

 iii

 DEDICATION

In the Name of Allah, the Most Gracious, the Most Merciful.

To

My parents, who opened the way for me to success

 iv

ACKNOWLEDGEMENT

All praise be to Allah, Subhanahu-wa-Ta’ala, for his limitless blessing and guidance.

May Allah bestow peace on his prophet, Muhammad (Peace and blessing of Allah be

upon him) and his family.

All my appreciation and thanks to my thesis advisor, Dr. Basem S. Al-Madani, for his

guidance and help all the way till the completion of this thesis.

I would like also to thank my thesis committee members, Dr. Alaaeldin Amin and Dr.

Zubair Baig for their cooperation and constructive comments.

Last, but not least, thanks to all my colleagues and friends, who encouraged me a lot on

my way to achievement of this work.

 v

CONTENTS

DEDICATION ... iii

ACKNOWLEDGEMENT .. iv

CONTENTS ... iv

LIST OF TABLES ... ix

LIST OF FIGURES .. x

THESIS ABSTRACT ... xii

 xiii .. خ	صة الرسالة

CHAPTER 1. INTRODUCTION……………………………………………………..1

1.1. PROBLEM STATEMENT .. 3

1.2. THESIS ORGANIZATION ... 4

CHAPTER 2. LITERATURE REVIEW .. 5

2.1. MIDDLEWARE ... 5

2.2. MIDDLEWARE CHALLENGES FOR WIRELESS SENSOR NETWORKS [WSNS] 9

2.2.1. Limited Power and Resources .. 9

2.2.2. Scalability ... 9

 vi

2.2.3. Heterogeneity .. 10

2.2.4. Real-World Integration ... 10

2.2.5. Security ... 10

2.2.6. Data Agregation .. 11

2.2.7. Dynamic network orgnizations ... 11

2.3. MIDDLEWARE APPROACHES FOR WIRELESS SENSOR NETWORKS 12

2.3.2. Application Driven ... 12

2.3.1.1. Milan .. 12

2.3.1.2. AutoSeC ... 13

 2.3.2. Distributed databases ... 13

2.3.2.1. Courgar .. 14

2.3.2.2. DSware .. 14

2.3.2.3. TinyDB .. 15

2.3.2.4. SINA .. 16

2.3.3. Virtual Machine (VM) .. 17

3.3.3.1. Maté ... 17

2.3.3.2. Magnet ... 19

2.3.3.3. DAVIM .. 20

2.3.4. Mobile Agent .. 20

2.3.4.1. Smart Messages(SM) ... 21

2.3.4.2. Agilla ... 22

2.3.4.3. Impala .. 22

 vii

2.3.5. Macro programming ... 25

2.3.6. Message-Oriented ... 26

2.3.6.1. Mires .. 26

2.3.6.2. SensorBus .. 29

2.3.7. Other Approaches ... 31

2.3.7.1. EnviroTrack ... 31

2.3.7.2. TinyCubus .. 32

2.4. CONCLUDING REMARKS …………………………………………………………33

CHAPTER 3. THE RTPS-DDS MIDDLEWARE FOR WSNS 36

3.1. METHODOLOGY .. 36

3.2. RESEARCH OBJECTIVES ... 38

3.3. DATA DISTRIBUTION SERVICE (DDS) FOR REAL-TIME SYSTEM.............................. 40

3.4. DDS QUALITY OF SERVICE (QOS)IN RTPS MIDDLEWARE FOR WSNS 42

CHAPTER 4. THROUGHPUT EXPERIMENTAL SET UP AND RESUL TS 45

4.1. One-to-One Throughput Test .. 51

4.2. One-to-Many Throughput Test (subscribers over different cores) 56

4.3. One-to-Many high Throughput Reliable Messaging (subscribers over

different cores) .. 60

4.4. One-to-Many Throughput Scalability Test (subscribers on same core) 64

CHAPTER 5. RTI ROUTING SERVICE FOR ISOLATION & CLUS TERIN ... 69

 viii

 5.1 RTI Routing Service for Throughput Scalability Test outcomes 72

 5.2 Energy Consumption Estimation in Wireless Sensor Networks 84

CHAPTER 6. LATENCY EXPERIMENTAL SET UP AND RESULTS 90

6.1. One-to-One Latency Test .. 92

6.2. One-to-Many latency Test ... 97

CHAPTER 7. CONCLUSION AND FUTURE WORK ... 101

7.1. CONCLUSIONS ... 101

7.2. FUTURE WORK.. 103

REFERENCES ... 104

 VITA ... 110

 ix

LIST OF TABLES

TABLE 4.1. ONE-TO-MANY THROUGHPUT TEST OVER DIFFERENT MACHINES. 59

TABLE 4.2 RESULT ONE-TO-MANY THROUGHPUT: WITH & WITHOUT BATCHING 63

TABLE 5.1 PARAMETERS VALUES USED IN THE SIMULATION 86

 x

LIST OF FIGURES

FIGURE 2.1. RELATIONSHIP OF OPERATING SYSTEM, MIDDLEWARE AND APPLICATIONS. . 7

FIGURE 2.2. THE ARCHITECTURE OF MATE .. 18

FIGURE 2.3. LAYERED SYSTEM ARCHITECTURE FOR IMPALA ... 23

FIGURE 2.4. MIRES ARCHITECTURE ... 27

FIGURE 4.1. PUB/SUB ARCHITECTURE .. 47

FIGURE 4.2. MULTI ONE-TO-ONE THROUGHPUT TEST ... 51

FIGURE 4.3. RESULT OF ONE-TO-ONE THROUGHPUT TEST ... 54

FIGURE 4.4. ONE-TO-MANY THROUGHPUT TEST OVER DIFFERENT MACHINES 57

FIGURE 4.5. RESULT OF ONE-TO-MANY THROUGHPUT TEST OVER DIFFERENT MACHINES 58

FIGURE 4.6. ONE-TO-MANY THROUGHPUT: WITH & WITHOUT BATCHING QOS 62

FIGURE 4.7. RESULT ONE-TO-MANY THROUGHPUT: WITH & WITHOUT BATCHING 65

FIGURE 4.8. ONE-TO-MANY THROUGHPUT SCALABILITY TEST .. 67

Figure 5.1. RTI ROUTING SERVICE FOR DDS…………………………………………70

FIGURE 5.2. RTI ROUTING SERVICE IN THE PUBLISHER SIDE ... 73

FIGURE 5.3 . RTI ROUTING SERVICE IN THE SUBSCRIBER SIDE... 75

FIGURE 5.4. RTI ROUTING SERVICE IN THE 3RD
 NODE .. 77

Figure 5.5. CLUSTERING AND ISOLATION CASES USING RTI ROUTING SERVICE………..79

FIGURE 5.6. RESUULT OF ONE-TO-MANY WITHOUT USING RTI ROUTING SERVICE 80

FIGURE 5.7. ONE-TO-MANY WITHOUT USING RTI ROUTING SERVICE 81

 xi

FIGURE 5.8. ONE-TO-MANY USING RTI ROUTING SERVICE ... 82

FIGURE 5.9. ENERGY USED IN EACH NON-CLUSTER HEAD NODE VS. SAMPLE SIZE 87

FIGURE 5.10. ENERGY DISSIPATED IN THE CLUSTER HEAD NODE VS. SAMPLE SIZE 88

FIGURE 5.11. TOTAL ENERGY CONSUMED BY THE NETWORK VS. SAMPLE SIZE 88

Figure 6.1. THE ONE-TO-ONE RTT TEST , QOS =BEST EFFORT ………………….........93

FIGURE 6.2. ONE-TO-ONE RTT TEST, QOS = RELIABLE. .. 93

FIGURE 6.3. ONE-TO-ONE RTT ANALYSIS , QOS = BEST EFFORT VS RELIABLE 94

Figure 6.4. RESULT OF ONE-TO-ONE RTT LATENCY, QOS =BEST EFFORT VS RELIABLE

OVER DIFFERENT SIZES………………………………………………….………………95

FIGURE 6.5. RESULT OF ONE-TO-MANY RTT LATENCY ... 99

 xii

THESIS ABSTRACT

Name: Ismail Mohamed Hemdan Keshta
Title: Performance Analysis of Real-Time Publish/Subscribe

(RTPS) Middleware for Sensor Networks
Major Field: Computer Engineering
Date of Degree: June 2011

Due to the continuing advances in network and application design in Wireless Sensor Networks (WSNs),

the development of an appropriate middleware for WSNs is becoming necessary. Also, because WSNs

have some limitations compared to traditional networks, such as the lack of structure and resources,

middleware solutions are developed to solve some problems related to this issue. But most middleware

approaches are not suitable for real-time and mission critical applications. In such applications,

middleware should fully satisfy real-time constraints imposed by the network. Therefore, real-time

publish/subscribe (RTPS) middleware becomes essential in mission critical applications in many

environments where real-time constraints must be met. RTPS is a network middleware for real-time

distributed applications. It has the ability to provide the communications service programmers needed to

distribute time-critical data between nodes in a given system. Thus, there is a need to use real-time

publish/subscribe (RTPS) middleware standard by Object Management Group (OMG), in sensor

networks, in order to get improved results and eliminate the disadvantages of the previously proposed

middleware approaches. In this thesis, the performance of RTPS middleware is presented to show that it

is a better tool that can satisfy the communication requirements for sensor networks. RTPS middleware

uses a publish/subscribe communication mechanism, thus this middleware provides flexible and efficient

way of communication that is extremely needed in the sensor networks. Furthermore, unlike other

proposed middleware approaches, real-time constraints are fully satisfied by the RTPS middleware.

Therefore, it is highly suitable and recommended for real-time applications.

MASTER OF SCIENCE DEGREE

King Fahd University of Petroleum & Minerals
Dhahran – Saudi Arabia

June 2011

 xiii

 خ	صة الرسالة
 حمدان قشطةحمدان قشطةحمدان قشطةحمدان قشطةبن بن بن بن محمدمحمدمحمدمحمدبن بن بن بن إسماعيلإسماعيلإسماعيلإسماعيل :الاسم
 تتتتشبكاشبكاشبكاشبكالللل اشتركاشتركاشتركاشترك- - - - ررررنشنشنشنش الحقيقيالحقيقيالحقيقيالحقيقي- - - - الوقتالوقتالوقتالوقت البرمجية الوسطيةالبرمجية الوسطيةالبرمجية الوسطيةالبرمجية الوسطية م الاتصالم الاتصالم الاتصالم الاتصالاااانظنظنظنظلللل تحليل الأداءتحليل الأداءتحليل الأداءتحليل الأداء :الرسالة عنوان

 اللاسلكيةاللاسلكيةاللاسلكيةاللاسلكية المتحسساتالمتحسساتالمتحسساتالمتحسسات

 الحاسب الآليالحاسب الآليالحاسب الآليالحاسب الآلي هندسةهندسةهندسةهندسة :التخصص

 هـهـهـهـ 1432 رجبرجبرجبرجب :التخرج تاريخ

و ھي شبكة تتألف (شبكة المتحسسات ال�سلكية مما � شك فيه ان التقدم المستمر في التصميم الشبكي و التطبقي ل

من عدد كبير من العقد المتحسسة حيث أن ھذه العقد تنتشر بشكل مكثف داخل المنطقة المراد تحسسھا أو بالقرب

وايضا . مناسب للنظام ا�تصا�ت البرمجية الوسطية لھذا النوع من الشبكاتكان داعيا ضروريا لتطوير) منھا

التي في شبكة المتحسسات ال�سلكية اذا قورنت بالشبكات ا�خرى فمث� من تلك العيوب بسبب بعض العيوب

صا�ت البرمجية ا�فتقار في البنية الھيكلية و المصادر في ھذا النوع من الشبكات ، وبناء على ذلك فإن نظم ا�ت

ولكن معظم ھذه النظم ليست صالحة للتطبقات التي تتطلب الزمن .الوسطية تم تطويرھا لحل مثل ھذه العيوب

في مثل ھذه التطبيقات نظم ا�تصا�ت البرمجية الوسطية يجب ان تضمن . الحقيقي او تطبيقات ا�زمنة الحرجة

واحد من أھم نظم ا�تصا�ت البرمجية (RTPS)نا اصبح فمن ھ. متطلب الزمن الحقيقي المفترض من الشبكة

عتبار اUآخذا بعين . بين ا�نظمة المختلفة ويتحكم بھافھو نظام يستطيع ان يربط . الوسطية في التطبقات الحرجة

م في مجال شبكة المتحسسات افھناك حاجة ملحة �ستخدام ھذا النظ. المتطلبات الزمنية و التطبيقات الحرجة

 .(OMG)من قبل ه رومعايي هعلما بأن ھذا النظام تم وضع خصائص. �سلكيةال

وبإستخدامه نستطيع حل المشاكل الموجودة في نظم ا�تصا�ت البرمجية الوسطية المقترحة سابقا لھذا النوع من

ية الوسطية في كنظام ل�تصا�ت البرمج (RTPS)في ھذه ا�طروحة سوف نسلط الضوء على مستوى . الشبكات

يث ان ح. ه افضل نظام ل�تصال من سابقيهحيث سيتم دراسته بشكل مركز �ثابت ان. شبكة المتحسسات ال�سلكية

فھو نظام يتمتع . كوسيلة فعالة ل[تصال بين التطبيقات المختلفة) publish/subscribe(ھذا النوع يستخدم طريقة

من هروعلى العكس من غي. يةري في شبكة المتحسسات ال�سلكبالمرونة وسھولة التعامل وھذا متطلب ضرو

ن مھذا النوع في ، فھو نظام صالح للتطبيقات الحرجة و التطبيقات التي تتطلب الزمن الحقيقي التي تحصلالنظم

 .الشبكات

 العلومالعلومالعلومالعلومالماجستير في الماجستير في الماجستير في الماجستير في درجةدرجةدرجةدرجة

 والمعادنوالمعادنوالمعادنوالمعادنالملك فهد للبترول الملك فهد للبترول الملك فهد للبترول الملك فهد للبترول جامعةجامعةجامعةجامعة
 السعوديةالسعوديةالسعوديةالسعودية العربيةالعربيةالعربيةالعربيةاللملكة اللملكة اللملكة اللملكة - - - - الظهرانالظهرانالظهرانالظهران

 هـهـهـهـ 1432 رجبرجبرجبرجب

 1

CHAPTER 1

INTRODUCTION

The main concept of WSNs started to appear at the end of the 1990s with the first

publication in this field appearing in 1998. WSNs can be defined as a networked

collection of sensor nodes that are small-scale devices and have very limited

resources such as memory and power supply [21, 24]. In sensor networks, each node

has to monitor the environment and some physical conditions such as sensors to

detect temperature, sound, humidity, pressure, vibration, motion, light, etc.

Depending on the task of the sensor network, sensors can cooperate with other sets of

sensors to do a certain task. There are two types of WSNs, namely homogeneous and

heterogeneous. If all nodes in a network have the same hardware setup, it is called a

homogeneous network; otherwise, it is called heterogeneous [24].

WSNs support a wide area of applications such as environmental monitoring,

tracking of vehicles, habitat monitoring, traffic control system, security and defence

applications, industrial automation, etc [21].

WSNs have some advantages over traditional networks, such as easy to deploy, wide

scalability and ease of use in different complicated environments for some special

purposes. However, WSNs have some limitations compared to traditional network.

 2

This is due to the lack of structure and resources such as overhead communications

needed between sensor nodes and complicated structure when sensor nodes are

added or removed. Middleware solutions are developed to overcome some problems

that are faced in WSNs.

Middleware solutions can link between application and low level operating systems

to enhance application development. Moreover, middleware can hide the complexity

and heterogeneity of the underlying hardware and ease the management of system

resources [8, 7].

In general, any middleware solution should support work phases of WSNs, such as

development, maintenance and data execution. Also, the middleware solutions

should provide additional features that are related to WSNs, for example, ability to

save power, scalability, mobility and heterogeneity. Furthermore, there are important

challenges which must be provided by a successful middleware, such as ease of use,

managing resources, security and quality of service (QoS).

The implementation of a successful middleware for WSNs is not an easy job. It

needs to deal with many challenges that are related to WSN characteristics. Many

researches are still going on to address the challenges and solutions for WSN

middleware [1, 12]. Some of these challenges are discussed in section 2.2 in

Chapter2.

 3

1.1 PROBLEM STATEMENT

As will be seen in Chapter 2, none of the proposed middleware approaches

mentioned in the literature are suitable for real-time and mission critical applications,

where real-time constraints must be met by the middleware. Also, all the previous

approaches do not have QoS properties that can be set based on the needs of a given

system. Thus, there is a need to use real-time publish/subscribe (RTPS) middleware

standard by Object Management Group (OMG), in sensor networks, in order to get

improved results and eliminate the disadvantages of the previously proposed

middleware approaches. In this thesis, the performance of RTPS middleware is

presented to show that it is a better tool that can satisfy the communication

requirements for sensor networks. RTPS middleware uses a publish/subscribe

communication mechanism, thus this middleware provides flexible and efficient way

of communication that is extremely needed in the sensor networks. Furthermore,

unlike other proposed middleware approaches, real-time constraints are fully

satisfied by the RTPS middleware. Therefore, it is highly suitable and recommended

for real-time applications.

This work also will investigate the usage of Quality of Service (QoS) specified in the

Data Distribution Service (DDS) middleware standard proposed by Object

Management Group (OMG).

 4

1.2 THESIS ORGANIZATION

The organization of this thesis is as follows. In Chapter 2, middleware definitions

and some preliminaries are given. Also, a literature review of middleware solutions

for wireless sensor networks (WSNs) is presented. In Chapter 3, details of RTPS-

DDS middleware are described. The setup of the experiments is explained in Chapter

4, 5 and 6. In these chapters, experimental results are discussed to show the behavior

of the RTPS-DDS middleware in a wireless sensor network over different test

scenarios. Finally, we conclude and indicate the future work in Chapter 7.

 5

CHAPTER 2

LITERATURE REVIEW

2.1 MIDDLEWARE

As shown in Figure 2.1, a middleware is defined to be an interface layer between the

operating system (OS) and the application in a distributed and networking context.

In [25], a middleware is defined as a connectivity software that allows nodes in a

system to communicate with others across a network. In other words, it is a tool that

works to facilitate, manage and control the communication between any two

applications that interact across the hardware and networked environments [25, 26].

The details of the underlying computer architecture, operating system and network

stack are all hidden by the middleware layer. In addition, the middleware layer works

to simplify the development of a distributed system. This is done by making user-

applications exchange information with others without the need of an interface with a

program that uses low level protocols.

Basically, the major role of middleware is to ease the task of managing and

designing distributed systems. A middleware does that by providing a simple and

consistent integrated programming environment [25, 26]. There is a certain set of

 6

criteria that is addressed by middleware services including: 1) independence of the

chosen platform. These services must provide the portability to various types of

system architectures with predictable effort, 2) provide the functionality to meet the

real requirement of several kinds of applications.

It is important to highlight that a middleware offers a platform-independent

Application Programming Interface (API) which is a set of system calls (functions)

used by an application program for providing access to a system's capabilities. These

system calls (API) are provided by the middleware to handle an application

environment and mask the complexity of distributed processing [23, 26].

In wireless networks, many applications might work fine without having

middleware. However, some certain applications might not perform well without

them. Middleware is mainly used in applications that involve high transaction

volumes and are deployed for many users. In addition, middleware is essentially

required in critical applications, and when there are stringent reliability requirements

[23].

In general, middleware is of three major types: communications middleware,

database middleware and systems middleware. Following are some examples:

The most famous classical middleware systems are the Common Object Request

Broker Architecture (CORBA) specifications. CORBA is a standard that is defined

by the Object Management Group (OMG) which can enable multiple software

components, written in various programming platforms, to run on any computer, to

 7

communicate with each other. The other popular middleware systems are the

message-oriented middleware (MOM) specifications.

MOM carries and distributes messages between separate systems in a network in

order to connect them in a proper way. An infrastructure for this kind of middleware

is based on the queuing system that stores messages, pending delivery. In addition, it

monitors when each message has been delivered [25, 26].

Figure 2.1: Relationship of Operating System, Middleware and Applications

It is important to point out that a range of routines which are usually implemented as

part of the operating system (OS) are shifted to middleware to support a certain class

of dedicated applications. Also, the limitation in memory that is available has led to

implementation middleware that provides the Application Programming Interface

(API) rather than establishing a general background of middleware functionalities

[23, 25].

 8

There are two different options that are available to characterize middleware in a

wireless sensor network (WSN) context. The first one is that the middleware has to

provide software that contains minimal set of core routines and functions in order to

call it a middleware. Second, it can also be done by looking at the differences

between the various approaches in this domain [25, 26].

 9

2.2 MIDDLEWARE CHALLENGES FOR WIRELESS

SENSOR NETWORKS (WSNS)

A middleware approach for wireless sensor networks needs to deal with many

challenges that are related to characteristics of this kind of network. This section

demonstrates some of these potential challenges [24].

2.2.1 Limited Power and Resources

In WSNs, sensor nodes are small-scale devices. These small devices have very

limited storage energy and memory. Moreover, nodes might go down due to

environmental influence. In general, the limitation in size and energy means

restricted resources. Therefore, the middleware should manage the three basic

operations of a WSNs sensing, data processing and communication without

consuming additional resources [12, 24].

2.2.2 Scalability

The sensor network should scale from ten to thousand sensor nodes. So, the sensor

network should be flexible enough to allow this growth without affecting the

performance of the network. For this reason, a middleware should provide

mechanisms for self-configuration and self-maintenance for any sensor node in the

WSNs [12].

 10

2.2.3 Heterogeneity

In WSNs, cross platform communication is needed to bridge the gaps between the

hardware technology’s raw potentials, and needed activities such as data execution.

Therefore, any proposed middleware should glue the gaps between them by

supporting some mechanisms of interfacing systems in various types of hardware and

networks [12, 22].

2.2.4 Real-world Integration

For some applications in WSNs, the real-time requirement must be supported. In

other words, WSN environments are not constant. They are always changing. This

change includes changing in time and space. Therefore, middleware solutions should

be developed in such a way that supports real-time requirements to adapt to the

changes of such environments like WSNs [12, 22].

2.2.5 Security

The wide deployment of WSNs in complex areas which are difficult to reach might

increase the chance for the malicious attackers to access sensitive information.

Therefore, maintaining security is a major concern in the WSNs. However, doing

such a task is not trivial due to the limited power and resources in this kind of

network. Hence, any proposed middleware should concentrate on developing

security aspects in the initial phases of software design with initial overhead [12].

 11

2.2.6 Data Aggregation

Most of the WSNs generate lots of redundant data because a sink node combines

data from different sources which might make huge data communication between

nodes in the networks. So, a middleware should have the capabilities to eliminate

redundancy in the data network. In the other words, it should be able to limit the

retransmission of similar data over the entire network in order to minimize data

communication among sensor nodes. This implies reducing collisions in the network

and energy consumption [12, 22, 24].

2.2.7 Dynamic Network Organization

Dealing with resources such as energy and bandwidth that are dynamically changing

must be included in WSNs. In addition, such a network has to support long-running

applications in order to run it as long as possible. Also, it is important to highlight

that knowledge of the network is a major concern in order to operate it in the proper

manner. Therefore, a middleware has to provide an ad-hoc wireless network resource

discovery. Moreover, adapting to the dynamic changes of the networks must also be

supported by the middleware [12, 24].

 12

2.3 MIDDLEWARE APPROACHES FOR WIRELESS

SENSOR NETWORKS

Middleware approaches can be mainly classified into five classes according to

middleware architectures and approach mechanisms. Throughout this section, these

approaches are listed and reviewed. In addition, for each class, examples and

descriptions of their mechanisms and features are provided.

2.3.1 Application Driven

In application driven approaches, middlewares can adjust network configurations

according to the requirements stated by the application. This type of middleware has

a structure to supply multiple network configurations by choosing suitable protocols

in its network protocol stack. Examples of this category are Milan and AutoSeC.

2.3.1.1 Milan

Middleware Linking Applications and Networks (Milan) is being developed at the

University of Rochester and has a very good architecture to link the network layer

and application layer. The idea behind it is to make the sensor network application

control the network operations management. In other words, Milan allows sensor

network applications to specify their Quality of Services (QoS). Moreover, this

proposed middleware allows adjusting the network characteristics to increase

application lifetime while still meeting those needs. To achieve that, Milan can

 13

receive information about the QoS requirements of different sensor network

applications over time, the overall system, and the network about available sensors

and resources such as energy and channel bandwidth. In addition, Milan collects and

combines this information in order to configure the network characteristics to

increase application lifetime while still meeting QoS requirements [1, 5, 9].

2.3.1.2 AutoSeC

Automatic Service Composition (AutoSeC) is an application driven middleware,

developed at University of California-Irvine. AutoSeC is a dynamic service broker

framework for effective utilization of resources within a distributed environment.

Based on current system status, AutoSeC is able to dynamically select the best

combination of information collection and resource provisioning policies. Moreover,

it provides some of the required quality of service (QoS) for sensor applications.

In terms of evaluation, AutoSeC is able to manage resources in a sensor network by

providing access control for applications. In addition, power-aware algorithms are

provided by this type of middleware. Therefore, energy consumption is reduced.

2.3.2 Distributed Database

All distributed database middleware approaches deal with the whole sensor network

as a distributed database. This type of middleware also has a friendly and easy to use

interface, using SQL queries to collect data. Examples of this class are Cougar,

DSware, SINA and TinyDB [3, 9].

 14

2.3.2.1 Cougar

Cougar is an example of wireless sensor middleware solutions in WSNs that is based

on the database approach. This middleware was developed at Cornell University.

Cougar middleware is a sensor database system that is composed of sensor database

and sensor queries. Sensor data is generated by using signal processing which is

executed on each sensor node. Also, this sensor data is stored in a local database

system. Abstract Data Type (ADT) in Cougar is used in order to model signal

processing functions. In object-relational databases, an ADT can represent all sensor

nodes of the same type in the physical world. Cougar also uses SQL-like language to

implement WSN management operations in the form of queries.

In terms of evaluation, Cougar middleware can support a large collection of sensors.

Also, this kind of middleware can provide a simple scheme for different network

operations. However, maintaining the global knowledge of WSNs via centralized

optimizer used by Cougar is not suitable for large scale WSNs because of the

dynamic nature of these networks. Also, to transfer a large amount of raw data from

devices (sensor nodes) to the database server, Cougar consumes more resources

compared to other approaches. Furthermore, Cougar does not resolve the problems of

hardware heterogeneity and node mobility issues [29, 30].

2.3.2.2 DSWare

Data Service Middleware (DSWare) is another database middleware approach and

provides data services for applications. It implements a database-like abstraction that

 15

consists of some service components such as scheduling of all middleware services

based on either energy-efficiency or delay performance, data storage for storing data

according to the semantics associated with the data, and caching of multiple copies

of the data that are requested most often.

In addition, DSWare supports group–based decisions and provides reliable data-

centric storage. These features make this middleware more flexible than other

database approaches. Also, DSWare uses SQL-like language for event operations

such as registration and cancellation of an event. Therefore, it has a friendly-user

interface. On the other hand, DSWare does not resolve hardware heterogeneity and

mobility issues. Furthermore, the sensor database in each node needs continuous

updating for more dynamic applications. Therefore, DSWare middleware does not

fully comply with the scalability issue.

2.3.2.3 TinyDB

TinyDB is a query processing system for sensor networks that operates on the

TinyOS operating system. It is designed and implemented based on the concept of

acquisitional query processing (ACQP) for collecting data in a sensor network. When

query processing occurs, the sensor node will directly perform sensing to respond to

the requested query. TinyDB is a distributed system with a SQL-interface to execute

data from sensor nodes. Compared to traditional technology, TinyDB has features

such as low power consumption, which is an important advantage in a resource-

limited network environment.

 16

2.3.2.4 SINA

The authors in [30] proposed SINA (Sensor Information Networking Architecture)

which is another database middleware approach that uses a query language,

developed at the University of Delaware. For querying and monitoring, the SINA

architecture was implemented based on a spreadsheet database. Every single

database contains cells, where each cell represents an attribute of a sensor node for

location and sensor reading. Therefore, applications are able to access a particular

data element by using an attribute-based naming for naming a sensor directly. SINA

uses hierarchical clustering of sensors where sensor nodes are organized in a specific

way to form a hierarchical shape, based on their levels of power. Moreover, it uses a

set of protocols to prevent the re-broadcasting of similar information to other nodes.

SINA is considered to be more flexible than other database middleware approaches

since it supports both Sensor Query and Tasking Languages (SQTL) and SQL-like

languages. This language works as the programming interface between sensor

applications and the SINA middleware. Also, SINA offers an advantage over other

approaches by using hierarchical clustering of sensors for efficient data aggregation.

However, like Cougar, SINA does not resolve the problem of hardware

heterogeneity. Moreover, it does not fully support scalability because of the fixed

global network structure that is maintained by the SINA middleware [30].

 17

2.3.3 Virtual Machine

The system of Virtual Machine (VM) middleware approach consists of virtual

machines and translators. In this proposed approach, developers can write

applications into small modules. These modules will be distributed throughout the

network. Virtual machines translate the modules in order to implement applications.

Examples of service middlewares for sensor networks that use the concept of virtual

machine are Maté, Magnet, and DAVIM [2].

2.3.3.1 Maté

Maté is an instance of the virtual machine approach, developed at the University of

California at Berkeley. It uses the virtual machine as an abstraction layer for

implementing its operation. Also, it is a byte code interpreter which is implemented

on the TinyOS operating system. As shown in Figure 2.2, Maté has a stack-based

architecture that consists of three execution contexts. These states are clock, send,

and receive.

 18

 Fig.2.2: The architecture of Maté

This kind of middleware works by breaking down the program into small self-

replicating capsules composed of 24 instructions where each instruction is single

byte long. This gives the advantage to large programs to be made up of multiple

small capsules, thus making it easy to inject them into wireless sensor networks.

Virtual machine (VM), Network, Logger, Hardware and Boot/Scheduler are the five

key components of Maté. It uses a synchronous event model which starts execution

in reaction to an event such as packet transmission. Therefore, Maté avoids message

buffering and does not require large storage. Moreover, using such a model increases

simplicity of application level programming.

In terms of level of instructions, low and high level instructions are supported by the

Maté program in a stack-based architecture. Maté instructions can be arithmetic

operations, loop operations and wireless sensor network specific operations. This set

 19

of instructions helps Maté middleware to provide high level abstraction for an

application developer.

The programming model of Maté middleware is considered to be simple and easy to

use for the application developer. On the other hand, it does not provide full

flexibility. Therefore, it cannot support a wide range of applications.

This kind of middleware (Maté) makes the network easy to reconfigure and also

increases the security of the network. However, in terms of energy, it is not suitable

for complex applications because of the instruction interpretation overhead [34, 35].

2.3.3.2 Magnet

Magnet is another system-level middleware solution for WSNs. It is also based on

the VM approach developed at Cornell University. It consists of a layer known as

Single System Image (SSI) which represents the whole network as a single Java

Virtual Machine (JVM). Components of the JVM are either dynamic or static. For

the dynamic component, each node has the full responsibility to monitor and

coordinate applications and also perform application specific tasks. On the other

hand, the static component is used to inject java applications into the WSNs.

In terms of performance, Java implementation of Magnet and Single System Image

techniques makes the development of an application simple. Also, power-aware

algorithms are provided by the Magnet Middleware. Therefore, energy consumption

is reduced. In addition, this kind of middleware supports a wide scale of applications,

which makes it a general-purpose system. However, heterogeneity is partially

 20

supported by Magnet. Moreover, a lot of overhead on Magnet’s instructions are

represented because of the use of JVM. To come up with a VM that is more suitable

for wireless sensor network applications, a lot of effort and hard work is needed [36].

2.3.3.3 DAVIM

DAVIM (Distrinet Adaptable Virtual Machine) is a new service middleware for

sensor networks, implemented as a dynamic management of services on virtual

machines. It makes isolation between simultaneous running applications over sensor

networks. Regarding the architecture of this middleware, the DAVIM middleware

approach is presented based on the architecture of virtual machines. It uses such

architecture to run applications and services. The applications are isolated from each

other because each virtual machine runs one application.

In terms of evaluation, DAVIM is designed to meet some requirements such as

managing available services easily, with multiple applications running on the same

sensor network begin kept isolated. It is important to highlight that DAVIM presents

similar overhead during installation of new byte-code scripts if it is compared with

other approaches [2].

2.3.4 Mobile Agent

The main feature of this approach is that the applications are treated as modules in

order to distribute them throughout the network using mobile codes. The sensor

networks can implement tasks by transmitting application modules. Transmitting

 21

using modules might consume less power than transmitting full applications.

Examples of this category are Smart Messages (SM) and Agilla[6].

2.3.4.1 Smart Messages(SM)

Smart Messages (SM) is a mobile agent middleware. The term SM is a user-defined

distributed program which executes on nodes of interest and migrates between nodes

to reach other nodes. Its architecture is based on execution migration of executing

units. The implementation of this architecture was made on top of an unmodified

JVM. Ease of deployment for applications in the network and adaptability to more

dynamic network conditions are considered as main benefits provided by SM [37].

In terms of rooting, self-root mechanism can be done by SM, when a SM is required

to migrate between two nodes and there are intermediate nodes between them. Each

node has a VM for SM execution and a name-based memory called tag space. The

SMs use the tag space for content-based naming and persistent shared memory. A

VM is assigned to each node for SM execution process. Also, a name-based memory

called tag space is allocated for each single node to be used as persistent shared

memory.

SM can adapt in a quick way to the changes which might occur in the network

topology and the availability of resources at nodes. Moreover, this type of

middleware can provide a Networked Embedded Systems (NES). On the other hand,

a node in SM can run only a single execution thread. Therefore, SM does not support

 22

multiple applications on a single node. In addition, inter-node communication is not

supported by SM [37].

2.3.4.2 Agilla

Agilla is a middleware layer that supports mobile agents for WSNs. It provides

mechanisms for better injection of a mobile code into the sensor network to deploy

some user applications. In the Agilla system model, each sensor node supports

multiple agents and maintains a local shared memory space and a neighbors list. The

local shared memory space is shared by the agents residing in the node. The

neighbors list contains the addresses of all the one-hop nodes. The agents can move

to different locations around the network nodes in an intelligent way based on the

changing conditions in the environment, by using move and clone instructions.

Regarding the model used by the agents, it is based on the stack architecture and the

agent codes are written using assembly language [6, 8].

Agilla has good performance and high reliability. It is more suitable than the

flooding mechanisms that are used in the middleware Maté for the same purpose.

However, using assembly language programming is mentioned by the authors as a

weak point [6, 8].

2.3.4.3 Impala

Impala is a middleware which was specially designed and implemented for the

ZetbraBet project. The main goals of this middleware are to ensure reliability and

ease of upgrades for long-running sensor network applications. Also, the major

 23

philosophy behind Impala is that mobile environments need continuous fine-tuning.

The methodology used by Impala middleware in its design can be stated as follows:

1) Modularity concept which is used for switching the decision process.

2) Correctness: this concept is used for making individual program applications

instead of having one single big application.

3) Ease of updates is an important design issue for using small pieces of

software because this makes the update easier.

4) Energy efficiency can be achieved by making the transmission of the updates

at the granularity of smaller modules.

The architecture of Impala is divided into two main layers, as shown in Figure 2.3.

Figure 2.3 –Layered system architecture of Impala

The upper layer contains all the applications and protocols for the ZebraNet project.

Various strategies are used by these applications in order to gather environment

 24

information and route it to a base station. The lower layer contains three agents: the

Application Adapter, the Application Updater, and the Event Filter. The Application

Adapter has the full responsibility to increase performance and improve robustness

by switching between alternative protocols in case of hardware failures. The second

agent (the Application Updater) is used to handle some issues such as incomplete

updates, propagation protocol, code memory management, and inconsistent updates.

The Event Filter (the last agent in the lower layer) is used to capture and dispatch

events in the Impala system. There are five different types of events supported by

this type of middleware, namely Timer Events, Packet Events, Send Done Events,

Data Event and Device Events. These events are processed in sequential order.

In terms of evaluation, it is important to highlight that Impala middleware is a self-

organized architecture model. This is because it uses Application Finite State

Machine (AFSM) mechanisms to switch between adequate protocols. Also, it

ensures the reliability of long-running applications. By its organized architecture,

Impala can support application adaptation at runtime. Moreover, little transmission

overhead is generated by this kind of middleware. In addition, it provides failure

tolerance. On the other hand, the adaptation process in the Impala middleware is

limited to the capabilities of the state machine. Also, heterogeneity in hardware

platform is not supported by Impala. Therefore, its application domains are limited

[28].

 25

2.3.5 Macro programming

Rather than writing low-level software for each single node, the Macro-programming

approach introduces different ways on how to program sensor networks by

programming the entire network as a whole. High-level specification is used to

program wireless sensor global behaviour. Therefore, this view will reduce the load

in dealing with low-level concerns at every single node on the network [27].

The famous example on the use of this approach is Kairos middleware. This type of

middleware allows the programmer to program the whole sensor network. A

centralized program for whole application is written for the overall application. This

program will be divided into subprograms and compiled into annotated binary codes

(annotated binary codes are node-specific version which contains a code in order to

control the behaviour of each node individually), by Kairos middleware. Then, the

binary codes are distributed to other nodes on the network to make them

communicate with each other. In term of synchronization between the nodes, Kairos

provides either a loose synchronization or a tight synchronization based on the

programmer’s purpose.

In terms of performance, Kairos middleware addresses the mobility issue in a full

manner. Also, it supports robust mechanisms for node localization and routing

aspects. However, easy to use issues are partially addressed by Kairos. Moreover,

resource management constraints are not completely supported [27].

 26

2.3.6 Message Oriented

Message-Oriented Middleware (MOM) implements communication using

publish/subscribe mechanisms between sensor nodes and applications. The

publish/subscribe service in the middleware is used to exchange messages between

the sender who sends the message and the receiver. Examples of this class are Mires

and SensorBus middlewares which are explained in the following sections

respectively.

2.3.6.1 Mires

Mires follows the characteristics of message-oriented middleware (MOM).This can

be done by allowing the applications to communicate in a publish/subscribe fashion.

In addition, this middleware proposes an asynchronous communication model, which

is suitable for wireless sensors network applications. The main issue regarding this

proposed middleware is that Mires can support hardware heterogeneity. In general,

the communication throughout the Mires middleware consists of three phases. First

of all, each node in the wireless network will make announcements for its available

topics. Then, by using a routing algorithm, announcement messages will be routed to

a dedicated node called the sink node which is connected to a user application. By a

graphical user interface, user applications will be able to select the advertised topics

to be monitored. After that, the sink node will broadcast the subscriber's messages to

the sensor network nodes. Subsequently, the sensors will publish their collected data

throughout the sink node to the network-based applications [1].

 27

An overview of the Mires architecture is shown in Figure 2.4, By using a bottom-up

approach, the first block corresponds to the sensor nodes hardware components such

as micro-controller unit, sensors, and radio transceivers. This block is directly

controlled by the operating system (OS) (second block). The third block is the Mires.

This middleware "Mires" has a core component, namely the Publish/Subscribe

services and some additional services. Mires implements high-level

publish/subscribe by providing services and routing while hiding the complexity of

the sensor network [1, 10].

Figure 2.4 Mires Architecture.

In a wireless sensor network, the network consists of multi-nodes that communicate

over wireless communication links. A publisher node can publish data that is related

to the event of interest for a subscriber node. In other words, the publish/subscribe

principle in wireless sensor networks states the nodes, which are interested in

 28

receiving certain information. This process is called subscription. Therefore, the

interested node is called a subscriber. Nodes, which intend to produce certain

information, can do so by publishing their information. Thus, they are called

publishers. Based on this, a subscriber node can state the type of data that it is

interested in (e.g., temperature data) by broadcasting the message to all the sensor

nodes in the network. After that, the sensor nodes transmit the desired data [1].

The publish/subscribe service mainly goes over two phases (advertise phase and

subscription phase). For the advertise phase, a node application advertises to the

publish/subscribe service its interest of sensing data which is related to a specific

topic. Then, the publish/subscribe service receives and encapsulates this information

in a certain message called the adverting message. After that, this message will be

sent to the network by using some routing components. In the case of subscription

phase, the user application invokes a dedicated node called sink node, which receives

the information gathered by the network and delivers it to the final user. This is done

by using a send command to broadcast the subscribed topics to the network. There is

a dedicated component called broadcast that is used to signal a received event for

each node that receives a subscription message. After that, the publish/subscribe will

receive this message and extract setup information from it. In the last step of this

phase, publish /subscribe service invokes a certain service that is used to publish the

processing results, by sending a signal called “Topic Setup Arrival” to notify its

components which are attached to it [1].

 29

At the end of the discussion on Mires, it is important to highlight that, the

implementation mode for the Mires middleware is still in progress. Also, tests using

real sensor nodes (motes) have not yet been done in order to see the real behavior of

this kind of middleware in a wireless sensor network. Moreover, the design of Mires

needs to support security and resource management issues [10].

2.3.6.2 SensorBus

SensorBus is a middleware model for WSNs. It is based on the publish/subscribe

(P/S) paradigm. Using this kind of communication allows free exchange of the

communication messages amongst the sensor nodes. As a result, the capability of

using more than one communication mechanism is allowed to address the

requirements of a large number of applications [15].

In general this approach is similar to what was discussed in section 3.5.1. A sensor

node called “publisher” in the SensorBus model tries to generate events. This node

publishes types of events which will be available to other nodes called “subscribers”.

This proposed approach uses an asynchronous type of communication to send

notifications from producers to interested subscribers. In addition, the designers of

this model rely on MOM to take care of filtering the messages and routing them to

the appropriate subscribers [15].

Regarding the SensorBus Middleware Architecture, SensorBus consists of the

following components: an application service, a message service and a context

service. For the application service, this element has the full responsibility to provide

 30

the Application Programming Interface (API), which simplifies application

development. Also, it is comprised of three components: DataBus is a component

that provides a group of operations which are related to bus communication for

consumers and producers, Filter, the second component, is used to provide a set of

operations that are related to data, and the last component which is language,

implements the commands and query language interpreter [15].

The second component in the SensorBus architecture is the message service. This

component has the full responsibility for providing communication and coordination

for the distributed components. It consists of three main elements: Channel which is

used to deal with the specific transport implementations, Transport which will take

care of the communication among the nodes and is considered to be like a socket.

The last component that belongs to the message service is the sinker which is a

dedicated component for routing messages in the network [15].

The third component in the SensorBus architecture is the context service. This

element is responsible for managing, monitoring and coordinating the heterogeneous

sensors which collect information from various environments [15].

SensorBus is a middleware for WSNs, which can decouple the communication

mechanism from the programming interfaces. It also uses more than one

communication mechanism to address the requirements of a larger number of

applications [15].

 31

2.3.7 Other Approaches

2.3.7.1 EnviroTrack

EnviroTrack is an object-based distributed middleware system. It is considered to be

the first programming support for sensor networks which can support tracking

mobile objects. This middleware is very well suited for embedded tracking

applications. In other words, EnviroTrack WSN middleware supports environmental

target tracking [39].

Also, the dynamic behavior of the tracked targets such as mobility is supported by

EnviroTrack. This is because of the use of powerful network management

mechanisms such as group leader election. Therefore, any moving target can be

detected successfully. This feature can be very useful for some military applications.

Like other projects, it is also built on top of TinyOS using compiled NesC programs.

The architecture of EnviroTrack consists of two major parts. These are:

1) A pre-processor module which is used to interpret user directives in order to

produce the appropriate middleware call functions at compile time.

2) A run-time group management protocol that is run on the top of the routing

service.

Briefly, a context description file goes as an input to the first major part

(EnviroTrack preprocessor). Based on the information that is gathered from the

context description file to generate appropriate middleware call functions, the pre-

 32

processor can patch a set of NesC program templates. After that, the programs are

compiled using TinyOS tools.

In terms of evaluation, EnviroTrack wireless middleware is a very good distributed

program for supporting tracking environments. However, it is important to highlight

that its performance is based only on a very small-scale implementation. Moreover, it

is in the early stage of development. Self-organization and autonomic system

approach for EnviroTrack needs a lot of work to be done [39].

2.3.7.2 TinyCubus

TinyCubus [40] is an adaptive cross-layer framework middleware which is

implemented on top of TinyOS. The goal of TinyCubus project is to develop a

generic reconfigurable system software for sensor networks. The design philosophy

of this middleware is its flexibility and adaptation.

In terms of architecture, of TinyCubus middleware is divided into three main parts,

namely tiny cross-layer framework, tiny configuration engine, and tiny data

management framework.

It is important to highlight that the flexibility of TinyCubus allows it to be used in

different environments. Moreover, application optimizations can take place because

of the cross-layer approaches used by this type of middleware. However, a lot of

overhead is generated due to the cross-layer approach, which may be prohibitive in

some sensor network environments. In addition, TinyCubus does not fully support

scalability issues [40].

 33

2.4 EVALUATION AND ANALYSIS OF MIDDLEWARE

APPROACHES

Section 2.3 of this thesis shows different existing middleware approaches as

middleware solutions for WSNs. These approaches are: application driven, database

based, VM, mobile agent based, and message oriented. In this section, these

approaches are briefly evaluated based on constraints such as heterogeneity,

scalability and power saving, which are quantitatively evaluated in the second half of

this thesis.

The application driven approaches such as Milan can provide both application and

network QoS by controlling sensor nodes. On the other hand, Milan is found to be a

weak approach for mobility. This is because Milan is not able to maintain

communications between mobile sensor nodes in WSNs. Also, Milan does not

support the heterogeneity constraint, because it does not provide a low level

programming paradigm [5] [7].

The database approaches such as SINA and TinyDB, deal with WSNs as a huge

virtual database. They are considered as a strong from a usability perspective because

they use a database middleware based on query systems and SQL-like interfaces.

Moreover, they are suitable for some applications. However, they have some

limitations. In other words, the types of data that will be used at every node must be

 34

agreed upon in advance. This is not acceptable in a large size sensor network.

Therefore, the scalability issue is not completely supported by this approach [3, 4,

33].

The VM approach provides an efficient programming model that hides the

heterogeneity of the hardware resources and supports ease of use for the application

developer. On the other hand, the VM approach is not suitable for some complex

applications because its instructions introduce a considerable overhead. [34,35].

For mobile agent based middleware for WSN, this approach has a good performance

and high reliability. In addition, it strongly supports and fully addresses the power

saving and scalability issues. Furthermore, it adapts quickly to changes which might

occur in the network topology. On the other hand, mobile agent based approaches do

not fully support ease of use. Also, heterogeneity in hardware platform is not

supported [6, 8].

The MOM uses a message based communications protocol that is able to store and

transform the message as it is being delivered. Moreover, this approach can provide a

persistent storage in order to take care of the latecomers that join the network. In

other words, MOM does not require for both the sender and receiver to be connected

at the same time. However, this approach requires an additional component in the

architecture. Therefore, this overhead might lead to reductions in performance and

reliability, and can make the system difficult to maintain [1, 10, 15].

 35

As stated in the literature, most of the proposed middleware approaches do not

satisfy the communication requirements for sensor networks. Furthermore, none of

these proposed middleware approaches are suitable for real-time applications like

mission critical applications where real-time constraints must be met by the used

middleware. Thus, there is a need to use real-time publish/subscribe (RTPS)

middleware and investigate the use of Quality of Service (QoS) aspects specified in

the Data Distribution Service (DDS) middleware standard for sensor networks. If we

do so, this will provide for solutions to problems which have been identified

previously in the literature.

In the coming chapter, we will discuss the Data Distribution Service for real-time

System (DDS) in order to address the issue of having a real time publish/subscribe

middleware for wireless sensor networks (WSNs).

 36

CHAPTER 3

RTPS-DDS MIDDLEWARE FOR WSNS

3.1 METHODOLOGY

In this thesis, the benefits of the deployment of Data Distribution Service (DDS)

standard along with the Quality of Service (QoS) setting for sensor network are

pointed out.

Also, some scenarios will be implemented in order to help us test and analyze the

performance of the RTI-DDS as a real-time publish/subscribe middleware in sensor

networks. This can be achieved by evaluating the performance of RTI-DDS in major

aspects that are related to sensor networks. These are:

1. Scalability: The sensor network should scale from tens to hundreds of

sensor nodes. So, the network should be flexible enough to allow this

growth without affecting the performance of sensor network.

Therefore, tests will be performed to show the scalability of RTI-DDS

and evaluate how this type of middleware can handle the increasing

number of nodes.

 37

2. Reliability: In mission critical applications, the middleware should

make sure that every single event will be delivered to the appropriate

sensor node correctly. Therefore, RTI-DDS will be used in

implementing test scenarios such as having a very large number of

requested messages in the network. This will be done to evaluate how

RTI-DDS can handle reliability issues.

3. Performance in terms of latency and throughput: The most important

performance parameters to be calculated are latency and throughput.

Latency is an expression of how much time it takes for a packet of

data to get from one designated point to another. Therefore, tests will

be conducted to specify the maximum accepted latency from the time

the event is published by the publisher sensor nodes until the event is

available to the destination subscribers. Also, throughput, i.e., number

of received samples per unit of time, is an important performance

parameter for any kind of network and distributed system. Therefore,

test scenarios will be performed to calculate this.

 38

3.2 RESEARCH OBJECTIVES

Due to the continuing advances in network and application design in Wireless Sensor

Networks (WSNs), the development of an appropriate middleware for WSNs is

becoming necessary. Also, because WSNs have some limitations compared to

traditional networks, such as the lack of structure and resources, middleware

solutions are developed to solve some problems related to this issue. But most

middleware approaches are not suitable for real-time and mission critical

applications. In such applications, middleware should fully satisfy real-time

constraints imposed by the network.

Therefore, real-time publish/subscribe (RTPS) middleware becomes essential in

mission critical applications in many environments where real-time constraints must

be met. RTPS is a network middleware for real-time distributed applications. It has

the ability to provide the communications service programmers needed to distribute

time-critical data between nodes in a given system.

Real-time publish/subscribe middleware (RTPS) has several advantages over other

approaches. Some of these advantages are [23]:

1. RTPS is based on a simple “publish-subscribe” communication model. It is

dynamically scalable, and efficient in usage of transmission bandwidth.

2. It can be used with high performance systems because of its low overhead.

 39

3. This type of middleware supports one-to-one, one-to-many, and many-to-many

communication paradigms.

4. By using RTPS middleware, optional QoS properties can be set based on the

needs of a given system or network.

 40

3.3 DATA DISTRIBUTION SERVICE (DDS) FOR REAL-

TIME SYSTEMS

The Data Distribution Service (DDS) is an Object Management Group (OMG)

standard for topic-based publish/subscribe middleware. The OMG Data-Distribution

Service for Real-Time Systems is considered to be the first open international

middleware standard that directly addresses publish/subscribe communications for

real-time systems [14].

DDS has many prime advantages such as, it is based on a simple “publish-subscribe”

communication model, is dynamically scalable, and efficient in usage of

transmission bandwidth. Also, it can be used with high performance systems because

of its low overhead. Furthermore, DDS supports one-to-one, one-to-many, many-to-

one and many-to-many communication paradigms [13, 14].

Regarding the DDS elements, the specification for DDS can be divided into two

important sections. The first section covers Data-Centric Publish Subscribe (DCPS)

and the second section covers the Data Local Reconstruction Layer (DLRL). For the

first element, DCPS is defined as the lower layer API that can be used to exchange

topic data with other DDS-enabled applications. DLRL, the second section, is the

upper layer part of the specification that outlines how an application can interface

with DCPS data fields [13].

 41

It is important to highlight that DDS has many important entities such as Topic

Description that, is the most basic description of the data to be published and

subscribed, Publisher, Data Writer which is used to allow the application to set the

value of the data to be published under a given Topic, Subscriber. Finally, a Data

Reader is associated with one Subscriber and one Topic [13].

Regarding Quality of Service in DDS, Data Distribution Service is able to specify

different QoS parameters for each individual Topic, Reader or Writer in order to give

a wide range of facilities to the developers to design their system. DDS has many

QoS parameters such as user data, ownership, owner ship strength presentation,

deadline, durability. Through a combination of DDS QoS parameters a system can

satisfy a wide range of needed requirements.

Also, DDS is considered to be “Data-centric” where we have all the QoS parameters,

which can be changed on a per message basis. Moreover, Data Distribution Service

provides API for sending and receiving data. Therefore, developers will not have

problems related to any network programming aspect [13].

In the following section, we will address important QoS parameters in DDS for

(RTPS) middleware to optimize data delivery for a specific application of wireless

sensor network [WSNs].

 42

3.4 DDS QUALITY OF SERVICE IN RTPS MIDDLEWARE

FOR WSNS

DDS QoS controls the flow of the data through any system. In the Publish-Subscribe

system, there are QoS polices for Topic, DataReader (DR), Data-Writer (DW),

Publisher, and Subscriber. In general, QoS policies of Subscriber, Data-Reader, and

Topic control the data on the receiving side. However, QoS policies of Publisher,

Data-Writer, and Topic will also control the data on the sending side. Throughout

this section, we will go over certain DDS QoS policies.

For QoS policy, any proposed Real-Time Publish/Subscribe (RTPS) middleware for

Wireless sensor networks (WSNs) should utilize some important QoS policies of

the QoS model of DDS, such as latency budget and reliability [14].

Latency budget QoS policy specifies the maximum accepted latency from the time

the event is published by the publisher sensor nodes until the event is available to the

destination subscribers. In other words, this QoS policy will determine the maximum

acceptable delay from the time the data is written by the Data-Writer in the publisher

side until the data is available to a receiving application. For example, if an

application creates a latency budget QoS policy to be 200 milliseconds, this policy is

applied to any instance of a topic generated by a publisher sensor node in order to

 43

ensure that all the data in this topic is delivered within less than 200 milliseconds

[14, 16].

The reliability QoS policy indicates the level of data transmission reliability provided

by DDS. In particular, DDS supports two reliability models, RELIABLE and BEST

EFFORT. When reliability QoS policy is set to RELIABLE, DDS attempts to deliver

all events. The missed events are retransmitted until the number of transmissions is

greater than a threshold, or the transmission is successful. On the other hand, when

reliability QoS policy is set to BEST EFFORT, DDS sends out each event only once

and relies on the MAC layer for successful transmission [14, 16]. Therefore, for any

proposed RTPS middleware for WSNs, this should be set to RELIABLE in order to

ensure that the necessary data is not lost.

Also under the concept of avoiding flooding the network and in order to clearly

illustrate this point, assume that we have many sensor nodes that measure the

temperature as example and it is required that subscriber applications need to get

temperature readings from the most powerful sensor. If this sensor stops working

because of damage or for any other reasons, the applications should automatically

use the readings from another temperature sensor. With RTPS for WSNs, we should

set the value of OWNERSHIP QoS policy should be set to "exclusive" to ensure that

the readers will only receive data from a single sensor node.

Furthermore, DEADLINE QoS policy can be used in RTPS to specify that the

subscribers will automatically switch to the sensor with the second highest identifier

 44

number, if it does not receive data within the specified time period. In other words,

this setting will satisfy the condition of the real-time term because the data must be

provided within a predefined time period, which is the DEADLINE period [14, 16,

17].

 45

CHAPTER 4

THROUGHPUT EXPERIMENTAL SET-UP AND

RESULTS

To study the performance of real-time publish/subscribe (RTPS) middleware

standard by Object Management Group (OMG) in wireless sensor networks WSNs,

different test scenarios are implemented to address the issues that are related to

performance metrics. The main purpose of our experiments is to implement and run

throughput, jitter and latency performance tests with fixed and different sample sizes

and number of subscribers that is closer to the sensor network environments. The

middleware that is used in this work as RTPS is called RTI-DDS. This middleware is

implemented by the company Real-Time Innovations (RTI), which is one of the most

complete and representative implementations of Data Distribution Service (DDS).

Some of the primary entities used in all tests are briefly defined as follows:

Topic is the basic connection between publishing and subscribing applications. To

communicate, the Topic of a given publisher on one node must match the Topic of a

subscriber on any other node. Failing to do so, will cause the communication to not

take place. A Topic is comprised of a name and a type. In general, a topic can be

temperature, sound, humidity, pressure, vibration, motion, light, etc.

 46

DataWriter: this entity is used by the application to publish samples on a topic. Once

a DataWriter is defined, a DDS application uses it to do the “write” operation in the

publishing phase. It is important to point out that each data writer is bound to a

particular topic.

Publisher: a publisher has the full responsibility for taking the published samples

and sending them out to the DDS domain. In addition, any publisher works as

controller to the data writers. By setting the DDS-QoS behavior for a publisher, all

the DataWriters in that publisher’s group will automatically have these settings.

DataReader: this entity is used to take samples from the subscriber and deliver them

to the DDS application. Like the DataWriter, each data reader is bound to a

particular topic.

Subscriber: a subscriber has the responsibility to receive the samples from the

publisher and pass them to any relevant data readers that are connected to it. Also, it

works as a controller to manage all its DataReaders. Again, setting of QoS

parameters of a subscriber will apply to all DataReaders in the Subscriber's group.

The Figure 4.1 shown below illustrates the previous terms and presents the basic

components in the implementation of all applications.

In the context of a sensor network application scenario, publisher application will

contain a large number of data-writers and each one of them presents a sensor node.

In the subscriber side, each subscriber will contain a small number of data-readers

and each one of them presents the sink node or the base-station in WSNs.

 47

 Figure 4.1 this diagram shows the basic and main components that are
implemented in all tests. RTI-DDS is defined as publish and subscribe
service. In the publication stage, a publisher and a DataWriter send messages
to one or more subscribers that include DataReader and a subscriber.

 48

4. Throughput Tests:

Throughput, i.e., number of received samples per unit of time (such as second), is an

important performance parameter for any kind of network and distributed system.

The primary goals of our throughput tests are to measure how RTI DDS can handle a

large number of subscribers and how different communication models (e.g., unicast

and multicast protocols) can affect performance. Also, throughout these tests, the

investigation of the usage of QoS specified in DDS middleware standard by Object

Management Group (OMG) is pointed out.

Scenarios that have been implemented so fare:

4.1 One-to-One Throughput Test

- One publisher application node that has 1000 data-writers as

sensor nodes and it runs on Core1.

- One subscriber application node that has 1 data reader and it runs

on Core 2.

- Core1 and Core 2 are connected through ad hoc wireless network

by having 802.11g/54 Mbps wireless USB adapter on each one of

them.

- Size of sample from 8 bytes to 1024 bytes.

 49

- Publisher application node transmits at constant rate of 1000

samples/sec (Frequency = 1000 HZ).

4.2 One-to-Many Throughput Test

- One publisher application node that has 1000 data-writers as

sensor nodes and it runs on Core1.

- 3 subscriber application nodes run on Core 2, Core 3 and Core 4,

each one has one data-reader.

- Core1, Core 2, Core 3 and Core 4 are connected through ad hoc

wireless network by having 802.11g/54 Mbps wireless USB

adapter on each one of them.

- Size of sample from 8 bytes to 1024 bytes.

- Publisher application node sends at a constant rate 1000

samples/sec (Frequency = 1000 HZ).

4.3 High Throughput with Reliable Messaging Test

- One publisher application node that has 1000 data-writers as

sensor nodes and it runs on core1.

- 3 subscriber application nodes run on Core 2, Core3 and Core4,

each has one data-reader.

- Core1, Core 2, Core 3 and Core4 are connected through ad hoc

wireless network by having 802.11g/54 Mbps wireless USB

adapter on each one of them.

 50

- Size of sample from 8 bytes to 1024 bytes.

- Publisher sensor application node sends at a constant rate of 1000

samples/sec (Frequency = 1000 HZ).

- Using batch and reliable QoS in order to see how the first one can

increase the throughput especially for small sample size. In other

words, batching can increase throughput when writing small

samples at a high rate.

4.4 One-to-Many Throughput Scalability

- One publisher application node that has 1000 data-writers as

sensor nodes and it runs on Core 1.

- 15 subscriber applications node run on Core 2, each of these 15

subscribers has one data-reader.

- Core1 and Core 2 are connected through ad hoc wireless network

by having 802.11g/54 Mbps wireless USB adapter on each one of

them.

- Fixed sample size = 128 bytes because it is the default size in the

IEEE 802.15.4 specification.

- Publisher sensor application node sends at a constant rate of 1000

samples/sec (Frequency = 1000 HZ).

 51

4.1 One-to-One Throughput Test Outcomes

A. Experimental set-up

In our network, IP addresses start with 172.16.101, so we refer to nodes by the last

part of their IP addresses. The following nodes are used:

120: This core will contain the sensor publisher application. It is important to point

out that this application has1000 datawriters. (2.67 GHz, 3.23G RAM, Windows XP)

123: This core will contain the subscriber application that has one data-reader

(2.67GHz, 3.23G RAM, Windows XP)

Nodes 120 and 123 are connected through a wireless communication by having

802.11g/54 Mbps wireless USB adapter on node. Node 120 runs the publisher

application to produce the sensor data. The other node (node 123) runs the subscriber

application to subscribe for the topic that has been published by the sensor publisher.

See the Figure 4.2 below.

Fig. 4.2: Multi One-to-One Throughput Test

 52

B. Goal

This test was conducted to show the one-to-one (point-to-point) publish/subscribe

throughput in terms of received samples in sample per second. In other words, the

sensor publisher application sends data where the size varies from 8 bytes to 1024

bytes, and is received by exactly to one subscriber application. The throughput in this

test is measured between a sensor producer application and another single consumer

application and over a single DDS topic. It is important to highlight that both

applications are running on two different machines.

C. Implementation

The implementation of the test is done by running two java applications: one for the

publishing node (that has 1000 data-writers as sensor) and the other one for the

subscribing node that has one data-reader. Note that the publisher application is

sending at the fixed rate of 1000 sample / sec (Frequency = 1000 sample/sec).

 In this test, RELIABILITY QoS Policy in the DDS is highlighted in order to see

how this kind of QoS can control the communication between the data reader (DR)

on the subscriber side and the data-writers (DWs) on the sensor or publisher side.

The connection between the DataWriters (DWs) in the sensor application (node 120)

and the DataReaders (DR) in subscriber application (node 123) in terms of reliability

can be configured by the user. If RELIABILITY QoS policy is set to Best_ Effort,

the RTI Data Distribution Service will send samples only once to DR(s). In other

words, Best_ Effort does not use any resources to monitor the data sent by DWs of

 53

the sensor application to determine whether or not it has been received. Also, it is

important to point out that it is the fastest and most efficient way in order to get the

latest value of a topic. In other words, since best_effort does not retransmit messages,

it is more scalable and timely, therefore it is preferred. However, the delivery is not

guaranteed, which means that the data may be lost in the transportation stage over

wireless network or even Ethernet.

In the sensor applications that required guaranteed data delivery, RELIABILITY

QoS policy is set to RELIABLE. In this mode the RTI Data Distribution Service

buffers sent data until all sent samples have been acknowledged by the DataReader.

In case of lost samples during the transport stage, RTI will take care by resending

them again until they are acknowledged. This kind of connection need extra

overhead by using extra packets to monitor and track the status of the sample in the

network whether it is acknowledged by the DataReaders or not. Therefore, it needs

additional resources to be configured as HISTORY.

The test is done on mainly in two scenarios:

• Setting RELIABILITY QoS Policy in both DataWriters (DWs) in the sensor

application (node 120) and DataReader(DR) in the subscriber application

(Node123) to RELIABLE.

• Setting RELIABILITY QoS Policy in both DataWriters (DWs) in the sensor

application (node 120) and DataReader (DR) in the subscriber application

(Node 123) to Best_ Effort.

 54

D. Results and Remarks

”

As evident from the above Figure 4.3, the maximum message data is slightly over

960 messages per sec for Best-effort value and around 840 messages per sec for the

RELIABLE value. It is an acceptable and expected result to have the RELIABLE

mode has small throughput than Best-effort due to the complexity of the RELIABLE

operation, i.e. acknowledgment sample must be sent and retransmissions for lost

samples are enforced.

As shown above, RTI Data Distribution Service is fully utilizing the available

bandwidth. Also, it can be remarked that throughput is limited by the network and

Fig. 4.3: result of One-to-One Throughput

 55

not by the CPU or middleware. Furthermore, the performance of a system depends

on the operating system, the networks and how the networks are configured.

 56

4.2 One-to-Many Throughput Test Outcomes (Subscribers on

Different Hosts):

A. Experimental set-up

In our network, IP addresses start with 172.16.101 so we refer to nodes by the last

part of their IP address. The following nodes are used:

120: This core will contain the publisher application that has 1000 data-writers. (2.67

GHz, 3.23G RAM, Windows XP).

123: This core will contain the subscriber application 1. It has one data-reader. (2.67

GHz, 3.23G RAM, Windows XP).

121: This core will contain the subscriber application 2. It has one data-reader.

(2.67GHz, 3.23G RAM, Windows XP).

173: This core will contain the subscriber application 3. It has one data-reader.

(2.67GHz, 3.23G RAM, Windows XP).

Nodes 120, 123, 173 and 121 are connected through a wireless communication by

having 802.11g/54 Mbps wireless USB adapter on each node. Node 120 runs the

publisher application to produce the sensor data. The other nodes (node 120, 121

and 173) run the subscriber applications to subscribe for the topic that have been

published by the sensor publisher application. See the Figure 4.4 below.

 57

B. Goal

This test is conducted to show the one-to-many (point-to-many point)

publish/subscribe throughput in terms of received samples per second (sample/sec).

In other words, the sensor publisher application sends data where the size varies from

8 bytes to 1024 bytes and is sent exactly to three subscriber applications. The

throughput in this test is measured between a producer application and three

consumer applications and over a single DDS topic.

C. Implementation

The test is made by running two java applications: one for the publishing node (that

has 1000 data writer as sensor) and the other for the subscribing nodes, each having

one data-reader.

Fig. 4.4: Multi One-to-Many Throughput Test over different

 58

The test is done by mainly setting RELIABILITY QoS Policy in both Data

DataWriters (DWs) in the sensor application (node 120) and DataReaders(DRs) in

the subscriber applications (Node 121, 123 and 173) to RELIABLE.

D. Results and Remarks

Fig. 4.5: result of One-to-Many Throughput Test over different machines

 59

Sample size Avg. Received sample/sec

(One-to-One)

Avg. Received sample/sec

(One-to-Many)

8 846 657

16 839 640

32 836 638

64 824 634

256 780 557

512 742 516

1024 734 471

This table compares this test with one that is done in previous experiments, when we

have one-to-one test over QoS= RELIABLE. This is done in order to have an

estimation of the difference in the measures caused by increasing the number of

subscribers over different machines. For the samples that have sample size, the

difference is around 190 samples. However, for large size the difference becomes

around 225 samples. It is large for 1024 bytes, it is 263 samples. The reason why

there is a difference between this test and the previous test is that, in the second one,

traffic is send from one host to another 3 machines. In other words, copy of every

sample must be sent to every single subscriber host.

Table 4.1: One-to-Many Throughput Test over different machines

 60

4.3 High Throughput with Reliable Messaging Test Outcomes:

A. Experimental set-up
In our network, IP addresses start with 172.16.101 so we refer to nodes by the last

part of their IP address. The following nodes are used:

120: This core will contain the sensor publisher application. It has 1000 data-writers

(2.67 GHz, 3.23G RAM, Windows XP).

121: This core will contain the subscriber application 1 (2.67 GHz, 3.23G RAM,

Windows XP).

123: This core will contain the subscriber application 2 (2.67GHz, 3.23G RAM,

Windows XP).

173: This core will contain the subscriber application 3 (2.67GHz, 3.23G RAM,

Windows XP).

Nodes 120, 123, 127 and 173 are connected through a wireless communication by

having 802.11g/54 Mbps wireless USB adapter on each node. Node 120 runs the

publisher application to produce the sensor data. The other nodes (node 121, 123 and

173) run the subscriber application to subscribe for the topic that has been published

by the sensor publisher.

B. Goal
As we previously mentioned, some sensor applications required a reliable messaging.

Therefore, the middleware must keep monitoring the delivery of the data whether or

 61

not it was received by the subscribing applications. Also, in case of data loss,

retransmission must be done.

The section (4.3) points out the key QoS settings that are needed in order to achieve

strict reliability. Not only that, but it can also be seen how we can set RTI Data

Distribution Service QoS Profile in order to get high throughput for reliable data.

C. Implementation

To achieve strict reliability for the critical sensor application we must do the

following:

• Setting the RELIABILITY QoS Policy of Data Writer (DWs) of the sensor

application and Data Reader (DR) of the subscriber node(s) to RELIABLE.

Some sensor applications produce a large number of small messages at high rate. In

such a case, there will be a measurable overhead in transmitting each sample alone in

a network especially if the application needs a strict reliable communication. From

here, the idea of using the Batch QoS policy in DDS is used. This kind of QoS is

helpful to the system in managing many samples together as a group and then sends

them as a group to the network. In other words, the batching QoS, with reasonable

size because sensor nodes have limited memory sizes, can take advantage of the

efficiency of sending larger packets, thus increasing the throughput.

 62

D. Results and Remarks

As you can see in the result, it is clearly shown that batching service significantly

increases the throughput for the small sample size at a higher rate. In general, this

kind of Qos policy is used to make communication overhead less in the reliable

mode of small size samples.

Fig.4.6: result One-to-Many Throughput: with & without batching QoS

 63

Batching service collects many smaller samples in a batch to be sent in a single

packet. This surely reduces the communication and the acknowledgments flow, thus

increasing the throughput in terms of samples per second. See the table below:

Size in bytes Throughput without

batching

Throughput with

batching

16 640 996

32 638 994

64 635 994

128 632 970

256 557 876

512 516 742

1024 471 553

Table 4.2: result One-to-Many Throughput: with & without batching QoS

 64

4.4 One-to-Many Throughput Scalability – (Subscribers On Same

Host)

A. Experimental set-up :

In our network, IP addresses start with 172.16.101 so we refer to nodes by the last

part of their IP address. The following nodes are used:

120: This core will contain the sensor publisher application. It has 1000 data-writers

(2.67 GHz, 3.23G RAM, Windows XP)

123: This core will contain the subscriber applications. (2.67 GHz, 3.23G RAM,

Windows XP)

Nodes 120 and 123 are connected through a wireless communication by having

802.11g/54 Mbps wireless USB adapter on each node. Node 120 runs the publisher

application to produce the sensor data. The other node (node 123) runs from 1 to 15

subscriber applications to subscribe for the topic that have been published by the

sensor publisher. See the Figure 4.7 below.

 65

B. Goal

The aim of this scenario is to examine the behavior of transferring data with a fixed

rate over a different number of subscriber applications. This test was done to see how

the RTI will behave in a similar situation in sensor network. In addition, this scenario

test will measure the capability of the RTI in handling multiple of subscribers.

C. Implementation

We used a publisher application and from 1to 15 subscriber applications over a

single topic with fixed sample size of 128 bytes since it is the default size in the

Fig. 4.7: Multi One-to-Many Throughput scalability test

 66

IEEE 802.15.4. It is important to highlight that each sample produced by the sensor

application is consumer by 1 to 15 subscriber applications.

The test is done mainly in three scenarios:

A. Setting RELIABILITY QoS Policy in both DataWriters (DWs) in the sensor

application (node 120) and DataReaders (DRs) in the subscriber applications

(node 123) to RELIABLE without batching.

B. Setting RELIABILITY QoS Policy in both DataWriters (DWs) in the sensor

application (node 120) and DataReader (DRs) in the subscriber applications

(node123) to Best_ Effort.

C. Setting RELIABILITY QoS Policy in both DataWriters (DWs) in the sensor

application (node 120) and DataReaders (DR) in the subscriber applications

(node123) to RELIABLE with 10k batches.

• Number of publisher application = 1, with 1000 DWs

• Number of subscribers = from 1 to 15

• Size of the message = 128 bytes

• Fixed frequency rate =1000 HZ

 67

D. Results and Remarks

Figure 4.8: result One-to-Many Throughput scalability test

Clearly, Figure 4.8 shows the efficiency of RTI's reliable uni-cast protocol for one-

to-many publish/subscribe messaging and real-time data distribution. A producing

sensor application was used to send a stream of 128-byte messages at the rate of

1000 HZ to up to 15 consumer nodes, each of these subscribers running on the same

core.

This illustrates that RTI Data Distribution Service middleware with batching has the

best scalability over the other two (Reliable and best effort). This is because batching

 68

groups many smaller samples in a batch to be sent in a single packet which will

reduce the communication overhead.

 69

CHAPTER 5

RTI ROUTING SERVICE FOR ISOLATION AND

CLUSTERING

RTI Routing Service is an important component of RTI Data Distribution Service

that is mainly used to integrate separated and isolated systems. This component

works to scale DDS applications across domains, Local area Network LANs, WLAN

and wide area network WANs. It is important to highlight that RTI Routing Service

can work as a bridge between two or more DDS applications. This is done by

exchanging the data between DDS systems. Therefore, RTI Routing Service helps in

integrating a new DDS application with a legacy one. Furthermore, it can work as an

interface between non-DDS and DDS systems.

It is known that Data Distribution Service (DDS) applications can communicate with

other applications if they are in the same domain. However, with RTI Routing

Service, applications in different domains can communicate by sending and receiving

data across domains. In addition, this component of RTI Data Distribution Service is

able to transform and filter the transferred data. Also, applications with different data

structures are able to communicate across domains by using RTI Routing Service

 70

because this component has the capabilities to change the data’s type. Moreover, it is

used as a controller to the system by deciding which data is to be sent.

Fig. 5.1: RTI Routing Service for DDS

 71

RTI Routing Service is used to pass data from one domain to another. Also, it is used

to specify any desired data filtering and transformations. It is important to point out

that no changes are required in the Data Distribution Service DDS applications.

The important benefits of RTI Routing Service are as follows:

1. It reduces the time and effort that are needed to integrate and scale DDS

applications across domains. It can scale DDS real-time publish/subscribe

(RTPS) data-distribution without making any changes to the existing DDS

applications. With this routing service, an existing DDS application can be easily

integrated with a new one even if its data structure is different for the old one.

2. It is used to build modular systems out of the existing systems: RTI Routing

Service allows dividing the DDS system into public or private domains. Also, it

can be used to see certain “global topics” across domains.

3. It supports a secure deployment across multiple DDS applications.

4. It can be used as bridges to integrate DDS and non-DDS systems.

5. It is used to manage and control the evolution of the data at the subsystem level:

RTI Routing Service is able to transform data on the fly, changing topic, working

as a bridge to link different kinds of DDS applications.

 72

5.1 RTI Routing Service for Throughput Scalability Test

Outcomes:

The goal of these tests are to see the advantages of using the RTI routing service

after we correctly program it for transferring data with a fixed rate across domains

and a over different number of subscriber applications. This test is done to see how

the RTI will behave in a similar situation in sensor networks when the network is

divided into clusters and is in an isolated sub networks. These networks might be

different in data structure and security domains. In other words, this test scenario will

clearly point out how the RTI can act when the sensor application in isolated network

from the subscriber application, which usually is the case in wireless sensor

networks.

Note that, in this test, we do four different scenarios based on the location of running

the RTI routing service, as follows:

Test A: running RTI routing service on the same core (Core 1) that runs the sensor

publisher application.

Test B: running RTI routing service on the same core (Core 2) that runs the

subscriber application.

Test C: running RTI routing service on different core, say (Core 3).

 73

• Test A : Experimental Set-up

In our network, IP addresses start with 172.16.101 so we refer to nodes by the last

part of their IP address. The following nodes are used:

120: This core will contain the sensor publisher application. It also runs RTI Routing

Service (2.67 GHz, 3.23G RAM, Windows XP).

123: This core will contain the subscriber applications. (2.67GHz, 3.23G RAM,

Windows XP).

Node 120 runs the publisher application to produce the sensor data. The other node

(node 123) runs from 1 to 50 subscriber applications to subscribe for the topic that

have been published by the sensor publisher .See the Figure 5.2 below.

Fig. 5.2: RTI Routing Service in the publisher side

 74

• Test A : Implementation

As shown in the Figure above, this implementation is exactly the same as Test A

except that the RTI routing service runs on the same core of the sensor publisher

application.

• Number of publisher application = 1, it has 1000 DWs ,runs on domain 0

• Number of subscribers = from 1 to 50, run on domain 1

• RTI Routing service runs on the same core as the publisher application

• Size of the sample = 128 bytes

• Fixed frequency rate = 1000 HZ

 75

• Test B: Experimental set-up :

In our network, IP addresses start with 172.16.101 so we refer to nodes by the last

part of their IP address. The following nodes are used:

120: This core will contain the sensor publisher application which has 1000 data-

writers as sensor generator (2.67 GHz, 3.23G RAM, Windows XP).

123: This core will contain the subscriber applications. It also runs RTI routing

service (2.67 GHz, 3.23G RAM, Windows XP).

Node 120 runs the publisher application to produce the sensor data. The other node

(node 123) runs from 1 to 50 (not 15 applications, it is 50 to show the scalability

issues) subscriber applications to subscribe for the topic that have been published by

the sensor publisher. It is important to highlight that both of these applications are on

different domains .See the Figure 5.3 below.

Fig. 5.3: RTI routing service in the subscriber side

 76

• Test B: Implementation

As shown in the Figure above, we used a sensor publisher application that runs on

Core 1 and domain 0. Also, (from 1 to 50) a subscriber application that runs on Core

2 and it is on domain1. Subscriber applications subscribe on a single topic with fixed

sample size of 128 bytes since it is the default size in IEEE 802.15.4. It is important

to highlight that each sample produced by the sensor application is routed by one

RTI routing service. 1-to-50 subscriber applications subscribe for the same topic that

is published on domain 0 and routed from that domain (domain 0) to domain of the

subscribers through the RTI routing service. Note that, the sensor publisher

application works on domain 0 and all the subscriber applications run on domain 1.

The RTI routing service runs on the same core of the subscriber applications. In this

test we set RELIABILITY QoS Policy in both Data DataWriters (DWs) in the sensor

application (node 120) and DataReaders (DRs) in the subscriber applications (node

123) to Best_ Effort.

• Number of publisher application = 1, it has 1000 DW , runs on domain 0

• Number of subscribers = from 1 to 50, each subscriber has one data

reader , run on domain 1

• RTI routing service runs on the same core as the subscribers

• Size of the sample = 128 bytes

• Fixed frequency rate = 1000 HZ

 77

• Test C : Experimental Set-up

In our networks, IP addresses start with 172.16.101 so we refer to nodes by the last

part of their IP address. The following nodes are used:

120: This core will contain the sensor publisher application. (2.67 GHz, 3.23G RAM,

Windows XP).

123: This core will contain the subscriber applications. (2.67 GHz, 3.23G RAM,

Windows XP).

173: This core runs RTI routing service. (2.67 GHz, 3.23G RAM, Windows XP).

Fig. 5.4: RTI routing service in the 3rd node

 78

• Test C : Implementation

As shown in the Figure above, this implementation is exactly the same as Test A

except that the RTI routing service runs on the third core (Core 3).

• Number of publisher application= 1, with 1000 DWs , runs on domain 0

• Number of subscribers = from 1 to 50, run on domain 1

• RTI routing service runs on (Core 3).

• Size of the sample = 128 bytes

• Fixed frequency rate = 1000 HZ

 79

• Remarks of the previous results:

We can notice that throughput (average number of received sample /sec) is invariant

to the number of subscribers. This is perfectly normal if you consider the behavior of

IP Multicast. The key idea behind that is that RTI routing service uses IP Multicast

protocol to distribute samples, this is why we have a throughput (average number of

received sample /sec) is invariant to the number of subscribers.

Normally, the publisher sends one datagram per each subscriber, so increasing its

number causes an increase in the datagram to be sent. In IP Multicast, the publisher

sends just one datagram even if there is more than one subscriber.

Fig.5.5: Clustering and Isolation cases using RTI routing service

 80

In order to clearly point out this important point, we compare what we got in Figure

5.6 with what we got in this test. If we do so, we can understand the behavior of the

RTI Data Distribution Service in both cases:

In above Figure 5.6, the RTI Data Distribution Service middleware uses Unicast

protocol. In this case, we have seen that as we increase the number of subscribers,

the throughput (average number of received sample/sec) significantly decreases. This

is clearly because the network bandwidth is wasted since Unicast protocol generates

a separate copy of the data to each single subscriber. This obviously means that

Unicast does not easily scale to a large number of recipients.

Fig5.6: Result of one-to-many test without using RTI routing

 81

For example: if the number of subscriber applications is 50, then the publisher sensor

node will transmit 50 copies of the data and the network forwards them to each

subscriber. In other words, the sensor publisher application sends multiple copies of

the data, one copy for each subscriber. The following Figure 5.7 shows how the

transferring of the data is made by the RTI Data Distribution Service middleware in

test of Figure 5.6.

 On the other hand, the RTI routing service uses multicast transmission protocol in

order to send a single multicast sample addressed to all subscribers. It provides

efficient communication and transmission, optimizes performance, and enables truly

distributed applications.

Fig5.7: one-to-many test without using RTI routing service

 82

Therefore, if the number of subscriber applications is 50, then the publisher sensor

node will transmit only one copy of the data and RTI routing service does the

replication for each subscriber.

It is important to point out that the RTI routing service that uses IP multicast protocol

allows the sensor publisher application to send to multiple subscribers

simultaneously. The following Figure 5.8 shows how the transferring of the data is

made by the RTI routing service.

At the end of this test, it is extremely essential to point out that RTI routing service

gives many advantages in a one-to-many environment. This routing service clearly

enhances the efficiency because multiple streams of data, which are generated by the

Fig5.8: One-to-Many test using RTI routing service

 83

sensor publisher application, are replaced with a single transmission. In other words,

the available network bandwidth is utilized more efficiently than the previous test.

Furthermore, it optimizes the performance since less number of copies of data

requires forwarding and processing. In addition, it highly supports distributed

applications.

In this test, the Figures shown above show the one-to-many (point-to-many point)

publish/subscribe throughput in terms of sample per second (sample/sec). The sensor

publisher application sends samples of fixed size (128-bytes) to up to 50 subscribers,

each running on the same core.

As can be seen in Figure 5.5, the number of subscribers has no significant impact on

the throughput. Obviously, this means that RTI Data Distribution Service is highly

scalable in terms of the number of subscribers supported on a given topic. Moreover,

it is important to mention that this figure shows the efficiency of RTI routing service

for real-time and mission-critical WSN applications.

 84

5.2 Energy Consumption Estimation in Wireless Sensor

Networks

In WSNs, the energy consumption is one of the important issues to prolong the

network lifetime. Unlike wired and wireless networks, WSNs have a main energy

issue because wireless sensor nodes are powered by batteries with a limited capacity

and they cannot be charged after being deployed. Therefore, they are prone to

failures and this will cause the whole network to fail. Many researchers proposed

different ways to reduce energy consumption by limiting transmission/reception of

data sample as much as possible.

The goal of this section is to estimate the total energy consumed by the network in

the previous tests mentioned in section 5.1. In our estimation, it is important to

highlight that we assume no node failures.

In the analytical model used to estimate total energy consumed in our network, it is

assumed that there are N nodes distributed uniformly. If there are c clusters, there are

on average N/c nodes per cluster (one cluster head and [(N/c)-1] non-cluster head

nodes). Each cluster-head consumes energy receiving signals from the other nodes,

aggregating the signals, and transmitting the aggregate signal to the Base Station.

Since the Base Station is far from the nodes, multipath model is used the multipath

model (d^4 power loss) [36].

 85

Therefore, the energy dissipated in the cluster head node is

Where, L is the number of bits in each data sample k is the number of bits in each

data message, €mp is the coefficient of amplifier energy in multi-path model, dBS is

the distance from the cluster head node to the BS, EDA is data aggregation. Because

the distance to the cluster head is small, so the energy consumed follows the Friss

frees-pace model is used to model the power loss (d^2 power loss) [36]. Thus, the

energy used in a non-cluster head node is

Where, dCH is the distance from the node to the cluster head and ∈fs is coefficient of

amplifier energy in free-space model.

Therefore, the total energy consumed in our network is as follows:

Because we have only one single cluster in the network, the energy dissipated in a

cluster is given by

In our work, we assume a simple model where the values of the constant

communication energy parameters were taken as in Table 5.1:

ECH = L [n Eelec + n EDA + Eelec + ∈ mp (dBŜ 4)] (5.1)

 Enode = L [Eelec + ∈ fs (dCH^2)] (5.2)

 Etotal = [ECH + (N-1) Enode] (5.4)

Etotal = c. [ECH + (N/c-1) Enode] (5.3)

 86

Parameter Short Description Value

Eelec Electronics energy 50nJ/bit

EDA Energy of data aggregation 5nJ/bit

∈ fs Amplified transmitting energy using
free space

10pJ/bit/ m 2

∈ mp Amplified transmitting energy using
multipath

0.0013pJ/bit/ m4

N Number of nodes in the network 1001 nodes

Also, we assumed Core1and Core 2 are located on (0, 0) and (50, 0)

respectively. Also, we assumed if the cluster head and non-cluster head

nodes are on same core, then the cost of the distance is one. Otherwise, dCH

will be based on its locations. In other words, for Test A, B and C, dCH=1, 50, 25

respectively. Also, dBS =50 for Test A, dBS =1 for Test B and dBS =25 for Test C.

Scenarios that have been implemented:

• Test A: Cluster head and non-cluster head nodes are on same core (Core

1)

Table 5.1 PARAMETERS VALUES USED IN THE SIMULATION

 87

• Test B: Cluster head and non-cluster head nodes are located on Core 1

and Core 2 respectively. Core 2 runs base station application as

subscriber.

• Test C: Cluster head and non-cluster head nodes are located on Core 1

and Core 3 respectively Core 3 is located on (25, 0) between core 1 and

core 2). Core 2 runs base station application.

Fig5.9: Energy used in each non-cluster head node vs. Sample size

 88

Fig5.10: Energy dissipated in the cluster head node vs. sample size

Fig5.11: Total energy consumed by the network vs. sample size

 89

In Figure 5.11, we find that the energy consumptions of all test are proportional to

packet size. As can also be seen in this Figure, running the cluster head and non-

cluster head nodes on same core has the lowest total energy consumed (Etotal) by

the network. Obviously, this is because if both of them running on the same core,

dCH will be small. Therefore, the energy used in a non-cluster head node (Enode)

will be small. However, for Test B, Cluster head and non-cluster head nodes

are located on Core 1 and Core 2 respectively. That means, dCH will have the

largest value. Therefore, this test has the largest Enode. As result, it has the largest

total energy consumed by the network.

 90

CHAPTER 6

LATENCY EXPERIMENTAL SET-UP AND RESULTS

In this test, we calculated the roundtrip time (RTT) between the sending of a message

and reception of an acknowledgment from the subscriber. In all latency test

scenarios, the roundtrip latency is calculated as the with publisher sensor application

send at constant rate 1000 sample/sec (Frequency = 1000 HZ). Similarly to the last

throughput test, the publisher sends sample with fixed size to one or more subscriber

applications.

During this test, an echo method is used in order to calculate the round trip time

(RTT). It is important to highlight and point out that both the sensor publishing node

and publisher node are running in identical machines. If we want to estimate “end-to-

end” latency, it can be estimated as,

T end-to-end < round trip time (RTT)

For this test (1-to-many latency test scenarios), the echo method is called by the last

reader that receive the data from data writer. In other words, RTI-DDS writer will

send sample to the readers in a given specific order.

Scenarios that have been done in this phase:

6.1 One-to-One round trip time (RTT) Test

- One publisher sensor application node runs on core1.

 91

- One subscriber application node runs on core2.

- Core1 and Core2 are connected through ad hoc wireless network.

- Size of sample 128 bytes.

- Publisher sensor application node send at constant rate 1000

sample / sec (Frequency = 1000 HZ).

6.2 One-to-Many round trip time (RTT) Test

- One publisher sensor application node runs on core1.

- From 1 to 15 subscriber applications node run on core2.

- Core1 and Core 2 are connected through ad hoc wireless network.

- Fixed sample size = 128 bytes because it is the default size in the

IEEE 802.15.4 specification.

- Publisher sensor application node send at constant rate 1000

sample / sec (Frequency = 1000 HZ).

 92

6.1 One-to-One Latency Test Arrangements

A. Experimental set-up

The setup of this experiment is exactly as what we did in test One-to-One

Throughput Test.

B. Goal:

This test shows the one-to-one publish/subscribe latency in terms of round trip time

RTT. In other words, the sensor publisher application sends data where the size fixed

publishing rate 128 bytes and is sent to exactly one subscriber application on another

core over a single DDS topic. The applications are running on two different

computers.

C. Implementation

The first test will consider one publisher and one subscriber. The message will have a

size of 128 bytes and they are sent by the publisher at a constant rate 1000 (Hz)

frequency. The test is done on mainly in two scenarios:

A. Setting RELIABILITY QoS Policy in both Data DataWriters (DW) in the sensor

application (node 120) and DataReaders(DR) in the subscriber application (node

123) to RTI-DDS reliable.

B. Setting RELIABILITY QoS Policy in both Data DataWriters (DW) in the sensor

application (node 120) and DataReaders (DR) in the subscriber application (Node

123) to Best_ Effort.

 93

Fig.6.1: one-to-one RTT test, QoS =best effort

Fig 6.2: one-to-one RTT test, QoS = reliable

 94

The summary of the results is presented in Figure 6.3. This Figure shows the average

round trip time of the messages received in the subscriber. As expected, the price of

reliability is more overhead than the best-effort case .Therefore; RTT latency for first

one is greater than the RTT latency for BEST_EFFORT BE. In other words, when

the samples are changed between peers, best effort QoS imposes the least amount of

overhead. However, it does not guarantee the delivery of the data. As result, data

may be lost due to unreachable peer.

In the case of RELIABLE, it achieves the reliable delivery through two main

mechanisms: two-way hand shaking and the negative acknowledgment of lost

samples. Each of these mechanisms needs times and this why RTT for this kind of

QoS is higher than the one we got in BEST_EFFORT (BE). It is important to

Figure 6.3: one-to-one RTT analysis, QoS = best Effort Vs reliable

 95

highlight that RELIABLE QoS uses wait_for_acknowledgments method to wait for

subscription to acknowledge receipt of all data. Also, in this mode RTI Data

Distribution Service automatically sends acknowledgments (ACK/NACKs) as

necessary to maintain reliable communications.

Under the same configuration of the previous test, we made the sensor

publisher application sends data where the size varies from 8 bytes to 1024

bytes.

Figure 6.4: result of one-to-one RTT latency, QoS =best Effort Vs reliable over

different sizes

 96

By focusing on our interesting part of the chart that is from 8 bytes to 128 (note that

in sensor networks the standard sample size is 128 bytes), Fig highlights that, at

small message sizes, which is the case in WSNs, RTT remains consistently low. It is

a round 1.52 ms for QoS= RELIABLE and 1.23 ms for QoS= BEST_EFFORT. The

reason for RTT latency for first one is greater than from the second one is explained

in details in the previous test. In addition, this shows that RTI Data Distribution

Service exhibits very low jitter, making it suitable for time-time and mission-critical

applications in WSNs. At larger messages sizes, which are network-limited, latency

is proportional to message size. However, analyzing the data with large sizes is out

of our scope.

By Making the subscriber and publisher run on the same host, we got the lowest

RTT because the DDS application use shared memory (shmem) concept. It is known

that shmem is faster than UDP connection.

 97

6.2 One-to-Many RTT Latency Test Outcomes:

A. Experimental Set-up

The setup of this experiment is exactly as what we did in test One-to-Many

Throughput Test. See the fig below.

B. Goal

This test shows the one-to-Many publish/subscribe latency in terms of RTT. In this

test, the sensor publisher sends data where the size varies from 8 bytes to 1024bytes.

These massages are sent to 15 subscriber applications on another core over a single

DDS topic.

C. Implementation

For RTT Latency Test Method, We designed this test to allow only to the last data

reader to invoke the echo routine. The other data readers will not invoke the method.

This is done to calculate the worst case scenario which is the largest RTT value. For

the 1-to-many RTT test in order to work in order to work in the correct way the RTI

must send the samples in correct order. RTI-DDS will send samples to the data

readers DRs in the provided order.

The test is done on mainly in two scenarios:

A. Setting RELIABILITY QoS Policy in both Data DataWriters (DW) in the

sensor application (node 120) and DataReaders (DR) in the subscriber

application (Node123) to RELIABLE. (using a unicast)

 98

B. Setting RELIABILITY QoS Policy in both Data DataWriters (DW) in the

sensor application (node 120) and DataReaders(DR) in the subscriber

application (Node123) to Best_ Effort. (using a unicast protocol)

C. Setting RELIABILITY QoS Policy in both Data DataWriters (DW) in the

sensor application (node 120) and DataReaders (DR) in the subscriber

application (Node123) to RELIABLE. (using a multicast)

D. Setting RELIABILITY QoS Policy in both Data DataWriters (DW) in the

sensor application (node 120) and DataReaders (DR) in the subscriber

application (Node123) to Best_ Effort. (using a multi cast protocol

In both tests (this and the above one), it is important to point out that we use

request/response way to ensure that the round-trip time is recorded on the publisher

node. Also, measuring the RTT latency is done by making times-tamp on the sent

messages and subtracting that from the times-tamp value that is received in the ack

message from subscriber on the publisher side.

 99

D. Results and Remarks

In the unicast protocol the sensor publisher application will take care of all the data

readers. In other words, it sends a message to each single data reader. However, in

multicast protocol, it will send a single multicast packet to all data readers who are

listening on the same multicast address.

As evident from the above charts, at any message size, the multicast protocol has

advantages over unicast. This is happened because RTI-DDS middleware invokes the

send process only once, which means RTI-DDS will do less work, therefore, this is

Figure 6.5: result of one-to-Many RTT latency

 100

intuitively leads to lower latency. The reason for RTT latency for reliable is greater

than from the best effort is explained in details in the previous test

 101

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 CONCLUSIONS

In this thesis, some main challenges facing the design of middleware for WSNs have

been pointed out. Moreover, a brief description of a list of typical recent existing

middleware solutions is provided. Then, focus is made on the middleware that

communicates in a publish/subscribe fashion. This is done because publish-subscribe

paradigms support asynchronous communications. By using P/S paradigms, the data

is sent and received by asynchronous messages. Moreover, this kind of

communication provides some properties that are needed in sensor networks. In

addition, a P/S paradigm increases the lifetime of the network.

Also, similarities and differences between the approaches that are used to implement

different middleware solutions for sensor networks are provided. Furthermore, DDS

real-time system is discussed in order to address the issue of a real-time

publish/subscribe middleware for WSNs.

 102

The methodology used for evaluating RTPS-DDS middleware implementation is also

presented. Moreover, important QoS parameters in DDS for RTPS middleware are

addressed to optimize data delivery for a specific application in WSNs.

The tests are programmed in java language using jdk 1.6.0 to see behavior RTI DDS

in WSNs. The following performance metrics are used for analysis purpose:

• Latency, which is the roundtrip time (RTT) between the sending of a

message by the sensor publisher application and reception of an

acknowledgment from the subscriber.

• Jitter time , which is the variation in RTT latency from sample to message.

In other words, it is the standard deviation of the RTT latency.

• Throughput, which is defined as the total number of received sample per

unit of time (such as m-second).

Finally, it is strongly believed that RTI-DDS is the most suitable middleware for

WSNs since it is reliable, flexible and the highest performing implementation of the

OMG DDS for real-time systems. It also has QoS properties that can be set based on

the needs of a given system. These QoS parameters strongly allow designers to

control their applications to get the best combination of performance and resource

usage.

103

7.2 FUTURE WORK

Our work can be extended to cove the following:

• The security issues that are related to RTI routing service in order to make this

routing service more secure and prevent anyone who want to access it for

making illegal things. Since security plays a fundamental role in many

wireless sensor network applications, the accomplishment of this task will

protect these applications from the harm attackers from accessing sensor

sensitive information.

• Using the RTI routing Service as administrator to the networks by program it

to do some kind of filtration processes. Doing this for sure will protect the

WSNs from flooding with too much data.

• Trying to use RTI-DDS middleware in real nodes to see the real behavior of

this middleware.

104

REFERENCES

1. E. Souto, G. Guim˜araes, G. Vasconcelos, M.Vieira, N. Rosa, C. Ferraz, and J.

Kelner. Mires: a publish/subscribe middleware for sensor networks. Personal and

Ubiquitous Computing, 10(1):37–44, February 2006.

2. S. Michiels et al., “DAVIM: A Dynamically Adaptable Virtual Machine for

Sensor Networks,” Proc. 1st Int’l Workshop Middleware for Sensor Networks

(MidSens 06), ACM Press, 2006, pp. 7–12

3. Johannes Gehrke, Samuel Madden, "Query Processing in Sensor Networks,"

IEEE Pervasive Computing, vol. 3, no. 1, pp. 46-55, Jan.-Mar. 2004.

4. Madden S. R., Franklin, M. J., Hellerstein, J. M., and Hong, W. TinyDB: An

acquisitional query processing system for sensor networks. ACM Trans.

Database Syst. 30, 1 (2005), 122–173.

5. Wendi, B.Heinzelman, A. L.Murphy, Hervaldo, S.Carvallo, and M. A. Perillo,

.Middleware to support Sensor network applications, in IEEE Network Mag., pp.

18(1):6.14,, 2004.

6. Fok C, Roman G, Lu C. Mobile agent middleware for sensor networks: An

application case study. In Proc. the 4th Int. Conf. Information Processing in

Sensor Networks (IPSN 05), UCLA, Los Angeles, California, USA. Apr. 25{27,

2005,pp.382{387

105

7. Yang Yu,Bhaskar Krisnamachari and Viktor K.Prasanna. Issues in designing

Middleware for wireless Sensor Networks. In COMSWARE, volume 3, pages

1530–1546, April 2006.

8. Christian Hermann, Waltenegus Dargie, "Senceive: A Middleware for a Wireless

Sensor Network," aina, pp.612-619, 22nd International Conference on Advanced

Information Networking and Applications (aina 2008), 2008.

9. Karen Henricksen and Ricky Robinson,”A survey of Middleware forSensor

Networks:State of the art and future directions”, Proceedings of MidSens’06,

November 27-December 1, 2006, Melbourne, Australia.

10. Eduardo Souto, Germano Guimar aes, Glauco Vasconcelos, Mardoqueu Vieira,

Nelson Rosa, and Carlos Ferraz. A message-oriented middleware for sensor

networks. In Proceedings of the 2nd workshop on Middleware for pervasive and

ad-hoc computing, pages 127–134, New York, NY, USA, 2004. ACM Press.

11. P. Boonma and J. Suzuki, "Self-Configurable Publish/Subscribe Middleware for

Wireless Sensor Networks," In Proc. of IEEE International Workshop on

Personalized Networks (PerNets), Las Vegas, NV, January 2009.

12. Salem Hadim, Nader Mohamed. Middleware for wireless sen-sor networks: A

survey. In Proc. the 1st Int. Conf. Comm. System Software and Middleware

(Comsware06), New Delhi,India, Jan. 8{12, 2006.

106

13. J. M. Schlesselmaq Gerard Pardo-Castellote, and Bert Farabaugh ,” OMG Data-

Distribution Service (DDS): Architectural Update,” MILCOM 2004 - 2004 IEEE

Military Communications Conference.

14. Object Management Group (OMG), "Distribution Data Service for Real-Time

Systems Specification", January 2007.

15. Ribeiro, A. R. L., Freitas, L. C., Silva, F. C. S., Francês, C. R. and Costa, J. C. W.

“SensorBus: A Middleware Model for Wireless Sensor Networks”, in

Proceedings of the 3rd IFIP/ACM Latin America Networking Conference, ACM

Press, October 2005.

16. Li, Y.J.; Chen, C.S.; Song, Y.-Q.; Wang, Z. Real-time QoS support in wireless

sensor networks: a survey. In Proc of 7th IFAC Int Conf on Fieldbuses &

Networks in Industrial & Embedded Systems (FeT'07), Toulouse, France, Nov.

2007

17. P. Boonma and J. Suzuki, "Middleware Support for Pluggable Non-functional

Properties in Wireless Sensor Networks," In Proc. of IEEE Workshop on

Methodologies for Non-functional Properties in Services Computing, Honolulu,

HI, July 2008.

18. Wang, C.; Sohraby, K.; Hu Y.; Li, B. and Tang, W. “Issues of Transport Control

Protocols for Wireless Sensor Networks”. Proceedings of International

107

Conference on Communications, Circuits and Systems (ICCCAS), Hong-Kong,

China, March 2005.

19. C.-Y. Wan, A. T. Campbell, and L. Krishnamurthy, “Psfq: a reliable transport

protocol for wireless sensor networks,” in Proc. of the 1st ACM international

workshop on Wireless sensor networks and applications. ACM Press, 2002.

20. Paulo A. C. S. Neves and Joel J. P. C. Rodrigues, “Internet Protocol over

Wireless Sensor Networks, from Myth to Reality”, in Journal of Communications

(JCM), Special Issue on High-performance Routing and Switching in Wireless

Networks, Min Song, Yang Yang, and Sheng Fang (Eds.), Academy Publisher,

ISSN 1796-2021, Vol.5, No. 3, pp.189-196, March 2010.

21. Akyildiz, I., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless

sensor networks: a survey. Computer Networks, 38(4), 393–422.

22. Salem Hadim, Nader Mohamed, "Middleware: Middleware Challenges and

Approaches for Wireless Sensor Networks," IEEE Distributed Systems Online,

vol. 7, no. 3, pp. 1, Mar. 2006, doi:10.1109/MDSO.2006.19

23. Real-Time Innovations, "RTI Distribution Data Service, User’s Manual", Version

4.1, September 2006.

24. Md.Atiqur Rahman.”Middleware for wireless sensor Networks: Challenges and

Approaches”, TKK T-110.5190 Seminar on Internetworking, April 2009.

108

25. Book Chapter: Kirsten Terfloth, Mesut Günes, Jochen Schiller, “Middleware for

Wireless Sensor Networks - The Comfortable Way of Application

Development”, In: Guide to Wireless Sensor Networks, (Sudip Misra, Isaac

Woungang, Subhas Chandra Ed.), Springer, 2009.

26. Umar, A., “Mobile Computing and Wireless Communications: Applications,

Networks, Platforms, Architectures, and Security”, NGE Solutions, July 2004

27. Cougar Project. URL: www.cs.cornell.edu/database/cougar

28. X. Yu, K. Niyogi, S. Mehrotra and N. Venkatasubramanian, “Adaptive

Middleware for Distributed Sensor Environments”. IEEE Computer Society,

2003.

29. S. Li, Y. Lin, S. H. Son, J. A. Stankovic, and Y. Wei. Event detection services

using data service middleware in distributed sensor networks. In

Telecommunication Systems, volume 26, pages 351–368, 2004.

30. C. Srisathapornphat, C. Jaikaeo and C. Shen, “Sensor Information Networking

Architecture”. International Workshop on Parallel Processing, pp. 23- 30,

September 2000.

31. Mohammad M Molla and Sheikh Iqbal Ahamed.\A Survey of Middleware for

Sensor Network and Challenges", 2006 International Conference on Parallel

Processing Workshops (ICPPW '06), pg. 223-228

109

32. Miaomiao Wang, Jiannong Cao, Jing Li, Sajal K. Das, "Middleware for Wireless

Sensor Networks: A Survey", Journal of Computer Science and Technology

(Springer). Vol. 23, No. 3, May 2008, pp. 305–326.

33. R. Barr, J.C. Bicket, D.S Dantas, B.Du, T.W.D. Kim, B. Zhou and E.G. Sirer,

“On the Need for System-Level Support for Ad hoc and Sensor Networks”

Operating Systems Review, ACM, 36(2):1-5, April 2002.

34. Kang, C. Borcea, Gang Xu, et el. “Smart Messages: A Distributed Computing

Platform for Networks of Embedded Systems,” Special Issues on Mobile and

Pervasive Computing, The Computer Journal, 2004. URL:

http://discolab.rutgers.edu/sm/papers/sm03.pdf (accessed in February 2006).

35. Real-Time Innovations RTI URL: http://www.rti.com (accessed in February

2011)

36. Zubair A. Baig. Distributed Denial of Service Attack Detection in Wireless

Sensor Networks, PhD Dissertation, Monash University, Melbourne, Australia,

September 2008.

110

VITAE

• Personal Details

Name: Ismail Mohamed Hemdan Keshta

Date of Birth: October 20 , 1985

Place of Birth: Saudi Arabia

Nationality: Palestinian

Current address: P.O. Box 7802, Dhahran 31261, Saudi Arabia

Permanent address AlQzaan Street, Al Riyadh, Saudi Arabia

E-mail: s237697@hotmail.com

Mobile/Phone: +966506229687 / +96664224574

• Education

• Received B.S. degree in Computer Engineering from KFUPM, Saudi

Arabia in February 2009.

• Received Master of Science degree in Computer Engineering from

KFUPM, Saudi Arabia in June 2011

111

• Work Experience

� Research Assistant, Computer Engineering Department, KFUPM,

Dhahran, Saudi Arabia (2009-2011):

� Assisting faculty members in research activities

� Carrying out research in various fields of computer

engineering

� Grading undergraduate courses in the department

� Advising undergraduate students of the department

� COOP Training

• References

Available upon request

Date : From February 16th, 2008 until August 27th, 2008

Company: Advanced Electronics Company (AEC)

Location: Riyadh ,Saudi Arabia

Work

description:

Working on Embedded systems such as “Mobile Data

Terminal Units “for Automatic Vehicle Location (AVL)

System.

