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In this dissertation, we study the generalized incomplete gamma function and investigate

its properties and connections with the other special functions. We provide a generalization

of the well known Euler’s reflection formula in terms of the generalized incomplete gamma

function. As a result of this generalization, various relations between the generalized in-

complete gamma function and other special functions (including the complementary error,

the integral exponential, and the Macdonald’s functions) has been obtained.

We introduced the generalized error functions and studied their properties using the

relationship between the generalized incomplete gamma functions and the complementary

error functions. Furthermore, the iterated integrals of the generalized complementary error

function has been studied. We also established their integral and series representations,

recurrence relation and partial differential equation and deduce the classical result of the

iterated integrals of the complementary error function as special cases of our study.

Finally, we solve analytically a class of heat conduction problems via Laplace transform

where the special functions play an important role in finding the closed form solutions.

Some numerical and graphical representations of the constructed solutions are given.
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 ملخص بحث

 درجت الذكتىراة في الفلسفت

 

 بدر احمد محمد الحميدي  :مــــــــــــــــالاس

 . الخىاص الرياضيت المتنىعت لذوال قاما المعممت الناقصت و تطبيقاتها : عنىان الرسالت

 اثـــــــاضيـــــالري : صـــــــالتخص

 0211مايى  : تاريخ التخرج

 

 نًإ ضافةو بحث خىاصها انًخحهفة بالإ دانة قايا انًعًًة انناقصةذساسة ب قًنا في هزه انشسانة نقذ 

نعكاسية بذلانة دانة يجاد جعًيى ننظشية اويهش الإجًكنا ين إ . علاقحها يع بعض انذوال انخاصة الأخشي

دانة قايا انًعًًة قايا انًعًًة انناقصة و كنحيجة ين هزا انحعًيى ، اسحخشجنا علاقات يحنىعة جشبط 

 (.كذانة انخطأ ، انذانة انحكايهية الأسية، ودوال ياكذونانذ) انناقصة يع بعض انذوال انخاصة الأخشي 

 

ورنك ين خلال اسحخذاو انعلاقة بين انشياضية  جًكنا ايضاً ين جعًيى دوال انخطأ ودساسة خىاصهاو 

كشس نذانة انخطأ بالإضافة  إنً رنك قًنا بذساسة دانة انحكايم انًح .دوال قايا انناقصة و دوال انخطأ

هزه انذساسة اسحخشاج خىاص هزة انذانة كانحًثيم انحكايهي و انحسهسهي، علاقات ث انًعًًة و جضًن

انًحكشس ثى قًنا باسحخشاج انخىاص انحقهيذية نذانة انحكايم  ،انحفاضم انًححابع، وانًعادنة انحفاضهية انجزئية

 .ذانة انخطأ كحالات خاصة ين هزة انذساسةن

  

قًنا بذساسة يعادلات حشاسية يخحهفة بطشيقة لابلاس و اوضحنا أهًية انذوال انخاصة في إيجاد  وأخيشا

 . حهىل هزه انًسائم و دعًّنا انذساسة بحًثيم هزه انذوال وانحهىل هنذسيا

 

 

 



Introduction

Modern engineering and physics applications demand a more thorough knowledge of ap-

plied mathematics than ever before. In particular, it is important to have a good understand-

ing of the basic properties of special functions. These functions commonly arise in such

areas of application as heat conduction, communication system, nonlinear wave propaga-

tion, electromagnetic theory, quantum mechanics, approximation theory, probability theory,

and electric circuit theory, among others. The subject of special functions is quite rich and

expanding continuously with the emergence of new problems in areas of applications in

engineering and applied mathematics. The development of computational techniques and

the advent of computers have increased the importance of the special functions and their

formulas. However, it has been noticed that there are several problems in heat conduction

and astrophysics where even these most general classes of special functions are not suffi-

cient to accommodate their solutions. This leads to development of the well known special

functions. Chaudhry and Zubair [10] introduce a class of special functions found useful in

the analytic study of several heat conduction problems. The purpose of this theses is to give

a closed study of the generalized incomplete gamma function and investigate new properties

and relations of this function and study some heat conduction problems.

Chapter 1 deals with the generalized gamma function.In the first section, we give some

historical background of the gamma function. For completeness, we present the basic def-

initions and properties of the Euler gamma function in Sections 2 and 3. In Section 4 we

introduce the digamma function. The definition and properties of the incomplete gamma

1
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functions are given in Section 5.

Chapter 2 presents the incomplete generalized gamma functions introduced by [10].

In Section 1 we introduce the definitions of the generalized gamma functions. Then we

study the properties of the generalized gamma functions in Section 2. In the Section 3

we presented the generalized digamma function with its properties. The definition of the

generalized incomplete gamma function and their properties are presented in Section 4.

The connection between the generalized incomplete gamma functions with other special

functions are presented in Section 5.

Chapter 3 presents a generalization of the well known Euler’r reflection identity in terms

of the generalized incomplete gamma function. Some useful identities and relations that

connect the generalized incomplete gamma function and other special functions are also

given.

Chapter 4 discusses the iterated integrals of the generalized complementary error func-

tion. In Section 1 we introduce the definition of the generalized error functions in terms of

the generalized incomplete gamma function. The properties of the generalized error func-

tions are presented in Section 2. We define the iterated integrals of the generalized comple-

mentary error function and study its properties in Section 3. Numerical computations and

graphical representations are provided in Section 4.

Chapter 5 present the problem of heating two layer systems using Laplace integral trans-

form method. This system is composed of a thin film of thickness; for example, d deposited

on a thick substrate. In Section 1 we give some literature review for the use of laser in heat

conduction problems. The mathematical formulation of the problem will be presented in

Section 2. In Section 3 the closed form solution for the temperature profile in the thin film

and the substrate region is presented. In Section 4 we present the surface temperature as

well as the temperature profiles for two different materials with different laser flux densities

in graphical form. In Section 5 some remarks about this new formulation are given.
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In Chapter 6 we discuss the solution of a heat conduction in a semi-infinite solid when

subjected to an instantaneous laser source. In this chapter we give a brief introduction of the

functions E(x, t) and F(x, t). These two functions were introduce by Chaudhry and Zubair

[10]. The solution of the heat conduction problem will be given in terms of these special

functions. Finally, we discuss some limiting cases of our solution and give some graphical

representations of the temperature profile and heat flux for different time levels.



Chapter 1

The Generalized Gamma Function

In this chapter we introduce the gamma function and its basic properties. In the first sec-

tion we give some historical background about the gamma function. The definitions of

the gamma and beta functions are introduced in the second section. In the third section, we

present some basic properties of the gamma function. For the seek of completeness, we give

the complete proof of these properties. In the fourth section, we introduce the diagamma

function and some of its properties. In the last section we give a study of the incomplete

gamma function.

1.1 The Historical Background of the Gamma Function

The problem of extending the definition of x! was the starting point that lead to the gamma

function. Wallis worked on the development of the gamma function. Euler is given credit

for the creation of the gamma function. He mention it in a letter to Goldback in 1729 and

then in 1730 in one of his papers. Legendre, in the 19th Century, called the gamma function

Eulerian integral and gave it the symbol of Greek letter gamma. Weierstrass expressed the

gamma function as an infinite product and Gauss further established the role of the gamma

4
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function in complex analysis, starting from an infinite product representation. Gauss also

proved the multiplication theorem of the gamma function and investigated the connection

between the gamma function and elliptic integrals. This function was given a mathematical

definition by Goldbach (1690-1764) for more details we refer to [10] and [13].

1.2 The Gamma and Beta Function

There are different representations for the gamma function. We present the gamma function

by its integral representation in the following definition.

Definition 1.2.1. The gamma function is defined by

Γ(α) :=
∫ ∞

0
tα−1e−t dt (Re(α) > 0). (1.1)

The notation Γ(α) and the name gamma function were introduced by Legendre (1752-

1833). One important functional relation for the gamma function is given in the following

theorem.

Theorem 1.2.2.

Γ(α +1) = α Γ(α) (Re(α) > 0). (1.2)

Proof. By using integration by parts we find that

Γ(α +1) =
∫ ∞

0
tα e−tdt =−e−t tα

∣∣∣∣
∞

0
+

∫ ∞

0
αtα−1 e−tdt

= α
∫ ∞

0
tα−1 e−t dt = α Γ(α) (Re(α) > 0).

2
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From the definition of the gamma function we have

Γ(1) =
∫ ∞

0
e−t dt =−e−t

∣∣∣∣
∞

0
= 1. (1.3)

The functional relation (1.2) and equation (1.3) give the following relation between gamma

function and factorial that is;

Γ(n+1) = n!, (n = 0,1,2, . . .),

and this shows why the gamma function can be seen as an extension of the factorial function.

The functional relation given by Theorem (1.2.2) can be used to find an analytic continu-

ation of the gamma function for Re(α)≤ 0. Let−1 < Re(α)≤ 0, then we have Re(α +1) >

0. Hence, Γ(α +1) is defined by the integral representation (1.1). Now we define

Γ(α) =
Γ(α +1)

α
, (−1 < Re(α)≤ 0, α 6= 0),

Then the gamma function Γ(α) is analytic for Re(α) > −1 except α = 0. For α = 0 we

have

lim
α→0

α Γ(α) = lim
α→0

Γ(α +1) = Γ(1) = 1.

This implies that Γ(α) has a simple pole at α = 0 with residue 1. This process can be

repeated for −2 < Re(α) ≤ −1,−3 < Re(α) ≤ −2, etcetera. Then the gamma function

turns out to be an analytic function on the whole complex plane C except for single poles at

α = 0,−1,−2, . . . . The residue at α =−n equals
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lim
α→−n

(α +n)Γ(α) = lim
α→−n

(α +n)
Γ(α +1)

α

= lim
α→−n

(α +n)
1
α

1
α +1

. . .
1

α +n−1
Γ(α +n+1)

α +n

=
Γ(1)

(−n)(−n+1) . . .(−1)
=

(−1)n

n!
(n = 0,1,2, . . .).

Definition 1.2.3. The beta function is defined by

B(α,β ) :=
∫ 1

0
tα−1(1− t)β−1dt (Re(α) > 0 Re(β ) > 0). (1.4)

From the definition we easily obtain the symmetry

B(α,β ) = B(β ,α)

Since we have by using the substitution t = 1− s

B(α,β ) =
∫ 1

0
tα−1(1− t)β−1dt = −

∫ 0

1
(1− s)α−1 sβ−1 ds

=
∫ 1

0
sβ−1(1− s)α−1 ds

= B(β ,α).

The connection between the beta function and the gamma function is given by the fol-

lowing theorem [10]:

Theorem 1.2.4.

B(α,β ) =
Γ(α)Γ(β )
Γ(α +β )

, (Re(α) > 0, Re(β ) > 0). (1.5)
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Proof. First, we make the substitution t = x2 in (1.1), we find

Γ(α) = 2
∫ ∞

0
e−x2

x2α−1 dx (Re(α) > 0). (1.6)

Multiplying two such integrals together, we find

Γ(α)Γ(β ) = 4
∫ ∞

0

∫ ∞

0
e−(x2+y2) x2α−1 y2β−1 dx dy, (Re(α) > 0, Re(β ) > 0). (1.7)

If we transfer to polar coordinates in the double integral, we then find

Γ(α)Γ(β ) =

4
∫ ∞

0

∫ π
2

0
e−r2

r2(α+β )−1(cosθ)2α−1(sinθ)2β−1 dθ dr

= 4
(∫ ∞

0
e−r2

r2(α+β )−1 dr
)(∫ π

2

0
(cosθ)2α−1(sinθ)2β−1 dθ

)
. (1.8)

From (1.6) and (1.8), we find

∫ π
2

0
(cosθ)2α−1(sinθ)2β−1 dθ =

Γ(α)Γ(β )
2Γ(α +β )

, (Re(α) > 0, Re(β ) > 0). (1.9)

Substituting x = cos2 θ in (1.9), we obtain

∫ 1

0
xα−1(1− x)β−1 dx =

Γ(α)Γ(β )
Γ(α +β )

, (Re(α) > 0, Re(β ) > 0). (1.10)

Note that the left hand side is β (α ,β ) as desired 2

We note that the substitution t = x
1−x in (1.10) give another representation of the beta



9

function that is;

B(α,β ) :=
∫ ∞

0

tα−1

(1+ t)α+β dt, (Re(α) > 0,Re(β ) > 0). (1.11)

1.3 Properties of the Gamma Function

In this section we present some properties of the gamma function that are related to our

work. For other properties we refer to [10], [26] and [37].

One important property of the gamma function is called Legendre’s duplication formula.

This formula is presented in the following theorem:

Theorem 1.3.1. (Duplication Formula)

Γ(α)Γ
(

α +
1
2

)
= 21−2α√π Γ(2α) (Re(α) > 0). (1.12)

Proof. First, we note that from equation (1.9) we have

B(α ,β ) = 2
∫ π

2

0
(cosθ)2α−1(sinθ)2β−1 dθ (1.13)

Now, if we set α = β = 1
2 and use Theorem (1.2.2) we get

[
Γ

(1
2

)]2 = π . Hence Γ
(1

2

)
=
√

π.

Also, if we set α = β in equation(1.13) and make the substitution t = 2θ , we get
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B(α,α) = 2
∫ π

2

0
(cosθ)2α−1(sinθ)2α−1 dθ

= 2.21−2α
∫ π

2

0
(sin 2θ)2α−1 dθ

= 21−2α
∫ π

0
(sin t)2α−1 dt

= 21−2α ·2
∫ π

2

0
(sin t)2α−1 dt

= 21−2α B
(

α,
1
2

)
.

Now we apply Theorem (1.2.2) to obtain

Γ(α)Γ(α)
Γ(2α)

= B(α,α) = 21−2αB
(

α,
1
2

)
= 21−2α Γ(α)Γ

(1
2

)

Γ
(
α + 1

2

) (Re(α > 0)

Finally, by substituting Γ
(1

2

)
=
√

π, we find

Γ(α)Γ
(

α +
1
2

)
= 21−2α√π Γ(2α) (Re(α) > 0).

2

Note that if α is an integer n, then the duplication formula is written as:

Γ
(

n+
1
2

)
=
√

π(2n)!
22n n!

(n = 0,1,2,3, . . .). (1.14)

Legendre’s duplication formula can be generalized to Gauss’s multiplication formula:

Γ(α)
n−1

∏
k=1

Γ
(

α +
k
n

)
= n

1
2−nα(2π)

(n−1)
2 Γ(nα) (n = 1,2,3, . . .). (1.15)
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The case n = 1 is trivial and the case n = 2 is Legendre’s duplication formula.

Another important property of the gamma function is the Euler’s reflection formula.

This property is presented in the following theorem:

Theorem 1.3.2. (Reflection Formula)

Γ(α)Γ(1−α) =
π

sin(πα)
(α 6= 0,±1,±2, . . .). (1.16)

Proof. This can be shown by using contour integration. First we restrict to real values of

α , say α = x with 0 < x < 1. By using (1.9) and (1.10) we

Γ(x)Γ(1− x) = B(x,1− x) =
∫ ∞

0

tx−1

1+ t
dt (1.17)

In order to compute this integral we consider the Contour integral

∫

C

zx−1

1− z
dz

where the contour C consists of two circles about the origin of radii R and ε respectively,

which are joined along the negative real axis from −R to −ε. Move a long the outer circle

with radius R in positive (counter clockwise) direction and along the inner circle with radius

ε in the negative (clockwise) direction. By the residue theorem we have

∫

C

zx−1

1− z
dz =−2πi

where zx−1 has its principal value. This implies that

−2πi =
∫

C1

zx−1

1− z
dz+

∫

C2

zx−1

1− z
dz+

∫

C3

zx−1

1− z
dz+

∫

C4

zx−1

1− z
dz,

where C1 denotes the outer circle with radius R,C2 denote the line segment from −R to
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−ε,C3 denotes the inner circle with radius ε and C4 denotes the line segment from −ε to

−R.

Then we have by writing z = Reiθ for the outer circle

∫

C1

zx−1

1− z
=

∫ π

−π

Rx−1 ei(x−1)θ

1−Reiθ iReiθ dθ =
∫ π

−π

iRx eixθ

1−Reiθ dθ

For the line segment from −R to −ε we have by writing z =−t = teiπ

∫

C2

zx−1

1− z
dz =

∫ ε

R

tx−1ei(x−1)π

1+ t
· eiπ dt =

∫ ε

R

tx−1 eiπx

1+ t
dt

In the same way we have by writing z =−t = teπi

∫

C4

zx−1

1− z
dz =

∫ R

ε

tz−1e−iπx

1+ t
dt

Since 0 < x < 1 we have

lim
R→∞

∫ π

−π

iRx eixθ

1−Reiθ dθ = 0 and lim
ε→0

∫ −π

π

iεx eixθ

1+ t
dθ = 0

Hence we have

−2πi =
∫ 0

∞

tx−1 eixπ

1+ t
dt +

∫ ∞

0

tx−1 e−ixπ

1+ t
dt,

or

−2πi =
(
e−ixπ − eixπ)∫ ∞

0

tx−1

1+ t
dt,

which gives ∫ ∞

0

tx−1

1+ t
dt =

2πi
eixπ − e−ixπ =

π
sinπx

.

2

This proves the theorem for real values of α, say α = x with 0 < x < 1. The full result
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follows by analytic continuation. That is, if the result holds for each values of α with

0 < α < 1, then it holds for all complex α with 0 < Re(α) < 1 by analyticity. Then it also

holds for Re(α) = 0 with α 6= 0 by continuity. Finally, the full result follows for α shifted

by integers using (1.2) and sin(α +π) =−sinα.

Note that (1.14) holds for all complex values of α with (α 6= 0,−1,−2, . . .). Instead of

(1.14) we may write
1

Γ(α)Γ(1−α)
=

sinπα
π

, (1.18)

which holds for all C.

Another important property of the gamma function is the asymptotic formula which is

due to Stirling.

Theorem 1.3.3. (Asymptotic Behavior for Large x)

Γ(x+1)∼ xx+ 1
2 e−x

√
2π, (x→ ∞). (1.19)

Here x denotes a real variable.

Proof. This can be proved as follows. Consider

Γ(x+1) =
∫ ∞

0
tx e−t dt,

where x ∈ R. Then we obtain by using the transformation t = x(1+u)

Γ(x+1) =
∫ ∞

−1
e−x(1+u)xx(1+u)xxdu

= xx+1e−x
∫ ∞

−1
e−xu(1+u)x du

= xx+1 e−x
∫ ∞

−1
ex(−u+ln(1+u)) du.

The function f (u) =−u+ ln(1+u) equals to zero for u = 0. For other values of u we have
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f (u) < 0. This implies that the integrand of the last integral equals 1 at u = 0 and that this

integrand becomes very small for large values of x at other values of u. So for large values

of x at other values of u. We only have to deal with the integrand near u = 0. Note that we

have

f (u) =−u+ ln(1+u) =−1
2

u2 +©(u3) for (u→ 0).

This implies ∫ ∞

−1
ex(−u+ln(1+u))du∼

∫ ∞

−∞
e−

xu2
2 du for (x→ ∞).

If we set u = t
√

2
x we have

∫ ∞

−∞
e−

xu2
2 du = x−

1
2
√

2
∫ ∞

−∞
e−t2

dt = x−
1
2
√

2π.

Hence we have

Γ(x+1)∼ xx+ 1
2 e−x

√
2π (x→ ∞).

2

One can find a generalization of this formula. For complex variable [10] and [31]. We

conclude this section by the following theorem that gives the Log-convexity of the gamma

function.

Theorem 1.3.4. (Log-Convex Property)

For 1 < p < ∞ and 1
p + 1

q = 1 we have

Γ
(

x
p

+
y
q

)
≤ (Γ(x))

1
p (Γ(y))

1
q , (x > 0,y > 0). (1.20)

Proof. by using the definition (1.1) of the gamma function we have
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Γ
(

x
p

+
y
q

)
=

∫ ∞

0

(
e−t tx−1) 1

p
(
e−t ty−1) 1

q dt (x < 0,y > 0)

Now by using Hölder inequality, we obtain

Γ
(

x
p

+
y
q

)
≤

(∫ ∞

0
e−t tx−1 dt

) 1
p
(∫ ∞

0
e−t ty−1 dt

) 1
q

, (1.21)

or

Γ
(

x
p

+
y
q

)
≤ (Γ(x))

1
p (Γ(y))

1
q , (1.22)

which shows that the gamma function is Log-convex. 2

1.4 The Digamma Function ψ(z).

In this section we introduce another function that is related to the gamma function called

the digamma function or Psi function. This function is denoted by ψ(z).

Definition 1.4.1. The digamma function ψ(z) is defined by

ψ(z) :=
d
dz
{ln Γ(z)}=

Γ′(z)
Γ(z)

. (1.23)

Other definitions of this function can be found in literature in terms of limits and series

representations [10, p. 20].

Now we present two properties of the digamma function and List other properties with

some references where someone can find the proof of these properties.

Theorem 1.4.2. (Functional Equation)

ψ(z+1) = ψ(z)+
1
z

(1.24)
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Proof. by using (1.2) we have

ψ(z+1) =
d
dz

lnΓ(z+1) =
d
dz

ln(zΓ(z)) =
d
dz

lnz+
d
dz

lnΓ(z) =
1
z

+ψ(z).

2

Note that iteration of (1.22) leads to

ψ(z+n) = ψ(z)+
n−1

∑
j=0

1
j + z

, (n = 1,2,3, . . .) (1.25)

Another property of the digamma function is given by

Theorem 1.4.3. (Reflection Formula)

ψ(z)−ψ(1− z) =− π
tanπz

, (z 6= 0,±1,±2, . . .). (1.26)

Proof. The proof of this theorem is based on the reflection formula of the gamma function

(1.16). We have

ψ(z)−ψ(1− z) =
d
dz

lnΓ(z)+
d
dz

lnΓ(1− z)

=
d
dz

ln(Γ(z)Γ(1− z))

=
d
dz

ln
π

sinπz
=

sinπz
π

· −π2 cosπz
(sinπz)2

= − π
tanπz

.

2

We now list some properties of the digamma function for sake of completeness. The
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digamma function has several integral representations [10] and [26]. These are a few:

ψ(z+1) :=−γ +
∫ 1

0

1− tz

1− t
dt (Rez >−1) (1.27)

ψ(z) :=
∫ ∞

0

(
e−t − 1

(1+ t)z

)
dt
t

(Rez > 0) (1.28)

ψ(z) :=
∫ ∞

0

(
e−t

t
− e−tz

1− e−t

)
dt (Rez > 0). (1.29)

where

γ := lim
n→∞

n

∑
k=1

(
1
k
− ln(n)

)
= 0.57721566..., (1.30)

is known as Euler’s constant.

The digamma function satisfies several functional relations, including the following [26]

and [37] .

ψ
(

1
2
− z

)
= ψ

(
1
2

+ z
)
−π tanπz, (1.31)

ψ
(

1
2

+n
)

=−γ− ln4+
n

∑
j=1

2
2 j−1

(n = 0,1,2, . . .) (1.32)

ψ(nz) = ln(n)+
1
n

n−1

∑
j=0

ψ
(

z+
j
n

)
(n = 2,3,4, . . .) (1.33)

The asymptotic expansion of the digamma function, valid for large values of x, is given

by

ψ(x)∼ lnx− 1
2x
−

∞

∑
n=1

B2n

2nx2n = lnx− 1
2x
− 1

12x2 +
1

120x4 −
1

252x6 + . . . (x→ ∞),

where Bn is a Bernoulli number.
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1.5 The Incomplete Gamma Function

The closed-form solution to a considerable number of problems in applied mathematics,

astrophysics, nuclear and molecular Physics, Statistics and Engineering problems can be

expressed in terms of incomplete gamma function:

γ(α,x) :=
∫ x

0
tα−1 e−t dt (Re(α) > 0, |arg(α)|< π), (1.34)

Γ(α ,x) :=
∫ ∞

x
tα−1 e−t dt (|arg(α)|< π). (1.35)

These functions were first investigated for real x by Legendre. The functional behavior

of these functions and the decomposition formula

γ(α ,x)+Γ(α,x) = Γ(α),

was studied by Prym [39], [47] in 1977. The older theory of incomplete gamma functions

and reference to literature are given by Nielsen and Böhmer [3], [7], [13], [22], [23] and

[47]. Gautsehi [23] has summarized some of the recent developments and gave an extensive

list of references to the current literature on the incomplete gamma functions.

The function γ(α ,x) has the inconvenience of not only having poles at the nonpositive

integers α = 0,−1,−2, ..., but also it is a multivalued function of the complex parameter

x, owing to the fractional power in the integrand. These inconveniences can be avoided by

introducing, as Tricomi does in [48] and Böhmer before him in [7], the function

γ∗(α ,x) =
x−α

Γ(α)
γ(α,x), (1.36)

which is an entire function in α as well as in x and real valued for real α and real x. The

following theorem gives the recurrence formula for γ∗(α,x).
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Theorem 1.5.1.

Γ∗(α +1,x) =
γ∗(α,x)

x
− e−x

x Γ(α +1)
(x 6= 0). (1.37)

Proof. The result follows from the definition of γ∗(α,x) and γ(α,x) and by using integra-

tion by parts. Indeed,

γ∗(α +1,x) =
x−α−1

Γ(α +1)
γ(α +1,x) =

x−α−1

Γ(α +1)

∫ x

0
tα e−t dt

=
x−α−1

Γ(α +1)

[
−tα e−t

∣∣∣∣
x

0
+α

∫ x

0
tα−1 e−t dt

]

=
x−α−1

Γ(α +1)
[−xα e−x +α γ(α)

]

=
α x−α−1

Γ(α +1)
γ(α)− e−x

xΓ(α +1)

=
x−α

xΓ(α)
γ(α)− e−x

xΓ(α +1)

=
γ∗(α ,x)

x
− e−x

xΓ(α +1)
.

2

The connection between γ∗(α,x) and the complementary error function is given in the

following theorem.

Theorem 1.5.2.

γ∗
(

1
2
,x

)
=

1√
x

erf(
√

x). (1.38)

Proof.

γ∗
(

1
2
,x

)
=

x−
1
2

Γ
(1

2

)γ
(

1
2
,x

)
=

x−
1
2√
π

∫ x

0
t−

1
2 e−t dt

=
1√
x
· 1√

π

∫ x

0
t−

1
2 e−t dt.
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The substitution, t = u2 ⇒ dt = 2udu, in the integral gives

γ∗
(

1
2
,x

)
=

1√
x
· 1√

π

∫ √
x

0

e−u2

u
(2u)du

=
1√
x
· 2√

π

∫ √
x

0
e−u2

du =
1√
x

erf(
√

x).

2

The following theorem gives the connection between the incomplete gamma functions

and the error functions.

Theorem 1.5.3.

i) γ
(

1
2
,x

)
=
√

π erf(
√

x) (1.39)

ii) Γ
(

1
2
,x

)
=
√

π erfc(
√

x) (1.40)

Proof. We prove only (1.40) since the proof of (1.39) follow similarly.

Γ
(

1
2
,x

)
=

∫ ∞

x
t−

1
2 e−t dt. (1.41)

The substitution t = u2 in (1.41) yields

Γ
(

1
2
,x

)
=

∫ ∞
√

x

1
u

e−u2
(2u)du = 2

∫ ∞
√

x
e−u2

du =
√

π erfc (
√

x).

2

It is noted that some important special cases of (1.34) and (1.35) are obtained when

α = 1±n is an integer. These cases are summarized in the following theorem.
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Theorem 1.5.4. For n≥ 0,

i) γ(1+n,x) = n!
[
1− e−x en(x)

]
, (1.42)

ii)Γ(1+n,x) = n!
[
e−x en(x)

]
, (1.43)

iii)Γ(1−n,x) = x1−n En(x), (1.44)

where the function

en(x) :=
∫ ∞

1
e−xt t−n dt, (1.45)

and

en(x) := 1+ x+
x2

2!
+ . . .+

xn

n!
(n = 0,1,2, . . .). (1.46)

Proof.

i) by using the definition of γ(1+n,x) and repeated integration by parts we get,

γ(1+n,x) =
∫ x

0
tn e−t dt

= −tn e−t |x0 +
∫ x

0
ntn−1 e−t dt

= −xne−x +n
∫ x

0
tn−1 e−t dt

= −xne−x +n
[
−tn−1e−t |x0 +

∫ x

0
(n−1)tn−2e−t dt

]

= −xne−x−nxn−1 e−x− . . .−n!e−x +n!

= n!
[
1− e−x en(x)

]
.
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ii) by substituting α = 1+n in (1.35) and use integration by parts we have

Γ(1+n,x) =
∫ ∞

x
tn e−t dt

= −tn e−t
∣∣∣∣
∞

x
+

∫ ∞

x
ntn−1 e−t dt

= xne−x +nxn−1 e−x +n(n−1)e−x xn−2 + . . .+n!e−x

= n!e−x
[

xn

n!
+

xn−1

(n−1)!
+ . . .+ x+1

]

= n!e−x en(x).

iii) By substituting α = 1−n in (1.35) we get

Γ(1−n,x) =
∫ ∞

x
t−n e−t dt. (1.47)

Making the substitution t = ux in (1.47) yields

Γ(1−n,x) =
∫ ∞

1
(ux)−n e−uxxdu

= x1−n
∫ ∞

1
e−ux u−n du = x1−n En(x).

2

These functions have several identities that are useful in operational calculus [10, p. 41].

One of these identities is given in the following theorem

Theorem 1.5.5.
dn

dxn

(
x−αΓ(α,x)

)
= (−1)n x−α−n Γ(α +n,x). (1.48)
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Proof. The result is shown by using mathematical induction. Indeed, for n = 1 we have

d
dx

(
x−αΓ(α,x)

)
= −α x−α−1Γ(α ,x)+ x−α d

dx
(Γ(α,x))

= −α x−α−1Γ(α ,x)+ x−α (−xα−1 e−x)

= −x−α−1 [
α Γ(α ,x)+ xα e−x]

= (−1)x−α−1 Γ(α +1,x).

So, (1.48) is true for n = 1. Assume (1.48) is true for n = k. We need to show that (1.48) is

true for n = k +1. Indeed, by using induction hypothesis we have

dk

dxk

(
x−αΓ(α,x)

)
= (−1)k x−α−k Γ(α + k,x).

This implies

dk+1

dxk+1

(
x−αΓ(α ,x)

)
= (−1)k(−α− k)x−α−k−1Γ(α + k,x)

+(−1)k x−α−k
(
−xα+k−1e−x

)

= (−1)k+1x−α−(k+1)
[
(α + k)Γ(α + k,x)+ xα+ke−x

]

= (−1)k+1x−α−(k+1)Γ(α + k +1,x).

As desired 2

We conclude this section by the following series expansion of γ(α ,x). Series expansions

for Γ(α,x) follows from the decomposition formula for the incomplete gamma functions.

Theorem 1.5.6.

γ(α,x) = e−x
∞

∑
n=0

xα+n

(α)n+1
=

∞

∑
n=0

(−1)n

n!
xα+n

α +n
(1.49)

Proof. The first series arises after we make the transformation t = x(1−u) in (1.34). This
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gives

γ(α,x) = xα e−x
∫ 1

0
(1−u)α−1 eux du. (1.50)

Expanding the exponential function, and using the definition of the beta function (1.4), and

using the relation between the gamma function and the beta function (1.5) we get

γ(α,x) = xα e−x
∞

∑
n=0

∫ 1

0
(1−u)α−1 (ux)n

n!
du

= xα e−x
∞

∑
n=0

xn

n!

∫ 1

0
(1−u)α−1un du

= xα e−x
∞

∑
n=0

xn

n!
B(α ,n+1)

= xα e−x
∞

∑
n=0

xn

n!
Γ(α)Γ(n+1)
Γ(α +n+1)

= e−x
∞

∑
n=0

xn+α Γ(α)
Γ(α +n+1)

= e−x
∞

∑
n=0

xn+α

(α)n+1
. (1.51)

Where the last series in 1.51 is obtained from the relation between the Pochhammer symbol

and the gamma function that is given by

(α)n =
Γ(α +n)

Γ(α)
. (1.52)

The second series representation is obtained by expanding the function e−t in the integral

of (1.34). Indeed,
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γ(α,x) =
∫ x

0
tα−1 e−t dt

=
∫ x

0

(
tα−1

∞

∑
n=0

(−1)n tn

n!

)
dt

=
∞

∑
n=0

(−1)n

n!

∫ x

0
tα+n−1 dt

=
∞

∑
n=0

(−1)n

n!
tα+n

α +n

∣∣∣∣
x

0

=
∞

∑
n=0

(−1)n

n!
xα+n

α +n
. (1.53)

2



Chapter 2

The Generalized Incomplete Gamma Functions

In this chapter we summarize the properties of the generalize gamma function. The defi-

nition of the generalized gamma function will be given in the first section. In the second

section we study the properties of the generalized gamma function and deduce the prop-

erties of the Euler gamma function as special cases. The generalized Psi function with its

properties will be presented in the third section. The fourth section will introduce the defini-

tion of the generalized incomplete gamma functions and study their basic properties. In the

last section, we study the connection between the incomplete gamma functions and other

special functions.

2.1 Definition of the Generalized Gamma Function

It is possible to extend the classical gamma function in infinitely many ways. Some of these

extensions could be useful in certain types of problems. However, it is desirable to find an

extension of the gamma function that meets the requirement that the previous results for the

function are naturally and simply extended.

It is also required that the results for the extension should be no less elegant than those

26
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for the original function. Recently, Chaudhry and Zubair gave a generalization of the Euler

gamma function. This generalization is given by:

Definition 2.1.1. The generalized gamma function is defined by

Γb(α) =
∫ ∞

0
tα−1 e−t−b/t dt (Re(b) > 0; b = 0, Re(α) > 0). (2.1)

The factor e−
b
t in the integral (2.1) plays the role of a regularizer. For Re(b) > 0, Γb(α)

is defined in the complex plane and for b = 0, the function Γb(α) coincides with the classical

gamma function. The integral in (2.1) can be simplified in terms of the Macdonald function

to give

Γb(α) = 2b
α
2 Kα(2

√
b) (Re(b) > 0, |arg(

√
b)|< π). (2.2)

2.2 Properties of the Generalized Gamma Function

Several properties of the generalized gamma function can be proved by using the represen-

tation (2.2) together with the properties of the Macdonald function. However, these proofs

are cumbersome and hence do not reflect the spirit of the generalization.

Theorem 2.2.1. (The Difference Formula)

Γb(α +1) = α Γb(α)+bΓb(α−1). (2.3)

Proof. Let M be the Mellin transform operator as defined by

M{ f (t);α} := 〈tα−1
+ , f (t)〉 :=

∫ ∞

0
tα−1 f (t)dt. (2.4)
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Then, Γb(α) is simply the Mellin transform of f (t) = e−t−bt−1
in α . That is,

Γb(α) := M
{

e−t−bt−1
;α

}
. (2.5)

Recalling the relationship,

M{ f ′(t);α}=−(α−1) M{ f (t);α−1} (2.6)

between the Mellin transform of a function and its derivative, we find

−(α−1) Γb(α−1) = M
{(−1+bt−2)e−t−bt−1

;α
}

, (2.7)

which simplifies to give

−(α−1)Γb(α−1) =−Γb(α)+bΓb(α−2). (2.8)

Replacing α by α +1 in (2.8) we get the proof of (2.3). 2

We note that if we put b = 0 in (2.3) we recover the functional relation for the classical

gamma function given by (1.2).

Theorem 1.3.4 gives the Log-convex property of the classical gamma function. The

following theorem shows that the generalized gamma function is also Log-convex.

Theorem 2.2.2. (Log-convex property). Let 1 < p < ∞ and
(

1
p

)
+

(
1
q

)
= 1,

then

Γb

(
x
p

+
y
q

)
≤ (Γb(x))

1
p (Γb(y))

1
q (b≥ 0,x > 0,y > 0). (2.9)
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Proof. Taking α = x
p + y

q in (2.1) and noting that 1
p + 1

q = 1 we find

Γb

(
x
p

+
y
q

)
=

∫ ∞

0
t

x
p + y

q−1 e−t− b
t dt

=
∫ ∞

0

(
tx−1 e−t− b

t

) 1
p
(

ty−1 et− b
t

) 1
q

dt.

Using the Hölder inequality, we find

Γb

(
x
p

+
y
q

)
≤

(∫ ∞

0
tx−1 e−t− b

t dt
) 1

p
(∫ ∞

0
ty−t e−t− b

t dt
) 1

q

,

as desired. 2

We note that Theorem 1.3.4 is recovered from Theorem 2.2.2 by setting b = 0 in (2.9).

Moreover, some interesting special cases can be gained from (2.9). For example, setting

p = q = 2 in (2.9) and using the fact that the arithmetic mean of two positive numbers is

greater than or equal to their geometric mean, we find

Γb

(
x+ y

2

)
≤

√
Γb(x)Γb(y)≤ 1

2
(Γb(x)+Γb(y)) (x > 0, y > 0, b≥ 0). (2.10)

The following result follows from Theorem 2.2.2 and the definition of the generalized

gamma function given by (2.2).

Corollary 2.2.3. For 1 < p < ∞ and
(

1
p

)
+

(
1
q

)
= 1, then

Kα
p + β

q
(t)≤ (Kα(t))

1
p
(
Kβ (t)

) 1
q (α > 0,β > 0, t > 0). (2.11)

Proof. Replacing the generalized gamma functions in (2.9) by their representations in (2.2)
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we find

Kα
p + p

q
(2
√

b)≤
(

Kα(2
√

b
) 1

p
(

Kβ (2
√

b
) 1

q (α > 0,β > 0,b > 0). (2.12)

The substitution t = 2
√

b in (2.12) yield the proof of (2.11). 2

Another important property of the generalized gamma function is the following reflec-

tion formula:

Theorem 2.2.4. (The Reflection Formula)

bαΓb(−α) = Γb(α) (Re(b) > 0) (2.13)

Proof. The substitutions t = bu−1 and dt =−bu−2 du ,(Re(b) > 0), in (2.1) yield

Γb(α) = bα
∫ ∞

0
u−α−1 e−u−bu−1

du,

which is exactly (2.13). 2

In Theorem 1.2.4 it has been shown that the product of two Euler gamma functions leads

to the relation between the gamma function and the beta function. It would be interesting to

investigate whether this is the case when two generalized gamma functions are multiplied

by each other. The next theorem discuss this multiplication from which Theorem 1.2.4 will

be deduced as a special case.

Theorem 2.2.5. (Product Formula)

Γb(α)Γb(β ) = 2
∫ ∞

0
r2(α+β )−1 exp(−r2)B

(
α,β ;

b
r2

)
dr, (2.14)
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where

B(α,β ,b) :=
∫ 1

0
tα−1(1− t)β−1 exp

( −b
t(1− t)

)
dt, (2.15)

is the extended beta function.

Proof. The transformation t = x2 in (2.1) yields

Γb(α) = 2
∫ ∞

0
x2α−1 e−x2−bx−2

dx (Re(b) > 0;b = 0,Re(α) > 0). (2.16)

Multiplying Γb(α)Γb(β ) by using (2.16), we find

Γb(α)Γb(β ) = 4
∫ ∞

0

∫ ∞

0
x2α−1y2β−1 exp

{
−(

x2 + y2)−b
(

x2 + y2

x2y2

)}
dx dy. (2.17)

If we transfer (2.17) to polar coordinates, we find

Γb(α)Γb(β )

= 2
∫ ∞

0
r2(α+β )−1 e−r2

{
2

∫ π
2

0
(cosθ)2α−1 (sinθ)2β−1 exp

(−4b
r2 csc 2θ

)
dθ

}
dr. (2.18)

However, the inner integral in (2.17) is expressible in terms of the extended beta function to

give

B
(

α,β ;
b
r2

)
= 2

∫ π
2

0
(cosθ)2α−1 exp

(
−4b

r2 csc2θ
)

dθ . (2.19)

From (2.19) and (2.18), we get the proof of (2.14). 2

As a result of Theorem 2.2.5, we have the following corollary.

Corollary 2.2.6.

Γ(α)Γ(β )
Γ(α +β )

= B(α ,β ) (Re(α) > 0, Re(β ) > 0). (2.20)

Proof. This result follows from Theorem 2.2.5 by setting b = 0 in (2.14). 2
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The generalized gamma function satisfies a second-order partial differential equation.

This result is given in the following theorem.

Theorem 2.2.7. (Differential Equation) The generalized gamma function Γb(α) satisfies

the second-order partial differential equation

b
∂ 2Γb(α)

∂b2 +(1−α)
∂Γb(α)

∂b
−Γb(α) = 0 (Re(b) > 0). (2.21)

Proof. First, we not that for n = 0,1,2,3, . . .

∂ n

∂bn {Γb(α)}= (−1)n Γb(α−n) (Re(b) > 0). (2.22)

Replacing α by α − 1 in the difference equation (2.3) of the generalized gamma function,

we get

bΓb(α−2)− (1−α)Γb(α−1)−Γb(α) = 0.

This implies by using (2.22)

b
∂ 2Γb(α)

∂b2 +(1−α)
∂ Γb(α)

2b
−Γb(α) = 0,

as desired 2

The Mellin transform of the generalized gamma function is studied in the following

Theorem.

Theorem 2.2.8. (Melllin transform representation)

M{Γb(α);s}= Γ(s)Γ(α + s) (Re(s) > 0, Re(α + s) > 0). (2.23)
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Proof. According to the definition of the Mellin transform of Γb(α) in S, we find

M {Γb(α);s} := 〈bs−1
+ ,Γb(α)〉 (2.24)

Replacing the generalized gamma function by its representation (2.5) we find

M {Γb(α);s}= 〈bs−1
+ ,〈xα−1

+ ,e−x−bx−1〉〉. (2.25)

An application of Fubini theorem [10, p. 458] yields

M {Γb(α);s}= 〈xα−1
+ ,e−x〈bs−1

+ ,e−bx−1〉〉. (2.26)

However, according to (1.1) it can be easily shown that

〈bs−1
+ ,e−bx−1〉= xs Γ(s) (Res > 0). (2.27)

Therefore,

M {Γb(α);s}= Γ(s)〈xα+s−1
+ ,e−x〉= Γ(s)Γ(α + s)

(Res(s) > 0, Re(α + s) > 0),

as desired. 2

We conclude this section by the following theorem that gives the asymptotic represen-

tation of the generalized gamma function.
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Theorem 2.2.9. (Asymptotic Behavior for small b)

Γb(α)∼
∞

∑
n=0

Γ(α−n)
(−1)n

n!
bn +bα

∞

∑
n=0

Γ(−α−n)
(−1)n

n!
bn

(b→ 0+, 0 < Re(α) < 1). (2.28)

Proof. Taking the inverse Mellin transform of both sides in (2.23) we find

Γb(α) =
1

2πi

∫ c+i∞

c−i∞
Γ(s)Γ(α + s)b−s ds (0 < c < 1). (2.29)

The integrand in (2.29) has simple poles at−n and−n−α (n = 0,−1,−2, . . .). The residues

of these poles are, respectively,

Res{ f ,−n} =
(−1)n

n!
Γ(α−n)bn,

Res{ f ;−n−α} =
(−1)n

n!
Γ(−n−α)bn+α .

Summing over all these residues yields the asymptotic representation (2.28). 2

Another asymptotic representation can be obtained from (2.2) that come directly from

the asymptotic representations of Kα(z) that are well studied in the literature [34], [35], [36]

and [47]. This representation is given by

Γb(α)∼ 1
2
√

π b−
1
4 e−2

√
b

∞

∑
m=0

(α,m)
(4
√

b)m

(
b→ ∞, |arg(

√
b)|< 3π

2

)
, (2.30)

where

(α ,m) :=
Γ(α +m+ 1

2)
m!Γ

(
α−m+ 1

2

) , (2.31)

is the Hankel symbole [51].
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2.3 Generalization of the Psi (Digamma) Function

In the first section of this chapter, we introduced the generalized gamma function. The

generalized gamma function has been found to be a simple and natural generalization of the

Euler gamma function. This generalization leads to a generalization of the Psi (digamma)

function. Analogous to the definition of the diagamma function, the generalized diagamma

function is defined as the logarithmic derivative of the generalized gamma function. In this

section we shall prove some of the properties of the generalized diagamma function and

establish different integral representations of this function. The classical representations of

the diagamma function will be deduced as special cases.

Definition 2.3.1. The generalized digamma function is defined by

ψb(α) :=
d

dα
{ln(Γb(α))}=

1
Γb(α)

d
dα

{Γb(α)} . (2.32)

From the integral representation (2.1) of the generalized gamma function we have

ψb(α) :=
1

Γb(α)

∫ ∞

0
tα−1(ln t)e−t−bt−1

dt (Re(b) > 0;b = 0,Re(α) > 0). (2.33)

The reflection formula and recurrence relation of the generalized digamma function are

presented in following theorems.

Theorem 2.3.2. (Reflection Formula)

ψb(−α) = lnb−ψb(α) (Re(b) > 0). (2.34)
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Proof. Replacing α by −α in (2.33), we find

ψb(−α) =
1

Γb(−α)

∫ ∞

0
t−α−1(ln t)e−t−bt−1

dt. (2.35)

Making the substitutions t = bx−1, dt =−bx−2 dx in (2.35) yield

ψb(−α) =
b−α

Γb(−α)

∫ ∞

0
(lnb− lnx)xα−1 e−x−bx−1

dx. (2.36)

Using the reflection formula (2.13) for the generalized gamma function, we get

ψb(−α) =
1

Γb(α)

∫ ∞

0
(lnb− lnx)xα−1 e−x−bx−1

dx,

= lnb−ψb(α).

2

Theorem 2.3.3. (Recurrence Relation)

(
Γb(α +1)
αΓb(α)

)
ψb(α +1)−b

(
Γb(α−1)
α Γb(α)

)
ψb(α−1) =

1
α

+ψb(α)

(Re(b)≥ 0,Re(α) > 0). (2.37)

Proof. According to ([9], [26]) we have

∫ ∞

0
ln t

(
tα −αtα−1−btα−2) e−t−bt−1

dt = 2b
α
2 kα(2

√
b) (Re(b) > 0), (2.38)

which is simplified in terms of the generalized gamma and digamma functions by using

(2.2) and (2.33) to give

Γb(α +1)ψb(α +1)−α Γb(α)ψb(α)−bΓb(α−1)ψb(α−1) = Γb(α). (2.39)
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Dividing both sides of (2.39) by α Γb(α) and rearranging the terms we get (2.37). 2

The recurrence relation (1.24) is a special case of (2.37) when we set b = 0. Now we give

integral representations of the generalized digamma function and deduce the representations

(1.28) and (1.29) of the digamma function as special cases

Theorem 2.3.4.

ψb(α) =
∫ ∞

0

{
e−x− (1+ x)−α Γb(1+x)(α)

Γb(α)

}
dx
x

(Re(b)≥ 0;b = 0,Re(α) > 0). (2.40)

Proof. Consider the double integral

I =
∫ ∞

0

∫ ∞

0
tα−1 e−

b
t

{
e−t−x− e−t(1+x)

x

}
dt dx. (2.41)

If we integrate the double integral with respect to t we have

I =
∫ ∞

0

{
e−x

∫ ∞

0
tα−1 e−t−bt−1

dt−
∫ ∞

0
tα−1 e−t(1+x)−bt−1

dt
}

dx
x

. (2.42)

The inner integrals are the standard form of the generalized gamma function (2.1). Thus,

we find

I =
∫ ∞

0

{
e−xΓb(x)− (1− x)−α Γb(1+x)(α)

} dx
x

. (2.43)

However, if we integrate the double integral (2.41) with respect to x, we get

I =
∫ ∞

0
tα−1 e−t−bt−1

{∫ ∞

0

e−x− e−tx

x
dx

}
dt. (2.44)

The inner integral in (2.44) is the integral representation of lnt [3]. Thus we have

I =
∫ ∞

0
tα−1(ln t)e−t−bt−1

dt =
d

dα

(∫ ∞

0
tα−1 e−t−bt−1

dt
)

=
d

dα
(Γb(α)) . (2.45)
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From (2.43) and (2.45), we find

d
dα

(Γb(α)) =
∫ ∞

0

{
e−x Γb(α)− (1+ x)−α Γb(1+x)(α)

} dx
x

. (2.46)

Dividing both sides of (2.46) by Γb(α) we get the proof of (2.43). 2

Note that integral representation (1.28) of the classical digamma function can be recov-

ered by setting b = 0 in (2.40).

Theorem 2.3.5.

ψb(α) =
∫ ∞

0

(
e−t

t
− Γbet (α)

Γb(α)
e−αt

1− e−t

)
dt

(Re(b) > 0;b = 0,Re(α) > 0). (2.47)

Proof. From (2.40), we get

ψb(α) = lim
δ→0

[∫ ∞

δ

e−x

x
dx−

∫ ∞

δ

(1+ x)−α

x
· Γb(1+x)(α)

Γb(α)
dx

]
. (2.48)

The transformation x = et −1 in the second integral of the right-hand side of (2.48) yields

−
∫ ∞

0

(1+ x)α

x
Γb(1+x)(α)

Γb(α)
dx =

∫ ∞

ln(1+δ )

Γbet (α)
Γb(α)

e−tα

1− e−t dt. (2.49)

From (2.48) and (2.49), we get

ψb(α) = lim
δ→0+

[∫ ln(1+δ )

δ

e−t

t
dt +

∫ ∞

ln(1+δ )

{
e−t

t
− Γbet (α)

Γb(α)
e−tα

1− e−t

}
dt

=
∫ ∞

0

(
e−t

t
− Γbet (α)

Γb(α)
e−tα

1− e−t

)
dt. (2.50)

Since ∣∣∣∣
∫ ln(1+δ )

δ

e−t

t
dt

∣∣∣∣≤
∫ δ

ln(1+δ )

1
t

dt = ln
(

δ
ln(1+δ )

)
→ 0asδ → 0+.
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This completes the proof of (2.47). 2

Also we note that the integral representation (1.29) of the digamma function is gained

when we put b = 0 in (2.47).

2.4 Generalized Incomplete Gamma Functions

The generalization of the gamma functions leads to a generalization of the incomplete

gamma functions. Recently, Chaudhry and Zubair have shown that the closed-form so-

lutions to several problems in heat conduction can be expressed in terms of the generalized

incomplete gamma functions [10, pp. 357–440].

In this section we give the definition and state some relations of these functions.

Definition 2.4.1. The generalized Incomplete gamma functions are defined by

γ(α,x;b) :=
∫ x

0
tα−1 exp(−t−bt−1)dt, (2.51)

Γ(α ,x;b) :=
∫ ∞

x
tα−1 exp(−t−bt−1)dt, (2.52)

where α , x are complex parameters and b is a complex variable. When the argument b

vanishes, the functions (2.51) and (2.52) reduces the ordinary incomplete gamma functions

(1.34) and (1.35).

Like incomplete gamma functions, the generalized incomplete gamma functions satisfy

several relations found useful in applications. We state these relations in the following

theorems.

Theorem 2.4.2. (Decomposition Theorem)

γ(α,x;b)+Γ(α,x;b) = Γb(α) (Re(b)≥ 0). (2.53)
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Proof. This follows when we add the incomplete integrals (2.51) and (2.52) to get the

complete integral (2.1) which is the right-hand side of (2.53). 2

Theorem 2.4.3. (Recurrence relation)

Γ(α +1,x;b) = α Γ(α,x;b)+bΓ(α−1,x;b)+ xα e−x−bx−1
. (2.54)

Proof. Put

f (t) := H(t− x)exp(−t−bt−1). (2.55)

Where H(t) is the Heaviside function defined by

H(t) =





1 if t > 0

0 if t < 0
. (2.56)

A “formal” differentiation of f (t) with respect to t yields

f ′(t) = δ (t− x) exp(−t−bt−1)+H(t− x)
{−1+bt−2} exp

(−t−bt−1) . (2.57)

However, the generalized incomplete gamma function has the Mellin transform representa-

tion

Γ(α ,x;b) := M{ f (t);α}, (2.58)

that yields

−(α−1)Γ(α−1,x;b) = M{ f ′(t);α}. (2.59)

From (2.57) and (2.59), we get

−(α−1)Γ(α−1,x;b) = xα−1 exp(−x−bx−1)−Γ(α,x;b)+bΓ(α−2,x;b). (2.60)
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Rearranging the terms of (2.60) gives

Γ(α,x;b) = (α−1)Γ(α−1,x;b)+bΓ(α−2,x;b)+ xα−1 exp(−x−bx−1). (2.61)

Finally replacing α by α +1 in (2.61) we get (2.54) 2

Corollary 2.4.4.

Γ(α +1,x) = α Γ(α,x)+ xα e−x. (2.62)

Proof. This follows directly from (2.54) when we put b = 0. 2

One important representation of the generalized incomplete gamma function is its Mellin

transform representation. This representation is given in the following theorem.

Theorem 2.4.5.

Γ(α ,x;b) =
1

2πi

∫ c+i∞

c−i∞
Γ(s)Γ(α + s,x)b−s ds (Re(b) > 0,0 < c < 1). (2.63)

Proof. Multiplying both side in (2.52) by bs−1 and then integrating it with respect to b

from b = 0 to b = ∞, we get

∫ ∞

0
bs−1 Γ(α,x;b)db =

∫ ∞

x
tα−1 e−t

(∫ ∞

0
bs−1 e−

b
t db

)
dt. (2.64)

The inner integral in (2.64) is Γ(s)ts for Re(s) > 0.

Hence, ∫ ∞

0
bs−1Γ(α,x;b)db = Γ(s)

∫ ∞

x
tα+s−1 e−t dt, (2.65)

which gives ∫ ∞

0
bs−1Γ(α ,x;b)db = Γ(s)Γ(α + s,x). (2.66)
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Taking the inverse Mellin transform of both sides in (2.66). We get (2.63). 2

The next theorem gives the series representation of the generalized incomplete gamma

function in terms of the incomplete gamma function.

Theorem 2.4.6.

Γ(α ,x;b) =
∞

∑
n=0

(−1)n Γ(α−n,x)
bn

n!
. (2.67)

Proof. First, we note that a formal differentiation of (2.52) with respect to the parameter b

yields
∂ n

∂bn {Γ(α,x;b)}= (−1)n Γ(α−n,x;b) (n = 0,1,2, . . .) (2.68)

Now, if we let

Γ(α,x;b) =
∞

∑
n=0

cn bn, (2.69)

by the Maclurin series of Γ(α,x;b). Then

cn =
∂ n

∂bn{Γ(α,x;0)}/n!. (2.70)

From (2.68) and (2.70), we get

cn = (−1)n Γ(α−n,x)/n!. (2.71)

Finally, substituting (2.71) in (2.69) we get (2.67). 2

2.5 Connection with other special Functions

It is important to find out possible relations of a given special function with other special

functions. This is helpful to classify the function and to find the solution of the related

applied problems under different conditions in terms of the tabulated special functions. In
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this section we give the relations of the generalized incomplete gamma function with other

functions.

Theorem 2.5.1.

Γ
(

1
2
,x;b

)
=
√

π
2

[
e−2

√
b erfc

(
√

x−
√

b√
x

)
+ e2

√
b erfc

(
√

x+
√

b√
x

)]
. (2.72)

Proof. The generalized incomplete gamma function Γ(α ,x;b) can be represented as

Γ(α,x;b) = e−2
√

b
∫ ∞

x
tα−1 e−

(√
t−

√
b√
t

)2

dt, (2.73)

and

Γ(α,x;b) = e2
√

b
∫ ∞

x
tα−1e−

(√
t+

√
b√
t

)2

dt. (2.74)

Replacing α by α + 1
2 in (2.73) and (2.74) and rearranging the terms, we get

Γ(α +
1
2
,x;b) = e−2

√
b
∫ ∞

x
tα

(
1√
t
+
√

b
t
√

t

)
e−

(√
t−

√
b√
t

)2

dt

−
√

b
∫ ∞

x
tα− 3

2 e−t−bt−1
dt, (2.75)

and

Γ(α +
1
2
,x;b) = e2

√
b
∫ ∞

x
tα

(
1√
t
−
√

b
t
√

t

)
e−

(√
t+

√
b√
t

)2

dt

+
√

b
∫ ∞

x
tα− 3

2 e−t−bt−1
dt. (2.76)
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Adding (2.75) and (2.76), we get

2Γ(α +
1
2
,x;b) = e−2

√
b
∫ ∞

x
tα

(
1√
t
+
√

b
t
√

t

)
e−

(√
t−

√
b√
t

)2

dt

+e2
√

b
∫ ∞

x
tα

(
1√
t
−
√

b
t
√

t

)
e−

(√
t+

√
b√
t

)2

dt. (2.77)

Making the substitutions

u =
√

t−
√

b√
t

and v =
√

t +
√

b√
t

(2.78)

in (2.77) and taking α = 0, we get

Γ
(

1
2
,x;b

)
= e−2

√
b
∫ ∞
√

x−
√

b√
x

e−u2
du+ e2

√
b
∫ ∞
√

x+
√

b√
x

e−v2
dv, (2.79)

which directly gives (2.72). 2

In Theorem 1.5.3, we gave the relation between the incomplete gamma function with

the complementary error function. This result can be recovered from Theorem 2.5.1 by

putting b = 0 in (2.72).

Corollary 2.5.2.

Γ
(

1
2
,x

)
=
√

π erfc (
√

x). (2.80)

Corollary 2.5.3.

Γ
(
−1

2
;x;b

)
=
√

π
2
√

b

[
e−2

√
b erfc

(
√

x−
√

b√
x

)
− e2

√
b erfc

(
√

x+
√

b√
x

)]
(2.81)

Proof. (2.81) can be obtained directly from (2.72) by differentiating both sides of (2.72)

with respect to the parameter b. 2
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We note that the function Γ
(1

2 ,x;b
)

and Γ
(−1

2 ,x,b
)

can further be expressed in terms

of the incomplete gamma and confluent hypergeometric functions. For more details one can

refer to [10].



Chapter 3

A Generalization of the Euler’s Reflection Formula

In this chapter we prove a generalization of the well known and important Euler’s reflection

identity (1.16) in terms of the generalized incomplete gamma function (2.52). From this

generalization we will deduce some other generalizations that are known in the literature

as special cases. Also, we discuss a class of integral representations involving incomplete

gamma function, generalized incomplete gamma function, error functions, exponential in-

tegral function and Macdonald’s function.

3.1 Introduction

The classical gamma function defined by

Γ(s) :=
∫ ∞

0
ts−1e−tdt (s := σ + iτ,0 < σ < ∞), (3.1)

plays an important basic role in the subject of Special Functions. The properties and histor-

ical background of the function is given in the first Chapter. One of the classical identities

useful in several applications of ”Operational Calculus”, and Engineering applications is

46
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the closed form representation,

Γ(s)Γ(1− s) =
π

sinπs
=

∫ ∞

0

ts−1

1+ t
dt (0 < σ < 1). (3.2)

The representation

β (s,a− s) = Γ(s)Γ(a− s)/Γ(a) =
∫ ∞

0

ts−1

(1+ t)a dt (0 < σ < a), (3.3)

of the beta function extend the above identity (3.2) in a natural way as one can recover it by

taking a = 1. It may be noted that there are several generalizations of the classical identity

(3.2) available in literature ( [4], [29] and [47] ). One of these generalizations of (3.2) is the

representation [22, p. 355]

Γ(s)Γ(1− s,x) =
∫ ∞

0

ts−1e−(1+t)x

1+ t
dt (0 < σ < 1,0≤ x < ∞), (3.4)

that involves the incomplete gamma function. The above identity can be further generalized

to

Γ(s)Γ(a− s,x) =
∫ ∞

0

ts−1Γ(a,x(1+ t))
(1+ t)a dt (0 < σ < a,0≤ x < ∞), (3.5)

which is useful in finding the asymptotic representations of the incomplete gamma function

[47]. Putting a = 1+n in (3.5) and using Γ(1+n,z) = n!e−zen(z) we find that

Γ(s)Γ(1+n− s,x)/n! =
∫ ∞

0

ts−1e−x(1+t)en(x(1+ t))
(1+ t)n+1 dt

(0 < σ < 1,x≥ 0,n = 0,1,2,3, . . .). (3.6)
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The identity (3.4) is recovered from (3.6) when n = 0. Chaudhry and Zubair[10] introduced

the generalized incomplete gamma functions defined by

Γ(s,x;b) :=
∫ ∞

x
ts−1e−t−bt−1

dt (b≥ 0,0≤ x < ∞), (3.7)

γ(s,x;b) :=
∫ x

0
ts−1e−t−bt−1

dt (b≥ 0,0≤ x < ∞), (3.8)

where they defined the generalized gamma function as

Γb(s) := Γ(s,0;b) =
∫ ∞

0
ts−1e−t−bt−1

dt = 2bs/2Ks

(
2
√

b
)

(0 < b < ∞,−∞ < σ < ∞; b = 0, 0 < σ < ∞). (3.9)

These functions are found useful in several engineering applications ( [10], [54], [55]) [56]).

The asymptotic expansion of the function Ks(b) is well known [4, p. 223]

Ks(b)∼
√

π
2b

e−b

[
1+

∞

∑
n=1

(s,n)
(2b)n

]
(b→ ∞), (3.10)

where (s,n) is defined by

(s,n) :=
(−1)n(1/2+ s)n

(1/2− s)n
= (−1)n Γ(1/2− s)

Γ(1/2+ s)

[
Γ(1/2+ s+n)
Γ(1/2− s+n)

]
. (3.11)

In particular, we have

Ks(b)∼
√

π
2b

e−b (b→ ∞). (3.12)

Similarly [47, p. 234]

Ks(2b)∼ 1
2

Γ(s)(b)−s (σ → ∞,b > 0). (3.13)
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We prove a generalization of the classical identity (3.2) in Section 3.2 that involves the gen-

eralized incomplete gamma function. Our result extends naturally the known identity (3.5)

as it can be recovered from the result by substituting b = 0.

Some special cases of the main result that involves complementary error functions are dis-

cussed in Section 3.3. The results may be found useful in the analytic study of temperature

distribution in a variety of heat conduction problem [10, pp. 385 – 413]. One of the im-

portant features of the main result is that, as the generalized incomplete gamma function

reduces to Macdonald’s function when x = 0, we find a useful identities involving the Mac-

donald’s function.

3.2 The Generalized Identity

In this section we present the main theorem that generalize the classical reflection identity

in terms of the generalized incomplete gamma function defined by (2.52).

Theorem 3.2.1. Let Γ(s,x;b) be the generalized incomplete gamma function. Then

Γ(s)Γ(a− s,x;b) =
∫ ∞

0

ts−1Γ(a,x(1+ t);(1+ t)b)
(1+ t)a dt

(s = σ + iτ,0 < σ < a,x≥ 0,b≥ 0). (3.14)

Proof. First we note that for b = 0 the Mellin transform integral (3.14) reduces to (3.5).

Hence, we assume that 0 < b < ∞. Using the asymptotic representation [10, p. 6]

|Γ(s)|=
√

2π|τ|σ−1/2 exp
(
−π

2
|τ|

)
(1+O(1/|τ|)

(|τ| → ∞,−∞ < A≤ σ < B < ∞), (3.15)
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of the gamma function , we find that for all b > 0,

|Γ(s)Γ(a− s,x,b)| ≤C|τ|ae(−π|τ|)

(−∞ < A < σ < B < ∞,0≤ x < ∞, |τ| → ∞). (3.16)

Hence, the inverse Mellin transform (IMT)integral

Ia(t,x;b) :=
1

2πi

∫ c+i∞

c−i∞
Γ(s)Γ(a− s,x;b)t−s ds

(0 < c < a,0≤ x < ∞,0 < t < ∞), (3.17)

is uniformly convergent for all t (0 < t0≤ t ≤ t1 < ∞). Moreover, for 0 < t < 1 the asymptotic

relation (3.16) shows that the integral is absolutely convergent and, it can be evaluated by

Cauchy’s residue theorem. The integrand has simple poles at s = −n(n = 0,1,2,3, . . .)

leading to the series representation

Ia(t,x;b) =
∞

∑
n=0

Γ(a+n,x;b)(−t)n

n!
(0 < t < 1,0≤ x < ∞, 0≤ b < ∞). (3.18)

Replacing the generalized incomplete gamma function in (3.18) by its integral representa-

tion, we find

Ia(t,x;b) =
∞

∑
n=0

(−t)n

n!

(∫ ∞

x
ya+n−1 e−y− b

y dy
)

=
∫ ∞

x
ya−1 e−y− b

y

(
∞

∑
n=0

(−ty)n

n!

)
dy

=
∫ ∞

x
ya−1 e−(1+t)y− b

y dy

=
1

(1+ t)a Γ(a,(1+ t)x;(1+ t)b)

(0≤ x < ∞, 0≤ b < ∞), (3.19)
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It is to be remarked that despite the fact that the requirement 0 < t < 1 is necessary for

the convergence of the series (3.18), the representation (3.19) remains well defined for all

t > 0. Hence (3.19) is an analytic continuation of (3.18). From (3.17) and (3.19), we find

1
2πi

∫ c+i∞

c−i∞
Γ(s)Γ(a− s,x;b)t−sds =

1
(1+ t)a Γ(a,(1+ t)x;(1+ t)b)

(0 < c < a,0≤ x < ∞,0 < t < ∞). (3.20)

Inverting the relation (3.20), we arrive at (3.14). 2

3.3 Special Cases of the Generalized Identity

We discuss special cases of the general result in this section. First, putting b = 0 in (3.14),

we arrive at (3.5). However, if we set x = 0, in (3.14), we find

Γ(s)Γb(a− s) =
∫ ∞

0

Γb(1+t)(a)
(1+ t)a ts−1 dt (0 < σ < a, b≥ 0). (3.21)

Replacing the generalized gamma function in (3.21) by its representation (3.9) in terms of

Macdonald’s function, we get

2Γ(s)b
(a−s)

2 Ka−s(2
√

b) = 2
∫ ∞

0

((1+ t)b)
a
2 Ka

(
2
√

(1+ t)b
)

(1+ t)a ts−1 dt

(0 < σ < a,b≥ 0). (3.22)

Letting x = 2
√

b in (3.22) and simplifying we get the following useful identity
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Ka−s(x) =
(x

2

)s 1
Γ(s)

∫ ∞

0

Ka
(
x
√

1+ t
)

(1+ t)
a
2

ts−1 dt,

(0 < σ < a,0≤ x < ∞). (3.23)

Now if we put b = 0 in ( 3.14), we find

Γ(s)Γ(a− s) = Γ(a)
∫ ∞

0

ts−1

(1+ t)a dt (0 < σ < a), (3.24)

that can be rewritten in terms of the beta function as

β (s,a− s) = Γ(s)Γ(a− s)/Γ(a) =
∫ ∞

0

ts−1

(1+ t)a dt (0 < σ < a), (3.25)

which is a generalization of the well known identity

β (s,1− s) = Γ(s)Γ(1− s) =
π

sinπs
=

∫ ∞

0

ts−1

(1+ t)
dt (0 < σ < 1). (3.26)

Now, if we let b = 0,a = 1+n in (3.14) we get

Γ(s)Γ(1−n− s,x)
n!

=
∫ ∞

0

ts−1e−x(1+t)en(x(1+ t))
(1+ t)n+1 dt

(0 < σ < 1,0≤ x < ∞,n = 0,1,2,3 . . .), (3.27)

which is (3.6). Also, if we set b = 0, a = 1−n in (3.14) we get

Γ(s)Γ(1−n− s,x)
xn−1 =

∫ ∞

0
ts−1En(x(1+ t))dt

(0 < σ < 1,x≥ 0,n = 0,1,2,3 . . .), (3.28)

where En(x) :=
∫ ∞

1 e−xt t−n dt, [10, p. 40] is the exponential integral function. Another
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special case of (3.14) that involves the complementary error function can be obtained by

letting s = a− 1
2 ,a > 1

2 and using relation [10, p. 51(2.120)]. This gives

∫ ∞

0

Γ(a,x(1+ t);(1+ t)b)
(1+ t)a ta−3/2 dt

=
1
2
√

π Γ(a− 1
2
)

[
e−2

√
berfc

(
√

x−
√

b√
x

)
+ e2

√
berfc

(
√

x+
√

b√
x

)]
,

(0≤ b < ∞, 0 < x < ∞,
1
2

< a < ∞). (3.29)

For b = 0 in (3.29) we find a useful identity

∫ ∞

0

Γ(a,x(1+ t))
(1+ t)a ta−3/2 dt =

√
π Γ

(
a− 1

2

)
erfc

(√
x
)
,

(0 < x < ∞,
1
2

< a < ∞). (3.30)

that does not seems to have been realized in the literature. Putting a = 3
2 in (3.30), we find

∫ ∞

0

Γ
(3

2 ,x(1+ t)
)

(1+ t)
3
2

dt =
√

π erfc
(√

x
)

(0 < x < ∞). (3.31)

The substitution u = x(1+ t) in (3.31) leads to

∫ ∞

x

Γ
(3

2 ,u
)

u
3
2

du =
√

π /xerfc
(√

x
)

(0 < x < ∞). (3.32)

The integrand in (3.32) can be simplified in terms of the complementary error function [10,

p. 45] to get

∫ ∞

x

√
π

2 erfc(
√

u)+
√

ue−u

u
3
2

du =
√

π /xerfc(
√

x) (0 < x < ∞). (3.33)

The formula (3.33) is important in the sense as the integral in the left hand side can be
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rewritten as the difference of the integral of the complementary error function and the ex-

ponential integral function [10, p. 43]. This leads to the formula

∫ ∞

x

erfc(
√

u)
u3/2 du =

2
π

Ei(−x)+
2
x

erfc
(√

x
)

(0 < x < ∞), (3.34)

which is useful in finding the solution of problems of heat conduction in materials with

cylindrical symmetry [8, p. 261].

Remark: We note that our technique in proving the main result leads to another useful

relation for the Macdonal’s function. Indeed, if we set x = 0 in (4.24) and (4.25) we have

1
(1+ t)a Γ(a,0;(1+ t)b) =

∞

∑
n=0

Γ(a+n,0;b)(−t)n

n!

(0 < t < 1,0≤ b < ∞). (3.35)

Replacing the generalized gamma function in (3.35) by its representation (3.9) in terms of

Macdonald’s function, we get

2
(1+ t)a ((1+ t)b)a/2 Ka

(
2
√

(1+ t)b
)

=
∞

∑
n=0

2b(a+n)/2 Ka+n

(
2
√

b
)

(−t)n

n!

(0 < t < 1,0≤ b < ∞). (3.36)

Letting x = 2
√

b in (3.36) and simplifying we get the following useful identity

Ka

(
x
√

(1+ t)
)

= (1+ t)a/2
∞

∑
n=0

( x
2

)n Ka+n(x)(−t)n

n!

(0 < t < 1,0≤ x < ∞). (3.37)
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3.4 Concluding Remarks

Operational calculus has found applications in several areas of mathematics and engineer-

ing sciences. The most notable applications are found in electrical engineering problems

for the calculation of transients in linear circuits. From the development of the subject by

Gottfried Leibnitz and Euler to Olver Heaviside and Jan Mikusinski the gamma function

Γ(s) and the basic identity Γ(s)Γ(1− s) = π
sinπs have played an important role in the devel-

opment of the subject. A generalization of the basic identity is expected to play as well an

important role. We have noticed that the generalization proved in this note leads to a class

of integral representations involving incomplete gamma, generalized incomplete gamma,

error functions and Macdonald’s function.



Chapter 4

Iterated Integrals of the Generalized Complementary

Error Function

In Section 4.1 of this chapter we give a generalization of the classical error functions based

on the generalized incomplete gamma functions defined by (2.51) and (2.52). The prop-

erties of the generalized error functions will be studied in Section 4.2. In Section 4.3, we

study the iterated integrals of the generalized error functions and deduce the classical results

as special cases. In Section 4.4 we present some numerical computations and graphical rep-

resentations of these new functions that may help in some application problems.

4.1 Introduction

The error functions defined by

erf(x) :=
2√
π

∫ x

0
exp(−t2)dt, (4.1)

erfc(x) :=
2√
π

∫ ∞

x
exp(−t2)dt, (4.2)

56
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satisfy the decomposition formula

erf(x)+ erfc(x) = 1. (4.3)

These functions were originally introduced by Kramp [30]. However, they also called Gauss

error functions or probability integrals. These functions occur in probability, statistics and

partial differential equations. For example, the solution to the heat conduction problem

∂T
∂ t

= α
∂ 2T
∂x2 (x≥ 0, t ≥ 0),

T (x,0) = 0

T (0, t) = T0, (4.4)

is given by

T (x, t) = T0 erfc
(

x√
4αt

)
. (4.5)

The error functions are expressible in terms of the incomplete gamma functions as

erf(x) =
1√
π

γ
(

1
2
,x2

)
, (4.6)

erfc(x) =
1√
π

Γ
(

1
2
,x2

)
. (4.7)

Moreover, the inverse error function has the closed form representation

erf−1(x) =
√

π
2

(
x +

π
12

x3 +
7π2

480
x5 +

127π3

40320
x7 + . . .

)
, (4.8)

which is useful in solving inverse problems in applied sciences and engineering.

Chaudhry and Zubair [10] introduced the generalized incomplete gamma functions de-
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fined by

Γ(α,x;b) =
∫ ∞

x
tα−1e−t− b

t dt (b≥ 0,x≥ 0), (4.9)

γ(α,x;b) =
∫ x

0
tα−1e−t− b

t dt (b≥ 0,x≥ 0). (4.10)

It is to be noted that these function can naturally extend the classical error functions as

follows:

erf(x;b) :=
1√
π

γ
(

1
2
,x2;b

)
, (4.11)

erfc(x;b) :=
1√
π

Γ
(

1
2
,x2;b

)
. (4.12)

For b = 0, we find

erf(x;0) = erf(x), (4.13)

erfc(x;0) = erfc(x). (4.14)

Replacing the GIGF in (4.11) and (4.12) by their integral representation, we find

erf(x;b) :=
1√
π

∫ x2

0
exp

(
−t− b

t

)
dt√

t
, (4.15)

erfc(x;b) :=
1√
π

∫ ∞

x2
exp

(
−t− b

t

)
dt√

t
. (4.16)

The transformation t = τ2 in (4.15) and (4.16) yields

erf(x;b) =
2√
π

∫ x

0
exp

(−τ2−bτ−2) dτ, (4.17)

erfc(x;b) =
2√
π

∫ ∞

x
exp

(−τ2−bτ−2) dτ. (4.18)

From the decomposition formula of the generalized incomplete gamma functions (2.53), we



59

can see that the extended error functions satisfy the decomposition formula

erf(x;b)+ erfc(x;b) = e−2
√

b. (4.19)

Other properties of these functions will be investigated in following section.

4.2 Properties of The Generalized Error Functions

In this section, we investigate some properties of the generalized error functions and present

a heat conduction problem whose solution is written in terms of these functions.

Theorem 4.2.1. (Connection with error functions I)

erfc(x;b) =
1
2

[
e−2

√
b erfc

(
x−

√
b

x

)
+ e2

√
b erfc

(
x+

√
b

x

)]
. (4.20)

Proof. Using the identity between the GIGF and the complementary error functions given

by [10], we have

Γ
(

1
2
,x;b

)
=
√

π
2

[
e−2

√
b erfc

(
√

x−
√

b√
x

)
+ e2

√
b erfc

(
√

x+
√

b√
x

)]
.

This implies

1√
π

Γ
(

1
2
,x2;b

)
=

1
2

[
e−2

√
b erfc

(
x−

√
b

x

)
+ e2

√
b erfc

(
x+

√
b

x

)]

and this directly gives

erfc(x;b) =
1
2

[
e−2

√
b erfc

(
x−

√
b

x

)
+ e2

√
b erfc

(
x+

√
b

x

)]
.

2
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Theorem 4.2.2. (Connection with error function II)

√
b

∂
∂b
{erfc(x;b)}=

1
2

[
e2
√

b erfc

(
x+

√
b

x

)
− e−2

√
b erfc

(
x−

√
b

x

)]
. (4.21)

Proof. Differentiating (4.18) with respect to b, we find

∂
∂b
{erfc(x;b)}=

−1√
π

Γ
(
−1

2
,x2;b

)
. (4.22)

Since

Γ
(
−1

2
,x;b

)
=
√

π
2
√

b

[
e−2

√
b erfc

(
√

x−
√

b√
x

)
− e2

√
b erfc

(
√

x+
√

b√
x

)]
, (4.23)

we replace the GIGF in (4.22) by its representation in (4.23), arrive at (4.21). 2

Corollary 4.2.3. (√
b

∂
∂b

+1
)
{erfc(x;b)}= erfc

(
x+

√
b

x

)
. (4.24)

Proof. (4.24) is obtained by adding (4.20) and (4.21). 2

Corollary 4.2.4.

(√
b

∂
∂b
−1

)
{erfc(x;b)}=−erfc

(
x−

√
b

x

)
. (4.25)

Proof. (4.25) is obtained by subtracting (4.20) from (4.21). 2

Applications to heat conduction problem.

The heat conduction equation

∂T
∂ t

= α
∂ 2T
∂x2 (x≥ 0, t ≥ 0) (4.26)
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subject to conditions

T (x,0) = 0 and T (0, t) = F(t)

governs the variation of the temperature of a semi-infinite solid, initially at temperature

zero, with the plane face at temperature F(t). The solution to the problem is given by [27]

T =
2√
π

∫ ∞

x√
4αt

F
(

t− x2

4αβ 2

)
exp

(−β 2)dβ . (4.27)

In particular, when F(t) = T0 exp(λ t), we find

T = T0 eλ t erfc
(

x√
4αt

;
λx2

4α

)
. (4.28)

4.3 Iterated Integral of the Generalized Complementary

Error Function

Hartree [26] investigated the iterated integrals

i−1 erfc(x) :=
−2√

π
exp

(−x2)

i0 erfc(x) := erfc(x),

in erfc(x) :=
∫ ∞

x
in−1 erfc(t)dt.

Some properties of the iterated integrals of the complementary error function are presented

in ( [25], [31],[37], [44]). One important property is the integral representation

in erfc(x) =
2√
π

∫ ∞

x

(t− x)n

n!
exp(−t2)dt. (4.29)
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The general recurrence relation is

in erfc(x) =
−x
n

in−1 erfc(x)+
1
2n

in−2 erfc(x). (4.30)

These functions are infinitely differentiable and their derivative is given by

d
dx

(in erfc(x)) =−in−1 erfc(x) (n = 0,1,2, . . .). (4.31)

The series representation is found to be

in erfc(x) =
∞

∑
k=0

(−1)kxk

2n−kk!Γ
(
1+ n−k

2

) (n = 0,1,2, . . .). (4.32)

This can directly give for x = 0

in erfc(0) =
1

2n Γ
(
1+ n

2

) (n = 0,1,2, . . .). (4.33)

It is to be noted that these functions satisfy the following differential equation:

(
D2 +2xD−2n

){in erfc(x)}= 0 (n = 0,1,2, . . .). (4.34)

The asymptotic expansions are

in erfc(x) =
e−

1
2 x2

e−x(2n)
1
2

2nΓ
(
1+ n

2

)
[
1+0

(
n−

1
2

)]
(4.35)

(x bounded, n→ ∞),
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in erfc(x)∼ 2√
π

e−x2

(2x)n+1

∞

∑
m=0

(−1)m(2m+n)!
n!m!(2x)2m (4.36)

(
x→ ∞, |argx|< 3π

4

)
.

The generalized error function provides a closed form solution to some heat conduction

problem as shown in (4.28). The iterated integrals of the CEF are also useful in finding the

closed form solutions of a variety of partial differential equations. For example, the solution

to the heat conduction boundary value problem

∂ 2u
∂x2 −

1
α

∂u
∂ t

+
A0

k
= 0 (x > 0, t > 0), (4.37)

with zero initial and surface temperature such that the heat is produced at a constant rate A0

per unit time per unit volume for t > 0 in the region a < x < b , is discussed in [8, p. 79].

The temperature gradient at the surface is given by

u =
A0

k

√
4α t

[
ierfc

(
a√
4α t

)
− ierfc

(
b√
4α t

)]
. (4.38)

We refer to [8, pp. 79 – 80] for several other cases of the above problem. One does not find

the iterated integrals of the GCEF in the literature. It is expected that the repeated integrals

of the GCEF will also be found useful in scientific and engineering applications. In this

part, we define and explore the properties of the iterated integrals of the GCEF. In analogy

to the iterated integrals of the complementary error functions, one can define the iterated

integrals of the GCEF as follows:

i−1 erfc(x;b) :=
−2√

π
exp

(
−x2− b

x2

)
, (4.39)

i0 erfc(x;b) := erfc(x;b), (4.40)
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in erfc(x;b) :=
∫ ∞

x
in−1 erfc(t;b)dt. (4.41)

The classical iterated integrals of the complementary error function inerfc(x) satisfy the

important integral representation given by (4.29). One would like to know if the iterated

integrals of the GCEF have an integral representation which reduces to the classical one as

a special case.

Theorem 4.3.1. (Integral Representation)

in erfc(x;b) =
2√
π

∫ ∞

x

(t− x)n

n!
exp

(
−t2− b

t2

)
dt. (4.42)

Proof. We show the result using mathematical induction. For n = 1,

i1 erfc(x;b) =
∫ ∞

x
erfc(s;̂b)ds

=
2√
π

∫ ∞

x

∫ ∞

s
exp

(
−t2− b

t2

)
dt ds

=
2√
π

∫ ∞

x

∫ t

x
exp

(
−t2− b

t2

)
ds dt

=
2√
π

∫ ∞

x

(t− x)1

1!
exp

(
−t2− b

t2

)
dt.

Now, we assume (4.42) is true for n = k. This gives

ik erfc(x;b) =
2√
π

∫ ∞

x

(t− x)k

k!
e−t2− b

t2 dt

and so
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ik+1 erfc(x,b) =
2√
π

∫ ∞

x

∫ ∞

s

(t− s)k

k!
e−t2− b

t2 dt ds

=
2√
π

∫ ∞

x

∫ t

x

(t− s)k

k!
e−t2− b

t2 dsdt

=
2√
π

∫ ∞

x

(t− x)k+1

(k +1)!
e−t2− b

t2 dt.

2

Theorem 4.3.1 can be used to get the following differentiation formula which reduces

to (4.31) if we put b = 0.

Theorem 4.3.2. (Differentiation Formula)

∂
∂x

(in erfc(x;b)) =−in−1 erfc(x;b) (n = 0,1,2, . . .). (4.43)

Proof. Using Theorem 4.3.1, we have

∂
∂x

(in erfc(x;b)) =
∂
∂x

(
2√
π

∫ ∞

x

(t− x)n

n!
exp

(
−t2− b

t2

)
dt

)

=
2√
π

∫ ∞

x

∂
∂x

(
(t− x)n

n!
exp

(
−t2− b

t2

))
dt

= − 2√
π

∫ ∞

x

(t− x)n−1

(n−1)!
exp

(
−t2− b

t2

)
dt

= −in−1 erfc(x;b),

where the interchange between the derivative and integral is allowed since the integral is

absolutely convergent and the integrand vanishes at t = x. 2

The following result gives a general series representation for the iterated integrals of

GCEF which gives (4.32) and (4.33) as special cases.
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Theorem 4.3.3. (Series Representation)

in erfc(x,b) =
∞

∑
k=0

(−x)k

k!
0F1

(−, 1
2 − 1

2(n− k),b
)

2n−kΓ
(1

2(n− k)+1
) , (4.44)

where 0F1 (−,m,b) is the hypergeometric series defined by

0F1 (−,m,b) :=
∞

∑
k=0

bk

k!(m)k
.

Proof. Let in erfc(x,b) =
∞

∑
k=0

ck xk, and the task is to determine ck. Now the coefficients of

the Maclaurin series are given by

ck =
1
k!

∂ k

∂xk {in erfc}(0,b),

which implies

c0 = in erfc(0,b) =
2√
πn!

∫ ∞

0
tn e−t2− b

t2 dt.

Let t2 = y, then t =
√

y and dt = 1
2
√

y dy. This gives

c0 =
1√
π n!

∫ ∞

0
y

1
2 n+ 1

2−1e−y− b
y dy =

1√
πn!

Γb

(
1
2

n+
1
2

)
, (4.45)

where, Γb(α) is the generalized gamma function. We claim:

1√
πn!

Γb

(
1
2

n+
1
2

)
=

1
2nΓ

(1
2n+1

) 0F1

(
−,

1
2
− n

2
,b

)
.
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To establish the claim, we use the identity

Γb(α) =
∞

∑
k=0

(−b)k

k!
Γ(α− k),

[10, page 47 (2.91)] with α = 1
2n+ 1

2 . This gives

Γb
(1

2n+ 1
2

)
√

π n!
=

∞

∑
k=0

(−b)k

k!
· Γ

(1
2n+ 1

2 − k
)

√
π n!

.

Now, using the formula see [10, page 6 (1.51)]

Γ(α− k) =
Γ(α)(−1)k

(1−α)k

with α = 1
2n+ 1

2 , we have

Γ
(

1
2

n+
1
2
− k

)
=

Γ
(1

2n+ 1
2

)
(−1)k

(1
2 − 1

2n
)

k

.

This implies
Γ

(1
2n+ 1

2 − k
)

√
π n!

=
(−1)k

(1
2 − 1

2n
)

k

· Γ
(1

2n+ 1
2

)
√

π n!
.

Now, by the duplication formula,

Γ
(1

2n+ 1
2

)
√

π n!
=

1
2nΓ

(1
2n+1

) ,

we find
Γ

(1
2n+ 1

2 − k
)

√
π n!

=
(−1)k

(1
2 − 1

2n
)

k

· 1
2nΓ

(1
2n+1

) .

This implies
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Γb
(1

2n+ 1
2

)
√

π n!
=

∞

∑
k=0

(−b)k

k!
(−1)k

(1
2 − 1

2n
)

k

1
2nΓ

(1
2n+1

)

=
1

2nΓ
(1

2n+1
)

∞

∑
k=0

bk

k!
(1

2 − 1
2n

)
k

=
1

2nΓ
(1

2n+1
) 0F1

(
−,

1
2
− 1

2
n,b

)
.

This proves the claim. Hence from (4.45), we have

c0 = 0F1
(−, 1

2 − 1
2n,b

)

2nΓ
(1

2n+1
) .

Now, using (3.37)

∂
∂x

(in erfc(x,b)) =−in−1 erfc(x,b) (n = 0,1,2, . . .),

we get,

∂ k

∂xk (in erfc(x,b)) = (−1)kin−k erfc(x,b).

This gives

ck =
(−1)k in−k erfc(0,b)

k!
.

Hence,

ck =
(−1)k

k!
0F1

(−, 1
2 − 1

2(n− k),b
)

2n−k Γ
(1

2(n− k)+1
) ,

2
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Corollary 4.3.4.

in erfc(x) =
∞

∑
k=0

(−1)kxk

2n−k k!Γ
(
1+ n−k

2

) (n = 0,1,2, . . .).

Proof. Take b = 0 in (4.44) and note that 0F1
(−, 1

2 − 1
2(n− k), 0

)
= 1. 2

Corollary 4.3.5.

in erfc(0;b) = 0F1
(−, 1

2 − 1
2n;b

)

2n Γ
(
1+ n

2

) (n = 0,1,2, . . .).

Proof. Take x = 0 in (4.44). 2

Corollary 4.3.6.

in erfc(0,0) =
1

2n Γ
(
1+ n

2

) (n = 0,1,2, . . .).

Proof. Take x = 0 and b = 0 in (4.44). 2

The recurrence relation given in (4.30) for the iterated integrals of the complementary

error function is extended for the GCEF in the following result.

Theorem 4.3.7. (Recurrence Relation)

Let

A =
(

1−b
∂ 2

∂b2

)

be the differential operator. Then

2nAin erfc(x;b) =−2Axin−1 erfc(x;b)+ in−2 erfc(x;b). (4.46)
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Proof. By replacing in erfc(x;b) with its integral representation given by Theorem 4.29,

we have

L.H.S. = 2nAin erfc(x;b)

=
2√
π

2n
n!

(
1−b

∂ 2

∂b2

)∫ ∞

x
(t− x)n e−t2− b

t2 dt

=
2√
π

2
(n−1)!

(
1−b

∂ 2

∂b2

)∫ ∞

x
(t− x)(t− x)n−1 e−t2− b

t2 dt

=
2√
π

2
(n−1)!

(
1−b

∂ 2

∂b2

)∫ ∞

x
t(t− x)n−1 e−t2− b

t2 dt

− 2√
π

2
(n−1)!

(
1−b

∂ 2

∂b2

)∫ ∞

x
x(t− x)n−1e−t2− b

t2 dt

= In−2Axin−1 erfc(x;b),

where

In =
2√
π

2
(n−1)!

(
1−b

∂ 2

∂b2

)∫ ∞

x
t(t− x)n−1 e−t2− b

t2 dt.

To complete the proof, we need to show that In = in−2 erfc(x;b). Indeed, applying the dif-

ferential operator to the integral and then using integration by parts, we have

In =
2√
π

1
(n−1)!

[∫ ∞

x
2t(t− x)n−1 e−t2− b

t2 dt−
∫ ∞

x

2b
t3 (t− x)n−1 e−t2− b

t2 dt
]

=
2√
π
· 1
(n−1)!

[
−

∫ ∞

x

(
−2t +

2b
t3

)
e−t2− b

t2 (t− x)n−1 dt
]

=
−2√

π
· 1
(n−1)!

[
e−t2− b

t2 (t− x)n−1
∣∣∣∣
∞

t=x
−

∫ ∞

x
(n−1)(t− x)n−2e−t2− b

t2 dt
]

=
2√
π

∫ ∞

x

(t− x)n−2

(n−2)!
e−t2− b

t2 dt

= in−2 erfc(x;b).

2
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One would like to find a differential equation whose solution can be expressed in terms

of the iterated integrals of the GCEF. This will enhance the applications of these functions

in the areas where such type of differential equations may arise. We prove in the following

theorem that these functions satisfy a partial differential equation. Moreover, from the new

partial differential equation, we prove that for b = 0, the classical differential equation is

recovered.

Theorem 4.3.8. (Differential Equation)

[
D2 +2xD

(
1−b

∂ 2

∂b2

)
−2n

(
1−b

∂ 2

∂b2

)]
in erfc(x;b) = 0. (4.47)

Proof. In order to show (3.16), it suffices to show that

[
D2 +2xD

(
1−b

∂ 2

∂b2

)]
in erfc(x;b) = 2n

(
1−b

∂ 2

∂b2

)
in erfc(x;b). (4.48)

Note that by using Theorem 4.3.2, we have

D2(inerfc(x;b)) = in−2erfc(x;b), (4.49)

and

D(inerfc(x;b)) =−in−1erfc(x;b). (4.50)

Now by substituting (4.49) and (4.50) in the left hand side of (4.48), the result follows

directly from Theorem 4.35. 2

Remark 4.3.9. One of the important features of the above theorem is that, as expected, we

recover the classical differential equation satisfied by the iterated integrals of the comple-

mentary error function. This is achieved from Theorem 4.3.8 when we set b = 0.
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4.4 Numerical Computations and Graphical Representa-

tions

In this section, we present some graphical and tabular representations of the generalized

error function, GCEF, and the iterated integrals of GCEF for scientific and engineering

applications.

Numerical Computation

In order to compute the GCEF and its iterated integrals, we use their integral representations

given by (4.29) and (3.36), respectively. To compute the generalized error function we use

(4.19). In order to evaluate the infinite integral,

erfc(x;b) =
2√
π

∫ ∞

x
exp

(−t2−bt−2) dt, (4.51)

we decompose the integral ∫ ∞

x
exp

(−t2−bt−2) dt, (4.52)

into ∫ 20

x
exp

(−t2−bt−2) dt +
∫ ∞

20
exp

(−t2−bt−2) dt. (4.53)

To compute the integral
∫ 20

x exp
(−t2−bt−2) dt, we use 100-points Gauss Quadrature rule

with 100 nodes [14, 365]. That is, we approximate

∫ 20

x
exp

(−t2−bt−2) dt (4.54)

by
100

∑
i=1

wi exp
(−t2−bt−2) (4.55)
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where wi and ti are the weights and the nodes, respectively. It is to be noted that wi and ti

can be determined by solving the following system of equations:

∫ 20

x
tm dt =

100

∑
i=1

wi tm
i (4.56)

for m = 0, 1,..., 199. However, a simple manipulation shows that

∫ ∞

20
exp

(−t2−bt−2) dt ≤ 10−8 (4.57)

and ∫ ∞

20

(t− x)n

n!
exp

(
−t2− b

t2

)
dt ≤ 10−8. (4.58)

Remark: The r-points Gauss Quadrature is exact for all polynomials of degree≤ 2r− 1.

We use the same procedure to evaluate the integral:

in erfc(x;b) =
2√
π

∫ ∞

x

(t− x)n

n!
exp

(
−t2− b

t2

)
dt. (4.59)

From Figure 4.3– Figure 4.7 of the iterated integrals of the GCEF we note that, for each fixed

x, the function is decreasing as b increases. Moreover, all graphs of the iterated integrals

of the GCEF approaching zero for sufficiently large x . It is also observed that the rate of

decaying increases as b decreases and n increases. For example, for b = 0 and x = 0.5, if

x increases by 10 % the decay rate of ierfc(x;0) is 11.5%. However, for the same value of

x = 0.5 the decay rate of ierfc(x;0.25) reduces to 10%. It is important to note that for n > 1

the decay rate becomes faster. For instance, when n = 2 at x = 0.5, an increase of 10% in

the value of x leads to 13.4% decay in the value of i2erfc(x;0) and 12.7% for the function

i2erfc(x;0.25).
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Table 4.1: Some representative values of erfc (x, b)
x\b 0.00 0.25 0.5 0.75 1.00 1.25 1.50
0.00 1.0000 0.3679 0.2431 0.1769 0.1353 0.1069 0.0863
0.01 0.9887 0.3679 0.2431 0.1769 0.1353 0.1069 0.0863
0.02 0.9774 0.3679 0.2431 0.1769 0.1353 0.1069 0.0863
0.03 0.9662 0.3679 0.2431 0.1769 0.1353 0.1069 0.0863
0.04 0.9549 0.3679 0.2431 0.1769 0.1353 0.1069 0.0863
0.05 0.9436 0.3679 0.2431 0.1769 0.1353 0.1069 0.0863
0.06 0.9324 0.3679 0.2431 0.1769 0.1353 0.1069 0.0863
0.07 0.9211 0.3679 0.2431 0.1769 0.1353 0.1069 0.0863
0.08 0.9099 0.3679 0.2431 0.1769 0.1353 0.1069 0.0863
0.09 0.8987 0.3679 0.2431 0.1769 0.1353 0.1069 0.0863
0.10 0.8875 0.3679 0.2431 0.1769 0.1353 0.1069 0.0863
0.15 0.8320 0.3679 0.2431 0.1769 0.1353 0.1069 0.0863
0.20 0.7773 0.3679 0.2431 0.1769 0.1353 0.1069 0.0863
0.25 0.7237 0.3674 0.2431 0.1769 0.1353 0.1069 0.0863
0.30 0.6714 0.3654 0.2430 0.1769 0.1353 0.1069 0.0863
0.35 0.6206 0.3607 0.2426 0.1769 0.1353 0.1069 0.0863
0.40 0.5716 0.3524 0.2411 0.1766 0.1353 0.1069 0.0863
0.45 0.5245 0.3406 0.2382 0.1759 0.1351 0.1068 0.0863
0.50 0.4795 0.3257 0.2332 0.1742 0.1345 0.1066 0.0863
0.55 0.4367 0.3085 0.2263 0.1714 0.1334 0.1062 0.0861
0.60 0.3961 0.2895 0.2173 0.1672 0.1314 0.1052 0.0856
0.65 0.3580 0.2694 0.2067 0.1616 0.1285 0.1037 0.0848
0.70 0.3222 0.2487 0.1948 0.1547 0.1245 0.1014 0.0835
0.75 0.2888 0.2280 0.1820 0.1467 0.1195 0.0983 0.0815
0.80 0.2579 0.2076 0.1685 0.1379 0.1137 0.0944 0.0790
0.85 0.2293 0.1878 0.1548 0.1284 0.1071 0.0899 0.0759
0.90 0.2031 0.1689 0.1412 0.1185 0.1000 0.0848 0.0722
0.95 0.1791 0.1510 0.1278 0.1086 0.0926 0.0792 0.0680
1.00 0.1573 0.1343 0.1149 0.0987 0.0849 0.0733 0.0635
1.50 0.0339 0.0311 0.0286 0.0263 0.0242 0.0223 0.0205
2.00 0.0047 0.0044 0.0042 0.0040 0.0038 0.0036 0.0034
2.50 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 0.0003
3.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 4.2: Some representative values of erf (x, b)
x\b 0.00 0.25 0.5 0.75 1.00 1.25 1.50
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.01 0.0113 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.02 0.0226 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.03 0.0338 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.04 0.0451 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.05 0.0564 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.06 0.0676 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.07 0.0789 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.08 0.0901 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.09 0.1013 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.10 0.1125 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.15 0.1680 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.20 0.2227 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.25 0.2763 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000
0.30 0.3286 0.0024 0.0001 0.0000 0.0000 0.0000 0.0000
0.35 0.3794 0.0072 0.0006 0.0001 0.0000 0.0000 0.0000
0.40 0.4284 0.0155 0.0020 0.0003 0.0000 0.0000 0.0000
0.45 0.4755 0.0273 0.0050 0.0011 0.0002 0.0001 0.0000
0.50 0.5205 0.0421 0.0099 0.0027 0.0008 0.0002 0.0001
0.55 0.5633 0.0594 0.0168 0.0055 0.0019 0.0007 0.0003
0.60 0.6039 0.0784 0.0258 0.0097 0.0039 0.0016 0.0007
0.65 0.6420 0.0985 0.0364 0.0153 0.0069 0.0032 0.0015
0.70 0.6778 0.1191 0.0483 0.0222 0.0108 0.0055 0.0029
0.75 0.7112 0.1399 0.0612 0.0302 0.0158 0.0086 0.0048
0.80 0.7421 0.1603 0.0746 0.0391 0.0217 0.0125 0.0073
0.85 0.7707 0.1800 0.0883 0.0485 0.0282 0.0170 0.0105
0.90 0.7969 0.1990 0.1019 0.0584 0.0353 0.0221 0.0142
0.95 0.8209 0.2169 0.1153 0.0684 0.0428 0.0277 0.0183
1.00 0.8427 0.2336 0.1282 0.0783 0.0504 0.0335 0.0228
1.50 0.9661 0.3367 0.2145 0.1506 0.1111 0.0846 0.0658
2.00 0.9953 0.3634 0.2389 0.1729 0.1315 0.1033 0.0829
2.50 0.9996 0.3675 0.2427 0.1766 0.135 0.1065 0.0860
3.00 1.0000 0.3679 0.2431 0.1769 0.1353 0.1069 0.0863
3.50 1.0000 0.3679 0.2431 0.1769 0.1353 0.1069 0.0863
4.00 1.0000 0.3679 0.2431 0.1769 0.1353 0.1069 0.0863
4.50 1.0000 0.3679 0.2431 0.1769 0.1353 0.1069 0.0863
5.00 1.0000 0.3679 0.2431 0.1769 0.1353 0.1069 0.0863
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Table 4.3: Some representative values of i1erfc (x, b)
x\b 0.00 0.25 0.5 0.75 1.00 1.25 1.50
0.00 0.5642 0.3396 0.2507 0.1958 0.1578 0.1300 0.1088
0.01 0.5542 0.3359 0.2483 0.1940 0.1565 0.1289 0.1079
0.02 0.5444 0.3322 0.2458 0.1922 0.1551 0.1278 0.1070
0.03 0.5347 0.3286 0.2434 0.1905 0.1538 0.1268 0.1062
0.04 0.5251 0.3249 0.2410 0.1887 0.1524 0.1257 0.1053
0.05 0.5156 0.3212 0.2385 0.1869 0.1511 0.1246 0.1044
0.06 0.5062 0.3175 0.2361 0.1852 0.1497 0.1236 0.1036
0.07 0.4970 0.3138 0.2337 0.1834 0.1483 0.1225 0.1027
0.08 0.4878 0.3102 0.2312 0.1816 0.1470 0.1214 0.1018
0.09 0.4788 0.3065 0.2288 0.1798 0.1456 0.1204 0.1010
0.10 0.4698 0.3028 0.2264 0.1781 0.1443 0.1193 0.1001
0.15 0.4268 0.2844 0.2142 0.1692 0.1375 0.1139 0.0958
0.20 0.3866 0.2660 0.2021 0.1604 0.1308 0.1086 0.0915
0.25 0.3491 0.2476 0.1899 0.1515 0.1240 0.1033 0.0872
0.30 0.3142 0.2293 0.1778 0.1427 0.1172 0.0979 0.0829
0.35 0.2819 0.2111 0.1656 0.1339 0.1105 0.0926 0.0785
0.40 0.2521 0.1933 0.1535 0.1250 0.1037 0.0872 0.0742
0.45 0.2247 0.1760 0.1415 0.1162 0.0969 0.0819 0.0699
0.50 0.1996 0.1593 0.1297 0.1074 0.0902 0.0766 0.0656
0.55 0.1767 0.1434 0.1182 0.0988 0.0835 0.0712 0.0613
0.60 0.1559 0.1285 0.1071 0.0903 0.0769 0.0659 0.0570
0.65 0.1371 0.1145 0.0965 0.0821 0.0704 0.0607 0.0527
0.70 0.1201 0.1015 0.0865 0.0742 0.0640 0.0556 0.0485
0.75 0.1048 0.0896 0.0771 0.0666 0.0579 0.0506 0.0444
0.80 0.0912 0.0787 0.0683 0.0595 0.0521 0.0458 0.0404
0.85 0.0790 0.0688 0.0602 0.0529 0.0466 0.0412 0.0365
0.90 0.0682 0.0599 0.0528 0.0467 0.0414 0.0368 0.0328
0.95 0.0587 0.0519 0.0461 0.0410 0.0366 0.0327 0.0293
1.00 0.0503 0.0448 0.0400 0.0358 0.0321 0.0289 0.0260
1.50 0.0086 0.0081 0.0075 0.0070 0.0066 0.0061 0.0057
2.00 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0007
2.50 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
3.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 4.4: Some representative values of i2erfc (x, b)
x\b 0.00 0.25 0.5 0.75 1.00 1.25 1.50
0.00 0.2500 0.1839 0.1467 0.1208 0.1015 0.0865 0.0745
0.01 0.2444 0.1806 0.1442 0.1189 0.0999 0.0852 0.0734
0.02 0.2389 0.1772 0.1418 0.1170 0.0984 0.0839 0.0723
0.03 0.2335 0.1739 0.1393 0.1150 0.0968 0.0826 0.0712
0.04 0.2282 0.1707 0.1369 0.1132 0.0953 0.0814 0.0702
0.05 0.2230 0.1674 0.1345 0.1113 0.0938 0.0801 0.0691
0.06 0.2179 0.1642 0.1321 0.1094 0.0923 0.0789 0.0681
0.07 0.2129 0.1611 0.1298 0.1076 0.0908 0.0776 0.0671
0.08 0.2080 0.1579 0.1275 0.1057 0.0893 0.0764 0.0660
0.09 0.2031 0.1549 0.1252 0.1039 0.0878 0.0752 0.0650
0.10 0.1984 0.1518 0.1229 0.1021 0.0864 0.0740 0.0640
0.15 0.1760 0.1371 0.1119 0.0935 0.0794 0.0682 0.0591
0.20 0.1557 0.1234 0.1015 0.0852 0.0726 0.0626 0.0544
0.25 0.1373 0.1105 0.0917 0.0774 0.0663 0.0573 0.0500
0.30 0.1207 0.0986 0.0825 0.0701 0.0602 0.0523 0.0457
0.35 0.1058 0.0876 0.0739 0.0632 0.0546 0.0475 0.0417
0.40 0.0925 0.0775 0.0659 0.0567 0.0492 0.0430 0.0379
0.45 0.0806 0.0683 0.0585 0.0507 0.0442 0.0388 0.0343
0.50 0.0700 0.0599 0.0517 0.0451 0.0395 0.0348 0.0309
0.55 0.0606 0.0523 0.0455 0.0399 0.0352 0.0311 0.0277
0.60 0.0523 0.0455 0.0399 0.0352 0.0312 0.0277 0.0247
0.65 0.0449 0.0395 0.0348 0.0309 0.0275 0.0245 0.0220
0.70 0.0385 0.0341 0.0303 0.0270 0.0241 0.0216 0.0195
0.75 0.0329 0.0293 0.0262 0.0234 0.0211 0.0190 0.0171
0.80 0.0280 0.0251 0.0225 0.0203 0.0183 0.0166 0.0150
0.88 0.0238 0.0214 0.0193 0.0175 0.0159 0.0144 0.0131
0.90 0.0201 0.0182 0.0165 0.0150 0.0137 0.0125 0.0114
0.95 0.0169 0.0154 0.0140 0.0128 0.0117 0.0107 0.0098
1.00 0.0142 0.0130 0.0119 0.0109 0.0100 0.0092 0.0084
1.50 0.0020 0.0019 0.0018 0.0017 0.0016 0.0015 0.0014
2.00 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
2.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 4.5: Some representative values of i3erfc (x, b)
x\b 0.00 0.25 0.5 0.75 1.00 1.25 1.50
0.00 0.0940 0.0764 0.0643 0.0550 0.0477 0.0418 0.0368
0.01 0.0916 0.0746 0.0628 0.0538 0.0467 0.0409 0.0361
0.02 0.0891 0.0728 0.0614 0.0527 0.0457 0.0401 0.0353
0.03 0.0868 0.0710 0.0600 0.0515 0.0447 0.0392 0.0346
0.04 0.0845 0.0693 0.0586 0.0504 0.0438 0.0384 0.0339
0.05 0.0822 0.0676 0.0572 0.0492 0.0428 0.0376 0.0332
0.06 0.0800 0.0660 0.0559 0.0481 0.0419 0.0368 0.0325
0.07 0.0779 0.0643 0.0546 0.0471 0.0410 0.0360 0.0318
0.08 0.0758 0.0627 0.0533 0.0460 0.0401 0.0352 0.0312
0.09 0.0737 0.0612 0.0520 0.0449 0.0392 0.0345 0.0305
0.10 0.0717 0.0596 0.0508 0.0439 0.0383 0.0337 0.0299
0.15 0.0623 0.0524 0.0449 0.0390 0.0342 0.0302 0.0268
0.20 0.0541 0.0459 0.0396 0.0346 0.0304 0.0269 0.0240
0.25 0.0467 0.0401 0.0348 0.0305 0.0269 0.0239 0.0214
0.30 0.0403 0.0348 0.0304 0.0268 0.0238 0.0212 0.0190
0.35 0.0346 0.0302 0.0265 0.0235 0.0209 0.0187 0.0168
0.40 0.0297 0.0261 0.0230 0.0205 0.0183 0.0164 0.0148
0.45 0.0254 0.0224 0.0199 0.0178 0.0160 0.0144 0.0130
0.50 0.0216 0.0192 0.0172 0.0154 0.0139 0.0125 0.0114
0.55 0.0184 0.0164 0.0147 0.0133 0.0120 0.0109 0.0099
0.60 0.0155 0.0140 0.0126 0.0114 0.0104 0.0094 0.0086
0.65 0.0131 0.0119 0.0107 0.0098 0.0089 0.0081 0.0074
0.70 0.0110 0.0100 0.0091 0.0083 0.0076 0.0070 0.0064
0.75 0.0092 0.0084 0.0077 0.0071 0.0065 0.0060 0.0055
0.80 0.0077 0.0071 0.0065 0.0060 0.0055 0.0051 0.0047
0.85 0.0064 0.0059 0.0055 0.0050 0.0046 0.0043 0.0040
0.90 0.0053 0.0049 0.0046 0.0042 0.0039 0.0036 0.0034
0.95 0.0044 0.0041 0.0038 0.0035 0.0033 0.0030 0.0028
1.00 0.0036 0.0034 0.0031 0.0029 0.0027 0.0025 0.0024
1.50 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 0.0003
2.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000



79

Table 4.6: Some representative values of i4erfc (x, b)
x\b 0.00 0.25 0.5 0.75 1.00 1.25 1.50
0.00 0.0312 0.0268 0.0234 0.0206 0.0183 0.0164 0.0147
0.01 0.0303 0.0261 0.0228 0.0201 0.0179 0.0160 0.0143
0.02 0.0294 0.0253 0.0222 0.0196 0.0174 0.0156 0.0140
0.03 0.0285 0.0246 0.0215 0.0190 0.0169 0.0152 0.0136
0.04 0.0277 0.0239 0.0210 0.0185 0.0165 0.0148 0.0133
0.05 0.0268 0.0232 0.0204 0.0180 0.0161 0.0144 0.0130
0.06 0.0260 0.0226 0.0198 0.0175 0.0156 0.0140 0.0126
0.07 0.0252 0.0219 0.0193 0.0171 0.0152 0.0137 0.0123
0.08 0.0245 0.0213 0.0187 0.0166 0.0148 0.0133 0.0120
0.09 0.0237 0.0207 0.0182 0.0161 0.0144 0.0130 0.0117
0.10 0.0230 0.0200 0.0177 0.0157 0.0140 0.0126 0.0114
0.15 0.0197 0.0173 0.0153 0.0136 0.0122 0.0110 0.0100
0.20 0.0168 0.0148 0.0132 0.0118 0.0106 0.0096 0.0087
0.25 0.0142 0.0126 0.0113 0.0102 0.0092 0.0083 0.0076
0.30 0.0121 0.0108 0.0097 0.0087 0.0079 0.0072 0.0066
0.35 0.0102 0.0092 0.0083 0.0075 0.0068 0.0062 0.0057
0.40 0.0086 0.0078 0.0070 0.0064 0.0058 0.0053 0.0049
0.45 0.0072 0.0065 0.0060 0.0054 0.0050 0.0045 0.0042
0.50 0.0060 0.0055 0.0050 0.0046 0.0042 0.0039 0.0036
0.55 0.0050 0.0046 0.0042 0.0039 0.0036 0.0033 0.0030
0.60 0.0042 0.0039 0.0035 0.0033 0.0030 0.0028 0.0026
0.65 0.0035 0.0032 0.0030 0.0027 0.0025 0.0023 0.0022
0.70 0.0029 0.0027 0.0025 0.0023 0.0021 0.0020 0.0018
0.75 0.0024 0.0022 0.0020 0.0019 0.0018 0.0016 0.0015
0.80 0.0020 0.0018 0.0017 0.0016 0.0015 0.0014 0.0013
0.85 0.0016 0.0015 0.0014 0.0013 0.0012 0.0011 0.0011
0.90 0.0013 0.0012 0.0011 0.0011 0.0010 0.0009 0.0009
0.95 0.0011 0.0010 0.0009 0.0009 0.0008 0.0008 0.0007
1.00 0.0009 0.0008 0.0008 0.0007 0.0007 0.0006 0.0006
1.50 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
2.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 4.7: Some representative values of i5erfc (x, b)
x\b 0.00 0.25 0.5 0.75 1.00 1.25 1.50
0.00 0.0094 0.0083 0.0075 0.0067 0.0061 0.0055 0.0050
0.01 0.0091 0.0081 0.0072 0.0065 0.0059 0.0054 0.0049
0.02 0.0088 0.0078 0.0070 0.0063 0.0057 0.0052 0.0048
0.03 0.0085 0.0076 0.0068 0.0061 0.0056 0.0051 0.0046
0.04 0.0082 0.0073 0.0066 0.0059 0.0054 0.0049 0.0045
0.05 0.0080 0.0071 0.0064 0.0058 0.0052 0.0048 0.0043
0.06 0.0077 0.0069 0.0062 0.0056 0.0051 0.0046 0.0042
0.07 0.0074 0.0066 0.0060 0.0054 0.0049 0.0045 0.0041
0.08 0.0072 0.0064 0.0058 0.0052 0.0048 0.0043 0.0040
0.09 0.0069 0.0062 0.0056 0.0051 0.0046 0.0042 0.0039
0.10 0.0067 0.0060 0.0054 0.0049 0.0045 0.0041 0.0037
0.15 0.0056 0.0051 0.0046 0.0042 0.0038 0.0035 0.0032
0.20 0.0047 0.0043 0.0039 0.0036 0.0033 0.0030 0.0027
0.25 0.0040 0.0036 0.0033 0.0030 0.0028 0.0025 0.0023
0.30 0.0033 0.0030 0.0028 0.0025 0.0023 0.0021 0.0020
0.35 0.0028 0.0025 0.0023 0.0021 0.0020 0.0018 0.0017
0.40 0.0023 0.0021 0.0019 0.0018 0.0016 0.0015 0.0014
0.45 0.0019 0.0017 0.0016 0.0015 0.0014 0.0013 0.0012
0.50 0.0016 0.0014 0.0013 0.0012 0.0012 0.0011 0.0010
0.55 0.0013 0.0012 0.0011 0.0010 0.0010 0.0009 0.0008
0.60 0.0010 0.0010 0.0009 0.0008 0.0008 0.0007 0.0007
0.65 0.0009 0.0008 0.0007 0.0007 0.0007 0.0006 0.0006
0.70 0.0007 0.0007 0.0006 0.0006 0.0005 0.0005 0.0005
0.75 0.0006 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004
0.80 0.0005 0.0004 0.0004 0.0004 0.0004 0.0003 0.0003
0.85 0.0004 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003
0.90 0.0003 0.0003 0.0003 0.0003 0.0002 0.0002 0.0002
0.95 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
1.00 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001
1.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Figure 4.1: The graphical representation of the generalized error function for different val-

ues of b
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Chapter 5

Heat Conduction of a two-Layer System Due to Laser

Source

In this chapter we present an analytical solution to the problem of heating two layer system

using Laplace integral transform method. In Section 5.1, we give some literature review for

the use of laser in heat conduction problem. In Section 5.2, we discuss the mathematical

formulation of the problem. In Section 5.3, we present the closed form solution for the

temperature profile in the thin film and the substrate region. The surface temperature as

well as the temperature profiles for two different materials with different pulse shape and

different laser flux densities are presented in a graphical form in Section 5.4. In Section 5.5,

we give some remarks about this new formulation of the problem.

5.1 Introduction

Lasers have been widely used in the material processing industry for the heat treatment of

metals and semiconductors [1] and [41]. An advantage of laser heating is that the incident

energy can be carefully controlled to limit the heating to a small, localized area with a tem-

85
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perature increase as much as 100 K/s for a few nanoseconds to hundreds of milliseconds

[1]. Laser–material interaction has a considerable interest for many investigator [1], [6],

[11], [12], [33], [50], [52], [53], [54] and [55] for a variety of applications. The problem

has different industrial applications such as laser drilling, machining, and heat treatment

[2], [24], [28], [32], [43] and [49].

Different models and techniques are used to obtain solutions for laser heating of materials

under different boundary conditions. In particular, several authors presented the closed-

form solutions to one dimensional heat conduction in a semi-infinite solid subjected to laser

heating. Each study considered laser source as a definite function of time and position. For

instance, Chaudhry and Zubair [11] considered an instantaneous laser source; however, the

initial temperature profile is an exponentially decaying. They also considered a time depen-

dent source in [54], [55]. Yilbas [52] considered an exponentially varying time dependent

laser source. Laser heating mechanism including evaporation process during laser drilling

of metallic substrates was also investigated analytically by Yilbas et al. [53]. They found

the closed form solution for the temperature rise due to a step input intensity pulse and

determined the drilling efficiency. Also, heat conduction in a moving semi-infinite solid

subjected to a pulse laser irradiation was studied analytically by Modest and Abakians [33].

They obtained a closed form solution for the temperature distribution inside the substrate

material.

The problem of heating a homogenous slab of material subjected to time-dependent laser

irradiance, i.e. q0 = q0(t) was also studied be El-Adawi et al. [17]. They obtained an exact

solution for the temperature distribution of slab by using Fourier series expansion technique.

The rate of melting of a solid slab induced by constant laser irradiance for time interval less

than or equal to the transit time was studied by El-Adawi [16] However, El-Adawi et al.

[18] considered the problem of melting a solid but for time interval greater than or equal to

the transit time. They also investigated the laser heating and melting of a thin film with two
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different time intervals in [19] and [20].

Laser heating of a two-layer system was formulated by El-Adawi et al. [21] using Laplace

transform method where they computed the time required for the melting of the films situ-

ated on a glass substance. In their study they assumed that the laser source is continuously

operating and has a constant value. However, in certain applications of material processing

it is important to expose the materials only for certain time intervals. The objective of our

study is to present an analytical solution for a two-layer system when subjected desired to

have a laser source applied in a time interval [a, b]. This improved formulation enables

us to study the temperature profile of the thin film and substrate under different operating

conditions.

5.2 Mathematical Formulation

In setting up the problem, it is assumed that the incident laser irradiance for a finite time

interval is applied on the front surface of the two-layer system. This system is composed of

a thin film of thickness d on a thick substrate such as glass. The two layers are in perfect

thermal contact. The laser source can be modeled in terms of the Heaviside function, H(t)

such as,

q0[H(t−a)−H(t−b)]. (5.1)

It is important to note that with the introduction of the Heaviside function, one can easily

control the incident radiation in a time interval [a, b]. In actual application some part of

this radiation is absorbed, while the other part is reflected. The absorbed energy flux at the

surface can be simply be written as,

q0A f [H(t−a)−H(t−b)], (5.2)
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Where A f is the absorptance of the thin film, which is normally a temperature independent.

One x− axis normal to the free surface of the considered system , along the direction of

the free surface of the considered system is used to described the problem. In this regard

the boundary x = 0 represents the front surface of the thin film, while x = d represents

the interface between the two layers. For a one dimensional heat flow in the direction of

incident radiation, the heat diffusion equations for both the thin film and substrate can be

written, respectively, as

∂Tf (x, t)
∂ t

= α f
∂ 2Tf (x, t)

∂x2 , t > 0, 0≤ x≤ d; (5.3)

∂Tp(x, t)
∂ t

= αp
∂ 2Tp(x, t)

∂x2 , d ≤ x≤ ∞, (5.4)

where T is the excess temperature with respect to the ambient temperature T0,α is the

normal diffusivity in terms of the thermal conductivity λ , and the heat capacity per unit

volume (pcp). In the present formulation, the physical parameters of the thin film and the

substrate are assumed to be temperature independent.

For the case of no plasma formation at the front surface for the considered values of the

incident laser flux and a negligible energy loss due to radiation and multi-reflections within

the considered system, the system of equations (5.3) and (5.4) is subjected to the following

initial and boundary conditions:

Tf (x,0) = 0 (5.5)

Tp(x,0) = 0 (5.6)

The condition at the free surface x = 0 can be written as,

−λ f
∂Tf

∂x
= q0A f [H(t−a)−H(t−b)]. (5.7)
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The condition at the interface between the thin film and substrate x = d is

Tf (d, t) = Tp(d, t), (5.8)

−λ f
∂Tf (d, t)

∂x
=−λp

∂ Tp(0, t)
∂x

, (5.9)

For the substrate one more condition is given as follows:

Tp(∞, t) = 0. (5.10)

If we take the Laplace transform with respect to the time variable for both equations

(5.3) and (5.4) and applying the boundary conditions (5.5) and (5.6), this results in,

∂ 2Tf (x,s)
∂x2 − s

α f
Tf (x,s) = 0, (5.11)

∂ 2Tp(x,s)
∂x2 − s

αp
Tp(x,s) = 0 (5.12)

where Tf (x,s) and Tp(x,s), denote the Laplace transform of T in the film and substrate

region, respectively. Taking the Laplace transform of the boundary conditions (5.7), (5.8),

(5.9) and (5.10), gives

−λ f
∂Tf (0,s)

∂x
=

q0A f

s
[exp(−as)− exp(−bs)] (5.13)

Tf (d,s) = Tp(0,s) (5.14)

−λ f
∂Tf (d,s)

∂x
=−λp

∂Tp(0,s)
∂x

(5.15)

Tp(∞,s) = 0. (5.16)
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The solutions of equations (5.11) and (5.12) can be written in the form

T f (x,s) = c1 exp
(√

s/α f x
)

+ c2 exp
(
−

√
s/α f x

)
(5.17)

T p(x,s) = c3 exp
(√

s/αp x
)

+ c4 exp
(
−

√
s/αp x

)
. (5.18)

Condition (5.16) gives c3 = 0; therefore, the substrate temperature distribution is written

as,

T p(x,s) = c4 exp
(
−

√
s/αp x

)
. (5.19)

The boundary conditions (5.13), (5.14), and (5.15), when used in equations (5.17), and

(5.19), respectively, result in the following equations:

−λ f

√
s

α f
(c1− c2) =

q0A f

s
[exp(−as)− exp(−bs)], (5.20)

c4 = c2 exp
(
−

√
s/α f d

)
+ c1 exp

(√
s/α f d

)
., (5.21)

c4
λp

λ f

√
s/αp√
s/α f

+ c2 exp
(
−

√
s/α f d

)
− c1 exp

(√
s/α f d

)
. (5.22)

Solving the above algebraic equations, we get the constants, c1,c2 and c4 in the following

form:

c1 =
B q0 A f exp

(−2
√

s/α f d
)
[exp(−as)− exp(−bs)]

λ f s
√

s/α f
[
1−Bexp

(−2
√

s/α f d
)] (5.23)

c2 =
q0 A f [exp(−as)− exp(−bs)]

λ f s
√

s/α f
[
1− B exp

(−2
√

s/α f d
)] (5.24)

c4 =
2q0 A f [exp

(−√
s/α f d

)
[exp(−as)− exp(−bs)]

λ f s
√

s/α f (1+ ε)
[
1−B exp

(−2
√

s/α f d
)] , (5.25)
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Where

ε =
λp

λ f

√
s/αp√
s/α f

=
λp

λ f

√α f√αp
, (5.26)

and

B =
1− ε
1+ ε

. (5.27)

Thus the temperature distribution can be written in the form:

T f (x,s) =

{
q0 A f [exp(−as)− exp(−bs)]

λ f s
√

s/α f
[
1−Bexp

(−2
√

s/α f d
)]

}
×

{
Bexp

[
−

√
s/α f (2d− x)

]
+ exp

(
−

√
s/α f x

)}
(5.28)

and

T p(x,s) =
2q0 A f exp

[−√
s/α f

(
x
√

α f /αp +d
)]

[exp(−as)− exp(−bs)]

λ f s
√

s/α f (1+ ε)
[
1−Bexp

(−2
√

s/α f d
)] (5.29)

Using the well known geometric series identity [40]

1
1−a

=
∞

∑
n=0

an, |a|< 1, (5.30)

we can write

1
1−Bexp

(−2
√

s/α f d
) =

∞

∑
n=0

[
Bn exp

(
−2n

√
s/α f d

)]

( |Bexp(−2
√

s/α f d)|< 1) (5.31)
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Substituting equation (5.31) into equations (5.28) and (5.29), we get

T f (x,s) =
∞

∑
n=0

q0A f [exp(−as)− exp(−bs)]
λ f s

√
s/α f

×

{
Bn+1exp

(
−

√
s/α f [2(n+1)d− x]

)
+Bnexp

[
−

√
s/α f (2nd + x)

]}
, (5.32)

and

T p(x,s) =

2q0 A f [exp(−as)− exp(−bs)]
λ f s

√
s/α f (1+ ε)

∞

∑
n=0

Bnexp
(
−

√
s/α f

[
(1+2n)d + x

√
α f /αp

])
. (5.33)

If we let

F(s) =
1

s
√

s/α f
exp

(
−

√
s/α f x

)
, (5.34)

then the inverse Laplace transform of F(s) is given by [12]

L−1{F(s)}= 2

√
α f t
π

exp
( −x2

4α f t

)
− xerfc

(
x√

4α f t

)
x > 0, α f > 0 (5.35)

Substituting equation (5.35) into equations (5.32) and using the well known formula

L{ f (t−a)H(t−a)}= exp(−as)F(s), (5.36)

we get after some manipulation,
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Tf (x, t) =
∞

∑
n=0

q0A f

λ f
Bn+1

(√
4α f (t−a)

π
exp

{
− [2d(1+n)− x]2

4α f (t−a)

}

−[2d(1+n)− x]erfc

(
2d(1+n)− x√

4α f (t−a)

))
H(t−a)

+
∞

∑
n=0

q0A f

λ f
Bn

(√
4α f (t−a)

π
exp

[
−(2nd + x)2

4α f (t−a)

]

(−2nd + x)erfc

(
(2nd + x)√
4α f (t−a)

))
H(t−a)

−
∞

∑
n=0

q0A f

λ f
Bn+1

(√
4α f (t−b)

π
exp

{
− [2d(1+n)− x]2

4α f (t−b)

}

−[2d(1+n)− x]erfc

(
2d(1+n)− x√

4α f (t−b)

))
H(t−b)

−
∞

∑
n=0

q0A f

λ f
Bn

(√
4α f (t−b)

π
exp

[
−(2nd + x)2

4α f (t−b)

]

−(2nd + x)erfc

(
(2nd + x)√
4α f (t−b)

))
H(t−b) (5.37)

Similarly, substituting equation (5.35) into equation (5.33), results in
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Tp(x, t) =
∞

∑
n=0

2q0A f

λ f

Bn

1+ ε

(√
4α f (t−a)

π
exp

{
−[

x
√

α f /αp +(1+2n)d
]2

4α f (t−a)

}

−
[
x
√

α f /αp +(1+2n)d
]

erfc

{[
x
√

α f /αp +(1+2n)d
]

√
4α f (t−a)

})
H(t−a)

−
∞

∑
n=0

2q0A f

λ f

Bn

1+ ε

(√
4α f (t−b)

π
exp

{
−[

x
√

α f /αp +(1+2n)d
]2

4α f (t−b)

}

−
[
x
√

α f /αp +(1+2n)d
]

erfc

{[
x
√

α f /αp +(1+2n)d
]

√
4α f (t−b)

})
H(t−b). (5.38)

By substituting x = d into equation (5.37) and equation (5.38) one can easily confirm that

condition (5.8) is satisfied.

It is interesting to examine the time-dependent temperature distribution of the front sur-

face by substituting x = 0 in equation (5.37). This result in,

Tf (0, t) =
∞

∑
n=0

q0A f

λ f
Bn+1

(√
4α f (t−a)

π
exp

{
− [2d(1+n)]2

4α f (t−a)

}

−[2d(1+n)− x]erfc

(
2d(1+n)√
4α f (t−a)

))
H(t−a)

+
∞

∑
n=0

q0A f

λ f
Bn

(√
4α f (t−a)

π
exp

[
− (2nd)2

4α f (t−a)

]

−(2nd)erfc

(
2nd√

4α f (t−a)

))
H(t−a)

−
∞

∑
n=0

q0A f

λ f
Bn+1

(√
4α f (t−b)

π
exp

{
− [2d(1+n)]2

4α f (t−b)

}

−[2d(1+n)]erfc

(
2d(1+n)√
4α f (t−b)

))
H(t−b)
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−
∞

∑
n=0

q0A f

λ f
Bn

(√
4α f (t−b)

π
exp

[
− (2nd)2

4α f (t−b)

]

−(2nd)erfc

(
(2nd)√

4α f (t−b)

))
H(t−b). (5.39)

We note that if we take a = 0 and letting b→ ∞, this implies a continuously operating laser

source. If we substitute these values in equations (5.37) and (5.38), the present solution

exactly reduces to the temperature distribution for the film and substrate given by El-Adawi

et al. [21].

5.3 Results and Discussion

In this section, as illustrative examples, we give some computations for the following two-

layer systems (that are studied by E-Adawi [21] for a continuously operating constant heat

source) by controlling the time interval of the source. In this regard, we have considered

the following examples: aluminum–glass, copper–glass for a = 0 and different values time

b. Each system is subjected to a laser flux of densities 1013 and 1012Wm−2 and the metal

thickness is taken to be 5µ in all the cases. The thermo-physical properties for the chosen

material are tabulated in Table 5.1.

Table 5.1: Thermo-physical properties of the substrate and thin film [15] and [45]
Element ρ λ α cp A f Tm

(Kgm−3) (Wm−1K−1) (m2s−1) (JKg−1K−1) (K)
Aluminum 2700 238 8.410 × 10−5 896 0.056 633

Copper 8954 386 11.25×10−5 383 0.001 1056
Glass 2707 0.76 0.035×10−5 800

The temperature response for the thin film, Tf (x, t) and the substrate for different bound-

ary conditions are presented in the following paragraphs.

Figure 5.2 presents a typical surface temperature response for a thin Aluminum film
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when subjected to continuously operating constant laser source (b → ∞). As expected, we

see that surface temperature of the thin film increases with time. The temperature reaches

the melting temperature of Aluminum in 67.26×10−11 seconds for an exposed laser source

of 1013W m−2. By controlling the laser exposure up to b = 40×10−11 seconds, Figure 5.3

shows that the surface temperature of thin film, never exceeded the melting temperature. It

first increases logarithmically up to the cutoff point of the source and then decreases expo-

nentially. Thus, clearly indicating that the desired surface temperature can be controlled by

adjusting the cutoff time of the source.

Figure 5.4 shows the temperature distribution of thin film as a function of the distance

from the surface for the situation when the time reaches the melting time, tm = 67.26×
10−11 seconds for various values of exposure time b. We find that temperature in the film

decreases exponentially with distance for almost all exposure times. These plots for surface

temperature, temperature distribution in the thin film and substrate are also presented in

Figs. 5.5 - 5.8 for the reduced laser source. It is important to note that for large exposure

time in the case of reduced laser source of 1012Wm−2 , there is a temperature distribution

in the substrate; that is for x > 5×10−6 m; however for less exposure time (refer to Figure

5.4), there is no heat penetration in the substrate region.

Figures 5.8–5.13 show the temperature distribution in the thin film and substrate in the

case of copper-glass combination for laser flux of 1013 and 1012W m−2 respectively. These

figures (refer to Figs. 5.10 and 5.13) clearly demonstrate that there is a heat penetration in

the substrate (copper) because of large exposure time when compared to Aluminum sub-

strate. In addition, energy storage effect is clearly visible in Figure 5.13 because of large

value of volumetric heat capacity of copper as well as large exposure time.
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Figure 5.1: The two-layer system consist of a thin film of thickness d and a glass substrate
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Figure 5.2: The front surface temperature Tf (0, t) against the exposure time t for the two-

layer system aluminum on glass where tm = 67.26×10−11 [s] and q0 = 1013Wm−2.
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Figure 5.3: The front surface temperature Tf (0, t) against the exposure time t for the two-

layer system aluminum on glass where tm = 67.26×10−11 [s] and q0 = 1013Wm−2.
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Figure 5.4: Temperature profile within a two-layer system aluminum on glass for different

cutoff points b, where tm = 67.26×10−11 [s] and q0 = 1013Wm−2.
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Figure 5.5: The front surface temperature Tf (0, t) against the exposure time t for the two-

layer system aluminum on glass where tm = 67.26 ns and q0 = 1012Wm−2.
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Figure 5.6: The front surface temperature Tf (0, t) against the exposure time t for the two-

layer system aluminum on glass where tm = 67.26 ns and q0 = 1012Wm−2.
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Figure 5.7: Temperature profile within a two-layer system aluminum on glass for different

cutoff points b, where tm = 67.26 ns and q0 = 1012Wm−2.
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Figure 5.8: The front surface temperature Tf (0, t) against the exposure time t for the two-

layer system copper on glass where tm = 1.85 µs and q0 = 1013Wm−2.
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Figure 5.9: The front surface temperature Tf (0, t) against the exposure time t for the two-

layer system copper on glass where tm = 1.85 µs and q0 = 1013Wm−2.

0 2 4 6 8
0

200

400

600

800

1000

1200

Distance, x × 106 [m]

Te
m

pe
ra

tu
re

, [
K

]

b→ ∞
b = 1.75 µ s
b = 1.65 µ s
b = 1.55 µ s
b = 1.45 µ s

Figure 5.10: Temperature profile within a two-layer system copper on glass for different

cutoff points b, where tm = 1.85 µs and q0 = 1013Wm−2.
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Figure 5.11: The front surface temperature Tf (0, t) against the exposure time t for the two-

layer system copper on glass where tm = 23.04 µs and q0 = 1012Wm−2.
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Figure 5.12: The front surface temperature Tf (0, t) against the exposure time t for the two-

layer system copper on glass where tm = 23.04 µs and q0 = 1012Wm−2.
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Figure 5.13: Temperature profile within a two-layer system copper on glass for different

cutoff points b, where tm = 23.04 µs and q0 = 1012Wm−2.

5.4 Concluding Remarks

The analytical solution of a two-layer material problem subjected to a laser source is fur-

ther extended by controlling the exposure time of the laser source. It is demonstrated that

through mathematical analysis and graphical results that Heaviside function seems to be

very useful to control the exposure time. In the graphical results for Aluminum-glass and

Copper-glass combination, we find that laser exposure time and strength can help us con-

trol the heat penetration in the glass if needed. It is expected that the analytical benchmark

solutions presented in this paper will be very useful for further numerical studies of such

problems, in which the temperature dependency of the material properties is an important

issue.



Chapter 6

Heat Conduction in an infinite Solid when Subjected to an

Instantaneous Laser Source

In this chapter we study another heat conduction problem. The problem of heating a semi–

infinite solid is introduced in Section 6.1. The closed form solution of the problem is given

in terms of two special functions E(x, t) and F(x, t). These functions are introduced in

Section 6.2. The mathematical formulation of the problem is given in Section 6.3. In section

6.4 we discussed some special cases of practical interest. The graphical representation of

the temperature profile and heat flux distribution are provided in Section 6.5 for different

time-levels.

6.1 Introduction

The change of state problems that occurs during the emission or absorption of heat are

classified as one of the most important groups of problems. Zubair and Chaudhry [56] study

the problem of heating a semi–infinite region x > 0 initially at a constant temperature with

mixed boundary conditions. They provide an analytical solution to the problem in terms of

104
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E(x, t) and F(x, t) special functions. Moreover, they investigate the temperature and heat

flux profiles for a semi–infinite solid when subjected to spatially decaying, instantaneous

laser source in [54]. In the present work we study the problem of heat conduction in a

semi–infinite solid when subjected to spatially decaying instantaneous laser source applied

at different n–time levels. We provide an analytical solution of the temperature and heat flux

profiles. The present work clearly extend the solution provided by Zubair and Chaudhry in

[54].

6.2 The Functions E(x, t) and F(x, t)

A considerable number of change of state problem were solved explicitly in terms of E(x, t)

and F(x, t) functions [56], [10]. These functions are defined by:

Definition 6.2.1.

E(x, t) := exp
(
x+ x2t

)
erfc

(
1

2
√

t
+ x

√
t
)

, (6.1)

F(x, t) := erfc
(

1
2
√

t

)
− E(x, t) (6.2)

Several properties of these functions follow from that of the complementary error func-

tion. Some of these properties [10] are as follows:

E(x, t)+F(x, t) = erfc
(

1
2
√

t

)
, (6.3)

E(x,∞)+F(x,∞) = 1, (6.4)

E(0, t) = erfc
(

1
2
√

t

)
, (6.5)

F(0, t) = 0, (6.6)

F(x, t) = E(0, t)−F(x, t). (6.7)
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Some useful differentiation formulas involving these functions include:

∂
∂x

{
E

(
bx,

αt
x2

)}
= bE

(
bx,

αt
x2

)
− 1√

π α t
exp

(
− x2

4αt

)
, (6.8)

∂
∂x

{
F

(
bx,

αt
x2

)}
=−bE

(
bx,

αt
x2

)
, (6.9)

∂
∂ t

{
E

(
bx,

αt
x2

)}
= α

[
b2E

(
bx,

αt
x2

)
+

(
x

2
√

π(αt)3/2 −
b√

π α t

)
exp

(
− x2

4αt

)]
,

(6.10)

∂
∂ t

{
F

(
bx,

αt
x2

)}
= αb

[
1√
παt

exp
(
− x2

4αt

)
−bE

(
bx,

αt
x2

)]
. (6.11)

These functions have the useful inverse Laplace transform representation [8, p. 495]

E
(

bx,
αt
x2

)
= L−1





exp
(
−x

√
s/α

)

√
s
(√

s+b
√

α
) ; t



 , (6.12)

and

F
(

bx,
αt
x2

)
= L−1

{(
1
s
− 1

s+b
√

α s

)
exp

(
−x

√
s/α

)
; t

}
(x≥ 0). (6.13)

It is to be noted that E
(

bx, αt
x2

)
and F

(
bx, αt

x2

)
are solutions to the heat equation

∂ 2T
∂x2 =

1
α

∂T
∂ t

. (6.14)
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6.3 Mathematical Formulation

The heat conduction equation describing the temperature distribution in a semi-infinite,

homogeneous and isotropic body with an energy source term is given by [8], [5]

ρ Cp
∂T
∂ t

= λ
∂ 2T
∂x2 +q′′′. (6.15)

We assume that at instants t = 0,1,2 . . . ,n−1, there is a sudden exposure of laser radiation

which is absorbed partially in the surface layers followed by an exponential decay with

position in the material itself. This is typically true for organic materials [42], in which the

absorption coefficients is considerably smaller and the energy is deposited over a greater

thickness. So, the energy source term in Equation 6.15 may be modeled as

q′′′(x, t) = I0µ(1−R)e−µ x

[
n−1

∑
i=0

δ (t−di)

]
. (6.16)

Where I0 is the radiation intensity at the surface, R is the surface reflectance, µ is the ma-

terial absorption coefficient, and this model assumes no spatial variation of I0 in the plane

normal to the beam and di = i, i = 0,1, ...,n−1 are the n−time levels.

T (x,0) = Ts, (6.17)

−λ
∂T (0, t)

∂x
= h [T∞−T (0, t)] (6.18)

∂T (∞, t)
∂x

= 0 (6.19)
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Defining θ as the temperature rise above the initial temperature θ = (T −Ts) and substitut-

ing in the above equations, result in

∂θ
∂ t

= α
∂ 2θ
∂x2 +

(1−R)
ρ Cp

I0(t)µ e−µ x

[
n−1

∑
i=0

δ (t−di)

]
(6.20)

∂θ(0, t)
∂x

+
h
λ

[(T∞−Ts)−θ(0, t)] = 0 (6.21)

∂θ(∞, t)
∂x

= 0 (6.22)

Taking the Laplace transforms of Equations 6.20, 6.21 and 6.22 with respect to t and rear-

ranging the terms we get

∂ 2θ̄(x,s)
dx2 −

( s
α

)
θ̄(x,s) =−(1−R)

α ρ Cp
Ī0(s)µ e−µ x

[
n−1

∑
i=0

e−dis

]
, (6.23)

dθ̄(0,s)
dx

+
h
λ

[
(T∞−Ts)

s
− θ̄(0,s)

]
= 0, (6.24)

dθ̄(∞,s)
dx

= 0. (6.25)

The general solution of Equation 6.23 can be expressed as

θ̄(x,s) = C1 exp
(
−x

√( s
a

))
+C3

exp(−µx)
[
∑n−1

i=0 e−dis
]

s−b2 (6.26)

Where

C3 =
(1−R)µI0

ρ Cp
and b2 = α µ2

To determine C1, we use the transformed boundary condition

dθ̄(0,s)
dx

+
h
λ

[
(T∞−Ts)

s
− θ̄(0,s)

]
= 0
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⇒−C1

√
s
α
− µ C3

[
∑n−1

i=0 e−dis
]

s−b2 +
h
λ

[
(T∞−Ts)

s
−C1−

C3
[
∑n−1

i=0 e−dis
]

s−b2

]
= 0

⇒C1

[
−

√
s
α
− h

λ

]
+

h
λ

[
(T∞−Ts)

s

]
−C3

[
n−1

∑
i=0

e−dix

][
µ + h

λ
s−b2

]
= 0

⇒C1

[
−

√
s
α
− h

λ

]
=

h
λ

[
(T∞−Ts)

s

]
−C3

[
n−1

∑
i=0

e−dix

][
µ + h

λ
s−b2

]

⇒C1 =
h
λ

[
T∞−Ts)

s

]

[√ s
α + h

λ
] −C3

[
n−1

∑
i=0

e−dis

]


µ+ h
λ

s−b2[√ s
α + h

λ
]



⇒C1 =
(

T∞−Ts

s

)
h
√

α
λ
√

s+h
√

α
−C3

[
n−1

∑
i=0

e−dis

]
µλ +h

λ (s−b2)
λ
√

α
λ
√

s+h
√

α

If we let

a =
h
√

α
λ

,A1 =
h
√

α
λ

(T∞−Ts) and A2 =−C3
√

α
(

µ +
h
λ

)
.

We get,

C1 =
A1

s(
√

s+a)
+

A2

[
n−1

∑
i=0

e−dis

]

(s−b2)(
√

s+a)
.

This result in,

θ(x,s) =
A1exp(−x

√ s
α )

s(
√

s+a)
+

A2exp(−x
√ s

α )
n−1

∑
i=0

e−dis

(s−b2)(
√

s+a)
+

C3exp(−µx)
n−1

∑
i=0

e−dis

s−b2 (6.27)
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Now, using the identity

1
(x+a)(x+b)(x+ c)

=
1

(b−a)(c−a)

[
1

x+a
− 1

x+ c

]
+

1
(b−a)(b− c)

[
1

x+b
− 1

x+ c

]
,

the second term in (6.27) can be simplified. Indeed,

1
(s−b2)(

√
s+a)

=
1

(
√

s−b)(
√

s+b)(
√

s+a)

=
1

2b(b+1)

[
1√

s−b
− 1√

s+a

]
+

1
2b(b−a)

[
1√

s+b
− 1√

s+a

]

=
1

2b(b+1)
√

α
1√ s

α − b√
α

+
1

2b(b−a)
√

α
1√ s

α + b√
α

− 1√
α

[
1

2b(b+a)
+

1
2b(b−a)

]
1√ s

α + b√
α

.

Letting

A11 =
A1√

α
, A21 =

A2

2b(b+1)
√

α
, A22 =

A2

2b
√

α(b−a)
,

A23 =
−A2√

α

[
1

2b(b+1)
+

1
2b(b−a)

]
, a1 =

a√
α

and b1 =
b√
α

.
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So θ(x,s) can be written in the following form:

θ(x,s) =
A11exp

(−x
√ s

α
)

s(
√

s+a)
+

A21exp(−x
√ s

α )
n−1

∑
i=0

e−dis

(√ s
α −b1

)

+

A22exp(−x
√ s

α )
n−1

∑
i=0

e−dis

(√ s
α +b1

)

+

A23exp(−x
√ s

α )
n−1

∑
i=0

e−dis

(√ s
α +a1

) +

C3exp(−µx)
n−1

∑
i=0

e−dis

s−b2 . (6.28)

Taking the inverse Laplace Transform of (6.28), we get

θ(x, t) =
A11

a1

[
erfc

(
x

2
√

α t

)
− exp

(
a1x+αa2

1t
)

erfc
(

x
2
√

αt
+ a1

√
αt

)]

+A21

n−1

∑
i=0





√(
α

π(t−di)

)
exp

(
−x2

4α(t−di

)
+αb1exp

(−b1x+αb2
1(t−di)

)

×erfc
(

x
2
√

α(t−di)
−b1

√
α(t−di)

)





H(t−di)

+A22

n−1

∑
i=0





√(
α

π(t−di)

)
exp

(
−x2

4α(t−di)

)
−αb1exp

(
b1x+αb2

1(t−di)
)

×erfc
(

x
2
√

α(t−di)
+b1

√
α(t−di)

)





H(t−di)

+A23

n−1

∑
i=0





√(
α

π(t−di)

)
exp

(
−x2

4α(t−di)

)
−αa1exp

(
a1x+αa2

1(t−di)
)

×erfc
(

x
2
√

α(t−di)
− a1

√
α(t−di)

)

+C3 exp
(−µx+b2(t−di)

)





H(t−di).

(6.29)
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Substituting the constants A11,A21,A22,A23,a1,b1 and b we get

θ(x, t) = (T∞−Ts)
[

erfc
(

x
2
√

αt

)
− exp

(
hx
λ

+
αh2t
λ 2

)
erfc

(
x

2
√

α t
+

h
√

αt
λ

)]

+C3

n−1

∑
i=0

[{
−1

2
exp(−µx+αµ2(t−di))erfc

(
x

2
√

α(t−di)
−µ

√
α(t−di)

)}

+

{
1
2

(
µ + h

λ
µ− h

λ

)
exp

(
µx+αµ2(t−di)

)
erfc

(
x

2
√

α(t−di)
+ µ

√
α(t−di)

)}

−
{

h
λ

µ− h
λ

exp
(

hx
λ

+
αh2

λ
(t−di)

)
erfc

(
x

2
√

α(t−di)
+

h
λ

√
α(t−di)

)}

+ exp
(−µx+αµ2(t−di)

)]
H(t−di).

Substituting for C3 and rewriting θ(x, t) in terms of E(x, t) function, we get

θ(x, t) = (T∞−Ts)
[

erfc
(

x
2
√

αt
−E

(
hx
λ

,
αt
x2

))]
− I0µ(1−R)

QCp
×

n−1

∑
i=0





E
(
−µx, α (t−di)

x2

)
− (µ+ h

λ )
(µ− h

λ )E
(

µx, α(t−di)
x2

)
+

(
2h
λ

µ− h
λ

)
E

(
hx, α(t−di)

x2

)
− exp

(−µx+αµ2(t−di
)





H(t−di) . (6.30)

Using the following formulas for differentiation,

d
dx

[erfc(x)] =
−2√

π
exp(−x2)

and
∂
∂x

{
E(bx),

αt
x2

}
= bE

(
bx,

αt
x2

)
− 1√

παt
exp

(−x2

4αt

)
.
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We can calculate the Heat flux at any x that is;

q′′x,1 =−λ
∂T
∂x

= h(t∞−Ts)E
(

hx
λ

,
αt
x2

)
− I0µ(1−R)

2ρCp
×

n−1

∑
i=0





E
(
−µx, α(t−di)

x2

)
+ (µ+ h

λ )
(µ− h

λ )E
(

µx, α(t−di)
x2

)

− 2( h
λ )2

µ(µ− h
λ )E

(
hx
λ , α(t−di)

x2

)
−2exp

(−µx+aµ2(t−d1
)





H(t−di). (6.31)

The temperature distribution and the heat flux may be simplified by introducing dimension-

less variables θ1,Q1,Fi,Bi,B0 and X . To get

θ1 = erfc
(

1
2
√

F0

)
−E(Bi,F0)

−B0

n−1

∑
i=0

{
E(−X ,Fi)− (X +Bi)

X −Bi)
E(X ,Fi)+

(
2Bi

X −Bi

)
E(Bi,Fi)

−2exp(−X +X2Fi)
}

H(Fi). (6.32)

and

Q1 = E(Bi,F0)− XB0

Bi

n−1

∑
i=0

{
E(−X ,Fi)+

(X +Bi)
X−Bi)

E(X ,Fi)

− 2Bi2

X(X −Bi)
E(Bi,Fi)−2exp(−X +FiX2)

}
H(Fi), (6.33)
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where

θ1 =
θ(x, t)
T∞−Ts

=
T (x, t)−Ts

T∞−Ts
,

Fi =
a(t−di)

x2 ,di = i,

Bi =
hx
λ

,

B0 =
I0µ(1−R)

2ρCp(T∞−Ts)
,

X = µx,

and

Q1 =
q′′x,1

h(T∞−Ts)
=

−λ ∂T
∂x

h(T∞−Ts)
.

6.4 Special Cases

The dimensionless wall temperature and heat flux can be determined by evaluating (6.32)

and (6.33) at
1
Fi

= 0,Bi = 0andX = 0. However, the products

βi =
√

FiX =
√

µ2α(t−di),

ηi =
√

FiBi =
h
√

α(t−di)
λ

,

ξ =
X
Bi

=
µλ
h

.

remain finite, because the geometric distance has been suppressed. For this reason, the

dimensionless temperature and heat flux at the wall are given by the following simplified

equations
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θ11 = 1− exp
(
η2

1
)

erfc(η1)

−B0

n−1

∑
i=0





exp
(
β 2

i
)

erfc(−βi)−
(

ξ+1
ξ−1

)
exp

(
β 2

i
)

erfc(βi)

+
(

2
ξ−1

)
exp

(
η2

i
)

erfc(ηi)−2exp
(
β 2

i
)





H (Fi) , (6.34)

and

Q11 = 1− exp
(
η2

1
)

erfc(η1)

−B0ξ
n−1

∑
i=0





exp
(
β 2

i
)

erfc(−βi)+
(

ξ+1
ξ−1

)
exp

(
β 2

i
)

erfc(βi)

−
(

2
ξ (ξ−1)

)
exp

(
η2

i
)

erfc(ηi)−2exp
(
β 2

i
)





H (Fi) . (6.35)

We note that if α(t − di) is sufficiently small, the diffusion effects are not important. In

particular as λ → 0, we have ηi → ∞ and βi → 0. This gives

θ111 = 1.

Q111 = 0.

For sufficiently small time or large value of ′′X ′′ the dimensionless temperature and heat

flux distribution in a semi-infinite solid can be determined by evaluating (6.32) and (6.33)

as Fi → 0. This results in

θ12 = 2nB0 exp(−X),

Q12 =
2nXB0

Bi
exp(−X).
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We note that for the case of no heat generation in the solid, the reduced temperature and

heat flux can be determined by evaluating (6.32) and (6.33) at X = 0,B0 = 0 this gives

θ13 = erfc
(

1
2
√

Fi

)
−E(Bi,F1),

and

Q13 = E(Bi,F1).

Another important solution can be recovered from the present analysis for the case of con-

stant surface temperature, that is, substituting 1
h = 0 and T∞ = Ts in (6.30) and (6.31). This

gives

θ ∗1 =
n−1

∑
i=0

{−E(−X ,Fi−E(X ,Fi)+2exp
(−X +FiX2)}H(Fi) (6.36)

and

Q∗
1 =

n−1

∑
i=0

{−E(−X ,Fi +E(X ,Fi)+2exp
(−X +FiX2)}H(Fi). (6.37)

where

θ ∗1 =
2ρ Cpθ(x, t)
I0 µ(1−R)

=
2ρ Cp(T (x, t)−Ts)

I0 µ(1−R)
,

and

Q∗
1 =

2ρCp q
′′
x,1

I0 µ2λ (1−R)
=

2ρCp

(
−λ ∂T

∂x

)

I0 µ2λ (1−R)
.

The graphical representation of equations (6.32), (6.33), (6.34), (6.35), (6.36) and (6.37) is

shown in the next section for different time levels.
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6.5 Graphical Representations

The graphical representations of equations (6.32) and (6.33) are shown in Figures 6.1–

6.2 for different time levels. In these figures reduced temperature and heat flux solutions

are presented as a function of dimensionless time parameter F0, for various values of the

dimensionless distance X . All the curves shown in these figures are drawn for dimensionless

energy absorption B0 = 100.0, and the Biot number Bi = 1.0. We note that the reduced

temperature plots ( refer to Fig. 6.1) are represented by characteristic Gaussian-type curves.

On the other hand, the reduced heat flux plots (refer to Fig. 6.2) illustrate that there is a

minimum value of the heat flux at F0 ≈ 1.5 for n = 1. However, if n is increased we observe

that the minimum value occurs at F0 that approaches 1.

Figures 6.3 and 6.4 represent the dimensionless temperature and heat flux at the wall in

terms of dimensionless parameter ξ and η , for B0 = 100.0 and β = 1.00. We note that for

the case of n = 1 the reduced temperature and heat flux plots indicate that at η ≈ 1 the effect

of dimensionless parameter ξ has been suppressed. However, η is getting smaller than one

as the number of pulses is increased. Also it can be seen from these figures that maximum

reduced temperatures occur as η approaches zero, but the reduced heat flux increases as η

increases.

Figures 6.4 and 6.5 give the graphical representations of equations (6.36) and (6.37). In

these figures, the reduced temperature and heat flux are presented in terms of F0 and X . We

note that the temperature plots shown in Fig.6.5 are also represented by the characteristic

Gaussian-type curves, and both the temperature and heat flux decreases (in proportional to

n) with the increase in the dimensionless time parameter F0, Moreover, we notice that the

initial temperature increases as we increase the number of pulses.
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Figure 6.1: Reduced temperature as a function of reduced time and distance for B0 = 100

and Bi = 1.00
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Figure 6.2: Reduced heat flux as a function of reduced time and distance for B0 = 100 and

Bi = 1.00
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Figure 6.6: Reduced heat flux as a function of reduced time and distance for the case of

constant surface temperature



Chapter 7

Table of Indices

Table 7.1: Subscripts for Chapters 5 and 6
f film layer
p substrate layer
11 at the wall
111 at the wall when diffusion effects are not important
12 sufficiently small time
13 no heat generation case
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Table 7.2: Nomenclature for Chapters 5 and 6
A f absorption coefficient
α thermal diffusivity [m2s−1]
B dimensionless parameter
ε dimensionless parameter
cp specific heat [Jkg−1K−1]
λ thermal conductivity [Wm−1K−1]
d thickness of thin film [m]
λ ′ wavelength [microns]
q0 laser flux [wm−2]
ρ density [kgm−3]
s Laplace transform variable
T excess temperature [K]
t time variable [s]
tm critical time required to initiate melting [s]
x spatial variable [m]
Bi Biot number
B0 dimensionless energy absorption
F0 Fourier number
h convective heat transfer coefficient [W/m2.K]
I0 energy released by laser source [J/m2]
Q1 dimensionless heat flux
q′′ heat flux [W/m2]
q′′′ rate of energy generation per unit volume [W/m3]
R surface reflectance
X dimensionless distance
θ1 dimensionless temperature
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