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ABSTRACT

NAME : AHMED I. AL-HERZ

TITLE :  INDEPENDENT DOMINATION IN ODD
GRAPHS

MA]JOR FIELD : COMPUTER SCIENCE

DATE OF DEGREE : February 2012

Domination in graph theory is a natural model for many location
problems in computer science and operations research. Finding a
minimum independent dominating set in general graphs is NP-hard, and
it was studied extensively. In this thesis, the first approximation
algorithms for independent dominating sets in odd graphs are introduced.
Our approach is based on partitioning the graph to different sets in order
to simplify the complexity of the graph, then finding an independent
dominating set or an independent set in each part, and merging the sets
while resolving any violation in the independence or domination
properties. Also, we present experimental results and comparisons
between the proposed algorithms and greedy and randomized algorithms.
The results show that the proposed algorithms give the best

approximation quality.
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CHAPTER 1

INTRODUCTION

Domination in graph theory is a natural model for many location
problems in computer science and operations research. Domination has
many applications in the real world [Hayn97]. Examples of such
applications are dominating queens, sets of representatives, school bus
routing, computer communication networks, radio stations, social
network theory, computer vision [Booi07], pattern recognition [Prie01],
scheduling [Bala06], VLSI design [Kuo88], molecular biology [Hayn06],

etc.

The minimum independent dominating set (MIDS) is one variant of
domination problems which is a well known combinatorial optimization
problem. The problem can be defined informally as follows: given a
graph, a minimum independent dominating set is a set of vertices of
minimum cardinality with the requirement that the dominating vertices
are independent, that is none of the vertices are adjacent and every other
vertex not included in the set is adjacent to at least one of the vertices in

the set. An example of a minimum independent dominating set (the set of



black vertices) in a graph can be seen in Figure 1. Before stating the

problems formally we will give some definitions in the next section.

E_"n Yy Yy £y r"_.::,
C
I::_.-' L o L "ﬂ-_::l

Figure 1: A minimum independent dominating set on a graph [Chan98a].

1.1 DEFINITIONS AND NOTATION

Throughout this thesis all graphs are finite, undirected and simple
(i.e. loop-free and without multiple edges). Given a graph G(V,E) where V
is the set of vertices, E € V x V is the set of edges, and two vertices u, v € V
have an edge between them, or are said to be adjacent, if and only if (u, v) €

E. If (u, v) € E, we say that (u, v) is a non-edge. Let a vertex v € V, the

neighborhood N(v) of v is the set of vertices that are adjacent to v, and N[v]
= N(v) U {v} will be called the closed neighborhood of v. For the degree of
v, we use the notation deg(v) = | N(v) | , where | . | is the cardinality of a

set which is the number of elements in a set. For any subset H c V, we
2



denote by G[H] the subgraph of G induced by H. For v € H, for some
subset H, we denote by deg” H(v) the degree of v in G[H] or, if it is clear by
the context, we denote it by deg’(v). For convenience, we set N[H] = {N[v] :

V v € H}. For simplicity, wemay setn= | V| and m = |E]|.

Definition 1.1 A dominating set D in a graph G(V, E) is a subset of V in which
each vertex v € (V — D) is adjacent to at least one vertex U € D, i.e., (v, U) € E. An
independent dominating set is a dominating set where all vertices in D are
independent, i.e., (U, V) € E, for all u, v € D. The optimization version of the
independent domination problem is finding the independent dominating set D

such that the cardinality of D is minimum.

Definition 1.2 A maximal independent set M is an independent set of a graph
G(V, E) that is not a subset of any other independent set. That is, it is a set such
that every edge (v, U) € E has at least one endpoint not in M and every vertex not
in M has at least one neighbor in M. A maximal independent set is also a
dominating set in the graph, and every dominating set that is independent must be
maximal independent set, so maximal independent sets are also independent
dominating sets. A graph may have many maximal independent sets of varying

sizes; a largest maximal independent set is called a maximum independent set.

Definition 1.3 The decision version of the independent dominating set problem

can be stated as follow:

Instance: G = (V, E), positive integer K < |V|



Question: Is there a dominating set of size K or less for G, i.e., a subset V’

C V with |V’| < K such that for all u € V-V’ there is a v € V’ for which (u, v) € E?

Definition 1.4 The optimization version of the independent dominating set

problem can be stated as follow:

Instance: G = (V, E)

Question: Is there a dominating set for G, i.e., a subset V' € V with |V’| =K

such that for all u € V-V’ there is a v € V’ for which (u, V) € E and K is minimum?

Theorem 1.1 The decision version of independent dominating set problem is NIP-

complete. The proof can be found in [Gare79].

Theorem 1.2 The minimum independent dominating set problem is NIP-hard. The
proof can be found in [Gare79]. Knowing that an NP problem is NIP-hard, we
also know that we cannot compute an optimal solution in polynomial time, unless

P =NP.

1.2 ODD GRAPHS

Because the independent dominating set problem for general graphs
is hard, researchers turned their attention to solving the problem on
restricted families of graphs. Each family of graphs may have special
properties or unique structures, which can be used to come up with
polynomial time or approximation algorithms. In this thesis, we will

consider odd graph family that has a unique structure. The family of odd
4



graphs was introduced by [Bigg79] in the context of graph theory. In this
section, we will introduce the odd graphs, more details on odd graphs and

their properties will be given in chapter 3.

Definition 1.5 For a positive integer d, let Q= {1,2,....,2d-1} and V =
{{x1, x2, . .., xa1} | xi € Q}, that is, the set of all (d-1)-subsets of Q. The odd
graph Oy = (V, E) is defined as the graph with V as its vertex set and two
vertices are connected if and only if their corresponding subsets are
disjoint.

2d-1

de1 ) vertices

Ou is a d-regular graph (deg(v) =d ¥V v € V) withn = (

2d-1

d
and m = E(d—1

edges. We will refer to d as the dimension of Oq. In
particular, the 3-dimensional odd graph is the well-known Peterson

graph. Figure 2 shows typical drawings of Og4, d = 2, 3, 4. The odd graph of

dimension 1 consists of one vertex and no edges.

Figure 2: Drawings of O,, d = 2, 3, 4.



1.3 APPLICATIONS OF MIDS IN COMMUNICATION

NETWORKS

From an application point of view, independent and dominating set
in a communication networks are important structures, and many

optimization approaches rely on these structures.

In clustering schemes, independent sets result in clusterheads that
have local control of their cluster without interference. Additionally, a
dominating independent set based clustering scheme ensures that the
entire network is covered. For example, especially in energy-efficient
computing, clustering allows for some nodes to perform fewer tasks by
delegating them to their respective clusterhead. On the other hand, the
tasks of these clusterheads then result in additional energy consumption.
Here, using as few clusterheads as possible, i.e. choosing them according
to minimum independent dominating set, results in energy savings for the

network.

A standard approach for reducing energy consumption is to
carefully schedule node activity. As has been observed in [Chen02],
whenever there are sufficiently many nodes in a region, only a small
fraction of nodes need be active for forwarding messages, etc. The rest of

the nodes can enter a sleep mode, thereby conserving energy. The

6



problem of maximizing the number of nodes which are asleep at any
given time while maintaining sufficient activity in the network is usually
modeled as the problem of finding a small dominating set in the network.
Once a small dominating set is found, the nodes in the dominating set
collectively act as “coordinators” for the network and the rest of the nodes

go to sleep.

In a communication network, broadcasting schemes are required.
Each individual node is neither able to store the entire topology
information, nor to keep updated information about the changes in the
network. The broadcasting schemes have relied on flooding the network.
Basic, network-wide flooding causes the broadcast storm problem [Ni99],
resulting in excessive contention and collisions, i.e. a large communication
protocol overhead. Using a dominating set of small size to propagate
flooding messages overcomes this problem, and greatly reduces the
number of messages needed, and thus the protocol overhead as well. So,
nodes in an independent set do not interfere each other during
simultaneous transmissions, and nodes in a dominating set can be used to
efficiently reach the entire network by broadcasts from only these nodes,
these two properties can be achieved by minimum independent

dominating set.



1.4 OBJECTIVE OF THE RESEARCH

Although considerable amount of works for the independent
domination problem have emerged in the past, the first algorithmic result
on this topic was given by Bayer, Proskurowski, Hedetniemi and Mitchell
in 1977 [Byer77]. They gave a linear-time algorithm for the independent
domination problem on trees. On the other hand, at about the same time
Garey and Johnson [Gare79] constructed the first proof that the
domination problem is NP-complete for general graphs. Since then, many
algorithmic results are studied for variants of the domination problem in

different classes of graphs.

One of the graph classes, which have not been investigated in term of
independent domination, is the odd graphs class. [Ghaf91] pointed out
their potential as fault-tolerant multiprocessor networks. Their efficiency
was analyzed in terms of routing, combinatorial structure, maximal fault
tolerance [Ghaf91], symmetry [Bigg79], fault diameter [Ghaf91], [Kim08a].
Odd networks are competitive with mesh and hypercube variants. For the
same number of nodes, odd networks are superior to comparable mesh
and hypercube variants when the network cost (degreexdiameter) is used

as a measure.



The minimum independent dominating set is very important
problem in communication networks; this is most obvious in parallel
computing systems. Also, finding a solution to the minimum independent
dominating set on networks with very large number of vertices, such as a
high dimensional odd graph, can be time consuming; in this situation an
approximate solution can be much more efficient. So, a natural question
arises of whether an approximate solution to the minimum independent
dominating set problem on odd graph network within an acceptable time
is feasible or not. Thus, the primary objective of this thesis can be stated as
”designing an efficient approximation algorithm for the minimum
independent dominating set problem by exploiting the unique structure of
the class of odd graphs”. Another objective of this thesis is
comparisons of our proposed approximation algorithm with generic
approximation algorithms namely, simple greedy and randomized

heuristics.



CHAPTER 2

LITERATURE REVIEW

Many approaches were used to find the minimum or an approximate
independent dominating set on a graph. These approaches range from
enumeration of all sets of the vertices to solving the problem for special
graph classes. Next, we will review the literature regarding the

approaches that have been used to solve this problem.

2.1 BRUTE FORCE

The minimum independent dominating set problem can be trivially
solved in O(2") by simply enumerating all the subsets of V, and check
whether the set is dominating and independent with minimum

cardinality. Clearly this approach is exponential and not practical.

2.2 EXACT ALGORITHMS

Many attempts have been done to design efficient but yet
exponential algorithms that give optimal solution for NP-complete

problem. The first work that gives an exact exponential time algorithm for

10



minimum independent dominating set has been done by Randerath and
Schiermeyer [Rand04]. They used the result due to Moon and Moser
[Moon65] who showed in 1965 that the number of maximal independent
sets of a graph is upper bounded by 3"4. They used an algorithm
enumerating all the maximal independent sets to obtain an O(1.4423")
time algorithm for the minimum independent dominating set. Gaspers
and Liedloff [Gasp06] presented an O(1.3569 ") time algorithm for solving

the minimum independent dominating set using the Measure & Conquer

approach to analyze its running time. A simple O *( ?i/gn) time algorithm
based on a maximal matching was developed by Liu and Song [Liu06] to
solve this problem on general graphs. Here, O #(.) implies the existence of
an additional polynomial factor in the corresponding time complexity
result. For sparse graphs, e.g. graphs with degree bounded by 3 and 4,
they showed that a few new branching techniques can be applied to these
graphs and the resulting algorithms have time complexities O #(1.3803")
and O #(1.5368"). Bourgeois, Escoffier and Paschos [Bour10] devised a
branching algorithm that can find a minimum independent dominating

set on any graph with running time O#(1.3416") and polynomial space.

11



2.4 APPROXIMATION ALGORITHMS

It was shown that the minimum dominating set can be approximated
with a constant factor if we apply the algorithm on restricted types of
graphs. An algorithm which gives a constant performance ratio
independent of the size of the instance is referred to as constant-factor
approximation. Hurink and Nieberg [Huri08] presented the first
polynomial-time approximation scheme (PTAS) for the minimum
independent dominating set problem in graphs of polynomially bounded
growth. Graphs of bounded growth are used to characterize wireless
communication networks. The algorithm accepts any undirected graph of
bounded growth as input, and returns a (1+¢)-approximate minimum
dominating set, where ¢ is a real number greater than 0. Duckworth and
Wormald [Duck02] presented a heuristic, which is a random greedy
algorithm, for finding a small independent dominating set of cubic
graphs. They proved that D, the minimum independent dominating set,
asymptotically almost surely satisfies 0.2641n < |D| < 0.2794n. A
deterministic version of the randomized algorithm was analyzed in
[Duck10] using linear programming. It was shown that, given an n-vertex
cubic graph, the deterministic algorithm returns an independent
dominating set of size at most 291/70 + O(1). Bourgeois, Escoffier and
Paschos [Bour10] showed that, for every r > 3, it is possible to compute an

12



r—=((r — 1)/r) logz r-approximate solution (If an algorithm guarantees to
return solutions with a performance guarantee of at most r, then the
algorithm has an r-approximate solution) for the minimum independent

dominating set within time O*(2™0927/7),

2.5 SPECIAL GRAPH CLASSES

One of the sites for research on NP -complete graph problems is to
consider the algorithmic complexity when they are restricted to special
graph classes. The motivation was to find graph classes with nice
structural properties, that enable the design of polynomial time algorithms
for NP-complete graph problems when the input graphs are restricted to
the special graph class. Originally small classes such as interval graphs
and permutation graphs were considered. This led researches to look for
larger graph classes, for which polynomial time domination algorithms
can still be design. Recent examples are the classes of AT-free graphs,

dually chordal graphs and homogeneously orderable graphs.

This section reviews the literature regarding the special graphs
classes and whether the minimum independent dominating set can be
found in a linear time or it cannot be solved linearly that is it belongs to

NP-complete class.

13



2.5.1 SPECIAL GRAPH CLASSES (MIDS PROBLEM IS IN IP)

In 1977 T. Byer et al. proved that minimum independent dominating
set in trees can be computed in linear time [Byer77]. M. Faber discovered
in 1982 that minimum independent dominating set can be obtained in
linear time in chordal graphs [Fabe82]. He presented a linear algorithm to
locate a minimum weight independent dominating set in a chordal graph
with 0-I vertex weights. The problem was put into the framework of linear
programming. In particular, they exhibited a linear program with 0-1
solutions which correspond to independent dominating sets in the given
graph. The algorithm utilizes perfect elimination ordering of choral
graphs. Using the same methodology they solved the problem in strongly
chordal graphs given a strong elimination ordering [Fabe84]. Moreover,
minimum independent dominating set for doubly chordal graph, split
graph and undirected path graph were proved to be solvable linearly
since these special graph classes are subset of chordal graph. The
minimum independent dominating set for series parallel graph can be
found linearly which was discovered by J. Pfaff, R. Laskar and S.T.
Hedetniemi in 1984 [Pfaf84]. M. Atallah and S. Kosaraju proved in 1989
that permutation graph's independent dominating set is linearly solvable
[Atal88]. They reduced the problem of finding the minimum independent

dominating set to the problem of computing a shortest maximal increasing

14



subsequence in linear time, the shortest maximal increasing subsequence
problem is solvable in linear time, and thus the problem of minimum
independent dominating set is also solvable in linear time. M. Faber
presented an algorithm in 1989 to solve the minimum independent
dominating set in linear time for 2K»-free graphs [Fabe89] . In 1990 E.
Elmallah and L. Stewart discovered that k-polygon graph's independent
dominating set can be solved in linear time [EIma90]. The independent
dominating set for partial k-tree for bounded k is also in P and was
proved by S. Arnborg, J. Lagergren and D. Sees in 1991 [Arnb91]. They
transformed the graph of bounded tree width formulated as second order
logic sentences to binary tree in linear time, then the decision if the graph
has an independent dominating set of certain cardinality can be
determined if the satisfiablity of monadic second order problem on a
binary tree can be decided which can be done in linear time. Minimum
independent dominating set can be solved in cocomparability graphs in
linear time by a dynamic programming approach using a linear scan
through the labeling of the given graph, this approach was presented by
Kratsch and Stewart in 1993 [Krat93]. AT-free graph is one of the special
graphs that its independent domination set can be obtained in linear time
and was discovered by H. Broersma, T. Kloks, D. Kratsch and H. Muller in
1997 [Bro97]. M. Chang proposed algorithms to solve the minimum

independent dominating set in linear time on interval and circular-arc
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graphs [Chan98b]. In 1999 J. Bang-Jensen, ] Huang, G. Macgillivary and
A. Yeo presented an algorithm that solve the minimum independent
dominating set for convex bipartite graph linearly [Bang99]. Furthermore,
the convex-round graphs’ minimum independent dominating set is also
solved in linear time [Bang99]. Claw-free AT-free graph's minimum
independent dominating set is in P, which was proved by H.Hempel and
D. Kratsch in 1999 [Hemp99]. They used lexicographic breadth first search
procedure to label the vertices then they used 2-lexicographic breadth first
scheme which is a vertex ordering and levels of the labeled graph. The
algorithm exploits the information obtained from the scheme to find the

set in linear time.

On the other hand, some special graph classes are proved to be in NP
class, which means it cannot be solved in linear time, so either
approximation algorithms are used to find sub optimal set or exact
algorithms are used to find the optimal set. Many graphs have been
discovered that can be categorized nonsolvable linearly, next we will

review these special graph classes.
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2.5.2 SPECIAL GRAPH CLASSES (MIDS PROBLEM IS IN NIP-

COMPLETE)

The first special graph class, that its minimum independent
dominating set was discovered to be in NP-complete class, is line graph
which was proved by M. Yannakakis and F. Gavril in 1980 [Yann80].

They proved that the edge dominating set problem for bipartite graphs
and planar with maximum degree 3 is NPP-complete using reduction from
the SAT-3-restricted problem and the node cover problem on planar cubic
graphs respectively. The proof is true for the independent dominate edges,
since the independent set can be obtained from the dominating set in
linear time. The edge version of domination can be thought of as the
vertex version of the problem applied to line graphs. Bipartite graph
minimum independent dominating set is not solvable linearly which was
discovered by D. Corneil and Y. Perl in 1984 [Corn84]. Also, minimum
independent dominating set for comparability graphs and triangle-free
graphs was discovered to be in the same class [Corn84]. The reduction
they used is from the h-dominating set problem for general graphs which
is NP-Complete. In 1990, P. Damaschke, H. Muller and D. Kratsch proved
that chordal bipartite minimum independent dominating set problem is in
NP-complete class by reduction from the 3SAT problem [Dama90].

Planar graph and planar bipartite graph minimum independent
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dominating set is also in NP-complete class, this was discovered in 1995
by 1. Zverovich and V. Zverovich [Zver95]. They used a linear reduction
from dominating set problem for 3-regular planar graph. In 1998 A.
Brandstast, V. Chepoli and F. Dragan proved that dually chordal graph
minimum independent dominating set is in NP-complete [Bran98].
Moreover, minimum independent dominating set for homogeneously
orderable graph is not solvable linearly [Bran98]. The reduction they used
is from the independent dominating set problem for general graphs which

is NIP-complete problem.

18



CHAPTER 3

ODD GRAPHS

3.1 INTRODUCTION

Suppose d is an integer not less than 2 and Q is a set of odd
cardinality 2d -1, e.g. Q ={1,2,...,2d - 1}. Odd graph O, can be defined as
follows: the vertex set V of Oy, is the set of subsets v of Q which have
cardinality |v| =d -1, and two vertices are adjacent when the subsets are
disjoint [Bigg79]. The graphs O (= K3), Os (= Petersen's graph) and Oy are

depicted in Figure 2 in section 1.2.

We will refer to the elements of Q as labels. A pair of adjacent
vertices in Oy, corresponds to a pair of disjoint (d - 1)-subsets of the (24 -
1)-set Q so there is just one label “the odd label” not occurring in either of
the subsets. This "odd" label will be assigned to the edge joining the two

vertices. Thus the edge set E of Oy, is partitioned into 2d - 1 disjoint sets,

Ey,={(uv)€EE | uvv=Q-w}
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Since a given vertex v contains d - 1 labels and | Q | =24 -1, there
are d labels available for the edges incident with v. This shows that O, is a

regular graph with degree d. By simple counting arguments we have,

|V| (Zdl
|E|__d(2d1 _(Zd_l)(ZdZ
|E |__(2d2 (2d3

3.2 INDEPENDENT SETS AND CHROMATIC NUMBERS

For each label w in Q define the subset I/, of V to be the set of vertices
which contain w. Since any two vertices in V,, intersect, they are not
(Zd 2

adjacent and V,, is an independent set in Og4. The cardinality of V,, is

[Bigg79]. The set-theoretical result of Erdos et al. [Erdo61][Hilt67] has the

following consequence:

Theorem 3.1: Let I be any independent set of vertices in O4. Then | I | <

(Zd 2) andif | I | = (2d 2) we must have [ =V, for some w in Q.

An independent set is maximal if the addition of any new vertex
destroys its independence. Theorem 3.1 characterizes the maximal
independent sets in O4 which also have maximum cardinality. Now let us

consider the maximal independent sets of minimum cardinality. If M is
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any maximal independent set, then every vertex not in M must be adjacent

to at least one vertex in M. Hence the sets,
D(m)={veV | v=mor (v, m) € E}, (m € M)

must cover V. In a d-regular graph (such as Oy), |D(m)| =d +1, so

(d+1) M| 2 | V|[Bigg79].

The bounds on the cardinality of a maximal independent set M in Oy

which were obtained by Biggs are as follows:

2d-2 1 2d-1
i) 2 I M z2— (]

The upper bound is attained for every value of d 2 2, but, the lower bound

is rarely attained.

The set Vg of vertices, not containing the label w, has cardinality

2d-2
d-1

). The members of V;; are paired by the rule that (u, v) is a pair when
u and v are complementary subsets of Q2 - w. The paired vertices are joined
by an edge whose label is w (these are the only edges in the vertex
subgraph Ou[V3]). The previous observations can be combined to obtain a
useful “standard representation” of Oy, as in Figure 3 [Bigg79]. The
diagram indicates that each vertex in V,, is joined to d vertices in Vz, while

each vertex in V is joined to d - 1 vertices in V,,. The edges in O4[V3] are

just those in the set E,,.
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It is easy to check that O, contains odd circuits, and the standard
representation indicates at once that there is a proper 3-coloring of the

vertices.

S — —

“I-1

Vs

Figure 3: Representation of Oy [Bigg79].

Theorem 3.2 [Zeli85]: The chromatic number of every odd graph is equal

to 3.

Proof:

Consider an odd graph O,. Let U1 be the set of all sets belonging to V
and containing the label 1, let U be the set of all sets belonging to V - U
and containing the label 2, let Us = V - (U1 U U2). Any two elements of U;
are non-adjacent (as vertices of Oy), because their intersection contains the
label 1 and therefore it is non-empty. Hence Us is an independent set in Oq4
and analogously so is U>. Now let X € Us, Y € Us. Then the sets X, Y are
subsets of the set Q - {1, 2}. This set has the cardinality 2d - 3, while each of

the sets X, Y has the cardinality 4 - 1. If X, Y were disjoint, their Union X U
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Y would have the cardinality 2(d - 1) which is greater than the cardinality
of Q - {1,2}; this is impossible. Therefore X N Y # @ for any two elements X,
Y of Us and Us is an independent set in Og4 too. The vertices of O4 can be
coloured by three colours 1, 2, 3 in such a way that by the colouri (i=1, 2,
3) the vertices belonging to U; are coloured. This colouring is admissible;
no two vertices of the same colour are adjacent. We have proved that

x(04) = 3, where x(0,) is the chromatic number of O,.

Now we shall construct the sets X3, ...,Xs and Y3, ..., Ys as follows. We
put X1 ={1, ..., d - 1}. If X; is constructed for some i, then we put Y; = Q - (X;
U {2d - i}). If Yi is constructed for some i, then we put Xi+1=Q - (Yi U {i}).
The reader himself may verify that then Ys = Xi. Further XN Y;= @ fori =
1,.,dand Xisi N Yi=@ fori=1, ..., d-1. Therefore X1, Y1, X2, Yo, ..., X4, Y4 =
X are vertices of a circuit in O4 having the length 24 -1 which is an odd
number. Hence Oj is not bipartite and x(O.) = 3. Together with the

previous inequality this yields y(O4) = 3.0

3.3 SHORTEST DISTANCE AND DIAMETER

Theorem 3.3 [Bigg79]: In the graph Oy the possible values of d(u, v) are in
one-to-one correspondence with the possible values (0,1,...,d-1)of | u
Nov |; explicitly,

ow,v)=2rs |unov |=@d-1)-r
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ou,v)=2r+1e |unov | =r

Proof:

Let 0 denote the usual distance function and D;(u) denote the set of
vertices v such that d(u, v) = i. Clearly, Dy(u) = {u}, and D, (u) consists of
the d vertices adjacent to u. If d(u, v) = 2, then there is a vertex x adjacent to
(that is, disjoint from) both u and v. If the edges (u, x) and (x, v) carry the
labels o and 7, respectively, we see that the subset v is obtained from u by
removing the label T and substituting 0. Thus, | unov | =d- 2.
Conversely, any pair of (d - 1) subsets which overlap in all except one
element must be separated by two steps in O4. Continuing in this way;, it
can be seen that if d(u, v) = 2r, then v can be obtained from u by removing
r labels and substituting r different ones, so that | unv | =(d-1)-r.

Similarly, if d(u, v) =2r+1,then | unv | =r.o

Theorem 3.4 [Zeli85]: Let u, v be two vertices of the graph Oy, let | u N v |

= r. Then the distance of the vertices u, v in Oy is A(r) = min (2r + 1, 2d - 2r

-2).

Proof:

If for two pairs u1, v1 and uz, vz of vertices of Og we have | u1 Ny | =
| u2 N w2 |, then evidently there exists a permutation of the set Q which

maps u1 onto uz and v1 onto v2 as we will see in section 3.4; this
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permutation induces an automorphism of Oz which again maps u1 onto u2
and v1 onto v2. This implies that the distance of two vertices of Oy is a
function of the cardinality of their intersection and we may denote it

by A(r), where r is this cardinality. Now let us have two vertices u, v of Oy,
letr=|unuv|.lf r=0, then u N v =@ and the vertices u, v are adjacent;
their distance is 1, therefore A(0) = 1, which fulfills the assertion. If r = d -
1, then u = v, because | u |= | v | =d - 1. The distance of u and v is 0,
therefore A(d-1) = 0, which again fulfils the assertion. Now let » be an
arbitrary integer such that2 <r<d-2. Wehave | u-v | =|v-u | =d-1
-1, | Q-(uVUwv) | =r+1. Let P be the shortest path in Os connecting u and
v. Let uo (or vo) be the vertex of P adjacent to u (or v respectively).
Evidently d(u, v) = d(uo, vo) + 2, where d denotes the distance of two
vertices. We have u N up = v N vg = O, therefore the intersection ug N vo € Q
-(wuv)and | uoNovo | <r+1.On the other hand, the set 1 can have at
most d - 1 - r elements in common with v and the other vertices of uo
belong to Q - (u U v), hence | uo N (- (1 Uv)) | =rand analogously | vo
N (Q-(uUwv)) | =r Thisimplies | uo N wvo | = r - 1. Thus there are three
possibilities for the cardinality of uo N vy, namely r-1 or r + 1. As P is the
shortest path connecting u and v, the sets uo, vo must be chosen so that
their distance might be the least possible, i.e, d(uo, vo) = min (A(r - 1),A(r),
A(r+ 1)). As A(r) = d(u, v) = d(uo, vo) + 2, the equalities d(uo, vo) = A(r) and

| uo Nvo | =1 are impossible. There can be only either d(uo, vo) = 7 -1 and,
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A(r) = A(r-1) + 2, or d(uo, vo) =r + 1 and A(r) = A(r + 1) + 2. Suppose that
A(r) = A(r - 1) + 2 holds, hence d(uo, vo) =A(r-1)and | uoNwo | = r-1.Ifr
=1, then uo, vo are adjacent and d(u, v) = A(l) = 3 (evidently it cannot be
less) which fulfills the assertion. If » > 2, consider the interrelation
between A(r - 1) and A(r - 2). Analogously there is A(r-1) =A(r-2) + 2 or
A(r - 1) = A(r) + 2. But, as we have supposed A(r) = A(r - 1) + 2, we must
have A(r - 1) = A(r - 2) + 2. Inductively we can prove that if A(r) = A(r-1) +
2 for some m, then A(p) = A(p - 1) + 2 for each integer p such that2 <p <r.
Analogously if A(r) = A(r +1) + 2 for somer, then A(g) =A(g +1) + 2 for
each integer g such that r < g < d - 2. As it has been proved A(0) =1, A(d -
1) = 0, the function A(r) is uniquely determined as A(r)= min(2r + 1, 2d - 2r

-2).o

Corollary 3.1 [Zeli85]: The diameter and the radius of the graph O, are

both equal to d - 1.

The number d - 1 is evidently the maximum of A(r); it is attained in r
= % (d-1)fordodd andinr= % d-1for d even. As Oy is vertex-transitive, its

radius is equal to its diameter.

Theorem 3.5 [Zeli85]: The graph O, for every integer d > 2 is geodetic. A
graph is geodetic if for every pair for vertices the shortest path between

them is unique.
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Proof:

In the proof of Theorem 3.4 it was shown that for given vertices u, v
the vertices uo, vo (the vertices adjacent to u and v respectively in the
shortest path connecting u and v) are determined uniquely. Thus by
induction we can prove that whole the shortest path between u and v is

uniquely determined. o

The graph O, is an example of a geodetic graph of the diameter d - 1

which is simultaneously regular of the degree 4.

3.4 SYMMETRY AND THE SPECTRUM

Any permutation 7 of the set Q induces an automorphism of O since
the subsets i (1) and 7 (v) are disjoint if u and v are. Thus the symmetric

group S41 is a subgroup of the automorphism group Aut(O,).

Theorem 3.6 [Bigg79]: The automorphism group of Oy is the symmetric
group Sz4.1, acting in the obvious way on the (d - 1)-subsets of the (24 - 1)

set Q.

Proof:

To show that Aut(Os) = Sz24.1 the deep result of Theorem 3.1 can be

used.
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Any automorphism 6 of Os must take an independent set of vertices
to an independent set with the same cardinality; hence, by Theorem 3.1, 0

(Vo) = V; for some T in Q.

Let 0 be the corresponding induced permutation of Q, defined by 6
(0) = rif and only if 6 (Vo) = V:. The mapping § +— 6 is a homomorphism
of Aut(O,) -into Sz41 and it is onto by the remarks at the beginning of this
paragraph. Finally, it is one-to-one, since if 8 is the identity, then 6 (V,)) =
V,, for each @ in Q; thus if the vertex x contains label ®, so does 0 (x), and

consequently 60 (x) = x. O

Suppose u, v, x, y are vertices of O4, and d(u, v) = d(x, y). Then
Theorem 3.3 tellsus that | uNnv | = | x Ny |, and so a permutation of Q
may be constructed which takes u to x and v to y. This means that the
graph Oy is distance-transitive, and a battery of algebraic results may be
applied to it [Bigg74]. The intersection array is a rectangular array in
which the ith column has three entries ¢;, a;, and b;, defined as follows. Let
u and v be any pair of vertices such that d(u, v) =i (all such pairs are

equivalent in O4, by the distance-transitive property); set,

ci i—1
bi; = The number of vertices x which are adjacent to v and satisfy d(u, x) =1 i
ai i+1

[Bigg79] Figure 4 may clarify the definitions.
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Distance from u: i-1 i i+1

Figure 4: Intersection numbers [Bigg79].

Since the degree of v is d, we have c; + a; + b; = d, and, since the
diameter is d - 1, there are d columns (i =0, 1, .. ., d - 1), the numbers co
and bs.1 being undefined. Simple counting arguments lead to the explicit

array for Og4, which has a remarkable pattern. When d is even, [Bigg79]

obtain,
1 1 2 2 2d-1 2d-1 2d
2 2
0 0 0 0 0 s 0 0 2d
d d-1 d-1 d-2 d-2 e, §d+1 §d+1
and when d is odd, [Bigg79] has,
1 1 2 2 %(d-l) %(d-l)
0 0 0 0 0 s 0 %(d+l)
d d-1 d-1 d-2 d-2 e, %(d+1)

29



The general theory of distance-transitive graphs tells us that the
spectrum of Oy is completely determined by the intersection array. In
other words, all the eigenvalues of the adjacency matrix, and their

multiplicities, may be calculated.

Theorem 3.7 [Bigg79]: The eigenvalues of O, are the integers

Ai=(-1)i(d-i)(0<i<d-1),and the multiplicity of A; is

mh) = (71 - O

i-1

The strong distance-transitivity property implies, in particular, that
the automorphism group of Oy is transitive on vertices and on pairs of

adjacent vertices.

In the terminology of Biggs [Bigg74], the graph is symmetric. For
such graphs, Biggs studied the action of the automorphism group on the

arcs, as defined below.

An s-arc is a sequence x1, X2, ..., Xs of vertices such that x; and x;+1, are
adjacent (0 <i <s - 1) but x; and x;+> are not identical (0 <7 <s - 2). Since we
have a simple representation of the automorphisms of Oy as the

permutations of Q it is easy to verify the following;:

Theorem 3.8 [Bigg79]: The automorphism group of O, acts transitively on

the set of all 3-arcs, but not on the 4-arcs (d 2 3).
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An s-arc is said to be consistent if there is an automorphism 8 such
that 0(xo ,x1, . .., xs1) = (x1, X2, . . ., xs) [Bigg79]. It follows from Theorem
3.8 that in Oy (d = 3) all arcs of length not exceeding 4 are consistent. If we
repeatedly extend a consistent arc, retaining at each stage the consistency

property, we must eventually return to the initial vertex.

The resulting circuit is itself symmetric in the sense that there is a
graph automorphism which rotates it through one step. A theorem due to
Conway [Conw?77] states that a symmetric graph of degree d has just d - 1
classes of symmetric circuits. The proof of the theorem provides a
recursive method for the construction of the symmetric circuits in general

[Bigg79]; here just the result for the graph Oyis described.

Biggs began by remarking that an arc or circuit in Oy is uniquely
determined by its initial vertex and the sequence of edge labels. The
construction of symmetric circuits proceeds as follows. Let A be any
subset of Q having odd cardinality not less than 3, and suppose the

members of A are ordered so that,

A={h, A1, oo, A2r }, 1 <7 <d -1 [Bigg79]

Let {X, Y} be an equipartition of the set Q- A, sothat | X| =] Y | =d-r-
1. For values of rin the range 1, 2, ..., d - 2 we obtain a symmetric circuit by
starting from the initial vertex v = X U {11, A3, ,..., A2-1 } and proceeding

along the edges labeled A, Ay, ,..., A2, Ao, Ay, ..., A2r. This gives a circuit of
31



even length 4r + 2 (Figure 5). When r = d - 1, starting from v and
proceeding along the edges labeled Ay, A1, ,..., X242 gives a circuit of odd
length 2d - 1 (in this case the sets X and Y are both empty). The
construction provides 4 - 1 classes of symmetric circuits, and, by the
theorem quoted above, these are the only symmetric circuits in O4. The
required "rotation" automorphisms are induced by composing the cyclic

permutation Ag, A1, ,..., A2, of Qwith any permutation that takes X to Y.

Theorem 3.9 [Bigg79]: The graph O (d = 3) has symmetric circuits of
length 2d -1 and 6, 10, . . ., 4d - 6. The girth of the graphis 5if d =3, and 6

for all d = 4.

Biggs remarked that the graphs do contain even circuits of lengths 8,

12, ..., but these do not have the symmetry property.

Yizis. Ao Xigds dzr1 Yiiis.. dor Xigia. A2

Xigdzs Az Yigizs Azei

- omm = = W e

s . s Xizig 42
Yioda dzv2 Xigds Aoy Yiois. 421 '

Figure 5: A symmetric circuit of length 4r + 2 in Oy.
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3.5 EDGE PARTITIONS, COLORING AND

DOMINATIONS

It was mentioned in Section 3.1 that the edge set of O, is partitioned
into 2d - 1 sets E,,, (w € Q), where the edges in E,, are those joining two
vertices whose union does not contain w. This fact, together with the
representation (Figure 4), is relevant to the study of the factors and edge

colorings of O4 [Bigg79].

If F is a 1-factor of Oy, then it must contain exactly one edge incident

with each of the vertices in V,,. The number of such edges is thus | V,, | =

2d-2
a-2/"

The edges of F not incident with V,, must each carry the label w, and

2d-1

iy ), the number of them is,

since | F| =%(

1 — — 1 .
5(2;_11 - (3 H) = - |E,| [Bigg79]

In other words, the number of edges carrying the label w is constant,

independent of w. The same is true for any r-factor, 1 <r <d.

Theorem 3.10 [Bigg79]: In any r-factor of Oy (1 < r < d), the number of

edges carrying a given label w is independent of w.
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By Vizing's theorem [Vizi64], the number of colors needed to color
the edges of the odd graph O is either d or d + 1, and in the case of the
Petersen graph Os itis d + 1. When d is a power of two, the number of
vertices in the graph is odd, from which it again follows that the number
of edge colors is d + 1. However, Os, Os, and Oz can each be edge-colored

with d colors.

An edge-dominating set in a graph G is a subset Dk of the edge set
E(G) of G with the property that to each edge e € E(G) - D there exists an
edge f € Dg such that the edges e, f have a common end vertex. The
minimal number of vertices of an edge-dominating set in G is called the

edge-domination number of G.

Analogously to the domatic number of a graph [Cock77] we may

define the edge domatic number of a graph G.

An edge-domatic partition of a graph G is a partition of the edge set
E(G) of G, all of whose classes are edge-dominating sets in G. The maximal
number of classes of an edge-domatic partition of G is called the edge-

domatic number of G.

Theorem 3.11 [Zeli85]: The edge-domination number of the graph Oy is

2d-2

iy ) and its edge-domatic number is equal to 24 - 1.

equal to % (
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Proof:

Let w € Q and let E,, be the set of all edges e of O labeled with w. Let
fbe an edge of O4 not belonging to E,,, and labeled with 7. Then, 7 # w. Let
u, v be the end vertices of f. Exactly one of the sets u, v contains the label w;
without loss of generality let it be u. Letw =Q - (v U { @ }); then v and w
are joined by an edge belonging to E,,. As f was chosen arbitrarily, it has

been proved that E,, is an edge-dominating set (for an arbitrary w).

Now let us look for the cardinality of E,,. If x is an arbitrary vertex of
Q- { w } of the cardinality d-1and y = Q- (x U { w }), then the vertices x, y

are joined by an edge belonging to E,, and vice versa. The number of

2d-2

subsets of Q - { w } of the cardinality d-1 is equal to( do1 ) Having in mind

that for a subset x of Q - { w } of the cardinality d - 1 the set y = Q - (x U {w})

is also a subset of Q - { w } of the cardinality d - 1, we find that the number

2d-2

iy ) and this is also the

. . 1
of unordered pairs {x, y} of described sets is > (

cardinality of E,,. This number does not depend on w, thus all the sets E,,,

for w =1, ..., 2d - 1 have equal cardinalities. The edge-domination number

2d-2

~?) and its edge-domatic number is at least 2 -

of Oy is thus at most % (

1.

The edge-domatic number of a graph is evidently equal to the
domatic number [Cock77] of its line-graph. The degree of each vertex of

the line-graph of Oy is 2d - 2 and this implies [Cock77] that its domatic
35



number (and thus the edge-domatic number of Oy) is at most 2d - 1. It has

been proved that the edge-domatic number of Oy is 2d -1.

Now suppose that there exists an edge-dominating set Dg of a

2d-2

1~7). For each edge e € Dk the set consisting of e and all

. 1
cardinality ¢ <~ (
edges having a common end vertex with e has the cardinality 2d -1. As

each edge of Oy either is in D, or has an end vertex in common with an

edge of D, the number of edges of O, is at most ¢(2d - 1) < % (2d-1) (de__lz

= % d (*?7!) . But the number at the right-hand side of this inequality is the

d-1

2d-1

") and the graph is

number of edges of Ou. ( The number of vertices is (
regular of the degree d. ) As ¢(2d - 1) is less, we have a contradiction. Thus

each E,, is an edge dominating set of the least cardinality and the edge-

. . : 1 -
domination number of Oy is > (de_12)' O

3.6 GRAPH DECOMPOSITIONS

Theorem 3.12 [Zeli85]: Let T, be a tree with the vertex set {a, b, c1 ..., ci-1,k1,

..., ka1} and with the edges ab, ac;, bki for i =1, ..., d- 1. Then the graph Oq

2d-2

do1 ) pairwise edge-disjoint subgraphs which

can be decomposed into = (
2

are all isomorphic to Ts. Moreover, each of these subgraphs contains

exactly one edge from each set E, forw =1, ..., 2d - 1.
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Proof:

Let w € Q, let E,, have the same meaning as in the proof of Theorem
3.11. Let e1, e2 be two elements of E,,. Suppose that these edges have a
common end vertex u. Let v1 (or v2) be the end vertex of e1 (or e2
respectively) distinct from u. Then Q- (1 U 1) =Q-(uU ) ={w}and u N
v1 =u Nv2 = Q. This implies v1 = v2 and also e1 = e>, because Oy is a graph
without multiple edges. We have proved that there exist no two distinct
edges of E, which would have an end vertex in common. Now suppose
that to the edges e1, e2 of E,, there exists an edge f which has common end

vertices with both ey, es.

Let u1 (or u2) be the common end vertex of e (or e respectively) and
f. Let v1 (or v2) be the end vertex of e (or ez respectively) distinct from u;
and u2. Then Q- (11U 01) =Q -2V ) ={w}, u1Nvi=uwNor=urNuz=
@. This implies that none of the vertices u1, u2, v1, v2 contains w. As u1 N u2
=@, wehave Q- (u1 U u2) ={w } and f € E,,. According to the above
proved this is possible only if e1 = e2 = f. Therefore if the labels of e; and e>
are equal and e1 # e, then the distance between an arbitrary end vertex of

e1 and an arbitrary vertex of e> is at least 2.

Now let e be an edge of Oq. Let G[e] be the subgraph of O4 consisting
of the edge ¢, all edges having a common end vertex with e and of end

vertices of all of these edges. This is a tree isomorphic to Tu. If e, ez are two
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distinct edges of Gle], then either they have a common end vertex, or there
exists an edge of G[e] which has common end vertices with both of them.
According to the above proved the labellings of edges of G[e] are pairwise

different.

Let T(w) be the set of subtrees G[e] for all edges e € E,,. Any two
distinct trees from T(w) are edge-disjoint; otherwise there would exist two
distinct edges of E,, with a common end vertex or with the property that

there exists an edge having common vertices with both of them. The

2d-2

a1 ) Each tree from

cardinality of T(w) is equal to that of E,,, namely% (
T(w) has 2d - 1 edges. Hence the union of all trees from T(w) has
% (Zd_z)(Zd -1 = % d(z‘jl_1 edges and this is the number of edges of Og. It

a-1 a-1

has been proved that T(w) is the required decomposition. o

To contract an edge of a graph means to delete this edge and to

identify its end vertices.

Theorem 3.13 [Zeli85]: The graph O+ (w) obtained from O, by contracting
every edge ¢ labeled with w, where w is an integer between 1 and 24 - 1, is

a bipartite graph.
Proof:

By the described contractions each tree from T(w) is transformed into

a star. Hence O4'(w) is a graph which is the union of edge-disjoint stars
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with the property that each of them contains all edges incident with its

centre in O4 (w). Every graph with this property is bipartite. o

Let P(n) be the set of all linear orderings of the set {1, ..., n}. Let 11, m2
be elements of P(n). We say that m, 2 are dihedrally equivalent, if either
II1= Iy, Or Iz can be obtained from m by acyclic permutation, by reversing
or by a super-position of a cyclic permutation and a reversing. The

relation thus defined is evidently an equivalence on the set P(n).

Let C be a circuit of the length n whose edges are labelled by
pairwise different numbers from the set {1, ...,n}. If we run around C and
write the labels of the traversed edges, we may obtain different linear
orderings of the set {1, ...,n} according to in which vertex we have started
and in which sense we have gone. These orderings form one class of the
dihedral equivalence. We may say that to C a class of the dihedral

equivalence on P(n) corresponds.

The number of classes of the dihedral equivalence on P(n) is

evidently equal to % (n-1l.o

Theorem 3.14 [Zeli85]: The graph O, with the labelling A is the union of%

(2d - 2)! circuits of the length 2d - 1 which correspond to pairwise different

classes of the dihedral equivalence on P(24 - 1). Each edge of O4 belongs to

(d - 1)!12 and each vertex to % d!(d - 1)! such circuits.
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Proof:

Let C be a class of the dihedral equivalence on P(2d - 1). Letm € C
and [a1, ..., aza1] = 1. Let Ur ={a; | i even, 2 <i<2d - 2}. We construct the
sets Uy, ..., Uzq1 recursively. If U, is constructed for some i, then Ui+ = Q -
(Ui U {i}). Any two vertices U;, U+ are adjacent in Og. Further it may be
easily proved that Q - (U241 U {2d-1}) = U1 and the vertices Uzq1, Ui are
adjacent, too. We have obtained a circuit in Og; evidently this circuit
corresponds to C. We may construct such a circuit for each class of the
dihedral equivalence on P(2d - 1). From the construction it is evident that
circuits corresponding to the same class are identical and that each edge of
Oq is contained in some of these circuits. The family of the mentioned

circuits will be denoted by €.

The graph O, is evidently vertex-transitive and edge-transitive. (A
graph is vertex-transitive, if to any two of its vertices there exists its
automorphism which maps one vertex onto the other. Analogously the
edge-transitivity is defined.) This implies that for any two vertices V1, V2
of O, the number of circuits of € containing V1 is equal to the number of
those containing V> and an analogous assertion holds for edges, too. Thus

the number of circuits from € containing any vertex is obtained by
dividing the sum of lengths of all circuits of €, namely % (2d-2)!(2d - 1), by
d-1

the number of vertices of Oy, namely (Zd_l) ; the result is % dl(d-1)!. If we
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divide the number % (2d-2)!( 2d - 1) by the number of edges of O4 namely

% d(® dd__ll), we obtain the number of circuits of € containing any edge,

namely (4 -1)!2. o
3.7 HAMILTONIAN CIRCUITS AND PATHS

It is well known that O3 is not Hamiltonian and that it does not have
an edge 3-coloring (three disjoint 1-factors). At one time [Bigg72] it was
thought that such anomalies might persist throughout the whole family

but that is now known to be false:

Theorem 3.15 [Bigg79]: When d =4, 5, 6, 7, O4 contains [d/2] edge-disjoint

Hamiltonian circuits [Mere72][Mere73].

It is tempting to conjecture that Theorem 3.15 is true for all 4 > 4.
However, in general, the construction of even a single Hamiltonian circuit
in O4 seems to be rather difficult, one advance on Theorem 3.15 is the
construction of one Hamiltonian circuit in Og [Math76]. In addition,
Shields and Savage [Shie04] used a carefully designed heuristic to find

Hamiltonian circuits in O, for 4 < d < 14.

Lov“asz [Lov’“a70] conjectured that every connected vertex-transitive
graph has a Hamiltonian path. An attempt to provide more evidence to
support Lov”asz conjecture is to compute the Hamiltonian paths for 4 > 2.
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However, a direct computation of Hamiltonian paths in Oy is not feasible
for large values of d. The graph O: (a triangle) and Os (the Petersen graph),
both of which have Hamiltonian paths (Figure 6). Balaban [Bala72]
showed that Os and Os have Hamiltonian paths. Meredith and Lloyd
[Mere72] showed that Os and O7 have Hamiltonian paths. Mather

[Math76] showed that Os has a Hamiltonian path. Shields and Savage
[Shie99] used a carefully designed heuristic to find Hamiltonian paths in
Oq for d < 14. Bueno and Faria showed that O; has a Hamiltonian path for
15 < d < 18 [Buen09]. Instead of directly running any heuristics, they used

existing results on the middle levels problem [Shie99][Shie(09].

Figure 6: The O, and O3, with highlighted Hamiltonian paths [Buen09].
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3.8 CODE

In Section 3.2 we noted that a maximal independent set M in any d-
regular graph must satisfy the inequality (d +1)| M | 2 | V |. Equality
holds if the collection of “disks” D(m) (m € M) covers the vertex-set V
exactly. In order to connect with later terminology, [Bigg79] used the term

perfect 1-code to denote a maximal independent set with the minimum

cardinality ﬁ | V].

When is there a perfect 1-code in O4? The obvious necessary

2d-1

condition that d + 1 should be a divisor of ( iy

) is by no means sufficient.
If x and y are distinct vertices of a perfect 1-code M in Oy, then D(x) and
D(y) do not overlap, and we have d(x, y) 2 3. It follows from Theorem 3.3
that | x Ny | <d-2; hence any (d - 2) subset of Q is contained in at most

one vertex belonging to M. But each vertex contains 4 - 1 such subsets, and

the total number occurring is,

d-1 r2d-1 2d-1 .
(d - 1)|M| = m d—1 = (d—Z) [Blgg79]

Thus, every (d - 2)-subset of Q occurs exactly once as subset of a
vertex belonging to M. It has been shown that M must be a Steiner system
S(d-2,d-1,2d-1); that is, a collection of (d - 1) subsets usually called
blocks of a (24 - 1) set with the property that each (d - 2) subset occurs just

once in a block.
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If a perfect 1-code in Oy, or S = S(d- 2, d -1, 2d - 1), does exist, then it
induces a unique extended system S* = S(d - 1, d, 2d). The extension is
constructed by adding one new label o to Q and taking the new blocks to
be of two kinds: (i) the blocks of S with co added, and (ii) the complements

in Q of the blocks of S.

Conversely, if a system with the parameters of S+ is given, then S
may be obtained by deleting one label and taking complements of the
blocks not containing it. Assmus and Hermoso [Assm74] have shown that
if S* has a flag-transitive group of automorphisms, then d =4 or d = 6.
Hence, if a perfect 1-code in Oy exists when d # 4, 6, its construction is

certain to be very complicated.

Theorem 3.16 [Bigg79]: If there is a perfect 1-code in O; with flag-transitive

extension, then d = 4 or 6.

The systems do exist in the cases d = 4 and d = 6; a representation of

the perfect 1-code in Oy is shown in Figure 7.
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Figure 7: A perfect 1-code in O,4[Bigg79].

Since it seems that the simple lower bound for the size of a maximal
independent set in Oy is rarely attained, the difficult question of finding

the actual minimum arises [Bigg79].
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CHAPTER 4

APPROXIMATION ALGORITHMS FOR

INDEPENDENT DOMINATION IN ODD

GRAPHS

4.1 INTRODUCTION

In sections 3.2 and 3.8 we saw that the lower bound of the minimum
maximal independent set, which is | V| /(d+1), is rarely attained and the
actual cardinality of it is an open problem. In this chapter we present
approximation algorithms that find an approximate minimum
independent dominating set by partitioning the vertices of the odd graphs
to simplify the complex structure of the graph. In section 4.2, a
partitioning scheme will be presented with some observations. In section
4.3, the approximation algorithms are described and the correctness of the
algorithm along with analysis is given. In addition, an example of finding
the MIDS in Oy is given to illustrate the algorithm. Generic greedy and

randomized algorithms are given in section 4.4. Finally, in section 4.5 we
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will compare the performance of our algorithms with the generic

algorithms empirically.

4.2 VERTICES PARTITION

LetQ=1{1,2,...,2d-1},p=2d-2and g=2d-1,50 Q3 = Q41 U {p, g}.
If s€Qy_4,thens =Q,; 4\ s, that is, the complement of s with respect to

Oy 1=1{1,2 ...,2d -3}

The set of vertices of Oy is divided into four categories according to
whether their labels contain either p or g, both p and g or neither. So, V' is
partitioned into four sets: A, B, C and D such that A consists of all subsets
with both p and g, B consists of all subsets with neither p nor g, C consists
of all subsets with p but not g, and D consists of all subsets with g but not
p.Thus, ford >3, A={{x1, x2, ..., xa3,p, q} | xi € Qgq_1}, B={{x1, x2, .. ., xa.
1} | % €Qq-1}, C={{x1, x2, ..., xa2,p} | xi € Qg_1}, and D = {{x1, x2, . . ., X422,
q} | xi € Qg_4}. Since V1 is the set of all (d - 2)-subsets of Q;_, the sets B, C

and D can be rewritten as
B={5|s€eV41},C={s Up |s€Vy1},D={s Uq | s€V;_1}

The cardinalities of these sets are given by: |A| = (Zf__;’), |B| = |C|

=|D| =)= | Vaa|.
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The partitioning of the set of vertices of O induces a partitioning of

its edges as defined by
Ew={(a,b) |a€A,beBandanb=0},
Eve={(b,c) | bEB,ceCandbnc=0}={(s Up,5) | s€Vy_4},
Eva={(b,d) | beEB,deDandbnd=0}={(s Uq,5) | s€V;_4},
Ew={(c,d) | ceC,deDand cnd=0}=Uceeo, ,1(sp tq), (tp, sq)}.

The last equality follows from the fact that an edge (s, ) in Ou1 gives

rise to two edges linking two vertices in C with two vertices in D, namely

(sp, tq) and (ip, sq).

Figure 8 shows the new drawings of the odd graph O4, d=2,3, 4. In
Figure 8 (b) for the Peterson graph, A = {{4, 5}}, B={{1, 2}, {1,3}, {2,3}}, C=

{{1, 4}, {2, 4}, {3,4}} and D = {{1, 5}, {2, 5}, {3, 5}} (here, p =4; g =5).

Figure 8: New drawings of the odd graph O4, d = 2, 3, 4.
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Proposition 4.1: Given the partition {A, B, C, D} of the vertices of the odd

graph Oy, d = 3, we have

(i) Each vertex in A is connected to d vertices in B.

(ii) Each vertex in B is connected to 4 - 2 vertices in A, one vertex in C

and one vertex in D.

(iii) Each vertex in C is connected to 1 vertex in B and d - 1 vertices in

D.

(iv) Each vertex in D is connected to 1 vertex in B and d - 1 vertices in
C.
Proof:

(i) Observe that all subsets in C U D contain p or g while subsets in B

contain neither.

Hence, all subsets disjoint from those in A are contained in B. So, let a

={x1, x2, ..., xa3,p, gt €EAand Bo={y1, y2, . . ., yaa} | yi € {xq,%5,...,xq-3}}

be the subsets in B disjoint from a.

Then, |B.| is the number of ways to choose d-1 numbers from Q,_;\

{x1, x2, . . ., xa3}. Hence, the number of subsets in B disjoint from a is | B, |

=)= (L) =
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(ii) Let b € B. Since all subsets in A contain both p and g, and those in
B contain neither, the number of subsets in A disjoint from b is equal to the
number of ways to choose d - 3 numbers from Q;_; \ b. Hence, b is
connected to exactly (Zd 3" (d 1)) ( ) = d - 2 subsets in A of the form
{x1, x2, ..., xa3, p, q}, where x; € b,1<i<d-3.Since all subsets in C
contain p but not g, and those in B contain neither, the number of subsets
in C disjoint from b is equal to the number of ways to choose 4 - 2 numbers
from Q4_; \ b. Hence, the number of subsets in C disjoint from b is
(Zd 3 (d D) = ( ) = 1. That is, b is disjoint from exactly one subset in C,

namely b U p. Similarly, b is disjoint from exactly one subset in D, namely

bug.

(iii) Let c€ Cand ¢’ = ¢ \ {p}. Then, the number of subsets in B
disjoint from c is equal to the number of ways to choose 4 - 1 numbers
from Q44 \ ¢’. Hence, the number of subsets in B disjoint from c is
(Zd —3- (d 2)) ( ) =1. That is, c is disjoint from exactly one subset in B,
namely c’. By definition, C consists of all (d - 2)-subsets of Q;_; suffixed by
p, and D consists of all (d - 2)-subsets of Q,;_; suffixed by 4. Note that " is a
(label of a) vertex in V4.1. Hence, by definition of O41, ¢’ is disjoint from d -
1 vertices x1, x2, . . ., x41in Og1. Then, fori € {1, 2, ..., d - 1}, cis disjoint

from x; U g in O4. Consequently, c is disjoint from exactly d - 1 subsets in D.

(iv) Similar to (iii). o
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By Proposition 4.1, the following bipartite graphs are present in Og:
O4[Ew) is a bipartite graph in which V a € A deg(a) =d and V b € B deg(b) =
d -2, O4[Ecd] is a (d - 1)-regular bipartite graph, and O4[Es] and Og4[Epa] are
1-regular bipartite graphs. Moreover, {O4[Eaw] , Od[Eca], Od[Evc], Oa[Epa] } is

a decomposition of the odd graph Oy into four bipartite graphs.

Lemma 4.1: The odd graph Oy, d > 2, contains | V41| vertex-disjoint paths

of length 2.

Proof:

See Figure 9. Let x € V1. Thenc=xUpe(C b=x€B,andd=xUg€
D. Since (c, b) and (b, d) are edges in O4, 1 = ¢, b, d is a path of length 2 in
Oq. Obviously, if " = ¢/, V', d’ with ¢’ # ¢, then mand " are vertex-disjoint.

It follows that the number of such pathsis |C| = | Va1 | .0

As an illustration of Lemma 4.1, the following three paths are present
in the Peterson graph shown in Figure 8 (b): m = 14, 23, 15, m> = 24, 13, 25

and 113 = 34, 12, 35.
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Figure 9: Oq contains | V.1 | vertex-disjoint paths.

Theorem 4.2: B U C is a vertex cover for Oy of size 2| V1|, which is

minimum.

Proof:

Recall that O4[E.4] is the (d - 1)-regular bipartite subgraph induced by
the vertex set C U D. By Hall and Konig classical arguments, O4[E.] has a
perfect matching whose cardinality is equal to a minimum vertex cover C
for O4[Ecd]. Thus, |C| = | Va1 |. By Lemma 5.1, O4, d > 2, contains | Vi1 |
vertex-disjoint paths 1 = u;, v;, wi, where u; € C,vi€ B,w; € D,1<i< |V
1. So, C forms a subset of the end-vertices of these paths. Since these
paths are vertex-disjoint, they contain exactly | Vi1| edges that are
covered by C. Consequently, | V41| additional vertices are required to
cover the remaining | V11| edges, and hence all paths. It follows that the

cardinality of any vertex cover for Oy is at least 2| Va1 |.
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On the other hand, since any edge in O4 has one of its ends in either
B or C, it immediately follows that B U C is a vertex cover for O, of

cardinality |[BUC| =2|C| =2| Va1 |.O

Corollary 4.1: A U D is a maximum independent set for O, of size Vi -

2| Vaa].

4.3 APPROXIMATION ALGORITHMS

It is clear from section 4.2 that the set of vertices in set B is a maximal
independent set. The approximation algorithms that we propose reduce
the set of the maximal independent set while maintaining the
independence and the domination properties. Next, a detailed description

of the algorithms is given.

4.3.1 ALGORITHMS DESCRIPTION

The algorithms can be divided into 4 stages. In stage 1, the
algorithms perform vertices partitioning and initialize set IDSg with set B.
In stage 2, they find an independent set in Ecp (O4[Ecq] which is a (d - 1)-
regular bipartite graph). In stage 3, they remove vertices from set IDSp and
find the fixed vertices from set IDSp and set A. In stage 4, the algorithms
find an independent dominating set in Epa (O4[Es] which is a bipartite

graph). Next, we will discuss each stage in detail.
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Stage 1:

First, the algorithm partition Oy to the sets A, B, C and D as explained
in section 5.2. At the initialization stage the algorithm initializes set IDSp

with set B.

Stage 2:

Next, the algorithm finds the independent set of vertices (IScp) in the
induced bipartite graph Ecp. We design two algorithms for obtaining IScp,
The first one finds IScp with the following restriction, all shortest distance
between any two vertices in set C or D are greater than two, and on the
other hand, the second method relaxes the restriction and allows two

vertices with shortest distance of length 2 in IScp.

The first algorithm for finding IScp: The algorithm finds a set of
vertices (ISc) from set C with the condition that the shortest distance
between any pair of vertices is greater than two. The algorithm starts by
choosing a vertex from set C, let it be c1 then add it to ISc. Then, the
algorithm finds a vertex from set C, say ¢, such that the shortest distance
between c, and any vertex in ISc is equal to the diameter, then it adds c, to
ISc, repeat this step until there is no more vertices satisfy the condition. At
this stage, the distance between all vertices in ISc is equal to the diameter.
The algorithm then finds every vertex from set C such that the distance

between a vertex and all vertices in ISc is greater than two, add the
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vertices to ISc. The algorithm repeats the previous steps for each vertex in
C as the starting vertex, and lastly, it selects ISc with maximum
cardinality. The algorithm deletes all adjacent vertices to the vertices in
ISc. The algorithm repeats all previous steps to find ISp, and finally takes
the union of IScand ISp as IScp. Empirically, it was found that this method

works ford <7.

The second algorithm for finding IScp: The algorithm chooses the
first vertex from C, for example the order of vertices in Os is {14,24,34} and
the first vertex is {14}, if the vertex is adjacent to d-1 vertices then adds it to
IScp and delete it with the adjacent vertices. Then, it chooses the first
vertex from D, if it is adjacent to d-1 vertices then adds it to IScp and delete
it with adjacent vertices. The algorithm repeats in order for all vertices in
Ecp, until there is no vertex that is adjacent to d-1 vertices. The algorithm
repeats the previous steps and finds vertices that have d-2 neighbors, and

so on until the cardinality of the adjacent vertices of all vertices is equal to

2.

We will refer to Algorithm 1 as Approx. 1 if it uses Algorithm 2 to

find IScp and Approx. 2 if it uses Algorithm 3.

Stage 3:

After the algorithm finds the IScp from the induced bipartite Ecp, it

removes any vertex from set IDSg if it is adjacent to vertices or a vertex in
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IScp. Let fixedB be a set of vertices in IDSg, such that a vertex v € fixedB is
adjacent to w € C and u € D, where w is not dominated by any vertex from
set D and vertex u is not dominated by any vertex from set C. Vertices
from fixedB cannot be removed from the IDSg, since removing such
vertices will violate the domination property because the adjacent vertices
will be undominated. Consequently, any vertex from set A that is adjacent

to a vertex from fixedB will be added to a set fixedA.

Stage 4:

Let set vA = A \ fixedA. The algorithm chooses a vertex from set vA
if the vertex is adjacent to d vertices from set IDSg and removing the d
vertices from the IDSp does not violate the domination property, we add
the chosen vertex to the IDS4 and delete the adjacent vertices from the
IDSg. If removing the d adjacent vertices causes a violation in the
domination property, the algorithm select another vertex from vA and
repeats the previous steps. The algorithm repeats the previous steps for all
vertices in vA. The algorithm repeats all previous steps for checking
cardinalities of adjacent vertices from d-1 to 2. The algorithm will exit the
loop if all vertices in vA cause a domination violation. At the end of this
stage the algorithm sets the IDSga to the union of IDSg and IDSa4. Finally,
the algorithm finds the final IDS (the independent dominating set for Oq)

by taking the union of IScp and IDSga.
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Algorithm 1 Approximation Algorithm for Independent Dominating Set

Figure 10: Algorithm 1 for Independent Dominating Set.

Algorithm 2 Algorithm for IScp such that d(u, v) > 2 for V u, v € IScp

Figure 11: Algorithm 2 the first algorithm for finding IScp.
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Algorithm 3 Algorithm for IScp such that 3 u, v € IS¢p with d(u, v) =2

Input: C, D

Output: IScp

1:IScp « @

2: fori<« d-1to2do Step 3,4, and 5

3: for each vertex v € C starting from the first vertex and u € D starting from the
first vertex do Steps 4 and 5

4: if IN(v)| =1 then add it to IScp and delete N[V]

5:if [N(u)| = 1 then add it to [S¢p and delete N[u]

Figure 12: Algorithm 3 the second algorithm for finding IScp.

Example: We will demonstrate the described algorithms for finding

the minimum independent dominating set in Oa.

First stage:

Referring to step 1 in Algorithm 1, the algorithm partition the graph

to the following sets,

A={167, 267, 367, 467, 567}, B={123, 124, 125, 134, 135, 145, 234, 235,
245, 345}, C={126, 136, 146, 156, 236, 246, 256, 346, 356, 456}, D={127, 137,

147,157, 237, 247, 257, 347, 357, 457}.

IDSg is initialized with B, and the result is the following set,

IDSp = {123, 124, 125, 134, 135, 145, 234, 235, 245, 345}. The result
graph can be seen in Figure 13 (the dominating vertices are colored with

black).
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Figure 13: O4after the first stage.

Second stage:
Finding IScp using Algorithm 2:

First we select a vertex from C. let this vertex be the first one and add

it to IS¢, so ISc = {126}.

Referring to step 4 in Algorithm 2, starting from vertex {126}, we find
a set of vertices such that the distance between any pair of vertices is equal
to d-1 =3, then add them to ISc. The algorithm finds only one vertex

which is {236} so, ISc = {126, 346}.
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Since there is no a vertex such that the distance between a vertex and

both {126, 346} is greater than 2, step 5 will not find any vertex.

The algorithm repeats the previous steps for all vertices in C. The

result is the following sets,

ISc= {136, 246}, ISc = {146, 236}, ISc = {156, 236}, ISc = {236, 146}, ISc =

1246, 136}, ISc = {256, 136}, ISc = {346, 126}, ISc = {356, 126}, ISc = {456, 126}

Since all ISc have the same cardinality we will select any set, let ISc =

1126, 346}.

Step 7 deletes the adjacent vertices which are {457, 357, 347} and {127,

157, 257} from set D.

Step 8 repeats the previous steps for D and the result will be ISp=

{137, 247}.

Finally, IScp = ISc U ISp= {126,137,247,346}.

Finding IScp using Algorithm 3:

Step 4 in Algorithm 3 selects the first vertex from set C which is {126}
, the algorithm checks if it is adjacent to d-1 vertices which is true so, we
add it to IScp and delete it with the adjacent vertices which are {457, 357,

347}
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Step 5 selects the first vertex from D that is adjacent to 3 vertices
which is {127} add it to IDScp and delete it with the adjacent vertices

which are {346, 356, 456}.

At this stage there are no more vertices that are adjacent to 3 vertices,
so we check for vertices that are adjacent to two vertices. Step 4 and 5
select vertex {136} from C and vertex {137} from D which are adjacent to
two vertices and delete them with the adjacent vertices which are {257,
247} and {256, 246}. Again, step 4 and 5 select vertices from C and D that
are adjacent to 2 vertices, the algorithm selects {236} and {237} adds them
to IScp and deletes them with the adjacent vertices which are {157,147} and

1156, 146).

At this stage there are no more vertices that are adjacent to 2 vertices,

so we stop. IScp = {126, 127, 136, 137, 236, 237}.

Third stage:

We will choose the result found by Algorithm 2, so IDScp = {126, 137,

346, 247}. The result graph is shown in Figure 14.
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Figure 14: Oy after the second stage.

Step 3 in Algorithm 1 deletes vertices from set IDSg that are adjacent
to any vertex in IScp. Those vertices are {345, 125, 135, 245}. So, IDSg= {123,

125, 135, 145, 234, 235}. The result graph is shown in Figure 15.
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Figure 15: Oy after removing deletes vertices from set IDSg.

Step 4 finds the fixed vertices in IDSp and set A. Notice the vertices
{237,147} from set D and {146, 236} from set C, they are not dominated by
any vertices from D and C, those vertices are connected to vertices {145,
235} from IDSg which cannot be removed from IDSg. The adjacent vertices
to {145, 235} from set A will be the fixed vertices in set A which are {267,
367,167, 467}. The graph after finding the fixed vertices is shown in Figure

16 (The fixed vertices are circled).
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Figure 16: O, after the third stage.

Fourth stage:

Step 5: vA = A\ fixedA = {567}

Step 8 selects {567} from vA and checks the number of adjacent
vertices which are {123, 124,134, 234} from set IDSg. Since {567} is adjacent
to d = 4 vertices and removing the adjacent vertices will not violate the
domination property, we add it to IDSa4, delete it from vA and delete the
adjacent vertices from IDSp which are {145, 235}. Since there is no more

vertices in vA we stop. IDSpa = IDSp U IDS4 = {145, 235, 567}.
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Figure 17: O, after the fourth stage.

Step 11: IDS = IScp U IDSga = {126, 247, 346, 137, 145, 235, 567}. The

final IDS can be seen in Figure 17.

4.3.2 CORRECTNESS

In this section, we will show that Algorithm 1 always find a correct
independent dominating set, in particular we will prove that the
algorithm maintains the independence and the domination properties

throughout the algorithm execution.
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Proposition 4.2: Approx. 1 for d <7 and Approx. 2 for any d find a correct

independent dominating set.

Proof:

It is clear that the set of vertices in set B is a maximal independent
set, so the independence and the domination properties are maintained.
After the algorithm finds IScp from set C and D, removing the adjacent
vertices from IDSg in step 3 in Algorithm 1 must lead to correct IDS which
must preserve the domination and the independence properties. Now let’s
consider removing adjacent vertices from IDSg, we have three cases where
a vertex from set IDSp must be removed to maintain the independence
property. Let the dominating vertex, which is adjacent to a vertex from set
IDSg; be from set D, the argument is true for a dominating vertex from set
C by symmetry. The first case (Figure 18): a vertex from IDSg is connected
to dominating vertices from set D and set C. The algorithm can remove
vertex b1 without violating the domination and the independence
properties. Vertices c, and d, are not connected since there is no a cycle of

length 3 in Oy so, vertices ¢, and d, are dominating and independent.
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Figure 18: The first case of removing vertices from IDSg.

Case two (Figure 19): a vertex from set IDSg is connected to a
dominating vertex from D and an undominating vertex from set C. In
addition, vertex c, is also dominated by different vertex from D. We can
remove vertex by without violating the domination and independence
properties. Since vertex c, is dominated and the two vertices from D are
independent so, we preserve the domination and the independent

properties.

IDSg IDSg

n b
O 10 iy
o do
C Cn Ody D C Cn Ody D

Figure 19: The second case of removing vertices from IDSg.
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The third case (Figure 20): a vertex from IDSg is connected to a
dominating vertex from D and an undominating vertex from C. In
addition, c, vertex is also not dominated by any vertex from D. When we
remove vertex by, the domination property will be violated since vertex c,
will be not dominated by any vertex. The presented approximation
algorithms do not allow case 3, let’s consider the two methods to find set

IScp.

IDSg IDSg

El'l E’l
€10 €10 i
1C - e [ -
dz d2
C Cn Ody D C Cn Ogdq D

Figure 20: The third case of removing vertices from IDSz.

Method 1: the algorithm finds the maximum independent set such
that the distances between all vertices are greater than two, notice that the
distance between the dominating vertex d, and the undominating vertices
from D is at least 3 which means the independent dominating set is not
maximum, since one of these vertices must be dominating to have

maximum independent dominating set, so this case is prevented. Method
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1 does not find the maximum independent set for d > 8, so this case exists
when d > 8. Method 2: If vertex c, is connected to d-1 undominating

vertices from set D (the algorithm has not selected any vertex from the d-1
vertices), then vertex ¢, must have been chosen as a dominating vertex so

we cannot have such a case.

In addition to the previous cases, we have one case where removing
a vertex from IDSg is caused by selecting a vertex from set A to be added
to the dominating set. This case is shown in Figure 21. This case occurs
when vertex by is connected to vertices from set C and D such that they are

not dominated by any other vertices either from set D and C respectively.

C10
)
~ 7,
C Cn Ody

Figure 21: A case of removing vertices from IDSp which violates the domination property.
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If vertex b1 is removed, vertices C and D will be undominated which
violate the domination property. The algorithm does not allow removing
vertex b1 by making it a fixed vertex, consequently all 4-2 vertices from set
A, which are connected to that fixed vertex, cannot be chosen to be added
to the dominating set, which means vertex b1 cannot be removed from the
independent dominating set, hence the algorithm preserves the

domination prosperity.

When the algorithm chooses a vertex a € A to be added to the
independent dominating set, a is either connected to dominating or
dominated vertex b € B. If b is dominated then adding a and removing b
will not violated the domination and the independence properties, if b is
dominating then removing the vertex b from the dominating set will
preserve the domination property. We have one situation where
domination property is violated, that is when a vertex a is connected to a
dominating b, and the dominating b is connected to another undominating
vertex from set A which is not connected to any other dominating vertex
from B except b this situation is depicted in Figure 22. Clearly the
algorithm prevents this situation by checking if a vertex from B is the only

dominating vertex connected to 4.0
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Figure 22: A situation where domination property is violated.

4.3.3 ANALYSIS

Partitioning the graph requires O(| V| ), Finding the vertices from set
Cand D costs O(2 | Vi1 |?) using Algorithm 2, and O(24? | V41| ) using
Algorithm 3. Finding fixed vertices from set B requires O( | V41 |). The
process of adding vertices from set A to the independent dominating set
costs O(d* | A|). So the time complexity is O(| V| +2| Va1 |2+ | Vaa |+ d*

|A])=0(]| Va1|?) using Approx.1 and O(| V|+2d?| Va1 | +| Vaa |+ d* |A])

=O(d* | A|) using Approx. 2.

71



4.4 GREEDY AND RANDOM ALGORITHMS

Two well-known algorithms for independent dominating set in a
graph are greedy and random algorithms, which are listed in Figures 23
and 24. The algorithms are similar, difference is that in the random, the
vertex selected in step 4 is selected at random; whereas in the greedy it is a

maximum degree vertex (ties are broken randomly).

4.4.1 ALGORITHMS DESCRIPTION

The greedy algorithm selects a vertex of maximum degree, while the
random algorithm selects a vertex at random, then both algorithms deletes
that vertex and all of its neighbors from the graph, and repeats this

process until the graph becomes empty.
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Algorithm 4 Greedy Independent Dominating Set

Input: Oy

Output: Independent Dominating Set (IDS)

1: IDS < @

2: while V # @ do
3: choose v € V such that the degree of v is maximum
4: IDS < IDS U {v}
5:V < V\N]v]

6:

end while

Figure 23: Algorithm 4 Greedy Independent Dominating Set.

4.4.2 CORRECTNESS

During the execution of the algorithm, the set of not yet considered
vertices gives the set of all vertices that could be added to IDS without
violating the independence property of IDS. Algorithm 4 and 5 constructs
a maximal independent set, since we always remove all conflicting

vertices.

4.4.3 ANALYSIS

It is clear from the algorithms that they require linear time in the
number of vertices and edges, in addition to the time required for

searching the maximum degree vertex in the greedy algorithm. However,
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the greedy algorithm can be implemented in time linear in the number of

edges and vertices, independent of the degree.

Algorithm S Random Independent Dominating Set

Input: Oy

Output: Independent Dominating Set (IDS)
1: IDS < @

2: while V# @ do

3: choose v € V at random

4: IDS <IDS U {v}

5:V < V\N]v]

6: end while

Figure 24: Algorithm 5 Random Independent Dominating Set.

4.5 EXPERIMENTAL RESULTS

4.5.1 EXPERIMENTAL SETUP

This section presents experimental results and comparisons of the
approximation algorithms discussed above: the new approximation
algorithms, the greedy and the randomized algorithms. All algorithms
were performed on odd graphs of dimension 3 to dimension 13 except the

tirst algorithm which was performed on odd graphs up to dimension 7.
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Our main measure of performance is the cardinality of the independent

dominating set which is machine independent.

All algorithms were implemented using C sharp. We ran the
experiments on Sun virtual machine running on 64-bit Windows 7
operating system, the virtual box install 64-bit Windows 7 with Intel Xeon

@ 2.93 GHz CPU and 8 GB RAM running Windows 7.

I have used the Incidence Matrix structure (suggested by Dr. Al-
Darwish who also gave BuildOddGraph() and GreedyMinIndDomSet()
procedures) to represent odd graphs. For our purpose we defined the

incidence matrix as the matrix IM[1..n, 0..(d+2)] as follows (see Figure 25):

e IM]Ji,0] is set to the degree of vertex i, and

e The i-th row IM[i,1..d] lists the vertices that are adjacent to i

(i.e., IM[ij]=x if and only if (i,x) is an edge).

e In addition, two additional columns can be used to store the

set name that the vertex belongs to and the label of the vertex.

This representation is space efficient for graphs where the degree of

any vertex is equal to d, such as odd graphs.

75



12 )
13
14
15
23
24
23
34
35
43

10
L

Sv -3 0d o

T T N T .-
ol o by o0 oy o = b

c
3

- "
L Ly L W [ T S R s T I B W La
— — = R BY L LA L o

thetdetice fainy

Figure 25: O; and its incidence matrix representation.

4.5.2 EXPERIMENTAL RESULTS

For each algorithm, we consider its approximation quality. Table 1
shows the results of these experiments. Abbreviations in the table are as

follows:

— Approx. 1: The approximation algorithm using (Algorithm 2) to

find IScp such that d(u, v) > 2 for V u, v € IScp.

— Approx. 2: The approximation algorithm using (Algorithm 3) to

find IScp such that 3 u, v € IScp with d(u, v) = 2.

In odd graph of dimension three, the four algorithms” performances
are similar providing the same approximation quality except the random
algorithm which found a larger IDS. When an odd graph of dimension

four is the input the Approx. 1 and the greedy algorithms provide the
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same performance ratio, while Approx. 2 and the randomized approach
found worse results. In odd graph of dimensions five and higher, the
algorithms start giving different performances. As shown in Table 1, the
approximation quality of the Approx. 1 and 2 algorithms turns out to be
higher than the greedy and the randomized algorithms. Moreover,
Approx. 1 algorithm dominates Approx. 2 algorithm. This can be
explained by the fact that Approx. 1 algorithm finds the maximum
independent set in the induced bipartite Ecp with minimum distance of 3
which maximize the number of non overlapping neighbors of the
dominating vertices which in turn minimizes the independent dominating
set, whereas Approx. 2 algorithm allows finding independent set in the
induced bipartite Ecp with distance of two. Furthermore, it was observed
that the greedy approach give worse results as the number of vertices
increases, since it selects a vertex with maximum degree among many
vertices with the same degree without considering the degrees of the
neighbors and the further neighbors. Also, the randomized approach
selects a vertex at random which raises the possibility of selecting a vertex
with lower degree which means a larger set of independent dominating
vertices. It is worth noting that as the dimension of odd graphs increases
the difference in the performance quality between the new approximation

algorithms and the greedy and the randomized algorithm also increases.
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TABLE 1 APPROXIMATION QUALITIES

d V] E| Lower Approx 1. Approx 2. Greedy Random
Bound* DS IDS| DS DS
3 10 15 3 3 3 3 4
4 35 70 7 7 10 7 11
5 126 315 21 26 26 39 41
6 462 1386 66 66 93 118 139
7 1716 6006 215 259 316 386 452
8 6435 25740 715 _ 1097 1310 1519
9 | 24310 109395 2431 _ 3842 4676 5503
10 | 92378 461890 8398 _ 14217 15389 19726
11| 352716 | 1939938 29393 _ 48106 54696 71522
12 | 1352078 | 8112468 104006 _ 175052 197582 261002
13 | 5200300 | 33801950 371450 _ 637949 731096 955580
*Lower Bound = [|V|/(d + 1)]
45
40 \E—
35 \=8
30 \=8
—| @ Lower Bound
; 25 | QE_
g 20 \E B Approx. 1
15 §§ m Approx. 2
10 —] QE B Greedy
5 NE NE-  Random
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3 4 5
d

Figure 26: |IDS| in odd graphs of dimensions 3-5.
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Figure 27: |IDS| in odd graphs of dimensions 6-7.
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Figure 28: |IDS| in odd graphs of dimensions 8-10.
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Figure 29: |IDS| in odd graphs of dimensions 11-13.
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CHAPTER 5

CONCLUSION AND FUTURE WORKS

As mentioned in the literature, independent and dominating sets in
communication network are important structures, and many optimization
approaches rely on these. Many exact and approximation algorithms were
proposed in the past to solve the problem either on general or special
family of graphs. One of the graph classes, which have not been

investigated in term of independent domination, is the odd graphs class.

In this thesis, the first approximation algorithms for independent
dominating set in odd graph are introduced. Our approach is based on
partitioning the graph to different sets in order to simplify the complexity
of the graph, then finding the independent dominating sets or the
independent sets on the partitioned parts of the graph and merging the
results while resolving any conflicts in the independence or domination
properties. In this thesis, we designed two approximation algorithms,
namely Approx.1 and Approx. 2. Approx. 1 produces the best results,
however it gives correct results in odd graphs up to dimensions seven, for
higher dimension the algorithm does not produce a valid independent

dominating set since the solution to maximum independent set with
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distance greater than two between any vertices in the induced bipartite
Ecp cannot be attained. Approx. 2 algorithm gives comparable excellent
results and it produces a valid set for dimensions that are higher than
seven since we relaxed the distance restriction to allow a distance of two
between some vertices. In addition, we proved the correctness of the two
approximation algorithms and analyzed them. Also, we presented
experimental results and comparison between the two approximation
algorithms and the greedy and the randomized algorithms. The results of
the experiments show that Approx. 1 and Approx. 2 give the best

approximation quality especially in high dimensional odd graphs.

In short, the following have been achieved in the thesis:

e The first approximation algorithms for MIDS in odd graphs

are introduced.

e Analyses and correctness of the proposed approximation

algorithms are presented.

e Experiments are presented, which show that the
approximation algorithms find significantly smaller sets than

those found by the greedy and the random algorithms.

There are several open problems that can be investigated in future

works. The following summarizes some of the interested problems:
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Designing an approximation algorithm for independent

dominating set in odd graph with weighted vertices or edges.

Finding the upper bound of the proposed approximation

algorithms.

Proving or disproving the following conjecture: Approx. 1

algorithm finds the optimal set.

Proving or disproving the following conjecture: the minimum
independent dominating problem in odd graph is in P if and
only if the problem of maximum independent set on the

induced bipartite £cp with minimum distance of three is in PP.
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APPENDIX A

ALGORITHMS IMPLEMENTATION

using System;
using System.10;
using System.Collections.Generic;

//Authors: Ahmed Al-Herz and Dr. Nasir Al-Darwish

namespace IndepDomSet

{

class ApproximationAlg

static int[,] IM ;//incidence matrix for a graph -- column O records count
//0of adjacent vertices

//cw is used in BuildOddGraph();
// vertices in ODD graph are numbered 1 to n where cw[i] is the

//corresponding set (as bit vector)

static Int[] cw;
static int size B; //size of set B, C or D in odd graphs

static int size_A; //size of set A in odd graph

static void Main(string[] args)

{
int n
int[] S ;
for (int d = 5; d < 10; d++)
{
n = BuildOddGraph(d);
int k = RandomMinIndDomSet(out S, n, d);
Console.WriteLine(""for odd d= " + d +" "+ValidlndpDomSet(S, n) + * " + k +"\n"");
3
return;
T
// This procedure tests if the vertices where S[i] = 1 form a covering
//1S

static bool ValidlndpDomSet(int[] S, int n )

for (int v = 1; v <= n; v++)
if (S[v] == 1) // check Independence
{ for (int i = 1; i <= IM[v, 0]; i++)
if (S[IM[v, i]] == 1) {return false; }

else if (!1sCovered(S, v)) {return false; }
return true;

}

static bool IsCovered(int[] s, int v)

{

// v is covered if one of its neighbors is a vertex in S and where S[i] =1
for (int i = 1; i <= IM[v, 0]; i++)
if (s[IM[v, i]] == 1) return true;

return false;

}
// Greedy algorithm for for Min Indpendent Dominating set
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static int GreedyMinlndDomSet(out int[] s, int n, int dimension)
{

int maxdeg, maxv;

// s[v] = 0 unchecked , 1 in IDS, -1 covered

int[] deg = new int[n + 1];

s = new int[n + 1];

for (int v = 1; v <= n; v++) { s[v] = 0; deg[v] = IM[Lv, 0]; }

// find vertex of max degree
// Note: degree is updated to discount covered vertices

int vcount = O;

while (true)
{ // find vertex In S with maximum degree (maxdeg)
maxdeg = int.MinValue; maxv = 0O;
for (int v = 1; v <= n; v++)
if ((s[v] == 0) && (deg[v] > maxdeg))
{

maxdeg = deg[v];
maxv = v;
b
if (maxv == 0) break;
if (s[maxv] == -1) Console.WriteLine(" vertex already covered™);
// add the verex maxv to IDS
s[maxv] = 1;

veount++;

// Now update degree to discount covered vertices (i.e. neighbours of

//maxv)
for (int i = 1; i <= dimension; i++)
{
int v = IM[maxv, i];
if (s[v] == -1) continue;
s[v] = -1;
for (int j = 1; j <= dimension; j++)
it (deg[IM[v, j11> 0)
deg[IMLv, j11--:
3
3

return vcount;

}

// Random algorithm for for Min Indpendent Dominating set
static int RandomMinIndDomSet(out int[] s, int n, int dimension)

{
// s[v] = 0 unchecked , 1 in IS, -1 covered
int[] deg = new int[n + 1];
s = new int[n + 1];

1; v <= n; v++) { s[v] = 0; deg[v] = IM[v, O]; }

for (int v

int vcount = O;
Random r = new Random(); // random generator
List<int> vertexset = new List<int>();

//populate a list with all vertices
for(int i =1; i<=n; i++)vertexset.Add(i);

while (true)
if (vertexset.Count == 0) break;
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int randomlndex =r.Next(vertexset.Count);
int targetV = vertexset[randomlndex]; // select a random vertex
vertexset._Remove(targetV); // remove the vertex from the list
s[targetV] = 1; // add the verex maxv to IS
vecount++;
// Now update degree to discount covered vertices (i.e. neighbors of the selected
//vertex)
for (int i = 1; i <= dimension; i++)
{
int v = IM[targetV, i];
if (s[v] == -1) continue;
vertexset.Remove(Vv); // remove the neighbors from the list
s[v] = -1;
for (int j = 1; j <= dimension; j++)
it (deg[IMLv, §11> 0)
deg[IMLv, §11--;:

}

return vcount;

}

// Approx2 algorithm for for Min Indpendent Dominating set
static int Approx2(out int[] s, int n, int dimension)

{
int[] setA = new int[size_ A + 1];
int[] setB = new int[size_B + 1];
int[] setC = new int[size_B + 1];

int[] setDh = n
int[] setApos
int[] setBpos

9]
=

int[size B + 1];
new int[size A + 1];
new int[size B + 1];
int[] setCpos new int[size B + 1];
int[] setDpos new int[size_B + 1];
int[] 1Sd = new int[size B + 1];
int[] 1Sdpos = new int[size_B + 1];
int[] 1Sc = new int[size_B + 1];
int[] I1Scpos = new int[size_B + 1];
int[] stemp = new int[size B + 1];
int[] IDSa = new int[size_A + 1];
int[] IDSapos = new int[size A + 1];
int idsblength = size_B;

inta=1,b=1, c=1, d = 1;

// s[v] = 0 unchecked , 1 in IS, -1 covered
int[] deg = new int[n + 1];
s = new int[n + 1];

for (int v = 1; v <= n; v++) { s[v] = 0; deg[v] = IM[Lv, 0]; }

//partitioning the graph to four sets

for (int i = 1; i <= n; i++)

{
if (IM[i, dimension + 1] == 1)
{ setA[a] = IM[i, dimension + 2]; setApos[a] = i; a++; }
if (IM[i, dimension + 1] == 2)
{ setB[b] = IM[i, dimension + 2]; setBpos[b] = i; b++; }
if (IM[i, dimension + 1] == 3)
{ setC[c] = IM[i, dimension + 2]; setCpos[c] = i; c++; }
if (IM[i, dimension + 1] == 4)
{ setD[d] = IM[i, dimension + 2]; setDpos[d] = i; d++; }
¥
int kc = 1;
int kd = 1;

//Find independent set in the bipartite CD
for (int degree = dimension; degree >= 3; degree--)

for (int i = size B; i1 >=1 ; i--)

{
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ifT (deg[setDpos[i]] == degree && s[setDpos[i]] == 0)

1Sd[kd] = setD[i];
1Sdpos[kd] = setDpos[i];
kd++;
s[setDpos[i]] = 1;

for (int j = 1; j <= dimension; j++)

int v = IM[setDpos[i], jl;
if (s[v]l] == -1 || IM[Lv, dimension + 1] == 2) continue;

s[v] = -1;

for (int k = 1; k <= dimension; k++)
{ if (IM[IM[v, k], dimension + 1] == 4) deg[IM[v, k]1--; }
}
}

if (deg[setCpos[i]] == degree && s[setCpos[i]] == 0)
{

I1Sc[kc] = setC[i];
I1Scpos[kc] = setCpos[i];

kc++;

s[setCpos[i]] = 1;

for (int j = 1; j <= dimension; j++)

{
int v = IM[setCpos[i], jl;
if (s[v] == -1 || IM[v, dimension + 1] == 2) continue;
s[v] = -1;

for (int k = 1; k <= dimension; k++)
{ if (AMLCIM[Lv, k], dimension + 1] == 3) deg[IM[v, K]1--; }

3
int isdlength = kd-1;
for (int i = 1; i <= kd - 1; i++)

for (int j = 1; j <= dimension; j++)

{
int v = IM[ISdpos[i], jl;
if (s[v] == -1) continue;
s[v] = -1;
if (IM[v, dimension + 1] == 2)
idsblength--;
for (int k = 1; k <= dimension; k++)
{ if (AMLCIM[v, k], dimension + 1] == 1) deg[IM[v, kK]1--; }
¥
3

3
int isclength = kc - 1;
for (int i = 1; i <= kc - 1; i++)

for (int j = 1; j <= dimension; j++)

{
int v = IM[IScpos[i], jl;
if (s[v] == -1) continue;
s[v] = -1;

if (IM[v, dimension + 1] == 2)
{
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idsblength--;
for (int k = 1; k <= dimension; k++)
{ if (AM[IM[v, K], dimension + 1] == 1) deg[IM[v, K11--; }

}

HashSet<int> fixedB = new HashSet<int>();
HashSet<int> fixedA = new HashSet<int>();

////Find fixed vertices in set B and A
for (int i = size B; i >= 1; i--)

if (s[setDpos[i]] == 0)

for (int j = 1; j <= dimension; j++)

{
int v = IM[setDpos[i], jl;
if (IM[v, dimension + 1] == 2)
s[v] = 1;
for (int k = 1; k <= dimension; k++) s[IM[v, k]] = -1;
fixedB.Add(IM[v, dimension + 2]);
3
¥

}
if (s[setCpos[i]] == 0)

for (int j = 1; j <= dimension; j++)

{
int v = IM[setCpos[i], jl;
if (IM[v, dimension + 1] == 2)
s[v] = 1;
for (int k = 1; k <= dimension; k++) s[IM[v, k1] = -1;
fixedB.Add(IM[v, dimension + 2]);
}
}
}
}
for (int 1 = size A; 1 >=1; i--)
{
for (int j = 1; j <= dimension; j++)
{
int v = IM[setApos[i], jl;
if (FfixedB.Contains(IM[v, dimension + 2]))
{ fixedA_Add(IM[setApos[i], dimension + 2]); }
}
}

bool violate = false;

int ka = 1;

int numofvio = O;

int limofvio size_A - fixedA.Count;
int degrees = dimension;

//Find independent dominating set in the bipartite BA
while (limofvio > 0 && limofvio > numofvio && degrees >= 2)

{

numofvio = 0;
for (int j = size A; j >=1; j--)
{

violate = false;
if (IfixedA.Contains(setA[j]) && s[setApos[j]] == 0)

if (deg[setApos[j]1] == degrees)
{
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for (int k = 1; k <= dimension; k++)
{

int v = IM[setApos[j], Kk];

if (s[v] == 0)

for (int 1 = 1; 1 <= dimension; I++)
{
if (IM[IM[v, 1], dimension + 1] == 1 && deg[IM[v, I1] == 1)
{

violate = true; break;

}

3
if (violate)
break;

3
if (lviolate)

IDSa[ka] = setA[j];

IDSapos[ka] = setApos[j];

ka++;

limofvio--;

s[setApos[j]1] = 1;

for (int k = 1; k <= dimension; k++)

{
int v = IM[setApos[j], k];
if (s[v] == -1) continue;
s[v] = -1;

idsblength--;

for (int 1 = 1; 1 <= dimension; I++)
{ if (AIMCIM[v, 1], dimension + 1] == 1) deg[IM[v, 11]1--; }
}

}

else

{
}

numofvio++;

}

degrees--;

}

//covering vertices from A that caused violation and that of degree 1
for (int 1 = 1; 1 <= size_B; i++)

ifT (s[setBpos[i]] == 0)
{

s[setBpos[i]] = 1;
for (int j = 1; j <= dimension; j++)

s[IM[setBpos[i], i11 = -1;

return (ka - 1 + isclength + isdlength + idsblength);

// Approx1l algorithm for for Min Indpendent Dominating set
static int Approxl(out int[] s, int n, int dimension)

{

new int[size A + 1];
new int[size_B + 1];
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int[] setC = new int[size_B + 1];
int[] setD = new int[size B + 1];
int[] setApos = new int[size_A + 1];
int[] setBpos new int[size B + 1];
int[] setCpos new int[size_B + 1];
int[] setDpos new int[size B + 1];
int[] temp = new int[size B + 1];
int[] temppos = new int[size B + 1];
int[] 1Sd = new int[size_B + 1];
int[] 1Sdpos = new int[size B + 1];
int[] I1Sc = new int[size B + 1];
int[] I1Scpos = new int[size B + 1];
int[] stemp = new int[size_B + 1];
int[] IDSa = new int[size_ A + 1];
int[] IDSapos = new int[size_A + 1];
int idsblength=size_B;

int count,count2;

int a=1,b=1,c=1,d=1,z;

// s[v] = 0 unchecked , 1 in IS, -1 covered

int[] deg = new int[n + 1];

s = new int[n + 1];

for (int v = 1; v <= n; v++) { s[v] = 0; deg[v] = IM[Lv, 0]; }

for (int i = 1; 1 <= n; i++)

{
if (IM[i, dimension + 1] == 1)
{ setA[a] = IM[i, dimension + 2]; setApos[a] = i; a++; }
if (IM[i, dimension + 1] == 2)
{ setB[b] = IM[i, dimension + 2]; setBpos[b] = i; b++; }
if (IM[i, dimension + 1] == 3)
{ setC[c] = IM[i, dimension + 2]; setCpos[c] = i; c++; }
if (IM[i, dimension + 1] == 4)
{ setD[d] = IM[i, dimension + 2]; setDpos[d] = i; d++; }
3
int kd = 1;

int maxkd = 1;

int not2 = dimension - 2; //intersection size if the distance equals 2
int diam;
//intersection size if the distance equals diameter
if (dimension % 2 == 0)
diam = (dimension - 2) / 2;
else
diam=(dimension-1)-((dimension-1)/2);

//Find independent set in the bipartite CD
for (int i = size B; i1 >= 1; i--)

{
kd = 1;
for (int j = 1; j <= size B; j++) { stemp[j] = 0; }
temp[kd] = setD[i]
stemp[i] = 1;

for (int j = size B; j >=1 ; j--)
{

temppos[kd] = setDpos[i];
i

count2 = 0O;
if (stemp[j] == 1) continue;
for (int k = 1; k <= kd; k++)
{
count = 0O;
z = setD[j] & temp[k];
while (z = 0)
{ count = count + (z % 2); z=2z/ 2; }
if (count == diam)
{ count2++; }
3

if (count2 == kd)
{ kd++; temp[kd] = setD[j]; temppos[kd] = setDpos[j];
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stemp[j]1 = 1; }

b
for (int j = size B; j >=1 ; j--)
count2 = O;
if (stemp[j] == 1) continue;
for (int k = 1; k <= kd; k++)
{
count = O;
z = setD[]j] & temp[k];
while (z = 0)
{ count = count + (z % 2); z=2z /7 2; }
if (count != not2)
{ count2++; }
¥

if (count2 == kd)
{ kd++; temp[kd] = setD[j]; temppos[kd] = setDpos[j]:;
stemp[j]1 = 1; }

3
if (kd > maxkd )
{
maxkd = kd;
Array.Copy(temp, 1Sd, size B + 1);
Array.Copy(temppos, ISdpos, size B + 1);
3

nt isdlength=maxkd;
for (int i = 1; i <= isdlength; i++) s[ISdpos[i]] = 1;

for (int i = 1; i <= isdlength; i++)

{
for (int j = 1; j <= dimension; j++)
{
int v = IM[ISdpos[i]l, jl;
if (s[v] == -1) continue;
s[v] = -1;
if (IM[v, dimension + 1] == 2)
idsblength--;
for (int k = 1; k <= dimension; k++)
{ if (AIM[CIM[v, k], dimension + 1] == 1) deg[IM[v, kK]1--; }
¥
b
int kc = 1;

int maxkc = 1;
for (int 1 = size B; 1 >=1 ; i--)

{
kc = 1;
for (int j = 1; j <= size_B; j++) { stemp[j] = 0; }
if (s[setCpos[i]] == -1) continue;

temp[kc] = setC[i];
temppos[kc] = setCpos[i];
stemp[i] = 1;
for (int j = size B; j >=1 ; j--)
{
count2 = 0;
iT (s[setCpos[j]] == -1) continue;
if (stemp[j] == 1) continue;
for (int k = 1; k <= kc; k++)
{

count = 0O;
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z = setC[j] & temp[kl;

while (z '= 0)

{ count = count + (z % 2); z=2z/ 2; }
if (count == diam)

{ count2++; }

}

if (count2 == kc)
{ kc++; temp[kc] = setC[j]; temppos[kc] = setCpos[j];
stemp[j] = 1; }

T
for (int j = size B; j >=1 ; j--)
{
count2 = 0;
ifT (s[setCpos[jl] == -1) continue;
if (stemp[j] == 1) continue;
for (int k = 1; k <= kc; k++)
{
count = 0O;
z = setC[j] & temp[kl;
while (z '= 0)
{ count = count + (z % 2); z=2z/ 2; }
if (count != not2)
{ count2++; }
3
if (count2 == kc)
{ kc++; temp[kc] = setC[j]; temppos[kc] = setCpos[j];
stemp[j] = 1; }
¥

if (kc > maxkc)
Array.Copy(temp, 1Sc, size B + 1);
Array.Copy(temppos, IScpos, size B + 1);
maxkc = kc;
b
int isclength=maxkc;
for (int i = 1; i <= isclength; i++) s[IScpos[i]] = 1;
for (int i1 = 1; i <= isclength; i++)

for (int j = 1; j <= dimension; j++)

{
int v = IM[1Scpos[i], jl;
if (s[v] == -1) continue;
s[v] = -1;
if (IM[v, dimension + 1] == 2)
{
idsblength--;
for (int k = 1; k <= dimension; k++)
{ if (AMLCIM[v, k], dimension + 1] == 1) deg[IM[v, K]1--; }
}

}

HashSet<int> fixedB = new HashSet<int>();
HashSet<int> fixedA = new HashSet<int>();

////Find fixed vertices in set B and A
for (int i = size B; i >=1 ; i--)
{
if (s[setDpos[i]] == 0)
{
for (int j = 1; j <= dimension; j++)
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int v = IM[setDpos[i], j]
if (IM[v, dimension + 1] == 2

s[v] = 1;
for (int k = 1; k <= dimension; k++)

s[IM[v, kK11 = -1;
fixedB.Add(IM[v, dimension + 2]);

}
ifT (s[setCpos[i]] == 0)

for (int j = 1; j <= dimension; j++)

{
int v = IM[setCpos[i], j]
if (IM[v dimension + 1] =
s[v] = 1;
for (int k = 1; k <= dimension; k++)
s[IM[v, k11 = -1;
fixedB.Add(IM[v, dimension + 2]);
3
3

}
for (int i = size A; i1 >=1 ; i--)

for (int j = 1; j <= dimension; j++)

{
int v = IM[setApos[i], jl;
if (FfixedB.Contains(IM[v, dimension + 2]))
{ fixedA_Add(IM[setApos[i], dimension+2]); }
3

bool violate = false;

int ka = 1;

int numofvio = O;

int limofvio size_A - fixedA.Count;
int degree = dimension;

//Find independent dominating set in the bipartite BA
while (limofvio > 0 && limofvio > numofvio && degree >= 2)
{

numofvio = 0;

for (int j = size A; j >=1 ; j--)
{

violate = false;
if (IfixedA.Contains(setA[j]) && s[setApos[j]] == 0)

ifT (deg[setApos[j]1] == degree)
for (int k = 1; k <= dimension; k++)
{
int v = IM[setApos[j]., Kk1;
if (s[v] == 0)
{

for (int 1 = 1; 1 <= dimension; I++)

{
if (IM[IM[v, 1], dimension + 1] == 1 && deg[IM[v, 11] == 1)
{

}

violate = true; break;
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3
if (violate)
break;

}
if (lviolate)

IDSa[ka] = setA[j];

IDSapos[ka] = setApos[j];

ka++;

limofvio--;

s[setApos[j]1] = 1;

for (int k = 1; k <= dimension; k++)

{
int v = IM[setApos[j], k1;
if (s[v] == -1) continue;
s[v] = -1;

idsblength--;

for (int 1 = 1; 1 <= dimension; I++)
{ if (AMCIM[v, 1], dimension + 1] == 1) deg[IM[v, 11]1--; }
}

}
else
{
numofvio++;
}
3
3
3
degree--;

}

//covering vertices from a that caused violation ans that of degree 1
for (int i = 1; i <= size Bj; i++)

{
if (s[setBpos[i]] == 0)
s[setBpos[i]] = 1;
for (int j = 1; j <= dimension; j++)
s[IM[setBpos[i], j11 = -1;
}

return ka - 1 + isclength + isdlength + idsblength;

public static int BuildOddGraph(int d)

{ //Building 0dd graph
int i, j, k, z, count;
intw=d -1; // # of 1s in a bits vectors
// n = 2 to power 2d-1

intn= 1<< (@2 *d - 1);
int n2 = n;

// vertex ids originally going from 1 to n

cw = new int[n + 1];

for (i = 1; 1 <= n; i++) cw[i] =

k = 0;
for (i = 1; 1 <= nj i++)
{ count = 0;
z = cw[i];
while (z = 0)
{ count = count + (z % 2); z
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if (count == w)
{ kt+; cw[k] = cw[i]l; 3}
3

n = k;

Console_WriteLine("vertex count:" + n);
int maxdeg = d;

IM = new int[n + 1, maxdeg + 3];
for (i = 1; 1 < n; i++)
for g =1 +1; jJ <= n; j++)
{ 7/ find intersection of cw[i] and cw[j]
z = cw[i] & cw[i];
if (z == 0)
{

IM[i, O]++; IM[i, IM[i, O]]
IM[J, O]++; IMLJ, IM[LJ, O1]

I
-

¥
¥
b
size B = 0;
size_ A = 0;
for (i = 1; 1 <= n; i++)
{
if (Cew[i] & 2) == 2 && (cw[i] & 1) 1= 1)
{ size_B++; IM[i, maxdeg + 1] = 3; IM[i, maxdeg + 2] = cw[i]; }
it (Cew[i] & 1) == 1 && (cw[i] & 2) 1= 2)
{ IM[i, maxdeg + 1] = 4; IM[i, maxdeg + 2] = cw[i]; }
if ((ew[i] & 3) == 3)
{ size_A++; IM[i, maxdeg + 1] = 1; IM[i, maxdeg + 2] = cw[i]; }
it (Cew[i] & (n2 - 4)) == cw[il)
{IM[i, maxdeg + 1] = 2; IM[i, maxdeg + 2] = cw[i]; }
3
return n;
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