

i

ii

DEDICATION

This thesis is dedicated to my parents, siblings and my wife for their unconditional love,

and trust. They have always supported me when I have needed it most. I could never have

been able to pursue higher education without their encouragement and support.

Thank you very much.

iii

ACKNOWLEDGEMENT

All praise is to Allah, the Almighty alone. May the Peace and Blessings of Allah be upon

the Messenger of Allah (Salla Allahu alaihi wasallam), his family, and his companions

(Radhi Allah Anhum).

I am grateful to the King Fahd University of Petroleum & Minerals for providing a great

environment for research and academics. This thesis would not have been possible

without the guidance and the help of several individuals who in one way or another

contributed and extended their valuable assistance in the preparation and completion of

this study. I first wish to extend my gratitude to my thesis adviser Dr Sajjad Mahmood

for his continuous support, patience, and much needed encouragement. His extensive

knowledge and experience was what shaped this research. I am also thankful to my thesis

committee Dr. M. S. Al- Mulhem and Dr. M.R. Alshayeb for their time and useful

comments.

I am also very thankful to all my friends for their help, support and valuable input to my

studies. There are several other people who have helped me during my thesis in several

iv

different ways. I am grateful to them all. Furthermore, I acknowledge all industrial

practitioners who participated in this work for their support, contribution and cooperation

during the industrial survey.

I would also like to thank my family. A specific appreciation goes to my parents for

supporting and believing in me during all these years. I would also like to especially

thank my wife for her continuous support in more than one way.

v

TABLE OF CONTENTS

DEDICATION .. ii

ACKNOWLEDGEMENT ... iii

TABLE OF CONTENTS .. v

LIST OF FIGURES .. x

LIST OF TABLES ... xi

ABBREVIATIONS .. xii

THESIS ABSTRACT .. xiii

CHAPTER 1 INTRODUCTION .. 1

1.1 Overview ... 1

1.2 Problem Outline .. 4

1.3 Research Objectives .. 6

1.4 Research Motivations .. 6

1.5 Research Contributions ... 7

1.6 Thesis Structure ... 8

CHAPTER 2 BACKGROUND ... 9

2.1 Component-Based Software Development ... 9

vi

2.2 Component Integration .. 16

2.3 Risk Management in Software Development.. 18

2.4 Risk Management in Component-Based Software Development. 21

CHAPTER 3 LITERATURE SURVEY .. 23

3.1 Component Based Development ... 23

3.2 Component Integration .. 24

3.3 Component Documentation... 26

3.4 Component Integration Risks .. 29

CHAPTER 4 RESEARCH METHOD .. 32

4.1 Data Collection .. 32

4.2 Data Analysis .. 35

CHAPTER 5 THE ROLE OF COMPONENT DOCUMENTATION IN COMPONENT

INTEGRATION ... 38

5.1 Introduction ... 39

5.2 Research Questions and Hypotheses ... 40

5.3 Data and Result Analysis .. 44

5.3.1 Hypotheses testing phase-I ... 44

5.3.2 Hypotheses testing phase-II .. 46

5.3.3 Hypotheses testing phase-III .. 48

vii

5.4 Discussion ... 51

CHAPTER 6 THE RISK FACTORS DURING COMPOMENT INTEGRATION 55

6.1 Introduction ... 56

6.2 Research Questions and Hypotheses ... 57

6.3 Data and Result Analysis .. 60

6.3.1 Hypotheses testing phase-I ... 61

6.3.2 Hypotheses testing phase-II .. 64

6.3.3 Hypotheses testing phase-III .. 66

6.4 Discussion ... 68

CHAPTER 7 QUALITATIVE DATA ANALYSIS ... 74

7.1.1 Upgrading of components .. 75

7.1.2 Motivations of using commercial components ... 75

7.1.3 Determining the quality and reliability of the component 76

7.1.4 Limited control on commercial components .. 77

7.1.5 Ensuring that System Integrator has selected the right component 78

7.1.6 Difficulties faced in integrating components.. 78

7.1.7 Maintaining relationship with vendor ... 79

7.1.8 Testing the selected component for integrating .. 80

7.1.9 Difficulty in detecting defects and bugs in component base system 80

viii

7.1.10 Component Certification .. 81

7.1.11 Component Repository ... 81

7.1.12 Strengths in integrating components .. 82

7.1.13 Weaknesses in integrating components .. 83

7.1.14 Further Observation .. 84

7.1.15 Avoid Component Risk: ... 86

CHAPTER 8 THREATS TO VALIDITY ... 88

8.1 Construct Validity ... 88

8.2 External Validity ... 89

8.3 Internal Validity .. 90

8.4 Conclusion Validity... 91

CHAPTER 9 GUIDELINES.. 92

9.1 Guidelines.. 92

9.2 Validation of Proposed Guidelines ... 99

CHAPTER 10 CONCLUSION AND FUTURE WORK .. 102

10.1 Conclusion ... 102

10.2 Future work ... 104

APPENDIX A: INDUSTRIAL SURVEY .. 106

APPENDIX B: INDUSTRIAL SURVEY RAW DATA ... 126

ix

REFERENCE .. 171

Vita .. 175

x

LIST OF FIGURES

Figure 1: Component-Based Software Development ... 11

Figure 2: CBS Development Life Cycle ... 12

Figure 3: Development with off-the-shelf components: actors and activities 18

Figure 4: Risk Management Framework .. 21

Figure 5: Theoretical Research Model .. 43

Figure 6: Theoretical Research Model .. 60

Figure 7: Proposed Guidelines .. 97

Figure 8: Mapping of Hypothesis & Open ended analysis with Guidelines..................... 98

xi

LIST OF TABLES

Table 1 : Correlation Coefficient Range ... 37

Table 2: Hypotheses testing using Pearson Correlation Coefficient 46

Table 3: Hypotheses testing using Spearman rank-order correlation coefficient 48

Table 4: Hypotheses testing using Partial Least Square Regression (PLS) 50

Table 5: Comparison of results from different tests ... 51

Table 6: Hypotheses testing using Pearson Correlation Coefficient 63

Table 7: Hypotheses testing using Spearman rank-order correlation coefficient 65

Table 8: Hypotheses testing using Partial Least Square Regression (PLS) 67

Table 9: Comparison of results from different tests ... 68

xii

ABBREVIATIONS

CBS Component-Based System

CBSD Component-Based Software Development

CBSE Component-Based Software Engineering

COM Component Object Model (Microsoft)

COM Component Object Model

EJB Enterprise Java Beans (Sun)

CIMO Component Integration Model

XML Extensible Markup Language

ISO International Standards Organization

COSO Commission of Sponsoring Organizations

LOC Lines of Code

COTS Commercial-Off-The-Shelf

OTS Off-The-Shelf

OSS Open Source Software

PLS Partial Least Square

xiii

THESIS ABSTRACT

NAME: AZHAR SAEED KHAN

TITLE: THE ROLE & IMPORTANCE OF COMPONENT DOCUMENTATION IN

COMPONENT INTEGRATION PHASE: A SYSTEM INTEGRATOR‟S

PERSPECTIVE

MAJOR FIELD: COMPUTER SCIENCE

DATE OF DEGREE: JUNE 2011.

Component integration is widely recognized as a process which plays a central role in

overall Component Based System (CBS) development. Due to the integration-centric

nature of CBS development, a system analyst focuses on assembling existing components,

developed by different parties, to build a software system CBS integration is a risk-prone

process because it is rarely the case that components are perfectly matched and ready for

‘plug and play’. The lack of detailed component documentation has been a key area of

concern in CBS development due to its profound impact on the integration phase of a

CBS development life cycle. It’s difficult for system integrators to find out capabilities of

components if component are not documented in a standard way. Component

documentation can help in assessing the applicability and quality of a component. This

research assists to understand the role of component documentation. It helps in

identifying missing gaps in available component documentation and in identifying key

risk factors which can take place during component integration process. In this research,

xiv

we report results of an industrial survey conducted among system integrators to

understand role and importance of component documentation in the CBS and the impact

of different component integration risk factors. The survey investigates whether the

presence of component documentation helps a system integrator and its correlations with

typical CBS integration success factors and identifies risk factors during integration

process. We received data from 53 CBS integrators working in small to medium

organizations. The result reinforces current perceptions of the significance of component

documentation in CBS integration. Furthermore, based on the result analysis, we come

up with component integration guidelines which can be used by any system integrator to

avoid such risks during component integration phase.

MASTER OF SCIENCE DEGREE

KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS, DHAHRAN,

SAUDI ARABIA

JUNE 2011

xv

 رسالةملخص

 خا نسعٌد اظهر : الاسم

 النظام تكامل منظور :المكون مرحلة الاندماج مكون فًأهمٌة الوثائق و دور : العنوان

 الحاسوبعلم : مجال التخصص

 .3122ٌونٌو : الدرجة العلمية تاريخ

على أساس (سً بً اس) الشاملةالتنمٌة دورا مركزٌا فً تلعب التً كعملٌة التكامل مكون على نطاق واسع ومن المسلم به

المكونات تجمٌع على ٌركز نظام محلل، وهو سً بً اس التنمٌة تتمحور حول التكاملطبٌعة نظرا ل. النظام العنصر

 لأنه المعرضة للخطر هو عملٌة دمج البرامج نظام شبكة سً بً اسبناء ل، مختلف الأطراف، التً وضعتها الموجودة
 المكون مفصلة وثائق عدم وجودكان و. التوصٌل والتشغٌل'ل استعدادمكونات و تماما ابقةمط تكون أن نادرا ما ٌحدث

. التنمٌة دورة سً بً اس فً حٌاة مرحلة الاندماج على عمٌق نظرا لتأثٌر شبكة سً بً اس تطوٌر فً للقلق مجالا رئٌسٌا
 مساعدة الوثائق مكون ٌمكن. طرٌقة قٌاسٌة فً عنصر لم ٌتم توثٌقها المكونات إذا قدرات لمعرفةتكامل النظم لل من الصعب

فً عداد الثغرات تحدٌد وهً تساعد فً. المكون وثائق دور فهم فً ٌساعد هذا البحث. عنصرالجودة و مدى انطباق فً تقٌٌم

فً . عنصر التكامل عملٌة أثناء تحدث ٌمكن أن الرئٌسٌة التً عوامل الخطر تحدٌد فًعنصر و المتاحة الوثائق المفقودٌن فً

 فً عنصر الوثائقأهمٌة و دورفهم ل الأنظمة المتكاملة أجرٌت بٌن المسح الصناعً نتائج تقرٌر على ونحن، هذا البحث
 على ٌساعد عنصر وثائق وجود ما إذا كان تحقق المسح .الاندماج خطر عنصر العوامل مختلف، وتأثٌر شبكة سً بً اس

 .عملٌة التكامل أثناء عوامل الخطورة، وٌحدد التكامل نجاح عوامل نموذجً سً بً اس شبكة معالارتباط و النظام تكامل
 التصورات ٌعزز النتٌجة. المؤسسات المتوسطةفً الشركات الصغٌرة و العمل 34 شبكة سً بً اس تكامل من بٌانات تلقٌنا

 مع جئنا نتٌجة لذلك ، ستنادا إلى تحلٌلا، وعلاوة على ذلك. شبكة سً بً اس فً التكامل عنصر الوثائقأهمٌة ل الحالٌة
مرحلة خلال مثل هذه المخاطر لتجنب النظام تكامل أي من قبل والتً ٌمكن استخدامها عنصر التكامل المبادئ التوجٌهٌة

 .المكون الاندماج

 شهادة ماجستٌر علوم
 جامعة الملك فهد للبترول والمعادن ، الظهران بالمملكة العربٌة السعودٌة

 3122ٌونٌو

1

CHAPTER 1

INTRODUCTION

In this chapter, we briefly present overview of component based system and component

integration in component based system. Furthermore, chapter describes the problem

outline, research objectives, research motivation, and research deliverables and in the end

the structure of the thesis.

1.1 Overview

The extensive uses of software have placed new demands on the software industry to

enhance development productivity and reduce associated costs [1]. These expectations

have led software engineers to re-establish the idea of reuse and focus on moving the

2

software industry away from developing each system from scratch [2], [3]. CBS

development emerged in the mid-90s with the introduction of software component

technologies such as Microsoft COM and COBRA. Recently, the next generation of CBS

development tools such as Microsoft .NET, Enterprise Java Beans (EJB) etc. are

available in the market. CBS has been successfully applied to a range of industrial

applications such as web-based financial tools of a large European bank [4]. In CBS

development, a component is a fundamental building block for a software application.

Szyperski et al. [5] defines component as follows : A software component is a unit of

composition with contractually specified interfaces and explicit context dependencies

only. A software component can be deployed independently and is subject to composition

by third parties.

CBS development is a very fast growing trend in software industry and It‟s becoming

increasingly important since it prompts reuse to higher levels of abstraction [1, 6]. The

main idea of CBS development is to reuse the already developed components instead of

developing them from scratch. There are different definitions on components whereas in

this research, we adopt the definition from Brown and Short who define a component as

“an independently deliverable set of reusable services”[7].

3

CBS development brings many advantages like saving lots of development time, efforts,

reduces cost of development, increases productivity, quickens delivery of projects,

improves quality, reusability, reliability and flexibility etc [1-2]. However, there are

several disadvantages of using CBS development for instance it can increase

complexities and efforts for integrating and developing reuse components, sometimes

requirements are unclear and to build component, the requirements should be well

defined, conflicts between usability and reusability, and component maintenance and

complexity etc [1-2, 8].

CBS development is integration centric with a focus on assembling pre-existing software

components that are either developed in-house or purchased off-the-shelf, to build a

software system. Recent research [9] suggests that a system integrator plays an important

role in the success of a CBS by putting together pieces developed by different parties

who are usually unaware of each other [10]. Furthermore, individual components are

usually designed for general purposes that might not satisfy all customer requirements

and some of them may be unnecessary in a given system. Thus, the role of a system

integrator becomes even more important because it is rarely the case that components are

perfectly matched and system integration involves more than simply finding components,

which, together perform the desired tasks, and connecting their interfaces [11].

4

The main idea of this research work is to investigate the role and importance of

component documentation of a candidate component in component integration, relate the

component documentation with CBS integration factors, identify the risk factors during

component integration process, see how component documentation can help in avoiding

such risks and developing some guidelines which can be used by any system integrator

during component integration phase to avoid any risk causes system failure.

Our research is based on industrial questionnaire-based survey to better understand the

role and importance of component documentation. This industrial survey helps to analyze

and identify different risk factors during component integration in component-based

systems. To ease the workload and streamline the data collection and validation process,

we have developed a web interface to make questionnaire available to the respondents

online. In the end, some statistical calculations using statistical software with some

statistics tests will be performed.[12]

1.2 Problem Outline

CBS development process relies heavily on integrating individual components. System

Integrators are responsible for assembling existing components, developed by different

parties, to build a software system. However, such integration is still a risky process

5

because it‟s very rare that components are perfectly matched and ready for „plug and

play‟.

The lack of comprehensive component documentation presents a potential risk for a

system integrator during integration process. This research will help to understand the

role and importance of component documentation in the CBS integration phase. It is

essential to know whether the presence of available component documentation can help

system integrators during component integration process. This research presents an

evaluation of the impact of available component documentation, from a system

integrator‟s perspective, on the overall success of a CBS integration process. There is a

need to associate the component documentation with CBS integration factors and find out

the missing gaps in available component documentation. Some of the best practices for

system integrator will be picked and associated with component documentation to find

out how component documentation can help to achieve these practices. To the best of our

knowledge, none of the existing work investigates the impact of available component

documentation for the integration phase, from the system integrator‟s perspective.

The other aim of this research is to identify risk factors which can occur during

component integration process. It‟s important that we obtain information regarding

negative aspects in component integration from a system integrator‟s point of view. We

will identify risk factors which have high impact during integration process. There are

6

researches [7-10, 19, 23-24] made on risks in general component-based system but we

hardly found research which focuses specifically component integration phase. It is

essential to identify such integration risks and then find out how component

documentation can help in avoiding such risks.

Furthermore, based on the results and analysis, we will come up with some guidelines or

strategy which can be used by any system integrator to avoid such risk during component

integration phase and ensure that they have integrated component successfully.

1.3 Research Objectives

The main objective of this Research is to investigate the role and importance of

component documentation, analyze missing gaps in available component documentation,

relate the component documentation with CBS integration factors, identify the risk

factors during component integration process and see how component documentation can

help in avoiding such risks and develop guidelines which can be used by any system

integrator.

1.4 Research Motivations

This research helps to collect qualitative and quantitative data from industrial survey

which will be conducted among different experienced companies in CBS. This helps to

7

understand the role and importance of component document from system integrator‟s

perspective and help to identify risk factors which may occur during component

integration phase. The collected data will help to derive research model which can further

help in driving research questions and research hypothesis. Furthermore, the data will be

analyzed and tested using different testing methods and statistical calculations to

empirical evidence to support research questions and hypothesis.

1.5 Research Contributions

The contribution of our work is the industrial study to show the impact of current

available component documentation during the integration phase for a CBS. We also

analyze the relationship between the available component documentation and integration

success factors to better understand the current industrial practices regarding use of

component documentation during the integration process of a CBS. The results shows

that system integrators in the industry found available component documentation useful

for early evaluation of candidate components and learning new features about selected

components. However, available component documentation is considered insufficient for

integration effort estimation and performing integration and system testing of a CBS. Our

work reinforces current perceptions about the significance of component documentation

and the need for detailed component documentation standards to use commercial-off-the-

8

shelf components. Furthermore, we identified different risk factors which may occur

during component integration phase. We investigate integration risk factors from system

integrator‟s perspective. We will see how component documentation can help in avoiding

these integration risks. We will develop some guidelines which can be used by any

system integrator during component integration phase to avoid any risk or system failure.

1.6 Thesis Structure

The rest of the thesis is organized as follows. Chapter 2 presents the background of

component based systems, chapter 3 presents the Literature Survey, chapter 4 presents

research method use in this research, chapter 5 addresses the role of component

documentation in component integration, chapter 6 is about risk factors during

component integration phase, chapter 7 presents the threats to validity for the conducted

industrial survey, chapter 8 presents the further discussion, analysis and the guidelines for

the system integrators for implementing component in CBS and finally chapter 9 will

presents the conclusion and future work.

9

CHAPTER 2

BACKGROUND

In this chapter, we present the background of component based system development

including component based development life cycle and component integration in

component based system. Furthermore, chapter describes general risk management is

software development and then risk management specific to component based software

development.

2.1 Component-Based Software Development

Component-based software development (CBSD) is a process of assembling components

which are already developed and prepared for integration to build a software system. The

10

main concern of CBSD is assembly of preexisting software components into larger pieces

of software. In CBSD, these software components are written and developed in such a

way that they are generic enough for different systems. The main goal of CBS is to allow

these parts or components of a software system to be replaced by newer components.

CBS are flexible and easy to maintain due to the intended plug-and play nature of

components. The COM+ from Microsoft and Enterprise JavaBeans (EJB) from Sun are

few examples of components for software construction [13-14].

The main goal of this technology is independent deployment and assembly of

components. This concept has been taken from manufacturing industry and civil

engineering field like for instance; manufacturing of vehicles would have not been

successful if their spare parts were not available. Software companies have used the same

concept for developing software in parts. These software parts are developed by different

companies who market and ship them in different forms. These software parts are

components which later plug into any application. It‟s an independent part of the system

having complete functionalities for a particular purpose. The major advantages of

component-based software development are reusability, interpretability, upgradability,

less complexity, time effectiveness, cost effectiveness, efficiency, reliability and

improved quality [15].

11

CBS comprises of two parts: Component engineering and application engineering.

Component engineering is concerned with the analysis of domains and development of

generic domain-specific components whereas, application engineering process constructs

application using off-the-shelf software components that is developed with reused

components [16]. These components can be developed by different developers using

different languages and different platforms. Figure 1 shows components can be taken

from any component repository and integrated into a target software system [17].

Figure 1: Component-Based Software Development

Figure 2 shows overview of the CBS development life cycle. The CBS development

approach can be divided into three main phases, namely, selection, integration and

maintenance phases. The first phase, component selection, starts with a process to

identify suitable components with a potential to match stakeholder demands. After this

process, candidate components are analyzed to compare and select suitable components

12

based on evaluation criteria. The second phase, component integration, focuses on

adapting and assembling selected components through an architectural infrastructure. The

third phase, component maintenance phase, handles continuous evolution of a CBS

during its life cycle.

Figure 2: CBS Development Life Cycle

A typical CBS development process consists of seven phases as follows [11].

13

1) Requirements Analysis and Definition: The analysis activity involves identifying and

describing the requirements to be satisfied by the system. In this activity, the system

boundaries should be defined and clearly specified. Using a component-based approach,

an analysis will also include specifications of the components that are to collaborate to

provide the system functionality. To be able to do this, the domain or system architecture

that will permit component collaboration must be defined. In CBS development, the

analysis is an activity with three tasks. The first task is the capture of the system

requirements and the definition of the system boundaries. The second task is the

definition of the system architecture to permit component collaboration, and the third task

is the definition of component requirements to permit the selection or development of the

required components.

2) Selection and Evaluation: To perform a search for suitable components and make their

identification possible, the components must be specified, preferably in a standardized

manner. Again, this may often not be the case. The component specifications will include

precisely defined functional interfaces, while other attributes will be specified informally

and imprecisely (no method is developed for this) if specified at all. The components

selected must therefore be evaluated. The process of evaluation will include several

aspects of both a technical and nontechnical nature. Technical aspects of evaluation

include integration, validation, and verification. Examples of nontechnical issues include

14

the marketing position of the component supplier, maintenance support provided, and

alternative solutions.

3) System Design: System design activity typically begins with the system specification

and the definition of the system architecture and continues from there. In traditional

development, the design of the system architecture is the result of the system

requirements, and the design process continues with a set of sequences of refinements

(for example, iterations) from the initial assumptions to the final design goal. In contrast

with traditional development, many decisions related to the system design will be a

consequence of the component model selected.

4) System Implementation: In an ideal CBS development process, the implementation by

coding will be reduced to the creation of the “glue code” and to component adaptation.

Also, it may still be necessary to design and implement some components- those that are

business critical or unique to a specific solution and those that require refinement to fit

into a given solution.

5) System Integration: Integration is the composition of the implemented and selected

components to constitute the software system. The integration process should not require

great resources, because it is based on the system architecture and the use of deployment

standards defined by the component framework and by the communication standard for

15

component collaboration. Moreover, one of the characteristics of many component-based

systems is the ability to dynamically integrate components without interrupting system

execution. This means that the integration activity in CBS development is present in

several phases of the component-based system life cycle.

6) Verification and Validation: This last step before system delivery is similar to the

corresponding procedures in a traditional development process. The system must be

verified and validated. These terms can be easily confused although there is a clear

distinction between them. Verification is a process that determines whether the system

meets it‟s specified functional and nonfunctional requirements (i.e. are we building the

product right?). A validation process should ensure that the system meets customer

expectations (i.e. Are we building the right product?).

7) System Operation Support and Maintenance: The purpose of the operational support

and maintenance of component-based systems is the same as that of monolithic, non-

component-based systems, but the procedures might be different. One characteristic of

component-based systems is the existence of components even at run time, which makes

it possible to improve and maintain the system by updating components or by adding new

components to the system. This makes faster and more flexible improvement possible- it

is no longer necessary to rebuild a system to improve it. In a developed component

market it also gives end users the opportunity to select components from different

16

vendors. On the other hand, maintenance procedures can be more complicated, because it

is not necessarily clear who is supporting the system-the system vendor or the component

vendors.

2.2 Component Integration

The component integration in any component-based development is a very crucial and

vital element. It‟s a process of assembling components together. It‟s basically a system

integrator or application assembler who is responsible for taking care of this critical

phase. The integration phase proceeds by integrating components, where each component

satisfies some of the requirements of the intended system. These components are

packaged in many different forms. The selected components are integrated through well-

defined infrastructure and this infrastructure provides the binding that forms a system

from the disparate set of selected components [10-11, 18]. The important issue when

integrating components is to deal with the mismatches that occur when putting together

software components developed by different parties [10]. Thus, it is important that

component services are provided through a standard, published interface to ensure

interoperability [1, 19]. An interface determines how a component can be used and

interconnected with other components. Filters are perhaps the oldest component

integration mechanism, only providing access to the data of the components without

17

considering their functionality. Application programming interfaces is another

mechanism that provides individual external components with complete access to all

data, functions and events. The concept of a shared data repository has also been

discussed as a mechanism of component integration [20]. This method is based on the

idea that multiple components share a common data repository, reading and writing the

same data object.

The component integration process defines how well components plug and play. The

system integrator must also follow some processes to implement these components into

existing software system. The off-the-shelf (OTS) components such as commercial off-

the-shelf (COTS) or open course software (OSS) assure to reduce development time and

cost but it also complicates composition part which is handled by system integrators.

System integrators have to be extra careful in integrating any component because any

error during this process could cause the failure of the entire application. Another reason

for failure is that the integrator doesn‟t know the functionality or specifications the

component [21].

There are different industrial practices for system integrator in any OTS based

development. These practices help to understand that how system integrator manages the

processes and knowledge to ensure that they have integrated component successfully.

There are different facts and role of a system integrator in any component-based

18

development. They are highlighted as different activities from system integrator

perspective in Figure 3 [9].

Figure 3: Development with off-the-shelf components: actors and activities

2.3 Risk Management in Software Development

Risk is defined as “the possibility of suffering harm or loss; danger.” [22] Unlike the

hazards of daily living, the risks in the emerging field of software engineering must often

be learned without the benefit of lifelong exposure. A more deliberate approach is

required. Such an approach may involve studying the experiences of successful project

19

managers as well as academic research in the area. In [23] the following top 10 software

risk items are listed:

 Personnel shortfalls

 Unrealistic schedules and budgets

 Developing the wrong functions and properties

 Developing the wrong user interface

 Gold-plating

 Continuing stream of requirements changes

 Shortfalls in externally furnished components

 Shortfalls in externally performed tasks

 Real-time performance shortfalls

 Straining computer-science capabilities

Software engineering involves risks that may harm a software project. Risk concerns the

future of the project. Risks also involve changes and choices which have to be made in

the process. In order to understand and prepare proactively to avoid or manage the risks,

risk management is important [24].

20

Software risk management is a crucial part of successful project management. Software

risk management, in general, involves two major steps: risk assessment and risk control,

which are composed of various phases each. Risk assessment may constitute risk

identification, risk analysis, and risk prioritization. One way to do risk identification

could be to list all project specific risks in the form of a check list. A thorough analysis of

the identified risks is followed in the second stage of risk assessment. It may include

performance models, cost models, network analysis, and statistical decision analysis. The

process also focuses on effects upon different quality attributes of the software project

e.g. flexibility, reliability, availability and security. The final phase of risk assessment is

to prioritize the identified and analyzed risk items using different techniques like risk

exposure analysis, risk reduction leverage analysis, etc. Once risk assessment is done, the

risk management process continues with its next step of risk control. Risk control

includes risk management planning, risk resolution and risk monitoring. Risk

management planning helps you in preparing to address each risk item. Risk resolution

produces a situation in which risk items are eliminated or resolved and risk monitoring

involves tracking the project‟s progress towards resolving its risk items and taking

corrective actions where appropriate [21-23]. All these activities are shown in Figure 4.

21

Figure 4: Risk Management Framework

2.4 Risk Management in Component-Based Software Development.

CBS development is a complex and risk-prone [25] process which needs careful risk

assessment on behalf of a system integrator, to help achieve potential benefits of reduced

time to market, increased productivity and the development of a quality system [11].

A large number of software projects are delivered over budget, late or with fewer features

originally specified in the scope of the project. There is no doubt that the field of software

engineering is fraught with software projects that have been unsuccessful or mismanaged.

22

Identifying and resolving the factors that cause these problems earlier in the life cycle can

reduce cost and help to prevent software disasters. The ability to reliably predict the risk

for a software project presents a significant advantage for a development team. It

provides an opportunity to address high risk components earlier in the development life

cycle, when their impact is minimized. Insights into risk management, development team

skill, software process maturity, and software problem complexity are hypothesized as

driving factors of software product quality [26].

Component-based development carries significant risks throughout the system life cycle.

These risks are related to the nature of OTS software, the development process,

component technologies and vendor support etc. Risk in component-based development

can be determined by the quality of OTS software or how the given component performs

in the current system. There are different factors which cause risk such as: the black box

nature of the OTS software, lack of information about the source of component, the

quality of OTS software, the lack of component interoperability standards, the disparity

in the customer vendor relationship. These risks can be technology risk or business risk.

Business risks are those risks which are associated with events that may result in loss of

business through failure to deliver a system on time or within the budget. Technology

risks are associated to specific technology used to build the system [16, 27].

23

CHAPTER 3

LITERATURE SURVEY

In this chapter, related work in area of component based development, component

integration, component documentation and risk factors during component integration

phase are presented.

3.1 Component Based Development

Component-based development (CBSD) has been a key research area in software

engineering due to its promises to accelerate software development and to cut

24

development cost by assembling systems from already built-in components [28].

Component composition requires different expertise in system integrator in order to

ensure the successful component integration in any component based system. System

integrators are the one who are responsible for integrating components which are

packaged in many different forms like functional libraries, frameworks or legacy

application. The software development with off-the-shelf (OTS) component requires

different practices for system integrator regarding selection and integration of a

component [9, 16].

3.2 Component Integration

Rine et al. [29] proposed the use of adapters to integrate components. In this technique,

each component has an associated adapter. Components request services from each other

through their associated adapters. The associated adapter is responsible for solving the

syntactic interface mismatch. The individual adapters communicate with each other to

fulfill component interaction. Dietrich et al. [30] used active rules to design and generate

wrappers to adapt components. The wrappers are automatically generated as enterprise

java bean components and they act as proxy objects. These proxy objects intercept

method calls and provide the functionality required by the overall component based

system. Parrish et al. [31] proposed a formal model for identifying conditions under

which various component deployment strategies are safe and successful. The framework

25

identifies two types of installation; (i) successful, and (ii) safe. Successful installations

are the ones in which deployed applications work properly, while safe installations are

the ones in which no existing applications are damaged by the installation. It then

identifies conditions that are sufficient to guarantee both safe and successful installations.

The framework at the current stage is mainly theoretical and needs to be applied to real

life applications in order to provide a set of guidelines for software engineers to follow

when building performing installations.

Xia et al. [32] proposed the Component Integration Model (CIMO) that facilitates the

integration of components by presenting a component layer and a service layer. The

component layer contains CIMO components which are based on Microsoft COM objects

and the service layer which consists of CIMO configuration, manager, container and

system. It is mainly responsible for supporting the management, communication and

configuration of components. The CIMO platform provides the support for the setup and

integration of the components in the CIMO application. CIMO platform has one CIMO

system to coordinate the whole system and has a number of CIMO containers, which

directly contains the CIMO components. Similarly, Depke et al. [33] used the concept of

ports that enable the flexible and consistent integration of software components based on

XML documents. These techniques help reduce CBS development process risks by

considering component specifications and their interface properties, and increase

flexibility by providing quantitative analysis of candidate components.

26

The concepts of aspect-oriented software development have also been incorporated into

the CBS integration process. For example, Assman [34] presents the concept of invasive

composition and uses self generated glue-codes to integrate components. Similarly,

Suvee et al. [35] present the JAsCo language for CBS integration. The language is

designed to be used with the Java Beans component model and introduces concepts of

aspect beans and connectors.

3.3 Component Documentation

Jingyue [6, 36] presented the understanding of reuse components and shows that most

developers are not satisfied with component documentation and they may get necessary

information about the component through some other communication channels. One of

his research areas in this thesis revolve around difficulty of component documentation

and component knowledge management with reuse level of components. In his

preliminary study he tried to indentified problems with the documentation. His result

shows that around eighty six percent respondents believe that insufficient documentation

is a problem. It means that documentation could be incomplete, or not updated or difficult

to understand. He also present that component users acquire sufficient information about

relevant component with different sources which shows the importance of having

documentation or information about a component. His spearman test results shows that

27

developer will be less satisfied with component documentation with higher reuse levels.

His research also presents that current component documentation technologies cannot

describe all the required information such as performance, reliability, security. He

emphasize in his conclusions that when companies move from lower to higher reuse

level, more efforts should be spend on the component documentation and component

knowledge management. He found that most of the developers are not satisfied with the

component documentation and recommended the informal communication channels

should be give more attention where component users can get necessary information and

can share knowledge and their experience. Based on this research, we further investigate

the association of component and component documentation in detail level instead of

focusing components on general level. His research emphasizes the significance of

having information about the component. We identify different component factors and

relate each one of them with component documentation in order to show the importance

of component documentation and knowledge. It helped us to identify the relationship and

role of component documentation with each one of these factors.

The authors in [9] present different industrial practices of off-the-shelf (OTS) based

development. These practices help to understand how the system integrator manages

processes and knowledge to ensure that they have integrated component successfully. To

achieve this goal, integrator must manage relationship with component provider, must be

able to debug, detect and fix problems in a component and evaluate the component early;

28

they must be able to estimate correct efforts of a component for integration, ability to

learn component features and modifications of a component. Authors have presented

different facts and roles of a system integrator in any component-based development.

They highlighted different activities from system integrator perspective. Based on this

research, we picked some of the best practices for system integrator and associated them

with component documentation to find out how component documentation can help to

achieve these practices. System Integrators [9] usually don’t care enough about technical

details in the early stages, which could lead to implementation and integration problems.

An OTS component’s providers could release a new version so the system integrators

would need to re-evaluate the component and redesign the system. In agile development

processes, system integrators typically identify and document requirements using user

stories and they set up the entire process such that they can easily make changes. In

Design or the development iterations phase, integrator should think about how much

effort is needed and how the refactoring of the system is possible.

Empirical investigation of CBS is still at an early stage .Jingyue et al [37] presented an

empirical study evaluating the variations in CBS development processes. Their results

indicated that CBS have two key activities: „the build vs the buy decision‟ and

„component selection‟. Further, components are usually selected based on system analyst

experience and using „hand-on trails‟. Jingyue et al. [21] performed an industrial survey

to analyze CBS common problems, most common risk reduction activities performed in

29

the industry and how successful they were in avoiding these risks. They identified (1)

component understanding, (2) component quality evaluation, (3) component vendor

reputation, (4) limiting the number of components in a project and (6) sharing company‟s

knowledge as key risk-reduction activities to ensure the success of a CBS. Furthermore,

they identify integration effort estimation and costly fault identification as two key

challenges during CBS development. Recently Jingyue et al. [9] presented a list of ten

facts about current CBS practices in the industry. They have observed a number of

differences between academic theories and industrial practices in different areas of a CBS

development life cycle ranging from adaptation of traditional development processes to a

lack of use of formal component selection methods.

3.4 Component Integration Risks

Rashid and Kotonya [27] also highlighted six different categories for different phases in

component-based development where one of them is integration. They highlighted the

importance of a good understanding of a component for integration and deployment.

They argue that for successful integration, a component should have adequate

documentation, usage history, version details and test reports. Furthermore, lack of

documentation standards and quality review procedures are serious risks for the

integration process of a CBS. They also explain that one of the integration concerns is

estimating schedules and resource requirements for a component before integration

30

process and also give importance to early evaluation of a component. Based on this

research, we picked the addressed factors during integration phase and linked them with

the component documentation to show how component documentation can help in

solving and avoiding such factors.

According to Kotonya and Rashid [16], there are several risks in each phase of

development. The composition or integration stage can encounter problems so the system

integrator must be aware and overcome all these problems. Like for example few

common problems they present is lack of information about the source component, the

design of a component is unknown, the disparity in the customer vendor evolution cycle,

components are packaged and delivered in many different forms like for example

functional libraries, off-the-shelf application, frameworks etc. This may cause major

difficulties for system integrator during component integration process. Most COTS

software are not generally “plug and play”, significant effort is required to build wrapper

classes or glue code between them in order to integrate the component in current

situation. These wrappers have to be maintained over the period. Lack of interoperability

standards could cause problems during component integration. Also COTS may offer

similar functions but may have different system resource requirements that is memory

and processor requirements; in this case this may affect the system operation.

31

According to Padmal [38], risk is involved with different stakeholders in component-

based systems. The common risks which are associated with Application assembler or

system integrator are requirement conformance, relationship with vendor, ownership and

licensing, certified component, quality of component etc. Integrator deals with lack of

visibility into the component-based development process. They highly rely on external

developers and this place a significant risk due to limited control they have over the

selected component. Also authors in [37] surveyed different risks using OTS components

including efforts estimation for integration the component in component integration

phase.

The summary of the related work presented in this section has exposed some component-

based system key factors such as correct effort estimation for integrating component,

maintaining relationship with component provider, learning new features of component

and modification of a component, debugging and fixing bugs and testing in component

based system and early evaluation of a component. It also presents the importance of

knowledge and documentation of a component. We will use these key component-based

system activities as a set of variables in the industrial investigation in order to construct

the research model of our investigation. This related work also presents some key risk

factors which can take place during component integration process, we will use these risk

key factors and will correlate them with component documentation and construct the risk

research model of component integration for our investigation.

32

CHAPTER 4

RESEARCH METHOD

This chapter explains the data collection method used in this research and methods for

analyze the collected data and results.

4.1 Data Collection

The questionnaire-based survey was performed to better understand the role and

importance of component documentation and to indentify the component integration

risks. It was anonymous survey which helped us to analyze and identify different factors

related to component-based systems and their association with component

documentation. To ease the workload and streamline the data collection and validation

33

process, we enabled a web interface to make questionnaire available to the respondents

online.

The survey was performed using a variant of snowball sampling [39], a technique where

key practitioners in organizations serve as contact points for the study. The contact points

were emailed the link for the web-based survey, which they can forward on to other

potential respondents within their organizations. The contact points also reported the total

number of respondents from each organization and functioned as a temporary checkpoint

for the number of completed questionnaires.

Software developers with experience of using software components (both in-house and

off-the-shelf Components) for more than three years were the target participants for our

study. The participants belong to small to medium-sized companies from Australia,

Pakistan, Saudi Arabia, United Arab Emirates and the United Kingdom. These companies

provide a wide range of services such as software consultancy and off-shore software

development. The some of the respondents belongs to well known companies like STC,

SABIC, Ejada, Logica, Al-Falak, EMC, SunGard US, TATA, Wipro, CSC Aus, Unisys

Aus, Si3. All the participants have either an undergraduate or a graduate degree in

computer science or related fields. Furthermore, the participants‟ role in the organizations

ranged from software developers to software architects with 5 - 7 years of experience in

CBS. In total, 110 participants were contacted and 53 participants completed the survey.

34

The questionnaire had five major parts. The first part was introductory and general part to

get any idea about participants and about participant‟s organization and participant

experience in component base systems. The second part provided the key concepts of

component integration as a component integrator and helps in understanding the

importance of component documentation. This section includes some close-ended

questions which are based on values (5-1) for adequate and inadequate rating where 5

represent maximum for adequate. Some of the outcomes are based on often and rare

values using same adequate/inadequate scale. The third part was aimed in collecting and

identifying risks factors during component integration process. The participants were

asked to indicate the extent of their agreement or disagreement with statements using a

five point scale that ranged from „strongly agree‟ (5) to ‟strongly disagree‟ (1) for each

integration factor. Fourth part contained questions related to avoid and mitigate risks in

component integration based on same scale which used in section three. The last part

was aimed to collect more detailed information about component integration from

system integrator point of view and provided an opportunity to participants to share their

experience of CBS development; and discuss the strengths and challenges of component

integration during a CBS development life cycle.

35

4.2 Data Analysis

A number of statistics analysis techniques are used to analyze the data collected during

the study to validate each of the hypotheses which will be presented in next few sections.

By analogy with Faheem and Capretz [40] [41], we have used both parametric (Pearson

correlation) and nonparametric (Spearman correlation) statistical approaches. Since one

technique is distribution dependent and other is not so these approaches helps to ensure

the reliability of the results. We also used Partial Least Square (PLS) technique to cross

validate the statistical outcomes [12] and increase the reliability of the results. These

statistical calculations were performed using Minitab 14 software & Vassar correlation

calculator [42].

A Correlation is a number between -1 and +1 that measures the degree of association

between two variables e.g. X and Y. A positive value for the correlation implies a

positive association which means large values of X tends to be associated with large

values of Y and small values of X tend to be associated with small values of Y. A

negative value for the correlation implies a negative or inverse associated which means

large values of X tend to be associated with small values of Y and vice versa [43-44].

36

A hypothesis test is statistical procedure that is designed to test a claim. The p-value in

statistical test measures how likely it was that you would have gotten your sample results

if the null hypothesis were true. The smaller p-value will give more evidence against the

null hypothesis to be true. All p-values probabilities between 0 and 1 [43] . P-value

generally less than 0.05, you reject the null hypothesis and accept the alternate whereas

value great then 0.05 allows you to reject alternate hypothesis and accept null hypothesis

which means you don‟t have enough evidence to reject null hypothesis [43].

The cutoff points and resulting decision vary from researcher to researcher. In our

research we use cutoff value of p-value is 0.05. This value will help us to justify or give

confidence on our results. If p-value is less than 0.05 then it means we have confident to

accept alternate hypothesis whereas if p-value is greater than or equal to 0.05 then it give

us confidence to reject alternate and accept null hypothesis. The most statisticians like to

see the correlation between +/- 0.6 or +/- 0.4 or +/- 0.8 [12, 43-45] but for coefficient

above +/- 0.9 or +/-1 correlation against the real data can‟t be practical. In our research,

we use following range for statistical correlation coefficient values. [44]

37

Table 1 : Correlation Coefficient Range

Range Association

-1.0 to -0.7 Strong negative association.

-0.7 to -0.3 Weak negative association.

-0.3 to +0.3 Little or no association

+0.3 to +0.7 Weak positive association

+0.7 to +1.0 Strong positive association

38

CHAPTER 5

THE ROLE OF COMPONENT DOCUMENTATION IN

COMPONENT INTEGRATION

This chapter briefly describes about role & importance of component documentation in

component integration phase and presents the identified research questions, research

hypothesis and theoretical research model. Furthermore, the chapter presents the data and

results analysis along some statistical calculations. The results discussion is presented at

the end of this chapter.

39

5.1 Introduction

Component documentation plays an vital role in the success of a CBS as it is the main

source of information which is used to balance the conflicting interests between what is

needed and what is available [46-47]. Cechich et al. [48] highlight that the standards on

component documentation needs to be reinforced as information available at component

repositories are usually unstructured and presented in the form of marketing brochures

and natural language description. The good quality documentation facilitates

communication between a component‟s creator and its users.

We identify that available component documentation usually consists of a list of features,

reviewer comments, and price and, in some cases, trail versions. In addition to

information about component interfaces, the integration process also needs information

about component usage history, version control, test data and relevant quality attributes

[27]. However, detailed component documentation is usually unavailable in the majority

of component repositories. This lack of detailed component documentation introduces

new challenges for system integrators as it increases ambiguity in the integration phase of

a CBS.

In this chapter, we present an evaluation of the impact of available component

documentation, from a system integrator‟s perspective, on the overall success of a CBS

40

integration process. The motivation of our work is to better understand how available

component documentation is helping or hindering CBS practitioners in the integration

process of a CBS. We analyze the relationship of available component documentation [6,

36] with five key integration success factors namely, integration effort estimation, early

component evaluation, new features and modification information, integration testing and

relationship with component vendors [5] ,[9], [24], [25], [26] . We focus only on these

five integration success factors as they correspond to key information required by system

integrators during the integration process of a CBS.

To date, empirical research work on CBS has been focused on identifying risks

associated with component identification, selection and maintenance processes. However,

to the best of our knowledge, none of the existing work investigates the impact and role

of available component documentation for the integration phase, from the system

integrator‟s perspective, of the CBS development life cycle.

5.2 Research Questions and Hypotheses

The objective of our study is to assess whether available component documentation is

sufficient for integration process of a CBS development life cycle. We are also interested

in investigating how available component documentation helps system integrator in

41

component integration for a CBS. In order to perform such analysis, we also need to

understand the relationship between key integration success factors [46], [2], [38], [21],

[9] and available component documentation. After an indicative literature survey of CBS

integration techniques, we identify integration effort estimation, early component

evaluation, learning new and modified component features, and integration testing and

relationship with component provider as integration success factors. Hence based on the

analysis we come up with following research questions. Figure 5 shows the theoretical

model designed for this purpose. The main objective of this model is to answer following

research questions.

RQ1: Is it important to have essential information about the candidate component before

integration process?

RQ2: Does the component documentation have an impact on different component based

system factors?

The hypotheses for assessing the effect of available component documentation on the key

integration success factors are as follows:

HN1: There is no correlation between “available component documentation” and

“integration effort estimation”.

42

HA1: There is a correlation between “available component documentation” and

“integration effort estimation”.

HN2: There is no correlation between “available component documentation” and “early

component evaluation”.

HA2: There is a correlation between “available component documentation” and “early

component evaluation”.

HN3: There is no correlation between “available component documentation” and “new

feature and modification analysis”.

HA3: There is a correlation between “available component documentation” and “new

feature and modification analysis”.

HN4: There is no correlation between “available component documentation” and

“integration testing”.

HA4: There is a correlation between “available component documentation” and

“integration testing”.

HN5: There is no correlation between “available component documentation” and

“relationship with component provider”.

43

HA5: There is a correlation between “available component documentation” and

“relationship with component provider”.

Integration Success

Factors

Available

Component

Documentation

Integration Effort Estimation

New Features and Modifications

Analysis

Integration Testing

Early Component Evaluation

Relationship with Component

Provider

H1

H2

H3

H4

H5

Figure 5: Theoretical Research Model

44

5.3 Data and Result Analysis

In this section, we will present our results in tabular form along with description. The

Pearson correlation, Spearman correlation Partial Least Square (PLS) techniques are used

to analyze the collected data of study to validate each of the hypotheses which have

present in earlier section [12]. These statistical calculations were performed using

Minitab 14 software.

5.3.1 Hypotheses testing phase-I

In order to test hypotheses H1-H5, we examined the Pearson correlation coefficient [12]

between available component documentation and other factors presented in research

model shown in Figure 5. The result of the statistical calculations for the Pearson

correlation coefficient is reported in Table 2. The Pearson correlation coefficient between

“available component documentation” and “integration efforts estimation” was -0.20

(little or no association) at P < 0.05 provided a justification to reject alternate hypothesis

HA1 & accept null hypothesis HN1. The alternate hypothesis HA2 is accepted based on

Pearson correlation coefficient 0.45 (weak positive association) at P < 0.05 between

“available component documentation” and “early component evaluation”. The correlation

coefficient of 0.41 (weak positive association) at P < 0.05 was observed between

45

“available component documentation” & “new features and modification analysis” and

thus provided a justification to accept alternate hypothesis HA3. The Pearson correlation

coefficient between “available component documentation” and “integration testing” was

-0.20 (little or no association) at P < 0.05 provided a justification to reject alternate

hypothesis HA4 & accept null hypothesis HN4. The correlation coefficient of 0.21 (little

or no association) at P < 0.05 was observed between “available component

documentation” & “relationship with component provider” and thus provided a

justification to accept null hypothesis HN5.

Hence it was observed and is reported here that null hypothesis for H1, H4, H5 are

accepted but their alternate hypothesis rejected whereas alternate for hypothesis H2, H3

are found significant and they have weak positive association.

46

Table 2: Hypotheses testing using Pearson Correlation Coefficient

H Variable 1 Variable 2 Coefficient p-value

H1

Available Component

Documentation

Integration Effort

Estimation

-0.20 0.156

H2

Available Component

Documentation

Early Component

Evaluation

0.45 0.001

H3

Available Component

Documentation

New Feature and

Modification

0.41 0.002

H4

Available Component

Documentation

Integration Testing -0.20 0.143

H5

Available Component

Documentation

Relationship with

Component Provider

0.21 0.133

5.3.2 Hypotheses testing phase-II

In phase-II we conducted non-parametric statistics using Spearman correlation coefficient

[12] to test the hypotheses H1-H5. Table 3 also reported the observation made in this

testing phase. The Spearman correlation coefficient between “available component

documentation” and “integration efforts estimation” was -0.22 (little or no association) at

47

P < 0.05 provided a justification to reject alternate hypothesis HA1 & accept null

hypothesis HN1. The alternate hypothesis HA2 accepted based on Spearman correlation

coefficient 0.46 (weak positive association) at P < 0.05 between “available component

documentation” and “early component evaluation”. The correlation coefficient of 0.37

(weak positive association) at P < 0.05 was observed between “available component

documentation” & “new features and modification analysis” and thus provided a

justification to accept alternate hypothesis HA3. The Spearman correlation coefficient

between “available component documentation” and “integration testing” was -0.20 (little

or no association) at P < 0.05 provided a justification to reject alternate hypothesis HA4

& accept null hypothesis HN4. The correlation coefficient of 0.20 (little or no

association) at P < 0.05 was observed between “available component documentation” &

“relationship with component provider” and thus provided a justification to accept null

hypothesis HN5.

Hence it was observed and is reported here that null hypothesis for H1, H4, H5 are

accepted but their alternate hypothesis rejected whereas alternate for hypothesis H2, H3

are found significant and they have weak positive association.

48

Table 3: Hypotheses testing using Spearman rank-order correlation coefficient

H Variable 1 Variable 2 Coefficient p-value

H1

Available Component

Documentation

Integration Effort

Estimation

-0.22 0.061

H2

Available Component

Documentation

Early Component

Evaluation

0.46 0.000

H3

Available Component

Documentation

New Feature and

Modification

0.37 0.003

H4

Available Component

Documentation

Integration Testing -0.20 0.078

H5

Available Component

Documentation

Relationship with

Component Provider

0.20 0.078

5.3.3 Hypotheses testing phase-III

In phase-III of hypotheses testing, we used Partial least square regression (PLS)

technique [12] to overcome some of the associated limitations and to cross validate with

the results observed using approach of Phase-I and Phase-II. Table 4 reports the result of

PLS tests of the hypothesis with detailed observed values of coefficient and p-value

49

whereas Table 5 shows the cross validation of results. We tested the hypothesized

relationships that are H1-H5 by examining their directions and significance. The PLS

coefficient between “available component documentation” and “integration efforts

estimation” was -0.20 (little or no association) at P < 0.05 provided a justification to

reject alternate hypothesis HA1 & accept null hypothesis HN1. The alternate hypothesis

HA2 accepted based on PLS coefficient 0.45 (weak positive association) at P < 0.05

between “available component documentation” and “early component evaluation”. The

PLS coefficient of 0.41 (weak positive association) at P < 0.05 was observed between

“available component documentation” & “new features and modification analysis” and

thus provided a justification to accept alternate hypothesis HA3. The PLS coefficient

between “available component documentation” and “integration testing” was -0.20 (little

or no association) at P < 0.05 provided a justification to reject alternate hypothesis HA4

& accept null hypothesis HN4. The PLS coefficient of 0.21 (little or no association) at P

< 0.05 was observed between “available component documentation” & “relationship with

component provider” and thus provided a justification to accept null hypothesis HN5.

Hence null hypothesis for H1, H4, H5 are accepted but their alternate hypothesis rejected

whereas alternate for hypothesis H2, H3 are accepted and they have weak positive

association.

50

Table 4: Hypotheses testing using Partial Least Square Regression (PLS)

H Variable 1 Variable 2 Coefficient p-value

H1

Available Component

Documentation

Integration Effort

Estimation

-0.20 0.156

H2

Available Component

Documentation

Early Component

Evaluation

0.45 0.001

H3

Available Component

Documentation

New Feature and

Modification

Analysis

0.41 0.002

H4

Available Component

Documentation

Integration Testing -0.20 0.143

H5

Available Component

Documentation

Relationship with

Component Provider

0.21 0.133

51

Table 5: Comparison of results from different tests

H Pearson Correlation Spearman Correlation Partial Least Square

H Coefficient p-value Coefficient p-value Coefficient p-value

H1 -0.20 0.156 -0.22 0.061 -0.20 0.156

H2 0.45 0.001 0.46 0.000 0.45 0.001

H3 0.41 0.002 0.37 0.003 0.41 0.002

H4 -0.20 0.143 -0.20 0.078 -0.20 0.143

H5 0.21 0.133 0.20 0.078 0.21 0.133

5.4 Discussion

From the statistical results, we make the following useful observations.

 Integration Effort Estimation: The correct integration effort estimation is crucial for

delivering a CBS on time and within the allocated budget. The coefficient in results

shows that there is no or little association between available component documentation

and integration effort estimations of a CBS and we have accepted null hypothesis. The

system integrators participating in the study indicate that available component

52

documentation does not provide enough technical details of components and integration

efforts estimates are done based on individual experiences and trails of the candidate

components. Further, we believe that component documentation also needs to include

data about component evolution and details of the changes.

Early Component Evaluation: The success of CBS [49], [50] [51] depends on the ability

to select suitable components. Inappropriate component selection can lead to adverse

effects, such as introducing extra cost, in integration and maintenance phases [50]. It is

evident from our study that available component documentation helps in early evaluation

of candidate components and it has weak positive association. The information about

component features, version history and price helps a system integrator to analyze

candidate components against system requirements and architectural constraints of the

CBS-to-be. The feedback from the subjects also indicated the need for comprehensive

documentation as it will help overcome glue-code and testing challenges later in the CBS

development life cycle.

Learning New Features & modification: As coefficient value in our study shows there is

a weak positive association between available component documentation; and learning

new and updated feature details in new versions of components. This is due to the fact

that component vendors are usually good at advertising new features and modifications in

the new versions of their respected components. This helps system integrators in

53

assessing the changes needed at the architectural and integration code levels and take

necessary steps to overcome compatibility risks.

Integration Testing: The coefficient in our result shows that there is no or little

association between available component documentation and integration. In this

association we are getting negative value which means that more testing information

could cause problems in integration testing but due to value of confidence we have

accepted null hypothesis and rejected the alternate hypothesis. Furthermore, we found

from open data analysis that integration testing information is essential to have it and it

will help during testing process. A component usually goes through traditional software

testing at the developer‟s site [52]. However, the details of these individual component

tests are rarely made available to the system integrator. Furthermore, the heterogeneous

nature of components and deployment architectures introduce complexities in the

integration phase of a CBS. Thus, there is a need to provide individual component testing

details to assist the integration testing process of a CBS.

Relationship with component provider: The coefficient in results indicates that there is no

or little association between available component documentation and maintaining

relationship with component provider but due to p-value confidence we have accepted

null hypothesis. This indicates that some of the key factors for system integrators such as

details of technical support provided by vendors, customer reviews, component volatility

54

and personal contact details are usually lacking in the majority of current component

documentation.

Other Integration Factors: The study evaluates five key integration success factors.

There is a need to study the industrial common practices about handling requirements

volatility, architectural mismatches, and lack of component support in the maintenance

phase of a CBS. Furthermore, we need to analyze the importance of component

certification and component knowledge for different phases of a CBS.

55

CHAPTER 6

THE RISK FACTORS DURING COMPOMENT

INTEGRATION

This chapter presents risk factors in component integration phase and presents the

identified research questions, research hypothesis and theoretical research model.

Furthermore, the detail results discussion is presented at the end of this chapter.

56

6.1 Introduction

CBS development is a complex and risk-prone [40] process which needs careful risk

assessment on behalf of a system integrator, to help achieve potential benefits of reduced

time to market, increased productivity and the development of a quality system [12]. It

doesn‟t matter which tools, techniques, and methodologies are used for component based

development, it remains risk-prone process. Kotonya et al. [21] identify lack of source

code and unknown design information; and disparity in component evolution cycles as

the key risks for the integration phase of a CBS. An integration fault can be the result of

incorrect understanding of a component or it may lie in one of the externally acquired

components [26]. Similarly, Rashid et al. [34] highlight the importance of a good

understanding of a component for integration and deployment. They argue that for

successful integration, a component should have adequate documentation, usage history,

version details and test reports. Furthermore, lack of documentation standards and quality

review procedures are serious risks for the integration process of a CBS.

There are a number of risks and challenges associated with component Integration phase.

We need to indentify different risk factors which can cause failure during component

integration phase [1-2, 8, 21, 27, 53]. System integrators must manage some information

to make sure that component is integrated successfully and CBS in risk free.

57

The aim of this chapter is to investigate the risk factors which can be faced by any system

integrator during component integration phase. It‟s important that we obtain information

regarding negative aspects in component integration from a system integrator‟s point of

view to avoid any integration risk. We need to identify and correlate these risk factors

and their impact during integration phase.

To date, empirical research work on CBS has been focused on identifying risks

associated with component identification, selection and maintenance processes. However,

to the best of our knowledge, none of the existing work investigates the risk factors in

integration phase, from the system integrator‟s perspective, of the CBS development life

cycle.

6.2 Research Questions and Hypotheses

We wish to gain insight regarding which risk factors have high impact during integration

process. We discover from our study that identification of risks at early stages can

minimized the impact during component integration. Figure 6 shows the theoretical

model designed for this purpose. The main objective of this model is to answer following

research question.

RQ1: What are the possible risks/problems during component integration phase?

58

The hypotheses to access the impact of risk factors during component integration is as

follows.

HN1: There is no correlation between “Lack of Requirement Conformance” and “System

becomes risk-prone”

HA1: There is a correlation between “Lack of Requirement Conformance” and “System

becomes risk-prone”

HN2: There is no correlation between “Lack of Sufficient Testing” and “System becomes

risk-prone”

HA2: There is a correlation between “Lack of Sufficient Testing” and “System becomes

risk-prone”

HN3: There is no correlation between “Lot of Glue Code” and “System becomes risk-

prone”

HA3: There is a correlation between “Lot of Glue Code” and “System becomes risk-

prone”

59

HN4: There is no correlation between “Uncertified Components” and “System becomes

risk-prone”

HA4: There is a correlation between “Uncertified Components” and “System becomes

risk-prone”

HN5: There is no correlation between “Lack of Interoperability Standards” and “System

becomes risk-prone”

HA5: There is a correlation between “Lack of Interoperability Standards” and “System

becomes risk-prone”

HN6: There is no correlation between “Lack of Version Control Information” and

“System becomes risk-prone”

HA6: There is a correlation between “Lack of Version Control Information” and “System

becomes risk-prone”

60

Integration Risk FactorsIntegration Risk Factors

Lack of Version Control

Information

Lack of Requirement

Conformance

System becomes

Risk-prone
Lack of Sufficient

Testing

Uncertified Component

Lack of interoperability

Standards

Lot of Glue Code

H2 H5

H6

H4

H3

H1

Figure 6: Theoretical Research Model

6.3 Data and Result Analysis

In this section, we present results in tabular form along with description. The Pearson

correlation, Spearman correlation Partial Least Square (PLS) techniques are used [12] to

analyze the collected data of study to validate each of the hypotheses which have present

61

in earlier section. These statistical calculations were performed using Minitab 14

software.

6.3.1 Hypotheses testing phase-I

In order to test hypotheses H1-H6 we examined the Pearson correlation coefficient [12]

between different factors of the research model shown in Figure 6. The result of the

statistical calculations for the Pearson correlation coefficient is reported in Table 6. The

Pearson correlation coefficient between “system becomes risk-prone” and “lack of

requirement conformance” was 0.50 (weak positive association) at P < 0.05 provided a

justification to accept alternate hypothesis HA1 & reject null hypothesis HN1. The

alternate hypothesis HA2 accepted based on Pearson correlation coefficient 0.62 (weak

positive association) at P < 0.05 between “system becomes risk-prone” and “lack of

sufficient testing”. The correlation coefficient of 0.50 (weak positive association) at P <

0.05 was observed between “system becomes risk-prone” & “lot of glue code” and thus

provided a justification to accept alternate hypothesis HA3. The Pearson correlation

coefficient between “system becomes risk-prone” and “uncertified components” was 0.52

(weak positive association) at P < 0.05 provided a justification to accept alternate

hypothesis HA4 & reject null hypothesis HN4. The correlation coefficient of 0.41 (weak

positive association) at P < 0.05 was observed between “system becomes risk-prone” &

“lack of interoperability standards” and thus provided a justification to reject null

hypothesis HN5 and accept alternate hypothesis HA5. The correlation coefficient of 0.01

62

(little or no association) at P < 0.05 was observed between “system becomes risk-prone”

& “lack of version control information” and thus provided a justification to reject

alternate and accept null hypothesis HN6.

Hence it was observed and is reported here that null hypothesis for H6 is accepted but

alternate hypothesis rejected whereas alternate for H1, H2, H3, H4, H5 are found

significant and they have weak positive association.

63

Table 6: Hypotheses testing using Pearson Correlation Coefficient

H Variable 1 Variable 2 Coefficient p-value

H1

Lack of Requirement

Conformance

System becomes risk-

prone

0.50 0.000

H2

Lack of Sufficient

Testing

System becomes risk-

prone

0.62 0.000

H3 Lot of Glue Code

System becomes risk-

prone

0.50 0.000

H4 Uncertified Components

System becomes risk-

prone

0.52 0.000

H5

Lack of interoperability

Standards

System becomes risk-

prone

0.41 0.002

H6

Lack of Version Control

Information

System becomes risk-

prone

0.01 0.915

64

6.3.2 Hypotheses testing phase-II

In this phase, we conducted non-parametric statistics using Spearman correlation

coefficient [12] to test the hypotheses H1-H6. Table 7 also reported the observation made

in this testing phase. The Spearman correlation coefficient between “system becomes

risk-prone” and “lack of requirement conformance” was 0.50 (weak positive association)

at P < 0.05 provided a justification to accept alternate hypothesis HA1 & reject null

hypothesis HN1. The alternate hypothesis HA2 accepted based on Spearman correlation

coefficient 0.62 (weak positive association) at P < 0.05 between “system becomes risk-

prone” and “lack of sufficient testing”. The correlation coefficient of 0.54 (weak positive

association) at P < 0.05 was observed between “system becomes risk-prone” & “lot of

glue code” and thus provided a justification to accept alternate hypothesis HA3. The

Spearman correlation coefficient between “system becomes risk-prone” and “uncertified

components” was 0.48 (weak positive association) at P < 0.05 provided a justification to

accept alternate hypothesis HA4 & reject null hypothesis HN4. The correlation

coefficient of 0.40 (weak positive association) at P < 0.05 was observed between “system

becomes risk-prone” & “lack of interoperability standards” and thus provided a

justification to reject null hypothesis HN5 and accept alternate hypothesis HA5. The

correlation coefficient of 0.02 (little or no association) at P < 0.05 was observed between

“system becomes risk-prone” & “lack of version control information” and thus provided

a justification to reject alternate and accept null hypothesis HN6.

65

Hence it was observed and is reported here that null hypothesis for H6 is accepted but

alternate hypothesis rejected whereas alternate for H1, H2, H3, H4, H5 are found

significant and they have weak positive association.

Table 7: Hypotheses testing using Spearman rank-order correlation coefficient

H Variable 1 Variable 2 Coefficient p-value

H1

Lack of Requirement

Conformance

System becomes risk-prone 0.50 0.000

H2

Lack of Sufficient

Testing

System becomes risk-prone

0.62 0.000

H3 Lot of Glue Code System becomes risk-prone 0.54 0.000

H4 Uncertified Components System becomes risk-prone 0.48 0.000

H5

Lack of interoperability

Standards

System becomes risk-prone

0.40 0.001

H6

Lack of Version Control

Information

System becomes risk-prone

0.02 0.445

66

6.3.3 Hypotheses testing phase-III

In phase-III of hypotheses testing, we used Partial least square regression (PLS)

technique [12] to overcome some of the associated limitations and to cross validate with

the results observed using approach of Phase-I and Phase-II. Table 8 reports the result of

PLS tests of the hypothesis and Table 9 shows the cross validation of results. The PLS

coefficient between “system becomes risk-prone” and “lack of requirement

conformance” was 0.50 (weak positive association) at P < 0.05 provided a justification to

accept alternate hypothesis HA1 & reject null hypothesis HN1. The alternate hypothesis

HA2 accepted based on PLS coefficient 0.62 (weak positive association) at P < 0.05

between “system becomes risk-prone” and “lack of sufficient testing”. The correlation

coefficient of 0.50 (weak positive association) at P < 0.05 was observed between “system

becomes risk-prone” & “lot of glue code” and thus provided a justification to accept

alternate hypothesis HA3. The PLS coefficient between “system becomes risk-prone”

and “uncertified components” was 0.52 (weak positive association) at P < 0.05 provided

a justification to accept alternate hypothesis HA4 & reject null hypothesis HN4. The PLS

coefficient of 0.41 (weak positive association) at P < 0.05 was observed between “system

becomes risk-prone” & “lack of interoperability standards” and thus provided a

justification to reject null hypothesis HN5 and accept alternate hypothesis HA5. The PLS

coefficient of 0.01 (little or no association) at P < 0.05 was observed between “system

becomes risk-prone” & “lack of version control information” and thus provided a

justification to reject alternate and accept null hypothesis HN6.

67

Hence it was observed and is reported here that null hypothesis for H6 is accepted but

alternate hypothesis rejected whereas alternate for H1, H2, H3, H4, H5 are found

significant and they have weak positive association.

Table 8: Hypotheses testing using Partial Least Square Regression (PLS)

H Variable 1 Variable 2 Coefficient p-value

H1

Lack of Requirement

Conformance

System becomes risk-

prone

0.50 0.000

H2

Lack of Sufficient

Testing

System becomes risk-

prone

0.62 0.000

H3 Lot of Glue Code

System becomes risk-

prone

0.50 0.000

H4

Uncertified

Components

System becomes risk-

prone

0.52 0.000

H5

Lack of

interoperability

Standards

System becomes risk-

prone 0.41 0.002

H6

Lack of Version

Control Information

System becomes risk-

prone

0.01 0.915

68

Table 9: Comparison of results from different tests

H Pearson Correlation Spearman Correlation Partial Least Square

H Coefficient p-value Coefficient p-value Coefficient p-value

H1 0.50 0.000 0.50 0.000 0.50 0.000

H2 0.62 0.000 0.62 0.000 0.62 0.000

H3 0.50 0.000 0.54 0.000 0.50 0.000

H4 0.52 0.000 0.48 0.000 0.52 0.000

H5 0.41 0.002 0.40 0.001 0.41 0.002

H6 0.01 0.915 0.02 0.445 0.01 0.915

6.4 Discussion

From the industrial survey results, we make the following observations.

69

 Lack of Requirement Conformance: The software developer should not develop

something which just accomplished the desired functions. For a successful

software, the developers must develop software is such a way which best meets

the needs and requirements of its clients. The coefficient in result analysis shows

that there is a weak positive association between lack of requirement conformance

and system becomes risk-prone and justifies accepting alternate hypothesis. This

means that there is a chance of risk or system failure if requirements are

unambiguous. The system integrators participating in the study indicate that they

ensure that they have selected the right component by comparing their

requirements with the features offered by a component. They make sure that they

have clear requirements of a component and CBS before starting integration

process. Therefore, we believe that it‟s important to map all requirements of the

selected component with CBS to ensure risk free integration process.

 Lack of Sufficient Testing: Testing is any activity aimed at evaluating an attribute

or capability of a program or system and determining that it meets its required

results [54]. It is the process of executing a program or system with the intent of

finding errors [54] which can further help in reducing the possibility of risk. The

coefficient in result analysis shows that there is a weak positive association

between lack of sufficient testing and system becomes risk-prone and we accepted

alternate hypothesis. This means that insufficient testing can cause risk in CBS. It

70

is evident from our study that testing is required over and over using various

approaches and scenarios. Furthermore, we found that testing helps to determine

the quality and reliability of the component by giving sample data. We believe

that there should be detail testing to make sure that integration process and CBS is

risk free.

 Lot of Glue Code: Glue code or wrappers may require where one component

wishes to make use of another, but there is an incompatibility between the

providers and required interfaces of these components. The main concern of

writing wrappers is to solve mismatches between the integrated components so

they can communicate effectively. Well defined interfaces and with good

component documentation can speed up building systems by integrating built

components. If there are different providers of the components then the interfaces

for that component usually not clearly defined. The coefficient in result analysis

shows that there is a weak positive association between glue code and system

become risk-prone and we have accepted alternate hypothesis. This means there is

chance of risk while writing wrappers between two components during integration

process. The participated respondents address the same issue that sometimes it

becomes difficult to write or modify wrappers and could cause component

integration failure. They highlight that it‟s not easy to maintain or debug wrappers

71

between different components. We believe that the use of wrappers during

integration process should be minimal in order to avoid any risk in CBS.

 Uncertified Components: The coefficient in results shows that there is a weak

positive association between uncertified components and system becomes risk-

prone and we accepted alternate hypothesis. This means that components should

be certified in order to make integration process and CBS risk free. The

respondents in our survey indicate that system integrator must make sure that the

selected component is certified before starting the integration process. They

believe that there should be some methods or process to check & verify the

component certification which further can go through to component testing

process. Therefore, we believe that system integrator should make sure that

component is certified before starting the component integration process.

 Lack of Interoperability standards: it‟s important to follow some standards while

developing interfaces for any component for communication. The coefficient in

our results shows that there is a weak positive association between lack of

interoperability standards and system becomes risk-prone and we have accepted

the alternate hypothesis. This means if components and its interface developed

without any defined standards then there will be high chances of risk in CBS

because it will be hard for any system integrator to understand the code which has

72

no standards or conventions and it will be difficult for system integrator while

modifying the component and its interfaces if required or during writing wrappers

or glue code between components. The system integrator participating in the

study indicates that they follow international standards just like COSO and ISO

and they have IT Compliance and Audit department for this purpose. They also

indicates that it‟s not easy to understand code written by someone else with their

own interface standards and declaration and it further make difficult when it

comes to detecting defects or to modify the component interface in component

based systems. Thus, we believe that it‟s important to have well defined

development standards of component interface, must have well defined interfaces

to communicate with other components, this could help in minimizing the chance

of possible risk during component integration process.

 Lack of Version Control Information: The study indicates that there is no or little

association between lack of version control information and system becomes risk-

prone and we have accepted the null hypothesis. This means that maintaining

versioning information of a give component has no high impact or risk during

component integration phase. The participated respondents highly believe that

components should have all features of previous version plus new ones and this

information should be maintained and stored in component repository. They

consider that for proper upgrades, proper versioning should be done and proper

73

builds should be maintained. After ensuring all of these functions, right version of

component should be given to system integrator for component integration

process. Thus, we believe that maintaining version control information for a

component is important but it cannot be considered as high risk factor.

74

CHAPTER 7

QUALITATIVE DATA ANALYSIS

In this chapter, we present analysis based on respondent‟s response on open ended

questions. It will help us in understanding further about component based system from

system integrator‟s perspective. These chapters also presents the guidelines which can be

consider by any system integrator during component integration process and finally we

present our initial step for validating the proposed guidelines.

75

7.1.1 Upgrading of components

The upgrading of component may be required at any stage in CBS and our study shows

that documentation plays a vital role during component upgrading process. The

respondents participating in our survey emphasize that through proper documentation and

by following some development standard, handling the upgrade of components can be

easier. They believe that proper code design and architecture should be designed in such

a way that it is flexible with upgrades of components. Some respondents emphasize that

upgrade requires thorough impact analysis and testing and has to be planned properly and

should be well documented i.e. proper upgrade information, proper versioning

information, proper builds and technical specification should be maintained.

7.1.2 Motivations of using commercial components

We tried to find the motivation of using commercial components from experienced

component engineers in order to gain the importance of using commercial component.

Some of the respondents state that they use commercial component when something is

beyond their skills or if something they try to develop is already available and different

client is using it. Most of the times they find bug free commercial components which can

be easily integrated with little modifications. One respondent believes that it saves a lot

of development efforts, cost and its useless to reinvent the already developed component.

Furthermore, they emphasize on commercial components to save time, they fill in the

76

gaps by making their own component and taking expertise from across the group. They

believe commercial components are more reliable, better quality and most of them come

with warranties or support.

7.1.3 Determining the quality and reliability of the component

The respondents stress the importance of quality and reliability of the component. They

mentioned that they test each component separately and check the desired output by

giving some sample data, which helps them to determine quality of it. For reliability, they

check different clients using the same component or different product where the

component is used. They also make sure that component is certified. One respondent

mentioned that they perform proper analysis before using component. They always prefer

known vendors whose solution is mature and reliable in market. They do not test the

component because they believe that one advantage of using component is that they can

pass through the testing which saves their cost of testing. One of the respondents believes

that quality can be defined to fulfill the requirements. If the component is giving the

required output without failing then they say that it has good quality and it has high

reliability. Reliability can be taken further by saying that component's integration into the

system shall not affect any other integrated components, i.e. it should be least cohesive.

Some respondents think that by reading reviews and testing all business and technical

scenarios can help in determining quality and reliability of the component. One

77

respondent believe that quality and reliability can be determined by the by the branding

of the component vendor and by past history use of the component by others.

7.1.4 Limited control on commercial components

We found from our study that due to limited control over commercial components there

are different shortcomings which can further raise the chances of risk in CBS. The main

disadvantage of using commercial components is less control over component and source

code is usually not available. Furthermore, debugging and testing is not that easy. One of

the respondent experienced that it‟s not easy to handle bugs especially when you are

using executable component and do not have the source code for it. Another drawback is

replacement of a component, if Vendor Company goes out of business then it‟s hard to

replace. In some contracts, you have to pay for every upgrade even for minor changes.

The cost of maintenance becomes high and the organizations can't build an efficient

learning experience since provider will install, configure and maintain the system. One

respondent explains that when they want to deliver something highly customized to their

customers, they face problem of highly restrictive actions that they can take in

customizing commercial components. They face difficulty if the documentation is not

good enough or worse, if the vendor created the component in such a way that it cannot

be customized beyond a certain limit. In general, most of the respondents express that due

to the nature of commercial component; they have less control or command on it. They

are not aware of the complete source code of given component which makes it difficult

78

for them during debugging and testing process. They have very limited control on the

given component and when there is any customization required then integrator always

needs to contact component provider even for minor changes.

7.1.5 Ensuring that System Integrator has selected the right component

In order to know, how the system integrator ensures that the given component is the

desired component or not, we found feedback from our study. Most of the respondents

emphasize testing. They perform testing against the selected component by giving some

sample data, by confirming the results and check if the results are in line with the

requirements. Furthermore, they ensure it by comparing given requirements with the

features component offers; they research for available choices and run a comparison, by

doing thorough literature review related to selected component. One respondent believes

that selecting the right component is driven by business requirements and the ratio of

adaptability of that component towards the requirements.

7.1.6 Difficulties faced in integrating components.

We tried to find out difficulties faced by any system integrator during component

integration process. The majority of our respondents state that most of the system

integrators face difficulties in finding out the capabilities of components because

components are not documented in standard way. Every component provider document

79

his component based on their standards and procedures which results inconsistent and

insufficient documentation of a component. They believe that quality of documentation

varies very much from one component provider to another. Furthermore, respondents

complain that they faced problems when they worked across different platforms or design

of the application changes, network workflow changes and dependency of the specific

component on some other non-existent components. One respondent states that most of

the time vendor specific code is the essence of component which poses technical

challenges. Some respondents emphasize on Inadequate documentation, not receiving

what was expected, lack of support from component vendor, too complex to understand

because of inadequate and substandard coding and documentation, no proper versioning

of control information. The respondents explain that they face problem in integrating

heterogeneous components that do not understand each other, they need to create a

wrapper layer for converting one component output into a format understandable by the

other component or in other words they write interfaces for getting the components to

talk to each other.

7.1.7 Maintaining relationship with vendor

We have found from component based system literature that the relationship with

component provider is very important. The respondents in our study also emphasize that

it‟s important to maintain a good relationship with component provider. They explain

their different ways to retain it. They mentioned that they keep in touch with component

80

provider during each cycle of component integration phase. They prefer keeping clear

terms and conditions in the contracts and keeping good relationships with the technical

peers on vendor's side. Most of the respondents emphasize that they maintain the

relationship through support contract, frequent interaction and through email

correspondence.

7.1.8 Testing the selected component for integrating

The respondents in our study emphasize that testing of a component is very essential and

they expressed their methods of testing. Some respondents use their own test cases and

tools to test the component by giving some test data and then checking and verifying the

results. The respondents state that they go through different features of a component and

see if they work and then test its efficiency. By efficiency, it means it should not take

very long for some fancy work. The respondents explain that they perform various testing

e.g. unit testing, black box testing, integration testing etc.

7.1.9 Difficulty in detecting defects and bugs in component base system

Our study helps to understand the common problems and difficulties faced by system

integrator during detecting defects, bugs or debugging in component based system. The

participated respondents explains that debugging is not easy because you are not aware

with the source code, usually you don‟t have source code or even if you have then it‟s not

81

easy to understand the code written by someone using their own development standards

and declarations. One respondents believe that it depends upon the component vendor; if

exception or handles are properly written then it‟s easy to detect bugs otherwise it‟s

difficult to figure out proper meaning of certain errors. One respondent believe that it is

difficult to locate bugs since the component appears as a black box, one can only check

by providing various inputs and checking the output.

7.1.10 Component Certification

Our study shows that it‟s important to have certified component for component

integration process. The respondents explain that they contact different clients and make

sure that they have no problem using it and that the component is certified. They believe

it‟s important in order to make sure that the selected component is reliable. They perform

testing over and over again using various approaches and scenarios to make sure that the

component is certified. Some respondents say that they follow international standards and

their companies have IT Compliance and Audit department for this purpose.

7.1.11 Component Repository

The participated respondents in our study believe that it‟s important to have repository

which will help maintaining and storing components. Most of the respondents have a

repository in their organization for all project related artifacts, components, source code

82

etc. They believe that this is for proper configuration management and for back up

purposes. One of the benefits of having component repository is that components can be

reused in any new project and by any other development unit within the same

organization.

7.1.12 Strengths in integrating components

We have tried from our study to investigate all the strengths and advantages from system

integrator‟s perspective in CBS. By summarizing our results, we have found the

following strengths based on system integrator‟s experienced. They believes that is good

to have already built-in components, it saves lot of development time, it is easy to start

integrating with an already built-in component instead of writing and developing

everything from scratch and then integrating it. The already built-in component can save

resources, reduce overall costs and time etc. They are more flexible and maintenance

becomes easier, provides re-usability, rapid application development, fast delivery of

projects, easily manageable, and avoids reinventing the wheel. The respondents believe

that if component is reliable and efficient then it should save time in house development

and testing or they can pass through the testing phase. If a component is properly

developed based on some development standards then it‟s easy to track bugs and errors.

The respondents believe that it‟s easier to ensure the quality of the code and maintenance

because the entire application is divided in different isolated units. Each unit/component

83

is only concerned with its own implementation and how it is exposing its services to the

client etc. If components are linked with well defined interfaces and with good

component documentation then it can speed up building systems by integrating well built

components.

7.1.13 Weaknesses in integrating components

We tried to identify weakness and disadvantages from system integrator‟s perspective in

CBS. By summarizing our results we found that most of the respondents complain about

lack of information about the source component, they do not have much control over it,

and it is not easy to maintain a relationship with the provider of the component. They find

complexity issues, external dependency, lack of control on source code, less flexibility,

lack of proper information, unknown design and architecture because of inadequate

documentation, inability to customize, difficulty in finding right components that meets

user needs, lack of coding/development standards, support after component is integrated

and moved into production, it requires high level of skills set in system integrator,

maintenance cost could be high, lots of learning, not easy to detect and fix bugs, and lack

of complete information about component behavior. If there are different providers of the

components then the interfaces (how the component will interact with other components

and vice versa) for that component usually not be clearly defined and it becomes very

challenging. It can decrease security, increase dependency, may affect performance

because of overhead in communication between components.

84

7.1.14 Further Observation

At the end of survey, we asked respondents to share their personal experience, their

observations and suggestions which we may miss in our survey and it could help us in

our research work. Based on the input given by different respondents we found that most

of the respondents emphasize on low pricing of components, they emphasize on

component security and performance, and they mentioned that component basic

information and component execution information details should be known as well. We

have summaries their suggestion following.

Low-Priced Component: The participated respondents believe that buying a cheaper

component is major risk in component integration process. Cheaper component may

provide all those features which other pricey components have but there is a high chance

that you will end up writing more glue code and your own methods because such

component doesn‟t come with proper documentation or with proper development kit or

with proper interfaces methods. This will raise the chance of risk during integration

process because you may need to write more complex interfaces for this component to

communicate with other components. The methods and objects in such components are

not very precise. Therefore, if you purchase expensive one, then there is very high

chance that you will be writing minimal customize code to connect the component with

other components. E.g. if you are asked to draw network diagram programmatically then

85

you may look for a component who provide API to place these objects. If you buy

cheaper one then you may end up writing several line of code for just creating one node

or line within one diagram which increase developing hours, efforts and may increase

risk chance or possible error chance whereas in other hand if you buy much expensive

one, they highly believe, it will come up with more precise methods and objects and it

will be much easier to create one node or connect different nodes by writing one or two

line of code.

Component Performance & Security: The respondents consider performance of a

component is another major success factors for component integration. They believe, it

should be consider before component integration process. They emphasize that they

should know the size of the component which is basically line of code they have for that

component, the capacity of component which is basically how much amount of work

component can handle and perform. The throughput of the component, which is basically

measures how much data the component can handle in a given time unit, the allocation

time of resources which is basically the time component allocate the physical resource.

The strategies to protect component against viruses, recovery methods in attack situations

and methods to protect the data, it all comes under security of component.

Component Basic & Execution Environment: The respondents found that few of the

components come with basic Information about the component. The component overview

86

information can be helpful in order to understand why the component has been developed

or purchased. Other than that, they believe that component prerequisites information and

component limit or constrains information should also be included in component

documentation. Also component should have some unique name and it should be

mentioned in document.

During component selection or evaluation it‟s very important to know about component

execution environment. They have found this information missing in some of the

available documentation of component. They believe that it is extremely important that

the component execution information should be documented with all the important

conditions. This information may include the component platforms, the

interdependencies, physical resource requirements etc.

7.1.15 Avoid Component Risk:

We have designed the forth section of the survey in order to get just initial idea how risk

can be best mitigated. This part of survey helps us in future work. We have learned from

this section of survey that there should be frequent interactions and meeting with clients.

They should be involved during discussions and during component integration cycle. We

found that most of our respondents strongly agree that it not a good idea to write lot of

glue code between components. It will be hard to maintain and handle. They emphasize

testing over and over before and after component integration. Finally most of the

87

respondents believe that component integrator should have complete knowledge about

the selected component which they are going to integrate.

88

CHAPTER 8

THREATS TO VALIDITY

In this chapter, we will present the possible threats for our study.

8.1 Construct Validity

We believe that our study has no serious construct validity threats because the research

questions are based on the existing literature [1, 6, 9, 16, 21, 27, 36]. To ensure construct

validity, the survey questionnaire was pre-tested internally with five colleagues to ensure

that all questions are meaningful and their respective answers will help us in the result

analysis. All terminologies used in the questionnaire are explained to provide clear

definitions and avoid any misinterpretations. We also provided open ended questions to

89

ensure that respondents knows the correct definition of component and their knowledge,

concepts and understandings about component based systems are clear. Furthermore,

time pressure is another threat to validity. We believe that the time allocated for the

survey was sufficient as the subjects answered all the questions and no one complained

about the lack of time in our communications. Thus, we believe that time is not a

confounding factor in our study.

8.2 External Validity

The inherent limitation of survey-based studies lies in their external validity due to

difficulty in achieving a true random sample of participants. We overcome the external

validity threats in the study by using a variant of the snowball sampling technique [39]

where key practitioners serve as contact points in the organizations involved. The contact

points are then sent the questionnaire, and forward it on to other potential respondents.

Another possible external threat is the location and size of the respondents company.

Hence, it is not easy to generalize these results for all domains. In our study, the

participants belong to Asian, European and Australian small to medium-sized companies

and these companies work in different areas of IT industry. Furthermore, we ensured that

all the potential participants had relevant experience in development of a CBS. We

believe that the results of the study can be generalized for small to medium-sized

companies where software developers are involved in component integration.

90

8.3 Internal Validity

The one possible threat to internal validity is our misunderstanding of respondent‟s

answers. To avoid such misunderstanding, we have reviewed all answers and if we found

any doubt or want to ensure that we have interpreted answers or comments correctly, we

directly contacted to respondent for clarification. Furthermore, most of the respondents in

our survey were bearing master degree and they were software developers, software

architect, integrators and few of them were project managers with 5 - 7 years of

experience in software development and in component based systems. Our survey results

showed that they have taken interest in the survey and based on their experience,

knowledge and skills in component based systems, we believe that they have answered

the survey questions to the best of their ability. To avoid misunderstandings, we were

available via email and phone during the study to clarify any ambiguities in the questions.

91

8.4 Conclusion Validity

In this study, we used standard statistical techniques [39] to either accept or reject the null

hypotheses. We also mentioned the detailed output of the statistical techniques in Table 5

and Table 9. We used both parametric and non-parametric statistical techniques to

validate our results. The Partial Least Square technique was used to cross validate the

results and avoid the issue of small to medium data set size. Furthermore, survey took

about 7-10 minutes to fill in completely and it was designed using standard scales that

allow us to analyze feedback provided by subjects with 5 to 7 years of experience in

software development.

92

CHAPTER 9

GUIDELINES

9.1 Guidelines

In this section, we propose guidelines. The main intention of these guidelines is to

minimize the chances of risk, as much as possible, during component integration process

and to make sure that everything is inline. The guidelines are designed based on earlier

result analysis and open feedback and suggestion from experienced system integrators

and further based on following analysis.

We concluded from our study that lack of requirements conformance is one of the major

factors causing risk chances during component integration. So based on results and

93

studies we found that system integrator should make sure from their side that the selected

component is the right component for the system. To achieve this, system integrators

make sure that the selected component is the desired component by comparing system

requirements with the features offered by a component. There should be frequent

meetings with component provider and all open creative questions related to selected

component must be asked and everything must be noted down for future reference.

Afterwards, a team meeting must be conducted in which all notes are compared. The

exact needs must be listed and then returned to the component provider if needed for

clarification. Finally, after interactive meetings with component provider the selected

component that meets the needs must be determined.

Our study shows that information about component features both technical and functional

is important and they must be documented and checked very well. It may help in

estimating component integration efforts, it also helps to evaluate and assist the

component. We also observe from our study that good relationship with component

provider can help to understand the component in more depth which will further help

system integrator during component integration process. To accomplish this, make sure

that component documentation must include component functional and technical

specifications. It must have component history information; it must have well maintained

versioning information, details of all upgrades even if it‟s minor should be maintained.

The price of component, reviews of a component and details of new features offered by

94

component should be mentioned. The component performance, security and component

execution environment information should be clear and explained. It should also include

complete information of development kit along with explanation of all methods and

objects used in the component. The details for design level changes should be

documented; it will help in architectural changes and compatibility issues. The

comprehensive information should be included about component application interfaces

and wrappers. The source code of a component with proper exception handling and

comments and explanations of each block of code should be included and in sync with

documentation. The past history of component provider should be included; this will help

in making sure that vendor‟s solution is mature and reliable in market. The personal

contact details which may include email address, telephone number, fax numbers etc.

We also learn from our study that component should be trustworthiness. We are referring

trusty component here with component certification and with component interoperability.

In this study, we found that it‟s very important to have certified component. It is required

to ensure that the published properties or specifications of a component have really been

verified. Other than this, we also discover that lack of interoperability standards can

cause risk during component integration. To achieve this, first the component

certification should be verified by checking clients who have used this component

previously and confirm component certification with third-party certifier. Second, make

sure proper standards and conventions defined. The proper comments and explanation of

95

each block and well defined development standards followed and meaningful interfaces

of component are defined which can be easily implementable and compatible with other

components in CBS. Finally the auditing team should audit, verifies, test and ensure

component and component interfaces.

In our study, we found that component testing is very vital process for successful

component integration. Component testing helps to determine the quality of the

component. We discovered that usually the information about integration testing is not

present in available component documentation and lack of component testing raise

chances of risk during integration process. Furthermore, we found that writing wrappers

between components also increases the chances of integration risk. It‟s very hard to test

the component if its interfaces information is not well documented in component

documentation. In order to overcome this, make sure to have complete testing details of

a candidate component, list down all offered features by component for testing. The

component customizing details with information about wrappers/interfaces, methods and

data objects should be included. The Information about component dependencies with

diagrams should be well explained in document. The information about component

internal methods and attributes through diagram should be explained. The information of

component integration testing should be included, component Interfaces testing and other

testing of technical and business scenarios information should be incorporated. The

components should come with test sample data for testing with desired output and test

96

reports. The information about proper exception handling for debugging purpose should

be included. Finally make sure testing results must be in line with business requirements.

Based on our study, further observations and above discussion we propose component

documentation guidelines shown in Figure 7, We categorized the information into four

different sections, named, basic information, detail information, testing and component

provider information.

97

Basic Information

 Name

 Overview

 List of Prerequisites

 Constraints

 Cost

 Reviews

 Versioning

 New Features

 Certification Information

Detail Information

 Technical and Functional Specifications

 Security

 History

 Performance

 Execution Environment

 Interoperability Standards

 Development Kit

 Design Level Details

 Interface Information

Testing

 Test Details

 Customizing Details

 Dependency Information with Diagrams

 Internal methods and objects information with

diagrams.

 Testing Scenario

 Test Data

 Reports

 Debugging / Error handling

Component

Provider

Information

 Overview

 History

 Clients

 Contact Details

Figure 7: Proposed Guidelines

Figure 8 presents the cross reference of guidelines factors with the different hypothesis

and open ended analysis which were tested and presented in earlier sections.

98

Figure 8: Mapping of Hypothesis & Open ended analysis with Guidelines

99

9.2 Validation of Proposed Guidelines

In order to check the applicability of the proposed guidelines and component

documentation template, we carried out an evaluation industrial survey against two type

of audience. First we target those who participated in our initial survey and then in

second survey we target the audience who were not part of our survey. This validation

process is very basic and performed to just get initial idea or assessment about the

proposed guidelines. In future work, we planned to expand our research in this area.

In the first survey, target audiences were the same who participated in our main initial

survey. We filter out those participants who did not responded initially so basically we

sent notification only those 53 participants who actively participated and we got

responses from 35 of them. The main purpose of this survey was to obtain different

perspective on guidelines from experienced system integrators. The structure of the

document and the guidelines were assessed by different practitioners and most of them

agree the content of the document and the flow of guidelines are comprehensive enough

although the following improvements were proposed:

 Give examples of how to use component interfaces

 More detailed information for security and testing against component security.

100

 Expanding Reliability information.

 Detail information about how to modify and adopt component to a new

environment.

 Information about how new features can be added to the component to expand the

functionality of the component.

In the second survey, we target the audiences who were not part of main survey. Overall

we found satisfaction but got following suggestions from few of them to improve it more.

 Instead of using term “debugging” use term “tracing” which is more common in

component based terminology.

 One participant suggested use term “logging” instead of “debugging”.

 Instead of using term “Interface Information”, use term "application programming

interface (API)" which is widely accepted term.

 Execution environment can be changed "supported environments".

 I see support/license information missing or you may have categories it into some

other section.

 In basic information, for reviews, there should be link for open forum where

different reviews posted for the specific component. There should be reference of

review.

101

 Constrains should be part of details information with details of all kind of

dependency and constrains.

102

CHAPTER 10

CONCLUSION AND FUTURE WORK

This chapter concludes the thesis and identifies possible areas for future research

10.1 Conclusion

This research presents the results of an industrial survey. The data was collected from 53

system integrators, with 5 to 7 years industrial experience as CBS integrators, working in

Asian, Australian and European organizations. The aim was to assess the benefits of

available component documentation during the integration process of a CBS and then

finding missing gaps in available component documentation. We also analyzed the

correlation between available component documentation with five integration success

factors namely, early component evaluation, new features and modification information,

103

integration testing, relationship with component vendors and integration effort

estimation. The participants of the survey found the available component documentation

was useful in early component evaluation and discovering new features. However, it is

important to note that on average available component documentation does not provide

enough information to overcome the two most common CBS integration challenges of

incorrect integration effort estimation and integration testing.

This research also presents some of the common risk factors which may occur during

component integration process. These factors are lack of requirement conformance, lack

of testing, lot of glue code or wrappers, uncertified components, lack of interoperability

standards, lack of version control information. The results indicate that some of these risk

factors have impact on making CBS system risk-prone. These factors were tested

thoroughly and analyzed. At the end, research presents the guidelines based on the results

from available component documentation factors, integration risk factors and from open

analysis done by different experienced industrial system integrators. These guidelines can

help system integrator in making sure the successful component integration.

The main idea of this work is to investigate the role and importance of component

documentation, analyze missing gaps in available component documentation, relate the

component documentation with CBS integration factors, identify the risk factors during

104

component integration process, see how component documentation can help in avoiding

such risks and develop guidelines which can be used by any system integrator.

10.2 Future work

For future work, there is a need conduct a series of more controlled experiments to

investigate the fundamental question of whether more detailed component documentation

yields practical benefits during the integration process of a CBS. We believe that there is

a need to analyze integration process risks in a CBS development life cycle. In this thesis,

we only consider five factors and relate them with component documentation but in

addition to these five factors there could be more factors which can be contribute and

relates to component documentation. The further studies are required to understand the

impact of other integration factors such as the importance of component design and

quality attribute information during the integration process of a CBS. In addition to a

system integrator‟s perspective, we also need to analyze integration process with

reference to component vendors, requirements stakeholders and project managers. This

will provide a detailed insight into how component documentation can be improved to

help the successful integration of the selected components for a CBS.

105

Furthermore, future work involves expanding the survey to other countries. There is a

need of further identification of more risk factors which could be faced by any

application integrator during component integration phase and incorporate in industrial

survey. There is also a need to study the industrial common practices about handling

requirements volatility, architectural mismatches, and lack of component support in the

maintenance phase of a CBS. In addition, we need to analyze the importance of

component certification and component knowledge for different phases of a CBS.

Future work also includes more in depth study of component level testing, component

interface and data objects testing, explore methods and models to verify the component

certification and interoperability standards and synchronize the information of all these

strategies with component documentation.

Furthermore, expand and modify the guidelines. More detailed and expand experiments

and tests are needed to validate these guidelines. Based on the results, we may come up

with maturity model for this purpose which will be sort of upgraded version of these

guidelines.

All in all, a more thorough analysis of component documentation, component key factors,

system integrator best practices and component integration risks are planned.

106

APPENDIX A: INDUSTRIAL SURVEY

107

An Industrial Study on the Importance of

Component Documentation: A System Integrator‟s Perspective

We are conducting research at King Fahd University of Petroleum & Minerals (KFUPM)

to better understand risks involved during integration process in Component Based

Systems. It‟s an anonymous survey which will help us to analyze and identify integration

risks in Component Based Systems.

Kindly spare some time to complete the given survey and add brief comments where

needed. Your time and help in this matter will be highly appreciated.

Note: Please feel free to contact me in case you have any ambiguity or need clarification in any question.

SECTION – 1: GENERAL

 1.1 Your current company is situated in?

Asia

Africa

North America

108

South America

Antarctica

Europe

Australia

1.2 Size of your company (Number of Employees/Staff)

1000 +

500 - 1000

100 - 500

50 - 100

< 50

1.3 Your company business area?

IT Consultant

Software Vendors

Telecom Industry

Higher Education

Other

1.4 What is your Education Degree?

Bachelor

Master

109

Ph.D

Other

1.5 Your position in company

Project Manager

Software Architect

Software Developer

Other

1.6 How long have you been involve in component based development (Years)?

7 +

5 - 7

3 - 5

1 - 3

< 1

SECTION – 2: AS A COMPONENT INTEGRATOR

2.1 How important is it to have adequate documentation of component before

integrating it?

110

Adequate Inadequate

5 4 3 2 1

2.2 How important to have early evaluation of a component.

Adequate Inadequate

5 4 3 2 1

2.3 The Information in available component (i.e. Basic information, features,

specifications, versioning, usage history, pricing etc) documentation which comes

with component is not enough to start component integration process.

Strongly Agree

Agree Mostly

Agree Somewhat

Disagree

Strongly Disagree

111

2.4 The information in available component documentation is not enough to in line

all business requirements.

Strongly Agree

Agree Mostly

Agree Somewhat

Disagree

Strongly Disagree

2.5 It‟s hard to learn new component features & modify from available component

documentation?

Strongly Agree

Agree Mostly

Agree Somewhat

Disagree

Strongly Disagree

2.6 It‟s hard to perform integration testing of selected component based on information

in available component documentation?

Strongly Agree

112

Agree Mostly

Agree Somewhat

Disagree

Strongly Disagree

2.7 The available component documentation is not enough to evaluate component?

Strongly Agree

Agree Mostly

Agree Somewhat

Disagree

Strongly Disagree

2.8 How often you locate and fix the problem in individual component?

Often Rare

4 3 2 1

2.9 The information in available component documentation doesn‟t help in debugging

component

Strongly Agree

Agree Mostly

113

Agree Somewhat

Disagree

Strongly Disagree

2.10 How many times your effort estimation for integrating component is accurate?

Often Rare

4 3 2 1

2.11 The available component documentation doesn‟t help in estimating efforts for

implementing component?

Strongly Agree

Agree Mostly

Agree Somewhat

Disagree

Strongly Disagree

2.12 Do you agree that relationship with component provider should be maintained in

order to better understand the functionality and other specs of component?

 Strongly Agree

114

Agree Mostly

Agree Somewhat

Disagree

Strongly Disagree

2.13 Do you agree that there should be frequent meetings with component provider in

order to make sure that the selected component is the desired component?

 Strongly Agree

Agree Mostly

Agree Somewhat

Disagree

Strongly Disagree

2.14Explain briefly about the common information in the documentation which comes

with component.

115

2.15How do you handle the upgrades of components?

2.16Does your organization use commercial component or in-house component?

Commercial

Component

In-House

Component

Both

a. If your answer is Commercial Component/both then what are the main

motivations of using commercial components?

b. If your organization use commercial component then what is the

percentage?

100% 70% 50% 30% or less

c. If 30% or less, then why?

116

2.17How do you determine the quality and reliability of the component?

2.18What risk do you see due to limited control on commercial components?

2.19How do you ensure that you have selected the right component?

2.20Please mention difficulties you faced in integrating components?

117

2.21How do you maintain your relationship with vendor?

2.22How do you test the selected component for integrating?

2.23Do you agree that detecting defect locations (debugging) is difficult in component

base system? (please explain either you agree or disagree)

2.24What is the approach your organization use to certify component and why it‟s so

important?

118

2.25 At your organization, do you have repository for storing and maintaining

commercial components?

Yes No

 (If yes, then what‟s the benefit of doing it? Please explain)

SECTION – 3: COMPONENT INTEGRATION RISK FACTORS

3.1 Having lot of glue code between components.

 Strongly Agree

Agree Mostly

Agree Somewhat

Disagree

Strongly Disagree

3.2 Lack of information about the source component could cause failure of integrating

components.

119

 Strongly Agree

Agree Mostly

Agree Somewhat

Disagree

Strongly Disagree

3.3 Design assumptions or design of a component is unknown.

 Strongly Agree

Agree Mostly

Agree Somewhat

Disagree

Strongly Disagree

 3.4 Lack of component interoperability standards.

Strongly Agree

Agree Mostly

Agree Somewhat

Disagree

Strongly Disagree

120

 3.5 There are high risk factors during component integration causes CBS risk prone.

Strongly Agree

Agree Mostly

Agree Somewhat

Disagree

Strongly Disagree

 3.6 Lack of version control information of a component.

 Strongly Agree

Agree Mostly

Agree Somewhat

Disagree

Strongly Disagree

 3.7 Lack of requirement conformance.

 Strongly Agree

Agree Mostly

Agree Somewhat

Disagree

Strongly Disagree

121

 3.8 Lack of sufficient component testing.

 Strongly Agree

Agree Mostly

Agree Somewhat

Disagree

Strongly Disagree

 3.9 Selected Components are not certified

 Strongly Agree

Agree Mostly

Agree Somewhat

Disagree

Strongly Disagree

 3.10 Lack of knowledge about the selected component and about the component based

system.

 Strongly Agree

Agree Mostly

Agree Somewhat

Disagree

122

Strongly Disagree

 3.11 As Project Manager / Team lead, do you agree that lack of technology and skills in

Component Developers is one of the risk factor?

 Strongly Agree

Agree Mostly

Agree Somewhat

Disagree

Strongly Disagree

SECTION – 4: AVOIDING RISKS DURING COMPONENT

INTEGRATION

 4.1Client should be involved during discussion.

 Strongly Agree

Agree Mostly

Agree Somewhat

Disagree

Strongly Disagree

123

4.2 The wrappers or glue code should be well defined

 Strongly Agree

Agree Mostly

Agree Somewhat

Disagree

Strongly Disagree

4.3 Integration Testing is good approach for implement components?

 Strongly Agree

Agree Mostly

Agree Somewhat

Disagree

Strongly Disagree

4.4 Integrator should have complete knowledge of component?

 Strongly Agree

Agree Mostly

Agree Somewhat

Disagree

Strongly Disagree

124

SECTION – 5: STRENGTHS AND WEAKNESS

5.1 From your point of view, what are the strengths in integrating components?

5.2 From your point of view, what are the weaknesses in integrating components?

125

Suggestions: Please give your valuable input to improve our work. Let us know if we

have missed any area, give us suggestion based on your experience in component based

system, your observations etc which may help us in our research work.

126

APPENDIX B: INDUSTRIAL SURVEY RAW DATA

127

Quantitative Data

1.1 1.2 1.3 1.4 1.5 1.6

Asia

500-

1000 IT Consultant Bachelor

Software

Developer 5-7

Asia 100-500 Higher Education Master

Software

Developer 3-5

Asia 100-500 Higher Education PhD Other 5-7

Asia 100-500 Software Vendors Bachelor

Software

Developer 5-7

Asia 100-500 Software Vendors Master Software Architect 5-7

Asia 50-100 Other Bachelor Other 1-3

Australia

500-

1000 IT Consultant Bachelor

Software

Developer 3-5

Australia

500-

1000 IT Consultant Master Software Architect 5-7

Asia

500-

1000 Telecome Industry Bachelor

Software

Developer 3-5

128

Asia

500-

1000 Telecome Industry Bachelor

Software

Developer 3-5

Asia 1000+ IT Consultant Master Software Architect 5-7

Asia 1000+ IT Consultant Bachelor

Software

Developer 5-7

Asia 1000+ IT Consultant Master

Software

Developer 3-5

Asia 1000+ IT Consultant Master Other 3-5

Asia 100-500 Higher Education Master Other 3-5

Asia 50-100 Other Bachelor

Software

Developer 1-3

Asia 50-100 Other Bachelor Project Manager 5-7

Asia 100-500 IT Consultant Bachelor Project Manager 5-7

Asia 50-100 IT Consultant Bachelor

Software

Developer 3-5

Asia 50-100 Other Master Software Architect 1-3

Asia 50-100 Other Bachelor Project Manager 1-3

Asia 100-500 Higher Education Bachelor Software 3-5

129

Developer

Asia 100-500 Higher Education Master

Software

Developer 3-5

Asia 100-500 IT Consultant Bachelor Project Manager 5-7

Asia 100-500 IT Consultant Master Software Architect 5-7

Asia 100-500 IT Consultant Bachelor

Software

Developer 3-5

Europe 1000+ Software Vendors Master

Software

Developer 3-5

Europe 1000+ Software Vendors Master Software Architect 7+

Asia 50 Other Other

Software

Developer 1-3

Asia 100-500 IT Consultant Bachelor Project Manager 7 +

Asia 100-500 IT Consultant Bachelor

Software

Developer 3-5

Asia 100-500 Software Vendors Bachelor Software Architect 5-7

Asia 100-500 IT Consultant Bachelor

Software

Developer 5-7

130

Asia 100-500 Higher Education Master

Software

Developer 3-5

Australia

500-

1000 IT Consultant Bachelor

Software

Developer 5-7

Australia

500-

1000 IT Consultant Bachelor Software Architect 7+

Asia

500-

1000 Telecome Industry Bachelor

Software

Developer 5-7

Asia 100-500 Other Master Project Manager 5-7

Asia 50-100 Other Other

Software

Developer 3-5

Asia 50-100 Other Other Other 3-5

Asia 100-500 IT Consultant Bachelor

Software

Developer 5-7

Asia 100-500 Other Bachelor

Software

Developer 5-7

Asia

500-

1000 IT Consultant Other

Software

Developer 5-7

Asia 500- IT Consultant Bachelor Project Manager 5-7

131

1000

Asia

500-

1000 IT Consultant Master Software Architect 5-7

Asia 100-500 IT Consultant Master

Software

Developer 5-7

Asia

500-

1000 IT Consultant Bachelor Other 5-7

Asia 100-500 Higher Education Bachelor Other 3-5

Asia

500-

1000 IT Consultant Bachelor Project Manager 5-7

Asia

500-

1000 IT Consultant Master Other 5-7

Asia 100-500 IT Consultant Master Project Manager 5-7

Asia

500-

1000 IT Consultant Bachelor

Software

Developer 3-5

Asia 50-100 Other Bachelor

Software

Developer 1-3

132

2.1 2.2 2.3 2.4 2.5 2.6

4 5 5 3 4 3

4 5 1 3 3 5

4 4 5 3 3 3

3 4 5 2 4 2

3 4 4 3 3 4

3 4 4 3 3 2

5 5 5 3 4 2

5 5 3 1 3 1

5 5 5 3 2 2

5 5 5 3 3 4

5 5 5 3 5 4

4 4 3 4 4 4

4 4 1 1 2 3

5 4 5 1 4 3

3 4 4 1 3 3

2 4 5 2 4 3

133

2 5 5 3 2 3

3 5 3 4 2 2

4 5 4 3 3 2

3 3 5 3 3 2

5 3 4 2 3 3

4 4 3 2 3 4

3 4 5 2 4 1

4 3 3 2 3 4

4 4 4 3 3 3

3 5 5 2 3 4

3 4 5 3 4 1

4 3 4 3 4 5

4 4 4 3 3 2

4 5 4 3 3 4

5 4 5 1 4 1

5 4 4 1 3 5

4 5 5 4 4 3

134

3 4 5 4 5 5

4 3 5 4 3 4

5 4 5 3 3 2

4 5 5 4 4 3

3 4 4 3 3 5

2 4 5 4 4 3

3 4 5 2 5 4

4 5 5 2 3 4

4 5 1 2 1 5

3 5 5 2 5 4

4 4 3 2 3 4

2 5 5 3 5 5

3 5 3 4 3 4

4 4 4 3 4 5

5 5 4 2 4 5

4 3 3 3 4 4

5 4 5 2 3 5

135

4 3 5 2 2 4

3 3 5 3 1 4

3 4 5 4 5 5

2.7 2.8 2.9 2.10 2.11 2.12 2.13

4 2 3 3 3 5 5

2 2 2 2 5 5 4

4 3 3 2 5 5 4

4 2 3 2 3 4 4

4 3 3 2 4 4 4

3 2 2 3 4 3 5

5 3 3 3 3 4 5

5 2 3 3 5 3 5

4 3 2 3 2 4 4

4 2 5 3 5 5 4

4 3 4 3 3 4 4

136

5 1 3 2 4 3 3

3 3 3 2 3 5 3

5 1 3 2 3 4 3

4 3 3 2 4 2 3

5 2 2 1 5 4 3

5 1 2 2 3 4 3

2 1 2 2 3 4 4

3 1 1 2 3 5 4

3 1 1 3 4 3 2

3 1 1 3 3 3 2

2 3 3 3 5 5 4

3 1 3 4 4 5 3

3 3 2 3 3 2 2

4 4 2 4 3 3 2

5 1 2 3 4 4 3

5 1 2 4 4 3 3

4 3 1 3 5 4 5

137

4 2 1 3 1 4 4

4 1 3 4 2 3 3

5 1 4 3 4 4 2

4 3 5 4 4 3 3

2 1 2 3 4 3 4

4 2 4 3 3 5 5

3 2 3 3 4 5 4

4 1 3 3 3 5 3

4 1 3 3 4 4 2

4 2 2 3 5 5 3

5 3 2 3 4 5 4

5 2 3 3 4 4 3

5 2 2 3 3 3 2

4 3 3 4 5 1 3

3 2 2 4 4 5 2

3 1 2 4 5 5 2

5 1 2 4 4 4 3

138

3 1 2 3 5 4 4

4 3 3 2 5 4 4

4 2 3 3 5 3 5

3 1 3 3 5 5 5

4 1 3 4 5 4 4

4 3 2 3 4 4 3

5 1 2 3 5 5 4

5 2 3 4 4 5 3

3.1 3.2 3.3 3.4 3.5 3.6

4 5 5 4 5 4

2 5 5 3 4 4

1 4 5 4 5 3

3 4 5 3 2 4

3 4 4 3 2 3

2 4 4 2 2 2

139

3 4 4 2 2 2

3 4 4 2 2 2

3 5 3 3 2 4

4 5 4 4 2 2

3 5 5 3 3 2

3 5 4 3 3 4

3 5 3 2 3 3

2 5 4 4 2 2

3 5 3 4 2 2

2 4 3 4 2 3

3 4 3 4 3 3

2 5 3 5 2 3

4 4 4 3 5 4

3 3 3 3 3 2

3 4 3 2 3 4

2 5 4 2 2 2

3 3 3 3 3 3

140

3 4 3 4 3 3

2 5 4 4 2 4

4 5 5 4 4 4

3 5 4 3 3 3

3 4 3 2 3 4

3 3 4 3 3 3

4 4 4 4 4 4

4 5 4 4 4 4

5 4 4 4 5 2

5 3 3 3 5 2

2 4 3 5 4 3

3 5 3 3 3 3

3 4 3 5 5 3

2 4 3 3 3 3

2 4 4 4 4 3

4 4 4 4 3 3

3 5 4 5 5 2

141

4 4 4 4 5 3

3 4 3 2 5 2

4 4 3 4 4 2

5 5 4 5 5 3

4 4 5 5 5 2

4 4 5 3 5 2

4 4 4 4 5 3

3 5 3 4 4 2

4 5 4 3 5 2

3 5 3 3 3 3

3 5 3 5 5 2

4 3 4 5 5 4

4 4 3 4 5 4

3.7 3.8 3.9 3.10 3.11

4 3 4 4 3

142

2 4 4 4 3

4 5 4 4 4

2 3 2 5 4

3 3 4 5 4

2 2 3 5 5

2 4 4 4 4

2 2 2 5 3

2 3 3 4 4

2 3 4 3 4

4 3 3 4 4

3 3 4 4 3

3 3 3 3 3

2 2 3 4 2

2 3 3 5 3

4 3 3 4 4

3 4 3 3 3

4 3 2 4 3

143

4 4 4 5 3

2 3 4 4 3

3 3 3 3 4

3 2 2 4 4

2 3 4 3 4

3 3 3 3 4

3 3 4 4 3

4 3 4 4 3

3 4 4 4 3

2 3 4 3 4

3 3 3 3 4

3 3 3 4 3

4 3 4 5 4

3 4 3 4 3

4 3 4 3 4

2 4 3 4 4

3 3 4 3 3

144

3 4 5 4 3

3 3 3 5 4

3 3 3 4 5

3 3 3 3 4

3 3 4 4 3

3 4 4 4 4

3 4 3 4 5

3 4 4 3 4

4 4 4 4 3

3 4 5 5 4

3 3 5 5 3

3 5 4 4 4

3 4 3 4 5

3 4 5 4 4

3 3 3 3 3

4 5 5 3 4

4 3 3 3 3

145

4 4 3 4 3

4.1 4.2 4.3 4.4

3 4 4 5

4 4 4 5

3 5 4 5

3 5 4 4

3 5 5 4

4 4 5 4

4 4 4 4

4 5 4 5

3 5 5 5

3 4 4 5

3 3 4 5

4 4 5 4

3 5 3 3

4 5 3 4

146

3 4 4 4

3 3 4 4

4 3 5 3

3 4 4 3

4 4 3 4

3 5 4 5

3 4 5 5

3 3 4 5

4 4 5 5

5 5 4 5

4 4 4 5

3 3 4 5

5 4 5 4

3 4 4 3

3 4 3 3

5 4 4 3

4 3 4 3

147

4 3 5 4

4 4 4 4

4 5 3 5

5 5 4 5

4 5 5 5

4 4 4 5

3 5 5 4

4 4 5 3

2 5 4 5

3 4 5 4

4 3 4 5

5 4 4 5

4 5 4 4

3 4 4 4

4 3 5 4

3 4 5 4

4 5 5 5

148

3 4 3 5

4 3 3 5

3 4 4 5

5 5 3 4

3 4 3 5

149

Qualitative Data

2.14 Version information and History

Very minimal information

less information

brief information come

sometime depends on component by component but mostly history information ,

version information, pricing information, basic technical specs

and functional

version inform

most of the time it comes with basic function and technical specs

very basic tech and functional specs

basic overview of the component

Most common is about component, functionality and sometime main important

features listed.

Very minimal information like name of component , or basic functionality

Pricing and version information and basic information

Very basic information with price , history , specific features

Overview of component and about the provider

150

Company information and component features

Point to point information about component and about some upgrade information,

version etc.

2.15 follow on development standard

Just replace old one with new one and same time change your code to handle

new change in new component.

Thrugh proper documentation

Proper code design and product is architect so well that it is flexible with

upgrades of components.

Recrd new changes of new component.

Components rule is they should have all features of previous version plus new

ones. Up gradation is not a bottle neck.

Unless it is absolutely necessary we don't upgrade.

Upgrade requires thorough impact analysis and testing and has to be planned

properly.

For proper upgrades, proper versioning should be done and proper builds should

be maintained.

Technical specs should be followed while upgrading and specs should be

updated afterwards.

Just find a new one.

151

By following the documentation provided by the vendor.

Testing new upgrades in test environment and then migration towards production.

ship both the old component for backward compatibility and the new one for new

features.

By consulting the vendor of component, studying the modifications, testing the

upgrade and if successful, put it on live system.

Projection of usage.

Through research,

Clearly define the interfaces (integration interfaces, not visual interfaces) of the

component. Then implement the enhancement in the component's internal

workings. Then test the component to pass the clearly defined interfaces for its

interaction with the system in which it gets plugged in.

Firstly upgrades are always tested on test instances and upon upgrade maturity;

the upgrade is done on production environment.

in touch with vendors and having good knowledge.

By maintaining Component versions.

It is usually plug n play.

I let the provider's consultants worry about it.

Keep the backward compatibility.

trough Version Control

152

2.16

(a)

We use commercial component when something is beyond our skills or if

something we try to develop is already available and different client using it so

it means it’s reliable.

For Commercial Component we use creak copy.

Reliable Support.

Thhe Stability

I think it saves lot of development efforts and why to re invented the already

developed wheel.

Most of the time we found bug frees Commercial Component which can be

easily integrated with little modifications.

 No need to re invent the alrdy develop wheel.

Saves time and effort as there's no need to reinvent the wheel.

We have the enough budgets for so why develop them In-House.

Commercial components mean they are build and tested. And if it’s

commercial they should have good support.

Component is standard in industry make vs. buy analysis comes out to be in

favor of buy.

We are system integrators so that is why we emphasize on commercial

components to save time. We fill in the gaps by making our own component

and taking expertise from across the group.

Technical support.

153

Lesser development time

Easy to use.

The reliable running system without having any last minute surprises at any

level.

Quality, reliability and warranties/support.

Plug n Play.

Standardization.

Ease of use and getting functionality out-of-the-box rather than re-inventing

the wheel.

They are more reliable.

Saving time.

Reduce cost.

Having bug-free components.

Ease of Management.

Least Risky.

Tried and tested component.

Saving time and money on component development.

Time Saving for in-house development.

Proven Record.

Customization not in need.

To avoid reinventing the wheel.

154

To save time.

To have external reliable support for the component.

2.16

(C)

I think I could not answer, it changes with requirements.

Don’t want to get too dependent on other vendors as applications become hard to

debug if any issue arises and you can't always trust outside support on a tough

deadline.

Mostly each project is unique.

Culture of development.

Customized Solutions needed

2.17 We test them separately and check the desire output by giving some sample

data, so it helps us to determine quality of it. For reliability, we check different

clients using the same component or different product where the component is

used.

We make sure that component is certified.

The feature that component provides and we do testing from that component.

Proper analysis in done before using component.

We always prefer known vendor whose solution is matured and reliable in

market. We do not test the component because we believe that one of advantage

of using component is that we can pass through the testing. This saves our cost

155

of testing.

Through trail testing.

Component without reliability is not a component :). But would be impressed with

number of features it offers and how much efficient it is.

Research, forums and evaluation.

Testing and lots of testing!

Black and white box testing.

Various testing.

In this specific case, quality can be defined to fulfill the requirements. If the

component is giving the required output without failing then we say that it is

quality and reliability is good. Reliability can be taken further by saying that

component's integration into the system shall not affect any other integrated

components, i.e. it should be least cohesive.

By reading reviews if available and lot of testing.

Case studies and years in production.

Workshops and through analysis.

By testing all business and technical scenarios in Test Environment.

Unit testing and building test cases for integration.

Peer reviews.

Market share.

Diversity of the provider's clients.

156

Internet professional reviews.

Unit Testing.

Security.

By the branding of the component vendor. By past history use of the component

by others. By our own pilot testing of the component in our own system.

2.18 Same time there bug come from the component that not easy to handle specially

when use executable component and do not have the source code.

Customizing the control to your own needs.

Yes, this is biggest issue we have faced in commercial components. Since we do

not we access.

That’s the bottle neck of using commercial components. It should be properly

taken care of from the start that components are what we require.

They can be hard to replace if the company goes out of business.

Should have after delivery support or it can cause serious financial and

relationship troubles with client.

Less control over component.

Source code not available.

Have to pay for upgrades - even for minor changes.

It might end up processing something which we don’t want.

Application failure leading to system restores and therefore wastes of man hours

157

and service downtime.

Operational and technical risks are involved but they can be different according to

the environment.

Cost of the components.

High maintenance cost.

Tech specs not there

Unforeseen costs.

Upgrades.

Src code not there

Testing not easy

The organization can't build an efficient learning experience since provider will

install, configure and maintain the system. There are employees who have a

good level of knowledge about the component but not to the degree they are

independent of the provider.

Component owner support.

Missing knwldge

Technical details unknown

Lack of Customization.

Fewer Features.

Debugging not easy.

When we want to deliver something highly customized to our customers, we face

158

problem of highly restrictive actions that we can take in customizing commercial

components. If the documentation is not good enough, or worse, if the vendor

created the component not to be customized beyond a certain limit.

2.19 By testing it using some sample data.

If the component has the feature that we want i used it.

Comparing my requirements with the features it offers.

Research for available choices and run a comparison.

Provider’s background on that particular field and its portfolio.

Reviews.

By thorough literature review and by setting up the test environment for a specific

component.

By confirming the results and how they results inline with the requirements.

Quality testing.

If it matches most of the requirements.

Selection of the right component is driven by Business requirements and the ratio

of adaptability of that component towards the requirements.

Research first before selecting the individual component.

Check that the component fulfills the requirements.

Demo, trial, features, and professional reviews.

Through Testing.

159

User Feedback.

Test Cases.

2.20 We usually face when we require modifying it as per our system.

Support Arabic language.

Lack of training lack of support.

Usually platform related if you are working across different platform.

Application design change.

Network workflow change.

Lack of informant about the sourc component give us prb when we perform

integration

Dependency of the specific component on some other non-existent components.

Conflicting DLLS

Most of the time vendor specific code is the essence of component which poses

technical challenges.

Various converters or interfaces may differ from case to case.

Inadequate documentation, received what is not expected, lack of support, too

complex to understand (inadequate and substandard coding and documentation),

no version control. Doesn’t support the deployment environment (non

interoperable).

Documentation is not complete or sufficient

160

Unkown design

Not enough knowledge about the selected component.

Mismatch

Normally if we have 2 components from different vendors we have to write an

ETL interface for getting the components to talk to each other. Similarly,

components need an interface to talk to our legacy systems.

Interfacing matching

Dependency

Especially in integrating heterogeneous components that do not understand each

other, may need to create a wrapper layer for converting one components output

into a format understandable by the other component.

2.21 We keep in touch during each cycle of component integration.

By email.

Don’t you think it’s his Job?

Through channels department.

We prefer to do a service contract for a define amount of time, say for 3 years etc

so if they perform well they get the money.

Mostly by the support contract.

By keeping clear terms and condition in the contracts and keeping good

relationships with the technical peers on vendor's side.

161

Stringent service level agreements.

Making sure they themselves have means to engage their clients like how do

they provide ongoing support to their clients? Are they accessible?

Pay them for their job.

Telephone contact

support

Frequently interactions.

License and support agreement.

Through Email Correspondence.

Through Personal Relations

eMails

2.22 We have some our own test cases and tool use to test the component by giving

the some test data and then check and verify the results.

Go through different features and see if they work, then test its efficiency. BY

efficiency I mean it should not take forever for some fancy work.

POC.

Integration testing

Testing over n over

Unit testing and integration testing.

Various tests.

162

Testing aginst sample data

Make Test Cases.

Automated Testing Tools

Running it on the test instance.

By using any available testing tools available for the particular type of component.

Pilot or demo phases are conducted.

Sample environment, Component, string and UAT etc.

All testing is done on Test environments, which are replicas of Production

environment. We have to write UAT scripts to cover all integration aspects for

testing.

Black box testing.

Professional reviews.

2.23 Yes its not easy, because you are not aware with the source code, usually you

don’t have source code or even if you have then its not easy to understand the

code written by someone using their some own standards and declarations.

Now a days No.

Yes it is.

I think it’s easier, because you can isolate problem first on functional basis and

then target that particular component.

Can be in some conditions.

163

It depends upon the component vendor. If exception and/or handles are properly

written then it’s easy otherwise it’s difficult to figure out proper meaning of certain

errors.

I disagree. It is much easier to track and isolate the problem at component level

by confirming the results. Another advantage is that it is easier to upgrade the

single component as compare to the complete system.

Agree, the actual scenarios may contain unforeseen obstacles.

It depends how adequate you have written your Test Plans.

This is not necessarily true. It depends on the technology on which the

component is developed. Generally speaking, components are executable

binaries which cannot be debugged if the component is vendor based.

Yes it is difficult since the component appears as a black box, one can only check

by providing various inputs and checking the output.

True, as they are trusted black boxes.

I agree because you can attach any process for debugging.

2.24 Features and efficiency.

We don't have any certifying process in our firm.

Quality assurance.

We buy from reliable vendor, no need for certification check.

Usually the engineers raise the requirement to deploy certain component and the

164

KPIs then justify the continuity of it.

Digital certificates are used for login components. The obvious reason for the

security is management requirement.

Testing over and over again using various approaches and scenarios.

Not really.

Contact different clients and make sure that they have no problem using it and it’s

important in order to make sure that selected component is reliable.

No need

Get trusty one.

We follow international standards like COSO and ISO. We also have a IT

Compliance and Audit department for this purpose.

No certification.

Though SM Security

2.25 There is no central repository.

FWe have a repository for all project related artifacts, components, source code

etc. this is for proper configuration management.

Back up purposes.

The components are be reused in any new project and by any other development

unit. That is why the components are maintained in a central repository.

Find the difference.

165

5.1 Flexibility.

Maintenance becomes easier.

Error Isolation.

It’s good to have already built-in components, it save lot of time of development

something from scratch and then integrate, you can save resources, cost and

time etc.

It saves lot of development effort.

We can pass - through the testing phase.

Maintenance cost is saved.

Saves time and effort.

Provides re-usability.

Rapid application development.

Avoids reinventing the wheel.

Can reduce overall cost.

Saves time and money. Considering if the component is reliable and efficient, it

should save your in house development and testing time.

Fast delivery of projects. No need to re invent the wheel.

Management becomes easy. If properly developed then errors are easy to track.

Less costly

NO need to develop from scratch

166

Easy

Save time and cost

Standard design and confirmation of output.

Knowledge should be at par in regards of the technology that you are integrating

for a client.

Ready to use

Ability to purchase what is required and avoid what is not required. Require a

standard body which can establish standard protocols for integration.

No need to spend time to develop something which is already there in market

Less cost more output.

Re-usability, portability, easy maintenance, better quality. Write once, user

everywhere. It’s easier to ensure the quality of the code and maintenance as the

entire application is divided in different isolated units. Each unit/component is only

concerned with its own implementation and how it is exposing its services to the

client. etc.

Integrated components can be reused as per business scenario.

Reusability.

Fast

Ease of use Reuse of component Ease of functionality.

Code reusability results in decreased development time consistency.

We achieve a high level of abstraction since the designer makes the

167

programmer’s job easier by reasoning about individual concerns in isolation from.

Save time

Reliable

They are reliable. They are fast to implement if the organization dedicates proper

resources.

Component based implementations drive No-Single-Point-Of-Failure approach,

are easier to manage and highly scalable.

Time and cost saving. Reliable and tested components doing work. Reuse of

code.

Save efforts

Efficiency and fast

No need to reinvent.

Less time for development.

If the components are well defined with interfaces, with good documentation, it

can speed up building systems by integrating well built components. It helps

avoid rebuilding the wheel.

Verify functional, performance, and reliability.

5.2 Complexity

External dependency.

Lack of control.

168

Lack of information about the source component, not much control over it,

relationship with the provider of the component etc.

Lack of proper information.

Unknown architecture.

Inability to customize.

Lack of full access to source code.

No support from vendor

Poor after sales support.

Can't be customized to business specific needs.

Finding the right components that meets your need may be difficult.

Later you may find out that you made a mistake selecting the component.

Less flexibility.

As it’s not your own code, it might give you bottle necks later.

Support after production. Changes required. No source code.

I don't see any.

Require high level skill set, standards can change for component development.

Lack of skills and not able to see the whole picture while integrating the

components.

Complex structure

Hard to get vvendor support after buying component

If particular standard body doesn’t exist then it could easily fail the whole system.

169

Maintenance Cost to maintain components, vendors etc which can easily blow

out the costs.

Lots of learning.

Not much as long as one component can work independent of another. If there

are different providers of the components then the interfaces/contract (how the

component will interact with other comps and vice versa) for that component must

be clearly defined. Could be hard to find an issue if it is closed source. etc.

None.

Vendor problem

Success of integration depends upon whether the component has been built well

or not. Limitations in component may not match our requirement of the system we

are trying to build using the components.

Iteration and Impact Analysis

Lack of control on the functionality.

Customization problem.

Lack of control over source code. Decrease in security. Increase in

dependencies. may affect performance , because of overhead in communication

between components.

Separation of crosscutting concerns provides the software with a loose coupling

between the different concerns, achieving the usability of a single concern.

Complexity

170

Less control

The know-how is not built as it should be.

Documentation.

Dependence on the knowledge of internal working of a component.

Lot of glue code needed sometimes to fit components in related applications.

Lack of complete information about component behavior.

Security Issues.

Conflict of Components.

 More quantitative and with more point to point question

Nice one but make survey little short,

Too many questions

Good to start

Should be face to face interview as well for these questions

Send me end results

171

REFERENCE

1. Mahmood, S., R. Lai, and Y.S. Kim, Survey of component-based software development
IET Software 2007. 1 Issue:2 (April 2007): p. 57 - 66.

2. Crnkovic, I. and M. Larsson, Challenges of component-based development. The Journal
of Systems and Software, 2002. 61(3): p. 201 - 212.

3. Mahmood., S., The impact of acceptance tests on analyzing component-based systems
specifications: An experimental evaluation, in 10th International Conference on
Computer and Information Technology. IEEE Computer Society 2010. p. 241 – 248.

4. Kotlarsky, J. and I. Oshri, Managing Component-Based Development in Global Teams,
ed. P. Macmillan. 2009.

5. Szyperski, C., D. Gruntz, and S. Murer, Component Software - Beyond Object - Oriented
Programming, ed. Addison-Wesley. 2002.

6. Li, J., Process Improvement and Risk Management in Off-The-Shelf Component-Based
Development, in Department of Computer and Information Science. 2006, Norwegian
University of Science and Technology.

7. Brown, A.W. and K. Short, On Components and Objects: The Foundations of Component-
Based Development, in 5th International Symposium on Assessment of Software Tools.
1997.

8. Crnkovic, I., Component-based Software Engineering - New Challenges in Software
Development, in Information Technology Interfaces, 2003. ITI 2003. Proceedings of the
25th International Conference on 2003. p. 9 - 18.

9. Li, J., et al., Development with Off-the-Shelf Components: 10 Facts. IEEE Computer
Society 2009. 26(2): p. 80-87.

10. Alejandra Cechich, M.P., and Antonio Vallecillo, Assessing component based systems, in
Component Based Software Quality. 2003.

11. Crnkovic, I. and M. Larsson, Building Reliable Component-Based Software Systems. 2002:
Artech House Publishers.

12. Mendenhall, W. and T. Sincich, Statistics for Engineering and the Sciences. 5th ed. 2006:
Prentice Hall. 1060.

13. Capretz, L.F., M.A.M. Capretz, and D. Li, Component-Based Software Development, in
The 27th Annual Conference of the IEEE Industrial Electronics Society. 2001.

14. Mahmood, S., et al., A survey of component based system quality assurance and
assessment. Information and Software Technology 47, 2005. 47(10): p. 693-707.

172

15. Qureshi, M.R.J. and S.A. Hussain, A reusable software component-based development
process model. Advances in Engineering Software, 2008. 39(2): p. 88-94.

16. Kotonya, G. and A. Rashid, A Strategy for Managing Risk in Component-based Software
Development, in 27th Euromicro Conference. 2001.

17. Asokan, S., Component Based Software Engineering. 2007, Cochin University of Science
and Technology.

18. Wallnau., A.W.B.a.K.C., The current state of CBSE. IEEE Software, 1998. 15(5): p. 37 - 46.

19. Heineman, G.T. and W.T. Councill., Component-Based Software Engineering: Putting the
Pieces Together. 2001: Addison-Wesley Professional.

20. Rader., J.A. Mechanisms for integration and enhancement of software components. in
Proceedings Fifth International Symposium on Assessment of Software Tools and
Technologies. 1997.

21. Li, J., et al., A State-of-the-Practice Survey of Risk Management in Development with Off-
the-Shelf Software Components. IEE Transactions on Software Engineering, 2008. 34(2):
p. 271 - 286.

22. Dedolph, F.M., The Neglected Management Activity: Software Risk Management. Bell
Labs Technical Journal, 2003. 8(3): p. 91-95.

23. Boehm, B.W., Software Risk Management: Principles and Practices. IEEE Software, 1991.
8(1): p. 32 - 41.

24. Pressman, R., Software Engineering: A Practitioner's Approach. 6th ed. 2005: McGraw-
Hill.

25. Lewis, G.A., S.A. Hissam, and R.C. Seacord. Building Systems from Commercial
Components. in International Conference on Software Engineering, Proceedings of the
24th International Conference on Software Engineering. 2002.

26. Beaver, J.M., G.A. Schiavone, and J.S. Berrios. Predicting Software Suitability Using a
Bayesian Belief Network. in Proceedings of the Fourth International Conference on
Machine Learning and Applications. 2005.

27. Rashid, A. and G. Kotonya, Risk Management in Component-based Development: A
Separation of Concerns Perspective, in ECOOP Workshop on Advanced Separation of
Concerns (ECOOP Workshop Reader). 2001.

28. Mahmood., S., The impact of acceptance tests on analyzing component-based systems
specifications: An experimental evaluation, in 10th International Conference on
Computer and Information Technology. 2010. p. 241 – 248.

29. Rine, D., N. Nada, and K. Jaber, Using adapters to reduce interaction complexity in
reusable component based software development, in Proceedings of the 1999
symposium on Software reusability, ACM Press. 1999.

30. Dietrich, S.W., et al., Component adaptation for event-based application integration
using active rules. Journal of Systems and Software, 2006. 79(12): p. 1725 – 1734.

31. Parrish, A., B. Dixon, and D. Cordes, A conceptual foundation for component based
software deployment. Journal of Systems and Software,, 2001. 57(3): p. 193 – 200.

173

32. Xia, Y., A.T.S. Ho, and Y. Zhang. Cimo - component integration model. in Proceedings of
Seventh Asia-Pacific Software Engineering Conference, APSEC 2000. 2000.

33. Depke, R., et al. Process-oriented, consistent integration of software components. in
Proceedings of 26th Annual International Computer Software and Applications
Conference, COMPSAC 2002. 2002.

34. Assman, U. A component model for invasive composition. in ECOOP 2000 Workshop on
Aspects and Dimensions of Concerns. 2000. Cannes, France.

35. Suvee, D., W. Vanderperren, and V. Jonckers. Jasco: An aspect-oriented approach
tailored for component based software development. in Proceedings of the 2nd
International Conference on Aspect-Oriented Software Development, ACM Press. 2003.
Boston, USA

36. Li, J., et al., Product Focused Software Process Improvement. A Study of Developer
Attitude to Component Reuse in Three IT Companies. Vol. Volume 3009/2004. 2004:
Springer Berlin / Heidelberg.

37. Li, J., et al. An empirical study on decision making in off-the-shelf component-based
development. in International Conference on Software Engineering, Proceedings of the
28th international conference on Software engineering. 2006.

38. Vitharana, P., Risks and challenges of component-based software development.
Communications of the ACM, 2003. 46(8): p. 67 - 72

39. Kitchenham, B.A. and S.L. Pfleeger, Principles of survey research: Parts 1 - 6. ACM
SIGSOFT Software Engineering Notes 2001 - 2002.

40. Ahmed, F. and L.F. Capretz, The software product line architecture: An empirical
investigation of key process activities. Information and Software Technology 2008. 50:
p. 1098–1113.

41. Ahmed, F. and L.F. Capretz, Managing the business of software product line: An
empirical investigation of key business factors. Information and Software Technology,
2006. 49: p. 194 - 208.

42. Lowry, R. Spearman Rank-Order Correlation Coefficient. 1998-2011; Available from:
http://faculty.vassar.edu/lowry/corr_rank.html.

43. Rumsey, D., Statistics For Dummies. 2003 John Wiley & Sons

44. Simon, S. What is a correlation. 2008; Available from:
http://www.childrensmercy.org/stats/definitions/correlation.htm.

45. StatSoft. Available from: http://www.statsoft.com.

46. Boehm, B. and C. Abts, COTS integration: Plug and Pray? IEEE Computer, 1999. 32(1): p.
135-138.

47. Alves., C., Cots based requirements engineering. Component Based Software Quality.
2003.

48. Piattini, A.C.a.M., Early detection of cots component functional suitability. Information
and Software Technology 2007. 49(2): p. 108-121.

http://faculty.vassar.edu/lowry/corr_rank.html
http://www.childrensmercy.org/stats/definitions/correlation.htm
http://www.statsoft.com/

174

49. Maiden, N.A. and C. Ncube, Acquiring cots software selection requirements. Software,
IEEE 1998. 15(2): p. 46 - 56.

50. Leung, K.R.P.H. and H.K.N. Leung, On the efficiency of domain-based COTS product
selection method. Information and Software Technology, 2002. 44(12): p. 703 - 715.

51. Alves, C. and A. Finkelstein, Investigating conflicts in cots decision-making. International
Journal of Software Engineering and Knowledge Engineering, 2003. 13: p. 1-21.

52. Gao, J.Z., H.-S.J. Tsao, and Y. Wu, Testing and Quality Assurance for Component Based
Software. 2003: Artech House.

53. Ding, Y. and N. Napier. Measurement Framework for Assessing Risks in Component-
based Software Development. in Proceedings of the 39th Hawaii International
Conference on System Sciences. 2006.

54. Pan, J., Software Testing, in Dependable Embedded Systems. 1999.

175

Vita

Name: Azhar S. Khan

Nationality: Pakistani

Born: 5
th

 June 1981

Summary:

 Part-time graduate student of ICS at KFUPM.

 BS degree in computer science from Iqra University (IU), Karachi, Pakistan.

 8 years of industrial experience in software engineering.

 Area of interest includes Component Based Software Development, Software

Outsourcing, and Microsoft Technologies, ERP systems & SharePoint, Database

Design, Analysis and Optimization.

Current Address: P.O.BOX 75021, Khobar 31952, Dhahran, K.S.A

Permanent Address: Malir Cant, Near Jinnah International Airport, Karachi, Pakistan.

Email: azharkhan5@gmail.com

Linkedin: http://www.linkedin.com/in/azharsaeedkhan

mailto:azharkhan5@gmail.com
http://www.linkedin.com/in/azharsaeedkhan

