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Chapter 1

Introduction and Background

1.1 Traffic Engineering and Routing

The Internet has been growing at an unprecedented rate in terms of popularity and

usage. The current estimated number of Internet users is 1,565 million, which con-

stitute about 23.3% of the world population [1]. With the ever increasing Internet

usage the Internet traffic increases multi fold accordingly. The increasing traffic of

the Internet strains the available network resources. To cope up with this increase,

the ISPs have to either expand the network capacity or opt for a newer technol-

ogy. The newer technology comes with greater capacity at an increased price. The

strain on the network resources which are of limited capacity, results in congestion,

at times. The ISPs may not always afford to expand the network capacity or re-

place the existing resources with newer technologies. The above stated problem of

1
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network maintenance is not simple and straight forward that either expanding the

network or replacing it with newer technology will solve the problem. Internet Traf-

fic Engineering (TE) has to maintain the network resources without compromising

on the network’s performance. TE consists of performance evaluation and perfor-

mance optimization of TCP/IP based networks. In simple words, TE is to measure,

characterize, model, and control the traffic in the TCP/IP based networks [2].

ISPs like AT&T Worldnet and AOL(America Online) provide Internet connection

to millions of users. The companies usually lease bandwidth from the ISPs dedi-

cated lines. Even though the ISPs compete among themselves for the customers,

they do have a business relationship (known as peering) where they provide each

other connectivity to exchange their traffic [3]. The ISPs provide Internet access

from the major back-bones to the regional providers, which in turn give access to

thousands of local providers. The individual users can get access throught these

local providers. The IP packets traverse from the source to the destination passing

from one network to another, depending on the decision made by the routers in-

volved. Each router is connected to different routers thereby resulting in multiple

paths between any source and destination [4]. The task of a router is to forward

the packet from the source to the destination host along the best path. The routing

process becomes more complex with the increase in the number of alternate paths

that a packet can take to reach its destination host [5]. To handle the complexity

at an easier level, smaller domains are created within the bigger networks allowing
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decisions and operations at smaller individual domain levels. The Internet is di-

vided into smaller domains known as Autonomous Systems (ASes). The protocols

that handle the routing of the traffic between two ASes are called Exterior Gateway

Protocols (EGP). The protocols used in decision making of traffic routing within an

AS are called Interior Gateway Protocols (IGP).

The Border Gateway Protocol (BGP) is an example of EGP while Open Shortest

Path First (OSPF) [6], Routing Information Protocol (RIP) and Interior Gateway

Routing Protocol (IGRP), are used in today’s Internet as IGPs [7, 8]. A router main-

tains a routing table that contains the possible routes a packet can take to reach

the destination from the source [5]. The routing protocols use different approaches

in maintaining the routing table. The routing table is updated and maintained ac-

cording to the routing protocol decision. When a router receives an IP packet, it

forwards it to the corresponding network depending on the entry maintained in the

routing table. The routing table is indexed by IP addresses, and are compared to

the IP address which is present in the destination address field of the packet header.

1.1.1 Traffic Engineering

Traffic Engineering deals with the problem of achieving efficient network resource al-

location while satisfying the user requirement levels [9]. Traffic Engineering controls

the routing of the traffic within the network to optimize resource utilization and
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network performance. In a nutshell, it is the process of measuring, characterizing,

analyzing, and controlling the network traffic with the aim of improving the net-

work performance through the application of different techniques and approaches.

IGPs generate shortest paths to forward traffic that maximizes the network resource

utilization. The problem with the use of shortest paths is that there exists some

links that are common in different shortest paths. Different shortest paths overlap

at these common links, causing congestion at these links. The traffic routed through

one of these links may exceed the link capacity resulting in congestion. While this

path with such a common link is being overloaded, there exists some other longer

paths in which nodes are under-utilized. These are the typical problems that are to

be handled by Traffic Engineering in the Internet [9]. With the ever increasing traf-

fic, the existing network resources are strained to their capacities and thus Internet

Traffic Engineering is needed to provide smooth and efficient flow of network traffic

while network resources are efficiently utilized. The two considerable areas that are

related to Traffic Engineering could be classified as either traffic related or resource

related. The former deals with maintaining the QoS requirements that are stated

in the SLA, namely packet loss rate, time delay, and throughput. The second part

requires resource consideration when achieving the goals for the first part, i.e., re-

source utilization. Resource utilization means ensuring that all resources are utilized

properly while under-utilization or over-utilization are kept to a possible minimum.

The primary goal of Traffic Engineering is to reduce congestion in the network with
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a minimum over-utilization of the resources [10]. The congestion problem arises

because of one of the following reasons:

1. When the resource capacity does not match the offered traffic load, i.e., over-

burdening of the network resources, or

2. When the traffic routing does not utilize the resource capacity efficiently re-

sulting in some resources being over-utilized whereas others are still being

under-utilized.

The first congestion problem is straightforward and can be solved by capacity in-

crease, congestion control algorithms, or an application of both [5]. The congestion

control algorithm controls the traffic demand by concentrating on regulating the traf-

fic using the available resources so that available resources do not get overloaded.

The second congestion problem is the main realm of Traffic Engineering where im-

proper utilization of resources is remedied. The over-utilization of some of the

network resources leads to packet loss, which in turn leads to more retransmissions.

The packet loss and retransmissions contribute to the congestion of the network. Re-

ducing the over-utilization of these resources leads to successful transmission with-

out the packet loss and retransmissions. With no packet loss, retransimission due

to packet loss is not done and hence a reduction in the overhead of the network.

The control of the second type of congestion is reflected in the improvement of the

network performance metrics because packet loss and retransmission overheads are
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minimized thereby reducing congestion and increasing throughput. The metrics are

generally based on costs spent on resources and their usage vs profits gained by

providing the services to the customer [10].

1.1.2 OSPF Routing Protocol

The OSPF protocol is an IGP that distributes routing information to each router

within an autonomous system. OSPF was developed by the OSPF working group

of the Internet Engineering Task Force (IETF). It is the most widely used and is a

dynamic routing protocol. It is designed for TCP/IP based networks and utilizes

multicast of packets to maintain the routing updates. OSPF has the ability to re-

spond to the changes in the topology with fewer number of routing updates [6]. IP

packets are routed based solely on the destination IP address found in the IP packet

header. OSPF is based on a link-state routing protocol where each router maintains

a routing table that has a complete view of the network topology [11]. Each OSPF

router has an identical link-state database and it sends the information related to

its local interfaces and its nearest neighbors to all the other routers by flooding

[12]. A router utilizes the link-state database to construct the shortest paths from

itself to all the other routers in the network based on a metric called weight [13]. A

weight is a positive integer used to represent the cost of each link in the network.

If multiple paths to the same destination with the same weights exist, then load

balancing is used among them. The traffic meant for outside the AS is forwarded to
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the boundary routers along the advertised path by the boundary routers [12]. The

shortest path calculation is done using the Dijkstra’s algorithm [14, 15].

The following are some of the key features of OSPF [14, 16, 17]:

1. Security: Authentication mechanisms are provided in OSPF to prevent ma-

licious intrusion from the outside, thereby providing security to the network

resources.

2. Equal cost multi path: Multiple same-cost paths are allowed and used to do

load balancing in OSPF.

3. Virtual links: It allows virtual links configuration, removing topological re-

strictions in an AS. Virtual links are used to restore/increase connectivity of

the backbone. Virtual links may be configured between any pair of area border

routers having interfaces to a common (non-backbone) area. The virtual link

appears as an unnumbered point-to-point link in the graph for the backbone.

4. Flexible routing metric: The routing metric is a network criteria such as delay,

bandwidth, or cost; and is at the discretion of the system administrator to

setup.

5. Variable-length subnet support: OSPF provides support for variable-length

subnet masks by providing a network mask with the destination address in
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the Link State Advertisements (LSA).

6. Multi-cast support: For systems that do not understand OSPF, multi-cast is

used instead of broadcast. link State Update packets are multicast on those

physical networks that support multicast.

7. Stub area support: A stub area is an area which does not receive route ad-

vertisements external to the autonomous system (AS). This reduces the size

of the routing databases for the internal routers of that area. To support

routers having insufficient memory, areas can be configured as stubs. External

LSAs (often making up the bulk of the Autonomous System) are not flooded

into/throughout stub areas. Routing to external destinations in stub areas is

forwarded to a default router.

1.1.3 Dijkstra’s Algorithm

Dijkstra’s Algorithm also known as Shortest Path First (SPF) algorithm is the basis

for OSPF operations [14]. It is used to find the shortest paths from a source node

to all other nodes in a network. The working of the SPF algorithm is based on the

distance d(i) to each node i indicating the upper bound on the shortest path length

to node i. The algorithm designates two groups of nodes, namely permanently labeled

and temporarily labeled. Permanently labeled means that the distance is the shortest

of all the other alternatives and do not require change. Whereas the temporarily
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labelled nodes are the ones which require an update to improve the existing shortest

path. The algorithm starts from a given source node s and permanently label nodes

according to the distances from the node s. The node s is assigned a permanent

label of zero, indicating the distance from s to s is zero. All the other nodes in the

network are given a temporary label equal to ∞. At each iteration, the label of a

node i is the shortest distance from the source node along a path whose internal

nodes are all permanently labeled. Dijkstra’s algorithm maintains a directed out-

tree T rooted at the source node that spans the nodes with finite distance labels.

The algorithm maintains this tree using predecessor indices [i.e., if (i, j) ∈ T, then

pred(j) = i]. The algorithm maintains the invariant property that every tree arc

(i, j) satisfies the condition d(j) = d(i) + cij with respect to the current distance

labels. At termination, when distance labels represent shortest path distances, T is

the shortest path tree.

1.2 Iterative Non-deterministic Heuristics

Combinatorial optimization is usually used in problems where one has to consider

several different parameters to come up with a solution. Combinatorial optimization

finds the ordering or arrangement of elements that results in an optimal solution to

the given problem. It is used to find a solution when one or more possible optimal

solutions exist. Combinatorial optimization algorithms can be broadly classified
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into deterministic and non-deterministic algorithms. A deterministic algorithm pro-

gresses toward the solution by making deterministic decisions. Therefore determin-

istic algorithms produce the same solution for a given problem instance everytime.

In non-deterministic algorithms, the solution is found using a random approach and

hence leads to a different solution every time they are applied, even for the same

problem instance. An iterative heuristic starts with an initial solution to the prob-

lem and then attempts to improve the resulting cost function value. If the new

solution has resulted in a cost improvement, then that solution is accepted, oth-

erwise it is rejected and search is carried on. The heuristic that is being used is

a non-deterministic iterative heuristic. OSPF weight setting problem belongs to

the class of combinatorial problems that are NP-hard. Deterministic algorithms are

faster than iterative procedures [18]. However, deterministic algorithms are greedy

in nature, looking for the gain at each step and hence have a local view of the so-

lution space. This results in solutions which are locally optimum and have a scope

for further improvement. Iterative heuristics are not plagued with this particular

problem of local optima. They differ from deterministic algorithms in their proba-

bilistic ability to get out of the local optima. In this thesis, a Tabu Search algorithm,

an iterative non-deterministic heuristic, with time constraint is used for an online

system.
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1.2.1 Tabu Search

Tabu Search (TS) is an elegant search technique which has its influence from AI

concepts. TS is a local neighborhood search [19]. TS starts with a given solution

and then a large number of neighbors are generated by random moves and among

them the best solution is chosen. From the generated neighborhood solutions, the

best solution is chosen with the help of an evaluator. The Evaluator is a function

that consists of the objectives that have to be optimized. TS uses the previous

information that is gained from the past moves in moving towards the best solution.

The online Tabu search algorithm is the same algorithm but the time it takes to

search the neighborhood for the best solution is reduced considerably. The TS

structure is presented in the following section. The detailed discussion of the working

and implementation issues of TS can be found in [19].

1.3 Online System

The conventional TE approach for the OSPF based networks is to set the link cost

statically for reducing traffic on congested nodes. Due to the best effort service

nature of the Internet, any change in the traffic demand is not reflected in the

routing of the Internet traffic. If there is a change in the traffic demand, the weight

settings of the links are not changed and as a result the packets traverse the same

path that was taken earlier when there was a different traffic demand. In other
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words, the traffic demand changes but the paths taken by the packets to reach the

destination from the source are not changed, even when there is an increase in traffic

either on part of the path or the whole path. Dynamic Traffic Engineering finds new

shortest paths according to the change in traffic demands where the selected path

will reduce congestion and effectively utilize the network resources [20]. Dynamic

Traffic Engineering advocates the use of systems that cater to the changing traffic

demand and are called online systems. The main difference between the online

system and the offline system is that the online system is driven by the time as a

major constraint, limiting the time period for finding the solution for the problem.

The limited time constraint for the online system do provide a relaxation for the

quality of the solution that the online system has to find. The online system has to

look for a good solution in limited amount of time whereas the offline system has an

ample amount of time to look for a better solution. OSPFWS is considered in this

thesis. The aim of the thesis is to find the optimized weight setting of OSPF such

that congestion can be avoided for a particular traffic demand, and the optimized

weight setting of OSPF should be done under the additional time constraint for

its online application. The offline or regular system uses single weight settings

for the network links considering long term utilization. On the other hand, the

online system considers the short term traffic fluctuations and has to find a good

weight setting for this changed traffic demand before the demand changes again.

So the online system has to find the new traffic demand weight solution with the
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additional constraint of time. Fortz et al. [21] show that the optimization of the

link weights results in routing that effectively utilizes the network resources. Fortz

et al. came up with a cost function based on the range of utilization in each link.

Sqalli et al. [22] have shown through experimentation that the Fortz cost function

does not address the optimization of the number of congested links,and proposed a

new cost function. The Companies have started applying the routing optimizations

discussed above in one form or another with a proven significant benefit of substantial

savings and improved efficiency in their networks [23]. The optimization approaches

discussed above are developed with the aim of generating optimized solutions that

have to be obtained off-line [24]. The problem of assigning weights has been adressed

earlier by Sqalli et al. [22, 24] using different non deterministic heuristics. An

approach to the OSPFWS using Tabu Search (TS) already exists. TS has been

able to improve the results that have been generated earlier by Genetic Algorithm,

Simulated Annealing, and Simulated Evolution approaches [25]. The TS approach

[25] has been designed with a focus on generating optimized solutions based on

the traffic demand, network topology, and link capacity. The TS approach is more

focussed for working as an offline system, which takes a lot of time and generates

good solution weights that will be used for link weights, disregarding the short term

traffic demand fluctuations. With the changing number of Internet users at a given

time, the traffic demand changes. When the traffic demand changes, the inputs

to the optimization algorithms also change. With the change in the inputs, i.e.,
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traffic demand, the problem changes and thereby creating a need for a different

solution for the new traffic demand. This was not considered in the works done

by [21, 22, 26, 27] . In this thesis, TS is applied to find the solution weights that

considers the change in the traffic demand for the online system. This thesis also

contributes towards a deterministic approach of changing the weights for the links

so that the cost decreases.

1.4 Thesis Objectives

In this work, an NP-hard problem related to online OSPFWS is addressed and solved

by the application of a non-deterministic iterative heuristic and a deterministic

approach. The objective is to set the new OSPF weights on the network links

such that the network is utilized efficiently even after the traffic demand changes.

Therefore, an approach to OSPFWS is proposed which can be used online. The

main objective of the thesis is to find the weight settings configuration that provides

less congestion on the links in a limited time. Thus the main focus of this thesis

work is the study of the existing methods for an online system for the OSPFWS

problem. The following is the list of objectives for this thesis:

1. Investigate different strategies of proposed solutions using iterative heuristic

techniques for OSPFWS online system. Investigate the existing online simu-

lation systems and their approaches of finding the solution.
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2. Investigate and study the effect of applying different stored traffic demand’s

weight solutions to a network with a new online traffic demand and computing

the cost and maximum utilization of the network after the above assignment

is made.

3. Provide a method for choosing an initial solution, i.e, weight setting for the

demand at hand.

4. Design and implement an online simulation system (OLS) processing module

that assigns and improves the initial weight solution that is used for the online

traffic demand by adapting TS to the online system.

5. Formulate a new deterministic approach that improves the initial weight so-

lution that is used for the online traffic demand.

1.5 Organization of Thesis

The rest of the thesis is organized as follows. Chapter 2 presents a survey of litera-

ture related to the OSPFWS problem. In particular, problems of dynamic TE and

the solutions to the problem are reviewed, including the alternatives to the online

processing. In Chapter 3, the online OSPF weight setting problem is formulated.

The cost function that is used with the online system is also described. Chapter 4

discusses the implementation details of the proposed online system that adapts TS
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to find solutions in a lesser time. The different modules of the online system are

discussed as well. Chapter 5 provides details on the experimental results of adapt-

ing TS for the online system. The test cases are also described in Chapter 5. The

deterministic approach for the online system is discussed in details in Chapter 6.

The experimental results of the deterministic approach of online system are detailed

in Chapter 7 as well. Chapter 8 provides conclusions and possible future directions

of work.



Chapter 2

Literature Review

2.1 Introduction

Combinatorial optimization is usually used in problems where one has to consider

several different parameters to come up with a solution. OSPF is the most used

protocol for routing in the intra domain networks [6]. OSPF selects the path of

the packets based on the weight of the links. The OSPFWS problem is to find

a set of weights that when applied to the links, and for a given traffic demand,

provide a better network performance. The OSPFWS problem belongs to the class

of combinatorial problems that are NP-hard and hence non-deterministic iterative

heuristics are applied. GA, Sa [24], SimE [22] and TS [25] have been applied to find

the optimized weight settings for a given demand which results in a reduced cost

and improved performance of the network. In the following paragraphs a review

17



18

of various relevant topics, concepts, and solution approaches related to OSPFWS

is provided. Review of the solution approaches to dynamic TE including online

systems approaches is given. The Tabu Search algorithm with time constraint is

also discussed.

2.2 Tabu Search (TS)

TS is a local neighborhood search which is used in solving combinatorial optimization

problems of diverse fields [19]. The search starts with an initial feasible solution and

searches in the neighborhood of the solution by doing a sequence of random moves

or perturbations. The recent moves and their characteristics are stored in a tabu

list until the solution is found or a stopping criteria is met. The purpose of this list

is to ensure that the search is not done in the areas that have been explored before

and thus preventing it from remaining or entering in the local optima. In every

iteration, a probable solution from the neighborhood is generated and is maintained

in the candidate list, and this probable neighborhood solution can be achieved by

making a certain number of moves from the current solution. The best move that

would result in the best solution is accepted only if it is not in the tabu list. If the

best move found is in the tabu list, the best solution is checked against an aspira-

tion criterion and if satisfied the move is accepted. The aspiration criterion takes

precedence over the restrictions in the tabu list. In certain conditions, a move that
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is already in the tabu list is accepted for the simple reason that it may take the

search towards a new region because of the intermediate moves.

The tabu list size and the chosen aspiration criterion are responsible for the TS be-

havior. The search can be intensified or diversified because of short-term, intermediate-

term, and long-term memory components that are of direct relation with the tabu

list size. The major idea of the short-term memory component is to classify cer-

tain search directions as tabu (or forbidden) so as to avoid returning to previously

visited solutions. The TS that is being discussed in this thesis is with short-term

memory component. The goal of the long-term memory component is to diversify

the search into new regions that are different from those examined thus far. The role

of the intermediate-term memory component is to intensify the search and make it

more aggressive. A selected number of best trial solutions generated are chosen and

their features are recorded and compared. The search is done for the solutions that

contain these features.

The goal of the tabu list is to not allow the moves that are in it and hence

restrict the tabu search. In other words, a tabu list maintains the restrictions of the

search and the aspiration criterion helps the search in overriding these restrictions.

This means that if a tabu move is found which is in the tabu list but also happens

to meet a certain aspiration criterion then that move is accepted even if the tabu

list restricts this particular move. This move is accepted in order not to get stuck

with the local optima and look for better solution beyond these neighborhood. The
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online Tabu Search algorithm is the same as the TS algorithm, but the time it takes

to search the neighborhood for the best solution is reduced considerably. The main

modification of the TS to adapt it for the online system is done by providing TS

with an initial solution instead of a random one. The cost of the random solution

used by the TS is far from being optimum. The initial solution that is used by

the Online TS is the optimum solution generated by the Offline TS for a different

demand. The results generated by the Offline TS for the different demands are

stored. These stored results are used as the starting point by the Online TS to look

for a better result for the changed demand. The weights for traffic demands D4, D6,

D8, D10, D11, and D12 are generated using Offline TS. These weights generated by

the Offline TS result in a reduced cost for the respective demands. The Online TS

uses these weights as the initial solution for the new changed traffic demand DR.

All of the optimal solution weights of the traffic demands D4, D6, D8, D10, D11,

and D12 are used as the initial solution from which the TS looks for the optimal

solution for DR. The TS is applied once the initial weight solutions for the demand

are assigned and the cost computed. Then, TS looks for better weight solutions that

would further reduce the cost of the network if these weight solutions are applied

on the links of this network with demand DR. The TS structure is presented in the

following section. The detailed discussion of the working and implementation issues

of TS can be found in [19].
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2.3 Tabu Search (TS) Algorithm

Ω : Set of feasible solutions.
S : Current solution.
S∗ : Best admissible solution.
Cost : Objective function.
ℵ(S) : Neighborhood of S ∈ Ω.
V∗ : Sample of neighborhood solutions.
T : Tabu list.
AL : Aspiration Level.

Begin
1. Start with an initial feasible solution S ∈ Ω.
2. Initialize tabu lists and aspiration level.
3. For fixed number of iterations Do
4. Generate neighbor solutions V∗ ⊂ ℵ(S).
5. Find best S∗ ∈ V∗.
6. If move S to S∗ is not in T Then
7. Accept move and update best solution.
8. Update tabu list and aspiration level.
9. Increment iteration number.
10. Else
11. If Cost(S∗) < AL Then
12. Accept move and update best solution.
13. Update tabu list and aspiration level.
14. Increment iteration number.
15. EndIf
16. EndIf
17. EndFor

End.

Figure 2.1: Algorithm : Tabu Search (TS).
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2.4 Related work

OSPF is an IGP used for routing within the autonomous systems and uses Dijkstra’s

algorithm for calculating the shortest paths within an AS [17]. OSPF is a link-state

routing protocol that sends link-state advertisements (LSAs) to all other routers

within the same hierarchical area. As OSPF routers gather link-state information,

the SPF algorithm is used to calculate the shortest path to each node from within the

network [7]. The link weight is used to decide about the shortest path a packet has

to take. The selection of link weights should be done such that congestion is to be

avoided in the network [23]. Fortz and Thorup [26] have shown that optimization

of the link weights so as to guarantee congestion avoidance and efficient network

utilization is an NP-hard problem.

Fortz and Thorup [26] proposed a local search heuristic and implemented it for

the AT&T backbone network along with different other synthetic networks. The

results in [26] were improved by applying local search heuristic in [27]. A new cost

function formulated by Sqalli et al. considered utilization and the extra load on the

congested links in the network for optimization. This resulted in fewer congested

links and thereby reducing the overall network utilization [22]. Dynamic Traffic

Engineering involves solutions that should consider the new traffic demand and pro-

cessing time constraint. These solutions should be better than the existing solution

and need not be the best possible solution for the changed demand. In [28], Ivan
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et al. have proposed an Adaptive Multi Path algorithm (AMP) for dynamic Traf-

fic Engineering to reduce the congestion in the network with the changing traffic

demands. The AMP is a multi path routing algorithm of the OSPF Optimized Mul-

tipath (OSPF-MP) class. These multi path routing algorithms involve informing

all routers in the network about the load of every link. Then, the routers depend-

ing on this information move traffic from congested to less congested paths. The

OSPF-MP class algorithms require additional data structures and contribute to the

traffic with the link congestion information. The AMP is able to reduce the signal-

ing overhead traffic and memory consumption compared to the rest of OSPF-MP

algorithms [28]. In contrast to the related multipath routing algorithms, AMP does

not employ a global perspective of the network in each node. The AMP restricts

available information to a local scope that results in reducing signaling overhead

and memory consumption [28]. AMP does not require that each node has to know

about all the other paths in the network, thereby reducing memory requirement.

As AMP provides nodes only with local network information about the links to

its direct neighbors, the signal overhead is also reduced. AMP tries to find mul-

tiple alternate paths so that a secondary route could be used and the congested

route avoided. AMP is successful in alleviating the two drawbacks, i.e., signal over-

head and memory structure [28]. The traditional routing protocols are designed for

achieving network robustness and are not capable of adjusting the routes in case of

changing traffic demands. The current Internet routing architecture uses numerical
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values assigned to links, and are called link costs. These link costs are the basis for

the calculation of network paths. Paths between any two nodes in the domain are

determined by minimizing the sum of link costs over all path candidates. If there

are two paths with two different link costs, the path with the lower link cost would

be chosen over the higher one. Simply stated, to make sure that a link is selected in

the path, the cost of that link should be lesser than the other alternative links. This

means that the selection of the path depends indirectly on the appropriate setting of

link cost. In the majority of the ISPs networks, the link cost values are maintained

unchanged for several days. During those days the traffic always takes the same

path from source to destination. In the event of network congestion, the traffic will

still be routed over the congested links [20]. The routing over congested links is done

because the link cost had been set earlier and the paths have been calculated before

the congestion. This results in a reduction of network efficiency. In order to solve

this problem, many approaches have been developed. Multiprotocol Label Switch-

ing (MPLS) [29] is basically a technology for establishing virtual circuits between

any pair of routers in a network domain [30, 8]. MPLS requires extensive network

management requirements for allocating network resources to individual paths and

path maintenance. In contrast to the above mentioned MPLS which is centrally

managed, decentralized approaches also exist. In a decentralized approach, link

costs are dynamically adjusted in proportion to the instantaneous link delays. This

scheme performs well under low and medium loads, but leads to link load oscillations
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for high load. The traffic changes are uneven through out the network and because

of the traffic changes the link weights are changed as well. The changed cost of the

links at which traffic has been changed affects other paths that involve links with

no traffic change by increasing the overall cost for this path. A single cost change

affects multiple paths at the same time. Thus, under heavy loads and with many

single cost changes, we get link load oscillations [13]. The OSPF-MP protocol aims

at achieving optimal load distribution automatically and dynamically, using a link

state protocol flooding mechanism for informing all routers in the network about

the load of every link. Equipped with this information, the routers can shift traffic

from congested to less congested paths and reduce maximum link utilization in the

network [31]. However OSPF-MP protocols require each node to have knowledge of

all the other network paths and overhead in transferring this data on the network

from each node to every other node.

Dynamic Traffic Engineering also employs link congestion avoidance. Link con-

gestion avoidance is employed because link weights used are static and are set con-

sidering long term congestion reduction. This leads to the neglect of short term

traffic changes and hence results in temporary performance degradation. Over a

long period of time, many occurences of similar temporary performance degrada-

tion happen but are not considered. The OLS system consider these temporary

performance degradations in their problem solving approach. Online systems such

as Online Simulation (OLS) system [32] and Online Simulation (OLS) framework
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[33] are used to monitor and generate optimized solutions according to the traffic

changes. The OLS system of [32] measures the network performance, predicts the

network condition, and reconfigures the network parameters according to the sim-

ulation results. The OLS system used only 2 simulation results in concluding the

new parameters for the network. The testbed used in [32] has only 4 routers and

8 nodes and the number of simulation scenarios used is limited to two only. The

online system that is being proposed here will be simulating a more complex and

large scale real network. As the number of nodes are increased in a network, the

change in one of the links weight would affect the other paths link weights as well,

and hence complicate the problem of finding weight solution for the given demand

at hand. The above scenario would resemble the real problems faced in large scale

networks and hence would mean that the proposed online system would be more

suitable in finding the solution for the real networks than the approach outlined by

Tamura et al. [32]. Kaur et al [33] uses a Recursive Random Search (RRS) tech-

nique and has performed simulations for a single large network with 48 nodes only.

Hema et al. in [33] have used the number of function evaluations to show how fast

RRS was able to find a “good” weight setting when compared to other techniques,

and has not shown how much they were able to improve the network performance

after the change in demand traffic. The term “good” weight setting is not discussed

furthermore and no comparison on the solution is detailed. The number of function

evaluations is used as a metric to prove that RRS finds the solution faster than the
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local search heuristics used by Fortz et al. [27].

This thesis contributes towards the OLS processing model that involves an iter-

ative heuristic, namely TS, to find an optimal solution for the demand weights in a

limited time frame. The objective of this thesis is to implement the online simulation

processing using Tabu Search. The study of the feasibility of assigning the weight

solution of different standard demands to a given demand at hand D (mimicking

the changed traffic demand), as an initial solution is also part of the thesis work.



Chapter 3

Problem Description and Cost

Functions

3.1 Problem Statement

The following subsection provides details of notations used to formulate the OSPF

weight setting problem considering cost and maximum utilization.

3.1.1 Notation

G Graph.

N Set of nodes.

n A single element in set N .

A Set of arcs.

28
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At Set of arcs representing shortest paths from all sources to

destination node t.

a A single element in set A. It can also be represented as (i, j).

s Source node.

v Intermediate node.

t Destination node.

D Demand matrix.

D[s, t] An element in the demand matrix that specifies the amount of

demand from source node s to destination node t. It can also be

specified as dst.

wij Weight on arc (i, j). If a = (i, j), then it can also be represented as

wa.

cij Capacity on arc (i, j). If a = (i, j), then it can also be represented

as ca.

Φ Cost function.

Φi,j Cost associated with arc (i, j). If a = (i, j), then it can also be

represented as Φa.

δt
u Outdegree of node u when destination node is t.

δ+(u) Outdegree of node u.

δ−(u) Indegree of node u.
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lta Load on arc a when destination node is t.

la Total load on arc a.

f
(s,t)
a Traffic flow from node s to t over arc a.

3.1.2 Assumptions and Terminology

1. A single element in the set N is called a “Node”.

2. A single element in the set A is called a “Arc”.

3. A set G = (N, A) is a graph defined as a finite nonempty set N of nodes and

a collection A of pairs of distinct nodes from N .

4. A “directed graph” or “digraph” G = (N,A) is a finite nonempty set N of

nodes and a collection A of ordered pairs of distinct nodes from N ; each

ordered pair of nodes in A is called a “directed arc”.

5. A digraph is “strongly connected” if for each pair of nodes i and j there is a

directed path (i = n1, n2, ..., nl = j) from i to j. A given graph G must be

strongly connected for this problem.

6. A “demand matrix” is a matrix that specifies the traffic flow between s and t,

for each pair (s, t) ∈ NXN .

7. (n1, n2, ..., nl) is a “directed walk” in a digraph G if (ni, ni+1) is a directed arc

in G for 1 ≤ i ≤ l − 1.
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8. A “directed path” is a directed walk with no repeated nodes.

9. Given any directed path p = (i, j, k, ..., l, m), the “length” of p is defined as

wij + wjk + ... + wlm.

10. The “outdegree” of a node u is a set of arcs leaving node u i.e., {(u, v) : (u, v) ∈

A}.

11. The “indegree” of a node u is a set of arcs entering node u i.e.,{(v, u) : (v, u) ∈

A}.

12. The input to the problem will be a graph G, a demand matrix D, and capacities

of each arc.

3.1.3 Problem Formulation

The OSPF weight setting (OSPFWS) problem can be stated as follows: Given a

network topology and predicted traffic demands, find a set of OSPF weights that

optimizes network performance. More precisely, given a directed network G =

(N, A), a demand matrix D, and capacity Ca for each arc a ∈ A, we want to

determine a positive integer weight wa ∈ [1, wmax] for each arc a ∈ A such that

the objective function or cost function Φ is minimized. wmax is a user-defined upper

limit. The chosen arc weights determine the shortest paths, which in turn completely

determine the routing of traffic flow, the loads on the arcs, and the value of the cost



32

function Φ. The quality of OSPF routing depends highly on the choice of weights.

Figure 1 shows a topology with edge numbers and assigned weights within the range

[1, 20]. In this case, in ascending edge number sequence, i.e., 1 2 3 ... 14, the solution

can be specified as:

Solution=(1, 5, 18, 13, 4, 15, 18, 17, 7, 16, 19, 16, 14, 3).

The above solution lists the weights that are for the following edge numbers:

Edge numbers=(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14).

3.2 Mathematical model and Cost Function

Using the notations described in the earlier section, the problem can be formulated

as the following multi-commodity flow problem [22, 34]. For detailed cost analysis,

refer to the work done by Fortz et al in [22, 34].

minimize Φ =
∑

a∈A Φa(la)

subject to these constraints:

∑
a∈δ+(u)

f (s,t)
a −

∑
a∈δ−(u)

f (s,t)
a =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−D(s, t) if v = s,

D(s, t) if v = t, v, s, t ∈ N, (1)

0 otherwise,
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Figure 3.1: Representation of a solution to an OSPF weight setting problem.

la =
∑

(s,t)∈NXN f
(s,t)
a a ∈ A, (2)

f
(s,t)
a ≥ 0 (3)

The constraints listed above are taken directly from the work done by Fortz et al

in [22, 34].

Constraints (1) are flow conservation constraints that ensure that the desired

traffic flow is routed from s to t, and constraints (2) define the load on each arc. As

Φ is a convex objective function and all constraints are linear, this problem can be

solved optimally in polynomial time [27].
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In experiments, Φa are piecewise linear functions, with Φa(0) = 0 and derivative,

Φ
′
a(la) given by:

Φ
′
a(l) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 ≤ l/ca < 1/3,

3 for 1/3 ≤ l/ca < 2/3,

10 for 2/3 ≤ l/ca < 9/10, (4)

70 for 9/10 ≤ l/ca < 1,

500 for 1 ≤ l/ca < 11/10,

5000 for 11/10 ≤ l/ca < infinity

3.3 Formulation of the Cost Function

In this section, detailed explaination of the steps to compute the cost function Φ

for a given weight setting {wa}a∈A and a given graph G = (N, A) with capacities

{ca}a∈A and demands dst ∈ D are given. This procedure is also described in [26].

A given weight setting will completely determine the shortest paths, which in

turn determine the OSPF routing, and how much of the demand is sent over which

arcs. The load on each arc gives us the link utilization on this arc, which in turn

gives us a cost using the function Φa. The total cost Φ is the sum of the individual

costs Φa where a ∈ A.
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The basic problem is to compute the arc loads la resulting from the given weight

setting {wa}a∈A. The arc loads are computed in five steps. For all demand pairs

dst ∈ D, consider one destination t at a time and compute partial arc loads lta ∀ t ∈

N̄ ⊆ N , where N̄ is the set of destination nodes.

1. Compute the shortest distances dt
u to t from each node u ∈ N , using Dijkstra’s

shortest path algorithm [35]. Dijkstra’s alogrithm usually computes the dis-

tances away from source s, but since we want to compute the distance to the

sink node t, the algorithm will be applied on the graph obtained by reversing

all arcs in G.

2. Compute the set At of arcs on shortest paths to t as,

At = {(u, v) ∈ A : dt
u − dt

v = w(u,v)}.

3. For each node u, let δt
u denote its out degree in Gt = (N,At), i.e.,

δt
u =| {v ∈ N : (u, v) ∈ At} |

If δt
u > 1, then traffic flow is split at node u to balance the load.

4. The partial loads lta are computed as:

(a) Nodes v ∈ N are visited in order of decreasing distance dt
v to t.
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(b) When visiting a node v, for all (v, w) ∈ At, set

lt(v,w) = 1/δt
v(dvt +

∑
(u,v)∈At lt(u,v))

5. The arc load la is now summed from the partial loads as:

la =
∑

t∈N̄ lta

The evaluated costs are normalized to allow us to compare costs across different

sizes and topologies of networks.

3.4 Normalization of the Cost Function

The normalization of cost is given in [26]. Cost is normalized to keep it independent

of the network topology and demand matrix. Let Ψ be the cost if all the flow was

sent along the hop-count shortest paths and the capacities matched the loads. Let

Δ(s, t) be the hop-count distance between s and t. Ψ is calculated as,

Ψ =
∑

(s,t)∈NXN (32/3 . D[s, t] . Δ(s, t))

The normalized cost function is,

Φ∗ = Φ/Ψ
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3.5 Online System Problem Formulation

In this section, the online system problem is described. Given a network topology

and a new traffic demand, find a set of OSPF weights that optimizes network perfor-

mance. The OSPF weights should be found within a certain small time interval. The

weight solution of another traffic demand is provided as an initial point. In other

words, given a directed network G = (N,A), capacity Ca, and initial weight Wia

for each arc a ∈ A, we want to determine a positive integer weight wa ∈ [1, wmax]

for each arc a ∈ A such that the objective function or cost function Φ is minimized

for the new traffic demand matrix D, and this has to be done within a small time

interval T .

The online system comprises of three modules, namely Monitor, Improve, and Con-

figure. The Monitor module simulates the change in the traffic demand and triggers

the Improve module with the changed traffic demand matrix D. The problem of

finding weight solutions described in the start of the section is handled by the Im-

prove module. The Improve module has to find the initial weight solution Iwa that

belongs to the same directed network G = (N,A), with the same capacity Ca for

each arc a ∈ A but with a different traffic demand matrix ID. When the Improve

module has found the initial weight solution Iwa with the different traffic demand

matrix ID, an attempt to improve these weights Iwa for the given traffic demand

matrix D within the time interval T is done. Once the Improve module has found
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the weight settings for the new traffic demand matrix D within the time interval T ,

the results are passed to the Configure module. The Configure module is assumed to

apply the weights on the links in the network. The Improve module is implemented

with the Online TS and the Deterministic Approach.

The problem of finding weights for the changed traffic demand in the network using

one of the standard demand weights as an initial solution within a limited time is

solved in this thesis.



Chapter 4

Online System

Section 4.1 describes the dynamic TE and the Online Simulation (OLS) concepts.

Section 4.2 discusses the terms, definitions, and their relation with each other. The

three modules of the online system and their implementation details are presented

in section 4.3. The limitations and challenges of the OLS are discussed in section

4.4. The OLS algorithm is presented in section 4.5. The Online TS algorithm is

described in section 4.6. The differences between the Online and the Offline TS

algorithm are also listed in this section.

4.1 Introduction and Motivations

Dynamic Traffic Engineering advocates the use of systems that cater to the changing

traffic demand and are called online systems. The goal of dynamic Traffic Engineer-

39
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ing is to respond to the network parameters such as traffic demand to ensure better

operation of the network that fits the current network situation. In dynamic Traffic

Engineering, load balancing is achieved by changing the link weight depending on

the local traffic conditions. The load balancing achieved by changing the link weight

depending on the local traffic conditions is called adaptive routing [28].

The problems associated with adaptive routing or traffic sensitive routing are [20]:

1. The frequent route changes that need to be done when every local traffic

condition is considered results in an unstable system.

2. It considers local traffic changes and does not consider the state of the com-

plete network, thereby it cannot achieve optimization in the complete network

resource utilization.

To overcome the above problems, an Online Simulation (OLS) system is used for

dynamic Traffic Engineering. The first problem is taken care of by maintaining a

lower bound on the time period of the traffic change, i.e., not every change in traffic

demand is catered with new weight settings. The OLS does not only work with the

local traffic conditions, but also considers the whole network’s traffic demand. This

is a common assumption in all the TE work at the intra-domain level.
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4.2 Terms, Definitions, and Relations

The main difference between the online system and the existing offline system is the

time spent in finding the solution weights for the network with the changed demand.

The offline system has no restriction of time whereas the online system has very lim-

ited time to reach an acceptable solution. The time spent by the online system in

finding a good OSPF weights solution for the network is called the processing time.

In other words, the time that is required for finding the new weight settings for the

network because of the changed traffic demand is called processing time.

The Period of Traffic Demand Change: The online system continuously moni-

tors the network and has to find the solution weights for the demand changes in the

network. These demand changes are unpredictable. Every network demand change

is not catered to, instead the demand change within a time period is looked after. If

every demand change is responded to, then the system will not generate favorable

results because the trigger will not allow any time gap to update the new found

weights. To understand this scenario, let us discuss it through an example. Let the

time starts at ‘t’, and we will be discussing the scenario for time ‘t’ onwards. Let

us say that there is a demand change at the start of the time ‘t’+5 minutes and

the online system has been triggered and the processing module starts looking for

the solution with the new network demand change. The processing time spent in

finding the new weights is, e.g., 5 minutes. The processing module generates the
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new weights for the network in 5 minutes. Now the time from the start is ‘t’+10

minutes and the update of the weight changes has to be applied. Let us say that the

time spent in updating the new weights is 2 minutes. That gives us the latest time

of ‘t’+12 minutes. In this time period from ‘t’ to ‘t’+12 minutes, the network has

seen the change in the traffic demand and as a result it triggered the online system

and the processing of the new weights. The update is also done in the time span of

12 minutes. For example, another change in the traffic demand at ‘t’+10 minutes

happens, while the processing of the earlier traffic demand change is still underway.

This new change in the traffic demand triggers the online system and the process-

ing module starts finding the new weights. After ‘t’+15 minutes the online system

comes up with the new weights. The solution weights that have been found for

the first traffic demand change in the network had been updated at ‘t’+12 minutes

would be changed at ‘t’+17 minutes. The new weights were used only for 5 minutes

and were changed again. In this scenario, the new weights have been changed in just

5 minutes. Consider another scenario in which the network traffic demand changes

at ‘t’+11 and at ‘t’+12 minutes. Then, the new weights that cater to the demand

change at ‘t’+11 are updated at ‘t’+18 minutes (processing time = 5 minutes and

update time = 2 minutes) and the very next minute the new weights associated with

the traffic demand at ‘t’+12 minutes change. This example helps in understanding

that every traffic demand change is not fruitful to attend to. It is better to cap the

time for the traffic demand change so as to utilize the 5 minutes processing time
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spent, otherwise the processing time of 5 minutes is wasted in finding new weights

which will be replaced within one minute by the other new weights (corresponding

to the more recent traffic demand change).

Convergence time : Once the processing module of the online system finishes

finding the OSPF weights, it forwards them for the implementation module to ap-

ply these new weight settings. The new weights are sent to the nodes in the network

and the nodes recompute their tables for the OSPF link costs. The time taken by

the network to implement the new node weights and update the link cost tables with

the newly computed paths is called the convergence time. The convergence time in

OSPF networks in the experimental setup used in [35] is approximately 15 seconds.

Update time : This is the amount of time taken by the online system to apply

the new weight solutions to the nodes in the network. The update time is the time

required to update of the new weight solutions to the corresponding links.

The Update time and the Convergence time are two different measures. The Update

time is concerned with only assigning the new weight solutions to the links. The

Update time is the time needed by the new weight solutions to reach the nodes,

whereas the Convergence time is the time taken by the network nodes to recompute

their paths and path costs in the routing tables. In other words, the time taken

by the network to converge on the new routes and their cost is called Convergence

time. The Update time is very much greater than the Convergence time. The Con-

vergence time in OSPF is in the order of few seconds, typically 15 seconds [35], while
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the Update time is in minutes.

Overhead: It is the extra time spent in processing, which is more than the time

spent for applying the updates. In other words,

Overhead = processingtime/Updatetime.

The goal of the online system is to maintain the overhead at its lowest, so that the

system does not spend more time in finding the weights rather than using them.

The processing time is dependent on other factors such as Update time, Period of

Traffic Demand Change, Convergence time, and the Overhead. The online system

has to do the processing in a limited time. The Processing time given for the online

system to find the solution and the quality of the solution it reaches are dependent

on one another. If the processing time is increased and the online system is allowed

to look for the solution within this increased time then the quality of the solution it

finds in the increased time would be better than the quality of the solution obtained

within a shorter time. The quality of the solution and the processing time of the

online system are directly proportional. Figure 4.1 is plotted for the best cost in

function of the time. The best cost is on the Y-axis and the time taken for the

processing is on the X-axis. Figure 4.1 shows the relation between the best cost

and the processing time for the Online system. If the processing time is increased,

it means that the quality of solution increases thereby resulting in fewer number of

updates. Fewer number of updates means an increase in the time interval between

two consecutive updates.
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Figure 4.1: Best Cost Versus Processing time in an Online System.

4.3 Modules

The online system proposed works with the traffic demand matrix for the complete

network as an input and looks for a solution that when applied improves the com-

plete network’s performance.

The concept of the OLS system is depicted in the Figure 4.2. The database of the so-

lution weights is the collection of the solutions generated by the Offline Tabu search.

The sorting process of the database is done according to the network topology and

the traffic demand matrix for which the solutions were generated.

The OLS (systems) comprise of three modules, in general, as follows [32] [33]:

1. Monitor: The job of this module is to monitor the network performance based
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Figure 4.2: OLS Design Concept.

on different network performance metrics. The monitor model is assumed to

work and is not implemented.

2. Improve: The Monitor module submits input to this module. The Improve

module takes the input traffic demand from the Monitor module along with

the network topology and the resource capacity, and then finds the optimized

weight settings to improve the resource utilization and reduce the cost.

The Improve module is the essence of the online system because it has to do

all this processing within a real time constraint and its results ensure that

optimization is achieved. The Improve module is implemented in this thesis.

3. Configure: Once the Improve module is finished with its work and has come

up with the new weight settings, the new weight settings are passed to this

module. The job of this module is to configure the new weight settings on the

links. In this thesis, the Configure module is not implemented.
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4.4 Limitations and challenges

The Online Simulation (OLS) system is used for dynamic Traffic Engineering. On-

line systems are required to respond to the short term traffic fluctuations and to

find an optimized solution weights for the network resources. The main difference

between the online and offline systems is the time constraint and the quality of the

solution. The offline system of finding weight settings for OSPF has ample time

to find the solution weights such that they minimize the cost and resource utiliza-

tion. The online system on the other hand has to come up with the OSPF solution

weights in a very short time (compared to the time offline systems take), i.e., the

online system has to be a lot faster. The online system has to be fast on one hand

whereas on the other it does enjoy a relaxed goal of cost and utilization reduction

with comparison to the offline system. If the simulation time is increased, it would

result in better solutions but the time has to be limited to satisfy the constraint of

an online system. Hence, the quality of the solution is relaxed to limit the simulation

time.

The online system needs to come up with a solution that is better than the existing

solution. The word marginally is loose and has to be viewed as a comparative term.

The comparison refer to the gain achieved in terms of network performance if the

new settings are applied to the effort applied in terms of traffic overhead generated

in setting the new weights on the links in the network. The effort refers to the time
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spent in sending LSAs so that the OSPF converges and comes up with new shortest

paths for all the routers. The online system searches for a weight solution for all the

network links and is not restricted to a local set. The OLS does not limit itself to the

local traffic conditions only, but rather considers the whole network’s traffic demand

and hence is able to optimize the performance of the network. The OLS is triggered

by the over-utilization of the network resources. In this work, the triggering of the

OLS is assumed. It then starts it search with a given initial solution and looks for

a best solution according to the traffic demand. The online system simulates the

network conditions and tries to come up with the best possible solution within the

time required.

The offline system uses TS to look for a better solution for the OSPFWS. The offline

system generates a solution for each network topology spending almost one hour of

time to reach an optimal solution for each of the network standard traffic demands.

These solutions that have been gathered are specific to the given traffic demands.

The offline system obtains this solution by starting from a random initial solution

and then searching the neighborhood space to get the optimal solution. However,

the Online Simulation system improves on that by taking the already generated

optimal solution for the standard traffic demands as the initial solution and then

traversing the neighborhood space for an optimal solution for the new given traffic

demand. The initial solution (optimal solutions of standard traffic demands) gives

the online system a good potential solution space as a starting point to search on-
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wards. To model a new traffic demand a random demand has been used which is

different from all the existing standard traffic demands. The randomness of this

traffic demand helps in simulating a demand change in the network. The existing

standard demands are different for each network topology and hence the random

traffic demand created is different from these standard traffic demands as well.

The core of the OLS is the Improve module or the processing module. The terms

Improve and processing are used interchangeably throughout the thesis to indicate

the process of finding better weight solutions to suit the new traffic demand. The

Monitor module is responsible for triggering the processing module. But, since the

processing module is simulated, this trigger is not implemented. The Configure

module is assumed to assign the weights to the links and hence has not been imple-

mented. The monitor and the configure module are not implemented. The method

of choosing the initial solution (out of all the stored demand optimal solutions) is

based on the observation of which stored optimal demand solution serves as best

initial solution from the generated results. The demands values that are present in

a demand file are added up to give a total value of the demand. For instance, D4

is smaller than D6 and D8. The demand which is to be used as the initial solution

by the OLS system is the one which is the closest to the new traffic demand. The

time duration for which the processing of the solution is done in the Online TS is of

360 seconds. This time frame can also be reduced, and the gain in the cost of the

solution could still be observed.
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4.5 Online Simulation (OLS) Algorithm

START

1. Get input network graph to simulate a network;

2. Get input network resource capacity and store capacity for cost and utilization
calculation of the simulated network;

3. Get input network traffic demand and store traffic demand. This step simu-
lates the change in the network traffic demand and simulates the triggering of
the online system. In a real setup, the triggering will be done by the Monitor
module of the online system;

4. Get initial solution weight settings. The Monitor module is assumed to provide
the Improve module with the initial weight setting from the database;

5. Compute shortest path;

6. Calculate fortz cost with initial weight solution settings to the given traffic
demand;

7. Calculate maximum utilization and number of congested links with the initial
solution weight settings applied;

8. Call tabu search to find weight solutions from the neighborhood of the initial
solution to improve the cost, maximum utilization, and number of congested
links;

9. The results are ready to be updated by the configure module (which is not
implemented here);

End

Figure 4.3: Algorithm : Online Simulation Algorithm (OLS).
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4.6 Online Tabu Search (TS) Algorithm

The Online Tabu Search (TS) algorithm is listed in this section. The Online Tabu

Search (TS) algorithm is similar to the TS algorithm listed in the Chapter 2, except

for few differences.

Ω : Set of optimized solutions for different standard demands.
S : Current solution.
S∗ : Best admissible solution.
Cost : Objective function.
ℵ(S) : Neighborhood of S ∈ Ω.
V∗ : Sample of neighborhood solutions.
T : Tabu list.
P : The period of time under which the solution has to be found.
AL : Aspiration Level.

Begin
1. Start with an initial solution S ∈ Ω.
2. Initialize tabu lists and aspiration level.
3. For the time duration P Do
4. Generate neighbor solutions V∗ ⊂ ℵ(S).
5. Find best S∗ ∈ V∗.
6. If move S to S∗ is not in T Then
7. Accept move and update best solution.
8. Update tabu list and aspiration level.
9. Increment iteration number.
10. Else
11. If Cost(S∗) < AL Then
12. Accept move and update best solution.
13. Update tabu list and aspiration level.
14. Increment iteration number.
15. EndIf
16. EndIf
17. EndFor

End.

Figure 4.4: Algorithm : Online Tabu Search Algorithm.
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The main difference in the two algorithms is the Ω that is used in both the Online

TS and the Offline TS algorithm. The Ω of the Offline TS algorithm is the set of

random feasible solutions, whereas the Ω of the Online TS algorithm is the set of

optimized solutions that were generated for different standard demands. The time

required to terminate the algorithms is also different. The Online TS algorithm is

allowed to run for a very short duration compared to the Offline TS algorithm. To

summarize, the Online TS algorithm is similar to the Offline TS algorithm, but with

shorter time duration and a different set of initial solutions.



Chapter 5

Experimental Results for the

Online TS

The experimental results for the online simulation processing system implemented

by using the TS iterative heuristic are presented here. The results are organized in

graphs and tables to give a clear view of the trends.

5.1 Test Cases

Seven different topologies covering three types of graphs viz. Hierarchical, Random,

and Waxman Graphs were used as test cases in this work. These are depicted in

Table 5.1. The testcases and the demand files has Table 5.1. These testcases and

the demand files has also been used as input in the offline TS work done by Asad

53



54

et al in [25]. For each topology the input files include graph, demand, and capac-

ity. The graph input file contains information regarding nodes and arcs showing

connectivity of the entire network. The demand file contains the values of demand

(traffic flow) from each source node to every other destination node in the network

and the capacity file indicates the capacity of each arc. Table 5.2 shows different

levels of demand values for six topologies. All these demands were used in the ex-

periments. The traffic demand that is used as Random traffic demand is called DR.

The value of the random demand is 23216 and it is used in all the experiments. The

random demand is different from all the standard traffic demands of all the network

topologies.

Table 5.1: Test Cases.

Test Code Network type N A
h100N280a 2-level hierarchical graph 100 280
h100N360a 2-level hierarchical graph 100 360
r100N403a Random graph 100 403
r100N503a Random graph 100 503
r50N245a Random graph 50 245
w100N391a Waxman graph 100 391
w100N476a Waxman graph 100 476

Table 5.2: Demand Table.

Demand r100N403a r100N503a w100N391a w100N476a h100N280a h100N360a
D4 23099 33531 16158 21164 1535 4136
D6 34648 50297 24237 31747 2303 6203
D8 46198 67063 32316 42329 3070 8271
D10 57747 83829 40395 52911 3838 10339
D11 63522 92211 44434 58202 4221 11373
D12 69297 100594 48474 63493 4605 12407
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5.2 Results for Online Processing using Tabu Search

5.2.1 Performance Metrics

Experimental results have been recorded for the following four performance metrics:

1. Cost

2. Maximum Utilization (MU)

3. Percentage of Extra Load (PXLoad)

4. Number of Congested Links (NOCL)

The utilization of the link is the ratio of load on the link to its capacity. If

the utilization of the link is more than one, the link is congested. The Maximum

Utilization is the utilization of the maximum utilized link in the network. In other

words, it is the utilization of the link having the highest degree of congestion. The

extra load on a particular link is the load present in excess to its capacity. If the

load on the link is less than its capacity (utilization < 1), then the extra load on

that link is zero. The percentage of extra load is the sum of the extra load present

in the network divided by the sum of capacities of congested links. Congested links

are the links which have a utilization greater than 1 (i.e., load on the link exceeds its

capacity). The statistics for these performance metrics are plotted with respect to

the the initial solution weights applied to the DR along with the solution generated
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by the OLS system. The cost of applying the Offline TS for 1 hour to the new traffic

DR is displayed as well, and is used as a baseline to compare the Online TS with

the Offline TS method. The X axis displays the cost, and the Y axis displays the

scaled demand.

5.2.2 Cost

Figure 5.1 shows the cost curve for DR in h100n280a when applied with different

demand weights as initial solutions. The baseline is the cost achieved when the

Offline TS is applied to the new traffic demand DR. The baseline cost will be the

best of all because the solution weights are obtained by applying the Offline TS

using DR for 1 hour. The mean of the cost if we use the different demand’s optimal

weight solution as the initial solution and apply it to the new traffic DR is 12 %

higher or more than the cost that would be generated by applying the Offline TS

for 1 hour. The mean of the cost of applying the Online TS to the random traffic

demand DR is 2 % higher than the cost generated by applying the Offline TS for

1 hour to the random traffic demand DR. The application of the Online TS to the

initial solution used of a different traffic demand to DR gives a 10% improvement

in just 360 seconds. We know that the Offline TS starts with a random initial

weight settings to look for an optimal solution. An improvement of 21% of the cost

is achieved, if the optimal weight settings of standard demands are used as initial

solution, instead of random weight settings. The above improvement is an average
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over all test case results.

D4 weight solution is the best initial solution if no further improvements are

done. D6 weight settings is the best weight settings solution in terms of cost after

applying the Online TS. D10 weight settings shows the best improvement obtained

by applying the Online TS, eventhough the initial cost of applying D10 weight set-

tings is the highest.
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Figure 5.1: Cost Versus Scaled Demand on h100n280a Network .

Table 5.3: Summarized results for all test cases.

Topology Measure1=OW/Offline Measure2=Online/Offline Measure3=IW/OW
r100n403a 1.042 1.017 43
r50n245a 2.82 1.06 0.5
r100n503a 1.078 1.02 11
w100n476a 1.12663 1.039 84
w100n391a 1.1382 1.0503 223
h100n280a 1.12 1.02 1.21
h100n360a 3.04 1.64 3.09
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The average of the cost is calculated over all the demands for each network

topology,i.e., the average cost of Online TS is calculated by taking the mean of the

online costs for D4, D6, and so on. Column 1 of Table 5.3 lists the network topologies

used in the simulation. Measure 1 used in column 2 is a ratio, the numerator of

the ratio is the average cost achieved when optimal weight solution of a standard

demand is used as initial solution, and the denominator is the cost of applying the

Offline TS to the DR. Measure 1 is a metric of cost performance of optimal weight

settings of a standard demand is used as solution for DR in comparison to the Offline

TS cost for DR. Measure 2 used in column 3 is also a ratio, where the numerator

of the ratio is the average cost when the Online TS is applied, and the denominator

is the cost of applying the Offline TS to the DR. Measure 2 is metric to compare

the costs of the Online TS solution compared to the Offline TS solution for DR.

Measure 3 in column 4 is a ratio, whose numerator is the cost of the random initial

solution used by the Offline TS, and the denominator is the average cost achieved

when optimal weight solution of a standard demand is used as the initial solution.

Measure 3 is the metric to compare the cost of the random initial solution used by

the Offline TS with the cost of the initial solution used by the Online TS. Let us

look at the results of r100n503a, the measure 1 indicates that if the optimal weight

solution of a standard demand is used as the initial solution, the cost is increased

by just 7% compared to the cost generated by the Offline TS which should be the

best. Measure 2 indicates that by applying the Online TS, the cost is increased by
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just 2% compared to the cost generated by the Offline TS. Measure 2 also indicates

a 5% improvement in the cost when compared to Measure 1. Measure 2 is the cost

generated by applying Online TS to the initial solution.

Based on the results obtained, it is recommended that the weight solution of

a standard demand should be used as an initial solution for finding the optimal

weights for the random demand. To further improve the cost, Online TS should be

applied to this initial solution. The optimal weight solution of the standard traffic

demand used as initial solution is much better in terms of cost when compared to

the initial random weight solution used by Offline TS. If the time is not sufficient

enough to employ Online TS, using the weight solution of the standard demand as

a solution is still highly recommended. If there is enough time, Online TS should

be employed to improve the cost further. The results for the best cost for other

topologies are shown in Appendix-A.

5.2.3 Maximum Utilization

Taking the same test case h100n280a, we further present the other performance met-

rics discussed earlier. Higher Maximum Utilization indicates more traffic demand

than the link capacity and is bad for the network performance. The Maximum

Utilization in the Figure 5.2 is the Maximum Utilization of the standard demand

weight settings solution used for DR. Figure 5.2 shows the comparison of the Max-
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imum Utilization in the network before and after applying the Online TS. For D11,

the maximum utilization has been reduced considerably after applying the Online

TS. The results for other demands maximum utilizations are very close to what they

were before applying the Online TS, except for D10. The D6 maximum utilization

has been increased after applying the Online TS, eventhough the D6 cost has im-

proved. This shows that the improvement of the initial weight solution to reduce

the cost could result in an increase of the maximum utilization. To summarize, the

maximum utilization of the initial solution is increased after applying the Online

TS. In most test cases, maximum utilization results of the Online TS are better

when compared to the Offline TS.
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5.2.4 Number of Congested Links

The next performance metric is the Number of Congested Links (NOCL). The results

for the network h100n280a are presented in Figure 5.3. The number of congested

links of the Online TS solution for different demands are close to the number of

congested links of the Offline TS solution, except for D6. For D11, the number of

congested links of the Online TS and the Offline TS solution are same. The number

of congested links in the Online TS solution for D6 are less compared to the Offline

TS solution. The number of congested links in D6 have increased after applying the

Online TS, eventhough D6 cost has improved. This shows that the improvement

of the initial weight solution to reduce the cost could result in an increase in the

number of congested links. The number of congested links exist if the maximum

utilization is higher than 1. For all the test cases that have a maxumum utilization

under 1 the number of congested links are zero.

To summarize, the number of congested links of the initial solution are increased af-

ter applying the Online TS. The number of congested links in the solutions generated

by the Online TS and the Offline TS for the same demand are close.

5.2.5 Percentage of Extra Load

Finally, the results for the Percentage of Extra Load (PXLoad) for the test case

h100n280a are shown in Figure 5.4. The extra load is a very good measure of the
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Figure 5.3: Number of Congested Links Versus Scaled Demand on h100n280a Net-
work.

amount of congestion in the network. For D12, the PXLoad of the Offline TS and the

Online TS is same. The PXLoad in D6 has decreased after applying the Online TS,

along with the cost. This shows that the improvement of the initial weight solution

to reduce the cost could result in an improvement in PXLoad. The PXLoad is

reduced because of the improvement in the maximum utilization and the reduction

in the number of congested links. The PXLoad is zero if the number of congested

links are zero, and the maximum utilization is under 1. For all the test cases, the

PXLoad is zero if the maximum utilization is under 1 and the number of congested

links are zero. However, in few test cases, the PXLoad increases with the increase

in the maximum utilization and the number of congested links.

To summarize, PXLoad of the initial solution is reduced after applying the Online
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TS. The Offline TS also improves the PXLoad of the initial solution.
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Figure 5.4: Percentage of Extra Load Versus Scaled Demand on h100n280a Network.

The cost results for all the test cases are shown in Appendix-A for reference.

The cost comparison shows that the Online TS was found to improve all demand

solution weights costs. The most important point of the Online TS was its ability

to improve costs even when using higher demands for initial weight solutions.

Higher demands have additional load on the network and hence have high possi-

bility of links getting congested. The solutions for these higher demands use weights

that consider this additional load and try to avoid links congestion. To avoid links

congestion, higher weights to these links (that have to bear the additional load) are

assigned. When this weight is applied to other random traffic demands like DR,

it would result in the under utilization of these links (because these links do not

have additional load). The concept of using another demand’s weight settings as

the initial solution to the new traffic demand at hand gives better starting point for
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the random traffic demand solution in comparison to the random solution used by

the Offline TS.



Chapter 6

Deterministic Approach

6.1 Motivation

The Deterministic Approach (DA) is an attempt at finding the solution for the

OSPFWS online problem in a deterministic way. The DA takes into consideration

that the weight solution that is being used as the initial point is from a traffic

demand which is different from the one for which a solution is being searched.

The DA looks at both the demands, i.e., demand used for the initial solution and

the given traffic demand. Basically, the DA looks at the difference in both the

demands. To understand how the DA works, let us look at it step by step. Let us

say that we have a random traffic demand called DR for a network. To search for the

optimal solution weights for this traffic demand, using an optimal weight solution

of a different standard traffic demand say D8 as an initial solution is better than

65
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using a random weight solution was already shown in Chapter 5 . The experimental

results discussed in the Chapter 5 show that applying a different weight solution of

a standard demand as the initial weight setting gives an improved and better cost

in comparison to the random initial solution used by the Offline TS. We are using

the D8 weight solution as the initial weight setting for DR. After the application of

D8 weights, the calculation of the cost is done. Then, the process of refining the

weights that have been applied is started. The aim of the refinement process is to

improve on this cost to lead to a better solution resulting in better performance of

the network. So, if we observe that DR is different from D8 and hence applying D8

weight solution for DR does not guarantee the best solution for DR. Then, this D8

weight solution has to be refined for DR. If the network topology is the same, the

capacities of the links remain the same, and the only changed input is the demand,

then it is safe to say that the demand has an influence on the weights that are being

selected for the optimal solution. We have been able to say in the above lines that if

a deterministic approach has to be built, then it should exploit the influence of the

input traffic demand on the weight solution. The DA does exactly that, it takes the

initial solution as the weights solution of D8 and applies them to DR. The outgoing

demands from each node in D8 are added up. The outgoing demands of each node

in DR are also added. The DA then finds the nodes which have different traffic

demands in D8 and DR. DR and D8 ratio is calculated to get the difference in the

demands at the node level. From all these nodes, the one with the highest ratio is
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selected. The highest ratio is selected because it represents the demand at a node in

DR which is the most different from the D8. Hence, the weights that are being used

at this node needs to be changed. In order to suit the demand in DR, the weights

at all the outgoing links at this node are multiplied with the ratio that has been

calculated earlier. The approach uses only the outgoing demands for comparison

and refinement. The DA refines the weights of all the outgoing links of this single

node, which has the most different traffic demand in DR compared to the D8. The

following section details the algorithm of the DA approach.

6.2 Deterministic Approach(DA) Algorithm

M is the number of outgoing links from j.

N is the number of nodes in the network.

p[j][K] is the traffic demand from node j to node K in demand initial.

d[j][K] is the traffic demand from node j to node K in DR.

W [j][K] is the weight at the outgoing link from node j to node K

NW [j][K] is the new weight at the outgoing link from node j to node K

START

1. Receive input network graph.
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2. Receive input network resource capacity and store capacity for cost and uti-

lization calculation of the simulated network.

3. Receive input new network traffic demand and store traffic demand DR.

4. Take the nearest demand weight solutions (say demand initial) to the given

DR and then apply these weights to the DR. (Here we are using the weight

solution of the demand that is closer to our DR, as the initial solution).

5. Compute the sum of the demands of all outgoing links at each node in the

initial demand as:

For j = 1 to N Do

For K = 1 to M Do

di[j] = di[j] + p[j][K] ;

EndFor K

EndFor j

6. Compute the sum of the demands of all outgoing links at each node in DR as

For j = 1 to N Do

For K = 1 to M Do

dr[j] = dr[j] + d[j][k] ;

EndFor K

EndFor j
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7. Compute and maintain an array ‘Ratio’ for all the ratios, for each node of the

network.

For j = 1 to N Do

Ratio[j]=dr[j]/di[j];

EndFor j

8. Find the largest value in array ‘Ratio’ called dL.

Set dL=0 and index=0;

For j = 1 to N Do

If dL < Ratio[j] Then

Set dL=Ratio[j];

Set index=j;

EndIf

EndFor j

9. Maintain an array ‘XY’ and store the demands at all outgoing links from the

node that corresponds to the ratio dL. (getting all the demands whose weights

has to be recomputed)

Set j = index

For K = 1 to M Do

XY [K] = d[j][K] ;

EndFor K
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10. Compute new weights ‘NW’.

Set j = index

For K = 1 to M Do

NW [j][K] = W [j][K] ∗ dL ;

EndFor K

11. Assign the new weights to the outgoing links of the node that correspond to

the ratio dL.

Set j = index

For K = 1 to M Do

W [j][K] = NW [j][K];

EndFor K

12. Calculate the cost;

End

Figure 6.1: Algorithm : Deterministic Approach Algorithm.



Chapter 7

Experimental Results for Online

Processing using Deterministic

Approach

7.1 Results for Online Processing using DA

7.1.1 Cost

Figure 7.1 shows the cost curve for DR in h100n280a when applied with different

demand weight solutions as initial solution. The baseline is the cost achieved when

the Offline TS is applied to the new traffic demand DR. The baseline cost will be

the best of all cases because the solution weights are searched by applying TS for

71
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1 hour. The best weight setting to be used as an initial solution is the one with

the least cost and in the Figure 7.1 it is D4. The D4 weight setting solution gives

the best cost when compared to the rest of the demands before applying the DA.

The D4 weight setting solution gives the best cost when compared to other demands

even after applying the DA. The D10 weight solution is the best improvement after

applying DA. Eventhough D10 has the best improvement, the solution cost is high

compared to the other demands. The mean of cost of DA improved solution is 11%

higher than the cost of the dedicated Offline TS cost. The mean of cost of the initial

solution is 12% higher than the cost of the dedicated Offline TS cost. There is a 1%

improvement in the cost from the initial solution used to the DA improved solution

weights for the same initial solution used.
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Figure 7.1: Cost Versus Scaled Demand on h100n280a Network .

The cost curves for another test case are shown in Figure 7.2. The best weight
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settings to be used as an initial solution is the one with the least cost and in this

Figure 7.2 it is D10.

The D10 weight setting solution gives the best cost even after applying the DA

and the weights improved by DA. The D11 weight solution has the best improvement

in the cost after applying DA. Eventhough D11 weight solution cost has improved, it

is still high when compared to the other demands. The mean of cost of DA improved

solution is twice better than the cost of the dedicated Offline TS cost. The mean

of cost of the initial solution is 5% better than the cost of the dedicated Offline TS

cost. There is a 56% improvement of the initial solution cost after applying the

DA. The mean of the initial solution is 2.8 times better than the cost of the initial

solution used by the Offline TS. To summarize, the DA improves the cost of the

initial solution.

Based on the results obtained, it is recommended that the weight solution of a

standard demand should be used as an initial solution for finding the optimal weights

for the random demand. To further improve the cost, DA should be applied to the

initial solution. The optimal weight solution of the standard traffic demand used

as initial solution is much better in terms of cost when compared to the Offline TS

solution. The weight solution of the standard demand as solution is better than

the solution generated by the Offline TS and is recommended. The DA improves

the cost of the initial solution and applying DA to the initial solution is highly

recommended.
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The results for the best cost for other topologies are shown in Appendix-B. The

curves indicate that a small gain is achieved for every demands initial solution by

applying the DA.
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Figure 7.2: Cost Versus Scaled Demand on r50n245a Network.

7.1.2 Maximum Utilization

Taking the same test case h100n280a, we further present the other performance

metrics discussed earlier. Figure 7.3 shows the comparison of Maximum Utilization

in the network before and after applying DA. Figure 7.3 also shows the Maximum

Utilization in the network when Offline TS solution is used. For D11, the maxi-

mum utilization has been reduced considerably after applying DA. The results for

other demands maximum utilizations are very close to what they were before DA

is applied. The D6 maximum utilization decreased after applying DA, and the D10
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cost improved after DA processing. The two previous facts could imply that the

improvement of the initial weight solution to reduce the cost leads to a decrease in

maximum utilization. The decrease of maximum utilization and reduction of cost

implies that the links that were previously not utilized properly because of higher

weights have been utilized to their proper potential without causing overutilization.

To summarize, maximum utilization of the initial solution is reduced after applying

the DA.
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Figure 7.3: Maximum Utilization Versus Scaled Demand on h100n280a.

7.1.3 Number of Congested Links

The next performance metric is the Number of Congested Links (NOCL). The results

for the network h100n280a are presented in Figure 7.4. If we look at the Figure 7.4,
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we observe that in the process of improving the costs, the number of congested links

are increasing. The same behavior has been observed in the Online TS approach

results trend. In the D10 solution, the number of congested links has increased from

before. To summarize, number of congested links of the initial solution increase

after applying the DA.
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7.1.4 Percentage of Extra Load

Finally, the results for the Percentage of Extra Load (PXLoad) for the test case

h100n280a are shown in Figure 7.5. The extra load is a very good measure of the

amount of congestion in the network. Results show that the PXLoad of solutions
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using higher demands as an initial solution are high when compared to the solutions

using lower demands. To summarize, PXLoad of the initial solution is reduced after

applying the DA.
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Figure 7.5: Percentage of Extra Load Versus Scaled Demand on h100n280a Network.

Based on the results obtained, it is recommended that, the weight solution of

the standard demand should be used as an initial solution for finding the optimal

weights for the random demand. The DA should be applied to the initial solution

to improve the cost. The DA is the best approach if the time is very short.
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7.2 Multiple levels DA

If the initial solution is taken from a traffic demand, e.g., Demand A, to find better

weight solutions for another traffic demand DR; then the Ratio matrix has the values

that correspond to the ratio of these two traffic demands. The elements in the Ratio

matrix are calculated as Ratio[i] = DemandR[i]/DemandA[i]. The matrix Ratio is

then sorted in a descending order with the largest ratio element at the top. DA is

applied by changing the weight of only those links corresponding to the highest ratio

between the initial solution traffic demand and the new traffic demand. Changing

the weights of the links of the top 2 highest ratios is called as a level 2 DA. The

level 2 DA changes the weights of the links corresponding to the highest ratio and

the next highest ratio. The level 3 DA includes changes in the weights of the corre-

sponding links of the highest ratio, the second highest ratio, and the third highest

ratio. To generalize, an level N DA includes all the weight changes corresponding to

the top N ratios. Table 7.1 has the cost results for applying the Multiple levels DA

for the network topology h100n280a. Column 1 of Table 7.1 lists the traffic demand

matrix which is used as the initial solution. Column 2 contains the cost of using

the weights solution of the demand matrix of column 1 as the initial solution for

solving the problem for DR. Column 3 of Table 7.1 has the cost of applying level 1

DA (Which is the standard DA). Column 4, Column 5, and Column 6 have the cost

of applying the level 2, level 3, and level 4 DA respectively.
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Table 7.1: Multiple level DA costs for h100n280a.

Initial solution Initial solution cost Level 1 Level 2 Level 3 Level 4
D4 2157 2157 2308 2325 2390
D6 2201 2194 2350 2351 2372
D8 2210 2203 2334 2349 2355
D10 2323 2282 2483 2484 2527
D11 2241 2224 2410 2412 2497
D12 2292 2290 2427 2442 2590

Table 7.2 includes the cost results for applying the Multiple level DA for the

network topology r100n503a.

Table 7.2: Multiple level DA costs for r100n503a.

Initial solution solution cost Level 1 Level 2 Level 3 Level 4
D4 1.08927 1.08566 1.11742 1.1433 1.16118
D6 1.08165 1.08339 1.10654 1.1339 1.14774
D8 1.17103 1.16728 1.21417 1.25054 1.24966
D10 1.11321 1.11091 1.13513 1.16824 1.17289
D11 1.15266 1.15079 1.20606 1.2394 1.23681
D12 1.10617 1.1074 1.13096 1.15831 1.16964

If we look at the costs generated by applying the multiple level DA on both

networks listed in Table 7.1 and Table 7.2, we observe that the multiple level DA

does not generate better costs. The more levels we use the worse the results obtained,

indicating that multiple level DA does not yield better results in comparison with

the standard DA.
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7.3 Node Level DA

In section 7.2, we have seen the working of the multiple level DA and have found that

the results are not encouraging to proceed to further levels. Another direction in DA

is also probed with an intent to improve the cost of the solution generated by the

DA. Node level DA is similar to the multiple level DA with the difference being the

exclusivity of changing weights of only a single corresponding node. To implement a

node 2 level DA the weights of the links corresponding to the second highest element

of the Ratio matrix are altered, without changing the weights corresponding to the

highest element of the Ratio matrix. Earlier in the Multiple level DA, an N level DA

would change the weights of all the links corresponding to the top N elements of the

Ratio matrix, however in the Node level DA only the weights of the corresponding

links of the N th node are changed. Table 7.3 lists the cost results for applying the

Node level DA for the network topology h100n280a.

Column 1 of Table 7.3 lists the traffic demand matrix which is used as the initial

solution. Column 2 contains the cost of using the weights solution of the demand

matrix of column 1 as the initial solution for solving the DR problem. Column 3

of Table 7.3 has the cost of applying node 1 level DA (Which is the standard DA).

Column 4, Column 5, and Column 6 have the cost of applying the node 2 level, node

3 level, and node 4 level DA respectively.
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Table 7.3: Node level DA costs for h100n280a.

Initial solution solution cost Node 1 Node 2 Node 3 Node 4
D4 2157 2157 2168 2234 2345
D6 2201 2194 2200 2224 2342
D8 2210 2203 2199 2246 2340
D10 2323 2282 2324 2347 2437
D11 2241 2224 2254 2370 2396
D12 2292 2290 2249 2373 2446

Table 7.3 lists the cost results for applying the Node level DA for the network

topology h100n280a. Table 7.4 lists the cost results for applying the Node level DA

for the network topology r100n503a.

Table 7.4: Node level DA costs for r100n503a.

Initial solution solution cost Node 1 Node 2 Node 3 Node 4
D4 1.08927 1.08566 1.11322 1.10665 1.08488
D6 1.08165 1.08339 1.10936 1.09917 1.0856
D8 1.17103 1.16728 1.19962 1.17216 1.17141
D10 1.11321 1.11091 1.13797 1.12088 1.11485
D11 1.15266 1.15079 1.18286 1.15007 1.15568
D12 1.10617 1.1074 1.12982 1.11967 1.11223

If we look at the results of the cost generated by applying the Node level DA

in comparison with the multiple level DA, Node level DA is better. However, if we

look at the trend of improvement in the costs with respect to the node levels, there

is no relation as such that node i level results are better than node j level. For

D4, the Node 4 level DA cost is better than the Node 1 level DA. The results of

Node level DA allow us to understand that unlike the multiple level DA, there are

few improvements. The less improvement could be because few weight changes are
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favorable towards a better solution rather than more weight changes.

7.4 Random Node Level DA

After exploring the Node level DA, another variation of this approach is conceptu-

alized. The Node level DA does the changes to a particular node depending on the

elements position in the Ratio matrix. If instead of selecting node number 4 or node

number 2 to change the weights, a random node is selected from the Ratio matrix

and the corresponding node weights are changed. The results are taken for three

demands of two different network topologies. There are four runs for each traffic

demand for the random node level DA. Table 7.5 shows the cost results for applying

the Node level DA for the network topologies r100n503a and h100n280a for traffic

demands D12 and D8.

Table 7.5: Random Node level DA costs.

Network Topology Initial solution used Node Random Cost
r100n503a D12 1.12209
r100n503a D12 1.12219
r100n503a D12 1.12275
r100n503a D12 1.12211
h100n280a D12 2288
h100n280a D12 2296
h100n280a D12 2290
h100n280a D12 2314
h100n280a D8 2208
h100n280a D8 2201
h100n280a D8 2205
h100n280a D8 2195
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The Random Node level DA cost results are not encouraging and are not better

than the Node level DA or the DA.

7.5 Comparison of Online TS and DA

The Online TS gives good results with solution weights that result in lesser cost

than the initial solution cost. The weights used as the initial solution are improved

by applying the Online TS and the resultant weights solution gives better cost. The

gain in cost by applying the Online TS is good. If we compare the Online TS and

DA, the Online TS obtains weight solutions which result in better cost than the DA.

The Online TS searches for new weights starting from the initial solution weights

looking for a better cost in the neighboring space of the initial solution. DA takes

very little time in finding the new weights which results in a better cost than the

initial weight solution cost. Eventhough the Online TS is able to find a better cost

at the end, the cost of the initial solution improves slowly at the start. DA starts

improving the cost immediately from the initial solution with very few changes from

the initial solution weights. The time taken by the DA and the Online TS to come

up with weight settings for a better cost is different. DA takes 5 seconds to come up

with the new weight settings that improves the cost from the initial weight setting

solution cost. The Online TS is used for 360 seconds to search for the new weight

settings which results in an improved cost from the initial weight setting solution
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cost. To compare the performance of Online TS and DA in finding weights that

result in a better cost, the allowed time for both must be the same. The time taken

by the Online TS is reduced to the time taken by DA to find the new weights. In

other words, the Online TS is applied for 5 seconds to search for solution weights

that result in an improved cost starting from the cost of applying the initial solution

weights. The comparison is done for two network topologies, namely h100n280a and

r100n403a. The traffic demands that are used for the initial solution in both the

network topologies are D4, D6, D8, D10, D11, and D12. Figure 7.6 shows the cost

curves for the Online TS and the DA applied for 5 seconds for the network topology

h100n280a.
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Figure 7.6: Comparison of Online TS Cost and DA Cost Versus Scaled Demand on
h100n280a Network .

The cost generated by the Online TS is achieved by finding the new weights start-

ing from the initial solution and applying Online TS for 5 seconds only. Figure 7.7

shows the cost curves for Online TS and DA applied for 5 seconds for the network
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topology r100n403a. Figure 7.6 and Figure 7.7 show that eventhough Online TS is

applied for 5 seconds, the cost generated is very near to the cost generated by DA.

Another point worth noting again is that the Online TS changes many weights in

each step, while DA on the other hand just changes few weights. The observation

based on the results of DA and Online TS cost values is that the DA gives better or

similar cost to the Online TS if the time is limited to 5 seconds.

To summarize, if the time limit is 5 seconds, then DA is better in finding the best

cost weight settings. If the time limit can be expanded and is around 360 seconds,

then the Online TS obtains the weight settings which when employed gives much

better cost than the cost of applying the initial weight settings solution.
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7.6 Comparison of OLS and Node level DA

In the earlier sections, we have disccussed the Node level DA. The comparison that

is being done here is between the Online TS and the best costs of the Node level DA.

In this section, we are going to compare the performance of the Online TS and the

best costs of node level DA in finding a better cost solution weights in 30 seconds.

The concept of best costs of node level DA is explained as follows. We start with

the weight setting of another demand as the initial solution for a given demand at

hand, and then apply DA to the weight resulting in new weights which when applied

give a better cost. The process described above is called DA, level 1 DA, or node

1 level DA. The time spent in calling DA is 5 seconds. Calling node 2 level DA on

the same problem with the same initial solution takes 10 seconds. Calling node 3

level DA on the same problem with the same initial solution takes 15 seconds. The

time increases by 5 seconds with the increase in the levels of the node level DA. The

cost of node level DA applied for 5 seconds is the cost achieved by the node 1 level

DA. The cost of node 2 level DA is the best of the costs achieved by the DA and

the node 2 level DA. Similarly, the cost of node 3 level DA is the best of the costs

achieved by the DA, the node 2 level DA, and the node 3 level DA. Similarly with

the time increase, the best of the costs achieved by the DA and the all the node n

level DA applied within that time duration is used. The selection of the best of all

the costs is done to include the better costs achieved by higher node level DA. The
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comparison gives us a picture of how the node level DA behaves in the backdrop of

Online TS direction of finding the best cost. The comparison is done of best cost

versus time of both the node level DA and the Online TS.
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Figure 7.8: Comparison of Online TS cost and node level DA Cost Versus time for
D6 on h100n280a Network.

Figure 7.8 is the cost comparison for traffic demand DR using the D6 as the

initial solution for the network topology h100n280a using both the Online TS and

the best costs of Node level DA. Both the Online TS and node level DA starts with

the same initial cost. Node level DA obtains a better cost than the Online TS under

5 seconds, but after that, very good cost improvements are seen in the Online TS

whereas the performance of the node level DA does not improve much. An improve-

ment in node level DA cost is seen at the 6 level DA.
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Figure 7.9: Comparison of Online TS cost and node level DA Cost Versus time for
D8 on h100n280a Network.

Figure 7.9 is the cost comparison for traffic demand DR using the D8 as the

initial solution for the network topology h100n280a using both the Online TS and

the best costs of Node level DA. The Online TS and the DA have the same costs

for the initial solution and for the solution at time 3 seconds. The cost of node level

DA solution at time 6 seconds is a little better than the Online TS solution. The

cost of the solution generated by the Online TS after the time 6 seconds is much

better than the cost of the solution obtained by the DA. The performance of DA re-

mains the same, and an improvement is seen only after the time period of 15 seconds.

Figure 7.10 is the cost comparison for the traffic demand DR using the D10 as the

initial solution for the network topology r100n503a using both the Online TS and

the best costs of Node level DA. The Node level DA obtains a considerable better

cost when compared with the Online TS at time 6 seconds. At time 10 seconds,
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Figure 7.10: Comparison of Online TS cost and node level DA Cost Versus time for
D10 on r100n503a Network.

the Online TS and the Node level DA has the same cost. The performance of Node

level DA remains the same throughout. The Online TS is able to reach a better cost

weight setting solution in the end.



Chapter 8

Conclusion and Future Work

This Final chapter summarizes the thesis work and its contributions to the OSPFWS

online simulation system. Section 8.1 provides the conclusions drawn from the the-

sis work. Section 8.1 also highlights the main contributions of the thesis. Future

research based on this thesis and general directions in related areas are described in

section 8.2.

8.1 Conclusion

This research work focused on adapting a modern iterative heuristic to solve the

OSPF Weight Setting problem for the online system. The problem was addressed

by implementing Tabu Search in finding the solutions for the online system. TS

was proved to be an elegant heuristic which improved the initial weight solution

90
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of a different demand for the new changed traffic demand. It was also shown that

the DA can be applied to refine the initial weights towards an optimal solution for

the given traffic demand. The TS online system gave a very good improvement of

the initial weight setting of a different traffic demand, and resulted in an optimal

solution weights for the new traffic demand. TS was used because it provides a very

good solution (Cost) for large topologies at highest demands. The Deterministic

Approach improvement on the initial results was limited, however the time spent

in generating the new results is limited as well. Eventhough the OSPFWS prob-

lem is NP-hard, DA was successful in improving the initial weights of the traffic

demand and improve the costs for applying these weight solutions on the given traf-

fic demand. The offline system used a random solution to start the search for the

solution, but the online system uses near or approximate demands weight solution

as the initial solution. Both the approaches has proved that weight solutions that

have been found optimal for a particular traffic demand can be used as initial weight

solutions for a different traffic demand and reach a better solution. Different runs of

the DA with different formulas have also emphasized that there is no direct relation

between the demands and their weights, i.e., a demands solution weights cannot be

increased or decreased to suit a different demand which is higher or lower respec-

tively, indicating the complexity of the multiconstrained problem. The improvement

of the DA is little because the change has been made to very few weights.

The main contributions of this thesis work is the design and implementation of the
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online simulation system using TS. The idea of using the initial solution of standard

traffic demands for searching the solution space for the given traffic demand is also

a contribution. The formulation of the DA in finding the solution for the traffic

demand at hand is a major contribution.

Extensive work has been done in the area of the Deterministic Approach. Weight

changes done with multiple levels with the DA approach do not yield better results.

The change that has been done in the random fashion for the link weight depending

on the difference between the two traffic demands does not result in a good cost

reduction. Exclusive node link weight change based on the difference between the

two traffic demands is better than the multiple level cost improvement.

8.2 Future Work

The online system can be further refined by applying different iterative heuristics

or some hybrid models which better suit the time constraint. The DA could be

improved further if the number of weight refinements are increased and as well as

exploring different ways for the refinement of the weights other than the one used

here. The Deterministic Approach could also be used for problems which are similar

and look for solutions starting at an initial solution. The Deterministic approach

can further be improved by working on the individual difference of demands between

the initial and the new demands. The online processing system using Online TS and
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DA can be further developed into a complete software package by integrating them

with a front end graphical user interface. A different direction could also be explored

by implementing the OLS modules monitor and configure on a testbed.
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A.1 Online TS Results

A.1.1 r50n245a
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Figure A.1: Cost Versus scaled demand on r50n245a network .



101

A.1.2 w100n391a
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Figure A.2: Cost Versus scaled demand on w100n391a network.
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A.1.3 w100n476a
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Figure A.3: Cost Versus scaled demand on w100N476a network.
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A.1.4 h100n280a
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Figure A.4: Cost Versus scaled demand on h100n280a network.
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A.1.5 h100n360a
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Figure A.5: Cost Versus scaled demand on h100n360a network.
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A.1.6 r100n403a
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Figure A.6: Cost Versus scaled demand on r100n403a network.
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A.1.7 r100n503a
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Figure A.7: Cost Versus scaled demand on r100n503a network.
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B.1 DA Results

B.1.1 r50n245a
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Figure B.1: Cost Versus scaled demand on r50n245a network .
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B.1.2 w100n391a
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B.1.3 w100n476a
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B.1.4 h100n280a
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B.1.5 h100n360a
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B.1.6 r100n403a
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B.1.7 r100n503a
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C.1 Validation

This section deals with the validation of the model and the code employed in the

experimental results done and discussed in this thesis. The results that will be

validated are of the Online Tabu Search code and the Deterministic Algorithm. To

validate the results that have been generated by the Online Tabu search code and

the Deterministic Algorithm, a simple method is proposed which is described in this

section. The Online Tabu search results validation would be discussed followed by

Deterministic Algorithm code.

C.2 Online Tabu Search

The Online Tabu search works with a random traffic demand and then starts looking

for a better solution from the given initial solution. The initial solution used is one

of the existing offline solutions. The Online Tabu search applies the initial solution

weights to the given random traffic demand and then calculates the cost of these

newly applied weights. After the cost is calculated, a search for better weights is

done that would reduce the cost further. To verify the results, instead of searching

for the weights for the random traffic demand, an existing standard traffic demand

is taken, say for example D8 of r100n403a topology. The solution weights of D8 of

r100n403a topology are given as initial solution. The process of validation is taking

the solution weights of a particular traffic demand and are applied to the same traffic
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demand and the cost calculated again. The cost of these traffic demand along with

the solution weights are used from the earlier work done by Asad et al [25]. The

cost calculated by the Online Tabu search for this traffic demand with the initial

solution is compared to the existing results for the same work. If the results match

that would imply the code is validated and is performing the process of applying

the weights to the network under a given demand and calculating the cost correctly.

Table C.1 shows the cost calculations done by the Online Tabu search algorithm

along side the Offline Tabu search algorithm costs.

Table C.1: OLS Cost Validation Table for r100n403a.

Traffic Demand Online TS Cost Offline TS Cost
D4 1.0753 1.07528
D6 1.41093 1.41093
D8 2.04837 2.04837
D10 5.07246 5.07249
D11 15.0907 15.0907
D12 55.2688 55.2688

C.3 Deterministic Algorithm

To validate the Deterministic Algorithm code, an understanding of the process is

needed. The DA works with applying the given initial solution weights to the de-

mand at hand. Then the cost is calculated for applying the intial solution weights.

Next, the DA does the demand processing and comes up with the new weights. The

new weights are then applied and the new cost is calculated. The validation process
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is done by applying the solution weights of a particular standard demand to the said

particular demand and the cost is calculated. The cost, traffic demand, along with

the solution weights are taken from the earlier work done by Asad et al [25]. So, in

principle if we apply the same weight solution to the same traffic demand then the

cost should match the cost achieved in the earlier work. To verify the costs that are

calculated, a comparison is done with the earlier work results. To check the correct

working of the code, instead of the random traffic demand DR, say D4 of h100n280a

is used along with its weight solutions as the initial solution. If the cost calculated

by DA by using D4 of h100n280a with its own solution weights as the initial solution

matches with the cost of the work done earlier, that would mean proper working of

the DA code cost calculation. Table C.2 shows the cost calculations done by the

Online DA algorithm along side the offline Tabu search algorithm.

Table C.2: DA Cost Validation Table for h100n280a.

Traffic Demand Online DA Cost Offline TS Cost
D4 1.03836 1.03801
D6 1.15262 1.15207
D8 1.33599 1.33581
D10 3.30204 3.30254
D11 12.1186 12.1166
D12 20.1244 20.1210
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C.4 Small Network Manual Application

This section describes the small network that is used for validating and understand-

ing the DA. The network used is of 4 nodes with 10 arcs. Each arc has the capacity

of 100. Two demand files are used, namely DX and DY. The Offline Tabu search

is applied on the network with DX and the weights generated are saved as solution

weights. Figure C.1 is the network used for applying the DA in a manual way.

Figure C.1: Small Network of 4 nodes and 10 arcs.

The calculations that are done are as follows. First the DX and DY are processed

so as to give the corresponding demand sum of the outgoing nodes. Table C.3 shows

the results of the calculations done. In this table, column 1 shows the node numbers

for which the column 2 and column 3 are calculated. In column 2 of Table C.3, the
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sum of the demand of all the outgoing links from the nodes are computed. Column

3 of Table C.3 is the same as column 2 but for DY. Column 4 of the table has the

weights computed using the Offline TS for the 4n10a network under traffic demand

DX. The next column calculates the ratio of difference between the initial demand

DX and the target demand DY. The last column weights is computed by selecting

the highest demand ratio from the column DY/DX ratio and multiplying it with

the corresponding weight from the initial solution to get the new weights.

Table C.3: DA weight Validation Table for 4n10a.

O/G nodes DX sum DY sum DX wts DY/DX Ratio New wts
10 8.330724 3.842269956 5 0.461216811 5
9 1.900362 3.298288925 5 1.73561086 5
8 2.481323 4.688140084 8 1.889371148 8
7 4.009079 1.95879716 15 0.488590312 15
6 1.299134 2.767601141 6 2.130343091 12
5 8.522377 0.892069271 13 0.104673763 13
4 4.609075 1.752476044 8 0.380222939 8
3 4.307143 3.810820383 15 0.884767555 15
2 6.596945 3.647575684 5 0.552918917 5
1 3.193129 2.777029281 15 0.869689036 15

The cost of applying the demand DX weights to the demand DY of the 4n10a

network is 0.0000152645. After the DA is applied and the new weights are found

as written in the Table C.3, the cost is calculated again for these new weights.

The cost of the new weights is 0.0000152640. There is only a single weight change

from the initial solution. The calculations have been done by the program and were

verified and validated manually. The results of the manual calculations are listed in

Table C.3.
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