ST

el e e el e e el e e e e e

HIERARCHAL CLUSTERING ALGORITHM
FOR LARGE XML DATA

BY

ABDIRAHMAN MOHAMED ABDI DAUD

A Thesis Presented to the
DEANSHIP OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN, SAUDI ARABIA

1
.

&i%ia’r«ia?ei%b%i&iafeN@H@i%ia%w«f-ﬁeigeb%@%i@%@i

In Partial Fulfillment of the
Requirements for the Degree of

S e e

\/
C

,
3

MASTER OF SCIENCE

In

COMPUTER SCIENCE

JUNE 2011

R e e e e R 9 e

=

S —

e

AP AP

v

SN P P P P I PN P PSP A

\\%
W
(B
s

S S U S S S S S S SR S S S SR SR

ST

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN 31261, SAUDI ARABIA

DEANSHIP OF GRADUATE STUDIES

This thesis, written by Abdirahman Mohamed Abdi Daud under the di-
rection of his thesis advisor and approved by his thesis committee, has been

presented to and accepted by the Dean of Graduate Studies, in partial fulfill-
ment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE.

Thesis Committee

— AL

Dr. Salahadin Adam Mohammed

__1/ A

Dr. Muhammed Saleh Al-Mulhem

Q’,%—-‘:—-J—AJ\}

Dr. Adel Fadhl Ahmed

-
&—&L&_ﬁ—
Dr. Adel Fadhl Ahmed

(Department Chairman

~
Dr. Salam A. Zummo
(Dean of Graduate Studies)

qff‘,?\“

Date:

I sincerely dedicate this thesis to my loving mum and amazing

father...

11

ACKNOWLEDGMENTS

In the name of Allah, Most Gracious, Most Merciful

All praise is to Allah. I thank him for giving us the ability to learn and
share knowledge. I also thank Allah for the golden chance of being taught by Dr.
Salahadin Adam Mohammed, the most inspiring professor I ever met. Without
Dr. Mohammed’s teaching, guidance, and advice this thesis would not have been
possible.

I would like also thank my thesis committee members Dr. Adel Fadhl Ahmed
and Dr. Muhammed Saleh Al-Mulhem for their time and guidance. I would like to
express special thanks to Dr.El-Sayed Mohamed El-Alfy for his valuable feedback
and comments. I am grateful to King Fahd University’s deanships and centers for
providing students excellent utilities, tools, and support to conduct research.

I would like to express my appreciation to my friends who have helped in
many ways. Namely, I would like to thank to Mohamed Osman, Awale Said,
Waleed Al-Zu’bi, Mohamed Al-Qadi, Ayed Al-Qahtani, Mohammad Amro, and
Raed Shammas. My greatest gratitude is due to Mohammad Ayar who we spend

days reviewing the thesis book together. May Allah bless you.

v

My deepest thanks is due to my father who encouraged me from childhood
to think independently and pursue my education. Without my mother’s love and
care, I would not be able to take this and every other step in my life. Thank you

for everything.

Abdirahman

June 2011

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES
ABSTRACT (ENGLISH)
ABSTRACT(ARABIC)

CHAPTER 1. INTRODUCTION
1.1 Problem Statement oL
1.2 Thesis Objectives
1.3 Thesis Contributions
1.4 Research Methodology,
1.5 Thesis Outline

CHAPTER 2. BACKGROUND
2.1 eXtensible Markup Language
2.2 Data Clustering
2.3 Related Concepts in Data Clustering
2.3.1 Similarity Functions
232 Null Values
2.3.3 Normalization
234 Datatypes.
2.3.5 Quality of Data Clustering

vi

ix

xi

xiii

Ot = W W N =

(=]

2.4 BIRCH Algorithm 16

2.4.1 Scalability of BIRCH algorithm 17

2.5 Conclusion 19
CHAPTER 3. LITERATURE REVIEW 20
3.1 Clustering Approaches 20
3.2 Schema-Based Clustering 21
3.2.1 Main Featureso 21

3.2.2 Advantages of Schema Based Clustering 23

3.2.3 Limitations of Schema Based Clustering 24

3.3 Structure-Based Clustering 24
3.3.1 Main Features of Structure Based Clustering 25

3.3.2 Advantages and Limitations of Structure Based Clustering 27

3.4 Structure and Content Based Clustering 27
3.4.1 Main Features oo 28
3.4.2 Advantages and Limitations 28

3.5 Conclusion 29

CHAPTER 4. XML HIERARCHAL CLUSTERING ALGO-

RITHMS 30
4.1 Introductiono 31
4.1.1 Problem Statement 31
4.1.2 Preliminaries 31
4.1.3 Overview of the Proposed Algorithms 32
4.2 XML Structure Clustering Algorithm (XSC) 35
4.2.1 Phase 1: Building XML Data Guide 36
4.2.2 Phase 2: XML Structure Index 41
4.3 XML Hierarchal Content Clustering Algorithm (XHCC) 45
4.3.1 Phase 3: XML Univariate Content Clustering 47

4.3.2 Phase 4: Clustering Transactions by Structure and Content 49
4.4 XHCC Revisited 52

vil

4.4.1 Normalization
4.4.2 Threshold Values

4.5 Conclusion

CHAPTER 5. EXTENDED BIRCH ALGORITHM (XBIRCH)
5.1 Overview e
5.2 Clustering Univariate Categorical Values
5.3 Multivariate Categorical Clustering
5.4 Priority and Order of Datapoints’ Attributes
5.5 The Sensitivity to Order

5.6 Conclusion

CHAPTER 6. EXPERIMENTAL RESULTS AND ANALYSIS
6.1 Performance Parameters
6.2 Experimental Setupo
6.3 Datasetso
6.4 Testing Methodology
6.5 Results.
6.6 Experimental Analysis L.
6.7 Comparison

6.8 Conclusion

CHAPTER 7. CONCLUSION AND FUTURE WORK
7.1 Thesis Summary
7.2 Future Worko

REFERENCES

CURRICULUM VITA

viil

65
65
67
67
69
71
72
74
78

79
79
81

82

91

4.1
4.2
4.3

6.1
6.2
6.3
6.4
6.5
6.6
6.7

LIST OF TABLES

Building the XSI for the university dataset 42
XSI for the university dataset 43
The possible data types of datapoints 47
General specifications of the main datasets used for experiments . 69
Detailed specifications of sub-datasets 70
Results for Mondial dataset 71
Results for Movies dataset. 71
Results for DBLP dataset. 71
Results for Cars dataset. 72
Recall per dataset 72

X

2.1
2.2
2.3
24
2.5

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6

5.1

6.1
6.2
6.3
6.4
6.5

LIST OF FIGURES

An XML document
An XML document tree representation (XML-tree)
A generic high-level architecture for XML data clustering
A CF-Tree structure

A CF -entry for three numbers.

A scheme to classify XML clustering algorithms into approaches .

A new scheme to categorize XML Clustering approaches

Universities dataset before preprocessing
Universities after preprocessing
Overview of XSC
university XDGo
Overview of XHCC
The University XDG in Phase 3

Effect of attribute order on XBIRCH tree

Space Usage of XSC
Space Usage of XHCC
Running Time of XSC
Running Time of XHCC,
Recall of INEX 2008 participants

11
18
18

THESIS ABSTRACT

NAME: Abdirahman Mohamed Abdi Daud

TITLE OF STUDY: HIERARCHAL CLUSTERING ALGORITHM FOR
LARGE XML DATA

MAJOR FIELD: COMPUTER SCIENCE

DATE OF DEGREE: June 2011

Data clustering algorithms are widely applied in areas of business, science, and
engineering. Examples include marketing, bioinformatics, genetics, medicine, and
education. XML data clustering is a hot research area because on the Internet,
XML is the most popular format for data exchange. Furthermore, XML data clus-
tering improves the query processing efficiency of the new generation of databases,
the Native XML databases. In this thesis we present a survey of existing XML
clustering algorithms. Then we propose a new XML clustering algorithm that
clusters XML data based on its structure and content. The BIRCH algorithm, a
popular hierarchal clustering algorithm used by our algorithm, is extended to work
with categorical values. Experiments showed that our algorithm requires only two

scans to cluster XML data. The experiments also showed that the phases of the

X1

proposed algorithm have linear time complexity and sub-linear space complexity.
On the average, the recall of the our algorithm is 89.5 % which is high recall value
in the field of XML data clustering. To the best of our knowledge, this is the first
algorithm which produces hierarchical clusters of XML data by both structure
and content for large homogeneous XML datasets.

Keywords: XML, Data Clustering, XML Clustering, Data Mining, Algorithms,

Web Mining, XML databases

X1l

Al oM

A3l sae dena Gaa jllae au)

DoSD) anall 13 Jleal GaS) Ax) L g3 skl apend eyl sa Al) o) sis

Glaslaall 5 alall o le 1paaddll Jlaa

2011 ¢ 5250 1 AD g S

Gos Apaigh s Agalall ¥l ¢ Ay jladll Jlae) Lie dxnd s SVl b ULl pead Gl)yl sa aladial S
Dn ot JophS) Bal iy et el 5 il 2550 ey Al Aashaally ¢ el ol e AEaY)
O lly e 5N e i) ASd e bl o A SV Gl (o J-pl-S) A3 Y Adadill & pal

- GS) 3R] iy 2o 8 ¢ il a8 e aaall Jadl aMlaias) gellaa 3518 e iy Jl-al- a1 Al cilily gaend

s Ape)l sa i o3 Aalile Auil) g Aaliie el UL aaead il) sad Ailiaiil Al o ad6 Alls il o2
e) 5a a5y a st Al o3 3 Ll ULl (e Ao sill o8 Jadad anaid)5 Jl-ah (eS) A1) iy apen)
g pofl ALl o3a (A As Sl daa 1A O el Gt Al)) Jelil dae el pal Al SIS A
Aaa 38 el 5a) Of Liad el a5 Jlph-oS) 251 (5 sime 5 IS (g0 sl maanilly GLall L (5 50 UL
Lanlie Leleny 63 Y1 bl Jidad 8 ladll (6 gisall ()50 sad 5 i3l dalail) 3 i sad Lgpal da yiddll
8 Adlle L as Ay 895 s da yall dua)l Al A8y Jare of Cojladl) iy sl aaal) cld il

Aadaia M\)ZAL.\A):\:J\ Qb\gﬂ\@dd&

)AL ¢ ol AN 5 Fa) Jdad ¢ bl Qs epnsiadl Jlaill c2lsiadl AL 81 Aa ;s)l il

Ll ac) 8 Jalad (g sSiad) AN Jidat ¢ e) sa) eyl

Xiii

CHAPTER 1

INTRODUCTION

Researchers have extensively studied the clustering of structured data, but
the clustering of semi-structured and unstructured data was given very little
attention. This is due to the lack of file structure, before XML, that can store
semi-structured and unstructured data. Today XML data clustering is a young
and an active research area that attracts many researchers because on the
Internet, XML is the most popular format for data exchange, and to improve the
query processing efficiency of Native XML databases (NXD). Unlike Relational
Databases (RDB), NXD can natively store and manage semi-structured and
unstructured data. RDBs are limited to structured data only. Like in RDB,
mining data in NXD using efficient techniques is essential. However, mining
XML data is different than mining RDB data. This is mainly due to the fact
that XML combines both structure and content of data in a combined manner

that makes it harder to process.

In addition to the common benefits of data clustering, clustering XML
data can be used to improve the performance of Information Retrieval (IR) and
database systems. For example in databases, instead of searching the whole

database, only a portion of it (a cluster) will be searched.

There are different approaches for XML data clustering. In the past, the
focus was to cluster XML data based on structure only. Today, researches are
looking at the content of XML data to increase the cluster quality, and to support

more applications.

The rest of this chapter is organized as follows. The thesis problem state-
ment is presented in Section 1.1. Section 1.2 states the thesis objectives. The
thesis contributions are presented in Section 1.3. Section 1.4 discusses the thesis

research methodology. Finally, the thesis outline is presented in Section 1.5.

1.1 Problem Statement

There are already a number of XML data clustering algorithms. While most
algorithms are designed for heterogeneous datasets, a few target homogeneous
ones and most of these require high computation resources. Currently, there are
two applications where large homogeneous datasets are processed. These are XML

databases (NXD) and clustering XML streams. Our study focuses on the problem

of designing a scalable clustering algorithm for large homogeneous XML datasets.

1.2 Thesis Objectives

Up to the date of writing this thesis, there is no clustering algorithm that has

all the following four properties:

An algorithm that clusters by structure AND content

A hierarchal clustering algorithm

An algorithm that clusters homogeneous data

An algorithm that can cluster any size of XML data with few scans

The objective of this thesis is to develop an XML clustering algorithm which

has the above four properties.

1.3 Thesis Contributions

The contributions of our thesis are as follows:

1. We present a survey of existing XML clustering algorithms. The survey is

presented in Chapter 3.

2. We propose a new clustering algorithm which clusters XML data by struc-
ture. We call it: XML Structure Clustering Algorithm (XSC). XSC is ex-

plained in detail in Chapter 4.

3. We propose a new XML Hierarchal Content Clustering Algorithm (XHCC).
XHCC extends XSC to cluster the content of XML data. It is also presented

in Chapter 4.

4. We propose a new clustering algorithm called XBIRCH. XBIRCH extends
the famous BIRCH algorithm. The BIRCH algorithm only clusters nu-

merical data, while XBIRCH can cluster numerical and categorical data.

XBIRCH is explained in Chapter 5.
5. We implemented XSC, XHCC and XBIRCH algorithms.

6. We performed many experiments to study the performance of the proposed

algorithm. We present the experimental results and analysis in Chapter 6.

1.4 Research Methodology

In order to achieve the thesis objectives, our research went though six phases.
These are as follows:

Phase One: Literature Survey
A complete literature survey was conducted in the area of XML clustering. At
the end of this phase, a survey was presented.

Phase Two: Specification of the Problem Statement
In this phase the problem statement was formally specified and analyzed. The
output of this phase was the thesis proposal.

Phase Three: Specification of the Proposed Algorithms

In this phase the proposed algorithms were specified and analyzed before im-
plementation. The output of this phase was the pseudo-code of the proposed
algorithms.

Phase Four: Implementation of Proposed Algorithms
In this phase all the algorithms were implemented. The output of this phase was
a complete running application that implements the proposed algorithms.

Phase Five: Testing
In this phase we tested the proposed algorithms using large XML benchmark
datasets.

Phase Six: Performance Analysis

After experiments have been conducted, the results were gathered and ana-

lyzed in order to study the performance of the proposed algorithms.

1.5 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 gives background in-
formation on XML, data clustering, and related topics. The literature review is
discussed in Chapter 3. Chapter 4 explains XHCC and XSC. Chapter 5 presents
XBIRCH. After that, the results and analysis of the experiments are explained in

Chapter 6. Finally, Chapter 7 concludes our work.

CHAPTER 2

BACKGROUND

This chapter offers the reader background information that is needed to fully
understand the thesis work. This chapter is organized in the following way. First,
a background on XML is given in Section 2.1. This is followed by an introduction
to data clustering in Section 2.2. Section 2.3 discusses some related data clustering
concepts. Section 2.4 briefly describes the BIRCH algorithm, a popular hierarchal
clustering algorithm. Finally, Section 2.5 concludes the chapter with a summary

of the previous sections.

2.1 eXtensible Markup Language

XML stands for eXtensible Markup Language which is a language for storing
semi-structured and structured data. A small XML document is shown in Figure

2.1.

An XML document basically consists of the following components:

e Elements: Each element represents a logical component of a document. Ele-
ments can contain other elements and/or text (character data). The bound-
ary of each element is marked with a start tag and an end tag. A start
tag starts with the “<” character and ends with the “>” character. An
end tag starts with “</” and ends with “>”. The root element contains
all other elements in the document. In the XML document shown in Figure
2.1, the root element of the document is the “paper” element. Children of
an element are elements that are directly contained in that element. For
example, in Figure 2.1 the title element is a child of the paper element. In
some XML documents, the element is not enough to describe its content.

Such documents are called text-centric documents.

e Attributes: Attributes are descriptive information attached to elements.
The values of attributes are set inside the start tag of an element. For
example, in Figure 2.1, the expression <reference xlink=*./paper/xmlql”
> sets the value of the attribute xlink to “./paper/xmlql”. The main dif-
ferences between elements and attributes is that attributes cannot contain

other attributes or elements.

e Values: Values are sequences of characters which appear between elements’
start-tag and end-tag. Like attributes, values cannot contain elements. In

Figure 2.1, the expressions “2004” and “Tom” are examples of values.

Due to its nested structure, XML is commonly modeled as a rooted and

labeled tree. Nodes of the tree correspond to elements, attributes and text

in XML documents. Edges represent element-subelement, element-attribute
and element-text relationships. This tree model reflects the logical structure
of an XML document and can be used to store and query XML data [1].
For the sample XML document shown in Figure 2.1, its tree representation
is shown in Figure 2.2. A path is a series of ordered nodes between the root
node and an internal or a leaf node. An example of a path in Figure 2.2
is the path “/paper/author/name”. For detailed information about XML,

please refer to the W3C XML specification in [2].

An XML document is a self-describing document. XML elements can either
be simple or complex. Simple elements contain only values or attributes. On
the other hand, complex elements can additionally contain other elements
and therefore a nesting structure is formed. This structure can have any

level of nesting.

Some XML documents have to conform to a Document Type Definition
(DTD). DTD specifies the elements, the attributes and the structure of an
XML document. Unlike relational database tables, XML documents are
semi-structured. A newer specification for XML documents is the XML
schema. The XML schema can impose more constraints on an XML doc-
ument than the DTD. It also has a hierarchal structure that specifies the
name and the data type of XML elements. The flexibility of defining the
XML structure makes XML able to represent any kind of data but it also

makes it more difficult to process.

<?xml version="1.0" encoding="UTF-§"">
<paper=
<year>2004</year>
<author>
<name>|om</name>
</author>
<title>xml! query language</title>
<section>
<paragraph>
XML query language ...
</paragraph>
</section>
<section=>

</section=>
<reference xlink="_/paper/xmlgl™>A Query ... <'reference>
</paper=

Figure 2.1: An XML document

author section

: section reference

Paper

name Paragraph

XML query
language XML query

Tom language

Figure 2.2: An XML document tree representation (XML-tree)

2.2 Data Clustering

Data clustering is defined as the problem of grouping similar objects such that
similarity between objects of the same group is higher than the similarity between
objects of other groups.

There are several algorithms for clustering XML data. Figure 2.3 shows a generic
high-level architecture of XML data clustering algorithms [3]. Nearly all XML
clustering algorithms follow this architecture. In this architecture, first the XML
dataset is read. The dataset can be XML documents or XML schema or both.
Secondly and optionally, the data is represented in a model such as a tree model
or Vector Space Model (VSM). After that, a similarity function measures the
distance between any two XML objects, or parts of the model. Finally, these
objects are grouped as an array of clusters or as a hierarchy structure.

In this section we introduce the main approaches of clustering algorithms. Also, we
introduce three concepts related to data clustering, namely, similarity functions,
null values, and scalability. The main data clustering approaches are as follows:
Partitioning Approach: Algorithms that follow this approach start by taking
n data points and then classifying them into k (k>n) partitions. Examples of this
approach are k-means, k-medoids and CLARANS [4].

Hierarchical Approach: a hierarchical approach creates a hierarchical decom-
position of the given set of data objects. It can either be done from top-down
(divisive) or bottom-up (agglomerative). Hierarchical approaches result in creat-

ing a tree that holds a cluster of clusters.

10

‘ XML document/ DTD/ XML Schema ‘

Data Representation

Calculate Similarity

i &

oo
| _E‘

"

| LE®
[
l

Figure 2.3: A generic high-level architecture for XML data clustering

11

One example of the hierarchical approach is the BIRCH algorithm (Balanced
[terative Clustering using Hierarchies). BIRCH in its first phase creates a tree
that summarizes the input data. This tree is called the Clustering-Feature tree (
CF-tree). A single node in the BIRCH tree has a few attributes that summarize
the statistical features of its descendant nodes [5].

Density-based approach: The idea of this approach is to continue growing a
given cluster as long as the density (number of objects or data points) in the
neighborhood does not fall below a certain threshold. Examples of this approach
include DBSACN, OPTICS and DenClue [4].

Grid-based approach: The algorithms of this approach rely on creating a grid
structure. This grid is finite and created by quantizing the data object space.
This approach is known to be efficient [4].

Model-based approach: The algorithms of this approach use machine learning
techniques that learn from the distribution of data points. Examples of this

approach are self-organizing feature map and COBWEB [4].

2.3 Related Concepts in Data Clustering

In this section, we will describe similarity functions, null values, normalization,

data types, and quality of data clustering.

12

2.3.1 Similarity Functions

A similarity or distance function finds the similarity between two objects. There
are several similarity functions. The choice of a similarity function depends on
the type of data. For example, in the case of numerical values, Manhattan or
Euclidean distance functions might be applied (see Equations 2.1 and 2.2). In
the case of categorical values, a hamming distance function is used (see Equations

2.3).

Buclidean(z,y) = /(z1 —1)? + (22 — 2)2 + ... + (2 — Yn)? (2.1)

Manhattan — Distance(x,y) = |x1 — 1| + |za —yo| + ... + |20 —yn] (2.2)

Hamming(z,y) = the number of components that x and y differ (2.3)

2.3.2 Null Values

One issue with data clustering is handling null values. In literature if two values
are null, they are equal [6]. Subsequently, a null value and a non-null value are
dissimilar. Therefore, the distance functions mentioned above are modified to
include Equation 2.4 below:

0 if ¢ and j are both null

distance(i,j) = < 1 if either 7 or j is null and 7 # j (2.4)

¢ if 7 and 7 are both not null

where c is a value between 0 and 1.

13

2.3.3 Normalization

Normalization refers to the process of scaling a value to fall within a specified
range. For example, before normalization, age ranges between 0 and 150 and
salary ranges between 1000 and 50,000. After normalization, both salary and age
will fall into the same range, 0 to 1.

Clustering without normalizing the input data results in bad quality clusters [7].
For example, assume Ali’s age is 60 and his salary is SAR 10,000; Sami’s salary
is SAR 9800 and his age is 20; Bandar’s age is 60 and his salary is SAR 9800.
Ali and Bander have similar age and similar salary, so they should be in the
same cluster. Sami who is 40 years younger than the older guys should be in
a different cluster. However,However if clustering is done before normalization,
then Sami and Bandar will be in the same cluster while Ali will be in a separate
cluster. Putting Sami who is 20 years old, and Bandar who is 60 years old in
the same cluster doesn’t make any sense. However, if clustering was done after
normalization, then the older men will be in the same cluster while the young
Sami will be in a separate cluster. So normalization before clustering results in

better quality clusters.

2.3.4 Data types

XML data can be categorized into four types:

e (Continuous: Variables of a continuous data type are mainly numeric. They

draw their values from an infinite domain. These are represented in decimal

14

format.

e (ategorical: Variables of a categorical data type draw their values from a
distinct and finite domain. There are two types of categorical data types,
namely, nominal and ordinal. For example, the values: “male” and “female”

are of the categorical type.

— Nominal: A variable of this type draws its values from a finite, distinct
and unordered list of values. For example, the values “blue”, “red” and

“green” are of the nominal type.

— Ordinal: A variable of this type draw its values from a finite, distinct
and ordered list of values. The difference between nominal and ordinal
values is that ordinal values can be put in order. For example, the

values “freshmen”, “junior” and “senior” are of the ordinal type.

o Textual: Textual Values are readable text which can vary from one sentence
to a whole paragraph. A title of a book such as “Introduction to Machine

Learning” is an example of a textual value.

The proposed algorithms deal with all these data types except for textual data.
Ordinal values are treated like numbers. The mapping from ordinal values to
numbers can be done either by the help of the user or by XML schema files which

specify values of an element with their proper order.

15

2.3.5 Quality of Data Clustering

There are different measurements to evaluate the quality of data clusters. Two of
these measurements, precision and recall are shown in Equations 2.5 and 2.6. In
these equations, there are four terms: TP, FP, TN and FN. They stand for: True

Positive, False Positive, True Negative, and False Negative respectfully.

TP
Precision = {——" .
recision {TP n FP} (2.5)
TP

Precision measures what percentage of the results was correct while recall mea-
sures what percentage of correct results was found. Both measurements should

be high to indicate a high quality of the final clusters.

2.4 BIRCH Algorithm

BIRCH stands for Balanced Iterative Clustering using Hierarchies. As explained
in the previous section, BIRCH clusters incoming multi-dimensional data points
to produce quality clusters with the available memory. BIRCH uses the concept of
Cluster Feature (CF) to condense information about sub-clusters of points. The
Cluster Features are organized in a height-balanced tree called the CF-tree. The
algorithm makes full use of available memory and requires at-most two scans of
the input data. BIRCH clusters only numeric data and as a result it uses similarity
functions like Euclidean or Manhattan.

A CF-tree node corresponds to a cluster and is represented by a CF entry. A

16

CF entry consists of three numbers, namely, N, LS and SS where N is the count
of the data points in the cluster, LS is their summation, and SS is their squared
summation. These three numbers summarize the features of data points in a
cluster [5]. For Example, assume Cluster C contains the numbers 3, 4 and 5. The
CF entry of C is as shown in Figure 2.5.

CF tree has two parameters: branching factor B and threshold T. B is the max-
imum number of clusters that can be clustered in a a non-leaf node of the CF-
tree. In other words, each nonleaf node contains at most B entries of the form
[C'Fy;child;), where i =1, 2 ...B. child; points to its i-th child node whereas C'F; is
the CF entry of the cluster represented by this child. A CF entry in a nonleaf node
summarizes all the CF entries of one of its child nodes. The threshold parameter,
T, corresponds to the maximum distance allowed between any two data points of

the same cluster. An example of a CF-tree is shown in Figure 2.4.

2.4.1 Scalability of BIRCH algorithm

The CF-tree size is a function of T. The larger T is, the smaller the CF-tree.
That is why BIRCH is a scalable algorithm. If the memory of a system is low,
the threshold is increased and thus the tree can fit the available memory.

Like a B+-tree, a CF-tree is built dynamically when new data objects are inserted.
It guides a new insertion into the correct cluster for clustering purposes just like
a B+-tree guides a new insertion into the correct position for sorting purposes.

For more details on the BIRCH algorithm please refer to [5].

17

y :
Mon-leaf node

e | | Leaf Node

Mon-leaf node

Leaf Mode | | Leaf Nod

]
=
&

@)
10

®O0:;
=
5

Figure 2.4: A CF-Tree structure

Figure 2.5: A CF -entry for three numbers

18

2.5 Conclusion

In this chapter we presented background information needed to understand the
rest of the thesis. The chapter covered the basics of XML and data clustering.
In addition, the famous BIRCH algorithm was explained in detail because we are

going to extend it and use it in the proposed algorithms.

19

CHAPTER 3

LITERATURE REVIEW

This chapter is a survey of XML clustering algorithms. In the survey, we classify
the algorithms into three clustering approaches and then we discuss each approach
in a separate section. This chapter is organized as follows. In Section 3.1 we in-
troduce the proposed three clustering approaches. Then the features, advantages,
and limitations of each approach is discussed in the next three sections: 3.2, 3.3
and 3.4. The chapter concludes by comparing the approaches with our proposed

clustering algorithms.

3.1 Clustering Approaches

Up to the writing of this thesis, there was only one survey of XML clustering
algorithms [3]. The surveyors classified XML clustering algorithms based on two
parameters: the type of XML file (schema or document) and the way the data is

represented (tree or VSM). Figure 3.1 shows their scheme.

20

In this thesis we use one parameter to classify XML clustering algorithms. Our
clagsification parameter is the type of XML information that is processed by an
algorithm. This classification parameter makes the classification clearer and easier
to use. One advantage of this classification criteria is that it helps us to choose the
best clustering approach for any application. This will be shown in subsequent
sections.

The proposed clustering approaches are:

e Schema-Based Clustering
e Structure-Based Clustering

e Structure and Content-Based Clustering

The proposed approaches are shown in Figure 3.2. As it can be seen from the
figure, the approaches are ordered from top to bottom based on their complex-
ity. The most complex approach is structure and content based-clustering. Each
approach can optionally include the one above it. For example, an algorithm of
the second approach is based on the XML structure. This algorithm can also use

schema information as well.

3.2 Schema-Based Clustering

3.2.1 Main Features

The fastest way to cluster XML data is by using its schema only. As explained in
Chapter 2, a schema file contains only the definition of an XML document.

21

1 XML Data Glustering |

Clustered Data | Simifarty Apgroach |
XML XML | Treebased | | veciorbased
Docurnent Schema

[Stru:tum—hv«l] |Ehmns-hwl I

i Disoowarin
g‘::x::g ‘ v Schemas Instance-
betwaan infprmation based bazed
Data from Data Approach Apgproach

Figure 3.1: A scheme to classify XML clustering algorithms into approaches

Semantic ﬂ:cmt::') Cé':" stalr :_:E

Figure 3.2: A new scheme to categorize XML Clustering approaches

22

Some algorithms of this approach calculate the similarity between an XML doc-
ument and an XML schema to put the document in the right cluster. Nearly
all the algorithms in schema based clustering use semantic analysis to measure
the distance between XML instances [8-15]. There is a need to include and test
clustering XML schema without the use of semantic analysis, because some XML
datasets use labels which do not have a semantic meaning at all. This issue has
been studied in [16].

The algorithms in this approach can further be classified into two classes: those
that use XML documents to gain more insight on the data and those which only
use XML schema. For example, “Clustering XML Documents Based on Structural
Similarity” is the title of a paper by Yang et al. which uses a schema based
approach [17]. Their argument is that the schema defines the structure of the
XML document. Therefore, instead of comparing two XML documents, each
XML document is compared to a schema. Since many XML datasets do not have
a schema, they introduced algorithms to generate a schema for schema-less XML

files. A Similar approach has been taken by [18,19].

3.2.2 Advantages of Schema Based Clustering

The main advantage of this approach is the small amount of data that is processed.
The size of an XML schema is vastly less than the size of an XML document. Since
the amount of processed data is small, it is justifiable to use complex algorithms

and tools such as semantic measurements. Another advantage is that once an

23

XML schema is classified into a cluster, all current and future instances of the
schema will be grouped into the same cluster [3]. For example, suppose a and b
are two XML documents. Suppose both a and b are defined by a schema file .
Once 17 is clustered, both a and b will have the same label of i.

An application of XML schema clustering is grouping an extensively heterogeneous
environment such as the web. It can also be a pre-processing step for the other two
approaches in order to boost their efficiency. In conclusion, clustering by schema

is a suitable option for large XML datasets provided that they are heterogeneous.

3.2.3 Limitations of Schema Based Clustering

It is impossible to use this approach in a homogeneous environment such as an
XML database. This is because in a homogeneous environment, all XML datasets
will have a single schema. Another major disadvantage is that this approach
aims to cluster the roots of XML datasets only, not within an XML file. It only
separates and groups n XML documents into 2 number of clusters but does not

cluster or process XML elements within a document.

3.3 Structure-Based Clustering

Clustering by structure is to group XML documents by the similarity of its struc-

tural information.

24

3.3.1 Main Features of Structure Based Clustering

Structural similarity can be any or all of: path similarity, parent/child relation-
ships or the data types and names of XML elements. Sometimes semantics of
XML element titles are also used. The only data which is not used is the content
of XML elements. Among the three approaches of clustering XML data, structure
based clustering is the most popular [20].

The algorithms in this approach can further be classified into three subcategories,
namely tree-edit based, similarity based and unique algorithms. The tree-edit
based algorithms deal with XML documents as a tree while the other two trans-
form XML into different representations. Some of the algorithms of this approach
consider the semantic information of the element names [21,22].

In tree-edit based algorithm, to find how much two XML trees Treel and Tree2 are
similar, Treel is edited until it becomes identical to Tree2 [1,23-31]. The similarity
between Treel and Tree2 is measured by the number of edit operations needed to
make Treel structurally identical to Tree2. The fewer operations measured, the
more similar Treel is to Tree2. These operations can be inserting, updating, or
removing a node or a sub-tree [32].

Tree-edit based algorithms have polynomial running time complexity. To reduce
the number of compared nodes (XML elements in a tree), [33] makes the edit
operation on sub-trees instead of single nodes. This has better performance than
manipulating the individual nodes alone. It also removes repetitive sub trees to

further reduce comparison time. Still, the running time complexity is polynomial

25

since it is a pair-wise operation. A complete list of edit-based algorithms is found
in [32).

The second category is similarity based which focuses on some or all parts of the
XML document. While some algorithms deal with path similarity [34-36], others
deal with level similarity [37]. More similarity based algorithms can be found
in [38-43].

There are unique algorithms that cannot be grouped together. For example, there
are solutions that perform sequence mining [44,45]. Another unique solution uses
the Fuzzy C-means algorithm and clusters XML data in a multilevel format [46].
Other solutions in this category focus on solving a sub-problem in structural clus-
tering such as in [47]. This work addresses the problem of high dimensionality of
XML structural data and proposes a method to focus on important XML elements
of a dataset.

The matching technique in [48] is a unique solution since it is based on the concept
of entropy. Entropy is a measurement of how random or regular a list of points
is. The solution first encodes the XML files and then finds the entropy between
the XML documents. This entropy-based solution has similar accuracy to the
tree-edit based algorithms. However, it is more scalable since it runs in linear

time.

26

3.3.2 Advantages and Limitations of Structure Based
Clustering

The complexity of the structural-based approach is higher than the schema based
approach. Its complexity ranges from linear time [1,8,27,28,39,43] to quadratic
time or higher which is the case in tree-edit based approach.

Structural based approaches are useful when the tag names of XML document
are meaningful and the document is not text-centric. In a text centric XML
document, the semantic information is located in the content of the elements (in
the values). Similar to the schema-based approach, structural based clustering
does not perform well well in clustering homogeneous data [20].

Generally, when schema based clustering fails to accurately cluster heterogeneous

XML datasets, structural-based clustering should be used.

3.4 Structure and Content Based Clustering

To solve the problem of clustering homogeneous documents, the content of XML
documents have to be processed and not only the structural information [20]. This
is because content carries most of the information especially in text-centric XML

documents.

27

3.4.1 Main Features

The algorithms in this approach are relatively new and most of the research started
in year 2006. One example of content based clustering is the work in [17]. It
simply extends the vector space model to handle content data and then applies a
hierarchal clustering algorithm used in document clustering.

Some works incorporate semantic information which might increase the accuracy
but take longer computation times [11,49-52]. The work in [53] is unique since
it uses Self-Organizing-Maps which is computationally an expensive algorithm.
Similarly, the work in [54] applies Latent Semantic Kernel which has a high com-
putational complexity. This is because it performs a pair-wise comparison.

A novel approach is presented in [50] where XML data is clustered using an
XML-summarization model, named XCLUSTER. The algorithm effectively clus-
ters XML elements based on both structure and content. Then the values are

compressed using histograms.

3.4.2 Advantages and Limitations

A common drawback of the algorithms of this approach is their high time and
space complexity when compared to the algorithms of the other approaches.
Mostly, algorithms in this approach have an expensive preprocessing step where
data has to be processed to perform stop and stemming tasks especially in tex-
tual XML documents. Very few algorithms in this approach have a low complex-

ity [17,55,56]. However, it is generally assumed that near-linear-time-complexity

28

algorithms have lower accuracy [3]. Therefore, the problem of XML clustering is
an optimization problem where our aim is to reduce the time and space complexity
and get higher accuracy.

It is important to note that some algorithms in this approach are designed for

heterogeneous datasets and not homogeneous ones [20,50,51,54,57].

3.5 Conclusion

In this chapter we presented a survey of XML clustering algorithms. We classified
the algorithms into three approaches according to the type of XML information
that is processed by the algorithm. The approaches are: schema based cluster-
ing, structure based clustering, and structure and content based clustering. Our
proposed clustering algorithm belongs to the last approach.

Clustering XML by content has always been ignored until recently. As a result,
up to the date of writing this thesis, there is no single work that has all of the

following properties:
1. Clustering by content and structure
2. Clustering using hierarchal clustering
3. Clustering homogeneous data collections
4. Clustering large XML datasets

Our aim of this thesis is to introduce a new XML clustering algorithm that has

all the four properties above.

29

CHAPTER 4

XML HIERARCHAL

CLUSTERING ALGORITHMS

The main objective of our thesis is to introduce a scalable clustering algorithm
for large XML datasets. Since our algorithm consists of several algorithms, it
will be referred to as the proposed algorithms. In this chapter, we will explain
the proposed algorithms in details. The proposed algorithms are XML Structure
Clustering Algorithm (XSC) and XML Hierarchal Content Clustering Algorithm
(XHCC). The rest of this chapter is organized in the following order. First, the
proposed algorithms are introduced in Section 4.1. Then we highlight the main
phases of each algorithm. Each of these phases is explained in depth with examples
in Section 4.2 and Section 4.3. Finally, in Section 4.4 we revisit XHCC and discuss

the following issues: categorical data, normalization, and threshold values.

30

4.1 Introduction

Before describing the proposed algorithms, we shall first introduce our problem
statement. Then the related assumption and definitions are explained. Finally,

we introduce the phases of the proposed algorithms.

4.1.1 Problem Statement

Given a large homogeneous XML dataset, we would like to cluster its content and
structure. The output should be in a form of hierarchal clusters.
To understand the limitation and scope of our problem statement, a number of

assumptions and definitions are explained next in preliminaries.

4.1.2 Preliminaries

The proposed algorithms have the following assumptions:

Large XML documents: Since we are targeting large XML documents, we need
to define what is meant by large documents. Large documents are datasets that
are too big to be stored in a system’s memory.

Homogeneous XML dataset: Homogeneous XML datasets share the same
schema file. As mentioned in Section 3.1, the problem of classifying heterogeneous
XML datasets has been studied in the literature [20]. The challenge nowadays is
to efficiently and accurately cluster homogeneous XML documents.

Targeted Data Types: In Section 2.3.4, different types of data have been ex-

plained. The proposed algorithms process all data types except for textual values.

31

XML Transaction: An XML transaction is an instance of an XML element
which is important to the user. For example, in the university dataset shown in
Figure 4.1, the XML element “university” is the XML transaction for the dataset
and there are three XML transactions. These are as follows: Southern University,

Northern University, and Eastern University.

4.1.3 Overview of the Proposed Algorithms

The proposed algorithms are: XML Structure Clustering Algorithm (XSC) and
XML Hierarchal Content Clustering Algorithm (XHCC). There is a third algo-
rithm, XBIRCH, which is explained in Chapter 5 while XSC and XHCC are
further discussed in the subsequent sections. The XBIRCH plays an important
role in XHCC algorithm.

XSC algorithm is composed of two phases. In the first phase, XSC extracts the
structural features of an XML document. This is achieved by building the XML
Data Guide. In the second phase, it creates XML Structure Index (XSI). XSI is
a special data structure to group the structural features of an XML document.
The second algorithm, XHCC, is composed of four phases. The first two phases
are the same as the two phases of XSC. The third phase of XHCC clusters simple
XML elements values while the fourth phase clusters complex XML elements.
Both algorithms, XSC and XHCC, require a prepossessing step which is explained

next.

32

<university >
<ID id=*1" />
<name >Southern University </name >

< /university >

<university >
<ID id=*“2" />
<name >Northern University </name >
<numberOfStudents >150 < /numberOfStudents >

< /university >

<university >

<ID id=“3" />
<name >Eastern University </name >
<numberOfStudents >170 </numberOfStudents >

< /university >

Figure 4.1: Universities dataset before preprocessing

33

<Universities >
<university >
<ID id="1" />
<name >Southern University </name >
< /university >
<university >
<ID id="2" />
<name >Northern University </name >
<numberOfStudents >150 </numberOfStudents >
< /university >
<university >
<ID id="3" />
<name >Eastern University</name >
<numberOfStudents >170 </numberOfStudents >
< /university >

< /Universities >

Figure 4.2: Universities after preprocessing

34

Preprocessing Step

The goal of the preprocessing step is to turn several XML documents into one
document with a single root. If the dataset is a single root, then this step is
skipped. The step is straightforward and computationally inexpensive.

To elaborate more, suppose we want to cluster the university dataset shown in
Figure 4.1. In this dataset, there are three XML documents and thus there are
three roots. The XML documents are: University of Southern University, North-
ern University, and Eastern University. From these three documents, a new XML
document is created with a new and single root, Universities. This root has three
child elements which are the roots of the previous three XML documents. The

new dataset is shown in Figure 4.2.

4.2 XML Structure Clustering Algorithm

(XSC)

The goal of XSC is to cluster XML elements by structure only. In XSC, XML
elements with similar structure will be grouped together. The clustering algorithm

is composed of two phases. The phases are as follows:

e Phase 1: Building the XML Data Guide (XDG)

e Phase 2: Creating the XML Structure Index (XSI)

Figure 4.3 shows an overview of the XSC algorithm. As can be seen from the
figure, XSC scans the XML dataset only once. In the the first phase, an XML

35

Data Guide (XDG) is created. XDG is a tree that summarizes the XML structure.
It is used by the second phase in order to get the list of unique paths of an XML
document. In the second phase, the XML Structure Index (XSI) is created. XSI
is a data structure that identifies the different or structure information that XML
transactions have. Finally, each entry in the XSI is considered a cluster and
therefore XSI is the output of the algorithm. Next, all the phases are explained

in details.

4.2.1 Phase 1: Building XML Data Guide

The XML Data Guide (XDG) is an unbalanced tree that consists of several nodes.
The XDG summarizes the structure of the XML document. The XDG preserves
the parent-child relationship between XML elements. When an XML element is
read from a database or a document, its path is mapped into the nodes of the
XDG. For each XML dataset, a single XDG tree is created. Figure 4.4 shows the
XDG for the university dataset.

The main purpose of XDG is to store and label the distinct root to leaf paths
(DRLP) in an XML document. This information is important for Phase 2: Build-
ing the XSI, as we we will see in Section 4.2.2.

Instead of building an XDG, another alternative is to store the DRLP as a list.
However, the XDG is more efficient to update and search its structure than a list.
Another alternative is to generate XDG from XML DTD or schema. However,

around 52% of the XML files are schema-less.

36

XDG XSl

|kw Vie

Preprocess — ooy 4
, | Phasel | |™ Phase 2 [@
T e
28

I::> [{> i [:> M
ﬂ] 10

g | | || i
an
|I.'IJ1D.'I311|3111! 115

Figure 4.3: Overview of XSC

Universities
University
I—\uniw..r:aranr T 1
Number of
D Hame Students
\university\ID \universityl\name \university\
number Of
Student

Figure 4.4: university XDG

37

In addition, a schema file specifies the set of possible DRLP and not the actual
set of DRLP that exists in an XML file [58]. Figure 4.4 shows an XDG for the
university dataset. This XDG contains five nodes: universities, university, 1D,

Name and number of students. The set of DRLP of this dataset is as follows:

e DRLP(1): /universities / University / ID

e DRLP(2):/ universities / University / Name

e DRLP(3): / universities / University / NumberOfStudents

Algorithms 1, 2 and 3 listed below explain in detail how the XDG tree is created
while XML data is read. If the XDG tree is empty it is initialized with the first
XML element: the root. Each node of the XDG has a title which is equal to the
path of the corresponding element in the XML document. For example, in the case
of the university dataset, the first XML element is “universities”. Therefore, a
new XDG node with title “universities” is created. After initialization, the XDG
insert algorithm is called on the root of XDG tree until all XML elements are
processed. The insert algorithm is a recursive procedure. It takes an XML path
as an input, say x;. Since x; is a path, it is composed of a several XML elements’
names separated by backslash characters. The algorithm matches each name in
x; with its corresponding nodes in XDG tree. If a matching XDG node is found
for the first name in x;, say the node n;, then the insert algorithm returns and
starts finding a match for the second name in in the children of the XDG node n;.

If any of the elements names of x; did not match with nodes of XDG tree, a new

38

node is created in XDG. If z; is a DRLP, the corresponding XDG node is marked
as DRLP. This label helps to retrieve the list of DRLP from the XDG tree.

In contrast to algorithms which transform XML data to another representation
such as VSM, the XDG tree preserves the structural information, such as parent-

child relationships of an XML document.

Algorithm 1 XDG tree Algorithm
ALGORITHM: XDG

BEGIN
i < an XML element
if 1is first element then
Initialize(T,root,i)
else
while 1 is not null do
insert (T,i,root)
i < next XML element
end while
end if
END

Algorithm 2 XDG Initialize Algorithm
ALGORITHM: Initialize (T, i)

BEGIN

path < path of element i
C <« create new node
Cltitle] « i

END

Time and Space Complexity of Phase 1

Let us assume that an XDG tree has a branching factor of “b” and a depth of “d”.

The worst case scenario is when each XML element finds a matching XDG node

39

Algorithm 3 XDG Insert Algorithm
ALGORITHM: Insert (T,startAT,i)

BEGIN
path < path of i
R + startAT
if path equals Rtitle] then
return path
else
if path contains R[title] then
Insert (T,ChildrenOfR,i)
end if
if no child is matched then
C < create new Node
Cltitle] « i
C is child of R
if Cis aleaf in XML file then
Mark C as DRLP
end if
end if
end if
END

and thus continues to search its children of the matched XDG node. In this case,
the number of comparisons for a single XML element is “b * d”. Therefore in this
scenario, there will be , b * d * n comparisons where n stands for the number of
XML elements in XML document. Thus, the worst case scenario for Phase 1 is

as follows:

XDG()time = O(b*d*n)

To find the space complexity of phase one, we need to find the size of the XDG
tree. The number of XDG tree nodes is related to the number of leaf nodes in an
XDG tree. Usually, the levels above the leafs share the nodes and therefore are
less than the number leaf nodes. Therefore, a worst case scenario is when upper

levels do not share any nodes except for the root element. In such a case, the

40

number of XDG nodes is equal to “(p * d) +1” where p is the number of leaf

nodes of XDG tree . Therefore, the space complexity is as follows:

XDG()space = O(p*d)

4.2.2 Phase 2: XML Structure Index

In phase 1, we explained how the structure of an XML document is summarized
by the XDG tree. The next step to is classify XML elements based on structure.
This is achieved by building XML Structure Index (XSI). An XSI identifies the
different clusters of XML transactions based on their structure.

An XSI is a hash table with a number of columns. The most important column is
the binary number. The binary number represents the structure of a transaction.
A question is: how can a binary number represent the structural features of a
transaction? From the XDG tree we can obtain the DRLP of a dataset. For ex-
ample, in the university dataset the path “/universities/university /ID” is a DRLP.
However, the path “/universities/university” is not a DRLP as we have explained
in Section 4.2.1. In our example, the university dataset has three DRLPs. Thus,
each university transaction can be represented by a binary value of three bits. The
order of the bits is the same order of the DRLP in the XDG tree. If the first bit is
equal to 1, it means DRLP (1) exists in the transaction and 0 indicates otherwise.
In our university dataset example, we have three transactions as shown in Figure

4.2. The names of these transactions are as follows: Southern University, Fastern

41

University and Northern University.
Next, the XSI algorithm, shown in Algorithm 4, will find the binary values of
university transactions. Table 4.1 shows how the binary values are calculated.

For example, the Southern University transaction has two DRLP which are:

e DRLP(1): /universities / University / ID

e DRLP(2):/ universities / University / Name

However, it does not have the following DRLP

e DRLP(3): / universities / University / NumberOfStudents

Therefore, the Southern University transaction can be represented by the binary
value “110” which means it has the first two DRLP and not the last one.

An XSI consists of a number of entries. The XSI of the university dataset, shown
in Table 4.2, has two entries. Each entry is composed of a binary representation,
a decimal number, a hash value and a count. XSI stores only the unique binary

representations, not the binary representations for all transactions.

Table 4.1: Building the XSI for the university dataset

Transaction DBLP(1) | DBLP(2) | DBLP(3) | Binary Number
Southern Uni. Exists Exists Does Not | 110
Exist
Eastern Uni. Exists Exists Exists 111
Northern Uni. Exists Exists Exists 111

42

Table 4.2: XSI for the university dataset

Binary Number | Decimal Num- | Hashing Value | Count
(key) ber (key) (value)

110 6 10 1

111 7 11 2

The hash value enables fast access to XSI entries. The decimal value is calculated
from the binary value. For example, in Table 4.2, “6” and “7” are the decimal
values for “110” and “111” respectively. To save space, we can optionally discard
the binary values and store only the decimal numbers in XSI entries. The count
in XSI entry is useful to know the sizes of the clusters as shown in Table 4.2.

The result of the XSC algorithm is the XSI. Each XSI entry represents a cluster

of the XML document. Therefore, in the university dataset, we have two clusters.

Algorithm 4 XML Structure Index Algorithm

ALGORITHM: XSI
BEGIN

t < get a transaction
DRLP < unique paths from XDG

BinaryValue < Calculate Binary value from DRLP and t

DecimalValue +— Get Decimal value from BinaryValue

HashValue +— Get HashValue value from DecimalValue

if HashValue does not exist in XSI then
NewXSIEntry < DecimalValue, HashValue

else

Increment the count of the matching XSI entry

end if
END

43

Time and Space Complexity of The XSI Algorithm

The XSI algorithm extracts the binary value from each transaction. The time

complexity of XSI algorithm is as follows:

XSI()time = O(t % p)

where ¢ is the number of transactions in an XML document and p is the number
of DRLP entries. Note that p is vastly smaller than n. Also note that the number
of transactions, ¢, is usually a fraction of, n, the number of all XML elements.
This is because a single transaction is composed of ¢ XML elements. Therefore,
t is as follows:

t=n/c

In phase 2, the worst case scenario for space usage is when each transaction has
a unique structure. In this scenario, the XSI contains ¢ entries where ¢ is the
number of transactions in an XML document. Therefore the space complexity of
phase two is:

XSI()space = O(t)

Overall Time and Space Complexity of XSC Algorithm

XML structure clustering algorithm (XSC) is composed of phase 1 and phase 2.

Thus, the over all time and space complexity of the algorithm is as shown below:

44

e Time complexity of XSC

XSC()time=0(b*xd*n)+ O(pxt) =0(b*dx*n)

e Space complexity of XSC

XSC()space = O(p xd) + O(t) = O(t)

Note that ¢ is less than n.

4.3 XML Hierarchal Content Clustering Algo-

rithm (XHCCQC)

The XML Hierarchal Content Clustering algorithm (XHCC) extends XSC to clus-

ter XML data by both structure and content. The phases of XHCC are as follows:
e Phase 1: Building the XML Data Guide (XDG)
e Phase 2: Creating the XML Structure Index (XSI)
e Phase 3: XML Univariate Content Clustering (XUCC)
e Phase 4: Clustering transactions by structure and content

Figure 4.5 shows an overview of XHCC. XHCC can be viewed as an extension to
XSC since the first has all the phases of the latter. Phases 3 and 4 are added to
XHCC. In Phase 3, the extended BIRCH algorithm, XBIRCH, is used to cluster
the content of XML elements. In the last phase, XHCC clusters the transactions
by both structure and content.

Next, phases 3 and 4 are explained in detail.

45

(1“ Scan

Preprocess
— | . Phasel (=]
A e =
2" Scan Final Clusters
)*‘:“*—-—-._._
> T
Figure 4.5: Overview of XHCC
Universities
University
r\ur‘li\.rerSHy T 1
Number of
D Name Students
@k XBIRC XBIRC

Figure 4.6: The University XDG in Phase 3

46

4.3.1 Phase 3: XML Univariate Content Clustering

In XHCC, building the XDG (phase 1) and XML Univariate Content Clustering
(phase 3) are preformed simultaneously. For every XDG node labeled as DRLP,

an XBIRCH tree is created. XBIRCH is an extension to the BIRCH algorithm

and it is explained in Chapter 5.

For example, Figure 4.6 shows the XDG tree for universities dataset. Since they

are marked as DRLP, the XML elements name and ID are clustered by using

XBIRCH trees.

Table 4.3: The possible data types of datapoints

Case Example Solution
Continuous | 12, 1.5, 8.2 BIRCH

Ordinal Freshman, Sophomore, Junior Converting, BIRCH
Nominal Red, Green, Blue XBIRCH

Textual Book titles, abstracts and articles | Future work

Algorithm 5 XML Univariate Content Clustering Algorithm

ALGORITHM: XUCC

BEGIN

while there is new datapoint, d do
n < matching node in XDG
v < value of d
Insert v into a BIRCH tree whose root is n

end while
END

XUCC Algorithm, listed in Algorithm 5, takes place whenever a new datapoint is
inserted to a DRLP labeled node of the XDG tree. A datapoint is a paired value
composed of a path and value. The path is used by phase 1 to find the matching

XDG node for a datapoint. After that, the value of the datapoint is inserted into

47

an XBIRCH tree which is a child node of the matching XDG node.

The Values of DRLP labeled nodes are one of four cases: continuous, nominal,
textual, or ordinal values. As shown in Table 4.3, each case is handled differently.
In the case of continuous values, a BIRCH tree is used to cluster these values as
has been explained in Section 2.4.

Ordinal values are handled similarly, however, the values are first converted into
numbers as explained in Section 2.3.4 and then they are clustered by a BIRCH
tree. The nominal values are clustered using XBIRCH algorithm as we will see in

Section 5.2.

Time and Space Complexity of XUCC Algorithm

Let p be the number of DRLP in an XDG tree. For each DRLP labeled node, an
XBIRCH tree is created. Time complexity of XBIRCH is O(n), where n is number
of XML elements [5]. Therefore, the time complexity of XUCC is as follows (Note

that p is vastly less than n):

XUCC (n)time = O(p *n)

The space requirement of XUCC is dependent on the space requirement of BIRCH
algorithm which is not covered in the original work [5]. One reason behind this
is the flexibility of the BIRCH algorithm. Depending on the threshold value, the
size of the BIRCH tree changes. The smaller the threshold, the bigger the BIRCH

tree.

48

4.3.2 Phase 4: Clustering Transactions by Structure and

Content

Phase 4 takes place after all other phases are complete. In this phase, a second
scan is performed on the XML dataset.

Phase 4 has one algorithm: Transaction Clustering Algorithm (TCA) which is
listed in Algorithm 6. The goal of TCA is to cluster XML transactions by content
and structure. This is achieved by building an XBIRCH tree which will be used
to cluster XML transactions.

To explain more, Let y be a transaction with three components (XML children):
1 , T, and x3. Also let X, X5, and X3 be DRLP labeled XDG nodes. Since
XUCC is complete, X; has an XBIRCH tree. Each of these XBIRCH trees have
cluster features (CF). Suppose the closest CF entry to our transaction components
1, x9, and x3 are CF labels a, b, and ¢ respectively. These CF labels are found
in the XBIRCH trees located in XDG nodes: X;, X,, and X3 respectively.

For the purpose of creating a new XBIRCH tree in g, we create a vector of the

cluster labels a, b, and c:

y={a,b,c}

Lets give an example using the universities dataset. In this dataset, university is
our transaction node. Next, we will create the datapoint for Northern University.
First, suppose there are 3 clusters in the XBIRCH tree of the ID node and 2
clusters in the XBIRCH tree of the number-of-students node. Suppose the ID

value of Northern University was found in the first cluster of the ID XBIRCH

49

tree. Meanwhile the number-of-students value of Northern University was found
in the second cluster of the number-of-students’s XBIRCH tree. A datapoint for

Northern University transaction will be in the following format:

DatapOintNorthernUmversity - { 1> 2}

The values 1 and 2 are categorical values and therefore we will use the XBIRCH
algorithm to cluster all the university datapoints. The new XBIRCH tree is
inserted as a child for the university node in XDG tree.

Since our aim is to cluster XML data by both structure and content, the university
XDG node will have more than one XBIRCH tree. This is because university
transactions will be first clustered by structure using XSI and then by content
using TCA. This means if that we have two entries in XSI, TCA will create two
XBIRCH trees for each entry. Optionally, we can opt to only create one XBIRCH

tree for all transactions. In such a case, we are clustering XML by content only.

Algorithm 6 Transaction Clustering Algorithm
ALGORITHM: TCA

BEGIN
t <= new transaction
for all c children of t do
C « the XBRICH tree of the XDG node with title c
datapoint[tc] + the label of the closest CF entry in C
end for
insert datapoint[t] into new XBIRCH rooted at the XDG node with title t
END

50

Time and Space Complexity of Phase 4

The Transaction Clustering Algorithm (TCA) is mainly composed of two steps. In
the first step, TCA searches for the matching cluster labels of a transaction’s chil-
dren. Then in the next step, a new XBIRCH tree is built to cluster transactions.

Therefore, the time complexity of TCA is as follows:

TCA(t) =O(txcx*log(t)) + O(l * t)

where ¢ is the number of leafs/children of a transaction and [is the number of XSI
entries. The values of ¢ and [are vastly less than ¢, the number of transactions in
an XML document. In the equation above, the first term is for finding the closest
CF label and the second is for building an XBIRCH tree.

The space complexity of phase 4 and phase 3 are similar. For the space complexity

of phase 3 please refer to Section 4.3.1.

The Overall Time Complexity of the XHCC Algorithm

The XHCC algorithm is composed of four phases. Therefore the time complexity

of the algorithm is as follows:

XHCC(n)=0(b*xdxn)+O((p*t)+O(pxn)+O(txcxlog(t))+O(lxt) =O(n)

Note that p, d, b, [and e are vastly less than n.

51

4.4 XHCC Revisited

In this section, we highlight some parts of XHCC in order to further explain the

algorithm. These areas are: normalization and threshold values.

4.4.1 Normalization

In Section 2.3.3, normalization was discussed as a general problem in data cluster-
ing where it is a necessary preprocessing step. In our proposed algorithms, a new
normalization technique is introduced. We normalize the output of phase 3 (XML
Univariate Content Clustering) before executing phase 4. Instead of normalizing
based on individual values, we normalize based on the number of clusters. Lets
review the example given in Section 2.3.3.

Suppose the number of clusters for age and salary is 5 and 100 respectively. As

we explained in phase 4, the transactions Ali (A), Bandar (B) and Sami (S) are

as follows:
A={5,3}
B={53}
S=4{1,3}

As we explained, the values of attributes in the transactions above are the cluster
labels and not the actual values of salary and age. Next, we want to normalize
these values and make them lie in the same range. This is done by dividing

each attribute by the number of clusters it has. Therefore, the three transactions

52

become as follows:
A= {5 /5,3 /100 }
B={5/5,3/100 }

S={1/5,3 /100 }

Thus, the distance between Bander and Sami is as follows:
The difference in age is (5-1)/5 = 0.8

The difference in salary is (3-3)/100 = 0

This result is logical because the difference in age between B and S is greater than
their difference in terms of their salaries.
In conclusion, normalization is handled differently in the proposed algorithms and

there is no need for a preprocessing step to scale input values.

4.4.2 Threshold Values

This section describes how threshold values are set in the proposed algorithms.
As mentioned in Chapter 2, the BIRCH algorithm has a threshold value that
specifies the maximum distance allowed between a data point and cluster feature
(CF) [5]. The most accurate threshold value is zero which builds a large BIRCH
tree. If a smaller memory footprint is required, the threshold value is increased
which makes the tree smaller but with a lower accuracy.

In our proposed algorithms there is a threshold value per DRLP labeled XDG

53

node. Therefore, the problem of finding the most appropriate threshold value for

each node is a challenge. A study of this problem is part of our future work.

4.5 Conclusion

The proposed algorithms, XSC and XHCC, can be divided into two and four
main phases respectively. These phases are Building the XDG tree, Building the
XSI, XUCC, and Transaction Clustering Algorithm (TCA). These phases have
been explained with examples using a small dataset. Experiments and analysis
on large datasets is the topic of Chapter 6. Before that, since BIRCH only works
with numerical data, there is a need to extend BIRCH to handle categorical data

as well. This is further discussed in the next chapter.

o4

CHAPTER 5

EXTENDED BIRCH

ALGORITHM (XBIRCH)

A typical XML document consists of elements with different data types.
However, the BIRCH algorithm one of, the building block of our proposed algo-
rithms, only clusters numerical values. Therefore, in this chapter we will modify
the BIRCH algorithm to cluster categorical (nominal) values as well.

The chapter is organized in the following order. First, Section 5.1 highlights the
difficulty of clustering categorical values with the BIRCH algorithm. Then in
Section 5.2 we explain how to cluster univariate categorical values. After that, in
Section 5.3, we extend the BIRCH algorithm to cluster multivariate categorical
values, and name the algorithm extended BIRCH (XBIRCH). After that, the
issue of attribute priority and order is analyzed in Section 5.4. Then the issue
of sensitivity to order is highlighted in Section 5.5. Finally, we introduce an

optimizing algorithm for XBIRCH to produce more accurate results.

95

5.1 Overview

Clustering categorical values is different from clustering numerical ones. In the
case of clustering numerical values with BIRCH, statistical measurements are used
to represent sets of numbers. However, in the case of clustering categorical values,
it is not possible to use a statistical measurement. For example, what is the mean
for red, black, and blue? There is no statistical measurement that can capture a
set of categorical values which is why BIRCH cannot cluster them. Since many
XML datasets contain categorical values, we cannot ignore clustering them. For
example, a dataset of world countries can be expressed in terms of datapoints
with the following variables or attributes: weather, language, and political system.
Thus, Australia can be represented as [Sunny, English, multi-party| while China
is represented as [rainy, Chinese, Single-party|. Similarly [Windy, English, Multi-
party] can represent the USA. Imagine that these three countries were in the
same cluster. What measurement or model can summarize this cluster? As we
add more countries, how can they be represented in hierarchy of clusters similar
to a BIRCH tree?

For this purpose, we introduce a clustering feature along with a distance function.
The clustering feature is the Nominal Clustering Feature (NCF). The most suit-
able distance function for NCF is the hamming distance which will be explained
in Section 5.3. The main difference between BIRCH and XBIRCH is that BIRCH
uses CF entries to cluster values while XBIRCH uses NCF entries to cluster cat-

egorical values. For more details about BIRCH, please refer to Section 2.4.

56

5.2 Clustering Univariate Categorical Values

In this section, we explain how univariate categorical values are clustered. For
example, in the countries dataset there are three categorical values one of them
is weather. It is possible to have clusters such as: “rainy”, “cloudy”, “hot”, etc.
If the number of the distinct values of weather is ten, then ten clusters will be
created.

To group the identical values together, one approach is to compare their string
values. This is a pair-wise operation and it is computationally expensive. A
better mechanism is to use hashing functions. However, there is a possibility that
a hashing function can produce the same value for two different inputs. Therefore,
we can combine multiple hash functions to reduce that possibility.

For example, we conducted an experiment where all entries of an English lexi-
con were clustered. The lexicon is composed of 519,752 words. We represented
each word with a vector of two values. Each value is the product of a hashing
function. In our experiment, we used two hashing functions: the Microsoft .NET
GetHashValue() and a custom hashing function that we implemented to convert
strings into numbers. After that, each vector was inserted to a BIRCH tree with
threshold zero. As a result we obtained 519752 clusters which is equal to the
number of words in the lexicon.

In summary, clustering univariate categorical values is achieved by using hashing
functions and a BIRCH tree. This will produce a number of clusters equal to the

number of distinct values of the categorical variable.

o7

5.3 Multivariate Categorical Clustering

In this section, we describe how multivariate categorical values are clustered. It
is done through the modification of the BIRCH algorithm.

Let us assume that we have a vector that contains only categorical values. For
example, in the countries dataset, China, USA, and Australia are datapoints which

can be represented as follows:

Datapointysa = {c1 =2,c0 =2 ,¢c3 = 3}
Datapoint aystraiia = {€1 = 3,00 =2 ,c3 = 3}

Datapointcoping = {c1 = 1,c0 =1 ,¢c3 = 2}
where c1, co, and c3 represent the attributes weather, language, and political system
respectively. Note here that the values for these attributes have no meaning other
than being different. Value 3 does not mean it is greater than 2. It is just a label
for a categorical value. Instead of inserting these datapoints into a CF of BIRCH
tree, they are inserted into an NCF. An NCF captures the clustering feature for
categorical values. Instead of a statistical representation, a vector of characters,
called a header is used. For example, a country’s NCF will be composed of a
vector of three characters. Each character represents one attribute. An NCF for

a country will be as follows:

NCFCountry - {Cb C2, 63}

Where the value of ¢; can be from 1 to k, where £ is the number of clusters in

o8

attribute 7. Additionally, ¢; can have asterisk value (*) which means any value. In
our countries dataset, the NCF header after inserting the USA datapoint becomes

as follows:

NCFysa=12,2,3}

Note that the NCF header equals to the USA datapoint. Secondly, we insert

Australia’s datapoint and the NCF header becomes as follows:

NCFAustralia+USA = {*7 2> 3}

In this case, USA and Australia share two attribute values: language and political
system while they are different in terms of the first attribute, weather. For that
reason, we mark the weather variable in NCF with the asterisk value (*). Lastly,

we add China to the NCF and it becomes as follows:

NCFChina+USA+Australia = {*> *, *}

After adding China, the NCF header has lost all its numeric values. This means
that the inserted datapoints have nothing in common. To restrict the membership
to an NCF, a threshold value and distance function are used to see if a datapoint
can be inserted to an NCF or not. A datapoint is inserted if the hamming distance
between the header of an NCF and the datapoint is less than the threshold value.
For example, if we set the threshold value for countries to 2, China can’t join

the USA and Australia cluster. It will form a new cluster by itself. This is

99

because the hamming distance (see Equation 2.3) between the China datapoint
and NCFysataustratia 18 three which is larger than 2. Similar to the BIRCH
tree, a threshold value will control the size of an XBIRCH tree. The smaller the
threshold value, the bigger the XBIRCH tree.

In an XBIRCH tree, the branching factor cannot be controlled by the user but
rather the data itself. The advantage of this is that clusters will be more natural.
However if the attributes have a large number of distinct values, the XBIRCH
tree will have huge width. To minimize its width, the NCF vector’s attributes are
ordered by their number of distinct values. This means if weather has less number
of distinct values, it appears before language. This will make the width of the tree

as small as possible. This problem is further analyzed in the following section.

5.4 Priority and Order of Datapoints’ At-

tributes

Herein, we study the issue of priority and order of datapoints’ attributes. In
section 4.3.2, we studied the university dataset where one of the university trans-
actions was composed of two attributes: ID and Number-Of-Students. Suppose
there is another attribute, size-of-university, which is similarly a DRLP labeled
node in the XDG tree. Lets assume all these attributes are categorical values. As

a result, we can have the following datapoints:

DatapOintSOMhernUm'versity - {27 37 3}

60

DatapOintNorthernUmversity - {17 37 3}

DatapOintEasternUmversity - {27 57 3}

As we explained, these three datapoints will be inserted into an XBIRCH tree
where the hamming distance is used to calculate the distance between these dat-
apoints and the NCFs. In our example above, the distance between Southern
University and either of Northern University or Eastern University is equal to 1.
However, to group these datapoints there are two solutions. One solution is to
group Southern University with Northern University while Eastern University is
a cluster by itself. Another solution is to instead group Southern University with
Eastern University and make Northern University a cluster by itself. Generating
two solutions for the same input is undesirable. Ideally, if we run a deterministic
algorithm multiple times on the same dataset, we should have the same solution.
To overcome this problem, we will specify an order and a priority when creating a
datapoint. First, attributes are ordered by the number of clusters they have or in
other words, the number of their distinct values. For example in university dataset,
the XBRICH trees for attributes: ID, number-of-students, and university-size have

2, 3, and 4 clusters respectively. Thus, a university datapoint is as follows:

Datapoint southernvniversity = {1 Di, numbero f students;, universitysizey}

As can been seen, the attributes of the Southern University datapoint are ordered
by the number of clusters (ascending). The second step is to set a priority for

these attributes. When calculating the distance function between two datapoints,

61

we can set the following rule: Finding a match in the first attribute shall have
higher priority than finding a match in the second attribute and so on. As a result,
the algorithm will produce the same results even if it runs several times. In our
example, Southern University will be grouped with Eastern University since they
are similar in the first attribute (ID).

Shall we arrange the attributes of a datapoint in ascending or descending order?
Before answering this question, we need to see the effect of order on the XBIRCH
tree.

Changing the order of attributes has an effect on the shape of an XBIRCH tree.
For example, in our university dataset, we have ID and number of students as
DRLP labeled nodes that have 2 and 4 clusters respectively. Both ID and number
of students are attributes of the university datapoints. If these attributes are
arranged in an ascending order, we obtain tree T2 in Figure 5.1. The branching
factor in tree T2 increases from top to bottom. On the other hand, if attributes
are arranged in a descending order, tree T1 is obtained. In tree T1, the branching
factor decreases from top to bottom. Tree T2 is useful in database query appli-
cations where smaller tree enables faster access to leaf nodes. On the other hand,
in data clustering applications tree T1 is more useful. To achieve natural clusters,
finding a match between attributes with larger number of clusters should have
higher weight. Thus, the decreasing order of attributes is more preferable in data

clustering applications.

62

Al A2 A3 Ad
D1| D2 |p1] p2] D1 D2 D1 D2
T2

= ®
D1 D2
| |
\ } | _ | _ \ : — \ — L
Al A2 | A3 | A4 A1 | A2 | A3 | A4

Figure 5.1: Effect of attribute order on XBIRCH tree

63

5.5 The Sensitivity to Order

Another issue is the sensitivity of XBIRCH to the order of datapoints. Similar to
BIRCH, the order of the datapoints (for example inserting China first) will change
the final results. This is overcome by a second scan of datapoints (not the XML
data). In this second scan a different algorithm is used where old NCF's are kept

and datapoints are re-inserted into the XBIRCH tree.

Algorithm 7 Optimize- XBIRCH clusters
ALGORITHM: Optimize-XBIRCH

BEGIN

Delete all datapoints in clusters
Keep NCF headers as they are
Cluster datapoints again
Delete empty NCFs

Return XBIRCH tree

END

It is an optimization algorithm which outputs more accurate results. The opti-

mization algorithm is listed in Algorithm 7.

5.6 Conclusion

Clustering categorical values requires a modification of the BIRCH algorithm.
This is achieved by introducing the Nominal Clustering Feature (NCF). In this
chapter we explained how to cluster univariate and multivariate categorical values.
The problem of datapoints order and the order of attributes has been studied.
Finally, an optimization algorithm for XBRICH has been introduced to output
more accurate results.

64

CHAPTER 6

EXPERIMENTAL RESULTS

AND ANALYSIS

This chapter describes the experimental results and analysis of the proposed al-
gorithms. The goal of the experiments is to measure the performance and recall
of XHCC and XSC algorithms. The chapter is organized as follows. First, per-
formance parameters are described in Section 6.1. Then in Section 6.2 we specify
the experimental setup. Datasets are then described in Section 6.3. After that, in
Section 6.4 we explain our experiments methodology. Then we discuss the exper-
imental results and analysis in Section 6.6. Finally, we compare our algorithms

with INEX 2008 in Section 6.7.

6.1 Performance Parameters

Our performance parameters are measurements used to analyze the proposed al-
gorithms from three aspects. These aspects are: time, space, and recall of the

65

clustering results.

Time: To measure the scalability of the proposed algorithms, the time to run the
algorithms is measured. The CPU time of the running application is measured in
seconds.

Space: To test the capability of handling large XML datasets, the space used by
proposed algorithms’ data structures is measured. We analyze the growth of space
usage used as the size of datasets increases. Space is measured in kilobytes(KB).
Recall: In section 2.3.5, we presented ways to evaluate the quality of data
clusters. We will use the recall measurement to test the quality of the proposed

algorithms. To calculate the recall, the following procedure is followed:

Set all BIRCH and XBIRCH threshold values to zero

All XML transactions are clustered either by XSC or XHCC

e XML transactions are clustered again

Check the clusters and see if they have duplicate values

If each two identical XML transactions fall in the same leaf node, the recall is
100%. Measured in percentage, the recall is the ratio of identical point found in
the same leaf node over the total number of identical pairs as shown in Equation

66

where [is the count of identical pairs grouped in the same node and A is the

number of XML transactions multiplied by 2.

6.2 Experimental Setup

This section lists the specifications of the testing environment. First, the proposed
algorithms have been implemented in the C# language and the application runs
on the Microsoft .NET 4 framework. A 64-bit Windows Server 2008 R2 machine
has been used with 8 GB of RAM. The processor of the machine is Intel Core 2

with speed of 2.4 GHZ.

6.3 Datasets

Following is a description of the datasets used to test the proposed algorithms.
Our data source is real life data taken from the XML Data Repository [59] and
Wisconsins XML data bank [60]. Six different datasets have been used. The

criteria for choosing the datasets are as follows:

e Two datasets which mostly contain continuous values

e Two or more datasets which contain mixed types of values (categorical and

continuous values)

e All datasets should not mainly be composed of textual XML elements

Based on these criteria, the following datasets have been chosen: Mondial, Movies,
Parts, Orders, DBLP, and Cars. Their description is as follows.

67

Mondial: Mondial is part of the XML Data Repository. It is an XML dataset
containing information about the countries of the world integrated from the CIA
World Fact book, the International Atlas, and the TERRA database among other
sources. It contains information about nearly every country in the world. This
dataset contains mostly numeric values.

Movies: IMDB stands for Internet Movie Database. It is listed also in the XML
data Repository. It was retrieved from the IMDB website. It has information
related to movies, television shows, actors, and production crew personnel.
DBLP: DBLP stands for Digital Bibliography and Library Project. It is a com-
puter science bibliography website which indexes more than one million articles
and contains more than 10,000 links to home pages of computer scientists.
Cars: The cars dataset has been taken from the Wisconsins XML data bank. It
has specifications for several car models. This dataset mostly contains continuous
values.

Parts and Orders: Parts and Orders datasets are listed also in the XML
Data Repository. It was generated by the Transaction Processing Performance
Council [60]. The first dataset, Parts, contains manufactured metal products while
Order’s dataset is composed of a list of orders made by a number of customers
and served by some clerks. These two sets cover the case when data is composed
of both numerical and categorical data.

Table 6.1 shows general properties of the datasets. These properties are: Dataset

name, Data Type, Average and Maximum Depth and the XML transaction.

68

Furthermore, for each dataset, four sub-datasets have been generated. Therefore,
there are 24 datasets in total. The reason for these sub-datasets is to test the
scalability of the proposed algorithms. Table 6.2 shows the specifications for each
sub-dataset. The specifications are: number of elements, attributes and the size
of the dataset. Note that within a dataset, the ratio of the size of two consecutive
sub-datasets is 1:10 for most of the sub-datasets. For example in Movies dataset,
Mov2 has the size of Movl multiplied by 10. As a result, Movl has a size of 0.87
MB and Mov2 has size of 8.7 MB. Note that for the first two sub-datasets, M1

and M2, the ratio is around 1:13.

Table 6.1: General specifications of the main datasets used for experiments

Dataset Data Type Average Maximum | Transaction
Name Depth Depth Name
Mondial Numerical 3.6 5 Country
and
Province
Movies Mixed (Categorical & | 2.89 3 movie
Numerical)
DBLP Mixed (Categorical & | 2.9 6 article
Numerical)
Cars Numerical 3.88 5 Specs
Parts Mixed (Categorical & | 2.98 3 T
Numerical)
Orders Mixed (Categorical & | 2.98 3 T
Numerical)

6.4 Testing Methodology

Testing takes place in two steps: First, we test the time, the space, and the recall

of running the XSC algorithm on each dataset. Then the experiment is repeated

69

for the XHCC algorithm.

Table 6.2: Detailed specifications of sub-datasets

Dataset Sub- Number of elements & | Size
Name dataset attributes
Name
M1 2781 0.07 MB
M2 37496 1.16 MB
Mondial M3 374960 11.6 MB
M4 3749600 116.06 MB
mov1l 25500 0.87 MB
mov2 255000 8.7 MB
Movies mov3 2550000 78 MB
mov4 25500000 782.2 MB
D1 34214 1.3 MB
D2 342140 13 MB
DBLP D3 3421400 133 MB
D4 34214000 1338.9 MB
C1 15000 1.2 MB
C2 150000 12.6 MB
Cars C3 1500000 126.8 MB
C4 15000000 1260 MB
P1 200 0.06 MB
P2 2000 0.6MB
Parts P3 200000 6MB
P4 200000 60 MB
01 150 0.052 MB
02 1500 0.525 MB
Orders 03 15000 5.2 MB
04 150000 52.5 MB

70

6.5 Results

This section lists the results obtained from running our experiments. These results

are shown in Tables 6.3, 6.4, 6.5, and 6.6. Each table represents the results per

dataset. For each table the following is given: clustering time and space of running

XSC and XHCC algorithms.

Table 6.3: Results for Mondial dataset

Data | Clustering time | Clustering time | Memory Size | Memory Size

set for structure for content and | (structure only) | (structure and
structure content)

M1 0.625 Sec 0.875 Sec 609.725 KB 1269.06 KB

M2 3.688 Sec 7.125 Sec 609.725 KB 1674.55 KB

M3 32.969 Sec 62.766 Sec 609.725 KB 1816.56 KB

M4 333.469 Sec 599.984 Sec 609.725 KB 1958.57 KB

Table 6.4: Results for Movies dataset.

Data | Clustering time | Clustering time | Memory Size | Memory Size

set for structure for content and | (structure only) | (structure and
structure content)

Movl | 2.594 Sec 5.25 Sec 5578.90 KB 11174.92 KB

Mov2 | 22.656 Sec 47.203 Sec 5578.98 KB 11175.07 KB

Mov3 | 199.984 Sec 411.203 Sec 5578.98 KB 11177.93 KB

Mov4 | 2063.156 Sec 3997.766 Sec 5578.98 KB 11177.93 KB

Table 6.5: Results for DBLP dataset.

Data | Clustering time | Clustering time | Memory Size | Memory Size

set for structure for content and | (structure only) | (structure and
structure content)

D1 3.922 Sec 7.031 Sec 7488.23 KB 14996.42 KB

D2 35.313 Sec 64.406 Sec 7488.28 KB 15416.84 KB

D3 405.625 Sec 741.5 Sec 7497.90 KB 19231.52 KB

D4 4059.828 Sec 7091.016 Sec 7497.90 KB 31788.66 KB

71

Table 6.6: Results for Cars dataset.

Data | Clustering time | Clustering time | Memory Size | Memory Size

set for structure for content and | (structure only) | (structure and
structure content)

C1 2.063 Sec 2.563 Sec 3286.81 KB 6584.47 KB

C2 17.016 Sec 21.25 Sec 3286.81 KB 6587.32 KB

C3 165.641 Sec 212.203 Sec 3286.81 KB 6587.90 KB

C4 1614.953 Sec 2121.75 Sec 3286.81 KB 6591.88 KB

The recall for each dataset is shown in Table 6.7. Generally, the average recall is
between 85 % and 94 % which is equal to 89.5 %. The recall value varies as the
size and type of data change. The Orders dataset shows the highest recall value.
This is because this dataset is the smallest in size. The bigger the dataset, the
more errors are seen. This is because bigger datasets have more clusters based on

content and structure and therefore the probability of error is higher.

Table 6.7: Recall per dataset

Data set Recall for First | Recall Average
sub-dataset for sub-
dataset
Mondial 85% (M1) 85% (M2) | 85%
Parts 90% (P1) 85% (P2) | 87.5%
Orders 92 % (01) 96 % (02) |94 %
Cars 88 % (C1) 86 % (C2) | 87 %

6.6 Experimental Analysis

Figure 6.1 shows a chart for the space measurement for XSC. The horizontal axis
represents the count of XML elements in a dataset. The vertical axis represents the
measured space used by each algorithm. From Figure 6.1, we note that the space

72

complexity is almost constant. Regardless of the increasing size of the dataset,
the space remains almost the same. In Chapter 4, we expected a linear growth
for the space usage of both the XSC and XHCC algorithms, yet we have found in
experiments that the space usage is almost constant with some exceptions. The
reason behind this is that when no more new distinct values or new DRLP are
found, the size of the data structures stay the same. The second reason is that in
our analysis we studied the worst case scenario and therefore our results have to
be equal or less than the complexity analysis estimations.

Figure 6.1 shows that the DBLP dataset has the highest space usage followed by
Movies, Cars, and lastly Mondial. This order is the same order if datasets are
ordered by the number of XML elements. Therefore, the more XML elements in
a dataset, the more space XSC needs for structural clustering.

Note that the space usage of the algorithm is larger than the size of some of the
small datasets. For example the size of D1 dataset is 1.3 MB while the size used
by XSC is 7.4 MB. This suggests that the space usage of XSC is not efficient for
small XML documents. Nevertheless, the space usage is relatively in case of large
datasets as the space usage becomes almost constant.

Similarly Figure 6.2 shows the space usage of the XHCC algorithm. The space us-
age for most datasets is constant. An exception is DBLP, where there is sub-linear
growth. The reason is that DBLP contains more XML elements with categori-
cal values compared to other datasets. In addition, these categorical values have

high number of distinct values. Each unique categorical value is represented by

73

an array of products of two hashing functions. As a result, when more data is
processed, more distinct values are seen and thus more space is required.

To analyze the time complexity for XHCC and XSC, please see figures 6.3 and 6.4.
Both figures show that the time complexity is linear for both algorithms regardless
of the XML type. Similar to space usage, the order of the datasets is in the same

descending order if datasets are ordered by the number of XML elements.

6.7 Comparison

Related published papers in this area have focused on datasets that mostly contain
textual values. This does not satisfy our third dataset criterion. To the best of our
knowledge and based on our literature review in Chapter 2, there is no work that
is similar to the proposed algorithms. Solutions to clustering XML by content
and structure are mainly addressing the problem from an Information Retrieval
(IR) point of view and not from a data mining or database perspective.

The problem of determining cluster quality is an open problem [61]. Therefore,
comparing algorithms is a challenging work. There are many measurements to find
quality of clusters. The closest work to ours are those found in INEX 2008 [61].
INEX is is an international campaign that provides a means of evaluating retrieval
systems that provide access to XML content. The similarities and differences

between our algorithm and INEX 2008 are as follows:

e Similarities: Algorithms in INEX 2008 target large homogeneous datasets
similar to our algorithm.

74

o Differences: INEX 2008 algorithms focus on text-centric datasets such as
Wikipedia. Our algorithm XHCC deals with data types and ignores textual
data. The proposed algorithms in INEX 2008 transform XML to other

formats while our algorithm keeps the XML structure using XDG tree.

75

Space allocation of Clustering by Structure

KB
8000
- o

7000
6000
ik A .
- ars
48-DBLP
4000 =frMovies
o0 ' “»=Mondial
3000
2000
1000
0+ ‘ . . .
0 10000000 20000000 30000000 40000000 HE

Figure 6.1: Space Usage of XSC

ke Space allocation of Clustering by Content
35000

30000 =

I /
/ “@-Cars
20000 -

4-DBLP
=frMovies
15000 »=Mondial
10000 =
5000
O I T T T 1 #E
0 10000000 20000000 30000000 40000000

Figure 6.2: Space Usage of XHCC

76

Running Time of Clustering by Structure

Sec
4500
4000 /I
3500 /
3000 / «@=Cars
S -DBLP
/ =A=Movies
2000 / / =#=NMondial
1500 »
1000 /
500 | /
0 y
0 10000000 20000000 30000000 aoooco00 HE
Figure 6.3: Running Time of XSC
Running Time of Clustering by Conent
Sec
8000
7000 /.
6000
/ «@=Cars
5000
/ 48-DBLP
2000 =i=Movies
// =“=Mondial
3000
2000 -
1000 -
0 ' . ‘ s
0 10000000 20000000 30000000 s0000000 HE

Figure 6.4: Running Time of XHCC

7

Another major difference is the type of experiments being conducted by INEX
2008 and our algorithm. As we explained in Section 6.1, we cluster the data twice
and see if each identical objects are grouped together. Meanwhile, INEX 2008
clusters the Wikipedia entries and assigns a label (such as subject) to each cluster.
Nevertheless, we can still look at the results to have a general understanding
about the recall values in this area. Figure 6.5 shows the recall measurements for
participants of the classification task at INEX 2008 [61]. The highest recall was
78% achieved by Gery et al. Meanwhile our average recall is 89.5% . This is to

give an idea about the recall values in the area of XML clustering.

Recall

T T

DeVrieset Camposet Fachryetal. Chidlovskii Geryetal
al. al. etal.

= Recall

G-I I

Figure 6.5: Recall of INEX 2008 participants

6.8 Conclusion

This section has presented the analysis of the proposed algorithms (XSC and
XHCC) based on experiments on real XML benchmark datasets. Time and space
complexities show that the proposed algorithms are scalable, fast, and can handle
large XML data. The experiments also have shown that the proposed algorithms

have a high recall of 89.5% on average.

78

CHAPTER 7

CONCLUSION AND FUTURE

WORK

In this chapter, Section 7.1 summarizes the thesis work. After that, a list of future

work is given in Section 7.2.

7.1 Thesis Summary

The main objective of our thesis was to introduce a scalable clustering algorithm
for large XML data. To achieve this objective, first we presented a literature
review of XML clustering in Chapter 3. The review showed that there are only
a few algorithms that can cluster XML data by both content and structure. The

proposed algorithms have been designed to achieve the following goals:

e Ability to cluster homogeneous XML Data

e Ability to cluster large XML data

79

e Hierarchal Clustering by content and structure

While working toward achieving these goals, a number of problems have been

solved. These problems are:

e The BIRCH algorithm has been extended to handle categorical data

e A new scaling technique was proposed that does not require preprocessing

e An optimization algorithm was implemented to increase the accuracy of

categorical data

To validate our algorithm design and analysis, experiments were conducted using

real life XML benchmark datasets. The results of these experiments are as follows:

The space complexity of XSC is constant

The space complexity of XHCC is sub-linear

The time complexity of XSC is linear

The time complexity of XHCC is linear

XSC require the data to be scanned only once

XHCC require the data to be scanned two times

The recall of XHCC is 89.5% on average.

80

7.2 Future Work

There are three tasks that extend this thesis. They are: clustering the textual
data type, finding the best threshold values for the XBIRCH trees, and feature
selection.

Textual Data Type: Currently our approach deals with categorical and continu-

ous data. There is a need to include textual data such as book titles and messages.

Finding Best Parameters: As explained in Section 2.4, a CF tree has
a number of parameters. For achieving the highest accuracy, the threshold value
is set at 0. However, in case where memory size is limited, the size of the CF tree
can be reduced by a higher threshold value.

In the XHCC algorithm, several XML elements are clustered. The values of these
elements have different ranges. In case of a limited memory scenario, this means
that there are different combinations of threshold values to be set. In such a case,
there is a need to find an algorithm that assigns optimal threshold values in order

to reduce the size of the XBIRCH tree without major reduction in accuracy.

Feature Selection: In machine learning, the accuracy of classification
can be increased when the number of features (attributes) is reduced to the
most influential features. Similarly, the accuracy of clustering can be increased
by choosing the most discriminating XML elements. An algorithm to solve this

problem is an important extension to our work.

81

1]

References

J. H. Hwang and K. H. Ryu, “A weighted common structure based clustering
technique for xml documents,” J. Syst. Softw., vol. 83, no. 7, pp. 12671274,

2010.

T. Bray, J. Paoli, and C. M. Sperberg-McQueen, “Extensible markup lan-

guage (xml),” World Wide Web Journal, vol. 2, no. 4, pp. 27-66, 1997.

G. 5. A Algergawy, “A classification scheme for xml data clutering tech-

Y

niques,” in Forth International Conference on Intelligent Computing and In-

formation Systems, (Cairo, Egypt), pp. 550-555, ACM, 20009.

P.-N. Tan, M. Steinbach, and V. Kumar, “Introduction to data mining,” in

Introduction to Data Mining, 2005.

T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: an efficient data cluster-
ing method for very large databases,” SIGMOD Rec., vol. 25, pp. 103-114,

June 1996.

A. Bouchachia and M. Hassler, “Classification of xml documents,” in CIDM,

pp. 390-396, 2007.

82

[7]

[10]

[11]

[12]

P. Perner, “Data mining - concepts and techniques,” KI, vol. 16, no. 1, p. 77,

2002.

A. Algergawy, E. Schallehn, and G. Saake, “A schema matching-based ap-
proach to xml schema clustering,” in WWAS ’08: Proceedings of the 10th
International Conference on Information Integration and Web-based Appli-

cations € Services, (New York, NY, USA), pp. 131-136, ACM, 2008.

H.-J. Moon, S. Kim, J. Moon, and E. ser Lee, “An effective data processing

method for fast clustering,” in ICCSA (2), pp. 335-347, 2008.

M. L. Lee, L. H. Yang, W. Hsu, and X. Yang, “Xclust: clustering xml schemas
for effective integration,” in CIKM ’02: Proceedings of the eleventh interna-

tional conference on Information and knowledge management, (New York,

NY, USA), pp. 292-299, ACM, 2002.

R. Nayak and W. Iryadi, “Xml schema clustering with semantic and hierar-
chical similarity measures,” Know.-Based Syst., vol. 20, no. 4, pp. 336—-349,

2007.

L. Yang, J. Gu, and H. Chen, “Clustering algorithm based on semantic dis-
tance for xml documents,” in DBTA ’09: Proceedings of the 2009 First Inter-
national Workshop on Database Technology and Applications, (Washington,

DC, USA), pp. 549-552, IEEE Computer Society, 2009.

83

[13]

[14]

[15]

[16]

[17]

[18]

[19]

H.-J. Moon, J.-W. Yoo, and J. Choi, “An effective detection method for
clustering similar xml dtds using tag sequences,” in ICCSA (2), pp. 849-860,

2007.

P. D. Meo, G. Quattrone, G. Terracina, and D. Ursino, “An approach for
clustering semantically heterogeneous xml schemas,” in OTM Conferences

(1), pp. 329-346, 2005.

P. D. Meo, G. Quattrone, G. Terracina, and D. Ursino, “Semantics-guided
clustering of heterogeneous xml schemas,” J. Data Semantics, vol. 9, pp. 39—

81, 2007.

G. Xing, Z. Xia, and J. Guo, “Clustering xml documents based on structural

similarity,” in DASFAA, pp. 905-911, 2007.

G. Yongming, C. Dehua, and L. Jiajin, “Clustering xml documents by com-
bining content and structure,” in ISISE 08: Proceedings of the 2008 Inter-
national Symposium on Information Science and Engieering, (Washington,

DC, USA), pp. 583-587, IEEE Computer Society, 2008.

E. Bertino, G. Guerrini, and M. Mesiti, “Measuring the structural similarity
among xml documents and dtds,” J. Intell. Inf. Syst., vol. 30, no. 1, pp. 55—

92, 2008.

J. Tekli, R. Chbeir, and K. Yétongnon, “Structural similarity evaluation

between xml documents and dtds,” in WISE, pp. 196-211, 2007.

84

[20]

[21]

[22]

[23]

[24]

[25]

T. Tran, R. Nayak, and P. Bruza, “Combining structure and content similar-

ities for xml document clustering,” in AusDM, pp. 219-226, 2008.

X. Wan and J. Yang, “Using proportional transportation similarity with
learned element semantics for xml document clustering,” in WWW °06: Pro-
ceedings of the 15th international conference on World Wide Web, (New York,

NY, USA), pp. 961-962, ACM, 2006.

J. Yang, W. K. Cheung, and X. Chen, “Integrating element and term se-
mantics for similarity-based xml document clustering,” in Web Intelligence,

pp. 222-228, 2005.

Z. Lin, H. Wang, S. McClean, and C. Liu, “All common embedded subtrees
for measuring tree similarity,” in ISCID ’08: Proceedings of the 2008 Interna-

tional Symposium on Computational Intelligence and Design, (Washington,

DC, USA), pp. 29-32, IEEE Computer Society, 2008.

M. H. Chehreghani, M. Rahgozar, C. Lucas, and M. H. Chehreghani, “A
heuristic algorithm for clustering rooted ordered trees,” Intell. Data Anal.,

vol. 11, no. 4, pp. 355-376, 2007.

J. H. Hwang and M. S. Gu, “Clustering xml documents based on the weight
of frequent structures,” in ICCIT ’07: Proceedings of the 2007 Interna-
tional Conference on Convergence Information Technology, (Washington,

DC, USA), pp. 845-849, IEEE Computer Society, 2007.

85

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

T. yang Lv, X. zhe Zhang, W. Zuo, and Z. Wang, “Xml clustering based on

common neighbor,” in APWeb Workshops, pp. 137-141, 2006.

W. Liang and H. Yokota, “Lax: An efficient approximate xml join based on

clustered leaf nodes for xml data integration,” in BNCOD, pp. 82-97, 2005.

J. H. Hwang and K. H. Ryu, “Clustering and retrieval of xml documents by

structure,” in ICCSA (2), pp. 925-935, 2005.

T. Dalamagas, T. Cheng, K.-J. Winkel, and T. Sellis, “A methodology for
clustering xml documents by structure,” Inf. Syst., vol. 31, no. 3, pp. 187228,

2006.

W. Lian, D. W.-l. Cheung, N. Mamoulis, and S.-M. Yiu, “An efficient and
scalable algorithm for clustering xml documents by structure,” IEEE Trans.

on Knowl. and Data Eng., vol. 16, no. 1, pp. 82-96, 2004.

G. Costa, G. Manco, R. Ortale, and A. Tagarelli, “A tree-based approach to

clustering xml documents by structure,” in PKDD, pp. 137-148, 2004.

J. Tekli, R. Chbeir, and K. Yétongnon, “An overview on xml similarity:
Background, current trends and future directions,” Computer Science Re-

view, vol. 3, no. 3, pp. 151-173, 2009.

L. Liu, Y. Zheng, B. Ding, and H. Liu, “A methodology for clustering xml

documents based on labeled tree,” in FSKD (1), pp. 397-401, 2009.

86

[34]

[35]

[36]

[37]

[38]

[39]

[40]

J. Yuan, X. Li, and L. na Ma, “An improved xml document clustering using

path feature,” in FSKD (2), pp. 400-404, 2008.

I. Choi, B. Moon, and H.-J. Kim, “A clustering method based on path simi-

larities of xml data,” Data Knowl. Eng., vol. 60, no. 2, pp. 361-376, 2007.

H. pong Leung, K. F.-L.. Chung, S. C. fai Chan, and R. W. P. Luk, “Xml

document clustering using common xpath,” in WIRI pp. 91-96, 2005.

R. Nayak, “Fast and effective clustering of xml data using structural infor-

mation,” Knowl. Inf. Syst., vol. 14, no. 2, pp. 197-215, 2008.

B. Zhao, Y.-S. Zhang, and H.-X. Zhang, “A robust clustering method for
xml documents,” in ICIII ’08: Proceedings of the 2008 International Confer-
ence on Information Management, Innovation Management and Industrial
Engineering, (Washington, DC, USA), pp. 19-23, IEEE Computer Society,

2008.

M. Alishahi, M. Ravakhah, B. Shakeriaski, and M. Naghibzade, “Xml docu-
ment clustering based on common tag names anywhere in the structure,” in
Computer Conference, 2009. CSICC 2009. 14th International CSI, pp. 588

-595, 20-21 2009.

P. Antonellis, C. Makris, and N. Tsirakis, “Xedge: clustering homogeneous
and heterogeneous xml documents using edge summaries,” in SAC ’08: Pro-
ceedings of the 2008 ACM symposium on Applied computing, (New York, NY,
USA), pp. 1081-1088, ACM, 2008.

87

[41]

[42]

[43]

[45]

[46]

[47]

[48]

S. Iyer and D. A. Simovici, “Multisets and clustering xml documents,” in IC-
TAI 07: Proceedings of the 19th IEEE International Conference on Tools
with Artificial Intelligence, (Washington, DC, USA), pp. 267274, IEEE

Computer Society, 2007.

R. Nayak and S. Xu, “Xcls: A fast and effective clustering algorithm for

heterogenous xml documents,” in PAKDD, pp. 292-302, 2006.

T. Wang, D. xin Liu, X.-Z. Lin, W. Sun, and G. Ahmad, “Clustering large

scale of xml documents,” in GPC, pp. 447-455, 2006.

J. H. Hwang and K. H. Ryu, “A new xml clustering for structural retrieval,”

in ER, pp. 377-387, 2004.

J. H. Hwang and K. H. Ryu, “A new sequential mining approach to xml

document clustering®,” in APWeb, pp. 266-276, 2005.

M. Kozielski, “Multilevel conditional fuzzy c-means clustering of xml docu-

ments,” in PKDD, pp. 532-539, 2007.

C. C. Aggarwal, N. Ta, J. Wang, J. Feng, and M. Zaki, “Xproj: a framework
for projected structural clustering of xml documents,” in KDD ’07: Pro-
ceedings of the 15th ACM SIGKDD international conference on Knowledge

discovery and data mining, (New York, NY, USA), pp. 46-55, ACM, 2007.

S. Helmer, “Measuring the structural similarity of semistructured documents

using entropy,” in VLDB, pp. 1022-1032, 2007.

38

[49]

[50]

[51]

[52]

[54]

[55]

[56]

T. Tran, S. Kutty, and R. Nayak, “Utilizing the structure and content infor-

mation for xml document clustering,” in INEX, pp. 460-468, 2008.

N. Polyzotis and M. Garofalakis, “Xcluster synopses for structured xml con-
tent,” in ICDE ’06: Proceedings of the 22nd International Conference on
Data Engineering, (Washington, DC, USA), p. 63, IEEE Computer Society,

2006.

A. Tagarelli and S. Greco, “Toward semantic xml clustering,” in SDM,

pp. 188-199, 2006.

A. Tagarelli and S. Greco, “Semxclust: A system for semantic xml cluster-

ing,” in SEBD, pp. 72-79, 2006.

M. Hagenbuchner, A. C. Tsoi, A. Sperduti, and M. K¢, “Efficient clustering of
structured documents using graph self-organizing maps,” in INEX, pp. 207—

221, 2007.

T. Tran, R. Nayak, and P. Bruza, “Document clustering using incremental

and pairwise approaches,” in INEX, pp. 222-233, 2007.

S. Kutty, R. Nayak, and Y. Li, “Hex: an efficient hybrid clustering approach
for xml documents,” in DocEng '09: Proceedings of the 9th ACM symposium

on Document engineering, (New York, NY, USA), pp. 94-97, ACM, 20009.

S. Kutty, R. Nayak, and Y. Li, “Xcfs: an xml documents clustering ap-

proach using both the structure and the content,” in CIKM ’09: Proceeding

89

of the 18th ACM conference on Information and knowledge management,

(New York, NY, USA), pp. 1729-1732, ACM, 2009.

[57] N. Nagwani and A. Bhansali, “Clustering homogeneous xml documents using

weighted similarities on xml attributes,” in Advance Computing Conference

(IACC), 2010 IEEFE 2nd International, pp. 369 =372, 19-20 2010.

[58] Y. Shen and B. Wang, “Clustering schemaless xml documents,” in

CooplS/DOA/ODBASE, pp. 767784, 2003.

[59] washington, “Xml data reprository,” Dec. 2010.

[60] Wisconisn, “Wisconisns xml data bank,” Dec. 2010.

[61] L. Denoyer and P. Gallinari, “Overview of the inex 2008 xml mining track,”

in INEX, pp. 401-411, 2008.

90

CURRICULUM VITA

ABDIRAHMAN MOHAMED ABDI DAUD

Current and Permanent Address: P.O.Box 278 Dhahran 31261, Saudi Arabia
Tel: 4966561235267

Email: mrabdi@gmail.com, daud@kfupm.edu.sa

Nationality: Somali

Computer skills

Languages

e Proficient in: Microsoft .NET Framework 4 more specifically C# and
ASP.NET

e Familiar with: Java and PHP
Software

e Systems: Proficient in Microsoft SharePoint 2010 and SQL Server 2008.

Familiar with Oracle 9i
e Design and testing Tools: Proficient in Enterprise Architect and NUnit

Experience

Research Assistant (full time)

Oct 2008-Present

King Fahd University of Petroleum and Minerals (KFUPM)

e Conducted funded research in artificial intelligence (Sentiment analysis on

Islamic Hadith)
e Maintained and developed website of Deanship of Graduate Studies

e Helped the department in teaching undergraduate students.

91

Manager
Oct 2007-Sep 2008

Al-Manal Company

e In addition to managerial tasks, developed financial software similar to

QuickBooks (using VB & MS ACCESS).

Training
Software Developer
Summer of 2007

Futureware, Khobar, Saudi Arabia

e Worked on programming problems on Qt C++ framework under Linux OS

Paramount, Riyad, Saudi Arabia

e Successfully configured/installed two solutions for a company in Riyadh

Education
King Fahd University of Petroleum and Minerals
2010 Dhahran, Saudi Arabia

M.S., Computer Science (Artificial Intelligence —Data mining)

Conducted a research with title: HIERARCHAL CLUSTERING ALGO-

RITHM FOR LARGE XML DATA

Gradation Date Jun 2011

First Honor GPA: 3.87 out of 4

92

King Fahd University of Petroleum and Minerals
Dhahran, Saudi Arabia

e B.S., Software Engineering
e Second Honor GPA: 3.4/4

e Gradation Date: June 2007

Latest Projects
Web application for ERD Modeling (2009-2010)

King Fahd University of Petroleum and Minerals

e Implemented: Entity Relationship Diagram Tool: a KFUPM funded project

to teach students how to create database schema
e Implemented using SQL2005/ASP.NET3.5 and C#

o Accessible at www2.kfupm.edu.sa/erdtool

Latest Awards

Microsoft Intl. Imagine Cup (2007)

e With a team of three, Won First place (out of KSA universities)

e Designed and implemented Smart Pal: a Question-Answer Multi-agent
system that aims to replace search engines by creating a knowledge-based

system from text

e Implemented using .NET /XAML/ C#

Outstanding Awards

King Fahd University of Petroleum and Minerals

93

(2007) A Creativity certificate from Saudi National Competition of

Computer Skills

(2006) Sixth Place in KFUPM Creativity Competition (over 30 participants)

(2002) Best Award for outstanding performance in KFUPM English Pro-

gram

(2002-2007) Several KFUPM Student Honor Awards

More Information

Languages

e Arabic (Native Speaker)
e English (Fluent with TOEFL score 100 out of 120)

e Somali (Fluent)
Residence

e Dhahran, Saudi Arabia (as of June 2011)

94

