

II

III

DEDICATION

I dedicate this thesis with all of my love to the prophet of humanity and peace

MOHAMMED RASOOL ALLAH

IV

ACKNOWLEDGMENT

I thank Allah (SWT) for granting me health, patient, guidance and determination to

successfully accomplish this work.

Acknowledgment is due to the King Fahd University of Petroleum & Minerals for

supporting this research.

I wish to express my deep appreciation to Dr. Salahadin Adam who served as my major

advisor for his constant help, guidance, encouragement and invaluable support. I also

wish to thank the other members of my thesis committee Dr. Mohammed Al-Mulhem

and Dr. Mahmood Sajjad for their cooperation, comments and support.

I would like to thank King Fahd University of Petroleum and Minerals for sponsoring

me throughout my graduate studies. I also would like to thank Aden Community

College which gives me the opportunity for completing my MSc degree in KFUPM.

Also, I would you like to thank my parents, my wife, my son and daughters who always

support me with their love, patience encouragement and constant prayers. I would like

to thank my brothers, sisters, and all my friends for their love and support throughout

my study.

V

TABLE OF CONTENETS

Page

DEDICATION ... III

ACKNOWLEDGMENT .. IV

TABLE OF CONTENETS .. V

LIST OF FIGURES ... X

LIST OF TABLES .. XIV

THESIS ABSTRACT .. XVI

 XVII ... خلاصة الرسالة

CHAPTER ONE INTRODUCTION ... 1

1.1. Background .. 1

1.2. Numbering scheme .. 3

1.3. Storing XML data .. 4

1.3.1. File approach ... 4

1.3.2. Relational approach ... 4

1.3.3. Native approaches ... 5

1.4. Multidimensional file structure .. 7

1.5. Thesis contribution .. 7

1.6. Thesis outlines ... 9

CHAPTER TWO LITERATURE REVIEW .. 10

2.1. The XML Numbering Scheme .. 10

2.1.1. The navigation approach ... 11

2.1.2. Prefix- based approach .. 12

VI

2.1.3. The prime number approach ... 13

2.2. XML Storage Approaches ... 14

2.2.1. File approaches .. 14

2.2.2. Relational approaches ... 15

2.2.2.1. Edge-approach .. 16

2.2.2.2. The node approach ... 16

2.2.2.3. The DTD approach ... 17

2.2.2.4. The Path based approach .. 17

2.2.3. Native approaches ... 17

2.3. XML Query processing ... 20

2.3.1. Xml Query Languages .. 20

2.3.1.1. XML-QL ... 20

2.3.1.2. XPath .. 21

2.3.1.3. XQuery ... 22

2.3.2. XML Query Processing Approach .. 22

2.3.2.1. The Relational Approach .. 22

2.3.2.1.1. The Edge Approach ... 23

2.3.2.1.2. The Node Approach ... 23

2.3.2.1.3. The Path Materialization (PM) Approach 24

2.3.2.1.4. The DTD approach .. 24

2.3.2.2. The Native Approach ... 25

2.3.2.2.1. The Multi-Predicate MerGe JoiN (MPMGJN) Approach 26

2.3.2.2.2. The StackTree Approach ... 26

2.3.2.2.3. The Holistic Approach ... 27

VII

2.3.2.2.4. The PathStack approach ... 28

2.3.2.2.5. The TwigStack approach ... 29

2.4. Multidimensional file structure .. 30

2.4.1. The Grid File ... 30

2.4.1.1. The grid partition .. 31

2.4.1.2. The grid directory ... 31

CHAPTER THREE MULTIDIMENSIONAL XML FILE (MXF) 33

3.1. Introduction .. 33

3.2. MXF structure .. 33

3.2.1. MXF parser ... 34

3.2.2. MXF Indexer ... 38

3.2.2.1. MXF directory storage: .. 38

3.2.2.2. MXF data storage: .. 39

3.3. Main operation on MXF .. 55

3.3.1. Searching ... 55

3.3.2. Insertion ... 56

3.3.3. Deletion ... 58

CHAPTER FOUR EXPERIMENTAL RESULTS AND ANALYSIS 59

4.1. Environment ... 60

4.2. Dataset ... 60

4.3. Query sets .. 60

4.4. Performance metrics .. 60

4.5. Experiments ... 62

4.5.1. Classification of data according to the data variety 62

VIII

4.5.1.1. Set A datasets ... 62

4.5.1.1.1. Group C dataset ... 63

4.5.1.1.2. Group B dataset ... 64

4.5.1.1.3. Group A dataset ... 66

4.5.1.2. Set B datasets .. 69

4.5.1.2.1. Group C dataset ... 69

4.5.1.2.2. Group B dataset ... 71

4.5.1.2.3. Group A dataset ... 73

4.5.1.3. Set C datasets .. 76

4.5.1.3.1. Group A dataset ... 76

4.5.1.3.2. Group B dataset ... 78

4.5.1.3.3. Group A dataset ... 79

4.5.2. Classification the data according to data shape ... 82

4.5.2.1. Data-Width datasets .. 82

4.5.2.1.1. Set A datasets ... 83

4.5.2.1.1.1. Group C dataset ... 83

4.5.2.1.1.2. Group B dataset ... 85

4.5.2.1.1.3. Group A dataset ... 86

4.5.2.1.2. Set B datasets ... 89

4.5.2.1.2.1. Group C dataset ... 89

4.5.2.1.2.2. Group B dataset ... 91

4.5.2.1.2.3. Group A dataset ... 92

4.5.2.1.3. Set C datasets ... 95

4.5.2.1.3.1. Group C dataset ... 95

IX

4.5.2.1.3.2. Group B dataset ... 97

4.5.2.1.3.3. Group A dataset ... 98

4.5.2.2. Data-depth datasets ... 102

4.5.2.2.1. Set A datasets ... 102

4.5.2.2.1.1. Group C dataset ... 102

4.5.2.2.1.2. Group B dataset ... 104

4.5.2.2.1.3. Group A dataset ... 105

4.5.2.2.2. Set B datasets ... 108

4.5.2.2.2.1. Group C dataset ... 108

4.5.2.2.2.2. Group B dataset ... 110

4.5.2.2.2.3. Group A dataset ... 111

4.5.2.2.3. Set C datasets ... 114

4.5.2.2.3.1. Group C dataset ... 114

4.5.2.2.3.2. Group B dataset ... 116

4.5.2.2.3.3. Group A dataset ... 117

4.6. Summery .. 120

CHAPTER FIVE CONCLUSION AND FEATURE WORK 122

REFERENCES ... 124

Vita ... 129

X

 LIST OF FIGURES

Page

Figure 1.1: a simple XML document ... 2

Figure 1.2: a tree representation of the XML document of Figure1.1 3

Figure 1.3: inverted lists for Dept and Name elements .. 6

Figure 2.1: region based numbering scheme .. 12

Figure 2.2: prefix based labeling scheme ... 13

Figure 2.3: prime number labeling scheme .. 14

Figure 2.4: an XML-QL example .. 21

Figure 2.5: a simple XML document .. 21

Figure 2.6: applying MPMGJN and StackTree to query “A/B.” (a) Data tree. (b) The

MPMGJN approach. (c) The StackTree approach. ... 27

Figure 2.7 an example of the PathStack approach. .. 28

Figure 2.8 an example of the TwigStack approach. ... 29

Figure 2.9: a grid file structure ... 32

Figure 3.1: a simple XML document ... 35

Figure 3.2: a tree representation for XML document in Figure 3.1 36

Figure 3.3: the MXF structure .. 39

Figure 3.4: MXF after saving the 1st BPL .. 41

Figure 3.5: comparing the right most bits of the 1st element of the BPLs 42

Figure 3.6: comparing the 2nd bits of the 1st element of the BPLs 43

Figure 3.7: comparing the 3rd bits of the 1st element of the BPLs 43

Figure 3.8: comparing the 4th bits of the 1st element of the BPLs 43

Figure 3.9: comparing the four bits of the 2nd element of the BPLs 44

Figure 3.10: comparing the 1st bits of the 3rd element of the BPLs 44

Figure 3.11: splitting the previous block into two blocks .. 45

Figure 3.12: MXF after saving the 4th BPL ... 45

Figure 3.13: MXF after saving the 5th BPL ... 46

XI

Figure 3.14: MXF after saving the 6th BPL ... 47

Figure 3.15: MXF after saving the 7th and 8th BPLs ... 48

Figure 3.16: MXF directory after splitting the second dimension 49

Figure 3.17: MXF after saving the 9th BPL ... 49

Figure 3.18: MXF after saving the 10th BPL ... 50

Figure 3.19: MXF after saving the 11th BPL ... 51

Figure 3.20: MXF after saving the 12th, 13th and 14th BPLs ... 52

Figure 3.21: MXF after saving the remaining BPLs with a three dimensions directory 54

Figure 4.1: the number of blocks used to save SWISSPORT_GC.xml dataset 63

Figure 4.2: the file density when saving SWISSPORT_GC.xml dataset 64

Figure 4.3: the number of blocks used to save SWISSPORT_GB.xml dataset 65

Figure 4.4: the file density when saving SWISSPORT_GB.xml dataset 65

Figure 4.5: the number of blocks used to save SWISSPORT_GA.xml dataset 66

Figure 4.6: the file density when saving SWISSPORT_GA.xml dataset 67

Figure 4.7: the density of the MXF when saving SWISSPORT.xml datasets 68

Figure 4.8: query responce time when queyring SWISSPORT.xml 69

Figure 4.9: the number of blocks used to save UWM_GC.xml dataset 70

Figure 4.10: the file density when saving UWM_GC.xml dataset 71

Figure 4.11: the number of blocks used to save UWM_GB.xml dataset 72

Figure 4.12: the file density when saving UWM_GB.xml dataset 72

Figure 4.13: the number of blocks used to save UWM_GA.xml dataset 73

Figure 4.14: the file density when saving UWM_GA.xml dataset 74

Figure 4.15 the density of MXF when saving UWM.xml datasets 75

Figure 4.16: query response time when querying UWM.xml datasets 76

Figure 4.17: the number of blocks used to save PARTSUPP_GC.xml dataset 77

Figure 4.18: the file density when saving PARTSUPP_GC.xml dataset 77

Figure 4.19: the number of blocks used to save PARTSUPP_GB.xml dataset 78

Figure 4.20: the file density when saving PARTSUPP_GB.xml dataset 79

Figure 4.21: the number of blocks used to save PARTSUPP_GA.xml dataset 80

XII

Figure 4.22: the file density when saving PARTSUPP_GC.xml dataset 80

Figure 4.23: the density of the MXF when saving PARTSU.xml datasets 81

Figure 4.24 : the query response time when querying PARTSUPP.xml datasets 82

Figure 4.25: the number of blocks used to save DBLP_GC.xml dataset 84

Figure 4.26: the file density when saving DBLP_GC.xml dataset 84

Figure 4.27: the number of blocks used to save DBLP_GB.xml dataset 85

Figure 4.28: the file density when saving DBLP_GB.xml dataset 86

Figure 4.29: the number of blocks used to save DBLP_GA.xml dataset 86

Figure 4.30: the file density when saving DBLP_GA.xml dataset 87

Figure 4.31: the density of MXF when saving DBLP.xml datasets 88

Figure 4.32: the query response time when querying DBLP.xml datasets 89

Figure 4.33: the number of blocks used to save WSU_GC.xml dataset 90

Figure 4.34: the file density when saving WSU_GC.xml dataset 90

Figure 4.35: the number of blocks used to save WSU_GB.xml dataset 91

Figure 4.36: the file density when saving DBLP_GB.xml dataset 92

Figure 4.37: the number of blocks used to save DBLP_GB.xml dataset 92

Figure 4.38: the file density when saving DBLP_GA.xml dataset 93

Figure 4.39: the density of MXF when saving WSU.xml datasets 94

Figure 4.40: the query response time when querying WSU.xml datasets 95

Figure 4.41: the number of blocks used to save CUSTOMER_GC.xml dataset 96

Figure 4.42: the file density when saving CUSTOMER _GC.xml dataset 96

Figure 4.43: the number of blocks used to save CUSTOMER_GB.xml dataset 97

Figure 4.44: the file density when saving CUSTOMER _GB.xml dataset 98

Figure 4.45: the number of blocks used to save CUSTOMER_GA.xml dataset 99

Figure 4.46: the file density when saving CUSTOMER _GA.xml dataset 99

Figure 4. 47: the density of MXF when saving CUSTOMER.xml datasets 100

Figure 4.48: the query response time when querying CUSTOMER.xml datasets 101

Figure 4.49: the number of blocks used to save PERSONS_GC.xml dataset 103

Figure 4.50: the file density when saving PERSONS _GC.xml dataset 103

XIII

Figure 4.51: the number of blocks used to save PERSONS_GB.xml dataset 104

Figure 4.52: the file density when saving PERSONS _GB.xml dataset 105

Figure 4.53: the number of blocks used to save PERSONS_GA.xml dataset 105

Figure 4.54: the file density when saving PERSONS _GB.xml dataset 106

Figure 4.55 the density of MXF when saving PERSONS.xml datasets 107

Figure 4.56: the query response time when querying PERSONS.xml datasets 108

Figure 4.57: the number of blocks used to save SIGMODRECORD_GC.xml dataset

 ... 109

Figure 4.58: the file density when saving SIGMODRECORD _GC.xml dataset 109

Figure 4.59: the number of blocks used to save SIGMODRECORD_GB.xml dataset

 ... 110

Figure 4.60: the file density when saving SIGMODRECORD _GB.xml dataset 111

Figure 4.61: the number of blocks used to save SIGMODRECORD_GA.xml dataset

 ... 111

Figure 4.62: the file density when saving SIGMODRECORD _GA.xml dataset 112

Figure 4.63: the density of MXF when saving SIMORECORD.xml datasets 113

Figure 4.64: the query response time when querying SIGMODRECORD.xml datasets

 ... 114

Figure 4.65: the number of blocks used to save ORDERS_GC.xml dataset 115

Figure 4.66: the file density when saving ORDERS _GC.xml dataset 115

Figure 4.67: the number of blocks used to save ORDERS_GB.xml dataset 116

Figure 4.68: the file density when saving ORDERS _GB.xml dataset 117

Figure 4.69: the number of blocks used to save ORDERS_GA.xml dataset 117

Figure 4.70: the file density when saving ORDERS _GA.xml dataset 118

Figure 4.71 the density of MXF when saving ORDERS.xml datasets 119

Figure 4.72: the query response time when querying WSU.xml datasets 120

XIV

LIST OF TABLES

Page

Table 3.1: the tag table for the XML documet in Figure 1.1 37

Table 3.2: the paths, their corresponding BPLs and DEWEY 38

Table 4.1: the datasets used for our experiments 61

Table 4.2: a summery table shows the density file and the number of blocks used when

saving SWISSPORT.xml 67

Table 4.3: shows the query response time for the query set mentioned above. 68

Table 4.4: a summery table shows the density file and the number of blocks used when

saving UWM.xml 74

Table 4.5: shows the query response time for the query set mentioned above 75

Table 4.6: a summery table shows the density file and the number of blocks used when

saving PARTSUPP.xml 81

Table 4.7: shows the query response time for the query set mentioned above 82

Table 4.8: a summery table shows the density file and the number of blocks used when

saving DBLP.xml 87

Table 4.9: shows the query response time for the query set mentioned above 88

Table 4.10: a summery table shows the density file and the number of blocks used when

saving SWISSPORT.xml 93

Table 4.11: shows the query response time for the query set mentioned above 94

Table 4.12: a summery table shows the density file and the number of blocks used when

saving CUSTOMER.xml 100

Table 4.13: shows the query response time for the query set mentioned above. 101

Table 4.14: a summery table shows the density file and the number of blocks used when

saving SWISSPORT.xml 106

Table 4.15: shows the query response time for the query set mentioned above 107

Table 4.16: a summery table shows the density file and the number of blocks used when

saving SIGMODRECORD.xml 112

XV

Table 4.17: shows the query response time for the query set mentioned above 113

Table 4.18: a summery table shows the density file and the number of blocks used when

saving ORDERS.xml 118

Table 4.19: shows the query response time for the query set mentioned above 119

XVI

THESIS ABSTRACT

NAME: Mahboub Ali Mohammed Naji

TITLE: Multidimensional Xml File: A New Xml File Structure

MAJOR FIELD: Computer Science

DATE OF DEGREE: June, 2010.

Exchanging data between organizations becomes challenge because of differences in

data formats and in the semantics of the meta-data used to describe the data. EXtensible

Markup Language (XML) is playing an increasingly important role in the exchange of a

wide variety of data on the Web. Querying XML data is a challenging task because of

the nature of XML structure. Unlike flat files, XML documents have nested structure.

Querying XML data involves not only the content but also the structure of XML data.

The increasingly wider use of XML has heightened the need to store large volumes of

data encoded in XML, and to query XML data more efficiently.

The way an XML document is stored in a secondary storage affects the cost of querying

the data. Many techniques of storing XML data have been proposed in the literature.

The main disadvantage of the existing techniques is that they organize the data in a way

that will result in many disk I/Os to answer a query. In this thesis we are proposing a

new multidimensional file structure to store XML data in a secondary storage. This

multidimensional file structure will minimize the number of disk blocks accessed to

answer a query.

XVII

ةخلاصة الرسال

محبوب علي محمد ناجي : الاســـــــم

 ملف جديد لخزن واسترجاع ملفات الاآس ام ال : متعدد الابعاد (XML)اآس ام ال ملف: عنوان الرسالة

 علوم حاســـب الي: التخصص

 2010يونيــــــو : تاريخ التخرج

وذلك بسبب الاختلاف في صيغ البيانات إضافة إلى الاختلاف في البيانات الوسيطة إن تبادل البيانات بين المؤسسات أصبح يشكل تحديا

تلعب دورا هاما في تبادل أنواع كثيرة) XML(إن لغة الترميز الموسعة الـ .أو المساعدة المستخدمة في وصف هذه البيانات المتبادلة

تعتبر مهمة صعبة وذلك) XML(إن الاستعلام عن البيانات الموجودة في ملفات الـ .ومختلفة من البيانات خلال صفحة الانترنت

حيث وأا تختلف عن الملفات النصية العادية كون استعلام أو البحث في الملفات النصية العادية يتعلق بمحتوى , بسبب طبيعة هذه الملفات

يتعلق بمعرفة محتوى وتركيب) XML(بحث أو الاستعلام في ملفات الـ بينما ال, معرفه تركيب هذه الملفات بهذه الملفات ولا يتطل

 .هذه الملفات

تنعكس أو تؤثر في طريقة البحث أو الاستعلام عن , في الذواكر الثانوية كالقرص الصلب) XML(إن الطريقة التي تخزن ا ملفات الـ

 .البيانات في هذه الملفات

ولكن المشكلة الأساسية التي ,)XML(استخدمت لتخزين ملفات الـ - الأبحاث السابقةفي –هناك العديد من الطرق أو التقنيات

)Disk blocks(يتطلب قراءه عدد كبير من مقاطع الذاكرة) XML(تعاني منها هذه الطرق هي أن الاستعلام عن ملفات الـ

 .انوية للإجابة عن هذا الاستعلاموهذا يعني عمليات عديدة من عمليات القراءة والكتابة من والى الذاكرة الث

هذه الطريقة تخزن ملفات الـ , في الذاكرة الثانوية) XML(في هذه الأطروحة نقدم أو نقترح طريقة جديدة لتخزين ملفات الـ

)XML (بشكل ملف متعدد الأبعاد)Multidimensional structure file (ا تخزن البيانات بطريقةوفكرة هذه الطريقة أ

 .)XML(عدد مقاطع الذاكرة المطلوب الوصول إليها قليل عند الاستعلام عن بيانات في ملفات الـ تجعل

1

CHAPTER ONE

 INTRODUCTION

1.1. Background

Data exchange among organizations is challenging because of differences in data

formats and in the semantics of the meta-data used to describe the data. EXtensible

Markup Language (XML), a simple and very flexible text format, is playing an

increasingly important role in the exchange of a wide variety of data on the Web. The

simplicity, flexibility, and data self-describing capability of XML, makes it ideal for

data exchange [1] [2]. XML data is self describing because XML tags are used to

describe the semantic of the data. For example, in Figure 1.1, the tag < name> nested in

tag < Dept> means the name of the dept. XML is flexible in organizing data, that is,

objects of the same type might have different types of sub objects or different numbers

of sub objects of the same type [3]. Since of the importance of XML as a new standard

for information representation and exchange on the Internet, the problem of storing,

indexing, and querying XML documents poses new challenges to database researchers,

and has been among the major issues of database research [4]. XML documents form a

tree structure that starts at "the root" and branches to "the leaves". So an XML

2

document can be represented as a tree, where nodes represent the element of the

document and edges represent the relationships between these elements [5].

Figure 1.1: a simple XML document

XML document in Figure1.1 can be represented as a tree showed in the Figure 1.2

3

1.2. Numbering scheme

XML data can be represented as a rooted, ordered and labelled tree. In Figure 1.2 XML

document represented as tree, where a node is either (1) an element node (internal node)

which corresponds to a tag in XML document, such as dept, name, etc. (2) An attribute

node (internal node) which corresponds to an attribute node such as cid. (3) A value

node (leaf node) which corresponds to data value such as CHE, 1, etc. Edges indicate

the relation between nodes which is either parent- child relation or ancestor- descendant

relation. Parent- child relation (direct containment) such as the relation among KFUPM

and CS nodes and ancestor- descendant relation (indirect containment) such as the

relation among KFUPM and Dept nodes.

 KFUPM
1

1.1
CS

ID Name

Dept

CHE 1

1.1.1

1.1.1.1 1.1.1.2

ID Name

Dept

PHY 2

1.1.2

1.1.2.1 1.1.2.2

1.2
CE

ID Name

Dept

CE 3

1.2.1

1.2.1.1 1.2.1.2

ID Name

Dept

ME 4

1.2.2

1.2.2.1 1.2.2.2

1.3
CCSE

ID Name

Dept

CE 5

1.3.1

1.3.1.1 1.3.1.2

ID Name

Dept

ME 6

1.3.2

1.3.2.1 1.3.2.2

Figure 1.2: a tree representation of the XML document of Figure1.1

4

1.3. Storing XML data

The cost of a query can be measured mainly by the number of disk I/Os performed to answer

the query. As a result the way XML data is organized in a secondary storage affects the cost of a

query significantly.

Recently, there has been a lot of interest in XML data storage strategies. Existing XML

storage strategies can be classified into three main approaches, namely, file approach,

relational approach, and native approach.

1.3.1. File approach

In this approach XML document is stored as a separate operating system file. A DOM

parser is used whenever the document is accessed by a query. This approach is trivial to

implement and DOM parsers are widely available [6].

1.3.2. Relational approach

Another approach to store XML data is the relational approach in which XML data are

stored in relational databases.

The main advantage of this approach is that existing important techniques can be reused

and no need for extra development efforts. Queries written in XML query languages,

such as XML-QL, are translated in to SQL and executed by the underlying relational

database system [7] [8] [9] [10] [11] [12] [13].

5

But this in turn, leads to the following problems that need to be addressed in order to

store and query XML data in relational databases:

• Schema mapping, to generate the relational schema from a DTD.

• Data mapping, to inserts XML data as relational records into the target database.

• Query mapping, to translate XML queries into SQL queries.

• Reverse data mapping, to publishes XML data from relational data

All these mappings are very costly in both time and space because there is a need to

perform multiple joins between tables [14] [15].

1.3.3. Native approaches

There are several native approaches. In one native approach, XML data are stored in

inverted lists and native query processing algorithms are developed to process them.

The concept of inverted lists originated from inverted indexes, which have been widely

used in information retrieval to search for text efficiently. An inverted list is created for

each distinct tag in XML documents. Each list records the positions of all elements with

that tag name, where the position of an element is expressed using its (Start, End, Level)

numbers (or Dewey vectors). Elements in each list are sorted in the increasing order of

their start numbers [16] [17] [18]. Figure 1.3 below shows an example of inverted lists

of the elements Dept and Name in the Figure 1.2.

6

Dept 1.1.1 1.1.2 1.2.1 1.2.2 1.3.1 1.3.2

Name 1.1.1.1 1.1.2.1 1.2.1.1 1.2.2.1 1.3.1.1 1.3.2.1

Figure 1.3: inverted lists for Dept and Name elements

Native XML database is a database that has an XML document as its fundamental unit

of (logical) storage and defines a (logical) model for an XML document. It represents

logical XML document model, and stores and manipulates documents according to that

model.

The main features of a Native XML database are the following:

• XML document or its rooted part is a logical unit of a Native XML database.

• At least the following components are included: elements, attributes and textual

data.

• Physical model is unspecified, which implies that XML documents storage may

be arbitrary, as long as it stores and manipulates an XML document as a

(logical) unit.

Native XML databases are especially suitable for storing irregular, deeply hierarchical,

recursive data.

The advantages of using native XML databases over other types of databases are

numerous. They free users from having to know document schema, they support data

7

models that does not fit other databases (e.g., relational databases), and provide for

extensibility, etc [16] [17] [18].

1.4. Multidimensional file structure

There are many file structures available for managing a collection of records identified

by a single key like: sequentially allocated files, tree-structured files, and hash files.

Because of the increasing usage of databases and integrated information systems, there

is a real need now for file structures that allow efficient access to records by

combinations of attribute values. This is what is called multi-key access. These file

structures have to be efficient, also in a highly dynamic environment, i.e. when there is

a high rate of insertions and deletions.

1.5. Thesis contribution

Previous native XML storage systems depend on the inverted lists to store the file. They

save the inverted lists of all elements in an XML documents, by decomposing paths of

the XML tree and save the elements of the paths separately (using their numbering

scheme).

There are two major disadvantages of these approaches: first, it uses large disk space,

and second it needs many join operations to process a query. This thesis proposes a new

file structure Multidimensional XML File (MXF) to save, index and query XML

8

document. The main idea of our proposed system is to store the inverted lists of the leaf

nods only. The proposed approach uses less disk space, minimizes the need for join

operations in querying twig queries, and eliminate join operations in simple path

queries.

The main thesis goals will be as follow:

• To find a new multidimensional file structure to store XML data.

• To implement the new multidimensional file structure.

• To find a suitable directory structure for the multidimensional file structure.

• To implement the new directory structure.

• To find the density of the new multidimensional file structure and the density of

its directory.

• To study how the multidimensional file structure is affected by:

o Shape of an XML tree

o Levels of an XML tree

o Number of elements in an XML tree

o Size of an XML tree

• To implement delete, update, and select operations on the new multidimensional

file structure.

• To find a suitable node labeling scheme if needed.

9

1.6. Thesis outlines

The rest of this thesis will be organized as follows:

• Chapter two presents the literature review. We discuss the previous XML

storage approaches, the existing XML numbering scheme, the XML query

processing approaches, and the multidimensional files.

• Chapter three shows the proposed MXF system. We explain in details the

structure of MXF and we show by examples how MXF works to index and save

an XML document. Finally, we discuss the main MXF operations: searching,

insertion, and deletion.

• Chapter four introduces the experimental results and analysis. We apply our

MXF on different XML databases and study its behavior. Environment, datasets,

query sets and performance metrics are discussed. We use different data sets

according to their sizes, their distinct paths, and their shapes (how deep or wide

an XML document is).

• Chapter five concludes this thesis. Also, describes a number of future works.

10

CHAPTER TWO

LITERATURE REVIEW

The increasingly wider use of XML has heightened the need to index and store large

volumes of data encoded in XML, and to query XML data more efficiently. Many XML

storage approaches, XML numbering schemes and many XML query processing

algorithms have been proposed in literature. In this chapter we briefly introduce some of

them.

The rest of this chapter will be organized as follows. Section 2.1 introduces the existing

numbering schemes. Section 2.2 shows the existing XML storage approaches. Section

2.3 explains the XML query processing approaches. And finally, section 2.4 presents

multidimensional files.

2.1. The XML Numbering Scheme

Querying XML documents can be done by a combination of value search and structure

search. In the value search, a query is processed by matching specified values or by

matching specified element or attribute names. Searching by structure depends on the

element to element or element to attribute relationship.

11

In order to process the relationship between nodes, the nodes in an XML tree are

systematically labelled in such a way that the structural relationship (e.g., the ancestor–

descendant relationship) between two arbitrary nodes can be computed efficiently.

 Various labeling techniques are proposed in literature. The following are some of the

main labeling approaches: the navigation approaches, the prefix-based approaches and

prime number approach.

2.1.1. The navigation approach

The navigation approach: a straightforward method for determining reachability is tree

navigation which either traversing down (forward navigation) or backtracking

(backward navigation) an XML tree [19] [20]. However, the navigation method is, in

general, not very efficient, since it may involve traversing a large number of query-

irrelevant nodes.

An interval (region) approaches: in this method the reachability between two nodes

could be determined through checking the containment relationship between their

intervals.

Dietz in [21] proposed the original work on numbering schemes for trees. He proposed

PrePost numbering scheme. PrePost labels each node in a tree with a pair of numbers:

(pre, post), which correspond to the pre order and post order traversal numbers of the

node in the tree.

12

Zhang et al. [22] introduced PrePost coding into XML: it labels each node in an XML

data tree with a pair of numbers (start, end) which means the position of the opening tag

and the closing tag of the corresponding element of the node in the XML tree. Figure

2.1 shows the interval numbering scheme.

Figure 2.1: region based numbering scheme

2.1.2. Prefix- based approach

The Prefix- based approach: in this scheme each node of an XML tree has a string label

which is the concatenation of the parent’s label and its own identifier (i.e., self-label). If

there are two nodes x and y where x is an ancestor of y, then label(x) is a prefix of

label(y). Dewey labeling scheme [23] [24] and Binary labeling [25] are two examples of

prefix based labeling scheme.

13

Figure 2.2: prefix based labeling scheme

2.1.3. The prime number approach

The prime number approach: where each node is labeled by an integer and the labeling

scheme ensures that each label can only be divided exactly by its own ancestor in an

XML tree [26]. There are two types of this scheme bottom-up and top-down prime

number labeling scheme. In the bottom-up prime number labeling scheme, for any

nodes x and y in an XML tree, x is an ancestor of y if and only if label(x) mod label(y)

= 0 as shown in figure 2.3 (a). In the top-down approach the label of a node x equals to

its label multiplied by the label of its parent as shown in Figure 2.3(b).

14

Figure 2.3: prime number labeling scheme

2.2. XML Storage Approaches

Recently, there has been a lot of interest in XML data storage strategies. Existing XML

storage strategies can be classified into three main approaches, namely, file approach,

relational approach, and native approach.

2.2.1. File approaches

XML data are originally created in the form of XML documents and stored in flat files.

Generally, various indexes need to be built on XML data to facilitate answering XML

queries.

This approach is easy to implement and does not require the use of a database system or

storage manager. But, this strategy has several major disadvantages. First, the whole

a b

15

XML file must to be parsed to retrieve the data specified by a query. Second, the whole

parsed file, which is always much larger than the original XML document, has to be

stored in memory during query processing. Third, building and maintaining indices on

flat documents is hard. Finally, indexes themselves are huge.

M, Altınel, et.al in [27] have developed several index organizations and search

algorithms for performing efficient filtering of XML documents for large-scale

information dissemination systems.

N. Bruno et.al in [28] introduced a new index based technique, Index-Filter, to answer

multiple XML path queries. Index-Filter uses indexes built over the document tags to

avoid processing large portions of the input document that are guaranteed not to be part

of any match.

Y Diao et. al in [29] have developed YFilter, an XML filtering system that provides

fast, on-the-fly matching of XML encoded data to large numbers of query specifications

containing constraints on both structure and content.

2.2.2. Relational approaches

Many relational approaches have been proposed and they are either schema-aware or

schema-oblivious approaches.

16

2.2.2.1. Edge-approach

 Edge approach is one of the schema-oblivious approaches. In this approach all edges in

a data tree are stored in a single relational table called Edge. The schema of this Edge

table is (label, source, target, flag, and value). The key idea of this schema is an

attribute pair (Source, Target), which represents end points of edges. Label attribute

represents tags on edges. Flag and Value attributes give the type and value of target

nodes of edges, respectively. One of the edge-approach that was proposed by Florescu

and Kossmann [30] was shredding XML data into relations. This approach places all

edges in an edge-labeled XML data tree into a single relational table called Edge table

and the schema of this table is(label, source, target, flag, and value).

2.2.2.2. The node approach

The node approach (one of the schema- oblivious approaches), that is similar to the

edge approach, in which all internal nodes (that is, the element and attribute nodes) in a

node-labeled XML data tree are stored in a relational table.

Zhang et al. [22] proposed the node approach that is similar to the edge approach, in

which all internal nodes (that is, the element and attribute nodes) in a node-labeled

XML data tree are stored in a relational table.

17

2.2.2.3. The DTD approach

The DTD approach is one of the schema-aware approaches, stores XML document

using its associated DTD. DTD is a set of statements that describe the objects and their

relationships that are allowed in an XML document. DTD can be mapped into

relational schemas. The number of relational tables created depends on the relationship

of the objects specified in the DTD.

2.2.2.4. The Path based approach

In a Path based approach, node-labeled XML data tree is stored in a relational table

called Path. The Path table is very similar to the Node table. The difference is that rather

than storing the tag of each node, the path approach stores the tag path from the root to

each node. Yoshikawa et al. [31] proposed a Path Materialization (PM) approach, in

which internal nodes in a node-labeled XML data tree are stored in a relational table.

Pal et al. [32] proposed a Reversed-Path (RP) approach. The RP approach uses the

relation schema. The key idea of RP is storing reversed root paths of data nodes in a

Reversed Path attribute.

2.2.3. Native approaches

These approaches have been developed to overcome the disadvantages of relational

approaches.

18

University of Mannheim's database research group in [33] proposed Natix system which

divides XML documents into sub trees according to the physical disk page size (each

sub tree is a record).

TIMBER in [34], implemented in University of Michigan, transforms the XML

document into a parse tree, which it stores as an atomic unit in the underlying storage

manager. The system is based upon a bulk algebra for manipulating trees, and natively

stores XML

Ipedo in [35] proposed by IPEDO, maintains, on disk, the physical data files that store

collections and metadata associated with collections.

Apache Xindice community in [36] have proposed Xindice: stores the entire XML

document as a single record (Document-based storage).

eXist, founded by Wolfgang Meier in [37], is an open source database management

system built using XML technology. It stores XML data according to the XML data

model and features efficient, index-based XQuery processing. eXist stores documents

either in the internal XML store or on an external relational net database.

K. Staken in [38] introduces the dbXML. dbXML, an open source native XML

database, offers either XML document-based storage or binary streams (records)

Quanzhong Li et al. in [39] proposed an XML Indexing and Storage System (XISS) as a

native XML indexing and storage on a new numbering scheme for elements and attributes.

19

 XISS is composed of three major components: element index, attribute index and

structure index. Name index maps element or attribute name to a name identifier then

all distinct name strings are collected in the name index, which is implemented as a B+-

tree. Attribute index is like the element index but it stores attributes instead of elements.

In the structure index the input is the document identifier (did) and the output is an

array containing all the element and attributes in the document. It is also implemented

by a B+-tree.

The main idea of XISS is to decompose the elements in the documents and store them

separately.

N. Zhang, V. Kacholia, and M. Tamer Ozsu in [40] propose a succinct physical storage

scheme as a native XML data storage. The idea of this scheme is to store structural

information separately from value information. XML data tree should be “materialized”

to fit into the paged I/O model. Materialization means the two-dimensional tree

structure should be represented by a one-dimensional “string”.

After the separation, connecting between structural information and value information

is needed. Dewey ID is used to reconnect the two parts of information.

20

2.3. XML Query processing

Querying XML document effectively and efficiently is still a challenging issue. Unlike

keyword search in text retrieval, which concerns only contents of text documents, XML

queries concern structure as well as contents of XML documents. In this section we will

introduce the most famous XML query languages as well as the XML query processing

approaches.

2.3.1. Xml Query Languages

There are many query languages that can be used to query XML document, Lorel,

XML-QL (XML-Query Language), XML-GL (XML-Graphic Language), XPath, and

XQuery. The core part of an XML query language is the path expression notation for

navigating the XML nested structure. XML-QL and XQuery are proposed by W3C as

standard XML query language.

2.3.1.1. XML-QL

XML-QL is the first XML query language proposed by W3C.It uses a nested XML-like

structure to specify the part of document to be selected and the structure of result of

XML document.

Figure 2.4 shows an XML-QL example for a simple XML document in Figure 2.5.

21

 The query above is to determine the last-name of the author of a book having title”

The Superman” from a.xml and b.xml documents. The retrieved value of the last-name

will be put in the $l variable. Then the output will be formatted according to the

template specified after CONSTRUCT keyword.

2.3.1.2. XPath

 XPath is a basic XML query language that selects nodes from XML documents such

that the path from the root to each selected node satisfies a specified pattern. A simple

XPath query is formulated as a sequence of alternating axes and tags. Two most

commonly used axes are the child axis “/,” where “A/B” denotes selecting B-tagged

child nodes of A-tagged nodes, and the descendant axis “//,” where “A//B” denotes

selecting B-tagged descendant nodes of A-tagged nodes. Consider an example: An

Figure 2.4: an XML‐QL example

Figure 2.5: a simple XML document

22

XPath query “/book//book-title” would return all book-title elements under all top-level

book element.

2.3.1.3. XQuery

XQuery is to XML what SQL is to database tables. XQuery. Query language XQuery

is more expressive than XPath. An XQuery query is composed of For-Let-Where-

Return (FLWR) clauses, which can be nested and composed with full generality [17];

that is, each clause in itself can include sub–XQuery queries. The For and Let clauses

bind nodes selected by XPath expressions to user defined node variables. The Where

clauses specify selection or join predicates on node variables. The Return clauses

operate on node variables to format query results in the XML format.

2.3.2. XML Query Processing Approach

In this section we will explain the most important two approaches of xml query

processing techniques: relational approaches and native approaches.

2.3.2.1. The Relational Approach

Through years, RDBMSs have acquired strong capabilities in storage management,

query processing and optimization, and concurrency control and recovery. Motivated by

this fact, a number of research projects have addressed storing and querying XML data

in RDBMSs.

23

2.3.2.1.1. The Edge Approach

Florescu et al. In [30] proposed a simple approach to shredding XML data into

relations. This approach places all edges in an edge-labeled XML data tree into a single

relational table Edge. The key idea here is using an attribute pair (Source; Target),

which represents the two end points of each edge. Label represents the tag on an edge,

whereas Flag and Value give the type and value, respectively, of the target node of an

edge. Two edges A and B can be joined together if and only if A.Target = B.Source.

Based on this property, it is easy to transform XML queries without “//” axes into SQL

queries. Evaluation of such SQL queries comprises two main steps. The first step is

edge selection, which retrieves the data edges for each label in the query. The second

step is edge joining, which joins adjacent data edges retrieved in the first step. This step

can be done in a more efficient way by using prebuilt indexes on (Source; Target).

This approach may fail to process queries with “//” axes efficiently and it may involve a

number of join operations.

2.3.2.1.2. The Node Approach

 Zhang et al. [22] developed a Node approach, in which all internal nodes in a node-

labeled XML data tree are stored in a relational table Node. The key idea here is using

the attribute triple (Start, End, Level). “//”-axis queries can be answered efficiently by

using the (Start, End) pairs. Level is used along with (Start, End) to answer “/”-axis

queries. Queries with both “/” and “//” axes are translated into SQL queries. Then it is

24

similar to the Edge approach, evaluation of the SQL queries consists of two steps: node

selection and node joining.

The Node approach does support “//”-axis queries efficiently. However, similar to the

Edge approach, it may involve a number of join operations.

2.3.2.1.3. The Path Materialization (PM) Approach

To reduce the number of node joins, Yoshikawa et al. [31] proposed a PM approach, in

which internal nodes in a node-labeled XML data tree are stored in a relational table

Path. Using the Path attribute, the PM approach can answer twig queries efficiently in

units of paths rather than in units of edges.

Given a twig query, the PM approach first decomposes it into multiple root-to-leaf path

queries and then joins the results of the path queries. Evaluation of the SQL queries

consists of two main steps: path selection (part 1) and path joining (part 2).

PM may not support efficiently queries with multiple “//” axes. Another limitation of

PM is that it might result in incorrect query answers.

2.3.2.1.4. The DTD approach

The DTD approach transforms XML queries into SQL queries based on the schema

information in the DTD tree: For a “/”-axis join A/B, it first checks whether A is the

25

parent of B in the DTD tree. If not, then A/B is an invalid query. Otherwise, relations A

and B are joined using

A.id = B.parent-id. For a “//”-axis join A//B, it first checks whether A is an ancestor of

B in the DTD tree. If not, then A//B is an invalid query. Otherwise, relations A and B

and all relations between them (which can be found in the DTD tree) are joined using

the “/”-axis join above.

We can summarize that when XML data are schema-less, the PM approach has

advantages over the Edge and Node approaches because PM supports “//”-axis queries

efficiently and may require fewer join operations. Also, when XML data conform to a

schema, the DTD approach could generally have better performance than other schema-

less approaches.

2.3.2.2. The Native Approach

Although the relational approach is simple and straightforward to implement, it may not

exhibit optimal query processing performance. Motivated by this, many native

techniques have been developed to query XML data efficiently. These techniques are

called native approaches, since their query processing (and, perhaps, also storage)

mechanisms are developed from scratch, without involving relational databases.

In next sections, we review the Join approaches, very important native approaches,

which implement efficiently structural joins involved in XML twig queries. In these

26

approaches, XML data are stored in inverted lists. An inverted list is created for each

distinct tag in XML documents, and each list records the positions of all elements with

that tag name, where the position of an element is expressed using its (Start, End, Level)

numbers.

2.3.2.2.1. The Multi-Predicate MerGe JoiN (MPMGJN) Approach

Zhang et al. [22] proposed an MPMGJN algorithm, whose implementation is somewhat

similar to the classical merge join algorithm developed in relational query optimizers

for equijoins. To answer a query “A//B” or “A/B,” first, two cursors are created to point

to the heads of list A and list B, respectively. Then, the two cursors are compared with

each other and are advanced as needed to implement the merge join. Figure 2.3 b shows

this approach.

2.3.2.2.2. The StackTree Approach

Al-Khalifa et al. [41] observed that MPMGJN fails to process “/”-axis queries

efficiently in some cases. She proposed a StackTree approach that can avoid such

visiting of unnecessary nodes. StackTree uses a stack structure to cache those A nodes

that are nested on the same path in data trees. At each step, the data node with the

smallest start number is taken out of its list. If it is an A-tagged node, then it is pushed

into the stack. If it is a B-tagged node, then StackTree tries to use it to form tuple

solutions with A-tagged nodes in the current stack. Fig. 2.6 c illustrates this process, in

which b3 is compared with a3 only (step 6) rather than with a1 through a3, as in Fig. 2.6

27

b. Generally, StackTree shows better query processing performance than MPMGJN

[41]

Figure 2.6: applying MPMGJN and StackTree to query “A/B.” (a) Data tree. (b) The

MPMGJN approach. (c) The StackTree approach.

2.3.2.2.3. The Holistic Approach

StackTree and MPMGJN have to decompose twig queries into multiple binary joins,

which might generate a large volume of intermediate query results. This may result in

high disk I/O costs Motivated by this observation, Bruno et al. [42] proposed a Holistic

approach, whose key idea is pipelining, that is, joining multiple inverted lists at a time

to avoid generating intermediate join results.

28

2.3.2.2.4. The PathStack approach

The Holistic approach to answering (linear) path queries is a PathStack algorithm. The

framework of the algorithm is somewhat similar to that of StackTree. The difference is

that StackTree uses only one stack to cache nested A nodes. In contrast, PathStack has

multiple stacks, one for each node in a path query. In addition, each data node cached in

a stack has an associated pointer to a corresponding node in its parent stack in order to

track tuple solutions. For an illustration, see Fig. 2.7.

Figure 2.7 an example of the PathStack approach.

29

2.3.2.2.5. The TwigStack approach

The Holistic approach to answering general twig queries is a TwigStack algorithm [42],

which includes two steps: 1) deriving path solutions (that is, the twig query is

decomposed into multiple root-to-leaf path queries, and the solutions to these path

queries are then derived from the data tree) and 2) joining path solutions.

A simple method for implementing step 1 is to process each path query separately by

using PathStack.To reduce the number of such redundant path solutions, the TwigStack

algorithm introduced an additional function q = getNext(). Figure 2.8 explains this

approach.

Figure 2.8 an example of the TwigStack approach.

30

2.4. Multidimensional file structure

Since of the increasing usage of databases and integrated information systems, there is a

real need now for file structures that allow efficient access to records by combinations

of attribute values.

There are important criteria to assess a multi-key file structure like: the adaptability in a

dynamic environment, space utilization, operation speed and the retrieval time. Retrieve

time usually measured by a number of disk access to bring data to memory. Therefore,

number of disk accesses is used as the main measure of the efficiency of multi-key file

structure. There are many multi-key file structures like in literature; the grid file is one

example of multi-key access file structure [43].

2.4.1. The Grid File

The grid file is an adaptable, symmetric, multi-key file structure [44]. Adaptable means

it adapts to its contents under modifications like: deletions and insertions. It is a highly

dynamic file. The access time is uniform over the entire file, and a single record is

retrieved in at most two disk accesses. The grid file is symmetric, as it treats all keys

symmetrically. That means it avoids distinction between primary and secondary keys.

The grid file consists of two main parts: the grid file (partition) and the grid directory.

31

2.4.1.1. The grid partition

The grid file a record is characterized by a number of attributes. Thus, we have a

linearly ordered attribute space, and a k-dimensional key to retrieve a record is

represented by a point in this attribute space. The attribute space can be represented by a

bitmap. In a k-dimensional bitmap, the combinations of all possible values of k

attributes are represented by a bit position in a k-dimensional matrix.

2.4.1.2. The grid directory

The grid directory has the function of a bucket management system, which is

superposed onto the grid partitions. It consists of two parts as shown in Figure 2.9:

• A dynamic k-dimensional array called grid array. Its elements are pointers to the data

buckets and are in one-to-one correspondence with the grid blocks of the record space.

• K one-dimensional arrays called linear scales; each scale defines a partition of a

domain.

32

Figure 2.9: a grid file structure

33

CHAPTER THREE

MULTIDIMENSIONAL XML FILE (MXF)

3.1. Introduction

MXF is a file which indexes and stores XML data in multiple dimensions where XML

tree level is considered as a dimension. The benefit of storing XML data in

multidimensional way is to make accessing this data easy and accessing them

throughout more than one key. MXF extracts all XML document paths, indexes and

stores them in a multidimensional way, so MXF is a set of directory blocks (blocks

contain indexes to access data blocks) and data blocks (blocks contain data) as we will

see in this chapter.

The rest of this chapter will be organized as follows: section 3.2 explains the structure

of MXF that is, MXF parser and MXF indexer. Section 3.3 discusses main operation on

MXF (searching, insertion and deletion).

3.2. MXF structure

Functionally, MXF consists of two main parts namely MXF parser and MXF indexer:

34

3.2.1. MXF parser

Parsing an XML document is the first step before saving it. The idea of parsing is to

read XML data from tree form to more organized form. Many parsers exist in the

literature and each has its own output according to the information needed to extract

from the XML document.

MXF parser is a new parser we have developed to extract information for all paths in an

XML documents. The main operations of MXF parser are:

1. Extract all distinct elements form an XML document.

2. Assign each distinct element distinct binary number.

3. Save each element with its corresponding distinct binary number in the tag table.

4. Extract each path in the document and create its binary corresponding path.

5. Generate DEWEY for each path.

6. Generate DEWEY for each attribute if exist.

Let us take this simple example to explain how MXF parser works.

Example 3.1: suppose we have this simple XML document

35

 <Library>
<Main_library>

<Book>
<Title> Database</ Title >
<Author> John</ Author >
<Year> 2001</ Year >
<Price> 20$</ Price >

</Book>
<Book>

<Title> Operating system</ Title >
<Author> Philip</ Author >
<Year> 2007</ Year >
<Price> 60$</ Price >

</Book>
<Magazine>

<Title> CPUs structure</ Title >
<Year> 2003</ Year >
<Price> 30$</ Price >
</ Magazine >

<Magazine>
<Title> Today technology</ Title >
<Year> 2008</ Year >
<Price> 40$</ Price >

</ Magazine >
</Main_library>
<Bookstore>

<Journal>
<Title> 3G mobiles</ Title >
<Year> 2008</ Year >
<Price> 44$</ Price >

</ Journal >
</Bookstore>

</ Library >

Figure 3.1: a simple XML document

The above XML document can be represent as a tree like the figure bellow:

36

Figure 3.2: a tree representation for XML document in Figure 3.1

MXF parser traverses the above XML tree and labels all its leafs. It extracts all

distinct elements: Library, Main library, Bookstore, Book, Magazine, journal, title,

author, year and price. Then it generates a distinct binary number (tag) for each and

creates a tag table; this table has two columns: tag name and tag binary. Tag name

column stores all distinct elements in the document and tag binary column stores a

unique binary number for each element as shown follows:

37

Tag name Tag
Library 0000

Main library 0001
Bookstore 0010

Book 0011
Magazine 0100
Journal 0101

Title 0110
Author 0111
Year 1000
Price 1001

Table 3.1: the tag table for the XML documet in Figure 1.1

The idea behind creating binary tags is to make the splitting operation easy when

the data block becomes full. We will see how splitting operation done in detail later

in this chapter.

The second function of MXF parser is generating the Path Binary Label (BPL) and

Path DEWEY (PD) for all paths from the root to each leaf node. MXF parser takes

all paths one at a time, creates its BPL and PD. Then it passes these paths to the

indexer one at a time. The following table shows all BPLs and PD for all paths in

the XML tree above. Actually, we don’t have this table in our MXF structure, but it

is here to show the output of the MXF parser row by row.

38

3.2.2. MXF Indexer

This part consists of two main parts: MXF directory storage and MXF data storage.

3.2.2.1. MXF directory storage:

 While storing XML data, MXF indexer creates directory blocks which contain indexes

for data blocks. The idea of storing data using MXF is to store similar or almost similar

paths in minimum number of data blocks; so retrieving similar data will cost less. In the

next section we will explain in details how XML data is organized in MXF.

path path name Path binary Path DEWEY

1 Main library /book/title 0001/0011/01 1.1.1.1
2 Main library /book/author 0001/0011/01 1.1.1.2
3 Main library /book/year 0001/0011/1000 1.1.1.3
4 Main library /book/price 0001/0011/1001 1.1.1.4
5 Main library /book/title 0001/0011/01 1.1.2.1
6 Main library /book/author 0001/0011/01 1.1.2.2
7 Main library /book/year 0001/0011/1000 1.1.2.3
8 Main library /book/price 0001/0011/1001 1.1.2.4
9 Main library /magazine/title 0001/0100/0110 1.1.3.1

10 Main library / magazine /year 0001/0100/1000 1.1.3.2
11 Main library / magazine /price 0001/0100/1001 1.1.3.3
12 Main library /magazine/title 0001/0100/0110 1.1.4.1
13 Main library / magazine /year 0001/0100/1000 1.1.4.2
14 Main library / magazine /price 0001/0100/1001 1.1.4.3
15 Book store/ journal /title 0010/0101/0110 1.2.1.1
16 Book store/ journal /year 0010/0101/1000 1.2.1.2
17 Book store/ journal /price 0010/0101/1001 1.2.1.3

Table 3.2: the paths, their corresponding BPLs and DEWEY

39

MXF directory is created in a multidimensional way for all generated binary paths.

We will give an example to illustrate how multidimensional directory created later

in this chapter.

3.2.2.2. MXF data storage:

This part of MXF is a set of tables that contain the raw XML document data. Any XML

path is set of elements, relations, attributes and values. From this point of view, MXF is

designed to be a set of tables namely:

• Tag table: to save the distinct elements with their distinct binary tags

• DEWEY table: to save the positional relations between the elements

• Attribute table: contains all attributes found in the XML document and their

corresponding DEWEY, and

• Value table: contains the values of the all XML paths.

Figure 3.3: the MXF structure

40

MXF data storage is a set of tables each to save specific data that is generated from the

MXF parser. BPLs generated from MXF parser are stored in data blocks and each block

contains similar or almost similar BPL. The following algorithm will explain how MXF

store BPLs

 ALGORITHM 3.1: Store BPLs

INPUT: An empty data block, an empty directory block and BPLs to store

OUTPUT: BPLs stored in a MXF

1. Read the first binary path
2. Save it in the first data block
3. Create its index and save it in a multidimensional space
4. While NOT end of paths
5. Read the next path
6. Create the index of the path
7. If the number of data blocks = 1 then
8. Look for this index in the whole multidimensional space
9. If found
10. If there is enough space in the first data block then
11. Save the path in the first data block
12. Else
13. Split the first data block
14. End if
15. Else
16. Save its index in the multidimensional space
17. If there is enough space in the first data block then
18. Save the path in the first data block in
19. Else
20. Split the first data block
21. End if
22. Else
23. Look for this index in the whole multidimensional space
24. If found
25. If the there is enough space in the data block to which the

index point then
26. Save the path in that disk block
27. Else
28. Split this data block
29. End if
30. Else
31. Create a new index
32. Save the path in new data block
33. Save the new index in the multidimensional space
34. End if
35. End if
36. End if
37. Loop

41

To explain how above algorithms works, let us take the following example

Example 4.3: suppose we have BPLs in Table 3.2. And for simplicity, we also

suppose the capacity of the block is three BPLs (in real we measure the size of the

block in KB). At the beginning we have one empty data block. The first three BPLs

should be stored in this data block as in the following figure.

0001/0011/0110

0001/0011/0111

0001/0011/1000

Figure 3.4: MXF after saving the 1st BPL

The fourth BPL 0001/0011/1001 cannot fit in the first data block because it is full;

so we need to split these BPLs in to two data blocks.

To split the above data block, we have three paths in that block each path has three

elements and each element is represented using three bits. If we look to these three

paths we will see that they have two elements in common (the first element 0001

and the second element 0011), but they differ in the third element.

This means that the first two elements should appear in both indexes of the two new

data blocks, but each if these indexes should have its own element in the third

dimension.

42

So we start from the right most bit of the first element of the first path compare it with

corresponding bits in the remaining paths. If there is a difference, split paths with zero’s

bits in a data block and paths with one‘s bits in another data block. If we reach the left

most bits of that element without splitting, we move to the right most bit of the second

element of the first path and repeat the same comparing with corresponding bits in the

remaining paths. So, the above data block will be split as follows:

In the first step we compare the right most bits of the left most element (written in bold)

in all paths, they are the same so we need to move to the previous bit.

Figure 3.5: comparing the right most bits of the 1st element of the BPLs

Moving to the previous bit, they are also the same so we keep moving to the previous

bit.

43

Figure 3.6: comparing the 2nd bits of the 1st element of the BPLs

We repeat the same comparisons and moving till we reach to different bits.

Figure 3.7: comparing the 3rd bits of the 1st element of the BPLs

Figure 3.8: comparing the 4th bits of the 1st element of the BPLs

44

At this step, we reach the first bit of the first element without any splitting, so we move

to the right most bit of the second element and repeat the same comparisons till we get

difference.

Also we reach the left most bit of the second level without splitting, so we move to the

right most bit of the third level as shown bellow

Figure 3.10: comparing the 1st bits of the 3rd element of the BPLs

In this step, the right most bits of the third element in the three paths are not the same;

so according to this bit, the data block has to be split in to two new data block. The first

Figure 3.9: comparing the four bits of the 2nd element of the BPLs

45

block will contain the paths whose splitting bit is zero and the second block will contain

the paths whose splitting bit is one as follows.

Figure 3.11: splitting the previous block into two blocks

So, the index of the first data block will be “0001 0011 ???1” and the index of the

second data block will be “0001 0011 ???0” and the BPL “0001 0011 1000” will be

stored in the second block.

Figure 3.12: MXF after saving the 4th BPL

46

To save the next BPL “0001 0011 0110”, we see that our directory is split into two parts

each has its index. So we have to compare this BPL with the two indexes to see where it

will fit. By comparing this BPL with first index “0001 0011 ???1”, it is clear that this

index is not the correct index for this BPL since they differ in the rightmost bit of the

third element. By comparing this BPL with second index “0001 0011 ???0”, it is clear

that this index is the correct index for this BPL since they share all elements of the path.

After saving this BPL the our MXF will be as in the following figure.

Note: if there is a BPL in a data block similar to the BPL we need to save (as in this

case), we will not store the new BPL again. Instead, we only save its value and

DEWEY in the value blocks without saving the BPL again. This operation eliminate

BPLs repeat. As we dealing with this BPL.

Figure 3.13: MXF after saving the 5th BPL

47

The same scenario should be done with the next BPL “0001/ 0011/0111”as shown in a figure

bellow

Figure 3.14: MXF after saving the 6th BPL

The same scenario should be done with the next two BPLs “0001/ 0011/1000” and “0001 0011

1001”as shown in a figure bellow.

48

Figure 3.15: MXF after saving the 7th and 8th BPLs

Till this point we can see that all BPLs stored share the first and the second elements,

but they differ in the third element. Now, to store the next BPL “0001 0100 0110” we

see that its second element is different from all previous BPLs so it has not a previous

index. To create a new index for it we have to do a split in the directory as the following

figure shows.

49

Figure 3.16: MXF directory after splitting the second dimension

Figure 3.17: MXF after saving the 9th BPL

50

To save the next BPL “0001 0100 1000”, we can see that its third element start with “0”

and its second element start with “0”, so it can fit in the directory above as shown in the

following figure.

Figure 3.18: MXF after saving the 10th BPL

To save the next BPL “0001 0100 1001”, we can see that its third element start with “1”

and its second element start with “0”, so it can fit in the directory above as shown in the

following figure.

51

Figure 3.19: MXF after saving the 11th BPL

52

To save the next three BPLs “0001 0100 0110”, “0001 0100 1000”, and “0001 0100

1001”, we can see that it can fit in data block3 and data block4 as shown in the

following figure

Figure 3.20: MXF after saving the 12th, 13th and 14th BPLs

53

To store the next BPL”0010 0101 0110”, we can see that this BPL differ from the all

previous BPLs in the first element, so we have to create a new index for this BPL. The

1st element we want to add to the above directory will create the 3rd dimension of the

directory. Note that before this point the directory we have is two dimensions directory.

The figure bellow shows the directory after creating the 3rd dimension.

54

Figure 3.21: MXF after saving the remaining BPLs with a three dimensions directory

55

3.3. Main operation on MXF

The main operations that can be applied on the MXF are: searching, insertion and

deletion.

3.3.1. Searching

The searching for BPL in the MXF can be done in two main steps:

• The first step is the search in the MXF directory (searching in the XMF index

space): given a BPL we decompose it into many levels equals to the depth of the

BPL (are number of nodes in the BPL). Then we start from the right most level

looking for its corresponding dimension in the directory space. The number of

searching steps (from the right most to the left) equals to the number of the

dimensions which also equals to the number of levels in the document. As a

result of this step, we will get the targeted directory block (the index) if the BPL

matches an index in the directory blocks.

• The second step: the directory block gained in the first step will point to the

corresponding data block.

Algorithm 3.2 explains the searching operation.

Given MXF directory_blocks organized in multidimensional space with n dimensions

(where n is the largest level in the XML document and each dimension is composed on

56

m parts), also given MXF data_blocks (the blocks where the data is stored) and BPL

(the path we want to looking for in the MXF).

Let BPL_leveli denotes to the ith level in the BPL

Let dimension_part_ j denotes to the j part in the dimension i

Let path_address denotes to the address of the path in the MXF data_blocks

Algorithm 3.2 BPL SEARCH

Input: directory blocks, data blocks and BPL
Output: BPL address if BPL is found else returns -1

1. BPL_address=” ” // BPL address in the data blocks
2. For each BPL_leveli in the BPL do
3. Found =false
4. For each dimension_part_ j in the dimension i do
5. If dimension_part_ j = BPL_leveli or dimension_part_ j

contains BPL_leveli then
6. BPL_address = BPL_address & dimension_part_ j
7. Found= true
8. End if
9. If found = true then exit for
10. End for
11. If found = false then exit for
12. End for
13. If found =true then
14. For i= BPL_address to BPL_address + block_size do
15. If BPL= path_address(i) then
16. return I
17. Exit for
18. return -1

3.3.2. Insertion

 To insert a BPL, two main steps have to be done:

• The first step is searching for a suitable directory block where the index of this

BPL will be found (if the index already exists) or the index will be generated

57

and stored (if it does not already exist). We use the procedure we used in

searching algorithm.

• The second step is to go to the data block (whose index is in the directory block

we found in the first step) and store this BPL if there is enough space or split

that data block in to two data blocks if it is full.

Algorithm 3.3 explains the insertion operation.

Given the same MXF structure explained in the search algorithm, and BPL (the path we

want to insert into the MXF).

Algorithm 3.3 BPL INSERTION

Input: directory blocks, data blocks and BPL to be inserted
Output: MXF with a BPL inserted in
19. BPL_address=” ” // BPL address in the data blocks
20. For each BPL_leveli in the BPL do
21. Found =false
22. For each part dimension_part_ j in the dimension i do
23. If dimension_part_ j = BPL_leveli or dimension_part_ j contains

BPL_leveli then
24. BPL_address = BPL_address & dimension_part_ j
25. Found= true
26. Exit for
27. End if
28. If found = false then
29. make a new part in the dimension I name it BPL_level i
30. BPL_address = BPL_address & BPL_leveli
31. End if
32. End for
33. End for
34. If found = true then
35. If the data block (BPL_Address) is not full then
36. Insert BPL in that data_block
37. Else
38. Split data block (BPL_Address)
39. Update the directory
40. End if
41. else
42. create a new data_block give its first path the address

data_block_numbers * block_ size
43. path (data_block_numbers * block_ size)=BPL // insertion BPL into

the new data_block
44. Update the directory
45. End if

58

3.3.3. Deletion

 To delete a BPL, two main steps have to be done:

• The first step is searching for a suitable directory block where the index of this

BPL will be found. We use the procedure we used in searching algorithm.

• The second step is to go to the data block (whose index is in the directory block

we found in the first step) and delete this BPL.

Algorithm 3.4 explains the deletion operation.

Given the same MXF structure explained in the previous algorithm, and BPL (the path

we want to delete from the MXF).

ALGORITHM 3.4 BPL INSERTION

Input: directory blocks, data blocks and BPL to be deleted
Output: MXF with a BPL deleted from it in

1. BPL_address=” ” // BPL address in the data blocks
2. For each BPL_leveli in the BPL do
3. Found =false
4. For each part dimension_part_ j in the dimension i do
5. If dimension_part_ j = BPL_leveli or dimension_part_ j contains

BPL_leveli then
6. BPL_address = BPL_address & dimension_part_ j
7. Found= true
8. Exit for
9. End if
10. End for
11. End for
12. If found = true then
13. For i= BPL_address to BPL_address + block_size do
14. If path (i)=BPL then path (i)= “ “ // deletion the BPL from the

data_block
15. End if
16. End if

59

CHAPTER FOUR

EXPERIMENTAL RESULTS AND ANALYSIS

To study the performance of MXF a number of parameters have to be taken into

account. The most important parameters are: the numbers of disk blocks that are used to

save the data, the density of the file i.e. how disk blocks dense are, and the query

response time.

Since we will use these terms (data-depth, data-width, data-shape and data-variety) in

this chapter frequently, let us give brief definitions of each term.

• Data- depth: the number of levels in the BPL that is the number of nodes from

the root to the leaf node.

• Data- width: the average number of nodes in a level in an XML document.

• Data- shape: is it width or depth data.

• Data -variety: the number of distinct BPLs in an XML document.

We experimented MXF with different datasets to study its performance. Sections 4.1,

4.2, 4.3 and 4.4 explain the environment, dataset, query set and performance metrics

that are used respectively. Section 4.5 explains the experiments and their results.

Section 4.6 summaries this chapter.

60

4.1. Environment

Experiments were performed on a core 2 due 2.2 MHZ processor with windows vista

home. This workstation has 2 GB of memory and 160 GB of hard disk. MXF was

designed using MS visual basic 2005.

4.2. Dataset

 Nine datasets were chosen from real and synthetic data. These datasets are classified

into two groups according to: data-variety and data-shape. Since the size of the data is

an important factor, we use three groups (a GA, a GB and a GC) from each dataset

where the GA has a smaller size than GB and GB has a smaller size than GC as shows

in Table 4.1.

4.3. Query sets

Several simple path query sets will be applied to our datasets. These query sets will be

mentioned later with corresponding datasets.

4.4. Performance metrics

As we mentioned before, we will use three performance metrics:

61

• Number of disk blocks: how many disk blocks that are used to save data, fewer

number of disk blocks means better performance.

• File density: the capacity of the data within data blocks over the total capacity

of these data blocks, and high disk blocks density is an indicator for better

performance.

• Query response time: The number of disk blocks returned to answer a query.

Number Dataset Name Dataset version Size in MB

1 SWISSPORT.xml
SWISSPORT_GC.xml 12.40
SWISSPORT_GB.xml 6.89
SWISSPORT_GA.xml 2.41

2 UWM.xml
UWM_GC.xml 9.49
UWM_GB.xml 4.73
UWM_GA.xml 2.28

3 PARTSUPP.xml
PARTSUPP_GC.xml 10.94
PARTSUPP_GB.xml 4.37
PARTSUPP_GA.xml 2.19

4 DBLP.xml
DBLP_GC.xml 10.76
DBLP_GB.xml 5.74
DBLP_GA.xml 1.36

5 WSU.xml
WSU_GC.xml 8.31
WSU_GB.xml 3.94
WSU_GA.xml 1.98

6 CUSTOMER.xml
CUSTOMER_GC.xml 10.07
CUSTOMER_GB.xml 5.03
CUSTOMER_GA.xml 1.51

7 PERSONS.xml
PERSONS_GC.xml 8.75
PERSONS_GB.xml 4.37
PERSONS_GA.xml 1.45

8 SIGMODRECORD.xml
SIGMODRECORD_GC.xml 13.05
SIGMODRECORD_GB.xml 4.35

SIGMODRECORD 1.45

9 ORDERS.xml
ORDERS_GC.xml 11.38
ORDERS_GB.xml 5.25
ORDERS_GA.xml 2.62

Table 4.1: the datasets used for our experiments

62

4.5. Experiments

For each dataset mentioned above, we assign a separate paragraph explaining the

density of the file, the number of disk blocks used and the query response time.

4.5.1. Classification of data according to the data variety

We have implemented three dataset sets according to data variety (set A, set B and set

C)

• Set A: the data sets used in this set are: three versions of SWISSPORT.xml

(SWISSPORT_GC.xml, SWISSPORT_GB.xml and SWISSPORT_GA.xml).

This set has the largest number of distinct BPLs among the three sets.

• Set B: the data sets used in this set are: three versions of UWM.xml

(UWM_GC.xml, UWM_GB.xml and UWM_GA.xml)

• Set C: the data sets used in this set are: three versions of PARTSUPP.xml

(PARTSUPP_GC.xml, PARTSUPP_GB.xml and PARTSUPP_GA.xml). This

set has the smallest number of distinct BPLs among the three sets.

4.5.1.1. Set A datasets

Three groups will be implemented in this set:

63

4.5.1.1.1. Group C dataset

We have taken “SWISSPORT_GC.xml” database; its size is 12.40 MB with 79

distinct elements and 85 number of distinct paths. The number of disk blocks when the

size of the block is 2 KB is 1298; the number of disk blocks when the size of the block

is 4 KB is 690 and the number of disk blocks when the size of the block is 6 KB is 491

as shown in the following chart.

Figure 4.1: the number of blocks used to save SWISSPORT_GC.xml dataset

The density of the MXF file when the size of the block is 2KB is 93.88%, when the size

of the block is 4 KB, the density of the file is 88.30 %; and the file density when the

size of the block is 6KB is 82.72% as shown in the chart bellow.

 We can see that as the size of the block becomes larger; its density becomes smaller

because the data block needs more data to be store in it to be denser. But we have to

1298

690

491

0

200

400

600

800

1000

1200

1400

2KB 4KB 6KB

block size in KB

64

note an important issue which belongs to the nature of the data itself. If the number of

the distinct paths is very large here using larger data blocks means less density; but if

the number of distinct paths is small; using larger data blocks size will not affect the

density of the file. The second case is the usual case in XML document.

Figure 4.2: the file density when saving SWISSPORT_GC.xml dataset

4.5.1.1.2. Group B dataset

We have taken “SWISSPORT_GB.xml”. Its size is 6.89 MB with 79 distinct elements

and 85 distinct paths 85. The number of disk blocks when the size of the block is 2 KB

is 817, the number of disk blocks when the size of the block is 4 KB is 447 and the

number of disk blocks when the size of the block is 6 KB is 328 as shown in the

following chart.

93.88

88.3

82.72

76

78

80

82

84

86

88

90

92

94

96

2KB 4KB 6KB

Block size in KB

65

Figure 4.3: the number of blocks used to save SWISSPORT_GB.xml dataset

The density of the MXF file when the size of the block is 2KB is 89.29%, when the size

of the block is 4 KB, the density of the file is 81.60 %; and the file density when the

size of the block is 6KB is 74.14% as shown in the chart bellow

Figure 4.4: the file density when saving SWISSPORT_GB.xml dataset

817

447

328

0

100

200

300

400

500

600

700

800

900

2KB 4KB 6KB

block size in KB

89.29
81.6

74.14

0

10

20

30

40

50

60

70

80

90

100

2KB 4KB 6KB

block size in KB

66

4.5.1.1.3. Group A dataset

We have taken “SWISSPORT_GA.xml” database; its size is 2.41 MB with 79 distinct

elements and 85 distinct paths. The number of disk blocks when the size of the block is

2 KB is 325, the number of disk blocks when the size of the block is 4 KB is 200 and

the number of disk blocks when the size of the block is 6 KB is 163 as shown in the

following chart

Figure 4.5: the number of blocks used to save SWISSPORT_GA.xml dataset

The density of the MXF file when the size of the block is 2KB is 89.29%, when the size

of the block is 4KB, the density of the file is 81.60 %; and the file density when the size

of the block is 6KB is 74.14% as shown in the chart bellow

325

200

163

0

50

100

150

200

250

300

350

2KB 4KB 6KB

block size in KB

67

Figure 4.6: the file density when saving SWISSPORT_GA.xml dataset

It is shown from the above figures that the density of the file becomes less as the size of

the data becomes smaller; and when the size of the data becomes larger the data blocks

becomes denser.

Dataset Size in MB
Number of disk blocks File Density

2 KB 4 KB 6 KB 2 KB 4 KB 6 KB

SWISSPORT.xml

12.40 1298 690 491 93.88 88.30 82.72
6.89 817 447 328 89.29 81.60 74.14
2.41 325 200 163 74.99 60.93 49.84

Table 4.2: a summery table shows the density file and the number of blocks used

when saving SWISSPORT.xml

74.99

60.93

49.84

0

10

20

30

40

50

60

70

80

2KB 4KB 6KB
block size in KB

68

Figure 4.7: the density of the MXF when saving SWISSPORT.xml datasets

According to the response time of the queries applied on the three versions of

“SWISSPORT.xml” database, we have applied these simple path queries. These

queries are Entry/AC, Entry/Mod, Entry/Descr, Entry/Species, Entry/Org,

Entry/Ref/Comment, Entry/Ref/DB and Entry/Ref/MedlineID. These queries will be

given a number from 1 to 8 as they are ordered above as in the following table:

Query number Number of disk blocks used
2kb 4 KB 6 KB

1 16 8 6
2 40 20 14
3 19 10 7
4 14 8 5
5 129 65 44
6 15 8 6
7 21 11 8
8 21 11 3

Table 4.3: shows the query response time for the query set mentioned above.

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7

D
en

si
ty
 P
er
ce
nt
ag
e

Block size in KB

2.41 MB

6.89 MB

12.40 MB

69

Figure 4.8: query responce time when queyring SWISSPORT.xml

The dominant factor of query response time is the number of disk blocks that are used

to save the data

4.5.1.2. Set B datasets

Three groups will be implemented in this set:

4.5.1.2.1. Group C dataset

As a dataset with average distinct paths, we have chosen “UWM_GC.xml” database;

its size is 9.46 MB with 21 distinct elements and 16 distinct paths. The number of disk

blocks when the size of the block is 2 KB is 1129, the number of disk blocks when the

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 2 4 6 8 10

Ti
m
e
in
 s
ec
on

d

Query number

2KB

4KB

6KB

70

size of the block is 4 KB is 575 and the number of disk blocks when the size of the

block is 6 KB is 388 as shown in the following chart

Figure 4.9: the number of blocks used to save UWM_GC.xml dataset

The density of the MXF file when the size of the block is 2KB is 98.78%, when the size

of the block is the density of the file is 96.97 %; and the file density when the size of the

block is 6KB is 95.81% as shown in the chart bellow

1129

575

388

0

200

400

600

800

1000

1200

2KB 4KB 6KB

block size in KB

71

Figure 4.10: the file density when saving UWM_GC.xml dataset

4.5.1.2.2. Group B dataset

We have chosen “UWM_GB.xml”; its size is 5.00 MB with 21 distinct elements and 16

distinct paths. The number of disk blocks when the size of the block is 2 KB is 575, the

number of disk blocks when the size of the block is 4 KB is 295 and the number of disk

blocks when the size of the block is 6 KB is 198 as shown in the following chart

98.78

96.97

95.81

94

94.5

95

95.5

96

96.5

97

97.5

98

98.5

99

99.5

2KB 4KB 6KB
block size in KB

72

Figure 4.11: the number of blocks used to save UWM_GB.xml dataset

The density of the MXF file when the size of the block is 2KB is 98.78%, when the size

of the block is 4 KB the density of the file is 96.97 %; and the file density when the size

of the block is 6KB is 95.81% as shown in the chart bellow

Figure 4.12: the file density when saving UWM_GB.xml dataset

575

295

198

0

100

200

300

400

500

600

700

2KB 4KB 6KB
Block size in KB

96.97

94.51

93.87

92

92.5

93

93.5

94

94.5

95

95.5

96

96.5

97

97.5

2KB 4KB 6KB

block size in KB

73

4.5.1.2.3. Group A dataset

We have chosen “UWM_GA.xml”; its size is 2.28 MB with 21 distinct elements and

16 distinct paths. The number of disk blocks when the size of the block is 2 KB is 295,

the number of disk blocks when the size of the block is 4 KB is 158 and the number of

disk blocks when the size of the block is 6 KB is 109 as shown in the following chart

Figure 4.13: the number of blocks used to save UWM_GA.xml dataset

The density of the MXF file when the size of the block is 2KB is 94.51%, when the size

of the block is 4KB, the density of the file is 88.23 %; and the file density when the size

of the block is 6KB is 85.26% as shown in the chart bellow

295

158

109

0

50

100

150

200

250

300

350

2KB 4KB 6KB

block size in KB

74

Figure 4.14: the file density when saving UWM_GA.xml dataset

UWM.xml file is has less distinct paths than SWISSPORT.xml, so the density of the

file becomes larger this in turn, means fewer number of disk blocks will be used to save

the data.

Dataset Size in MB
Number of disk blocks File Density

2 KB 4 KB 6 KB 2 KB 4 KB 6 KB

UWM.xml
9.46 295 158 109 94.51 88.23 85.26
4.73 575 295 198 96.97 94.51 93.87
2.28 1129 575 388 98.78 96.97 95.81

Table 4.4: a summery table shows the density file and the number of blocks used

when saving UWM.xml

The density of the file in the above table is shown in the following figure

94.51

88.23

85.26

80

82

84

86

88

90

92

94

96

2KB 4KB 6KB
block size in KB

75

Figure 4.15 the density of MXF when saving UWM.xml datasets

According to the response time of the queries applied on the three versions of the

“UWM.xml” database, we have applied these simple path queries. These queries are

course_listing/note, course_listing/course, course_listing/title, course_listing/credits,

course_listing/level,course_listing/restrictions,

course_listing/section_listing/section_note and course_listing/section_listing/section as

in the following table:

Query number Number of disk blocks used
2kb 4 KB 6 KB

1 38 20 13
2 38 20 13
3 99 50 34
4 99 50 34
5 117 59 40
6 117 59 40
7 36 18 13
8 1 1 1

Table 4.5: shows the query response time for the query set mentioned above

80

83

86

89

92

95

98

0 2 4 6 8

D
en

si
ty
 p
er
ce
nt
ag
e

Block size in KB

2.28 MB

4.73 MB

9.46 MB

76

Figure 4.16: query response time when querying UWM.xml datasets

4.5.1.3. Set C datasets

Three groups of datasets will be implemented in this set:

4.5.1.3.1. Group A dataset

We have chosen “PARTSUPP_GA.xml” database as; its size is 10.94 MB with 7

distinct elements and 5 distinct paths 5. The number of disk blocks when the size of the

block is 2 KB is 885; the number of disk blocks when the size of the block is 4 KB is

445 and the number of disk blocks when the size of the block is 6 KB is 300 as shown

in the following chart

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 1 2 3 4 5 6 7 8 9

Ti
m
e
in
 s
ec
on

d

Query number

2KB
4KB
6KB

77

Figure 4.17: the number of blocks used to save PARTSUPP_GC.xml dataset

The density of the MXF file when the size of the block is 2KB is 99.31%, when the size

of the block is the density of the file is 98.75 %; and the file density when the size of the

block is 6KB is 97.65% as shown in the chart bellow

Figure 4.18: the file density when saving PARTSUPP_GC.xml dataset

885

445

300

0

100

200

300

400

500

600

700

800

900

1000

2KB 4KB 6KB

block size in KB

99.31

98.75

97.65

96.5

97

97.5

98

98.5

99

99.5

2KB 4KB 6KB

block size in KB

78

4.5.1.3.2. Group B dataset

“PARTSUPP_GB.xml” was chosen; its size is 4.37 MB with 7 distinct elements and 5

distinct paths. The number of disk blocks when the size of the block is 2 KB is 885; the

number of disk blocks when the size of the block is 4 KB is 445 and the number of disk

blocks when the size of the block is 6 KB is 300 as shown in the following chart

Figure 4.19: the number of blocks used to save PARTSUPP_GB.xml dataset

The density of the MXF file when the size of the block is 2KB is 99.03%, when the size

of the block is the density of the file is 97.65 %; and the file density when the size of the

block is 6KB is 97.65% as shown in the chart bellow

355

180

120

0

50

100

150

200

250

300

350

400

2KB 4KB 6KB

Block size in KB

79

Figure 4.20: the file density when saving PARTSUPP_GB.xml dataset

4.5.1.3.3. Group A dataset

“PARTSUPP_GA.xml” was chosen as a dataset with the smallest distinct paths; its

size is 2.19 MB with 7 distinct elements and 5 distinct paths. The number of disk blocks

when the size of the block is 2 KB is 180, the number of disk blocks when the size of

the block is 4 KB is 95 and the number of disk blocks when the size of the block is 6

KB is 65 as shown in the following chart

99.03

97.65 97.65

96.5

97

97.5

98

98.5

99

99.5

2KB 4KB 6KB

block size in KB

80

Figure 4.21: the number of blocks used to save PARTSUPP_GA.xml dataset

The density of the MXF file when the size of the block is 2KB is 97.65%, when the size

of the block is the density of the file is 92.51 %; and the file density when the size of the

block is 6KB is 96.14% as shown in the chart bellow

Figure 4.22: the file density when saving PARTSUPP_GC.xml dataset

180

95

65

0

20

40

60

80

100

120

140

160

180

200

2KB 4KB 6KB

block size in KB

97.65 92.51 96.14

0
10
20
30
40
50
60
70
80
90

100

2KB 4KB 6KB
block size in KB

81

“PARTSUPP.xml” dataset has the smallest number of distinct paths among others, so

the density of the file becomes higher than the above two datasets “SWISSPORT.xml”

and “UWM.xml”.

Dataset Size in MB
Number of disk blocks File Density

2 KB 4 KB 6 KB 2 KB 4 KB 6 KB

PARTSUPP.xml
10.94 885 445 300 99.31 98.75 97.65
4.37 355 180 120 99.03 97.65 97.65
2.19 180 95 65 97.65 92.51 96.14

Table 4.6: a summery table shows the density file and the number of blocks used
when saving PARTSUPP.xml

The figure bellow shows the density of the file in the above table

Figure 4.23: the density of the MXF when saving PARTSU.xml datasets

According to the response time of the queries applied on “PARTSUPP_GA.xml”

database, we have applied these simple path queries. These queries are

T/PS_PARTKEY, T/PS_SUPPKEY, T/PS_AVAILQTY, T/PS_SUPPLYCOST,

T/PS_SUPPLYCOST and T/PS_COMMENT, as in the following table:

90

92

94

96

98

100

0 2 4 6

D
en

si
ty
 p
er
ce
nt
ag
e

Block size in KB

2.19 MB

4.37 MB

10.94 MB

82

Query number Number of disk blocks used
2kb 4 KB 6 KB

1 71 36 24
2 71 36 24
3 71 36 24
4 71 36 24
5 71 36 24

Table 4.7: shows the query response time for the query set mentioned above

Figure 4.24: the query response time when querying PARTSUPP.xml datasets

4.5.2. Classification the data according to data shape

As we explained in the beginning of this chapter, the shape of the data is width and the

depth of the data. The next two sections 5.5.2.1 and 5.5.2.2 explain the behaviour of

MXF with the shape of the data.

4.5.2.1. Data-Width datasets

We have implemented three dataset sets according to data-width (set A, set B and set C)

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

0 1 2 3 4 5 6

Ti
m
e
in
 s
ee
co
nd

Query number

2KB
4KB
6KB

83

• Set A: the data sets used in this set are: three versions of DBLP.xml (DBLP

_GC.xml, DBLP _GB.xml and DBLP _GA.xml). This data is the widest among

the three sets.

• Set B: the data sets used in this set are: three versions of WSU.xml (WSU

_GC.xml, WSU _GB.xml and WSU _GA.xml)

• Set C: the data sets used in this set are: three versions of CUSTOMER.xml

(CUSTOMER _GC.xml, CUSTOMER _GB.xml and CUSTOMER _GA.xml).

This set has the smallest width among the three sets.

4.5.2.1.1. Set A datasets

Three groups of datasets will be implemented in this group

4.5.2.1.1.1. Group C dataset

We have chosen “DBLP_GC.xml” database; its size is 10.76 MB with 29 distinct

elements and 52 distinct paths. The number of disk blocks when the size of the block is

2 KB is 885, the number of disk blocks when the size of the block is 4 KB is 445 and

the number of disk blocks when the size of the block is 6 KB is 300 as shown in the

following chart

84

Figure 4.25: the number of blocks used to save DBLP_GC.xml dataset

The density of the MXF file when the size of the block is 2KB is 97.65%, when the size

of the block is 4KB, the density of the file is 92.51 %; and the file density when the size

of the block is 6KB is 90.14% as shown in the chart bellow

Figure 4.26: the file density when saving DBLP_GC.xml dataset

1012

534

374

0

200

400

600

800

1000

1200

2KB 4KB 6KB
block size in KB

94.3
89.36 85.06

1
11
21
31
41
51
61
71
81
91

2KB 4KB 6KB
block size in KB

85

4.5.2.1.1.2. Group B dataset

We have chosen “DBLP_GB.xml” database; its size is 5.74 MB with 29 distinct

elements and 52 distinct paths. The number of disk blocks when the size of the block is

2 KB is 578; the number of disk blocks when the size of the block is 4 KB is 315 and

the number of disk blocks when the size of the block is 6 KB is 222 as shown in the

following chart

Figure 4.27: the number of blocks used to save DBLP_GB.xml dataset

The density of the MXF file when the size of the block is 2KB is 90.86%, when the size

of the block is 4KB, the density of the file is 83.36 %; and the file density when the size

of the block is 6KB is 78.85% as shown in the chart bellow

578

315

222

0

100

200

300

400

500

600

2KB 4KB 6KB

block size in KB

86

Figure 4.28: the file density when saving DBLP_GB.xml dataset

4.5.2.1.1.3. Group A dataset

We have chosen “DBLP _GA.xml” database; its size is 1.36 MB with 29 distinct

elements and 52 distinct paths. The number of disk blocks when the size of the block is

2 KB is 176, the number of disk blocks when the size of the block is 4 KB is 114 and

the number of disk blocks when the size of the block is 6 KB is 92 as shown in the

following chart

Figure 4.29: the number of blocks used to save DBLP_GA.xml dataset

90.86

83.36

78.85

70

75

80

85

90

95

2KB 4KB 6KB
block size in KB

176

114
92

0
20
40
60
80
100
120
140
160
180
200

2KB 4KB 6KB
block size in KB

87

The density of the MXF file when the size of the block is 2KB is 86.86%, when the size

of the block is 4KB, the density of the file is 82.36 %; and the file density when the size

of the block is 6KB is 72.85% as shown in the chart bellow

Figure 4.30: the file density when saving DBLP_GA.xml dataset

Dataset Size in MB
Number of disk blocks File Density

2 KB 4 KB 6 KB 2 KB 4 KB 6 KB

DBLP.xml
10.76 1012 534 374 94.30 89.36 85.06
5.74 578 315 222 90.86 83.36 78.85
1.36 176 114 92 86.86 82.36 72.85

Table 4.8: a summery table shows the density file and the number of blocks used

when saving DBLP.xml

Data shape of the “DBLP.xml” is the widest and from the table above we can conclude

that the density of the file is stable regardless of the width of the data but it varies

according to the size of the data as shown in the following figure.

86.86
82.36

72.85

0
10
20
30
40
50
60
70
80
90
100

2KB 4KB 6KB

block size in KB

88

Figure 4.31: the density of MXF when saving DBLP.xml datasets

According to the response time of the queries applied on “DBLP_small.xml” database,

we have applied these simple path queries. These queries are mastersthesis/author,

article/title, article/ee, article/autho, inproceedings/url, inproceedings/cdrom. Above

queries will be numbered in the following table from 1 to 6 as they were ordered above.

Query number Number of disk blocks used
2KB 4 KB 6 KB

1 1 1 1
2 16 8 6
3 10 5 4
4 28 14 10
5 38 19 13
6 7 4 3

Table 4.9: shows the query response time for the query set mentioned above

70

74

78

82

86

90

94

98

0 2 4 6 8

D
en

si
ty
 P
er
ce
nt
ag
e

Block size in KB

1.36 MB

5.74 MB

10.76 MB

89

Figure 4.32: the query response time when querying DBLP.xml datasets

4.5.2.1.2. Set B datasets

Three datasets groups will be used in this set

4.5.2.1.2.1. Group C dataset

We have chosen “WSU_GC.xml” database; its size is 8.31 MB with 20 distinct

elements and 16 distinct paths. The number of disk blocks when the size of the block is

2 KB is 1522, number of disk blocks when the size of the block is 4 KB is 772 and the

number of disk blocks when the size of the block is 6 KB is 516 as shown in the

following chart

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 1 2 3 4 5 6 7

Ti
m
e
in
 s
ec
on

d

Query number

2 KB

4 KB

6 KB

90

Figure 4.33: the number of blocks used to save WSU_GC.xml dataset

The density of the MXF file when the size of the block is 2KB is 74.6%, when the size

of the block is 4KB, the density of the file is 57.58 %; and the file density when the size

of the block is 6KB is 47.57% as shown in the chart bellow

Figure 4.34: the file density when saving WSU_GC.xml dataset

1522

772

516

0

200

400

600

800

1000

1200

1400

1600

2KB 4KB 6KB

Block size in KB

99.04

97.62
97.37

96.5

97

97.5

98

98.5

99

99.5

2KB 4KB 6KB
block size in KB

91

4.5.2.1.2.2. Group B dataset

We have chosen “WSU_GB.xml” database; its size is 3.94 MB with 20 distinct

elements and 16 distinct paths. The number of disk blocks when the size of the block is

2 KB is 772, the number of disk blocks when the size of the block is 4 KB is 389 and

the number of disk blocks when the size of the block is 6 KB is 266 as shown in the

following chart

Figure 4.35: the number of blocks used to save WSU_GB.xml dataset

The density of the MXF file when the size of the block is 2KB is 97.62%, when the size

of the block is 4KB, the density of the file is 96.87 %; and the file density when the size

of the block is 6KB is 94.44% as shown in the chart bellow

772

389

266

0

100

200

300

400

500

600

700

800

900

2KB 4KB 6KB

block size in KB

92

Figure 4.36: the file density when saving DBLP_GB.xml dataset

4.5.2.1.2.3. Group A dataset

We have chosen “WSU_GA.xml” database; its size is 1.98 MB with 20 distinct

elements and 16 distinct paths. The number of disk blocks when the size of the block is

2 KB is 318, the number of disk blocks when the size of the block is 4 KB is 171 and

the number of disk blocks when the size of the block is 6 KB is 120 as shown in the

following chart

Figure 4.37: the number of blocks used to save DBLP_GB.xml dataset

97.62
96.87

94.44

92

93

94

95

96

97

98

2KB 4KB 6KB
block size in KB

318

171

120

0

50

100

150

200

250

300

350

2KB 4KB 6KB

Block size in KB

93

The density of the MXF file when the size of the block is 2KB is 95.8%, when the size

of the block is 4KB, the density of the file is 89.07 %; and the file density when the size

of the block is 6KB is 84.62% as shown in the chart bellow

Figure 4.38: the file density when saving DBLP_GA.xml dataset

Dataset Size in MB
Number of disk blocks File Density

2 KB 4 KB 6 KB 2 KB 4 KB 6 KB

WSU.xml

8.31 1522 722 516 99.04 97.61 97.37
3.94 722 389 266 97.62 96.87 94.44
1.98 318 171 120 95.80 89.07 84.62

Table 4.10: a summery table shows the density file and the number of blocks used

when saving SWISSPORT.xml

The same observation can be concluded from “WSU.xml” results. From the table above

we can see that the file density is stable according to the data shape factor but it is

affected by the size of the file. But if we compare the result of the “WSU.xml” with the

95.8

89.07
84.62

50
55
60
65
70
75
80
85
90
95
100

2KB 4KB 6KB
block size in KB

94

results of “DBLP.xml” we can conclude that as a data becomes wider, the probability

of existing more distinct paths becomes larger; so we see that the overall density of the

“WSU.xml” dataset is larger than the density of the “DBLP.xml” dataset.

Figure 4.39: the density of MXF when saving WSU.xml datasets

According to the response time of the queries applied on “WSU_GA.xml” database, we

have applied these simple path queries. These queries are course/footnote, course/sln,

course/prefix, course/crs, course/lab, course/sect, course/title and course/credit. These

queries will be numbered from 1 to 8 in the following table:

Query number Number of disk blocks used
2KB 4 KB 6 KB

1 44 22 15
2 44 22 15
3 44 22 15
4 44 22 15
5 44 22 15
6 44 22 15
7 44 22 15
8 44 22 15

Table 4.11: shows the query response time for the query set mentioned above

80
83
86
89
92
95
98

0 2 4 6 8

D
en

si
ty
 p
er
ce
nt
ag
e

Block size in KB

1.98 MB

3.94 MB

8.31 MB

95

The response time for the set of queries above is illustrated in the following figure:

Figure 4.40: the query response time when querying WSU.xml datasets

4.5.2.1.3. Set C datasets

Three datasets groups will be implemented in this set:

4.5.2.1.3.1. Group C dataset

We have chosen “CUSTOMER_GC.xml” database; its size is 10.07 MB with 10

distinct elements and 8 distinct paths. The number of disk blocks when the size of the

block is 2 KB is 536; the number of disk blocks when the size of the block is 4 KB is

272 and the number of disk blocks when the size of the block is 6 KB is 184 as shown

in the following chart

0

0.01

0.02

0.03

0.04

0.05

0 2 4 6 8

Ti
m
e
in
 s
ec
on

d

Query number

2 KB

4 KB

6 KB

96

Figure 4.41: the number of blocks used to save CUSTOMER_GC.xml dataset

The density of the MXF file when the size of the block is 2KB is 99.38%, when the size

of the block is 4KB, the density of the file is 98.93 %; and the file density when the size

of the block is 6KB is 97.53% as shown in the chart bellow

Figure 4.42: the file density when saving CUSTOMER _GC.xml dataset

536

272

184

0

100

200

300

400

500

600

2KB 4KB 6KB

block size in KB

99.38 98.93 97.53

0
10
20
30
40
50
60
70
80
90

100

2KB 4KB 6KB

block size in KB

97

4.5.2.1.3.2. Group B dataset

As a dataset with a very width shape and average size, we have chosen

“CUSTOMER_GB.xml” database; its size is 5.03 MB with 10 distinct elements and 8

distinct paths. The number of disk block when the size of the block is 2 KB is 1064, the

number of disk block when the size of the block is 4 KB is 536 and the number of disk

block when the size of the block is 6 KB is 360 as shown in the following chart

Figure 4.43: the number of blocks used to save CUSTOMER_GB.xml dataset

The density of the MXF file when the size of the block is 2KB is 99.12%, when the size

of the block is 4KB, the density of the file is 98.38 %; and the file density when the size

of the block is 6KB is 97.65% as shown in the chart bellow

1064

536

360

0

200

400

600

800

1000

1200

2KB 4KB 6KB

block size in KB

98

Figure 4.44: the file density when saving CUSTOMER _GB.xml dataset

4.5.2.1.3.3. Group A dataset

We have chosen “CUSTOMER_GA.xml” database; its size is 1.51 MB with 8 distinct

elements and 10 distinct paths. The number of disk blocks when the size of the block

is 2 KB is 64; the number of disk blocks when the size of the block is 4 KB is 32 and

the number of disk blocks when the size of the block is 6 KB is 42 as shown in the

following chart

99.12 98.38 97.65

0
10
20
30
40
50
60
70
80
90
100

2KB 4KB 6KB

block size in KB

99

Figure 4.45: the number of blocks used to save CUSTOMER_GA.xml dataset

The density of the MXF file when the size of the block is 2KB is 96. 8%, when the size

of the block is 4KB, the density of the file is 90.07 %; and the file density when the size

of the block is 6KB is 85.62% as shown in the chart bellow

Figure 4.46: the file density when saving CUSTOMER _GA.xml dataset

64

32

24

0

10

20

30

40

50

60

70

2KB 4KB 6KB

Block size in KB

96.8 90.07 85.62

0
10
20
30
40
50
60
70
80
90

100

2KB 4KB 6KB

block size in KB

100

Dataset Size in MB
Number of disk blocks File Density

2 KB 4 KB 6 KB 2 KB 4 KB 6 KB

CUSTOMER.xml

10.07 1064 536 360 99.38 98.93 97.53
5.03 536 272 184 99.12 98.38 97.65
1.51 64 32 24 96.8 90.07 85.62

Table 4.12: a summery table shows the density file and the number of blocks used

when saving CUSTOMER.xml

The same observation can be concluded from “CUSTOMER.xml” results. From the

table above we can see that the file density is stable according to the data shape factor

but it is affected by the size of the file. But if we compare the result of the

“CUSTOMER.xml” dataset with the two datasets “WSU.xml” and “DBLP.xml”, we

can conclude that as a data becomes wider, the probability of existing more distinct

paths becomes larger; so we see that the overall density of the “CUSTOMER.xml”

dataset is larger than the density of the “WSU.xml” and “DBLP.xml” datasets as

shown in the following figure

Figure 4. 47: the density of MXF when saving CUSTOMER.xml datasets

80

83

86

89

92

95

98

0 2 4 6 8

D
en

si
ty
 p
er
ce
nt
ag
e

Block size in KB

1.51 MB

5.03 MB

10.07 MB

101

According to the response time of the queries applied on “CUSTOMER_GA.xml”

database, we have applied these simple path queries. These queries are

T/C_CUSTKEY, T/C_NAME, T/C_ADDRESS, T/C_NATIONKEY, T/C_PHONE,

T/C_ACCTBAL, T/C_MKTSEGMENT and T/C_COMMENT. The figure bellow

shows the response time for the query set above where each query has a number from 1

to 8 respectively:

Query number Number of disk blocks used
2KB 4 KB 6 KB

1 67 34 23
2 67 34 23
3 67 34 23
4 67 34 23
5 67 34 23
6 67 34 23
7 67 34 23
8 67 34 23

Table 4.13: shows the query response time for the query set mentioned above.

Figure 4.48: the query response time when querying CUSTOMER.xml datasets

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

0 2 4 6 8 10

Ti
m
e
in
 s
ec
on

d

Query number

6 KB

4 KB

2 KB

102

4.5.2.2. Data-depth datasets

We have implemented three dataset sets according to data-depth (set A, set B and set C)

• Set A: the data sets used in this set are: three versions of PERSONS.xml

(PERSONS _GC.xml, PERSONS _GB.xml and PERSONS _GA.xml). This data

is the depthest among the three sets.

• Set B: the data sets used in this set are: three versions of

SIGMODRECORD.xml (SIGMODRECORD _GC.xml, SIGMODRECORD

_GB.xml and SIGMODRECORD _GA.xml)

• Set C: the data sets used in this set are: three versions of ORDERS.xml

(ORDERS _GC.xml, ORDERS _GB.xml and ORDERS _GA.xml). This set has

the smallest depth among the three sets.

4.5.2.2.1. Set A datasets

Three groups will be implemented in this set

4.5.2.2.1.1. Group C dataset

We have chosen “PERSONS_GC.xml” database; its size is 8.75 MB with 14 distinct

elements and 6 distinct paths. The number of disk blocks when the size of the block is 2

KB is 1166; the number of disk blocks when the size of the block is 4 KB is 586 and the

number of disk block when the size of the block is 6 KB is 391 as shown in the

following chart

103

Figure 4.49: the number of blocks used to save PERSONS_GC.xml dataset

The density of the MXF file when the size of the block is 2KB is 99.12%, when the size

of the block is 4KB, the density of the file is 98.38 %; and the file density when the size

of the block is 6KB is 97.65% as shown in the chart bellow

Figure 4.50: the file density when saving PERSONS _GC.xml dataset

1166

586

391

0

200

400

600

800

1000

1200

1400

2KB 4KB 6KB

block size in KB

99.12 98.38 97.65

0
10
20
30
40
50
60
70
80
90
100

2KB 4KB 6KB
block size in KB

104

4.5.2.2.1.2. Group B dataset

We have chosen “PERSONS_GB.xml” database; its size is 4.37 MB with 14 distinct

elements and 6 distinct paths. The number of disk blocks when the size of the block is 2

KB is 586; the number of disk blocks when the size of the block is 4 KB is 299 and the

number of disk block when the size of the block is 6 KB is 201 as shown in the

following chart

Figure 4.51: the number of blocks used to save PERSONS_GB.xml dataset

The density of the MXF file when the size of the block is 2KB is 98.38%, when the size

of the block is 4KB, the density of the file is 96.93 %; and the file density when the size

of the block is 6KB is 95.53% as shown in the chart bellow

586

299

201

0

100

200

300

400

500

600

700

2KB 4KB 6KB

block size in KB

105

Figure 4.52: the file density when saving PERSONS _GB.xml dataset

4.5.2.2.1.3. Group A dataset

We have chosen “PERSONS_GA.xml” database; its size is 1.45 MB with 14 distinct

elements and 6 distinct paths. The number of disk block when the size of the block is 2

KB is 201, number of disk block when the size of the block is 4 KB is 104 and the

number of disk block when the size of the block is 6 KB is 73 as shown in the following

chart

Figure 4.53: the number of blocks used to save PERSONS_GA.xml dataset

98.38 96.93 95.53

0
10
20
30
40
50
60
70
80
90
100

2KB 4KB 6KB
block size in KB

201

104
73

0

50

100

150

200

250

2KB 4KB 6KB
block size in KB

106

The density of the MXF file when the size of the block is 2KB is 82.39%, when the size

of the block is the density of the file is 82.39 %; and the file density when the size of the

block is 6KB is 73.24% as shown in the chart bellow

Figure 4.54: the file density when saving PERSONS _GB.xml dataset

Dataset Size in MB
Number of disk blocks File Density

2 KB 4 KB 6 KB 2 KB 4 KB 6 KB

PERSONS.xml

8.75 1166 586 391 99.12 98.38 97.65
4.37 586 299 201 98.38 96.93 95.53
1.45 201 104 73 82.39 82.39 73.24

Table 4.14: a summery table shows the density file and the number of blocks used

when saving SWISSPORT.xml

According to the depth factor, since we deal with the path as one unit in an xml data

tree, the density of the file will not be affected by the data-depth factor and the size

factor will be the dominant factor as shown in the following figure.

82.39 82.39
73.24

0

10

20

30

40

50

60

70

80

90

100

2KB 4KB 6KB

block size in KB

107

Figure 4.55 the density of MXF when saving PERSONS.xml datasets

According to the response time of the queries applied on “PERSONS_GA.xml”

database, we have applied these simple path queries. These queries are

1. local_persons/person/person_type/person_info/required_info/special_info/peson_name/person_full

2. local_persons/person/person_type/person_info/required_info/special_info/person_age

3. local_persons/person/person_type/person_info/required_info/special_info/person_religion

4. local_persons/person/person_type/person_info/required_info/special_info/person_state

5. local_persons/person/person_type/person_info/required_info/special_info/person_city

6. local_persons/person/person_type/person_info/required_info/special_info/person_country

Query number Number of disk blocks used
2KB 4 KB 6 KB

1 106 54 36
2 96 49 33
3 90 45 32
4 96 49 33
5 90 45 32
6 96 49 33

Table 4.15: shows the query response time for the query set mentioned above

70

74

78

82

86

90

94

98

0 2 4 6 8

D
en

si
ty
 p
er
ce
nt
ag
e

Block size in KB

1.45 MB
4.37 MB
8.75 MB

108

Figure 4.56: the query response time when querying PERSONS.xml datasets

4.5.2.2.2. Set B datasets

Three dataset groups will be implemented in this set:

4.5.2.2.2.1. Group C dataset

We have chosen “SIGMODRECORD _GC.xml” database; its size is 13.05 MB with

11 distinct elements and 6 distinct paths. The number of disk blocks when the size of

the block is 2 KB is 1535, the number of disk blocks when the size of the block is 4 KB

is 771 and the number of disk blocks when the size of the block is 6 KB is 516 as shown

in the following chart

0

0.02

0.04

0.06

0.08

0.1

0.12

0 1 2 3 4 5 6 7 8

Ti
m
e
in
 s
ec
on

d

Query number

2 KB

4 KB

6 KB

109

Figure 4.57: the number of blocks used to save SIGMODRECORD_GC.xml dataset

The density of the MXF file when the size of the block is 2KB is 99.55%, when the size

of the block is the density of the file is 99.1 %; and the file density when the size of the

block is 6KB is 98.72% as shown in the chart bellow

Figure 4.58: the file density when saving SIGMODRECORD _GC.xml dataset

1535

771

516

0
200
400
600
800

1000
1200
1400
1600
1800

2KB 4KB 6KB
Block size in KB

99.55

99.1

98.72

98.2

98.4

98.6

98.8

99

99.2

99.4

99.6

99.8

2KB 4KB 6KB
block size in KB

110

4.5.2.2.2.2. Group B dataset

We have chosen “SIGMODRECORD _GB.xml” database; its size is 4.35 MB with 11

distinct elements and 6 distinct paths. The number of disk blocks when the size of the

block is 2 KB is 516, the number of disk blocks when the size of the block is 4 KB is

260 and the number of disk blocks when the size of the block is 6 KB is 177 as shown

in the following chart

Figure 4.59: the number of blocks used to save SIGMODRECORD_GB.xml dataset

The density of the MXF file when the size of the block is 2KB is 98.38%, when the size

of the block is 4KB, the density of the file is 96.93 %; and the file density when the size

of the block is 6KB is 95.53% as shown in the chart bellow

516

260

177

0

100

200

300

400

500

600

2KB 4KB 6KB
block size in KB

111

Figure 4.60: the file density when saving SIGMODRECORD _GB.xml dataset

4.5.2.2.2.3. Group A dataset

We have chosen “SIGMODRECORD_GA.xml” database; its size is 1.47 MB with 11

distinct elements and 6 distinct paths. The number of disk blocks when the size of the

block is 2 KB is 177; the number of disk blocks when the size of the block is 4 KB is 89

and the number of disk blocks when the size of the block is 6 KB is 63 as shown in the

following chart

Figure 4.61: the number of blocks used to save SIGMODRECORD_GA.xml dataset

98.72

97.96

95.93

94

95

96

97

98

99

2KB 4KB 6KBblock size in KB

177

89
63

0

50

100

150

200

2KB 4KB 6KB
block size in KB

112

The density of the MXF file when the size of the block is 2KB is 95.93%, when the size

of the block is 4KB, the density of the file is 95.39 %; and the file density when the size

of the block is 6KB is 89.84% as shown in the chart bellow

Figure 4.62: the file density when saving SIGMODRECORD _GA.xml dataset

Dataset Size in MB
Number of disk blocks File Density

2 KB 4 KB 6 KB 2 KB 4 KB 6 KB

SIGMODRECORD.xml

13.05 1535 771 516 99.55 99.10 98.72
4.35 516 260 177 98.72 97.96 95.93
1.45 177 89 63 95.93 95.39 89.84

Table 4.16: a summery table shows the density file and the number of blocks used

when saving SIGMODRECORD.xml

95.93 95.39

89.84

86
87
88
89
90
91
92
93
94
95
96
97

2KB 4KB 6KB

block size in KB

113

“SIGMODRECORD.xml” has less depth than “PERSONS.xml”, but there is a slight

difference in the file density which emphasizes that the depth factor will not affect the

density of the file or has a slight effect on the density of the file.

Figure 4.63: the density of MXF when saving SIMORECORD.xml datasets

According to the response time of the queries applied on

“SIGMODRECORD_GA.xml” database, we have applied these simple path queries.

These queries are issue/volume, issue/number, issue/articles/article/title,

issue/articles/article/initPage, issue/articles/article/endPage and

issue/articles/article/authors/author. Queries above are numbered from 1 to 6

respectively.

Query number Number of disk blocks used
2KB 4 KB 6 KB

1 9 5 4
2 9 5 4
3 259 130 87
4 259 130 87
5 259 130 87
6 740 371 247

Table 4.17: shows the query response time for the query set mentioned above

88
90
92
94
96
98
100

0 2 4 6 8

D
en

si
ty
 p
er
ce
nt
ag
e

Block size in KB

1.45 MB
4.35 MB
13.05 MB

114

Figure 4.64: the query response time when querying SIGMODRECORD.xml datasets

4.5.2.2.3. Set C datasets

Three dataset groups will be implemented in this set:

4.5.2.2.3.1. Group C dataset

We have chosen “ORDERS_GC.xml” database; its size is 11.38 MB with 11 distinct

elements and 9 distinct paths. The number of disk blocks when the size of the block is 2

KB is 1197, number of disk block when the size of the block is 4 KB is 603 and the

number of disk blocks when the size of the block is 6 KB is 405 as shown in the

following chart

‐0.2

0

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6 7

Ti
m
e
in
 s
ec
on

d

Query number

2 KB
4 KB
6 KB

115

Figure 4.65: the number of blocks used to save ORDERS_GC.xml dataset

The density of the MXF file when the size of the block is 2KB is 99.12%, when the size

of the block is 4KB, the density of the file is 98.38 %; and the file density when the size

of the block is 6KB is 97.65% as shown in the chart bellow

Figure 4.66: the file density when saving ORDERS _GC.xml dataset

1197

603

405

0

200

400

600

800

1000

1200

1400

2KB 4KB 6KB

block size in KB

99.12 98.38 97.65

10

20

30

40

50

60

70

80

90

100

2KB 4KB 6KB
block size in KB

116

4.5.2.2.3.2. Group B dataset

We have chosen “ORDERS_GB.xml” database; its size is 5.25 MB with 11 distinct

elements and 9 distinct paths. The number of disk blocks when the size of the block is 2

KB is 603; the number of disk blocks when the size of the block is 4 KB is 306 and the

number of disk blocks when the size of the block is 6 KB is 207 as shown in the

following chart

Figure 4.67: the number of blocks used to save ORDERS_GB.xml dataset

The density of the MXF file when the size of the block is 2KB is 98.38%, when the size

of the block is 4KB, the density of the file is 96.93 %; and the file density when the size

of the block is 6KB is 95.53% as shown in the chart bellow

603

306

207

50

120

190

260

330

400

470

540

610

2KB 4KB 6KB
block size in KB

117

Figure 4.68: the file density when saving ORDERS _GB.xml dataset

4.5.2.2.3.3. Group A dataset

We have chosen “ORDERS_GA.xml” database; its size is 2.64 MB with 11 distinct

elements and 6 distinct paths. The number of disk blocks when the size of the block is 2

KB is 279; the number of disk blocks when the size of the block is 4 KB is 144 and the

number of disk blocks when the size of the block is 6 KB is 99 as shown in the

following chart

Figure 4.69: the number of blocks used to save ORDERS_GA.xml dataset

98.38 96.93 95.53

50
55
60
65
70
75
80
85
90
95

2KB 4KB 6KB
block size in KB

279

144

99

0

50

100

150

200

250

300

2KB 4KB 6KB
block size in KB

118

The density of the MXF file when the size of the block is 2KB is 96.66%, when the size

of the block is 4KB, the density of the file is 93.64 %; and the file density when the size

of the block is 6KB is 90.80% as shown in the chart bellow

Figure 4.70: the file density when saving ORDERS _GA.xml dataset

Dataset Size in MB
Number of disk blocks File Density

2 KB 4 KB 6 KB 2 KB 4 KB 6 KB

ORDERS.xml

11.38 1197 603 405 99.67 99.16 99.08
5.25 603 306 207 99.16 97.17 96.37
1.51 64 32 24 96.37 93.13 88.45

Table 4.18: a summery table shows the density file and the number of blocks used

when saving ORDERS.xml

96.66

93.64

90.8

86

88

90

92

94

96

98

2KB 4KB 6KB
block size in KB

119

Figure 4.71 the density of MXF when saving ORDERS.xml datasets

“ORDERS.xml” has the smallest depth among “SIGMODRECORD.xml” and

“PERSONS.xml”, even if it has the highest density, but the density different is slight as

shown in the following figure.

According to the response time of the queries applied on “ORDERS.xml” database, we

have applied these simple path queries. These queries are T/O_ORDERKEY,

T/O_CUSTKEY, T/O_ORDERSTATUS, T/O_TOTALPRICE, T/O_ORDERDATE,

T/O_ORDER-PRIORITY, T/O_CLERK and T/O_SHIP-PRIORITY

Query number Number of disk blocks used
2KB 4 KB 6 KB

1 16 8 6
2 40 20 14
3 19 10 7
4 14 8 5
5 129 65 44
6 15 8 6
7 21 11 8
8 21 11 3

Table 4.19: shows the query response time for the query set mentioned above

88

90

92

94

96

98

100

0 2 4 6 8

D
en

si
ty
 P
er
ce
nt
ag
e

Block size in KB

1.51 MB
5.25 MB
11.38 MB

120

Figure 4.72: the query response time when querying WSU.xml datasets

4.6. Summery

In this chapter, we have implemented MXF on NINE datasets with different sizes and

data. For each data set, we have shown the density of the file, the number of disk blocks

used and the query response time for nine sets of simple path queries. Our datasets are

classified according to two factors: the variety of the data and the shape of the data

(width and depth). As the data becomes less distinct, the density of the file becomes

higher; this in turn means fewer disk blocks will be used to save the data.

According to the width of the data, the width of the tree has a slight effect on the

density of the file as well as on the number of the dick blocks used to save data. But as

the size of the file becomes larger, it gives a chance for rising new distinct paths which

can slightly affect the density of the file (in the rare case where the file can fit in very

few disk blocks (like one or two disk blocks).

0

0.02

0.04

0.06

0.08

0 2 4 6 8 10

Ti
m
e
in
 s
ec
on

d

Query number

2 KB
4 KB
6 KB

121

According to the depth factor, from the results we got above, we can conclude that:

since we deal with BPL as a one unit, the depth of the file will not affect the file density

as well as the number of disk blocks.

According to the query response time, the only factor that affects the query response

time is the number of disk blocks that are used to save the corresponding data. The

shape of the data will not affect response time as we don’t decompose the query to

answer it; instead we take it as one unit i.e. the depth of the data is not a mater while

querying XML data using MXF.

122

CHAPTER FIVE

CONCLUSION AND FEATURE WORK

Since the importance of XML as a new standard for information representation and

exchange on the internet, the problem of storing, indexing, and querying XML

documents poses new challenges to database researchers, and has been among the major

issues of database research.

In this thesis, we proposed a new file structure called MXF to parse, index and store

XML documents.

Previous native XML storage systems depend on the inverted lists to store the file. They

save the inverted lists of all elements in an XML documents. They decompose the paths

of the XML tree and save the elements of the paths separately.

There are two major disadvantages of these approaches: first, they cost large disk space

since they store inverted lists of all elements, and the second is they need many join

operations to process a query.

From these two major disadvantages, we contribute a new file structure

Multidimensional XML File (MXF) to save, index and query XML document. The

main idea of our proposed system is store the inverted lists of the leaf nodes only. This

results in less disk space. Since we don’t decompose path into its elements, no need for

123

join operations to answer a simple path query. MXF will minimize the cost of a query

by minimizing the number of joins needed in case of twig queries.

We have applied MXF on nine datasets each with three different sizes (differ from each

other in the data-variety and data-shape) and we conclude that our MXF is stable

regardless the size, the shape and the data-shape of the XML data tree.

As a feature work, since we need to increase the file density in the situation mentioned

above, we will develop a merge algorithm to merge more than one data block to

increase the file density.

124

REFERENCES

[1] http://www.w3schools.com

[2] http://www.simonstl.com/articles/whyxml.htm

[3] http://www.w3.org/XML/

[4] Md. Sumon Shahriar and Jixue Liu, “On Defining Keys for XML”, IEEE 8th

International Conference on Computer and Information Technology

Workshops, 2008

[5] www.xml.com

[6] M. Altinel and J. Franklin, “Efficient filtering of XML documents for selective

dissemination of information”, VLDB Conference, 2000.

[7] G. Gou, R. Chirkova, "Efficiently Querying Large XML Data Repositories: A

Survey", IEEE Transactions on Knowledge and Data Engineering, Vol. 19, No.

10. (2007), pp. 1381-1403.

[8] G. Gou, R. Chirkova ,"XML Query Processing: A Survey",2005

[9] Rebecca J. Cathey, Steven M. Beitzel, Eric C. Jensen, D Grossman, O Frieder,

"Using a Relational Database for Scalable XML Search", 2007

[10] J. Leonard," Strategies for Encoding XML Documents in Relational Databases:

Comparisons and Contrasts", Thesis 2006

 [11] Mustafa Atay , Yezhou Sun , Dapeng Liu , Shiyong Lu ad Farshad Fotouhi,

“Mapping Xml Data To Relational Data: A Dom-Based Approach”

(2004),Eighth IASTED International Conference on Internet and Multimedia

Systems and Applications, Kauai

125

[12] S. Chaudhuri, K. Shim,” Storage and Retrieval of XML Data using Relational

Databases”, Tutorial. ICDE 2003.

 [13] S. Prakash, S. B. Bhowmick, S. Madria.” Efficient Recursive XML Query

Processing Using Relational Database Systems”, In Proceedings of ER. 2004

[14] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D.J. DeWitt and J.F.

Naughton, “Relational Databases for Querying XMLDocuments: Limitations

and Opportunities,” Proc. 25th Int’l Conf.Very Large Data Bases (VLDB ’99),

1999.

[15] G. Pavlovic," Native XML Databases vs. Relational Databases in dealing with XML

Documents", 2007

[16] H. V. Jagadish et al, “A Native XML Database”, In International Conference of

VLDB. 2002.

[17] http://www.xml.com/pub/a/2001/10/31/nativexmldb.html

[18] A Vakali, B Catania and A Maddalena, ”XML Data Stores: Emerging

Practices”, Published by the IEEE Computer Society 1089-7801/05/$20.00 ©

2005 IEEE

[19] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom, “Lore: A

Database Management System for Semistructured Data,” SIGMOD Record, vol.

26, no. 3, pp. 54-66, 1997.

[20] J. McHugh and J. Widom, “Query Optimization for XML,” Proc.25th Int’l

Conf. Very Large Data Bases (VLDB ’99), 1999.

[21] P.F. Dietz, “Maintaining Order in a Linked List,” Proc. 14th ACM Symp.

Theory of Computing, 1982.

126

[22] C. Zhang, J.F. Naughton, D.J. DeWitt, Q. Luo, and G.M. Lohman,“On

Supporting Containment Queries in Relational DatabaseManagement Systems,”

Proc. 20th ACM SIGMOD Int’l Conf.Management of Data (SIGMOD ’01),

2001.

[23] Online Computer Library Center, “Dewey decimal classification”,

http://www.oclc.org/dewey/, 2006.

[24] I. Tatarinov, S. Viglas, K.S. Beyer, J. Shanmugasundaram, E.J. Shekita, and C.

Zhang, “Storing and Querying Ordered XML Using a Relational Database

System,” Proc. 21st ACM SIGMODInt’l Conf. Management of Data (SIGMOD

’02), 2002.

[25] Cohen, E., Kaplan, H., Milo, T," Labeling dynamic XML trees. In: Proceedings

of PODS 2002, pp. 271–281.

[26] X. Wu, M. Li Lee, W. Hsu," A Prime Number Labeling Scheme for Dynamic

Ordered XML Trees", 2004

[27] M. Altinel and J. Franklin, “Efficient filtering of XML documents for selective

dissemination of information”, VLDB Conference, 2000.

[28] Nicolas Bruno, Luis Gravano, Nick Koudas, and Divesh Srivastava. Navigation-

vs. index-based XML multi-query processing. ICDE Conference, 2003.

[29] Yanlei Diao and Michael J. Franklin,” High-performance XML filtering: an

overview of YFilter”, IEEE Data Engineering Bulletin, 26:41–48, 2003.

[30] D. Florescu and D. Kossmann, “Storing and Querying XML Data Using an

RDMBS,” IEEE Data Eng. Bull., vol. 22, pp. 27-34, 1999.

127

[31] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura, “XRel: A Path-Based

Approach to Storage and Retrieval of XML Documents Using Relational

Databases,” ACM Trans. Internet Technology, vol. 1, pp. 110-141, 2001.

 [32] S. Pal, I. Cseri, G. Schaller, O. Seeliger, L. Giakoumakis, and V.Zolotov,

“Indexing XML Data Stored in a Relational Database,”Proc. 30th Int’l Conf.

Very Large Data Bases (VLDB ’04), 2004.

[33] http://www.dataexmachina.de/natix.html

[34] http://www.eecs.umich.edu/db/timber

[35] www.ipedo.com

[36] http://xml.apache

[37] http://exist.sourceforge

[38] www.dbXML.com

 [39] Q. Li and B. Moon,” Indexing and Querying XML Data for Regular Path

Expressions”, Proceedings of the 27th International Conference on Very Large

Databases (VLDB'2001), pages 361-370, Rome, Italy, September 2001.

[40] N. Zhang, V. Kacholia, and M.T. Ozsu, “A Succinct Physical Storage Scheme

for Efficient Evaluation of Path Queries in XML,” Proc. 20th IEEE Int’l Conf.

Data Eng. (ICDE ’04), 2004.

 [41] S. Al-Khalifa, H.V. Jagadish, N. Koudas, J.M. Patel, D. Srivastava,and Y.

Wu,“Structural Joins: A Primitive for Efficient XML QueryPattern Matching,”

Proc. 18th IEEE Int’l Conf. Data Eng. (ICDE ’02), 2002

128

[42] N. Bruno, N. Koudas, and D. Srivastava, “Holistic Twig Joins:Optimal XML

Pattern Matching,” Proc. 21st ACM SIGMOD Int’lConf. Management of Data

(SIGMOD ’02), 2002.

[43] V. GAEDE, O. GU¨NTHER, ” Multidimensional Access Methods”, ACM

Computing Surveys, Vol. 30, No. 2, June 1998

[44] J. NIEVERGELT, H. HINTERBERGER,”The Grid File: An Adaptable,

Symmetric

Multikey File Structure”, ACM Transactions on Database Systems, Vol. 9, No.

1, March 1984

129

Vita

• Mahboub Ali Mohammed Naji.

• Nationality: Yemeni

• Born in Yemen on September 1, 1979.

• Completed Bachelor of Science (B.Sc.) in Computer Science from Thamar

University, Yemen, in June 2001.

• Present address: King Fahd University of Petroleum & Minerals, Dhahran,

Saudi Arabia

• Permanent address: Yemen, Taiz; Email: te_mahboob@yahoo.com

