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Chapter 1

Introduction

In Section 1.1, an overview of numerical optimization is provided for the reader.

Then later on in Section 1.2, an introduction into Constructal Theory is provided,

which is an optimization paradigm dealing mainly with the geometry of a flow

system. After that in Section 1.3, a background on heat transfer is given. In

Section 1.4, a description of how Constructal Theory works with the Coordinate

Search Method is discussed and shown how this is part of a Constructal Search as

defined in the literature [13]. After that in the Sections 1.5, 1.6, 1.7, and 1.8, the

motivations of this thesis work, the scope of the work, the contributions, and an

overview of the thesis is provided in that respective order.

1
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1.1 Optimization Background

1.1.1 Introduction to Optimization

Optimization is the process of choosing the best element from a set of available

alternatives [4]. To understand optimization, the simplest possible case that we can

consider is where we are seeking to minimize or maximize a function by systemat-

ically selecting input values for the function from a given set. This minimum or

maximum value of the function, depending on the optimization problem, is the best

element in the set of the output of the function.

The optimization process described in the preceding paragraph is one of the sim-

plest possible optimization procedure. A large part of the field of Applied Math-

ematics deals with generalizing optimization theory and techniques into different

formulations that can be used to solve a large variety of optimization problems.

1.1.2 Mathematical Formulation of Optimization

In optimization, mathematically we either minimize or maximize an objective func-

tion that is subjected to constraints on it’s variables. The following is a listing of

the conventional notation:

• x - vector of variables of the objective function, also called parameters or

unknowns
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• f - objective function, scalar function of x that is minimized or maximized

• ci - constraint functions, which are scalar functions of x. These constraint

functions specify some equations and inequalities that the unknowns x needs

to satisfy.

With the notation above, we can write the optimization problem as follows:

min
x∈Rn

f(x) subject to
ci(x) = 0, i ∈ E ,

ci(x) ≥ 0, i ∈ I,
(1.1)

E is the set of equality constraints and I is the set of inequality constraints.

An example optimization problem is to:

min (x1 + 3)2 + (x2 − 4)2 subject to
x1 − x2

2 ≤ 0,

x1 + x2 ≤ 3.

(1.2)

We can write the problem using conventional notation:

f(x) = (x1 + 3)2 + (x2 − 4)2, x =

 x1

x2

 (1.3)

1.1.3 History of Optimization

The history of optimization starts with the history of man ever trying to improve any

of the processes that he is using to get more of his objective. Starting from simple

optimization methods such as making sharper tools to increase amount of hunted
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animals, crop rotation techniques to optimize harvest, and methods of star tracking

to optimize time of arrival for sea travels, optimization methods served people in

many fields. With time, the methods in various fields have improved gradually

but with the advent of digital computers in the 1950s, optimization methods have

developed much more rapidly [8].

Some historical examples of optimization include Gauss’ steepest descent tech-

nique. Leonid Kantorovich came up with the linear programming mathematical

technique to help him with the task of optimizing the production in the plywood

industry for the Soviet government in 1939. Linear programming was also used

by George B. Dantzig to mechanize the planning process of a time-staged deploy-

ment, training, and logistical supply program in the late 1940s [2]. In 1947, Dantzig

published the Simplex optimization algorithm. John von Neumann developed the

theory of duality within the field of linear programming that helps in the analysis

of the objective function.

The optimization process involves finding the best or optimal solution to a prob-

lem. For some problems, the best solution would be a maximum of a value such

as maximum return on investment. For other problems the optimal value would be

the minimum of a value such as minimizing the expenses in a factory operation.

In the 1630, Fermat developed a way to find the minima or maxima of a function

by finding the points where the derivative is equal to zero [6]. Fermat’s Theorem

states that the optima This method of finding optOptimization algorithms that have
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been developed based on this method of finding optima at points of the function

where the derivative is zero are called derivative-based optimization algorithms.

However, they perform properly in cases where the variables in the parameter set

are independent and will fail to perform in cases where the variables depend on each

other.

Optimization is the process by which better versions of things are produced.

Optimization can be applied in different fields including stock market investments

by optimizing the portfolio with the objectives of maximizing gains and minimizing

risks, improving the manufacturing process by minimizing transportation costs and

maximizing profits, and optimizing heat flow in thermodynamic structures to men-

tion a few. There are different optimization algorithms that have been developed

over time to suit different types of problems. To optimize a given system, design,

or process, one has to choose a suitable optimization algorithm for the problem as

well as adapt the problem to the chosen optimization algorithm.

Optimization algorithms begin by initially guessing a solution and then they

iteratively improve their estimate until a solution is reached. Convergence is the

term used to describe the event that a solution to the optimization problem has

been reached. A wide variety of optimization algorithms have been developed within

the past 60 years to address different types of problems [30]. Good optimization

algorithms should have the following three important qualities namely:

1. Robustness - The algorithm should perform satisfactorily for a wide variety
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of problems of the same class for all reasonable input values.

2. Efficiency - The algorithm shouldn’t need too much computation time or stor-

age.

3. Accuracy - The algorithm should precisely find a solution without being too

sensitive to errors in the data or rounding errors during computation.

1.1.4 Sub-fields of Optimization

The field of optimization can be divided [4] into the following major sub-fields:

convex programming - this is used when the objective function is convex and

the constraints form a convex set. According to [30]:

• A convex set is one in which the straight line between any two points in

the set is also completely in the set.

• Formally, a set is convex with the following condition: for any two points

x , y ∈ S, α x + (1-α)y ∈ S for all α ∈ [0,1].

• A function is convex when its domain S is a convex set and for any two

points x & y, following is true: f(α x + (1-α)y) ≤ α f(x) + (1-α)f(y), for

all α ∈ [0,1].

• linear programming - optimizing a linear objective function with a set of

linear constraints. This set is called a polyhedron. If it is bounded, it is
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called a polytope.

• second order cone programming

• semidefinite programming

• conic programming

• geometric programming

integer programming - optimization problem in which some or all variables are

restricted to be integers.

quadratic programming - the objective function can have quadratic terms while

the constraints still have to be linear

nonlinear programming - either the objective function or the constraints have a

non-linear component. It is possible that a non-linear program can be convex

but it may not be. The difficulty of solving the problem is affected more by

the convexity of the program rather than the linearity.

stochastic programming - some of the constraints or parameters depend on ran-

dom variables.

robust programming - Instead of using random variables like stochastic program-

ming, robust programming attempts to control the uncertainty of the program

by taking into account inaccuracies of the input data.
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combinatorial optimization - the set of feasible solutions is discrete or can be

reduced to a discrete set. Some examples are:

• traveling salesman problem

• minimum spanning tree problem

• vehicle routing problem

• eight queens puzzle

• knapsack problem

• cutting stock problem

- has applications in :

• AI

• machine learning

• mathematics

• software engineering

infinite-dimensional optimization

metaheuristics

constraint satisfaction - constraint programming is included in this sub-field

disjunctive programming fields dealing with dynamic contexts:
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• calculus of variations

• optimal control

• dynamic programming

• mathematical programming with equilibrium constraints

multi-objective optimization - for example, for a structural design, we can have

two objectives such as minimizing weight and maximizing rigidity. However,

these objectives may be conflicting and therefore we need to make a trade-off

between them. Out of all the possible designs for such a structure, one of the

designs can be very light but not rigid, one can be very rigid but very heavy.

The set of all possible trade-offs is called the Pareto set.

A design is Pareto optimal if it is not dominated by other designs. A design

is dominated by another design only if it is worse in all respects to the other

design. to be a Pareto optimal design, the design should be better than one

design in at least one aspect.

multi-modal optimization - evolutionary multi-model optimization is included

in this sub-field.

1.1.5 Optimization Algorithms

Over the years, a great number of optimization algorithms have been developed.

The algorithms can be grouped as follows [5]:
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• methods calling functions:

– golden section search

– interpolation methods

– line search

– successive parabolic interpolation

• methods calling gradients:

– convergence (trust region, wolfe conditions)

– gauss-newton

– gradientn

– levenberg-Marquardt

– Conjugate gradient

– Quasi-Newton (BFGS, L-BFGS)

• methods calling Hessians:

– Newton’s method

– Sequential quadratic programming

• non-linear programming:

– Barrier methods
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– Penalty methods

– Augmented Lagrangian methods

– Sequential quadratic programming

– Successive linear programming

• convex minimization:

– cutting-plane method

– interior point method

– reduced gradient (Frank-Wolfe)

– Subgradient method

– Semidefinite programming

• linear programming:

– ellipsoid method

– interior point method

– Karmarkar’s algorithm

– Simplex algorithm

• combinatorial algorithms:

– approximation algorithm
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– dynamic programming

– greedy algorithm

– integer programming (branch & bound or cut)

• meta-heuristics:

– evolutionary algorithm

– hill climbing

– local search

– simulated annealing

– tabu search

To optimize situations in which there exists any dependency among the variables

in the parameter set, derivative-free optimization algorithms have been developed.

One such derivative-free algorithm is the Coordinate Search algorithm which is used

in this work to optimize the configuration of heat conducting channels on a disc.

The Coordinate Search algorithm freezes the changing of all variables except one

and optimizes that variable by a line search to go closer to the solution. After

that variable has been optimized, it proceeds to the next variable and freezes the

other variables. This process is repeated until all the variables are optimized in this

manner.
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1.1.6 Applications of Optimization

Optimization has applications in mechanical engineering, economics, operations re-

search, and many other fields. To get a brief idea of the different fields where opti-

mization can be applied the following list is provided as some of the applications of

non-linear programming optimization [30]:

• chemical equilibrium and process control

• gasoline blending

• oil extraction, blending, and distribution

• forest thinning and harvest scheduling

• economic equilibration of supply and demand interactions under various mar-

ket behavioural phenomena

• pipe network design for reliable water distribution systems

• electric utility capacity expansion planning and load management

• production and inventory control in manufacturing

• least squares estimation of statistical parameters and data fitting

• design of aircraft, ships, bridges, and other structures
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1.2 Constructal Theory

A new optimization methodology called Constructal Theory is being used by increas-

ing numbers of people for optimizing thermodynamic architectures. This method is

based on the constructal law stated by Adrian Bejan in 1996 [1]: ”For a finite-size

(flow) system to persist in time (to live), its configuration must evolve such that it

provides easier access to the imposed currents that flow through it.” A tree-shaped

architecture in a given structure is maintained by the flows that move throughout

that structure. These flows may be chemical, fluid, heat, or other types of flows.

In all these different types of flows, there is one principle of how the structures

of these flows are generated. This principle is called the constructal law and it is

deterministic. The principle is the optimal distribution of imperfection.

Constructal theory describes the design of things we see around us in different

fields such as biology, engineering, and geology. For example let us consider a

river drainage basin, which consists of an area (the plain) to point (river mouth)

flow pattern. According to the constructal law, successive configurations of smaller

global flow resistances are required to be generated with respect to time. As a

result, a balancing of resistances is needed between the seepage along the hill slopes

and the main channel flows. The resistances (imperfections) cannot be eliminated

from the system, however, they can be distributed in the system so as to make the

global effect minimal, and make the river basin the least imperfect it can be. With
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time, the river basin changes to become an equilibrium flow-access configuration.

The value of this way of thinking is that it points the mind to the configuration

of a given thing, whether that is a river basin, a cooling system for an electronics

package, or a lung within a body. The unknown in design is the configuration. The

constructal law guides our thinking in an effort to discover the configuration.

For the river basin example, the constructal law finds the tree configuration with

balances between different flow resistances like the Darcy (seepage) flows and the

main channel flows. The tree flow is the theoretically effective method to provide

flow access between one point (source/sink) and an infinity of points (area/volume).

The tree structure provides us with a complexity that allows for multiple-length

scales that are distributed non-uniformly across the given area/volume.

The tree shape and the multiple-length scale features are provided in any con-

figuration that involves a flow between a point and an area/volume. This could

be the flow trees in electronics, city traffic, vascularized tissues, or lightning. The

principle used to generate and discover this tree configuration is universal.

The tree is not the only configuration that is provided by the constructal law.

With fluid flow between two points, a straight tube is the configuration that can be

used. Examples of round tubes in the natural world and from engineering include

blood vessels, volcanic shafts, subterranean rivers, and plumbing.

The configuration generation phenomenon, called design, has scientific principles

which are now becoming known. As a result, it becomes possible to learn to expect
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where opportunities lie for discovering better configurations in different systems

in all kinds of engineering and scientific applications. This strategy reduces the

effort and time required in looking for the optimal design and comes as a benefit of

learning the generation of design as a scientific topic.

The constructal paradigm had its beginnings with Adrian Bejan in 1996 when

he was trying to solve the problem of minimizing the heat resistance between a heat

generating volume and one point [33]. He found that a tree network with every

feature being a result rather than an assumption was the optimal solution for his

problem. From this result, he made the conclusion that every natural tree structure

is also the result of performance optimization from volume to point flow.

The constructal method deals with the generation of the architecture of flows

[33]. To generate a tree-shaped architecture, you start with small pieces and build

up to larger assemblies or ”constructs”. To construct an optimal structure, you

optimize it at every level of scale, starting from its smallest part. According to

Constructal theory, a system’s shape and internal flow structure doesn’t develop by

chance, but by a struggle to perform better.

While designing and optimizing thermodynamic systems [14], Adrian Bejan dis-

covered a deterministic principle to generate geometric form in systems. He found

that form is a result of a struggle for better performance to meet the objective of

the flow system amongst its’ existing constraints. Some of the discovered optimized

geometries are:
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• tree-shaped flows

• round tubes

• river cross sections

Some geometries have regularly spaced internal channels such as:

• compact heat exchangers

• cracked solids

• honeybee swarms

There can be different flow architectures such as:

• flow between volume/area and point (and vice versa), like:

– river

– respiratory system

– circulatory system

• flow between point and point through which the optimal geometry of the flow

would be a straight round tube.

According to Constructal Theory, the macroscopic visible structure of a flow is

derived from the method of flow and not the contents. The flow structure can be

in the form of channels, streets, ducts, and fins. The flow structure will be visible

only if flow has at least 2 regimes of flow with different resistivities (high and low).
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high resistivity flow - Darcy flow, viscous diffusion - covers most of space

low resistivity flow - laminar and turbulent flow - streams n ducts

The geometric balance between flow regimes can cause eddies and Benard convec-

tion.

The strategy in Constructal theory is to start with an elemental volume at

the micro-scale and assemble and optimize at every step of the optimization of

the system towards the macro-scale. The constructal theory also provides a new

time arrow in physics which states that flow structures evolve toward easier flowing

structures. In the case of volume/area to point flows, the smallest volume is known

and fixed. For example, for a disc flow environment, the elemental volume would

be a sector of the circle. The chief unknown of the architecture would be the shape

of this sector. The optimization of the sector can be done by minimizing the global

thermal resistance of the sector.

When a flow system is complex, the currents and resistances are many and

diverse. Higher performance can be achieved by balancing each resistance against

the rest. The distribution and redistribution of resistances is done by means of

changes to the architecture. Flow systems should be free to change. Morphing is

the result of collisions between the global objective and the global constraints of the

system. When the structure of a macroscopic flow system is complex, it can have

many tree-shaped paths for the flows within it. The interstices of the flow system
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(spaces between the smallest flow branches) can be filled by elemental systems. The

structure can have multiple scales of length, time, and force.

Constructal theory is comprised of many lessons learned in terms of finding the

optimal geometry for a given flow system. These lessons are made use of in order to

more quickly find the optimal geometry for a given flow system. Some the lessons

are:

• single duct with large cross-section offers smaller flow resistance than 2 ducts

with smaller cross-section connected in parallel

• lowest resistance belongs to shortest duct

• duct whose cross-section doesn’t vary longitudinally offers lower resistance

than one with variable cross-section

• for point-to-volume/area flow, the best architecture is a tree

• straight duct is the best geometry for point-point flows

• the optimal size step between branching levels is Di + 1/Di = 2( − 1/3).

Starting with Murray’s study of blood vessels, many studies have shown this.

• The are smaller numbers of branches when:

– point flow has access to all directions around that point

– point flow is toward one direction only
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• We can improve tree geometry by allowing it more freedom to morph.

Lessons are available for some cases but not for all, therefore for new flow sys-

tems, new constructal configuration searches need to be performed to find the op-

timal flow geometry.

Constructal theory is different than traditional design which works by building

a model (which is an assumed macro-configuration) and works on optimizing it. If

time and money permits, 1 or 2 alternatives may be produced in the traditional

design methodology. The ”constructal strategy liberates designer from straight-

jacket of modeling (assumption of certain macroscopic structure)”. The ”physical

configuration is the chief unknown in design”. The ”configuration of complex system

will eventually fit inside specified constrained macroscopic volume”.

The architecture of a flow system is a set of geometric variables that can be

optimized at each assembly level. The geometry isn’t random but results from

principle - which is the optimal distribution of imperfections within the system.

For this reason, tree structures can be found everywhere in nature and engineering.

Good geometry makes a system achieve the highest performance therefore geometry

is important.
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1.3 Heat Transfer Background

To make sure that the reader is familiar with the heat transfer terminology that

will be used throughout this thesis, a concise background is provided in this section

which will go over heat conduction concepts and different heat conducting structures

that can be used for cooling purposes.

Heat transfer refers to the flow of energy between systems.

To understand heat transfer, let us imagine a gas in which there exists molecules

that are moving by translation, vibration, and rotation. These movements of trans-

lation, vibration and rotation of the molecules are due to the energy that is going

through those particles that are making up the gas matter. The temperature of the

gas is associated with this energy of the constituents of the gas matter. When two

particles collide in the gas environment, a transfer of energy from the more energetic

to the lesser energetic particle takes place. This is called heat conduction and it al-

ways takes place from a region of higher temperature (with more energy) to a region

of lower temperature. So whenever we have a temperature gradient, energy trans-

fer or heat conduction takes place towards the direction of decreasing temperature.

Whenever we have a net transfer of energy by random molecular motion towards

any direction, this process is called a diffusion of energy. Diffusion is defined as the

random movement of particles from areas of higher to lower concentrations. We can

conclude that heat transfer or heat is moving energy due to a temperature gradient.
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There are different types of heat transfer that can occur:

1. Heat conduction - occurs between two stationary mediums

2. Heat convection - occurs between mediums that are moving relative to each

other such as a moving fluid over a surface

3. Thermal radiation - is the energy that is given out by all objects that have a

temperature

4. Phase-Change transfer - is the energy generated as a result of a phase-change

in a given matter

Heat conduction can occur through the movement of free electrons on a given

matter. Heat conduction can also take place with the lattice vibrations of a matter

[3]. The rate of heat conduction decreases as the density of the matter decreases. In

general, metallic matters are the best heat conductors because they have metallic

bonds rather than covalent or ionic bonds between its atoms.

It is possible to quantify heat transfer processes by using rate equations which

measure the amount of energy transferred per unit of time. For heat conduction,

we use the Fourier equation to calculate the amount of heat transferred. Fourier’s

heat conduction equation is a phenomenological law which means that it is based on

observations only and not derived from existing theory [25]. To take an example,

let us imagine a cylinder rod that is insulated on its surface and end faces are
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maintained at different temperatures T1 > T2. Due to the temperature difference,

heat will flow from the first end along the positive x direction to the second end. In

this experiment, we are able to measure the heat transfer rate qx and want to find

its relation with the following variables:

1. △T - this is the temperature difference between end 1 and end of the cylinder

rod

2. △x - this is the rod length

3. A - cross-sectional area

To find if the variables above are directly or indirectly proportional to the known

heat flow rate qx, first, we can imagine a case where for the cylinder rod, we hold the

△T and △x constant and allow variation in qx and A. For this case, we find that

as the heat flow rate qx increases, the cross-sectional area A will also increase. If we

hold △T and A constant and allow △x to vary, we see that by increasing qx, such

as by increasing the temperature T1 at the first end, the temperature at T2 may

rise but it won’t rise enough to maintain the previous △T , so to keep the previous

△T constant, we need to reduce △x. This shows that △x and qx are inversely

proportional. Then if we hold A and △x constant, we see that increasing △T will

also increase qx. Hence we have the following proportionality between the variables:

qx ∝ A
△T

△x
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Even by changing the material of the rod, the above proportionality still holds.

For the same values of A, △T , and △x, the value of qx changes by changing the

material. For example, for plastic, the qx value will be lower than that for metal

even when we keep A, △T , and △x equal for the two materials. We can convert the

proportionality above into an equation by introducing a coefficient that will reflect

the behavior of different materials:

qx = kA
△T

△x

In the equation above, k is the coefficient for thermal conductivity and an im-

portant property of any material. By taking the limit as △x → 0, the heat rate

equation becomes:

qx = −kA
dT

dx
(1.4)

The heat flux equation becomes:

q′′x =
qx
A

= −k
dT

dx
(1.5)

The minus sign is put into the equation because heat rate increases going towards

the place in the material where the temperate decreases. Since the heat flux is a

directional quantity, we can use vector notation to write a more general equation of

heat flux:

q′′ = −k∇T = −k

(
i
∂T

∂x
+ j

∂T

∂y
+ k

∂T

∂z

)
= iq′′x + jq′′y + kq′′z (1.6)
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1.4 Constructal Theory with the Coordinate Search

Method

When we have a multi-variable function that has independent variables, gradient-

based approaches can be used to find the optimum value (minimum or maximum)

of that function.

However when we have a function whose variables are dependent on each other,

we cannot use partial differential equations. Often the solution of multi-variable

optimization problems is desired to be found with a gradient-free algorithm. This

can be the cases when gradient evaluations are difficult and/or gradients do not

exist.

The Coordinate Search Method is one such gradient-free algorithm. It’s advan-

tages are that it is:

• very simple to implement

• relatively robust

• not requiring of any gradients

Some of the disadvantages of this algorithm are:

• may take a lot of calculations

• converges more slowly than the steepest descent method
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• can get stuck needing special tricks to move along

The Coordinate Search Method is also called:

• Cyclic coordinate method - CCM

• Alternating variables method

• Coordinate descent method

As mentioned in Section 1.2, for some flow systems for which the optimal geom-

etry is not known, a new constructal configuration search needs to be done. Rather

than performing an exhaustive search that would take a long time, the coordinate

search method is to be applied to find the optimal configuration which is based on

a set of possibly dependent variables that make up the architecture or configuration

of a flow system.

1.5 Motivation of the Work

The approach to the optimum design is based on the constructal law, which considers

minimizing the heat losses (or heat resistance) in the system. A flow system has

four components: objective, behavior (which can be modeled by equations such as

Bernoulli’s equation or others depending on the types of flows), constraints (such

as system size, available material for flow channels, etc.), and the geometry of the
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flow system. For a flow system, given the first three components, the constructal

design method aims to produce the optimal geometry for that flow system.

For a given set of conditions for a known flow system, a constructal configura-

tion for the geometry is expected to make the flow system perform optimally. For a

different set of conditions for the same system, a different constructal configuration

is required. Some flow systems that have Y-shaped junctions with laminar flow

have known constructal configurations such as having bifurcated sub-branches hav-

ing a width of half of the parent branch. These known optimal relations between

the different parts of a geometry have been discovered. However the constructal

configuration found for one set of conditions may not by the optimal configuration

for the same flow system under a different set of conditions. A new constructal

configuration needs to be found for the new set of conditions.

In this work, we developed an easy way to specify conditions for a heat flow

system on an insulated disc and a way to search for the constructal configuration

for that system. We have automated this process on one of the simplest cases,

so as to successfully complete it. This is the first step in the development of an

artificially intelligent constructal design tool whose function is to produce optimal

configurations for any given flow system. The user will provide the objective of a

flow system (such as to maximize heat flow) and the constraints of the system (such

as the size and amount of material used for flow channels) and the Constructal

Design Tool will identify Insha’Allah the equations for modeling the behavior of
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the system (such as heat flow equations in our case) and perform a search for the

constructal configuration. This search may also utilize the parallel hardware so as

to reduce the computation time if possible.

1.6 Scope of the Work

The scope of this work is limited to producing constructal configurations for heat

flow coming from the center of an insulated disc and flowing across conducting

channels towards the circumference of the disc. The configuration can have only

one bifurcation level and each branch can be split up to five ends. This serves as a

foundation to develop the artificially intelligent Constructal Design Tool that should

recognize the types of flows running through a described system and draw, discretize,

and apply the appropriate equations on the discretized mesh in the process of finding

the optimal configuration for the system whose description comes from the user of

the tool.

1.7 Contributions

Constructal theory can be utilized for geometric optimization to find the optimal

design for any given flow system. However, there was no tool currently available

that easily allows one to produce designs that are based on constructal theory and

consequently see the heat distribution on those designs. With this thesis, a tool was
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developed that can produce an optimally configured disc (with one bifurcation level)

when provided a volume constraint for the heat conducting channels and a range

of acceptable number of branches. The coordinate search optimization method

was tailored to solve the optimization of the configuration of the heat conducting

channels on the disc.

1.8 Thesis Overview

The thesis is organized as follows:

1. Chapter 2 provides a literature survey on papers that are related to the topics

covered in the thesis, namely Constructal Theory and optimization methods,

with emphasis on the Coordinate Search method.

2. Chapter 3 talks about how the Coordinate Search Method works and discusses

how it was implemented to solve the objective of the thesis, namely to find an

optimal configuration of heat conducting channels on a disc.

3. Within Chapter 4, the results achieved by performing an exhaustive search

through the search space are discussed as well as the results and performance

of the Coordinate Search Method. A sample set of screenshots of the results

are also provided in this chapter.

4. Chapter 5 concludes the thesis with a summary of the thesis work, highlighting
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the benefit of using the Coordinate Search method for constructal configura-

tion searches. The benefit of bifurcating flow channels is also pointed out. A

section on the future possibilities of extension of this thesis work discusses the

design of a more general Constructal Design Tool that can be used to optimize

any flow geometry in general.



Chapter 2

Literature Review

The literature review will cover recent papers for topics related with Constructal

Theory and with optimization and the Coordinate Search Method in particular.

The first section of the review talks about papers in which ideas from Constructal

Theory were used to optimize systems with different optimization objectives. The

second section deals with papers that reported their performance analysis on Con-

structal systems as well as papers that talk about the application of Constructal

Theory to optimize a variety of different types of structures. The third section re-

views a paper that praises Constructal Theory and compares it to other theories

in science. A paper that argues against Constructal Theory is also review in this

section. The next section reviews papers that talk about an assortment of different

optimization methods available today. The sixth section discusses papers dealing

with optimization tools that can be used to assist in the optimization process such

31
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as algorithm configuration tools. The seventh section reviews papers that talk about

the Coordinate Search method, and the last section covers some papers that discuss

optimization for large-scale problems with large search spaces.

2.1 Optimization Objectives

In constructal design method of flow systems, there may be many different objectives

to aim for in order to optimize a given system. Chen et al. [17] have followed the

constructal design method to minimize entransy dissipation for volume to point heat

conduction. They showed that the constructs based on entransy dissipation could

decrease the mean temperature difference better than the constructs based on the

minimization of the maximum temperature difference and could improve thermal

conductivity greatly.

Chen et al. [16] in another study, have aimed to minimize thermal resistance

to optimize a heat exchanger. They have found that there is no one-to-one corre-

spondence between the minimum entropy generation rate and the maximum heat

transfer rate therefore; the minimum entropy generation principle can’t be used for

heat exchanger couple optimization.

In another paper, Chen et al. [15] have minimized the constructal entransy dis-

sipation of an electromagnet. They have concluded that the optimized constructs

based on the minimization of entransy dissipation are the same as the constructs
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that are based on the minimization of the maximum temperature difference when

the density of the thermal current in the high conductive link is linear with the

length of the construct. They were different only when the density of the thermal

current was not linear with the length of the construct. Their results showed that

the solenoid (electromagnet) that was optimized based on the minimization of en-

transy dissipation was considerably larger than the one optimized only from the

electromagnetic point of view.

Rocha et al. [34] have done a constructal design for cooling a disc-shaped area

by conduction. They have employed a strategy of optimally placed inserts of highly

conductive material based on the principle of the minimization of global resistance.

Ghodoossi [19] studied the entropy generation rate in uniform heat generating

areas that were cooled by conducting paths and used this as a criterion for rating

the heat flow performance of constructal designs. He reported that the heat flow

performance did not necessarily increase with the increase of the internal complexity

of the heat generating area.

2.2 Performance Analysis and Optimum Design

of Structures

There have been many papers published with regards to analyzing the performance

of a variety of different structures based on constructal theory and talking about the
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process of optimizing those structures. Kundu and Bhanja [27] have analyzed the

performance and optimization of a constructal T-shaped fin that was subjected to

a variable thermal conductivity and convective heat transfer coefficient. They have

found that the present analytical model for thermal performance always predicts

an under value for fin performance compared to published results; whereas the

analytical model established by the authors determines an optimum heat transfer

rate and produces an over value.

Arslanturk [10] has studied the optimum design of space radiators that have a

temperature-dependent thermal conductivity. He has found that the performance

of a radiator is significantly affected by variable thermal conductivity if it is the

case that there are large temperature differences.

Wei et al. [36] studied the constructal optimization for discrete variable cross-

section path for a flow between an area and a point. They have found that the

minimum of the maximum thermal resistance can be obtained by assembling the

cross-section conducting path based on constructal theory. They have also found

that the optimized minimum thermal resistance that is based on a variable cross-

section conducting path is smaller than the one that is based on a constant cross-

section conducting path. Also, when the optimum number of lower-order constructs

that are used to assemble higher-order constructs was fixed, the constructal method

based on discrete variable cross-section conducting paths further reduced the ther-

mal resistivity.
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Chen et al. [16] have optimized a heat exchanger by minimizing thermal resis-

tance. Raja et al. [32] have looked at the thermal performance of a multi-block heat

exchanger that has been designed on the basis of constructal theory. The results of

their study showed that the constructal heat exchangers that are both finned and

unfinned have an effectiveness that is around 20% higher than conventional heat

exchangers under similar conditions.

Chen et al. [15] have minimized the constructal entransy dissipation of an elec-

tromagnet. The results of their study showed that for a fixed G and φ, the minimum

mean temperature difference decreased as the number of cooling disks n is increased.

As n increased so did the length of the solenoid (electromagnet), and the radius and

volume decreased. As a result, the solenoid that was optimized based on the min-

imization of entransy dissipation was considerably larger than the one optimized

only from the electromagnetic point of view.

Daguenet-Frick et al. [18] have designed a constructal micro-channel network

for flow-boiling in a disc-shaped body. They have observed that the highest tem-

perature is found where the distance between two micro-channels is the largest

(predominantly at the edges). They have shown that Murray’s law is the best solu-

tion for characterizing successive diameter ratios for complex structures. From their

work, they have concluded that increasing the number of channels will decrease the

thermal resistance however complicated the structure may be. The use of a ra-

dial structure that has 2n0 central channels turned out to be more efficient than a
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one pairing level design that had n0 central channels. When the pumping power

is low, the radial flow pattern provided the least thermal resistance. In the case

of medium pumping power, having a design with pairing level displayed the lowest

thermal resistance. For high pumping power, a two pairing level design showed the

best solution. They have also concluded that complexity is not necessarily the best

solution.

Rocha et al. [34] have done a constructal design for cooling a disc-shaped area

by conduction. They have employed a hierarchical strategy to develop an optimal

internal structure of a round heat-generating body that was cooled at its center with

the help of optimally distributed inserts of highly conductive material placed based

on the objective of the minimization of global resistance that was subject to global

constraints (total volume and total volume of the highly conductive material).

Kuddusi and Egrican [26] analyzed fourteen different constructal theory appli-

cations that involved tree-shaped flow networks and have seen that the constructal

designs did not necessarily improve flow performance with increases in the internal

branching of the flow field.

Xu et al. [38] studied heat conduction in fractal tree-like branched networks.

They have found that the effective thermal conductivity of the branched networks

is always less than that of a single channel, and that the value for the thermal con-

ductivity can go to zero in certain conditions. When the branching number N was

fixed, the heat conduction rate reached a maximum at a given diameter ratio βm.
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This value for the diameter ratio corresponded to the fractal dimension Dd = 2.0.

They have also found that the heat conduction in the branched networks was very

different from Murray’s law for both the laminar regime and the turbulent flow

regime. Boichot et. al. [14] examined the process of tree-network structure genera-

tion for heat conduction by cellular automaton. They proposed a simple algorithm

to solve the case of cooling a heat generating surface by means of conduction. Using

simple assumptions and basic rules, the algorithm equalized thermal gradients be-

tween high and low conductive materials on the surface. This led to the emergence

of a tree-network configuration. Comparisons with the analytical constructal theory

showed that in all test cases, the cellular automaton produced the same result as

the analytical theory.

2.3 Constructal Theory Praise and Criticism

There are many papers that praise Constructal Theory and how it works and that it

describes a new physical law that governs the geometry of flow systems. There also

those papers which put forward a view of Constructal Theory not in as favorable a

light of the first type of papers. Pramanick and Das [31] sought the basis of analogies

among physical theories and documented how Schmidt’s criterion of fin design, the

tangent law of conductive heat transport, and Fermat’s principle of geometrical

optics are special conditions of the method of synthetic constraint, which in turn is
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a natural consequence of the constructal law.

Kuddusi and Egrican [26] have made a critical review of constructal theory.

Among the fourteen different constructal theory applications that involve tree-

shaped flow networks that they have analyzed, they have reported that the construc-

tal designs did not necessarily improve flow performance if the internal branching

of the flow field is increased. On the contrary, they wrote that the performance will

predominantly be lowered if internal branching of the flow field is increased.

2.4 Optimization Methods Review

There are a plethora of optimization methods available that are being used to solve

problems in many fields of science, engineering, and other fields such as investing.

There are also different types of optimizations methods available that can be used

for different purposes. Torczon and Trosset [35] have briefly surveyed the history of

pattern search methods and have identified their common structure and pointed out

the key features that the Nelder-Mead simplex algorithm lacks. They have given

some practical suggestions to use pattern search algorithms in serial and distributed

computing environments.

April et al. [9] have prepared a tutorial on using optimization methods such

as the Tabu Search, Scatter Search, Mixed Integer Programming, and Neural Net-

works together with simulation. They have shown that two possible applications for
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these optimization techniques are project portfolio management and supply chain

management.

Hansen et al. [20] have investigated particle swarm behavior on ill-conditioned

functions and have found that the performance is very good. They have argued that

invariance properties such as rotational invariance, and others, are desirable because

of the improvements in the performance prediction. Auger et al. [12] compared the

performances of the quasi-Newton BFGS algorithm, the NEWUOA derivative free

optimizer, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), the

Differential Evolution (DE) algorithm, and Particle Swarm Optimizers (PSO). The

benchmark function used for comparing reflected important challenges faced in real-

world problems. Performance depending on the conditioning of the problem and

rotational invariance of algorithms was investigated.

Yuan et al. [40] compared the performance of three modern continuous optimiza-

tions algorithms, MADS, BOBYQA, and CMA-ES, with population-based iterated

sampling and random sampling to automate algorithm configuration of numerical

parameters. Their experiments showed that BOBYQA had the best performance

for low-dimensional problems and CMA-ES seemed to be robust over all dimensions.
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2.5 Optimization Tools

Along with the developed optimization methods that are being used, some opti-

mization tools have also been developed to help in configuring the parameters that

are being used by the optimization algorithm in order to find the optimal case

among large sets of possibilities. Adenso-Diaz and Laguna [7] describe the devel-

opment of CALIBRA, a tool that attempts to discover the best values for up to

five search parameters for a given procedure. CALIBRA uses Taguchi’s fractional

factorial experimental designs together with a local search procedure. Search re-

sults are not guaranteed to be optimal. The authors have tested CALIBRA with

six existing heuristic-based procedures and have found that CALIBRA was able to

match or improve the performance compared to the performance of the procedures

with parameters suggested by the procedure developers.

Hutter et al. [23] described an automatic framework for the algorithm con-

figuration problem. They have reviewed a family of local-search-based algorithm

configuration procedures and have presented new techniques to speed them up by

adaptively limiting time spent on individual configuration evaluations. Using their

automated algorithm configurations procedures, the authors have reported substan-

tial and consistent performance improvements.

Audet and Orban [11] devised a general framework for identifying locally opti-

mal algorithmic parameters. Their framework utilized a tailored surrogate function
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to steer the search towards a local solution. They utilized the Mesh Adaptive Direct

Search (MADS) algorithm for the non-smooth optimization of expensive functions.

Hutter et al. [22] experimentally investigated model-based approaches to optimize

the performance of parameterized randomized algorithms. They have found that the

sequential parameter optimization (SPO) method offered the most robust perfor-

mance. They have proposed a new version of SPO called SPO+ that was developed

as a result of investigation into the design decisions of SPO and the performance

consequences of each decision. The authors have demonstrated that SPO+ achieved

state-of-the-art performance compared to other parameter optimization approaches.

2.6 Coordinate Search Method

Among the various optimization methods that exist today, the coordinate search

method is an optimization method that has often been used in practice [30] to

find the optimal case for different optimization problems. Huyer and Neumaier [24]

presented a global optimization algorithm that is based on a multi-level coordinate

search. They stated that this algorithm is guaranteed to converge if the function

is continuous within the neighborhood of a global minimizer. Their test results

showed that the MCS is competitive with existing algorithms for problems with

reasonable finite bound constraints and that MCS did better most of the time for

classical test problems from the Dixon and Szego set with bounded constraints. For
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unconstrained problems of dimensions greater than or equal to 4, the MCS performs

less than satisfactory.

Hong [21] proposed to solve the optimization-via-simulation problems with integer-

ordered decision variables by means of the coordinate search algorithm. He showed

that the generated solutions are guaranteed to converge to locally optimal solutions.

He also compared the coordinate search algorithm to the COMPASS algorithm.

Yu et al. [39] presented two methods for speeding up iterative reconstruction (IR)

methods by substituting 1D line search with one-step updates using the coordinate

descent optimization (another name for coordinate search method [30]). They have

found that these two methods greatly reduced the IR computation with no loss of

convergence speed.

Lin [28] proposed an efficient parallel processing multi-coordinate descent al-

gorithm with line-search to solve large-scale unconstrained optimization problems

with sparse structures. He has proved that this method will converge and stated

that it is efficient as well. Torczon and Trosset [35] have briefly surveyed the history

of pattern search methods (of which the coordinate search method is one [30]) and

have identified their common structure and pointed out the key features that the

Nelder-Mead simplex algorithm lacks. They have given some practical suggestions

to use pattern search algorithms in serial and distributed computing environments.
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2.7 Large-Scale Optimization

A lot of times, optimization algorithms can perform well by finding locally or glob-

ally optimal solutions on limited sets in reasonable time frames. Some optimization

algorithms are designed to find optimal solutions in much larger sets. Lin [28]

proposed an efficient parallel processing multi-coordinate descent algorithm with

line-search to solve large-scale unconstrained optimization problems with sparse

structures. He has proved that this method will converge and stated that it is

efficient as well.

NESTEROV [29] proposed new methods to solve large-scale optimization prob-

lems. His technique is based on random partial updates of decision variables. His

results indicated that this technique provides a high degree of efficiency for opti-

mizing large-scale problems. Wetter [37] have developed an adaptive simulation

precision control algorithm that can be used together with a family of derivate-

free optimization algorithms to more robustly simulate thermal energy in entire

buildings. There results show that their coarse approximation strategy reduces the

computation time upto 77%.



Chapter 3

The Coordinate Search Method

Among the various optimization methods that exist today, the coordinate search

optimization method was found to be the most suitable for our specific purpose

of finding the best configuration of heat channels in our constructal design method

search phase. This is because our specific case requires a derivative-free optimization

method and the coordinate search method was one of the easiest to use and was

sufficient for the task at hand. In this chapter, first an overview of the coordinate

search method will be provided. Then a discussion of the Constructal Design Tool

will be provided as well as a description of how the coordinate search method was

practically applied in the thesis work to find the optimal configuration of heat

conducting channels on a constructal disc.

44
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3.1 Theory

The coordinate search method is a very intuitive way of finding the optimal solution

to a multi-parameter problem in which the parameters are dependent on each other.

Let us say that we have a 2 dimensional problem where the search parameters that

we have are called x1 and x2. To find the optimal case with the coordinate search

method, for the first iteration of this method, we will freeze all the parameters

except for the first one, in this case, x1 and optimize x1. By optimizing x1, it

means that we will go through all the possible values for x1 and for each value, we

will look at the objective function, we will then keep track of the value of x1 that

gives us the best value from the objective function among all the possible values

for x1. Once we have found the optimal value for x1 with x2 frozen, now we will

move on to the second iteration of the coordinate search method and freeze x1 with

its optimal value and optimize x2. Once we have found the optimal value for x2

(based on the objective function), we will have then run n iterations, where n=2 in

this case. We compare the minimum value of the objective function found so far

with the minimum value found in the last n iterations (which is nothing) and note

that things are improving so we move on to the next n iterations of the coordinate

search. We continue the process for the next n iterations and if the minimum value

is reduced even further, we move on to the next n iterations. If it is not reduced,

or it increases, then we stop the coordinate search.
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3.2 Constructal Design Tool

MATLAB has a Partial Differential Equation Toolbox (PDE Toolbox) available

since many years. This useful toolbox allows one to draw a diagram of the system

that they are analyzing and then the PDE Toolbox will automatically discretize your

drawing into a mesh and solve a partial differential equation on the nodes of the

mesh. Before solving the PDE equation on your mesh (such as the heat equation),

the user can also specify the heat conductivity (k) and heat generation (Q) values

for the different regions of the drawing of the system (such as the branches or the

disc, for example).

Even though the PDE Toolbox is very helpful in being able to solve PDE Equa-

tions on arbitrary geometries, the drawing of the geometries themselves may take

quite some time and meticulous effort especially if many components are involved

in the system. For this purpose, a Constructal Design Tool was developed in the

C language using the Open GL library to be able to quickly produce the required

geometry and feed the x and y coordinates of the geometry as input into PDE

Toolbox for the solution of the heat equation to be computed.

Initially, the Constructal Design Tool helped greatly in terms of speed of being

able to generate new disc configurations and then solve the heat equation on them

with PDE Toolbox to get the temperature distribution on the disc. However, for

a lot of cases, the geometry that was inputted into the PDE Toolbox from the
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Constructal Design Tool was producing errors and therefore, the heat equation

wasn’t able to be solved on those geometries. For the cases which did work, the

time for computation was getting to be very high (see Table I and Table III for

computation times).

3.3 MATLAB PDE Toolbox

The MATLAB (Matrix Labratory) software by Mathworks has a component called

the Partial Differential Equation Toolbox that can be started from the MATLAB

console with the ’pdetool’ command.

The PDE Toolbox provides a graphical user interface that allows you to draw

a 2D domain on which you can specify a partial differential equation to be solved

on. The pdetool makes it an automatic process to discretize your 2D domain into

a triangulated mesh. The mesh can also be refined to have more elements just with

the click of a button.

The PDE Toolbox has a workflow that is used to solve one of the built-in partial

differential equations on your 2D domain. You select the partial differential equation

from a drop-down list. The available partial differential equations are:

• volumeConstraint = 0.0053

• discRadius = 1.000000
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• disck = 0.010000

• discQ = 0.000000

• beamRadius = 0.100000

• beamk = 30.000000

• beamQ = 86.000000

• branchk = 30.000000

• branchQ = 0.000000

The workflow to solve a partial differential equation on a 2D domain is made up

of 5 modes within the PDE Toolbox:

1. Draw Mode

2. Boundary Mode

3.4 Mathematical Formulation of the Heat Equa-

tion Solution

First Domain [0 ≤ x2 + y2 ≤ r0, wherer0 = ...]

k

[
∂2T

∂x2
+

∂2T

∂y2

]
+Q = 0
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Q = Q0f(r) where Q0 = constant and r = x2 + y2 and 0 ≤ r ≤ r0.

Boundary Conditions:

r = r0 : T
−(r) = T+(r)

and

k
∂T−

∂r
= k

∂T+

∂r

where T− represents temperature in domain 1 and T+ corresponds to tempera-

ture in domain 2.

It should be noted that k varies along the circumference of the circle with radius

r0, i.e. S1 = θ1 ∗ r0 and S2 = S1 +Swidth where θ1 is the angle corresponding to two

conducting roots and Swidth is the width of the conducting roots (figure()).

S = S1 : kn = k1

S = S1 + Swidth : kn = k2

where k2 is the thermal conductivity of the disc and S is the length in circumference

of the r0 circle.

Second Domain

(router ≥ r ≥ r0 where r =
√

x2 + y2)
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Diffusion Equation:

k

[
∂2T

∂x2
+

∂2T

∂y2

]
= 0

Boundary Conditions:

The solution domain is shown in figure (). It can be observed two different ma-

terials are laid in the physical domain with different thermal conductivities. For

each material in its geometric configuration, thermal conductivity is considered to

be constant. In addition, temperature and heat flux continuity are incorporated

as boundary conditions between each configuration corresponding to each material.

T1 = T2 at boundaries of two configurations.

k1
∂T1

∂x
= k2

∂T

∂x

where T1 and T2 are temperatures at boundaries of the first and second config-

urations respectively.

3.5 Coordinate Search Implementation

The strategy used in optimization is based on the central temperature on the disc.

The search algorithm for the optimization tool seeks for the configuration that

results in the minimum temperature in the center of the disc.
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The coordinate search method was selected as a numerical optimization method

to find a optimal heat channel configuration on the disc. A MATLAB script was

written incorporating the coordinate search method within it to perform the channel

configuration search. The coordinate search method is one of the simplest derivative-

free optimization methods available. The basic idea behind its operation is that it

optimizes each search parameter one-by-one. It consists of a number of n itera-

tions where n is the number of search parameters. During each iteration, only one

parameter is optimized.

For the implementation of the coordinate search method in this thesis work, we

had two ’while’ loops, one nested inside the other within a MATLAB script. The

outer ’while’ loop represents the total number of runs where one run consists of n

iterations. The inner ’while’ loop represents one iteration. During each iteration,

the MATLAB coordinate search script would call the Constructal Design Tool with

the current values of the search parameters (# branches, # ends, and root length).

In response, the Constructal Design Tool would generate another MATLAB script

file containing the geometry information for a disc with the specified number of

branches, ends, and root length. This new script would be generated in a syntax

that is prepared to be used with the PDE Toolbox in MATLAB. This new script

called ’disc’ would be called by the original coordinate search script and as a result

the temperature distributions on the disc would be calculated and the central tem-

perature on the disc would be saved by the coordinate search method within its list
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of cases along with the run-time of the computation for that case.

The central temperature on the disc is the measure used to rank the performance

of each configuration. A lower central temperature means a better configuration as

that indicates that more of the central heat was able to travel out of the center due

to better heat channel configuration.

3.6 Algorithm Validation

To validate the correctness of our constructal algorithm that is used to generate the

disc configurations, we have made a comparison with one of Dr. Bejan’s works [34]

and have found that the data agrees closely as shown in the figure below:

Figure 3.1 - Constructal geometry generation algorithm validation.



Chapter 4

Results and Discussion

The coordinate search method algorithm was developed and executed on a machine

- which shall be referred to as ’the Quadro-plex’ from now on - with the following

specifications:

• 64-bit version of Windows 7 Professional

• 2 Quad-core Intel Xeon X5570 2.93 GHz 64-bit processors (each having 8MB

Cache, 4 Cores, and 8 Threads)

• 64 GB of memory

• More than 2.5 TB of Hard Disk storage space

• 2 NVIDIA Quadro FX 5800 video cards (each with 4096 MB of GDDR3 RAM)

• Total of 480 GPU cores to allow upto 61,440 threads running simultaneously

53
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• MATLAB 2010b software

• NVIDIA CUDA Toolkit 3.2

• 3 32” Sony Bravia LCD HDTVs assigned to it

Two types of searches were executed during the thesis, the first one being the

traditional exhaustive search, which took 48 hours to complete and the second

being the coordinate search which took 7.58 hours.

4.1 Results of the Exhaustive Search

As a result of the exhaustive search running on the Quadro-plex for 48 hours, 2,088

figures and diagrams have been produced representing the cases that have been

analyzed successfully by the search algorithm. For each case that was analyzed,

there were 3 files that were generated and recorded:

• Snapshot of the MESH diagram in the PDE Toolbox

• Snapshot of the 3D Temperature plot for the temperature distribution on the

disc

• 3-D Temperature plot figure that can be loaded in MATLAB and rotated and

viewed in 3-dimensions
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There were many cases that could not be analyzed due to errors produced in the

MATLAB PDE Toolbox. The number of possible cases to search through for the ex-

haustive search in our experiment can be calculated simply by multiplying together

the number of discrete elements for each search parameter. In our configuration of

the exhaustive search, we had 3 search parameters:

• # of branches - ranged from 2 to 27 (reduced from 200 due to time)

• # of ends - ranged from 1 to 5

• Root Length - ranged from 0.1 to 0.7 with increments of 0.1

Total # Cases = (27-2 +1) * (5-1 +1) * ((0.7 - 0.1)/0.1 + 1) = 910

However due to the very long time of computation (2 days) making the Quadro-

plex unusable for other work, and the sufficiency of the data produced for our

purposes, the exhaustive search was stopped before it could analyze every single

possible case. The last case that was analyzed was the case with 27 branches 4 ends

and a root length of 0.70. So that means that cases with 27 branches with 5 ends

have not been analyzed, which number 7 cases. That makes the total number of

cases traversed by the exhaustive search: 910 - 7 = 903

From those 903 cases, 704 of them were able to proceed to the mesh generation

phase of the process, and only 692 of them were analyzed successfully. We can call

those errors that happen before the mesh is generated a mesh error. Those errors
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that happen after mesh generation can be called post-mesh error. In this exhaustive

search, we had:

• 903 total cases

• 199 cases with mesh errors

• 12 cases with post-mesh errors

• 211 cases with errors

• 692 successfully analyzed cases

The exhaustive search as it is implemented currently in the Constructal Design

Tool (together with MATLAB integration) ran on the Quadro-plex, for a period

of around 48 hours and has gone through 903 cases. Among those cases only 692

were successfully analyzed and 211 cases had some type of error and were therefore

skipped from the analysis. The error rate for the current run of the exhaustive

search with the Constructal Design Tool is 23.37%.

In our constructal search for our experiment, we had the following conditions:

• volumeConstraint = 0.0053

• discRadius = 1.000000

• disck = 0.010000

• discQ = 0.000000
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• beamRadius = 0.100000

• beamk = 30.000000

• beamQ = 86.000000

• branchk = 30.000000

• branchQ = 0.000000

The rootWidth variable was automatically calculated as the other parameters

were changed for each search case to make sure the volume constraint was upheld.

Cases are compared with each other based on the central temperature. Lower

values for the central temperature indicate better channel configuration. This is

because the low central temperature indicates that more of the heat from the center

has flowed onto the disc indicating that the configuration of the channels was able to

carry more heat compared to other configurations, hence making that configuration

better for heat flow.

To better analyze the results of the simulation, a data visualization tool was

developed to be able to visualize 5 dimensional data. The data plot will show the

5-dimensional plot in 3-dimensional space. In this case, we had the five dimensions

of:

• Root Count

• Ends Per Root
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• Root Width

• Root Length

• Temperature

The following is a sample of the 5-dimensional data:

Figure 4.1 - A snapshot of the 5-dimensional data results.

The next series of snapshots show the visualization that was automatically pro-

duced by the visualization tool developed for multi-dimensional data:
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Figure 4.2 - A view of the 5 dimensional data visualization.

Figure 4.3 - Another view of the 5 dimensional data visualization.
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Figure 4.4 - An overview of the 5 dimensional data visualization.

Figure 4.5 - Color gradient used to map the root width variable on the data

visualization.

For the data visualization of the 5 variables from the data results, the first

variable - root count is mapped to the x-axis of the grid. The root length is mapped
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onto the z-axis. The grid is divided into data patches. Each data patch represents

a specific root count and root length. Each data patch may contain a number of

towers. These towers represents the different possible end count per root values

which range from 1 to 5. If the end count per root value is 1, then we have a

triangle shaped tower, where a triangle has 1 + 2 sides. If the end count per root

value is 2, then we have a square shaped tower where 2 + 2 is the 4 sides of a

square, and so on. The height of the tower represents the central temperature of

the disc. For this reason, as we go farther along the x-axis, towards increasing the

root count, we can see the tower heights decreasing meaning that with the increase

in root counts, the central temperature decreases.

Last of all, we have the root width which is represented as the color of the tower.

A legend is also provided as shown in Figure 4.5, which maps the color from a color

gradient strip to a root width.

The following is a plot from the obtained data showing the ’# of branches’ on

the disc as the x-axis and the ’central temperature’ as the y-axis:
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Figure 4.6 - Number of branches versus Central Temperature plot.

The figure shows that there is a general trend that the central temperature of

the disc decreases with the increase of the number of branches on the disc. If one

observes the data visualization produced by the visualization tool, you can also

observe the same pattern of decreasing central temperature with the increase in the

number of roots on the disc.

From among all the cases that have been searched with the exhaustive search,

the best case that has been found was the 25 branch case with 5 ends and with a

root length of 0.20. The central temperature of the disc in that case was 0.0532.

The following is a snapshot of the mesh of the 25 branch 5 end case with a root

length of 0.20:
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Figure 4.7 - Mesh plot of the 25 branch 5 end 0.20 root length case.

Figure 4.8 - Temperature plot of the 25 branch 5 end 0.20 root length case.

(CT=0.0532)

The snapshot above shows the 3-dimensional temperature plot of the best case.

The plot shows that the temperature of the disc is highest at the center, where the
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heat is being generated with a Q value of 86. Then by means of the 25 branches

each with 5 ends, the heat generated from the center of the disc is being transported

towards the circumference of the disc producing the temperature distribution seen

above.

4.2 Results of the Coordinate Search

Whereas the exhaustive search needed to go over 640 cases to arrive at the correct

(optimal) case within the search range, the coordinate search achieved this feat at

its 46th case. However, because of the extra iteration that the coordinate search

needed to perform to complete its run cycle, 21 more cases were analyzed to bring

the total number of cases analyzed up to 71. The whole run-time of 7.58 hours for

the coordinate search is a big time gain compared to the exhaustive search’s time

of 48 hours.

With the coordinate search method, we didn’t have to traverse all the possible

cases to arrive at the optimal case. We can see the small percentage of cases tra-

versed with the coordinate search method by looking at the data visualization of

the results of the search which shows only the data that was obtained during the

search. One can note how most of the grid which was full during the exhaustive

search is empty and the same optimal value has been reached:
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Figure 4.9 - View from lower-left corner of grid.

Figure 4.10 - Color gradient used to map the root width.
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Figure 4.11 - View from the top left corner of grid.

Figure 4.12 - Perspective from lower right corner of grid.
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Figure 4.13 - View of lower right corner with optimal data patch in sight (25,.20).

Figure 4.14 - Overall view of grid.
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Figure 4.15 - Side view of grid to see heights of towers decreasing.

4.3 Sample Snapshots from the Search Results

Some sample snapshots of the cases analyzed during the searches are provided below:

Figure 4.16 - Mesh plot of the 2 branch 1 end 0.20 root length case.
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Figure 4.17 - Temperature plot of the 2 branch 1 end 0.20 root length case.

(CT=0.6935)

Figure 4.18 - Mesh plot of the 2 branch 2 end 0.10 root length case.
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Figure 4.19 - Temperature plot of the 2 branch 2 end 0.10 root length case.

(CT=0.6313)

Figure 4.20 - Mesh plot of the 3 branch 1 end 0.30 root length case.
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Figure 4.21 - Temperature plot of the 3 branch 1 end 0.30 root length case.

(CT=0.5991)

Figure 4.22 - Mesh plot of the 3 branch 2 end 0.70 root length case.
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Figure 4.23 - Temperature plot of the 3 branch 2 end 0.70 root length case.

(CT=0.9239)

Figure 4.24 - Mesh plot of the 3 branch 3 end 0.30 root length case.
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Figure 4.25 - Temperature plot of the 3 branch 3 end 0.30 root length case.

(CT=0.4975)

Figure 4.26 - Mesh plot of the 5 branch 5 end 0.60 root length case.
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Figure 4.27 - Temperature plot of the 5 branch 5 end 0.60 root length case.

(CT=0.3321)

Figure 4.28 - Mesh plot of the 21 branch 5 end 0.70 root length case.
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Figure 4.29 - Temperature plot of the 21 branch 5 end 0.70 root length case.

(CT=0.1338)

4.4 Observations of the Results

Some observations from the search results are that in some cases like the 26 branch

5 end .20 root length case and the 25 branch 5 end .20 root length case (difference

of one in the branch number), the central temperature value is very close (0.0535

versus 0.0532). There is also a very close value for the central temperature between

the cases with 9 branches 4 ends and .20 root length and the case with 9 branches

5 ends and .20 root length having central temperature values of 0.1601 and 0.1400

respectively. Another observation is that on some of the temperature plots there

are spikes in temperature along some of the heat branches. One thing to investigate
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would be whether making a bifurcation at that spike point would improve the heat

flow of the disc for that case or not.

Cases with very uniform looking temperature plots such as the case with 8

branches 4 ends per branch and a root length of .20 seem to have a much better

heat flow performance than even those cases that are close to it in terms of difference

in number of ends per branch or number of branches. The case just mentioned (8

branches, 4 ends, and .20 root length) has a central temperature of 0.1740. Some

cases that are close it geometrically but don’t have a uniform looking temperature

plot have much higher central temperature values like following cases:

• 8 branches 4 ends and .40 root length, CT = 0.2091

• 8 branches 5 ends and 0.50 root length, CT = 0.2111

If you’re looking for .20 root length cases:

• 9 branches 1 end and 0.20 root length, CT = 0.3684

• 9 branches 2 ends and 0.20 root length, CT = 0.2422

It looks like for the cases in which errors occurred, the root length was at an

extreme, either at 0.7 to one side or 0.1 / 0.2 on the other side.
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Conclusion

5.1 Thesis Work Summary

A new way of optimizing flow systems and generating the optimal geometry - the

constructal design method - has been integrated together with an existing numerical

optimization method - the coordinate search method to make the configuration

search easier to perform and more automatic. As a result of this study, it was

found that the coordinate search method greatly reduces the time and number of

cases needed to be analyzed in order to find the optimal case among a range of

possibilities in the search space. The exhaustive search took 48 hours to find an

optimal solution whereas the coordinate search method took only 7.58 hours to

achieve the same result of finding the optimal configuration.

The results of this study also show that at constant volume and area, bifurcation

77
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of the channels of flow does indeed increase the heat flow on a disc from the center

to its circumference. However, that doesn’t necessarily mean arbitrarily increasing

the number of branches of flow or bifurcating the existing branches will increase

heat flow. A configuration search must be performed to find the optimal configu-

ration of the number of branches and number of bifurcations per branch. For our

experiment of finding the optimal heat flow configuration for a disc from its center

to its circumference, we found the optimal configuration to be 25 branches with

5 ends each and a root length of .20 times the radius of the disc. To satisfy the

volume constraint of 0.0053, the Constructal Disc Tool automatically calculated a

root width of 0.0322.

The tool developed as a result of this study, is able to find the optimal design

(within a range of possible designs) for heat flow from the center of a disc to its

circumference under variable conditions. The elements making up the conditions

are:

• The Volume Constraint

• The disc heat conductivity value (k)

• The disc heat generation value (Q)

• The radius of the central beam going through the disc (and providing heat to

the disc)
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• The beam heat conductivity value (k)

• The beam heat generation value (Q)

• The branches’ heat conductivity value (k)

• The branches’ heat generation value (Q)

All the conditions above can be changed and a new configuration search can be

run by the Constructal Disc Tool to find the optimal branch configuration under

those new conditions.

5.2 Limitations

This study was the first step into automating the constructal design method using

a numerical optimization technology - the coordinate search method. We started

with the simplest possible case just to get it working through the whole process

successfully. Therefore, the Constructal Disc Tool can only optimize the design of

geometry with the following limitations:

• The only optimization is for heat flow on a disc.

• The direction of heat flow should be from the center of the disc to its circum-

ference.

• The designs will be limited to one level of bifurcation.
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• The configuration search portion of the process took very long time:

48 hours to go through 903 cases for exhaustive search

7.58 hours to go through 71 cases for coordinate search

• For a case with 1 end per branch there should not be a difference in perfor-

mance for different root lengths as the channel should be just one long piece.

This issue needs to be resolved to make the simulations more realistic.

5.3 Future Work

5.3.1 General Constructal Design Tool

As a result of this introductory work, a general design has been developed to over-

come the limitations of the current Constructal Disc Tool that incorporates the co-

ordinate search method and that works with integration with the MATLAB 2010b

software. The objective of the general Constructal Design Tool is to generate op-

timal designs for different flow systems, whether they consist of heat, electricity,

thermal stress, mechanical stress, people, knowledge, gas, liquid, energy, network

traffic, street traffic, car traffic, air traffic, or other types of flows. The current de-

sign that has come about as a result of this thesis work for the general Constructal

Design Tool consists of 3 components:

• Artificial Intelligence component
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• Geometry Generator component

• Visualization component

The usage of the general Constructal Design Tool is meant to be very user-

friendly with only a minimum amount of input required by the user. The user

should just provide a description of the constraints of the flow system that he or

she has such as the 3-dimensional area into which the system needs to fit in or

the volume constraint of flow channels which can represent the amount of mate-

rial that can be used to produce the flow channels. The user can also optionally

provide the objective(s) for the flow system at hand. Then after that the Construc-

tal Design Tool should work to find the optimal configuration of the flow channels

for the required system. A little more detail about the current design of how the

Constructal Design Tool is supposed to work is provided below with its components:

Input to the tool:

• Constraints and description of the flow system

• Objective(s) of the flow system (This input is optional. If no objective(s) are

provided, the AI component will parse the constraints and the description of

the flow system to determine which flows are involved and automatically set

objectives to optimize those flows).

Components of the Tool:
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• AI component:

– Determine which flows are involved in system (will have equations to deal

with each type of flow, such as Bernoulli’s equation for gases, Fourier

equation for heat, etc.).

– Determine from the description the basic structure of the system

Is it a disc, a pipe, etc.?

What are the directions of the flow(s)? (Disc center to circumference,

etc.)

– Generate list of checkpoints (things to check on the generated geometry

to evaluate the performance of the flows based on the objective(s) of the

system) (For example in the MS Thesis this was simply a check of the

central temperature on the disc structure).

– Working with the geometry generator, identify parameters that can be

used in the geometry to generate more branches and more bifurcations

and modify branch shape and bifurcation shapes. These will be the search

parameters used in the configuration search (possibly using something

like the coordinate search method) to find the optimal configuration.

• Geometry Generator:

– From the information prepared by the AI component, generate the sim-
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plest possible mesh that has the constraints of the system as well as the

flows that have been identified. The basic structure can have straight

round tubes for all the flows with no bifurcations.

– Discretize the mesh to make it ready for equations to be applied to the

discretized mesh nodes.

• Visualization component:

– For the purposes of data analysis plots of different search parameters vs.

each other can be produced.

– Good looking 3-dimensional plots for temperature, stress, etc.

5.3.2 Performance Upgrade of the Constructal Design Tool

The constructal search performed with the coordinate search method took a very

long time in spite of being optimized somewhat. Initially the MATLAB PDE Tool-

box script that the Constructal Design Tool was producing was taking a long time

to compute in the MATLAB PDE Toolbox. For that reason, the Constructal De-

sign Tool was upgraded to skip some of the unnecessary steps the MATLAB PDE

Toolbox was performing to compute the temperature distribution. Some substan-

tial improvements were achieved as shown in the time comparisons below, however,

complicated cases are still taking very long time to compute such as the 25 branch 5

end 0.5 root length case which took a little more than an hour to compute. The time
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to compute for a case was taken using the tic and toc functions in MATLAB. The

PDE Toolbox script was saved in a file called disc.m, so to time the performance of

a given script, one would write it as follows in the MATLAB prompt:

tic; disc; toc;

This would cause the contents of the script within the disc.m file to execute and

after that the elapsed time would be outputted to the MATLAB console. For each

case, a different disc.m file is produced by the Constructal Design Tool that specifies

precisely the geometry of the disc on which to perform the temperature distribution

calculations.

# Branches # Ends Root

Length

Version 0.8 w/

PDE Toolbox

Version 1.0 w/

PDE Toolbox

(w/ vCon-

straint)

Speedup

2 1 0.5 50.60 seconds 13.33 seconds 379%

5 1 0.5 88.85 seconds 14.73 seconds 603%

10 1 0.5 151.35 seconds 15.51 seconds 976%

12 1 0.5 184.16 seconds 16.07 seconds 1146%

15 1 0.5 Error 16.00 seconds NA

17 1 0.5 270.11 seconds 17.38 seconds 1554%

25 1 0.5 466.86 seconds 16.41 seconds 2845%
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4 2 0.5 104.05 seconds 19.51 seconds 533%

5 2 0.5 119.27 seconds 21.74 seconds 548%

4 3 0.5 Error 32.49 seconds NA

7 2 0.5 Error 23.15 seconds NA

10 2 0.5 230.07 seconds Error NA

10 2 0.6 230.54 seconds 27.03 seconds 853%

25 2 0.5 728.54 s + Error 41.92 seconds NA

25 5 0.5 Not supported 3714.57 seconds NA

Table 5.1: Time Comparisons Between Two Versions of

the Constructal Design Tool.

The initial script for the PDE Toolbox that was produced by the Constructal

Design Tool was based on the data file produced by the PDE Toolbox when manu-

ally working with the PDE Toolbox and saving your work. We can call the sequence

of steps in the script produced in this manner when manually working with the PDE

Toolbox and saving your work as sequence A. Even though there has been a con-

siderable increase in speed from sequence A, as indicated by the time comparisons

above, the speed of the computation performed by the new sequence B is still very
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slow and 48 hours of computation was only able to cover 903 cases.

To speed up the process two possibilities have been thought up. The first is to

perform the computations in the C language instead of MATLAB so as to remove

any unnecessary computations that are being done in MATLAB (such as checking

if values are correct, or other operations). The second is to run the process on the

parallel NVIDIA CUDA hardware through the C language and see if the process is

speeded up with that method.

To have the whole process done within the Constructal Design Tool instead of

working together with the MATLAB PDE Toolbox requires the implementation

of the discretization process within the Constructal Design Tool. Discretization

can be done in the case of the disc by making concentric circles starting from the

center of the disc going towards the circumference. After that, lines can be drawn

on the disc at regular theta values going from the center of the disc towards its

circumference. This process would discretize the disc into a number of elements

that are uniform on each radial level. By discretizing the disc in this manner, one

can then proceed to have each discretized node in the center of each element and

then solve for the temperature value of each element by producing a multitude of

energy balance equations for each element. The figure below shows an example of

a radially discretized mesh:
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Figure 5.1 - Radial Mesh Discretization with CDT.

From the table of time comparisons above, it can be seen that the number of

error cases has been reduced by the upgrade of the Constructal Design Tool to

version 1 from version 0.8. It is likewise hoped that as more of the details of the

whole calculation process is learned and implemented manually in the C language,

without relying on the MATLAB PDE Toolbox, more of the errors (ideally all of

them) will be removed in the process of calculating the temperature distribution for

different configurations.

In addition to performance speedups, future versions of the Constructal Design

Tool need to be able to generate configurations with multiple levels of bifurcations.

Also, having a variable root length producing different heat flow results for a 1 end

per branch case mentioned in section 5.2 needs to be resolved.
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Appendix A: Exhaustive Search Results Data

For this simulation, we had the following conditions:

Volume Constraint: 0.005300

Disc Radius: 1.000000

Disc k: 0.010000

Disc Q: 0.000000

Beam Radius: 0.100000

Beam k: 30.000000

Beam Q: 86.000000

Branch k: 30.000000

Branch Q: 0.000000

The following are the case results:

Case# #Roots #Ends Root Width Root Length Central Temperature

1 2 1 0.0612 0.1 0.6994

2 2 1 0.0612 0.2 0.6935

3 2 1 0.0612 0.3 0.688

4 2 1 0.0612 0.4 0.6825

5 2 1 0.0612 0.5 0.677

6 2 1 0.0612 0.6 0.6716
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7 2 1 0.0612 0.7 0.6662

8 2 2 0.0665 0.5 1.3296

9 2 2 0.0703 0.4 0.8733

10 2 2 0.0746 0.3 0.7684

11 2 2 0.0795 0.2 0.6912

12 2 2 0.0852 0.1 0.6313

13 2 3 0.0827 0.3 0.831

14 2 3 0.0915 0.2 0.7449

15 2 4 0.0887 0.3 0.7346

16 2 4 0.1008 0.2 0.639

17 2 5 0.1082 0.2 0.5677

18 3 1 0.05 0.2 0.6082

19 3 1 0.05 0.3 0.5991

20 3 1 0.05 0.4 0.5902

21 3 1 0.05 0.5 0.5812

22 3 1 0.05 0.6 0.5724

23 3 1 0.05 0.7 0.5635

24 3 2 0.0512 0.7 0.9239

25 3 2 0.0538 0.6 0.7805
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26 3 2 0.0564 0.5 0.7017

27 3 2 0.0593 0.4 0.6442

28 3 2 0.0625 0.3 0.6037

29 3 2 0.0661 0.2 0.5744

30 3 2 0.0702 0.1 0.4118

31 3 3 0.0598 0.5 0.5911

32 3 3 0.0643 0.4 0.5391

33 3 3 0.0698 0.3 0.4975

34 3 3 0.0766 0.2 0.4577

35 3 4 0.0678 0.4 0.4772

36 3 4 0.0749 0.3 0.4305

37 3 4 0.0845 0.2 0.3885

38 3 5 0.0703 0.4 0.4331

39 3 5 0.0787 0.3 0.3863

40 3 5 0.0907 0.2 0.3416

41 4 1 0.0433 0.1 0.5016

42 4 1 0.0433 0.2 0.4952

43 4 1 0.0433 0.3 0.4891

44 4 1 0.0433 0.4 0.4832
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45 4 1 0.0433 0.5 0.4772

46 4 1 0.0433 0.6 0.4713

47 4 1 0.0433 0.7 0.4655

48 4 2 0.0455 0.7 0.6163

49 4 2 0.0475 0.6 0.5475

50 4 2 0.05 0.5 0.5099

51 4 2 0.0521 0.4 0.481

52 4 2 0.0547 0.3 0.4597

53 4 2 0.0576 0.2 0.4438

54 4 3 0.0467 0.7 0.5106

55 4 3 0.05 0.6 0.477

56 4 3 0.0528 0.5 0.4398

57 4 3 0.0566 0.4 0.407

58 4 3 0.0612 0.3 0.3762

59 4 3 0.067 0.2 0.3511

60 4 4 0.055 0.5 0.3927

61 4 4 0.0598 0.4 0.3582

62 4 4 0.0658 0.3 0.3255

63 4 4 0.074 0.2 0.2961



101

64 4 4 0.0861 0.1 0.2695

65 4 5 0.0619 0.4 0.3271

66 4 5 0.0691 0.3 0.2931

67 4 5 0.0795 0.2 0.2618

68 5 1 0.0387 0.2 0.4249

69 5 1 0.0387 0.3 0.4232

70 5 1 0.0387 0.4 0.4214

71 5 1 0.0387 0.5 0.4196

72 5 1 0.0387 0.6 0.4178

73 5 1 0.0387 0.7 0.4159

74 5 2 0.0412 0.7 0.4827

75 5 2 0.043 0.6 0.4437

76 5 2 0.0449 0.5 0.4148

77 5 2 0.0469 0.4 0.3948

78 5 2 0.0491 0.3 0.3832

79 5 3 0.0424 0.7 0.4249

80 5 3 0.0449 0.6 0.3885

81 5 3 0.0478 0.5 0.3584

82 5 3 0.0511 0.4 0.3333
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83 5 3 0.0602 0.3 0.2924

84 5 4 0.0433 0.7 0.3914

85 5 4 0.0462 0.6 0.3607

86 5 4 0.05 0.5 0.3259

87 5 4 0.0539 0.4 0.2948

88 5 4 0.0593 0.3 0.2709

89 5 4 0.0665 0.2 0.2478

90 5 4 0.0772 0.1 0.226

91 5 5 0.0472 0.6 0.3321

92 5 5 0.051 0.5 0.2987

93 5 5 0.0559 0.4 0.2698

94 5 5 0.0623 0.3 0.242

95 5 5 0.0715 0.2 0.2168

96 6 1 0.0354 0.2 0.3742

97 6 1 0.0354 0.3 0.3744

98 6 1 0.0354 0.4 0.3746

99 6 1 0.0354 0.5 0.3747

100 6 1 0.0354 0.6 0.3748

101 6 1 0.0354 0.7 0.3749
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102 6 2 0.0379 0.7 0.4024

103 6 2 0.0395 0.6 0.3796

104 6 2 0.0411 0.5 0.3571

105 6 2 0.043 0.4 0.3457

106 6 2 0.045 0.3 0.3327

107 6 2 0.0473 0.2 0.3231

108 6 3 0.0391 0.7 0.3661

109 6 3 0.0413 0.6 0.3341

110 6 3 0.0439 0.5 0.3084

111 6 3 0.0469 0.4 0.2876

112 6 4 0.0399 0.7 0.3461

113 6 4 0.0425 0.6 0.3109

114 6 4 0.0456 0.5 0.2819

115 6 4 0.0494 0.4 0.2574

116 6 4 0.0543 0.3 0.2341

117 6 5 0.0404 0.7 0.3223

118 6 5 0.0433 0.6 0.2948

119 6 5 0.0468 0.5 0.2589

120 6 5 0.0512 0.4 0.2338
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121 6 5 0.0571 0.3 0.2097

122 7 1 0.0327 0.2 0.4364

123 7 1 0.0327 0.3 0.4257

124 7 1 0.0327 0.4 0.4151

125 7 1 0.0327 0.5 0.4045

126 7 1 0.0327 0.6 0.394

127 7 1 0.0327 0.7 0.3835

128 7 2 0.0353 0.7 0.3539

129 7 2 0.0367 0.6 0.3289

130 7 2 0.0382 0.5 0.3179

131 7 2 0.0399 0.4 0.3085

132 7 2 0.0417 0.3 0.2969

133 7 2 0.0438 0.2 0.2884

134 7 3 0.0364 0.7 0.327

135 7 4 0.0372 0.7 0.2981

136 7 4 0.0396 0.6 0.2761

137 7 4 0.0425 0.5 0.2503

138 7 4 0.046 0.4 0.2286

139 7 4 0.05 0.3 0.2106
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140 7 5 0.0376 0.7 0.2879

141 7 5 0.0403 0.6 0.2566

142 7 5 0.0435 0.5 0.2304

143 7 5 0.0476 0.4 0.208

144 8 1 0.0306 0.2 0.3975

145 8 1 0.0306 0.3 0.3875

146 8 1 0.0306 0.4 0.3775

147 8 1 0.0306 0.5 0.3677

148 8 1 0.0306 0.6 0.3579

149 8 1 0.0306 0.7 0.3482

150 8 2 0.0332 0.7 0.3139

151 8 2 0.0344 0.6 0.3011

152 8 2 0.0358 0.5 0.2912

153 8 2 0.0373 0.4 0.2779

154 8 2 0.0391 0.3 0.2709

155 8 2 0.041 0.2 0.2625

156 8 3 0.0342 0.7 0.2911

157 8 3 0.0361 0.6 0.2732

158 8 3 0.0383 0.5 0.2512
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159 8 3 0.0408 0.4 0.2335

160 8 3 0.0439 0.3 0.2188

161 8 3 0.0478 0.2 0.206

162 8 4 0.0349 0.7 0.2757

163 8 4 0.0371 0.6 0.2478

164 8 4 0.0398 0.5 0.2299

165 8 4 0.043 0.4 0.2091

166 8 4 0.0472 0.3 0.1892

167 8 4 0.0529 0.2 0.174

168 8 5 0.0353 0.7 0.2661

169 8 5 0.0378 0.6 0.2361

170 8 5 0.0408 0.5 0.2111

171 8 5 0.0446 0.4 0.1899

172 8 5 0.05 0.3 0.1705

173 8 5 0.0568 0.2 0.1523

174 9 1 0.0289 0.2 0.3684

175 9 1 0.0289 0.3 0.3608

176 9 1 0.0289 0.4 0.3534

177 9 1 0.0289 0.5 0.346
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178 9 1 0.0289 0.6 0.3387

179 9 1 0.0289 0.7 0.3315

180 9 2 0.0313 0.7 0.2937

181 9 2 0.0325 0.6 0.2818

182 9 2 0.0338 0.5 0.2656

183 9 2 0.0352 0.4 0.2581

184 9 2 0.0368 0.3 0.2481

185 9 2 0.0387 0.2 0.2422

186 9 2 0.0408 0.1 0.2359

187 9 3 0.0324 0.7 0.272

188 9 3 0.0341 0.6 0.2475

189 9 3 0.0362 0.5 0.2335

190 9 3 0.0386 0.4 0.2161

191 9 3 0.0415 0.3 0.2018

192 9 3 0.0451 0.2 0.1896

193 9 4 0.033 0.7 0.2595

194 9 4 0.0351 0.6 0.2319

195 9 4 0.0376 0.5 0.2095

196 9 4 0.0406 0.4 0.1908
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197 9 4 0.0446 0.3 0.1747

198 9 4 0.05 0.2 0.1601

199 9 4 0.0577 0.1 0.1459

200 9 5 0.0334 0.7 0.2411

201 9 5 0.0357 0.6 0.2208

202 9 5 0.0385 0.5 0.1965

203 9 5 0.0421 0.4 0.1759

204 9 5 0.0468 0.3 0.1562

205 9 5 0.0536 0.2 0.14

206 10 1 0.0274 0.2 0.3423

207 10 1 0.0274 0.3 0.3351

208 10 1 0.0274 0.4 0.3281

209 10 1 0.0274 0.5 0.3211

210 10 1 0.0274 0.6 0.3142

211 10 1 0.0274 0.7 0.3073

212 10 2 0.0298 0.7 0.2689

213 10 2 0.0309 0.6 0.259

214 10 3 0.0307 0.7 0.2499

215 10 3 0.0324 0.6 0.2348
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216 10 3 0.0343 0.5 0.2152

217 10 3 0.0366 0.4 0.1995

218 10 3 0.0394 0.3 0.1886

219 10 3 0.0428 0.2 0.1764

220 10 4 0.0313 0.7 0.238

221 10 4 0.0333 0.6 0.213

222 10 4 0.0357 0.5 0.1975

223 10 4 0.0386 0.4 0.1789

224 10 4 0.0423 0.3 0.1631

225 10 4 0.0474 0.2 0.1482

226 10 5 0.0317 0.7 0.2293

227 10 5 0.0339 0.6 0.2027

228 11 1 0.0261 0.2 0.3204

229 11 1 0.0261 0.3 0.3135

230 11 1 0.0261 0.4 0.3068

231 11 1 0.0261 0.5 0.3002

232 11 1 0.0261 0.6 0.2936

233 11 1 0.0261 0.7 0.287

234 11 2 0.0284 0.7 0.258
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235 11 2 0.0295 0.6 0.2481

236 11 2 0.0306 0.5 0.2328

237 11 2 0.0319 0.4 0.2258

238 11 2 0.0334 0.3 0.2163

239 11 2 0.035 0.2 0.2106

240 11 2 0.0369 0.1 0.2047

241 11 3 0.0294 0.7 0.2204

242 11 3 0.031 0.6 0.1996

243 11 3 0.0328 0.5 0.1882

244 11 3 0.0349 0.4 0.1735

245 11 3 0.0376 0.3 0.1616

246 11 3 0.0409 0.2 0.1515

247 11 4 0.0299 0.7 0.2201

248 11 4 0.0318 0.6 0.2039

249 11 4 0.0341 0.5 0.1833

250 11 4 0.0368 0.4 0.1663

251 11 4 0.0404 0.3 0.1518

252 11 4 0.0452 0.2 0.1389

253 11 5 0.0303 0.7 0.195
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254 11 5 0.0324 0.6 0.1786

255 11 5 0.0349 0.5 0.1581

256 11 5 0.0381 0.4 0.141

257 11 5 0.0424 0.3 0.1262

258 11 5 0.0485 0.2 0.1123

259 12 1 0.025 0.2 0.3037

260 12 1 0.025 0.3 0.2991

261 12 1 0.025 0.4 0.2945

262 12 1 0.025 0.5 0.29

263 12 1 0.025 0.6 0.2855

264 12 1 0.025 0.7 0.281

265 12 2 0.0273 0.7 0.2411

266 12 2 0.0283 0.6 0.2322

267 12 2 0.0293 0.5 0.2241

268 12 2 0.0306 0.4 0.2118

269 12 2 0.0319 0.3 0.2056

270 12 2 0.0335 0.2 0.1979

271 12 3 0.0282 0.7 0.2247

272 12 3 0.0297 0.6 0.2036
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273 12 3 0.0314 0.5 0.192

274 12 3 0.0335 0.4 0.177

275 12 3 0.036 0.3 0.1668

276 12 3 0.0391 0.2 0.1554

277 12 4 0.0287 0.7 0.2141

278 12 4 0.0305 0.6 0.1905

279 12 4 0.0326 0.5 0.1763

280 12 4 0.0353 0.4 0.1588

281 12 4 0.0387 0.3 0.1441

282 12 4 0.0433 0.2 0.1312

283 12 5 0.029 0.7 0.2076

284 12 5 0.031 0.6 0.1821

285 12 5 0.0334 0.5 0.1612

286 12 5 0.0365 0.4 0.1437

287 12 5 0.0406 0.3 0.1286

288 12 5 0.0465 0.2 0.115

289 13 1 0.024 0.2 0.2872

290 13 1 0.024 0.3 0.2829

291 13 1 0.024 0.4 0.2785
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292 13 1 0.024 0.5 0.2741

293 13 1 0.024 0.6 0.2698

294 13 1 0.024 0.7 0.2655

295 13 2 0.0262 0.7 0.226

296 13 2 0.0272 0.6 0.2182

297 13 2 0.0282 0.5 0.211

298 13 2 0.0294 0.4 0.204

299 13 2 0.0307 0.3 0.1941

300 13 2 0.0322 0.2 0.1883

301 13 3 0.0271 0.7 0.2108

302 13 3 0.0285 0.6 0.1982

303 13 3 0.0302 0.5 0.1806

304 13 3 0.0322 0.4 0.1701

305 13 3 0.0346 0.3 0.1573

306 13 3 0.0376 0.2 0.1467

307 13 4 0.0276 0.7 0.175

308 13 4 0.0293 0.6 0.1619

309 13 4 0.0314 0.5 0.1446

310 13 4 0.0339 0.4 0.1305
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311 13 4 0.0372 0.3 0.1186

312 13 4 0.0416 0.2 0.1082

313 13 5 0.0279 0.7 0.1811

314 13 5 0.0298 0.6 0.1592

315 13 5 0.0322 0.5 0.1453

316 13 5 0.0351 0.4 0.1287

317 13 5 0.0447 0.2 0.1013

318 14 2 0.0253 0.7 0.2089

319 14 2 0.0262 0.6 0.1932

320 14 2 0.0272 0.5 0.1869

321 14 2 0.0283 0.4 0.1808

322 14 2 0.0296 0.3 0.1722

323 14 2 0.031 0.2 0.1672

324 14 3 0.0261 0.7 0.1862

325 14 3 0.0275 0.6 0.1753

326 14 3 0.0291 0.5 0.1647

327 14 3 0.031 0.4 0.1508

328 14 3 0.0333 0.3 0.1396

329 14 3 0.0362 0.2 0.1311
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330 14 4 0.0266 0.7 0.1779

331 14 4 0.0283 0.6 0.1646

332 14 4 0.0302 0.5 0.147

333 14 4 0.0327 0.4 0.1355

334 14 4 0.0358 0.3 0.1221

335 14 4 0.0401 0.2 0.1099

336 14 4 0.0463 0.1 0.1003

337 14 5 0.0269 0.7 0.1841

338 14 5 0.0288 0.6 0.1682

339 14 5 0.031 0.5 0.1477

340 14 5 0.0338 0.4 0.1307

341 14 5 0.043 0.2 0.1035

342 15 1 0.0224 0.2 0.2623

343 15 1 0.0224 0.3 0.2602

344 15 1 0.0224 0.4 0.2581

345 15 1 0.0224 0.5 0.2559

346 15 1 0.0224 0.6 0.2538

347 15 1 0.0224 0.7 0.2516

348 15 2 0.0244 0.7 0.2122
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349 15 2 0.0253 0.6 0.2039

350 15 2 0.0263 0.5 0.1899

351 15 2 0.0274 0.4 0.1837

352 15 2 0.0286 0.3 0.1775

353 15 2 0.03 0.2 0.1699

354 15 3 0.0252 0.7 0.1982

355 15 3 0.0266 0.6 0.178

356 15 3 0.0281 0.5 0.1673

357 15 3 0.03 0.4 0.1531

358 15 3 0.0322 0.3 0.1437

359 15 3 0.035 0.2 0.1332

360 15 4 0.0257 0.7 0.1897

361 15 4 0.0273 0.6 0.1671

362 15 4 0.0292 0.5 0.154

363 15 4 0.0316 0.4 0.1375

364 15 4 0.0346 0.3 0.1239

365 15 4 0.0387 0.2 0.1122

366 15 5 0.026 0.7 0.154

367 15 5 0.0278 0.6 0.1341
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368 15 5 0.0327 0.4 0.1071

369 15 5 0.0364 0.3 0.0947

370 15 5 0.0416 0.2 0.0836

371 16 2 0.0265 0.4 0.1753

372 16 2 0.0277 0.3 0.1694

373 16 2 0.029 0.2 0.1635

374 16 3 0.0245 0.7 0.1779

375 16 3 0.0257 0.6 0.1667

376 16 3 0.0272 0.5 0.1505

377 16 3 0.029 0.4 0.1411

378 16 3 0.0312 0.3 0.1296

379 16 3 0.0339 0.2 0.1202

380 16 4 0.0249 0.7 0.1612

381 16 4 0.0265 0.6 0.1422

382 16 4 0.0283 0.5 0.1312

383 16 4 0.0335 0.3 0.106

384 16 4 0.0375 0.2 0.0962

385 16 5 0.0252 0.7 0.1563

386 16 5 0.0269 0.6 0.136
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387 16 5 0.029 0.5 0.1236

388 16 5 0.0317 0.4 0.1085

389 16 5 0.0352 0.3 0.0959

390 16 5 0.0403 0.2 0.0847

391 17 1 0.021 0.2 0.2405

392 17 1 0.021 0.3 0.2385

393 17 1 0.021 0.4 0.2365

394 17 1 0.021 0.5 0.2344

395 17 1 0.021 0.6 0.2324

396 17 1 0.021 0.7 0.2303

397 17 2 0.023 0.7 0.1827

398 17 2 0.0238 0.6 0.1759

399 17 2 0.0247 0.5 0.1694

400 17 2 0.0257 0.4 0.1629

401 17 2 0.0269 0.3 0.1538

402 17 2 0.0282 0.2 0.1484

403 17 3 0.0237 0.7 0.1803

404 17 3 0.025 0.6 0.1689

405 17 3 0.0264 0.5 0.1525
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406 17 3 0.0281 0.4 0.143

407 17 3 0.0302 0.3 0.1313

408 17 3 0.0329 0.2 0.1227

409 17 4 0.0242 0.7 0.1633

410 17 4 0.0257 0.6 0.1505

411 17 4 0.0275 0.5 0.1329

412 17 4 0.0364 0.2 0.098

413 17 5 0.0245 0.7 0.1584

414 17 5 0.0261 0.6 0.1378

415 17 5 0.0281 0.5 0.1252

416 17 5 0.0342 0.3 0.0971

417 17 5 0.0391 0.2 0.0861

418 18 1 0.0204 0.2 0.2312

419 18 1 0.0204 0.3 0.2292

420 18 1 0.0204 0.4 0.2272

421 18 1 0.0204 0.5 0.2252

422 18 1 0.0204 0.6 0.2232

423 18 1 0.0204 0.7 0.2212

424 18 2 0.0223 0.7 0.1951
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425 18 2 0.0231 0.6 0.1782

426 18 2 0.024 0.5 0.1716

427 18 2 0.025 0.4 0.165

428 18 2 0.0261 0.3 0.1584

429 18 2 0.0274 0.2 0.1504

430 18 3 0.0231 0.7 0.1562

431 18 3 0.0243 0.6 0.1465

432 18 3 0.0257 0.5 0.137

433 18 3 0.0274 0.4 0.1242

434 18 3 0.0294 0.3 0.116

435 18 3 0.032 0.2 0.1068

436 18 4 0.0235 0.7 0.1654

437 18 4 0.025 0.6 0.1524

438 18 4 0.0267 0.5 0.1346

439 18 4 0.0288 0.4 0.1234

440 18 4 0.0354 0.2 0.0992

441 18 5 0.0238 0.7 0.1604

442 18 5 0.0254 0.6 0.1459

443 18 5 0.0274 0.5 0.1268
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444 18 5 0.0332 0.3 0.0982

445 18 5 0.038 0.2 0.0871

446 19 1 0.0199 0.2 0.2123

447 19 1 0.0199 0.3 0.2104

448 19 1 0.0199 0.4 0.2086

449 19 1 0.0199 0.5 0.2067

450 19 1 0.0199 0.6 0.2049

451 19 1 0.0199 0.7 0.203

452 19 2 0.0217 0.7 0.1785

453 19 2 0.0225 0.6 0.1707

454 19 2 0.0234 0.5 0.1572

455 19 2 0.0243 0.4 0.1512

456 19 2 0.0254 0.3 0.1452

457 19 2 0.0266 0.2 0.138

458 19 3 0.0225 0.7 0.1671

459 19 3 0.0236 0.6 0.1483

460 19 3 0.025 0.5 0.1386

461 19 3 0.0266 0.4 0.1257

462 19 3 0.0286 0.3 0.1174
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463 19 4 0.0229 0.7 0.1382

464 19 4 0.0243 0.6 0.1275

465 19 4 0.026 0.5 0.1169

466 19 4 0.0281 0.4 0.1035

467 19 4 0.0308 0.3 0.0928

468 19 4 0.0344 0.2 0.0839

469 19 5 0.0232 0.7 0.1235

470 19 5 0.0247 0.6 0.1125

471 19 5 0.0266 0.5 0.0981

472 19 5 0.0291 0.4 0.0885

473 19 5 0.0323 0.3 0.0779

474 19 5 0.037 0.2 0.0688

475 20 1 0.0194 0.2 0.2149

476 20 1 0.0194 0.3 0.213

477 20 1 0.0194 0.4 0.2111

478 20 1 0.0194 0.5 0.2092

479 20 1 0.0194 0.6 0.2073

480 20 1 0.0194 0.7 0.2054

481 20 2 0.0212 0.7 0.1805
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482 20 2 0.0219 0.6 0.1727

483 20 2 0.0228 0.5 0.159

484 20 2 0.0237 0.4 0.153

485 20 2 0.0248 0.3 0.1469

486 20 2 0.026 0.2 0.1408

487 20 3 0.0219 0.7 0.169

488 20 3 0.023 0.6 0.1499

489 20 3 0.0244 0.5 0.1402

490 20 3 0.026 0.4 0.1306

491 20 3 0.0279 0.3 0.1187

492 20 4 0.0223 0.7 0.148

493 20 4 0.0237 0.6 0.1289

494 20 4 0.0253 0.5 0.1182

495 20 4 0.0274 0.4 0.1046

496 20 4 0.03 0.3 0.0938

497 20 4 0.0335 0.2 0.0848

498 20 5 0.0226 0.7 0.1324

499 20 5 0.0241 0.6 0.1138

500 20 5 0.026 0.5 0.1029
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501 20 5 0.0283 0.4 0.0895

502 20 5 0.0315 0.3 0.0787

503 20 5 0.036 0.2 0.0696

504 21 1 0.0189 0.2 0.21

505 21 1 0.0189 0.3 0.2101

506 21 1 0.0189 0.4 0.2102

507 21 1 0.0189 0.5 0.2103

508 21 1 0.0189 0.6 0.2104

509 21 1 0.0189 0.7 0.2104

510 21 2 0.0214 0.6 0.1595

511 21 2 0.0222 0.5 0.1525

512 21 2 0.0231 0.4 0.1414

513 21 2 0.0242 0.3 0.1359

514 21 2 0.0253 0.2 0.1303

515 21 3 0.0214 0.7 0.1436

516 21 3 0.0225 0.6 0.1339

517 21 3 0.0238 0.5 0.1194

518 21 3 0.0253 0.4 0.1113

519 21 3 0.0272 0.3 0.1014
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520 21 3 0.0296 0.2 0.0936

521 21 4 0.0218 0.7 0.1496

522 21 4 0.0231 0.6 0.1303

523 21 4 0.0247 0.5 0.1195

524 21 4 0.0267 0.4 0.1056

525 21 4 0.0293 0.3 0.0963

526 21 4 0.0327 0.2 0.0861

527 21 5 0.022 0.7 0.1338

528 21 5 0.0235 0.6 0.115

529 21 5 0.0253 0.5 0.104

530 21 5 0.0277 0.4 0.0904

531 21 5 0.0307 0.3 0.0795

532 21 5 0.0352 0.2 0.0703

533 22 1 0.0185 0.2 0.2034

534 22 1 0.0185 0.3 0.2034

535 22 1 0.0185 0.4 0.2035

536 22 1 0.0185 0.5 0.2036

537 22 1 0.0185 0.6 0.2036

538 22 1 0.0185 0.7 0.2037
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539 22 2 0.0209 0.6 0.1612

540 22 2 0.0217 0.5 0.1541

541 22 2 0.0226 0.4 0.1471

542 22 2 0.0236 0.3 0.1373

543 22 2 0.0248 0.2 0.1316

544 22 3 0.0209 0.7 0.1451

545 22 3 0.022 0.6 0.1353

546 22 3 0.0233 0.5 0.1206

547 22 3 0.0248 0.4 0.1124

548 22 3 0.0266 0.3 0.1024

549 22 3 0.0289 0.2 0.0951

550 22 4 0.0213 0.7 0.1511

551 22 4 0.0226 0.6 0.1385

552 22 4 0.0242 0.5 0.1207

553 22 4 0.0261 0.4 0.1099

554 22 4 0.0286 0.3 0.0972

555 22 4 0.032 0.2 0.0869

556 22 5 0.0215 0.7 0.1352

557 22 5 0.023 0.6 0.1162
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558 22 5 0.0248 0.5 0.105

559 22 5 0.027 0.4 0.0913

560 22 5 0.03 0.3 0.0802

561 22 5 0.0344 0.2 0.0709

562 23 1 0.0181 0.2 0.1895

563 23 1 0.0181 0.3 0.1895

564 23 1 0.0181 0.4 0.1896

565 23 1 0.0181 0.5 0.1896

566 23 1 0.0181 0.6 0.1897

567 23 1 0.0181 0.7 0.1897

568 23 2 0.0198 0.7 0.1507

569 23 2 0.0205 0.6 0.1443

570 23 2 0.0212 0.5 0.1381

571 23 2 0.0221 0.4 0.1318

572 23 2 0.0231 0.3 0.1232

573 23 2 0.0242 0.2 0.118

574 23 3 0.0204 0.7 0.1465

575 23 3 0.0215 0.6 0.1366

576 23 3 0.0227 0.5 0.1218
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577 23 3 0.0242 0.4 0.1135

578 23 3 0.026 0.3 0.1052

579 23 3 0.0283 0.2 0.096

580 23 4 0.0208 0.7 0.1141

581 23 4 0.0221 0.6 0.1046

582 23 4 0.0236 0.5 0.0916

583 23 4 0.0255 0.4 0.0836

584 23 4 0.028 0.3 0.0745

585 23 4 0.0313 0.2 0.0673

586 23 5 0.0211 0.7 0.1365

587 23 5 0.0225 0.6 0.1236

588 23 5 0.0242 0.5 0.106

589 23 5 0.0264 0.4 0.0921

590 23 5 0.0294 0.3 0.0822

591 23 5 0.0336 0.2 0.0715

592 24 1 0.0177 0.2 0.1914

593 24 1 0.0177 0.3 0.1914

594 24 1 0.0177 0.4 0.1915

595 24 1 0.0177 0.5 0.1915
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596 24 1 0.0177 0.6 0.1916

597 24 1 0.0177 0.7 0.1916

598 24 2 0.0193 0.7 0.1521

599 24 2 0.02 0.6 0.1457

600 24 2 0.0208 0.5 0.1394

601 24 2 0.0216 0.4 0.1331

602 24 2 0.0226 0.3 0.1268

603 24 2 0.0237 0.2 0.1193

604 24 3 0.02 0.7 0.1479

605 24 3 0.021 0.6 0.1379

606 24 3 0.0223 0.5 0.128

607 24 3 0.0237 0.4 0.1146

608 24 3 0.0255 0.3 0.1062

609 24 3 0.0277 0.2 0.0969

610 24 4 0.0204 0.7 0.1151

611 24 4 0.0216 0.6 0.1056

612 24 4 0.0231 0.5 0.0924

613 24 4 0.025 0.4 0.0843

614 24 4 0.0274 0.3 0.0752
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615 24 4 0.0306 0.2 0.0678

616 24 5 0.0206 0.7 0.1378

617 24 5 0.022 0.6 0.1247

618 24 5 0.0237 0.5 0.107

619 24 5 0.0259 0.4 0.0957

620 24 5 0.0288 0.3 0.0829

621 24 5 0.0329 0.2 0.0724

622 25 1 0.0173 0.2 0.1861

623 25 1 0.0173 0.3 0.1862

624 25 1 0.0173 0.4 0.1862

625 25 1 0.0173 0.5 0.1862

626 25 1 0.0173 0.6 0.1862

627 25 1 0.0173 0.7 0.1862

628 25 2 0.019 0.7 0.1636

629 25 2 0.0196 0.6 0.147

630 25 2 0.0204 0.5 0.1407

631 25 2 0.0212 0.4 0.1343

632 25 2 0.0222 0.3 0.1279

633 25 2 0.0232 0.2 0.1203
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634 25 3 0.0196 0.7 0.1211

635 25 3 0.0206 0.6 0.113

636 25 3 0.0218 0.5 0.105

637 25 3 0.0232 0.4 0.0943

638 25 3 0.025 0.3 0.0875

639 25 3 0.0271 0.2 0.0803

640 25 4 0.02 0.7 0.1161

641 25 4 0.0212 0.6 0.1065

642 25 4 0.0227 0.5 0.0932

643 25 4 0.0245 0.4 0.085

644 25 4 0.0268 0.3 0.0758

645 25 4 0.03 0.2 0.0684

646 25 5 0.0202 0.7 0.0956

647 25 5 0.0216 0.6 0.0868

648 25 5 0.0232 0.5 0.0752

649 25 5 0.0254 0.4 0.0677

650 25 5 0.0282 0.3 0.0596

651 25 5 0.0322 0.2 0.0532

652 26 2 0.0186 0.7 0.139
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653 26 2 0.0193 0.6 0.1251

654 26 2 0.02 0.5 0.1197

655 26 2 0.0208 0.4 0.1144

656 26 2 0.0217 0.3 0.109

657 26 2 0.0228 0.2 0.1028

658 26 3 0.0192 0.7 0.1221

659 26 3 0.0202 0.6 0.1139

660 26 3 0.0214 0.5 0.1059

661 26 3 0.0228 0.4 0.095

662 26 3 0.0245 0.3 0.0882

663 26 3 0.0266 0.2 0.0809

664 26 4 0.0196 0.7 0.1171

665 26 4 0.0208 0.6 0.1074

666 26 4 0.0222 0.5 0.0979

667 26 4 0.024 0.4 0.0857

668 26 4 0.0263 0.3 0.0764

669 26 4 0.0294 0.2 0.0691

670 26 5 0.0198 0.7 0.0964

671 26 5 0.0228 0.5 0.0758



133

672 26 5 0.0249 0.4 0.0682

673 26 5 0.0276 0.3 0.06

674 26 5 0.0316 0.2 0.0535

675 27 2 0.0182 0.7 0.1402

676 27 2 0.0189 0.6 0.1332

677 27 2 0.0196 0.5 0.1207

678 27 2 0.0204 0.4 0.1153

679 27 2 0.0213 0.3 0.1099

680 27 2 0.0224 0.2 0.1045

681 27 3 0.0189 0.7 0.1315

682 27 3 0.0199 0.6 0.1149

683 27 3 0.021 0.5 0.1067

684 27 3 0.0224 0.4 0.0987

685 27 3 0.024 0.3 0.0889

686 27 3 0.0261 0.2 0.0816

687 27 4 0.0192 0.7 0.1181

688 27 4 0.0204 0.6 0.1083

689 27 4 0.0218 0.5 0.0987

690 27 4 0.0236 0.4 0.0864
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691 27 4 0.0258 0.3 0.0781

692 27 4 0.0289 0.2 0.0696

Table 5.2: Exhaustive Search Results Data

After the search through different configurations, the best configuration was

found to be: 651 25 5 0.0322 0.20 0.0532
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Appendix B: Coordinate Search Results Data

For this simulation, we had the following conditions:

Volume Constraint: 0.005301

Disc Radius: 1.000000

Disc k: 0.010000

Disc Q: 0.000000

Beam Radius: 0.100000

Beam k: 30.000000

Beam Q: 86.000000

Branch k: 30.000000

Branch Q: 0.000000

The coordinate search took 27277.542583 seconds to complete.

The following are the case results:

Case# #Roots #Ends Root

Width

Root

Length

Central

Temp.

Compute

Time

1 2 1 0.061239 0.1 0.699374 17.589186

2 2 1 0.061239 0.2 0.693525 12.665513

3 2 1 0.061239 0.3 0.687958 12.341206
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4 2 1 0.061238 0.4 0.682469 12.630435

5 2 1 0.061238 0.5 0.677045 12.558706

6 2 1 0.061237 0.6 0.671639 13.257724

7 2 1 0.061237 0.7 0.666235 14.555064

8 2 2 0.061237 0.7 NaN 0

9 2 3 0.061455 0.7 NaN 12.395582

10 2 4 0.063336 0.7 NaN 23.47022

11 2 5 0.064832 0.7 NaN 26.907206

12 3 1 0.05 0.7 0.563515 14.261825

13 4 1 0.043301 0.7 0.465456 14.069749

14 5 1 0.038729 0.7 0.415929 14.095311

15 6 1 0.035355 0.7 0.374876 14.439519

16 7 1 0.032732 0.7 0.38352 15.172549

17 8 1 0.030618 0.7 0.348214 16.305175

18 9 1 0.028867 0.7 0.331481 16.195651

19 10 1 0.027386 0.7 0.307306 17.065546

20 11 1 0.026111 0.7 0.287017 16.90145

21 12 1 0.025 0.7 0.280992 17.542576

22 13 1 0.024019 0.7 0.265494 17.772066
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23 14 1 0.024019 0.7 NaN 0

24 15 1 0.02236 0.7 0.251642 18.627744

25 16 1 0.02236 0.7 NaN 0

26 17 1 0.021004 0.7 0.230347 18.92728

27 18 1 0.020412 0.7 0.221245 18.026657

28 19 1 0.019868 0.7 0.203022 18.374195

29 20 1 0.019365 0.7 0.2054 18.301894

30 21 1 0.018898 0.7 0.210425 20.863744

31 22 1 0.018464 0.7 0.203691 21.32116

32 23 1 0.018058 0.7 0.189718 18.973469

33 24 1 0.017678 0.7 0.191571 20.059653

34 25 1 0.01732 0.7 0.186246 20.54592

35 26 1 0.01732 0.7 NaN 0

36 27 1 0.01732 0.7 NaN 0

37 25 1 0.01732 0.1 NaN 0

38 25 1 0.017321 0.2 0.186142 17.718645

39 25 1 0.017321 0.3 0.18616 20.640041

40 25 1 0.017321 0.4 0.186185 20.790829

41 25 1 0.017321 0.5 0.186226 21.337472
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42 25 1 0.017321 0.6 0.186235 20.7554

43 25 2 0.023234 0.2 0.120326 26.627732

44 25 3 0.027136 0.2 0.08031 145.033356

45 25 4 0.030003 0.2 0.068363 772.796167

46 25 5 0.032231 0.2 0.053155 5495.194443

47 26 5 0.031605 0.2 0.053475 4473.304469

48 27 5 0.031014 0.2 0.053788 5415.325795

49 2 5 0.108159 0.2 0.567666 51.033828

50 3 5 0.090741 0.2 0.341646 58.216184

51 4 5 0.079465 0.2 0.261787 55.139366

52 5 5 0.071497 0.2 0.216837 56.963389

53 6 5 0.071497 0.2 NaN 0

54 7 5 0.071497 0.2 NaN 0

55 8 5 0.056821 0.2 0.152328 43.616108

56 9 5 0.053611 0.2 0.140025 64.937242

57 10 5 0.053611 0.2 NaN 0

58 11 5 0.048547 0.2 0.112269 98.810763

59 12 5 0.046481 0.2 0.114997 108.435831

60 13 5 0.044675 0.2 0.101327 209.140713
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61 14 5 0.04305 0.2 0.10349 224.074423

62 15 5 0.041601 0.2 0.083559 438.816339

63 16 5 0.04028 0.2 0.084662 480.057816

64 17 5 0.039078 0.2 0.086098 462.948836

65 18 5 0.037977 0.2 0.087108 549.712673

66 19 5 0.03697 0.2 0.068803 598.554015

67 20 5 0.036034 0.2 0.06965 600.465566

68 21 5 0.035165 0.2 0.0703 602.766199

69 22 5 0.034357 0.2 0.070928 668.817366

70 23 5 0.033602 0.2 0.071529 679.71179

71 24 5 0.032894 0.2 0.072431 702.520804

Table 5.3: Coordinate Search Results Data

After the search through different configurations, the best configuration was

found to be: 25 5 0.03223100 0.200000000 0.05315524066557129

The following cases were missed because of errors:

Case# #Roots #Ends Root Width Root Length Central Temperature

8 2 2 0.061237 0.7 NaN
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9 2 3 0.061455 0.7 NaN

10 2 4 0.063336 0.7 NaN

11 2 5 0.064832 0.7 NaN

23 14 1 0.024019 0.7 NaN

25 16 1 0.02236 0.7 NaN

35 26 1 0.01732 0.7 NaN

36 27 1 0.01732 0.7 NaN

37 25 1 0.01732 0.1 NaN

53 6 5 0.071497 0.2 NaN

54 7 5 0.071497 0.2 NaN

57 10 5 0.053611 0.2 NaN

Table 5.4: Error Cases in Coordinate Search
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