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ABSTRACT 

NAME : AHMED I. AL-HERZ 
TITLE : INDEPENDENT DOMINATION IN ODD 

GRAPHS 
MAJOR FIELD : COMPUTER SCIENCE 
DATE OF DEGREE : February 2012 

 
Domination in graph theory is a natural model for many location 

problems in computer science and operations research. Finding a 

minimum independent dominating set in general graphs is NP-hard, and 

it was studied extensively. In this thesis, the first approximation 

algorithms for independent dominating sets in odd graphs are introduced. 

Our approach is based on partitioning the graph to different sets in order 

to simplify the complexity of the graph, then finding an independent 

dominating set or an independent set in each part, and merging the sets 

while resolving any violation in the independence or domination 

properties. Also, we present experimental results and comparisons 

between the proposed algorithms and greedy and randomized algorithms. 

The results show that the proposed algorithms give the best 

approximation quality. 
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 ملخص الرسالة

  أحمد ابراهيم الحرز :  الإســــــــــــــم

  المستقلة في الرسوم البيانية الغريبة  الهيمنة  : عنوان الدراسة

  علوم الحاسب الآلي : التخصــــــــص

 2012 فبراير : تاريخ التخــرج

 

نموذج طبيعي لكثير من المشاآل المتعلقة بالمواقع في علوم  تعتبرالهيمنة في نظرية الرسم البياني 

العثور على الحد الأدنى لمجموعة مستقلة و مهيمنة في الرسوم البيانية العامة. الحاسوب وبحوث العمليات  

في هذه . يعتبر من المشاآل الحدودية الغير محددة، و هذه المشكلة درست من قبل على نطاق واسع

الرسم البياني  فيالأطروحة، يتم عرض خوارزميات تقريبية للمرة الأولى لمجموعة مهيمنة و مستقلة 

يد في الرسم البياني ويستند نهجنا على تقسيم الرسم البياني لمجموعات مختلفة من أجل تبسيط التعق. الغريب

والعثور على مجموعة مستقلة تهيمن على الأجزاء المقسمة من الرسم البياني، ثم دمج النتائج في حين حل 

، نقدم نتائج تجريبية ومقارنة بين وبالاضافة الى ذلك. أي اشكال في خصائص الاستقلال أو الهيمنة

نتائج التجارب تظهر أن . و العشوائية الخوارزميات التقريبية المقترحة و الخوارزميات الجشعة

الخوارزميات التقريبية المقترحة تعطي نتائج أفضل بالنسبة لحجم المجموعة وخصوصا على الرسوم 

.البيانية الغريبة ذات الحجم الكبير
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CHAPTER 1 

INTRODUCTION 

Domination in graph theory is a natural model for many location 

problems in computer science and operations research. Domination has 

many applications in the real world [Hayn97]. Examples of such 

applications are dominating queens, sets of representatives, school bus 

routing, computer communication networks, radio stations, social 

network theory, computer vision [Booi07], pattern recognition [Prie01], 

scheduling [Bala06], VLSI design [Kuo88], molecular biology [Hayn06], 

etc. 

The minimum independent dominating set (MIDS) is one variant of 

domination problems which is a well known combinatorial optimization 

problem. The problem can be defined informally as follows: given a 

graph, a minimum independent dominating set is a set of vertices of 

minimum cardinality with the requirement that the dominating vertices 

are independent, that is none of the vertices are adjacent and every other 

vertex not included in the set is adjacent to at least one of the vertices in 

the set. An example of a minimum independent dominating set (the set of 
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black vertices) in a graph can be seen in Figure 1. Before stating the 

problems formally we will give some definitions in the next section. 

 

 

Figure 1: A minimum independent dominating set on a graph [Chan98a]. 

 

1.1 DEFINITIONS AND NOTATION 

Throughout this thesis all graphs are finite, undirected and simple 

(i.e. loop–free and without multiple edges). Given a graph G(V,E) where V 

is the set of vertices, E ك V × V is the set of edges, and two vertices u, v א V 

have an edge between them, or are said to be adjacent, if and only if (u, v) א 

E. If (u, v) ב E, we say that (u, v) is a non-edge. Let a vertex v  V, the 

neighborhood N(v) of v is the set of vertices that are adjacent to v, and N[v] 

= N(v) ׫ {v} will be called the closed neighborhood of v. For the degree of 

v, we use the notation deg(v) = |N(v)| , where | . | is the cardinality of a 

set which is the number of elements in a set. For any subset H ؿ V, we 
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denote by G[H] the subgraph of G induced by H. For v א H, for some 

subset H, we denote by deg’ H(v) the degree of v in G[H] or, if it is clear by 

the context, we denote it by deg’(v). For convenience, we set N[H] = {N[v] : 

  .|H}. For simplicity, we may set n = |V| and m = |E א v ׊

Definition 1.1 A dominating set D in a graph G(V, E) is a subset of V in which 

each vertex v א (V – D) is adjacent to at least one vertex u א D, i.e., (v, u) א E. An 

independent dominating set is a dominating set where all vertices in D are 

independent, i.e., (u, v) ב E, for all u, v א D. The optimization version of the 

independent domination problem is finding the independent dominating set D 

such that the cardinality of D is minimum. 

Definition 1.2 A maximal independent set M is an independent set of a graph 

G(V, E) that is not a subset of any other independent set. That is, it is a set such 

that every edge (v, u) א E has at least one endpoint not in M and every vertex not 

in M has at least one neighbor in M. A maximal independent set is also a 

dominating set in the graph, and every dominating set that is independent must be 

maximal independent set, so maximal independent sets are also independent 

dominating sets. A graph may have many maximal independent sets of varying 

sizes; a largest maximal independent set is called a maximum independent set.  

Definition 1.3 The decision version of the independent dominating set problem 

can be stated as follow: 

Instance: G = (V, E), positive integer K ൑ |V| 
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Question:  Is there a dominating set of size K or less for G, i.e., a subset V’ 

 ?E א V’ for which (u, v) א V-V’ there is a v א V with |V’| ൑ K such that for all u ك

Definition 1.4 The optimization version of the independent dominating set 

problem can be stated as follow: 

Instance: G = (V, E) 

Question:  Is there a dominating set for G, i.e., a subset V’ ك V with |V’| = K 

such that for all u א V-V’ there is a v א V’ for which (u, v) א E and K is minimum? 

Theorem 1.1 The decision version of independent dominating set problem is ԳԶ-

complete. The proof can be found in [Gare79]. 

Theorem 1.2 The minimum independent dominating set problem is ԳԶ-hard. The 

proof can be found in [Gare79]. Knowing that an ԳԶ problem is ԳԶ-hard, we 

also know that we cannot compute an optimal solution in polynomial time, unless 

Զ = ԳԶ. 

1.2 ODD GRAPHS 

Because the independent dominating set problem for general graphs 

is hard, researchers turned their attention to solving the problem on 

restricted families of graphs. Each family of graphs may have special 

properties or unique structures, which can be used to come up with 

polynomial time or approximation algorithms. In this thesis, we will 

consider odd graph family that has a unique structure. The family of odd 
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graphs was introduced by [Bigg79] in the context of graph theory. In this 

section, we will introduce the odd graphs, more details on odd graphs and 

their properties will be given in chapter 3. 

Definition 1.5 For a positive integer d, let Ω = {1, 2, . . . ,2d - 1} and V = 

{{x1, x2, . . . , xd-1} | xi א Ω }, that is, the set of all (d-1)-subsets of Ω. The odd 

graph Od = (V, E) is defined as the graph with V as its vertex set and two 

vertices are connected if and only if their corresponding subsets are 

disjoint.  

Od is a d-regular graph (deg(v) = d ׊ v א V) with n = ൫ଶௗିଵ
ௗିଵ ൯ vertices 

and m =  ௗ
ଶ

൫ଶௗିଵ
ௗିଵ ൯ edges. We will refer to d as the dimension of Od. In 

particular, the 3-dimensional odd graph is the well-known Peterson 

graph. Figure 2 shows typical drawings of Od, d = 2, 3, 4. The odd graph of 

dimension 1 consists of one vertex and no edges. 

 

Figure 2: Drawings of Od, d = 2, 3, 4. 
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1.3 APPLICATIONS OF MIDS IN COMMUNICATION 

NETWORKS 

From an application point of view, independent and dominating set 

in a communication networks are important structures, and many 

optimization approaches rely on these structures.  

In clustering schemes, independent sets result in clusterheads that 

have local control of their cluster without interference. Additionally, a 

dominating independent set based clustering scheme ensures that the 

entire network is covered. For example, especially in energy-efficient 

computing, clustering allows for some nodes to perform fewer tasks by 

delegating them to their respective clusterhead. On the other hand, the 

tasks of these clusterheads then result in additional energy consumption. 

Here, using as few clusterheads as possible, i.e. choosing them according 

to minimum independent dominating set, results in energy savings for the 

network.  

A standard approach for reducing energy consumption is to 

carefully schedule node activity. As has been observed in [Chen02], 

whenever there are sufficiently many nodes in a region, only a small 

fraction of nodes need be active for forwarding messages, etc. The rest of 

the nodes can enter a sleep mode, thereby conserving energy. The 
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problem of maximizing the number of nodes which are asleep at any 

given time while maintaining sufficient activity in the network is usually 

modeled as the problem of finding a small dominating set in the network. 

Once a small dominating set is found, the nodes in the dominating set 

collectively act as “coordinators” for the network and the rest of the nodes 

go to sleep.  

In a communication network, broadcasting schemes are required. 

Each individual node is neither able to store the entire topology 

information, nor to keep updated information about the changes in the 

network. The broadcasting schemes have relied on flooding the network. 

Basic, network-wide flooding causes the broadcast storm problem [Ni99], 

resulting in excessive contention and collisions, i.e. a large communication 

protocol overhead. Using a dominating set of small size to propagate 

flooding messages overcomes this problem, and greatly reduces the 

number of messages needed, and thus the protocol overhead as well. So, 

nodes in an independent set do not interfere each other during 

simultaneous transmissions, and nodes in a dominating set can be used to 

efficiently reach the entire network by broadcasts from only these nodes, 

these two properties can be achieved by minimum independent 

dominating set. 
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1.4 OBJECTIVE OF THE RESEARCH 

Although considerable amount of works for the independent 

domination problem have emerged in the past, the first algorithmic result 

on this topic was given by Bayer, Proskurowski, Hedetniemi and Mitchell 

in 1977 [Byer77]. They gave a linear-time algorithm for the independent 

domination problem on trees. On the other hand, at about the same time 

Garey and Johnson [Gare79] constructed the first proof that the 

domination problem is ԳԶ-complete for general graphs. Since then, many 

algorithmic results are studied for variants of the domination problem in 

different classes of graphs.  

One of the graph classes, which have not been investigated in term of 

independent domination, is the odd graphs class. [Ghaf91] pointed out 

their potential as fault-tolerant multiprocessor networks. Their efficiency 

was analyzed in terms of routing, combinatorial structure, maximal fault 

tolerance [Ghaf91], symmetry [Bigg79], fault diameter [Ghaf91], [Kim08a]. 

Odd networks are competitive with mesh and hypercube variants. For the 

same number of nodes, odd networks are superior to comparable mesh 

and hypercube variants when the network cost (degree×diameter) is used 

as a measure.  
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The minimum independent dominating set is very important 

problem in communication networks; this is most obvious in parallel 

computing systems. Also, finding a solution to the minimum independent 

dominating set on networks with very large number of vertices, such as a 

high dimensional odd graph, can be time consuming; in this situation an 

approximate solution can be much more efficient. So, a natural question 

arises of whether an approximate solution to the minimum independent 

dominating set problem on odd graph network within an acceptable time 

is feasible or not. Thus, the primary objective of this thesis can be stated as 

”designing an efficient approximation algorithm for the minimum 

independent dominating set problem by exploiting the unique structure of 

the class of odd graphs”. Another objective of this thesis is 

comparisons of our proposed approximation algorithm with generic 

approximation algorithms namely, simple greedy and randomized 

heuristics.
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CHAPTER 2 

LITERATURE REVIEW 

Many approaches were used to find the minimum or an approximate 

independent dominating set on a graph. These approaches range from 

enumeration of all sets of the vertices to solving the problem for special 

graph classes. Next, we will review the literature regarding the 

approaches that have been used to solve this problem. 

2.1 BRUTE FORCE 

The minimum independent dominating set problem can be trivially 

solved in O(2n) by simply enumerating all the subsets of V, and check 

whether the set is dominating and independent with minimum 

cardinality. Clearly this approach is exponential and not practical. 

2.2 EXACT ALGORITHMS 

Many attempts have been done to design efficient but yet 

exponential algorithms that give optimal solution for ԳԶ-complete 

problem. The first work that gives an exact exponential time algorithm for 
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minimum independent dominating set has been done by Randerath and 

Schiermeyer [Rand04]. They used the result due to Moon and Moser 

[Moon65] who showed in 1965 that the number of maximal independent 

sets of a graph is upper bounded by 3n/3. They used an algorithm 

enumerating all the maximal independent sets to obtain an O(1.4423n) 

time algorithm for the minimum independent dominating set. Gaspers 

and Liedloff  [Gasp06] presented an O(1.3569 n) time algorithm for solving 

the minimum independent dominating set using the Measure & Conquer 

approach to analyze its running time. A simple O3√)כయ ௡
) time algorithm 

based on a maximal matching  was developed by Liu and Song [Liu06] to 

solve this problem on general graphs. Here, Oכ(.) implies the existence of 

an additional polynomial factor in the corresponding time complexity 

result. For sparse graphs, e.g. graphs with degree bounded by 3 and 4, 

they showed that a few new branching techniques can be applied to these 

graphs and the resulting algorithms have time complexities Oכ(1.3803n) 

and O כ(1.5368n). Bourgeois, Escoffier and Paschos [Bour10] devised a 

branching algorithm that can find a minimum independent dominating 

set on any graph with running time Oכ(1.3416n) and polynomial space.  

   



 

12 
 

2.4 APPROXIMATION ALGORITHMS 

It was shown that the minimum dominating set can be approximated 

with a constant factor if we apply the algorithm on restricted types of 

graphs. An algorithm which gives a constant performance ratio 

independent of the size of the instance is referred to as constant-factor 

approximation.  Hurink and Nieberg [Huri08] presented the first 

polynomial-time approximation scheme (Զॻ८ॺ) for the minimum 

independent dominating set problem in graphs of polynomially bounded 

growth. Graphs of bounded growth are used to characterize wireless 

communication networks. The algorithm accepts any undirected graph of 

bounded growth as input, and returns a (1+ߝ)-approximate minimum 

dominating set, where ߝ is a real number greater than 0. Duckworth and 

Wormald [Duck02] presented a heuristic, which is a random greedy 

algorithm, for finding a small independent dominating set of cubic 

graphs. They proved that D, the minimum independent dominating set, 

asymptotically almost surely satisfies 0.2641n ൑ |D| ൑ 0.2794n. A 

deterministic version of the randomized algorithm was analyzed in 

[Duck10] using linear programming. It was shown that, given an n-vertex 

cubic graph, the deterministic algorithm returns an independent 

dominating set of size at most 29n/70 + O(1). Bourgeois, Escoffier and 

Paschos [Bour10] showed that, for every r > 3, it is possible to compute an 
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r−((r − 1)/r) log2 r-approximate solution (If an algorithm guarantees to 

return solutions with a performance guarantee of at most r, then the 

algorithm has an r-approximate solution) for the minimum independent 

dominating set within time O*(2௡௟௢௚మ௥/௥). 

2.5 SPECIAL GRAPH CLASSES 

One of the sites for research on ԳԶ -complete graph problems is to 

consider the algorithmic complexity when they are restricted to special 

graph classes. The motivation was to find graph classes with nice 

structural properties, that enable the design of polynomial time algorithms 

for ԳԶ-complete graph problems when the input graphs are restricted to 

the special graph class. Originally small classes such as interval graphs 

and permutation graphs were considered. This led researches to look for 

larger graph classes, for which polynomial time domination algorithms 

can still be design. Recent examples are the classes of AT-free graphs, 

dually chordal graphs and homogeneously orderable graphs.  

This section reviews the literature regarding the special graphs 

classes and whether the minimum independent dominating set can be 

found in a linear time or it cannot be solved linearly that is it belongs to 

ԳԶ-complete class.  
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2.5.1 SPECIAL GRAPH CLASSES (MIDS PROBLEM IS IN Զ) 

In 1977 T. Byer et al.  proved that minimum independent dominating 

set in trees can be computed in linear time [Byer77]. M. Faber discovered 

in 1982 that minimum independent dominating set can be obtained in 

linear time in chordal graphs [Fabe82]. He presented a linear algorithm to 

locate a minimum weight independent dominating set in a chordal graph 

with 0-I vertex weights. The problem was put into the framework of linear 

programming. In particular, they exhibited a linear program with 0-1 

solutions which correspond to independent dominating sets in the given 

graph. The algorithm utilizes perfect elimination ordering of choral 

graphs. Using the same methodology they solved the problem in strongly 

chordal graphs given a strong elimination ordering [Fabe84]. Moreover, 

minimum independent dominating set for doubly chordal graph, split 

graph and undirected path graph were proved to be solvable linearly 

since these special graph classes are subset of chordal graph. The 

minimum independent dominating set for series parallel graph can be 

found linearly which was discovered by J. Pfaff, R. Laskar and S.T. 

Hedetniemi in 1984 [Pfaf84].  M. Atallah and S. Kosaraju proved in 1989 

that permutation graph's independent dominating set is linearly solvable 

[Atal88]. They reduced the problem of finding the minimum independent 

dominating set to the problem of computing a shortest maximal increasing 
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subsequence in linear time, the shortest maximal increasing subsequence 

problem is solvable in linear time, and thus the problem of minimum 

independent dominating set is also solvable in linear time. M. Faber 

presented an algorithm in 1989 to solve the minimum independent 

dominating set in linear time for 2K2-free graphs [Fabe89] . In 1990 E. 

Elmallah and L. Stewart discovered that k-polygon graph's independent 

dominating set can be solved in linear time [Elma90].  The independent 

dominating set for partial k-tree for bounded k is also in P and was 

proved by S. Arnborg, J. Lagergren and D. Sees in 1991 [Arnb91]. They 

transformed the graph of bounded tree width formulated as second order 

logic sentences to binary tree in linear time, then the decision if the graph 

has an independent dominating set of certain cardinality can be 

determined if the satisfiablity of monadic second order problem on a 

binary tree can be decided which can be done in linear time. Minimum 

independent dominating set can be solved in cocomparability graphs in 

linear time by a dynamic programming approach using a linear scan 

through the labeling of the given graph, this approach was presented by 

Kratsch and Stewart in 1993 [Krat93].  AT-free graph is one of the special 

graphs that its independent domination set can be obtained in linear time 

and was discovered by H. Broersma, T. Kloks, D. Kratsch and H. Muller in 

1997 [Bro97]. M. Chang proposed algorithms to solve the minimum 

independent dominating set in linear time on interval and circular-arc 
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graphs [Chan98b].  In 1999 J. Bang-Jensen, J Huang, G. Macgillivary and 

A. Yeo presented an algorithm that solve the minimum independent 

dominating set for convex bipartite graph linearly [Bang99]. Furthermore, 

the convex–round graphs’ minimum independent dominating set is also 

solved in linear time [Bang99]. Claw-free AT-free graph's minimum 

independent dominating set is in P, which was proved by H.Hempel and 

D. Kratsch in 1999 [Hemp99]. They used lexicographic breadth first search 

procedure to label the vertices then they used 2-lexicographic breadth first 

scheme which is a vertex ordering and levels of the labeled graph. The 

algorithm exploits the information obtained from the scheme to find the 

set in linear time. 

On the other hand, some special graph classes are proved to be in NP 

class, which means it cannot be solved in linear time, so either 

approximation algorithms are used to find sub optimal set or exact 

algorithms are used to find the optimal set. Many graphs have been 

discovered that can be categorized nonsolvable linearly, next we will 

review these special graph classes. 
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2.5.2 SPECIAL GRAPH CLASSES (MIDS PROBLEM IS IN ԳԶ‐

COMPLETE) 

The first special graph class, that its minimum independent 

dominating set was discovered to be in ԳԶ-complete class, is line graph 

which was proved by M. Yannakakis and F. Gavril in 1980 [Yann80].  

They proved that the edge dominating set problem for bipartite graphs 

and planar with maximum degree 3 is ԳԶ-complete using reduction from 

the SAT-3-restricted problem and the node cover problem on planar cubic 

graphs respectively. The proof is true for the independent dominate edges, 

since the independent set can be obtained from the dominating set in 

linear time. The edge version of domination can be thought of as the 

vertex version of the problem applied to line graphs.  Bipartite graph 

minimum independent dominating set is not solvable linearly which was 

discovered by D. Corneil and Y. Perl in 1984 [Corn84]. Also, minimum 

independent dominating set for comparability graphs and triangle-free 

graphs was discovered to be in the same class [Corn84]. The reduction 

they used is from the h-dominating set problem for general graphs which 

is NP-Complete.  In 1990, P. Damaschke, H. Muller and D. Kratsch proved 

that chordal bipartite minimum independent dominating set problem is in 

ԳԶ-complete class by reduction from the 3SAT problem [Dama90].   

Planar graph and planar bipartite graph minimum independent 
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dominating set is also in ԳԶ-complete class, this was discovered in 1995 

by I. Zverovich and V. Zverovich [Zver95]. They used a linear reduction 

from dominating set problem for 3-regular planar graph.  In 1998 A. 

Brandstast, V. Chepoli and F. Dragan proved that dually chordal graph 

minimum independent dominating set is in ԳԶ-complete [Bran98]. 

Moreover, minimum independent dominating set for homogeneously 

orderable graph is not solvable linearly [Bran98]. The reduction they used 

is from the independent dominating set problem for general graphs which 

is ԳԶ-complete problem. 
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CHAPTER 3  

ODD GRAPHS 

3.1 INTRODUCTION 

Suppose d is an integer not less than 2 and Ω is a set of odd 

cardinality 2d - 1, e.g. Ω = {1, 2, . . . ,2d - 1}. Odd graph Od can be defined as 

follows: the vertex set V of Od, is the set of subsets v of Ω which have 

cardinality |v| = d - 1, and two vertices are adjacent when the subsets are 

disjoint [Bigg79]. The graphs O2 (= K3), O3 (= Petersen's graph) and O4 are 

depicted in Figure 2 in section 1.2. 

We will refer to the elements of Ω as labels. A pair of adjacent 

vertices in Od, corresponds to a pair of disjoint (d - 1)-subsets of the (2d - 

1)-set Ω so there is just one label “the odd label” not occurring in either of 

the subsets. This "odd" label will be assigned to the edge joining the two 

vertices. Thus the edge set E of Od, is partitioned into 2d - 1 disjoint sets, 

 {߱ - v = Ω ׫ E | u א (u,v)} = ఠܧ
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Since a given vertex v contains d - 1 labels and | Ω | = 2d - 1, there 

are d labels available for the edges incident with v. This shows that Od is a 

regular graph with degree d. By simple counting arguments we have, 

|V| = ൫ଶௗିଵ
ௗିଵ ൯ 

|E| = ଵ
ଶ

 ݀ ൫ଶௗିଵ
ௗିଵ ൯ ൌ  ଵ

ଶ
 ሺ2݀ െ 1ሻ൫ଶௗିଶ

ௗିଵ ൯ 

ఠ| = ଵܧ|
ଶ

 ൫ଶௗିଶ
ௗିଵ ൯ ൌ  ൫ଶௗିଷ

ௗିଶ ൯ 

3.2 INDEPENDENT SETS AND CHROMATIC NUMBERS 

For each label ߱ in Ω define the subset ఠܸ of V to be the set of vertices 

which contain ߱. Since any two vertices in ఠܸ intersect, they are not 

adjacent and ఠܸ is an independent set in Od. The cardinality of ఠܸ is ൫ଶௗିଶ
ௗିଶ ൯ 

[Bigg79]. The set-theoretical result of Erdos et al. [Erdo61][Hilt67] has the 

following consequence: 

Theorem 3.1: Let I be any independent set of vertices in Od. Then | I | ≤ 

൫ଶௗିଶ
ௗିଶ ൯ and if | I | = ൫ଶௗିଶ

ௗିଶ ൯ we must have I = ఠܸ for some ߱ in Ω. 

An independent set is maximal if the addition of any new vertex 

destroys its independence. Theorem 3.1 characterizes the maximal 

independent sets in Od which also have maximum cardinality. Now let us 

consider the maximal independent sets of minimum cardinality. If M is 
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any maximal independent set, then every vertex not in M must be adjacent 

to at least one vertex in M. Hence the sets, 

D(m) = {v א V | v = m or (v, m) א E}, (m א M) 

must cover V. In a d-regular graph (such as Od), |D(m)| = d + 1, so                

(d + 1) |M| ≥ |V|[Bigg79].  

The bounds on the cardinality of a maximal independent set M in Od 

which were obtained by Biggs are as follows: 

൫ଶௗିଶ
ௗିଶ ൯ ൒ | M | ≥ ଵ

ௗାଵ
  ൫ଶௗିଵ

ௗିଵ ൯ 

The upper bound is attained for every value of d ≥ 2, but, the lower bound 

is rarely attained. 

The set ఠܸഥ  of vertices, not containing the label ߱, has cardinality 

൫ଶௗିଶ
ௗିଵ ൯. The members of ఠܸഥ  are paired by the rule that (u, v) is a pair when 

u and v are complementary subsets of Ω - ߱. The paired vertices are joined 

by an edge whose label is ߱ (these are the only edges in the vertex 

subgraph Od[ ఠܸഥ ]). The previous observations can be combined to obtain a 

useful “standard representation” of Od, as in Figure 3 [Bigg79]. The 

diagram indicates that each vertex in ఠܸ is joined to d vertices in ఠܸഥ , while 

each vertex in ఠܸഥ  is joined to d - 1 vertices in ఠܸ. The edges in Od[ ఠܸഥ ] are 

just those in the set ܧఠ. 
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It is easy to check that Od contains odd circuits, and the standard 

representation indicates at once that there is a proper 3-coloring of the 

vertices. 

 

 
Figure 3: Representation of Od [Bigg79]. 

 

Theorem 3.2 [Zeli85]: The chromatic number of every odd graph is equal 

to 3. 

Proof: 

Consider an odd graph Od. Let U1 be the set of all sets belonging to V  

and containing the label 1, let U2 be the set of all sets belonging to V - U1 

and containing the label 2, let U3 = V  - (U1  ׫ U2). Any two elements of U1 

are non-adjacent (as vertices of Od), because their intersection contains the 

label 1 and therefore it is non-empty. Hence U1 is an independent set in Od 

and analogously so is U2. Now let X א U3, Y א U3. Then the sets X, Y are 

subsets of the set Ω - {1, 2}. This set has the cardinality 2d - 3, while each of 

the sets X, Y has the cardinality d - 1. If X, Y were disjoint, their Union X ׫ 
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Y would have the cardinality 2(d - 1) which is greater than the cardinality 

of Ω - {1,2}; this is impossible. Therefore X ת Y ് ׎ for any two elements X, 

Y of U3 and U3 is an independent set in Od too. The vertices of Od can be 

coloured by three colours 1, 2, 3 in such a way that by the colour i (i = 1, 2, 

3) the vertices belonging to Ui are coloured. This colouring is admissible; 

no two vertices of the same colour are adjacent. We have proved that 

߯(Od) 3 أ, where ߯(Od) is the chromatic number of Od. 

Now we shall construct the sets X1, ...,Xd and Y1, ..., Yd as follows. We 

put X1 = {1, ..., d - 1}. If Xi is constructed for some i, then we put Yi = Ω - (Xi 

 .({i} ׫  Yi) - If Yi is constructed for some i, then we put Xi+1 = Ω .({2d - i} ׫

The reader himself may verify that then Yd = X1. Further Xi ת Yi = ׎ for i = 

1, ..., d and Xi+1 ת Yi = ׎ for i = 1, ..., d-1. Therefore X1, Y1, X2, Y2, ..., Xd, Yd = 

X1 are vertices of a circuit in Od having the length 2d -1 which is an odd 

number. Hence Od is not bipartite and ߯(Od) = 3. Together with the 

previous inequality this yields ߯(Od) = 3.□ 

3.3 SHORTEST DISTANCE AND DIAMETER 

Theorem 3.3 [Bigg79]: In the graph Od the possible values of ߲(u, v) are in 

one-to-one correspondence with the possible values (0, 1, . . . , d - 1) of | u 

 ,v |; explicitly ת

߲(u, v)= 2r ฻ | u ת v |= (d- 1) - r 
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߲(u, v)= 2r + 1 ฻ | u ת v | = r 

Proof: 

Let ߲ denote the usual distance function and ु௜ሺݑሻ denote the set of 

vertices v such that ߲(u, v) = i. Clearly, ु଴ሺݑሻ = {u}, and ुଵሺݑሻ consists of 

the d vertices adjacent to u. If ߲(u, v) = 2, then there is a vertex x adjacent to 

(that is, disjoint from) both u and v. If the edges (u, x) and (x, v) carry the 

labels σ and τ, respectively, we see that the subset v is obtained from u by 

removing the label τ and substituting σ. Thus, | u ת v | = d - 2. 

Conversely, any pair of (d - 1) subsets which overlap in all except one 

element must be separated by two steps in Od. Continuing in this way, it 

can be seen that if ߲(u, v) = 2r, then v can be obtained from u by removing 

r labels and substituting r different ones, so that | u ת v | = (d - 1) - r. 

Similarly, if ߲(u, v) = 2r + 1, then | u ת v | = r.□ 

Theorem 3.4 [Zeli85]: Let u, v be two vertices of the graph Od, let | u ת v| 

= r. Then the distance of the vertices u, v in Od is ∆(r) = min (2r + 1, 2d – 2r 

- 2). 

Proof: 

If for two pairs u1, v1 and u2, v2 of vertices of Od we have | u1 ת v1 | = 

| u2 ת v2 |, then evidently there exists a permutation of the set Ω which 

maps u1 onto u2 and v1 onto v2 as we will see in section 3.4; this 
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permutation induces an automorphism of Od which again maps u1 onto u2 

and v1 onto v2. This implies that the distance of two vertices of Od is a 

function of the cardinality of their intersection and we may denote it 

by ∆(r), where r is this cardinality. Now let us have two vertices u, v of Od, 

let r = | u ת v|. If r = 0, then u ת v = ׎ and the vertices u, v are adjacent; 

their distance is 1, therefore ∆(0) = 1, which fulfills the assertion. If r = d - 

1, then u = v, because | u |= | v | = d - 1. The distance of u and v is 0, 

therefore ∆(d-1) = 0, which again fulfils the assertion. Now let r be an 

arbitrary integer such that 2 ൑ r ൑ d - 2. We have | u - v | = | v - u | = d - 1 

- r, | Ω - (u ׫ v) | = r + 1. Let P be the shortest path in Od connecting u and 

v. Let u0 (or v0) be the vertex of P adjacent to u (or v respectively). 

Evidently ߲(u, v) = ߲(u0, v0) + 2, where ߲ denotes the distance of two 

vertices. We have u ת u0 = v ת v0 = ׎, therefore the intersection u0 ת v0 ك Ω 

- (u ׫ v) and | u0 ת v0 | ൑ r + 1. On the other hand, the set u0 can have at 

most d - 1 - r elements in common with v and the other vertices of u0 

belong to Ω - (u ׫ v), hence | u0 ת (Ω - (u ׫ v)) | ൒ r and analogously | v0 

 v0 | ൒ r - 1. Thus there are three ת ൒ r. This implies | u0 | ((v ׫ u) - Ω) ת

possibilities for the cardinality of u0 ת v0, namely r - 1 or r + 1. As P is the 

shortest path connecting u and v, the sets u0, v0 must be chosen so that 

their distance might be the least possible, i.e, ߲(u0, v0) = min (∆(r - 1),∆(r), 

∆(r+ 1)). As ∆(r) = ߲(u, v) = ߲(u0, v0) + 2, the equalities ߲(u0, v0) = ∆(r) and  

| u0 ת v0 | = r are impossible. There can be only either ߲(u0, v0) = r - 1 and, 
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 ∆(r) = ∆(r - 1) + 2, or ߲(u0, v0) = r + 1 and ∆(r) = ∆(r + 1) + 2. Suppose that 

∆(r) = ∆(r - 1) + 2 holds, hence ߲(u0, v0) = ∆(r - 1) and | u0 ת v0 | =  r - 1. If r 

= 1, then u0, v0 are adjacent and ߲(u, v) = ∆(l) = 3 (evidently it cannot be 

less) which fulfills the assertion. If r ൒ 2, consider the interrelation 

between ∆(r - 1) and ∆(r - 2). Analogously there is ∆(r - 1) = ∆(r - 2) + 2 or 

∆(r - 1) = ∆(r) + 2. But, as we have supposed ∆(r) = ∆(r - 1) + 2, we must 

have ∆(r - 1) = ∆(r - 2) + 2. Inductively we can prove that if ∆(r) = ∆(r - 1) + 

2 for some m, then ∆(p)  = ∆(p - 1) + 2 for each integer p such that 2 ൑ p ൑ r. 

Analogously if ∆(r)  = ∆(r + 1)  + 2 for some r, then ∆(q)  = ∆(q +1)  + 2 for 

each integer q such that r ൑ q ൑ d - 2. As it has been proved ∆(0)   =1, ∆(d - 

1) = 0, the function ∆(r) is uniquely determined as ∆(r)= min(2r + 1, 2d – 2r 

- 2). □ 

Corollary 3.1 [Zeli85]: The diameter and the radius of the graph Od are 

both equal to d - 1. 

The number d - 1 is evidently the maximum of ∆(r); it is attained in r 

= ଵ
ଶ
 (d - l) for d odd and in r = ଵ

ଶ
 d - l for d even. As Od is vertex-transitive, its 

radius is equal to its diameter. 

Theorem 3.5 [Zeli85]: The graph Od for every integer d ൒ 2 is geodetic. A 

graph is geodetic if for every pair for vertices the shortest path between 

them is unique. 
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Proof: 

In the proof of Theorem 3.4 it was shown that for given vertices u, v 

the vertices u0, v0 (the vertices adjacent to u and v respectively in the 

shortest path connecting u and v) are determined uniquely. Thus by 

induction we can prove that whole the shortest path between u and v is 

uniquely determined. □ 

The graph Od is an example of a geodetic graph of the diameter d - 1 

which is simultaneously regular of the degree d.  

3.4 SYMMETRY AND THE SPECTRUM 

Any permutation π of the set Ω induces an automorphism of Od since 

the subsets π (u) and π (v) are disjoint if u and v are. Thus the symmetric 

group S2d-1 is a subgroup of the automorphism group Aut(Od).  

Theorem 3.6 [Bigg79]: The automorphism group of Od is the symmetric 

group S2d-1, acting in the obvious way on the (d - 1)-subsets of the (2d - 1) 

set Ω. 

Proof: 

To show that Aut(Od) = S2d-1 the deep result of Theorem 3.1 can be 

used. 
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Any automorphism θ of Od must take an independent set of vertices 

to an independent set with the same cardinality; hence, by Theorem 3.1, θ 

(Vσ) = Vτ for some τ in Ω. 

Let ߠҧ be the corresponding induced permutation of Ω, defined by θ 

(σ) = τ if and only if θ (Vσ) = Vτ. The mapping ߠ ฽  ҧ   is a homomorphismߠ 

of Aut(Od) -into S2d-1 and it is onto by the remarks at the beginning of this 

paragraph. Finally, it is one-to-one, since if ߠҧ is the identity, then θ ( ఠܸ) = 

ఠܸ for each ω in Ω; thus if the vertex x contains label ω, so does θ (x), and 

consequently θ (x) = x. □ 

Suppose u, v, x, y are vertices of Od, and ߲(u, v) = ߲(x, y). Then 

Theorem 3.3 tells us that | u ת v | = | x ת y |, and so a permutation of Ω 

may be constructed which takes u to x and v to y. This means that the 

graph Od is distance-transitive, and a battery of algebraic results may be 

applied to it [Bigg74]. The intersection array is a rectangular array in 

which the ith column has three entries ci, ai, and bi, defined as follows. Let 

u and v be any pair of vertices such that ߲(u, v)  = i (all such pairs are 

equivalent in Od , by the distance-transitive property); set, 

ܿ݅
ܾ݅
ܽ݅

ൡ ൌ The number of vertices x which are adjacent to v and satisfy ߲(u, x) = ൝
݅ െ 1

݅
݅ ൅ 1

 

[Bigg79] Figure 4 may clarify the definitions.  
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Figure 4: Intersection numbers [Bigg79]. 

 

Since the degree of v is d, we have ci + ai + bi = d, and, since the 

diameter is d - 1, there are d columns (i = 0, 1, . . . , d - l), the numbers c0 

and bd-1 being undefined. Simple counting arguments lead to the explicit 

array for Od, which has a remarkable pattern. When d is even, [Bigg79] 

obtain, 

1 1  2  2 ………. ଵ
ଶ
d – 1   ଵ

ଶ
 d – 1  ଵ

ଶ
 d 

0  0  0  0  0  .............  0   0  ଵ
ଶ
 d 

d  d - 1  d - 1  d - 2  d - 2  .............  ଵ
ଶ
d + 1  ଵ

ଶ
d + 1 

and when d is odd, [Bigg79] has, 

1 1  2  2 ………. ଵ
ଶ
(d - 1)   ଵ

ଶ
 (d - 1) 

0  0  0  0  0  .............  0   ଵ
ଶ
 (d + 1) 

d  d - 1  d - 1  d - 2  d - 2  .............  ଵ
ଶ
 (d + 1) 
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The general theory of distance-transitive graphs tells us that the 

spectrum of Od is completely determined by the intersection array. In 

other words, all the eigenvalues of the adjacency matrix, and their 

multiplicities, may be calculated. 

Theorem 3.7 [Bigg79]: The eigenvalues of Od are the integers                         

λi = (- 1 )i(d - i ) (0 ≤ i ≤ d - 1 ), and the multiplicity of λi is 

m(λi) = ൫૛ିࢊ૚
࢏ ൯ – ൫૛ିࢊ૚

૚ି࢏ ൯ 

The strong distance-transitivity property implies, in particular, that 

the automorphism group of Od is transitive on vertices and on pairs of 

adjacent vertices. 

In the terminology of Biggs [Bigg74], the graph is symmetric. For 

such graphs, Biggs studied the action of the automorphism group on the 

arcs, as defined below. 

An s-arc is a sequence x1, x2, ..., xs of vertices such that xi and xi+1, are 

adjacent (0 ≤ i ≤ s - 1) but xi and xi+2 are not identical (0 ≤ i ≤ s - 2). Since we 

have a simple representation of the automorphisms of Od as the 

permutations of Ω it is easy to verify the following: 

Theorem 3.8 [Bigg79]: The automorphism group of Od acts transitively on 

the set of all 3-arcs, but not on the 4-arcs (d ≥ 3). 
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An s-arc is said to be consistent if there is an automorphism θ such 

that θ(x0 ,x1, . . . , xs-1) = (x1, x2 , . . . , xs) [Bigg79]. It follows from Theorem 

3.8 that in Od (d ≥ 3) all arcs of length not exceeding 4 are consistent. If we 

repeatedly extend a consistent arc, retaining at each stage the consistency 

property, we must eventually return to the initial vertex. 

The resulting circuit is itself symmetric in the sense that there is a 

graph automorphism which rotates it through one step. A theorem due to 

Conway [Conw77] states that a symmetric graph of degree d has just d - 1 

classes of symmetric circuits. The proof of the theorem provides a 

recursive method for the construction of the symmetric circuits in general 

[Bigg79]; here just the result for the graph Od is described.  

Biggs began by remarking that an arc or circuit in Od is uniquely 

determined by its initial vertex and the sequence of edge labels. The 

construction of symmetric circuits proceeds as follows. Let Λ be any 

subset of Ω having odd cardinality not less than 3, and suppose the 

members of Λ are ordered so that, 

Λ = {λ0, λ1, ,..., λ2r }, 1 ≤ r ≤ d – 1 [Bigg79] 

Let {X, Y} be an equipartition of the set Ω - Λ, so that |X| = | Y | = d - r - 

1. For values of r in the range 1, 2, ..., d - 2 we obtain a symmetric circuit by 

starting from the initial vertex v = X ׫ {λ1, λ3, ,..., λ2r-1 } and proceeding 

along the edges labeled λ0, λ1, ,..., λ2r, λ0, λ1, ,..., λ2r. This gives a circuit of 
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even length 4r + 2 (Figure 5). When r = d - 1, starting from v and 

proceeding along the edges labeled λ0, λ1, ,..., λ2d-2 gives a circuit of odd 

length 2d - 1 (in this case the sets X and Y are both empty). The 

construction provides d - 1 classes of symmetric circuits, and, by the 

theorem quoted above, these are the only symmetric circuits in Od. The 

required "rotation" automorphisms are induced by composing the cyclic 

permutation λ0, λ1, ,..., λ2r of Ω with any permutation that takes X to Y. 

Theorem 3.9 [Bigg79]: The graph Od  (d ≥ 3) has symmetric circuits of 

length 2d - 1 and 6, 10, . . . , 4d - 6. The girth of the graph is 5 if d = 3, and 6 

for all d ≥ 4. 

Biggs remarked that the graphs do contain even circuits of lengths 8, 

12, . . . , but these do not have the symmetry property. 

 

 
Figure 5: A symmetric circuit of length 4r + 2 in Od. 
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3.5 EDGE PARTITIONS, COLORING AND 

DOMINATIONS 

It was mentioned in Section 3.1 that the edge set of Od is partitioned 

into 2d - 1 sets ܧఠ, (߱ א Ω), where the edges in ܧఠ are those joining two 

vertices whose union does not contain ߱. This fact, together with the 

representation (Figure 4), is relevant to the study of the factors and edge 

colorings of Od [Bigg79]. 

If F is a 1-factor of Od, then it must contain exactly one edge incident 

with each of the vertices in ఠܸ. The number of such edges is thus | ఠܸ | = 

൫ଶௗିଶ
ௗିଶ ൯. 

The edges of F not incident with ఠܸ must each carry the label ߱, and 

since |F| = ଵ
ଶ

 ൫ଶௗିଵ
ௗିଵ ൯, the number of them is, 

ଵ
ଶ

൫ଶௗିଵ
ௗିଵ ൯ െ  ൫ଶௗିଶ

ௗିଶ ൯ ൌ  ଵ
ௗ

 ఠ| [Bigg79]ܧ| 

In other words, the number of edges carrying the label ߱ is constant, 

independent of ߱. The same is true for any r-factor, 1 ≤ r ≤ d. 

Theorem 3.10 [Bigg79]: In any r-factor of Od (1 ≤ r ≤ d), the number of 

edges carrying a given label ߱ is independent of ߱. 
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By Vizing's theorem [Vizi64], the number of colors needed to color 

the edges of the odd graph Od is either d or d + 1, and in the case of the 

Petersen graph O3 it is d + 1. When d is a power of two, the number of 

vertices in the graph is odd, from which it again follows that the number 

of edge colors is d + 1. However, O5, O6, and O7 can each be edge-colored 

with d colors. 

An edge-dominating set in a graph G is a subset DE of the edge set 

E(G) of G with the property that to each edge e א E(G) - DE there exists an 

edge f  א DE such that the edges e, f  have a common end vertex. The 

minimal number of vertices of an edge-dominating set in G is called the 

edge-domination number of G. 

Analogously to the domatic number of a graph [Cock77] we may 

define the edge domatic number of a graph G. 

An edge-domatic partition of a graph G is a partition of the edge set 

E(G) of G, all of whose classes are edge-dominating sets in G. The maximal 

number of classes of an edge-domatic partition of G is called the edge-

domatic number of G. 

Theorem 3.11 [Zeli85]: The edge-domination number of the graph Od is 

equal to ଵ
ଶ

 ൫ଶௗିଶ
ௗିଵ ൯ and its edge-domatic number is equal to 2d - 1. 
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Proof:  

Let ߱ א Ω and let ܧఠ be the set of all edges e of Od labeled with ߱. Let 

f be an edge of Od not belonging to ܧఠ, and labeled with ߬. Then, ߬ ≠ ߱. Let 

u, v be the end vertices of f. Exactly one of the sets u, v contains the label ߱; 

without loss of generality let it be u. Let w = Ω - (v ׫ { ω }); then v and w 

are joined by an edge belonging to ܧఠ. As f was chosen arbitrarily, it has 

been proved that ܧఠ is an edge-dominating set (for an arbitrary ߱). 

Now let us look for the cardinality of ܧఠ. If x is an arbitrary vertex of 

Ω - { ߱ } of the cardinality d - 1 and y = Ω - (x ׫ { ߱ }), then the vertices x, y 

are joined by an edge belonging to ܧఠ and vice versa. The number of 

subsets of Ω – { ߱ } of the cardinality d-1 is equal to൫ଶௗିଶ
ௗିଵ ൯. Having in mind 

that for a subset x of Ω – { ߱ } of the cardinality d - 1 the set y = Ω - (x ׫ {߱}) 

is also a subset of Ω – { ߱ } of the cardinality d - 1, we find that the number 

of unordered pairs {x, y} of described sets is ଵ
ଶ

 ൫ଶௗିଶ
ௗିଵ ൯ and this is also the 

cardinality of ܧఠ. This number does not depend on ω, thus all the sets ܧఠ 

for ω = 1, ..., 2d – 1 have equal cardinalities. The edge-domination number 

of Od is thus at most ଵ
ଶ

 ൫ଶௗିଶ
ௗିଵ ൯ and its edge-domatic number is at least 2d - 

1.   

The edge-domatic number of a graph is evidently equal to the 

domatic number [Cock77] of its line-graph. The degree of each vertex of 

the line-graph of Od is 2d - 2 and this implies [Cock77] that its domatic 
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number (and thus the edge-domatic number of Od) is at most 2d - 1. It has 

been proved that the edge-domatic number of Od is 2d -1.  

Now suppose that there exists an edge-dominating set DE of a 

cardinality c < ଵ
ଶ

 ൫ଶௗିଶ
ௗିଵ ൯. For each edge e א DE the set consisting of e and all 

edges having a common end vertex with e has the cardinality 2d -1. As 

each edge of Od either is in DE, or has an end vertex in common with an 

edge of DE, the number of edges of Od is at most c(2d - 1) < ଵ
ଶ
 (2d - 1) ൫ଶௗିଶ

ௗିଵ ൯ 

= ଵ
ଶ

 ݀ ൫ଶௗିଵ
ௗିଵ ൯ . But the number at the right-hand side of this inequality is the 

number of edges of Od. ( The number of vertices is ൫ଶௗିଵ
ௗିଵ ൯ and the graph is 

regular of the degree d. ) As c(2d - 1) is less, we have a contradiction. Thus 

each Eω is an edge dominating set of the least cardinality and the edge-

domination number of Od is ଵ
ଶ

 ൫ଶௗିଶ
ௗିଵ ൯. □ 

3.6 GRAPH DECOMPOSITIONS 

Theorem 3.12 [Zeli85]: Let Td be a tree with the vertex set {a, b, c1 ..., cd-1,k1 , 

..., kd-1} and with the edges ab, aci, bki for i = 1, ..., d- 1. Then the graph Od 

can be decomposed into ଵ
ଶ

 ൫ଶௗିଶ
ௗିଵ ൯ pairwise edge-disjoint subgraphs which 

are all isomorphic to Td. Moreover, each of these subgraphs contains 

exactly one edge from each set ܧఠ for ߱ = 1, ..., 2d - 1. 
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Proof:  

Let ߱ א Ω, let ܧఠ have the same meaning as in the proof of Theorem 

3.11. Let e1, e2 be two elements of ܧఠ. Suppose that these edges have a 

common end vertex u. Let v1 (or v2) be the end vertex of e1 (or e2 

respectively) distinct from u. Then Ω - (u ׫ v1) = Ω - (u ׫ v2) = { ߱ } and u ת 

v1 = u ת v2 = ׎. This implies v1 = v2 and also e1 = e2, because Od is a graph 

without multiple edges. We have proved that there exist no two distinct 

edges of Eω which would have an end vertex in common. Now suppose 

that to the edges e1, e2 of ܧఠ there exists an edge f which has common end 

vertices with both e1, e2. 

Let u1 (or u2) be the common end vertex of e1 (or e2 respectively) and 

f. Let v1 (or v2) be the end vertex of e1 (or e2 respectively) distinct from u1 

and u2. Then Ω - (u1 ׫ v1) = Ω - (u2 ׫ v2) = { ߱ }, u1 ת v1 = u2 ת v2 = u1 ת u2 = 

 u2 ת This implies that none of the vertices u1, u2, v1, v2 contains ߱. As u1 .׎

 ఠ. According to the aboveܧ א and f { ߱ } = (u2 ׫ u1) - we have Ω ,׎ =

proved this is possible only if e1 = e2 = f. Therefore if the labels of e1 and e2 

are equal and e1 ≠ e2, then the distance between an arbitrary end vertex of 

e1 and an arbitrary vertex of e2 is at least 2. 

Now let e be an edge of Od. Let G[e] be the subgraph of Od consisting 

of the edge e, all edges having a common end vertex with e and of end 

vertices of all of these edges. This is a tree isomorphic to Td. If e1, e2 are two 
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distinct edges of G[e], then either they have a common end vertex, or there 

exists an edge of G[e] which has common end vertices with both of them. 

According to the above proved the labellings of edges of G[e] are pairwise 

different. 

Let T(߱) be the set of subtrees G[e] for all edges e ܧ אఠ. Any two 

distinct trees from T(߱) are edge-disjoint; otherwise there would exist two 

distinct edges of ܧఠ with a common end vertex or with the property that 

there exists an edge having common vertices with both of them. The 

cardinality of T(߱) is equal to that of ܧఠ, namely ଵ
ଶ

 ൫ଶௗିଶ
ௗିଵ ൯. Each tree from 

T(ω) has 2d - 1 edges. Hence the union of all trees from T(߱) has 

ଵ
ଶ

 ൫ଶௗିଶ
ௗିଵ ൯ሺ2݀ െ 1ሻ = ଵ

ଶ
 ݀൫ଶௗିଵ

ௗିଵ ൯ edges and this is the number of edges of Od. It 

has been proved that T(߱) is the required decomposition. □ 

To contract an edge of a graph means to delete this edge and to 

identify its end vertices. 

Theorem 3.13 [Zeli85]: The graph Od‘(߱) obtained from Od by contracting 

every edge e labeled with ߱, where ߱ is an integer between 1 and 2d - 1, is 

a bipartite graph. 

Proof:  

By the described contractions each tree from T(߱) is transformed into 

a star. Hence Od‘(߱) is a graph which is the union of edge-disjoint stars 
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with the property that each of them contains all edges incident with its 

centre in Od‘(߱). Every graph with this property is bipartite. □ 

Let P(n) be the set of all linear orderings of the set {1, ..., n}. Let π1, π2 

be elements of P(n). We say that π1, π2 are dihedrally equivalent, if either 

π1= π2, or π2 can be obtained from π1 by acyclic permutation, by reversing 

or by a super-position of a cyclic permutation and a reversing. The 

relation thus defined is evidently an equivalence on the set P(n). 

Let C be a circuit of the length n whose edges are labelled by 

pairwise different numbers from the set {1, ...,n}. If we run around C and 

write the labels of the traversed edges, we may obtain different linear 

orderings of the set {1, ...,n} according to in which vertex we have started 

and in which sense we have gone. These orderings form one class of the 

dihedral equivalence. We may say that to C a class of the dihedral 

equivalence on P(n) corresponds. 

The number of classes of the dihedral equivalence on P(n) is 

evidently equal to ଵ
ଶ
 (n- 1)!.□ 

Theorem 3.14 [Zeli85]: The graph Od with the labelling ߣ is the union of ଵ
ଶ
 

(2d - 2)! circuits of the length 2d - 1 which correspond to pairwise different 

classes of the dihedral equivalence on P(2d - 1). Each edge of Od belongs to 

(d - l)!2 and each vertex to ଵ
ଶ
 d!( d - 1)! such circuits. 
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Proof: 

Let C be a class of the dihedral equivalence on P(2d - 1). Let π א C 

and [a1, ..., a2d-1] = π. Let U1 = {ai | i even, 2 ≤ i ≤ 2d - 2}. We construct the 

sets U2, ..., U2d-1 recursively. If Ui is constructed for some i, then Ui+l = Ω - 

(Ui ׫ {i}). Any two vertices Ui, Ui+l are adjacent in Od. Further it may be 

easily proved that Ω - (U2d-1 ׫ {2d-1}) = U1 and the vertices U2d-1, U1 are 

adjacent, too. We have obtained a circuit in Od; evidently this circuit 

corresponds to C. We may construct such a circuit for each class of the 

dihedral equivalence on P(2d - 1). From the construction it is evident that 

circuits corresponding to the same class are identical and that each edge of 

Od is contained in some of these circuits. The family of the mentioned 

circuits will be denoted by Ձ. 

The graph Od is evidently vertex-transitive and edge-transitive. (A 

graph is vertex-transitive, if to any two of its vertices there exists its 

automorphism which maps one vertex onto the other. Analogously the 

edge-transitivity is defined.) This implies that for any two vertices V1, V2 

of Od the number of circuits of Ձ containing V1 is equal to the number of 

those containing V2 and an analogous assertion holds for edges, too. Thus 

the number of circuits from Ձ containing any vertex is obtained by 

dividing the sum of lengths of all circuits of Ձ, namely ଵ
ଶ
 (2d-2)!( 2d - 1), by 

the number of vertices of Od, namely ൫ଶௗିଵ
ௗିଵ ൯; the result is ଵ

ଶ
 d!( d - 1)!. If we 
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divide the number ଵ
ଶ
 (2d-2)!( 2d - 1) by the number of edges of Od, namely 

ଵ
ଶ

 ݀ ൫ଶௗିଵ
ௗିଵ ൯, we obtain the number of circuits of Ձ containing any edge, 

namely (d - l)!2. □ 

3.7 HAMILTONIAN CIRCUITS AND PATHS 

It is well known that O3 is not Hamiltonian and that it does not have 

an edge 3-coloring (three disjoint 1-factors). At one time [Bigg72] it was 

thought that such anomalies might persist throughout the whole family 

but that is now known to be false: 

Theorem 3.15 [Bigg79]: When d = 4, 5, 6, 7, Od contains [d/2] edge-disjoint 

Hamiltonian circuits [Mere72][Mere73]. 

It is tempting to conjecture that Theorem 3.15 is true for all d ≥ 4. 

However, in general, the construction of even a single Hamiltonian circuit 

in Od seems to be rather difficult, one advance on Theorem 3.15 is the 

construction of one Hamiltonian circuit in O8 [Math76]. In addition, 

Shields and Savage [Shie04] used a carefully designed heuristic to find 

Hamiltonian circuits in Od for 4 ൑ d ൑ 14. 

Lov´asz [Lov´a70] conjectured that every connected vertex-transitive 

graph has a Hamiltonian path. An attempt to provide more evidence to 

support Lov´asz conjecture is to compute the Hamiltonian paths for d ൒ 2. 
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However, a direct computation of Hamiltonian paths in Od is not feasible 

for large values of d. The graph O2 (a triangle) and O3 (the Petersen graph), 

both of which have Hamiltonian paths (Figure 6). Balaban [Bala72] 

showed that O4 and O5 have Hamiltonian paths. Meredith and Lloyd 

[Mere72] showed that O6 and O7 have Hamiltonian paths. Mather 

[Math76] showed that O8 has a Hamiltonian path. Shields and Savage 

[Shie99] used a carefully designed heuristic to find Hamiltonian paths in 

Od for d ൑ 14.  Bueno and Faria showed that Od has a Hamiltonian path for 

15 ൑ d ൑ 18 [Buen09]. Instead of directly running any heuristics, they used 

existing results on the middle levels problem [Shie99][Shie09]. 

 

 
Figure 6: The O2 and O3, with highlighted Hamiltonian paths [Buen09]. 
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3.8 CODE 

In Section 3.2 we noted that a maximal independent set M in any d-

regular graph must satisfy the inequality (d + 1)| M | ≥ | V |. Equality 

holds if the collection of “disks” D(m) (m Ԗ M) covers the vertex-set V 

exactly. In order to connect with later terminology, [Bigg79] used the term 

perfect 1-code to denote a maximal independent set with the minimum 

cardinality ଵ
ௗାଵ

|V|. 

When is there a perfect 1-code in Od? The obvious necessary 

condition that d + 1 should be a divisor of ൫ଶௗିଵ
ௗିଵ ൯ is by no means sufficient. 

If x and y are distinct vertices of a perfect 1-code M in Od, then D(x) and 

D(y) do not overlap, and we have ߲(x, y) ≥ 3. It follows from Theorem 3.3 

that | x ת y | < d - 2; hence any (d - 2) subset of Ω is contained in at most 

one vertex belonging to M. But each vertex contains d - 1 such subsets, and 

the total number occurring is, 

ሺ݀ െ 1ሻ|ܯ| ൌ  ௗିଵ
ௗାଵ

 ൫ଶௗିଵ
ௗିଵ ൯ ൌ  ൫ଶௗିଵ

ௗିଶ ൯ [Bigg79] 

Thus, every (d - 2)-subset of Ω occurs exactly once as subset of a 

vertex belonging to M. It has been shown that M must be a Steiner system 

S(d - 2, d - 1, 2d - 1); that is, a collection of (d - 1) subsets usually called 

blocks of a (2d - 1) set with the property that each (d – 2) subset occurs just 

once in a block. 
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If a perfect 1-code in Od, or S = S(d- 2, d - 1, 2d - 1), does exist, then it 

induces a unique extended system S+ = S(d - 1, d, 2d). The extension is 

constructed by adding one new label ∞ to Ω and taking the new blocks to 

be of two kinds: (i) the blocks of S with ∞ added, and (ii) the complements 

in Ω of the blocks of S. 

Conversely, if a system with the parameters of S+ is given, then S 

may be obtained by deleting one label and taking complements of the 

blocks not containing it. Assmus and Hermoso [Assm74] have shown that 

if S+ has a flag-transitive group of automorphisms, then d = 4 or d = 6. 

Hence, if a perfect 1-code in Od exists when d ≠ 4, 6, its construction is 

certain to be very complicated. 

Theorem 3.16 [Bigg79]: If there is a perfect 1-code in Od with flag-transitive 

extension, then d = 4 or 6. 

The systems do exist in the cases d = 4 and d = 6; a representation of 

the perfect 1-code in O4 is shown in Figure 7. 
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Figure 7: A perfect 1-code in O4 [Bigg79]. 

 

Since it seems that the simple lower bound for the size of a maximal 

independent set in Od is rarely attained, the difficult question of finding 

the actual minimum arises [Bigg79].  



 

46 
 

CHAPTER 4  

APPROXIMATION ALGORITHMS FOR 

INDEPENDENT DOMINATION IN ODD 

GRAPHS 

4.1 INTRODUCTION 

In sections 3.2 and 3.8 we saw that the lower bound of the minimum 

maximal independent set, which is |V|/(d+1), is rarely attained and the 

actual cardinality of it is an open problem. In this chapter we present 

approximation algorithms that find an approximate minimum 

independent dominating set by partitioning the vertices of the odd graphs 

to simplify the complex structure of the graph. In section 4.2, a 

partitioning scheme will be presented with some observations. In section 

4.3, the approximation algorithms are described and the correctness of the 

algorithm along with analysis is given. In addition, an example of finding 

the MIDS in O4 is given to illustrate the algorithm. Generic greedy and 

randomized algorithms are given in section 4.4. Finally, in section 4.5 we 
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will compare the performance of our algorithms with the generic 

algorithms empirically. 

4.2 VERTICES PARTITION 

Let Ω = {1, 2, . . . ,2d - 1}, p = 2d -2 and q = 2d - 1, so Ωௗ = Ωௗିଵ ׫ {p, q}. 

If s ك Ωௗିଵ, then ݏҧ  = Ωௗିଵ\ s, that is, the complement of s with respect to 

Ωௗିଵ = {1, 2, …., 2d – 3}. 

 The set of vertices of Od is divided into four categories according to 

whether their labels contain either p or q, both p and q or neither. So, V is 

partitioned into four sets: A, B, C and D such that A consists of all subsets 

with both p and q, B consists of all subsets with neither p nor q, C consists 

of all subsets with p but not q, and D consists of all subsets with q but not 

p. Thus, for d ൒ 3, A = {{x1, x2, . . . , xd-3, p, q} | xi א Ωௗିଵ}, B = {{x1, x2, . . . , xd-

1} | xi א Ωௗିଵ}, C = {{x1, x2, . . . , xd-2, p} | xi א Ωௗିଵ}, and D = {{x1, x2, . . . , xd-2, 

q} | xi א Ωௗିଵ}. Since Vd-1 is the set of all (d - 2)-subsets of Ωௗିଵ, the sets B, C 

and D can be rewritten as 

B = {ݏҧ | א ݏ ௗܸିଵ}, C = {׫ ݏ ׫ ݏ} = ௗܸିଵ}, D א ݏ | ݌  .{ௗܸିଵ א ݏ | ݍ

The cardinalities of these sets are given by: |A| = ൫ଶௗିଷ
ௗିଷ ൯, |B| = |C| 

= |D| = ൫ଶௗିଷ
ௗିଶ ൯ = |Vd-1|. 
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The partitioning of the set of vertices of Od induces a partitioning of 

its edges as defined by 

Eab = {(a, b) | a א A, b א B and a ת b = ׎}, 

Ebc = {(b, c) | b א B, c א C and b ת c = ׎} = {( ׫ ݏ  ,{ௗܸିଵ א ݏ | (ҧݏ ,݌

Ebd = {(b, d) | b א B, d א D and b ת d = ׎} = {( ׫ ݏ  ,{ௗܸିଵ א ݏ | (ҧݏ ,ݍ

Ecd = {(c, d) | c א C, d א D and c ת d = ׎} = ڂ ሼሺ݌ݏ, ,ሻݍݐ ሺ݌ݐ, ை೏షభאሻሽሺ௦,௧ሻݍݏ . 

The last equality follows from the fact that an edge (s, t) in Od-1 gives 

rise to two edges linking two vertices in C with two vertices in D, namely 

(sp, tq) and (tp, sq). 

Figure 8 shows the new drawings of the odd graph Od, d = 2, 3, 4. In 

Figure 8 (b) for the Peterson graph, A = {{4, 5}}, B = {{1, 2}, {1, 3}, {2, 3}}, C = 

{{1, 4}, {2, 4}, {3, 4}} and D = {{1, 5}, {2, 5}, {3, 5}} (here, p = 4; q = 5). 

 

 
Figure 8: New drawings of the odd graph Od, d = 2, 3, 4. 
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Proposition 4.1: Given the partition {A, B, C, D} of the vertices of the odd 

graph Od, d ൒ 3, we have 

(i) Each vertex in A is connected to d vertices in B. 

(ii) Each vertex in B is connected to d - 2 vertices in A, one vertex in C 

and one vertex in D. 

(iii) Each vertex in C is connected to 1 vertex in B and d - 1 vertices in 

D. 

(iv) Each vertex in D is connected to 1 vertex in B and d - 1 vertices in 

C. 

Proof:  

(i) Observe that all subsets in C ׫ D contain p or q while subsets in B 

contain neither. 

Hence, all subsets disjoint from those in A are contained in B. So, let a 

= {x1, x2, . . . , xd-3, p, q} א A and Ba = {{y1, y2, . . . , yd-1} | yi א ሼݔଵ, ,ଶݔ . . . ,  {ௗିଷሽതതതതതതതതതതതതതതതതതതതതതݔ

be the subsets in B disjoint from a. 

Then, |Ba| is the number of ways to choose d-1 numbers from Ωௗିଵ\ 

{x1, x2, . . . , xd-3}. Hence, the number of subsets in B disjoint from a is |Ba| 

= ൫ଶௗିଷିሺௗିଷሻ
ௗିଵ ൯ = ൫ ௗ

ௗିଵ൯ = d. 
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 (ii) Let b א B. Since all subsets in A contain both p and q, and those in 

B contain neither, the number of subsets in A disjoint from b is equal to the 

number of ways to choose d - 3 numbers from Ωௗିଵ \ b. Hence, b is 

connected to exactly ൫ଶௗିଷିሺௗିଵሻ
ௗିଷ ൯ = ൫ௗିଶ

ௗିଷ൯ = d – 2 subsets in A of the form 

{x1, x2, . . . , xd-3, p, q}, where xi א തܾ, 1 ൑ i ൑ d - 3. Since all subsets in C 

contain p but not q, and those in B contain neither, the number of subsets 

in C disjoint from b is equal to the number of ways to choose d - 2 numbers 

from Ωௗିଵ \ b. Hence, the number of subsets in C disjoint from b is 

൫ଶௗିଷିሺௗିଵሻ
ௗିଶ ൯ = ൫ௗିଶ

ௗିଶ൯ = 1. That is, b is disjoint from exactly one subset in C, 

namely തܾ ׫ p. Similarly, b is disjoint from exactly one subset in D, namely 

തܾ ׫ q. 

(iii) Let c א C and c’ = c \ {p}. Then, the number of subsets in B 

disjoint from c is equal to the number of ways to choose d - 1 numbers 

from Ωௗିଵ \ c’. Hence, the number of subsets in B disjoint from c is 

൫ଶௗିଷିሺௗିଶሻ
ௗିଵ ൯ = ൫ௗିଵ

ௗିଵ൯ = 1.  That is, c is disjoint from exactly one subset in B, 

namely ܿ’ഥ . By definition, C consists of all (d - 2)-subsets of Ωௗିଵ suffixed by 

p, and D consists of all (d - 2)-subsets of Ωௗିଵ suffixed by q. Note that c’ is a 

(label of a) vertex in Vd-1. Hence, by definition of Od-1, c’ is disjoint from d - 

1 vertices x1, x2, . . . , xd-1 in Od-1. Then, for i א {2 ,1, . . . , d – 1}, c is disjoint 

from xi ׫ q in Od. Consequently, c is disjoint from exactly d - 1 subsets in D. 

(iv) Similar to (iii). □ 



 

51 
 

By Proposition 4.1, the following bipartite graphs are present in Od: 

Od[Eab] is a bipartite graph in which ׊ a א A deg(a) = d and ׊ b א B deg(b) = 

d - 2, Od[Ecd] is a (d - 1)-regular bipartite graph, and Od[Ebc] and Od[Ebd] are 

1-regular bipartite graphs. Moreover, {Od[Eab] , Od[Ecd], Od[Ebc], Od[Ebd] } is 

a decomposition of the odd graph Od into four bipartite graphs. 

Lemma 4.1: The odd graph Od, d ൒ 2, contains |Vd-1| vertex-disjoint paths 

of length 2. 

Proof: 

See Figure 9. Let x א Vd-1. Then c = x ׫ p א C, b = ݔҧ א B, and d = x ׫ q א  

D. Since (c, b) and (b, d) are edges in Od, π = c, b, d is a path of length 2 in 

Od. Obviously, if π’ = c’, b’, d’ with c’ ≠ c, then π and π’ are vertex-disjoint. 

It follows that the number of such paths is |C| = |Vd-1|.□ 

As an illustration of Lemma 4.1, the following three paths are present 

in the Peterson graph shown in Figure 8 (b): π1 = 14, 23, 15, π2 = 24, 13, 25 

and π3 = 34, 12, 35. 
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Figure 9: Od contains |Vd-1|vertex-disjoint paths. 

 

Theorem 4.2: B ׫ C is a vertex cover for Od of size 2|Vd-1|, which is 

minimum. 

Proof:  

Recall that Od[Ecd] is the (d - 1)-regular bipartite subgraph induced by 

the vertex set C ׫ D. By Hall and Konig classical arguments, Od[Ecd] has a 

perfect matching whose cardinality is equal to a minimum vertex cover C 

for Od[Ecd]. Thus, |C| = |Vd-1|. By Lemma 5.1, Od, d ൒ 2, contains |Vd-1| 

vertex-disjoint paths πi = ui, vi, wi, where ui א C, vi א B, wi א D, 1 ൑ i ൑  |Vd-

1|. So, C forms a subset of the end-vertices of these paths. Since these 

paths are vertex-disjoint, they contain exactly |Vd-1| edges that are 

covered by C. Consequently, |Vd-1| additional vertices are required to 

cover the remaining |Vd-1| edges, and hence all paths. It follows that the 

cardinality of any vertex cover for Od is at least 2|Vd-1|. 



 

53 
 

On the other hand, since any edge in Od has one of its ends in either 

B or C, it immediately follows that B ׫ C is a vertex cover for Od of 

cardinality |B ׫ C| = 2|C| = 2|Vd-1|.□ 

Corollary 4.1: A ׫ D is a maximum independent set for Od of size Vd - 

2|Vd-1|. 

4.3 APPROXIMATION ALGORITHMS 

It is clear from section 4.2 that the set of vertices in set B is a maximal 

independent set. The approximation algorithms that we propose reduce 

the set of the maximal independent set while maintaining the 

independence and the domination properties. Next, a detailed description 

of the algorithms is given. 

4.3.1 ALGORITHMS DESCRIPTION 

The algorithms can be divided into 4 stages. In stage 1, the 

algorithms perform vertices partitioning and initialize set IDSB with set B. 

In stage 2, they find an independent set in ࣟCD (Od[Ecd] which is a (d - 1)-

regular bipartite graph). In stage 3, they remove vertices from set IDSB and 

find the fixed vertices from set IDSB and set A. In stage 4, the algorithms 

find an independent dominating set in ࣟBA (Od[Eab] which is a bipartite 

graph). Next, we will discuss each stage in detail. 
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Stage 1: 

First, the algorithm partition Od to the sets A, B, C and D as explained 

in section 5.2. At the initialization stage the algorithm initializes set IDSB 

with set B.  

Stage 2: 

Next, the algorithm finds the independent set of vertices (ISCD) in the 

induced bipartite graph ࣟCD. We design two algorithms for obtaining ISCD, 

The first one finds ISCD with the following restriction, all shortest distance 

between any two vertices in set C or D are greater than two, and on the 

other hand, the second method relaxes the restriction and allows two 

vertices with shortest distance of length 2 in ISCD.   

The first algorithm for finding ISCD: The algorithm finds a set of 

vertices (ISC) from set C with the condition that the shortest distance 

between any pair of vertices is greater than two. The algorithm starts by 

choosing a vertex from set C, let it be c1 then add it to ISC. Then, the 

algorithm finds a vertex from set C, say cn such that the shortest distance 

between cn and any vertex in ISC is equal to the diameter, then it adds cn to 

ISC, repeat this step until there is no more vertices satisfy the condition. At 

this stage, the distance between all vertices in ISC is equal to the diameter. 

The algorithm then finds every vertex from set C such that the distance 

between a vertex and all vertices in ISC is greater than two, add the 
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vertices to ISC. The algorithm repeats the previous steps for each vertex in 

C as the starting vertex, and lastly, it selects ISC with maximum 

cardinality. The algorithm deletes all adjacent vertices to the vertices in 

ISC. The algorithm repeats all previous steps to find ISD, and finally takes 

the union of ISC and ISD as ISCD. Empirically, it was found that this method 

works for d ≤ 7. 

The second algorithm for finding ISCD:  The algorithm chooses the 

first vertex from C, for example the order of vertices in O3 is {14,24,34} and 

the first vertex is {14}, if the vertex is adjacent to d-1 vertices then adds it to 

ISCD and delete it with the adjacent vertices. Then, it chooses the first 

vertex from D, if it is adjacent to d-1 vertices then adds it to ISCD and delete 

it with adjacent vertices. The algorithm repeats in order for all vertices in 

ࣟCD, until there is no vertex that is adjacent to d-1 vertices. The algorithm 

repeats the previous steps and finds vertices that have d-2 neighbors, and 

so on until the cardinality of the adjacent vertices of all vertices is equal to 

2.  

We will refer to Algorithm 1 as Approx. 1 if it uses Algorithm 2 to 

find ISCD and Approx. 2 if it uses Algorithm 3. 

Stage 3: 

After the algorithm finds the ISCD from the induced bipartite ࣟCD, it 

removes any vertex from set IDSB if it is adjacent to vertices or a vertex in 
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ISCD. Let fixedB be a set of vertices in IDSB, such that a vertex v א fixedB is 

adjacent to w א C and u א D, where w is not dominated by any vertex from 

set D and vertex u is not dominated by any vertex from set C. Vertices 

from fixedB cannot be removed from the IDSB, since removing such 

vertices will violate the domination property because the adjacent vertices 

will be undominated. Consequently, any vertex from set A that is adjacent 

to a vertex from fixedB will be added to a set fixedA.  

Stage 4: 

Let set vA = A \ fixedA. The algorithm chooses a vertex from set vA 

if the vertex is adjacent to d vertices from set IDSB and removing the d 

vertices from the IDSB does not violate the domination property, we add 

the chosen vertex to the IDSA and delete the adjacent vertices from the 

IDSB. If removing the d adjacent vertices causes a violation in the 

domination property, the algorithm select another vertex from vA and 

repeats the previous steps. The algorithm repeats the previous steps for all 

vertices in vA. The algorithm repeats all previous steps for checking 

cardinalities of adjacent vertices from d-1 to 2. The algorithm will exit the 

loop if all vertices in vA cause a domination violation. At the end of this 

stage the algorithm sets the IDSBA to the union of IDSB and IDSA. Finally, 

the algorithm finds the final IDS (the independent dominating set for Od) 

by taking the union of ISCD and IDSBA.  
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Algorithm 1 Approximation Algorithm for Independent Dominating Set 

Input: Od 

Output: Independent Dominating Set (IDS) 

1: partition Od into sets A, B, C, and D as defined above, IDSB ՚ B 

2: ISCD ՚  FindISCD (C, D) 

3: IDSB ՚ IDSB\ ׊ v such that N(v) א ISCD 

4: Find fixed vertices from set IDSB and A 

5: IDSA՚  vA՚ A \ fixedA ,׎

6: for i ՚ d  to 2 do Step 7, 8 and 9 

7: for ׊ v א vA do Steps 8 and 9  

8: choose v such that |N(v)| = i and removing N(v) does not cause a violation 

9: IDSB ՚ IDSB \ N(v), IDSA ՚ IDSA ׫ {v} 

10: IDSBA ՚ IDSB ׫IDSA 

11: IDS ՚ IDSBA ׫ ISCD 

Figure 10: Algorithm 1 for Independent Dominating Set. 

 

Algorithm 2 Algorithm for ISCD such that ࣔ(u, v) > 2 for ׊ u, v א ISCD 

Input: C, D 

Output: ISCD 

1: ISCD ՚ ׎, ISC ՚ ׎, ISD ՚  ׎

2: for each v א C do Steps 3, 4, 5 

3: add v to ISC 

4: starting from v add every vertex from C to ISC such that the distance between 

any pair of vertices in ISC is d-1. 

5: find all vertices in C with dis. > 2 to all vertices in ISC and add them to ISC 

6: select ISC with maximum cardinality   

7: delete all adjacent vertices to ISC from D 

8: repeat Steps 2, 3, 4, 5 and 6 for all vertices in D 

9: ISCD ՚ ISC ׫ ISD 

Figure 11: Algorithm 2 the first algorithm for finding ISCD. 
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Algorithm 3 Algorithm for ISCD such that ׌ u, v א ISCD with ࣔ(u, v) = 2 

Input: C, D 

Output: ISCD 

1: ISCD ՚ ׎ 

2: for i ՚ d-1 to 2 do Step 3, 4, and 5 

3: for each vertex v א C starting from the first vertex and u א D starting from the 

first vertex do Steps 4 and 5 

4: if |N(v)| = i then add it to ISCD and delete N[v] 

5: if |N(u)| = i then add it to ISCD and delete N[u] 

Figure 12: Algorithm 3 the second algorithm for finding ISCD. 

 

Example: We will demonstrate the described algorithms for finding 

the minimum independent dominating set in O4. 

First stage: 

Referring to step 1 in Algorithm 1, the algorithm partition the graph 

to the following sets, 

A={167, 267, 367, 467, 567}, B={123, 124, 125, 134, 135, 145, 234, 235, 

245, 345}, C={126, 136, 146, 156, 236, 246, 256, 346, 356, 456}, D={127, 137, 

147, 157, 237, 247, 257, 347, 357, 457}.  

IDSB is initialized with B, and the result is the following set, 

IDSB = {123, 124, 125, 134, 135, 145, 234, 235, 245, 345}. The result 

graph can be seen in Figure 13 (the dominating vertices are colored with 

black). 
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Figure 13: O4 after the first stage. 

 

Second stage: 

Finding ISCD using Algorithm 2: 

First we select a vertex from C. let this vertex be the first one and add 

it to ISC, so ISC = {126}. 

Referring to step 4 in Algorithm 2, starting from vertex {126}, we find 

a set of vertices such that the distance between any pair of vertices is equal 

to d-1 = 3, then add them to ISC. The algorithm finds only one vertex 

which is {236} so, ISC = {126, 346}. 
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Since there is no a vertex such that the distance between a vertex and 

both {126, 346} is greater than 2, step 5 will not find any vertex. 

The algorithm repeats the previous steps for all vertices in C. The 

result is the following sets, 

ISC = {136, 246}, ISC = {146, 236}, ISC = {156, 236}, ISC = {236, 146}, ISC = 

{246, 136}, ISC = {256, 136}, ISC = {346, 126}, ISC = {356, 126}, ISC = {456, 126}. 

Since all ISC have the same cardinality we will select any set, let ISC = 

{126, 346}. 

Step 7 deletes the adjacent vertices which are {457, 357, 347} and {127, 

157, 257} from set D. 

Step 8 repeats the previous steps for D and the result will be ISD= 

{137, 247}. 

Finally, ISCD = ISC ׫ ISD= {126,137,247,346}. 

Finding ISCD using Algorithm 3: 

Step 4 in Algorithm 3 selects the first vertex from set C which is {126} 

, the algorithm checks if it is adjacent to d-1 vertices which is true so, we 

add it to ISCD and delete it with the adjacent vertices which are {457, 357, 

347}.  
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Step 5 selects the first vertex from D that is adjacent to 3 vertices 

which is {127} add it to IDSCD and delete it with the adjacent vertices 

which are {346, 356, 456}.  

At this stage there are no more vertices that are adjacent to 3 vertices, 

so we check for vertices that are adjacent to two vertices. Step 4 and 5 

select vertex {136} from C and vertex {137} from D which are adjacent to 

two vertices and delete them with the adjacent vertices which are {257, 

247} and {256, 246}. Again, step 4 and 5 select vertices from C and D that 

are adjacent to 2 vertices, the algorithm selects {236} and {237} adds them 

to ISCD and deletes them with the adjacent vertices which are {157,147} and 

{156, 146}.  

At this stage there are no more vertices that are adjacent to 2 vertices, 

so we stop. ISCD = {126, 127, 136, 137, 236, 237}. 

Third stage: 

We will choose the result found by Algorithm 2, so IDSCD = {126, 137, 

346, 247}. The result graph is shown in Figure 14. 
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Figure 14: O4 after the second stage. 

 

Step 3 in Algorithm 1 deletes vertices from set IDSB that are adjacent 

to any vertex in ISCD. Those vertices are {345, 125, 135, 245}. So, IDSB= {123, 

125, 135, 145, 234, 235}. The result graph is shown in Figure 15.  
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Figure 15: O4 after removing deletes vertices from set IDSB. 

 

Step 4 finds the fixed vertices in IDSB and set A. Notice the vertices 

{237, 147} from set D and {146, 236} from set C, they are not dominated by 

any vertices from D and C, those vertices are connected to vertices {145, 

235} from IDSB which cannot be removed from IDSB. The adjacent vertices 

to {145, 235} from set A will be the fixed vertices in set A which are {267, 

367, 167, 467}. The graph after finding the fixed vertices is shown in Figure 

16 (The fixed vertices are circled). 
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Figure 16: O4 after the third stage. 

 

Fourth stage: 

Step 5: vA = A\ fixedA = {567} 

Step 8 selects {567} from vA and checks the number of adjacent 

vertices which are {123, 124,134, 234} from set IDSB. Since {567} is adjacent 

to d = 4 vertices and removing the adjacent vertices will not violate the 

domination property, we add it to IDSA, delete it from vA and delete the 

adjacent vertices from IDSB which are {145, 235}. Since there is no more 

vertices in vA we stop. IDSBA = IDSB ׫ IDSA = {145, 235, 567}. 



 

65 
 

 
Figure 17: O4 after the fourth stage. 

 

Step 11: IDS = ISCD ׫ IDSBA = {126, 247, 346, 137, 145, 235, 567}. The 

final IDS can be seen in Figure 17. 

4.3.2 CORRECTNESS 

In this section, we will show that Algorithm 1 always find a correct 

independent dominating set, in particular we will prove that the 

algorithm maintains the independence and the domination properties 

throughout the algorithm execution. 
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Proposition 4.2: Approx. 1 for d ≤ 7 and Approx. 2 for any d find a correct 

independent dominating set. 

Proof: 

It is clear that the set of vertices in set B is a maximal independent 

set, so the independence and the domination properties are maintained. 

After the algorithm finds ISCD from set C and D, removing the adjacent 

vertices from IDSB in step 3 in Algorithm 1 must lead to correct IDS which 

must preserve the domination and the independence properties. Now let’s 

consider removing adjacent vertices from IDSB, we have three cases where 

a vertex from set IDSB must be removed to maintain the independence 

property. Let the dominating vertex, which is adjacent to a vertex from set 

IDSB; be from set D, the argument is true for a dominating vertex from set 

C by symmetry. The first case (Figure 18): a vertex from IDSB is connected 

to dominating vertices from set D and set C. The algorithm can remove 

vertex b1 without violating the domination and the independence 

properties. Vertices cn and dn are not connected since there is no a cycle of 

length 3 in Od so, vertices cn and dn are dominating and independent. 
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Figure 18: The first case of removing vertices from IDSB . 

 

Case two (Figure 19): a vertex from set IDSB is connected to a 

dominating vertex from D and an undominating vertex from set C. In 

addition, vertex cn is also dominated by different vertex from D. We can 

remove vertex b1 without violating the domination and independence 

properties. Since vertex cn is dominated and the two vertices from D are 

independent so, we preserve the domination and the independent 

properties. 

 

 
Figure 19: The second case of removing vertices from IDSB. 
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The third case (Figure 20): a vertex from IDSB is connected to a 

dominating vertex from D and an undominating vertex from C. In 

addition, cn vertex is also not dominated by any vertex from D. When we 

remove vertex b1, the domination property will be violated since vertex cn 

will be not dominated by any vertex. The presented approximation 

algorithms do not allow case 3, let’s consider the two methods to find set 

ISCD. 

 

 
Figure 20: The third case of removing vertices from IDSB. 

 

Method 1: the algorithm finds the maximum independent set such 

that the distances between all vertices are greater than two, notice that the 

distance between the dominating vertex dn and the undominating vertices 

from D is at least 3 which means the independent dominating set is not 

maximum, since one of these vertices must be dominating to have 

maximum independent dominating set, so this case is prevented. Method 
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1 does not find the maximum independent set for d ≥ 8, so this case exists 

when d ≥ 8. Method 2: If vertex cn is connected to d-1 undominating 

vertices from set D (the algorithm has not selected any vertex from the d-1 

vertices), then vertex cn must have been chosen as a dominating vertex so 

we cannot have such a case.  

In addition to the previous cases, we have one case where removing 

a vertex from IDSB is caused by selecting a vertex from set A to be added 

to the dominating set. This case is shown in Figure 21. This case occurs 

when vertex b1 is connected to vertices from set C and D such that they are 

not dominated by any other vertices either from set D and C respectively. 

 

 
Figure 21: A case of removing vertices from IDSB which violates the domination property. 
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If vertex b1 is removed, vertices C and D will be undominated which 

violate the domination property. The algorithm does not allow removing 

vertex b1 by making it a fixed vertex, consequently all d-2 vertices from set 

A, which are connected to that fixed vertex, cannot be chosen to be added 

to the dominating set, which means vertex b1 cannot be removed from the 

independent dominating set, hence the algorithm preserves the 

domination prosperity.  

When the algorithm chooses a vertex a א A to be added to the 

independent dominating set, a is either connected to dominating or 

dominated vertex b א B. If b is dominated then adding a and removing b 

will not violated the domination and the independence properties, if b is 

dominating then removing the vertex b from the dominating set will 

preserve the domination property. We have one situation where 

domination property is violated, that is when a vertex a is connected to a 

dominating b, and the dominating b is connected to another undominating 

vertex from set A which is not connected to any other dominating vertex 

from B except b this situation is depicted in Figure 22. Clearly the 

algorithm prevents this situation by checking if a vertex from B is the only 

dominating vertex connected to a.□ 
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Figure 22: A situation where domination property is violated. 

 

4.3.3 ANALYSIS 

Partitioning the graph requires O(|V|), Finding the vertices from set 

C and D costs O(2|Vd-1|2) using Algorithm 2, and O(2d2|Vd-1|) using 

Algorithm 3. Finding fixed vertices from set B requires O(|Vd-1|). The 

process of adding vertices from set A to the independent dominating set 

costs O(d4 |A|). So the time complexity is O(|V|+2|Vd-1|2+ |Vd-1|+  d4 

|A|) = O(|Vd-1|2) using Approx.1 and O(|V|+2d2|Vd-1| +|Vd-1|+ d4 |A|) 

= O(d4 |A|) using Approx. 2. 
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4.4 GREEDY AND RANDOM ALGORITHMS 

 Two well-known algorithms for independent dominating set in a 

graph are greedy and random algorithms, which are listed in Figures 23 

and 24. The algorithms are similar, difference is that in the random, the 

vertex selected in step 4 is selected at random; whereas in the greedy it is a 

maximum degree vertex (ties are broken randomly). 

4.4.1 ALGORITHMS DESCRIPTION 

The greedy algorithm selects a vertex of maximum degree, while the 

random algorithm selects a vertex at random, then both algorithms deletes 

that vertex and all of its neighbors from the graph, and repeats this 

process until the graph becomes empty. 
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Algorithm 4 Greedy Independent Dominating Set 

Input: Od 

Output: Independent Dominating Set (IDS) 

1: IDS ՚ ׎ 

2: while V ≠ ׎ do 

3: choose v א V such that the degree of v is maximum 

4: IDS ՚ IDS ׫ {v} 

5: V ՚ V \ N[v] 

6: end while 

Figure 23: Algorithm 4 Greedy Independent Dominating Set. 

 

4.4.2 CORRECTNESS 

During the execution of the algorithm, the set of not yet considered 

vertices gives the set of all vertices that could be added to IDS without 

violating the independence property of IDS. Algorithm 4 and 5 constructs 

a maximal independent set, since we always remove all conflicting 

vertices.  

4.4.3 ANALYSIS 

It is clear from the algorithms that they require linear time in the 

number of vertices and edges, in addition to the time required for 

searching the maximum degree vertex in the greedy algorithm. However, 
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the greedy algorithm can be implemented in time linear in the number of 

edges and vertices, independent of the degree. 

 

Algorithm 5 Random Independent Dominating Set 

Input: Od 

Output: Independent Dominating Set (IDS) 

1: IDS ՚ ׎ 

2: while V≠ ׎ do 

3: choose v א V at random 

4: IDS ՚IDS ׫ {v} 

5: V ՚ V \ N[v] 

6: end while 

Figure 24: Algorithm 5 Random Independent Dominating Set. 

 

4.5 EXPERIMENTAL RESULTS 

4.5.1 EXPERIMENTAL SETUP 

This section presents experimental results and comparisons of the 

approximation algorithms discussed above: the new approximation 

algorithms, the greedy and the randomized algorithms. All algorithms 

were performed on odd graphs of dimension 3 to dimension 13 except the 

first algorithm which was performed on odd graphs up to dimension 7. 
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Our main measure of performance is the cardinality of the independent 

dominating set which is machine independent.  

All algorithms were implemented using C sharp. We ran the 

experiments on Sun virtual machine running on 64-bit Windows 7 

operating system, the virtual box install 64-bit Windows 7 with Intel Xeon 

@ 2.93 GHz CPU and 8 GB RAM running Windows 7.  

I have used the Incidence Matrix structure (suggested by Dr. Al-

Darwish who also gave BuildOddGraph() and GreedyMinIndDomSet() 

procedures) to represent odd graphs. For our purpose we defined the 

incidence matrix as the matrix IM[1..n, 0..(d+2)] as follows (see Figure  25): 

• IM[i,0] is set to the degree of vertex i, and  

• The i-th row IM[i,1..d] lists the vertices that are adjacent to i 

(i.e., IM[i,j]=x if and only if (i,x) is an edge). 

• In addition, two additional columns can be used to store the 

set name that the vertex belongs to and the label of the vertex.   

This representation is space efficient for graphs where the degree of 

any vertex is equal to d, such as odd graphs.  
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Figure 25: O3 and its incidence matrix representation. 

 

4.5.2 EXPERIMENTAL RESULTS 

For each algorithm, we consider its approximation quality. Table 1 

shows the results of these experiments. Abbreviations in the table are as 

follows: 

—Approx. 1: The approximation algorithm using (Algorithm 2) to 

find ISCD such that ߲(u, v) > 2 for ׊ u, v א ISCD. 

—Approx. 2: The approximation algorithm using (Algorithm 3) to 

find ISCD such that ׌ u, v א ISCD with ߲(u, v) = 2. 

In odd graph of dimension three, the four algorithms’ performances 

are similar providing the same approximation quality except the random 

algorithm which found a larger IDS. When an odd graph of dimension 

four is the input the Approx. 1 and the greedy algorithms provide the 
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same performance ratio, while Approx. 2 and the randomized approach 

found worse results. In odd graph of dimensions five and higher, the 

algorithms start giving different performances. As shown in Table 1, the 

approximation quality of the Approx. 1 and 2 algorithms turns out to be 

higher than the greedy and the randomized algorithms. Moreover, 

Approx. 1 algorithm dominates Approx. 2 algorithm. This can be 

explained by the fact that Approx. 1 algorithm finds the maximum 

independent set in the induced bipartite ࣟCD with minimum distance of 3 

which maximize the number of non overlapping neighbors of the 

dominating vertices which in turn minimizes the independent dominating 

set, whereas Approx. 2 algorithm allows finding independent set in the 

induced bipartite ࣟCD with distance of two. Furthermore, it was observed 

that the greedy approach give worse results as the number of vertices 

increases, since it selects a vertex with maximum degree among many 

vertices with the same degree without considering the degrees of the 

neighbors and the further neighbors. Also, the randomized approach 

selects a vertex at random which raises the possibility of selecting a vertex 

with lower degree which means a larger set of independent dominating 

vertices. It is worth noting that as the dimension of odd graphs increases 

the difference in the performance quality between the new approximation 

algorithms and the greedy and the randomized algorithm also increases. 

   



 

78 
 

TABLE 1 APPROXIMATION QUALITIES 

d |V| |E| Lower 
Bound* 

Approx 1. 
|IDS| 

Approx 2. 
|IDS| 

Greedy 
|IDS| 

Random 
|IDS| 

3 10 15 3 3 3 3 4 

4 35 70 7 7 10 7 11 

5 126 315 21 26 26 39 41 

6 462 1386 66 66 93 118 139 

7 1716 6006 215 259 316 386 452 

8 6435 25740 715 _ 1097 1310 1519 

9 24310 109395 2431 _ 3842 4676 5503 

10 92378 461890 8398 _ 14217 15389 19726 

11 352716 1939938 29393 _ 48106 54696 71522 

12 1352078 8112468 104006 _ 175052 197582 261002 

13 5200300 33801950 371450 _ 637949 731096 955580 

*Lower Bound = ڿ|ܸ|/ሺ݀ ൅ 1ሻۀ 

 

 
 Figure 26: |IDS| in odd graphs of dimensions 3-5. 
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 Figure 27: |IDS| in odd graphs of dimensions 6-7. 

 

 
 Figure 28: |IDS| in odd graphs of dimensions 8-10. 
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Figure 29: |IDS| in odd graphs of dimensions 11-13. 

0

200000

400000

600000

800000

1000000

1200000

11 12 13

Lower Bound

Approx. 2

Greedy 

Random 



 

81 
 

CHAPTER 5 

 CONCLUSION AND FUTURE WORKS 

As mentioned in the literature, independent and dominating sets in 

communication network are important structures, and many optimization 

approaches rely on these. Many exact and approximation algorithms were 

proposed in the past to solve the problem either on general or special 

family of graphs. One of the graph classes, which have not been 

investigated in term of independent domination, is the odd graphs class.  

In this thesis, the first approximation algorithms for independent 

dominating set in odd graph are introduced. Our approach is based on 

partitioning the graph to different sets in order to simplify the complexity 

of the graph, then finding the independent dominating sets or the 

independent sets on the partitioned parts of the graph and merging the 

results while resolving any conflicts in the independence or domination 

properties. In this thesis, we designed two approximation algorithms, 

namely Approx.1 and Approx. 2. Approx. 1 produces the best results, 

however it gives correct results in odd graphs up to dimensions seven, for 

higher dimension the algorithm does not produce a valid independent 

dominating set since the solution to maximum independent set with 
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distance greater than two between any vertices in the induced bipartite 

ࣟCD cannot be attained. Approx. 2 algorithm gives comparable excellent 

results and it produces a valid set for dimensions that are higher than 

seven since we relaxed the distance restriction to allow a distance of two 

between some vertices. In addition, we proved the correctness of the two 

approximation algorithms and analyzed them. Also, we presented 

experimental results and comparison between the two approximation 

algorithms and the greedy and the randomized algorithms. The results of 

the experiments show that Approx. 1 and Approx. 2 give the best 

approximation quality especially in high dimensional odd graphs.  

In short, the following have been achieved in the thesis: 

• The first approximation algorithms for MIDS in odd graphs 

are introduced. 

•  Analyses and correctness of the proposed approximation 

algorithms are presented. 

• Experiments are presented, which show that the 

approximation algorithms find significantly smaller sets than 

those found by the greedy and the random algorithms. 

There are several open problems that can be investigated in future 

works. The following summarizes some of the interested problems: 
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• Designing an approximation algorithm for independent 

dominating set in odd graph with weighted vertices or edges. 

• Finding the upper bound of the proposed approximation 

algorithms. 

• Proving or disproving the following conjecture: Approx. 1 

algorithm finds the optimal set. 

• Proving or disproving the following conjecture: the minimum 

independent dominating problem in odd graph is in Զ if and 

only if the problem of maximum independent set on the 

induced bipartite ࣟCD with minimum distance of three is in Զ. 
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APPENDIX A  

ALGORITHMS IMPLEMENTATION 

using System; 
using System.IO; 
using System.Collections.Generic; 
 
//Authors: Ahmed Al-Herz and Dr. Nasir Al-Darwish 
 
namespace IndepDomSet 
{  
 class ApproximationAlg 
 {   
        static int[,] IM ;//incidence matrix for a graph -- column 0 records count 
         //of adjacent vertices                
        //cw is used in BuildOddGraph();  

// vertices in ODD graph are numbered 1 to n where  cw[i] is the   
//corresponding set (as bit vector)  

        static int[] cw; 
        static int size_B; //size of set B, C or D in odd graphs 
        static int size_A; //size of set A in odd graph 
         
 
        static void Main(string[] args) 
        {    
            int n ; 
            int[] S ; 
            for (int d = 5; d < 10; d++) 
            { 
                n = BuildOddGraph(d); 
                int k = RandomMinIndDomSet(out S, n, d); 
  Console.WriteLine("for odd d= " + d +" "+ValidIndpDomSet(S, n) + " " + k +"\n"); 
 
            } 
            return; 
        } 
         

// This procedure tests if the vertices where S[i] = 1 form a covering 
//IS 

        static bool ValidIndpDomSet(int[] S, int n ) 
        {   
            for (int v = 1; v <= n; v++) 
                if (S[v] == 1) // check Independence  
                {  for (int i = 1; i <= IM[v, 0]; i++) 
                    if (S[IM[v, i]] == 1) {return false; }   
                } 
                else if (!IsCovered(S, v)) {return false; }  
            return true; 
        } 
 
        static bool IsCovered(int[] s, int v) 
        {    

// v is covered if one of its neighbors is a vertex in S and where S[i] = 1 
            for (int i = 1; i <= IM[v, 0]; i++) 
                if (s[IM[v, i]] == 1) return true; 
 
            return false; 
        } 
 

 // Greedy algorithm for for Min Indpendent Dominating set 
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        static int GreedyMinIndDomSet(out int[] s, int n, int dimension) 
        {  
            int maxdeg, maxv; 
            // s[v] = 0 unchecked , 1 in IDS,  -1 covered 
            int[] deg = new int[n + 1]; 
            s = new int[n + 1]; 
 
            for (int v = 1; v <= n; v++) { s[v] = 0; deg[v] = IM[v, 0]; } 
 
            // find vertex  of max degree 
            // Note: degree is updated to discount covered vertices 
 
            int vcount = 0; 
 
            while (true) 
            {   // find vertex in S with maximum degree (maxdeg) 
                maxdeg = int.MinValue; maxv = 0; 
                for (int v = 1; v <= n; v++) 
                    if ((s[v] == 0) && (deg[v] > maxdeg)) 
                    { 
                        maxdeg = deg[v]; 
                        maxv = v; 
                    } 
 
                if (maxv == 0) break; 
 
                if (s[maxv] == -1) Console.WriteLine(" vertex already covered"); 
 
                // add the verex maxv to IDS 
                s[maxv] = 1; 
                vcount++; 
 
           // Now update degree to discount covered vertices (i.e. neighbours of 
     //maxv) 
                for (int i = 1; i <= dimension; i++) 
                { 
                    int v = IM[maxv, i]; 
                    if (s[v] == -1) continue; 
 
                    s[v] = -1; 
                    for (int j = 1; j <= dimension; j++) 
                       if (deg[IM[v, j]]> 0)  
                          deg[IM[v, j]]--;                                                           
                } 
            } 
           
            return vcount; 
 
        } 
 

// Random algorithm for for Min Indpendent Dominating set  
        static int RandomMinIndDomSet(out int[] s, int n, int dimension) 
        {  
 
            // s[v] = 0 unchecked , 1 in IS,  -1 covered 
            int[] deg = new int[n + 1]; 
            s = new int[n + 1]; 
 
            for (int v = 1; v <= n; v++) { s[v] = 0; deg[v] = IM[v, 0]; } 
        
            int vcount = 0; 
 
            Random r = new Random(); // random generator 
 
            List<int> vertexset = new List<int>(); 
             
            //populate a list with all vertices 
            for(int i =1; i<=n; i++)vertexset.Add(i);  
 
            while (true) 
            { 
                if (vertexset.Count == 0) break; 
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                int randomIndex =r.Next(vertexset.Count); 
                int targetV = vertexset[randomIndex]; // select a random vertex 
                vertexset.Remove(targetV); // remove the vertex from the list                
                s[targetV] = 1; // add the verex maxv to IS 
                vcount++; 
// Now update degree to discount covered vertices (i.e. neighbors of the selected 
//vertex) 
                for (int i = 1; i <= dimension; i++) 
                { 
                    int v = IM[targetV, i]; 
                    if (s[v] == -1) continue;                     
                    vertexset.Remove(v); // remove the neighbors from the list 
                    s[v] = -1; 
                    for (int j = 1; j <= dimension; j++) 

        if (deg[IM[v, j]]> 0) 
  deg[IM[v, j]]--; 

                } 
            } 
 
            return vcount; 
        } 
 

// Approx2 algorithm for for Min Indpendent Dominating set 
        static int Approx2(out int[] s, int n, int dimension) 
        {  
 
            int[] setA = new int[size_A + 1]; 
            int[] setB = new int[size_B + 1]; 
            int[] setC = new int[size_B + 1]; 
            int[] setD = new int[size_B + 1]; 
            int[] setApos = new int[size_A + 1]; 
            int[] setBpos = new int[size_B + 1]; 
            int[] setCpos = new int[size_B + 1]; 
            int[] setDpos = new int[size_B + 1]; 
            int[] ISd = new int[size_B + 1]; 
            int[] ISdpos = new int[size_B + 1]; 
            int[] ISc = new int[size_B + 1]; 
            int[] IScpos = new int[size_B + 1]; 
            int[] stemp = new int[size_B + 1]; 
            int[] IDSa = new int[size_A + 1]; 
            int[] IDSapos = new int[size_A + 1]; 
            int idsblength = size_B; 
             
            int a = 1, b = 1, c = 1, d = 1; 
             
            // s[v] = 0 unchecked , 1 in IS,  -1 covered 
            int[] deg = new int[n + 1]; 
            s = new int[n + 1]; 
 
            for (int v = 1; v <= n; v++) { s[v] = 0; deg[v] = IM[v, 0]; } 
 
            //partitioning the graph to four sets 
            for (int i = 1; i <= n; i++) 
            { 
                if (IM[i, dimension + 1] == 1)  

{ setA[a] = IM[i, dimension + 2]; setApos[a] = i; a++; } 
                if (IM[i, dimension + 1] == 2)  

{ setB[b] = IM[i, dimension + 2]; setBpos[b] = i; b++; } 
                if (IM[i, dimension + 1] == 3)  

{ setC[c] = IM[i, dimension + 2]; setCpos[c] = i; c++; } 
                if (IM[i, dimension + 1] == 4)  

{ setD[d] = IM[i, dimension + 2]; setDpos[d] = i; d++; } 
            } 
 
            int kc = 1; 
            int kd = 1; 
 
            //Find independent set in the bipartite CD 
            for (int degree = dimension; degree >= 3; degree--) 
            { 
                for (int i = size_B; i >=1 ; i--) 
                { 
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                    if (deg[setDpos[i]] == degree && s[setDpos[i]] == 0) 
                    { 
                        ISd[kd] = setD[i]; 
                        ISdpos[kd] = setDpos[i]; 
                        kd++; 
                        s[setDpos[i]] = 1; 
                        for (int j = 1; j <= dimension; j++) 
                        { 
                            int v = IM[setDpos[i], j]; 
                            if (s[v] == -1 || IM[v, dimension + 1] == 2) continue; 
 
                            s[v] = -1; 
 
                            for (int k = 1; k <= dimension; k++) 
                        { if (IM[IM[v, k], dimension + 1] == 4) deg[IM[v, k]]--; } 
                        } 
                    } 
 
                    if (deg[setCpos[i]] == degree && s[setCpos[i]] == 0) 
                    { 
                        ISc[kc] = setC[i]; 
                        IScpos[kc] = setCpos[i]; 
                        kc++; 
                        s[setCpos[i]] = 1; 
                        for (int j = 1; j <= dimension; j++) 
                        { 
                            int v = IM[setCpos[i], j]; 
                            if (s[v] == -1 || IM[v, dimension + 1] == 2) continue; 
 
                            s[v] = -1; 
 
                            for (int k = 1; k <= dimension; k++) 
                        { if (IM[IM[v, k], dimension + 1] == 3) deg[IM[v, k]]--; } 
                        } 
                    } 
                } 
            } 
 
            int isdlength = kd-1; 
             
            for (int i = 1; i <= kd - 1; i++) 
            { 
                for (int j = 1; j <= dimension; j++) 
                { 
                    int v = IM[ISdpos[i], j]; 
                    if (s[v] == -1) continue; 
 
                    s[v] = -1; 
 
                    if (IM[v, dimension + 1] == 2) 
                    { 
                        idsblength--; 
                        for (int k = 1; k <= dimension; k++) 
                        { if (IM[IM[v, k], dimension + 1] == 1) deg[IM[v, k]]--; } 
                    } 
 
                } 
            } 
 
            int isclength = kc - 1; 
 
            for (int i = 1; i <= kc - 1; i++) 
            { 
                for (int j = 1; j <= dimension; j++) 
                { 
                    int v = IM[IScpos[i], j]; 
                    if (s[v] == -1) continue; 
 
                    s[v] = -1; 
 
                    if (IM[v, dimension + 1] == 2) 
                    { 
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                        idsblength--; 
                        for (int k = 1; k <= dimension; k++) 
                        { if (IM[IM[v, k], dimension + 1] == 1) deg[IM[v, k]]--; } 
                    } 
 
                } 
            } 
 
            HashSet<int> fixedB = new HashSet<int>(); 
            HashSet<int> fixedA = new HashSet<int>(); 
 
            ////Find fixed vertices in set B and A 
            for (int i = size_B; i >= 1; i--) 
            { 
                if (s[setDpos[i]] == 0) 
                { 
                    for (int j = 1; j <= dimension; j++) 
                    { 
                        int v = IM[setDpos[i], j]; 
                        if (IM[v, dimension + 1] == 2) 
                        { 
                            s[v] = 1; 
                            for (int k = 1; k <= dimension; k++) s[IM[v, k]] = -1; 
                            fixedB.Add(IM[v, dimension + 2]); 
                        } 
                    } 
                } 
 
                if (s[setCpos[i]] == 0) 
                { 
                    for (int j = 1; j <= dimension; j++) 
                    { 
                        int v = IM[setCpos[i], j]; 
                        if (IM[v, dimension + 1] == 2) 
                        { 
                            s[v] = 1; 
                            for (int k = 1; k <= dimension; k++) s[IM[v, k]] = -1; 
                            fixedB.Add(IM[v, dimension + 2]); 
                        } 
                    } 
                } 
            } 
 
            for (int i = size_A; i >= 1; i--) 
            { 
                for (int j = 1; j <= dimension; j++) 
                { 
                    int v = IM[setApos[i], j]; 

            if (fixedB.Contains(IM[v, dimension + 2]))  
{ fixedA.Add(IM[setApos[i], dimension + 2]); } 

                } 
            } 
 
 
            bool violate = false; 
            int ka = 1; 
            int numofvio = 0; 
            int limofvio = size_A - fixedA.Count; 
            int degrees = dimension; 
 
            //Find independent dominating set in the bipartite BA 
            while (limofvio > 0 && limofvio > numofvio && degrees >= 2) 
            { 
                numofvio = 0; 
 
                for (int j = size_A; j >= 1; j--) 
                { 
                    violate = false; 
                    if (!fixedA.Contains(setA[j]) && s[setApos[j]] == 0) 
                    { 
                        if (deg[setApos[j]] == degrees) 
                        { 
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                            for (int k = 1; k <= dimension; k++) 
                            { 
                                int v = IM[setApos[j], k]; 
                                if (s[v] == 0) 
                                { 
                                    for (int l = 1; l <= dimension; l++) 
                                    { 
                       if (IM[IM[v, l], dimension + 1] == 1 && deg[IM[v, l]] == 1) 
                                        { 
                                            violate = true; break; 
                                        } 
                                    } 
                                } 
                                if (violate) 
                                    break; 
                            } 
                            
                            if (!violate) 
                            { 
                                IDSa[ka] = setA[j]; 
                                IDSapos[ka] = setApos[j]; 
                                ka++; 
                                limofvio--; 
                                s[setApos[j]] = 1; 
                                for (int k = 1; k <= dimension; k++) 
                                { 
                                    int v = IM[setApos[j], k]; 
                                    if (s[v] == -1) continue; 
 
                                    s[v] = -1; 
                                    idsblength--; 
 
                                    for (int l = 1; l <= dimension; l++) 
                        { if (IM[IM[v, l], dimension + 1] == 1) deg[IM[v, l]]--; } 
                                } 
                            } 
                            else 
                            { 
                                numofvio++; 
                            } 
                        } 
                    } 
                } 
                
                degrees--; 
            } 
            
            //covering vertices from A that caused violation and that of degree 1 
            for (int i = 1; i <= size_B; i++) 
            { 
                if (s[setBpos[i]] == 0) 
                { 
                    s[setBpos[i]] = 1; 
                    for (int j = 1; j <= dimension; j++) 
                    { 
                        s[IM[setBpos[i], j]] = -1; 
                    } 
                } 
            } 
             
             
            return (ka - 1 + isclength + isdlength + idsblength); 
 
        } 
 
 

// Approx1 algorithm for for Min Indpendent Dominating set 
        static int Approx1(out int[] s, int n, int dimension) 
        {  
 
            int[] setA = new int[size_A + 1]; 
            int[] setB = new int[size_B + 1]; 
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            int[] setC = new int[size_B + 1]; 
            int[] setD = new int[size_B + 1]; 
            int[] setApos = new int[size_A + 1]; 
            int[] setBpos = new int[size_B + 1]; 
            int[] setCpos = new int[size_B + 1]; 
            int[] setDpos = new int[size_B + 1]; 
            int[] temp = new int[size_B + 1]; 
            int[] temppos = new int[size_B + 1]; 
            int[] ISd = new int[size_B + 1]; 
            int[] ISdpos = new int[size_B + 1]; 
            int[] ISc = new int[size_B + 1]; 
            int[] IScpos = new int[size_B + 1]; 
            int[] stemp = new int[size_B + 1]; 
            int[] IDSa = new int[size_A + 1]; 
            int[] IDSapos = new int[size_A + 1]; 
            int idsblength=size_B; 
            int count,count2; 
            int a=1,b=1,c=1,d=1,z; 
             
            // s[v] = 0 unchecked , 1 in IS,  -1 covered 
            int[] deg = new int[n + 1]; 
            s = new int[n + 1]; 
 
            for (int v = 1; v <= n; v++) { s[v] = 0; deg[v] = IM[v, 0]; } 
             
            for (int i = 1; i <= n; i++) 
            { 
                if (IM[i, dimension + 1] == 1)  

{ setA[a] = IM[i, dimension + 2]; setApos[a] = i; a++; } 
                if (IM[i, dimension + 1] == 2)  

{ setB[b] = IM[i, dimension + 2]; setBpos[b] = i; b++; } 
                if (IM[i, dimension + 1] == 3)  

{ setC[c] = IM[i, dimension + 2]; setCpos[c] = i; c++; } 
                if (IM[i, dimension + 1] == 4)  

{ setD[d] = IM[i, dimension + 2]; setDpos[d] = i; d++; } 
            } 
 
            int kd = 1; 
            int maxkd = 1; 
 
            int not2 = dimension - 2; //intersection size if the distance equals 2 
            int diam; 
            //intersection size if the distance equals diameter 
            if (dimension % 2 == 0) 
                diam = (dimension - 2) / 2; 
            else 
                diam=(dimension-1)-((dimension-1)/2); 
 
            //Find independent set in the bipartite CD 
            for (int i = size_B; i >= 1; i--) 
            { 
                kd = 1; 
                for (int j = 1; j <= size_B; j++) { stemp[j] = 0; } 
                temp[kd] = setD[i]; 
                stemp[i] = 1; 
                temppos[kd] = setDpos[i]; 
                for (int j = size_B; j >=1 ; j--) 
                { 
                    count2 = 0; 
                    if (stemp[j] == 1) continue;         
                    for (int k = 1; k <= kd; k++) 
                    { 
                        count = 0; 
                        z = setD[j] & temp[k]; 
                        while (z != 0) 
                        { count = count + (z % 2); z = z / 2; } 
                        if (count == diam) 
                        { count2++; } 
                    } 
 
                    if (count2 == kd) 
                    { kd++; temp[kd] = setD[j]; temppos[kd] = setDpos[j];  
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stemp[j] = 1; } 
                } 
 
                for (int j = size_B; j >=1 ; j--) 
                { 
                    count2 = 0; 
                    if (stemp[j] == 1) continue; 
                     
                    for (int k = 1; k <= kd; k++) 
                    { 
                        count = 0; 
                        z = setD[j] & temp[k]; 
                        while (z != 0) 
                        { count = count + (z % 2); z = z / 2; } 
                        if (count != not2) 
                        { count2++; } 
                    } 
 
                    if (count2 == kd) 
                    { kd++; temp[kd] = setD[j]; temppos[kd] = setDpos[j];  

stemp[j] = 1; } 
                } 
                 
                if (kd > maxkd ) 
                { 
                    maxkd = kd; 
                    Array.Copy(temp, ISd, size_B + 1); 
                    Array.Copy(temppos, ISdpos, size_B + 1); 
                } 
            } 
            int isdlength=maxkd; 
 
            for (int i = 1; i <= isdlength; i++) s[ISdpos[i]] = 1; 
 
            for (int i = 1; i <= isdlength; i++) 
            { 
                for (int j = 1; j <= dimension; j++) 
                { 
                    int v = IM[ISdpos[i], j]; 
                    if (s[v] == -1) continue; 
 
                    s[v] = -1; 
                 
                if (IM[v, dimension + 1] == 2) 
                { 
                    idsblength--; 
                    for (int k = 1; k <= dimension; k++) 
                    { if (IM[IM[v, k], dimension + 1] == 1) deg[IM[v, k]]--; }  
                } 
 
                } 
            } 
 
            int kc = 1; 
            int maxkc = 1; 
            for (int i = size_B; i >=1 ; i--) 
            { 
                kc = 1; 
                for (int j = 1; j <= size_B; j++) { stemp[j] = 0; } 
                if (s[setCpos[i]] == -1) continue; 
 
                temp[kc] = setC[i]; 
                temppos[kc] = setCpos[i]; 
                stemp[i] = 1; 
                for (int j = size_B; j >=1 ; j--) 
                { 
                    count2 = 0; 
                    if (s[setCpos[j]] == -1) continue; 
                    if (stemp[j] == 1) continue; 
                    for (int k = 1; k <= kc; k++) 
                    { 
                        count = 0; 
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                        z = setC[j] & temp[k]; 
                        while (z != 0) 
                        { count = count + (z % 2); z = z / 2; } 
                        if (count == diam) 
                        { count2++; } 
 
                    } 
 
                    if (count2 == kc) 
                    { kc++; temp[kc] = setC[j]; temppos[kc] = setCpos[j];  

stemp[j] = 1; } 
                } 
 
                for (int j = size_B; j >=1 ; j--) 
                { 
                    count2 = 0; 
                    if (s[setCpos[j]] == -1) continue; 
                    if (stemp[j] == 1) continue; 
                    for (int k = 1; k <= kc; k++) 
                    { 
                        count = 0; 
                        z = setC[j] & temp[k]; 
                        while (z != 0) 
                        { count = count + (z % 2); z = z / 2; } 
                        if (count != not2) 
                        { count2++; } 
                    } 
 
                    if (count2 == kc) 
                    { kc++; temp[kc] = setC[j]; temppos[kc] = setCpos[j];  

stemp[j] = 1; } 
                } 
                if (kc > maxkc) 
                { 
                    Array.Copy(temp, ISc, size_B + 1); 
                    Array.Copy(temppos, IScpos, size_B + 1); 
                    maxkc = kc; 
                } 
            } 
 
            int isclength=maxkc; 
             
            for (int i = 1; i <= isclength; i++) s[IScpos[i]] = 1; 
 
            for (int i = 1; i <= isclength; i++) 
            { 
                for (int j = 1; j <= dimension; j++) 
                { 
                    int v = IM[IScpos[i], j]; 
                    if (s[v] == -1) continue;  
 
                    s[v] = -1; 
                     
                    if (IM[v, dimension + 1] == 2) 
                    { 
                        idsblength--; 
                        for (int k = 1; k <= dimension; k++) 
                        { if (IM[IM[v, k], dimension + 1] == 1) deg[IM[v, k]]--; } 
                    } 
 
                } 
            } 
 
            HashSet<int> fixedB = new HashSet<int>(); 
            HashSet<int> fixedA = new HashSet<int>(); 
             
            ////Find fixed vertices in set B and A 
            for (int i = size_B; i >=1 ; i--) 
            { 
                if (s[setDpos[i]] == 0) 
                { 
                    for (int j = 1; j <= dimension; j++) 
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                    { 
                        int v = IM[setDpos[i], j]; 
                        if (IM[v, dimension + 1] == 2)  
                        {  
                            s[v] = 1; 
                            for (int k = 1; k <= dimension; k++) 
                                s[IM[v, k]] = -1;  
                            fixedB.Add(IM[v, dimension + 2]);  
                        } 
                    } 
                } 
 
                if (s[setCpos[i]] == 0) 
                { 
                    for (int j = 1; j <= dimension; j++) 
                    { 
                        int v = IM[setCpos[i], j]; 
                        if (IM[v, dimension + 1] == 2) 
                        { 
                            s[v] = 1; 
                            for (int k = 1; k <= dimension; k++) 
                                s[IM[v, k]] = -1; 
                            fixedB.Add(IM[v, dimension + 2]);  
                        } 
                    } 
                } 
            } 
 
            for (int i = size_A; i >=1 ; i--) 
            { 
                    for (int j = 1; j <= dimension; j++) 
                    { 
                        int v = IM[setApos[i], j]; 
                        if (fixedB.Contains(IM[v, dimension + 2]))  

{ fixedA.Add(IM[setApos[i], dimension+2]); } 
                    } 
                
            } 
 
             
            
            bool violate = false; 
            int ka = 1; 
            int numofvio = 0; 
            int limofvio = size_A - fixedA.Count; 
            int degree = dimension; 
 
            //Find independent dominating set in the bipartite BA 
            while (limofvio > 0 && limofvio > numofvio && degree >= 2) 
                { 
                    numofvio = 0; 
 
                    for (int j = size_A; j >=1 ; j--) 
                    { 
 
                        violate = false; 
                        if (!fixedA.Contains(setA[j]) && s[setApos[j]] == 0) 
                        { 
                            if (deg[setApos[j]] == degree) 
                            { 
                                for (int k = 1; k <= dimension; k++) 
                                { 
                                    int v = IM[setApos[j], k]; 
                                    if (s[v] == 0) 
                                    { 
                                        for (int l = 1; l <= dimension; l++) 
                                        { 
                       if (IM[IM[v, l], dimension + 1] == 1 && deg[IM[v, l]] == 1) 
                                            { 
                                                violate = true; break; 
                                            } 
                                        } 
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                                    } 
                                    if (violate) 
                                     break;  
                                } 
                                if (!violate) 
                                { 
                                    IDSa[ka] = setA[j]; 
                                    IDSapos[ka] = setApos[j]; 
                                    ka++; 
                                    limofvio--; 
                                    s[setApos[j]] = 1; 
                                    for (int k = 1; k <= dimension; k++) 
                                    { 
                                        int v = IM[setApos[j], k]; 
                                        if (s[v] == -1) continue; 
 
                                        s[v] = -1; 
                                        idsblength--; 
 
                                        for (int l = 1; l <= dimension; l++) 
                        { if (IM[IM[v, l], dimension + 1] == 1) deg[IM[v, l]]--; }  
                                    } 
                                } 
                                else 
                                { 
                                    numofvio++;  
                                } 
                            } 
                        } 
                    } 
                    degree--; 
                } 
 
            //covering vertices from a that caused violation ans that of degree 1 
            for (int i = 1; i <= size_B; i++)  
            { 
                if (s[setBpos[i]] == 0) 
                { 
                    s[setBpos[i]] = 1; 
                    for (int j = 1; j <= dimension; j++) 
                        s[IM[setBpos[i], j]] = -1; 
                } 
            }        
             
            return ka - 1 + isclength + isdlength + idsblength; 
 
        } 
      
 
        public static int BuildOddGraph(int d) 
        {   //Building Odd graph 
            int i, j, k, z, count; 
            
            int w = d - 1; // # of 1s in a bits vectors 
 
            // n = 2 to power 2d-1 
 
            int n =  1 << (2 * d - 1); 
            int n2 = n; 
             
            //  vertex ids originally going from 1 to n   
 
            cw = new int[n + 1]; 
 
            for (i = 1; i <= n; i++) cw[i] = i; 
 
            k = 0; 
            for (i = 1; i <= n; i++) 
            {   count = 0; 
                z = cw[i]; 
                while (z != 0) 
                { count = count + (z % 2); z = z / 2; } 
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                if (count == w) 
                { k++; cw[k] = cw[i];  } 
            } 
 
            n = k; 
            
            Console.WriteLine("vertex count:" + n); 
            int maxdeg = d; 
 
            IM = new int[n + 1, maxdeg + 3]; 
 
            for (i = 1; i < n; i++) 
            { 
                for (j = i + 1; j <= n; j++) 
                { // find intersection of cw[i] and cw[j] 
                    z = cw[i] & cw[j]; 
                    if (z == 0) 
                    { 
                        IM[i, 0]++; IM[i, IM[i, 0]] = j; 
                        IM[j, 0]++; IM[j, IM[j, 0]] = i; 
                    } 
                } 
            } 
            size_B = 0; 
            size_A = 0; 
            for (i = 1; i <= n; i++) 
            { 
                if ((cw[i] & 2) == 2 && (cw[i] & 1) != 1) 
                { size_B++; IM[i, maxdeg + 1] = 3; IM[i, maxdeg + 2] = cw[i]; } 
                if ((cw[i] & 1) == 1 && (cw[i] & 2) != 2) 
                { IM[i, maxdeg + 1] = 4; IM[i, maxdeg + 2] = cw[i]; } 
                if ((cw[i] & 3) == 3) 
                { size_A++; IM[i, maxdeg + 1] = 1; IM[i, maxdeg + 2] = cw[i]; } 
                if ((cw[i] & (n2 - 4)) == cw[i]) 
                {IM[i, maxdeg + 1] = 2; IM[i, maxdeg + 2] = cw[i]; } 
            } 
 
            return n; 
        } 
  
} 
  
} 
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