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CHAPTER 1

INTRODUCTION

The main concept of WSNs started to appear at nideoé the 1990s with the first
publication in this field appearing in 1998. WSNancbe defined as a networked
collection of sensor nodes that are small-scaleicdesvand have very limited
resources such as memory and power supply [21]r24Ensor networks, each node
has to monitor the environment and some physicablitions such as sensors to
detect temperature, sound, humidity, pressure, atidy, motion, light, etc.
Depending on the task of the sensor network, sertsor cooperate with other sets of
sensors to do a certain task. There are two typ@éSINs, namely homogeneous and
heterogeneous. If all nodes in a network have éimeshardware setup, it is called a
homogeneous network; otherwise, it is called hegemeous [24].

WSNs support a wide area of applications such asrammental monitoring,
tracking of vehicles, habitat monitoring, traffiordrol system, security and defence
applications, industrial automation, etc [21].

WSNs have some advantages over traditional netwsuch as easy to deploy, wide
scalability and ease of use in different complida¢@vironments for some special

purposes. However, WSNs have some limitations coadpto traditional network.



This is due to the lack of structure and resousteh as overhead communications
needed between sensor nodes and complicated s&rustien sensor nodes are
added or removed. Middleware solutions are develdpevercome some problems
that are faced in WSNs.

Middleware solutions can link between applicatiow dow level operating systems
to enhance application development. Moreover, meigdle can hide the complexity
and heterogeneity of the underlying hardware ars# ¢he management of system
resources [8, 7].

In general, any middleware solution should suppartk phases of WSNs, such as
development, maintenance and data execution. Als®, middleware solutions
should provide additional features that are relatedVSNs, for example, ability to
save power, scalability, mobility and heterogendiyrthermore, there are important
challenges which must be provided by a successfidilsware, such as ease of use,
managing resources, security and quality of serfiQueS).

The implementation of a successful middleware foBN& is not an easy job. It
needs to deal with many challenges that are relkatéd SN characteristics. Many
researches are still going on to address the ciggte and solutions for WSN
middleware [1, 12]. Some of these challenges aseudsed in section 2.2 in

Chapter2.



1.1 PROBLEM STATEMENT

As will be seen in Chapter 2, none of the proposeddleware approaches
mentioned in the literature are suitable for regaktand mission critical applications,
where real-time constraints must be met by the lewdare. Also, all the previous
approaches do not have QoS properties that caatlimsed on the needs of a given
system. Thus, there is a need to use real-timaghidlibscribe (RTPS) middleware
standard by Object Management Group (OMG), in senstworks, in order to get
improved results and eliminate the disadvantagesthef previously proposed
middleware approaches. In this thesis, the perfoomaof RTPS middleware is
presented to show that it is a better tool that eatisfy the communication
requirements for sensor networks. RTPS middlewases ua publish/subscribe
communication mechanism, thus this middleware plewiflexible and efficient way
of communication that is extremely needed in thesse networks. Furthermore,
unlike other proposed middleware approaches, me@-tconstraints are fully
satisfied by the RTPS middleware. Therefore, highly suitable and recommended
for real-time applications.

This work also will investigate the usage of Quatift Service (QoS) specified in the
Data Distribution Service (DDS) middleware standapdoposed by Object

Management Group (OMG).



1.2 THESIS ORGANIZATION

The organization of this thesis is as follows. lha@ter 2, middleware definitions
and some preliminaries are given. Also, a litemat@view of middleware solutions
for wireless sensor networks (WSNSs) is presentedChapter 3, details of RTPS-
DDS middleware are described. The setup of there@npats is explained in Chapter
4, 5 and 6. In these chapters, experimental reardtsliscussed to show the behavior
of the RTPS-DDS middleware in a wireless sensowost over different test

scenarios. Finally, we conclude and indicate theréwork in Chapter 7.



CHAPTER 2

LITERATURE REVIEW

2.1 MIDDLEWARE

As shown in Figure 2.1, a middleware is defineteaan interface layer between the
operating system (OS) and the application in aitdigied and networking context.
In [25], a middleware is defined as a connectigbftware that allows nodes in a
system to communicate with others across a networlither words, it is a tool that
works to facilitate, manage and control the commaton between any two
applications that interact across the hardwarenatdorked environments [25, 26].
The details of the underlying computer architectuygerating system and network
stack are all hidden by the middleware layer. Iditah, the middleware layer works
to simplify the development of a distributed systérhis is done by making user-
applications exchange information with others withine need of an interface with a
program that uses low level protocols.

Basically, the major role of middleware is to eabke task of managing and
designing distributed systems. A middleware doed Hy providing a simple and

consistent integrated programming environment P&, There is a certain set of



criteria that is addressed by middleware servinekiding: 1) independence of the
chosen platform. These services must provide théalpiity to various types of
system architectures with predictable effort, 2)yte the functionality to meet the
real requirement of several kinds of applications.

It is important to highlight that a middleware ofea platform-independent
Application Programming Interface (APWhichis a set of system calls (functions)
used by an application program for providing acdess system's capabilities. These
system calls (API) are provided by the middlewace handle an application
environment and mask the complexity of distribyteacessing [23, 26].

In wireless networks, many applications might wofike without having
middleware. However, some certain applications might perform well without
them. Middleware is mainly used in applicationsttimaolve high transaction
volumes and are deployed for many users. In additmiddleware is essentially
required in critical applications, and when there stringent reliability requirements
[23].

In general, middleware is of three major types: wumications middleware,
database middleware and systems middleware. FHolpare some examples:

The most famous classical middleware systems a&eCibmmon Object Request
Broker Architecture (CORBA) specifications. CORB# a standard that is defined
by the Object Management Group (OMG) which can Enabultiple software

components, written in various programming platfeyto run on any computer, to



communicate with each other. The other populardieidare systems are the
message-oriented middleware (MOM) specifications.

MOM carries and distributes messages between gepsyatems in a network in
order to connect them in a proper way. An infradtice for this kind of middleware
is based on the queuing system that stores messayeBng delivery. In addition, it

monitors when each message has been deliveredgp5,

Applications

Middleware

Opetating Syshem

Figure 2.1: Relationship of Operating System, Mésiedre and Applications

It is important to point out that a range of roesnwhich are usually implemented as
part of the operating system (OS) are shifted tddheware to support a certain class
of dedicated applications. Also, the limitationnmemory that is available has led to
implementation middleware that provides the Appiaa Programming Interface
(API) rather than establishing a general backgroahdhiddleware functionalities

[23, 25}



There are two different options that are availdblecharacterize middleware in a
wireless sensor network (WSN) context. The firs¢ anthat the middleware has to
provide software that contains minimal set of canatines and functions in order to
call it a middleware. Second, it can also be dogeldoking at the differences

between the various approaches in this domainZ@p,



2.2 MIDDLEWARE CHALLENGES FOR WIRELESS

SENSOR NETWORKS (WSNS)

A middleware approach for wireless sensor netwarkeds to deal with many
challenges that are related to characteristicshisf kind of network. This section

demonstrates some of these potential challengés [24

2.2.1 Limited Power and Resources

In WSNSs, sensor nodes are small-scale devices.eThemll devices have very
limited storage energy and memory. Moreover, nogeght go down due to
environmental influence. In general, the limitatiom size and energy means
restricted resources. Therefore, the middlewareuldhonanage the three basic
operations of a WSNs sensing, data processing amdmanication without

consuming additional resources [12, 24].

2.2.2 Scalability

The sensor network should scale from ten to thalis@msor nodes. So, the sensor
network should be flexible enough to allow this wgtle without affecting the
performance of the network. For this reason, a hawdre should provide
mechanisms for self-configuration and self-mainte@afor any sensor node in the

WSNs [12].



2.2.3 Heterogeneity

In WSNs, cross platform communication is needethrtdge the gaps between the
hardware technology’s raw potentials, and needéditges such as data execution.
Therefore, any proposed middleware should glue ghps between them by
supporting some mechanisms of interfacing systaemsaiious types of hardware and

networks [12, 22].

2.2.4 Real-world Integration

For some applications in WSNSs, the real-time rezragnt must be supported. In
other words, WSN environments are not constanty ®Ere always changing. This
change includes changing in time and space. Theefaddleware solutions should
be developed in such a way that supports real-tieggirements to adapt to the

changes of such environments like WSNs [12, 22].

2.2.5 Security

The wide deployment of WSNs in complex areas wiaih difficult to reach might
increase the chance for the malicious attackersciess sensitive information.
Therefore, maintaining security is a major concerrthe WSNs. However, doing
such a task is not trivial due to the limited poveerd resources in this kind of
network. Hence, any proposed middleware should exnate on developing

security aspects in the initial phases of softvelrggn with initial overhead [12].

10



2.2.6 Data Aggregation

Most of the WSNs generate lots of redundant datause a sink node combines
data from different sources which might make hugtadcommunication between
nodes in the networks. So, a middleware should hheecapabilities to eliminate
redundancy in the data network. In the other woitdshould be able to limit the
retransmission of similar data over the entire oekwin order to minimize data
communication among sensor nodes. This impliesciadicollisions in the network

and energy consumption [12, 22, 24].

2.2.7 Dynamic Network Organization

Dealing with resources such as energy and bandwhdthare dynamically changing
must be included in WSNs. In addition, such a nétwas to support long-running
applications in order to run it as long as possiBlso, it is important to highlight

that knowledge of the network is a major concerorigter to operate it in the proper
manner. Therefore, a middleware has to providedamog wireless network resource
discovery. Moreover, adapting to the dynamic chargehe networks must also be

supported by the middleware [12, 24].

11



2.3 MIDDLEWARE APPROACHES FOR WIRELESS

SENSOR NETWORKS

Middleware approaches can be mainly classified iiite classes according to
middleware architectures and approach mechanishreughout this section, these
approaches are listed and reviewed. In addition, gach class, examples and
descriptions of their mechanisms and features lenéqed.

2.3.1 Application Driven

In application driven approaches, middlewares odjusa network configurations
according to the requirements stated by the agmitaThis type of middleware has
a structure to supply multiple network configuragsdoy choosing suitable protocols
in its network protocol stack. Examples of thisecmiry are Milan and AutoSeC.
2.3.1.1Milan

Middleware Linking Applications and Networks (Milpis being developed at the
University of Rochester and has a very good archite to link the network layer
and application layer. The idea behind it is to endtke sensor network application
control the network operations management. In otherds, Milan allows sensor
network applications to specify their Quality of rdees (QoS). Moreover, this
proposed middleware allows adjusting the networlarabteristics to increase

application lifetime while still meeting those needlo achieve that, Milan can

12



receive information about the QoS requirements oferént sensor network
applications over time, the overall system, andrtevork about available sensors
and resources such as energy and channel bandinditidition, Milan collects and
combines this information in order to configure thetwork characteristics to
increase application lifetime while still meeting®requirements [1, 5, 9].
2.3.1.2AutoSeC

Automatic Service Composition (AutoSeC) is an aggilon driven middleware,
developed at University of California-Irvine. Aut®S is a dynamic service broker
framework for effective utilization of resourcestiwn a distributed environment.
Based on current system status, AutoSeC is abldymamically select the best
combination of information collection and resouprevisioning policies. Moreover,
it provides some of the required quality of ser(i@®S) for sensor applications.

In terms of evaluation, AutoSeC is able to manag®urces in a sensor network by
providing access control for applications. In adif power-aware algorithms are
provided by this type of middleware. Therefore,rggeconsumption is reduced.

2.3.2 Distributed Database

All distributed database middleware approaches wéhlthe whole sensor network
as a distributed database. This type of middlewstse has a friendly and easy to use
interface, using SQL queries to collect data. EXdesmf this class are Cougar,

DSware, SINA and TinyDB [3, 9].
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2.3.2.1Cougar

Cougar is an example of wireless sensor middlewalgions in WSNs that is based
on the database approach. This middleware was a@mmelat Cornell University.
Cougar middleware is a sensor database systenstbamposed of sensor database
and sensor queries. Sensor data is generated by sigjnal processing which is
executed on each sensor node. Also, this sensariglatored in a local database
system. Abstract Data Type (ADT) in Cougar is usedorder to model signal
processing functions. In object-relational databage ADT can represent all sensor
nodes of the same type in the physical world. Coats uses SQL-like language to
implement WSN management operations in the forouefies.

In terms of evaluation, Cougar middleware can suppdarge collection of sensors.
Also, this kind of middleware can provide a simplgheme for different network
operations. However, maintaining the global knogkdf WSNs via centralized
optimizer used by Cougar is not suitable for lasgale WSNs because of the
dynamic nature of these networks. Also, to tranafearge amount of raw data from
devices (sensor nodes) to the database server,aC@ogsumes more resources
compared to other approaches. Furthermore, Couger ribt resolve the problems of
hardware heterogeneity and node mobility issues3@p

2.3.2.2DSWare

Data Service Middleware (DSWare) is another daebasidleware approach and

provides data services for applications. It implateeax database-like abstraction that
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consists of some service components such as sangdidlall middleware services
based on either energy-efficiency or delay perforcea data storage for storing data
according to the semantics associated with the dath caching of multiple copies
of the data that are requested most often.

In addition, DSWare supports group—based decisars provides reliable data-
centric storage. These features make this middeewnore flexible than other
database approaches. Also, DSWare uses SQL-lilgudae for event operations
such as registration and cancellation of an evEnérefore, it has a friendly-user
interface. On the other hand, DSWare does notvedwrdware heterogeneity and
mobility issues. Furthermore, the sensor databaseach node needs continuous
updating for more dynamic applications. Theref@&Ware middleware does not
fully comply with the scalability issue

2.3.2.3TinyDB

TinyDB is a query processing system for sensor oeksv that operates on the
TinyOS operating system. It is designed and implaea based on the concept of
acquisitional query processing (ACQP) for collegtdata in a sensor network. When
query processing occurs, the sensor node will tyr@erform sensing to respond to
the requested query. TinyDB is a distributed systgth a SQL-interface to execute
data from sensor nodes. Compared to traditiondin@ogy, TinyDB has features
such as low power consumption, which is an impartdvantage in a resource-

limited network environment.
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2.3.2.4SINA

The authors in [30] proposed SINA (Sensor InfororatNetworking Architecture)
which is another database middleware approach tises a query language,
developed at the University of Delaware. For quegyand monitoring, the SINA
architecture was implemented based on a spreadstaabase. Every single
database contains cells, where each cell repreaenastribute of a sensor node for
location and sensor reading. Therefore, applicatime able to access a particular
data element by using an attribute-based namingdoring a sensor directly. SINA
uses hierarchical clustering of sensors where semxtes are organized in a specific
way to form a hierarchical shape, based on thee&lseof power. Moreover, it uses a
set of protocols to prevent the re-broadcastingjroflar information to other nodes.
SINA is considered to be more flexible than othaetatbase middleware approaches
since it supports both Sensor Query and Taskingyuages (SQTL) and SQL-like
languages. This language works as the programmitgyface between sensor
applications and the SINA middleware. Also, SINAeo$ an advantage over other
approaches by using hierarchical clustering of senfor efficient data aggregation.
However, like Cougar, SINA does not resolve the bfgm of hardware
heterogeneity. Moreover, it does not fully suppssalability because of the fixed

global network structure that is maintained by $hdA middleware [30].

16



2.3.3 Virtual Machine

The system of Virtual Machine (VM) middleware apgeh consists of virtual
machines and translators. In this proposed approa@gvelopers can write
applications into small modules. These modules bélldistributed throughout the
network. Virtual machines translate the modulesrher to implement applications.
Examples of service middlewares for sensor netwtirdsuse the concept of virtual
machine are Maté, Magnet, and DAVIM [2].

2.3.3.1Maté

Maté is an instance of the virtual machine apprpdeleloped at the University of
California at Berkeley. It uses the virtual machiae an abstraction layer for
implementing its operation. Also, it is a byte cadterpreter which is implemented
on the TinyOS operating system. As shown in Figue Maté has a stack-based
architecture that consists of three execution castelrhese states are clock, send,

and receive.
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Fig.2.2: Thetdtecture of Maté

This kind of middleware works by breaking down thegram into small self-
replicating capsules composed of 24 instructiongr@heach instruction is single
byte long. This gives the advantage to large progréo be made up of multiple
small capsules, thus making it easy to inject tiitmwireless sensor networks.
Virtual machine (VM), Network, Logger, Hardware aBdot/Scheduler are the five
key components of Maté. It uses a synchronous evedel which starts execution
in reaction to an event such as packet transmisSioerefore, Maté avoids message
buffering and does not require large storage. Meggausing such a model increases
simplicity of application level programming.

In terms of level of instructions, low and high énstructions are supported by the
Maté program in a stack-based architecture. Maséruations can be arithmetic

operations, loop operations and wireless sensevanktspecific operations. This set
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of instructions helps Maté middleware to providghhilevel abstraction for an
application developer.

The programming model of Maté middleware is congddo be simple and easy to
use for the application developer. On the otherdhah does not provide full
flexibility. Therefore, it cannot support a widenge of applications.

This kind of middleware (Maté) makes the networkye#o reconfigure and also
increases the security of the network. Howeveterms of energy, it is not suitable
for complex applications because of the instructkiderpretation overhead [34, 35].
2.3.3.2Magnet

Magnet is another system-level middleware solufmmWSNSs. It is also based on
the VM approach developed at Cornell Universitycdnsists of a layer known as
Single System Image (SSI) which represents the evhetwork as a single Java
Virtual Machine (JVM). Components of the JVM ar¢her dynamic or static. For
the dynamic component, each node has the full resipidity to monitor and
coordinate applications and also perform applicapecific tasks. On the other
hand, the static component is used to inject jaydications into the WSNs.

In terms of performance, Java implementation of Magnd Single System Image
techniques makes the development of an applicatiomple. Also, power-aware
algorithms are provided by the Magnet MiddlewarkerEfore, energy consumption
is reduced. In addition, this kind of middlewarg@pgarts a wide scale of applications,

which makes it a general-purpose system. Howeveterbgeneity is partially
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supported by Magnet. Moreover, a lot of overheadMagnet's instructions are
represented because of the use of JVM. To comeithpavW’M that is more suitable
for wireless sensor network applications, a logfbdrt and hard work is needed [36].
2.3.3.3 DAVIM

DAVIM (Distrinet Adaptable Virtual Machine) is a weservice middleware for
sensor networks, implemented as a dynamic manadeafeservices on virtual
machines. It makes isolation between simultaneonsing applications over sensor
networks. Regarding the architecture of this midaies, the DAVIM middleware
approach is presented based on the architectukgrtadl machines. It uses such
architecture to run applications and services. dpydications are isolated from each
other because each virtual machine runs one afiphica

In terms of evaluation, DAVIM is designed to meeim® requirements such as
managing available services easily, with multipbplecations running on the same
sensor network begin kept isolated. It is importantighlight that DAVIM presents
similar overhead during installation of new bytedecscripts if it is compared with
other approaches [2].

2.3.4 Mobile Agent

The main feature of this approach is that the appbns are treated as modules in
order to distribute them throughout the networkngsmobile codes. The sensor

networks can implement tasks by transmitting appibi;m modules. Transmitting
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using modules might consume less power than tratisqiifull applications.
Examples of this category are Smart Messages (8 Aagilla[6].

2.3.4.1Smart Messages(SM)

Smart Messages (SM) is a mobile agent middleware.t&rm SM is a user-defined
distributed program which executes on nodes ofésteand migrates between nodes
to reach other nodes. Its architecture is basedxacution migration of executing
units. The implementation of this architecture waade on top of an unmodified
JVM. Ease of deployment for applications in thewwork and adaptability to more
dynamic network conditions are considered as manehts provided by SM [37].

In terms of rooting, self-root mechanism can beedoy SM, when a SM is required
to migrate between two nodes and there are intaateedodes between them. Each
node has a VM for SM execution and a hame-basedomeaoalled tag space. The
SMs use the tag space for content-based namingarsistent shared memory. A
VM is assigned to each node for SM execution pmcakso, a name-based memory
called tag space is allocated for each single riodee used as persistent shared
memory.

SM can adapt in a quick way to the changes whichhtmoccur in the network
topology and the availability of resources at nodbkoreover, this type of
middleware can provide a Networked Embedded Sys(BiBaS). On the other hand,

a node in SM can run only a single execution thr&hérefore, SM does not support
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multiple applications on a single node. In additiorter-node communication is not
supported by SM [37].

2.3.4.2A¢gilla

Agilla is a middleware layer that supports mobilgeats for WSNs. It provides
mechanisms for better injection of a mobile code e sensor network to deploy
some user applications. In the Agilla system moeeich sensor node supports
multiple agents and maintains a local shared memsppage and a neighbors list. The
local shared memory space is shared by the agestding in the node. The
neighbors list contains the addresses of all treefwp nodes. The agents can move
to different locations around the network nodesmintelligent way based on the
changing conditions in the environment, by usingven@nd clone instructions.
Regarding the model used by the agents, it is basdte stack architecture and the
agent codes are written using assembly languadi.[6,

Agilla has good performance and high reliability. i$ more suitable than the
flooding mechanisms that are used in the middlewda&é for the same purpose.
However, using assembly language programming istioreed by the authors as a
weak point [6, 8].

2.3.4.3Impala

Impala is a middleware which was specially desigaed implemented for the
ZetbraBet project. The main goals of this middlesvare to ensure reliability and

ease of upgrades for long-running sensor netwogdicgiions. Also, the major
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philosophy behind Impala is that mobile environmseméed continuous fine-tuning.
The methodology used by Impala middleware in isglecan be stated as follows:
1) Modularity concept which is used for switching thexision process.
2) Correctness: this concept is used for making inldiai program applications
instead of having one single big application.
3) Ease of updates is an important design issue forgusmall pieces of
software because this makes the update easier.
4) Energy efficiency can be achieved by making thesmaission of the updates
at the granularity of smaller modules.

The architecture of Impala is divided into two mkiyers, as shown in Figure 2.3.

Application 1 Application 2 Application 3 Application 4
Appheatron|initialze Applicationfuery PacketfHanaler DrutaHangller
Appdicatian] Teminaez Send Diaorje Harcller TimerHancdler

| 1 |
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Figure 2.3 —Layered system architecture of Impala
The upper layer contains all the applications amdogols for the ZebraNet project.

Various strategies are used by these applicationsrder to gather environment
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information and route it to a base station. Thedolayer contains three agents: the
Application Adapter, the Application Updater, ame tEvent Filter. The Application
Adapter has the full responsibility to increasef@@nance and improve robustness
by switching between alternative protocols in casbardware failures. The second
agent (the Application Updater) is used to handimes issues such as incomplete
updates, propagation protocol, code memory managgemed inconsistent updates.
The Event Filter (the last agent in the lower [ayisrused to capture and dispatch
events in the Impala system. There are five diffetgpes of events supported by
this type of middleware, namely Timer Events, Padkeents, Send Done Events,
Data Event and Device Events. These events aressed in sequential order.

In terms of evaluation, it is important to highltghat Impala middleware is a self-
organized architecture model. This is because d&suBpplication Finite State
Machine (AFSM) mechanisms to switch between adequmbtocols. Also, it
ensures the reliability of long-running applicasorBy its organized architecture,
Impala can support application adaptation at ruatiMoreover, little transmission
overhead is generated by this kind of middlewaneaddition, it provides failure
tolerance. On the other hand, the adaptation psoteshe Impala middleware is
limited to the capabilities of the state machindsoA heterogeneity in hardware
platform is not supported by Impala. Therefore,ajpplication domains are limited

[28].
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2.3.5 Macro programming

Rather than writing low-level software for eachgbénode, the Macro-programming
approach introduces different ways on how to pnograensor networks by

programming the entire network as a whole. Higtelespecification is used to

program wireless sensor global behaviour. Therethie view will reduce the load

in dealing with low-level concerns at every singtale on the network [27].

The famous example on the use of this approachai& middleware. This type of
middleware allows the programmer to program the levheensor network. A

centralized program for whole application is wntt®r the overall application. This

program will be divided into subprograms and coemgpiinto annotated binary codes
(annotated binary codes are node-specific versioichwcontains a code in order to
control the behaviour of each node individuallyy, Kairos middleware. Then, the
binary codes are distributed to other nodes on neévork to make them

communicate with each other. In term of synchrarrabetween the nodes, Kairos
provides either a loose synchronization or a tigiaichronization based on the
programmer’s purpose.

In terms of performance, Kairos middleware addreske mobility issue in a full

manner. Also, it supports robust mechanisms forentmtalization and routing

aspects. However, easy to use issues are paridtlyessed by Kairos. Moreover,

resource management constraints are not compkaiplyorted [27].
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2.3.6 Message Oriented

Message-Oriented Middleware (MOM) implements comicefion using
publish/subscribe mechanisms between sensor nodes applications. The
publish/subscribe service in the middleware is usedxchange messages between
the sender who sends the message and the redekaenples of this class are Mires
and SensorBus middlewares which are explained | fibllowing sections
respectively.

2.3.6.1Mires

Mires follows the characteristics of message-oadnniddleware (MOM).This can
be done by allowing the applications to communidata publish/subscribe fashion.
In addition, this middleware proposes an asynchuercmmmunication model, which
is suitable for wireless sensors network applicetiorhe main issue regarding this
proposed middleware is that Mires can support hardvheterogeneity. In general,
the communication throughout the Mires middlewasasists of three phases. First
of all, each node in the wireless network will mak@ouncements for its available
topics. Then, by using a routing algorithm, ann@ment messages will be routed to
a dedicated node called the sink node which is ected to a user application. By a
graphical user interface, user applications willabe to select the advertised topics
to be monitored. After that, the sink node will &ddoast the subscriber's messages to
the sensor network nodes. Subsequently, the sewdbmiblish their collected data

throughout the sink node to the network-based eafdins [1].
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An overview of the Mires architecture is shown igufe 2.4, By using a bottom-up
approach, the first block corresponds to the sensdes hardware components such
as micro-controller unit, sensors, and radio trans&s. This block is directly
controlled by the operating system (OS) (secondW)larhe third block is the Mires.
This middleware "Mires" has a core component, ngntee Publish/Subscribe
services and some additional services. Mires imptgm high-level
publish/subscribe by providing services and routvigle hiding the complexity of

the sensor network [1, 10].

Node Application

//_Mires \

Routing Service, | see | Service,

< Publish/subscribe service >
- M

Operating System
Sensors CPU Radio

Figure 2.4 Mires Architecture.
In a wireless sensor network, the network congtsiulti-nodes that communicate
over wireless communication links. A publisher n@da publish data that is related
to the event of interest for a subscriber nodeothrer words, the publish/subscribe

principle in wireless sensor networks states thdeap which are interested in
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receiving certain information. This process is @allsubscription. Therefore, the
interested node is called a subscriber. Nodes, hwintend to produce certain
information, can do so by publishing their inforioat Thus, they are called
publishers. Based on this, a subscriber node cate #he type of data that it is
interested in (e.g., temperature data) by broashcpgihe message to all the sensor
nodes in the network. After that, the sensor nadesmit the desired data [1].

The publish/subscribe service mainly goes over phases (advertise phase and
subscription phase). For the advertise phase, & apglication advertises to the
publish/subscribe service its interest of sensiatp dvhich is related to a specific
topic. Then, the publish/subscribe service receares encapsulates this information
in a certain message called the adverting mesgdtge. that, this message will be
sent to the network by using some routing compaedntthe case of subscription
phase, the user application invokes a dedicated palted sink node, which receives
the information gathered by the network and de$iveto the final user. This is done
by using a send command to broadcast the subsdopexs$ to the network. There is
a dedicated component called broadcast that is tsstgnal a received event for
each node that receives a subscription messags:. tAtit, the publish/subscribe will
receive this message and extract setup informdtam it. In the last step of this
phase, publish /subscribe service invokes a ces&ivice that is used to publish the
processing results, by sending a signal called iT&etup Arrival” to notify its

components which are attached to it [1].
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At the end of the discussion on Mires, it is impoit to highlight that, the
implementation mode for the Mires middleware i 8tiprogress. Also, tests using
real sensor nodes (motes) have not yet been daorelém to see the real behavior of
this kind of middleware in a wireless sensor nekwdoreover, the design of Mires
needs to support security and resource managessems [10].

2.3.6.2SensorBus

SensorBus is a middleware model for WSNs. It isetdasn the publish/subscribe
(P/S) paradigm. Using this kind of communicatiotoak free exchange of the
communication messages amongst the sensor nodes.rédsult, the capability of
using more than one communication mechanism iswalio to address the
requirements of a large number of applications.[15]

In general this approach is similar to what wagused in section 3.5.1. A sensor
node called “publisher” in the SensorBus modelsttie generate events. This node
publishes types of events which will be availall@ther nodes called “subscribers”.
This proposed approach uses an asynchronous typsoromunication to send
notifications from producers to interested subsasb In addition, the designers of
this model rely on MOM to take care of filteringetimessages and routing them to
the appropriate subscribers [15].

Regarding the SensorBus Middleware Architecturens8eBus consists of the
following components: an application service, a sage service and a context

service. For the application service, this elentest the full responsibility to provide
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the Application Programming Interface (API), whickimplifies application
development. Also, it is comprised of three commpsteDataBus is a component
that provides a group of operations which are eelab bus communication for
consumers and producers, Filter, the second compoiseused to provide a set of
operations that are related to data, and the lastponent which is language,
implements the commands and query language interdfib].

The second component in the SensorBus architeduttee message service. This
component has the full responsibility for providiogmmunication and coordination
for the distributed components. It consists of ¢hmeain elements: Channel which is
used to deal with the specific transport implemeoa, Transport which will take
care of the communication among the nodes andrnsidered to be like a socket.
The last component that belongs to the messagécaeis/ the sinker which is a
dedicated component for routing messages in theank{15].

The third component in the SensorBus architectsrehe context service. This
element is responsible for managing, monitoring ematrdinating the heterogeneous
sensors which collect information from various eanments [15].

SensorBus is a middleware for WSNs, which can daleothe communication
mechanism from the programming interfaces. It alsses more than one
communication mechanism to address the requiremehta larger number of

applications [15].
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2.3.7 Other Approaches

2.3.7.1EnviroTrack
EnviroTrack is an object-based distributed middlensystem. It is considered to be
the first programming support for sensor networkisicw can support tracking
mobile objects. This middleware is very well suitéor embedded tracking
applications. In other words, EnviroTrack WSN meldare supports environmental
target tracking [39].
Also, the dynamic behavior of the tracked targeishsas mobility is supported by
EnviroTrack. This is because of the use of powenfgtwork management
mechanisms such as group leader election. Therefore moving target can be
detected successfully. This feature can be verfulf® some military applications.
Like other projects, it is also built on top of ¥S using compiled NesC programs.
The architecture of EnviroTrack consists of two ongjarts. These are:
1) A pre-processor module which is used to interpsetr ulirectives in order to
produce the appropriate middleware call functiansoapile time.
2) A run-time group management protocol that is rurttfmntop of the routing
service.
Briefly, a context description file goes as an ihpo the first major part
(EnviroTrack preprocessor). Based on the infornmatioat is gathered from the

context description file to generate appropriateldi@ware call functions, the pre-

31



processor can patch a set of NesC program templates that, the programs are
compiled using TinyOS tools.

In terms of evaluation, EnviroTrack wireless middiee is a very good distributed
program for supporting tracking environments. Hogrewt is important to highlight
that its performance is based only on a very sstlle implementation. Moreover, it
is in the early stage of development. Self-orgdiomaand autonomic system
approach for EnviroTrack needs a lot of work tadbae [39].

2.3.7.2TinyCubus

TinyCubus [40] is an adaptive cross-layer frameworkddleware which is
implemented on top of TinyOS. The goal of TinyCulpreject is to develop a
generic reconfigurable system software for senstworks. The design philosophy
of this middleware is its flexibility and adaptatio

In terms of architecture, of TinyCubus middlewasealivided into three main parts,
namely tiny cross-layer framework, tiny configuoati engine, and tiny data
management framework.

It is important to highlight that the flexibilityfolinyCubus allows it to be used in
different environments. Moreover, application optziations can take place because
of the cross-layer approaches used by this typmidtileware. However, a lot of
overhead is generated due to the cross-layer agiprednich may be prohibitive in
some sensor network environments. In addition, Cutyus does not fully support

scalability issues [40].
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2. 4EVALUATION AND ANALYSIS OF MIDDLEWARE

APPROACHES

Section 2.3 of this thesis shows different existimijddleware approaches as
middleware solutions for WSNs. These approachesap@ication driven, database
based, VM, mobile agent based, and message oriehtedhis section, these
approaches are briefly evaluated based on constranch as heterogeneity,
scalability and power saving, which are quantiginevaluated in the second half of
this thesis.

The application driven approaches such as Milanpranide both application and
network QoS by controlling sensor nodes. On therofiand, Milan is found to be a
weak approach for mobility. This is because Milan riot able to maintain
communications between mobile sensor nodes in W3, Milan does not
support the heterogeneity constraint, because @s daoot provide a low level
programming paradigm [5] [7].

The database approaches such as SINA and TinyDd,vdéh WSNs as a huge
virtual database. They are considered as a strongd usability perspective because
they use a database middleware based on queryrsysted SQL-like interfaces.
Moreover, they are suitable for some applicatioHewever, they have some

limitations. In other words, the types of data twét be used at every node must be
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agreed upon in advance. This is not acceptable large size sensor network.
Therefore, the scalability issue is not complewlypported by this approach [3, 4,
33].

The VM approach provides an efficient programmingdei that hides the
heterogeneity of the hardware resources and suppase of use for the application
developer. On the other hand, the VM approach tssodable for some complex
applications because its instructions introduceresitierable overhead. [34,35].

For mobile agent based middleware for WSN, this@ggh has a good performance
and high reliability. In addition, it strongly sumpps and fully addresses the power
saving and scalability issues. Furthermore, it &lgpickly to changes which might
occur in the network topology. On the other handbitle agent based approaches do
not fully support ease of use. Also, heterogendityhardware platform is not
supported [6, 8].

The MOM uses a message based communications prdtatas able to store and
transform the message as it is being deliveredeb\aar, this approach can provide a
persistent storage in order to take care of thectahers that join the network. In
other words, MOM does not require for both the seraohd receiver to be connected
at the same time. However, this approach requineadalitional component in the
architecture. Therefore, this overhead might leadetiuctions in performance and

reliability, and can make the system difficult taimtain [1, 10, 15].
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As stated in the literature, most of the proposdddieware approaches do not
satisfy the communication requirements for senswaorks. Furthermore, none of
these proposed middleware approaches are suitableedl-time applications like

mission critical applications where real-time coaisits must be met by the used
middleware. Thus, there is a need to use real-tpublish/subscribe (RTPS)

middleware and investigate the use of Quality aivise (QoS) aspects specified in
the Data Distribution Service (DDS) middleware s for sensor networks. If we
do so, this will provide for solutions to probleméhich have been identified

previously in the literature.

In the coming chapter, we will discuss the Datatribigtion Service for real-time

System (DDS) in order to address the issue of lgaaimeal time publish/subscribe

middleware for wireless sensor networks (WSNSs).
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CHAPTER 3

RTPS-DDS MIDDLEWARE FOR WSNs

3.1 METHODOLOGY

In this thesis, the benefits of the deployment aitaDDistribution Service (DDS)
standard along with the Quality of Service (QoSltisg for sensor network are
pointed out.
Also, some scenarios will be implemented in oradehé¢lp us test and analyze the
performance of the RTI-DDS as a real-time publishésribe middleware in sensor
networks. This can be achieved by evaluating tmopaance of RTI-DDS in major
aspects that are related to sensor networks. Hrese
1. Scalability: The sensor network should scale fremstto hundreds of
sensor nodes. So, the network should be flexibbeigim to allow this
growth without affecting the performance of sensoetwork.
Therefore, tests will be performed to show theauiity of RTI-DDS
and evaluate how this type of middleware can hatitdeincreasing

number of nodes.
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2. Reliability: In mission critical applications, theiddleware should
make sure that every single event will be delivacethe appropriate
sensor node correctly. Therefore, RTI-DDS will beed in
implementing test scenarios such as having a \egelnumber of
requested messages in the network. This will bee dorevaluate how
RTI-DDS can handle reliability issues.

3. Performance in terms of latency and throughput: Most important
performance parameters to be calculated are latendythroughput.
Latency is an expression of how much time it talagsa packet of

data to get from one designated point to anoffieerefore, tests will

be conducted tgpecify the maximum accepted latency from the time

the event is published by the publisher sensor sioaél the event is
available to the destination subscribers. Alsughput, i.e., number
of received samples per unit of time, is an impdrggerformance
parameter for any kind of network and distributgdtem. Therefore,

test scenarios will be performed to calculate this.
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3.2 RESEARCH OBJECTIVES

Due to the continuing advances in network and appbn design in Wireless Sensor
Networks (WSNSs), the development of an appropriatddleware for WSNs is
becoming necessary. Also, because WSNs have samtations compared to
traditional networks, such as the lack of structawed resources, middleware
solutions are developed to solve some problemderklto this issue. But most
middleware approaches are not suitable for read-tiand mission critical
applications. In such applications, middleware #thotully satisfy real-time
constraints imposed by the network.
Therefore, real-time publish/subscribe (RTPS) naddire becomes essential in
mission critical applications in many environmemsere real-time constraints must
be met. RTPS is a network middleware for real-tors#ributed applications. It has
the ability to provide the communications servicegpammers needed to distribute
time-critical data between nodes in a given system.
Real-time publish/subscribe middleware (RTPS) el advantages over other
approaches. Some of these advantages are [23]:
1. RTPS is based on a simple “publish-subscribe” comoation model. It is
dynamically scalable, and efficient in usage ofisraission bandwidth.

2. It can be used with high performance systems becaiuiss low overhead.
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3. This type of middleware supports one-to-one, onegxmy, and many-to-many
communication paradigms.
4. By using RTPS middleware, optional QoS propertias be set based on the

needs of a given system or network.
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3.3 DATA DISTRIBUTION SERVICE (DDS) FOR REAL-

TIME SYSTEMS

The Data Distribution Service (DDS) is an Object ndgement Group (OMG)
standard for topic-based publish/subscribe middiewahe OMG Data-Distribution
Service for Real-Time Systems is considered to Hee first open international
middleware standard that directly addresses publibiscribe communications for
real-time systems [14]

DDS has many prime advantages such as, it is masadsimple “publish-subscribe”
communication model, is dynamically scalable, anfiicient in usage of
transmission bandwidth. Also, it can be used witinperformance systems because
of its low overhead. Furthermore, DDS supports tmene, one-to-many, many-to-
one and many-to-many communication paradigms [4B, 1

Regarding the DDS elements, the specification f&xSDcan be divided into two
important sections. The first section covers Datat€ic Publish Subscribe (DCPS)
and the second section covers the Data Local Reactien Layer (DLRL). For the
first element, DCPS is defined as the lower lay®d fhat can be used to exchange
topic data with other DDS-enabled applications. DLEhe second section, is the
upper layer part of the specification that outlitesv an application can interface

with DCPS data fields [13].
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It is important to highlight that DDS has many imjamt entities such as Topic
Description that, is the most basic descriptiontlté data to be published and
subscribed, Publisher, Data Writer which is usedllow the application to set the
value of the data to be published under a givenicTd&ubscriber. Finally, a Data
Reader is associated with one Subscriber and opie TI8].

Regarding Quality of Service in DDS, Data Distribat Service is able to specify
different QoS parameters for each individual ToRleader or Writer in order to give
a wide range of facilities to the developers toiglesheir system. DDS has many
QoS parameters such as user data, ownership, cstmerstrength presentation,
deadline, durability. Through a combination of DR®S parameters a system can
satisfy a wide range of needed requirements.

Also, DDS is considered to be “Data-centric” whese have all the QoS parameters,
which can be changed on a per message basis. Mordoata Distribution Service
provides API for sending and receiving data. Theesf developers will not have
problems related to any network programming asidé&gt

In the following section, we will address importa@bS parameters in DDS for
(RTPS) middleware to optimize data delivery forpedfic application of wireless

sensor network [WSNs].
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3.4 DDS QUALITY OF SERVICE IN RTPS MIDDLEWARE

FOR WSNs

DDS QoS controls the flow of the data through aystem. In the Publish-Subscribe
system, there are QoS polices for Topic, DataRedD&), Data-Writer (DW),
Publisher, and Subscriber. In general, QoS poliofeSubscriber, Data-Reader, and
Topic control the data on the receiving side. HosveWQoS policies of Publisher,
Data-Writer, and Topic will also control the data the sending side. Throughout
this section, we will go over certain DDS QoS pielc

For QoS policy, any proposed Real-Time Publish/8uabs (RTPS) middleware for
Wireless sensor networks (WSNs) should utilizensamportant QoS policies of
the QoS model of DDS, such as latency budget drabilédy [14].

Latency budget QoS policy specifies the maximuneptad latency from the time
the event is published by the publisher sensor siadél the event is available to the
destination subscribers. In other words, this Qol&y will determine the maximum
acceptable delay from the time the data is writtgithe Data-Writer in the publisher
side until the data is available to a receiving l@pgon. For example, if an
application creates a latency budget QoS polidyet@00 milliseconds, this policy is

applied to any instance of a topic generated byldigher sensor node in order to
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ensure that all the data in this topic is delivevgthin less than 200 milliseconds
[14, 16].

The reliability QoS policy indicates the level aitd transmission reliability provided
by DDS. In particular, DDS supports two reliabilityodels, RELIABLE and BEST
EFFORT. When reliability QoS policy is set to REIBAE, DDS attempts to deliver
all events. The missed events are retransmittetl thetnumber of transmissions is
greater than a threshold, or the transmission ésessful. On the other hand, when
reliability QoS policy is set to BEST EFFORT, DDénsls out each event only once
and relies on the MAC layer for successful transiois [14, 16]. Therefore, for any
proposed RTPS middleware for WSNs, this shoulddveécsRELIABLE in order to
ensure that the necessary data is not lost.

Also under the concept of avoiding flooding thewmk and in order to clearly
illustrate this point, assume that we have manys@emodes that measure the
temperature as example and it is required thatcsies applications need to get
temperature readings from the most powerful seridhis sensor stops working
because of damage or for any other reasons, thHeapms should automatically
use the readings from another temperature senstr. RVPS for WSNs, we should
set the value of OWNERSHIP QoS policy should bdsééxclusive” to ensure that
the readers will only receive data from a singlesse node.

Furthermore, DEADLINE QoS policy can be used in BT® specify that the

subscribers will automatically switch to the senstith the second highest identifier
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number, if it does not receive data within the #jest time period. In other words,
this setting will satisfy the condition of the raahe term because the data must be
provided within a predefined time period, whichthe DEADLINE period [14, 16,

17].
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CHAPTER 4

THROUGHPUT EXPERIMENTAL SET-UP AND

RESULTS

To study the performance of real-time publish/subsc (RTPS) middleware
standard by Object Management Group (OMG) in wa®lgensor networks WSNSs,
different test scenarios are implemented to addtlessissues that are related to
performance metrics. The main purpose of our erpatts is to implement and run
throughput, jitter and latency performance test$ fiked and different sample sizes
and number of subscribers that is closer to thsmenetwork environments. The
middleware that is used in this work as RTPS ikeddRTI-DDS. This middleware is
implemented by the company Real-Time InnovationBlRvhich is one of the most
complete and representative implementations of Dattiibution Service (DDS).
Some of the primary entities used in all testsbaiefly defined as follows:

Topic is the basic connection between publishing andaiting applications. To
communicate, the Topic of a given publisher on noge must match the Topic of a
subscriber on any other node. Failing to do sd, sgilise the communication to not
take place. A Topic is comprised of a name andpa.tyn general, a topic can be

temperature, sound, humidity, pressure, vibratmation, light, etc.
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DataWriter: this entity is used by the application to publisimples on a topic. Once
a DataWriter is defined, a DDS application usds ido the “write” operation in the
publishing phase. It is important to point out tleaich data writer is bound to a
particular topic.

Publisher: a publisher has the full responsibility for takitige published samples
and sending them out to the DDS domain. In additemy publisher works as
controller to the data writers. By setting the DRSS behavior for a publisher, all
the DataWriters in that publisher’s group will anatically have these settings.
DataReader: this entity is used to take samples from the suibscand deliver them
to the DDS application. Like th®ataWriter, each data reader is bound to a
particular topic.

Subscriber: a subscriber has the responsibility to receive samples from the
publisher and pass them to any relevant data redlat are connected to it. Also, it
works as a controller to manage all its DataRead@ggain, setting of QoS
parameters of a subscriber will apply to BitaReadersn the Subscriber'sggroup.
The Figure 4.1 shown below illustrates the previtersns and presents the basic
components in the implementation of all applicagion

In the context of a sensor network application aden publisher application will
contain a large number of data-writers and eachobrieem presents a sensor node.
In the subscriber side, each subscriber will contaismall number of data-readers

and each one of them presents the sink node drabee-station in WSNSs.
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Figure 4.1 this diagram shows the basic and mampoments that are
implemented in all tests. RTI-DDS is defined adlmin and subscribe
service. In the publication stage, a publisher amdataWriter send messages
to one or more subscribers that include DataReanttia subscriber.
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4. Throughput Tests:

Throughput, i.e., number of received samples pérairtime (such as second), is an
important performance parameter for any kind ofwoek and distributed system.
The primary goals of our throughput tests are tasuee how RTI DDS can handle a
large number of subscribers and how different comioation models€.g, unicast
and multicast protocols) can affect performancesoAlthroughout these tests, the
investigation of the usage of QoS specified in Didiidleware standard by Object

Management Group (OMG) is pointed out.

Scenarios that have been implemented so fare:

4.1 One-to-One Throughput Test

One publisher application node that has 1000 datans as

sensor nodes and it runs on Corel.

- One subscriber application node that has 1 datieresnd it runs
on Core 2.

- Corel and Core 2 are connected through ad hocesgeletwork

by having 802.119/54 Mbps wireless USB adapteramih @ne of

them.

- Size of sample from 8 bytes to 1024 bytes.
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Publisher application node transmits at constaté @& 1000

samples/sec (Frequency = 1000 HZ).

4.2 One-to-Many Throughput Test

One publisher application node that has 1000 datan as
sensor nodes and it runs on Corel.

3 subscriber application nodes run on Core 2, Gaaed Core 4,
each one has one data-reader.

Corel, Core 2, Core 3 and Core 4 are connectedghrad hoc
wireless network by having 802.11g/54 Mbps wireld$SB

adapter on each one of them.

Size of sample from 8 bytes to 1024 bytes.

Publisher application node sends at a constant @#60

samples/sec (Frequency = 1000 HZ).

4.3 High Throughput with Reliable Messaging Test

One publisher application node that has 1000 datan as
sensor nodes and it runs on corel.

3 subscriber application nodes run on Core 2, CargB Core4,
each has one data-reader.

Corel, Core 2, Core 3 and Core4 are connectedghrad hoc
wireless network by having 802.11g/54 Mbps wirelddSB

adapter on each one of them.
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Size of sample from 8 bytes to 1024 bytes.

Publisher sensor application node sends at a cdrstie of 1000
samples/sec (Frequency = 1000 HZ).

Using batch and reliable QoS in order to see hanfitt one can
increase the throughput especially for small sarsg@e. In other
words, batching can increase throughput when vgitemall

samples at a high rate.

4.4 One-to-Many Throughput Scalability

One publisher application node that has 1000 datans as
sensor nodes and it runs on Core 1.

15 subscriber applications node run on Core 2, @adhese 15
subscribers has one data-reader.

Corel and Core 2 are connected through ad hocesgeletwork
by having 802.11g/54 Mbps wireless USB adapteramin @ne of
them.

Fixed sample size = 128 bytes because it igl#dfault size in the
IEEE 802.15.4 specification

Publisher sensor application node sends at a cdrstie of 1000

samples/sec (Frequency = 1000 HZ).
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4.1 One-to-One Throughput Test Outcomes

A. Experimental set-up

In our network, IP addresses start with 172.16.501we refer to nodes by the last
part of their IP addresses. The following nodesuses:

120: This core will contain the sensor publishepl@gation. It is important to point
out that this application has1000 datawriters. {Z361z, 3.23G RAM, Windows XP)
123: This core will contain the subscriber applmatthat has one data-reader
(2.67GHz, 3.23G RAM, Windows XP)

Nodes 120 and 123 are connected through a wirelessnunication by having
802.11g/54 Mbps wireless USB adapter on node. Nb2le runs the publisher
application to produce the sensor data. The otbée (inode 123) runs the subscriber
application to subscribe for the topic that hasnbeeblished by the sensor publisher.

See the Figure 4.2 below.

30.2.1191 |

54Mbps -\

DW presents Sensor node
{1000 ¥

" DR presents Sink node

Fig. 4.2: Multi One-to-One Throughput Test
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B. Goal
This test was conducted to show the one-to-onen{jtoipoint) publish/subscribe

throughput in terms of received samples in samplesgcond. In other words, the
sensor publisher application sends data whereitieevaries from 8 bytes to 1024
bytes, and is received by exactly to one subscabgplication. The throughput in this
test is measured between a sensor producer apmtiGatd another single consumer
application and over a single DDS topic. It is impat to highlight that both

applications are running on two different machines.

C. Implementation

The implementation of the test is done by runnimg fava applications: one for the
publishing node (that has 1000 data-writers ascsgrend the other one for the
subscribing node that has one data-reader. Notetlleapublisher application is
sending at the fixed rate of 1000 sample / seaq{igecy = 1000 sample/sec).

In this test, RELIABILITY QoS Policy in the DDS isighlighted in order to see
how this kind of QoS can control the communicati@iween the data reader (DR)
on the subscriber side and the data-writers (DW e sensor or publisher side.
The connection between the DataWriters (DWSs) inséresor application (node 120)
and the DataReaders (DR) in subscriber applicgtiode 123) in terms of reliability
can be configured by the user. If RELIABILITY Qo9®ly is set to Best_ Effort,
the RTI Data Distribution Service will send samptesy once to DR(S). In other

words, Best_ Effort does not use any resourcesadwoitor the data sent by DWs of
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the sensor application to determine whether oritnbas been received. Also, it is
important to point out that it is the fastest andsirefficient way in order to get the
latest value of a topic. In other wordgjce best_effort does not retransmit messages,
it is more scalable and timely, therefore it isfpreed. However, the delivery is not
guaranteed, which means that the data may berdsiei transportation stage over
wireless network or even Ethernet.

In the sensor applications that required guarantisd delivery, RELIABILITY
QoS policy is set to RELIABLE. In this mode the RD&ta Distribution Service
buffers sent data until all sent samples have lae&nowledged by the DataReader.
In case of lost samples during the transport stRde,will take care by resending
them again until they are acknowledged. This kirfdconnection need extra
overhead by using extra packets to monitor anckttiae status of the sample in the
network whether it is acknowledged by the DataResade not. Therefore, it needs
additional resources to be configured as HISTORY.

The test is done on mainly in two scenarios:

» Setting RELIABILITY QoS Policy in both DataWrite(®WSs) in the sensor
application (node 120) and DataReader( DR) in thiessriber application
(Nodel23) to RELIABLE.

» Setting RELIABILITY QoS Policy in both DataWrite(®WSs) in the sensor
application (node 120) and DataReader (DR) in thiessriber application

(Node 123) to Best_ Effort.
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D. Results and Remarks

one-to-one throughput :QoS=RELIABLE VS Best effort :
Frq=1000 sample /sec

1020
990
960 -
930 ~
900 -
870 -
840 -
810 -
780
750 ~
720 -
690 -
660 -

Received (sample /sec)

8 16 3

2 ?4, 12% 256 512 1024
sample size in bytes

Fig. 4.3: result of One-to-One Throughput

As evident from the above Figure 4.3, the maximuessage data is slightly over
960 messages per sec for Best-effort value anchdr840 messages per sec for the
RELIABLE value. It is an acceptable and expectesllteto have the RELIABLE
mode has small throughput than Best-effort dudaéocomplexity of the RELIABLE
operation, i.e. acknowledgment sample must be apdtretransmissions for lost
samples are enforced.

As shown above, RTI Data Distribution Service idlyfuitilizing the available

bandwidth. Also, it can be remarked that throughputmited by the network and
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not by the CPU or middleware. Furthermore, thegrerbnce of a system depends

on the operating system, the networks and how ¢hearks are configured.

55



4.2 One-to-Many Throughput Test Outcomes (Subscribers

Different Hosts):

A. Experimental set-up

In our network, IP addresses start with 172.16 4@1ve refer to nodes by the last
part of their IP address. The following nodes aedu

120: This core will contain the publisher applioatihat has 1000 data-writers. (2.67
GHz, 3.23G RAM, Windows XP).

123: This core will contain the subscriber applmatl. It has one data-reader. (2.67
GHz, 3.23G RAM, Windows XP).

121: This core will contain the subscriber applmat2. It has one data-reader.
(2.67GHz, 3.23G RAM, Windows XP).

173: This core will contain the subscriber applmat3. It has one data-reader.
(2.67GHz, 3.23G RAM, Windows XP).

Nodes 120, 123, 173 and 121 are connected throwginebess communication by

having 802.11g9/54 Mbps wireless USB adapter on ewmde. Node 120 runs the
publisher application to produce the sensor dathe other nodes (node 120, 121
and 173) run the subscriber applications to subscior the topic that have been

published by the sensor publisher application.tBed-igure 4.4 below.
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Fig. 4.4: Multi Oneto-Many Throughput Test over differe

B. Goal

This test is conducted to show the one-to-many nfgioFmany point)
publish/subscribe throughput in terms of receivaohges per second (sample/sec).
In other words, the sensor publisher applicatiordselata where the size varies from
8 bytes to 1024 bytes and is sent exactly to tlmaescriber applications. The
throughput in this test is measured between a perdapplication and three
consumer applications and over a single DDS topic.

C. Implementation

The test is made by running two java applicatiare for the publishing node (that
has 1000 data writer as sensor) and the otheh&suibscribing nodes, each having

one data-reader.
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The test is done by mainly setting RELIABILITY QoBolicy in both Data
DataWriters (DWSs) in the sensor application (no@8)land DataReaders( DRS) in

the subscriber applications (Node 121, 123 and to’BELIABLE.

D. Results and Remarks
Avg. Throughput, QoS =RELIABLE, Freq = 1000 sample /sec
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Fig. 4.5: result of On-to-Many Throughput Test over different machi
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Sample siz Avg. Received samp/sec | Avg. Received samp/sec
(One-to-One) (One-to-Many)
8 84¢ 657
16 83¢ 64C
32 83¢ 63¢€
64 824 634
25€ 78C 557
512 742 51¢€
102¢ 734 471

Table 4.1 One-to-Many Throughput Testver different machine

This table compares this test with one that is don@evious experiments, when we
have one-to-one test over QoS= RELIABLE. This isyx@an order to have an
estimation of the difference in the measures calmethcreasing the number of
subscribers over different machines. For the sasnfilat have sample size, the
difference is around 190 samples. However, fordasge the difference becomes
around 225 samples. It is large for 1024 bytess 263 samples. The reason why
there is a difference between this test and theique test is that, in the second one,
traffic is send from one host to another 3 machiheother words, copy of every

sample must be sent to every single subscriber host
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4.3  High Throughput with Reliable Messaging Test Outcmes:

A. Experimental set-up
In our network, IP addresses start with 172.16.4®1ve refer to nodes by the last

part of their IP address. The following nodes aedu

120: This core will contain the sensor publishegpl@ation. It has 1000 data-writers
(2.67 GHz, 3.23G RAM, Windows XP).

121: This core will contain the subscriber applmatl (2.67 GHz, 3.23G RAM,

Windows XP).

123: This core will contain the subscriber applmat2 (2.67GHz, 3.23G RAM,

Windows XP).

173: This core will contain the subscriber applmat3 (2.67GHz, 3.23G RAM,

Windows XP).

Nodes 120, 123, 127 and 173 are connected througinebess communication by
having 802.11g9/54 Mbps wireless USB adapter on ewmde. Node 120 runs the
publisher application to produce the sensor ddte. dther nodes (node 121, 123 and
173) run the subscriber application to subscrilvehe topic that has been published

by the sensor publisher.

B. Goal

As we previously mentioned, some sensor applicatieguired a reliable messaging.

Therefore, the middleware must keep monitoringdékvery of the data whether or
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not it was received by the subscribing applicatioAso, in case of data loss,
retransmission must be done.

The section (4.3) points out the key QoS settihgs are needed in order to achieve
strict reliability. Not only that, but it can aldme seen how we can set RTI Data
Distribution Service QoS Profile in order to geglithroughput for reliable data.

C. Implementation

To achieve strict reliability for the critical semsapplication we must do the

following:

» Setting the RELIABILITY QoS Policy of Data WriteD{Vs) of the sensor
application and Data Reader (DR) of the subscrbele(s) to RELIABLE.

Some sensor applications produce a large numbemafi messages at high rate. In
such a case, there will be a measurable overhewansmitting each sample alone in
a network especially if the application needs &tsteliable communication. From
here, the idea of using the Batch QoS policy in DB&sed. This kind of QoS is
helpful to the system in managing many samplestbhegeas a group and then sends
them as a group to the network. In other words,bidiehing QoS, with reasonable
size because sensor nodes have limited memory, siaastake advantage of the

efficiency of sending larger packets, thus increg$he throughput.
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D. Results and Remarks

AVG. throughput ; QoS= RELIABLEwithout batching Vs RELIABILITY hatching ;
Feg=1000 sample/sec
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Fig.4.6: result On-to-Many Throughput: with & without batching Q¢

As you can see in the result, it is clearly showat tbatching service significantly
increases the throughput for the small sample &ize higher rate. In general, this
kind of Qos policy is used to make communicatiorerbead less in the reliable

mode of small size samples.
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Batching service collects many smaller samples at&h to be sent in a single
packet. This surely reduces the communication hacatknowledgments flow, thus

increasing the throughput in terms of samples peorsd. See the table below:

Size in bytes Throughput without Throughput with
batching batching
16 640 996
32 638 994
64 635 994
128 632 970
256 557 876
512 516 742
1024 471 553

Table 4.: result On-to-Many Throughput: with & without batching Q
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4.4 One-to-Many Throughput Scalability — (Subscribers 1 Same

Host)

A.  Experimental set-up :

In our network, IP addresses start with 172.16sdve refer to nodes by the last
part of their IP address. The following nodes aedu

120: This core will contain the sensor publishgsl@ation. It has 1000 data-writers
(2.67 GHz, 3.23G RAM, Windows XP)

123: This core will contain the subscriber applmas. (2.67 GHz, 3.23G RAM,
Windows XP)

Nodes 120 and 123 are connected through a wiretessmunication by having
802.119/54 Mbps wireless USB adapter on each rivoge 120 runs the publisher
application to produce the sensor data. The otbée ((node 123) runs from 1 to 15
subscriber applications to subscribe for the ttipét have been published by the

sensor publisher. See the Figure 4.7 below.
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Fig. 4.7: Multi One-to-Many Throughput scalability te

B. Goal

The aim of this scenario is to examine the behavidransferring data with a fixed

rate over a different number of subscriber applcet This test was done to see how

the RTI will behave in a similar situation in sensetwork. In addition, this scenario

test will measure the capability of the RTI in hiamgl multiple of subscribers.

C. Implementation

We used a publisher application and from 1to 15euber applications over a

single topic with fixed sample size of 128 bytewcsit is the default size in the
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IEEE 802.15.4. It is important to highlight tresich sample produced by the sensor

application is consumer by 1 to 15 subscriber apfibns.

The test is done mainly in three scenarios:

A.

Setting RELIABILITY QoS Policy in both DataWrite(®WSs) in the sensor
application (node 120) and DataReaders (DRs) irstitescriber applications
(node 123) to RELIABLE without batching.

Setting RELIABILITY QoS Policy in both DataWrite(®Ws) in the sensor
application (node 120) and DataReader (DRs) instiiescriber applications
(nodel123) to Best_ Effort.

Setting RELIABILITY QoS Policy in both DataWrite(®Ws) in the sensor
application (node 120) and DataReaders (DR) instiiescriber applications
(nodel123) to RELIABLE with 10k batches.

Number of publisher application = 1, with 1000 DWs

Number of subscribers = from 1 to 15

Size of the message = 128 bytes

Fixed frequency rate =1000 HZ
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D. Results and Remarks
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Figure 4.8: result One-to-Many Throughput scalgbiést

Clearly, Figure 4.8 shows the efficiency of RTEdiable uni-cast protocol for one-
to-many publish/subscribe messaging and real-tiata distribution. A producing
sensor application was used to send a stream obylt2Z8messages at the rate of

1000 HZ to up to 15 consumer nodes, each of thasscebers running on the same

core.

This illustrates that RTI Data Distribution Serviceddleware with batching has the

best scalability over the other two (Reliable aedtleffort). This is because batching
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groups many smaller samples in a batch to be seatsingle packet which will

reduce the communication overhead.
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CHAPTER 5

RTI ROUTING SERVICE FOR ISOLATION AND

CLUSTERING

RTI Routing Service is an important component ofl ®&ta Distribution Service
that is mainly used to integrate separated andatsl systems. This component
works to scale DDS applications across domainsalaea Network LANs, WLAN
and wide area network WANS. It is important to ligit that RTI Routing Service
can work as a bridge between two or more DDS agfptins. This is done by
exchanging the data between DDS systems. Therd®drneRouting Service helps in
integrating a new DDS application with a legacy.dAgrthermore, it can work as an
interface between non-DDS and DDS systems.

It is known that Data Distribution Service (DDS)péipations can communicate with
other applications if they are in the same dom&lowever, with RTI Routing
Service, applications in different domains can camitate by sending and receiving
data across domains. In addition, this componeRTdfData Distribution Service is
able to transform and filter the transferred datao, applications with different data

structures are able to communicate across domginssing RTI Routing Service
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because this component has the capabilities togehthre data’s type. Moreover, it is

used as a controller to the system by deciding kvlata is to be sent.

Different:

= Nebworks
= |mterfaces

« Security domains

Fig. 5.1:RTI Routing Service for DDS
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RTI Routing Service is used to pass data from ameaih to another. Also, it is used

to specify any desired data filtering and transfations. It is important to point out

that no changes are required in the Data DistabuBervice DDS applications.

The important benefits of RTI Routing Service asdalows:

1.

It reduces the time and effort that are neededntegrate and scale DDS
applications across domains. It can scale DDS tmeal- publish/subscribe
(RTPS) data-distribution without making any chandesthe existing DDS
applications. With this routing service, an exigtDDS application can be easily
integrated with a new one even if its data strectadifferent for the old one.

It is used to build modular systems out of the Exgssystems: RTI Routing
Service allows dividing the DDS system into puldicprivate domains. Also, it
can be used to see certain “global topics” acrossains.

It supports a secure deployment across multiple B@S8ications.

It can be used as bridges to integrate DDS andDip8-systems.

It is used to manage and control the evolutiorhefdata at the subsystem level:
RTI Routing Service is able to transform data anftl, changing topic, working

as a bridge to link different kinds of DDS applioas.
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5.1 RTI Routing Service for Throughput Scalability Test

Outcomes:

The goal of these tests are to see the advantdgesing the RTI routing service
after we correctly program it for transferring datdh a fixed rate across domains
and a over different number of subscriber appliceti This test is done to see how
the RTI will behave in a similar situation in sens®tworks when the network is
divided into clusters and is in an isolated subwvmoets. These networks might be
different in data structure and security domainther words, this test scenario will
clearly point out how the RTI can act when the seagplication in isolated network
from the subscriber application, which usually e tcase in wireless sensor
networks.

Note that, in this test, we do four different sa@msbased on the location of running
the RTI routing service, as follows:

Test A: running RTI routing service on the same core €Cbr that runs the sensor
publisher application.

Test B running RTI routing service on the same core €C8j that runs the
subscriber application.

Test C running RTI routing service on different corey ¢&ore 3).
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» Test A: Experimental Set-up
In our network, IP addresses start with 172.16 4@1ve refer to nodes by the last

part of their IP address. The following nodes aedu

120: This core will contain the sensor publishguliation. It also runs RTI Routing
Service (2.67 GHz, 3.23G RAM, Windows XP).

123: This core will contain the subscriber applmas. (2.67GHz, 3.23G RAM,
Windows XP).

Node 120 runs the publisher application to prodiheesensor data. The other node
(node 123) runs from 1 to 50 subscriber applicatitmsubscribe for the topic that

have been published by the sensor publisher .&d€igiure 5.2 below.

1 DDS Domain 0

DD5 Domain 1 ; i 1
802.11g TS
R e - 2
® - e
® .
L
o ;
Core 1 % p )
Gime? This core runs the RTIrouting Service ‘-.-. 1000

" DW presents Sensor node

DR/DW presents Gateway
node

I

DR presents anapplication in
Base Station

Fig. 5.2: RTI Routing Service in the publisher side
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 TestA: Implementation
As shown in the Figure above, this implementat®rexactly the same as Test A

except that the RTI routing service runs on thees@ore of the sensor publisher

application.

Number of publisher application = 1, it has 1000 ®Wuns on domain 0

* Number of subscribers = from 1 to 50, run on domhin

 RTI Routing service runs on the same core as thdigher application

* Size of the sample = 128 bytes

* Fixed frequency rate = 1000 HZ
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* Test B: Experimental set-up :
In our network, IP addresses start with 172.16.4®1ve refer to nodes by the last

part of their IP address. The following nodes aedu
120: This core will contain the sensor publishepl@ation which has 1000 data-

writers as sensor generator (2.67 GHz, 3.23G RANMddivs XP).

123: This core will contain the subscriber applmas. It also runs RTI routing

service (2.67 GHz, 3.23G RAM, Windows XP).

Node 120 runs the publisher application to prodiheesensor data. The other node
(node 123) runs from 1 to 50 (not 15 applicatiahss 50 to show the scalability

issues) subscriber applications to subscribe fertdpic that have been published by
the sensor publisher. It is important to highlighdat both of these applications are on

different domains .See the Figure 5.3 below.

1 " DDSDomain 0
DDS Domain 1 1
802.11g =
—— Lo
b I 2
e
) B -
L J =
® Ty
®
e
Core 1 e . 4 .
Core 2 A 1000 £
This core runs the RTl routing Service
DW presents Sensornode
< DR/DW presents Gateway
node
DR presents an application in
Base Station

Fig. 5.3: RTI routing service in the subscriberesid
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* Test B: Implementation

As shown in the Figure above, we used a sensoighelapplication that runs on
Core 1 and domain 0. Also, (from 1 to 50) a subscrapplication that runs on Core
2 and it is on domainl. Subscriber applicationsstibe on a single topic with fixed
sample size of 128 bytes sinités the default size in IEEE 802.15.4. It is innfamt
to highlight thateach sample produced by the sensor applicatioauted by one
RTI routing service. 1-to-50 subscriber applicasicgubscribe for the same topic that
is published on domain 0 and routed from that dangdomain 0) to domain of the
subscribers through the RTI routing service. Nobat,t the sensor publisher
application works on domain 0 and all the subscrédmplications run on domain 1.
The RTI routing service runs on the same core efstiibscriber applications. In this
test we set RELIABILITY QoS Policy in both Data R#¥riters (DWSs) in the sensor
application (node 120) and DataReaders (DRs) insthiscriber applications (node

123) to Best_ Effort.

* Number of publisher application = 1, it has 1000 DWins on domain 0

* Number of subscribers = from 1 to 50, each subsecrilas one data
reader , run on domain 1

* RTI routing service runs on the same core as thhscubers

* Size of the sample = 128 bytes

* Fixed frequency rate = 1000 HZ
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« Test C: Experimental Set-up

In our networks, IP addresses start with 172.16skdWe refer to nodes by the last
part of their IP address. The following nodes aedu

120: This core will contain the sensor publishepligation. (2.67 GHz, 3.23G RAM,
Windows XP).

123: This core will contain the subscriber applmas. (2.67 GHz, 3.23G RAM,
Windows XP).

173: This core runs RTI routing service. (2.67 GBI23G RAM, Windows XP).

” " DDSDomain 0 AT}
DDS Domain 1 / \
ok = 1 ]
802.1;;1 302,11—9.2_ TN
T . . "
q } . -
® -
® = Core3 "_"‘-\\
__.-”’—CorES nms the RTI routing service-‘\
® ) 5
:
Core 1 Yl
Core 2 . \ 1000

" pw presents Sensor node

/ DRIDW presents Gateway
node

I

DR presents an application in
Base Station

Fig. 5.4: RTI routing service in the 3rd node
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e Test C: Implementation
As shown in the Figure above, this implementat®rexactly the same as Test A

except that the RTI routing service runs on thedtbore (Core 3).

Number of publisher application= 1, with 1000 DWins on domain 0

* Number of subscribers = from 1 to 50, run on domhin

* RTI routing service runs on (Core 3).

* Size of the sample = 128 bytes

* Fixed frequency rate = 1000 HZ
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* Remarks of the previous results:

The throughput: AVG. Received sample /sec Using
1000 RTI Routing Service, Freq=1000 HZ
3 990 -
v =4=RTl routing Service on
16‘ 980 3rdcore
o o g
€ 970 ' =l—RTl routing Service on sub
Wi
T
g 960 RTI routing Service on
ot pub
£ 950
Y
< 940
930
1 4 71013161922252831343740434649
#of SUB

Fig.5.5: Clustering and Isolation cases using RTting service

We can notice that throughput (average numberadived sample /sec) is invariant
to the number of subscribers. This is perfectlymalrif you consider the behavior of
IP Multicast. The key idea behind that is that RJuting service uses IP Multicast
protocol to distribute samples, this is why we hawaroughput (average number of
received sample /sec) is invariant to the numbeubEcribers.

Normally, the publisher sends one datagram per sabBcriber, so increasing its
number causes an increase in the datagram to helrséR Multicast, the publisher

sends just one datagram even if there is moredharsubscriber.
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In order to clearly point out this important pointg compare what we got in Figure
5.6 with what we got in this test. If we do so, @& understand the behavior of the

RTI Data Distribution Service in both cases:

Throughput : from sensor aplication to (1 -15) subscriber nodes , Fregancy

=1000HZ
1200

1100
1000 -+

900

800
700 —4— best effort

600

Sample / sec

500
400

300

200

100

12 3 4 5 6 7 8 9 10 11 12 13 14 15

#t of Subscriber nodes

Figh.6: Result of one-to-many test without usingl Rduting

In above Figure 5.6, the RTI Data Distribution Segvmiddleware uses Unicast
protocol. In this case, we have seen that as wease the number of subscribers,
the throughput (average number of received sangalpssgnificantly decreases. This
is clearly because the network bandwidth is wastede Unicast protocol generates
a separate copy of the data to each single subscilthis obviously means that

Unicast does not easily scale to a large numbezappients.
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For example: if the number of subscriber applicatits 50, then the publisher sensor
node will transmit 50 copies of the data and thavoek forwards them to each
subscriber. In other words, the sensor publishpliaion sends multiple copies of
the data, one copy for each subscriber. The folgwkigure 5.7 shows how the

transferring of the data is made by the RTI Datstiiution Service middleware in

l Sub#1

Sub #2

test of Figure 5.6.

Y

Sensor

publisher

application Sub #3

Sub| sp

Fig5.7: one-to-many test without using RTI routsegvice

On the other hand, the RTI routing service uselicast transmission protocol in
order to send a single multicast sample addresseall tsubscribers. It provides
efficient communication and transmission, optimipesformance, and enables truly

distributed applications.
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Therefore, if the number of subscriber applicatie$0, then the publisher sensor
node will transmit only one copy of the data andl Rduting service does the
replication for each subscriber.

It is important to point out that the RTI routingrgice that uses IP multicast protocol
allows the sensor publisher application to send nwiltiple subscribers
simultaneously. The following Figure 5.8 shows hitve transferring of the data is

made by the RTI routing service.

Sub#1

5Tb#2

e
= B
RTI >
Com— |
Routing ["_
Service
Sensor
publisher

3 Sub #3

application

_'_1_

I Sub| S0

Fig5.8: One-to-Many test using RTI routing service

At the end of this test, it is extremely essertiapoint out that RTI routing service
gives many advantages in a one-to-many environnidms. routing service clearly

enhances the efficiency because multiple streandstaf, which are generated by the
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sensor publisher application, are replaced witmgle transmission. In other words,
the available network bandwidth is utilized mor&cggntly than the previous test.
Furthermore, it optimizes the performance sinces leamber of copies of data
requires forwarding and processing. In addition,highly supports distributed
applications.

In this test, the Figures shown above show thetomeany (point-to-many point)
publish/subscribe throughput in terms of samplesgeond (sample/sec). The sensor
publisher application sends samples of fixed slZ8{bytes) to up to 50 subscribers,
each running on the same core.

As can be seen in Figure 5.5, the number of sulsrihas no significant impact on
the throughput. Obviously, this means that RTI Distribution Service is highly
scalable in terms of the number of subscribers @ueg on a given topic. Moreover,
it is important to mention that this figure shows efficiency of RTI routing service

for real-time and mission-critical WSN applications
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5.2 Energy Consumption Estimation in Wireless Sensor

Networks

In WSNs, the energy consumption is one of the ingmrissues to prolong the
network lifetime. Unlike wired and wireless netwsyRVSNs have a main energy
iIssue because wireless sensor nodes are poweltsgttbyies with a limited capacity

and they cannot be charged after being deploye@refére, they are prone to
failures and this will cause the whole network &il.fMany researchers proposed
different ways to reduce energy consumption bytiimgitransmission/reception of

data sample as much as possible.

The goal of this section is to estimate the totedrgy consumed by the network in
the previous tests mentioned in section 5.1. In eatimation, it is important to

highlight that we assume no noi@édures.

In the analytical model used to estimate total gneonsumed in our network, it is

assumed that there are N nodes distributed uniforifnihere are c clusters, there are
on average N/c nodes per cluster (one cluster hadd(N/c)-1] non-cluster head

nodes). Each cluster-head consumes energy recesigngls from the other nodes,
aggregating the signals, and transmitting the aggeesignal to the Base Station.
Since the Base Station is far from the nodes, pathi model is used the multipath

model (d*4 power loss) [36].
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Therefore, the energy dissipatedhe cluster head node is

Ech=L [n Eclect+ N Epa + Eelec+ € mp (dBSA4)] (51)

Where,L is the number of bits in each data sample k isntimaber of bits in each
data messagemfis thecoefficient of amplifier energy in multi-path modeks is
the distance from the cluster head node to theE3%,s data aggregation. Because
the distance to the cluster head is small, so tieegy consumed follows the Friss
frees-pace model is used to model the power 1083 gdwer loss) [36]. Thus, the

energy used in a non-cluster head node is

Bode= L [Eelec+ € fs (dCHAZ)] 25

Where, dH is the distance from the node to the cluster laeab=Ts is coefficient of

amplifier energy in free-space model.

Therefore, the total energy consumed in our netwsds follows:

Etotal = C. [Ecn+ (N/c-1) Broad (5.3)

Because we have only one single cluster in the or&tvthe energy dissipated in a

cluster is given by
botal = [EcH + (N-1) Enodd (5.4)

In our work, we assume a simple model where thaiemlof the constant

communication energy parameters were taken ashleBal:
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Parameter Short Description Value
Eelec Electronics energy 50nJ/bit
EpA Energy of data aggregation 5nJ/bit
o Amplified transmitting energy using 10pJ/bit/ m 2

free space
€ mp Amplified transm_itting energy using 0.0013pJ/bit/ m4
multipath
N Number of nodes in the network 1001 nodes

Table 5.1 PARAMETERS VALUES USED IN THE SIMULATION

Also, we assumed Coreland Core 2 are located on0)Oand (50, 0)

respectively. Also, we assumed if the cluster headl non-cluster head

nodes are on same core, then the cost of the disteEnone. OtherwisejcH

will be based on its locationtn other words, for Test A, B and dcH=1, 50, 25
respectively. AlsodBS =50 for Test A, dBS =1 for Test B and dBS =@5Test C.

Scenarios that have been implemented:

» Test A: Cluster head and non-cluster head nodes are e sare (Core

1)
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_Test B Cluster head and non-cluster head nodes areddcamn Core 1

and Core 2 respectively. Core 2 runs base statippli@eation as

subscriber.

Test C. Cluster head and non-cluster head nodes ardddcan Core 1

and Core 3 respectively Core 3 is located on (9%diween core 1 and

core 2). Core 2 runs base station application.

Ech Vs, Sample Size
600
£g o -
; 'E |
£Y 20
77 W -
[*]
E c ."\
27w "
o2 d A
i E l'lI
200 i
3 A
w 100
0
100 200 300 400 500 600 700 800 500 1000 1100
=4=TestA| 440465 | BB093 | 1321395 | 176.186 | 2202325 | 264279 | 30B.3255 | 352372 | 3964185 | 440465 | 4845115
—W-Test8| 4404 B&.08 13212 176.16 2202 264.24 308.28 35231 396.36 4404 484.44
TestC| 44.040406 | 88.080812 | 132.12121 |176.16162 | 220.20203 | 264.24243 | 308.28284 | 35232325 | 396.36365 | 44040406 | 484.44446

Fig5.9: Energy used in each non-cluster head nede&Sample size
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each non-cluster head node
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Fig5.10: Energy dissipated in the cluster head msdeample size

Total energy consumed by
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Fig5.11: Total energy consumed by the network ampe size
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In Figure 5.11, we find that the energy consumgstiohall test are proportional to
packet size. As can also be seen in this Figuring the cluster head and non-
cluster head nodes on same core has the lowaketwrgy consumed (Etotal) by
the network. Obviously, this is because if bothttefm running on the same core,
dcH will be small. Therefore, the energy used in a-omster head node (Enode)
will be small. However, for Test B, Cluster headdamon-cluster head nodes
are located on Core 1 and Core 2 respectively. Tiedns, dn will have the
largest value. Therefore, this test has the lafgaetle. As result, it has the largest

total energy consumed by the network.

89



CHAPTER 6

LATENCY EXPERIMENTAL SET-UP AND RESULTS

In this test, we calculated the roundtrip time (RB&tween the sending of a message
and reception of an acknowledgment from the subecriln all latency test
scenarios, the roundtrip latency is calculatechaswith publisher sensor application
send at constant rate 1000 sample/sec (Frequed®®p& HZ). Similarly to the last
throughput test, the publisher sends sample wiidfisize to one or more subscriber
applications.
During this test, an echo method is used in ordecaculate the round trip time
(RTT). It is important to highlight and point otitat both the sensor publishing node
and publisher node are running in identical machitfeve want to estimate “end-to-
end” latency, it can be estimated as,

T end-to-end < round trip time (RTT)
For this test (1-to-many latency test scenari¢®,echo method is called by the last
reader that receive the data from data writer.thelowords, RTI-DDS writer will

send sample to the readers in a given specifiaorde

Scenarios that have been done in this phase:

6.10ne-to-One round trip time (RTT) Test
- One publisher sensor application node runs on corel
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One subscriber application node runs on core2.

Corel and Core2 are connected through ad hoc wéreletwork.
Size of sample 128 bytes.

Publisher sensor application node send at constet 1000

sample / sec (Frequency = 1000 HZ).

6.20ne-to-Many round trip time (RTT) Test

One publisher sensor application node runs on corel

From 1 to 15 subscriber applications node run or2:0

Corel and Core 2 are connected through ad hocesgeletwork.

Fixed sample size = 128 bytes because it igl#dfault size in the
IEEE 802.15.4 specification

Publisher sensor application node send at constet 1000

sample / sec (Frequency = 1000 HZ).
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6.1 One-to-One Latency Test Arrangements
A. Experimental set-up
The setup of this experiment is exactly as what dig in test One-to-One

Throughput Test.

B. Goal:
This test shows the one-to-one publish/subscritemd¢y in terms of round trip time

RTT. In other words, the sensor publisher applicatends data where the size fixed
publishing rate 128 bytes and is sent to exacty subscriber application on another
core over a single DDS topic. The applications araning on two different

computers.

C. Implementation
The first test will consider one publisher and snbscriber. The message will have a

size of 128 bytes and they are sent by the publiahe@ constant rate 1000 (Hz)

frequency. The test is done on mainly in two sdesar

A. Setting RELIABILITY QoS Policy in both Data DataWw&rs (DW) in the sensor
application (node 120) and DataReaders( DR) irsthmscriber application (node

123) to RTI-DDS reliable.

B. Setting RELIABILITY QoS Policy in both Data DataW&rs (DW) in the sensor
application (node 120) and DataReaders (DR) irsthoscriber application (Node

123) to Best_ Effort.
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Freqgq= 1000 HZ

sample Size = 128 Bytes,

One-To-One RTT Test,
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Fig.6.1: one-to-one RTT test, QoS

One-To-One RTT Test, Sample Size 128 Bytes, Freq =1000 Hz
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Fig 6.2: one-to-one RTT test, QoS = reliable
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RTT Analysis for Sample Size 128 bytes, Freq = 1000

12
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M Best Effort
M Reliable
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Figure 6.3: one-to-one RTT analysis, QoS = besirE¥s reliable

The summary of the results is presented in FigueThis Figure shows the average
round trip time of the messages received in thewilker. As expected, the price of
reliability is more overhead than the best-eff@a$e . Therefore; RTT latency for first
one is greater than the RTT latency for BEST_EFF®®ET In other words, when
the samples are changed between peers, best@8rimposes the least amount of
overhead. However, it does not guarantee the dgligkthe data. As result, data
may be lost due to unreachable peer.

In the case of RELIABLE, it achieves the reliableligery through two main
mechanisms: two-way hand shaking and the negatokmosvledgment of lost
samples. Each of these mechanisms needs timesiandhty RTT for this kind of

QoS is higher than the one we got in BEST_EFFORE)(Bt is important to

94



highlight that RELIABLE QoS uses wait_for_acknowgedents method to wait for
subscription to acknowledge receipt of all datasoilin this mode RTI Data
Distribution Service automatically sends acknowledgts (ACK/NACKS) as
necessary to maintain reliable communications.

Under the same configuration of the previous test, made the sensor

publisher application sends data where the sizeessdrom 8 bytes to 1024

bytes.
RTT one-to-one test, message size= fromB3to 1024, Frequancy
=1000HZ
2.5
2
£
;-1.5 +— p— =4=—shmem
E
o
g’ 1 ——QoS= Best
a effort (BF)
0.5 Qo0S=
RELIABLE
(SR)
0
8 15 32 64 128 256 512 1024
Sample Size in bytes

Figure6.4: result of one-to-one RTT latency, QoS =be&trE¥s reliable over

different sizes
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By focusing on our interesting part of the chagttis from 8 bytes to 128 (note that
in sensor networks the standard sample size isbiy®Ss), Fig highlights that, at

small message sizes, which is the case in WSNs, rieifigins consistently low. It is

a round 1.52 ms for QoS= RELIABLE and 1.23 ms f@S? BEST_EFFORT. The

reason for RTT latency for first one is greatemtfimm the second one is explained
in details in the previous test. In addition, tkisows that RTI Data Distribution

Service exhibits very low jitter, making it suitalfior time-time and mission-critical

applications in WSNs. At larger messages sizeschvare network-limited, latency

Is proportional to message size. However, analy#iegdata with large sizes is out
of our scope.

By Making the subscriber and publisher run on tames host, we got the lowest
RTT because the DDS application use shared memshrggm) concept. It is known

that shmem is faster than UDP connection.
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6.2 One-to-Many RTT Latency Test Outcomes:

A. Experimental Set-up

The setup of this experiment is exactly as what die in test One-to-Many
Throughput Test. See the fig below.

B. Goal

This test shows the one-to-Many publish/subscrenicy in terms of RTT. In this
test, the sensor publisher sends data where tbevaies from 8 bytes to 1024bytes.
These massages are sent to 15 subscriber appisatioanother core over a single

DDS topic.

C. Implementation

For RTT Latency Test Method, We designed this testllow only to the last data
reader to invoke the echo routine. The other dsaders will not invoke the method.
This is done to calculate the worst case scendniohwis the largest RTT value. For
the 1-to-many RTT test in order to work in ordemtork in the correct way the RTI
must send the samples in correct order. RTI-DDS$ sehd samples to the data
readers DRs in the provided order.
The test is done on mainly in two scenarios:

A. Setting RELIABILITY QoS Policy in both Data DataWwérs (DW) in the

sensor application (node 120) and DataReaders (DRhe subscriber

application (Node123) to RELIABLE. (using a unigast
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B. Setting RELIABILITY QoS Policy in both Data Dataw&is (DW) in the
sensor application (node 120) and DataReaders( iDRthe subscriber
application (Nodel23) to Best_ Effort. (using aaasit protocol)

C. Setting RELIABILITY QoS Policy in both Data Datavi#gis (DW) in the
sensor application (node 120) and DataReaders (DRthe subscriber
application (Node123) to RELIABLE. (using a multta

D. Setting RELIABILITY QoS Policy in both Data Dataw&is (DW) in the
sensor application (node 120) and DataReaders (DRhe subscriber

application (Node123) to Best_ Effort. (using a tncést protocol

In both tests (this and the above one), it is irtgpdrto point out that we use
request/response way to ensure that the roundhtng is recorded on the publisher
node. Also, measuring the RTT latency is done bkingatimes-tamp on the sent
messages and subtracting that from the times-taahe\that is received in the ack

message from subscriber on the publisher side.
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D. Results and Remarks

RTT Ome-to- Many test, message size = from § to 1024, Frequency = 1000 HZ
35 5
: DD5-Olos =strict
|
15 reliable, multicast
-: 3
E!? ~8-05-005 =best-
= p o
E 15 - eftort, multicast
r o i DD5-005 =best-
effort unicast
(1.5
=== DD5-005 =strict reliable
’ . umicat
2 16 32 64 128 256 512 1024
sample size (in bytes)

Figure 6.5: result of one-to-Many RTT latency

In the unicast protocol the sensor publisher appba will take care of all the data

readers. In other words, it sends a message tossagle data reader. However, in
multicast protocol, it will send a single multicasicket to all data readers who are
listening on the same multicast address.

As evident from the above charts, at any message the multicast protocol has
advantages over unicast. This is happened becalsBXS middleware invokes the

send process only once, which means RTI-DDS willeds work, therefore, this is
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intuitively leads to lower latency. The reason RFT latency for reliable is greater

than from the best effort is explained in detailshie previous test
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 CONCLUSIONS

In this thesis, some main challenges facing thegdesf middleware for WSNs have
been pointed out. Moreover, a brief descriptionadfst of typical recent existing
middleware solutions is provided. Then, focus isdenan the middleware that
communicates in a publish/subscribe fashion. Thoine because publish-subscribe
paradigms support asynchronous communications.sByWP/S paradigms, the data
is sent and received by asynchronous messages. oiwre this kind of
communication provides some properties that arelegeen sensor networks. In
addition, a P/S paradigm increases the lifetimigefmetwork.

Also, similarities and differences between the apphes that are used to implement
different middleware solutions for sensor netwagks provided. Furthermore, DDS
real-time system is discussed in order to addréms issue of a real-time

publish/subscribe middleware for WSNSs.
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The methodology used for evaluating RTPS-DDS middle implementation is also
presented. Moreover, important QoS parameters it5 dd RTPS middleware are
addressed to optimize data delivery for a speaifiglication in WSNSs.

The tests are programmed in java language using.glk to see behavior RTI DDS
in WSNs. The following performance metrics are usgdnalysis purpose:

e Latency, which is the roundtrip time (RTT) between the dieg of a
message by the sensor publisher application aneéptiea of an
acknowledgment from the subscriber.

e Jitter time, which is the variation in RTT latency from samflanessage.
In other words, it is the standard deviation of R¥el latency.

« Throughput, which is defined as the total number of receivedda per
unit of time (such as m-second).

Finally, it is strongly believed that RTI-DDS isettmost suitable middleware for
WSNs since it is reliable, flexible and the highpstforming implementation of the
OMG DDS for real-time systems. It also has QoS ertigs that can be set based on
the needs of a given system. These QoS paramétergly allow designers to
control their applications to get the best comborabf performance and resource

usage.
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7.2 FUTURE WORK

Our work can be extended to cove the following:

* The security issues that are related to RTI rousienyice in order to make this
routing service more secure and prevent anyone wadnat to access it for
making illegal things. Since security plays a fuméatal role in many
wireless sensor network applications, the accommplent of this task will
protect these applications from the harm attackessn accessing sensor
sensitive information.

» Using the RTI routing Service as administratorite hetworks by program it
to do some kind of filtration processes. Doing this sure will protect the
WSNs from flooding with too much data.

» Trying to use RTI-DDS middleware in real nodes ¢e she real behavior of

this middleware.
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