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Error correcting codes have been studied extensively since 1950’s in the field of
information theory. Such codes are used in storage devices and digital data
transmission systems to increase data reliability. This thesis studies binary
asymmetric error-correcting codes on Z-channel. Failure in such channels

normally affects 1’s in digital data and rarely affects 0’s.

Previous research on asymmetric error correcting codes has given upper bounds
and provided several construction methods to improve the lower bounds.
However, these lower bounds are still much less than the upper bounds, which
motivates the research in constructing new codes and improving the lower

bounds.

This thesis proposes new single asymmetric error correcting codes with
improved code sizes. The construction method of the proposed codes is based
on the Cartesian product of two sets of partitioned codes of smaller dimensions.
Some useful partitions for the construction method were obtained in this thesis.
These partitions were used to construct new codes of dimensions 14, 15, 16, 17
and 19, and improve the sizes of the existing codes for these dimensions.
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Chapter 1

Introduction

1.2 Preface

Recently, there has been an increasing demand for efficient and reliable digital
storage systems and data transmission. This demand has been accelerated by the

appearance of high-speed, large scale data networks for the exchange, storage of




digital data and processing in the research agency, educational, commercial, health

and governmental applications [1].

The storage and transmission of digital data have much in common. Both activities
transfer data from a source of information to a destination [1]. These systems can be

represented as in the following block diagram (Figure 1.1).

information Source I Channel I Modulator
Source Encoder :: Encoder(ECC) :I (writing unit )
L — — — — — | |
v
Noise _ Channel /storage
” Medium
v
=====3
I I
Demodulator " Channel | Source

(reading unit) I becoder(ECC) I : Decoder | | Destination

Figure 1.1 A typical data transmission or storage system

Computer data should always remain correct in all sorts of processing, i.e. when it
is written into memory or output device, stored, read from memory or input device,

communicated and manipulated. The growing complexity of new computers makes




it very impractical to depend on reliability of components and devices for reliable
operations. Some redundancy is needed to ensure the detection and/or correction of
errors which invariably occur as information is being stored, transferred or
manipulated. In Figure 1.1, blocks in dashed-lines represent the stages where error

correcting codes are used.

An extensive theory of error-control coding has been developed since the 1950's.
The primary emphasis of this theory is the design of reliable communication
systems. The problem of reliable computation differs significantly from the problem
of reliable communication. For example, communication error control schemes
usually assume a perfectly reliable computing and processing at the transmitter and
receiver, and have less severe restraints on computation time for error correction. In
addition, these schemes are subjected to different statistics of error occurrences than
those that occur in computer systems. The principles that have been discovered by
communication coding theorists are so fundamental that they are also basic to the

understanding and design of error control for reliable computation.

This thesis studies error-control codes that are suitable for especial kind of channels,
called Z-Channel (explained in Section 2.2), capable of correcting a single
asymmetric error. It proposes new single asymmetric correcting error codes with
more codewords than the existing codes. In the past few decades, most of the

research took place under the assumption of symmetric errors. Unlike symmetric




errors, the issues of asymmetric errors have not been well studied in literature yet, in
spite of the extensive research done so far. The class of asymmetric error correcting
codes was considered recently in the theory of error control coding. This thesis is an

extension of the research done in this area.

In order to use a code, it should be first constructed. Therefore, the construction
method of the proposed codes is explained in this thesis. The basic idea of the
construction method of the proposed codes is to form the code using the Cartesian
product of two sets of smaller partitioned codes. The method is quite sensitive to the
sizes of the smaller partitions [2]. Indeed, the better partitions used in this method,
the more codewords constructed. Therefore, the issue of obtaining better partitions
is considered in this thesis. Moreover, a useful method introduced to make
partitions of small codes to construct other larger codes, and new useful partitions

are obtained using this method.

1.3 Motivation

The field of error control coding system in coding theory has gained the interest of
researchers in various aspects. Some of those aspects are: data rate in the codeword
versus the redundancy bit which affects the number of codewords in a code, the
capability of correcting errors in the codeword, construction of the code, and how to

encode and decode data.




Various problems exist in the field of information theory of error correcting code.
The problem of maximizing the size of single asymmetric error correcting codes is
open. Most of the existing single asymmetric error correcting codes are of sizes
much lower than the established upper bounds. This motivates us to develop new
single asymmetric error correcting codes with better sizes and improve the existing

lower bounds.

1.4 Objectives

1. Study the Cartesian product construction method, and the relation between
the size of the code and the size of the A-partition and B-partition used in the
construction.

2. Design a heuristic algorithm to form new A-partitions, which improves the
existing ones.

3. Apply the proposed algorithm to generate A-partitions of dimensions 6 and

7, and improve the sizes of the existing codes.

1.5 Contributions
The main consideration of this proposed work is to “propose new single asymmetric

error correcting codes and improve the exiting lower bounds”.

The contributions of this work include:




1. Improving the code size of a single asymmetric error correcting code of
dimensions 14, 15, 16, 17 and 19.
2. Constructing the proposed codes for the above dimensions.

3. Proposing new A-partitions for dimensions 6 and 7.

1.6 Thesis Outlines and Organizations

Thesis outlines are summarized as follows:

1. Define the Asymmetric Error Correcting Codes.

2. Review the existing single asymmetric error correcting codes.

3. Study the construction method of single asymmetric error correcting codes.

4. Propose a new method to improve the A-partitions used in construction
method.

5. Propose new single asymmetric error correcting codes using Cartesian product

method.

This thesis is organized as follows: In Chapter 2, the asymmetric error correcting
code is reviewed. Preliminaries and definitions on single asymmetric error correcting
code are introduced. The Cartesian product method for constructing single
asymmetric error correcting codes is described, and the concept of code partitioning
is discussed. In Chapter 3, a summary of the existing single asymmetric error

correcting codes is given, and previous techniques for forming and constructing




asymmetric error correcting codes are explored. In Chapter 4, new codes are proposed
and the construction is explained. The sizes and the dimensions of the constructed
codes are summarized and compared to the existing codes. Finally, conclusion and

future work are given in Chapter 5.




Chapter 2

Background of ASEC Codes

2.1 An Overview

When digital data is stored on storage device or transmitted over a channel, it is
important to have a mechanism that allows detecting and correcting possible errors.
In general, digital data contains blocks of 0’s and 1’s known as bits. Each block is

encoded by adding a number of extra bits (redundancy bits). When data is retrieved




from a storage device or received from a sender, the original data block should be
reconstructed (decoding process). In general, decoding process scenario has two
stages: error detection and error correction. Error detection checks a possible
corruption in data. Whereas error correction makes a decision to correct the error if

possible and extract the original data block, or declare that the data is corrupted.

The set of all possible messages (codewords) that can be encoded in order to be
corrected later is called an error-correcting code. The field of error correcting codes
has begun since 1940’s by the work of Shannon and Hamming, and since then,

extensive research in this area has been conducted.

There are two types of errors in the media of storage/channel: symmetric errors and

asymmetric errors. The scope of this thesis concentrates on single asymmetric errors.

2.2 The Z-Channel

In many digital communication systems, the probabilities of the crossovers 0 — 1
and 1 — 0 are approximately the same, and the systems are well modeled by the
binary symmetric channel (BSC) error correcting codes. The BSC’s have been

studied extensively.

In some communication systems, the probability of a 1 — 0 crossover is much
larger than the probability of a 0 — 1 crossover. Examples of such systems include:

data storing devices, and optical communication systems. Neglecting the low




probability 0 — 1 crossover, that system is modeled by the Z-channel (Figure 2.1).
Labels on arrows represented the probability of crossover between states. p here
represents the probability of 1 — 0 error. Error correcting codes for the Z-channel

have been studied recently compared to the research done on the BSC codes.

Definition 2.1

The binary asymmetric channel (the Z-channel) is a channel with {0, 1} as

input and output alphabets, where the error 1— 0 occurs with positive

probability p, whereas the 0—1 error never occurs [3].

P

1 ~1
1 —»p

Figure 2.1 The binary asymmetric channel (Z-Channel)

Positive probability p here is assumed to be very low so that it is highly unlikely to
have two errors in the same codeword, i.e. the probability of two errors = 1/ p* can

be neglected.

10



Interchanging the position of “1” and “0” (complementation) we get a complementary
Z-channel. Any complementation of code for the Z-channel gives a code with the
same properties for the complementary channel. However, it turns out that a code for
the Z-channel will be a code with the same error correcting capabilities for the

complementary Z-channel also without complementation.

Definition 2.2
Letx=(x,X, ....X,), y=(0,,V, -..,y,)and x,, y,€{0, 1}, the

number of positions where x has a 1 and y has a 0 is defined by:
N@x,y)=|{i:x, =land y, = 0}] [3].
Definition 2.3

For x = (x, X,, ..., x,), and x, € {0, 1}, w(x) is known as the Hamming

Weight of x, is the count of I’s inx, w(x) = [{i :x, = 1}] [3].

The hamming weight of x can be defined as N (x, y) where y = (¥, V5, .- > V,),

and y, = 0, using Definition 2.2.

2.3 Codes

A code is a rule for converting block of information into another representation, and

the new representation of data is used in a way that is more resistant to errors in

11



storage/transmission medium. That code is called an error-correcting code (or error

control code), and usually it works by adding redundant signals (bits) than needed.

Definition 2.4

A code of dimension n, C,, is a subset of {0, 1}, i.e. C, {0, 1}", and the

n?

code size, is denoted by |C, |, equals to the number of codewords in C, [3].

Definition 2.5
A code C is a t-code (that is ¢t asymmetric error correcting code) if it can
correct up to ¢ errors, that is, there exists a rule (a decoding method) such that
if x € C and v is obtained from x by changing at most ¢ 1’s in x into 0’s,

then the rule recovers x from v. The set of all codewords in the t-code of

dimension 7 is denoted by 4 (n, t) [4].

This thesis deals with single asymmetric error correcting codes, which means 7 = 1.

2.4 Asymmetric Distance and Hamming Distance

Definition 2.6
Let x and y be two codewords of dimension n, the asymmetric distance of x

and y is defined by:

d,(x,y)=max{N (x,y), N(y, x)} [3]

12



Where N (x, y) is given in Definition 2.2.

Definition 2.7

The minimum asymmetric distance of a code C, is denoted by D (C), is

D,(C) = min{d (x,y) :x,y € Candx #y }.

Remark 2.1

A code C can correct ¢ asymmetric errors or fewer if D (C) >t (see

Theorem 2.1),i.e D, (A(n, t)) >¢t.

Remark 2.2
The proposed code has minimum asymmetric distance two so it is capable of

correcting a single asymmetric error.

Definition 2.8
Let x and y be two codewords of dimension n, the Hamming distance of x and

v is defined by:

d,(x,y)=N(x,y)+N(y,x) 3l

Definition 2.9

The minimum Hamming distance of a code C is defined by

D,(C) = min{d,(x,y) :x,y € Cand x # y} [3].

13



Example 2.1
Suppose there is a code C ={v,, v,, v,}, v, =1011000, v, =1100101, and

v, =1001011.
Dimension of C =7, Size of C = 3.
w(v,)=4.

Moreover we have:

N,, v,)=2as follows v,: 10 000
v,: 11]0[0{101

N (,, v,)=3as follows v, : 1|1|00(1(0|1
v,: 1]0{11]0{0|0

d,v,)=max{Ny,v,), Nv,, v)}=3,d,0,, v;)=2, andd (v;, v,)=2

—
[S—

D,(C)=minid, (v, v,), d,0v,, v;), d,(v5, v,)} =2

d,v,v,) =Ny, v,)+Nv,, v,)=5,4d,(v,, v;,)=3, andd,(v,, v,)=4

D,(C)=min{d,(v,, v,), d,(v,, vy), d,(v;, v,)} =3

The relation between error correcting code and the number of asymmetric error that

can be corrected depends on the asymmetric distance of the code itself. Any binary

14



code C of asymmetric distance D, (C) =A can correct A—1 or fewer asymmetric

errors, and hence it is called a (A—1) asymmetric error correcting code.

Theorem 2.1

Proof:

Any binary code C of asymmetric distance A can correct A—1 or fewer
asymmetric errors. It is therefore called a (A—1) asymmetric error correcting

code.

Without loss of generality, we can assume that asymmetric errors are of the

type (1 —=0). For any codeword x € C, let S, denote the set of all vectors
obtained from x by introducing ¢ errors of the type (1 =0), for 0< t <A-1.
Consider two codewords x, y € C: since d, (x,y)=A, without loss of
generality we can assume N (x, ¥)2A. Clearly, y cannot become x by any
number of (1 —0) errors less than or equal to A—1. Also, A—1 or fewer
(1—0) errors cannot take x to y orintoS, . That S, and S are disjoint and

the code can correct up to A—1 asymmetric errors.

By Theorem 2.1, we conclude that any code C with minimum asymmetric distance

greater than or equal to two can correct a single asymmetric error. For this reason, the

goal of this work is to find for a given dimension # the largest possible code size of

dimension # such that D (C,)=2.

15



2.5 Construction Method

The field of single asymmetric error correcting codes (SAECC) has been studied
extensively in the last few decades. It is used to enable systems with Z-channel to
detect and correct one error and make these systems more reliable than the previous
one. One goal of introducing new single asymmetric error correcting codes is to

improve data rate (code size) of the existing code of same dimension.

The construction of the proposed codes uses the Cartesian product of two partitions
A-partition and B-partition, where the size of the constructed code depends on the
size of classes in each partition. In this chapter, the Cartesian product construction
method of single asymmetric error correcting codes is described and the issues

related to the partitions are discussed.

2.5.1 Cartesian Product Construction Method

The construction method which has been used in this work is based on the Cartesian
product of two sets of partitioned codes of smaller dimensions. Although the
Cartesian product of two sets is well-known, and it was used by many researchers as

mentioned in [2], it has a slightly different meaning when the two sets are codes.

16



Definition 2.10

The Cartesian Product of two codes, X and Y, is the code X X Y such that

every pair (x.y) € X XY isa codeword which is the concatenation of the

codeword x € X and the codeword y € Y .

According to Definition 2.10, X X Y isnotequal to ¥ X X in general.

Example 2.2

Suppose X = {00, 11} and ¥ = {001, 011, 111} be two codes. The Cartesian
product of X and Y is the code X X Y ={00001, 00011, 00111, 11001,

11011, 11111}.

Consider the first codeword in X x ¥, which is 00001. Clearly it is the concatenation
of the codeword 00 € X and the codeword 001 € Y . This is true for every

codeword in X x Y.

According to Definition 2.10, if the code X is of dimension p and the code Y is of
dimension ¢ then the code X x Y is of dimension p + ¢g. This means that a code of
larger dimension can be formed by the Cartesian product of two codes of smaller
dimensions. Before going further in explaining of the construction method, consider

the following definition.

17



Definition 2.11

Let X be a set of codewords of dimension n, and let X, X,, ..., X, be m

subsets of X. The set {X,, X,, ..., X} is called a partition of X of

dimension # if the following two conditions hold [2]:

. X,NX, =¢ fori #;,and

2. ;n:lXi =X .

The subsets X, X,, ..., X, are called classes; and the set X is said to be

m

partitioned into m classes.

The construction method of a single asymmetric error correcting code is based on the
Cartesian product of two sets of partitioned codes of smaller dimensions, called 4-

partition and B-partition. These partitions are defined as follows:

Definition 2.12
Let A4 be the set of all the 2” binary vectors of dimension p and let {4,, 4,,

..., 4, } be a partition of 4, such that D, (4,)=2for 1 <i <k. Then, the

partition {4,, 4, , ..., A, } is called an A-partition of dimension p [2].

18



Definition 2.13

Let B be the set of the 2/ even weight binary vectors of dimension ¢ and let
{B,, B,, ..., Bg} be a partition of B such that D (B;)=2forl <i <s.
Then, the partition {B,, B,, ..., B} is called a B-partition of dimension g
[2].
To construct a single asymmetric error correcting code of dimension n, two sets of
partitioned codes, namely: A-partition = {4,, A,, ..., A, } and B-partition = {B,,
B,, ..., By} defined as above are involved. The dimension; say p and ¢ of these

two partitions satisfy p + g = n. The constructed code, denoted by C, , of dimension

nod

n is the union of the Cartesian products of all pairs (4, X B,) in these two partitioned

codes, i.e.

C =4xB, U4,xB, U4,xB, U ... UA4,xB, (2.1)
Where o =min{k, s}
The size of the code is computed by:

IC. | = |4,| * |B,| + |4,] * |B,| + ...+ |4,] * |B,]| (2.2)

19



Cn = { Al,lBl,l’ Al,lBl,Z’ A1,1B1,3’ AI,IBI,\Bl\
Al,zBl,l’ Al,zBl,29 Al,zBl,39 Al,z LB,
Al,|A1\Bl,1’ Al,|A1\Bl,2’ Al,|A1\Bl,3’ Al,\A1|B1,\BI\
Az,le,p A2,IB2,2’ A2,132,39 A2,1Bz,\32\
AZ,ZB 2,1° AZ,ZB 2,29 A2,232,3’ A2,2B2,\Bz\
Az,\Az\Bz,l ’ A2,\A2|Bz,2 > AZ,\A2|BZ,3 > et Az,\A2|BZ,|BZ\
Aa,lBa,l’ Aa,lB a,2° Aa,lBa,3’ tee s Aa,lB a,|B,|
Aa,zB a,l? Aa,zBa,Z’ Aa,ZBa,3’ tte s Aa,2Ba,\B |

Aa,|Aa\Ba,l’ Aa,\Aa\Ba,Z’ Aa,|Aa|Ba,3’ et Aa,\A,I\B a,|Bg,|}

Theorem 2.2

The code C, of dimension n = p + g which has been obtained by using

Cartesian product of two partitions: A-partition and B-partition is a single

asymmetric error correcting code [2], see Equation (2.1).

20



Proof:

Let x,y € C, and x #y. Let x=xx and y =y'y where x €4,,
x €B,,ye€d, , andy €B,.
Case 1,i=:

Either x #y = d,(x,y)22= d (x,y)>2

orx' 2y =>d(x,y)22=d,(x,y)>2.
Case 2,i#;J:

Here we have d_(x, y )>1since x # y'and d,(x ', y )=2since x # y'

and x and y " are both even, therefore d, (x, y)>3=d (x, y)>2.

Form case 1 and case 2 we can say that the minimum asymmetric distance of code C,

satisfies D, (C,)=2.

Example 2.3

To construct a single asymmetric error correcting codeC,, let p =2 and ¢ =4 Then
A4 ={00, 01, 10, 11} can be partitioned into4, ={00, 11}, 4, ={01} andA4, = {10},
and B ={0000, 0001, 0010, 0011, ..., 1110, 1111}, the even vectors in B equal 8

and it can be partitioned into B, = {0000, 0011, 1100, 1111}, B, ={0101, 1010} and
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B,=1{0110, 1001}. We obtain a code C, of dimension 2 + 4 = 6, where
C,=A4A,XB, U A,xB, U A,xB,,having 2 *4) + (1 *2)+(1=*2) =12

codewords as shown in (Table 2.1).

Table 2.1 A single asymmetric error correcting code for dimension = 6.

Classes A-partition  B-partition
00 0000
00 0011
00 1100
00 1111
! 11 0000
11 0011
11 1100
11 1111
01 0101
01 1010
10 0110
’ 10 1001

A/ XB

A, XB,

A XB

The size of asymmetric error correcting code C with dimension »n, which is
constructed using Cartesian product method, is affected directly by the choice of p
and g for A-partition and B-partition respectively, and by the number and the sizes of
the classes in these partitions. Therefore, in order to maximize the size of the code

C , of dimensionn , appropriate values of p and ¢, satisfying n = p + ¢ should
be selected. Without loss of generality, any partition 4 ={4,, 4,, ... , A, }1s
assumed to satisfy |4, | = |4,,,| for 1<i <k . Once p and q are chosen, "good" 4-

and B-partitions should be obtained. Suppose that there are two A-partitions for the
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same dimension, {4,, 4,, ... , 4,} and {4,, 4,, ... , 4, }, with k <k We can
say that {4,, 4,, ..., A, }is better than {4, 4,, ..., A_}, in general, if [4,]| >
| A; | for all i such that 1<i <m , for some integer m < k. The size of the constructed

code depends on the sizes of the largest m classes used in the Cartesian product

method. Therefore, in this example, the partition {4,, 4,, ... , 4, } yields more

codewords than {Al' , A;, e, A ];.} in the Cartesian product method.

In general, the better partition for any dimension » should have as few numbers of
classes as possible, and the sizes of the classes have to be maximized. After the
selection of the 4- and B-partitions, the code is formed by using the Cartesian product
of the largest class in A-partition with the largest class in B-partition, then the second

largest with the second largest and so on.

2.5.2 B-Partitions
The B-partitions shown in (Table 2.2) are obtained from the partitioning of the
constant weight vectors into classes with Hamming distance 4 (see [2, 5]). For

example, the entries for ¢ = 4 which are 4, 2, and 2 are obtained as follows: First,
the vectors of weight 0 are partitioned into one class. Namely {0000} ; the vectors of
weight 2 are partitioned into three classes: {0011, 1100}, {1001, 0110}, and

{1010, 0101} ; and the vectors of weight 4 have one class which is {1111} . The eight
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even weight codewords of dimension 4 can then be partitioned into three classes of

sizes 4, 2, and 2 respectively as follows: {0000, 0011, 1100, 1111}, {1001, 0110}, and
{1010, 0101}, where each class is of asymmetric distance two. The constant weight

partitions of different weights are listed in [5] for binary vectors of dimensions up to
14. Partitions of larger even weight vectors can be obtained using the procedure given
by Brouwer in [5], and partitions of different even weights can be constructed (as

given before) to obtain classes of B-partitions of all even weight vectors of the

desired dimension

Table 2.2 B-partitions, even vector classes with hamming distance 4

B. B By By Bs Bs By By By By Bn

q

1 1

2 2

3 2 1 1

4 4 2 2

5 4 3 3 3 3

6 8 6 6 6 6

7 12 11 10 10 9 8

8 24 22 20 20 18 16 8

9 36 35 35 35 33 32 32 13 5

10 72 70 70 70 62 60 54 40 14

11 125 124 118 117 110 101 100 94 79 46 10
12 248 246 234 234 224 198 192 176 136 94 66

In [6], it 1s mentioned that the number of classes that can be used in the construction
of a partition of even vectors of dimension ¢ is equal to g—1 classes when ¢ =2',

or ¢ =3%2" for i >1 and even when ¢ =5%2" for i >1. For example, as given in
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(Table 2.2), when g =4, it gives a partition with three classes of the following sizes:

4,2 and 2. The existing B-partitions are very tight, and it seems to be hard to get any

significant improvement over there.

2.5.3 A-Partitions

The A-partition of a code of a given dimension can be obtained using several methods
like: Abelian group partitioning [7], Cartesian product of using smaller partitions with
special constrains [2], and coloring method [8]. In general, partitions can contain one
or more classes that have the same sizes for that dimensions. However, there is no

proof for whether a given partition is optimal or not.

The Abelian group partitioning method, given by Varshamov in 1973 [9], was

improved and used in 1979 by Constantin and Rao [7]. In this method, a code A of

some dimension p is partitioned into p +1 disjoint sets, 4,, 4,, ..., 4,,, such that

D (4,)=2 for 1<i <p+1.

Given a set A of binary vectors of dimension p, the group partition (I'p) of p+1

classes is constructed as follows:

e Algorithm: Group Partitioning
o Input: set of binary vectors 4

e Output: the A-partition I'p
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1. Initialize I'p =4{4,, 4,, ..., 4,,,} where 4, = ¢ forall i.

2. For every codeword ¢ =[c, ¢, ¢; ... ¢,]€ 4 , where ¢, € {0, 1}, do
p
= Compute the sum k = (Zj. ¢, )mod(p +1)
j=l

=  Add c to the class 4

k+1

3. Return I,

End.

It is shown in [7] that this algorithm constructs p + 1 classes of asymmetric distance
greater than or equal to 2. Of course, the largest class is at least of size 27 /(p +1).

Table 2.3 shows A-partitions that are obtained using Abelian group partitioning

method.

The Cartesian product method introduced in [2] has been used to construct A-
partitions from smaller sets of partitions, it is quite sensitive to the sizes of the
smaller partitions. The better partitions used in this method, the more codewords

constructed.
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Table 2.3 A-partitions using Abelian group partitioning (FP )

16 16 16 16 16 16 16 16

30 28 28 29 28 28 29 28 28

52 51 51 51 51 52 51 51 51 51

93 93 93 93 93 93 93

P A A As Ay As As A; As Ay Aw  An  An
1 1 1

2 2 1 1

3 2 2 2 2

4 4 3 3 3 3

5 6 5 5 6 5

6 10 9 9 9 9 9 9

7

8

9

—
(=]
O
B~
Ne)
W
Ne)
(OS]
Ne)
W

Recall the construction method given in Section 2.5.1 for constructing single
asymmetric error correcting codes. A procedure similar to this method can be used to

construct 4A-partitions. The idea behind this constructed method is to use deferent
combination (p+1 combinations) of Cartesian product of classes for the same A-

partition and B-partition (even vector B-partition and odd vector B-partition) which
gives a different code that construct a new A-partition of dimension p. It gives better

partition than the group partition for some values of p, like 6, 10 and 11.

In order to obtain a partition of all binary vectors of dimension p, two numbers s and ¢

are chosen such that

4
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and

t=p-s

This implies:

t :(”T“} (2.3)

Then, all classes in A-partition of vectors of dimension s, and all classes in B-
partitions of the odd as well as of the even weight vectors of dimension ¢ are
employed in different distinct combinations to produce the desired partitions of
dimension p. It is always possible to get a partition with s + 1 classes of the vectors of
dimension s, and ¢ classes of all odd (or even) weight vectors of dimension ¢. This is
true because the first one is the same as the A-partitions, and the second one is similar

to the B-partitions.

According to Equation (2.3), it follows that

. (p+1)/2 if pis odd
- (p+2)/2 if pis even

This implies:

o — (p+1) if pis odd
B (p+2) if pis even
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Therefore, it is always possible to obtain 2¢ classes of binary vectors of dimension p.
In many cases this procedure produces A-partitions which are at least as good as (and

in many cases better than) those obtained using the group method.

Example 2.4

In this example, the A-partition for p =6 of seven classes of the sizes: 12, 10,
10, 8, 8, 8 and 8 is illustrated. Here, s =L(6—1)/2J =2 and ¢ :((6+l)/2_| =4.

Recall that one can partition all binary vectors of dimension 2,

S ={00, 01, 10, 11}, into S, = {00, 11}, S, = {01} and S, = {10}.

The eight even weight binary vectors of dimension 4, 7 = {0000, 0011, 0101,

0110, 1001, 1010, 1100, 1111}, can be partitioned into:
T, ={0000, 0011, 1100, 1111}, T, ={0101, 1010} and T, ={0110, 1001} .

The eight odd weight vectors, 7 ={0001, 0010, 0100, 0111, 1000, 1011,

1101, 1110}, can be partitioned into four classes:
T, ={0001, 1110}, T, = {0010, 1101}, T; = {0100, 1011} and 7, = {1000, 0111}

Now the seven classes of the A-partition of all the 2° binary vectors can be

obtained as illustrated in (Figure 2.2). Notice that 4, U 4,U 4,U ... U 4,
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contain all the 64 binary vectors of dimension 6, 4, () A4 ;=@ wheni #j, and

D,(A4,)22for1<i <7.

A, =8, xT, U S,xT, U S,xT, of size 12

A,=8,xT, U S,xT, U S,xT, of size 10
A, =8 ,xT, U S,xT, U S,xT, of size 10
A,=8,xT, U S,xT, U S,XT; of size 8
A, =8,xT, U §,xT, U S,xT, of size 8
A,=8,xT, U S,xT, U S,XT, of size 8
A,=8,xT, U S,xT, U S,XT, of size 8

Figure 2.2 Constructing A-partition for p = 6 with rotation

The sizes of these seven classes are: 12, 10, 10, 8, 8, 8, and 8. As (Figure 2.2) shows.

Table 2.4 shows the size of improved partitions by using Cartesian product method.

Table 2.4 Improved A-partition using Cartesian product method [2]

p Ar A As Aq As As A; As Ao A An A
6 12 10 10 8 8 8 8

10 104 102 102 102 102 90 88 &4 84 &4 82

11 180 180 176 172 172 168 168 168 168 168 164 164

This procedure may be deemed as a generalized version of the code construction

method proposed in Section 2.5.1. Clearly, each A4, of dimension p in the above

example is obtained in the same way C,6is obtained only using different
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combinations of S, T and T partitions. These combinations have a special
characteristics; no class in S is in the Cartesian product in all combinations more than
one time with the same class in T and T partitions. One way to get these

combinations is by a simple rotation strategy of the classes to get A-partition. In some

cases, other combination strategies would give better A-partition than simple rotation
method, especially when the number of the classes in each of S, T and 7 is even.
For example if there are four classes in each of S, T and7 ', one of the

combinations that is given in (Figure 2.3) could give better partition than those

obtained by simple rotation technique

4, =8 x17, U §S,xT, U S,xT, U §,xT,

A,=8,xT, U S,xr, U S,xT, U §,xT,
4,=8,x1, U S,xT7, U S,xT, U §,xT,
A,=8xT, U S,xT, U S,xT, U §,xT,
A,=8,xT, U s,xT, U §,xT, U §,xT,
Ag=S,xT, U S,xT, U S,xT, U S,xT,
A,=8,xT, U S,xTr, U S, xT, U S,xT,
A, =8, xT, U S,xT, U S,xT, U §,xT,

Figure 2.3 Constructing an A-partition without rotation
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Another technique, which is used to improving A-partitions, is Graph coloring

technique that given in [10]. Briefly, to construct an A-partition of dimension p, a
graph G = (V, E) of 2”nodes is constructed, where V' is the set of all 2 binary

vectorsand £ ={(x, y) : x,y eV andd, (x,y)=1}.

The nodes of the graph are colored using m colors, such that Vx,ye V, if
(x, y)e E then x and y have different colors. The basic idea behind this method that
the set of all nodes having color k, say Ay, satisfies D (4,)=2. This means that

graph coloring can be used to find A-partition. The following example shows how

graph-coloring can be used to partition a set of binary vectors.

Example 2.5

In this example, graph-coloring is used to partition the set V ={0011,
0110, 1100, 0001, 0000, 1001}, First, the graph G = (V, E) is constructed where
nodes are all elements of ¥, has an edge between x andy € V | if and only if
d,(x,y)=1. The constructed graph, shown in Figure 2.4, has the following set of

edges:
E ={(0011, 0110), (0011, 0001), (0011, 1001), (1100, 0110), (1100, 1001), (0000,

0001), (0001, 1001)} .
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This graph can be colored with three different colors using first-fit algorithm such
that there is no two adjacent nodes having the same color, Figure 2.4 shows coloring

assignment and the partitions of set } into three disjoint subsets as follows:

¥, ={0011, 1100, 0000}, ¥, ={1001} and ¥, = {0110, 1000}

Notice that D, ( V,)=2, fori =1, 2, 3.

>

Qe

Color3

—7

0011 0001
Colorl ' Color2
‘ 0110
1100 v  Color2
Colorl

0000
Colorl
Figure 2.4 Graph coloring method for Example 2.5

In order to obtain the A-partitions that can be used in the Cartesian product method,

all the 27 codewords should be included in the set V, where p is the dimension of the
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A-partitions. Then, V is partitioned into some subsets of minimum asymmetric
distances D, =2 using graph-coloring method. Coloring a graph of 2” nodes is not
an easy task since it is an NP-complete problem. Therefore, a modified algorithm

called Coloring In-Limited-Backtracking Algorithm (CILBA) [11] was designed to

solve the graph coloring method. CILBA indeed was used to construct a new A-
partition for p =TT with cardinalities 18, 18, 18, 18, 17, 16, 13, and 10. It gives a

much better partition for p = 7 than Abelian group partition.
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Chapter 3

Literature Review

The theory and construction of asymmetric error correcting codes have been studied
since the late 1950's. In 1959, Kim and Freiman proposed a construction method of
asymmetric error correcting codes using “prefix/suffix” constructions of code [12].

The construction of a code of a given dimension gives a lower bound for the size of
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all codes of the given dimension. In 1964, Varshamov gave an explicit upper bound

for asymmetric error correcting codes [13].

In 1971, Goldbaum obtained tighter upper bounds using integer programming
techniques. Two years later. Varshamov used algebraic group theory to construct
codes for correcting asymmetric errors [14]. In 1979, Constantin and Rao improved

the same method and used it to construct codes for asymmetric channel [7]

In 1981. Klove [4] and Delsarte and Piret [15] improved the upper bounds that was
obtained by Goldbaum in 1971 by adding more constraints to the integer
programming technique. Delsarte and Piret also have introduced the
"expurgating/puncturing” construction method for asymmetric error correcting
codes. They used the idea of constructing a code of dimension n and asymmetric
distance d by modifying an initial code with good (Hamming) distance properties
by successive judicious deletions of coordinates and vectors [15]. A year later, in
1982, Shiozaki presented a construction method of a t-fold asymmetric error-
correcting code of dimension n - 1 by expurgating and puncturing any t-fold

symmetric error-correcting code of dimension 7.

In 1987, Weber De Vroedt and Boekee proposed new upper bounds on the size of
asymmetric error correcting codes by further enhancing the constraints for the
integer programming technique [15]. A year later, they improved the upper bounds

and proposed constructions for asymmetric error correcting codes using a general
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"expurgating/puncturing" construction method [16]. This method includes as
special cases the construction method of Shiozaki and some of the constructions of
Delsarte and Piret, they proposed a construction method for a code C of dimension
(n - m), where 1 < m < n, and asymmetric distance d > ¢ + 1 which consists of

expurgating and puncturing a code C’ of dimension » and Hamming distance 4 > 2¢ + 1.

In 1992, Zhang and Xia derived new lower bounds for asymmetric single-error
correcting codes. The codes were obtained by puncturing constant weight codes and
by using a random coding argument. Their method improves code size from 12 to
19 at that time. Although their method is non-constructive, they used probability
and counting techniques to show that the asymmetric single-error-correcting codes

of the following sizes exist [17].

In 1997, Al-Bassam, Venkatesan and Al-Muhammadi. proposed a new single
asymmetric error-correcting codes. These codes are better than existing codes at

that time when the code dimension 7 is greater than 10, except for n = 12 and n =

15. In many cases the constructed codes contain at least (Zn / ”—’ codewords. Their
method is based on the Cartesian product of two smaller partitioned codes as
explained in Chapter 2. They used the Cartesian product method with combination

to construct A-partitions of larger sizes [2].
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Table 3.1 summarizes the upper and lower bounds and the sizes of the codes that

obtain by this method [2]. All upper bounds in Table 3.1 were obtained using the

integer programming techniques as described in [15].

Table 3.1 Existing single asymmetric error correcting codes

(2 /n | 2 Existing Code |2 /n=1]12] Upper

" Lower Index Upper Index Bound [16]

2 2 2 4 2

3 2 2 4 2

4 4 4 5 4

5 6 6 8 6

6 10 12° 12 12

7 18 18° 21 18

8 32 36° 36 36

9 56 62° 64 62
10 102 108°¢ 113 117
11 186 180° 204 210
12 341 340° 372 410
13 630 652° 682 786
14 1170 1204° 1260 1500
15 2184 2216° 2340 2828
16 4096 4232° 4369 5430
17 7710 8192 8192 10379
18 14563 14624° 15420 19898
19 27594 28548" 29127 38008
20 52428 53856° 55188 73174
21 99864 101576° 104857 140798
22 190650 195700° 199728 271953

(a) code by Varshamov
(b) code by Kim and Freiman
(¢) code by Delsarte and Piret

(d) code by Zhang and Xia
(e) code by Al-Bassam, Venkatesan and Al-Muhammadi[2]

(f) code by Al-Bassam and Al-Muhammadi [10]
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It is important to mention that the lower bounds (or the sizes of the existing codes) in
Table 3.1 are for constructible codes, i.e. codes that can actually be constructed.

Moreover in many cases the single asymmetric error-correcting codes satisfy:
|2 /n] < |C| < 2" /(n-D)].

In 2000, S. Al-Bassam and S. Al-Muhammadi proposed a new single error
correcting code of dimension »n = 17 [10]. This code is constructed using a product
of two codes of smaller dimensions. The proposed code is of size 8192. They
applied coloring algorithm to get better partition for n = 7, and used this partition to

construct the code by the Cartesian product method.

In 2003, F. Fu and C. Xing presented a general method in [18] to construct .-
asymmetric error correcting codes, for k£ = 1, 2, 3 and 4, which extends a previous
work for Xing. It depends on finite field of prime power, and shows that some
previously known lower bounds for binary asymmetric error-correcting codes can be
obtained from their general construction. However, Fu and C. Xing work did not

improve the lower bound of single asymmetric error correcting codes. Their lower
bound for code of minimum asymmetric distance two is A(n, A)=2"/(n +1). In
2004, Liang, Chang and Chen developed in [18] a construction algorithm that

improves the complexity of the construction method presented in [19] without

improving the lower bounds. They developed a construction algorithm which
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requires O(2") in the worst case, while Fu and Xing method requires O (n2"). In

most cases, the number of operations is much lower than that.

In 2008, Neri, Skantzos and Bolle derived critical noise levels for Gallager codes on
asymmetric channels as a function of the input bias and the temperature [20]. They
studied the space of codewords and the entropy in the various decoding regimes by
using a statistical mechanics approach. Some other works were done to problem of
evaluating the undetected error probability of Varshamov—Tenengol’ts codes in [21].
Computation of the undetected error probability for error detecting codes over the Z-
channel for Varshamov—Tenengol’ts (VT) codes was studied. An exact formula for
the probability of undetected errors was given. It was explicitly computed for small
code dimensions. A comparison to the Hamming codes was given. It was further
shown that heuristic arguments give a very good approximation that can easily be
computed even for large dimensions. They used Monte Carlo methods to estimate
performance for long code dimensions. They verified that the probability of
undetected errors is almost constant in a wide region of values of the channel error

probability.

Since 2005, a great deal of research has been dedicated to find lower bounds for
systematic single asymmetric error correcting codes [22, 23]. A comparison of the
number of codewords in the systematic single asymmetric error-correcting codes

with that of the existing nonsystematic single asymmetric error-correcting codes
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was conducted. In general, systematic codes have a worst coding efficiency than
nonsystematic. However systematic codes often are less complex in encoding and

decoding.

The error types in several communication systems and some VLSI media are of
asymmetric error in nature. Some implementations of the selective-repeat ARQ
(Automatic-Repeat Request) protocol suited for the communication over the m (>2)-
ary asymmetric channel which makes use of all asymmetric error detecting codes that
are given in [24]. For those codes, the number of retransmissions needed to receive all
codewords correctly is derived, and as a special case, the number of retransmissions

needed to receive codewords correctly is derived for the Z-channel.

41



Chapter 4

New Single Asymmetric Error

Correcting Codes and A-Partitions

Code construction is an important issue in coding theory for the code to be applied
in proper applications. Assume a code of a given size does exist, it may not be used
unless the construction of that code is known. So, the code construction is more

useful than just showing that a code of a given size does exist. Preferably, the
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construction should be easily implementable for information encoding and

decoding.

In this chapter, new single asymmetric error correcting codes are proposed. Also new
A-partitions are introduced. Table 4.1 lists the sizes of the proposed codes, the
existing codes and the upper bound for a given dimension. The upper bound itself
does not mean that there is a code of that size, but it is proven that there is no code

with a size more than the upper bound for that dimension.

In Section 4.1, a new algorithm is used to improve A-partitions that are used later in
the Cartesian product construction method. Then, in Section 4.2, new single

asymmetric error correcting codes are introduced.

4.1 Improving A-Partitions

In this section, heuristic techniques are used to generate 4-Partition of dimension p.
This method mainly depends on making combinations of codewords with a minimum
asymmetric distance two, which can be used in constructing A-partition to get

partitions which are better than the existing ones.
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Table 4.1 New single Asymmetric error correcting Codes

n Existing Code Prgggseed Boﬂgge[li 6]
2 2 2 2

3 2 2 2

4 4 4 4

5 6 6 6

6 12° 12 12

7 18¢ 18 18

8 36° 36 36

9 62° 62 62
10 108¢ 108 117
11 180° 180 210
12 340¢ 340 410
13 652° 652 786
14 1204¢ 1228° 1500
15 2216° 2288" 2828
16 4232° 4272" 5430
17 8192 8296 10379
18 14624¢ 14624 19898
19 28548° 28688 " 38008
20 53856 53856 73174
21 101576° 101576 140798
22 195700° 195700 271953

(a) code by Varshamov
(b) code by Kim and Freiman
(c) code by Delsarte and Piret

(d) code by Zhang and Xia
(e) code by Al-Bassam, Venkatesan and Al-Muhammadi [2]

(f) code by Al-Bassam and Al-Muhammadi [10]
(*) proposed code improves the existing code
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Using the combination rules is a simple way to construct any class (subset) 4 with a

minimum asymmetric distance two, of dimension p of any size & < upper bound of
that dimension p (given in Table 4.1). Let V' ={x, x,, x,, ..., x,}, be a set of all
27 binary vectors of dimension p, where n = 2”. This method constructs a subset
(combination) of binary vectors 4 ={y,, v,, ¥;, ..., V,}, such that every
vy, € V, and the size of 4 is k. Then, every element (codeword) in the class is tested
with all other elements in 4 to satisfy d,(x,, x,)>2, 1<i <k and i <j <k. One

way to improve this method is to use techniques that cancel combinations as much as

possible in every stage of constructing the A-partition from the set V of all 27 binary

vectors.

Briefly, the proposed algorithm can be divided into two steps: First, it constructs a
partition (subset) of vectors with dimension n, this partition has classes {v,, v,,
Vi, ..., v,} of vectors such that any two vectors, x and y, in one class have a
asymmetric distance equals to one; i.e. Vx,y € v,, d (x,y)=1, forl1 <i<e.
Second, it uses heuristic techniques based on the combination rules to construct a new
A-partition of classes {4,, 4,, ..., A,} such that D (4,)22, for 1 <i <e. This

algorithm leads to create better A-partitions than the existing ones. The new A-
partitions have been used to construct a new single asymmetric error correcting

codes.

45



The heuristic in the second step needs some expected values for the cardinalities of
the classes for the 4-partition, which are provided as inputs to the second step. Those
expected values are taken from the existing A-partition or better. The resultant A-

partition {4,, 4,, ..., Af} will eventually have classes of cardinalities S,, S,,

i=

;
S3, ..., 8, ,suchthat ¥ §, =27, which includes all the binary vectors of dimension p.
=1

The proposed algorithm creates a combination of subsets provided by the first step.

The i combination has a number of subsets equals to S, where 1<i <f _ Then the
algorithm constructs a combination of binary vectors such that one vector from every
subset is included in the combination of the subsets, i.e. A4, ={y,, ¥,, V3, «rer ¥, }.
Then, the algorithm tests if A4, satisfies D, (4,)>2. If this is true, all codewords in
A; will be cleared from their initial classes v;, and then the algorithm repeats these

steps to process the next class 4;+; (with possible backtracking if needed), and so on,
until a new A-partition is constructed. The pseudocode of the proposed algorithm is

as follows.
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Algorithm:

INPUT:

p =Dimension which is equal to the number of bit in the codewords

V ={x,, x,, X5, ..., x,}, n =27, All binary vector in dimension p

Cardindlity =1S,, S,, ..., S;}

OUTPUT:

V={4,,4,, ..., 4, },suchthat §, = |4, |

Alz{y17y2’ tee ’ysl}9A2:{yl’y2’ i 7y52}9 e

Vx € V ,initialize:

w [x ] =number of 1's in the binary vector x ;

Subset [x |=null ;

A =Y

sV

S

Sortall x e V suchthatVx,,x,, e V ,w(x,)< wkx,)or(w(x,) =w(x,,)

and val (x,) < val (x,,,));

Partition all x € V7 using first fit to a subset v, such that:
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V=p,v,, vy, ...,V }

V| = |v,| + [vy| + [vy| + ... + |v, |

=LY, sy d, vy ) =L 1si< v |and i <j< v |
vo={yu Y sy d. vy )= 1Si < v, fand i <j< v,

V, =V, YV, ,yml}, d,(y,,y)=L1<i< |v, |and i<j< |v, |

While there is a combination of a subsets {v], Vys eees vw}and combination of

codewords 4, =1{b, b,, ..., b} suchthat b, € v,do  //Loop 1
If (D, (4,)>2) then J/TF 1
Update subsets v , v,, ..., vg :suchthatv, =v, —=b,, 1<i < [§ ]|

While there is a combination of a subsets {v o Vas e v‘szl} and combination

of codewords 4, ={b,, b,, ..., by} suchthat b, € v,do //Loop 2
If (D,(4,)=2) then /NF 2
Update subsets v , v,, ..., v suchthatv, =v, = b, 1<i < |S, |

(do the same steps as in Loop2 for other partitions)

Else // if there no partition satisfies conditions //
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Update subsets v, v,, ... , v : such that

v.=v, Ub, 1<i < |S,|(Back tracking)

1 1

End IF /NF 2
End while //Loop2
End IF /NTF 1
End while //Loopl
End Algorithm

4.2 The Proposed Codes

The new single asymmetric error correcting codes are obtained as a result of applying
the Cartesian product method discussed in Section 2.5.1. The sizes of these codes are
computed by Equation (2.2). Table 4.3 and Table 4.4 represent A-partitions for p = 6
and 7 respectively. These partitions have been constructed using method discussed in

Section 4.1. The proposed partitions are better than the ones found in the literature.
The cardinalities of new A-partitions are listed in (Table 4.2) for p =6 and 7.

Table 4.2 New size of A-partitions for p=6,7
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Table 4.3 A-partition for p=6

Ay A As Ay
1 000000 000001 010000 100000
2 100010 101000 001010 010010
3 010100 000110 100001 000101
4 001001 011100 111000 100011
5 110001 110010 001101 110100
6 101100 100101 010011 011001
7 011010 001011 100110 001110
8 000111 111001 011110 111010
9 101011 010111 110101 101101
10 011101 111110 101111 011111
11 110110
12 111111

As As A7
1 000010 000100 001000
2 001100 000011 010001
3 110000 011000 100100
4 010101 010110 001111
5 101001 101010 110011
6 011011 100111 111101
7 101110 111100
8 110111 111011
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Table 4.4 A-partition for p=7

Ay Ay Aj As
1 0000001 0000010 0000100 0010000
2 0100010 0011000 0001001 0001010
3 0001100 1000100 0110000 0100100
4 1010000 0100001 1000010 1000001
5 0110100 1101000 1010100 1110000
6 1000101 0100110 0000111 0011001
7 1001010 0010101 0011010 0010110
8 0010011 0001011 0101100 1001100
9 0101001 1010010 1100001 0100011
10 0100111 1000111 1100110 1101010
11 1011001 0111010 0011101 0111100
12 1101100 0101101 1111000 0001111
13 1110010 1110001 1001011 1100101
14 0011110 1011100 0110011 1010011
15 1110101 1101011 1010111 1111001
16 1001111 1110110 0111110 0110111
17 0111011 0011111 1101101 1011110
18 1111110 1111101 1111011 1101111
As As A7 Ag

1 0100000 1000000 0000000 0001000
2 0010100 0000110 0000101 1001110
3 0000011 0010001 0010010 0111001
4 1001000 0101000 1100000 1110111
5 1100010 1100100 0011100

6 1010001 1000011 0101010

7 0111000 1011000 0110001

8 0001110 0110010 1000110

9 0100101 0001101 1001001

10 1110100 0101110 0110110

11 0010111 0110101 1010101

12 0101011 0011011 1100011

13 1001101 1101001 1111100

14 1011010 1010110 1011011

15 1101110 1100111 0101111

16 0111101 1111010 1111111

17 1110011 1011101

18 1011111 0111111




These new A-partitions yield new single asymmetric error correcting codes with
better code seizes than the existing ones. Table 4.1 shows that the codes of
dimensions 14, 15, 16, 17 and 19 are improved. These improvements are mainly due
to the use of the new A-partitions for p = 6, 7 (Table 4.3, Table 4.4). The Code of
dimension 15 is constructed using A-partition of p = 7 and B-partition of g = 8
instead of using p = 6 and ¢ = 9. The code of dimension 16 is constructed using A-

partition of p =7 and B-partition of ¢ =9 instead of using p = 6 and ¢ = 10.

Table 4.5 Proposed codes with the dimensions of A- and B-partitions

n Existing Code p q Prgggzed Boﬂﬁge[li 6]
14 1204 6 8 1228 1500

15 2216 7 8 2288 2828

16 4232 7 9 4272 5430

17 8192 7 10 8296 10379
19 28548 7 12 28688 38008

Table 4.5 shows new sizes of improved codes and the values of p and ¢, which are
chosen for A-partitions and B-partitions respectively, to be used in the Cartesian
product method to construct these codes of dimension p + g. The cardinalities of A-

partitions are listed in Table 4.2, while the B-partitions are listed in Table 2.2.
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Chapter 3

Conclusion and Future Work

5.1 Conclusion

In this thesis, new codes of minimum asymmetric distance two, capable of correcting
a single asymmetric error, are proposed. The issue of asymmetric errors is relatively
new comparing with the symmetric errors. However, many papers have been

published in the area of asymmetric errors since the late 1950's due to their increasing
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number of applications. Examples include: transmissions in optical fibers, LSI single

transistor cell memories, and metal-nitride-oxide-silicon (MNOS) memories.

The construction method of the proposed codes is also presented. This method is
based on the Cartesian product of two sets of partitioned codes, which are called 4-
partition and B-partition, of smaller dimensions. The method is quite sensitive to the
sizes of the smaller partitions. The better partitions are used in this method; the more
codewords are constructed. The issue of improving A-partition is discussed and new
A-partitions are obtained for dimensions 6 and 7. Using the new A4-partitions leads to
proposing the new single asymmetric error correcting codes of sizes larger than the

existing ones. It is worth noting that the code of dimension 17 obtained here has 8296

codewords, which exceeds the upper index (2" /n —1) given in [2].

5.2 Future Work

There are several promising research directions that can be pursued based on the
results of this thesis. The followings summarize some interesting directions for future

work:

1. Propose a construction method to construct codes capable of correcting &
asymmetric errors, for k > 1.

2. Designing algorithms for efficient encoding/decoding of the proposed codes.
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3. Using the new partitioning algorithm to find better A-partition for some other
values of p. The A-partition for p = § seems to be a promising start.

4. Construct systematic asymmetric error correcting codes. For n = 17, the
proposed code size is more than 2'. It seems promising, therefore, to

construct a systematic code of 23 codewords [24].
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