

iii

DEDICATION

I dedicate this work to all my family members, especially my parents, my

wife and my son.

iv

ACKNOWLEDGMENT

All praise and thanks are due to ALLAH Almighty for his countless

and continuous blessings.

Acknowledgment is due to King Fahd University of Petroleum &

Minerals for supporting this research.

I wish to express my deep appreciation to my advisor Dr.

Mohammed Alsuwaiyel for all the invaluable help and support he gave

me throughout the course of this work. His invaluable suggestions made

this work interesting and learning for me. I also wish to thank the other

members of my thesis committee Dr. Nasir Al-Darwish and Dr. Salahadin

Mohammed for their interest, suggestions and support.

Further, I would like to thank Dr. Adel Ahmed, chairman of ICS

Department for his encouragement and availing the use of the facilities in

the department.

Finally, I wish to express my gratefulness to my parents, my wife

and other family members, their prayers and support are always with me.

v

TABLE OF CONTENTS

Page No.

Dedication ...iii

Acknowledgment .. iv

Table of Contents .. v

List of Tables .. vii

List of Figures .. viii

Abstract ... ix

الرسالة ملخص .. x

CHAPTER 1 INTRODUCTION .. 1

1.1 Definitions and Notation ... 2

1.2 Odd Graphs ... 4

1.3 Applications of MIDS in Communication Networks .. 6

1.4 Objective of The Research .. 8

CHAPTER 2 LITERATURE REVIEW .. 10

2.1 Brute Force.. 10

2.2 Exact Algorithms ... 10

2.4 Approximation Algorithms .. 12

2.5 Special Graph Classes .. 13

2.5.1 Special graph classes (MIDS problem is in Զ) .. 14

2.5.2 Special graph classes (MIDS problem is in ԳԶ‐complete) 17

CHAPTER 3 ODD GRAPHS ... 19

3.1 INTRODUCTION ... 19

3.2 INDEPENDENT SETS AND CHROMATIC NUMBERS .. 20

3.3 SHORTEST DISTANCE AND DIAMETER .. 23

3.4 SYMMETRY AND THE SPECTRUM ... 27

3.5 EDGE PARTITIONS, COLORING AND DOMINATIONS .. 33

3.6 GRAPH DECOMPOSITIONS .. 36

3.7 HAMILTONIAN CIRCUITS AND PATHS ... 41

3.8 CODE ... 43

vi

CHAPTER 4 APPROXIMATION ALGORITHMS FOR INDEPENDENT DOMINATION IN ODD
GRAPHS ... 46

4.1 INTRODUCTION ... 46

4.2 VERTICES PARTITION ... 47

4.3 APPROXIMATION ALGORITHMS ... 53

4.3.1 Algorithms Description .. 53

4.3.2 Correctness .. 65

4.3.3 Analysis .. 71

4.4 GREEDY AND RANDOM ALGORITHMS .. 72

4.4.1 Algorithms Description .. 72

4.4.2 Correctness .. 73

4.4.3 Analysis .. 73

4.5 EXPERIMENTAL RESULTS .. 74

4.5.1 Experimental Setup .. 74

4.5.2 Experimental Results ... 76

CHAPTER 5 CONCLUSION AND FUTURE WORKS .. 81

Appendix A Algorithms implementation ... 84

REFERENCES .. 96

Vita .. 100

vii

LIST OF TABLES

Page No.

TABLE 1 APPROXIMATION QUALITIES .. 78

viii

LIST OF FIGURES

Page No.

Figure 1: A minimum independent dominating set on a graph [Chan98a]. 2
Figure 2: Drawings of Od, d = 2, 3, 4. ... 5
Figure 3: Representation of Od [Bigg79]. .. 22
Figure 4: Intersection numbers [Bigg79]. ... 29
Figure 5: A symmetric circuit of length 4r + 2 in Od. ... 32
Figure 6: The O2 and O3, with highlighted Hamiltonian paths [Buen09]. 42
Figure 7: A perfect 1‐code in O4 [Bigg79].. 45
Figure 8: New drawings of the odd graph Od, d = 2, 3, 4. ... 48
Figure 9: Od contains |Vd‐1|vertex‐disjoint paths. .. 52
Figure 10: Algorithm 1 for Independent Dominating Set. .. 57
Figure 11: Algorithm 2 the first algorithm for finding ISCD. .. 57
Figure 12: Algorithm 3 the second algorithm for finding ISCD. ... 58
Figure 13: O4 after the first stage. ... 59
Figure 14: O4 after the second stage. .. 62
Figure 15: O4 after removing deletes vertices from set IDSB. ... 63
Figure 16: O4 after the third stage. ... 64
Figure 17: O4 after the fourth stage. ... 65
Figure 18: The first case of removing vertices from IDSB . .. 67
Figure 19: The second case of removing vertices from IDSB. ... 67
Figure 20: The third case of removing vertices from IDSB. ... 68
Figure 21: A case of removing vertices from IDSB which violates the domination property.
 .. 69
Figure 22: A situation where domination property is violated. .. 71
Figure 23: Algorithm 4 Greedy Independent Dominating Set. ... 73
Figure 24: Algorithm 5 Random Independent Dominating Set. 74
Figure 25: O3 and its incidence matrix representation. .. 76
Figure 26: |IDS| in odd graphs of dimensions 3‐5. ... 78
Figure 27: |IDS| in odd graphs of dimensions 6‐7. ... 79
Figure 28: |IDS| in odd graphs of dimensions 8‐10. ... 79
Figure 29: |IDS| in odd graphs of dimensions 11‐13. ... 80

ix

ABSTRACT

NAME : AHMED I. AL-HERZ
TITLE : INDEPENDENT DOMINATION IN ODD

GRAPHS
MAJOR FIELD : COMPUTER SCIENCE
DATE OF DEGREE : February 2012

Domination in graph theory is a natural model for many location

problems in computer science and operations research. Finding a

minimum independent dominating set in general graphs is NP-hard, and

it was studied extensively. In this thesis, the first approximation

algorithms for independent dominating sets in odd graphs are introduced.

Our approach is based on partitioning the graph to different sets in order

to simplify the complexity of the graph, then finding an independent

dominating set or an independent set in each part, and merging the sets

while resolving any violation in the independence or domination

properties. Also, we present experimental results and comparisons

between the proposed algorithms and greedy and randomized algorithms.

The results show that the proposed algorithms give the best

approximation quality.

x

 ملخص الرسالة

 أحمد ابراهيم الحرز : الإســــــــــــــم

 المستقلة في الرسوم البيانية الغريبة الهيمنة : عنوان الدراسة

 علوم الحاسب الآلي : التخصــــــــص

 2012 فبراير : تاريخ التخــرج

نموذج طبيعي لكثير من المشاآل المتعلقة بالمواقع في علوم تعتبرالهيمنة في نظرية الرسم البياني

العثور على الحد الأدنى لمجموعة مستقلة و مهيمنة في الرسوم البيانية العامة. الحاسوب وبحوث العمليات

في هذه . يعتبر من المشاآل الحدودية الغير محددة، و هذه المشكلة درست من قبل على نطاق واسع

الرسم البياني فيالأطروحة، يتم عرض خوارزميات تقريبية للمرة الأولى لمجموعة مهيمنة و مستقلة

يد في الرسم البياني ويستند نهجنا على تقسيم الرسم البياني لمجموعات مختلفة من أجل تبسيط التعق. الغريب

والعثور على مجموعة مستقلة تهيمن على الأجزاء المقسمة من الرسم البياني، ثم دمج النتائج في حين حل

، نقدم نتائج تجريبية ومقارنة بين وبالاضافة الى ذلك. أي اشكال في خصائص الاستقلال أو الهيمنة

نتائج التجارب تظهر أن . و العشوائية الخوارزميات التقريبية المقترحة و الخوارزميات الجشعة

الخوارزميات التقريبية المقترحة تعطي نتائج أفضل بالنسبة لحجم المجموعة وخصوصا على الرسوم

.البيانية الغريبة ذات الحجم الكبير

1

CHAPTER 1

INTRODUCTION

Domination in graph theory is a natural model for many location

problems in computer science and operations research. Domination has

many applications in the real world [Hayn97]. Examples of such

applications are dominating queens, sets of representatives, school bus

routing, computer communication networks, radio stations, social

network theory, computer vision [Booi07], pattern recognition [Prie01],

scheduling [Bala06], VLSI design [Kuo88], molecular biology [Hayn06],

etc.

The minimum independent dominating set (MIDS) is one variant of

domination problems which is a well known combinatorial optimization

problem. The problem can be defined informally as follows: given a

graph, a minimum independent dominating set is a set of vertices of

minimum cardinality with the requirement that the dominating vertices

are independent, that is none of the vertices are adjacent and every other

vertex not included in the set is adjacent to at least one of the vertices in

the set. An example of a minimum independent dominating set (the set of

2

black vertices) in a graph can be seen in Figure 1. Before stating the

problems formally we will give some definitions in the next section.

Figure 1: A minimum independent dominating set on a graph [Chan98a].

1.1 DEFINITIONS AND NOTATION

Throughout this thesis all graphs are finite, undirected and simple

(i.e. loop–free and without multiple edges). Given a graph G(V,E) where V

is the set of vertices, E ك V × V is the set of edges, and two vertices u, v א V

have an edge between them, or are said to be adjacent, if and only if (u, v) א

E. If (u, v) ב E, we say that (u, v) is a non-edge. Let a vertex v V, the

neighborhood N(v) of v is the set of vertices that are adjacent to v, and N[v]

= N(v) ׫ {v} will be called the closed neighborhood of v. For the degree of

v, we use the notation deg(v) = |N(v)| , where | . | is the cardinality of a

set which is the number of elements in a set. For any subset H ؿ V, we

3

denote by G[H] the subgraph of G induced by H. For v א H, for some

subset H, we denote by deg’ H(v) the degree of v in G[H] or, if it is clear by

the context, we denote it by deg’(v). For convenience, we set N[H] = {N[v] :

 .|H}. For simplicity, we may set n = |V| and m = |E א v ׊

Definition 1.1 A dominating set D in a graph G(V, E) is a subset of V in which

each vertex v א (V – D) is adjacent to at least one vertex u א D, i.e., (v, u) א E. An

independent dominating set is a dominating set where all vertices in D are

independent, i.e., (u, v) ב E, for all u, v א D. The optimization version of the

independent domination problem is finding the independent dominating set D

such that the cardinality of D is minimum.

Definition 1.2 A maximal independent set M is an independent set of a graph

G(V, E) that is not a subset of any other independent set. That is, it is a set such

that every edge (v, u) א E has at least one endpoint not in M and every vertex not

in M has at least one neighbor in M. A maximal independent set is also a

dominating set in the graph, and every dominating set that is independent must be

maximal independent set, so maximal independent sets are also independent

dominating sets. A graph may have many maximal independent sets of varying

sizes; a largest maximal independent set is called a maximum independent set.

Definition 1.3 The decision version of the independent dominating set problem

can be stated as follow:

Instance: G = (V, E), positive integer K ൑ |V|

4

Question: Is there a dominating set of size K or less for G, i.e., a subset V’

 ?E א V’ for which (u, v) א V-V’ there is a v א V with |V’| ൑ K such that for all u ك

Definition 1.4 The optimization version of the independent dominating set

problem can be stated as follow:

Instance: G = (V, E)

Question: Is there a dominating set for G, i.e., a subset V’ ك V with |V’| = K

such that for all u א V-V’ there is a v א V’ for which (u, v) א E and K is minimum?

Theorem 1.1 The decision version of independent dominating set problem is ԳԶ-

complete. The proof can be found in [Gare79].

Theorem 1.2 The minimum independent dominating set problem is ԳԶ-hard. The

proof can be found in [Gare79]. Knowing that an ԳԶ problem is ԳԶ-hard, we

also know that we cannot compute an optimal solution in polynomial time, unless

Զ = ԳԶ.

1.2 ODD GRAPHS

Because the independent dominating set problem for general graphs

is hard, researchers turned their attention to solving the problem on

restricted families of graphs. Each family of graphs may have special

properties or unique structures, which can be used to come up with

polynomial time or approximation algorithms. In this thesis, we will

consider odd graph family that has a unique structure. The family of odd

5

graphs was introduced by [Bigg79] in the context of graph theory. In this

section, we will introduce the odd graphs, more details on odd graphs and

their properties will be given in chapter 3.

Definition 1.5 For a positive integer d, let Ω = {1, 2, . . . ,2d - 1} and V =

{{x1, x2, . . . , xd-1} | xi א Ω }, that is, the set of all (d-1)-subsets of Ω. The odd

graph Od = (V, E) is defined as the graph with V as its vertex set and two

vertices are connected if and only if their corresponding subsets are

disjoint.

Od is a d-regular graph (deg(v) = d ׊ v א V) with n = ൫ଶௗିଵ
ௗିଵ ൯ vertices

and m = ௗ
ଶ

൫ଶௗିଵ
ௗିଵ ൯ edges. We will refer to d as the dimension of Od. In

particular, the 3-dimensional odd graph is the well-known Peterson

graph. Figure 2 shows typical drawings of Od, d = 2, 3, 4. The odd graph of

dimension 1 consists of one vertex and no edges.

Figure 2: Drawings of Od, d = 2, 3, 4.

6

1.3 APPLICATIONS OF MIDS IN COMMUNICATION

NETWORKS

From an application point of view, independent and dominating set

in a communication networks are important structures, and many

optimization approaches rely on these structures.

In clustering schemes, independent sets result in clusterheads that

have local control of their cluster without interference. Additionally, a

dominating independent set based clustering scheme ensures that the

entire network is covered. For example, especially in energy-efficient

computing, clustering allows for some nodes to perform fewer tasks by

delegating them to their respective clusterhead. On the other hand, the

tasks of these clusterheads then result in additional energy consumption.

Here, using as few clusterheads as possible, i.e. choosing them according

to minimum independent dominating set, results in energy savings for the

network.

A standard approach for reducing energy consumption is to

carefully schedule node activity. As has been observed in [Chen02],

whenever there are sufficiently many nodes in a region, only a small

fraction of nodes need be active for forwarding messages, etc. The rest of

the nodes can enter a sleep mode, thereby conserving energy. The

7

problem of maximizing the number of nodes which are asleep at any

given time while maintaining sufficient activity in the network is usually

modeled as the problem of finding a small dominating set in the network.

Once a small dominating set is found, the nodes in the dominating set

collectively act as “coordinators” for the network and the rest of the nodes

go to sleep.

In a communication network, broadcasting schemes are required.

Each individual node is neither able to store the entire topology

information, nor to keep updated information about the changes in the

network. The broadcasting schemes have relied on flooding the network.

Basic, network-wide flooding causes the broadcast storm problem [Ni99],

resulting in excessive contention and collisions, i.e. a large communication

protocol overhead. Using a dominating set of small size to propagate

flooding messages overcomes this problem, and greatly reduces the

number of messages needed, and thus the protocol overhead as well. So,

nodes in an independent set do not interfere each other during

simultaneous transmissions, and nodes in a dominating set can be used to

efficiently reach the entire network by broadcasts from only these nodes,

these two properties can be achieved by minimum independent

dominating set.

8

1.4 OBJECTIVE OF THE RESEARCH

Although considerable amount of works for the independent

domination problem have emerged in the past, the first algorithmic result

on this topic was given by Bayer, Proskurowski, Hedetniemi and Mitchell

in 1977 [Byer77]. They gave a linear-time algorithm for the independent

domination problem on trees. On the other hand, at about the same time

Garey and Johnson [Gare79] constructed the first proof that the

domination problem is ԳԶ-complete for general graphs. Since then, many

algorithmic results are studied for variants of the domination problem in

different classes of graphs.

One of the graph classes, which have not been investigated in term of

independent domination, is the odd graphs class. [Ghaf91] pointed out

their potential as fault-tolerant multiprocessor networks. Their efficiency

was analyzed in terms of routing, combinatorial structure, maximal fault

tolerance [Ghaf91], symmetry [Bigg79], fault diameter [Ghaf91], [Kim08a].

Odd networks are competitive with mesh and hypercube variants. For the

same number of nodes, odd networks are superior to comparable mesh

and hypercube variants when the network cost (degree×diameter) is used

as a measure.

9

The minimum independent dominating set is very important

problem in communication networks; this is most obvious in parallel

computing systems. Also, finding a solution to the minimum independent

dominating set on networks with very large number of vertices, such as a

high dimensional odd graph, can be time consuming; in this situation an

approximate solution can be much more efficient. So, a natural question

arises of whether an approximate solution to the minimum independent

dominating set problem on odd graph network within an acceptable time

is feasible or not. Thus, the primary objective of this thesis can be stated as

”designing an efficient approximation algorithm for the minimum

independent dominating set problem by exploiting the unique structure of

the class of odd graphs”. Another objective of this thesis is

comparisons of our proposed approximation algorithm with generic

approximation algorithms namely, simple greedy and randomized

heuristics.

10

CHAPTER 2

LITERATURE REVIEW

Many approaches were used to find the minimum or an approximate

independent dominating set on a graph. These approaches range from

enumeration of all sets of the vertices to solving the problem for special

graph classes. Next, we will review the literature regarding the

approaches that have been used to solve this problem.

2.1 BRUTE FORCE

The minimum independent dominating set problem can be trivially

solved in O(2n) by simply enumerating all the subsets of V, and check

whether the set is dominating and independent with minimum

cardinality. Clearly this approach is exponential and not practical.

2.2 EXACT ALGORITHMS

Many attempts have been done to design efficient but yet

exponential algorithms that give optimal solution for ԳԶ-complete

problem. The first work that gives an exact exponential time algorithm for

11

minimum independent dominating set has been done by Randerath and

Schiermeyer [Rand04]. They used the result due to Moon and Moser

[Moon65] who showed in 1965 that the number of maximal independent

sets of a graph is upper bounded by 3n/3. They used an algorithm

enumerating all the maximal independent sets to obtain an O(1.4423n)

time algorithm for the minimum independent dominating set. Gaspers

and Liedloff [Gasp06] presented an O(1.3569 n) time algorithm for solving

the minimum independent dominating set using the Measure & Conquer

approach to analyze its running time. A simple O3√)כయ ௡
) time algorithm

based on a maximal matching was developed by Liu and Song [Liu06] to

solve this problem on general graphs. Here, Oכ(.) implies the existence of

an additional polynomial factor in the corresponding time complexity

result. For sparse graphs, e.g. graphs with degree bounded by 3 and 4,

they showed that a few new branching techniques can be applied to these

graphs and the resulting algorithms have time complexities Oכ(1.3803n)

and O כ(1.5368n). Bourgeois, Escoffier and Paschos [Bour10] devised a

branching algorithm that can find a minimum independent dominating

set on any graph with running time Oכ(1.3416n) and polynomial space.

12

2.4 APPROXIMATION ALGORITHMS

It was shown that the minimum dominating set can be approximated

with a constant factor if we apply the algorithm on restricted types of

graphs. An algorithm which gives a constant performance ratio

independent of the size of the instance is referred to as constant-factor

approximation. Hurink and Nieberg [Huri08] presented the first

polynomial-time approximation scheme (Զॻ८ॺ) for the minimum

independent dominating set problem in graphs of polynomially bounded

growth. Graphs of bounded growth are used to characterize wireless

communication networks. The algorithm accepts any undirected graph of

bounded growth as input, and returns a (1+ߝ)-approximate minimum

dominating set, where ߝ is a real number greater than 0. Duckworth and

Wormald [Duck02] presented a heuristic, which is a random greedy

algorithm, for finding a small independent dominating set of cubic

graphs. They proved that D, the minimum independent dominating set,

asymptotically almost surely satisfies 0.2641n ൑ |D| ൑ 0.2794n. A

deterministic version of the randomized algorithm was analyzed in

[Duck10] using linear programming. It was shown that, given an n-vertex

cubic graph, the deterministic algorithm returns an independent

dominating set of size at most 29n/70 + O(1). Bourgeois, Escoffier and

Paschos [Bour10] showed that, for every r > 3, it is possible to compute an

13

r−((r − 1)/r) log2 r-approximate solution (If an algorithm guarantees to

return solutions with a performance guarantee of at most r, then the

algorithm has an r-approximate solution) for the minimum independent

dominating set within time O*(2௡௟௢௚మ௥/௥).

2.5 SPECIAL GRAPH CLASSES

One of the sites for research on ԳԶ -complete graph problems is to

consider the algorithmic complexity when they are restricted to special

graph classes. The motivation was to find graph classes with nice

structural properties, that enable the design of polynomial time algorithms

for ԳԶ-complete graph problems when the input graphs are restricted to

the special graph class. Originally small classes such as interval graphs

and permutation graphs were considered. This led researches to look for

larger graph classes, for which polynomial time domination algorithms

can still be design. Recent examples are the classes of AT-free graphs,

dually chordal graphs and homogeneously orderable graphs.

This section reviews the literature regarding the special graphs

classes and whether the minimum independent dominating set can be

found in a linear time or it cannot be solved linearly that is it belongs to

ԳԶ-complete class.

14

2.5.1 SPECIAL GRAPH CLASSES (MIDS PROBLEM IS IN Զ)

In 1977 T. Byer et al. proved that minimum independent dominating

set in trees can be computed in linear time [Byer77]. M. Faber discovered

in 1982 that minimum independent dominating set can be obtained in

linear time in chordal graphs [Fabe82]. He presented a linear algorithm to

locate a minimum weight independent dominating set in a chordal graph

with 0-I vertex weights. The problem was put into the framework of linear

programming. In particular, they exhibited a linear program with 0-1

solutions which correspond to independent dominating sets in the given

graph. The algorithm utilizes perfect elimination ordering of choral

graphs. Using the same methodology they solved the problem in strongly

chordal graphs given a strong elimination ordering [Fabe84]. Moreover,

minimum independent dominating set for doubly chordal graph, split

graph and undirected path graph were proved to be solvable linearly

since these special graph classes are subset of chordal graph. The

minimum independent dominating set for series parallel graph can be

found linearly which was discovered by J. Pfaff, R. Laskar and S.T.

Hedetniemi in 1984 [Pfaf84]. M. Atallah and S. Kosaraju proved in 1989

that permutation graph's independent dominating set is linearly solvable

[Atal88]. They reduced the problem of finding the minimum independent

dominating set to the problem of computing a shortest maximal increasing

15

subsequence in linear time, the shortest maximal increasing subsequence

problem is solvable in linear time, and thus the problem of minimum

independent dominating set is also solvable in linear time. M. Faber

presented an algorithm in 1989 to solve the minimum independent

dominating set in linear time for 2K2-free graphs [Fabe89] . In 1990 E.

Elmallah and L. Stewart discovered that k-polygon graph's independent

dominating set can be solved in linear time [Elma90]. The independent

dominating set for partial k-tree for bounded k is also in P and was

proved by S. Arnborg, J. Lagergren and D. Sees in 1991 [Arnb91]. They

transformed the graph of bounded tree width formulated as second order

logic sentences to binary tree in linear time, then the decision if the graph

has an independent dominating set of certain cardinality can be

determined if the satisfiablity of monadic second order problem on a

binary tree can be decided which can be done in linear time. Minimum

independent dominating set can be solved in cocomparability graphs in

linear time by a dynamic programming approach using a linear scan

through the labeling of the given graph, this approach was presented by

Kratsch and Stewart in 1993 [Krat93]. AT-free graph is one of the special

graphs that its independent domination set can be obtained in linear time

and was discovered by H. Broersma, T. Kloks, D. Kratsch and H. Muller in

1997 [Bro97]. M. Chang proposed algorithms to solve the minimum

independent dominating set in linear time on interval and circular-arc

16

graphs [Chan98b]. In 1999 J. Bang-Jensen, J Huang, G. Macgillivary and

A. Yeo presented an algorithm that solve the minimum independent

dominating set for convex bipartite graph linearly [Bang99]. Furthermore,

the convex–round graphs’ minimum independent dominating set is also

solved in linear time [Bang99]. Claw-free AT-free graph's minimum

independent dominating set is in P, which was proved by H.Hempel and

D. Kratsch in 1999 [Hemp99]. They used lexicographic breadth first search

procedure to label the vertices then they used 2-lexicographic breadth first

scheme which is a vertex ordering and levels of the labeled graph. The

algorithm exploits the information obtained from the scheme to find the

set in linear time.

On the other hand, some special graph classes are proved to be in NP

class, which means it cannot be solved in linear time, so either

approximation algorithms are used to find sub optimal set or exact

algorithms are used to find the optimal set. Many graphs have been

discovered that can be categorized nonsolvable linearly, next we will

review these special graph classes.

17

2.5.2 SPECIAL GRAPH CLASSES (MIDS PROBLEM IS IN ԳԶ‐

COMPLETE)

The first special graph class, that its minimum independent

dominating set was discovered to be in ԳԶ-complete class, is line graph

which was proved by M. Yannakakis and F. Gavril in 1980 [Yann80].

They proved that the edge dominating set problem for bipartite graphs

and planar with maximum degree 3 is ԳԶ-complete using reduction from

the SAT-3-restricted problem and the node cover problem on planar cubic

graphs respectively. The proof is true for the independent dominate edges,

since the independent set can be obtained from the dominating set in

linear time. The edge version of domination can be thought of as the

vertex version of the problem applied to line graphs. Bipartite graph

minimum independent dominating set is not solvable linearly which was

discovered by D. Corneil and Y. Perl in 1984 [Corn84]. Also, minimum

independent dominating set for comparability graphs and triangle-free

graphs was discovered to be in the same class [Corn84]. The reduction

they used is from the h-dominating set problem for general graphs which

is NP-Complete. In 1990, P. Damaschke, H. Muller and D. Kratsch proved

that chordal bipartite minimum independent dominating set problem is in

ԳԶ-complete class by reduction from the 3SAT problem [Dama90].

Planar graph and planar bipartite graph minimum independent

18

dominating set is also in ԳԶ-complete class, this was discovered in 1995

by I. Zverovich and V. Zverovich [Zver95]. They used a linear reduction

from dominating set problem for 3-regular planar graph. In 1998 A.

Brandstast, V. Chepoli and F. Dragan proved that dually chordal graph

minimum independent dominating set is in ԳԶ-complete [Bran98].

Moreover, minimum independent dominating set for homogeneously

orderable graph is not solvable linearly [Bran98]. The reduction they used

is from the independent dominating set problem for general graphs which

is ԳԶ-complete problem.

19

CHAPTER 3

ODD GRAPHS

3.1 INTRODUCTION

Suppose d is an integer not less than 2 and Ω is a set of odd

cardinality 2d - 1, e.g. Ω = {1, 2, . . . ,2d - 1}. Odd graph Od can be defined as

follows: the vertex set V of Od, is the set of subsets v of Ω which have

cardinality |v| = d - 1, and two vertices are adjacent when the subsets are

disjoint [Bigg79]. The graphs O2 (= K3), O3 (= Petersen's graph) and O4 are

depicted in Figure 2 in section 1.2.

We will refer to the elements of Ω as labels. A pair of adjacent

vertices in Od, corresponds to a pair of disjoint (d - 1)-subsets of the (2d -

1)-set Ω so there is just one label “the odd label” not occurring in either of

the subsets. This "odd" label will be assigned to the edge joining the two

vertices. Thus the edge set E of Od, is partitioned into 2d - 1 disjoint sets,

 {߱ - v = Ω ׫ E | u א (u,v)} = ఠܧ

20

Since a given vertex v contains d - 1 labels and | Ω | = 2d - 1, there

are d labels available for the edges incident with v. This shows that Od is a

regular graph with degree d. By simple counting arguments we have,

|V| = ൫ଶௗିଵ
ௗିଵ ൯

|E| = ଵ
ଶ

 ݀ ൫ଶௗିଵ
ௗିଵ ൯ ൌ ଵ

ଶ
 ሺ2݀ െ 1ሻ൫ଶௗିଶ

ௗିଵ ൯

ఠ| = ଵܧ|
ଶ

 ൫ଶௗିଶ
ௗିଵ ൯ ൌ ൫ଶௗିଷ

ௗିଶ ൯

3.2 INDEPENDENT SETS AND CHROMATIC NUMBERS

For each label ߱ in Ω define the subset ఠܸ of V to be the set of vertices

which contain ߱. Since any two vertices in ఠܸ intersect, they are not

adjacent and ఠܸ is an independent set in Od. The cardinality of ఠܸ is ൫ଶௗିଶ
ௗିଶ ൯

[Bigg79]. The set-theoretical result of Erdos et al. [Erdo61][Hilt67] has the

following consequence:

Theorem 3.1: Let I be any independent set of vertices in Od. Then | I | ≤

൫ଶௗିଶ
ௗିଶ ൯ and if | I | = ൫ଶௗିଶ

ௗିଶ ൯ we must have I = ఠܸ for some ߱ in Ω.

An independent set is maximal if the addition of any new vertex

destroys its independence. Theorem 3.1 characterizes the maximal

independent sets in Od which also have maximum cardinality. Now let us

consider the maximal independent sets of minimum cardinality. If M is

21

any maximal independent set, then every vertex not in M must be adjacent

to at least one vertex in M. Hence the sets,

D(m) = {v א V | v = m or (v, m) א E}, (m א M)

must cover V. In a d-regular graph (such as Od), |D(m)| = d + 1, so

(d + 1) |M| ≥ |V|[Bigg79].

The bounds on the cardinality of a maximal independent set M in Od

which were obtained by Biggs are as follows:

൫ଶௗିଶ
ௗିଶ ൯ ൒ | M | ≥ ଵ

ௗାଵ
 ൫ଶௗିଵ

ௗିଵ ൯

The upper bound is attained for every value of d ≥ 2, but, the lower bound

is rarely attained.

The set ఠܸഥ of vertices, not containing the label ߱, has cardinality

൫ଶௗିଶ
ௗିଵ ൯. The members of ఠܸഥ are paired by the rule that (u, v) is a pair when

u and v are complementary subsets of Ω - ߱. The paired vertices are joined

by an edge whose label is ߱ (these are the only edges in the vertex

subgraph Od[ఠܸഥ]). The previous observations can be combined to obtain a

useful “standard representation” of Od, as in Figure 3 [Bigg79]. The

diagram indicates that each vertex in ఠܸ is joined to d vertices in ఠܸഥ , while

each vertex in ఠܸഥ is joined to d - 1 vertices in ఠܸ. The edges in Od[ఠܸഥ] are

just those in the set ܧఠ.

22

It is easy to check that Od contains odd circuits, and the standard

representation indicates at once that there is a proper 3-coloring of the

vertices.

Figure 3: Representation of Od [Bigg79].

Theorem 3.2 [Zeli85]: The chromatic number of every odd graph is equal

to 3.

Proof:

Consider an odd graph Od. Let U1 be the set of all sets belonging to V

and containing the label 1, let U2 be the set of all sets belonging to V - U1

and containing the label 2, let U3 = V - (U1 ׫ U2). Any two elements of U1

are non-adjacent (as vertices of Od), because their intersection contains the

label 1 and therefore it is non-empty. Hence U1 is an independent set in Od

and analogously so is U2. Now let X א U3, Y א U3. Then the sets X, Y are

subsets of the set Ω - {1, 2}. This set has the cardinality 2d - 3, while each of

the sets X, Y has the cardinality d - 1. If X, Y were disjoint, their Union X ׫

23

Y would have the cardinality 2(d - 1) which is greater than the cardinality

of Ω - {1,2}; this is impossible. Therefore X ת Y ് ׎ for any two elements X,

Y of U3 and U3 is an independent set in Od too. The vertices of Od can be

coloured by three colours 1, 2, 3 in such a way that by the colour i (i = 1, 2,

3) the vertices belonging to Ui are coloured. This colouring is admissible;

no two vertices of the same colour are adjacent. We have proved that

߯(Od) 3 أ, where ߯(Od) is the chromatic number of Od.

Now we shall construct the sets X1, ...,Xd and Y1, ..., Yd as follows. We

put X1 = {1, ..., d - 1}. If Xi is constructed for some i, then we put Yi = Ω - (Xi

 .({i} ׫ Yi) - If Yi is constructed for some i, then we put Xi+1 = Ω .({2d - i} ׫

The reader himself may verify that then Yd = X1. Further Xi ת Yi = ׎ for i =

1, ..., d and Xi+1 ת Yi = ׎ for i = 1, ..., d-1. Therefore X1, Y1, X2, Y2, ..., Xd, Yd =

X1 are vertices of a circuit in Od having the length 2d -1 which is an odd

number. Hence Od is not bipartite and ߯(Od) = 3. Together with the

previous inequality this yields ߯(Od) = 3.□

3.3 SHORTEST DISTANCE AND DIAMETER

Theorem 3.3 [Bigg79]: In the graph Od the possible values of ߲(u, v) are in

one-to-one correspondence with the possible values (0, 1, . . . , d - 1) of | u

 ,v |; explicitly ת

߲(u, v)= 2r ฻ | u ת v |= (d- 1) - r

24

߲(u, v)= 2r + 1 ฻ | u ת v | = r

Proof:

Let ߲ denote the usual distance function and ु௜ሺݑሻ denote the set of

vertices v such that ߲(u, v) = i. Clearly, ु଴ሺݑሻ = {u}, and ुଵሺݑሻ consists of

the d vertices adjacent to u. If ߲(u, v) = 2, then there is a vertex x adjacent to

(that is, disjoint from) both u and v. If the edges (u, x) and (x, v) carry the

labels σ and τ, respectively, we see that the subset v is obtained from u by

removing the label τ and substituting σ. Thus, | u ת v | = d - 2.

Conversely, any pair of (d - 1) subsets which overlap in all except one

element must be separated by two steps in Od. Continuing in this way, it

can be seen that if ߲(u, v) = 2r, then v can be obtained from u by removing

r labels and substituting r different ones, so that | u ת v | = (d - 1) - r.

Similarly, if ߲(u, v) = 2r + 1, then | u ת v | = r.□

Theorem 3.4 [Zeli85]: Let u, v be two vertices of the graph Od, let | u ת v|

= r. Then the distance of the vertices u, v in Od is ∆(r) = min (2r + 1, 2d – 2r

- 2).

Proof:

If for two pairs u1, v1 and u2, v2 of vertices of Od we have | u1 ת v1 | =

| u2 ת v2 |, then evidently there exists a permutation of the set Ω which

maps u1 onto u2 and v1 onto v2 as we will see in section 3.4; this

25

permutation induces an automorphism of Od which again maps u1 onto u2

and v1 onto v2. This implies that the distance of two vertices of Od is a

function of the cardinality of their intersection and we may denote it

by ∆(r), where r is this cardinality. Now let us have two vertices u, v of Od,

let r = | u ת v|. If r = 0, then u ת v = ׎ and the vertices u, v are adjacent;

their distance is 1, therefore ∆(0) = 1, which fulfills the assertion. If r = d -

1, then u = v, because | u |= | v | = d - 1. The distance of u and v is 0,

therefore ∆(d-1) = 0, which again fulfils the assertion. Now let r be an

arbitrary integer such that 2 ൑ r ൑ d - 2. We have | u - v | = | v - u | = d - 1

- r, | Ω - (u ׫ v) | = r + 1. Let P be the shortest path in Od connecting u and

v. Let u0 (or v0) be the vertex of P adjacent to u (or v respectively).

Evidently ߲(u, v) = ߲(u0, v0) + 2, where ߲ denotes the distance of two

vertices. We have u ת u0 = v ת v0 = ׎, therefore the intersection u0 ת v0 ك Ω

- (u ׫ v) and | u0 ת v0 | ൑ r + 1. On the other hand, the set u0 can have at

most d - 1 - r elements in common with v and the other vertices of u0

belong to Ω - (u ׫ v), hence | u0 ת (Ω - (u ׫ v)) | ൒ r and analogously | v0

 v0 | ൒ r - 1. Thus there are three ת ൒ r. This implies | u0 | ((v ׫ u) - Ω) ת

possibilities for the cardinality of u0 ת v0, namely r - 1 or r + 1. As P is the

shortest path connecting u and v, the sets u0, v0 must be chosen so that

their distance might be the least possible, i.e, ߲(u0, v0) = min (∆(r - 1),∆(r),

∆(r+ 1)). As ∆(r) = ߲(u, v) = ߲(u0, v0) + 2, the equalities ߲(u0, v0) = ∆(r) and

| u0 ת v0 | = r are impossible. There can be only either ߲(u0, v0) = r - 1 and,

26

 ∆(r) = ∆(r - 1) + 2, or ߲(u0, v0) = r + 1 and ∆(r) = ∆(r + 1) + 2. Suppose that

∆(r) = ∆(r - 1) + 2 holds, hence ߲(u0, v0) = ∆(r - 1) and | u0 ת v0 | = r - 1. If r

= 1, then u0, v0 are adjacent and ߲(u, v) = ∆(l) = 3 (evidently it cannot be

less) which fulfills the assertion. If r ൒ 2, consider the interrelation

between ∆(r - 1) and ∆(r - 2). Analogously there is ∆(r - 1) = ∆(r - 2) + 2 or

∆(r - 1) = ∆(r) + 2. But, as we have supposed ∆(r) = ∆(r - 1) + 2, we must

have ∆(r - 1) = ∆(r - 2) + 2. Inductively we can prove that if ∆(r) = ∆(r - 1) +

2 for some m, then ∆(p) = ∆(p - 1) + 2 for each integer p such that 2 ൑ p ൑ r.

Analogously if ∆(r) = ∆(r + 1) + 2 for some r, then ∆(q) = ∆(q +1) + 2 for

each integer q such that r ൑ q ൑ d - 2. As it has been proved ∆(0) =1, ∆(d -

1) = 0, the function ∆(r) is uniquely determined as ∆(r)= min(2r + 1, 2d – 2r

- 2). □

Corollary 3.1 [Zeli85]: The diameter and the radius of the graph Od are

both equal to d - 1.

The number d - 1 is evidently the maximum of ∆(r); it is attained in r

= ଵ
ଶ
 (d - l) for d odd and in r = ଵ

ଶ
 d - l for d even. As Od is vertex-transitive, its

radius is equal to its diameter.

Theorem 3.5 [Zeli85]: The graph Od for every integer d ൒ 2 is geodetic. A

graph is geodetic if for every pair for vertices the shortest path between

them is unique.

27

Proof:

In the proof of Theorem 3.4 it was shown that for given vertices u, v

the vertices u0, v0 (the vertices adjacent to u and v respectively in the

shortest path connecting u and v) are determined uniquely. Thus by

induction we can prove that whole the shortest path between u and v is

uniquely determined. □

The graph Od is an example of a geodetic graph of the diameter d - 1

which is simultaneously regular of the degree d.

3.4 SYMMETRY AND THE SPECTRUM

Any permutation π of the set Ω induces an automorphism of Od since

the subsets π (u) and π (v) are disjoint if u and v are. Thus the symmetric

group S2d-1 is a subgroup of the automorphism group Aut(Od).

Theorem 3.6 [Bigg79]: The automorphism group of Od is the symmetric

group S2d-1, acting in the obvious way on the (d - 1)-subsets of the (2d - 1)

set Ω.

Proof:

To show that Aut(Od) = S2d-1 the deep result of Theorem 3.1 can be

used.

28

Any automorphism θ of Od must take an independent set of vertices

to an independent set with the same cardinality; hence, by Theorem 3.1, θ

(Vσ) = Vτ for some τ in Ω.

Let ߠҧ be the corresponding induced permutation of Ω, defined by θ

(σ) = τ if and only if θ (Vσ) = Vτ. The mapping ߠ ฽ ҧ is a homomorphismߠ

of Aut(Od) -into S2d-1 and it is onto by the remarks at the beginning of this

paragraph. Finally, it is one-to-one, since if ߠҧ is the identity, then θ (ఠܸ) =

ఠܸ for each ω in Ω; thus if the vertex x contains label ω, so does θ (x), and

consequently θ (x) = x. □

Suppose u, v, x, y are vertices of Od, and ߲(u, v) = ߲(x, y). Then

Theorem 3.3 tells us that | u ת v | = | x ת y |, and so a permutation of Ω

may be constructed which takes u to x and v to y. This means that the

graph Od is distance-transitive, and a battery of algebraic results may be

applied to it [Bigg74]. The intersection array is a rectangular array in

which the ith column has three entries ci, ai, and bi, defined as follows. Let

u and v be any pair of vertices such that ߲(u, v) = i (all such pairs are

equivalent in Od , by the distance-transitive property); set,

ܿ݅
ܾ݅
ܽ݅

ൡ ൌ The number of vertices x which are adjacent to v and satisfy ߲(u, x) = ൝
݅ െ 1

݅
݅ ൅ 1

[Bigg79] Figure 4 may clarify the definitions.

29

Figure 4: Intersection numbers [Bigg79].

Since the degree of v is d, we have ci + ai + bi = d, and, since the

diameter is d - 1, there are d columns (i = 0, 1, . . . , d - l), the numbers c0

and bd-1 being undefined. Simple counting arguments lead to the explicit

array for Od, which has a remarkable pattern. When d is even, [Bigg79]

obtain,

1 1 2 2 ………. ଵ
ଶ
d – 1 ଵ

ଶ
 d – 1 ଵ

ଶ
 d

0 0 0 0 0 0 0 ଵ
ଶ
 d

d d - 1 d - 1 d - 2 d - 2 ଵ
ଶ
d + 1 ଵ

ଶ
d + 1

and when d is odd, [Bigg79] has,

1 1 2 2 ………. ଵ
ଶ
(d - 1) ଵ

ଶ
 (d - 1)

0 0 0 0 0 0 ଵ
ଶ
 (d + 1)

d d - 1 d - 1 d - 2 d - 2 ଵ
ଶ
 (d + 1)

30

The general theory of distance-transitive graphs tells us that the

spectrum of Od is completely determined by the intersection array. In

other words, all the eigenvalues of the adjacency matrix, and their

multiplicities, may be calculated.

Theorem 3.7 [Bigg79]: The eigenvalues of Od are the integers

λi = (- 1)i(d - i) (0 ≤ i ≤ d - 1), and the multiplicity of λi is

m(λi) = ൫૛ିࢊ૚
࢏ ൯ – ൫૛ିࢊ૚

૚ି࢏ ൯

The strong distance-transitivity property implies, in particular, that

the automorphism group of Od is transitive on vertices and on pairs of

adjacent vertices.

In the terminology of Biggs [Bigg74], the graph is symmetric. For

such graphs, Biggs studied the action of the automorphism group on the

arcs, as defined below.

An s-arc is a sequence x1, x2, ..., xs of vertices such that xi and xi+1, are

adjacent (0 ≤ i ≤ s - 1) but xi and xi+2 are not identical (0 ≤ i ≤ s - 2). Since we

have a simple representation of the automorphisms of Od as the

permutations of Ω it is easy to verify the following:

Theorem 3.8 [Bigg79]: The automorphism group of Od acts transitively on

the set of all 3-arcs, but not on the 4-arcs (d ≥ 3).

31

An s-arc is said to be consistent if there is an automorphism θ such

that θ(x0 ,x1, . . . , xs-1) = (x1, x2 , . . . , xs) [Bigg79]. It follows from Theorem

3.8 that in Od (d ≥ 3) all arcs of length not exceeding 4 are consistent. If we

repeatedly extend a consistent arc, retaining at each stage the consistency

property, we must eventually return to the initial vertex.

The resulting circuit is itself symmetric in the sense that there is a

graph automorphism which rotates it through one step. A theorem due to

Conway [Conw77] states that a symmetric graph of degree d has just d - 1

classes of symmetric circuits. The proof of the theorem provides a

recursive method for the construction of the symmetric circuits in general

[Bigg79]; here just the result for the graph Od is described.

Biggs began by remarking that an arc or circuit in Od is uniquely

determined by its initial vertex and the sequence of edge labels. The

construction of symmetric circuits proceeds as follows. Let Λ be any

subset of Ω having odd cardinality not less than 3, and suppose the

members of Λ are ordered so that,

Λ = {λ0, λ1, ,..., λ2r }, 1 ≤ r ≤ d – 1 [Bigg79]

Let {X, Y} be an equipartition of the set Ω - Λ, so that |X| = | Y | = d - r -

1. For values of r in the range 1, 2, ..., d - 2 we obtain a symmetric circuit by

starting from the initial vertex v = X ׫ {λ1, λ3, ,..., λ2r-1 } and proceeding

along the edges labeled λ0, λ1, ,..., λ2r, λ0, λ1, ,..., λ2r. This gives a circuit of

32

even length 4r + 2 (Figure 5). When r = d - 1, starting from v and

proceeding along the edges labeled λ0, λ1, ,..., λ2d-2 gives a circuit of odd

length 2d - 1 (in this case the sets X and Y are both empty). The

construction provides d - 1 classes of symmetric circuits, and, by the

theorem quoted above, these are the only symmetric circuits in Od. The

required "rotation" automorphisms are induced by composing the cyclic

permutation λ0, λ1, ,..., λ2r of Ω with any permutation that takes X to Y.

Theorem 3.9 [Bigg79]: The graph Od (d ≥ 3) has symmetric circuits of

length 2d - 1 and 6, 10, . . . , 4d - 6. The girth of the graph is 5 if d = 3, and 6

for all d ≥ 4.

Biggs remarked that the graphs do contain even circuits of lengths 8,

12, . . . , but these do not have the symmetry property.

Figure 5: A symmetric circuit of length 4r + 2 in Od.

33

3.5 EDGE PARTITIONS, COLORING AND

DOMINATIONS

It was mentioned in Section 3.1 that the edge set of Od is partitioned

into 2d - 1 sets ܧఠ, (߱ א Ω), where the edges in ܧఠ are those joining two

vertices whose union does not contain ߱. This fact, together with the

representation (Figure 4), is relevant to the study of the factors and edge

colorings of Od [Bigg79].

If F is a 1-factor of Od, then it must contain exactly one edge incident

with each of the vertices in ఠܸ. The number of such edges is thus | ఠܸ | =

൫ଶௗିଶ
ௗିଶ ൯.

The edges of F not incident with ఠܸ must each carry the label ߱, and

since |F| = ଵ
ଶ

 ൫ଶௗିଵ
ௗିଵ ൯, the number of them is,

ଵ
ଶ

൫ଶௗିଵ
ௗିଵ ൯ െ ൫ଶௗିଶ

ௗିଶ ൯ ൌ ଵ
ௗ

 ఠ| [Bigg79]ܧ|

In other words, the number of edges carrying the label ߱ is constant,

independent of ߱. The same is true for any r-factor, 1 ≤ r ≤ d.

Theorem 3.10 [Bigg79]: In any r-factor of Od (1 ≤ r ≤ d), the number of

edges carrying a given label ߱ is independent of ߱.

34

By Vizing's theorem [Vizi64], the number of colors needed to color

the edges of the odd graph Od is either d or d + 1, and in the case of the

Petersen graph O3 it is d + 1. When d is a power of two, the number of

vertices in the graph is odd, from which it again follows that the number

of edge colors is d + 1. However, O5, O6, and O7 can each be edge-colored

with d colors.

An edge-dominating set in a graph G is a subset DE of the edge set

E(G) of G with the property that to each edge e א E(G) - DE there exists an

edge f א DE such that the edges e, f have a common end vertex. The

minimal number of vertices of an edge-dominating set in G is called the

edge-domination number of G.

Analogously to the domatic number of a graph [Cock77] we may

define the edge domatic number of a graph G.

An edge-domatic partition of a graph G is a partition of the edge set

E(G) of G, all of whose classes are edge-dominating sets in G. The maximal

number of classes of an edge-domatic partition of G is called the edge-

domatic number of G.

Theorem 3.11 [Zeli85]: The edge-domination number of the graph Od is

equal to ଵ
ଶ

 ൫ଶௗିଶ
ௗିଵ ൯ and its edge-domatic number is equal to 2d - 1.

35

Proof:

Let ߱ א Ω and let ܧఠ be the set of all edges e of Od labeled with ߱. Let

f be an edge of Od not belonging to ܧఠ, and labeled with ߬. Then, ߬ ≠ ߱. Let

u, v be the end vertices of f. Exactly one of the sets u, v contains the label ߱;

without loss of generality let it be u. Let w = Ω - (v ׫ { ω }); then v and w

are joined by an edge belonging to ܧఠ. As f was chosen arbitrarily, it has

been proved that ܧఠ is an edge-dominating set (for an arbitrary ߱).

Now let us look for the cardinality of ܧఠ. If x is an arbitrary vertex of

Ω - { ߱ } of the cardinality d - 1 and y = Ω - (x ׫ { ߱ }), then the vertices x, y

are joined by an edge belonging to ܧఠ and vice versa. The number of

subsets of Ω – { ߱ } of the cardinality d-1 is equal to൫ଶௗିଶ
ௗିଵ ൯. Having in mind

that for a subset x of Ω – { ߱ } of the cardinality d - 1 the set y = Ω - (x ׫ {߱})

is also a subset of Ω – { ߱ } of the cardinality d - 1, we find that the number

of unordered pairs {x, y} of described sets is ଵ
ଶ

 ൫ଶௗିଶ
ௗିଵ ൯ and this is also the

cardinality of ܧఠ. This number does not depend on ω, thus all the sets ܧఠ

for ω = 1, ..., 2d – 1 have equal cardinalities. The edge-domination number

of Od is thus at most ଵ
ଶ

 ൫ଶௗିଶ
ௗିଵ ൯ and its edge-domatic number is at least 2d -

1.

The edge-domatic number of a graph is evidently equal to the

domatic number [Cock77] of its line-graph. The degree of each vertex of

the line-graph of Od is 2d - 2 and this implies [Cock77] that its domatic

36

number (and thus the edge-domatic number of Od) is at most 2d - 1. It has

been proved that the edge-domatic number of Od is 2d -1.

Now suppose that there exists an edge-dominating set DE of a

cardinality c < ଵ
ଶ

 ൫ଶௗିଶ
ௗିଵ ൯. For each edge e א DE the set consisting of e and all

edges having a common end vertex with e has the cardinality 2d -1. As

each edge of Od either is in DE, or has an end vertex in common with an

edge of DE, the number of edges of Od is at most c(2d - 1) < ଵ
ଶ
 (2d - 1) ൫ଶௗିଶ

ௗିଵ ൯

= ଵ
ଶ

 ݀ ൫ଶௗିଵ
ௗିଵ ൯ . But the number at the right-hand side of this inequality is the

number of edges of Od. (The number of vertices is ൫ଶௗିଵ
ௗିଵ ൯ and the graph is

regular of the degree d.) As c(2d - 1) is less, we have a contradiction. Thus

each Eω is an edge dominating set of the least cardinality and the edge-

domination number of Od is ଵ
ଶ

 ൫ଶௗିଶ
ௗିଵ ൯. □

3.6 GRAPH DECOMPOSITIONS

Theorem 3.12 [Zeli85]: Let Td be a tree with the vertex set {a, b, c1 ..., cd-1,k1 ,

..., kd-1} and with the edges ab, aci, bki for i = 1, ..., d- 1. Then the graph Od

can be decomposed into ଵ
ଶ

 ൫ଶௗିଶ
ௗିଵ ൯ pairwise edge-disjoint subgraphs which

are all isomorphic to Td. Moreover, each of these subgraphs contains

exactly one edge from each set ܧఠ for ߱ = 1, ..., 2d - 1.

37

Proof:

Let ߱ א Ω, let ܧఠ have the same meaning as in the proof of Theorem

3.11. Let e1, e2 be two elements of ܧఠ. Suppose that these edges have a

common end vertex u. Let v1 (or v2) be the end vertex of e1 (or e2

respectively) distinct from u. Then Ω - (u ׫ v1) = Ω - (u ׫ v2) = { ߱ } and u ת

v1 = u ת v2 = ׎. This implies v1 = v2 and also e1 = e2, because Od is a graph

without multiple edges. We have proved that there exist no two distinct

edges of Eω which would have an end vertex in common. Now suppose

that to the edges e1, e2 of ܧఠ there exists an edge f which has common end

vertices with both e1, e2.

Let u1 (or u2) be the common end vertex of e1 (or e2 respectively) and

f. Let v1 (or v2) be the end vertex of e1 (or e2 respectively) distinct from u1

and u2. Then Ω - (u1 ׫ v1) = Ω - (u2 ׫ v2) = { ߱ }, u1 ת v1 = u2 ת v2 = u1 ת u2 =

 u2 ת This implies that none of the vertices u1, u2, v1, v2 contains ߱. As u1 .׎

 ఠ. According to the aboveܧ א and f { ߱ } = (u2 ׫ u1) - we have Ω ,׎ =

proved this is possible only if e1 = e2 = f. Therefore if the labels of e1 and e2

are equal and e1 ≠ e2, then the distance between an arbitrary end vertex of

e1 and an arbitrary vertex of e2 is at least 2.

Now let e be an edge of Od. Let G[e] be the subgraph of Od consisting

of the edge e, all edges having a common end vertex with e and of end

vertices of all of these edges. This is a tree isomorphic to Td. If e1, e2 are two

38

distinct edges of G[e], then either they have a common end vertex, or there

exists an edge of G[e] which has common end vertices with both of them.

According to the above proved the labellings of edges of G[e] are pairwise

different.

Let T(߱) be the set of subtrees G[e] for all edges e ܧ אఠ. Any two

distinct trees from T(߱) are edge-disjoint; otherwise there would exist two

distinct edges of ܧఠ with a common end vertex or with the property that

there exists an edge having common vertices with both of them. The

cardinality of T(߱) is equal to that of ܧఠ, namely ଵ
ଶ

 ൫ଶௗିଶ
ௗିଵ ൯. Each tree from

T(ω) has 2d - 1 edges. Hence the union of all trees from T(߱) has

ଵ
ଶ

 ൫ଶௗିଶ
ௗିଵ ൯ሺ2݀ െ 1ሻ = ଵ

ଶ
 ݀൫ଶௗିଵ

ௗିଵ ൯ edges and this is the number of edges of Od. It

has been proved that T(߱) is the required decomposition. □

To contract an edge of a graph means to delete this edge and to

identify its end vertices.

Theorem 3.13 [Zeli85]: The graph Od‘(߱) obtained from Od by contracting

every edge e labeled with ߱, where ߱ is an integer between 1 and 2d - 1, is

a bipartite graph.

Proof:

By the described contractions each tree from T(߱) is transformed into

a star. Hence Od‘(߱) is a graph which is the union of edge-disjoint stars

39

with the property that each of them contains all edges incident with its

centre in Od‘(߱). Every graph with this property is bipartite. □

Let P(n) be the set of all linear orderings of the set {1, ..., n}. Let π1, π2

be elements of P(n). We say that π1, π2 are dihedrally equivalent, if either

π1= π2, or π2 can be obtained from π1 by acyclic permutation, by reversing

or by a super-position of a cyclic permutation and a reversing. The

relation thus defined is evidently an equivalence on the set P(n).

Let C be a circuit of the length n whose edges are labelled by

pairwise different numbers from the set {1, ...,n}. If we run around C and

write the labels of the traversed edges, we may obtain different linear

orderings of the set {1, ...,n} according to in which vertex we have started

and in which sense we have gone. These orderings form one class of the

dihedral equivalence. We may say that to C a class of the dihedral

equivalence on P(n) corresponds.

The number of classes of the dihedral equivalence on P(n) is

evidently equal to ଵ
ଶ
 (n- 1)!.□

Theorem 3.14 [Zeli85]: The graph Od with the labelling ߣ is the union of ଵ
ଶ

(2d - 2)! circuits of the length 2d - 1 which correspond to pairwise different

classes of the dihedral equivalence on P(2d - 1). Each edge of Od belongs to

(d - l)!2 and each vertex to ଵ
ଶ
 d!(d - 1)! such circuits.

40

Proof:

Let C be a class of the dihedral equivalence on P(2d - 1). Let π א C

and [a1, ..., a2d-1] = π. Let U1 = {ai | i even, 2 ≤ i ≤ 2d - 2}. We construct the

sets U2, ..., U2d-1 recursively. If Ui is constructed for some i, then Ui+l = Ω -

(Ui ׫ {i}). Any two vertices Ui, Ui+l are adjacent in Od. Further it may be

easily proved that Ω - (U2d-1 ׫ {2d-1}) = U1 and the vertices U2d-1, U1 are

adjacent, too. We have obtained a circuit in Od; evidently this circuit

corresponds to C. We may construct such a circuit for each class of the

dihedral equivalence on P(2d - 1). From the construction it is evident that

circuits corresponding to the same class are identical and that each edge of

Od is contained in some of these circuits. The family of the mentioned

circuits will be denoted by Ձ.

The graph Od is evidently vertex-transitive and edge-transitive. (A

graph is vertex-transitive, if to any two of its vertices there exists its

automorphism which maps one vertex onto the other. Analogously the

edge-transitivity is defined.) This implies that for any two vertices V1, V2

of Od the number of circuits of Ձ containing V1 is equal to the number of

those containing V2 and an analogous assertion holds for edges, too. Thus

the number of circuits from Ձ containing any vertex is obtained by

dividing the sum of lengths of all circuits of Ձ, namely ଵ
ଶ
 (2d-2)!(2d - 1), by

the number of vertices of Od, namely ൫ଶௗିଵ
ௗିଵ ൯; the result is ଵ

ଶ
 d!(d - 1)!. If we

41

divide the number ଵ
ଶ
 (2d-2)!(2d - 1) by the number of edges of Od, namely

ଵ
ଶ

 ݀ ൫ଶௗିଵ
ௗିଵ ൯, we obtain the number of circuits of Ձ containing any edge,

namely (d - l)!2. □

3.7 HAMILTONIAN CIRCUITS AND PATHS

It is well known that O3 is not Hamiltonian and that it does not have

an edge 3-coloring (three disjoint 1-factors). At one time [Bigg72] it was

thought that such anomalies might persist throughout the whole family

but that is now known to be false:

Theorem 3.15 [Bigg79]: When d = 4, 5, 6, 7, Od contains [d/2] edge-disjoint

Hamiltonian circuits [Mere72][Mere73].

It is tempting to conjecture that Theorem 3.15 is true for all d ≥ 4.

However, in general, the construction of even a single Hamiltonian circuit

in Od seems to be rather difficult, one advance on Theorem 3.15 is the

construction of one Hamiltonian circuit in O8 [Math76]. In addition,

Shields and Savage [Shie04] used a carefully designed heuristic to find

Hamiltonian circuits in Od for 4 ൑ d ൑ 14.

Lov´asz [Lov´a70] conjectured that every connected vertex-transitive

graph has a Hamiltonian path. An attempt to provide more evidence to

support Lov´asz conjecture is to compute the Hamiltonian paths for d ൒ 2.

42

However, a direct computation of Hamiltonian paths in Od is not feasible

for large values of d. The graph O2 (a triangle) and O3 (the Petersen graph),

both of which have Hamiltonian paths (Figure 6). Balaban [Bala72]

showed that O4 and O5 have Hamiltonian paths. Meredith and Lloyd

[Mere72] showed that O6 and O7 have Hamiltonian paths. Mather

[Math76] showed that O8 has a Hamiltonian path. Shields and Savage

[Shie99] used a carefully designed heuristic to find Hamiltonian paths in

Od for d ൑ 14. Bueno and Faria showed that Od has a Hamiltonian path for

15 ൑ d ൑ 18 [Buen09]. Instead of directly running any heuristics, they used

existing results on the middle levels problem [Shie99][Shie09].

Figure 6: The O2 and O3, with highlighted Hamiltonian paths [Buen09].

43

3.8 CODE

In Section 3.2 we noted that a maximal independent set M in any d-

regular graph must satisfy the inequality (d + 1)| M | ≥ | V |. Equality

holds if the collection of “disks” D(m) (m Ԗ M) covers the vertex-set V

exactly. In order to connect with later terminology, [Bigg79] used the term

perfect 1-code to denote a maximal independent set with the minimum

cardinality ଵ
ௗାଵ

|V|.

When is there a perfect 1-code in Od? The obvious necessary

condition that d + 1 should be a divisor of ൫ଶௗିଵ
ௗିଵ ൯ is by no means sufficient.

If x and y are distinct vertices of a perfect 1-code M in Od, then D(x) and

D(y) do not overlap, and we have ߲(x, y) ≥ 3. It follows from Theorem 3.3

that | x ת y | < d - 2; hence any (d - 2) subset of Ω is contained in at most

one vertex belonging to M. But each vertex contains d - 1 such subsets, and

the total number occurring is,

ሺ݀ െ 1ሻ|ܯ| ൌ ௗିଵ
ௗାଵ

 ൫ଶௗିଵ
ௗିଵ ൯ ൌ ൫ଶௗିଵ

ௗିଶ ൯ [Bigg79]

Thus, every (d - 2)-subset of Ω occurs exactly once as subset of a

vertex belonging to M. It has been shown that M must be a Steiner system

S(d - 2, d - 1, 2d - 1); that is, a collection of (d - 1) subsets usually called

blocks of a (2d - 1) set with the property that each (d – 2) subset occurs just

once in a block.

44

If a perfect 1-code in Od, or S = S(d- 2, d - 1, 2d - 1), does exist, then it

induces a unique extended system S+ = S(d - 1, d, 2d). The extension is

constructed by adding one new label ∞ to Ω and taking the new blocks to

be of two kinds: (i) the blocks of S with ∞ added, and (ii) the complements

in Ω of the blocks of S.

Conversely, if a system with the parameters of S+ is given, then S

may be obtained by deleting one label and taking complements of the

blocks not containing it. Assmus and Hermoso [Assm74] have shown that

if S+ has a flag-transitive group of automorphisms, then d = 4 or d = 6.

Hence, if a perfect 1-code in Od exists when d ≠ 4, 6, its construction is

certain to be very complicated.

Theorem 3.16 [Bigg79]: If there is a perfect 1-code in Od with flag-transitive

extension, then d = 4 or 6.

The systems do exist in the cases d = 4 and d = 6; a representation of

the perfect 1-code in O4 is shown in Figure 7.

45

Figure 7: A perfect 1-code in O4 [Bigg79].

Since it seems that the simple lower bound for the size of a maximal

independent set in Od is rarely attained, the difficult question of finding

the actual minimum arises [Bigg79].

46

CHAPTER 4

APPROXIMATION ALGORITHMS FOR

INDEPENDENT DOMINATION IN ODD

GRAPHS

4.1 INTRODUCTION

In sections 3.2 and 3.8 we saw that the lower bound of the minimum

maximal independent set, which is |V|/(d+1), is rarely attained and the

actual cardinality of it is an open problem. In this chapter we present

approximation algorithms that find an approximate minimum

independent dominating set by partitioning the vertices of the odd graphs

to simplify the complex structure of the graph. In section 4.2, a

partitioning scheme will be presented with some observations. In section

4.3, the approximation algorithms are described and the correctness of the

algorithm along with analysis is given. In addition, an example of finding

the MIDS in O4 is given to illustrate the algorithm. Generic greedy and

randomized algorithms are given in section 4.4. Finally, in section 4.5 we

47

will compare the performance of our algorithms with the generic

algorithms empirically.

4.2 VERTICES PARTITION

Let Ω = {1, 2, . . . ,2d - 1}, p = 2d -2 and q = 2d - 1, so Ωௗ = Ωௗିଵ ׫ {p, q}.

If s ك Ωௗିଵ, then ݏҧ = Ωௗିଵ\ s, that is, the complement of s with respect to

Ωௗିଵ = {1, 2, …., 2d – 3}.

 The set of vertices of Od is divided into four categories according to

whether their labels contain either p or q, both p and q or neither. So, V is

partitioned into four sets: A, B, C and D such that A consists of all subsets

with both p and q, B consists of all subsets with neither p nor q, C consists

of all subsets with p but not q, and D consists of all subsets with q but not

p. Thus, for d ൒ 3, A = {{x1, x2, . . . , xd-3, p, q} | xi א Ωௗିଵ}, B = {{x1, x2, . . . , xd-

1} | xi א Ωௗିଵ}, C = {{x1, x2, . . . , xd-2, p} | xi א Ωௗିଵ}, and D = {{x1, x2, . . . , xd-2,

q} | xi א Ωௗିଵ}. Since Vd-1 is the set of all (d - 2)-subsets of Ωௗିଵ, the sets B, C

and D can be rewritten as

B = {ݏҧ | א ݏ ௗܸିଵ}, C = {׫ ݏ ׫ ݏ} = ௗܸିଵ}, D א ݏ | ݌ .{ௗܸିଵ א ݏ | ݍ

The cardinalities of these sets are given by: |A| = ൫ଶௗିଷ
ௗିଷ ൯, |B| = |C|

= |D| = ൫ଶௗିଷ
ௗିଶ ൯ = |Vd-1|.

48

The partitioning of the set of vertices of Od induces a partitioning of

its edges as defined by

Eab = {(a, b) | a א A, b א B and a ת b = ׎},

Ebc = {(b, c) | b א B, c א C and b ת c = ׎} = {(׫ ݏ ,{ௗܸିଵ א ݏ | (ҧݏ ,݌

Ebd = {(b, d) | b א B, d א D and b ת d = ׎} = {(׫ ݏ ,{ௗܸିଵ א ݏ | (ҧݏ ,ݍ

Ecd = {(c, d) | c א C, d א D and c ת d = ׎} = ڂ ሼሺ݌ݏ, ,ሻݍݐ ሺ݌ݐ, ை೏షభאሻሽሺ௦,௧ሻݍݏ .

The last equality follows from the fact that an edge (s, t) in Od-1 gives

rise to two edges linking two vertices in C with two vertices in D, namely

(sp, tq) and (tp, sq).

Figure 8 shows the new drawings of the odd graph Od, d = 2, 3, 4. In

Figure 8 (b) for the Peterson graph, A = {{4, 5}}, B = {{1, 2}, {1, 3}, {2, 3}}, C =

{{1, 4}, {2, 4}, {3, 4}} and D = {{1, 5}, {2, 5}, {3, 5}} (here, p = 4; q = 5).

Figure 8: New drawings of the odd graph Od, d = 2, 3, 4.

49

Proposition 4.1: Given the partition {A, B, C, D} of the vertices of the odd

graph Od, d ൒ 3, we have

(i) Each vertex in A is connected to d vertices in B.

(ii) Each vertex in B is connected to d - 2 vertices in A, one vertex in C

and one vertex in D.

(iii) Each vertex in C is connected to 1 vertex in B and d - 1 vertices in

D.

(iv) Each vertex in D is connected to 1 vertex in B and d - 1 vertices in

C.

Proof:

(i) Observe that all subsets in C ׫ D contain p or q while subsets in B

contain neither.

Hence, all subsets disjoint from those in A are contained in B. So, let a

= {x1, x2, . . . , xd-3, p, q} א A and Ba = {{y1, y2, . . . , yd-1} | yi א ሼݔଵ, ,ଶݔ . . . , {ௗିଷሽതതതതതതതതതതതതതതതതതതതതതݔ

be the subsets in B disjoint from a.

Then, |Ba| is the number of ways to choose d-1 numbers from Ωௗିଵ\

{x1, x2, . . . , xd-3}. Hence, the number of subsets in B disjoint from a is |Ba|

= ൫ଶௗିଷିሺௗିଷሻ
ௗିଵ ൯ = ൫ ௗ

ௗିଵ൯ = d.

50

 (ii) Let b א B. Since all subsets in A contain both p and q, and those in

B contain neither, the number of subsets in A disjoint from b is equal to the

number of ways to choose d - 3 numbers from Ωௗିଵ \ b. Hence, b is

connected to exactly ൫ଶௗିଷିሺௗିଵሻ
ௗିଷ ൯ = ൫ௗିଶ

ௗିଷ൯ = d – 2 subsets in A of the form

{x1, x2, . . . , xd-3, p, q}, where xi א തܾ, 1 ൑ i ൑ d - 3. Since all subsets in C

contain p but not q, and those in B contain neither, the number of subsets

in C disjoint from b is equal to the number of ways to choose d - 2 numbers

from Ωௗିଵ \ b. Hence, the number of subsets in C disjoint from b is

൫ଶௗିଷିሺௗିଵሻ
ௗିଶ ൯ = ൫ௗିଶ

ௗିଶ൯ = 1. That is, b is disjoint from exactly one subset in C,

namely തܾ ׫ p. Similarly, b is disjoint from exactly one subset in D, namely

തܾ ׫ q.

(iii) Let c א C and c’ = c \ {p}. Then, the number of subsets in B

disjoint from c is equal to the number of ways to choose d - 1 numbers

from Ωௗିଵ \ c’. Hence, the number of subsets in B disjoint from c is

൫ଶௗିଷିሺௗିଶሻ
ௗିଵ ൯ = ൫ௗିଵ

ௗିଵ൯ = 1. That is, c is disjoint from exactly one subset in B,

namely ܿ’ഥ . By definition, C consists of all (d - 2)-subsets of Ωௗିଵ suffixed by

p, and D consists of all (d - 2)-subsets of Ωௗିଵ suffixed by q. Note that c’ is a

(label of a) vertex in Vd-1. Hence, by definition of Od-1, c’ is disjoint from d -

1 vertices x1, x2, . . . , xd-1 in Od-1. Then, for i א {2 ,1, . . . , d – 1}, c is disjoint

from xi ׫ q in Od. Consequently, c is disjoint from exactly d - 1 subsets in D.

(iv) Similar to (iii). □

51

By Proposition 4.1, the following bipartite graphs are present in Od:

Od[Eab] is a bipartite graph in which ׊ a א A deg(a) = d and ׊ b א B deg(b) =

d - 2, Od[Ecd] is a (d - 1)-regular bipartite graph, and Od[Ebc] and Od[Ebd] are

1-regular bipartite graphs. Moreover, {Od[Eab] , Od[Ecd], Od[Ebc], Od[Ebd] } is

a decomposition of the odd graph Od into four bipartite graphs.

Lemma 4.1: The odd graph Od, d ൒ 2, contains |Vd-1| vertex-disjoint paths

of length 2.

Proof:

See Figure 9. Let x א Vd-1. Then c = x ׫ p א C, b = ݔҧ א B, and d = x ׫ q א

D. Since (c, b) and (b, d) are edges in Od, π = c, b, d is a path of length 2 in

Od. Obviously, if π’ = c’, b’, d’ with c’ ≠ c, then π and π’ are vertex-disjoint.

It follows that the number of such paths is |C| = |Vd-1|.□

As an illustration of Lemma 4.1, the following three paths are present

in the Peterson graph shown in Figure 8 (b): π1 = 14, 23, 15, π2 = 24, 13, 25

and π3 = 34, 12, 35.

52

Figure 9: Od contains |Vd-1|vertex-disjoint paths.

Theorem 4.2: B ׫ C is a vertex cover for Od of size 2|Vd-1|, which is

minimum.

Proof:

Recall that Od[Ecd] is the (d - 1)-regular bipartite subgraph induced by

the vertex set C ׫ D. By Hall and Konig classical arguments, Od[Ecd] has a

perfect matching whose cardinality is equal to a minimum vertex cover C

for Od[Ecd]. Thus, |C| = |Vd-1|. By Lemma 5.1, Od, d ൒ 2, contains |Vd-1|

vertex-disjoint paths πi = ui, vi, wi, where ui א C, vi א B, wi א D, 1 ൑ i ൑ |Vd-

1|. So, C forms a subset of the end-vertices of these paths. Since these

paths are vertex-disjoint, they contain exactly |Vd-1| edges that are

covered by C. Consequently, |Vd-1| additional vertices are required to

cover the remaining |Vd-1| edges, and hence all paths. It follows that the

cardinality of any vertex cover for Od is at least 2|Vd-1|.

53

On the other hand, since any edge in Od has one of its ends in either

B or C, it immediately follows that B ׫ C is a vertex cover for Od of

cardinality |B ׫ C| = 2|C| = 2|Vd-1|.□

Corollary 4.1: A ׫ D is a maximum independent set for Od of size Vd -

2|Vd-1|.

4.3 APPROXIMATION ALGORITHMS

It is clear from section 4.2 that the set of vertices in set B is a maximal

independent set. The approximation algorithms that we propose reduce

the set of the maximal independent set while maintaining the

independence and the domination properties. Next, a detailed description

of the algorithms is given.

4.3.1 ALGORITHMS DESCRIPTION

The algorithms can be divided into 4 stages. In stage 1, the

algorithms perform vertices partitioning and initialize set IDSB with set B.

In stage 2, they find an independent set in ࣟCD (Od[Ecd] which is a (d - 1)-

regular bipartite graph). In stage 3, they remove vertices from set IDSB and

find the fixed vertices from set IDSB and set A. In stage 4, the algorithms

find an independent dominating set in ࣟBA (Od[Eab] which is a bipartite

graph). Next, we will discuss each stage in detail.

54

Stage 1:

First, the algorithm partition Od to the sets A, B, C and D as explained

in section 5.2. At the initialization stage the algorithm initializes set IDSB

with set B.

Stage 2:

Next, the algorithm finds the independent set of vertices (ISCD) in the

induced bipartite graph ࣟCD. We design two algorithms for obtaining ISCD,

The first one finds ISCD with the following restriction, all shortest distance

between any two vertices in set C or D are greater than two, and on the

other hand, the second method relaxes the restriction and allows two

vertices with shortest distance of length 2 in ISCD.

The first algorithm for finding ISCD: The algorithm finds a set of

vertices (ISC) from set C with the condition that the shortest distance

between any pair of vertices is greater than two. The algorithm starts by

choosing a vertex from set C, let it be c1 then add it to ISC. Then, the

algorithm finds a vertex from set C, say cn such that the shortest distance

between cn and any vertex in ISC is equal to the diameter, then it adds cn to

ISC, repeat this step until there is no more vertices satisfy the condition. At

this stage, the distance between all vertices in ISC is equal to the diameter.

The algorithm then finds every vertex from set C such that the distance

between a vertex and all vertices in ISC is greater than two, add the

55

vertices to ISC. The algorithm repeats the previous steps for each vertex in

C as the starting vertex, and lastly, it selects ISC with maximum

cardinality. The algorithm deletes all adjacent vertices to the vertices in

ISC. The algorithm repeats all previous steps to find ISD, and finally takes

the union of ISC and ISD as ISCD. Empirically, it was found that this method

works for d ≤ 7.

The second algorithm for finding ISCD: The algorithm chooses the

first vertex from C, for example the order of vertices in O3 is {14,24,34} and

the first vertex is {14}, if the vertex is adjacent to d-1 vertices then adds it to

ISCD and delete it with the adjacent vertices. Then, it chooses the first

vertex from D, if it is adjacent to d-1 vertices then adds it to ISCD and delete

it with adjacent vertices. The algorithm repeats in order for all vertices in

ࣟCD, until there is no vertex that is adjacent to d-1 vertices. The algorithm

repeats the previous steps and finds vertices that have d-2 neighbors, and

so on until the cardinality of the adjacent vertices of all vertices is equal to

2.

We will refer to Algorithm 1 as Approx. 1 if it uses Algorithm 2 to

find ISCD and Approx. 2 if it uses Algorithm 3.

Stage 3:

After the algorithm finds the ISCD from the induced bipartite ࣟCD, it

removes any vertex from set IDSB if it is adjacent to vertices or a vertex in

56

ISCD. Let fixedB be a set of vertices in IDSB, such that a vertex v א fixedB is

adjacent to w א C and u א D, where w is not dominated by any vertex from

set D and vertex u is not dominated by any vertex from set C. Vertices

from fixedB cannot be removed from the IDSB, since removing such

vertices will violate the domination property because the adjacent vertices

will be undominated. Consequently, any vertex from set A that is adjacent

to a vertex from fixedB will be added to a set fixedA.

Stage 4:

Let set vA = A \ fixedA. The algorithm chooses a vertex from set vA

if the vertex is adjacent to d vertices from set IDSB and removing the d

vertices from the IDSB does not violate the domination property, we add

the chosen vertex to the IDSA and delete the adjacent vertices from the

IDSB. If removing the d adjacent vertices causes a violation in the

domination property, the algorithm select another vertex from vA and

repeats the previous steps. The algorithm repeats the previous steps for all

vertices in vA. The algorithm repeats all previous steps for checking

cardinalities of adjacent vertices from d-1 to 2. The algorithm will exit the

loop if all vertices in vA cause a domination violation. At the end of this

stage the algorithm sets the IDSBA to the union of IDSB and IDSA. Finally,

the algorithm finds the final IDS (the independent dominating set for Od)

by taking the union of ISCD and IDSBA.

57

Algorithm 1 Approximation Algorithm for Independent Dominating Set

Input: Od

Output: Independent Dominating Set (IDS)

1: partition Od into sets A, B, C, and D as defined above, IDSB ՚ B

2: ISCD ՚ FindISCD (C, D)

3: IDSB ՚ IDSB\ ׊ v such that N(v) א ISCD

4: Find fixed vertices from set IDSB and A

5: IDSA՚ vA՚ A \ fixedA ,׎

6: for i ՚ d to 2 do Step 7, 8 and 9

7: for ׊ v א vA do Steps 8 and 9

8: choose v such that |N(v)| = i and removing N(v) does not cause a violation

9: IDSB ՚ IDSB \ N(v), IDSA ՚ IDSA ׫ {v}

10: IDSBA ՚ IDSB ׫IDSA

11: IDS ՚ IDSBA ׫ ISCD

Figure 10: Algorithm 1 for Independent Dominating Set.

Algorithm 2 Algorithm for ISCD such that ࣔ(u, v) > 2 for ׊ u, v א ISCD

Input: C, D

Output: ISCD

1: ISCD ՚ ׎, ISC ՚ ׎, ISD ՚ ׎

2: for each v א C do Steps 3, 4, 5

3: add v to ISC

4: starting from v add every vertex from C to ISC such that the distance between

any pair of vertices in ISC is d-1.

5: find all vertices in C with dis. > 2 to all vertices in ISC and add them to ISC

6: select ISC with maximum cardinality

7: delete all adjacent vertices to ISC from D

8: repeat Steps 2, 3, 4, 5 and 6 for all vertices in D

9: ISCD ՚ ISC ׫ ISD

Figure 11: Algorithm 2 the first algorithm for finding ISCD.

58

Algorithm 3 Algorithm for ISCD such that ׌ u, v א ISCD with ࣔ(u, v) = 2

Input: C, D

Output: ISCD

1: ISCD ՚ ׎

2: for i ՚ d-1 to 2 do Step 3, 4, and 5

3: for each vertex v א C starting from the first vertex and u א D starting from the

first vertex do Steps 4 and 5

4: if |N(v)| = i then add it to ISCD and delete N[v]

5: if |N(u)| = i then add it to ISCD and delete N[u]

Figure 12: Algorithm 3 the second algorithm for finding ISCD.

Example: We will demonstrate the described algorithms for finding

the minimum independent dominating set in O4.

First stage:

Referring to step 1 in Algorithm 1, the algorithm partition the graph

to the following sets,

A={167, 267, 367, 467, 567}, B={123, 124, 125, 134, 135, 145, 234, 235,

245, 345}, C={126, 136, 146, 156, 236, 246, 256, 346, 356, 456}, D={127, 137,

147, 157, 237, 247, 257, 347, 357, 457}.

IDSB is initialized with B, and the result is the following set,

IDSB = {123, 124, 125, 134, 135, 145, 234, 235, 245, 345}. The result

graph can be seen in Figure 13 (the dominating vertices are colored with

black).

59

Figure 13: O4 after the first stage.

Second stage:

Finding ISCD using Algorithm 2:

First we select a vertex from C. let this vertex be the first one and add

it to ISC, so ISC = {126}.

Referring to step 4 in Algorithm 2, starting from vertex {126}, we find

a set of vertices such that the distance between any pair of vertices is equal

to d-1 = 3, then add them to ISC. The algorithm finds only one vertex

which is {236} so, ISC = {126, 346}.

60

Since there is no a vertex such that the distance between a vertex and

both {126, 346} is greater than 2, step 5 will not find any vertex.

The algorithm repeats the previous steps for all vertices in C. The

result is the following sets,

ISC = {136, 246}, ISC = {146, 236}, ISC = {156, 236}, ISC = {236, 146}, ISC =

{246, 136}, ISC = {256, 136}, ISC = {346, 126}, ISC = {356, 126}, ISC = {456, 126}.

Since all ISC have the same cardinality we will select any set, let ISC =

{126, 346}.

Step 7 deletes the adjacent vertices which are {457, 357, 347} and {127,

157, 257} from set D.

Step 8 repeats the previous steps for D and the result will be ISD=

{137, 247}.

Finally, ISCD = ISC ׫ ISD= {126,137,247,346}.

Finding ISCD using Algorithm 3:

Step 4 in Algorithm 3 selects the first vertex from set C which is {126}

, the algorithm checks if it is adjacent to d-1 vertices which is true so, we

add it to ISCD and delete it with the adjacent vertices which are {457, 357,

347}.

61

Step 5 selects the first vertex from D that is adjacent to 3 vertices

which is {127} add it to IDSCD and delete it with the adjacent vertices

which are {346, 356, 456}.

At this stage there are no more vertices that are adjacent to 3 vertices,

so we check for vertices that are adjacent to two vertices. Step 4 and 5

select vertex {136} from C and vertex {137} from D which are adjacent to

two vertices and delete them with the adjacent vertices which are {257,

247} and {256, 246}. Again, step 4 and 5 select vertices from C and D that

are adjacent to 2 vertices, the algorithm selects {236} and {237} adds them

to ISCD and deletes them with the adjacent vertices which are {157,147} and

{156, 146}.

At this stage there are no more vertices that are adjacent to 2 vertices,

so we stop. ISCD = {126, 127, 136, 137, 236, 237}.

Third stage:

We will choose the result found by Algorithm 2, so IDSCD = {126, 137,

346, 247}. The result graph is shown in Figure 14.

62

Figure 14: O4 after the second stage.

Step 3 in Algorithm 1 deletes vertices from set IDSB that are adjacent

to any vertex in ISCD. Those vertices are {345, 125, 135, 245}. So, IDSB= {123,

125, 135, 145, 234, 235}. The result graph is shown in Figure 15.

63

Figure 15: O4 after removing deletes vertices from set IDSB.

Step 4 finds the fixed vertices in IDSB and set A. Notice the vertices

{237, 147} from set D and {146, 236} from set C, they are not dominated by

any vertices from D and C, those vertices are connected to vertices {145,

235} from IDSB which cannot be removed from IDSB. The adjacent vertices

to {145, 235} from set A will be the fixed vertices in set A which are {267,

367, 167, 467}. The graph after finding the fixed vertices is shown in Figure

16 (The fixed vertices are circled).

64

Figure 16: O4 after the third stage.

Fourth stage:

Step 5: vA = A\ fixedA = {567}

Step 8 selects {567} from vA and checks the number of adjacent

vertices which are {123, 124,134, 234} from set IDSB. Since {567} is adjacent

to d = 4 vertices and removing the adjacent vertices will not violate the

domination property, we add it to IDSA, delete it from vA and delete the

adjacent vertices from IDSB which are {145, 235}. Since there is no more

vertices in vA we stop. IDSBA = IDSB ׫ IDSA = {145, 235, 567}.

65

Figure 17: O4 after the fourth stage.

Step 11: IDS = ISCD ׫ IDSBA = {126, 247, 346, 137, 145, 235, 567}. The

final IDS can be seen in Figure 17.

4.3.2 CORRECTNESS

In this section, we will show that Algorithm 1 always find a correct

independent dominating set, in particular we will prove that the

algorithm maintains the independence and the domination properties

throughout the algorithm execution.

66

Proposition 4.2: Approx. 1 for d ≤ 7 and Approx. 2 for any d find a correct

independent dominating set.

Proof:

It is clear that the set of vertices in set B is a maximal independent

set, so the independence and the domination properties are maintained.

After the algorithm finds ISCD from set C and D, removing the adjacent

vertices from IDSB in step 3 in Algorithm 1 must lead to correct IDS which

must preserve the domination and the independence properties. Now let’s

consider removing adjacent vertices from IDSB, we have three cases where

a vertex from set IDSB must be removed to maintain the independence

property. Let the dominating vertex, which is adjacent to a vertex from set

IDSB; be from set D, the argument is true for a dominating vertex from set

C by symmetry. The first case (Figure 18): a vertex from IDSB is connected

to dominating vertices from set D and set C. The algorithm can remove

vertex b1 without violating the domination and the independence

properties. Vertices cn and dn are not connected since there is no a cycle of

length 3 in Od so, vertices cn and dn are dominating and independent.

67

Figure 18: The first case of removing vertices from IDSB .

Case two (Figure 19): a vertex from set IDSB is connected to a

dominating vertex from D and an undominating vertex from set C. In

addition, vertex cn is also dominated by different vertex from D. We can

remove vertex b1 without violating the domination and independence

properties. Since vertex cn is dominated and the two vertices from D are

independent so, we preserve the domination and the independent

properties.

Figure 19: The second case of removing vertices from IDSB.

68

The third case (Figure 20): a vertex from IDSB is connected to a

dominating vertex from D and an undominating vertex from C. In

addition, cn vertex is also not dominated by any vertex from D. When we

remove vertex b1, the domination property will be violated since vertex cn

will be not dominated by any vertex. The presented approximation

algorithms do not allow case 3, let’s consider the two methods to find set

ISCD.

Figure 20: The third case of removing vertices from IDSB.

Method 1: the algorithm finds the maximum independent set such

that the distances between all vertices are greater than two, notice that the

distance between the dominating vertex dn and the undominating vertices

from D is at least 3 which means the independent dominating set is not

maximum, since one of these vertices must be dominating to have

maximum independent dominating set, so this case is prevented. Method

69

1 does not find the maximum independent set for d ≥ 8, so this case exists

when d ≥ 8. Method 2: If vertex cn is connected to d-1 undominating

vertices from set D (the algorithm has not selected any vertex from the d-1

vertices), then vertex cn must have been chosen as a dominating vertex so

we cannot have such a case.

In addition to the previous cases, we have one case where removing

a vertex from IDSB is caused by selecting a vertex from set A to be added

to the dominating set. This case is shown in Figure 21. This case occurs

when vertex b1 is connected to vertices from set C and D such that they are

not dominated by any other vertices either from set D and C respectively.

Figure 21: A case of removing vertices from IDSB which violates the domination property.

70

If vertex b1 is removed, vertices C and D will be undominated which

violate the domination property. The algorithm does not allow removing

vertex b1 by making it a fixed vertex, consequently all d-2 vertices from set

A, which are connected to that fixed vertex, cannot be chosen to be added

to the dominating set, which means vertex b1 cannot be removed from the

independent dominating set, hence the algorithm preserves the

domination prosperity.

When the algorithm chooses a vertex a א A to be added to the

independent dominating set, a is either connected to dominating or

dominated vertex b א B. If b is dominated then adding a and removing b

will not violated the domination and the independence properties, if b is

dominating then removing the vertex b from the dominating set will

preserve the domination property. We have one situation where

domination property is violated, that is when a vertex a is connected to a

dominating b, and the dominating b is connected to another undominating

vertex from set A which is not connected to any other dominating vertex

from B except b this situation is depicted in Figure 22. Clearly the

algorithm prevents this situation by checking if a vertex from B is the only

dominating vertex connected to a.□

71

Figure 22: A situation where domination property is violated.

4.3.3 ANALYSIS

Partitioning the graph requires O(|V|), Finding the vertices from set

C and D costs O(2|Vd-1|2) using Algorithm 2, and O(2d2|Vd-1|) using

Algorithm 3. Finding fixed vertices from set B requires O(|Vd-1|). The

process of adding vertices from set A to the independent dominating set

costs O(d4 |A|). So the time complexity is O(|V|+2|Vd-1|2+ |Vd-1|+ d4

|A|) = O(|Vd-1|2) using Approx.1 and O(|V|+2d2|Vd-1| +|Vd-1|+ d4 |A|)

= O(d4 |A|) using Approx. 2.

72

4.4 GREEDY AND RANDOM ALGORITHMS

 Two well-known algorithms for independent dominating set in a

graph are greedy and random algorithms, which are listed in Figures 23

and 24. The algorithms are similar, difference is that in the random, the

vertex selected in step 4 is selected at random; whereas in the greedy it is a

maximum degree vertex (ties are broken randomly).

4.4.1 ALGORITHMS DESCRIPTION

The greedy algorithm selects a vertex of maximum degree, while the

random algorithm selects a vertex at random, then both algorithms deletes

that vertex and all of its neighbors from the graph, and repeats this

process until the graph becomes empty.

73

Algorithm 4 Greedy Independent Dominating Set

Input: Od

Output: Independent Dominating Set (IDS)

1: IDS ՚ ׎

2: while V ≠ ׎ do

3: choose v א V such that the degree of v is maximum

4: IDS ՚ IDS ׫ {v}

5: V ՚ V \ N[v]

6: end while

Figure 23: Algorithm 4 Greedy Independent Dominating Set.

4.4.2 CORRECTNESS

During the execution of the algorithm, the set of not yet considered

vertices gives the set of all vertices that could be added to IDS without

violating the independence property of IDS. Algorithm 4 and 5 constructs

a maximal independent set, since we always remove all conflicting

vertices.

4.4.3 ANALYSIS

It is clear from the algorithms that they require linear time in the

number of vertices and edges, in addition to the time required for

searching the maximum degree vertex in the greedy algorithm. However,

74

the greedy algorithm can be implemented in time linear in the number of

edges and vertices, independent of the degree.

Algorithm 5 Random Independent Dominating Set

Input: Od

Output: Independent Dominating Set (IDS)

1: IDS ՚ ׎

2: while V≠ ׎ do

3: choose v א V at random

4: IDS ՚IDS ׫ {v}

5: V ՚ V \ N[v]

6: end while

Figure 24: Algorithm 5 Random Independent Dominating Set.

4.5 EXPERIMENTAL RESULTS

4.5.1 EXPERIMENTAL SETUP

This section presents experimental results and comparisons of the

approximation algorithms discussed above: the new approximation

algorithms, the greedy and the randomized algorithms. All algorithms

were performed on odd graphs of dimension 3 to dimension 13 except the

first algorithm which was performed on odd graphs up to dimension 7.

75

Our main measure of performance is the cardinality of the independent

dominating set which is machine independent.

All algorithms were implemented using C sharp. We ran the

experiments on Sun virtual machine running on 64-bit Windows 7

operating system, the virtual box install 64-bit Windows 7 with Intel Xeon

@ 2.93 GHz CPU and 8 GB RAM running Windows 7.

I have used the Incidence Matrix structure (suggested by Dr. Al-

Darwish who also gave BuildOddGraph() and GreedyMinIndDomSet()

procedures) to represent odd graphs. For our purpose we defined the

incidence matrix as the matrix IM[1..n, 0..(d+2)] as follows (see Figure 25):

• IM[i,0] is set to the degree of vertex i, and

• The i-th row IM[i,1..d] lists the vertices that are adjacent to i

(i.e., IM[i,j]=x if and only if (i,x) is an edge).

• In addition, two additional columns can be used to store the

set name that the vertex belongs to and the label of the vertex.

This representation is space efficient for graphs where the degree of

any vertex is equal to d, such as odd graphs.

76

Figure 25: O3 and its incidence matrix representation.

4.5.2 EXPERIMENTAL RESULTS

For each algorithm, we consider its approximation quality. Table 1

shows the results of these experiments. Abbreviations in the table are as

follows:

—Approx. 1: The approximation algorithm using (Algorithm 2) to

find ISCD such that ߲(u, v) > 2 for ׊ u, v א ISCD.

—Approx. 2: The approximation algorithm using (Algorithm 3) to

find ISCD such that ׌ u, v א ISCD with ߲(u, v) = 2.

In odd graph of dimension three, the four algorithms’ performances

are similar providing the same approximation quality except the random

algorithm which found a larger IDS. When an odd graph of dimension

four is the input the Approx. 1 and the greedy algorithms provide the

77

same performance ratio, while Approx. 2 and the randomized approach

found worse results. In odd graph of dimensions five and higher, the

algorithms start giving different performances. As shown in Table 1, the

approximation quality of the Approx. 1 and 2 algorithms turns out to be

higher than the greedy and the randomized algorithms. Moreover,

Approx. 1 algorithm dominates Approx. 2 algorithm. This can be

explained by the fact that Approx. 1 algorithm finds the maximum

independent set in the induced bipartite ࣟCD with minimum distance of 3

which maximize the number of non overlapping neighbors of the

dominating vertices which in turn minimizes the independent dominating

set, whereas Approx. 2 algorithm allows finding independent set in the

induced bipartite ࣟCD with distance of two. Furthermore, it was observed

that the greedy approach give worse results as the number of vertices

increases, since it selects a vertex with maximum degree among many

vertices with the same degree without considering the degrees of the

neighbors and the further neighbors. Also, the randomized approach

selects a vertex at random which raises the possibility of selecting a vertex

with lower degree which means a larger set of independent dominating

vertices. It is worth noting that as the dimension of odd graphs increases

the difference in the performance quality between the new approximation

algorithms and the greedy and the randomized algorithm also increases.

78

TABLE 1 APPROXIMATION QUALITIES

d |V| |E| Lower
Bound*

Approx 1.
|IDS|

Approx 2.
|IDS|

Greedy
|IDS|

Random
|IDS|

3 10 15 3 3 3 3 4

4 35 70 7 7 10 7 11

5 126 315 21 26 26 39 41

6 462 1386 66 66 93 118 139

7 1716 6006 215 259 316 386 452

8 6435 25740 715 _ 1097 1310 1519

9 24310 109395 2431 _ 3842 4676 5503

10 92378 461890 8398 _ 14217 15389 19726

11 352716 1939938 29393 _ 48106 54696 71522

12 1352078 8112468 104006 _ 175052 197582 261002

13 5200300 33801950 371450 _ 637949 731096 955580

*Lower Bound = ڿ|ܸ|/ሺ݀ ൅ 1ሻۀ

 Figure 26: |IDS| in odd graphs of dimensions 3-5.

0

5

10

15

20

25

30

35

40

45

3 4 5

|I
D
S|

d

Lower Bound

Approx. 1

Approx. 2

Greedy

Random

79

 Figure 27: |IDS| in odd graphs of dimensions 6-7.

 Figure 28: |IDS| in odd graphs of dimensions 8-10.

0

50

100

150

200

250

300

350

400

450

500

6 7

|I
D
S|

d

Lower Bound

Approx. 1

Approx. 2

Greedy

Random

0

5000

10000

15000

20000

25000

8 9 10

|I
D
S|

d

Lower Bound

Approx. 2

Greedy

Random

80

Figure 29: |IDS| in odd graphs of dimensions 11-13.

0

200000

400000

600000

800000

1000000

1200000

11 12 13

Lower Bound

Approx. 2

Greedy

Random

81

CHAPTER 5

 CONCLUSION AND FUTURE WORKS

As mentioned in the literature, independent and dominating sets in

communication network are important structures, and many optimization

approaches rely on these. Many exact and approximation algorithms were

proposed in the past to solve the problem either on general or special

family of graphs. One of the graph classes, which have not been

investigated in term of independent domination, is the odd graphs class.

In this thesis, the first approximation algorithms for independent

dominating set in odd graph are introduced. Our approach is based on

partitioning the graph to different sets in order to simplify the complexity

of the graph, then finding the independent dominating sets or the

independent sets on the partitioned parts of the graph and merging the

results while resolving any conflicts in the independence or domination

properties. In this thesis, we designed two approximation algorithms,

namely Approx.1 and Approx. 2. Approx. 1 produces the best results,

however it gives correct results in odd graphs up to dimensions seven, for

higher dimension the algorithm does not produce a valid independent

dominating set since the solution to maximum independent set with

82

distance greater than two between any vertices in the induced bipartite

ࣟCD cannot be attained. Approx. 2 algorithm gives comparable excellent

results and it produces a valid set for dimensions that are higher than

seven since we relaxed the distance restriction to allow a distance of two

between some vertices. In addition, we proved the correctness of the two

approximation algorithms and analyzed them. Also, we presented

experimental results and comparison between the two approximation

algorithms and the greedy and the randomized algorithms. The results of

the experiments show that Approx. 1 and Approx. 2 give the best

approximation quality especially in high dimensional odd graphs.

In short, the following have been achieved in the thesis:

• The first approximation algorithms for MIDS in odd graphs

are introduced.

• Analyses and correctness of the proposed approximation

algorithms are presented.

• Experiments are presented, which show that the

approximation algorithms find significantly smaller sets than

those found by the greedy and the random algorithms.

There are several open problems that can be investigated in future

works. The following summarizes some of the interested problems:

83

• Designing an approximation algorithm for independent

dominating set in odd graph with weighted vertices or edges.

• Finding the upper bound of the proposed approximation

algorithms.

• Proving or disproving the following conjecture: Approx. 1

algorithm finds the optimal set.

• Proving or disproving the following conjecture: the minimum

independent dominating problem in odd graph is in Զ if and

only if the problem of maximum independent set on the

induced bipartite ࣟCD with minimum distance of three is in Զ.

84

APPENDIX A

ALGORITHMS IMPLEMENTATION

using System;
using System.IO;
using System.Collections.Generic;

//Authors: Ahmed Al-Herz and Dr. Nasir Al-Darwish

namespace IndepDomSet
{
 class ApproximationAlg
 {
 static int[,] IM ;//incidence matrix for a graph -- column 0 records count
 //of adjacent vertices
 //cw is used in BuildOddGraph();

// vertices in ODD graph are numbered 1 to n where cw[i] is the
//corresponding set (as bit vector)

 static int[] cw;
 static int size_B; //size of set B, C or D in odd graphs
 static int size_A; //size of set A in odd graph

 static void Main(string[] args)
 {
 int n ;
 int[] S ;
 for (int d = 5; d < 10; d++)
 {
 n = BuildOddGraph(d);
 int k = RandomMinIndDomSet(out S, n, d);
 Console.WriteLine("for odd d= " + d +" "+ValidIndpDomSet(S, n) + " " + k +"\n");

 }
 return;
 }

// This procedure tests if the vertices where S[i] = 1 form a covering
//IS

 static bool ValidIndpDomSet(int[] S, int n)
 {
 for (int v = 1; v <= n; v++)
 if (S[v] == 1) // check Independence
 { for (int i = 1; i <= IM[v, 0]; i++)
 if (S[IM[v, i]] == 1) {return false; }
 }
 else if (!IsCovered(S, v)) {return false; }
 return true;
 }

 static bool IsCovered(int[] s, int v)
 {

// v is covered if one of its neighbors is a vertex in S and where S[i] = 1
 for (int i = 1; i <= IM[v, 0]; i++)
 if (s[IM[v, i]] == 1) return true;

 return false;
 }

 // Greedy algorithm for for Min Indpendent Dominating set

85

 static int GreedyMinIndDomSet(out int[] s, int n, int dimension)
 {
 int maxdeg, maxv;
 // s[v] = 0 unchecked , 1 in IDS, -1 covered
 int[] deg = new int[n + 1];
 s = new int[n + 1];

 for (int v = 1; v <= n; v++) { s[v] = 0; deg[v] = IM[v, 0]; }

 // find vertex of max degree
 // Note: degree is updated to discount covered vertices

 int vcount = 0;

 while (true)
 { // find vertex in S with maximum degree (maxdeg)
 maxdeg = int.MinValue; maxv = 0;
 for (int v = 1; v <= n; v++)
 if ((s[v] == 0) && (deg[v] > maxdeg))
 {
 maxdeg = deg[v];
 maxv = v;
 }

 if (maxv == 0) break;

 if (s[maxv] == -1) Console.WriteLine(" vertex already covered");

 // add the verex maxv to IDS
 s[maxv] = 1;
 vcount++;

 // Now update degree to discount covered vertices (i.e. neighbours of
 //maxv)
 for (int i = 1; i <= dimension; i++)
 {
 int v = IM[maxv, i];
 if (s[v] == -1) continue;

 s[v] = -1;
 for (int j = 1; j <= dimension; j++)
 if (deg[IM[v, j]]> 0)
 deg[IM[v, j]]--;
 }
 }

 return vcount;

 }

// Random algorithm for for Min Indpendent Dominating set
 static int RandomMinIndDomSet(out int[] s, int n, int dimension)
 {

 // s[v] = 0 unchecked , 1 in IS, -1 covered
 int[] deg = new int[n + 1];
 s = new int[n + 1];

 for (int v = 1; v <= n; v++) { s[v] = 0; deg[v] = IM[v, 0]; }

 int vcount = 0;

 Random r = new Random(); // random generator

 List<int> vertexset = new List<int>();

 //populate a list with all vertices
 for(int i =1; i<=n; i++)vertexset.Add(i);

 while (true)
 {
 if (vertexset.Count == 0) break;

86

 int randomIndex =r.Next(vertexset.Count);
 int targetV = vertexset[randomIndex]; // select a random vertex
 vertexset.Remove(targetV); // remove the vertex from the list
 s[targetV] = 1; // add the verex maxv to IS
 vcount++;
// Now update degree to discount covered vertices (i.e. neighbors of the selected
//vertex)
 for (int i = 1; i <= dimension; i++)
 {
 int v = IM[targetV, i];
 if (s[v] == -1) continue;
 vertexset.Remove(v); // remove the neighbors from the list
 s[v] = -1;
 for (int j = 1; j <= dimension; j++)

 if (deg[IM[v, j]]> 0)
 deg[IM[v, j]]--;

 }
 }

 return vcount;
 }

// Approx2 algorithm for for Min Indpendent Dominating set
 static int Approx2(out int[] s, int n, int dimension)
 {

 int[] setA = new int[size_A + 1];
 int[] setB = new int[size_B + 1];
 int[] setC = new int[size_B + 1];
 int[] setD = new int[size_B + 1];
 int[] setApos = new int[size_A + 1];
 int[] setBpos = new int[size_B + 1];
 int[] setCpos = new int[size_B + 1];
 int[] setDpos = new int[size_B + 1];
 int[] ISd = new int[size_B + 1];
 int[] ISdpos = new int[size_B + 1];
 int[] ISc = new int[size_B + 1];
 int[] IScpos = new int[size_B + 1];
 int[] stemp = new int[size_B + 1];
 int[] IDSa = new int[size_A + 1];
 int[] IDSapos = new int[size_A + 1];
 int idsblength = size_B;

 int a = 1, b = 1, c = 1, d = 1;

 // s[v] = 0 unchecked , 1 in IS, -1 covered
 int[] deg = new int[n + 1];
 s = new int[n + 1];

 for (int v = 1; v <= n; v++) { s[v] = 0; deg[v] = IM[v, 0]; }

 //partitioning the graph to four sets
 for (int i = 1; i <= n; i++)
 {
 if (IM[i, dimension + 1] == 1)

{ setA[a] = IM[i, dimension + 2]; setApos[a] = i; a++; }
 if (IM[i, dimension + 1] == 2)

{ setB[b] = IM[i, dimension + 2]; setBpos[b] = i; b++; }
 if (IM[i, dimension + 1] == 3)

{ setC[c] = IM[i, dimension + 2]; setCpos[c] = i; c++; }
 if (IM[i, dimension + 1] == 4)

{ setD[d] = IM[i, dimension + 2]; setDpos[d] = i; d++; }
 }

 int kc = 1;
 int kd = 1;

 //Find independent set in the bipartite CD
 for (int degree = dimension; degree >= 3; degree--)
 {
 for (int i = size_B; i >=1 ; i--)
 {

87

 if (deg[setDpos[i]] == degree && s[setDpos[i]] == 0)
 {
 ISd[kd] = setD[i];
 ISdpos[kd] = setDpos[i];
 kd++;
 s[setDpos[i]] = 1;
 for (int j = 1; j <= dimension; j++)
 {
 int v = IM[setDpos[i], j];
 if (s[v] == -1 || IM[v, dimension + 1] == 2) continue;

 s[v] = -1;

 for (int k = 1; k <= dimension; k++)
 { if (IM[IM[v, k], dimension + 1] == 4) deg[IM[v, k]]--; }
 }
 }

 if (deg[setCpos[i]] == degree && s[setCpos[i]] == 0)
 {
 ISc[kc] = setC[i];
 IScpos[kc] = setCpos[i];
 kc++;
 s[setCpos[i]] = 1;
 for (int j = 1; j <= dimension; j++)
 {
 int v = IM[setCpos[i], j];
 if (s[v] == -1 || IM[v, dimension + 1] == 2) continue;

 s[v] = -1;

 for (int k = 1; k <= dimension; k++)
 { if (IM[IM[v, k], dimension + 1] == 3) deg[IM[v, k]]--; }
 }
 }
 }
 }

 int isdlength = kd-1;

 for (int i = 1; i <= kd - 1; i++)
 {
 for (int j = 1; j <= dimension; j++)
 {
 int v = IM[ISdpos[i], j];
 if (s[v] == -1) continue;

 s[v] = -1;

 if (IM[v, dimension + 1] == 2)
 {
 idsblength--;
 for (int k = 1; k <= dimension; k++)
 { if (IM[IM[v, k], dimension + 1] == 1) deg[IM[v, k]]--; }
 }

 }
 }

 int isclength = kc - 1;

 for (int i = 1; i <= kc - 1; i++)
 {
 for (int j = 1; j <= dimension; j++)
 {
 int v = IM[IScpos[i], j];
 if (s[v] == -1) continue;

 s[v] = -1;

 if (IM[v, dimension + 1] == 2)
 {

88

 idsblength--;
 for (int k = 1; k <= dimension; k++)
 { if (IM[IM[v, k], dimension + 1] == 1) deg[IM[v, k]]--; }
 }

 }
 }

 HashSet<int> fixedB = new HashSet<int>();
 HashSet<int> fixedA = new HashSet<int>();

 ////Find fixed vertices in set B and A
 for (int i = size_B; i >= 1; i--)
 {
 if (s[setDpos[i]] == 0)
 {
 for (int j = 1; j <= dimension; j++)
 {
 int v = IM[setDpos[i], j];
 if (IM[v, dimension + 1] == 2)
 {
 s[v] = 1;
 for (int k = 1; k <= dimension; k++) s[IM[v, k]] = -1;
 fixedB.Add(IM[v, dimension + 2]);
 }
 }
 }

 if (s[setCpos[i]] == 0)
 {
 for (int j = 1; j <= dimension; j++)
 {
 int v = IM[setCpos[i], j];
 if (IM[v, dimension + 1] == 2)
 {
 s[v] = 1;
 for (int k = 1; k <= dimension; k++) s[IM[v, k]] = -1;
 fixedB.Add(IM[v, dimension + 2]);
 }
 }
 }
 }

 for (int i = size_A; i >= 1; i--)
 {
 for (int j = 1; j <= dimension; j++)
 {
 int v = IM[setApos[i], j];

 if (fixedB.Contains(IM[v, dimension + 2]))
{ fixedA.Add(IM[setApos[i], dimension + 2]); }

 }
 }

 bool violate = false;
 int ka = 1;
 int numofvio = 0;
 int limofvio = size_A - fixedA.Count;
 int degrees = dimension;

 //Find independent dominating set in the bipartite BA
 while (limofvio > 0 && limofvio > numofvio && degrees >= 2)
 {
 numofvio = 0;

 for (int j = size_A; j >= 1; j--)
 {
 violate = false;
 if (!fixedA.Contains(setA[j]) && s[setApos[j]] == 0)
 {
 if (deg[setApos[j]] == degrees)
 {

89

 for (int k = 1; k <= dimension; k++)
 {
 int v = IM[setApos[j], k];
 if (s[v] == 0)
 {
 for (int l = 1; l <= dimension; l++)
 {
 if (IM[IM[v, l], dimension + 1] == 1 && deg[IM[v, l]] == 1)
 {
 violate = true; break;
 }
 }
 }
 if (violate)
 break;
 }

 if (!violate)
 {
 IDSa[ka] = setA[j];
 IDSapos[ka] = setApos[j];
 ka++;
 limofvio--;
 s[setApos[j]] = 1;
 for (int k = 1; k <= dimension; k++)
 {
 int v = IM[setApos[j], k];
 if (s[v] == -1) continue;

 s[v] = -1;
 idsblength--;

 for (int l = 1; l <= dimension; l++)
 { if (IM[IM[v, l], dimension + 1] == 1) deg[IM[v, l]]--; }
 }
 }
 else
 {
 numofvio++;
 }
 }
 }
 }

 degrees--;
 }

 //covering vertices from A that caused violation and that of degree 1
 for (int i = 1; i <= size_B; i++)
 {
 if (s[setBpos[i]] == 0)
 {
 s[setBpos[i]] = 1;
 for (int j = 1; j <= dimension; j++)
 {
 s[IM[setBpos[i], j]] = -1;
 }
 }
 }

 return (ka - 1 + isclength + isdlength + idsblength);

 }

// Approx1 algorithm for for Min Indpendent Dominating set
 static int Approx1(out int[] s, int n, int dimension)
 {

 int[] setA = new int[size_A + 1];
 int[] setB = new int[size_B + 1];

90

 int[] setC = new int[size_B + 1];
 int[] setD = new int[size_B + 1];
 int[] setApos = new int[size_A + 1];
 int[] setBpos = new int[size_B + 1];
 int[] setCpos = new int[size_B + 1];
 int[] setDpos = new int[size_B + 1];
 int[] temp = new int[size_B + 1];
 int[] temppos = new int[size_B + 1];
 int[] ISd = new int[size_B + 1];
 int[] ISdpos = new int[size_B + 1];
 int[] ISc = new int[size_B + 1];
 int[] IScpos = new int[size_B + 1];
 int[] stemp = new int[size_B + 1];
 int[] IDSa = new int[size_A + 1];
 int[] IDSapos = new int[size_A + 1];
 int idsblength=size_B;
 int count,count2;
 int a=1,b=1,c=1,d=1,z;

 // s[v] = 0 unchecked , 1 in IS, -1 covered
 int[] deg = new int[n + 1];
 s = new int[n + 1];

 for (int v = 1; v <= n; v++) { s[v] = 0; deg[v] = IM[v, 0]; }

 for (int i = 1; i <= n; i++)
 {
 if (IM[i, dimension + 1] == 1)

{ setA[a] = IM[i, dimension + 2]; setApos[a] = i; a++; }
 if (IM[i, dimension + 1] == 2)

{ setB[b] = IM[i, dimension + 2]; setBpos[b] = i; b++; }
 if (IM[i, dimension + 1] == 3)

{ setC[c] = IM[i, dimension + 2]; setCpos[c] = i; c++; }
 if (IM[i, dimension + 1] == 4)

{ setD[d] = IM[i, dimension + 2]; setDpos[d] = i; d++; }
 }

 int kd = 1;
 int maxkd = 1;

 int not2 = dimension - 2; //intersection size if the distance equals 2
 int diam;
 //intersection size if the distance equals diameter
 if (dimension % 2 == 0)
 diam = (dimension - 2) / 2;
 else
 diam=(dimension-1)-((dimension-1)/2);

 //Find independent set in the bipartite CD
 for (int i = size_B; i >= 1; i--)
 {
 kd = 1;
 for (int j = 1; j <= size_B; j++) { stemp[j] = 0; }
 temp[kd] = setD[i];
 stemp[i] = 1;
 temppos[kd] = setDpos[i];
 for (int j = size_B; j >=1 ; j--)
 {
 count2 = 0;
 if (stemp[j] == 1) continue;
 for (int k = 1; k <= kd; k++)
 {
 count = 0;
 z = setD[j] & temp[k];
 while (z != 0)
 { count = count + (z % 2); z = z / 2; }
 if (count == diam)
 { count2++; }
 }

 if (count2 == kd)
 { kd++; temp[kd] = setD[j]; temppos[kd] = setDpos[j];

91

stemp[j] = 1; }
 }

 for (int j = size_B; j >=1 ; j--)
 {
 count2 = 0;
 if (stemp[j] == 1) continue;

 for (int k = 1; k <= kd; k++)
 {
 count = 0;
 z = setD[j] & temp[k];
 while (z != 0)
 { count = count + (z % 2); z = z / 2; }
 if (count != not2)
 { count2++; }
 }

 if (count2 == kd)
 { kd++; temp[kd] = setD[j]; temppos[kd] = setDpos[j];

stemp[j] = 1; }
 }

 if (kd > maxkd)
 {
 maxkd = kd;
 Array.Copy(temp, ISd, size_B + 1);
 Array.Copy(temppos, ISdpos, size_B + 1);
 }
 }
 int isdlength=maxkd;

 for (int i = 1; i <= isdlength; i++) s[ISdpos[i]] = 1;

 for (int i = 1; i <= isdlength; i++)
 {
 for (int j = 1; j <= dimension; j++)
 {
 int v = IM[ISdpos[i], j];
 if (s[v] == -1) continue;

 s[v] = -1;

 if (IM[v, dimension + 1] == 2)
 {
 idsblength--;
 for (int k = 1; k <= dimension; k++)
 { if (IM[IM[v, k], dimension + 1] == 1) deg[IM[v, k]]--; }
 }

 }
 }

 int kc = 1;
 int maxkc = 1;
 for (int i = size_B; i >=1 ; i--)
 {
 kc = 1;
 for (int j = 1; j <= size_B; j++) { stemp[j] = 0; }
 if (s[setCpos[i]] == -1) continue;

 temp[kc] = setC[i];
 temppos[kc] = setCpos[i];
 stemp[i] = 1;
 for (int j = size_B; j >=1 ; j--)
 {
 count2 = 0;
 if (s[setCpos[j]] == -1) continue;
 if (stemp[j] == 1) continue;
 for (int k = 1; k <= kc; k++)
 {
 count = 0;

92

 z = setC[j] & temp[k];
 while (z != 0)
 { count = count + (z % 2); z = z / 2; }
 if (count == diam)
 { count2++; }

 }

 if (count2 == kc)
 { kc++; temp[kc] = setC[j]; temppos[kc] = setCpos[j];

stemp[j] = 1; }
 }

 for (int j = size_B; j >=1 ; j--)
 {
 count2 = 0;
 if (s[setCpos[j]] == -1) continue;
 if (stemp[j] == 1) continue;
 for (int k = 1; k <= kc; k++)
 {
 count = 0;
 z = setC[j] & temp[k];
 while (z != 0)
 { count = count + (z % 2); z = z / 2; }
 if (count != not2)
 { count2++; }
 }

 if (count2 == kc)
 { kc++; temp[kc] = setC[j]; temppos[kc] = setCpos[j];

stemp[j] = 1; }
 }
 if (kc > maxkc)
 {
 Array.Copy(temp, ISc, size_B + 1);
 Array.Copy(temppos, IScpos, size_B + 1);
 maxkc = kc;
 }
 }

 int isclength=maxkc;

 for (int i = 1; i <= isclength; i++) s[IScpos[i]] = 1;

 for (int i = 1; i <= isclength; i++)
 {
 for (int j = 1; j <= dimension; j++)
 {
 int v = IM[IScpos[i], j];
 if (s[v] == -1) continue;

 s[v] = -1;

 if (IM[v, dimension + 1] == 2)
 {
 idsblength--;
 for (int k = 1; k <= dimension; k++)
 { if (IM[IM[v, k], dimension + 1] == 1) deg[IM[v, k]]--; }
 }

 }
 }

 HashSet<int> fixedB = new HashSet<int>();
 HashSet<int> fixedA = new HashSet<int>();

 ////Find fixed vertices in set B and A
 for (int i = size_B; i >=1 ; i--)
 {
 if (s[setDpos[i]] == 0)
 {
 for (int j = 1; j <= dimension; j++)

93

 {
 int v = IM[setDpos[i], j];
 if (IM[v, dimension + 1] == 2)
 {
 s[v] = 1;
 for (int k = 1; k <= dimension; k++)
 s[IM[v, k]] = -1;
 fixedB.Add(IM[v, dimension + 2]);
 }
 }
 }

 if (s[setCpos[i]] == 0)
 {
 for (int j = 1; j <= dimension; j++)
 {
 int v = IM[setCpos[i], j];
 if (IM[v, dimension + 1] == 2)
 {
 s[v] = 1;
 for (int k = 1; k <= dimension; k++)
 s[IM[v, k]] = -1;
 fixedB.Add(IM[v, dimension + 2]);
 }
 }
 }
 }

 for (int i = size_A; i >=1 ; i--)
 {
 for (int j = 1; j <= dimension; j++)
 {
 int v = IM[setApos[i], j];
 if (fixedB.Contains(IM[v, dimension + 2]))

{ fixedA.Add(IM[setApos[i], dimension+2]); }
 }

 }

 bool violate = false;
 int ka = 1;
 int numofvio = 0;
 int limofvio = size_A - fixedA.Count;
 int degree = dimension;

 //Find independent dominating set in the bipartite BA
 while (limofvio > 0 && limofvio > numofvio && degree >= 2)
 {
 numofvio = 0;

 for (int j = size_A; j >=1 ; j--)
 {

 violate = false;
 if (!fixedA.Contains(setA[j]) && s[setApos[j]] == 0)
 {
 if (deg[setApos[j]] == degree)
 {
 for (int k = 1; k <= dimension; k++)
 {
 int v = IM[setApos[j], k];
 if (s[v] == 0)
 {
 for (int l = 1; l <= dimension; l++)
 {
 if (IM[IM[v, l], dimension + 1] == 1 && deg[IM[v, l]] == 1)
 {
 violate = true; break;
 }
 }

94

 }
 if (violate)
 break;
 }
 if (!violate)
 {
 IDSa[ka] = setA[j];
 IDSapos[ka] = setApos[j];
 ka++;
 limofvio--;
 s[setApos[j]] = 1;
 for (int k = 1; k <= dimension; k++)
 {
 int v = IM[setApos[j], k];
 if (s[v] == -1) continue;

 s[v] = -1;
 idsblength--;

 for (int l = 1; l <= dimension; l++)
 { if (IM[IM[v, l], dimension + 1] == 1) deg[IM[v, l]]--; }
 }
 }
 else
 {
 numofvio++;
 }
 }
 }
 }
 degree--;
 }

 //covering vertices from a that caused violation ans that of degree 1
 for (int i = 1; i <= size_B; i++)
 {
 if (s[setBpos[i]] == 0)
 {
 s[setBpos[i]] = 1;
 for (int j = 1; j <= dimension; j++)
 s[IM[setBpos[i], j]] = -1;
 }
 }

 return ka - 1 + isclength + isdlength + idsblength;

 }

 public static int BuildOddGraph(int d)
 { //Building Odd graph
 int i, j, k, z, count;

 int w = d - 1; // # of 1s in a bits vectors

 // n = 2 to power 2d-1

 int n = 1 << (2 * d - 1);
 int n2 = n;

 // vertex ids originally going from 1 to n

 cw = new int[n + 1];

 for (i = 1; i <= n; i++) cw[i] = i;

 k = 0;
 for (i = 1; i <= n; i++)
 { count = 0;
 z = cw[i];
 while (z != 0)
 { count = count + (z % 2); z = z / 2; }

95

 if (count == w)
 { k++; cw[k] = cw[i]; }
 }

 n = k;

 Console.WriteLine("vertex count:" + n);
 int maxdeg = d;

 IM = new int[n + 1, maxdeg + 3];

 for (i = 1; i < n; i++)
 {
 for (j = i + 1; j <= n; j++)
 { // find intersection of cw[i] and cw[j]
 z = cw[i] & cw[j];
 if (z == 0)
 {
 IM[i, 0]++; IM[i, IM[i, 0]] = j;
 IM[j, 0]++; IM[j, IM[j, 0]] = i;
 }
 }
 }
 size_B = 0;
 size_A = 0;
 for (i = 1; i <= n; i++)
 {
 if ((cw[i] & 2) == 2 && (cw[i] & 1) != 1)
 { size_B++; IM[i, maxdeg + 1] = 3; IM[i, maxdeg + 2] = cw[i]; }
 if ((cw[i] & 1) == 1 && (cw[i] & 2) != 2)
 { IM[i, maxdeg + 1] = 4; IM[i, maxdeg + 2] = cw[i]; }
 if ((cw[i] & 3) == 3)
 { size_A++; IM[i, maxdeg + 1] = 1; IM[i, maxdeg + 2] = cw[i]; }
 if ((cw[i] & (n2 - 4)) == cw[i])
 {IM[i, maxdeg + 1] = 2; IM[i, maxdeg + 2] = cw[i]; }
 }

 return n;
 }

}

}

96

REFERENCES

[Arnb91] S. Arnborg, J. Lagergren, D. Seese. “Easy problems for tree-
decomposable graphs”. J. Algorithms 12, pp. 308–340, 1991.

[Assm74] E. F. Assmus, M. T. Hermw. “Non-existence of Steiner systems of type
S(d - 1, 2d)”. Math. Z. 138: 171-172, 1974.

[Atal88] M. Atallah, G. Manacher, J. Urrutia. “Finding a minimum independent
dominating set in a permutation graph”. Discrete Applied Mathematics, v.21 n.3,
pp.177-183, 1988.

[Bala72] A. T. Balaban. “Chemical graphs”. part XIII, combinatorial patterns.
Rev. Roumain Math. Pures Appl., 17: 3-16, 1972.

[Bala06] B. Balasundaram, S. Butenko. "Graph domination, coloring and cliques
in telecommunications". Handbook of Optimization in Telecommunications, pp.
865-890, 2006.

[Bang99] J. Bang–Jensen, J. Huang, G. Macgillivray, A. Yeo. “Domination in
convex bipartite and convex–round graphs”. Manuscript, 1999.

[Bigg72] N. L. Biggs. “An edge-colouring problem”. Am. Math. Mon. 79: 1018-
1020, 1972.

[Bigg74] N. L Biggs. “Algebraic Graph Theory”. Cambridge University Press,
London. 1974.

[Bigg79] N. L. Biggs. “Some Odd Graph Theory”. Annals of New York Academy
of Sciences, vol. 319, pp. 71-81, 1979.

[Booi07] O. Booij, Z. Zivkovic, B. Krose. "Image based navigation using a
topological map". Proceedings of the 13th Annual Conference of the Advanced
School for Computing and Imaging, Netherlands, pp. 1-8, June 2007.

[Bour10] M. Bourgeois, B. Escoffier, V. Th. Paschos. “Fast Algorithms for min
independent dominating set”. Proceedings of SIROCCO 2010, LNCS 6058, pp.
247–261, 2010.

[Bran98] A. Brandsta, V. Chepoi, F. Dragan. “The algorithmic use of hyper tree
structure and maximum neighborhood orderings” Discr. Appl. Math. 82(1-3), pp.
43-77, 1998.

[Bro97] H. Broersma, T. Kloks, D. Kratsch, H. Muller. “Independent sets in
asteroidal triple–free graphs”. Proceedings of ICALP’97, Springer, LNCS 1256,
pp. 760–770, 1997.

97

[Buen09] L.R. Bueno, L. Faria, C.M.H. Figueiredo, G.D. Fonseca. “Hamiltonian
paths in odd graphs”. Appl. Anal. Discrete Math., 3, pp. 386–394, 2009.

[Byer77] T. Bayer, A. Proskurowski, S. Hedetniemi, S. Mitchell. "Independent
domination in trees". Prec. 8th Southeastern Conference on Combinatorics, Graph
Theory and Computing, Utilitas Mathematica, WinnipeB, pp. 321-328, 1977.

[Chan98a] G.J. Chang. "Algorithmic aspects of domination in graphs". in D.-Z.
Du, P.M. Pardalos (Eds.), Handbook of Combinatorial optimization 3, pp. 339-
405, 1998.

[Chan98b] M.S. Chang. “Efficient algorithms for the domination problems on
interval and circular–arc graphs”. SIAM J. Comp. 27, pp. 1671-1694, 1998.

 [Chen02] B. Chen, K. Jamieson, H. Balakrishnan, R. Morris. “Span: An energy-
efficient coordination algorithm for topology maintenance in ad hoc wireless
networks”. ACM Wireless Networks Journal, 8(5), 2002.

[Cock77] E. J. Cockayne, S. T. Hedetniemi. “Towards a theory of domination in
graphs”. Networks 7, pp. 247-261, 1977.

[Conw77] J. H. Conway, N. L. Biggs. Symmetric circuits. Preprint, 1977.

[Corn84] D.G. Corneil, Y. Perl. “Clustering and domination in perfect graphs”.
Discr. Appl. Math. 9, pp. 27-39, 1984.

[Dama90] P. Damaschke, H. Muller, D. Kratsch. “Domination in convex and
chordal bipartite graphs”. Inform. Proces. Lett. 36, pp. 231-236, 1990.

[Duck02] W. Duckworth, N.C. Wormald. “Minimum independent dominating
sets of random cubic graphs”. Random Structures and Algorithms 21, pp. 147-
161, 2002.

[Duck10] W. Duckworth, N. Wormald. “Linear programming and the worst-case
analysis of greedy algorithms on cubic graphs”. Electron J Comb 17:#R177, 28
pp, 2010.

[Elma90] E.S. Elmallah, L.K. Stewart. “Domination in polygon graphs”. Congr.
Numer. 77, pp. 63-76, 1990.

[Erdo61] P. Erdos, Ko. Chao, R. Rado. “Intersection theorems for systems of
finite sets”. Q. J. Math. (Oxford) 12: 313-320, 1961.

[Fabe82] M. Farber. “Independent domination in chordal graphs”. Oper. Res. Lett.
1, pp. 134-138, 1982.

[Fabe84] M. Farber. “Domination, independent domination, and duality in
strongly chordal graphs”. Discr. Appl. Math. 7, pp. 115-130, 1984.

[Fabe89] M. Farber. “On diameters and radii of bridged graphs”. Discrete Math.
73, pp. 249-260, 1989.

98

[Gare79] M. R. Garey, D. S. Johnson. “Computers and intractability. A guide to
the theory of NP-completeness”. W. H. Freeman, San Francisco, 1979.

[Gasp06] S. Gaspers, M. Liedloff. “A branch-and-reduce algorithm for finding a
minimum independent dominating set in graphs”. In F. V. Fomin, editor, Proc.
International Workshop on Graph Theoretical Concepts in Computer Science,
WG’06, volume 4271 of LNCS, pp. 78-89. Springer-Verlag, 2006.

[Ghaf91] A. Ghafoor and T.R. Bashkow. “A Study of Odd Graphs as Fault-
Tolerant Interconnection Networks”. IEEE Trans. Computers, vol. 40, no. 2, pp.
225-232, 1991.

[Hayn06] T.W. Haynes, D. Knisley, E. Seier, Y. Zou. "A quantitative analysis of
secondary RNA structure using domination based parameters on trees". BMC
Bioinformatics, 7 (1), pp. 108, 2006.

[Hayn97] T. W. Haynes, S. T. Hedetniemi, P. J. Slater. “Fundamentals of
Domination in Graphs”. Marcel Dekker, Inc., New York, 1997.

[Hemp99] H. Hempel, D. Kratsch. “On claw–free asteroidal triple–free graphs”.
Manuscript, 1999.

[Hilt67] A. J. W. Hilton, E. C. Milner. “Some intersection theorems for systems of
finite sets”. Q. J. Math. (Oxford) 18: 369-384, 1967.

[Huri08] J.L. Hurink, T. Nieberg. “Approximating Minimum Independent
Dominating Sets in Wireless Networks”. Inform. Process. Lett. 109, pp. 155-160,
2008.

[Krat93] D. Kratsch, L. Stewart. “Domination on cocomparability graphs”. SIAM
J. Discrete Math. 6(3), pp. 400-417, 1993.

[Kuo88] S.Y. Kuo, W.K. Fuchs. "Spare allocation and reconfiguration in large
area VLSI". Proc. 25th ACM/IEEE Design Automation Conference, pp. 609-612,
1988.

[Lov´a70] L. Lov´asz. Problem 11. In Combinatorial Structures and their
Applications. Gordon and Breach, 1970.

[Liu06] C. Liu, Y. Song. “Exact Algorithms for Finding the Minimum
Independent Dominating Set in Graphs”. LNCS, Volume 4288, pp. 439-448,
2006.

[Math76] M. Mather. “The Rugby footballers of Croam”. J. Comb. Theory (B)
20: 62-63, 1976.

[Mere72] G. H. J. Meredith, E. K. Lloyd. “The Hamiltonian graphs O4 to O7”. In
Combinatorics (Proc. Conf. Combinatorial Math., Math. Inst., Oxford, 1972), pp.
229-236. Inst. Math. Appl., Southend, 1972.

99

[Mere73] G. H. J. Meredith, E. K. Lloyd. “The footballers of Croam”. J. Comb.
Theory (B) 15: 161-166, 1973.

[Moon65] J. W. Moon, L. Moser. “On cliques in graphs”. Israel J. Math., 3, pp.
23-28, 1965.

[Ni99] S.Y. Ni, Y.C. Tseng, Y.S. Chen, J.P. Sheu. “The broadcast storm problem
in a mobile, ad-hoc network”. In Proc. MOBICOM, pp. 151-162, 1999.

[Pfaf84] J. Pfaff, R. Laskar, S.T. Hedetniemi. “Linear algorithms for independent
domination and total domination in series–parallel graphs”. Technical Report 441,
Clemson University, 1984.

[Prie01] C.E. Priebe, J.G. DeVinney, and D.J. Marchette. "On the distribution of
the domination number for random class cover catch digraphs". Statistics and
Probability Letters, 55: 239-246, 2001.

[Rand04] B. Randerath, I. Schiermeyer. “Exact algorithms for Minimum
Dominating Set”. Technical Report zaik-469, Zentrum fur Angewandte
Informatik, Koln, Germany, April 2004.

[Shie04] I. Shields, C. D. Savage. “A note on Hamilton cycles in Kneser graphs”.
Bull. Inst. Combin. Appl., 40: 13-22, 2004.

[Shie99] I. Shields, C. D. Savage. “A Hamilton path heuristic with applications to
the middle two levels problem”. In Proceedings of the Thirtieth Southeastern
International Conference on Combinatorics, Graph Theory, and Computing (Boca
Raton, FL, 1999). Congr. Numer., volume 140, pp. 161-178, 1999.

[Shie09] I. Shields, B. J. Shields, C. D. Savage. “An update on the middle levels
problem". Discrete Math., 309, pp. 5271-5277, 2009.

[Vizi64] V. G. Vizing. "On an estimate of the chromatic class of a p-graph".
Diskret. Analiz. 3: 25-30, 1964.

[Yann80] M. Yannakakis, F. Gavril. “Edge dominating sets in graphs”. SIAM J.
Appl. Math.38(3), pp. 364-372, 1980.

[Zeli85] B. Zelinka. “Odd graphs”. Arch. Math., Brno 21, pp. 181-187, 1985.

[Zver95] I. Zverovich, V. Zverovich. “An induced subgraph characterization of
domination perfect graphs”. Journal of Graph Theory 20 (3), pp. 375-395, 1995.

100

VITA

Name: Ahmed Ibrahim Al-Herz

Nationality: Saudi

Address: P.O. Box: 766, KFUPM,
Dhahran 31261, Saudi Arabia

Email Address: a.alherz@yahoo.com

Phone: +96638602287

Ahmed Al-Herz was born on April 24, 1982 in USA. He earned his

Bachelor of Science degree in Computer Engineering in June 2005 from

King Fahd University of Petroleum & Minerals (KFUPM). Al-Herz

completed his Master of Science degree in Computer Science in February

2012 from KFUPM.

Ahmed Al-Herz is currently a graduate assistant in Information and

Computer Science Department at KFUPM.

