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 ملخص  الرسالة

 عمر غالب عبدالله الصوافي   الاسم:

 عجزمع السماح بالتخطيط الانتاج والمخزون بوجود قطع غير مطابقة   عنوان الرسالة:

 هندسة الصناعة والنظم  التخصص:

   3311/رجب            ريخ التخرج:ات

هذه الرسالة تناقش مواضيع تخطيط وضبط الإنتاج والمخزون في النظم التي تحتوي على نسبة عشوائية 

مع دورة الإنتاج التالية. هذه  ة العجزيعاد تلبي حيثالطلب  لبيةبالعجز عن ت مع السماحغير مطابقة 

دم في هذه خرى, نقأالرسالة تصحح بعض الاخطاء التي ارتكبها الباحثون في هذا المجال. ومن جهة 

 واقعية بعد التخلص من بعض الفرضيات غير الواقعية.الرسالة نماذج جديدة و 

جاد كمية التصنيع المثلى وكمية إيوالهدف  نتاج ااب الإمعدل  يكون فيه لنظام تصنيعيبداية, سنقدم نموذج 

العجز المثلى المسموح بها في حالة أن كل القطع غير المطابقة سوف يعاد تصنيعها بعد الانتهاء من عملية 

وبالتالي درجتان من   نتاج. ام سنعرض نموذجاً مشابهاً للأول ولكن بوجود نوعان من عدم المطابقةالإ

يدمج بين تخطيط وضبط الإنتاج عندما يحتوي الإنتاج على نسبة من العشوائية. أيضا نقدم نموذجاً جديداً 

وأخيرا وليس آخرا سنناقش نموذج ضبط  القطع غير المطابقة وبين تحديد القيم المثلى للعملية التصنيعية.

هذه النماذج تم  من لة الإنتاج. ولكللآالإنتاج والمخزون مع فرضية واقعية وهي حدوث اعطال عشوائية 

وتم عمل دراسة حساسية لفهم تأاير باريمترات  إيجاد القيم المثلى,ثال تحليلي لتوضيح طريقة تقديم م

 النماذج المختلفة على القيم المراد حسابها وايجادها.

 

 شهادة ماجستير علوم 

 جامعة الملك فهد للبترول والمعادن 

ةديالمملكة العربية السعوظهران ، ال
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CHAPTER 1 

1 INTRODUCTION 

Before presenting the core of the work, it will be helpful to present general information 

related to the area of the work. So, at the beginning we will present a brief summary 

about economic order quantity, EOQ, and economic production quantity, EPQ, models 

without and with shortage. Next, we will discuss the motivation for this thesis and its 

main objectives. 

1.1 CLASSICAL EOQ 

EOQ Determines the quantity a company or vendor should order to minimize the total 

inventory costs by balancing the inventory holding cost and average fixed ordering cost. 

We consider the following main assumptions: 

1. The demand rate is known and fixed. 

2. The ordering cost is known and constant. 

3. The lead time is known and constant. 

4. The purchase price of the item is constant (no discount is available). 

5. The whole batch is delivered at once. 

6. Only one product is involved. 

7. Items are perfect. 

8. No shortages are allowed. 

The total cost is given by: 

http://en.wikipedia.org/wiki/Lead_time
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Total Cost (TC) = purchase cost (Cp) + ordering cost (Co) + carrying (holding) cost (Cc) 

It is clear that if the ordered quantity is large, the ordering cost will be smaller while the 

holding cost will be high. The EOQ balances the two types of costs by ordering the 

quantity that gives minimum total cost as shown in Fig. 1.1 Purchase cost does not affect 

the solution since it is constant and independent on the quantity ordered.   

 

Figure ‎1.1 EOQ versus Total cost  

1.2 CLASSICAL EPQ/ EMQ 

The economic production quantity, EPQ, or economic manufacturing quantity, EMQ, 

model is an extension of EOQ, where the production rate is finite. Here, the inventory is 

build up in a continuous manner during production. Production starts again when the 

inventory is depleted. In the classical EPQ/EMQ we assume the following:      

1. The demand rate is known and constant. 

2. Production runs to replenish inventory are made at regular intervals. 

3. The production rate is continuous and constant during the production run. 
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4. Production set-up cost is fixed (independent of quantity produced). 

5. The lead time is fixed. 

6. The production cost of an item is constant. 

7. The replenishment is made incrementally. 

8. Items are perfect. 

9. No shortage is allowed. 

1.3 SHORTAGE 

Shortage occurs when on hand inventory is unable to satisfy the demand (stock out). For 

a moment one may imagine that a shortage is an evil and should be avoided. To the 

contrary, sometimes shortage is desirable, mainly in case where the holding cost is higher 

than the shortage cost. Shortages are either lost sales or backordered.   

 

Figure ‎1.2 Inventory level for a production system with backordered shortage 

http://en.wikipedia.org/wiki/Lead_time
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1.4 MOTIVATION OF THESIS 

EOQ and EPQ models are based on restrictive and often unrealistic assumptions that 

make them not representative of real life conditions. 

The determination of the optimal economic order or production quantity is an important 

and active area of research for the following reasons:  

1. The problem has practical impact and implication to industry.  

2. The problem has many dimensions to address.  

3. It is of multidisciplinary nature. 

4. Unrealistic assumptions in the original models. 

The classic finite production rate model assumes that all items produced are of perfect 

quality. However, real-life production systems are exposed to process deterioration 

and/or other factors, which make the generation of imperfect quality items inevitable. 

Therefore, studies are being carried out to enhance the classic finite production rate 

model by addressing the case of defective items. In real life, defective items are either 

reworked or scrapped.  

1.5 THESIS OBJECTIVES 

This thesis will focus on some production and inventory control models. According to the 

literature reviewed there are some errors in handling these models specifically when it 

accounts for shortage. See for example Hayek and Salameh (2001), Chiu et al. (2004), 

Rezaei (2005), Chiu and Chiu (2006), Wee et al.  (2007), and Peter Chiu et al. (2010). So 

our main objectives are summarized in the following points:   
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1. Point out some common errors in the literature of production and inventory models 

considering shortage and constructing the correct models.    

2. Develop two inventory control models where   imperfect quality items are produced 

and backordering is allowed.  In one model imperfect items are reworked after the end 

of the production process. The other model considers the generation of scrapped and 

re-workable items. Scrapped items are disposed of as they are produced and re-

workable items are reworked at the end of the production process.  

3. Combine the inventory model with random proportions of scrapped and re-workable 

items with process targeting to find the EPQ, optimal shortage allowed, and the 

optimal process mean. 

4. Propose an inventory model to find the economic production run time and optimal 

shortage allowed when there is random interruption in the production process due to 

failure, preventive maintenance or any other disturbing event. 

1.6 THESIS ORGANIZATION 

The rest of the thesis is organized as follows. Chapter 2 summarizes literature related to 

our work. Chapter 3 presents an inventory model with imperfect quality items that are 

reworked after the production process ends. Chapter 4 presents a finite production rate 

model with two types of imperfect quality items under special case. Chapter 5 presents a 

finite production rate model with two types of imperfect quality items under general case. 

In Chapter 6, we investigate an integrated model that combines production and inventory 

control with process targeting. Chapter 7 studies an inventory model with stochastic 
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breakdowns. Finally, chapter 8 summarizes the thesis and presents suggestions for further 

extensions and future work. 
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CHAPTER 2 

2 LITERATURE REVIEW 

One of the earliest papers that discussed imperfect production processes is Lee 

and Rosenblatt (1985) where they found the optimal production cycle time. Zhang and 

Gerchak (1990) studied the EOQ model with random proportion of defective items 

received. They focus on the joint lot sizing and inspection policy to be used. Cheng 

(1991) proposed an EOQ model, where the demand depends on unit production cost. The 

problem was formulated as a geometric program. A closed form optimal solution was 

found. 

Khouja (1995) extended the Economic production quantity model by considering 

production cost as a function of production rate which in turn is as a decision variable. 

Liu and Yang (1996) discussed the lot-sizing problem in a single production stage. In 

their model; processing may generate two types of defective jobs: re-workable jobs; and 

non re-workable jobs that are disposed of immediately. Grubbstrom and Erdem (1999) 

presented a simple algebraic method instead of calculus for determining the optimal lot 

size with backlogging. Cárdenas-Barrón (2001) extended the algebraic approach to find 

the EPQ formula with shortage and under the condition of backlog cost per unit and time 

unit. Lin et al (2008) presented a straightforward algebraic approach to replace the 

calculus based method used in imperfect EMQ model of Wang Chiu (2007).  
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Goyaland Nebebe (2000) presented a method for solving the problem of production 

quantity and shipment policy of a product from one vendor to a single buyer. Salameh 

and Jaber (2000) generated an economic order quantity model where the received lot 

contains random proportion of defective items. After 100% inspection process, defective 

items are sold as a single batch in a secondary market. Chan et al. (2003) studied an EPQ 

model, where  defective items are not disposed, but are sold at a  discount price or it can 

be used in another production stage. Chang (2004) studied an inventory problem where 

fuzzy defective items received, the received lot screened 100% and defective items are 

sold as a single batch with discount prior to receiving the next shipment.  He developed a 

model with fuzzy defective rate and fuzzy demand rate. Papachristos and Konstantaras 

(2006) discussed the issue of shortages in models with random proportion of imperfect 

quality items and shortage not allowed. They revisit the papers of Salameh and Jaber 

(2000) and Chan et al. (2003). They show that the conditions and constraints given in 

these papers are not sufficient to ensure that shortages will not occur.  Then, they 

extended the model of Salameh and Jaber (2000) to the case in which withdrawing takes 

place at the end of the planning horizon. 

Wee et al. (2007) developed an EOQ model for items with imperfect quality and 

shortages are backordered. The model is similar to Salameh and Jaber (2000) but assume 

that  customers are willing to wait for new supply when there is a shortage. Eroglu and 

Ozdemir (2007) developed an EOQ model by allowing backorders and each received lot 

contains some defective items. They consider 100% inspection of each lot. Imperfect 

quality items are either sold in a secondary market or scrapped. 
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Maddah and Jaber (2008) restudied the EOQ model with random fraction of imperfect 

quality items and a screening process as in Salameh and Jaber (2000). Then they 

investigated the effect of screening speed and variability of the supply process on the 

order quantity. In addition, they extended the model by allowing for several batches of 

secondary market items to be collected and shipped in one lot. Khan et al. (2010) 

developed an EOQ model similar to Salameh and Jaber (2000). They include   inspection, 

the inspector may commit type one or type two errors. The errors are random variables, 

and there are associated costs. 

Jaber et al. (2008) extended the work of Salameh and Jaber (2000) by assuming a 

learning curve, where the percentage of imperfect quality items per received lot reduces 

according to the learning curve. Khan et al. (2010) extended Salameh and Jaber's work 

for the situation where there is learning in inspection. They considered two cases due to 

slow inspection effect, lost sales and backorders. 

Hayek and Salameh (2001) considered the case where all imperfect items are stored and 

reworked at the end of the production process. They studied their effect on the optimal 

operating policy, where shortages are allowed and backordered. Chiu et al. (2007) 

investigated an inventory model to find the optimal production run time where there are 

random proportion of imperfect items and stochastic breakdowns. A fixed proportion of 

imperfect quality items is scrapped and the rest are reworked. They adopt the no 

resumption policy where the interrupted lot is aborted as breakdown take place. Peter 

Chiu et al. (2010) developed a finite production rate inventory model similar to Chiu et 

al. (2007) but they considered abort return policy under which the interrupted lot will be 

resumed immediately after maintenance.  
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Ben-Daya (2002) developed an integrated model to find out the economic production 

quantity and optimal preventive maintenance level for an imperfect process. Jamal et al 

(2004) developed an inventory model for determining the economic production quantity 

for a single product, which is manufactured in a single-stage manufacturing system that 

generates imperfect quality products. Defective products are reworked in the same cycle 

or after n cycles. Cárdenas-Barrón (2009) extended the work of Jamal et al (2004) by 

considering planned backorders. 

Yoo et al. (2009) studied the economic production quantity model that includes imperfect 

inspection process, where the inspector may commit type one or two errors and the 

defective sales are returned. Sana (2010) investigated the Economic Production Lot 

sizing model with imperfect production system in which the production process may shift 

from an ‘in-control’ state to an ‘out-of-control’ state at random time. It is assumed that 

when the process is out of control defective items are produced and are reworked at some 

cost. 

Chan and Tai (2006) developed an integrated model that combines inventory control and 

process targeting to find the best combination of economic manufacturing quantity, 

specification limits, and the process mean. They considered a rectifying inspection plan 

and used a symmetric quadratic quality loss function for inspection and measuring the 

product quality. Chan and Khoo (2009) investigated an integrated model that combines 

economic manufacturing quantity and the problem of quality loss model with k machines 

in a serial production system. Rectifying inspection plan with single sampling is adopted 

and Taguchi’s symmetric quadratic quality loss function is used to estimate the product 

quality.  
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CHAPTER 3 

3 DETERMINING OPTIMAL LOT SIZE WITH    

IMPERFECT QUALITY, REWORK, AND 

SHORTAGE 

 

3.1 INTRODUCTION 

This chapter considers the classical problem of finding the optimal production lot size 

that results in minimizing the total cost of inventory and setup while satisfying the 

demand.  We consider a much more realistic version of the problem. First; we assume 

that the production process randomly generates non-conforming items with some 

probability.  This probability, in turn, is a random variable.  Second; we assume that 

defective items are reworked at a finite rate that may be slower than the demand rate.  

Finally; we assume that shortages in the form of backorders are allowed at a penalty cost.  

These realistic conditions are incorporated in a mathematical model.  The mathematical 

model contains two integrals which we compute using a 12-node Gaussian quadrature 

method.  An example is provided where we consider five probability density functions to 

model the probability of producing defectives.  Finally, we study the effect of increasing 

the average probability of producing defectives on economic production quantity and 

shortage levels. 
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3.2 MODEL DESCRIPTION 

This model is an extension of Hayek and Salameh (2001). We consider an inventory 

model of finite production rate, P, which is constant. The demand rate is continuous and 

constant. We assume that the proportion of non-conforming items, , produced during the 

production process. This proportion is random variable with probability density 

function     . Conforming items are used to fulfill the demand. On the other hand non-

conforming items are reworked after production ends. The rework rate, PR, may be 

different from the production rate, P. We assume that the production rate, P, exceeds the 

sum of the demand rate and the rate of generating re-workable items.  Reworked items 

are assumed to be perfect and are used to fulfill the demand.  Finally, shortages are 

backordered at a penalty. 

3.3 MODEL FORMULATION 

In this thesis we will examine the case where the rework rate of imperfect quality items is 

less than or equal to the demand rate, i.e.     .  Figures 3.1 and 3.2 below show the on 

hand inventory during a production-inventory cycle. In Figure 3.1, the on hand inventory 

drops to zero after re-work is over. On the other hand, Fig. 3.2, we notice that the 

inventory level has dropped to zero and shortages are being built up during the rework 

stage. In this model, the inventory level after the rework stage may stay positive or it may 

drop to zero and shortages are built up. Depending on the proportion of the non-

conforming items and then on the difference between the rework rate    and demand rate 

 .  Therefore, in the subsequent analysis one has to combine the two cases in Figures 3.1 

and 3.2. 
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Figure ‎3.1  On- hand inventory of conforming items in case of positive     

 

 

 

 

 

 

 

 

 

Figure ‎3.2 On- hand inventory of conforming items in case of negative    
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Figure ‎3.3 On- hand inventory of non-conforming items in case of positive    

 

 

 

 

 

 

 

 

Figure ‎3.4 On- hand inventory of non-conforming items in case of negative    
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There is no mention in Hayek and Salameh (2001) of the relative values of        . 

However, Figure 1 in their paper that shows the on hand inventory similar to Figure 3.1 

above.  We will denote the total cost per unit time derived using Figure 3.1 as      . In 

the remainder of this section we derive the total cost expression for case shown in Fig. 

3.2. 

To avoid shortage during production time, the production rate should exceed the sum of 

the demand rate and the rate of generating nonconforming items. Since r is a random 

variable, then we must have   1 −           . This model is valid if         

  

 
(1 −

 

 
) as we show later. If this condition is violated, then the production system will 

never be able to satisfy the demand. 

Production takes place during the intervals t5 and t1, therefore Q = ( t5+t1)P. The quantity 

of conforming items produced is (t5+t1)[P(1–r) –D]. This quantity is used to satisfy the 

shortage and buildup the inventory to level z1. 

 1     1 −   −   
 

 
−   (3.1) 

The time, t1, needed to build up the inventory to level  1 of perfect quality items is given 

by: 

 1  
 1

  1 −   −  
 (3.2) 

The time    needed to rework the non-conforming items until inventory becomes zero. 

   
 1

 −   
 (3.3) 

 

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6TYJ-4XG3DBW-2&_mathId=mml53&_user=1074406&_cdi=5620&_pii=S0898122109006907&_rdoc=1&_issn=08981221&_acct=C000051301&_version=1&_userid=1074406&md5=4dbde62555db2bbc0b1c969adad41822
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The time    needed to build up a shortage level of     units is. 

   
  

 −   
  (3.4) 

The inventory level after rework stage,    is: 

            −    −  1 (3.5) 

Where:  

        
  

  
 (3.6) 

Substituting  1 from (3.1) and         from (3.6) into (3.5), we get: 

   (
        

   
− 1)    (3.7) 

The time  4 needed to build up maximum shortage level of ( ) units is: 

  4  
 −   

 
 (3.8) 

Since  4   , then     , 

From (3.8) one must have: 

   
  

 
(1 −

 

 
) (3.9) 

Condition (3.9) should be true for all values of r, Hence, 

        
  

 
(1 −

 

 
) (3.10) 

The time  5 needed to eliminate the back order once production is started again is: 
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 5  
 

  1 −   −  
 (3.11) 

The time needed to consume all units   at rate   is the cycle length  0 expressed as 

  0  
 

 
 (3.12) 

The relevant costs per cycle associated to this model are shown below: 

(1) Production cost of all items (perfect and imperfect) = cQ. 

(2) Repair cost of non-conforming items =     . 

(3) Setup cost = A. 

(4) Holding cost of conforming items and items to be reworked. 

Holding costs = (
    

 
 

  
 

       
 

  

 
  1   5 

 )      
       

 

 
  . 

(5) Shortage cost = (
  

 

       
 

    

 
   

 

 
 5) 

The total cost per production cycle is the sum of all above costs and is given by: 

      |               (
 1 1
 

 
 1

 

   −    
 

  

 
  1   5 

 )

     
       

 

 
  (

  
 

   −    
 

    
 

   
 

 
 5) 

(3.13) 

By dividing the total cost per cycle from (3.11) over the cycle length from (3.10), the 

total cost per unit time can be written as: 

         |   
      |  

 0
  0  

 1

 
           4

  

  
 (3.14) 
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Where:  

 0            

 1     

   
  

  
(
 1

 
 

 1
 

  
 

 

 
)  

     

    
 

  

  
(
  

 

  
−

  
 

 
) 

   −  (
1

 
 

 1

  
)    (

  

  
−

  

 
) 

 4  
  

  
(

1

  1
 

1

  
)  

  

  
(
1

  
 

1

  1
) 

 1  1 −  −     

   
        

   
− 1 

    −    

To prove that            is a convex function, we examine the convexity of its 

components. 

The second term is a positive constant times the reciprocal of a non-negative linear 

function hence it is convex. The third and fourth terms are linear. The last term is a 

positive constant times w
2
/Q. It is straight forward to show that the Hessian of this 

function is positive semidefinite. Hence, the last term is also a convex function. 

Therefore, the expected annual cost function is convex function and a local solution is 

also global. 

As we mentioned previously, the value of    depends on the proportion of non-

conforming items. The proportion of non-conforming items has a limit upon which    

will be negative. This limit can be calculated by (3.15). 
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  (1 −

 

 
−

 

 
)

 
 

(3.15) 

Let rmin and rmax be the minimum and maximum value of r.  Then we have two cases. If 

         , then z2 ≥ 0 and the total cost per unit time is given by      . On the 

other hand if          , then z2 ≤ 0 and the total cost per unit time is given by 

     . Therefore, the expected cost per unit time is given by; 

         ∫             
  

    

 ∫     
    

  

         (3.16) 

The minimum of           can not be found in closed form. Therefore, we find the 

solution by performing exhaustive search for Q and w. The integration is carried out 

numerically using a 12-node Gaussian quadrature method  

3.4 NUMERICAL EXAMPLE AND SENSITIVITY ANALYSES 

In this Chapter we solve an example similar to that of Hayek and Salameh (2001). We 

use the same values of the data in their example except for PR and b which we take as 500 

unit/year and $ 25/unit/year, respectively.    

The proportion of non-conforming items is distributed over the interval [0, 0.1].  

Table 3.1 shows the optimal values of economic production quantity   , optimal shortage 

quantity    , and the corresponding total cost per unit time            for five 

probability distribution functions for r. 

 

http://www.sciencedirect.com/science/article/pii/S0925527306002003#bib10
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Table ‎3.1 Optimal EPQ and shortage quantity for different probability mass 

functions of r. 

     Formula  Parameters                  

Uniform      
1

   
  a=0 b=0.1 1060 95 128672 

Normal      
1

√    
 
 (

      

   )
  µ=0.05 =0.015 1070 99 128535 

Exponential             =55 ------  1112 116 127684 

Gamma      
1

      
   1 

 
 

   =3 =0.01 1097 110 128015 

Weibull      
 

  
   1 

 (
 

 
)
 

  =4 =0.06 1062 96 128650 

 

To show the need for this model we will compare the answer obtained above for the case 

where proportion of nonconforming items follows the normal distribution with the 

solution generated using the classical model. The classical finite production model, where 

shortages are backordered gives    11   units and    1   units. If these values are 

substituted in the cost function given in (3.16), we get              1      . This 

value exceeds the optimal value shown in Table 3.1.  

Next, we study the effect of the imperfect quality items proportion on the optimal 

solution. We consider the case that r is normally distributed with fixed standard deviation 

     1  and varied mean  . We choose    such that          1 −
 

 
. We use 

the same data of the above  example except for the rework rate which we set at  800 

units/year. Fig. 3.5 illustrates the behavior of the optimal production quantity    and 

optimal shortage quantity     for the changes in mean of the non-conforming items 

proportion. One notices that when   increases the optimal production quantity    and 

optimal shortage quantity     decrease, Figure 3.6 shows behavior of             with 
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changes in the mean of the non-conforming items proportion. The figure shows as the 

proportion of non-conforming items increase,     increases.  

 

Figure ‎3.5 The effect of non-conforming items proportion on the optimal production 

quantity Q* and the optimal shortage quantity w*. 

 

 

Figure ‎3.6 The effect of non-conforming items proportion on the total cost per unit 
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3.5 SUMMARY 

The classical EPQ model is inappropriate when production lots have non-conforming 

items. Therefore, new models are required for more realistic solutions. Such an EPQ 

model is developed when each production lot contains proportion of non-conforming 

items these items are reworked at constant rate, and shortages are allowed. It is assumed 

that imperfect quality items proportion is random variable. An example is provided for 

the developed model, and effects of individual changes in imperfect quality items 

proportion on optimal solution have been studied. From the model discussed in this 

chapter we conclude that shortages may occur depending on the percentage of the non-

conforming items. So we develop solution for all cases of shortages for the model under 

study. One notices that when the imperfect quality items proportion increases, the optimal 

production quantity and optimal shortage quantity decreases, where the total cost per unit 

time increases. 
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CHAPTER 4 

4 PRODUCTION PLANNING WITH TWO 

TYPES OF IMPERFECT QUALITY ITEMS 

WITH      

 

4.1 ITRODUCTION 

This chapter considers the problem of satisfying constant and continuous demand through 

batch production at a finite rate. We assume that produced items may contain non-

conforming ones that can be reworked and others that are scrapped. Costs are associated 

with these types of non-conforming items.  The proportions of re-workable and scrapped 

items are random variables.  In addition, we assume that shortages are permissible at 

some cost.  This realistic scenario is modeled mathematically.  We derive a closed form 

for the optimal batch size and maximum shortage quantity that result in minimizing the 

total cost of production, inventory and setup costs.  It is shown that the global solution of 

the problem is obtained.  An example is presented and sensitivity to changes in model 

parameters is studied. 
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4.2 MODEL DESCRIPTION 

We assume that the production and demand rates, P and D respectively are constant and 

known.  In this chapter we assume that there are two types of non-conforming items, re-

workable items and scrapped items. The proportions of non-conforming items that are re-

workable and that are scrapped are r and s respectively. Both of these proportions are 

random variables with probability density functions g(r) and f(s). Conforming items are 

used to fulfill the demand. Scrapped items are disposed of at a cost, while re-workable 

items are processed after production ends. The rework rate, PR, may be different from the 

production rate, P. We assume that the production rate exceeds the sum of the demand 

rate and the rate of generating re-workable and scrapped items.  Reworked items are 

assumed to be perfect and are used to fulfill the demand. Finally, shortages are 

backordered at a penalty.   

This chapter is an extension of Hayek and Salameh (2001) in two directions. First we 

introduce the probability of having scrapped items. Second, we point to the proper 

assumptions underlying the model. Ignoring these assumptions, results in faulty 

application of the model.  

4.3 MODEL FORMULATION 

To avoid shortage during production time, the production rate should exceed the sum of 

the demand rate and the rate of generating nonconforming items.  Since s and r are 

random variables, then we must have P(1 - max(s) - max(r)) ≥ D. Also, we assume that 
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during rework the inventory level is non-negative. A sufficient condition to achieve this 

case is that PR ≥ D. 

Production takes place during the intervals t5 and t1, therefore Q=( t5+t1)P. The quantity 

of conforming items produced is (t5+t1)[P(1–s–r) –D]. This quantity is used to satisfy the 

shortage and buildup the inventory to level z1.so the value of z1 given by (4.1):  

 1     1 −  −   −   
 

 
−   (4.1) 

t1, needed to build up the inventory to level  1 of perfect quality items is given by: 

 1  
 1

  1 −  −   −  
 (4.2) 

The number of items that need rework is rQ, so the time    needed to rework the re-

workable items produced is: 

   
  

  
 (4.3) 

The maximum inventory level reached,    is: z2 = z1 + t2(PR – D). By substituting   1 from 

(4.1) and    from (4.3) we get: 

   (1 −  −
        

   
) −   (4.4) 

Hence the time to consume this inventory level, t3. Where: 

   
  
 

 (4.5) 

The time  4 needed to buildup a maximum shortage of   units is: 

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6TYJ-4XG3DBW-2&_mathId=mml53&_user=1074406&_cdi=5620&_pii=S0898122109006907&_rdoc=1&_issn=08981221&_acct=C000051301&_version=1&_userid=1074406&md5=4dbde62555db2bbc0b1c969adad41822
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 4  
 

 
 (4.6) 

The time  5 needed to eliminate the backorders once production is started again is: 

 5  
 

  1 −  −   −  
 (4.7) 

The cycle length  0 which is the time needed to consume all perfect units (1–s) y at rate D 

can be expressed as. 

 0  
 1 −    

 
 (4.8) 

 

 

 

Figure ‎4.1 On-hand inventory of conforming items in case of       
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Figure ‎4.2 On-hand inventory of re-workable items in case of      
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(1) Production cost of all items = cQ. 
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      |                      [
 1 1
 

 
 1    

 
   

    
 

]   
  

 
  1   5 

 

     

  
 

 
  

 

 
  4   5  

(4.9) 

Total cost per unit time can be written as:            

       |      
      |    

 0
 (4.10) 

Substituting the expression of z1, z2, ti, i=0,1,..,5 into TCU results in the following 

expression: 

       |    

 
  

1 −  
 

    

1 −  
 

      

1 −  
 

  

  1 −   

 
 

 
[(1 −   

  

  1 −   
−

 

  1 −   
)   −   ]

 
   −    

 
(

   

   1 −   
)    

   
  

  
(

1 −  −  

 1 −   (1 −  −  −
 

 
)
) 

(4.11) 

 

 

 

 

 



29 
 
 

 
 
 

The expected value of        |    is: 

         ∫ ∫        |                
    

    

    

    

    (
1

1 −  
)      (

 

1 −  
)      (

 

1 −  
)

 
  

 
 (

1

1 −  
)  

 

 
[(1 −

 

 
−     ) −   ]

 
   −     

   
 (

  

1 −  
)

      
  

  
 (

1 −  −  

 1 −   (1 −  −  −
 

 
)
) 

(4.12) 

The expected total cost per unit time can be written as; 

          0  
 1

 
    −        

  

  
 (4.13) 

Where: 

 0     (
1

1 −  
)      (

 

1 −  
)      (

 

1 −  
) 

 1     (
1

1 −  
) 

   
 

 
(1 −

 

 
−     )  

   −    

   
 (

  

1 −  
) 

   
   

 
 (

1 −  −  

 1 −   (1 −  −  −
 

 
)
) 
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To prove that ETC is a convex function; we examine the convexity of its components.  

The second term is a positive constant times the reciprocal of a non-negative linear 

function hence it is convex. The third and fourth terms are linear. The last term is a 

positive constant times w
2
/Q. It is straight forward to show that the Hessian of this 

function is positive semi definite. Hence the last term is also a convex function. 

Therefore, the expected annual cost function is convex function and a local solution is 

also global. 

The optimal values of Q and w can be obtained by setting the partial derivatives of ETC 

equal to zero. This yields the two simultaneous equations    [     
    −   ]   1 and 

             

A solution exists if          . 

This yields: 

   √
 1

  −
  

4  

 (4.14) 

 

   
 

   
    (4.15) 

The optimum expected total cost per unit time          is obtained by direct 

substitution of    and    given by (4.14) and (4.15), respectively. 



31 
 
 

 
 
 

Since inventory level after production process ends,  1, must be greater or equal to zero, 

we should have: 

1 −     −     −
 

 
 

 

 
 (4.16) 

Since the left side equal  5, then  1    if  5  
 

 
 

If    and    given by (4.14) and (4.15) satisfy (4.16). Then    and    are the solution of 

the inventory control problem. 

If    and    violate (4.16), then at an optimal solution we must have: 

 5  
 

 
 (4.17) 

Substituting w from (4.17) into     given by (4.13) results in: 

         0  
 1

 
    −    5     5

   (4.18) 

The minimum of         is achieved at: 

    √
 1

  −   5     5
  (4.19) 

Then, 

     5 
   (4.20) 
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If the production is always conforming, i.e.  s =0 and r=0, we get the same equations of 

the classical finite production model, where shortages are allowed and backordered: 

   √
        

   1 −
 

 
 

 
(4.21) 

and 

              
  

 
 

     [ −  (1 −
 

 
)]

 

  (1 −
 

 
)

 
(4.23) 

 

4.4 NUMERICAL EXAMPLE AND SENSITIVITY ANALYSIS 

The example considered in this paper is taken from Hayek and Salameh (2001) with 

some changes in the data values. Specifically we take    = 2000 unit/year instead of 100 

unit/year to satisfy the condition that     . By taking in consideration that in our 

model we assume that r is proportion of re-workable items produced as random variable 

with a known probability density function        

  = 1600 units/year, 

 = 1200 units/year, 

   = 2000 units/year, 

   
 

     
 1 −

 

 
    (4.22) 
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c = $104/unit, 

  = $8/unit, 

  = $5/unit, 

A = $1500, 

h = $20/unit/year, 

hR = $22/unit/year, 

b = $25/unit, 

     {
              
          

 

     {
1           1
          

 

Therefore, 

                        (
1

1  
)  1      ,   (

 

1  
)         ,  (

 

 1   
)  

    1    (
  

 1   
)         ,  (

1    

 1    1     
 

 
 
)          

The optimum solution is Q
*
=1126 units, w

*
=90 and ETC(Q

*
,w

*
)=$ 131956/year. 

For the classical finite production model, where backorders are allowed and output is 

always conforming, we find values of    11   units,    1   units. By substituting 

these values in the cost function given in (4.13), we get            $132095 /year. 

We notice that the resulted cost is greater than the one obtained using our formulas. So in 
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the case of imperfect quality items produced, the optimum values should be obtained 

using the new equations developed. 

Suppose that the probability density function of s and r are uniform random variables 

with ranges [0,S] and [0,R] respectively. Table 4.1, shows the effect of   and R on 

  ,   and             One notices that as  S and R increase,    decreases. While    

increases respect to proportion of scrapped items and decreases respect to re-workable 

items proportion, but ETC(Q
*
,w

*
) increases  as the proportion of non-conforming items 

increases. 
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Table ‎4.1 Effect of S and R on   ,  and            

 

 

S 

R 

0 0.025 0.05 0.075 0.1 

Q* w* TCU Q* w* TCU Q* w* TCU Q* w* TCU Q* w* TCU 

0 1138 126 127962 1121 120 128131 1104 113 128302 1085 106 128477 1067 98 128655 

0.025 1175 124 129566 1156 117 129738 1137 110 129914 1117 102 130092 1096 94 130276 

0.05 1213 121 131227 1192 113 131404 1171 106 131584 1149 98 131767 1126 90 131956 

0.075 1254 117 132950 1230 109 133131 1206 101 133317 1182 93 133506 1156 84 133702 

0.1 1296 113 134739 1269 104 134926 1242 96 135118 1214 87 135315 1169 58 135561 



36 
 
 

 
 
 

Figures 4.3 and 4.4 illustrate the behavior of the optimal production quantity    and 

optimal shortage quantity     against different expected values of re-workable and 

defective proportions, s and r respectively.  

 

Figure ‎4.3 Proportion of re-workable items effects on optimal production quantity 

Q* and the optimal shortage quantity w* for  E(s)=0.05 

 

 

Figure ‎4.4 Proportion of scrapped items effects on optimal production quantity Q* 

and the optimal shortage quantity w*for E(r)=0.05. 
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4.5 SUMMARY 

The classical EPQ model is inappropriate when the production contains non-conforming 

items. Therefore, new models are required for more realistic solutions. Such an EPQ 

model is developed when each ordered lot contains non-conforming items these non-

conforming items either reworked after production ends, and become a good items with 

re-workable cost, or it will be scrapped and disposed with a disposal cost, and shortages 

backordered. It is assumed that defective and re-workable items proportions are a random 

variables uniformly distributed. One notices that, when proportion of non-conforming 

items increase individually, the economical production quantity and maximum shortage 

quantity will decrease respect to re-workable items proportion, economical production 

quantity increases respect to scrapped items proportion while the maximum shortage 

quantity will decrease respect to scrapped items proportion. Where the optimal total cost 

per unit time increases as proportion of non-conforming items increases. 
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CHAPTER 5 

5 PRODUCTION PLANNING WITH TWO 

TYPES OF IMPERFECT QUALITY ITEMS  

 

5.1 INTRODUCTION 

 In the classical economic production quantity we assume that all items produced are 

perfect quality items, where this is not the real case behavior because the process may 

deteriorate or get affected by the environment or any other factor. The finite production 

rate model with two types of imperfect quality items produced is examined in this 

chapter. Each produced lot contains proportion of non-conforming items which contains 

two types. First type is re-workable items which can be reworked after finishing of 

production and become conforming items. The portion of re-workable items considered 

being a random variable with known probability density function and re-workable cost, 

second type is a scrapped items which has to be disposed with disposal cost and has 

known probability density function. Backorders are allowed. In this chapter we also 

investigate the case when we have shortages due to the high proportion of non-

conforming items and the fact that rework rate is less than the demand rate. The effect of 

producing non-conforming items on optimal solution is studied while numerical example 

is provided for the developed model. 
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The model discussed in this chapter is the same as Chapter 4 except that the condition 

     is relaxed  

5.2 MODEL FORMULATION 

As shown in Chapter 3, when      there is a possibility that the inventory level drops 

to zero before the rework is completed. This fact depends mainly on the percentage of the 

non-conforming items and then on the difference between the rework rate    and demand 

rate  .  Figures 5.1 and 5.3 show the case when the inventory level after completion of 

rework is positive, i.e.     . On the other hand Figures 5.2 and 5.4 show the case when 

    . 

We denote the total cost per unite time for the case      and      as       0 and 

      0, respectively. Note that       0 is the same as that ETC in Chapter 4. 

To avoid shortage while producing, production rate of good items is always greater than 

or equal to the sum of the demand rate and the rate at which non-conforming items are 

produced {P(1 - max(s) - max(r)) ≥ D}. This model is valid if         
  

 
(1 −

       −
 

 
) as will be shown later. 

 



40 
 

 
 

 

Figure ‎5.1 On- hand inventory of conforming items in case of positive    

 

 

 

Figure ‎5.2 On- hand inventory of conforming items in case of negative    
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 Figure ‎5.3 On- hand inventory of non-conforming items in case of positive    

 

 

 

Figure ‎5.4 On- hand inventory of non-conforming items in case of negative    

From Fig. 5.1, we find the following: 

 The inventory level  1 is: 

 1   1 −  −  −      −   (5.1) 

The time  1 needed to build up  1 units of items that are perfect quality items      
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 1  
 1

  1 −  −   −  
 (5.2) 

And the time    needed to rework portion of the non-conforming items until inventory 

becomes zero, 

   
 1

 −   
 (5.3) 

The time    needed to build up a back order level of     units is:. 

   
  

 −   
 (5.4) 

The inventory level after rework process    is: 

             −   −  1 (5.5) 

Where:  

        
  

  
 (5.6) 

Substituting  1  from (5.1) and         from (5.6) into (5.5),we get: 

   (  
        

   
− 1)    (5.7) 

The time  4 needed to build up a back order level of   units is: 

 4  
 −   

 
 (5.8) 

Since  4   , then     , 

From (5.8) one must have: 
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(1 −  −

 

 
) (5.9) 

Condition (5.9) should be true for all values of s and r, Hence, 

        
  

 
(1 −        −

 

 
) (5.10) 

The time  5 needed to eliminate the back order once production is started again is: 

 5  
 

  1 −  −   −  
 (5.11) 

The time needed to consume all units  at rate   is the cycle length  0 expressed as: 

 0  
 1 −     

 
 (5.12) 

We have six related costs in our model: 

(1) Production cost of all items = c Q. 

(2) Rework cost of re-workable items =     . 

(3) Disposal cost for defective items =       

(4) Set-up cost = A. 

(5) Holding cost: considering holding cost of perfect items and items reworked. 

Holding costs = (
    

 
 

  
 

       
 

  

 
  1   5 

 )      
       

 

 
  . 

(6) Shortage cost = (
  

 

       
 

    

 
   

 

 
 5) 

Total cost is the summation of all above costs, so we get: 
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   −    
 

    
 

   
 

 
 5) 

(5.13) 

Total cost per unit can be written as: 

      0    |      
      |    

 0
 (5.14) 

As we mentioned previously that the value of    depends on the proportion of non-

conforming items, so the proportion of non-conforming items has a limit upon which    

will be negative. This limit can be calculated as follows: 

  
 

  
   1 −

 

 
−

 

 
 (5.15) 

If RHS greater than or equal to LHS, the       0 can be used. If RHS less than or equal 

to LHS, then       0 will be used. 

Let smin and smax be the minimum and maximum value of s. on the other hand, rmin and 

rmax are the minimum and maximum value of r. The total cost per unit time can be 

calculated using (5.16); 

         ∫ ∫               0      
  

    

  

    

 ∫ ∫         
    

  

      0

    

  

       

(5.16) 
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Where: 

      {     (1 −
 

 
−

 

 
−

     

  
)} 

      {     (1 −
 

 
−

 

 
−

     

  
)} 

  
  (1 −  −

 

 
−

 

 
)

 
 

      {      } 

      {      } 

The minimum of           can not be found in closed form. Therefore, we find the 

solution by performing exhaustive search for Q and w. The integration is carried out 

numerically using a 12-node Gaussian quadrature method  

5.3 NUMERICAL EXAMPLE AND SENSITIVITY ANALYSIS 

Taking in consideration that s is the proportion of scrapped items produced, which is 

random variable with a known probability density function     , and r is the proportion 

of re-workable items produced, which as random variable with a known probability 

density function       

A manufactured product has a constant demand rate of 1200 unit/year. The machine used 

to manufacture this item has a production rate of 1600 unit/year. And the related costs as 

follows: 

c = $104/unit, 

  = $8/unit, 
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  = $5/unit, 

A = $1500, 

h = $20/unit/year, 

   = $22/unit/year, 

b = $25/unit/year, 

The proportion of non-conforming items is distributed over the interval [0, 0.1].The 

defective items are reworked at a rate of 1000 units/year. 

Table 5.1 shows the optimal values of economic production quantity    , optimal 

shortage quantity    , and related total cost per unit time            for five 

probability distribution functions for s and r. We used the same distribution function for 

both s and r. 

To show the need for this model we will compare the answer obtained above for the case 

where proportion of nonconforming items follows the normal distribution with the 

solution generated using the classical model. The classical finite production model, where 

shortages are backordered gives     11   units and    1   units. If these values 

are substituted in the cost function given in (3.16), we get            1      . This 

value exceeds the optimal value shown in Table 5.1.  
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Table ‎5.1 Optimal EPQ and shortage quantity for different probability mass 

functions for s and r. 

f(s,r) Formula  Parameters                  

Uniform      
1

   
  a=0 b=0.1 1166 54 135547 

Normal      
1

√    
 
 (

      

   )
  µ=0.05 =0.015 1170 59 135206 

Exponential             =55 ------  1070 54 129718 

Gamma      
1

      
   1 

 
 

   =3 =0.01 1110 56 131744 

Weibull      
 

     1 
 (

 

 
)
 

  =4 =0.06 1190 60 135984 

Next, we study the effect of the imperfect quality items proportion on the optimal 

solution. We consider the case that s and r is normally distributed with fixed standard 

deviation      1  and varied mean. We choose    such that          1 −
 

 
.  

Table 5.2 shows the effect of non-conforming item on the optimal solution .Fig. 5.5 

illustrates the behavior of optimal production quantity   and optimal shortage quantity 

    for the deviation in mean of scraped items portion by fixing the mean of the re-

workable items portion. Fig. 5.6 illustrates the behavior of optimal production 

quantity    and optimal shortage quantity     for the deviation in mean of the portion of 

re-workable items produced by fixing the mean of the scraped items portion. One notices 

that when   increases the optimal production quantity    and optimal shortage quantity 

    decreases, where Figures 5.7 and 5.8 show the effect of non-conforming items on the 

total cost per unit time TCU.  They show that as the portion of the two types of non-

conforming items increase,     increases. 
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Table ‎5.2 The effect of non-conforming items on the optimal solution 

   

   

0.04 0.05 0.06 

       TCU        TCU        TCU 

0.04 1190 93 133685 1177 88 133832 1159 82 133980 

0.05 1223 90 135074 1205 84 135224 1188 79 135375 

0.06 1258 87 136493 1234 80 136645 1212 73 136799 

0.07 1291 83 137940 1275 77 138096 1250 63 138261 

 

 

Figure ‎5.5 Effect of scrapped items proportion on the EPC and optimal shortage 

quantity (       ). 
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Figure ‎5.6 Effect of re-workable items proportion on the EPC and optimal shortage 

quantity (       ).  

 

 

Figure ‎5.7 Effect of scraped items proportion on the TCU (       ). 
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Figure ‎5.8 Effect of re-workable items proportion on the TCU (       ). 

5.4 SUMMARY 

The finite production rate model is presented where the process may generate non-

conforming items. Where some of them are scrapped as they are produced, where the 

others are reworked with constant rework rate at the end of the production time. 

The proportions of the scrapped and reworked items are random variables. So we apply 

different distribution functions for these random variables to test the results and the effect 

of these non-conforming items on the optimum values of the economic production 

quantity, maximum shortages allowed, and so for the total cost per unit time. One can 

conclude that if the proportion of the scrapped items produced increases, the economic 

production quantity increases while the maximum shortages allowed decreases. But if the 

percentage of re-workable items increases, both EPQ and maximum shortages allowed 

are decrease. And the total cost per unit time is increasing when non-conforming items 

portion increases.  

135050

135100

135150

135200

135250

135300

135350

135400

0.035 0.04 0.045 0.05 0.055 0.06 0.065

TC
U

 

µr 

TCU



 

51 
 

CHAPTER 6 

6 PRODUCTION PLANNING WITH PROCESS 

TARGETING 

 

6.1 INTRODUCTION 

Researchers almost deal with process targeting or production and inventory planning 

separately, while they are somehow related to each other and one of them affects the 

results of the other. This chapter presents a model that combines between production and 

inventory control with process targeting. The model in this chapter is similar to the model 

discussed in Chapter 5 in addition to determining the optimal mean of some quality 

characteristic of known probability density function. At the end of this chapter, numerical 

example is provided to illustrate the solution procedure. And sensitivity analysis 

conducted to show the effect of changes in the model parameter on the decision variables. 

6.2 MODEL DESCRIPTION 

The model discussed in this chapter is identical to that of Chapter 5 in addition to 

determining the mean of random quality characteristic. The value of the mean will affect 

the proportion of re-workable and scrapped items as follows. 

As shown in Fig. 6.1 we assume that there are upper and lower specifications for the 

quality characteristic. If the quality characteristic exceeds the upper specification limit U, 
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the item is reworked, where we assume that reworked items are always conforming. If the 

quality characteristic is between the lower, LSL, and upper, USL, specification limits, the 

item is conforming and it is used to satisfy the demand. Otherwise the item is scrapped. 

Figures 6.2 and 6.3 show the inventory level of conforming and non-conforming items, 

respectively, for production cycle with     . While Figures 6.4 and 6.5 show the 

inventory level of conforming and non-conforming items, respectively, for production 

cycle with     . 

 

 

 

Figure ‎6.1 Items classification depending on the quality characteristic value. 
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Figure ‎6.2 On- hand inventory of conforming items in case of positive    

 

 

Figure ‎6.3 On- hand inventory of conforming items in case of negative    
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Figure ‎6.4 On- hand inventory of re-workable items in case of positive    

 

 

Figure ‎6.5 On- hand inventory of reworkable items in case of negative    

6.3 MODEL FORMULATION 

The process mean will define the proportion of non-conforming items, so it affects the 

decision variables of the production and inventory. We aim to develop a mathematical 

model to find the optimal combination between the process mean, EPQ, and maximum 

shortage allowed. 
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Most of quality characteristics in real life follow the normal distribution. Hence, we will 

consider normal distribution as the probability density function of the quality 

characteristic under study. 

     
1

√    
 
 (

      

   )
 (6.1) 

Where:  

 : Quality characteristic value. 

 : Mean of the normal distribution 

 : Standard deviation of the normal distribution 

Since the probability density function of the quality characteristic known and 

specification limits are defined, then the proportion of scrapped and re-workable items s 

and r can be calculated easily through the following formulas, depending on the previous 

definitions: 

  ∫
1

√    
 
 

      

     
   

    

 (6.2) 

And 

  ∫
1

√    
 
 

      

     
    

     

 (6.3) 

To avoid shortage while producing and having feasible model, production rate of good 

items is always greater than or equal to the sum of the demand rate and the rate at which 

non-conforming items are produced   1 −  −     . This model is valid if   
 

  
  

1 −
 

 
 as shown in Chapter 5. 
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Inventory level after rework process,    will affect the total cost per cycle and it depends 

mainly on the proportion of non-conforming items, so the proportion of non-conforming 

items has a limit upon which    will be negative. This limit can be calculated as follows: 

  
 

  
   1 −

 

 
−

 

 
 (6.4) 

 

 

Since s and r depend on the process mean, which is a decision variable in this case, if 

(6.4) is not satisfied, we have two scenarios. First one, if the LHS is less than or equal to 

RHS, the case of      can be used. Second scenario if LHS is greater than or equal to 

RHS, then      case will be used.  

The total cost per cycle consist of  production cost of all items, rework cost of re-

workable items, disposal cost for defective items, set-up cost, holding cost of perfect 

items and reworked items, and shortage cost. So the total cost per unit time for the case of 

     can be written as: 

      0   1  
  
 

      4   5
  

  
 (6.5) 

Where: 

 1  
 

 1 −    
             

   
  

 1 −    
 

   
 

 
(1 −

 

 
−  )  

   −      

    1 −   
 

 4  −  
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 5  
   

 
(

1 −  −  

 1 −   (1 −  −  −
 

 
)
) 

By setting the partial derivative of       0 with respect to   and   to zero, we get the 

optimal   and   as follows: 

 1  √
  

  −
   

4  

 (6.6) 

and 

 1  
− 4
  5

 1 (6.7) 

It is easy to show the convexity of       0 as we did in Chapter 4. Hence,  1 and  1 

are the optimum values. 

The total cost per unit time for the case of      is: 

      0   1  
  
  

      4   5
  

 
 (6.8) 

Where: 

 1  1 −  −  −     

     
        

   
− 1 

     1 −  −   −   

 4   −    

 1  
 

 1 −    
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1

  
) 

By setting the partial derivative of       0 with respect to   and   to zero, we get the 

optimal   and   as follows: 

   √
  

  −
   

4  

 (6.9) 

And 

   
− 4
  5

   (6.10) 

It is easy to show the convexity of the       0 as we did in Chapter 5. Hence,       0 

has optimum solution when       and     . 

6.4 SOLUTION PROCEDURE 

To find the optimal process mean, EPQ, and maximum shortage allowed we develop a 

simple algorithm. This algorithm is summarized in the following steps: 

1. Define the feasible range of the process mean such that production rate of perfect 

quality items is greater than the demand rate. and not allowing for shortage before 

fulfilling the shortage of the previous cycle 
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∫
1

√    
 
 

      

     
   

     

 
 

 
 (6.11) 

and 

1 − ∫
1

√    
 
 

      

     
   

     

 
  

 
(1 −

 

 
)  (6.12) 

Search for the lowest mean that satisfy the condition above and it is called   . Then find 

upper one in the range     through the following formula:       −       . The 

optimal mean falls in the interval [     ]. 

2. Since the calculation of the total cost will be changed depending on the value of  . 

For each   in the feasible range we do the following:                      

      
− 4
  5

 1 −
 

 
−  −

 

  
     

   1  √
  

   
  

 

   

                  1  
   

   
 1 

          0 

     
− 4
  5

 1 −
 

 
−  −
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− 4
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−  −

 

  
            

− 4
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60 
 

 
 

       {      0       0} 

        { 1   } 

        { 1   } 

3. The optimal process mean, economic production quantity, and optimal shortage 

allowed are the ones related the minimum total cost per unit time. 

6.5 NUMERICAL EXAMPLE AND SENSITIVITY ANALYSIS 

A specific product has a constant demand rate of 1200 unit/year. The machine used to 

manufacture this item has a production rate of 1600 unit/year. And related costs are as 

follows: 

c = $104/unit, 

  = $8/unit, 

  = $5/unit, 

A = $1500, 

h = $20/unit/year, 

   = $22/unit/year, 

b = $25/unit/year, 

The quality characteristic follows normal distribution with known standard deviation 

0.152. The defective items are reworked at a rate of 1000 unit/year. 

Using the same procedure illustrated before we found the optimal combination of the 

required decision variables as shown in table 6.1. 
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Table ‎6.1 Results for the given numerical data. 

Feasible range of µ 
µ Q w TCU 

      

24.878 25.122 25.102 946 38 131606 

To show the effect of the parameters on the optimal values we did sensitivity analyses. 

this sensitivity discuss the effect of the changes in standard deviation, production rate,  

demand rate, setup cost, holding cost of good items, holding cost of re-workable items, 

shortage cost, production cost, rework cost, and disposal cost. 

Table 6.2 shows the effect of standard deviation on the optimal values. The feasible range 

of the process mean decreases, the optimal mean increases, the EPQ decreases, and 

optimal shortage quantity decreases as the standard deviation increases. 

Table ‎6.2 Sensitivity analyses respect to standard deviation 

 
Feasible range of µ 

µ Q w TCU 
      

0.125 24.852 25.148 25.07 1051 86 129655 

0.13 24.857 25.143 25.075 1035 78 129980 

0.135 24.861 25.139 25.081 1015 69 130325 

0.14 24.866 25.134 25.087 996 60 130687 

0.145 24.871 25.129 25.093 976 51 131063 

0.15 24.876 25.124 25.099 955 42 131449 

0.155 24.881 25.119 25.104 937 32 131845 

0.16 24.887 25.113 25.108 918 22 132265 

0.165 24.893 25.107 25.106 915 18 132720 

0.17 24.901 25.099 25.098 930 19 133284 
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Table 6.3 shows the effect of production rate on the optimal values. As the production 

rate increases, the feasible range of the process mean increases, the optimal mean 

increases, the EPQ decreases, and optimal shortage quantity increases.  

Table ‎6.3 Sensitivity analyses respect to production rate 

P 
Feasible  mean range 

µ Q w TCU 
      

1400 24.95 25.05 25.049 1312 15 131826 

1450 24.923 25.077 25.076 1127 16 131402 

1500 24.905 25.095 25.094 1023 17 131403 

1550 24.89 25.11 25.099 980 27 131501 

1600 24.878 25.122 25.102 946 38 131606 

1650 24.867 25.133 25.103 920 47 131705 

1700 24.858 25.142 25.103 900 56 131795 

1750 24.849 25.151 25.104 880 64 131879 

1800 24.842 25.158 25.105 862 71 131956 

1850 24.835 25.165 25.105 848 78 132027 

Table 6.4 shows the effect of demand rate on the optimal values. The feasible range of 

the process mean decreases, the optimal mean decreases, the EPQ increases, and optimal 

shortage quantity decreases as the demand rate increases. 

Table ‎6.4 Sensitivity analyses respect to demand rate 

D 
Feasible  mean range 

µ Q w TCU 
      

800 24.751 25.249 25.108 613 104 89100 

850 24.763 25.237 25.107 647 100 94453 

900 24.775 25.225 25.106 682 94 99794 

950 24.787 25.213 25.106 719 87 105124 
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1000 24.8 25.2 25.105 758 79 110443 

1050 24.819 25.181 25.104 801 71 115751 

1100 24.839 25.161 25.103 846 61 121048 

1150 24.858 25.142 25.103 893 50 126333 

1200 24.878 25.122 25.102 946 38 131606 

1250 24.899 25.101 25.096 1014 25 136888 

Table 6.5 shows the effect of setup cost on the optimal values. As the setup cost 

increases, the feasible range of the process mean doesn’t change, the optimal mean 

decreases, the EPQ increases, and optimal shortage quantity increases.  

Table ‎6.5 Sensitivity analyses respect to setup cost 

A 
Feasible  mean range 

µ Q w TCU 
      

1000 24.878 25.122 25.105 767 29 130898 

1100 24.878 25.122 25.104 806 31 131052 

1200 24.878 25.122 25.103 844 33 131199 

1300 24.878 25.122 25.103 879 34 131340 

1400 24.878 25.122 25.102 914 36 131475 

1500 24.878 25.122 25.102 946 38 131606 

1600 24.878 25.122 25.101 979 40 131732 

1700 24.878 25.122 25.101 1010 41 131854 

1800 24.878 25.122 25.1 1041 43 131972 

1900 24.878 25.122 25.1 1070 44 132087 

Table 6.6 shows the effect of holding cost on the optimal values. The feasible range of 

the process mean doesn’t change, the optimal mean decreases, the EPQ decreases, and 

optimal shortage quantity increases as the holding cost increases. 
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Table ‎6.6 Sensitivity analyses respect to holding cost of good items 

h 
Feasible  mean range 

µ Q w TCU 
      

12.5 24.878 25.122 25.103 1110 33 131029 

15 24.878 25.122 25.103 1044 34 131238 

17.5 24.878 25.122 25.102 992 37 131429 

20 24.878 25.122 25.102 946 38 131606 

22.5 24.878 25.122 25.101 909 39 131771 

25 24.878 25.122 25.1 877 40 131927 

27.5 24.878 25.122 25.099 849 41 132075 

30 24.878 25.122 25.098 824 42 132216 

32.5 24.878 25.122 25.097 802 43 132351 

35 24.878 25.122 25.096 782 44 132480 

Table 6.7 shows the effect of holding cost of re-workable items on the optimal values. As 

the holding cost of re-workable items increases, the feasible range of the process mean 

doesn’t change, the optimal mean decreases, the EPQ decreases, and optimal shortage 

quantity increases.  

Table ‎6.7 Sensitivity analyses respect to holding cost of re-workable items 

hR 
Feasible  mean range 

µ Q w TCU 
      

16 24.878 25.122 25.105 964 36 131509 

19 24.878 25.122 25.103 956 37 131558 

22 24.878 25.122 25.102 946 38 131606 

25 24.878 25.122 25.1 940 39 131652 

28 24.878 25.122 25.099 931 39 131696 

31 24.878 25.122 25.098 924 39 131739 

34 24.878 25.122 25.096 920 40 131780 
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37 24.878 25.122 25.095 913 41 131820 

40 24.878 25.122 25.094 907 41 131859 

43 24.878 25.122 25.093 902 41 131897 

Table 6.8 shows the effect of shortage cost on the optimal values. The feasible range of 

the process mean doesn’t change, the optimal mean increases, the EPQ decreases, and 

optimal shortage quantity decreases as the shortage cost increases. 

Table ‎6.8 Sensitivity analyses respect to shortage cost 

b 
Feasible  mean range 

µ Q w TCU 
      

13 24.878 25.122 25.096 1000 57 131462 

16 24.878 25.122 25.097 984 52 131508 

19 24.878 25.122 25.099 968 46 131546 

22 24.878 25.122 25.101 955 41 131578 

25 24.878 25.122 25.102 946 38 131606 

28 24.878 25.122 25.103 938 34 131629 

31 24.878 25.122 25.103 933 32 131649 

34 24.878 25.122 25.104 927 30 131667 

37 24.878 25.122 25.105 922 27 131682 

40 24.878 25.122 25.105 918 26 131696 

Table 6.9 shows the effect of production cost on the optimal values. As the production 

cost increases, the feasible range of the process mean doesn’t change, the optimal mean 

increases, the EPQ decreases, and optimal shortage quantity decreases.  
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Table ‎6.9 Sensitivity analyses respect to production cost 

C 
Feasible  mean range 

µ Q w TCU 
      

85 24.878 25.122 25.093 967 44 108549 

90 24.878 25.122 25.095 962 43 114621 

95 24.878 25.122 25.098 955 41 120689 

100 24.878 25.122 25.1 951 39 126755 

105 24.878 25.122 25.102 946 38 132818 

110 24.878 25.122 25.104 941 36 138879 

115 24.878 25.122 25.105 939 35 144939 

120 24.878 25.122 25.107 934 33 150997 

125 24.878 25.122 25.108 932 32 157053 

130 24.878 25.122 25.109 929 31 163108 

Table 6.10 shows the effect of rework cost on the optimal values. The feasible range of 

the process mean doesn’t change, the optimal mean decreases, the EPQ increases, and 

optimal shortage quantity increases as the rework cost increases. 

Table ‎6.10 Sensitivity analyses respect to rework cost 

Cr 
Feasible  mean range 

µ Q w TCU 
      

4 24.878 25.122 25.114 916 25 130757 

6 24.878 25.122 25.108 932 32 131193 

8 24.878 25.122 25.102 946 38 131606 

10 24.878 25.122 25.095 962 43 131992 

12 24.878 25.122 25.089 976 47 132354 

14 24.878 25.122 25.084 987 50 132697 

16 24.878 25.122 25.079 998 53 133022 

18 24.878 25.122 25.075 1008 56 133333 

20 24.878 25.122 25.071 1017 58 133630 
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22 24.878 25.122 25.067 1026 60 133916 

Table 6.11 shows the effect of disposal cost on the optimal values. As the disposal cost 

increases, the feasible range of the process mean doesn’t change, the optimal mean 

increases, the EPQ decreases, and optimal shortage quantity decreases. But it effects 

slightly.   

Table ‎6.11 Sensitivity analyses respect to disposal cost 

Cd 
Feasible  mean range 

µ Q w TCU 
      

2 24.878 25.122 25.1 951 39 131568 

3 24.878 25.122 25.101 948 38 131580 

4 24.878 25.122 25.101 948 38 131593 

5 24.878 25.122 25.102 946 38 131606 

6 24.878 25.122 25.102 946 38 131618 

7 24.878 25.122 25.103 944 37 131631 

8 24.878 25.122 25.103 944 37 131643 

9 24.878 25.122 25.103 944 37 131655 

10 24.878 25.122 25.104 941 36 131667 

11 24.878 25.122 25.104 941 36 131679 

The total cost is increases as any parameter increase. Table 6.12 summarizes the 

sensitivity of the optimal solution against the increase in parameters value. 
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Table ‎6.12 Sensitivity of the optimal solution against model parameters 

Parameter 
Feasible range of µ 

µ Q w TCU 
      

       

P       

D       

A       

h       

hR       

b       

C       

CR       

Cd       

 

6.6 SUMMARY 

In this chapter we presented a new integrated model which combine between inventory 

and production control with process targeting. We introduced a simple algorithm to 

search for the optimal solution, which is a combination of optimal process mean, 

economic production quantity, and the optimal shortage allowed. We show that EPQ and 

optimal shortage allowed are highly affected by the value of the process mean. And we 

find out that the model parameters have significant effect on the model decision variables 

with different levels. Finally, to get correct and representative final solution the feasible 

boundaries should be determined through usage of suitable constrains. 
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7 CHAPTER 7 

PRODUCTION PLANNING WITH 

STOCHASTIC BREAKDOWNS 

 

7.1 INTRODUCTION 

This chapter presents a finite production model where the machine or production 

equipment may breakdown randomly. It is assumed that imperfect quality items 

produced. These imperfect quality items are either scrapped or reworked. We consider 

that the time to failure (breakdown) is a random variable also we assume that the 

proportions of scrapped and re-workable items are random variables. These random 

variables follow different given probability density functions. In this research ‘no-

resumption’ policy is adopted. The objective is to find the optimal production run time 

and the optimal shortage allowed, where the shortages are backordered. The effect of the 

stochastic breakdown and production of non-conforming items on the optimal solution is 

studied and numerical example is provided for the developed model. 

7.2 MODEL DESCRIPTION 

The proposed production model considers unreliable machine and imperfect quality items 

are produced. We assume that the production rate, P, and demand rate, D, are constant.  

There are two types of non-conforming items, re-workable items and scrapped items. The 
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proportions of non-conforming items that are re-workable and that are scrapped are s and 

r, respectively. Both of these proportions are random variables with given probability 

density functions f(s) and g(r). The time to breakdown t is random variable and follow 

known probability density function l(t). The no-resumption policy is adopted in this 

model, where the production process is terminated as the breakdown occurs and after 

repairing the machine re-workable items are processed if any and no further production is 

performed till the optimal shortage allowed, then start another production cycle. 

Conforming items are used to fulfill the demand. Scrapped items are disposed of at a 

cost, while re-workable items are processed after production ends. The rework rate, PR, 

may be different from the production rate, P. We assume that the production rate exceeds 

the sum of the demand rate and the rate of generating re-workable and scrapped items.  

We assume that the machine will not break down during the rework process or shortage 

period. Shortages are backordered.   

7.3 MODEL FORMULATION 

As mentioned previously that the time to break down is random variable, it means that we 

have two cases, one with breakdown and the other without. So we have to show each one 

separately, and then combine the two cases in final formulation. 

7.3.1 BREAKDOWN OCCURS PRIOR THE END OF PRODUCTION 

Let  1 be the production run time. In this case, the machine breaks down before the end of 

the production run time, i.e.    1 as shown in Fig. 7.1. 

There are several cases to be considered in this section depending on the inventory level 

and shortage level at specific points of the production cycle. These are defined as follows. 
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Let z1 be the on-hand inventory of perfect items when the machine breaks down. 

z2: be the on-hand inventory of perfect items or shortage level after the completion of the 

rework stage. 

z3: be the on-hand inventory of perfect items or shortage level after the completion of the 

machine repair. 

There are four subcases to be considered: 

Case 1:      &       . We denote the corresponding total cost per unit time as    1.   

Case 2:       &       . We denote the corresponding total cost per unit time as     .   

Case 3:       &       . We denote the corresponding total cost per unit time as     .   

Case 4:       &       . We denote the corresponding total cost per unit time as    4.   

Next, we derive the total cost per unit time formulas for all subcases as follows. 
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Case 1      1                        

 

Figure ‎7.1 On- hand inventory of conforming items with breakdown 

 

 

Figure ‎7.2 On- hand inventory of re-workable items with breakdown 

From the above two Figures we find the following: 
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    1 −        1 −  −   −    −  −    (7.2) 

           −    (7.3) 

   
   

  
 (7.4) 

   
  
 

 (7.5) 

   
  
 

 (7.6) 

 4  
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 (7.8) 

The total cost per unit time for this kind of cycles will be: 
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Where: 
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Case                                 

 

Figure ‎7.3 On- hand inventory of good items with breakdown for              

 

Figure ‎7.4 On- hand inventory of re-workable items with breakdown             

The inventory level and the corresponding times for Figures 7.3 and 7.4 are: 
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The total cost and the total cost per unit time when      and      are: 
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Case                                 

 

 

Figure ‎7.5 On- hand inventory of good items with breakdown for            . 

 

Figure ‎7.6 On- hand inventory of re-workable items with breakdown              
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The inventory level and the corresponding times for Figures 7.5 and 7.6 are: 
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The total cost and the total cost per unit time when      and      are: 
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Case        4                        

 

Figure ‎7.7 On- hand inventory of good items with breakdown             
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Figure ‎7.8 On- hand inventory of re-workable items with breakdown            .  

The inventory level and the corresponding times of Figures 7.7 and 7.8 are: 
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The total cost and the total cost per unit time when      and      are: 
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   4   
  4  1  |      

 0
 (7.42) 

7.3.1 NO BREAKDOWNS WITHIN THE PRODUCTION PERIOD 

In this case, the production up time is smaller than the time t (time to breakdown). This 

case is similar to the model described in Chapter 5, but here we are interested in the 

production run time,  1. Note that     1. Fig. 7.9 shows on hand inventory of perfect 

quality items without machine breakdown. And Fig 7.10 shows the on hand inventory of 

non-conforming items at the same conditions.  
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Figure ‎7.9 On- hand inventory of conforming items without breakdowns 

 

Figure ‎7.10 On- hand inventory of re-workable items without breakdowns  

Similar to what have been done in Chapter 5, the corresponding total cost depends on the 

value of    either positive or negative, so it can be described as follows: 
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 1  1 −  −  −     

     
        

   
− 1 

     1 −  −   −   

 4   −    

7.3.2 COMBINE THE SIX CASES (WITH & WITHOUT BREAKDOWN) 

There is a limits upon which the values of    and    positive or negative. Since we have 

three random variables, we will fix two of them and make the limit refers to the third one. 

In our model we make the limit for proportion of re-workable items r. According to this, 

the limit of r upon which    become negative will be  1 as follows: 

 1  1 −  −
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 (7.45) 

And    for   : 
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) (7.46) 

If the proportion of re-workable items is less than the limits  1 and   ,    and    are 

positives, but if the proportion of re-workable items is greater than the limits,    and    

are negatives. So if     , the total cost per unit time can be written as follows: 
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On the other hand, if     , the total cost per unit time will be as follows: 
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The minimum of      can’t be found in closed form. Since the limits are not constant 

and it is function of the decision variables. Therefore, we find the solution by performing 

exhaustive search for  1 and w. The integration is carried out numerically using a 12-node 

Gaussian quadrature method  

In real life, the time to failure (breakdown) almost follows exponential distribution 

function. Since we assume that no breakdowns during the period of fulfilling the previous 

cycle shortage and the rework time, the shifted exponential distribution can be used. The 

formula for that function is similar to the original exponential distribution but it started 

from point greater than zero and the probability before that point equal zero. The pdf of 

this function is: 

     {  
                       

                                    
} 

Where:     is the rate parameter and   is the shift value. 

According to this, the minimum value of t is   and no breakdowns occur before this 

point. So to guarantee that the inventory level  1 is positive when the breakdown occurs, 

the time ts needed to fulfill the shortage of the previous production cycle mustn’t exceed 

the shift. 

   
 

  1 −  −   −  
   (7.49) 

Since (7.49) should be hold for all the values of s and r, (7.49) can be written as: 

 

  1 −       −        −  
   (7.50) 

From (7.50), the maximum shortage allowed must be constrained as follows: 
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      1 −       −        −    (7.51) 

Since our model depends on some assumptions. These assumptions must be defined as 

constraints to get precise and representative optimal values. Constraints are related to the 

inventory level after repair    and inventory level after rework process   , where the both 

should be less than or equal to the maximum shortage allowed. So the following 

constraints should be met before searching for optimal values: 

  
 

 

 
 1 −        −         − 1

                   
(7.52) 
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       ) − 1
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Finally, to prevent breakdown occurrence during the rework process we must have: 

   
   

  
   (7.54) 

(7.54) should satisfy all the values of r, so (7.54) can be simplified to: 

 1  
   

       
 (7.55) 

7.4 NUMERICAL EXAMPLE AND SENSITIVITY ANALYSIS 

Consider a single product model where the demand rate is 1200 unit/year and production 

rate of 1600 unit/year. Breakdowns may occur after a random period of time. This period 

follows a shifted exponential distribution function with rate parameter   1   and shift 

     . The time required to repair is 0.0274 year. Other related costs are: 
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c = $104/unit, 

  = $8/unit, 

  = $5/unit, 

A = $1500, 

  =2000, 

h = $20/unit/year, 

   = $22/unit/year, 

b = $25/unit/year, 

The proportion of scrapped items is uniformly distributed between [0, 0.05], and the 

proportion of re-workable items is uniformly distributed between [0, 0.1]. The re-

workable items are reworked at a rate of 1000 unit/year. 

Using the gauss quadrature method 12-node, and by holding the previous mentioned 

constraints, the optimal run time  1 is 0.40412 year, the optimal shortage allowed w is 48 

units, and the related total cost per unit time TCU is $ 132991/year. 

To show the effect of mean time between breakdowns on the decision variables, we 

consider the previous example but change the value of the rate parameter   which is the 

reciprocal of the mean time between breakdowns. Table 7.1 shows that effect. 
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Table ‎7.1 The effect of mean time between breakdowns on the required decision 

variables 

  

Mean time 

between 

breakdowns(
1

 
) 

 1 w TCU 

0.8 1.25 0.46440 48 132196 

0.9 1.11 0.44796 48 132562 

1 1.00 0.42604 48 132773 

1.1 0.91 0.42330 48 132904 

1.2 0.83 0.40412 48 132991 

1.3 0.77 0.39316 47 133054 

1.4 0.71 0.37672 47 133102 

1.5 0.67 0.36576 46 133138 

1.6 0.63 0.35206 44 133167 

1.7 0.59 0.33836 43 133189 

One can conclude that as the mean between break downs increases, the optimal run time 

and optimal shortage allowed increase also but within the feasible region of the model. 

And as a result the total cost per unit time will increase also. Table 7.2 illustrates the 

effect of repair cost on the decision variable. It is clear that the production run time and 

optimal shortage allowed is decrease as the cost of repair increases. And by default the 

total cost per unit time will increase as repair cost increases. 
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Table ‎7.2 The effect of repair cost on the required decision variables 

Repair 

cost 

 1 w TCU 

1600 0.42604 48 132876 

1800 0.42330 48 132936 

2000 0.40412 48 132991 

2200 0.38494 48 133040 

2400 0.37398 47 133083 

2600 0.35754 45 133117 

2800 0.33836 43 133144 

3000 0.32740 41 133163 

3200 0.31370 40 133174 

3400 0.30274 39 133178 

 

7.5 SUMMARY 

This chapter investigated the finite production rate model when there are stochastic 

breakdowns. The model presented contains three levels of randomness, the proportion of 

scrapped items, proportion of re-workable items, and the time to breakdown. We showed 

the effect of stochastic breakdown on the optimal production run time and the optimal 

shortage allowed. The optimal production run time and the optimal shortage allowed are 

decrease as the mean time between breakdowns decreases. And through the result we 

figure out the importance of constraints and how to employ it to get optimum feasible 

solution. 
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8 CHAPTER 8 

CONCLUSIONS AND FURURE RESEARCH  

8.1 CONCLUSIONS 

In this thesis we extended the economic production quantity model to the case where 

imperfect items are generated. We assumed that there are two types of nonconforming, 

scrapped and re-workable items with random proportion of each. Scrapped items are 

disposed of immediately as they are generated. On the other hand, re-workable items are 

processed soon after the main production is over. Re-workable items are always perfect. 

We find out that the change in the proportion of scrapped items is proportional to the 

optimal lot size but inversely proportional to optimal maximum shortage. On the other 

hand, the change in the proportion of re-workable items is inversely proportional to the 

change in the economic production quantity and the optimal maximum shortage. The 

optimal total cost increases as any of the two proportions increase.  

In addition to the above case, we introduced a model where the mean of some quality 

characteristic is determined. This is an integration of production and inventory control 

with process targeting. We developed a solution procedure for this case and show the 

effect of model parameters on the decision variables.  

In real life, the production may be interrupted either by a breakdowns or maintenance 

activities. This case has been studied in this thesis, resulting in a model that has three 

degrees of randomness; proportion of scrapped items, proportion of re-workable items, 
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and stochastic breakdowns. We show that as the mean time between breakdowns 

increases, the optimal run time and the optimal shortage allowed increase. On the other 

hand, production run time and optimal shortage allowed decrease as the cost of repair 

increases. In this model, the assumptions were enforced by adding the proper constraints. 

It is unfortunate that the literature includes several papers that violate their own 

assumption. 

8.2 FUTURE RESEARCH 

This thesis opens a wide horizon for extensions, since it corrects some errors committed 

by previous researchers. Furthermore it presents a new way to deal with production and 

inventory control. Below are some suggestions for further extensions: 

1. Consider the error in inspection process, where the inspector may commit type 

one or two errors when all the imperfect quality items are re-worked. Or he/she 

may commit an error in identifying good, scrapped, and re-workable items. This 

will result in six types of error. 

2. Consider that breakdown may happen in the shortage period or in the rework 

process, or use another policy instead of NR when breakdown occurs. 

3. Extend the integrated model of production planning and process targeting by 

using quadratic loss function or by adding another decision variables such as the 

lower, upper specification limits, or standard deviation. 
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NOMENCLATURE 

A : set-up cost for each production run. 

b : shortage cost per item per unit time. 

  : production cost per item. 

  : disposal cost per scrapped item ($/item), 

   : rework cost per item of imperfect quality. 

   : repair cost for fixing the breakdown. 

  : demand rate in units per unit time. 

   ) : probability density function of re-workable items proportion. 

   ) : probability density function of scrapped items proportion. 

h : holding cost of a perfect items per item per unit time ($/item/unit time). 

   : holding cost of a re-workable item per unit time. 

     : probability density function of time to breakdown. 

m : cost of repairing the machine.  

  : the process mean. 

  : production rate in units per unit time. 

   : rework rate of imperfect quality items in units per unit time. 

  : total items produced during a production cycle. 
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  : proportion of imperfect items produced (random variable). 

  : proportion of defective items produced that are scrapped (random variable). 

 : process standard deviation. 

  : time to breakdown (random variable)  

 1 : optimal production run time. 

  , n : time of repairing the machine. 

  : maximum back order level in a production cycle. 

 1 : inventory level of good items after the end of production process. 

   : inventory level of good items after the end of rework process. 

   : inventory level of good items after the end of repair process. 
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