cylindrical and conical 

resonators respectively. In order to have a clear view of the sound pressure level 

distribution in the pipes Fig 5.3, Fig 5.5 and Fig 5.7 can be referred to for spherical, 

cylindrical and conical geometries respectively. When comparing the results for the two 

configurations of arrays, i.e. one and four sets of one DOF resonators, the frequency for 

which they are designed don’t match accurately showing a little difference of around 30-

50 Hz. This happens because when array of resonators are put around their resonating 

frequencies some of them resonate for a particular value while others couldn’t achieve 

full resonance for that value and this happens due to different orientations of the 

resonators and their slight misplacement around the sound carrying duct. This 

phenomenon can be perceived from Fig. 5.7, where different SPL are encountered for a 

particular designed frequency in the conical resonators. 

Another notable feature, which can be visualized from Fig. 5.5 and Fig. 5.7, is the 

variation of sound pressure levels inside the resonators. The sound pressure levels of the 

resonators depends on the amount of noise absorbed by the respective chamber, i.e. the 

chamber which is tuned to the resonant frequency will absorb more amount of noise and 

will thereby exhibit higher sound pressure levels and vice versa .The amount of noise 

absorbed by the resonator also depends on their placement on the noise transmitting duct. 

If they are placed in regions where the crest of the wave falls, they will encounter more 

acoustic energy and hence, will absorb more sound pressure than the others.
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Figure 5.2 The sound pressure level at 1.284 kHz (a) Pipe without any resonators, (b) Pipe with 

conical resonators,(c) Pipe with cylindrical resonators, (d) Pipe with Spherical resonators(Spherical 

resonant frequency).

Figure 5.3 A closer view of the sound pressure level distribution at 1.284 kHz (Spherical resonant 

frequency).
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Figure 5.4 The sound pressure level at 1.15 kHz  (a)Pipe without any resonators, (b) Pipe with 

conical resonators(c) Pipe with cylindrical resonators (Cylindrical resonant frequency), (d) Pipe with 

Spherical resonators.

Figure 5.5 A closer view of the sound pressure level distribution at 1.15 kHz (Cylindrical resonant 

frequency).
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Figure 5.6 The sound pressure level distribution at 0.84 kHz (a)Pipe without any resonators (b) 

Pipe with conical resonators (Conical resonant frequency)  (c) Pipe with cylindrical resonators (d) 

Pipe with Spherical resonators.

Figure 5.7 A closer view of the sound pressure level Distribution at 0.84 kHz (Conical resonant 

frequency)
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5.4 EXPERIMENTAL RESULTS AND VALIDATION FOR ONE DOF 

RESONATORS

Fig 5.8 and Fig 5.9 show the resonator response over their effective ranges. An anti-

resonance behavior was displayed at around 1200 Hz in cylindrical resonator 

arrangement and at around 930 in conical resonator arrangement which caused the noise 

level to amplify by around 3 dB. This phenomenon is not uncommon in such resonator 

arrangements. Every resonator possesses this phenomenon and at times is undesirable 

when the noise to be reduced is broad band noise. While the power source and the duct 

were same still a little shift is encountered in the frequencies for the two geometries Fig 

5.8 and Fig 5.9 and the reasons attributed to this phenomenon are defects in the 

assembling of the manufactured pipes containing the resonators on the transmission pipe 

and incompetence of the experimental set up. 

Figure 5.8 A comparison of the sound pressure levels from the experiments for a pipe fitted with 

an array of cylindrical resonators with a pipe without any resonator.
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Figure 5.9 A comparison of the sound pressure levels from the experiments for a pipe fitted with 

an array of conical resonators with a pipe without any resonator.

Figure 5.10 A comparison of the sound pressure levels from the simulations for a pipe fitted with 

three different arrays of resonators with a pipe without any resonator

Fig 5.10 represents a numerical comparison of the sound pressure levels of the three 

different geometries simulated. On careful consideration the resonant frequencies found 

for cylindrical and conical resonators from the experiments match closely with the 

frequencies found in the simulations. The resonators tuned to their resonant frequencies 
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are shown in fig 5.10, which can be correlated with the values obtained in the 

experiments.

The dimensions of the three different geometries were taken so as to have equal 

volumes which will lead to the same resonant frequency according to Eqn. (2.18).But 

from fig. 5.10 it is evident that all the three geometries exhibit different resonant 

frequencies which happened due to technical errors in the model’s mesh generation. A

variety of mesh was generated for the three different cases. The finer the mesh the better 

are the results On meshing the conical and the spherical resonators the generated mesh of 

the model exhibited a slight difference in the shape e.g. the conical shape transformed 

into a pyramid and the solution was done taking into account the shape of the pyramid 

Fig 5.7.When the ratio of volume of the meshed pyramid to the modeled conical 

geometry was taken, it comes out to be 0.75. This change in the volume of the geometry 

explains the changes in the resonant frequency of the three geometries governed by Eqn. 

(2.18). The mesh size was varied according to the accuracy and computability of the 

technical resources to get the desired results. The mesh size chosen for spherical was 

different from the other two geometries, hence, the resonating frequency of the three 

cases were found to be close but not equal.

The noise reduction achieved in the experiments are less than those achieved in the 

COMSOL simulations which could be due to following reasons: One dimensional 

propagation is assumed in the simulations which can be attenuated more easily than the 

actual three dimensional propagation in the experiments, improper acoustics terminations 
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at the open ends, damping offered by the polymeric material and the PVC pipe due their 

acoustic absorption coefficients.

Figure 5.11 The Conical Resonators Arrangement
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Figure 5.12 The Cylindrical Resonators Arrangement
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Figure 5.13 The Cylindrical Resonators Arrangement
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Figure 5.14 The Conical Resonators Arrangement drawings
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Figure 5.15 The Cylindrical Resonators Arrangement drawings
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Figure 5.16 The Spherical Resonators Arrangement and the transmission pipeline drawings
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5.5 CONCLUSION

A numerical simulation validated by experimental tests to estimate the level of noise 

attenuated using Helmholtz resonators as an add-on solution to pipeline has been 

presented in this chapter. The method was used to analyze the effects of the various 

shapes e.g. cylindrical, conical, and spherical on the noise reduction in pipelines. 

Comparison tests between various shapes of the resonator have shown in both 

numerical and experimental methods that cylindrical resonators give better noise 

attenuation than the conical and the spherical resonators. The three different geometries 

have distinct resonant frequencies and transmission loss even though the volume for all 

the cases is equal. Some of the noted effects of number of resonators are when using one 

resonator the reduction of noise takes a while, but in the case of four resonators the 

reduction is almost instant. Also the increase in transmission loss achieved by increasing 

the number of resonators from one to four has a very limited effect range, increasing the 

transmission loss by around 5 dB.
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CHAPTER 6                                                        

CONLUSIONS AND RECOMMENDATIONS

7.1 CONCLUDING REMARKS

This work has focused on getting a better reduction of noise generated from 

centrifugal compressors using the very old concept of Helmholtz Resonators, which 

would be used as an add on solution to this menace. The task is by no means complete, 

but all the theoretical models and design schemes can be used for designing Helmholtz 

resonators for a number of applications where noise reduction is required. Design of one 

and two Degree of freedom Helmholtz resonators for maximum possible noise reduction 

in ducts and pipelines based on real plant configuration could be done using this work. 

Numerical simulations validated by experimental tests are used to estimate the level 

of noise attenuated using Helmholtz resonators .The add-on solution was also tested for 

the effects of the various shapes e.g. cylindrical, conical, and spherical on the noise 

reduction in pipelines also forms a part of this work.
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Comparison tests between various shapes of the resonator have shown in both 

numerical and experimental methods that cylindrical resonators give better noise 

attenuation than the conical and the spherical resonators.

The acoustic performance of a Non-Homogeneous array One and Two degree of 

freedom Helmholtz resonator composed of two Helmholtz resonators in series (neck–

cavity–neck– cavity) is also investigated. Closed-form relationships have been developed 

for transmission loss of both configurations of resonators by using Transfer Matrix 

Method considering one dimensional acoustic wave propagation. Comparisons of the 

transmission loss from the TMM method, a numerical method (FEM), and experiments 

from published work show a reasonable agreement. 

7.2 ACCOMPLISHMENTS

The pertinent accomplishments are summarized below.

,0Developed a design procedure for one and two degree of freedom Helmholtz 

Resonators for maximum transmission loss i.e. for maximum possible noise reduction.

,0Developed a more general and accurate model for calculating transmission loss of 

one and two degree of freedom cylindrical Helmholtz Resonators using Transfer matrix 

method.
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,0Analyzed the geometry effects of the three different shapes of Helmholtz 

Resonators namely cylindrical, conical and spherical geometries and validation of the 

analysis experimentally and numerically.

7.3 RECOMMENDATIONS FOR FUTURE WORK

When compared with the results of FEM and experiments the analytical equations for 

transmission loss for different geometries are still not as accurate as equations for 

cylindrical resonators. It is obvious that manufacturing of resonators of complex shapes 

such as spherical and conical is not an easy job. Some of the results from FEM indicates 

that the there is a room for better transmission loss in those shapes.

Improved experimental configurations should be considered when identifying the 

resonant frequencies, and transmission loss. Particularly in the experiments th difference 

in the Sound Pressure Levels won’t be much and distinguishing the resonant frequencies 

for resonators accurately won’t be easy. 

Smart acoustic resonators should be the next research topic. Our acoustic resonator 

does have a potential to be adaptive. The smart structure can be attached to one end of the 

resonator, and the smart acoustic resonator can be realized by means of adaptively 

changing the acoustic radiation impedance of the smart structure. Multiple holes also can 

be opened along the resonator like a flute, and the smart acoustic resonator can also be 

realized through adaptively adjusting opening or closing status of the holes. Different 
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sizes of sound absorbing materials can also be experimented and there by checked for the 

noise attenuation for comparison purposes. 
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NOMENCLATURE

Symbol Representation

c Speed of sound

Ma Acoustic mass of the resonator

Ca Acoustic compliance

a Radius of the neck

L Actual neck length 

p pressure 

T temperature

Leff Effective neck length 

V Cavity volume of the Helmholtz resonator

F Force applied

Q Monopole source

q Dipole Source

f Resonant frequency

k Wave Number

VN volume of the neck (Vn = an x ln)

V Volume of the resonator without the neck

h Height of the resonator from the bottom to the neck

L Actual neck length 

ac Cross sectional area of the cavity

an Cross sectional area of the neck

Leff Effective neck length 

V Cavity volume of the Helmholtz resonator

lc Length of the cavity
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Symbol Representation

K Stiffness of  the mass-spring damper system

Rm Damping Capacity of the mass damper system

Ra Acoustic damping capacity of the resonator

Mm Mass of the spring damper system

� Ratio of area of cross section in one DOF resonators

	 Ratio of first neck cross sectional area to neck length. 


 Ratio of second neck cross sectional area to neck length

� Medium Density 

� Ratio of Specific Heats

� Excitation frequency [Hz]

Zr Impedance of the resonators

Ac1, an1 Cross sectional area of the first neck

Ac2, an2 Cross sectional area of the second neck

lc1, ln1 Length of the first neck

lc2, ln2 Length of the second neck

f1,f2 First and second resonant frequencies

V1.V2 First and second Cavity volumes

av1, ac1 Cross sectional area of the first cavity

av2, ac2 Cross sectional area of the second cavity

lv1, lv2 Lengths  of the  first and the second cavity

ln

FN

Length of the neck

Area of the neck
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APPENDIX

Appendix A

ONE DEGREE OF FEEDOM RESONATORS

The equation for angular resonating frequency of one degree of freedom resonator is 

given by [8]

2

3 3 3

3. 3. 3
2 2
n c n c

n n n c

L L L Lc
L L L L

� � ��
� �� �

	 � � �
 �
� 


(A1)

Where                        

n

c

a
a

� 	

an= cross section area of the neck

ac= cross section area of the cavity

Ln=Corrected neck length

Lc=Length of the volume

c= speed of  sound
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Refer to Fig. 4.1 for correlating the dimensions. On solving  equation  (A1) for the 

two areas of cross sections one gets Eqn.(A2) and (A3),

2 2 4 3

2 2 2 2

( 3. . . . . . )
( 3. )

c n c n c
n

c

a c L L L La
c c L

� �
�

� �
	

� �
(A2)

2 2 2 2

2 2 4 3

. ( 3. )
( 3. . . . . . )

n c
c

n c n c

a c c La
c L L L L

�
� �

� �
	

� �

(A3)

From  these equations it is obvious that for getting positive real values of the two 

areas of cross sections the denominator should be negative for (A2) while the numerator 

should be negative for (A3) . i.e. 

2 2 23. 0cc L�� � +
.

Hence,

2

2

3.

c

c
L

� +

This on solving for resonating frequency gives

2

2

1 3. 0.2756
2 c c

c cf
L L�

� �

 �+ 	
 �
� 
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Appendix B

TWO DEGREE OF FEEDOM RESONATORS

The equation for angular resonating frequency of one degree of freedom resonator is 

given by,

2

1,2
1 1 2 1 1 2 1 2

4
2 2

cf
V V V V V V V V
. / / . / / . /

�
� � � �

	 � � % � � �
 � 
 �
� 
 � 
 (A4)

Where,

.=
�� 1

�� 1
and /=

�� 2

�� 2

Which is derived from the equation [10]

2

1 2 2 1 2 2 1 2
1,2 ' ' ' ' ' ' ' '

1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 2

4
2 2

C C C C C C C C

C C C C C C C C

A A A A A A A Acf
l V l V l V l V l V l V l V l V�

� � � �
	 � � % � � �
 � 
 �

� 
 � 
 (A5)

Refer Fig. 4.2 for correlating the dimensions. On solving the above equation for V1

and V2 i.e. volume of first and second cavity one gets Eqn. (A6) and (A7)

2 4
1 2

1
3 4 2 2

2 2 2 2 2 2 4 4 2 2 4 2 2 2 2 4 4 1 2 1 2 1
1 1 2 1 1 2 2 1 2 1 1 2 1 2 1 2 2

2

2 4
1 2

2 2 2 2 2 2 4 4 2 2
2 1 1 2 1 1 2 2 1 2 1 1 2

(8. )

162 2 4 8 4
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2 2 4 8

n n

n n n
n n n n n n n n n n n

n

C C

n n n n n n n n n n

a a cV
a a c f f ll a a c f a a c f a a c f a a c f f a a c f
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(A6)
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The two volumes V1 and V2 are real if the expressions under the square root are 

positive or nil .Hence, a new condition emerges and is given below

2 2
1 2 2 1

2 2
2 1 1 2

22 1 n n

n n

f f a l
f f a l

� �� �
� - �
 �
 �

� 
 � 
 (A8)

Which can also be written as,

2 2
1 2

2 2
2 1

22 1 a

l

f f
f f

�
�
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Where,

�a=
�� 2

�� 1
�����l = �� 2

�� 1
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MATEHMATICA CODES FOR ONE AND TWO DEGREE OF 

FREEDOM RESONATORS TRANSMISSION LOSS

One Degree of Freedom Resonators

S=Ap;
Z1=c/S;
As1=Cos[k*Ln];
As2=Cos[k*Lc];
Ds1=Cos[k*Ln];
Ds2=Cos[k*Lc];
Bs1=i*c*Sin[k*Ln]/An;
Bs2=i*c*Sin[k*Lc]/Ac;

Cs1=i*An*Sin[k*Ln]/c;
Cs2=i*Ac*Sin[k*Lc]/c;

Mr1=({
{As1, Bs1},
{Cs1, Ds1}
});

Mr2=({
{As2, Bs2},
{Cs2, Ds2}
});

Mrf=Mr1.Mr2;
zhr=Mrf[[1,1]]/Mrf[[2,1]];

Mr=({
{1, 0},
{1/zhr, 1}
});

A1=Cos[k*L1];
B1=i*c*Sin[k*L1]/(S);
C1=i*S*Sin[k*L1]/(c);
D1=Cos[k*L1];
A2=Cos[k*L2];
B2=i*c*Sin[k*L2]/(S);
C2=i*S*Sin[k*L2]/(c);
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D2=Cos[k*L2];
pi=Pi;
M11=({

{A1, B1},
{C1, D1}
});

M22=({
{A2, B2},
{C2, D2}
});

n=3
Table[M11=M11.Mr;M22=M11.M22;M11=M22,{n,3}]
TL=20*Log10[Abs[(M11[[1,1]]+(Z1*M11[[2,1]])+(M11[[1,2]]/Z1)+M11[[2,2]])/2]]
FullSimplify[TL]

Two Degree of Freedom Resonators

Z1=c/S;
As1=Cos[k*Ln1];
As2=Cos[k*Lc1];
As3=Cos[k*Ln2];
As4=Cos[k*Lc2];
Ds1=Cos[k*Ln1];
Ds2=Cos[k*Lc1];
Ds3=Cos[k*Ln2];
Ds4=Cos[k*Lc2];
Bs1=i*c*Sin[k*Ln1]/An1;
Bs2=i*c*Sin[k*Lc1]/Ac1;
Bs3=i*c*Sin[k*Ln2]/An2;
Bs4=i*c*Sin[k*Lc2]/Ac2;
Cs1=i*An1*Sin[k*Ln1]/c;
Cs2=i*Ac1*Sin[k*Lc1]/c;
Cs3=i*An2*Sin[k*Ln2]/c;
Cs4=i*Ac2*Sin[k*Lc2]/c;
Mr11=({

{As1, Bs1},
{Cs1, Ds1}
});

Mr22=({
{As2, Bs2},
{Cs2, Ds2}
});



88

Mr33=({
{As3, Bs3},
{Cs3, Ds3}
});

Mr44=({
{As4, Bs4},
{Cs4, Ds4}
});

Mrf1=Mr11.Mr22.Mr33.Mr44;
zhr1=Mrf1[[1,1]]/Mrf1[[2,1]];
A1=Cos[k*L1];
B1=i*c*Sin[k*L1]/(S);
C1=i*S*Sin[k*L1]/(c);
D1=Cos[k*L1];
M1=({

{A1m, B1m},
{C1m, D1m}
});

Mr1=({
{1, 0},
{1/zhr1, 1}
});

M=M1.Mr1.M1;

TL=20*Log10[Abs[(M[[1,1]]+(Z1*M[[2,1]])+(M[[1,2]]/Z1)+M[[2,2]])/2]]
FullSimplify[TL]
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