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DISSERTATION ABSTRACT

Name: Ahmad Yousef Al-Dweik
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Date of degree: May, 2010

Symmetry analysis of a class of nonlinear equations of evolution type is performed. A
complete symmetry classification of a nonlinear (2 + 1) diffusion equation is obtained. Re-
ductions via two dimensional Lie subalgebras to ordinary differential equations are per-
formed. In few interesting cases, exact invariant solutions are found. As for symmetries
are concerned, they have important relationship with the conservation laws admitted by the
partial differential equations (PDEs). Using this relationship of symmetries with conser-
vation laws, we obtain conservation laws of evolution type equations describing waves in
n dimensions involving arbitrary velocity functions. We also provide a generalized double
reduction theory to obtain invariant solutions for a system of nonlinear PDEs having more
than two independent variables, then we apply it to a nonlinear (2 + 1) wave equation with

different arbitrary functions.

Lastly, we address the issue of using Lie symmetry analysis to a (3 + 1) wave equation

coupled with a spherically symmetric metric and analyze some implications.
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Introduction

Lie symmetry analysis of differential equations was initiated by Sophus Lie. Today, this
area of research is actively engaged. Invariant solutions for scalar PDEs were discovered
by Lie (1881). Such solutions can be determined from a Lie point symmetry by reduction
of the number of independent variables through canonical coordinates.

In this dissertation, we study certain evolution equations by using the symmetry analysis
approach. The one-dimensional heat equation is extensively studied from the point of view
of its Lie point symmetries by Ibragimov [20], Cantwell [10] and Bluman and Kumei [6].
Since thermal diffusivity of some materials may be a function of temperature, it introduces
nonlinearities in the heat equation that models such phenomenon. On the one hand non-
linear heat equation models some of the real world problems, it may not be easy to tackle
such problems by usual methods. In higher dimensions Serov [33] gave some conditional
symmetries for a nonlinear heat equation. Nonlinear heat equations in one and higher di-
mensions are also studied in literature by using both the symmetry as well as other methods
[14, 13] and an account of some cases is given by Polyanin [32].

As mentioned above the thermal diffusivity of materials such as gases is not a constant,
but depends upon the temperature of the body. Physically, it is quite an interesting situation

and can be modeled by (2+1)-nonlinear heat equation

ur — f (1) (Ux + 11yy) =0, (1)



where f(u) is an arbitrary function of the variable u. The equation (1) models situations
where variations in temperature and thermal diffusivity is relatively small so that the product
terms f,u,> and fuuy2 can be ignored. A symmetry classification of (1) was presented by
Aijaz et. al [1] and using a two-dimensional subalgebra of Lie point symmetry generators a
complete classification of the equation was given.

In this dissertation, we extend this work to the (2+1)- nonlinear diffusion equation

u —div(f(u)grad u) =0, (2)

by incorporating the assumption that was dropped in (1); namely, f,u,> and fuuy2 are not
being zero. Using the Lie symmetry method, a complete symmetry classification of equa-
tion (2) is presented. Reductions, via two dimensional Lie subalgebras of the extended
equation, to ordinary differential equations are obtained and exact solutions in interesting
cases are found.

As for symmetries are concerned, they have important relationship with the conservation
laws admitted by the PDEs. It is for this reason that finding conservation laws associated
with symmetries has been a topic of great interest (see, e.g. [6, 31, 15, 30, 16]). A sys-
tematic way for determining conservation laws associated with variational symmetries for
systems of Euler-Lagrange equations is indeed the famous Noether theorem [29]. Direct
construction methods for multipliers and hence the conservation laws [3], Lagrangian ap-
proach for evolution equations [21] and formula for relationship between symmetries and
conservation laws, irrespective of the existence of a Lagrangian of the system [25] have
been investigated. Also, a basis of conservation laws was further investigated in [26] for
DEs with and without Lagrangian formulation. Kara and Mahomed in [27] presented a
new method to construct conservation laws of DEs via operators that are not necessarily

symmetry generators of the underlying system. These partial Noether operators which are



associated with partial Lagrangians help via an explicit Noether-like formula in the con-
struction of conservation laws of the system which need not be derivable from a variational
principle. These systems are referred to as partial Euler-Lagrange equations with respect
to partial Lagrangians. This approach provides a systematic way of obtaining conservation
laws for systems which have partial Lagrangians.

The nonlinear (1 + 1) wave equation

Uy — == (f(w)uy) =0 (3)

describing waves in one dimension involving arbitrary velocity function arises when trans-
mitting a signal on a transmission line with material properties that are changing along the
line. Ames et. al [2] obtained a complete group classification for its admitted point sym-
metries with respect to the wave speed function f(u) and consequence constructed explicit
invariant solutions for some specific cases, we study in this dissertation conservation laws

of the nonlinear (n+ 1) wave equation

uy —div(f(u)grad u) =0 4

involving an arbitrary function of the dependent variable. This equation is not derivable
from a variational principle. By writing the equation in the partial Euler-Lagrange form,
partial Noether operators associated with the partial Lagrangian are obtained for all possi-
ble cases of the arbitrary function. These operators help, via a formula, to construct con-
servation laws of the wave equation. We find conservation laws for different forms of f(u)
and develop a relationship between the partial Noether symmetry operators and the Lie
symmetries admitted by the equation.

A third direction in the area of present study arises as a consequence of applying Lie

point generator to a conserved vector. This provides either (1) conservation law associ-



ated with that symmetry or (2) conservation law that may be trivial, known already or new.
A pioneering work in this direction was published by Kara et. al [25, 26, 24]. Sjoberg
[34, 35] later showed that when the generated conserved vector is null, i.e. the symmetry
is associated with the conserved vector (association defined as in [25]), a double reduction
is possible for PDEs with two independent variables. In this double reduction the PDE of
order g is reduced to an ODE of order (¢ — 1). Thus the use of one symmetry associated
with a conservation law leads to two reductions, the first being a reduction of the number
of independent variables and the second being a reduction of the order of the DE. Sjoberg
also constructed the reduction formula for PDEs with two independent variables which
transforms the conserved form of the PDE to a reduced conserved form via an associated
symmetry. Application of this method to the linear heat, the BBM and the sine-Gordon
equation and a system of differential equations from one dimensional gas dynamics are
given in [34]. According to the double reduction theory, a PDE of order ¢ with two inde-
pendent and m dependent variables, which admits a nontrivial conserved form that has at
least one associated symmetry can be reduced to an ODE of order (g — 1).

In his papers [34, 35] Sjoberg opines that generalizing the double reduction theory to PDEs
of higher dimensions is still an open problem and it is not clear how to overcome the prob-
lem when not all derivatives of non-local variables are known explicitly. Further, calcu-
lations for higher dimensions are quite tedious and much work is needed to generalize (if
possible) the theory to PDEs with more than two independent variables.

In this dissertation we discuss a generalization of the double reduction theory , with n
independent variables. We show that a nonlinear system of gth order PDEs with n indepen-
dent and m dependent variables, which admits a nontrivial conserved form that has at least
one associated symmetry in every reduction from the n reductions (the first step of double
reduction), can be reduced to a nonlinear system of (¢ — 1)th order ODEs.

Finally, we address in this dissertation the issue of using Lie symmetry analysis to the



(3+ 1) wave equation coupled with a spherically symmetric metric and analyze some of its
implications. There exists in literature similar work done on coupling some PDEs with non-
flat geometries and seeing how these coupled PDEs inherit nonlinearities of the geometry,
and how the symmetry structure changes with change in geometric properties of the space
itself etc [8, 9].

This thesis consists of following seven chapters:

Chapter 1 provides the fundamental notions from the theory of continuous groups, sym-
metry properties of differential equations, conservation laws and double reduction.
Chapter 2 provides an extension of an earlier work by Aijaz et. al [1] to the (2+1)- nonlin-
ear diffusion equation (1) by incorporating the assumption that f,u,”> and fuuy2 are not zero.
A complete symmetry classification of (1) is presented. Reductions, via two dimensional
Lie subalgebras of the extended equation, to ordinary differential equations are obtained
and exact solutions in interesting cases are found.

In Chapter 3, we study conservation laws of the nonlinear (n + 1) wave equation (4), de-
scribing waves in n dimensions involving arbitrary velocity functions. This equation does
not have a Lagrangian and therefore we use a new method to construct conservation laws.
In Chapter 4, we extend Sjoberg work by introducing the generalized double reduction
theory, with n independent variables. we show that a nonlinear system of gth order PDEs
with n independent and m dependent variables, which admits a nontrivial conserved form
with at least one associated symmetry in every reduction can be reduced to a nonlinear sys-
tem of (¢ — 1) th order ODEs.

In Chapter 5, we study conservation laws of the nonlinear (2 + 1) wave equation (4) with
different arbitrary functions and we find invariant solutions that conserve the fluxes by using
these conservation laws and the associated symmetries. Since the equation has 3 indepen-
dent variables, we therefore use our generalized double reduction theory to solve (4).

In Chapter 6, we study Lie symmetry analysis to deal with (3 + 1) wave equation coupled



with a spherically symmetric metric and analyze some implications.

In Chapter 7, some achievements and recommendations for future work are addressed.



Chapter 1

Preliminaries

1.1 Introduction

This chapter gives the fundamental notions from the theory of continuous groups, symmetry

properties of differential equations, conservation laws and double reduction.

1.2 Lie groups

1.2.1 Groups

Definition 1.2.1. Consider (G, %) to be a set with an operation * that assigns to every ordered

pair of elements of G a unique element with the following properties:

(1) Closure

For all x,y in G, x*y is also in G.

(2) Associativity

For all x,y,zin G, (x*y)*xz=x* (y*2)



(3) Identity

In G there exists an element ‘e’ known as the identity such that xx e = e xx = x for all

xin G.

(4) Inverse

For every x in G there exists an element y in G known as inverse of x such that
Xky=ykx=e

where e is the identity element of G with respect to the binary operation .

Definition 1.2.2. (Abelian group) A group G is called Abelian if in addition to the above
properties it satisfies:

xxy=7yxx forall x,yin G.

1.2.2 One-parameter group of transformations

Definition 1.2.3. The set of transformations given by x* = x/(x ;&) where x = (x1,x2,...,X)
lie in a region DC R” is defined for each € in a set S C R with the operation ¢, forms a

one-parameter group of transformations on D if the following hold:
(1) For all € € S the transformations are one-to-one onto D.
(2) S with ¢ forms a group G.
(3) For all x € D, x* =x when € = g corresponding to the identity e, i.e.,(x ;&) = x.

(4) If x* = y(x;€) and x** = x(x* ;0) , then x*™* = x(x;0(€,9)).

1.2.3 Lie groups of transformations

Definition 1.2.4. A one-parameter group G of transformations x* = ) (x ;&) with the oper-

ation ¢ is said to be a one-parameter Lie group of transformations if :



(1) € is a continuous parameter, without loss of generality, with the identity element

€ = 0. i.e, the set S is an interval in R which contains zero.

(2) x is aninfinitely differentiable function with respect to x in D and an analytic function

of £in S.
(3) ¢(g,0) is an analytic function of € and § in S.

Example 1.2.5. Group of translation in the plane
X*=x+¢€
y* =y, where € € R.

Here ¢(€,0) = €+ 6 and the identity element corresponds to € = 0.

Example 1.2.6. Group of scaling in the plane
X' =ax
y* = o>y where 0 < ¢¢ < oo.

Here ¢ (at,B) = a B and the identity element corresponds to ot = 1.

1.3 Infinitesimal transformations and generators

Definition 1.3.1 (Infinitesimal transformations ). Consider a one parameter (€) Lie group
of transformation x* = y/(x ; €) with the identity € = 0 and law of composition ¢. Expanding

x* about € = 0, one gets,
*

* X 2
=x+€&€=— O(e 1.1
X=xteo €:0+ (€7) (1.1)
where % 0= & (x). The transformation x* = x+ € & (x) is called the infinitesimal trans-
e=

formation of the Lie group of transformations and the component & (x) are called the in-

finitesimals of the transformation.
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Theorem 1.3.2 ( First Fundamental Theorem of Lie [7]). There exists a parametrization
7(€) such that the Lie group of transformations x* = x (x ;&) is equivalent to the solution of

an initial value problem for the system of first order ordinary differential equations given by

dX = E(x*), with x*=x when 7=0. (1.2)

Example 1.3.3. The group of translation in x direction
x*=x+¢€and y* =y where € e R
is equivalent to the solution of an initial value problem

dx* - 1 dy* frnd

e =1, =0withx*=x,y"=yate=0

Definition 1.3.4 (Infinitesimal generator ). The infinitesimal generator of the one-parameter

Lie group of transformations x* = y/(x ; €) is the operator

U d
X=i221é(x)8—x, (1.3)

ox;*

where &; = S o

Theorem 1.3.5. [7] The one-parameter Lie group of transformations x* = y/(x ;€) is equiv-

alent to :

= Y Exky, (1.4)

where the operator X is the infinitesimal generator of the Lie group.

Remark 1.3.6. In summary there are two ways to find explicitly a one-parameter Lie group

of transformations from its infinitesimal transformation:
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(i) Express the group in terms of a power series, called a Lie series, which is developed
from the infinitesimal generator corresponding to the infinitesimal transformation;
(i1) Solve the initial value problem . Here one first finds the explicit general solution of the

system of first order differential equations.

Example 1.3.7. Consider the rotation group:

X" = XCOSE+ysing, y* = —xsin€+ycose (1.5)
The infinitesimals & (x,y) = % 0= and n(x,y) = a—yg )= define the symmetry
E= &=

generator associated with (1.5) as

d d
X=yi—al (1.6)

Alternatively, given the symmetry generator, one can find the transformation associated with
that generator.

Consider the Lie series corresponding to the generator given by

(x*,y) = (ex,eXy), (1.7)

where Xx =y, X2x = —xand X°x = —y etc. Then

= Xy
o ok
= 8—_ka
i=oki
2 4 3 5
€ £ )

= XCOSE+ysiné&. (1.8)
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Similarly
o ok
€
V= Xy = ZFXky: —XSIn€ + yCosE. (1.9)
k=0

Theorem 1.3.8 (Change of coordinates [7]). The infinitesimal symmetry generator
4 d ! d
X = (o =) X(o)=— 1.10
Zél( )aai Z ( l)aOCi ( )

i=1 i=1

in coordinates @; can be transformed to new coordinates f3; by the application of infinitesi-

mal symmetry generator to coordinates f3;, through the following formula:

(1.11)

Definition 1.3.9 (Canonical Coordinates ). A change of coordinates y = (y1,y2,.--,Vn)
defines a set of canonical coordinates for the one-parameter Lie group of transformations
x* = x(x ;&) if in terms of such coordinates the group becomes

=y, i=1,2,...n—1,
i =Y (1.12)

YZ=yn+8-

Theorem 1.3.10. [7] For any Lie group of transformations x* = y(x ;&) there exists a set

of canonical coordinates y = (y1,y2,...,y,) that make the Lie group equivalent to (1.12).

Theorem 1.3.11. [7] In terms of any set of canonical coordinates y = (y,y2,...,y,) , the
infinitesimal generator of the one-parameter Lie group of transformations x* = x(x ;€) is

_ 0
Y—ayn.




13

1.4 Invariance

1.4.1 Invariance of a function

Definition 1.4.1 (Invariance of a function). Let x* = x(x ;&) be the Lie group of trans-
formations of one parameter € and let f(x) be an infinitely differentiable function. The

function f(x) is said to be an invariant function if and only if

f(x) = f(x) (1.13)

Theorem 1.4.2. [7] A function f(x) is an invariant of the Lie group of transformation

x* = x(x;¢€) if and only if

Xf(x)=0, (1.14)

where X is the infinitesimal generator of the symmetry transformation.

1.4.2 Invariance of a PDE

Consider a system of PDEs of order n with p-independent and g-dependent variables repre-

sented as,

Fy(x,t,..;u™) =0, u=12,...k, (1.15)

where x = (x1,x2,x3,...,X,) denotes independent variables, u = (u',u?,...,ud) denotes de-

pendent variables and u™ represents the set of all derivatives of order less and equal to n.
We denote the derivative of order m by,

m,,o
o 9"u
uy

:axh&sz...&xjm ’ (116)
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where 1 < j; <p forall i=1,2,...,m and the order of m-tuple of integers J =

(J1,J2,---,Jjm) indicates the order of the derivative to be taken.

Theorem 1.4.3 (Infinitesimal criterion for the invariance of PDE [7]). Let the system,

of k differential equations be given. If G 1s a group of transformations and,
X {Fu(x,u,u(”))} =0, p=12,...k whenever Fy(x,u,u™)=0, (1.17)

for every infinitesimal symmetry generator X of the group G, then G 1is a symmetry

group of the system.

1.5 The r-parameter Lie group of transformations

Definition 1.5.1 (The r-parameter group of transformations). The set of transformations
given by x* = y(x ;&) where x = (x1,x2,...,x,) lie in a region DC R” is defined for each
€= (&, 8&,...,&) inset S C R” with the operation ¢(€,8) = (¢ (€,9),d2(€,0), ..., 0-(€,9)),

forms r-parameter group of transformation on D if the following hold:
(1) For all € € S the transformations are one-to-one onto D.
(2) S with ¢ forms a group G.
(3) For all x € D, x* =x when € = g&j corresponding to the identity e, i.e.,) (x ;&) = x.
4) Ifx* = x(x;€) and x*™* = y(x* ;) , then x*™* = y(x;0(g,9)).

Definition 1.5.2 (The r-parameter Lie group of transformation). A r-parameter Group G,

of transformations x* = x/(x ;€), with x = (x1,x2,...,x3) and parameters € = (&1, &,...,&)
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is called r-parameter Lie group of transformation if
(1) € is continuous parameter, without loss of generality, with the identity element € = 0.

(2) x is an infinitely differentiable function with respect to x in D and an analytic function

of €in S.

(3) The composition law for parameters, denoted by, ¢(g,6) = (¢;(€,0), ¢(€,0), ..., 9.(€,0))

is an analytic function of € = (€1, &,...,&) and 6 = (91, 6,,...,6,) in S.

Definition 1.5.3 (Infinitesimal generator X ). The infinitesimal generator X, correspond-

ing to the parameter &, of the r-parameter Lie group of transformations x* = x(x ;€) is

given by
N
X, = Hx) — 1.18
J izzléj(x)axi, ( )
where 61’ = %’; .o’ j=1,..,r, i=1,..n.
=

1.6 Lie algebras

Definition 1.6.1 (Abstract Lie algebra). A Lie algebra is a vector space L with a given
bilinear multiplication law (the product of the elements a,b € L is usually denoted by |a, b]
and is termed the commutator of these elements) which satisfies the skew symmetry prop-
erty

[a,b] = —[b,d]

and the Jacobi identity

[[a,b],c]+[[b,c],a] +[[c,a],b] = 0

If the vector space L is finite-dimensional and its dimension is dim L = r, then the cor-

responding Lie algebra is called an r-dimensional Lie algebra and is denoted by L,. If



16

ey, ...,e, is a basis of the vector space L of the Lie algebra L, then [e;,e;| = ck,-jek; where
ck; j(i,j,k=1,..,r) are real constants called structure constants of the Lie algebra L,. In
what follows only finite-dimensional Lie algebras will be considered, unless otherwise

stated.

Theorem 1.6.2. [22] The set G, of transformations is an r-parameter Lie group of transfor-
mation if and only if the vector space of the vector fields £ is a Lie algebra with respect to

the product defined by the formula

[Eni(x) = EFnd — 0k, (1.19)

This theorem simplifies the study of r-parameter Lie group of transformation by reduc-
ing the problem to the study of Lie algebras.
Often it is more convenient to consider a Lie algebra of the corresponding linear operators
X instead of a Lie algebra of the vectors &. In this case, the linear combination AX + uY of
the operators
d . d

Y =n'—— (1.20)

XZ&W’ ox

corresponds to the linear combination A& + pun of the vectors & and 1 with real constant A

and u. The commutator of the operators,
X,Y]=XY-YX, (1.21)

where X Y is the usual composition of linear operators, corresponds to the multiplication

(1.19).

Definition 1.6.3 (Subalgebra). A subset H of Lie algebra L is called a subalgebra of L if it

is closed under the commutation operation.

Example 1.6.4. The group of rigid motions in R? that preserve distances between any two
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points in R? is the three-parameter Lie group of transformations of rotations and translations
in R? given by
X" =XxCos€ —ysing| + & (1.22)

y* =xsin€; +ycos €| + &

The corresponding infinitesimal generators are given by

Xi = -y +x5, (1.23)
Xp = %7
X;= 4.

The commutator table of the above Lie point symmetries is as follows:

Table 1.1: Commutator table

X X X) | Xo | Xs
X, 0 | -X3| X,
X | X5 0 |0
X; |-X2| 0 |0

1.7 Structure constants

Theorem 1.7.1 (Second fundamental Theorem of Lie [7]). The commutator of any two
infinitesimal generators of an r- parameter Lie group G, of transformations is also an in-

finitesimal generator. In particular,
X, Xp] = Zc;ﬁxr eL, VY aB=1,.r (1.24)
r=1

where CZC p are called the structure constants of the Lie algebra L,.

Definition 1.7.2 (Commutation relations). For an r-parameter Lie group G, of transforma-

tions with the corresponding infinitesimal generators X1, X, - - - , X, the relations defined by
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equation (1.21) are called commutation relations.

Theorem 1.7.3 (Third Fundamental theorem of Lie [7]). The structure constants satisfy the

relations:
1. C’,=—-C? skew symmetry).
af Ba ( Y y) (125)
2. Cgﬁcgy+ Cﬁycga +C}€acgﬁ =0 (Jacobi identity).

1.8 Prolongation

Consider the kth-order system of partial differential equations (PDEs) of n independent

variables x = (x',x%,...,x") and m dependent variables u = (u',u?,...,u"™)

E%(x,u,uyy,upy)) =0, a=1,....m, (1.26)

where U(1)s U255 U(K) denote the collections of all first, second,..., kth-order partial deriva-
tives,
o

1.e., ut

i =Di(u%),ui; = D;Di(u*),...respectively, with the total differentiation operator with

respect to x’ given by

Di:%Hg%Hg%ju..., i=1,..n, (1.27)

in which the summation convention is used.

In order to apply the infinitesimal criterion for the invariance of the kth-order system
of (PDEs) of n independent variables and m dependent variables, one needs to extend the
infinitesimal symmetry generator to include all the dependent variables and the derivatives
of the dependent variables. In this section we discuss the prolongation formula for a kth-

order system of PDE which consists of n independent and m dependent variables.
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The Lie-Bdcklund operator is

X=E2L 102 En%eA, (1.28)

where A is the space of differentiable functions. The operator (1.28) is an abbreviated form

of the infinite formal sum

i 0 d d
X=&gn %5+ L Gl i, (1.29)

i1ip...is

where the additional coefficients are determined uniquely by the prolongation formulae [7]

G = Di(W) + &

. (1.30)
i?...ix :Dil"'Dis<Wa)+§ju%1...i5’ 5> 1’
in which W¥ is the Lie characteristic function
We=n%—&u?. (1.31)

1.9 Conservation laws

Emmy Noether (1918) showed that if a system of PDEs admits a variational principle (varia-
tional system), then a local symmetry leaving invariant the action integral for its Lagrangian
density (variational symmetry) yields a conservation law. Conversely, for a given varia-
tional system, all local conservation laws arise from variational symmetries. Hence there
is a direct one-to-one correspondence between conservation laws and admitted variational
symmetries of a variational system. Moreover, one can show that a variational symmetry
must be a local symmetry admitted by the variational system; the converse does not hold

in general, i.e., there do exist local symmetries of variational systems that are not varia-
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tional symmetries. Noether’s theorem gives a procedure to use symmetry generators with

Lagrangian to construct the gauge terms and then the conservation laws.

Definition 1.9.1 (The conserved vector). The n-tuple vector T = (T',T?,...,T"),

T/ €A, j=1,...,nis a conserved vector of (1.26) if T* satisfies
DiT" |(1.26=0. (1.32)

Definition 1.9.2 (The Euler-Lagrange operator). The Euler-Lagrange operator for each «,
is given by

£Vﬁ%tgpmawm5%ﬁ<hﬂwm. (1.33)

i1i2...i5
Definition 1.9.3 (Lagrangian and Euler-Lagrange equations). If there exists a function L =
L(x,u,u(yy,...,uq)) € A, I <k such that the system (1.26) can be written as §L/5u® = 0,

then L is called a Lagrangian of the system (1.26) and the differential equations of the form

SL_0, a=1,...m, (1.34)

are called Euler-Lagrange equations.

Example 1.9.4. Consider the Lagrangian,
L=—y"——y. (1.35)
The differential equation associated with this Lagrangian is:
Y'+y=0. (1.36)

Definition 1.9.5 (The Action Integral). The action integral of a Lagrangian L is given by
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the following functional
Ju] :/L(x,u,u(l),...,u(k))dx, (1.37)
Q
where L is defined on a domain Q in the space x = (x1,X2,...,Xy).

Definition 1.9.6. The functional (1.37) is said to be invariant with respect to the group G,
if for all transformations of the group and all functions u = u(x) the following equality is

fulfilled irrespective of the choice of the domain of integration

/QL(X,M,M(I),...,M(]())CZ)CZ/fZL()?,ﬁ,ﬁ(l),...,ﬁ(k))df, (1.38)

where i and Q are the images of u and Q, respectively, under the group G,.

Lemma 1.9.7. [22] The functional (1.37) is invariant with respect to the group G, with the

Lie-Bdicklund operator X of the form (1.29) if and only if the following equalities hold
WYSL/6u® + D;(N'L) = XL+L D;£' = D;B', (1.39)

where

N =& 4w+ ¥ D;y..D; (W) 52—, i=1,...n, (1.40)

1 SZ] ...ty
Remark 1.9.8. N' is called the Noether operator associated with the Lie-Biicklund operator
X and the Euler-Lagrange operators with respect to derivatives of u® are obtained from

(1.33) by replacing u% by the corresponding derivatives. and the vector B is called the

gauge term.

Theorem 1.9.9 (Noether’s Theorem). [22] Let the functional (1.37) be invariant with re-

spect to the group G, with the Lie-Bdcklund operator X of the form (1.29). Then the Euler-
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Lagrange equations (1.34) have r linearly independent conservation laws D;T’ = 0, where

T'=B —NL, i=1,...,n.

(1.41)

Example 1.9.10. In order to find Noether symmetries, X, of the Lagrangian (1.35) we

use the formula given by (1.39). Since we are using the Lagrangian in which y=y(x), the

Noether formula takes the form:
X L+L D& = D,f,

where & is coefficient of ai
X

For this Lagrangian, the prolonged symmetry generator X takes the form,

J 9

d
X:'éa‘f'ﬂ&—y‘i‘n 5y

where 1!l is given by the formula,
n[l] =M +y1My — &~ (y/)zéyv

and

Simplifying (1.42) results in the equation:

1 1
—ny 4+ +yP 0y -y — (V) E + (Qy’2 — Eyz) (E4YE) = fi V'S,

(1.42)

(1.43)

(1.44)

(1.45)

(1.46)

Now comparing coefficient of derivatives of y and the constant term from (1.46) we

obtain a system of determining equations. Solving this system gives rise to five Noether
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symmetries associated with the above Lagrangian with the corresponding gauge terms:

& = o + opcos2x + o sin2x,
N = (—0psin2x+ a3 cos 2x)y + Q4 COs X + 05 sinx, (1.47)

f(x,y) = — (0 cos 2x 4 03 sin 2x)y? + (— 0y sin x + 05 cos x)y + Otg.

To find the conservation law corresponding to the Noether symmetry X| = %, we use the

formula given by (1.41).

T* = _N'L,
J 2
——E W~
2
——(E-&/H) B -0

2
=3+

(1.48)

Hence the conservation law corresponding to the Noether symmetry X; = % of the equation
y'+y=0is
1 o 1

DX(Ey +§y )=0. (1.49)

1.10 Double reduction theory

Sjoberg in [34, 35] discovered a new procedure to find invariant solution for a PDE with
two independent variables that conserve a given conservation law.

Consider a scaler PDE (1.26) with m = 2 and (x,x;) = (¢,x) which admits a symmetry X
that is associated with a conservation law D, T" + D, T* = 0.

We find similarity variables r,s,w such that X = %. An invariant solution under the sym-

metry X has the form w(r) that satisfies an ordinary differential equation of order k.
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So that the conservation law is rewritten as D, 7" + D,T* = 0, where

. T'Dy(r) + T*Dy(r)
T = 1.50
D;(r)Dy(s) — Dy(r)Dy(s) ( )
s _ T'Dy(s) + T*Dy(s) (151)

Dy (r)Dy(s) — Dy(r)Ds(s)

Sjoberg proved that if X is associated with a conserved vector 7', we have XT" = 0 and
XT?* = 0. So the conservation law in canonical coordinates becomes D, T" = 0.
Hence we get an ordinary differential equation of order k — 1 that is 7" = ¢, for some

constant c.

Theorem 1.10.1. [34, 35] Suppose that X is any Lie-Bicklund symmetry of the form (1.33)
and

T, i=1,...,n are the components of a conserved vector of (1.26). Then
T =[T",X]=X(T")+T'D;E/ —T/D;E', i=1,...n. (1.52)

constitute the components of a conserved vector of (1.26), i.e. D;T*! |(1‘26): 0

Definition 1.10.2. A Lie-Béicklund symmetry generator X of the form (1.33) is called an
associated symmetry with a conserved vector 7" of the system (1.26) if X and T satisfy the

relations

[T),X]=0, i=1,...,n. (1.53)

Theorem 1.10.3 (The double reduction theorem). [34, 35] A nonlinear system of ¢'* order
PDEs with two independent variables and m dependent variables, which admit a nontrivial
conserved form that has at least one associated symmetry can be reduced to a nonlinear

system of (¢ — 1) order ODEs .
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Remark 1.10.4. The PDE with two independent variables of order ¢ is reduced to an ODE

of order (¢ —1).

Thus the use of one symmetry which is associated with a conservation law leads to two re-

ductions, the first being a reduction of the number of independent variables and the second

being a reduction of the order of the DE.

Example 1.10.5 (Sine-Gordon equation).

Uyy = SINU
admits the scaling symmetry
0 n 0
= —_— C—
dx  dy
associated with the conservation laws
Uy
Dy(cosu) +Dy(7) =0.

The generator X has a canonical form X = % when

dr_dy_du_dr_ds_dv

1 c 0 0 1 0’

or

s=x, r=cx—yand w(r) =u(x,y).

In order to find the reduced conserved form, we use the formula given by (1.50).

1 1

T = Euxz —ccosu = Eczw,2 —ccosw =k

(1.54)

(1.55)

(1.56)

(1.57)

(1.58)

(1.59)
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So we get

w,:izx/kl—i—ccosw. (1.60)
C

This equation is a separable first order ordinary differential equation. Thus

cdw
— = \2r+k. 1.61
Vki+ccosw T ( )

Finally, the back substituting give us the invariant solution for Sine-Gordon equation.

cdu

— =2 — k>. 1.62
Vki+ccosu (cx=y)+h ( )



Chapter 2

A symmetry classification, reductions and some exact

solutions of certain nonlinear (2+1) diffusion equation

This chapter® provides a complete symmetry classification of certain nonlinear (2+1)-diffusion
equation u; — div(f(u)gradu) = 0 with variable diffusivity is considered. Using the Lie
method, a complete symmetry classification of the equation is presented. Reductions, via
two dimensional Lie subalgebras of the equation, to first or second order ordinary differen-

tial equations are given. In few interesting cases, exact solutions are found.

2.1 Introduction

The symmetry analysis of one-dimensional diffusion equations has been widely considered
by several authors, e.g., Cantwell [10], Ibragimov [20] and Bluman and Kumei [6]. Of par-
ticular interest was the work done by Clarkson and Mansfied [12] wherein they considered
the (1+1)-heat equation and presented interesting results on classical and nonclassical sym-

metries possessed by it. Similar studies in this area can be found in Polyanin [32], Serov

*This chapter is published under the title ” A symmetry classification, reductions and some exact solutions of certain nonlin-
ear (2+1) diffusion equation” (in collaboration with Dr. Ashfaque H. Bokhari, Dr. F. D. Zaman and A. H. Kara).

27
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[33], Estevez et al [14] and Doyle and Vassiliou [13]. Recently, Ahmad et al [1] made ex-
tensions to those earlier studies wherein they analyzed a narrow class of the (2+1) diffusion
equation.

The main interest in the nonlinear diffusion equation comes from the practical notion
that for many gases, diffusivity is proportional to the temperature so that a general two-
dimensional diffusion equation of interest can be cast as u; — div(f(u)gradu) = 0. In this

work, a symmetry classification of this equation, viz.,
e — f () (1t + 1yy) — f () (5 +113) = 0, 2.1)

is presented using the Lie group method. We show that the two dimensional subalgebra of
Lie point symmetry generators reduces the equation to first or second ordinary differential

equations (odes) which in some cases leads to exact solutions.

2.2 Symmetry generators

In order to derive symmetry generators of (2.1) and obtain closed-form solutions for all

f(u), we consider one parameter Lie point transformation that leaves (2.1) invariant, viz.,

F=x+eli(xytru)+0(),i=1,..,4, (2.2)

where & = a—’Z|g:0 defines the symmetry generator associated with (2.2) given by

) g o 0
VZ&&*”@“@”’W (2.3)
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In order to determine four components, we prolong V' to second order. This prolongation is

given by the formula

v —vy +¢XL + ¢yi + ¢ti

(2.4)
_I_(pxx _|_ (ny + (th o + (Pyy d + (Pyt o (ptt =,

In the above expression every coefficient 'of the prolonged generator’ is a function of

(x,y,t,u) and can be determined by the formulae,

"= Di(¢ — Euy — Nuy — Ty ) + Euyj + Nuay j + Ty,
9" = Di(¢ — Suy — Nuty — Tug) + Gty + Nuyi + Tu, 25

OV = DiDj(¢ — Eux — Nuty — Tuy) + Eta jj 4+ Nty jj + Tuy i,

where D; represents total derivative and subscripts of u derivative with respect to the respec-

tive coordinates. On (2.1), this becomes
Vg — f () (s + tyy) = fu(w) (13 +15)] = 0
whenever u; = f(u) (thxx + thyy) + fu () (u2 + u%) That is,

0" = ful) (st +tayy) ¢+ f () (9 4 07) + fraa () (4159 + 2o () (9"t + 9 uy) (2.6

Substituting the expressions for ¢', ¢*, ¢”, ¢** and ¢*¥ using (2.5) into (2.6) and then com-

pare the coefficients of the various monomials in derivatives of u. This yields the following



reduced system of over-determined partial differential equations

T=1(1),

§=28(xy1),

n=n(xy1),

==&,

=1y,

¢ = o(x,y,1)u+P(x,y1),

¢ = f(u) (@ + Pyy),

& +2.f (1) G + 2 fu () §x = O,
M+ 2.f () Py + 2fu () §y = O,
Ju()o + f(u) (7 —2&,) =0.

30

(2.7)
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2.3 Solving the overdetermined system

In this section we attempt to solve the above system starting with (2.7)-(10) rewriting it in

the form
fu
f

and then considering all possible cases in f,, # 0. Note that the case f;, = constant is of no

()¢ =(256—1) (2.8)

interest because this choice reduces the heat equation to a linear one. For this we begin by
considering (2.8), which yields following two cases:

.Lo=0

IL.¢#0

We consider these possibilities separately.
3.1. Case |

In this case f(u) is an arbitrary function. Equation (2.8) becomes

T =28 (2.9)

Now we differentiate (2.7)-(6) w.r.t u to get

a(x,y,t) = B(x,y,t) =0 (2.10)

By substituting above expressions into (2.7)-(8) and (2.7)-(9) we obtain & = 0 = 1. After

some more manipulations one finds that £ , n and 7 become

E =co+cix+cay,
N =c3—cyx+cry, (2.11)

T=c4+2ct.



32

At this stage we construct the symmetry generators corresponding to each of the constant

involved. These are total of five generators given by

9 — 9 1 y9 9 —yd _ 9

Vo= Vi=xgtyg +25, Va=yg —xg 2.12)

=%, Vi=%.
3.2. Case Il
Now from (2.7)-(6), (2.8) we obtain

VE.
(Ley = 25— 1) (2.13)
[ alxytu+ B(x,y,t)

&N

Also from (2.7)-(1) and (2.7)-(2), we have the ability to replace () by g(u) and (2&, — 7;)

=~

by y(x,y,1) in (2.13) to obtain the following form

B Y(x,y,1)
8 = SlrmDu+ Ble) 219

which yields following two subcases:
ILa. a(x,y,t) =0

ILb. o(x,y,t) #0

We consider these possibilities separately.

Note. In the latter case, if we replace —==< by a(x,y,?) and ~==*< by b(x,y,?) to obtain

a(xyt) Byt
ERT) y(x.y,t)

the form
1

B a(x,y,t)u+b(x,y,t)’

g(u) (2.15)

then a and b must be constant so that &« = ay and 8 = by.

3.2.1. Subcase Il.a



In this subcase (2.13) is reduced to

6 = Blxyi) = (%)(ze:x—rt)

and (2.14) is reduced to

Since the right side is independent of u and y(x,y,t) # 0, B(x,y,t) # O we obtain

d=az0

To determine f(u) we integrate (2.18) with respect to u to obtain

f(u) = 6™, where 6, A are nonzero constants.

From (2.16), (2.18) we obtain

2x_t
o= 200

By substituting (2.19), (2.20) into (2.7)-(7,8,9) we obtain

écx:ét:()
2:zxy:nl:o
T[[:O

After some more manipulations one finds that £, 7 and T become

E=co+cix+cy
n=c3—cx+cry

T =cq4+cC5t

33

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

2.21)

(2.22)
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Then (2.20) is reduced to
. 261 —C5

P="4

(2.23)

At this stage we construct the symmetry generators corresponding to each of the constant

involved. These are total of six generators given by

_ 9 — 9 4 yd 20 —yd 9
VO—aax; Vl—J;ax‘f‘yay"i‘Aaua VZ—)’zx xaaya (2.24)
1
V3:(9_y’ V4:E’ V5ZZ‘E—Z%
3.2.2. Subcase I.b
Recall that
1 b
= ——. 2.25
To determine f(u), we integrate (2.25) with respect to u to obtain
flu) =0 |au+b|1, (2.26)

where o and a are nonzero constants. By substituting the above expression in (2.7)-(6) we
obtain

0 = (au+b)y = (au+b)(2E, — ). (2.27)

By substituting (2.25) and (2.27) into (2.7)-(7) we obtain

Y =Yoo+ Y%y =0. (2.28)

Also, by substituting (2.25) and (2.27) into (2.7)-(8) we obtain

& =—=2f(u)(1+a)%. (2.29)
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Finally, by substituting (2.25) and (2.27) into (2.7)-(9) we obtain

o =—2f(u)(1+a)y, (2.30)

which yields the following two subcases:
ILb.1 a#—1

b2 a=-1

We consider these possibilities separately.
3.2.2.1 Subcase I11.b.1

In this subcase, since the left side of (2.29) and (2.30) are independent of u, we obtain

h=%=0 (2.31)

By using (2.28)-(2.31), we get

=8y =&=M=1=0 (2.32)

After some more manipulations one finds that & , 1 and T become

& =co+cix+cy,

N =c3—cx+cyy, (2.33)
T =cC4+cC5t.
Then (2.27) is reduced to
¢ = (au+Db)(2c; —cs) (2.34)

At this stage we construct the symmetry generators corresponding to each of the constant



involved. These are total of six generators given by

Vo= Vi=xg+ys+20au+b)s, Va=ygk—x3,
i=%, Va=%, Vs =19 —(au+b)%-.
3.2.2.2 Subcase 11.b.2

In this subcase (2.29) and (2.30) are reduced to

&=n=0

By using (2.28), we get

Tl‘l‘:()

So & and 1 can be given as a solution of the following system

=&,
& =My,
n: =0,

& =0.

If we restrict & , 1 to be polynomials of order two, then we get

2 2
—C4y,

E =co+cix+cay+czxy+cegx
1 = cs5—cax+c1y+2caxy — 5c3x° + 33y,

T=cCe+C7t.

36

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)
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Then (2.27) is reduced to

O =(—u+b)(2c; +2c3y+4cax—c7) (2.40)

At this stage we construct the symmetry generators corresponding to each of the constant

involved. These are total of eight generators given by

Voz%, Vl—x%—kyai—FZ(—u—f—b)%,
Vo=yg—x5, V3 =xy g+ 37 —x%) & +2y(—u+b) 2%,

(2.41)

2.4 Classification of symmetries

In this section we give a classification of symmetries of the nonlinear heat equation (2.1) as
a conclusion of the previous section
(1) f(u) = o e**, where ¢ and A are nonzero constants.

In this case we have six generators which are given by

_ d _ .0 d 2 d _ .0 J
Vo=7g0 Vi=xgtyg tiae V25y5 X5 (2.42)
_ 9 _ 2 .9 129 '
Vi=3 Va=gp Vs=t5 — 49,

It is easy to check that the symmetry generators found in (2.42) form a closed Lie algebra

whose commutation relations are given in Table 2.1.

) f(u) =0 | au+b|V¥  where o, a are nonzero constants, b is a constant and a # —1 .
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Table 2.1: Case(1)

Vi,Vil| Vo [Vi| Vo | V3 | V4 | Vs
Vo 0 Vo | —Vs 0 0 0
Vi W1 0 0 -V 0 0
%3 V3 0 0 -V 0 0
V3 0 Vil W 0 0 0
Va 0 0 0 0 0 Vy
Vs 0 0 0 0 Vi O

In this case we have six generators which are given by

_ 9 — 2 42 2 =5 —xF
Vo= 3% V1—X$+ya_y+2(‘m+b)ﬁ’ V2 =y = %oy (2.43)
V3:3iya V4:%, VS:;%—(au+b)%~

It is easy to check that the symmetry generators found in (2.43) form a closed Lie algebra

whose commutation relations are given in Table 2.2.

Table 2.2: Case(2)

Vi,V j] Vo |Vi|l W V3 Vi | Vs
Vo 0O |[Vo|—-Vs| O 0 0
Vi Vo | O 0 —Vi | 0 0
%) Vs | 0 0 —Vo| O 0
Vs 0 [ V3| W 0 0 0
V4 0 0 0 0 0 | Vy
Vs 0 0 0 0O |=V4| O

(3) f(u) =0/ |b—u|, where o is a nonzero constant and b is a constant.
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In this case we have eight generators which are given by

Vo:%,
Va=yd — ai,
Vi = (2 —y") 5 +2
=4,

Vi = x5 +y5+2(—u+b) s,

Vs =xyge + 307 —x%) 5 +29(—u+b) 5,

Vi=t9 +(u—b)<.
(2.44)

It is easy to check that the symmetry generators found in (2.44) form a closed Lie algebra

whose commutation relations are given in Table 2.3.

Table 2.3: Case(3)

Vi, Vil Vo Vi Vs Vs V4 Vs Ve | V7
Vo 0 Vo —Vs Vs 2Vi 0 0 0
Vi —W 0 0 Vs Vu —Vs 0 0
Vs Vs 0 0 —1/2Vy | 2V5 | =V | O 0
Vs Vo | =V3 | 1/2V, 0 0 Vi 0 0
| =2V | =V4 | —2V5 0 0 2V, 0 0
Vs 0 Vs Vo Vi 2V, | 0 0 0
Vs 0 0 0 0 0 0 0 |V
\% 0 0 0 0 0 0 V6| O
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(4) For arbitrary f(u), i.e., the principle algebra is five-dimensional, viz.,

_ J .0 J
, Vl—Xm‘f’ya_y"—ZIE, Vz—y%—xa—y (245)

It is easy to check that the symmetry generators found in (2.45) form a closed Lie algebra

whose commutation relations are given in Table 2.4.

Table 2.4: Case(4)
Vi,Vil| Vo | Vi | Vo | V3 Va4
Vo 0 Vo | Vs 0 0
Vi -V | O 0 V3| =2V,
%3 Vs 0 0 —Vo
V3 0 V3 Vo 0 0
Va 0 2Vy 0 0
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2.5 Reductions

In this section we briefly show the steps involved in the reduction of the nonlinear heat
equation to an ordinary differential equation, then find special invariant solutions. Since
all reductions under all subalgebras cannot be given in this chapter, we restrict to giving
reductions in two cases only. Reductions in the remaining cases with some special solutions

are listed in the form of Appendices A,B,C and D.

2.5.1 From case (1) under V; and V>

From Table 2.1, we find that the given generators commute [V;,V,]= 0. Thus either V; or V,
can be used to start the reduction with. For our purpose we begin reduction with Vj. The

characteristic equation associated with this generator is

dx dy dt Adu
A A g ) 2.46
X y 0 2 ( )

Following standard procedure we integrate the characteristic equation to get three similarity

variables.

s=12 r=t, w(ns)= A—“_iln(x) (2.47)

Using these similarity variables, Eq. (2.1) can be recast in the form

Aw, = oé? W(Azszwf —|—A2w§ — 25Aws + As*Wes + A wes + 2) (2.48)
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At this stage we express V, in terms of the similarity variables defined in (2.47). It is

straightforward to note that V, in the new variables takes the form

. d 25 d
w:—w+m$—£$; (2.49)

The characteristic equation for V; is

—ds dr —Adw

=T = ) 2.50
(s2+1) 0 2s (2.50)
Integrating this equation as before leads to new variables o = r and B(a) = /%(SZH),
which reduce (2.48) to a first-order differential equation
APy = 40eP4 (2.51)
Now by substitute @ =7 and 8 = %ﬁﬂz) in the solution of (2.51), we get the following
special solution of (2.1)
(roet) = In( oy (2.52)
u(x =In(— .
' Vs 4G(l + Cl)

2.5.2 From case (2) under V| and V;

From Table 2.2, we find that the given generators satisfy the commutation relation [V7,V3]=—V3.
This suggests that reduction in this case should start with V3. The characteristic equation

associated with this generator is

—_Z_ (2.53)
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Following standard procedure we integrate the characteristic equation to get three similarity

variables

s=x, r=t, w(rs)=u. (2.54)

Using these similarity variables Eq. (2.1) can be recast in the form
Wy = G(aw—i-b)(%)(awwss—l—bwss—l—W?). (2.55)

At this stage we express V; in terms of the similarity variables defined in (2.54). It is

straightforward to note that V| in the new variables takes the form

N 2, d
V= S35 + (2aw + 2b)%. (2.56)

The characteristic equation for V; is

ds dr dw
=TT 2.57
s 0 (2aw+2b) 237)

Integrating this equation as before leads to new variables o = r and (o) = 2 which

asa

reduce (2.55) to a first-order differential equation

Bo = 20(1+2a)(aB) " (2.58)

Now by substitute o =¢ and = “af{,f’ in the solution of (2.58), we get the following special

solution for (2.1)

) —b(—20a@)t —46a" et + €)@ + ax
u(x,y,t) = .
g a(—26a(%)t—40a(%)t+cl)“

(2.59)
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2.5.3 From case (4) under V5 and V4

From Table 2.4, we find that the given generators commute [V;,V4]= 0. Thus either V, or V4
can be used to start the reduction with. For our purpose we begin reduction with V,. The

characteristic equation associated with this generator is

dx —dy dt Adu
T =T, 2.60
y X 0 0 ( )

Following standard procedure we integrate the characteristic equation to get three similarity

variables.

s=x>+y%, r=t, w(ns)=u (2.61)

Using these similarity variables, Eq. (2.1) can be recast in the form

Wy =4 (W)ws + 4sf(w)ws + 4s fip(W)w?. (2.62)

At this stage we express V4 in terms of the similarity variables defined in (2.61). It is

straightforward to note that V4 in the new variables takes the form

e
Vo = 5 (2.63)

The characteristic equation for Vj is

— == (2.64)



45

Integrating this equation as before leads to new variables o = s and 3 () = w, which reduce

(2.62) to a second-order differential equation

F(B)Ba+af(B)Baa+af (B)BE =0. (2.65)

Now by substituting o = x> +y? and B = u in the solution of (2.65), we get the following

special solution for (2.1)

/f(u)du = In(c(x® +y*)5), (2.66)
where c, k are constants, ¢ > 0.

Remark 2.5.1. Other reductions of (2.1) to odes under two-dimensional subalgebras of Lie

symmetry generators are given in the Appendices.

2.6 Conclusion

In this chapter, we found the complete set of Lie point symmetry generators of a class of
nonlinear diffusion type equations and reduced the equations to odes using two-dimensional
Lie subalgebras. Some of these odes were solved whilst the remaining ones can be solved

using other methods or reemploying the symmetry approach.



Chapter 3

Conservation Laws of a Nonlinear (n + 1) Wave Equation

This chapter® studies the conservation laws of the nonlinear (n+ 1) wave equation

uyy = div(f(u)gradu) involving an arbitrary function of the dependent variable. This equa-
tion is not derivable from a variational principle. By writing the equation, which admits
a partial Lagrangian, in the partial Euler-Lagrange form, partial Noether operators associ-
ated with the partial Lagrangian are obtained for all possible cases of the arbitrary function.
Partial Noether operators aid via a formula in the construction of the conservation laws of
the wave equation. If f(u) is an arbitrary function we show that there is a finite number of
conservation laws for n = 1 and an infinite number of conservation laws for n > 2. None
of the partial Noether symmetry operators is a Lie point symmetry of the equation. If f is
constant, where all of the partial Noether operators are point symmetries of the equation,

there is also an infinite number of conservation laws.

*This chapter is published under the title ”Conservation Laws of a Nonlinear (n -+ 1) Wave Equation” (in collaboration with
Dr. Ashfaque H. Bokhari and Dr. F. D. Zaman and F. M. Mahomed).
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3.1 Introduction

The relationship between symmetries and conservation laws of differential equations has
been a topic of great interest (see, e.g. [31, 15, 6, 30, 16, 19, 25]. A systematic way
for the determination of conservation laws associated with variational symmetries for sys-
tems of Euler-Lagrange equations is indeed the famous Noether theorem [29, 5] (see also
[31, 15, 6, 30, 16, 25, 27]. This theorem requires a Lagrangian. There are approaches that
do not require a Lagrangian or even assume the existence of a Lagrangian for differential
equations (DEs), e.g. scalar evolution equations (see, e.g. [16] and the recent paper [28]).
Direct construction methods for multipliers and hence the conservation laws [3], Lagrangian
approach for evolution equations [21] and formula for relationship between symmetries and
conservation laws, irrespective of the existence of a Lagrangian of the system [25] have
been investigated. Also a basis of conservation laws was further investigated in [26] for
DEs with and without Lagrangian formulation. Kara and Mahomed in [27] presented a
new method to construct conservation laws of DEs via operators that are not necessarily
symmetry generators of the underlying system. These partial Noether operators which are
associated with partial Lagrangians aid via an explicit Noether-like formula in the construc-
tion of conservation laws of the system which need not be derivable from a variational
principle. These systems are referred to as partial Euler-Lagrange equations with respect
to partial Lagrangians. This approach provides a systematic way of obtaining conservation
laws for systems which have partial Lagrangian formulations.

There has been much focus on the determination of conservation laws for various phys-
ical systems (see, e.g. [16, 28, 23]). In [28] a (2+1) evolution equation was considered for
its conserved quantities using the direct method. Moreover there have been recent works
on the (1+1) wave equation in [23] which contains two arbitrary functions. We provide a

natural extension of [23] when one of the functions is zero to the case of n-space variables.
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For n = 1 we recover the results of [23] in the general case.

The outline of this chapter is as follows. In Section 2, we present salient points of the
necessary theory. Then in Section 3, investigation on the existence of conservation laws
of the nonlinear (2+1) wave equation for all cases of f(u) is carried out using the results
of Section 2 and we derive new conservation laws for this equation. Then in Section 4,
we generalize our work to the nonlinear (n+ 1) wave equation for all possibilities of the

function f(u). Concluding remarks are given in the last section.

3.2 Operators and the Partial Noether’s Theorem

Consider the kth-order system of partial differential equations (PDEs) of n independent

variables x = (x',x?,...,x") and m dependent variables u = (u',u?,...,u™)

E*(x,u,uyy,oupy) =0, a=1,...m, (3.1)

where w1y, u(2), ..., u () denote the collections of all first, second,..., kth-order partial deriva-
tives, i.e., uf' = D;(u®),uf; = DD;i(u”),...respectively, with the total differentiation operator

with respect to x’ given by
=0 e 9 e d 4 i g (3.2)
[ axi i 8140‘ 17 o ey T Ly 9 *

in which the summation convention is used.

The following definitions are well-known (see, e.g. [15, 27, 19]).

The Euler-Lagrange operator, for each «, is given by

O = aiu+s)>:1(_1)sD"l"'D"fM"L’ o=1,..,m. (3.3)

1]i2---i5
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The Lie-Bdcklund operator is

=& 402 Ein%eA, (3.4)

where A is the space of differentiable functions. The operator (3.4) is an abbreviated form

of the infinite formal sum

i d
é oxi +TI 8u0‘ + Z 1112 zéau—a 3.5)

i1ip...is

where the additional coefficients are determined uniquely by the prolongation formulae

G = Dy(W®) + Eu,

(3.6)
& =D D (W) +&u s> 1,
in which W¥ is the Lie characteristic function
We=n%—&u?. (3.7)
The Noether operator associated with the Lie-Béacklund operator X is
=&+ W + LD Diy(W) g>—, i=1,.m, (3.8)

111l2 l_g

where the Euler-Lagrange operators with respect to derivatives of u® are obtained from (3.3)

by replacing u® by the corresponding derivatives.

The following are taken from [27].
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Suppose that the system (3.1) is written as

Eq=EY+EL=0, a=1,..m. (3.9)

If there exists a function L = L(x,u, U(L)sees u(l)) € A, | < k and nonzero functions fg €A
(( fg ) is an invertible matrix) such that (3.9) can be written as 6L/6u®* = fg E 113 , provided
E 113 = 0 for some B, then L is called a partial Lagrangian of (3.9) and differential equations

of the form

L =fhE), a=1,..m, (3.10)

are called partial Euler-Lagrange equations.
Note that if £ [13 = 0 then the partial Lagrangian is the standard Lagrangian and we have the
Euler-Lagrange equations 6L/6u® = 0.

A Lie-Bicklund or generalized operator X of the form (3.5) is called a partial Noether
operator corresponding to a partial Lagrangian L € A if and only if there exists a vector

B=(B',...,B"),B' € A such that

X(L)+LD;(E") = W“;TLa + D;(B), (3.11)

where W = (W' ...,W™),W* € A, is the characteristic of X.

Remark 3.2.1. Note that conditions (3.11) differs from the Noether determining equations

[12, 2] as 6L/6u® # 0 in general.

The adjoint of the fréchet derivative of G with G = (G, ...,G,,), for each a, is given by

] p p
(DEW ) = 25 WP + ¥ (=1)*Dy,...D (555—WE), a=1,..,m. (3.12)

s>1 i1ip...is

Theorem 3.2.2. (Partial Noether’s Theorem). A Lie-Bécklund operator X of the form (3.5)
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is a partial Noether operator of a partial Lagrangian L corresponding to the partial Euler-
Lagrange system (3.10) if and only if the characteristic W = (W!,.... W™), W* € A, of X is

also the characteristic of the conservation law D; T’ = 0, where
T'=B —N(L), i=1,...n, (3.13)

of the partial Euler-Lagrange equations (3.10).

Theorem 3.2.3. If X, of the form (3.5), is a partial Noether operator of a partial Lagrangian
L, then X is the Lie-Béicklund operator of the corresponding partial Euler-Lagrange equa-

tions 6L/6u®* = ngll3 = G if and only if

XGo =&'DiGo + (DEW ) (3.14)

foreachax =1,...,m.

3.3 Application to a nonlinear (2 + 1) wave equation

Our objective is to obtain all the first order conserved quantities of the nonlinear (2 + 1)

wave equation

u — (f ()ux)x — (f(u)uy), = 0. (3.15)

It should be remarked that this equation is not derivable from a variational principle. Here,
we investigate conservation laws of the equation for all possible forms of f(u). We have
looked at point type operators and we have restricted the gauge terms to be independent of
derivatives. For simplicity we denote the derivative of u w.r.t. the independent variables
(g, uy,uy) as (uy,uz,us3).

The equation (3.15) has a partial Lagrangian L = Ju,”> — 3 f (u) (uy*> + u,?) for which



the partial Noether operators X = &0; + &0y + nd, satisfies (3.11), viz.

E1(ur (—Fua> fu — Sus ) +ur qur — up o f (u)uo — uy 3. f (u)usz)+
52(”2(-%”22 2”32fu) Fup quy —up o f(u)uy —uo 3 f (u)uz)+
&3 (us(—guo> fu— sus fu) +us jur —uz o f (u)uo — uz 3. f (u)uz)+
(n— &y — 52”2—53143)( T fu— Aus f)+

(e — &1 w1 — & pup — &3 puz + 1y (N — &1 utty — G2tz — &3 413) —

ur, 181 — w128 —u1 383)ur — (Nx — &1 wttr — & xun — &3 xuz+

ua(Mu — &1ty — & ity — &3 yu3) —up 181 —u 28 —up 3831) f () up—
(My — &1 yut — Eayuz — &3 yuz +uz(My — &1 yuy — Ep yur — &3 u3) —
3181 —us &y —uz363) f(wus + (=5 f(w)uz? — S f(w)uz® + Jur?)

(&1 +S1uur + & x + S uur + &3y 4 &3 yu3) = (M — Sruy — Soup — E3u3)
(—3u2? fu— 3u3fu) + B! +u 1B} + B2+ uyB2 + B3y + u3B3.

52

(3.16)



Separation by the derivatives of u yields the overdetermined linear system

S1u=0,
&u=0,
3u =0,
Sifu— f () Sru=0,
Safu—f(u)&u=0,
S3fu— f () &34 =0,

_nt:()v

B+ f (u)n: =0,

B+ f(u)my =0,

) (&x+8y) =0,

Sou— () S1x=0,

83— f(u)&1y=0,

B! +B2+B} =0,

@) 2N+ 81— &ax+ G3,) =0,
F)2nu+&1s+ & —&3y) =

&1+ &+ &8,=0.

From (3.17)-(1, 2, 3, 16) we deduce

n (tvx7yau) = %(%51 - %§2_ %53)1"_'—[3 (t,x,y)

Moreover from (3.17)-(7, 8, 9) we obtain

Bl (t7‘x7y7 u) =

2
(5261 -

axat@ aya,§3)uz ( B (1,2, y))u+fi(t,x,y)

53

(3.17)

(3.18)

(3.19)
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B? (t,x,y,u) = — [ f (u)( (axatél ax2§2 ayax@) +23x[3 (t,x,y)))du+1f2 (t,x,y)
(3.20)

B (t,x,3,0) = — [f (1) (25761 — 52558 — 52&) 5 + 2.9 B (1, ,9))du+ f3 (£,x,)
(3.21)

Also from (3.17)-(13), (3.19), (3.20) and (3.21) we find

(9381 — 5506 — 502 & ) + (42 B (1.x,y)ut 5fi (t,x,y) -
%f ( )((ax23,51 8x352 3y¢9x2§3)u+23 zﬁ (t X y))du—|— Ix 2(1‘ X y) (3.22)

%ff( )((8y28t§1 ay23x52 ay3§3)u+282ﬁ(t X y) du+ 8yf3 tx y =0

We differentiate (3.22) w.r.t. u to get

%(8,351 8x8t2 &2 - 8y8t2 &3 )Ju+ aﬂﬁ (t,x,y) =
%f(u)((axzatgl ax3 €2 9yax2§3)”+29 2[3 (t,x,5))— (3.23)
%f(”)((ayza,él ayzgxéz aya 2::3)”‘"23 2ﬁ (t,x,y)) =0

Now differentiate (3.22) w.r.t. u twice. This gives

[}

1 1
?él 2axaz252 zayatzéﬁ‘
3
( %8;3281 él + 2 8x3 52 + 53y8x2 53 +
3
(= éayzatﬁflhayzaxizﬂg’ygé + (3.24)

)
)

u) (— 3556 — S — 0 )u— LoB (1,5,))+
)

2
”)(_l(ayzatél ayzaxéz 8y3§3 u—g—yzﬁ(f,x,y))zo

The analysis of (3.24) gives rise to two cases. The results are presented as follows.

(D= (u) #0:



55

In this case we can obtain via (3.17)-(4, 5, 6), the equations

51 (t7x7y) - 07
& (t,x,y) =0, (3.25)
53 (t7x7y) - O

By the substitution of (3.25) in both (3.23) and (3.24) we have

n(t,x,y) =a(x,y)t+y(x,y) (3.26)

where o (x,y) and y(x,y) are the solutions of g—;u (x,y) + aa—yzzu (x,y) =0.

So we have an infinite number of nontrivial conservation laws that are given as follows:

T= (@(ey)u—u (@(xy)i+7(xy),
e (x,) ) [ f () du— (v (x,y)) [f () dut £ (W) (0 (x,3)1 47 (3,9))

—(Fo (e )t [ f (w)du— (557 (x.)) [ f () du+ f (u)us (& (x.) 1 47 (x)))
(3.27)

Now, in general the operator X is not a symmetry of the wave equation. Theorem 3.2.3

helps us to find the 1’s for which X is a symmetry generator of the wave equation. One can

easily see that none of the partial Noether operators is a Lie point symmetry of the equation.
ADLfu)=0: fu)y=c

This case is not of our interest, because we are interested in the nonlinear cases, but

we will discuss it briefly in the next section.
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3.4 Extension to nonlinear (n + 1) wave equation

Our aim here is to obtain all the first-order conserved quantities of the following nonlinear
(n+ 1) wave equation

ur — (f(W)uy,)x, =0, i=1,...,n. (3.28)

It should be pointed out that this equation is not derivable from a variational principle. Here,
we investigate conservation laws of the equation for all possible functions f(u). We have
looked at point type operators and we have restricted the gauge terms to be independent of
derivatives. Again for simplicity we denote the variables x,...,x, as x; and the derivative
of u w.r.t. the independent variables (uy,uy,) as (u1,ugy)), i=1,...,n.

The equation (3.28) has partial Lagrangian L = %u,z — % f(u) uxiz, whose partial Noether
operators of the form X = §,0; + &(;;1)0x, + N0, which satisty (3.11).

Similarly, by expansion then separation of the derivatives of u, we find the overdeter-

mined linear system that consists of 5(n+ 1) + 3n(n — 1) equations:

Siu=0, i=1,.,n+1

ifu— f(u)&iu=0, i=1,.,n+1
B,—1n,=0,

BYY 4 f(u)n,, =0, i=1,..n

F () (Gt +Eirin;) =0, i#j,i=1,.,n j=1,..n (3.29)
Sty — () &1, =0, i=1,..n

B! +B{"Y =0,

F @) 2N+ &+ (D)% 1)) =0, j=1,...n

2nu - 51,; + §(i+l)7x,- =0.



From (3.29)-(1, 9) we have

n (I,XS,M) = %(%51 - aixig(i—&—l))u_'—ﬁ (tv-xs)

Also from (3.29)-(3, 4) we deduce

BY (t,%5,u) = § (5281 — 52 i) 02+ (B (6,5) Ju+1i (,,)

BUFY (t,xs,u) = =1 [ (u)( (a,ax &1 — axax §l+1))”+28ix,-ﬁ (8, xs)))du+
Jirn (t,x5),j=1,....n

Furthermore from (3.29)-(7), (3.31) and (3.32) we obtain

H&8 - 358w > (5B (txs))u+ 51 (t,x5) —
Eff(u) (atangl 3x<9 25 i+1 )u+23 ZB (t xS)))du+fj+1 (t xS) =0.

We differentiate (3.33) w.r.t. u to arrive at

3 2 )
l(§f3 é:l o 8)2(%2 g(i+1))u+ %B (taxs) —

2
() (G = G2 52 (1)) =

Then differentiate (3.33) w.r.t. u two times to get

L8 — 5528 0)) -
3f () ( (aza 251 axa;xzé 1))~

%ju ( ) (8t8 251 8x8x2€’+1 )u+23 2B(t xs)))_
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(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

The analysis of (3.35) provides the two cases (I) and (II). The results are presented as

follows.
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(D f (u) #0:
In this case by using (3.29)-(2) we obtain

Ei(t,xs) =0, i=1,...n+1 (3.36)
By substitution of (3.36) into (3.34) and (3.35), we find
N(t,xs) = o (x5)t + ¥ (x5) (3.37)

where o (x;) and 7y (x;) are the solutions of the Laplace equation ;—;zu (x5) =0.
J

This gives rise to the two subcases (I.a) and (I.b).
(Layn=1:

There are four conservation laws (cf. [23]) that are given as:

Ty =(wx)—uptxy,—t[f(u)du+ f(u)up t xy),

Ty =(u—urt,f(uuyt), (3.38)
;= (—I/tl xl,—ff(u)du—i—f(u) I/tle),

Ty = (—ur, f () uz).

Ibyn>2:

There is an infinite number of nontrivial conservation laws that are:

T! = o (xs) u—uy (o (xs)t +7y(x5)),
T = —(Fa()r[fwdu—(Fr() [f@dut (.39
f(u) U(it1) (Ot(xs)t+ Y(xs)) di=1,...,n

Now, in general X is not a symmetry of the wave equation. Theorem 3.2.3 helps us to find
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the 1’s for which X is a symmetry generator of the wave equation. One can easily see that

none of the partial Noether operators is a Lie point symmetry of the equation.

DL f (u) =0: (f (u) =0)

Really this case is not of our interest, because we are interested in the nonlinear cases.

So we summarized it here only when ¢ # 0.

By the substitution of f (1) = ¢ into (3.33), we find the following two equations:

(57— c32) (56— 3 &) =0 (3.40)
(% —cZ3)B (t,x) =0 (3.41)

The analysis of (3.29)-(5, 6, 8), and (3.40) gives rise to the two subcases (Il.a) and (IL.b).
(Il.a)y n = 1:
The equation (3.29)-(6, 8, 9), (3.40) and (3.41) reduce to the following system

%52 — C%g],
26 =36, 3:42)
82

Hence there are infinite number of nontrivial conservation laws. These are given as follows:

T= ( u+ 3 Cbtzz—l—l 1u12—u1 +uioun,
Nt zgl zg n 5 (3.43)

i i
—cNyu— 5&cur® — 3Eu % + cupn — curuy)

(IILb)n>2:
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The equation (3.29)-(5, 6, 8), (3.40) and (3.30) reduce to the following system

2 =0,

it +Eirtx, =0, i#ji=1,..nj=1,..,n

Eirtys— i, =0, j=1,n (3.44)
S1e— &1y, =0, j=1,..,n

N (t,x5,u) = U2 (LE N u+ B (1.x,).

From (3.44)-(1, 4, 5) we have

&1 (t,x5) = %a(xs)tz-l—}/(xs)t-l—a(xs),
gj—ﬁ-l (t7x5) = f(a (xs)t+ ’}/<xs))dxj + Qj (tvxs)v Jj=1..n (3.45)
N (6,55, u) = 552 (0 (xs) 14 7 (65) Ju+ B (2,%5) -

such that %Qj =0,j=1,...,n. By substitution of (3.45) into (3.44)-(3) we find
J

0;(t,x)= 1 (%joc(;@) cri) (aixjy(xs)) e —1 Ja(x) dxj + et -0 (x,)

(3.46)
+Fj (xs) J=1,n

such that %Fj =0,j = 1,...,n By the inserting of (3.45) and (3.46) into (3.44)-(2) we
J

obtain

2

g & (55) =0,
2

V() = 0.

550 (x;) =0, (3.47)
L}

J 7 () dixj =+ e Fy (5) + [ 57 (xs) dxi o+ - F () = 0.

i#j,i=1,...n j=1,..,n



We differentiate (3.46) and (3.47)-(4) w.r.t. x; to obtain

2 .
%jza(xs)zo, j=1,...n

2 .
Zyts) -0

2 .
O‘<XS)_C%jzc(xs):0, j=1,...n

2 . .. .
a%i}/(xs)jL%ﬂE-(xs) =0. i#j,i=1,..n j=1,..

Next we differentiate (3.48)-(3, 4) w.r.t. x; to find

4 .
%ﬁﬁ(xs) =0, j=1,...,n

3 .
#Fi (x)=0, j=1,..,n

61

(3.48)

(3.49)

Then a (x;),7(xs),0 (x5), and F; (x5) are determined by (3.47), (3.48) and (3.49) as poly-

nomial functions.
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Thus there is an infinite number of nontrivial conservation laws that are given as follows:

T! = T (x) 2+ Jui 2y (x,) t + dur o (x) +
%cuﬁlza (x5) 1% + %cujﬂz}/(xs)t—i- %Cuj+126 (xg) —
Suyuor (xy) t — Suuy (xg) + Buyuor (xy) t + Suyuy (xg) —
urB(t,x) Furujpy [y(xs)dxj+ %ulquc (a%_,-o‘ (xs)) P+
%Mluj+lc (a%j}/(xs)> 12 +M1Mj+ltcaixj6 (x5) Furuj1Fj(xi),
T = seujii? [ (xs) dxi+ Seuj*F; (x)) + cuir B (8, %) +
%czuj+12ta%i6 (x5) + %c2uj+12 (a%}/(x;)) 12— %ulzc <a%iy(xs)> 2— (3.50)
cujpury (xs)t — %Czul‘+]uj+1 (%i(x (xs)> P %Czuj+1uj+1 (a%/}/(xv)) 2—
czuiHutha%jG (x5) — c upp1u1 0 (xg) + %Cuiﬂuy(xs) —
%ulztca%c (xs) + 15741 (a%oc (xs)> 13— cupuj Fy(xi) —
Luy2e (aia (xs)) 2= Lu2F () — Lur® [y (x,) doxi—
iUy [Y(x) dxj+ Sc upu (x;) t — Be upuo (x,) t—

5C uppuy (xg) — %c ui i & (xg)t2. i=1,..,n

where 3 (¢,x;) is a solution of (3.41).

One can verify that the conserved quantities (3.50) satisfy

(D, T+ D, T |5,=0. (3.51)

3.5 Conclusion

New conservation laws are constructed for the nonlinear (n+ 1), n > 1 wave equation which
is not derivable from a variational principle. We use the approach of [27]. For the equation
containing an arbitrary function of the dependent variable, all possible cases are considered.
When f(u) is an arbitrary function we showed that there is a finite number of conservation

laws for n = 1 which concurs with [23] and an infinite number of conservation laws for
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n > 2. None of the partial Noether symmetry operators is a Lie point symmetry of the
equation in this case. If f is constant, where all of the partial Noether operators are also
point symmetries of the equation, we found an infinite number of conservation laws.

It will be of interest to further study conservation laws for nonlinear wave equations

with more than one arbitrary function for more space variables.



Chapter 4

Generalization of the double reduction theory

In a recent work [34, 35] Sjoberg remarked that generalization of the double reduction
theory to partial differential equations of higher dimensions is still an open problem. This
chapter® provides this generalization to find invariant solution for a nonlinear system of gth
order partial differential equations with n independent and m dependent variables provided
that the nonlinear system of partial differential equations admits a nontrivial conserved form

which has at least one associated symmetry in every reduction.

4.1 Introduction

Applying a Lie point or Lie-Bédcklund symmetry generator to a conserved vector provide
either (1) Conservation law associated with that symmetry or (2) Conservation law that may
be trivial, known already or new. A pioneering work in this direction was published by Kara
et. al [25, 26]. Sjoberg [34, 35] later showed that when the generated conserved vector is
null, i.e. the symmetry is associated with the conserved vector (association defined as in

[25]), a double reduction is possible for PDEs with two independent variables. In this dou-

*This chapter is published under the title  Generalization of the double reduction theory” (in collaboration with Dr. Ash-
faque H. Bokhari, Dr. F. D. Zaman, Dr. F. M. Mahomed and A. H. Kara).
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ble reduction the PDE of order ¢ is reduced to an ODE of order (¢ — 1). Thus the use of
one symmetry associated with a conservation law leads to two reductions, the first being a
reduction of the number of independent variables and the second being a reduction of the
order of the DE. Sjoberg also constructed the reduction formula for PDEs with two inde-
pendent variables which transform the conserved form of the PDE to a reduced conserved
form via an associated symmetry. Application of this method to the linear heat, the BBM
and the sine-Gordon equation and a system of differential equations from one dimensional
gas dynamics are given in [34]. The double reduction theory says that a PDE of order ¢
with two independent and m dependent variables, which admits a nontrivial conserved form
that has at least one associated symmetry can be reduced to an ODE of order (¢ — 1).

In his papers [34, 35] Sjoberg opines that generalizing the double reduction theory to PDEs
of higher dimensions is still an open problem and it is not clear how to overcome the prob-
lem when not all derivatives of non-local variables are known explicitly. Further calcula-
tions for higher dimensions are quite tedious and cumbersome. There do not exist enough
examples of potential symmetries and symmetries with associated conservation laws for
higher dimensional PDEs so that the complexity of this problem can be demonstrated. Much
work is needed to generalize (if possible) the theory to PDEs with more than two indepen-

dent variables.

In this chapter we discuss a generalization of the double reduction theory showing that
a nonlinear system of ¢’ order PDEs with n independent and m dependent variables can be
reduced to a nonlinear system of (g — l)th order ODE:s. It is shown that these reductions are
possible provided the system admits a nontrivial conserved form with at least one associated

symmetry in every reduction.

In order to solve this we use two main steps: (a) Generalize the reduction formula of
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Sjoberg in [34] from two independent variable to n independent variables and (b) prove that
the conserved form of PDEs with n independent variables can be transformed to a reduced

conserved form via an associated symmetry.

4.2 The Fundamental Theorem of double reduction

Consider the gth-order system of partial differential equations (PDEs) of n independent

variables x = (x',x%,...,x") and m dependent variables u = (u!,u?,...,u™)

E*(x,u,uyy, i) =0, oo=1,...m, 4.1)

Theorem 4.2.1. [4] Suppose D;T' = 0 is a conservation law of PDE system (4.1). Under
the contact transformation, there exist functions 7¢ such that J D;T! = D;T? where T' is
given explicitly in terms of the determinant obtained through replacing the i’ row of the

Jacobian determinant by [T'!, 72, ..., T"], where

Dlxl D])Q Dlxn
sz 1 [)2)62 cee szn

J= 4.2)
anl anZ ann

Theorem 4.2.2. Suppose D,T" = 0 is a conservation law of PDE system (4.1). Under the
contact transformation, there exist functions 7 such that J D;T! = D;T" where 7' is given

explicitly in terms of

=JAahr g [ =AT] , 4.3)



where

and J =det(A).

Dixi Dix;
Dox; Dox,
anl an2

Dlxn

D 2Xn

Dyx,

Proof. Using theorem 4.2.1 we can write

Since

T T
szl Dng
anl anz
Dix; Dix,
T; 1
D,x; D,x»
Dixi Dixa
Doxi Dox,
T; 1
D1x1 DUCQ
Dyxi Daxs
l~),,x1 D,,XZ

T,

D 2Xn

D,x,

Dlxn

D,x,

Dix,

D 2Xn

Dlxn

Dox;,

D,x,

Dix;

Dlxz

D]Xn

Dn-fl

JT

JT,

JT,

Dix;

DIXZ

[)lxn

Dix;

Dix;

Dlxn

Doxy

D2x2

D2xn

X1 Dixp

D>

D an

Daxy

Dax,

D 2Xn

JT

JT

JT,

[)le

Dox,

D 2Xn

Dy x;

Dyx;

Dyxy,

D1x~n

D 2x~n

Dn-fn

D,x;

an2

Dyx,

anl

Dy,x>

Dyx,

D)

JT,
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(4.4)

(4.5)

(4.6)

4.7)

(4.8)
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one can use the Cramer’s rule to find that 71,72, ..., 7" can be written as follows:
JT! T!
JT? 72
=AT . (4.9)
JT" "

Lastly, one can easily see that

AAT =1. (4.10)

Lemma 4.2.3. Consider n independent variables x = (x!, x?, ...,x""), m dependent variables

u= (ul,uz, ...,u™) and the change of independent variables % = ()Zl,iz, ...,X"), then any

vector f(x,u,u1) = (f1, f2,..., f) must satisfy the following identity

Dy Dy ... D frofe o Dy Dy ... D v
D, Dy ... D, o om 4 D, Dy ... D, Lo om
' Dy Dy ... D, [\ " 2 .. | Dy Dy ... D, |\ 'SP
4.11)
where
f)lxl D1x2 f)lx,,
szl Dz)Cz szn
A— 4.12)
Dyxi Dyxa ... Dyx,
Proof.
Since
Dif/ = DDy f’, i,j=1,.n, (4.13)



then
Dif' Dif?

Dyft Dyf?

D.f' D,f?

Dy f"

Dy f"

D, f"

Dif' Dif?

Dyf' Df?

D.f' D,f?

Theorem 4.2.4. (Fundamental Theorem of double reduction).
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Dy f"

D n
2f (4.14)

Dof"
O

Suppose D;T" = 0 is a conservation law of PDE system (4.1). Under the similarity transfor-

mation of a symmetry X of the form (3.5) for the PDE, there exist functions 7 such that X

is still a symmetry for the PDE D;T% = 0 and

where
Dlx 1 D1X2
sz 1 [)2)62
A=
anl an2

and J = det(A).

XT!

XTn

Dlxn

szn

D, x,

[T',X]

[T%,X]

(7", X]

DXy Dixp

Dyx1 Dyxp

anl an2

(4.15)
D1x~n
D)X,

(4.16)
DX,
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Proof. By the above theorem there exist functions T such that J D;T? = D;T" and

T! T! T! T!
72 T2 T2 72

=JAah" |y [ =AT) (4.17)
T" T" " T"

Then X is a symmetry for the PDE D;T? = 0, because X (J) D;,T' +J X(D;,T") = X (D;T")

and
XT! XT! T! T!
XT? - XT? o T2 o T2
=J@A™h | Hix@hH) | | x@h | @
X7 XT" " "

Since J = det(A), then

Dlél D1€2 Dlén Dlxl D]Xz Elxn D]Xl Dle Dlxn
Drx; Doxy ... Dox, DyE! D E? ... D& Dyx; Doxy ... Dox,
X(J)= + et
D,x; Dpxy ... Dyx, D,x; Dpxy ... Dyx, D' D,&* ... D,&"
4.19)

Let {;; denote the cofactor of D;&E7 | then it is the cofactor of D;x j for the matrix A. Thus
X(J)=Di&’ §j=Di&’ Dixy §ij=Dp&’ S J. (4.20)
Since Dix; §;j = 8 J for every fixed j and k, where 8 is the Kronecker delta, then

X(J) =J(DEV +DyE2 + ...+ D,E (4.21)




Now using the previous lemma one gets,

Dy By ... D] [¢& e .. e
Dy By ... Dy || & &2 . e
| By Dy ... D, |\ & & . e

D &"

Since AT(A=1)T =1, then X (AT)(A~1)T +ATX((A=1H)T) = 0, thus

D,

D,

DyE!

DyE?

Dy§E"

X((aHT) =—@Ah)x@n@ahH" =

D¢&!
= (AT Di§?
D &"

Lastly we get the result
XT! XT! D&l
XT? iy XT? - D &?
XT" XT" D &"

DyE!

D,&?

DyE"

D

D,

D,&!

D,E?

D,&"

D,E!

D,&?

D,&"

D,E!

D,&?

D,&"

D,

D,

AT

ghoé
ghoé

ghoé

—(A~h)Tx(AT)Aah)!

+D;¢’

71

én
gn

én
(4.22)

(4.23)

(4.24)

Tl’l
(4.25)
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Corollary 4.2.5. (The necessary and sufficient condition to get reduced conserved form)
The conserved form D;T! = 0 of PDE system (4.1) can be reduced under the similarity
transformation of a symmetry X to a reduced conserved form D;,7" = 0 if and only if X is

associated with the conservation law T, i.e. [T, X] |(4.1)= 0.

Corollary 4.2.6. (The generalized double reduction theory)

A nonlinear system of ¢’ order PDEs with n independent and m dependent variables, which
admits a nontrivial conserved form that has at least one associated symmetry in every reduc-
tion from the n reductions (the first step of double reduction) can be reduced to a nonlinear

system (g — 1) order of ODEs .

Remark 4.2.7. According to the procedure of Sjoberg [34, 35], one can arrive from a PDE
of order g to an ODE of order g provided there exists at least one associated symmetry
in every reduction. This follows directly from the above theorem by the invariance of the
fluxes and using canonical coordinates. Lastly, the ¢"" order ODE (written in the conserved

form) is reduced to an ODE of order (g —1).

Corollary 4.2.8. (The inherited symmetries)
Any symmetry Y for the conserved form D,;T" = 0 of PDE system (4.1) can be transformed
under the similarity transformation of a symmetry X for the PDE to the symmetry ¥ for the

PDE D;7% = 0.

Remark 4.2.9. There is a possibility to get an associated symmetry with a reduced con-
served form by inhering of the non associated symmetry with the original conserved form.
So there is an important use of the non associated symmetry also in Double reduction.

Finally, we conjecture that the reduction under a combination of an associated and a non

associated symmetries will give us two PDE one of them is a reduced conserved form
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and the second is a non reduced conserved form, we can separate them via the condition
X (D;T") = 0 such that the solution of a reduced conserved form is also a solution of the non

reduced conserved form.

4.3 Conclusion

In order to find invariant solutions for a nonlinear system of ¢’ order PDEs with n inde-
pendent and m dependent variables, a generalization of the double reduction theory due to
Sjoberg [34, 35] is proposed. This generalization allows one to reduce the PDEs of order ¢
to an ODE of (¢ — 1) from the association of the symmetry with its conserved form via the

new generalized formula (4.3).



Chapter 5

The double reduction of a Nonlinear (2 + 1) Wave

Equation with different arbitrary functions

This chapter” provides the conservation laws of the nonlinear (2 + 1) wave equation

ur = (f (u)uy)x+ (g(u)uy), involving arbitrary functions of the dependent variable, by writ-
ing the equation, which admits a partial Lagrangian, in the partial Euler-Lagrange form,
partial Noether operators associated with the partial Lagrangian are obtained for all pos-
sible cases of the arbitrary functions. Partial Noether operators aid via a formula in the
construction of the conservation laws of the wave equation. If f(u) or g(«) is an arbitrary
nonconstant function we show that there is an infinite number of conservation laws. If both
of f(u) and g(u) are arbitrary nonconstant functions we show that there is an infinite number
of conservation laws for f(u) = c1g(u) + ¢, for some constants ¢ and c;, otherwise there
are eight conservation laws. Finally we applied The generalized double reduction theory
for the Nonlinear (2 + 1) wave equation by using seven conservation laws from these eight

conservation laws to introduce new exact solutions.

*This chapter is submitted for publication under the title The double reduction to Nonlinear (2+1) Wave Equation with
different arbitrary functions” (in collaboration with Dr. Ashfaque H. Bokhari, Dr. F. D. Zaman, Dr. F. M. Mahomed and Dr. A.
H. Kara).

74



75

5.1 Introduction

The analysis of conservation laws of the nonlinear (2+1) wave equation with an arbitrary
function was studied in chapter 3. Here we extend the study in the case of different arbitrary
functions, then we apply The generalized double reduction theory for these conservation
laws.

The outline of the chapter is as follows. In Section 2, investigation on the existence of
conservation laws of the nonlinear (2+1) wave equation for all cases of f(u) and g(u) is
carried out using the Partial Noether’s Theorem and we derive new conservation laws for
this equation. Finally, in Section 3, we apply the generalized double reduction theory for
the nonlinear (2 + 1) wave equation by seven conservation laws to introduce new exact

solutions.

5.2 The Conservation laws of a nonlinear (2 + 1) wave
equation with different arbitrary functions

Our objective is to obtain all the first order conserved quantities of the nonlinear (2 + 1)

wave equation

e — (f ()ux)x — (g(u)uy)y = 0. (5.1)

It should be remarked that this equation is not derivable from a variational principle. Here,
we investigate conservation laws of the equation for all possible forms of f(u). We have
looked at point type operators and we have restricted the gauge terms to be independent of

derivatives. For simplicity we denote the derivative of u w.r.t. the independent variables

(l/t[, Uy, uy) as (l/t],l/tz,l/l3).

The equation (5.1) has partial Lagrangian L = %u,z — % flu)u?— g(u)u§ for which the partial
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Noether operators X = &0; + &0, + 19, satisfy (3.11), viz.

2

E1(ur (—3ua® fu — Jus®gu) +ur 1y — ur o f (W)up — uy 38(u)uz)+

2

éz(uz(—%uz 2u3 28u +upur —upp f(u)uz — uz 3g(u)us)+

) )

) )

&3 (us(—gua’ fuu — 3us®gu) +uz 1wy — uz o f (u)uz — uz 38(u)uz)+

(N — Erur — Epun — E3uz ) (— 32 fu — Sus’gu)+

(M — &1 01 — G pur — &3 4us + 1y (Nu — &1ty — Stz — &3,413) —

up 181 — w128 —u1 383)ur — (M — &1 01 — Epxu — &3 xuz+ (5.2)
up(Mu — &1ttt — Sty — &3 uu3) —u2 181 —uz 2865 — ua 383¢) f(u)uz—
(ny — &1 yur — Eayun — &3 yuz +u3(My — 1ty — S itz — &3 4u3) —

w3 1&1 — u3 & — u33E3)g(u)us + (=3 f ()ur® — Sg(u)uz® + Suy?)

(81 +81utts + &+ Sa i + 83y + G3.uu3) = (N — S1us — Saun — E3u3)
(—Su2®fu — Jus*gu) + B! + w1 BL + B2 + urB2 + B} + u3B;.
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Separation by the derivatives of u yields the overdetermined linear system

S1u=0,

&u=0,

&3u =0,

Sifu— f () Sru=0,

Safu—f(u)&u=0,

S3fu— f () &34 =0,

18u— 8 () &1u=0,

S28u— &) S2u =0,

S38u— &) &34 =0,

Bl —n,=0, (5.3)

B+ f (u) 1 =0,

B, +g(u)ny, =0,

fu)S&x+g )&y =0,

S —f(u)&1x=0,

&3 —8g(u) &1y =0,

B! +B:+B) =0,
F@)2nu+81— Sax+ S3y) =0,
g(u) 2Ny + 811+ &2x— &3,) =0,
21y — 811+ Soxt+ &3y, =0.

From (5.3)-(1, 2, 3, 19) we deduce

N(txy) = 128 — 28— 2E)u+B(1x.y) (5:4)
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Moreover from (5.3)-(10, 11, 12) we obtain

B (t,x,3,0) = (3261 — 52560 — &) + (S (Lxy)utfi(txy) (55

B2 (1,x,y,u) = =3 [ £ () (&1 — 2260 — 55 Ea)u+2 2B (1,3,9))du+ 1 (1,%,)
(5.6)

B3 (t,x,y,1) = =4 [2 () (2561 — 3260 — S &a)u+2 3B (1,x,9))du+ 3 (1,%,)
5.7
Also from (5.3)-(16), (5.5), (5.6) and (5.7) we find

(5561 — 55m8 — 55 & i + (2B (1,x,3) Ju+ 51 (1,%,5) -
LIF ) (G581 — b — 3oa&)u+ 2528 (txy) dut Zh(xy) - 58

%fg(”)((ay23,§1 ayzaxéz ay3§3)”+2 2ﬁ(t x,y)) du+ ayf3 (t,x,y) =0

We differentiate (5.8) w.r.t. u to get

%([%3&1 8x8t2 55360 — 3ya,2 E3)u+ atzﬁ (t,x,y) —
%f(u)((axzatél 8x3 52 ayaxz 53)”'1'23 2ﬁ (t,x,y))— (5.9)
%g (”)((ayzatgl 3y23x§2 8y3 53)”"‘23 213 (#,x,y)) =0

Now differentiate (5.8) w.r.t. u twice. This gives

N5
)

&1 — éaxaﬂ & — ;ayatz &3+
1 193 1
-2 8x28t él +3 o3 52 + §W§3)+
3
R N (5.10)

y
1 92
—j(axzatél axséz ayaxz§3) — 3B (tx,y))+
1

2

O —
N5}
Ay
(98]

u)

CARR
~

<
~—
A A

l\)l>—‘

Sl Fl
~
—~
=
S—r

oQ
—
<
~—
—~ o~
|

2
(3y23t€1 ay23x62 ay% 3) aa_yZB (taxay)) =0
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Since the case when both f(u) and g(u) are constants is not of our interest, so the analysis
of (5.10) gives rise to three cases. The results are presented as follows.
(I)C%tg(u) # 0, f(u) = k1, k) is a constant:

In this case we can obtain via (5.3)-(7, 8, 9), the equations

61 (ta-x?y) =Y,
52 (tvx,y) :Oa (511)
=0

53 (t7x7y)

By the substitution of (5.11) in both (5.9) and (5.10) we have

n(t,x,y) =a(t,x)y+7y(t,x) (5.12)

where o (¢,x) and 7y (t,x) are the solutions of g—;u (t,x) — ki g—;u (t,x) =0.

So we have an infinite number of nontrivial conservation laws that are given as follows:

T= ((%(X (tvx)y+ %Y(t7x))u - ul(a (t7x)y+ ’}/(Z‘,X)),
_kl(aia <t7x)y+ %’}/(t7x>)u+k1u2<a(l7x>y+ Y(tvx))7 (5.13)

X

—0o(1,x) [g () du+g (u)us(a (t,x)y+¥(t,x)))

(DL f (u) # 0,g(u) = k2, k> is a constant:

In this case we can obtain via (5.3)-(4, 5, 6), the equations

51 (t7x7y) _07
52 (l7-x7y) :Oa (514)
§3 (t7x7y) =0.
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By the substitution of (5.14) in both (5.9) and (5.10) we have

n(t,x,y) = o(t,y)x+v(,y) (5.15)

where ¢ (7,y) and y(¢,y) are the solutions of ‘92u(t y)— kzg—yzzu(t,y) =0.

So we have an infinite number of nontrivial conservation laws that are given as follows:

T= (Zalt,y)x+dyE.y)u—u(aly)x+7y(y),
—a(t,y) [f (u)du+ f(u)ua (o (t,y) x+y(t,y)) (5.16)
ka0t (ey)x+ Ly (t.y)utkaus(e(t,y) 5+ ¥(1,5)),)

(DL £ (1) # 0, Lg (u) #0:

In this case we can obtain via (5.3)-(4, 5, 6),or via (5.3)-(7, 8, 9) the equations

&1 (t,x,y) =0
& (t,x,y) =0, (5.17)
0.

& (t,x,y) =

Y

here we have two subcases (IIl.a) and (IIL.b).
(MLa)f (u) = c1g (u) + ¢ :(f'(u) and g’ (u) are linearly dependent )
By the substitution of (5.17) in both (5.9) and (5.10) we have

n(t,x,y)=p(t,x,y) (5.18)

where f3 (¢,x,y) is a solution of the system

Clax ﬁ+ B 0.
atzﬁ = Zaxzﬁ

(5.19)
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So we have an infinite number of nontrivial conservation laws that are given as follows:

- (ﬁzu—ﬁul,—clﬁx [sw)du—copact expus +erglu)pur, By [5(0 du+g(u)ﬁu3>

(5.20)
(MLb)f (1) # c1g (1) + 2 :(f'(u) and g’ (u) are linearly independent )
By the substitution of (5.17) in both (5.9) and (5.10) we have
N(t,x,y) = C1 + Cox+ C3y + Cat + Csxy + Cgty + Cytx + Cstxy (5.21)
Therefore we obtain the following conservation laws.
Tl = (_ ulaf(u) u27g<u) I/t3),
L= (- uix, — ff (l/t) du+f(u> ux, 8 (l/t) M3X),
I3 = (— Ml)’,f(”) uy, — fg (I/l) du+g (I/t) M3y),
Thy= (u—uyt, f(u)ust,g(u)ust),
ity f () uat, g () ust) (5.22)

Is= (— uixy, _yff(u> du —|—f(l/t) uzxy, —.ng (I/t) du+g(”) u3xy)7
To = (uy—uwty, f(u)usty,—t [g (u)du+ g (u)usty),
= (ux—uytx,—t [ f(u)du+ f(u)ustx, g (u)ustx),

Ty = (uxy —uyixy,—ty [ f(u)du+ f (u) ustxy,—tx [g (u) du+ g (u) ustxy).

5.3 Double reduction of a nonlinear (2 + 1) wave equation

In this section we apply the generalized double reduction theory for the nonlinear (2 + 1)

wave equation

i = (f (i) (80 (5.23)
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that involves arbitrary different functions f(u) and g(u) by using seven conservation laws
from the eight conservation laws (5.22) to introduce new exact solutions.

Really, this equation admits the following four symmetries:

0 J
Xi=2, Xo=2

ot Jx (5.24)
X3=a% X4:t%—|—x%+ya%.

In this chapter, we restrict to show reductions by 77 and 7; by detail, where the table
that determine which of these four symmetries are associated with the eight conservation
laws and the Reduction in the remaining cases with exact solutions are given in Table 5.1
and Table 5.2.

(1) The double reduction to the nonlinear (2 + 1) wave equation by T,:

We can get a reduced conserved form for the PDE by the associated symmetry which satis-

fies the following formula

T! D" D, E&! Dyét T! T!
+ (D:&' + D EF +Dy§y) 7* | =0.

=

X[ ™ |-| D& D& D& T

T D&Y D& D& T T
(5.25)

Then the only associated symmetries are X;,X> and X3, so we can get a reduced conserved
form by the combination of them X = % +c1 % + cza%, where the generator X has a canon-

ical form X = a% when

dt _dx _dy _du_dr_ds_dg_dw (5.26)
[Ta & 0 0 0 1 0

or

r=y—ct, s=x—cit, q=t, w(rs)=u. (5.27)
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Using the following formula

T T!
s | =1 | (5.28)
T4 Ty
where
Diyr Dis Dig
A'=1| Dy Dy Dy |, J=det(A). (5.29)
Dyr Dys Dyg

We can get the reduced conserved form
D, T"+D,T* =0, (5.30)

where

T" = c2’w, + cociws — g(W)wy,
TS :clczw,+c%ws—f(w)ws, (5.31)

T9 = —cow, — c1wy.

The reduced conserved form admits the inherited symmetry:
Xy=ri+sL, (5.32)

Similarly we can get a reduced conserved form for the PDE by the associated symmetry
which satisfies the following formula
T" D" D& T" T"

X — + (D,E" 4 Dy&¥) =0. (5.33)
Ts Drgs Dsé N Ts TS
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One can see that X is an associated symmetry, so we can get a reduced conserved form by

Y =rZ + si, where the generator Y has a canonical form Y = 2 when
ar ds om

dr_ds_dw dn dm dv

r s 0 0 1 0’

or

n=3% m=lInr, v(n)=w.

So by using the following formula, we can get the reduced conserved form

T" T"
— J(A_] )T ,
Tm TS
where
D.n D,m
A= T T, T =det(A).
Dgn Dgm

Then the reduced conserved form is:

where
T" = vy (—c2?n® + 2cc1n+n2g(v) —c12 + f(v)),

T" = —vy(—c3n+cact +ng(v)).

The second step of double reduction can be given as

va(—e2?n® +2coc1n+n*g(v) —e* + f(v)) = C,

x—cqt
y—cot

where C is a constant, n = and v = u.

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)
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(2)The double reduction to the nonlinear (2 + 1) wave equation by Tj:

In this case the only associated symmetries are X, and X3, so we can get a reduced
conserved form by the combination of them X = % + Cla%’ where the generator X has a

canonical form X = a% when

@t —e— =i = 541
0 1 1 0 0 0 1 0’ (541)
or
r=y—cix, s=t, g=x, w(rs)=u. (5.42)
Then by using formula (5.28) we get the following 3-components of 7
T = sw,(g(w) +cif(w)),
TS = w— sw, (5.43)
T = —cisf(w)wy.
So the conserved form will be reduced to
D, T"+D,T* =0 (5.44)

One can see that X; and X, are not associated symmetries with the reduced conservation
law, however we can get a reduced conserved form by using the first part of Fundamental
Theorem of double reduction by using the following procedure

d

First, take ¥ = r5-+ (1 + s)%, where the generator Y has a canonical form Y = %

when

ar _ _aw_dn_am_ dv (5.45)
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or

m=Inr, v(n)=w. (5.46)

Then by using formula (5.36) we get the following 2-components of 7:"4

™ — _ (n3vng (V) 4 ci2nvf (v) +v—nvn) e+ v, (nzg (v)+c2n?f(v) — 1) )

T = v, (g(v) + A (v))e — nva(g(v) + 21 (V).

(5.47)

Now by using the first part of Fundamental Theorem we get that Dn% + Dm‘%}: =0so

Dy(— (”3Vn8 (V) +crPnvaf (v)+v—n Vn) e”) + Dy (n*va(g(v) + c%f(v))em) =0.
(5.48)

Thus by solving equation D, T" + D,,,T™ = 0 with equation (5.48) we can reduce it to

va (n* g (v) + e/’ n*f(v) — 1) =C. (5.49)
Where C is a constant, n = yl:crf - and v =u.

Note that equation (5.48) is an integral equation which has the same last solution (5.49).

Table 5.1: Conserved vector T* generated by applying the symmetries to a conserved T

X | X | X3 | Xg
T, 0/0]0]|T
017|025
500|725

T, T, 00 |27
Ts| 0 | T3 | b | 375
To | T5 | 0 | Ty | 3T¢
T | T | Tu| 0|37
Ts | Ts | T | T7 | 4Tx




Table 5.2: The double reduction to the nonlinear(2 4 1)wave equation By 77...77.

Conservation law Reduction n | v(n)
T Va(=c2?n? + 2cocin+n’g(v) —ci? + f(v)) =C ’yf—f;; u
T va(—c1*n* +n2g(v)+ f(v)) =C o] o
T va(=ei? +n2g(v) + f(v)) =C S|
Ty va(n?g(v) +ei’n’f(v)—1)=C % u
I w80+ f(1) = C =
T w(mg(v) = 1) = C oy,
n m(n?f(v)—1)=C 5w

5.4 Conclusion

87

New conservation laws are constructed for the nonlinear (2 + 1) wave equation which is

not derivable from a variational principle by using the results of [10]. For the equation

containing an arbitrary function of the dependent variable, all possible cases are considered.

When f(u) # c1g(u) + c2, we show that there are eight conservation laws. Finally we

applied The generalized double reduction theory for the Nonlinear (2 + 1) wave equation

by using seven conservation laws from these eight conservation laws to introduce new exact

solutions.



Chapter 6

Wave equation on spherically symmetric Lorentzian

metrics

Introduction

The symmetry properties of most of the fundamental equations of mathematical physics,
with flat background metric, have been well investigated [16, 17, 18]. In particular, an
account of symmetry classification problem for a number of wave equations in flat space
has been given in [2]-[9]. In this chapter we extend the earlier investigations by studying
Noether symmetries of wave equation on a spherically symmetric metric. The equations
determining Noether symmetries for this metric are solved up to explicit functions of 6
and ¢ only. In order to solve these determining equations completely, we restrict to a
specific spacetime metric, known as flat Friedmann metric. This metric represents an exact
solution of the Einstein field equations of general Relativity and represents an expanding
universe model [11]. The plan of this chapter is as follows: In the next section we discuss
Noether symmetries of a (34 1) wave equation on spherically symmetric metric. In section

two, we solve the wave equation to find Noether symmetries admitted by it and using a
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conformal transformation re-cast it into a constant coefficient wave equation (with respect

to derivatives). A brief discussion of results is given in the last section.

6.1 The Noether symmetries of a (34 1) wave equation on
spherically symmetric Lorentzian metrics

The spherically symmetric metric is given by the expression [11],
ds® = e*)ar? — M gr? — ) 492 — ot sin? 0d ¢ 6.1)

The wave equation on this metric is written using the formula
Ogu = aix,-(‘/ | g \gik%) = 0, where g* is the inverse and | g | is the determinant of the

metric (6.1). Using (6.1) and simplifying O,u = 0, takes the form,

iAo,
9 (oh=3+%) gin@du) — 2 (p(1+3-3)gingdu) — 9 (o(3+%); 9@)_1(%)_0
1 \€ SINY5: ) — or\e SIMY5.) —96\€ SIMY9e) ~ 96\ "sme ) =V
(6.2)
The Lagrangian of the wave equation is given by the expression,

v ) ) (%+%) Quy2

2L =35 5ing(20)? — o+ 3B sing(20)? — o3+ sin(@) ()2 - T Loe)
(6.3)

In order to investigate Noether symmetries for given v(z,r),A(¢,r) and p(z,r), we assume
that the gauge term is independent of derivatives as discussed in chapter 3. Through out
our calculations, we use a convention in which u;,u,,ug and uy are respectively written as
ui,un,us3 and uq.

The Noether symmetry generator X = &9, 4 &9, + E3dg + 49y + 19, of the equation (6.2)

satisfies (3.5), viz.



XL+LE&+uibiu+&p+ubnu+80+usésu+8ap+usban)=B1,+uiBiy+Br,+

90

usBs y + B3 g +u3B3y + By +usByy
(6.4)

Separating equation (6.4) by the derivatives of u, yields the over determined linear system

uiuy

uius :

Uiy .

usuy :

Ury .

uszuy :

up .

up:

usz .

Uy .

2
uj

.eq -
eqp

teqs:

teqyq

Ei1u=0,
&2 =0,
&u=0,
Eau=0,

eV, —et&, =0,

"o —eM&, =0,

eVE p—etsin?0&, =0,
et&o+etés, =0,

et &y +eHsin? 08, =0,

&9 +sin?0& 9 =0,

B4 —et=3+5)5in g M, =0,
By Telt+3-%)sing Mm,=0,

+5) Niesin® =0,

A
7

B3M—%e(
(

Ne e

Biut+ gt =0,

Bi;+Bs,+B3g+Bsy =0,

(Vi +2)&1+ (Vi +A)8+281,+28,— 2830 +2849 +4M14)sin0 +283c080 =0,
(Vi+A)E1+ (Vi +24)80+281,+28 ,+2836 =284 9 +4M1,4)sin6 —2&3c0s0 =0,
(Ve = A+ 2)E1 + (Ve — Ay + 210,80 + 281, — 285, + 285+ 2849 +4T1,)sin O
+2&5c0s60 =0,

((Vi=A=2u)&14+ (Ve = A —20,)80+ 281, =28, —2E39 — 2849 —4M1,)sin 6

—2&3c0s0 = 0.
(6.5)
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Equations (6.5)-(16, 17, 18, 19), eq1,eq>,eq3 and eq4, can be transformed to another equiv-

alent equations ey, e;,e3 and e4 via the invertible matrix by using the formula

el 1 1 1 1 eqi
e 1 1 -1 -1 eqs
= (6.6)
e3 1 -1 -1 1 eqs
eq 1 -1 1 -1 eq4
where the equivalent new equations are:
er: 2Mu+28&1:+&1vi+&v, =0,
er: 2Mu+2&,+ 11—{— zlr:(),
Mu+28&,+E&A+E ©6.7)
e3: 2Ny +28&0+ &1 +Eu, =0,
es: 2Miu+284p + Sl +Eap +285c0tO = 0.
From equations (6.7)-(1) and (6.5)-(1,2) we deduce that,
m=a(,rn6,0)ut+p(t,r0.9) (6.8)
By substituting 17 in equations (6.7), it reduces to the following system:
2004281+ & v+ &V, =0,
200 +28,+ &4 +EA =0,
' (6.9)

204280+ &1 +Eu, =0,
20042849+ &1y + oty +283c0t6 = 0.
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Moreover from equations (6.5)-(11, 12, 13,14) and (6.8) we obtain,

By =1 sin@ et 7 (auu? +2 )+ fi(t,1,6,0) (6.10)
By = —1 sin6 e 3% (i +2u) + fo(t,7,6,9) (6.11)
By =—1sin Be%+%(a9u2+2[39u) + f3(t,1,0,¢) (6.12)
By = —ghget "3 (agu? +2Bgu) + fu(1,1,0,6) (6.13)

Also from (6.5)-(15) and (6.10)-(6.13), after comparing the different power of u, we find

that o and 3 are solutions for the wave equation and fi, f>, f3 and fy satisfy

Jra+for+f30+ fa9 =0, (6.14)

Now, we start by evaluating &1,&,,&3 and &4 in terms of explicit functions of 6 and ¢.
Taking the sum of the partial derivative of equations (6.5)-(6,7) with respect to ¢ and 0,

respectively and using equation (6.5)-(10) then (6.5)-(7) again, we get,

D& =0, (6.15)

where the operator D is defined as follows

D=-2 —cotf 3 (6.16)

Similarly,by taking the sum of the partial derivative of equations (6.5)-(8,9) with respect to

¢ and 0, respectively and using equation (6.5)-(10) then (6.5)-(9) again, we get

D& =0. (6.17)



Applying the operator D on (6.9)-(1) and using (6.15) and (6.16), we get,
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(6.18)

Also, applying the operator D on (6.9)-(3) and using (6.15), (6.17) and (6.18), we get,

D &30 =83 900 —cot083 49 =T &9 =0,

where the operator 7 is defined as follows

_ 9 d
T = 202 —Coteﬁ.

Applying the operator T on (6.5)-(10) and using (6.19), we get,
T (sin?0&;) =0
thus &4 becomes,
Eyx=hyi(t,r,0)csc O+ hy(t,r,@)cotO + hs3(zt,r,0)

By subtracting (6.9)-(3) from (6.9)-(4), then solving it give,

&3 = —hy4cosO —h3 4 sinb tanh ' (cos 0) — hy.¢ +ha(t,r,¢)sin6

(6.19)

(6.20)

6.21)

(6.22)

(6.23)
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Substituting about the above values for &3 and &4 in equation (6.5)-(10) gives,

=k (t,r)sin® +ky(t,r)cos @,

)
k3(t,r)sin@ 4 ka(t,r)cos @, (6.24)
)
)

¢+k6<t7r)7

hy (
hy (
hy = ks(t,r
hy (

k7(t,r

Now, using equations (6.5)-(6,8) give us & and &; in terms of explicit functions of 6:

&= e*V[sinB(ky sing —kjcosd) —ky,cos O+
ks ;cos @ tanh ™! (cos 0) + ks, In(sin @) + O (ka , sin ¢ — k3, cos )] + hs(t,r, )
Ey = —elh sin O (ky ,sin¢ —ky ,cos¢) — k7 ,cos O+

ks cos 0 tanh ™ (cos 8) + ks, In(sin @) + O (ky ,sind — k3 ,cos ¢)] + hg(t,7,)
(6.25)

Now, substituting the above &; and &, in equation (6.5)-(7) yields

hs(t,r,@) = kg(t,r),k3(t,r) = w3 (r),ka(t,r) = wa(r),ks(t,r) = ws(r),ke(t,r) = we(r).
Also, substituting the above &, and &, in equation (6.5)-(9) yields

he(t,r,§) = ko(t,r),w3(r) = c3,wa(r) = ca,ws(r) = cs,we(r) = ce.

Substituting the above &; and &; in equation (6.5)-(5) yields the following conditions

2kl7rt + (.u—t - /Fl't)kl,r + (.ur - Vr)kl,t = O,
2ka e+ (e — Ao )k, r + (U — Vi )k = 0,
2k7 e+ (M — M)k o+ (e — Vi )k7, =0,

etko, —e'kg, = 0.

(6.26)
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Now, equation (6.9)-(1) give & in terms of explicit functions of 6 and ¢ as follows:

o= % [sin@cos¢ [e" ™V (2ki s —ki Vi +2 k1) — e“_’lvrku]
—sin@sing [eH 7V (2kay, — Vika, +2kay) —e* A v,k

+cos O [e'u_v(Zth,t —k7,vi + 2 Wik ,) — e“_’lv,k7,,]] - %(VtkS + Viko + 2k87t)~

(6.27)
Equation (6.9)-(2) give us the following conditions
2eVky pr+ 20k 4+ €V (20 — Ve — A )ky et Qu — vi— A ki, =0
2eYky ;r+ 2e;tk2,tt +eV(2u — v — A ko + e Qus— Vi— A) ko =0 6.28)
2eVky yr+2er kg + €V Uy — Ve — A )kg et 2 — Vi— M) k7, =0
Vrkg — Aikg — Arkg —2ko  + Vikg +2kg; = 0
Equation (6.9)-(3) give us that c5 = 0 with the following conditions
Ze”elkl,,, +eteV(w — vk + ehet (M — Vi )k1 s+ 2ereVk; =0
2eterky y +eteY (U — Vi)ko, + elet (b — Vi ko +2eteVhy = 0 .

2e“e)“k77,, +ete (ur— vy k7, + ehet (Mr — Ve )k7 o+ 2ereVis; =0

Mekg + trkg — Vikg — Vikg — 2 kg, = 0.

Finally, since o is a solution for the wave equation (6.2), the final solution is given as:

&= e*V[sinO(ky sing —kj cosd) —ky,cos O]+ kg
& = —eH—A sin O (ky rsin¢ —ky ,cos ) — k7 ,cos O] + kg (6.30)
E3= (kpsing —kjcos@)cos O +k7sin@ + cysind — c3cos ¢

Ey= (kising +kpcosd)cscOd + (c3sing +cqcosd)cot O + cq



o= Xlsin@cosPeh ™V (2ki,p—ki Ve +2 ki) — el A vk ]
—sin@sin el (2ka,, — Vikay +2 ko) —eH A vika ]
+cos Ol (2ky,q — k7, Vi +2 ks ) — e vk ]
— 1 (viks + Vyrko +2ks ),

subject to the following conditions:

2k A (e — Aokt + (W — Vi )ki =0

2ko 4 (M — A ko 4+ (e — Vi )k =0

2k e+ (M — A )7+ (e — Vi )k, =0

2eVky 20k 4 € (20— Ve — Aky e 2 — Vi — A ) ki, =0
2eYky .+ Zekkm +ev(2u,— vi— A ko + et Qu—vi—A)ka; =0
2eVky 426 kg + €Y (U — Ve — Ak, 4+ et QU — vi— A k7, =0
Ze“e’lkl,,, +eteV (U — vk + etet (u; — Vi )ki+ 2ereVk; =0
Ze“elkz,,t +eteV (U — vi )k + etet (u, — Vi)kas+ 2ereVk, =0
Ze“elkmt +ete¥(u— vr)ky , + etet (u; — Vi )7+ 2ereVk; =0

Voko — Aks — Apko — 2ko .+ Vikg + 2 ks, = 0

Ukg + ko — Vikg — Viko —2kg; =0

e’lng - e"k&, =0
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(6.31)

(6.32)

2equle,rr - 2e'qu)'Rl,tt + e'quv (Z.ur + V= lr)Rl,r - equl (2“1 —Vi+ 2't)Rl,t —4 ev+1Rl =0

2eH VR, — 2eH ARy RV (20, 4+ Ve — A )Ra, — A (2 — Vi A )Ry —4 €V TAR, =0

2CI'H_VR3,,, - 2e['L—"_)VRS,tt + etV (2.ur + V= 2~r>R3,r - eu+/l (2[.1; —Vi+ zft)R?s,t —4 CV+AR3 =0

2evR4,rr - 261R4,tl + e (z,ur +V, = )Lr)R4,r - el (z.ut — Vit &)R4,l = 07

(6.33)
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where
Rl(t, r) — V(Zkl,t,t — livz +2I~Ltk1,l‘) - e”fl\/rkl,r
Ro(t,r) = "™ (2kay s — Vikay + 2 ko) — eH 4 ko, (6.34)
R3(t,r) = eV (2kg s — kg Vi + 2 itk ) — et A vk,
Ra(t,r) = Vikg + Vrko + 2 k..

Actually, the problem now is reduced to finding eight functions of two variables ( t and
r), namely, k1, k2, k7,kg, ko, v, A and u from a system of sixteen nonlinear partial differential
equations. However, for given v, A and u our system is reduced to a system of sixteen linear
partial differential equations with five functions of two variables ¢ and r.

Finally, from equations (6.10), (6.11), (6.12), and (6.13) we can estimate the gauge term
to every Noether symmetry to construct the corresponding conservation laws by using the

famous Noether theorem.

6.2 The wave equation on the Friedmann Robertson Walker
universe

The Friedmann Robertson Walker universe is described by the line element:

ds> = di® — (1) (425 + r2dQ?), (6.35)

where dQ? = d0? +sin% 0d ¢>2, a(t) is the scale factor, and k is the curvature parameter with

k= —1,0,1 corresponding to open, flat, and closed universes, respectively.

So the wave equation (6.2) on this metric when v =0, A =21In (\/%) u=In(r?a(t)?)

will take the following form

9 (UL 91y 2 (12 (1) sin 0V T—r?92) — 55 (Um0 24y g (o) _au) g,

(6.36)
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Really, one can rewrite the wave equation (6.36) in the conserved form with respect to the
cartesian coordinate by using Theorem 4.2.2 through the transformations x =rsin @ cos ¢,y =

rsin@sin¢ and z = rcos 0, to get

i( a(t)’u ) _ i(“(t)(”x_k x(x uxty uy+z ”z))) _ i(a(l)(”y_k VX uxty uy+z ”z)))
I\ 1—k(24y2+2)) 9% V1=k(x2+y2+72) Iy V1=k(x2+y2+22)
_i(a(t)(“z_k 2(x uxty uy+z “z))) -0
9z V1-k(2 42 +22) '

(6.37)

6.2.1 Flat universe

The wave equation (6.36) when k = 0, will take the form

|

(% a(t)?sin094) — 2-(r2 a(t) sin 0 94) — 2 (a(t) sin O 9%) — L (L) guy _ . (6.38)

Q|

t

Now by solving the system (6.32) we will find the Noether symmetries for the above wave
equation as follow.

From equation (6.32)-(1) we get

ky = Fi(r) + Fa(t) (6.39)

From equations (6.32)-(4,7) we get
ki g+ ki, —ki =0 (6.40)
Substituting equation (6.39) in equation (6.40) gives us the following Euler equation

r*Fi 4+ rF,—F =0 (6.41)



So Fj is given as follows

d
Fl(r) :d1r+72

Substituting equation (6.39) and (6.42) in equation (6.32)-(7) gives us
a(t)ze’,, + a(t)athjt +2d1=0

So F; is given as follows

b(t)

—2dt+C
an ™

Fy(t) = ds b(t) —2 dy /

where b(t) = f%

Substituting equation (6.42) and (6.44) in equation (6.39) gives us

k1=d1<r—§/%d)+d2+d”(r)

Similarly we get that
b(t)

d
ky = ( —%fag)dt)-l- > +dg (r ,
ky =dy(r—2 [ 20dr) + % +dy ™1,
Also from equations (6.32)-(10,11) we get
kg —71 ko, =0.

So kg is given as follows

ko =W, (t)r.
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(6.42)

(6.43)

(6.44)

(6.45)

(6.46)

(6.47)

(6.48)
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Substituting equation (6.48) in equation (6.32)-(12) gives us
2

ks = %a(t)zWL, +Wh(t). (6.49)

Substituting equation (6.48) and (6.49) in equation (6.32)-(11) gives us the following two

equations
a(t)lett ‘I‘a[W]J =0
(6.50)
a(t)Wa; —aWa(t) —a(t)W(t) =0
So W and W, are given as follows
Wi =djo+ 2dllb(t)
o) (6.51)
Wr =djo a(t) b(t) +2d; a(t) fmdt—Fdlz a(t)
Substituting equation (6.51) in equations (6.48) and (6.49) gives us
ks = dioa(1)b(t) +di (Pa(t) +2a(r) [ 2dr) +diza(r), 652
ko = dior +2d, 1rb(t),
Finally, The solution of the system (6.32) for this metric is summarized as follows
kq :dl(l’— @)4“172-1-613&;)
2
ky = dy(r—210) 4 &y g PO
by = B8 14 0 659

ks = dyoa(t)b(t) +dy1 (rPa(t) +a(t) b(t)?) +dpalt),
ko=dior+2dir b(l‘),

where b(t) = f%

Now by using equations (6.33) and (6.34) we get that the maximal Noether symmetries
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are given when a(t) a(t) = ¢y or a(t) = £+/2 ¢1 t + ¢; as follows

X, =2rab sin@cosd)% + sinGcos¢>(b2 + rz)% + Cosecosf(btrz) 38—9 - Sin%i;rz) %
—2rsin9cos¢(c’zb+1)u%

X, = —sinfcos ¢)% - = Grcosq) aa_e + rssi?n¢6 %

X3 =-r asin@cosgb% —bsin@cosq)% — bcosécosq)aa—g + ’5323% +m51ﬂ9005¢“%

Xy =2rabsin@singd +sinsin(p2 +r2) g + LOMI) 9 condll70r) 9
—2rsin95in¢(db—|—1)u%

Xs =sin¢ sin6%+coser5in¢f—9+ :gi%%

Xs =rasin@sing2 +bsin@sing L 4 LTI DL I risin Osin pu,

X; =2r abcos@% +cos 9(b2+r2)a% - M% —2rcosB(ab+ l)u%

Xg = —COSG%%—@%

Xo = —racos@%—bcos@%+b3i,ne%+”d0059”%

X0 = ab% +r% — (ab+ l)u%

Xi =a(b?+r2) 9 +2rb3 — (a(b? +1?) +2b)ul-

X3 = —cosq)% + zf’nsg sin(])%
X4 :sin¢§9—9+%cos¢f—¢
X5 = %

Xg =B

(6.54)
The commutation relations of the Lie algebra of the 15 Noether symmetries are shown in

Table 6.1.



Table 6.1: Commutator table for the Lie algebra
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X, Xl | Xi X2 X5 | X4 Xs Xs X7 Xg | Xo | Xio | Xuu | X2 | Xi3 | X4 | Xi5
X 0 2X10 X1 0 —2Xi5 0 0 2X13 0 —-Xi 0 2X3 X7 Xy
X» —2X10 0 X2 0 0 0 2X13 0 0 Xo 2X3 0 Xg 0 —Xs
X3 —X11 —X12 0 0 0 —Xi5 0 0 X3 0 -Xi —X3 Xo 0 —Xs
X4 0 0 0 0 —2X10 | —X11 0 —2X14| O Xy 0 —2X¢ 0 -X7 | —Xi
Xs 2X15 0 0 2X10 0 X2 2X14 0 0 Xs 2Xs 0 0 X3 X
X6 0 0 Xis X1 —X12 0 0 0 X4 0 Xy —X5 0 X9 X3
X7 0 —2X13 0 0 —2X14 0 0 2X10 | X11 | =Xy 0 2Xy X Xy 0
X3 —2X13 0 0 2X14 0 0 —2X10 0 Xi2 X3 2Xg 0 X | —Xs 0
X9 0 0 —X13 0 0 —Xi14 | —X11 —X12 0 0 —X7 —X3 —X3 —Xe 0
X10 X —X3 0 Xy —Xs 0 X7 —X3 0 0 X11 —X12 0 0 0
X1 0 —2X3 X 0 —2Xe | —X4 0 —2X9 | X7 | —X11 0 —2X19 0 0 0
X2 —2X3 0 Xs 2Xe 0 Xs —2Xo 0 Xg X1 | 2Xy0 0 0 0 0
X13 —X7 —Xg —X9 0 0 0 Xi X X3 0 0 0 0 Xis —X14
X4 0 0 0 X7 —Xs —Xo —Xy X5 Xs 0 0 0 —Xi5 0 X3
Xis —Xy Xs Xe Xi —X> —X3 0 0 0 0 0 0 X4 | —X13 0

Note that the number of Noether symmetries reduce to only seven, X3, X5, X3, X13,X14,X15

and Xp» when a(t) is taken an arbitrary function. Further, X3, Xg,X9 and X, are Noether

symmetries when a(t) satisfies the differential constraint,

whose solution is given by

a(t) =+vVe1l2 42 crt+c3

(a(r) (1))« =0,

(6.55)

Similarly, X7, X4, X7and X/ are Noether symmetries when a(z) satisfies the constraint

b(t)a(t)(a(t) a(t)) . +2(a(t) a(t)), = 0.

Finally, X1, is Noether symmetries when a(t) da(t) = ¢y or a(t) = +v/2 ¢ t + c3.

(6.56)
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6.2.2 Linearization of a (3 4 1) wave equation on the flat universe

In this section we will transform the wave equation on the Friedmann flat metric (6.38),
from linear PDE with variable coefficients to linear PDE with constant coefficients with
respect to the derivative of the dependent variable.

The wave equation (6.37) at k = O takes the form

(a(t)*u;) = a(t) V*u (6.57)

o

Hence the Noether symmetries will transform under the cartesian transformations to:

ey

=X =2abxg+(* =y =2 +b) % +2xy F+2xz5 —2x(ab+ u$,

(6.58)
2
Hh=Xs=2abyd+2yx &+ (-2 -2+ L +2yz8 —2y(ab+ )ul-
2 =X4=2abyG+2yx 5+ (" —x" = +b7) F+2yz5 —2y(ab+ ug
(6.59)
3)

Y3 :X7:2abz% +22x%+2zy(%—l—(zz—x2—y2—l—b2)a%—2z(db+1)u% (6.60)

“)

Vi=Xin= a(@+y+2+b07)5+2bx 5 +2byg+2bzg— 66D
(@(*+y> + 22 +b?) +2bus-



(5)
Ys =X3= —ax% —b%—kaxu%
(6)
Yo = Xo :ay%—I—b(% —dyu%
(7
Y7=X9=—a z% —ba%%—dzu%
@)

Ys = X1o :ab% —|—x% +y(% —|—za%— (ab+ l)u%

(9) Invariance under translation in x:

(10) Invariance under translation in y:

Yio=X5 = a%
(11) Invariance under translation in z:
Yn=X3= —3%

(12)

Yo=X1, = a% — d”%

(13) Rotation about the x-axis:

d d
Yiz =X =25, -y,
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(6.62)

(6.63)

(6.64)

(6.65)

(6.66)

(6.67)

(6.68)

(6.69)

(6.70)
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(14) Rotation about the y-axis:

Yig =Xi3= —Z&&—x —i—xa%, (6.71)

(15) Rotation about the z-axis:

Yis =Xi5 = —y% +x(%, (6.72)

In addition to the symmetry which represent the invariance under addition An arbitrary

solution of the wave equation, f3 to the solution u(z,x,y,z) :

(6.73)

Now since the linear PDE with constant coefficients should be invariant under translation

in x,y,z and t directions. Then if we define the invertible transformations w = a(¢)u and

T=—/ %, the symmetry Y, will transform to Y, = —%.

If we use the transformation w = a(t)u, the wave equation (6.57) will transform to

Saw) =1 (Vw+ §(ad) (6.74)
Then by using the new variable T = — [ %, the equation is transformed again to
wer = V2w + w%(a a) (6.75)
And the first eight symmetries will transform again under these transformations to:
(1)
1=X,=2x ‘E%-l—(xz—yz—zz-i-fz)%-i-ny (%-l—sza% —2xw% (6.76)



(2)
Y2:X4:2yr%—i—2yx%+(y2—x2—z2+1'2)a%+2yza%—2yw%

3)

Y3:X7:2abz%—i—2zx%—i—Zzya%—l—(zz—xz—yz—i—bz)a%—ZZWaa—W
“)

Y = X1 :—(xz—i—yz—i—zz—i—’vz)%—Z’cx%—ZTy%—ZTza%—FZTWé)—W
)

Y5—X3—X%—|-T%
(0)
Y6=X6=—(y%+fa%)

(N

Y7:X9:Z%+T(%

(8)The one-parameter dilation group of the equation

_ 79 149 90 .0, 0
Yg_XlO_T81+x&x+y8y+Z8z w55
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(6.77)

(6.78)

(6.79)

(6.80)

(6.81)

(6.82)

(6.83)

. . o 2
Now since the value of the scale factor for the flat universe is given as a(r) = ¢3, then

7= -3/t and %(a a) = % so our equation will take this last form

WTT - VZW + %W

(6.84)
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The last equation can be dealt with by the method of separation of variable to obtain the
ODE of second order and the Helmholtz PDE. The solution of such equations can be con-

structed if some specific initial and boundary conditions are given.

6.3 Conclusion

In this chapter we found the Noether symmetries of a (3 4 1) wave equation on the gen-
eral spherical metric explicitly in terms of the explicit functions of 68 and ¢. In order to
solve the Noether symmetries in terms of known functions of all the spacetime variables
we chose a specific flat Friedmann metric. In the case that a(r) = r'/? we get 15 Noether
symmetries of which 3 are translations and 3 are rotations. In the case that a(z) = 1?3 (a
particular value for the flat Friedmann model) we only get ten Noether symmetries which
are 3 translations, 3 rotations, Y1,Y>,Y3 and Yg. Lastly, we also have converted the wave
equation with variable coefficients to the one with constant coefficients through a transfor-
mation T = —3+v/7 and w = %/3 i which can solved by separation of variables method under

certain initial/boundary conditions.



Chapter 7

Conclusion and Future Work

Partial differential equations play important role in all branches of all natural, social and
engineering sciences and are studied from several perspectives, mostly concerned with their
solutions. As for linear partial differential equations are concerned, there exist standard
techniques that are used to solve them. Seeking solutions of these equations becomes a
serious challenge when they are nonlinear. Whereas nonlinearity of these equations makes
it difficult to solve, their beauty and predictions of true physical situations lies in their non-
linearity. An example of nonlinearity is the famous diffusion equation in which diffusion
processes bring in nonlinearity in the equation and make the job of finding its solutions
quite challenging. Sophus Lie in 1981 developed group theoretic methods to solve such
equations. These methods rely on exploiting the symmetries of the partial differential equa-
tions (named after him as Lie symmetries) to find their exact solutions. Since the advent of
these methods, tremendous amount of research is being carried out in this direction and so-
lutions of partial differential equations representing interesting physical models have been
successfully solved and analyzed. Following these techniques, results were published in
which diffusion equation modeling variable thermal diffusivity of materials such as gases

was considered. On the one hand the model was interesting in its own right, it was diluted
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somewhat by incorporating a strong assumption that the thermal diffusivity was allowed
to be negligible. My first research work deals with the same diffusion equation while set-
ting aside this assumption. A complete classification of solutions of this diffusion equation
in two space and one time dimension is obtained. This is an interesting work as it not
only gave a better understanding of the diffusion processes in higher dimensions, but also
yielded new classes of solutions which were not given previously. This work is published in
Journal of Nonlinear Dynamics, doi :10.1007/s11071-010-9704-8. As for symmetries are
concerned, they have important relationship with existence of conservation laws admitted
by the partial differential equations. In the light of this fact an important question arises
as to how can one find such relationships between the Lie point symmetries and the con-
servation laws admitted by the partial differential equations. Such relationship was first
introduced by Emmy Noether in her classical work in the 17/ century and is based on a re-
quirement that the partial differential equations must possess a complete Lagrangian. Such
symmetries were named as Noether symmetries. Existence of a Noether symmetry guar-
antees existence of a conservation law admitted by the partial differential equation. With
this point in mind, I embarked on research in this direction by considering a wave equation
having two different wave speeds. Following the procedure of Emmy Noether and proce-
dures suggested in some of the recently published research, I obtained conservation laws of
this particular wave equation possessing via its Lagrangian with respect to complete classi-
fication of an unknown variable. Interesting new insights resulted from this work regarding
solutions and conservation laws admitted by the equation. This work is published in Non-
linear Analysis and Application-Real world problems, doi:10.1016/j.nonrwa.2009.10.009
Another direction of research that emerges from above studies is the one in which applica-
tion of Lie point symmetry generators to a conserved vector is considered. A consequence
of such consideration results in one obtaining a direct conservation law associated with

that Lie point symmetry. Path breaking work in this direction was published by Sjoberg
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who showed that when the generated conserved vector is null, a double reduction is pos-
sible which reduces, in one step, both order as well as a variable of the partial differential
equation under consideration. My recent research investigations include an extension of the
theory of Sjoberg in which a partial differential equation of order n in m dependent vari-
ables can be dealt with. This is an interesting generalization. This work is also published in
Nonlinear Analysis-Real world problems, doi:10.1016/j.nonrwa.2010.02.006. The theory
is applied to a wave equation in (2+1) dimensions and is submitted for publication. Lastly,
I have applied the idea of Lie point symmetries and conservation laws to a wave equation
written on Lorentzian manifolds. I have tried to investigate effects of Lorentzian geometries
on conservation laws of certain wave equations. A consequence of applying the techniques
I learnt in my PhD research I have tried to solve a system of equations that emerged from
a concept when Ricci inheritance symmetry was defined in general Relativity. My inves-
tigations have results in an interesting conjecture proving that all well known solutions of
gravitational field equations do not admit any of the symmetries. This paper, though not
directly related to my PhD research problem, has been published in Nuovo Cimento B, doi
: 10.1393/ncb/i2010-10836-0.

From the work undertaken in this dissertation some new directions in research emerge as
application of the symmetry analysis and conservation laws such as mapping linear partial
differential equation with variable coefficient to constant coefficient equation, possibility of
construction an invertible mapping of nonlinear PDE to linear PDE through admitted con-
servation laws and using complex Lie symmetries for linearization of systems of differential

equations.



Chapter 8

Appendices

Appendix A

Table 8.1: Case (1)-Reductions

Reduction o B
ABy =20 BA) : uAfAZlny
Boc =0 t u
Baﬁa +Aﬂé =0 y u
AceBA) (Bao +A[3§) — 1 y uAXlnt
APy = 4ceBA) P uAflnE{r2+y2)
ABy =20ePY) P uAfAZInx
2-24aBq +A%(a”+ 1)y +A(0” + 1)Boa =0 : -
GelBN) (2~ 2AaPo+A2 (02 + 1)B2+A(QP + Dfae) = —1 | L | )
Bo+AaBy+ o =0 X% +y? u
4A6ePY (By 4+ AaBZ+ aPag) = —1 21 y2 uATTnt
Bo.c +AB§ =0 X u
Ao'e(ﬁA)(ﬁa,a"i‘Aﬁé) - 1 X uAle

Wes + W, +AW52 +AW,2 = 07
suchthats=x,r=yand W = u
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Table 8.2: Case (1)-Solutions
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Algebra u(x,y,t)
_ 2
[Vo,V]] =W ln(zg(,icl))l/A
[Vo,V3] =0 C
[Vo,Va] =0 In(—C1yA — C1GA) /A
[Vo,Vs] =0 1n(—*>‘2*2clg§[yj2CzGA)1/A
V1,V2] =0 111(4:(5,31))1//‘
Vi, V3] = —V3 In(5575e7)
[Vi,V4] =0 In(Cscos(2tan! (y/x)) — C; sin(2tan ! (y/x))) /4 + ln(w)l/"
[V,V5] =0 In((—C10A(x* +y*) — yx) sin(2tan ! (y/x)) + (C20A(x* +y*) — x?) cos(2tan~ ! (y /x))) /4
—In(2tc) /A
[V2,V4] =0 In(—CiAIn(x? +y?) — C1CA) A
[V27V5] -0 ln( —x2—y2+4C1 GAA‘;:;CzGA ln(x2+y2)
[V3,Vg] =0 In(—C1Ax — C,GA) /A
[V3 VS] -0 lIl( —x2—2C12(7Ax+2C26A)1/A
) ot
Appendix B
Table 8.3: Case (2)-Reductions
Algebra Reduction o B(a)
[Vo,Vi] = Vo Ba =20(1+2a)(ap) "+ r | e
Vo, V3] =0 Ba=o t u
[Vo,Va] =0 aB Baa +bBaa + By =0 y u
2a—1
Vo,Vs5] =0 o (aBBaa+B3) +(aB)" = y auth
Ita au
Vi.Va] =0 Bu =401 +a)(a)" (| gt
Vi, Vsl = V3 Bo = 20(1+2a)(ap) = P e
Vi,Va| =0 | 2a°(1+2a)B> + (1 +a?)Bs — 2aa (1 +2a)BBa +a(l +0*)BPaa =0 | 1 s
[Vi,Vs] =0 0(2a%(1+2a)B2 + (14 a?) B2 2 et
~2a0(1+2a)BBa +a(1 + 0*)BPaq) + (ap)
[V2,V4] =0 bﬂa+aﬁé+aﬁﬁa +aaﬁBO€a +baﬁaa =0 x2+y2 u
[V3,V5] =0 40(aP o +aBPua +p3) +(ap) " =0 24y | G
[V3,V4] :0 aﬁﬁaa"’bﬁaa +ﬁé :0 X u
2a—1
[V3,Vs] =0 0 (aPBaa+Bz) +(aB)" =0 x wry
[Va, V5]

suchthat s =x,r=yand W = u

=V aWWss + bWy s+ aWW,, + bW, + W2 +W?2 =0,




Table 8.4: Case (2)-Solutions
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Algebra u(x,y,t)
Vo, Vil =W —b(—ZGa(%)t—4Ga(l#)t+C1)“+ay2“
a(— 264t —doalete +C)*
[Vo,V3] =0 Ci
Vo,Va] =0 (—C1(y+C)(1+a)(t5a) —b
a
Vi,Vo] =0 | —b(—406a@)t —dca™e)t +C))* +a(x® +y?)
a( —46aDt —4ca st 4+ Cp)
[V],V3] =—-V3 —b(—ZGa(é)t—4Ga(1:a)t+C1)a—i—axza
a(— 264t —dca et +C)°
[V2,V4] =0 (—Ci(In(x2 4y +C) (1 +a) T —b
a
V3,V4] =0 (—Ci(x+C)(1+a)T) —b
a
Appendix C
Table 8.5: Case (3)-Reductions
Algebra Reduction o B(a)
Vo.Vi] =Vo Bu+20=0 t (u—b)y?
Vo, V5] =0 Ba=0 ! u
[Vo,Ve] =0 Ba — BBao +bBag =0 y u
[Vo,V7] =0 ﬁ3+6(ﬁﬁaa_ﬁgz) =0 y b
[Vi,V2] =0 Boa=0 t (u—b)(¥* +y?)
Vi, V3] = V3 Bo+20=0 t (u— b)x2
Vi,Va] =V, Boa+20=0 t (u—b)y?
[V17V5] =—-Vs ﬂa +20=0 t (u - b)x2
[Vi,Ve] =0 2B% — (1+0°)By +20BBa+ (1+0)BBra =0 3 (u—b)*
Vi,vi]=0 | B*+0(2B*—(1+0a?)Bs+2aBBa+(1+0*)BBua) =0 | 3 e
[Vz,V6] :0 bBa+aﬁgc*Bﬁa7aBBaa +baﬁaa :O x2+y2 u
[V2,V7] =0 B3+4G(_O‘ﬁgc+ﬁﬁa+aﬁﬁaa) =0 x4y b
[V3,V4] =0 Boa=0 t (u—0b)(x* +y?)?
[V, Vel =0 2B — a?B2 +20BBu+ #*BPua =0 S8 (b
V3, V1] =0 B +0(2B> — 0? B3 +20B B + 0’ Bfua) =0 s i
Vi, Vsl = 0 28? — 023 +20BBu + 0B = 0 S weby
Vi, V] =0 B+ 0(2B* — 0B +20BBa + 0*BPa) =0 e Ly
[V5, Ve =0 Ba — BBua +bBae =0 X u
[Vs,V7] =0 ﬁ3+6(ﬁﬁaa—ﬁgc> =0 X ut;b
[V6a V7] =Vs —WW+ va,s - WWr,r + bW, + Wsz + Wr2 =0,
suchthats =x,r=yand W =u




Table 8.6: Case(3)-Solutions

Algebra u(x,y,1)
Vo, V1] = Vo byz—thJrCl
’ y
Vo, V5] =0 C
_ C1y
Vo, V] =0 lg;zcllai I
Vo, V7] =0 2C b+t —ttanh(zy\;rcc%d)2
2Cy
2 2
Vi,Va] =0 betheat,
Vi,V3] = V3 b 2014Cy
d X
[V1,Va] = V4 B 2014Cy
V1, V5] = —Vs b 2014Cy
d X
[V17V6] =0 b(x2 —|—y2)e(*c2tan_l(y/x)) +C
2 1 y2)e(~Catan™! (y/x))
(" +y7)e
Cy— —TI X
Vi,V7] =0 2C1b(x2+y2)—|—t—ttanh(2ta:?lg/))2
2C; (x* +y?)
= —14+Cb (x> +y7)C1
VY =0 S
1 C
[V2,V7] =0 Clb(x2+y2)+t—ttanh(%)2
Ci (x> +y?)
22T C
e e
Ox_
[V3,Ve] =0 eze(xzﬂz) +C1b(x* +y?)?
Cr(2 1 y7)?
C 212
2C1(x2 +y2)2
i3
[Va, Vo] =0 eze(xzﬂz) +C1b(x% +y%)?
Cr(2 1 y2)?
C 2.2
Va,V7] =0 2C1b(x2—l—y2)2+t—ttanh(%)z
2012 1 2)?
— Cix
Vs, Vel = 0 ST
[Vs,V7] =0 2C1b+t —ttanh(z’jc%)Z

2C
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Appendix D
Table 8.7: Case (4)-Reductions
Reduction o B(a)
Ba =20 f(B)Ba+2af(B)Baa + 2af/(ﬁ)ﬁgc) yL2 u
Ba=o0 ! u
f(B)Baa+ 1 (B)Bs=0 y u
Bo = 4a(f(B)Ba + 0tf (B)Bac + . f'(B)B2) xzjryz u
Bo =203 f(B)Be+20.f(B)Bac +20.f (B)Bg) 5 u
200f(B)Ba+ (1 + ) f(B)Bac + (1 +0*) f'(B)Ba=0] = u
F(B)Bo+ 0f (B)Bcc + & (B)BZ =0 27 u
f(B)Baa+ 1 (B)Bs=0 X u
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