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Exchanging data between organizations becomes challenge because of differences in 

data formats and in the semantics of the meta-data used to describe the data.  EXtensible 

Markup Language (XML) is playing an increasingly important role in the exchange of a 

wide variety of data on the Web. Querying XML data is a challenging task because of 

the nature of XML structure. Unlike flat files, XML documents   have nested structure. 

Querying XML data involves not only the content but also the structure of XML data.  

The increasingly wider use of XML has heightened the need to store large volumes of 

data encoded in XML, and to query XML data more efficiently.  

The way an XML document is stored in a secondary storage affects the cost of querying 

the data.  Many techniques of storing XML data have been proposed in the literature. 

The main disadvantage of the existing techniques is that they organize the data in a way 

that will result in many disk I/Os to answer a query.    In this thesis we are proposing a 

new multidimensional file structure to store XML data in a secondary storage. This 

multidimensional file structure will minimize the number of disk blocks accessed to 

answer a query. 
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محبوب علي محمد ناجي :       الاســـــــم   

   ملف جديد لخزن واسترجاع ملفات الاآس ام ال : متعدد الابعاد    (XML)اآس ام ال  ملف:  عنوان الرسالة 

  علوم حاســـب الي:       التخصص 

  2010يونيــــــو :   تاريخ التخرج 

  
  

وذلك بسبب الاختلاف في صيغ البيانات إضافة إلى الاختلاف في البيانات الوسيطة إن تبادل البيانات بين المؤسسات أصبح يشكل تحديا 

تلعب دورا هاما في تبادل أنواع كثيرة  ) XML(إن لغة الترميز الموسعة الـ  .أو المساعدة المستخدمة في وصف هذه البيانات المتبادلة

تعتبر مهمة صعبة وذلك ) XML(إن الاستعلام عن البيانات الموجودة في ملفات الـ  .ومختلفة من البيانات خلال صفحة الانترنت

حيث وأا تختلف عن الملفات النصية العادية كون استعلام أو البحث في الملفات النصية العادية يتعلق بمحتوى , بسبب طبيعة هذه الملفات

يتعلق بمعرفة محتوى وتركيب ) XML(بحث أو الاستعلام في ملفات الـ بينما ال, معرفه تركيب هذه الملفات بهذه الملفات ولا يتطل

  .هذه الملفات

تنعكس أو تؤثر في طريقة البحث أو الاستعلام عن , في الذواكر الثانوية كالقرص الصلب) XML(إن الطريقة التي تخزن ا ملفات الـ 

  .البيانات في هذه الملفات

ولكن المشكلة الأساسية التي , )XML(استخدمت لتخزين ملفات الـ  - الأبحاث السابقةفي –هناك العديد من الطرق أو التقنيات 

  )Disk blocks(يتطلب قراءه عدد كبير من مقاطع الذاكرة ) XML(تعاني منها هذه الطرق هي أن الاستعلام عن ملفات الـ 

  .انوية للإجابة عن هذا الاستعلاموهذا يعني عمليات عديدة من عمليات القراءة والكتابة من والى الذاكرة الث

هذه الطريقة تخزن ملفات الـ , في الذاكرة الثانوية) XML(في هذه الأطروحة نقدم أو نقترح طريقة جديدة لتخزين ملفات الـ 

)XML (بشكل ملف متعدد الأبعاد)Multidimensional structure file ( ا تخزن البيانات بطريقةوفكرة هذه الطريقة أ

  .)XML(عدد مقاطع الذاكرة المطلوب الوصول إليها قليل عند الاستعلام عن بيانات في ملفات الـ تجعل 
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CHAPTER ONE 

 INTRODUCTION 

1.1. Background 

Data exchange among organizations is challenging because of differences in data 

formats and in the semantics of the meta-data used to describe the data.  EXtensible 

Markup Language (XML), a simple and very flexible text format, is playing an 

increasingly important role in the exchange of a wide variety of data on the Web.  The 

simplicity, flexibility, and data self-describing capability of XML, makes it ideal for 

data exchange [1] [2]. XML data is self describing because XML tags are used to 

describe the semantic of the data. For example, in Figure 1.1, the tag < name> nested in 

tag < Dept> means the name of the dept.  XML is flexible in organizing data, that is, 

objects of the same type might have different types of sub objects or different numbers 

of sub objects of the same type [3]. Since of the importance of XML as a new standard 

for information representation and exchange on the Internet, the problem of storing, 

indexing, and querying XML documents poses new challenges to database researchers, 

and has been among the major issues of database research [4]. XML documents form a 

tree structure that starts at "the root" and branches to "the leaves". So an XML 
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document can be represented as a tree, where nodes represent the element of the 

document and edges represent the relationships between these elements [5].  

 

Figure 1.1: a simple XML document 

XML document in Figure1.1 can be represented as a tree showed in the Figure 1.2 
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1.2. Numbering scheme  

XML data can be represented as a rooted, ordered and labelled tree. In Figure 1.2 XML 

document represented as tree, where a node is either (1) an element node (internal node) 

which corresponds to a tag in XML document, such as dept, name, etc. (2) An attribute 

node (internal node) which corresponds to an attribute node such as cid. (3) A value 

node (leaf node) which corresponds to data value such as CHE, 1, etc. Edges indicate 

the relation between nodes which is either parent- child relation or ancestor- descendant 

relation. Parent- child relation (direct containment) such as the relation among KFUPM 

and CS nodes and ancestor- descendant relation (indirect containment) such as the 

relation among KFUPM and Dept nodes. 

  KFUPM 
1

1.1 
CS 

ID Name  

Dept  

CHE  1

1.1.1 

1.1.1.1  1.1.1.2 

ID Name  

Dept 

PHY  2

1.1.2 

1.1.2.1  1.1.2.2

1.2
CE 

ID Name  

Dept 

CE 3

1.2.1

1.2.1.1 1.2.1.2

ID Name  

Dept 

ME 4

1.2.2

1.2.2.1 1.2.2.2

1.3 
CCSE 

ID Name  

Dept  

CE 5 

1.3.1 

1.3.1.1 1.3.1.2 

ID Name  

Dept 

ME  6

1.3.2

1.3.2.1  1.3.2.2

 

Figure 1.2: a tree representation of the XML document of Figure1.1 
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1.3. Storing XML data 

The cost of a query can be measured mainly by the number of disk I/Os performed to answer 

the query. As a result the way XML data is organized in a secondary storage affects the cost of a 

query significantly. 

Recently, there has been a lot of interest in XML data storage strategies. Existing XML 

storage strategies can be classified into three main approaches, namely, file approach, 

relational approach, and native approach. 

1.3.1. File approach  

In this approach XML document is stored as a separate operating system file. A DOM 

parser is used whenever the document is accessed by a query. This approach is trivial to 

implement and DOM parsers are widely available [6].  

1.3.2. Relational approach 

Another approach to store XML data is the relational approach in which XML data are 

stored in relational databases.  

The main advantage of this approach is that existing important techniques can be reused 

and no need for extra development efforts. Queries written in XML query languages, 

such as XML-QL, are translated in to SQL and executed by the underlying relational 

database system [7] [8] [9] [10] [11] [12] [13].  
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But this in turn, leads to the following problems that need to be addressed in order to 

store and query XML data in relational databases:  

• Schema mapping, to generate the relational schema from a DTD. 

• Data mapping, to inserts XML data as relational records into the target database. 

• Query mapping, to translate XML queries into SQL queries.  

• Reverse data mapping, to publishes XML data from relational data  

All these mappings are very costly in both time and space because there is a need to 

perform multiple joins between tables [14] [15]. 

1.3.3. Native approaches  

There are several native approaches. In one native approach, XML data are stored in 

inverted lists and native query processing algorithms are developed to process them. 

The concept of inverted lists originated from inverted indexes, which have been widely 

used in information retrieval to search for text efficiently. An inverted list is created for 

each distinct tag in XML documents. Each list records the positions of all elements with 

that tag name, where the position of an element is expressed using its (Start, End, Level) 

numbers (or Dewey vectors). Elements in each list are sorted in the increasing order of 

their start numbers [16] [17] [18].  Figure 1.3 below shows an example of inverted lists 

of the elements Dept and Name in the Figure 1.2. 
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Dept 1.1.1 1.1.2 1.2.1 1.2.2 1.3.1 1.3.2 

Name 1.1.1.1 1.1.2.1 1.2.1.1 1.2.2.1 1.3.1.1 1.3.2.1 

Figure 1.3: inverted lists for Dept and Name elements  

Native XML database is a database that has an XML document as its fundamental unit 

of (logical) storage and defines a (logical) model for an XML document. It represents 

logical XML document model, and stores and manipulates documents according to that 

model. 

The main features of a Native XML database are the following: 

• XML document or its rooted part is a logical unit of a Native XML database. 

• At least the following components are included: elements, attributes and textual 

data. 

• Physical model is unspecified, which implies that XML documents storage may 

be arbitrary, as long as it stores and manipulates an XML document as a 

(logical) unit. 

Native XML databases are especially suitable for storing irregular, deeply hierarchical, 

recursive data. 

The advantages of using native XML databases over other types of databases are 

numerous. They free users from having to know document schema, they support data 
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models that does not fit other databases (e.g., relational databases), and provide for 

extensibility, etc [16] [17] [18]. 

1.4. Multidimensional file structure 

There are many file structures available for managing a collection of records identified 

by a single key like: sequentially allocated files, tree-structured files, and hash files. 

Because of the increasing usage of databases and integrated information systems, there 

is a real need now for file structures that allow efficient access to records by 

combinations of attribute values. This is what is called multi-key access. These file 

structures have to be efficient, also in a highly dynamic environment, i.e. when there is 

a high rate of insertions and deletions.  

1.5. Thesis contribution 

Previous native XML storage systems depend on the inverted lists to store the file. They 

save the inverted lists of all elements in an XML documents, by decomposing paths of 

the XML tree and save the elements of the paths separately (using their numbering 

scheme).  

There are two major disadvantages of these approaches: first, it uses large disk space, 

and second it needs many join operations to process a query. This thesis proposes a new 

file structure Multidimensional XML File (MXF) to save, index and query XML 
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document. The main idea of our proposed system is to store the inverted lists of the leaf 

nods only. The proposed approach uses less disk space, minimizes the need for join 

operations in querying twig queries, and eliminate join operations in simple path 

queries.  

The main thesis goals will be as follow: 

• To find a new multidimensional file structure to store XML data.  

• To implement the new multidimensional file structure.  

• To find a suitable directory structure for the multidimensional file structure. 

• To implement the new directory structure. 

• To find the density of the new multidimensional file structure and the density of 

its directory.  

• To study how the multidimensional file structure is affected by: 

o  Shape of an XML tree 

o Levels of an XML tree 

o Number of elements in an XML tree 

o Size of an XML tree 

• To implement delete, update, and select operations on the new multidimensional 

file structure.  

•  To find a suitable node labeling scheme if needed. 
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1.6. Thesis outlines 

The rest of this thesis will be organized as follows: 

• Chapter two presents the literature review. We discuss the previous XML 

storage approaches, the existing XML numbering scheme, the XML query 

processing approaches, and the multidimensional files. 

• Chapter three shows the proposed MXF system. We explain in details the 

structure of MXF and we show by examples how MXF works to index and save 

an XML document. Finally, we discuss the main MXF operations: searching, 

insertion, and deletion. 

• Chapter four introduces the experimental results and analysis. We apply our 

MXF on different XML databases and study its behavior. Environment, datasets, 

query sets and performance metrics are discussed. We use different data sets 

according to their sizes, their distinct paths, and their shapes (how deep or wide 

an XML document is). 

• Chapter five concludes this thesis. Also, describes a number of future works.   
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CHAPTER TWO 

LITERATURE REVIEW 

The increasingly wider use of XML has heightened the need to index and store large 

volumes of data encoded in XML, and to query XML data more efficiently. Many XML 

storage approaches, XML numbering schemes and many XML query processing 

algorithms have been proposed in literature. In this chapter we briefly introduce some of 

them. 

The rest of this chapter will be organized as follows. Section 2.1 introduces the existing 

numbering schemes. Section 2.2 shows the existing XML storage approaches. Section 

2.3 explains the XML query processing approaches. And finally, section 2.4 presents 

multidimensional files. 

2.1.  The XML Numbering Scheme 

Querying XML documents can be done by a combination of value search and structure 

search. In the value search, a query is processed by matching specified values or by 

matching specified element or attribute names. Searching by structure depends on the 

element to element or element to attribute relationship.  
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In order to process the relationship between nodes, the nodes in an XML tree are 

systematically labelled in such a way that the structural relationship (e.g., the ancestor–

descendant relationship) between two arbitrary nodes can be computed efficiently. 

 Various labeling techniques are proposed in literature. The following are some of the 

main labeling approaches: the navigation approaches, the prefix-based approaches and 

prime number approach. 

2.1.1. The navigation approach 

The navigation approach:  a straightforward method for determining reachability is tree 

navigation which either traversing down (forward navigation) or backtracking 

(backward navigation) an XML tree [19] [20].  However, the navigation method is, in 

general, not very efficient, since it may involve traversing a large number of query-

irrelevant nodes. 

An interval (region) approaches: in this method the reachability between two nodes 

could be determined through checking the containment relationship between their 

intervals. 

Dietz in [21] proposed the original work on numbering schemes for trees. He proposed 

PrePost numbering scheme. PrePost labels each node in a tree with a pair of numbers: 

(pre, post), which correspond to the pre order and post order traversal numbers of the 

node in the tree. 
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Zhang et al. [22] introduced PrePost coding into XML: it labels each node in an XML 

data tree with a pair of numbers (start, end) which means the position of the opening tag 

and the closing tag of the corresponding element of the node in the XML tree. Figure 

2.1 shows the interval numbering scheme. 

  

Figure 2.1: region based numbering scheme 

2.1.2. Prefix- based approach  

The Prefix- based approach: in this scheme each node of an XML tree has a string label 

which is the concatenation of the parent’s label and its own identifier (i.e., self-label). If 

there are two nodes x and y where x is an ancestor of y, then label(x) is a prefix of 

label(y). Dewey labeling scheme [23] [24] and Binary labeling [25] are two examples of 

prefix based labeling scheme. 
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Figure 2.2: prefix based labeling scheme 

2.1.3. The prime number approach 

The prime number approach: where each node is labeled by an integer and the labeling 

scheme ensures that each label can only be divided exactly by its own ancestor in an 

XML tree [26]. There are two types of this scheme bottom-up and top-down prime 

number labeling scheme. In the bottom-up prime number labeling scheme, for any 

nodes x and y in an XML tree, x is an ancestor of y if and only if label(x) mod label(y) 

= 0 as shown in figure 2.3 (a). In the top-down approach the label of a node x equals to 

its label multiplied by the label of its parent as shown in Figure 2.3(b). 
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Figure 2.3: prime number labeling scheme 

2.2.  XML Storage Approaches 

Recently, there has been a lot of interest in XML data storage strategies. Existing XML 

storage strategies can be classified into three main approaches, namely, file approach, 

relational approach, and native approach. 

2.2.1. File approaches 

XML data are originally created in the form of XML documents and stored in flat files. 

Generally, various indexes need to be built on XML data to facilitate answering XML 

queries.  

This approach is easy to implement and does not require the use of a database system or 

storage manager.  But, this strategy has several major disadvantages. First, the whole 

a  b 
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XML file must to be parsed to retrieve the data specified by a query. Second, the whole 

parsed file, which is always much larger than the original XML document, has to be 

stored in memory during query processing. Third, building and maintaining indices on 

flat documents is hard. Finally, indexes themselves are huge.  

M, Altınel, et.al in [27] have developed several index organizations and search 

algorithms for performing efficient filtering of XML documents for large-scale 

information dissemination systems. 

N. Bruno et.al in [28] introduced a new index based technique, Index-Filter, to answer 

multiple XML path queries. Index-Filter uses indexes built over the document tags to 

avoid processing large portions of the input document that are guaranteed not to be part 

of any match. 

Y Diao et. al in [29] have developed YFilter, an XML filtering system that provides 

fast, on-the-fly matching of XML encoded data to large numbers of query specifications 

containing constraints on both structure and content. 

2.2.2. Relational approaches  

Many relational approaches have been proposed and they are either schema-aware or 

schema-oblivious approaches.  
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2.2.2.1. Edge-approach 

 Edge approach is one of the schema-oblivious approaches. In this approach all edges in 

a data tree are stored in a single relational table called Edge. The schema of this Edge 

table is (label, source, target, flag, and value). The key idea of this schema is an 

attribute pair (Source, Target), which represents end points of edges. Label attribute 

represents tags on edges. Flag and Value attributes give the type and value of target 

nodes of edges, respectively. One of the edge-approach that was proposed by Florescu 

and Kossmann [30] was shredding XML data into relations. This approach places all 

edges in an edge-labeled XML data tree into a single relational table called Edge  table 

and the schema of this table is(label, source, target, flag, and value). 

2.2.2.2. The node approach 

The node approach (one of the schema- oblivious approaches), that is similar to the 

edge approach, in which all internal nodes (that is, the element and attribute nodes) in a 

node-labeled XML data tree are stored in a relational table. 

Zhang et al. [22] proposed the node approach that is similar to the edge approach, in 

which all internal nodes (that is, the element and attribute nodes) in a node-labeled 

XML data tree are stored in a relational table. 
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2.2.2.3. The DTD approach 

The DTD approach is one of the schema-aware approaches, stores XML document 

using its associated DTD. DTD is a set of statements that describe the objects and their 

relationships that are allowed in an XML document.  DTD can be mapped into 

relational schemas. The number of relational tables created depends on the relationship 

of the objects specified in the DTD.  

2.2.2.4. The Path based approach 

In a Path based approach, node-labeled XML data tree is stored in a relational table 

called Path. The Path table is very similar to the Node table. The difference is that rather 

than storing the tag of each node, the path approach stores the tag path from the root to 

each node. Yoshikawa et al. [31] proposed a Path Materialization (PM) approach, in 

which internal nodes in a node-labeled XML data tree are stored in a relational table.  

Pal et al. [32] proposed a Reversed-Path (RP) approach. The RP approach uses the 

relation schema. The key idea of RP is storing reversed root paths of data nodes in a 

Reversed Path attribute. 

2.2.3. Native approaches  

These approaches have been developed to overcome the disadvantages of relational 

approaches. 
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University of Mannheim's database research group in [33] proposed Natix system which 

divides XML documents into sub trees according to the physical disk page size (each 

sub tree is a record).  

TIMBER in [34], implemented in University of Michigan, transforms the XML 

document into a parse tree, which it stores as an atomic unit in the underlying storage 

manager. The system is based upon a bulk algebra for manipulating trees, and natively 

stores XML 

Ipedo in [35] proposed by IPEDO, maintains, on disk, the physical data files that store 

collections and metadata associated with collections.  

Apache Xindice community in [36] have proposed Xindice: stores the entire XML 

document as a single record (Document-based storage).  

eXist, founded by Wolfgang Meier in [37], is an open source database management 

system built using XML technology. It stores XML data according to the XML data 

model and features efficient, index-based XQuery processing. eXist stores documents 

either in the internal XML store or on an external relational net database. 

K. Staken in [38] introduces the dbXML.  dbXML, an open source native XML 

database, offers either XML document-based  storage or binary streams (records) 

Quanzhong Li et al. in [39] proposed an XML Indexing and Storage System (XISS) as a 

native XML indexing and storage on a new numbering scheme for elements and attributes.  
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 XISS is composed of three major components: element index, attribute index and 

structure index. Name index maps element or attribute name to a name identifier then 

all distinct name strings are collected in the name index, which is implemented as a B+-

tree.  Attribute index is like the element index but it stores attributes instead of elements. 

In the structure index the input is the document identifier (did) and the output is an 

array containing all the element and attributes in the document.  It is also implemented 

by a B+-tree. 

The main idea of XISS is to decompose the elements in the documents and store them 

separately.  

N. Zhang, V. Kacholia, and M. Tamer Ozsu in [40] propose a succinct physical storage 

scheme as a native XML data storage. The idea of this scheme is to store structural 

information separately from value information. XML data tree should be “materialized” 

to fit into the paged I/O model. Materialization means the two-dimensional tree 

structure should be represented by a one-dimensional “string”.  

After the separation, connecting between structural information and value information 

is needed. Dewey ID is used to reconnect the two parts of information. 
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2.3. XML Query processing  

Querying XML document effectively and efficiently is still a challenging issue. Unlike 

keyword search in text retrieval, which concerns only contents of text documents, XML 

queries concern structure as well as contents of XML documents. In this section we will 

introduce the most famous XML query languages as well as the XML query processing 

approaches. 

2.3.1. Xml Query Languages 

There are many query languages that can be used to query XML document, Lorel, 

XML-QL (XML-Query Language), XML-GL (XML-Graphic Language), XPath, and 

XQuery.  The core part of an XML query language is the path expression notation for 

navigating the XML nested structure. XML-QL and XQuery are proposed by W3C as 

standard XML query language. 

2.3.1.1. XML-QL 

XML-QL is the first XML query language proposed by W3C.It uses a nested XML-like 

structure to specify the part of document to be selected and the structure of result of 

XML document. 

Figure 2.4 shows an XML-QL example for a simple XML document in Figure 2.5. 
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  The query above is to determine the last-name of the author of a book having title” 

The Superman” from a.xml and b.xml documents. The retrieved value of the last-name 

will be put in the $l variable. Then the output will be formatted according to the 

template specified after CONSTRUCT keyword.   

2.3.1.2. XPath 

 XPath  is a basic XML query language that selects nodes from XML documents such 

that the path from the root to each selected node satisfies a specified pattern. A simple 

XPath query is formulated as a sequence of alternating axes and tags. Two most 

commonly used axes are the child axis “/,” where “A/B” denotes selecting B-tagged 

child nodes of A-tagged nodes, and the descendant axis “//,” where “A//B” denotes 

selecting B-tagged descendant nodes of A-tagged nodes. Consider an example: An 

 

Figure 2.4:  an XML‐QL example  
 

Figure 2.5: a simple XML document 
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XPath query “/book//book-title” would return all book-title elements under all top-level 

book element. 

2.3.1.3. XQuery 

XQuery is to XML what SQL is to database tables. XQuery. Query language XQuery  

is more expressive than XPath. An XQuery query is composed of For-Let-Where-

Return (FLWR) clauses, which can be nested and composed with full generality [17]; 

that is, each clause in itself can include sub–XQuery queries. The For and Let clauses 

bind nodes selected by XPath expressions to user defined node variables. The Where 

clauses specify selection or join predicates on node variables. The Return clauses 

operate on node variables to format query results in the XML format. 

2.3.2. XML Query Processing Approach 

In this section we will explain the most important two approaches of xml query 

processing techniques: relational approaches and native approaches. 

2.3.2.1. The Relational Approach 

Through years, RDBMSs have acquired strong capabilities in storage management, 

query processing and optimization, and concurrency control and recovery. Motivated by 

this fact, a number of research projects have addressed storing and querying XML data 

in RDBMSs. 
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2.3.2.1.1. The Edge Approach 

Florescu et al. In [30] proposed a simple approach to shredding XML data into 

relations. This approach places all edges in an edge-labeled XML data tree into a single 

relational table Edge. The key idea here is using an attribute pair (Source; Target), 

which represents the two end points of each edge. Label represents the tag on an edge, 

whereas Flag and Value give the type and value, respectively, of the target node of an 

edge. Two edges A and B can be joined together if and only if A.Target = B.Source. 

Based on this property, it is easy to transform XML queries without “//” axes into SQL 

queries. Evaluation of such SQL queries comprises two main steps. The first step is 

edge selection, which retrieves the data edges for each label in the query. The second 

step is edge joining, which joins adjacent data edges retrieved in the first step. This step 

can be done in a more efficient way by using prebuilt indexes on (Source; Target). 

This approach may fail to process queries with “//” axes efficiently and it may involve a 

number of join operations. 

2.3.2.1.2. The Node Approach 

 Zhang et al. [22] developed a Node approach, in which all internal nodes in a node-

labeled XML data tree are stored in a relational table Node. The key idea here is using 

the attribute triple (Start, End, Level). “//”-axis queries can be answered efficiently by 

using the (Start, End) pairs. Level is used along with (Start, End) to answer “/”-axis 

queries. Queries with both “/” and “//” axes are translated into SQL queries. Then it is 
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similar to the Edge approach, evaluation of the SQL queries consists of two steps: node 

selection and node joining. 

The Node approach does support “//”-axis queries efficiently. However, similar to the 

Edge approach, it may involve a number of join operations. 

2.3.2.1.3. The Path Materialization (PM) Approach 

To reduce the number of node joins, Yoshikawa et al. [31] proposed a PM approach, in 

which internal nodes in a node-labeled XML data tree are stored in a relational table 

Path. Using the Path attribute, the PM approach can answer twig queries efficiently in 

units of paths rather than in units of edges. 

Given a twig query, the PM approach first decomposes it into multiple root-to-leaf path 

queries and then joins the results of the path queries. Evaluation of the SQL queries 

consists of two main steps: path selection (part 1) and path joining (part 2). 

PM may not support efficiently queries with multiple “//” axes. Another limitation of 

PM is that it might result in incorrect query answers. 

2.3.2.1.4. The DTD approach 

The DTD approach transforms XML queries into SQL queries based on the schema 

information in the DTD tree: For a “/”-axis join A/B, it first checks whether A is the 
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parent of B in the DTD tree. If not, then A/B is an invalid query. Otherwise, relations A 

and B are joined using 

A.id = B.parent-id.  For a “//”-axis join A//B, it first checks whether A is an ancestor of 

B in the DTD tree. If not, then A//B is an invalid query. Otherwise, relations A and B 

and all relations between them (which can be found in the DTD tree) are joined using 

the “/”-axis join above. 

We can summarize that when XML data are schema-less, the PM approach has 

advantages over the Edge and Node approaches because PM supports “//”-axis queries 

efficiently and may require fewer join operations.  Also, when XML data conform to a 

schema, the DTD approach could generally have better performance than other schema-

less approaches. 

2.3.2.2. The Native Approach 

Although the relational approach is simple and straightforward to implement, it may not 

exhibit optimal query processing performance. Motivated by this, many native 

techniques have been developed to query XML data efficiently. These techniques are 

called native approaches, since their query processing (and, perhaps, also storage) 

mechanisms are developed from scratch, without involving relational databases. 

In next sections, we review the Join approaches, very important native approaches, 

which implement efficiently structural joins involved in XML twig queries. In these 
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approaches, XML data are stored in inverted lists. An inverted list is created for each 

distinct tag in XML documents, and each list records the positions of all elements with 

that tag name, where the position of an element is expressed using its (Start, End, Level) 

numbers. 

2.3.2.2.1. The Multi-Predicate MerGe JoiN (MPMGJN) Approach 

Zhang et al. [22] proposed an MPMGJN algorithm, whose implementation is somewhat 

similar to the classical merge join algorithm developed in relational query optimizers 

for equijoins. To answer a query “A//B” or “A/B,” first, two cursors are created to point 

to the heads of list A and list B, respectively. Then, the two cursors are compared with 

each other and are advanced as needed to implement the merge join. Figure 2.3 b shows 

this approach. 

2.3.2.2.2. The StackTree Approach 

Al-Khalifa et al. [41] observed that MPMGJN fails to process “/”-axis queries 

efficiently in some cases. She proposed a StackTree approach that can avoid such 

visiting of unnecessary nodes. StackTree uses a stack structure to cache those A nodes 

that are nested on the same path in data trees. At each step, the data node with the 

smallest start number is taken out of its list. If it is an A-tagged node, then it is pushed 

into the stack. If it is a B-tagged node, then StackTree tries to use it to form tuple 

solutions with A-tagged nodes in the current stack. Fig. 2.6 c illustrates this process, in 

which b3 is compared with a3 only (step 6) rather than with a1 through a3, as in Fig. 2.6 
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b. Generally, StackTree shows better query processing performance than MPMGJN 

[41] 

 

Figure 2.6: applying MPMGJN and StackTree to query “A/B.” (a) Data tree. (b) The 

MPMGJN approach. (c) The StackTree approach. 

2.3.2.2.3. The Holistic Approach 

StackTree and MPMGJN have to decompose twig queries into multiple binary joins, 

which might generate a large volume of intermediate query results. This may result in 

high disk I/O costs Motivated by this observation, Bruno et al. [42] proposed a Holistic 

approach, whose key idea is pipelining, that is, joining multiple inverted lists at a time 

to avoid generating intermediate join results. 
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2.3.2.2.4. The PathStack approach 

The Holistic approach to answering (linear) path queries is a PathStack algorithm. The 

framework of the algorithm is somewhat similar to that of StackTree. The difference is 

that StackTree uses only one stack to cache nested A nodes. In contrast, PathStack has 

multiple stacks, one for each node in a path query. In addition, each data node cached in 

a stack has an associated pointer to a corresponding node in its parent stack in order to 

track tuple solutions. For an illustration, see Fig. 2.7. 

 

Figure 2.7 an example of the PathStack approach. 
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2.3.2.2.5.  The TwigStack approach 

The Holistic approach to answering general twig queries is a TwigStack algorithm [42], 

which includes two steps: 1) deriving path solutions (that is, the twig query is 

decomposed into multiple root-to-leaf path queries, and the solutions to these path 

queries are then derived from the data tree) and 2) joining path solutions. 

A simple method for implementing step 1 is to process each path query separately by 

using PathStack.To reduce the number of such redundant path solutions, the TwigStack 

algorithm introduced an additional function q = getNext(). Figure 2.8 explains this 

approach. 

 

Figure 2.8 an example of the TwigStack approach. 
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2.4. Multidimensional file structure 

Since of the increasing usage of databases and integrated information systems, there is a 

real need now for file structures that allow efficient access to records by combinations 

of attribute values. 

There are important criteria to assess a multi-key file structure like: the adaptability in a 

dynamic environment, space utilization, operation speed and the retrieval time. Retrieve 

time usually measured by a number of disk access to bring data to memory.   Therefore, 

number of disk accesses is used as the main measure of the efficiency of multi-key file 

structure. There are many multi-key file structures like in literature; the grid file is one 

example of multi-key access file structure [43]. 

2.4.1. The Grid File 

The grid file is an adaptable, symmetric, multi-key file structure [44]. Adaptable means 

it adapts to its contents under modifications like: deletions and insertions. It is a highly 

dynamic file. The access time is uniform over the entire file, and a single record is 

retrieved in at most two disk accesses. The grid file is symmetric, as it treats all keys 

symmetrically. That means it avoids distinction between primary and secondary keys. 

The grid file consists of two main parts: the grid file (partition) and the grid directory.  
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2.4.1.1. The grid partition 

The grid file a record is characterized by a number of attributes. Thus, we have a 

linearly ordered attribute space, and a k-dimensional key to retrieve a record is 

represented by a point in this attribute space. The attribute space can be represented by a 

bitmap. In a k-dimensional bitmap, the combinations of all possible values of k 

attributes are represented by a bit position in a k-dimensional matrix.  

2.4.1.2. The grid directory 

The grid directory has the function of a bucket management system, which is 

superposed onto the grid partitions. It consists of two parts as shown in Figure 2.9: 

•  A dynamic k-dimensional array called grid array. Its elements are pointers to the data 

buckets and are in one-to-one correspondence with the grid blocks of the record space. 

•  K one-dimensional arrays called linear scales; each scale defines a partition of a 

domain.  
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Figure 2.9: a grid file structure 
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CHAPTER THREE 

MULTIDIMENSIONAL XML FILE (MXF) 

3.1.  Introduction 

MXF is a file which indexes and stores XML data in multiple dimensions where XML 

tree level is considered as a dimension.  The benefit of storing XML data in 

multidimensional way is to make accessing this data easy and accessing them 

throughout more than one key. MXF extracts all XML document paths, indexes and 

stores them in a multidimensional way, so MXF is a set of directory blocks (blocks 

contain indexes to access data blocks) and data blocks (blocks contain data) as we will 

see in this chapter.  

The rest of this chapter will be organized as follows: section 3.2 explains the structure 

of MXF that is, MXF parser and MXF indexer. Section 3.3 discusses main operation on 

MXF (searching, insertion and deletion). 

3.2.  MXF structure  

Functionally, MXF consists of two main parts namely MXF parser and MXF indexer:  
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3.2.1. MXF parser 

Parsing an XML document is the first step before saving it. The idea of parsing is to 

read XML data from tree form to more organized form. Many parsers exist in the 

literature and each has its own output according to the information needed to extract 

from the XML document.   

MXF parser is a new parser we have developed to extract information for all paths in an 

XML documents. The main operations of MXF parser are:  

1. Extract all distinct elements form an XML document.  

2. Assign each distinct element distinct binary number. 

3. Save each element with its corresponding distinct binary number in the tag table. 

4. Extract each path in the document and create its binary corresponding path. 

5. Generate DEWEY for each path. 

6. Generate DEWEY for each attribute if exist. 

Let us take this simple example to explain how MXF parser works.  

Example 3.1: suppose we have this simple XML document 
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  <Library> 
<Main_library> 

<Book>  
<Title> Database</ Title > 
<Author> John</ Author > 
<Year> 2001</ Year > 
<Price> 20$</ Price > 

</Book> 
<Book>  

<Title> Operating system</ Title > 
<Author> Philip</ Author > 
<Year> 2007</ Year > 
<Price> 60$</ Price > 

</Book> 
<Magazine>  

<Title> CPUs structure</ Title > 
<Year> 2003</ Year > 
<Price> 30$</ Price > 
</ Magazine > 

<Magazine>  
<Title> Today technology</ Title > 
<Year> 2008</ Year > 
<Price> 40$</ Price > 

</ Magazine > 
</Main_library> 
<Bookstore> 

<Journal>  
<Title> 3G mobiles</ Title > 
<Year> 2008</ Year > 
<Price> 44$</ Price > 

</ Journal > 
</Bookstore> 

</ Library > 

 

Figure 3.1: a simple XML document 

The above XML document can be represent as a tree like the figure bellow: 
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Figure 3.2: a tree representation for XML document in Figure 3.1 

MXF parser traverses the above XML tree and labels all its leafs. It extracts all 

distinct elements: Library, Main library, Bookstore, Book, Magazine, journal, title, 

author, year and price. Then it generates a distinct binary number (tag) for each and 

creates a tag table; this table has two columns: tag name and tag binary. Tag name 

column stores all distinct elements in the document and tag binary column stores a 

unique binary number for each element as shown follows: 
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Tag name Tag 
Library 0000 

Main library 0001 
Bookstore 0010 

Book 0011 
Magazine 0100 
Journal 0101 

Title 0110 
Author 0111 
Year 1000 
Price 1001 

 

Table 3.1: the tag table for the XML documet in Figure 1.1 

 

The idea behind creating binary tags is to make the splitting operation easy when 

the data block becomes full. We will see how splitting operation done in detail later 

in this chapter. 

The second function of MXF parser is generating the Path Binary Label (BPL) and 

Path DEWEY (PD) for all paths from the root to each leaf node. MXF parser takes 

all paths one at a time, creates its BPL and PD. Then it passes these paths to the 

indexer one at a time. The following table shows all BPLs and PD for all paths in 

the XML tree above. Actually, we don’t have this table in our MXF structure, but it 

is here to show the output of the MXF parser row by row.      
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3.2.2. MXF Indexer 

This part consists of two main parts: MXF directory storage and MXF data storage. 

3.2.2.1. MXF directory storage:  

 While storing XML data, MXF indexer creates directory blocks which contain indexes 

for data blocks. The idea of storing data using MXF is to store similar or almost similar 

paths in minimum number of data blocks; so retrieving similar data will cost less. In the 

next section we will explain in details how XML data is organized in MXF.  

path path name Path  binary Path DEWEY 

1 Main library /book/title 0001/0011/01 1.1.1.1 
2 Main library /book/author 0001/0011/01 1.1.1.2 
3 Main library /book/year 0001/0011/1000  1.1.1.3 
4 Main library /book/price 0001/0011/1001  1.1.1.4 
5 Main library /book/title 0001/0011/01 1.1.2.1 
6 Main library /book/author 0001/0011/01 1.1.2.2 
7 Main library /book/year 0001/0011/1000  1.1.2.3 
8 Main library /book/price 0001/0011/1001  1.1.2.4 
9 Main library /magazine/title 0001/0100/0110  1.1.3.1 

10 Main library / magazine /year 0001/0100/1000  1.1.3.2 
11 Main library / magazine /price 0001/0100/1001  1.1.3.3 
12 Main library /magazine/title 0001/0100/0110  1.1.4.1 
13 Main library / magazine /year 0001/0100/1000  1.1.4.2 
14 Main library / magazine /price 0001/0100/1001  1.1.4.3 
15 Book store/ journal /title 0010/0101/0110  1.2.1.1 
16 Book store/ journal /year 0010/0101/1000  1.2.1.2 
17 Book store/ journal /price 0010/0101/1001  1.2.1.3 

 

Table 3.2: the paths, their corresponding BPLs and DEWEY 
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MXF directory is created in a multidimensional way for all generated binary paths. 

We will give an example to illustrate how multidimensional directory created later 

in this chapter. 

3.2.2.2. MXF data storage:  

This part of MXF is a set of tables that contain the raw XML document data. Any XML 

path is set of elements, relations, attributes and values. From this point of view, MXF is 

designed to be a set of tables namely:  

• Tag table: to save the distinct elements with their distinct binary tags 

• DEWEY table: to save the positional relations between the elements 

• Attribute table: contains all attributes found in the XML document and their 

corresponding DEWEY, and 

• Value table: contains the values of the all XML paths. 

 

Figure 3.3: the MXF structure 
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MXF data storage is a set of tables each to save specific data that is generated from the 

MXF parser. BPLs generated from MXF parser are stored in data blocks and each block 

contains similar or almost similar BPL. The following algorithm will explain how MXF 

store BPLs 

   ALGORITHM 3.1: Store BPLs 

INPUT: An empty data block, an empty directory block and BPLs to store 

OUTPUT: BPLs stored in a MXF  

1. Read the first binary path 
2. Save it in the first data block 
3. Create its index and save it in a multidimensional space 
4. While NOT end of paths 
5. Read the next path 
6. Create the index of the path 
7. If the number of data blocks = 1 then 
8. Look for this index in the whole multidimensional space 
9. If found  
10. If there is enough space in the first data block then 
11. Save the path in the first data block  
12. Else 
13. Split the first data block 
14. End if 
15. Else 
16. Save its index in the multidimensional space 
17. If there is enough space in the first data block then 
18. Save the path in the first data block in 
19. Else 
20. Split the first data block  
21. End if 
22. Else 
23. Look for this index in the whole multidimensional space 
24. If found  
25. If the there is enough space in the data block to which the 

index point then 
26. Save the path in that disk block 
27. Else 
28. Split this data block 
29. End if 
30. Else 
31. Create a new index  
32. Save the path in new data block 
33. Save the new index in the multidimensional space 
34. End if  
35. End if 
36. End if 
37.   Loop  
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To explain how above algorithms works, let us take the following example 

Example 4.3:  suppose we have BPLs in Table 3.2. And for simplicity, we also 

suppose the capacity of the block is three BPLs (in real we measure the size of the 

block in KB). At the beginning we have one empty data block.  The first three BPLs 

should be stored in this data block as in the following figure.  

0001/0011/0110 

0001/0011/0111 

0001/0011/1000 
 

Figure 3.4: MXF after saving the 1st BPL 

The fourth BPL 0001/0011/1001 cannot fit in the first data block because it is full; 

so we need to split these BPLs in to two data blocks. 

To split the above data block, we have three paths in that block each path has three 

elements and each element is represented using three bits. If we look to these three 

paths we will see that they have two elements in common (the first element 0001 

and the second element 0011), but they differ in the third element.  

This means that the first two elements should appear in both indexes of the two new 

data blocks, but each if these indexes should have its own element in the third 

dimension. 
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So we start from the right most bit of the first element of the first path compare it with 

corresponding bits in the remaining paths. If there is a difference, split paths with zero’s 

bits in a data block and paths with one‘s bits in another data block. If we reach the left 

most bits of that element without splitting, we move to the right most bit of the second 

element of the first path and repeat the same comparing with corresponding bits in the 

remaining paths. So, the above data block will be split as follows: 

In the first step we compare the right most bits of the left most element (written in bold) 

in all paths, they are the same so we need to move to the previous bit. 

 

Figure 3.5:  comparing the right most bits of the 1st element of the BPLs   

Moving to the previous bit, they are also the same so we keep moving to the previous 

bit. 
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Figure 3.6:  comparing the 2nd bits of the 1st element of the BPLs   

We repeat the same comparisons and moving till we reach to different bits. 

 

Figure 3.7:  comparing the 3rd bits of the 1st element of the BPLs 

 

Figure 3.8:  comparing the 4th bits of the 1st element of the BPLs 
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At this step, we reach the first bit of the first element without any splitting, so we move 

to the right most bit of the second element and repeat the same comparisons till we get 

difference. 

Also we reach the left most bit of the second level without splitting, so we move to the 

right most bit of the third level as shown bellow 

 

Figure 3.10:  comparing the 1st bits of the 3rd element of the BPLs 

In this step, the right most bits of the third element in the three paths are not the same; 

so according to this bit, the data block has to be split in to two new data block. The first 

 

Figure 3.9:  comparing the four bits of the 2nd  element of the BPLs 

 



45 
 

block will contain the paths whose splitting bit is zero and the second block will contain 

the paths whose splitting bit is one as follows. 

 

Figure 3.11: splitting the previous block into two blocks 

So, the index of the first data block will be “0001 0011 ???1” and the index of the 

second data block will be “0001 0011 ???0”  and the BPL  “0001 0011 1000” will be 

stored in the second block.  

 

 

Figure 3.12:  MXF after saving the 4th BPL 
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To save the next BPL “0001 0011 0110”, we see that our directory is split into two parts 

each has its index. So we have to compare this BPL with the two indexes to see where it 

will fit. By comparing this BPL with first index “0001 0011 ???1”, it is clear that this 

index is not the correct index for this BPL since they differ in the rightmost bit of the 

third element. By comparing this BPL with second index “0001 0011 ???0”, it is clear 

that this index is the correct index for this BPL since they share all elements of the path. 

After saving this BPL the our MXF will be as in the following figure.  

Note: if there is a BPL in a data block similar to the BPL we need to save (as in this 

case), we will not store the new BPL again. Instead, we only save its value and 

DEWEY in the value blocks without saving the BPL again. This operation eliminate 

BPLs repeat. As we dealing with this BPL.  

 

 

Figure 3.13:  MXF after saving the 5th BPL 



47 
 

The same scenario should be done with the next BPL “0001/ 0011/0111”as shown in a figure 

bellow 

 

 

Figure 3.14:  MXF after saving the 6th BPL 

The same scenario should be done with the next two BPLs “0001/ 0011/1000” and “0001 0011 

1001”as shown in a figure bellow. 
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Figure 3.15:  MXF after saving the 7th and 8th BPLs 

Till this point we can see that all BPLs stored share the first and the second elements, 

but they differ in the third element. Now, to store the next BPL “0001 0100 0110” we 

see that its second element is different from all previous BPLs so it has not a previous 

index. To create a new index for it we have to do a split in the directory as the following 

figure shows. 
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Figure 3.16: MXF directory after splitting the second dimension 

 

 

 

Figure 3.17:  MXF after saving the 9th BPL 
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To save the next BPL “0001 0100 1000”, we can see that its third element start with “0” 

and its second element start with “0”, so it can fit in the directory above as shown in the 

following figure. 

 

 

 

Figure 3.18:  MXF after saving the 10th BPL 

To save the next BPL “0001 0100 1001”, we can see that its third element start with “1” 

and its second element start with “0”, so it can fit in the directory above as shown in the 

following figure. 
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Figure 3.19:  MXF after saving the 11th BPL 
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To save the next three BPLs “0001 0100 0110”, “0001 0100 1000”, and “0001 0100 

1001”, we can see that it can fit in data block3 and data block4 as shown in the 

following figure  

 

 

 

Figure 3.20:  MXF after saving the 12th, 13th and 14th BPLs 
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To store the next BPL”0010 0101 0110”, we can see that this BPL differ from the all 

previous BPLs in the first element, so we have to create a new index for this BPL. The 

1st element we want to add to the above directory will create the 3rd dimension of the 

directory. Note that before this point the directory we have is two dimensions directory. 

The figure bellow shows the directory after creating the 3rd dimension.  
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Figure 3.21: MXF after saving the remaining BPLs with a three dimensions directory 
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3.3. Main operation on MXF 

The main operations that can be applied on the MXF are: searching, insertion and 

deletion. 

3.3.1. Searching  

The searching for BPL in the MXF can be done in two main steps: 

• The first step is the search in the MXF directory (searching in the XMF index 

space): given a BPL we decompose it into many levels equals to the depth of the 

BPL (are number of nodes in the BPL).  Then we start from the right most level 

looking for its corresponding dimension in the directory space. The number of 

searching steps (from the right most to the left)   equals to the number of the 

dimensions which also equals to the number of levels in the document. As a 

result of this step, we will get the targeted directory block (the index) if the BPL 

matches an index in the directory blocks. 

• The second step: the directory block gained in the first step will point to the 

corresponding data block. 

Algorithm 3.2 explains the searching operation.  

Given MXF directory_blocks organized in multidimensional space with n dimensions 

(where n is the largest level in the XML document and each dimension is composed on 
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m parts), also given MXF data_blocks (the blocks where the data is stored) and BPL 

(the path we want to looking for in the MXF). 

Let BPL_leveli denotes to the ith   level in the BPL  

Let dimension_part_ j denotes to the j part in the dimension i   

Let path_address denotes to the address of the path in the MXF data_blocks 

Algorithm 3.2 BPL SEARCH 
 

Input: directory blocks, data blocks and BPL  
Output:  BPL address if BPL is found else returns -1 

1. BPL_address=” ”   // BPL address in the data blocks 
2. For each BPL_leveli in the BPL  do 
3. Found =false 
4. For each dimension_part_ j in the dimension  i do 
5. If dimension_part_ j = BPL_leveli or dimension_part_ j 

contains BPL_leveli then  
6. BPL_address = BPL_address & dimension_part_ j 
7. Found= true 
8. End if 
9. If found = true then exit for 
10. End for 
11. If found = false then exit for 
12. End for 
13. If found =true then  
14. For i= BPL_address to BPL_address + block_size do 
15. If BPL= path_address(i) then  
16. return I 
17. Exit for 
18. return -1  

 

3.3.2. Insertion  

 To insert a BPL, two main steps have to be done:  

• The first step is searching for a suitable directory block where the index of this 

BPL will be found (if the index already exists) or the index will be generated 
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and stored (if it does not already exist). We use the procedure we used in 

searching algorithm.   

• The second step is to go to the data block (whose index is in the directory block 

we found in the first step) and store this BPL if there is enough space or split 

that data block in to two data blocks if it is full. 

Algorithm 3.3 explains the insertion operation.  

Given the same MXF structure explained in the search algorithm, and BPL (the path we 

want to insert into the MXF). 

Algorithm 3.3 BPL INSERTION 
 
Input: directory blocks, data blocks and BPL to be inserted  
Output:  MXF with a BPL inserted in 
19. BPL_address=” ”   // BPL address in the data blocks 
20. For each BPL_leveli in the BPL  do 
21. Found =false 
22. For each part dimension_part_ j in the dimension  i do 
23.       If dimension_part_ j = BPL_leveli or dimension_part_ j contains 

BPL_leveli then  
24. BPL_address = BPL_address & dimension_part_ j 
25. Found= true 
26. Exit for 
27. End if 
28. If found = false then  
29. make a new part in the dimension I  name it BPL_level i 
30. BPL_address = BPL_address & BPL_leveli 
31. End if 
32. End for  
33. End for 
34. If found = true then  
35. If the data block (BPL_Address) is not full then  
36. Insert BPL in that data_block 
37. Else 
38. Split data block (BPL_Address)  
39.  Update the directory 
40. End if 
41. else 
42. create a new data_block  give its first path the address 

data_block_numbers * block_ size 
43. path (data_block_numbers * block_ size)=BPL // insertion BPL into 

the new data_block 
44. Update the directory  
45. End if 
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3.3.3. Deletion 

 To delete a BPL, two main steps have to be done:  

• The first step is searching for a suitable directory block where the index of this 

BPL will be found. We use the procedure we used in searching algorithm.   

• The second step is to go to the data block (whose index is in the directory block 

we found in the first step) and delete this BPL. 

Algorithm 3.4 explains the deletion operation.  

Given the same MXF structure explained in the previous algorithm, and BPL (the path 

we want to delete from the MXF). 

ALGORITHM 3.4 BPL INSERTION 
 
Input: directory blocks, data blocks and BPL to be deleted  
Output:  MXF with a BPL deleted from it in 

1. BPL_address=” ”   // BPL address in the data blocks 
2. For each BPL_leveli in the BPL  do 
3. Found =false 
4. For each part dimension_part_ j in the dimension  i do 
5.        If dimension_part_ j = BPL_leveli or dimension_part_ j contains 

BPL_leveli then  
6. BPL_address = BPL_address & dimension_part_ j 
7. Found= true 
8. Exit for 
9. End if 
10. End for  
11. End for 
12. If found = true then  
13. For i= BPL_address to BPL_address + block_size do 
14. If path (i)=BPL  then path (i)= “  “ // deletion the BPL from the 

data_block 
15. End if 
16. End if 
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CHAPTER FOUR 

EXPERIMENTAL RESULTS AND ANALYSIS 

To study the performance of MXF a number of parameters have to be taken into 

account. The most important parameters are: the numbers of disk blocks that are used to 

save the data, the density of the file i.e. how disk blocks dense are, and the query 

response time.  

Since we will use these terms (data-depth, data-width, data-shape and data-variety) in 

this chapter frequently, let us give brief definitions of each term. 

• Data- depth: the number of levels in the BPL that is the number of nodes from 

the root to the leaf node. 

• Data- width: the average number of nodes in a level in an XML document. 

• Data- shape: is it width or depth data. 

• Data -variety: the number of distinct BPLs in an XML document. 

We experimented MXF with different datasets to study its performance. Sections 4.1, 

4.2, 4.3 and 4.4 explain the environment, dataset, query set and performance metrics 

that are used respectively. Section 4.5 explains the experiments and their results. 

Section 4.6 summaries this chapter.  
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4.1. Environment  

Experiments were performed on a core 2 due 2.2 MHZ processor with windows vista 

home. This workstation has 2 GB of memory and 160 GB of hard disk. MXF was 

designed using MS visual basic 2005. 

4.2. Dataset 

 Nine datasets were chosen from real and synthetic data. These datasets are classified 

into two groups according to: data-variety and data-shape. Since the size of the data is 

an important factor, we use three groups (a GA, a GB and a GC) from each dataset 

where the GA has a smaller size than GB and GB has a smaller size than GC   as shows 

in Table 4.1.  

4.3. Query sets 

Several simple path query sets will be applied to our datasets. These query sets will be 

mentioned later with corresponding datasets.  

4.4. Performance metrics 

As we mentioned before, we will use three performance metrics:  
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• Number of disk blocks: how many disk blocks that are used to save data, fewer 

number of disk blocks means better performance. 

• File density: the capacity of the data within data blocks over the total capacity 

of these data blocks, and high disk blocks density is an indicator for better 

performance. 

• Query response time: The number of disk blocks returned to answer a query.  

 

Number  Dataset Name  Dataset version  Size in MB 

1  SWISSPORT.xml 
SWISSPORT_GC.xml  12.40 
SWISSPORT_GB.xml  6.89 
SWISSPORT_GA.xml  2.41 

2  UWM.xml 
UWM_GC.xml  9.49 
UWM_GB.xml  4.73 
UWM_GA.xml  2.28 

3  PARTSUPP.xml 
PARTSUPP_GC.xml  10.94 
PARTSUPP_GB.xml  4.37 
PARTSUPP_GA.xml  2.19 

4  DBLP.xml 
DBLP_GC.xml  10.76 
DBLP_GB.xml  5.74 
DBLP_GA.xml  1.36 

5  WSU.xml 
WSU_GC.xml  8.31 
WSU_GB.xml  3.94 
WSU_GA.xml  1.98 

6  CUSTOMER.xml 
CUSTOMER_GC.xml  10.07 
CUSTOMER_GB.xml  5.03 
CUSTOMER_GA.xml  1.51 

7  PERSONS.xml 
PERSONS_GC.xml  8.75 
PERSONS_GB.xml  4.37 
PERSONS_GA.xml  1.45 

8  SIGMODRECORD.xml
SIGMODRECORD_GC.xml  13.05 
SIGMODRECORD_GB.xml  4.35 

SIGMODRECORD  1.45 

9  ORDERS.xml 
ORDERS_GC.xml  11.38 
ORDERS_GB.xml  5.25 
ORDERS_GA.xml  2.62 

Table 4.1: the datasets used for our experiments 



62 
 

4.5. Experiments  

For each dataset mentioned above, we assign a separate paragraph explaining the 

density of the file, the number of disk blocks used and the query response time. 

4.5.1. Classification of data according to the data variety 

We have implemented three dataset sets according to data variety (set A, set B and set 

C) 

• Set A: the data sets used in this set are: three versions of SWISSPORT.xml 

(SWISSPORT_GC.xml, SWISSPORT_GB.xml and SWISSPORT_GA.xml). 

This set has the largest number of distinct BPLs among the three sets. 

• Set B: the data sets used in this set are: three versions of UWM.xml 

(UWM_GC.xml, UWM_GB.xml and UWM_GA.xml) 

• Set C: the data sets used in this set are: three versions of PARTSUPP.xml 

(PARTSUPP_GC.xml, PARTSUPP_GB.xml and PARTSUPP_GA.xml). This 

set has the smallest number of distinct BPLs among the three sets. 

4.5.1.1. Set A datasets 

Three groups will be implemented in this set: 
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4.5.1.1.1. Group C dataset 

We have taken “SWISSPORT_GC.xml” database; its size is 12.40 MB with 79 

distinct elements and 85 number of distinct paths. The number of disk blocks when the 

size of the block is 2 KB is 1298; the number of disk blocks when the size of the block 

is 4 KB is 690 and the number of disk blocks when the size of the block is 6 KB is 491 

as shown in the following chart. 

 

Figure 4.1: the number of blocks used to save SWISSPORT_GC.xml dataset 

The density of the MXF file when the size of the block is 2KB is 93.88%, when the size 

of the block is 4 KB, the density of the file is 88.30 %; and the file density when the 

size of the block is 6KB is 82.72% as shown in the chart bellow. 

 We can see that as the size of the block becomes larger; its density becomes smaller 

because the data block needs more data to be store in it to be denser. But we have to 
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note an important issue which belongs to the nature of the data itself. If the number of 

the distinct paths is very large here using larger data blocks means less density; but if 

the number of distinct paths is small; using larger data blocks size will not affect the 

density of the file. The second case is the usual case in XML document. 

 

Figure 4.2: the file density when saving SWISSPORT_GC.xml dataset 

4.5.1.1.2. Group B dataset 

We have taken “SWISSPORT_GB.xml”. Its size is 6.89 MB with 79 distinct elements   

and 85 distinct paths 85. The number of disk blocks when the size of the block is 2 KB 

is 817, the number of disk blocks when the size of the block is 4 KB is 447 and the 

number of disk blocks when the size of the block is 6 KB is 328 as shown in the 

following chart. 
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Figure 4.3: the number of blocks used to save SWISSPORT_GB.xml dataset 

The density of the MXF file when the size of the block is 2KB is 89.29%, when the size 

of the block is 4 KB, the density of the file is 81.60 %; and the file density when the 

size of the block is 6KB is 74.14% as shown in the chart bellow 

 

Figure 4.4: the file density when saving SWISSPORT_GB.xml dataset 
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4.5.1.1.3.  Group A dataset 

We have taken “SWISSPORT_GA.xml” database; its size is 2.41 MB with 79 distinct 

elements and 85 distinct paths. The number of disk blocks when the size of the block is 

2 KB is 325, the number of disk blocks when the size of the block is 4 KB is 200 and 

the number of disk blocks when the size of the block is 6 KB is 163 as shown in the 

following chart 

 

Figure 4.5: the number of blocks used to save SWISSPORT_GA.xml dataset 

The density of the MXF file when the size of the block is 2KB is 89.29%, when the size 
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of the block is 6KB is 74.14% as shown in the chart bellow 
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Figure 4.6: the file density when saving SWISSPORT_GA.xml dataset 

It is shown from the above figures that the density of the file becomes less as the size of 

the data becomes smaller; and when the size of the data becomes larger the data blocks 

becomes denser. 

Dataset Size in MB 
Number of disk blocks File Density 

2 KB 4 KB 6 KB 2 KB 4 KB 6 KB 

SWISSPORT.xml 
 

12.40 1298 690 491 93.88 88.30 82.72 
6.89 817 447 328 89.29 81.60 74.14 
2.41 325 200 163 74.99 60.93 49.84 

Table 4.2: a summery table shows the density file and  the number of blocks used 

when saving SWISSPORT.xml 
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Figure 4.7: the density of the MXF when saving SWISSPORT.xml datasets 

According to the response time of the queries applied on the three versions of 

“SWISSPORT.xml” database, we have applied these simple path queries. These 

queries are Entry/AC, Entry/Mod, Entry/Descr, Entry/Species, Entry/Org, 

Entry/Ref/Comment, Entry/Ref/DB and Entry/Ref/MedlineID. These queries will be 

given a number from 1 to 8 as they are ordered above as in the following table: 

Query number Number of disk blocks used 
2kb 4 KB 6 KB 

1 16 8 6 
2 40 20 14 
3 19 10 7 
4 14 8 5 
5 129 65 44 
6 15 8 6 
7 21 11 8 
8 21 11 3 

Table 4.3: shows the query response time for the query set mentioned above. 
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Figure 4.8: query responce time when queyring SWISSPORT.xml 

The dominant factor of query response time is the number of disk blocks that are used 

to save the data  
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size of the block is 4 KB is 575 and the number of disk blocks when the size of the 

block is 6 KB is 388 as shown in the following chart 

 

Figure 4.9: the number of blocks used to save UWM_GC.xml dataset 

The density of the MXF file when the size of the block is 2KB is 98.78%, when the size 

of the block is the density of the file is 96.97 %; and the file density when the size of the 

block is 6KB is 95.81% as shown in the chart bellow 
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Figure 4.10: the file density when saving UWM_GC.xml dataset 

4.5.1.2.2.  Group B dataset 

We have chosen “UWM_GB.xml”; its size is 5.00 MB with 21 distinct elements and 16 

distinct paths. The number of disk blocks when the size of the block is 2 KB is 575, the 

number of disk blocks when the size of the block is 4 KB is 295 and the number of disk 

blocks when the size of the block is 6 KB is 198 as shown in the following chart 
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Figure 4.11: the number of blocks used to save UWM_GB.xml dataset 

The density of the MXF file when the size of the block is 2KB is 98.78%, when the size 

of the block is 4 KB the density of the file is 96.97 %; and the file density when the size 

of the block is 6KB is 95.81% as shown in the chart bellow 

 

Figure 4.12: the file density when saving UWM_GB.xml dataset 
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4.5.1.2.3.  Group A dataset 

We have chosen “UWM_GA.xml”; its size is 2.28 MB with 21 distinct elements and 

16 distinct paths. The number of disk blocks when the size of the block is 2 KB is 295, 

the number of disk blocks when the size of the block is 4 KB is 158 and the number of 

disk blocks when the size of the block is 6 KB is 109 as shown in the following chart 

 

Figure 4.13: the number of blocks used to save UWM_GA.xml dataset 
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of the block is 6KB is 85.26% as shown in the chart bellow 
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Figure 4.14: the file density when saving UWM_GA.xml dataset 

UWM.xml file is has less distinct paths than SWISSPORT.xml, so the density of the 

file becomes larger this in turn, means fewer number of disk blocks will be used to save 

the data. 

Dataset Size in MB 
Number of disk blocks File Density 

2 KB 4 KB 6 KB 2 KB 4 KB 6 KB 

UWM.xml 
9.46 295 158 109 94.51 88.23 85.26 
4.73 575 295 198 96.97 94.51 93.87 
2.28 1129 575 388 98.78 96.97 95.81 

Table 4.4: a summery table shows the density file and the number of blocks used 

when saving UWM.xml 
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Figure 4.15 the density of MXF when saving UWM.xml datasets 

According to the response time of the queries applied on the three versions of the 

“UWM.xml” database, we have applied these simple path queries. These queries are 

course_listing/note, course_listing/course, course_listing/title, course_listing/credits, 

course_listing/level,course_listing/restrictions, 

course_listing/section_listing/section_note and course_listing/section_listing/section as 

in the following table: 
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1 38 20 13 
2 38 20 13 
3 99 50 34 
4 99 50 34 
5 117 59 40 
6 117 59 40 
7 36 18 13 
8 1 1 1 

Table 4.5: shows the query response time for the query set mentioned above 
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Figure 4.16: query response time when querying UWM.xml datasets 

4.5.1.3. Set C datasets 

Three groups of datasets will be implemented in this set: 

4.5.1.3.1. Group A dataset 

We have chosen “PARTSUPP_GA.xml” database as; its size is 10.94 MB with 7 

distinct elements and 5 distinct paths 5. The number of disk blocks when the size of the 

block is 2 KB is 885; the number of disk blocks when the size of the block is 4 KB is 

445 and the number of disk blocks when the size of the block is 6 KB is 300 as shown 

in the following chart 
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Figure 4.17: the number of blocks used to save PARTSUPP_GC.xml dataset 

The density of the MXF file when the size of the block is 2KB is 99.31%, when the size 

of the block is the density of the file is 98.75 %; and the file density when the size of the 

block is 6KB is 97.65% as shown in the chart bellow 

 

Figure 4.18: the file density when saving PARTSUPP_GC.xml dataset 
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4.5.1.3.2.  Group B dataset 

“PARTSUPP_GB.xml” was chosen; its size is 4.37 MB with 7 distinct elements and 5 

distinct paths. The number of disk blocks when the size of the block is 2 KB is 885; the 

number of disk blocks when the size of the block is 4 KB is 445 and the number of disk 

blocks when the size of the block is 6 KB is 300 as shown in the following chart 

 

Figure 4.19: the number of blocks used to save PARTSUPP_GB.xml dataset 

The density of the MXF file when the size of the block is 2KB is 99.03%, when the size 

of the block is the density of the file is 97.65 %; and the file density when the size of the 

block is 6KB is 97.65% as shown in the chart bellow 
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Figure 4.20: the file density when saving PARTSUPP_GB.xml dataset 

4.5.1.3.3.  Group A dataset 

“PARTSUPP_GA.xml” was chosen as a dataset with the smallest distinct paths; its 

size is 2.19 MB with 7 distinct elements and 5 distinct paths. The number of disk blocks 

when the size of the block is 2 KB is 180, the number of disk blocks when the size of 

the block is 4 KB is 95 and the number of disk blocks when the size of the block is 6 

KB is 65 as shown in the following chart 
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Figure 4.21: the number of blocks used to save PARTSUPP_GA.xml dataset 

The density of the MXF file when the size of the block is 2KB is 97.65%, when the size 

of the block is the density of the file is 92.51 %; and the file density when the size of the 

block is 6KB is 96.14% as shown in the chart bellow 

 

Figure 4.22: the file density when saving PARTSUPP_GC.xml dataset 
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“PARTSUPP.xml” dataset has the smallest number of distinct paths among others, so 

the density of the file becomes higher than the above two datasets “SWISSPORT.xml” 

and “UWM.xml”. 

Dataset Size in MB 
Number of disk blocks File Density 

2 KB 4 KB 6 KB 2 KB 4 KB 6 KB 

PARTSUPP.xml 
10.94 885 445 300 99.31 98.75 97.65 
4.37 355 180 120 99.03 97.65 97.65 
2.19 180 95 65 97.65 92.51 96.14 

Table 4.6: a summery table shows the density file and the number of blocks used 
when saving PARTSUPP.xml 

The figure bellow shows the density of the file in the above table 

 

Figure 4.23: the density of the MXF when saving PARTSU.xml datasets 
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Query number Number of disk blocks used 
2kb 4 KB 6 KB 

1 71 36 24 
2 71 36 24 
3 71 36 24 
4 71 36 24 
5 71 36 24 

Table 4.7: shows the query response time for the query set mentioned above 

 

Figure 4.24: the query response time when querying PARTSUPP.xml datasets 

4.5.2.  Classification the data according to data shape 
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• Set A: the data sets used in this set are: three versions of DBLP.xml (DBLP 

_GC.xml, DBLP _GB.xml and DBLP _GA.xml). This data is the widest among 

the three sets.  

• Set B: the data sets used in this set are: three versions of WSU.xml (WSU 

_GC.xml, WSU _GB.xml and WSU _GA.xml) 

• Set C: the data sets used in this set are: three versions of CUSTOMER.xml 

(CUSTOMER _GC.xml, CUSTOMER _GB.xml and CUSTOMER _GA.xml). 

This set has the smallest width among the three sets. 

4.5.2.1.1.  Set A datasets 

Three groups of datasets will be implemented in this group 

4.5.2.1.1.1. Group C dataset 

We have chosen “DBLP_GC.xml” database; its size is 10.76 MB with 29 distinct 

elements and 52 distinct paths. The number of disk blocks when the size of the block is 

2 KB is 885, the number of disk blocks when the size of the block is 4 KB is 445 and 

the number of disk blocks when the size of the block is 6 KB is 300 as shown in the 

following chart 
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Figure 4.25: the number of blocks used to save DBLP_GC.xml dataset 

The density of the MXF file when the size of the block is 2KB is 97.65%, when the size 

of the block is 4KB, the density of the file is 92.51 %; and the file density when the size 

of the block is 6KB is 90.14% as shown in the chart bellow 

 

Figure 4.26: the file density when saving DBLP_GC.xml dataset 
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4.5.2.1.1.2.  Group B dataset 

We have chosen “DBLP_GB.xml” database; its size is 5.74 MB with 29 distinct 

elements and 52 distinct paths. The number of disk blocks when the size of the block is 

2 KB is 578; the number of disk blocks when the size of the block is 4 KB is 315 and 

the number of disk blocks when the size of the block is 6 KB is 222 as shown in the 

following chart 

 

Figure 4.27: the number of blocks used to save DBLP_GB.xml dataset 

The density of the MXF file when the size of the block is 2KB is 90.86%, when the size 

of the block is 4KB, the density of the file is 83.36 %; and the file density when the size 

of the block is 6KB is 78.85% as shown in the chart bellow 
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Figure 4.28: the file density when saving DBLP_GB.xml dataset 

4.5.2.1.1.3.  Group A dataset 

We have chosen “DBLP _GA.xml” database; its size is 1.36 MB with 29 distinct 

elements and 52 distinct paths. The number of disk blocks when the size of the block is 

2 KB is 176, the number of disk blocks when the size of the block is 4 KB is 114 and 

the number of disk blocks when the size of the block is 6 KB is 92 as shown in the 

following chart 

 

Figure 4.29:  the number of blocks used to save DBLP_GA.xml dataset 
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The density of the MXF file when the size of the block is 2KB is 86.86%, when the size 

of the block is 4KB, the density of the file is 82.36 %; and the file density when the size 

of the block is 6KB is 72.85% as shown in the chart bellow 

 

Figure 4.30: the file density when saving DBLP_GA.xml dataset 

Dataset Size in MB 
Number of disk blocks File Density 

2 KB 4 KB 6 KB 2 KB 4 KB 6 KB 

DBLP.xml 
10.76 1012 534 374 94.30 89.36 85.06 
5.74 578 315 222 90.86 83.36 78.85 
1.36 176 114 92 86.86 82.36 72.85 

Table 4.8: a summery table shows the density file and the number of blocks used 

when saving DBLP.xml 

Data shape of the “DBLP.xml” is the widest and from the table above we can conclude 

that the density of the file is stable regardless of the width of the data but it varies 

according to the size of the data as shown in the following figure. 
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Figure 4.31: the density of MXF when saving DBLP.xml datasets 

According to the response time of the queries applied on “DBLP_small.xml” database, 

we have applied these simple path queries. These queries are mastersthesis/author, 

article/title, article/ee, article/autho, inproceedings/url, inproceedings/cdrom. Above 

queries will be numbered in the following table from 1 to 6 as they were ordered above.    

Query number Number of disk blocks used 
2KB 4 KB 6 KB 

1 1 1 1 
2 16 8 6 
3 10 5 4 
4 28 14 10 
5 38 19 13 
6 7 4 3 

 

Table 4.9: shows the query response time for the query set mentioned above 
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Figure 4.32: the query response time when querying DBLP.xml datasets 

4.5.2.1.2.  Set B datasets 

Three datasets groups will be used in this set 

4.5.2.1.2.1. Group C dataset 

We have chosen “WSU_GC.xml” database; its size is 8.31 MB with 20 distinct 

elements and 16 distinct paths. The number of disk blocks when the size of the block is 

2 KB is 1522, number of disk blocks when the size of the block is 4 KB is 772 and the 

number of disk blocks when the size of the block is 6 KB is 516 as shown in the 

following chart 
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Figure 4.33: the number of blocks used to save WSU_GC.xml dataset 

The density of the MXF file when the size of the block is 2KB is 74.6%, when the size 

of the block is 4KB, the density of the file is 57.58 %; and the file density when the size 

of the block is 6KB is 47.57% as shown in the chart bellow 

 

Figure 4.34: the file density when saving WSU_GC.xml dataset 
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4.5.2.1.2.2. Group B dataset 

We have chosen “WSU_GB.xml” database; its size is 3.94 MB with 20 distinct 

elements and 16 distinct paths. The number of disk blocks when the size of the block is 

2 KB is 772, the number of disk blocks when the size of the block is 4 KB is 389 and 

the number of disk blocks when the size of the block is 6 KB is 266 as shown in the 

following chart 

 

Figure 4.35:  the number of blocks used to save WSU_GB.xml dataset 

The density of the MXF file when the size of the block is 2KB is 97.62%, when the size 

of the block is 4KB, the density of the file is 96.87 %; and the file density when the size 

of the block is 6KB is 94.44% as shown in the chart bellow 
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Figure 4.36: the file density when saving DBLP_GB.xml dataset 

4.5.2.1.2.3. Group A dataset 

We have chosen “WSU_GA.xml” database; its size is 1.98 MB with 20 distinct 

elements and 16 distinct paths. The number of disk blocks when the size of the block is 

2 KB is 318, the number of disk blocks when the size of the block is 4 KB is 171 and 

the number of disk blocks when the size of the block is 6 KB is 120 as shown in the 

following chart 

 

Figure 4.37:  the number of blocks used to save DBLP_GB.xml dataset 
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The density of the MXF file when the size of the block is 2KB is 95.8%, when the size 

of the block is 4KB, the density of the file is 89.07 %; and the file density when the size 

of the block is 6KB is 84.62% as shown in the chart bellow 

 

Figure 4.38: the file density when saving DBLP_GA.xml dataset 

Dataset Size in MB 
Number of disk blocks File Density 

2 KB 4 KB 6 KB 2 KB 4 KB 6 KB 

WSU.xml 
 

8.31 1522 722 516 99.04 97.61 97.37 
3.94 722 389 266 97.62 96.87 94.44 
1.98 318 171 120 95.80 89.07 84.62 

Table 4.10: a summery table shows the density file and the number of blocks used 

when saving SWISSPORT.xml 

The same observation can be concluded from “WSU.xml” results. From the table above 

we can see that the file density is stable according to the data shape factor but it is 

affected by the size of the file. But if we compare the result of the “WSU.xml” with the 
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results of “DBLP.xml” we can conclude that as a data becomes wider, the probability 

of existing more distinct paths becomes larger; so we see that the overall density of the 

“WSU.xml” dataset is larger than the density of the “DBLP.xml” dataset. 

 

Figure 4.39: the density of MXF when saving WSU.xml datasets 

According to the response time of the queries applied on “WSU_GA.xml” database, we 

have applied these simple path queries. These queries are course/footnote, course/sln, 

course/prefix, course/crs, course/lab, course/sect,   course/title and course/credit. These 

queries will be numbered from 1 to 8 in the following table: 

Query number Number of disk blocks used 
2KB 4 KB 6 KB 

1 44 22 15 
2 44 22 15 
3 44 22 15 
4 44 22 15 
5 44 22 15 
6 44 22 15 
7 44 22 15 
8 44 22 15 

Table 4.11: shows the query response time for the query set mentioned above 
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The response time for the set of queries above is illustrated in the following figure: 

 

Figure 4.40: the query response time when querying WSU.xml datasets 

4.5.2.1.3.  Set C datasets 

Three datasets groups will be implemented in this set: 

4.5.2.1.3.1. Group C dataset 

We have chosen “CUSTOMER_GC.xml” database; its size is 10.07 MB with 10 

distinct elements and 8 distinct paths. The number of disk blocks when the size of the 

block is 2 KB is 536; the number of disk blocks when the size of the block is 4 KB is 

272 and the number of disk blocks when the size of the block is 6 KB is 184 as shown 

in the following chart 
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Figure 4.41:  the number of blocks used to save CUSTOMER_GC.xml dataset 

The density of the MXF file when the size of the block is 2KB is 99.38%, when the size 

of the block is 4KB, the density of the file is 98.93 %; and the file density when the size 

of the block is 6KB is 97.53% as shown in the chart bellow 

 

Figure 4.42: the file density when saving CUSTOMER _GC.xml dataset 
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4.5.2.1.3.2. Group B dataset 

As a dataset with a very width shape and average size, we have chosen 

“CUSTOMER_GB.xml” database; its size is 5.03 MB with 10 distinct elements and 8 

distinct paths. The number of disk block when the size of the block is 2 KB is 1064, the 

number of disk block when the size of the block is  4 KB is 536 and the number of disk 

block when the size of the block is 6 KB is 360 as shown in the following chart 

 

Figure 4.43:  the number of blocks used to save CUSTOMER_GB.xml dataset 

The density of the MXF file when the size of the block is 2KB is 99.12%, when the size 

of the block is 4KB, the density of the file is 98.38 %; and the file density when the size 

of the block is 6KB is 97.65% as shown in the chart bellow 

1064

536

360

0

200

400

600

800

1000

1200

2KB 4KB 6KB

block size in KB



98 
 

 

Figure 4.44: the file density when saving CUSTOMER _GB.xml dataset 

4.5.2.1.3.3. Group A dataset 

We have chosen “CUSTOMER_GA.xml” database; its size is 1.51 MB with 8 distinct 

elements and   10 distinct paths. The number of disk blocks when the size of the block 

is 2 KB is 64; the number of disk blocks when the size of the block is 4 KB is 32 and 

the number of disk blocks when the size of the block is 6 KB is 42 as shown in the 

following chart 
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Figure 4.45:  the number of blocks used to save CUSTOMER_GA.xml dataset 

The density of the MXF file when the size of the block is 2KB is 96. 8%, when the size 

of the block is 4KB, the density of the file is 90.07 %; and the file density when the size 

of the block is 6KB is 85.62% as shown in the chart bellow 

 

Figure 4.46: the file density when saving CUSTOMER _GA.xml dataset 
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Dataset Size in MB 
Number of disk blocks File Density 

2 KB 4 KB 6 KB 2 KB 4 KB 6 KB 

CUSTOMER.xml 
 

10.07 1064 536 360 99.38 98.93 97.53 
5.03 536 272 184 99.12 98.38 97.65 
1.51 64 32 24 96.8 90.07 85.62 

Table 4.12: a summery table shows the density file and the number of blocks used 

when saving CUSTOMER.xml 

The same observation can be concluded from “CUSTOMER.xml” results. From the 

table above we can see that the file density is stable according to the data shape factor 

but it is affected by the size of the file. But if we compare the result of the 

“CUSTOMER.xml” dataset with the two datasets “WSU.xml” and “DBLP.xml”, we 

can conclude that as a data becomes wider, the probability of existing more distinct 

paths becomes larger; so we see that the overall density of the “CUSTOMER.xml” 

dataset is larger than the density of the “WSU.xml” and “DBLP.xml” datasets as 

shown in the following figure 

 

Figure 4. 47: the density of MXF when saving CUSTOMER.xml datasets 
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According to the response time of the queries applied on “CUSTOMER_GA.xml” 

database, we have applied these simple path queries. These queries are 

T/C_CUSTKEY, T/C_NAME, T/C_ADDRESS, T/C_NATIONKEY, T/C_PHONE, 

T/C_ACCTBAL,   T/C_MKTSEGMENT and T/C_COMMENT. The figure bellow 

shows the response time for the query set above where each query has a number from 1 

to 8 respectively: 

Query number Number of disk blocks used 
2KB 4 KB 6 KB 

1 67 34 23 
2 67 34 23 
3 67 34 23 
4 67 34 23 
5 67 34 23 
6 67 34 23 
7 67 34 23 
8 67 34 23 

Table 4.13: shows the query response time for the query set mentioned above. 

 

Figure 4.48: the query response time when querying CUSTOMER.xml datasets 
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4.5.2.2. Data-depth datasets 

We have implemented three dataset sets according to data-depth (set A, set B and set C) 

• Set A: the data sets used in this set are: three versions of PERSONS.xml 

(PERSONS _GC.xml, PERSONS _GB.xml and PERSONS _GA.xml). This data 

is the depthest among the three sets.  

• Set B: the data sets used in this set are: three versions of 

SIGMODRECORD.xml ( SIGMODRECORD _GC.xml, SIGMODRECORD 

_GB.xml and SIGMODRECORD _GA.xml) 

• Set C: the data sets used in this set are: three versions of ORDERS.xml 

(ORDERS _GC.xml, ORDERS _GB.xml and ORDERS _GA.xml). This set has 

the smallest depth among the three sets. 

4.5.2.2.1.  Set A datasets 

Three groups will be implemented in this set 

4.5.2.2.1.1. Group C dataset 

We have chosen “PERSONS_GC.xml” database; its size is 8.75 MB with 14 distinct 

elements and 6 distinct paths. The number of disk blocks when the size of the block is 2 

KB is 1166; the number of disk blocks when the size of the block is 4 KB is 586 and the 

number of disk block when the size of the block is 6 KB is 391 as shown in the 

following chart 
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Figure 4.49:  the number of blocks used to save PERSONS_GC.xml dataset 

The density of the MXF file when the size of the block is 2KB is 99.12%, when the size 

of the block is 4KB, the density of the file is 98.38 %; and the file density when the size 

of the block is 6KB is 97.65% as shown in the chart bellow 

 

Figure 4.50: the file density when saving PERSONS _GC.xml dataset 
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4.5.2.2.1.2. Group B dataset 

We have chosen “PERSONS_GB.xml” database; its size is 4.37 MB with 14 distinct 

elements and 6 distinct paths. The number of disk blocks when the size of the block is 2 

KB is 586; the number of disk blocks when the size of the block is 4 KB is 299 and the 

number of disk block when the size of the block is 6 KB is 201 as shown in the 

following chart 

 

Figure 4.51:  the number of blocks used to save PERSONS_GB.xml dataset 

The density of the MXF file when the size of the block is 2KB is 98.38%, when the size 

of the block is 4KB, the density of the file is 96.93 %; and the file density when the size 

of the block is 6KB is 95.53% as shown in the chart bellow 
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Figure 4.52: the file density when saving PERSONS _GB.xml dataset 

4.5.2.2.1.3. Group A dataset 

We have chosen “PERSONS_GA.xml” database; its size is 1.45 MB with 14 distinct 

elements and 6 distinct paths. The number of disk block when the size of the block is 2 

KB is 201, number of disk block when the size of the block is  4 KB is 104 and the 

number of disk block when the size of the block is 6 KB is 73 as shown in the following 

chart 

 

Figure 4.53:  the number of blocks used to save PERSONS_GA.xml dataset 
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The density of the MXF file when the size of the block is 2KB is 82.39%, when the size 

of the block is the density of the file is 82.39 %; and the file density when the size of the 

block is 6KB is 73.24% as shown in the chart bellow 

 

Figure 4.54: the file density when saving PERSONS _GB.xml dataset 

Dataset Size in MB 
Number of disk blocks File Density 

2 KB 4 KB 6 KB 2 KB 4 KB 6 KB 

PERSONS.xml 
 

8.75 1166 586 391 99.12 98.38 97.65 
4.37 586 299 201 98.38 96.93 95.53 
1.45 201 104 73 82.39 82.39 73.24 

Table 4.14: a summery table shows the density file and the number of blocks used 

when saving SWISSPORT.xml 

According to the depth factor, since we deal with the path as one unit in an xml data 

tree, the density of the file will not be affected by the data-depth factor and the size 

factor will be the dominant factor as shown in the following figure. 
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Figure 4.55 the density of MXF when saving PERSONS.xml datasets 

According to the response time of the queries applied on “PERSONS_GA.xml” 

database, we have applied these simple path queries. These queries are 

1. local_persons/person/person_type/person_info/required_info/special_info/peson_name/person_full          

2. local_persons/person/person_type/person_info/required_info/special_info/person_age                     

3. local_persons/person/person_type/person_info/required_info/special_info/person_religion                     

4. local_persons/person/person_type/person_info/required_info/special_info/person_state                     

5. local_persons/person/person_type/person_info/required_info/special_info/person_city                   

6. local_persons/person/person_type/person_info/required_info/special_info/person_country      
              

Query number Number of disk blocks used 
2KB 4 KB 6 KB 

1 106 54 36 
2 96 49 33 
3 90 45 32 
4 96 49 33 
5 90 45 32 
6 96 49 33 

Table 4.15: shows the query response time for the query set mentioned above 
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Figure 4.56: the query response time when querying PERSONS.xml datasets 

4.5.2.2.2. Set B datasets 

Three dataset groups will be implemented in this set: 

4.5.2.2.2.1. Group C dataset 

We have chosen “SIGMODRECORD _GC.xml” database; its size is 13.05 MB with 

11 distinct elements and 6 distinct paths. The number of disk blocks when the size of 

the block is 2 KB is 1535, the number of disk blocks when the size of the block is 4 KB 

is 771 and the number of disk blocks when the size of the block is 6 KB is 516 as shown 

in the following chart 
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Figure 4.57:  the number of blocks used to save SIGMODRECORD_GC.xml dataset 

The density of the MXF file when the size of the block is 2KB is 99.55%, when the size 

of the block is the density of the file is 99.1 %; and the file density when the size of the 

block is 6KB is 98.72% as shown in the chart bellow 

 

Figure 4.58: the file density when saving SIGMODRECORD _GC.xml dataset 
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4.5.2.2.2.2. Group B dataset 

We have chosen “SIGMODRECORD _GB.xml” database; its size is 4.35 MB with 11 

distinct elements and 6 distinct paths. The number of disk blocks when the size of the 

block is 2 KB is 516, the number of disk blocks when the size of the block is 4 KB is 

260 and the number of disk blocks when the size of the block is 6 KB is 177 as shown 

in the following chart 

 

Figure 4.59:  the number of blocks used to save SIGMODRECORD_GB.xml dataset 

The density of the MXF file when the size of the block is 2KB is 98.38%, when the size 

of the block is 4KB, the density of the file is 96.93 %; and the file density when the size 

of the block is 6KB is 95.53% as shown in the chart bellow 
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Figure 4.60: the file density when saving SIGMODRECORD _GB.xml dataset 

4.5.2.2.2.3. Group A dataset 

We have chosen “SIGMODRECORD_GA.xml” database; its size is 1.47 MB with 11 

distinct elements and 6 distinct paths. The number of disk blocks when the size of the 

block is 2 KB is 177; the number of disk blocks when the size of the block is 4 KB is 89 

and the number of disk blocks when the size of the block is 6 KB is 63 as shown in the 

following chart 

 

Figure 4.61:  the number of blocks used to save SIGMODRECORD_GA.xml dataset 
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The density of the MXF file when the size of the block is 2KB is 95.93%, when the size 

of the block is 4KB, the density of the file is 95.39 %; and the file density when the size 

of the block is 6KB is 89.84% as shown in the chart bellow 

 

Figure 4.62: the file density when saving SIGMODRECORD _GA.xml dataset 

 

Dataset Size in MB 
Number of disk blocks File Density 

2 KB 4 KB 6 KB 2 KB 4 KB 6 KB 

SIGMODRECORD.xml 
 

13.05 1535 771 516 99.55 99.10 98.72 
4.35 516 260 177 98.72 97.96 95.93 
1.45 177 89 63 95.93 95.39 89.84 

Table 4.16: a summery table shows the density file and the number of blocks used 

when saving SIGMODRECORD.xml 
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“SIGMODRECORD.xml” has less depth than “PERSONS.xml”, but there is a slight 

difference in the file density which emphasizes that the depth factor will not affect the 

density of the file or has a slight effect on the density of the file.  

 

Figure 4.63:  the density of MXF when saving SIMORECORD.xml datasets 

According to the response time of the queries applied on 

“SIGMODRECORD_GA.xml” database, we have applied these simple path queries. 

These queries are issue/volume, issue/number, issue/articles/article/title, 

issue/articles/article/initPage, issue/articles/article/endPage and 

issue/articles/article/authors/author. Queries above are numbered from 1 to 6 

respectively. 

Query number Number of disk blocks used 
2KB 4 KB 6 KB 

1 9 5 4 
2 9 5 4 
3 259 130 87 
4 259 130 87 
5 259 130 87 
6 740 371 247 

Table 4.17: shows the query response time for the query set mentioned above 
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Figure 4.64: the query response time when querying SIGMODRECORD.xml datasets 

4.5.2.2.3.  Set C datasets 

Three dataset groups will be implemented in this set: 

4.5.2.2.3.1. Group C dataset 

We have chosen “ORDERS_GC.xml” database; its size is 11.38 MB with 11 distinct 

elements and 9 distinct paths. The number of disk blocks when the size of the block is 2 

KB is 1197, number of disk block when the size of the block is 4 KB is 603 and the 

number of disk blocks when the size of the block is 6 KB is 405 as shown in the 

following chart 
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Figure 4.65:  the number of blocks used to save ORDERS_GC.xml dataset 

The density of the MXF file when the size of the block is 2KB is 99.12%, when the size 

of the block is 4KB, the density of the file is 98.38 %; and the file density when the size 

of the block is 6KB is 97.65% as shown in the chart bellow 

 

Figure 4.66: the file density when saving ORDERS _GC.xml dataset 
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4.5.2.2.3.2. Group B dataset 

We have chosen “ORDERS_GB.xml” database; its size is 5.25 MB with 11 distinct 

elements and 9 distinct paths. The number of disk blocks when the size of the block is 2 

KB is 603; the number of disk blocks when the size of the block is 4 KB is 306 and the 

number of disk blocks when the size of the block is 6 KB is 207 as shown in the 

following chart 

 

Figure 4.67:  the number of blocks used to save ORDERS_GB.xml dataset 

The density of the MXF file when the size of the block is 2KB is 98.38%, when the size 

of the block is 4KB, the density of the file is 96.93 %; and the file density when the size 

of the block is 6KB is 95.53% as shown in the chart bellow 
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Figure 4.68: the file density when saving ORDERS _GB.xml dataset 

4.5.2.2.3.3. Group A dataset 

We have chosen “ORDERS_GA.xml” database; its size is 2.64 MB with 11 distinct 

elements and 6 distinct paths. The number of disk blocks when the size of the block is 2 

KB is 279; the number of disk blocks when the size of the block is 4 KB is 144 and the 

number of disk blocks when the size of the block is 6 KB is 99 as shown in the 

following chart 

 

Figure 4.69:  the number of blocks used to save ORDERS_GA.xml dataset 
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The density of the MXF file when the size of the block is 2KB is 96.66%, when the size 

of the block is 4KB, the density of the file is 93.64 %; and the file density when the size 

of the block is 6KB is 90.80% as shown in the chart bellow 

 

Figure 4.70: the file density when saving ORDERS _GA.xml dataset 

Dataset Size in MB 
Number of disk blocks File Density 

2 KB 4 KB 6 KB 2 KB 4 KB 6 KB 

ORDERS.xml 
 

11.38 1197 603 405 99.67 99.16 99.08
5.25 603 306 207 99.16 97.17 96.37
1.51 64 32 24 96.37 93.13 88.45

Table 4.18: a summery table shows the density file and the number of blocks used 

when saving ORDERS.xml 
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Figure 4.71 the density of MXF when saving ORDERS.xml datasets 

“ORDERS.xml” has the smallest depth among “SIGMODRECORD.xml” and 

“PERSONS.xml”, even if it has the highest density, but the density different is slight as 

shown in the following figure. 

According to the response time of the queries applied on “ORDERS.xml” database, we 

have applied these simple path queries. These queries are T/O_ORDERKEY, 

T/O_CUSTKEY, T/O_ORDERSTATUS, T/O_TOTALPRICE, T/O_ORDERDATE, 

T/O_ORDER-PRIORITY, T/O_CLERK and T/O_SHIP-PRIORITY 

Query number Number of disk blocks used 
2KB 4 KB 6 KB 

1 16 8 6 
2 40 20 14 
3 19 10 7 
4 14 8 5 
5 129 65 44 
6 15 8 6 
7 21 11 8 
8 21 11 3 

Table 4.19: shows the query response time for the query set mentioned above 
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Figure 4.72: the query response time when querying WSU.xml datasets 

4.6. Summery  

In this chapter, we have implemented MXF on NINE datasets with different sizes and 

data. For each data set, we have shown the density of the file, the number of disk blocks 

used and the query response time for nine sets of simple path queries. Our datasets are 

classified according to two factors: the variety of the data and the shape of the data 

(width and depth).  As the data becomes less distinct, the density of the file becomes 

higher; this in turn means fewer disk blocks will be used to save the data. 

According to the width of the data, the width of the tree has a slight effect on the 

density of the file as well as on the number of the dick blocks used to save data. But as 

the size of the file becomes larger, it gives a chance for rising new distinct paths which 

can slightly affect the density of the file (in the rare case where the file can fit in very 

few disk blocks (like one or two disk blocks).  
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According to the depth factor, from the results we got above, we can conclude that: 

since we deal with BPL as a one unit, the depth of the file will not affect the file density 

as well as the number of disk blocks.  

According to the query response time, the only factor that affects the query response 

time is the number of disk blocks that are used to save the corresponding data. The 

shape of the data will not affect response time as we don’t decompose the query to 

answer it; instead we take it as one unit i.e. the depth of the data is not a mater while 

querying XML data using MXF.  
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CHAPTER FIVE 

CONCLUSION AND FEATURE WORK 

Since the importance of XML as a new standard for information representation and 

exchange on the internet, the problem of storing, indexing, and querying XML 

documents poses new challenges to database researchers, and has been among the major 

issues of database research. 

In this thesis, we proposed a new file structure called MXF to parse, index and store 

XML documents.  

Previous native XML storage systems depend on the inverted lists to store the file. They 

save the inverted lists of all elements in an XML documents. They decompose the paths 

of the XML tree and save the elements of the paths separately.  

There are two major disadvantages of these approaches: first, they cost large disk space 

since they store inverted lists of all elements, and the second is they need many join 

operations to process a query.  

From these two major disadvantages, we contribute a new file structure 

Multidimensional XML File (MXF) to save, index and query XML document. The 

main idea of our proposed system is store the inverted lists of the leaf nodes only. This 

results in less disk space. Since we don’t decompose path into its elements, no need for 
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join operations to answer a simple path query.  MXF will minimize the cost of a query 

by minimizing the number of joins needed in case of twig queries.  

We have applied MXF on nine datasets each with three different sizes (differ from each 

other in the data-variety and data-shape) and we conclude that our MXF is stable 

regardless the size, the shape and the data-shape of the XML data tree.  

As a feature work, since we need to increase the file density in the situation mentioned 

above, we will develop a merge algorithm to merge more than one data block to 

increase the file density.  
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