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In this thesis we investigate asymptotic behavior of solutions of some viscoelastic
problems in bounded domains and establish some stability results for the problems.
In this regard, we establish exponential, polynomial and general decay rate results.
The decay results are established in the absence, as well as in the presence of a

source term.
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CHAPTER 1

INTRODUCTION

1.1 Viscoelastic Materials

Elasticity is the material deformation behavior described by Hooke's law which states
that displacement is linearly proportional to the applied load. An elastic material
returns to the undeformed state once the loads are removed and the effects of multiple
load systems can be computed by simple linear superposition. Moreover, the work
done by the forces is calculated by multiplying the loads by the displacements. On the
other hand, viscosity is an internal property of a fluid that offers resistance to flow.
Viscous liquid has no definite shape, and it flows irreversibly under the action of
external forces. However, there are materials with properties that are intermediate
between elasticity and viscosity.

Viscoelasticity, as its name suggests, incorporates aspects of both time dependent fluid
behavior (viscous) and time independent solid behavior (elastic). Viscoelastic
materials share some properties with elastic solids and some others with Newtonian
viscous fluid. They exhibit an instantaneous elasticity effect and creep characteristics
at the same time. In fact they can display all the intermediate range of properties. For
instance, at low temperatures, or high frequencies of measurement, a polymer may be
glass-like and it will break or flow at great strains. On the other hand, at high

temperatures, permanent deformation occurs under load, and polymer behaves like a



highly viscous liquid. However, in an intermediate temperature or frequency range,
commonly called the glass transition range, the polymer is neither glassy nor rubber-
like. Hence, polymers are usually described as viscoelastic materials and may dissipate
a considerable amount of energy on being strained. In the rubber-like state, a polymer
may be subjected to large deformation and still shows a complete recovery. To a good
approximation, this is an elastic behavior at large strain [22], [34].

The importance of the viscoelastic properties of materials has been realized because of
the rapid developments in rubber and plastics industry. Many advances in the studies
of constitutive relations, failure theories and life prediction of viscoelastic materials
and structures were reported and reviewed in the last two decades [18]. Time
dependence of mechanical behavior of viscoelastic materials reveals the existence of
inner clock or intrinsic time, which can be influenced by many factors such as
temperature [3], physical aging [11], [55], [58], damage, pressure and solvent
concentration [31], [38], strain and stress level [7], [33], [53], etc.

Depending on the change of strain rate versus stress inside a material the viscosity can
be categorized as having a linear, non-linear, or plastic response. When a material
exhibits a linear response it is categorized as a Newtonian material. In this case the
stress is linearly proportional to the strain rate. If the material exhibits a non-linear
response to the strain rate, it is categorized as Non-Newtonian fluid. There is also an
interesting case where the viscosity decreases as the shear/strain rate remains constant.
A material which exhibits this type of behavior is known as thixotropic. In addition,
when the stress is independent of this strain rate, the material exhibits plastic

deformation [35].



Viscoelastic behavior can be represented by combinations of springs and dashpots
(pistons that move inside a viscous fluid). While linear springs instantaneously
produce deformation proportional to the load, a dashpot produces a velocity
proportional to the load at each instant. If a spring and a dashpot are placed in parallel
one obtains Maxwell's viscoelastic model. If they are arranged in series, one has
Voigt's model. Finally, a series/parallel arrangement yields Kelvin's model [35]

Two commonly observed viscoelastic behaviors are stress relaxation and (low
temperature, viscoelastic) creep. Stress relaxation describes the time dependent change
in stress following the application of an instantaneous strain. Alternatively, creep is
the time dependent change of strain following the application of an instantaneous
stress. Hence, creep is in some sense the inverse of stress relaxation, and refers to the
general characteristic of viscoelastic materials to undergo increased deformation under
a constant stress, until an asymptotic level of strain is reached. Any materials that
exhibit hysteresis, creep or stress relaxation can be considered viscoelastic materials.
In comparison, elastic materials do not exhibit energy dissipation or hysteresis as their
loading and unloading curve is the same. Indeed, the fact that all energy due to
deformation is stored is a characteristic of elastic materials. Furthermore, under fixed
stress, elastic materials will reach a fixed strain and stay at that level. However, under
fixed strain, elastic materials will reach a fixed stress and stay at that level with no
relaxation [35].

Boltzmann (1844-1906) first proposed to use superposition to compute the stress-
strain response of a viscoelastic solid subjected to an arbitrary loading history. He

assumed that creep at any time is a function of the entire prior loading history and that



each loading step makes an independent contribution to the deformation. Hence for an

applied stress o (t), the strain is

e(t) = j J(t = T)do ()

where | is time dependent creep compliance

Likewise, if a strain €(t) is applied

t

a(t) = fG(t —1)de(t)

“o0
where G time dependent stress relaxation modulus [35].

We consider viscoelasticity in the isothermal approximation, which means that the
temperature does not enter the model (state and constitutive relation). So the state
involves the deformation gradient only while the constitutive equation is in fact a

stress-strain relation. We obtain [10], [35]

2e(1)

P dt=G *€

a(t) = G(t)e(0) + j G(t—1)

0

The integrating functions G (t) are mechanical properties of the material and are called
“relaxation functions”. It can be considered to be the formulation of Boltzmann’s
superposition principle such that the current stress is determined by the superposition
of the responses to the complete spectrum of increments of strain. More so, the right
hand side is called the convolution of G and € [35].

The relaxation function G brings about damping effect of the solutions to the problem.
This viscous damping ensures global existence of smooth solutions decaying

uniformly under constant density as time goes to infinity. This is true for sufficiently



smooth and/or small data and history. We shall mainly be concerned with this

phenomenon in our problems

1.2 Literature Review

In [26], Giorgi C. et al considered the following semilinear hyperbolic equation with

linear memory in a bounded domain Q € R3

Uy — k(0)Au — f k'(s)Au(t —s)ds + g(u) = f in QX R* (1.1)

0

with k(0), k(o) > 0 and k'(s) < 0,Vs € R* and established longtime behavior of
solutions. In particular, in the autonomous case, they established existence of global

attractors for the solutions. Later, Monica Conti and Vittorino Pata [19] considered

U + au, — k(0)Au — f k'(s)Au(t —s)ds + g(u) = f, in Qx R* (1.2)
0

where g : R —> R is a nonlinear term of (at most) cubic growth satisfying some
dissipativity conditions and the memory kernel k is a convex decreasing smooth
function such that k(0) > k(o) > 0 and established the existence of a regular global

attractor, thereby improving the result of [26].

In [4], Appleby J. A. D et al investigated the linear integro-differential equation

t

u'(t) + Au(t) + fk(t —s)Au(s)ds =0, t>0 (1.3)

— 00



and established results concerning the exponential decay of strong solutions in Hilbert
space. Recently, Vittorino Pata in [54] discussed the decay properties of the semigroup
generated by a linear integro-differential equation in a Hilbert space, which is an

abstract version of the equation:

e

Oreu(t) — Au(t) + f u(s)Au(t —s)ds = 0, (1.4)
0

describing the dynamics of linearly viscoelastic bodies and established the necessary

as well as the sufficient conditions for the exponential stability.

For the finite history case, Cavalcanti et al. in [15] investigated the following

viscoelastic problem:

‘ t

Uy — Au + f g(t — )Au(r)dtr =0, inQ x (0,00)
0
< u=20, on I X (0,0) (1.5)
Ju ou
%—J—g(t—r)%(r)dr+h(ut) =0, onl; X (0,0)
0
\u(x,0) =ug(x), u(x,0)=u(x), X EQ,

where Q is a bounded domain of R" with a smooth boundary 0Q = I, U I;. Here, I}
and I; are closed and disjoint, with meas (I) > 0, v is the unit outward normal to
0Q, and g and h are specific functions. They established a global existence result for
strong and weak solutions. In addition, some uniform decay rate results were proved
under quite restrictive assumptions on both the damping function h and the kernel g.
In fact, the function g had to behave exactly like e ™, m > 0, and the function h had

a polynomial behavior near zero. Later, Cavalcanti et al. [14] considered (1.1) without



imposing a growth assumption on h and under weaker conditions on g. They
improved the result of [15] and established uniform stability depending on the
behavior of h near the origin and on the behavior of g at infinity provided that

lgll11(0,00) is small enough. In particular, they obtained explicit decay rate results for

some special cases. This result has been recently improved by Messaoudi and
Mustapha [46]. All these results are in the spirit of the work of Fabrizio et al. [22] in

which they considered
t
Uy — Au + f gt —1Au(t)dt +u; =0, inQ X (0,0) (1.6)
0

and showed that the exponential decay of the relaxation function is a necessary
condition for the exponential decay of the solution energy. In other words, the
presence of the memory term may prevent the exponential decay due to the linear
frictional damping term. They also obtained a similar result for the polynomial decay
case.

In [50], Muiioz Rivera considered equations for linear isotropic homogeneous
viscoelastic solids of integral type which occupy a bounded domain or the whole space
R™, with zero boundary and history data, and in the absence of body forces. In the
bounded domain case, an exponential decay result was proved for exponentially
decaying memory kernels. For the whole space case, a polynomial decay result was
established and the rate of the decay was given. This result was later generalized to a
situation, where the kernel is decaying algebraically but not exponentially by
Cabanillas and Rivera [12]. In this paper, the authors showed that the decay of

solutions is also algebraic, at a rate which can be determined by the rate of the decay



of the relaxation function. Also, the authors considered both cases the bounded
domains and that of a material occupying the entire space. This result was later
improved by Baretto et al. in [6], where equations related for linear viscoelastic plates
were treated. Precisely, they showed that the solution energy decays at the same decay
rate of the relaxation function. For partially viscoelastic materials, Rivera et al. [52]
showed that solutions decay exponentially to zero, provided the relaxation function
decays in similar fashion, regardless to the size of the viscoelastic part of the material.

In [16], Cavalcanti et al. considered

t
U — Au + f gt —DAu(t)dt + a()u; + [u[’u =0, inQ X (0,), (1.7)
0

for a : Q » R*, a function which may vanish on a part w € Q of positive measure.

Under some geometry restrictions on w and for
a(x) = ay >0, Vx € w

—&g@) < g'(0) = —&g(), t=0,

the authors established an exponential rate of decay. Berrimi and Messaoudi [8]
improved Cavalcanti’s result by introducing a different functional which allowed them
to weaken the conditions on both a and g. Furthermore, Berrimi and Messaoudi [9]

considered

t
Uy — Au + f gt —)Au(r)dr = [u]’%u (1.8)
0

in a bounded domain and p > 2. They established a local existence and showed, under

weaker conditions than those in [16], that the local solution is global and decays

8



uniformly if the initial data are small enough. In particular, the function a can vanish
on the whole domain Q and consequently the geometry condition is no longer needed.

In [17], Cavalcanti et al considered

Use — koAu + f divla(x)g(t — t)Vu(r)]dt + b(x)h(uy) + f(w) =0 (1.9)

under similar conditions on the relaxation function g and a(x) + b(x) = p > 0, for
all x € Q. They improved the result of [16] by establishing exponential stability for g
decaying exponentially and h linear and polynomial stability for g decaying
polynomially and h nonlinear. For quasilinear viscoelastic equations, Cavalcanti et a/

[13] studied, in a bounded domain, the following equation:

t

|ue|Puge — Au — Augy + jg(t —1)Au(t)dt —yAu, =0, p>0 (1.10)
0

and proved a global existence result for y > 0 and an exponential decay for y > 0.
This latter result has been extended to a situation, where a source term is competing
with the strong mechanism damping and the one induced by the viscosity, by
Messaoudi and Tatar [47]. Furthermore, Messaoudi and Tatar [49], [48] established,
for y = 0, exponential and polynomial decay results in the absence, as well as in the

presence, of a source term. Messaoudi [42] considered the equation

t
Uy — Au + f gt —DAu(r)dt + auslu ™ = blulfu, inQx (0, ) (1.11)
0

and showed, under suitable conditions on g, that solutions with negative energy blow

up in finite time if y > m, and continue to exist if m > y.



In the absence of the viscoelastic term (g = 0), the problem has been extensively
studied and many results concerning global existence and nonexistence have been
proved. For instance, for the problem
U — Au + aug|ug|™ = blulYu, inQx (0, «) (1.12)

with m,y =0, it is well known that, for a = 0, the source term bl|u|Yu (y > 0)
causes finite time blow up of solutions with negative initial energy [5], [28] and for
b = 0, the damping term au,|u,|™ assures global existence for arbitrary initial data
[27], [32]. The interaction between the damping and the source terms was first
considered by Levine [37], [36] in the linear damping case (m = 0). He showed that
solutions with negative initial energy blow up in finite time. Georgiev and Todorova
[25] extended Levine’s result to the nonlinear damping case (m > 0). In their work,
the authors introduced a different method and determined suitable relations between
m and y and for which there is global existence or alternatively finite time blow up.
Precisely; they showed that solutions with negative energy continue to exist globally
‘in time’ if m >y, and blow up in finite time if y > m and the initial energy is
sufficiently negative. Without imposing the condition that the initial energy is
sufficiently negative, Messaoudi [41] extended the blow up result of [25] to solutions
with negative initial energy only.

Recently, Messaoudi [44], [45] considered

t
Uy — Au + f gt —t)Au(r)dt = b|u|u, inQ X (0,) (1.13)
0

10



for b =0 and b = 1 and for a wider class of relaxation functions. He established a
more general decay result, from which the usual exponential and polynomial decay
results are only special cases.

A related result is the work of Kawashima [29], in which he considered a one-
dimensional model equation for viscoelastic materials of integral type where the
memory function is allowed to have an integrable singularity. For small initial data,
Mufioz Rivera and Baretto [51] proved that the first and the second—order energies of
the solution to a viscoelastic plate, decay exponentially provided that the kernel of the
memory decays exponentially. Kirane and Tatar [30] considered a mildly damped
wave equation and proved that any small integral dissipation is sufficient to uniformly
stabilize the solution by means of a nonlinear feedback of memory type acting on a
part of the boundary. This result was established without any restriction on the space
dimension or geometrical conditions on the domain or its boundary. For more about

the subject see [1], [24], [40], [43], [57] and [56].

11



1.3 Results Description

The aim of this thesis is to investigate the asymptotic behavior of solutions of some
viscoelastic problems in bounded domains. In this regard, we study several problems
and establish exponential, polynomial and general decay rate results. The decay results
are established in the absence, as well as in the presence of a source term.
This thesis contains five chapters. In Chapter 1, we discuss in much details the
properties and significance of viscoelastic materials and we end the chapter by
reviewing some literatures related to our problems. In Chapter 2, we present some
principal concepts, some theorems on Sobolev embeddings and some lemmas which
are of essential use in the proofs of our results. We devote the other chapters to the
discussion of our problems which is to study the asymptotic behaviors of solutions of
some viscoelastic problems. In Chapter 3, we study the case when the relaxation
function is decaying exponentially in the presence of a source term. In this regard, we
establish a decay result which depends on the behavior of the external force. The case
when the relaxation function is decaying polynomially in the absence of a source term
is treated in Chapter 4. In the last chapter, we study a general decay result for the finite

history case in the presence of an external force.
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CHAPTER 2

PRINCIPAL CONCEPTS

The main objective of this chapter is to present without proof brief discussion of some
concepts and properties related to our problems. Reader should consult [2], [21] and

[39] for proofs and more details.

2.1 Preliminaries

Definition 2.1.1. Let Q be a domain in R™ and let m be a non-negative integer. We
define by C™(Q) the linear space of continuous functions on Q whose partial

derivatives D®u, |a| < m, exist and continuous, where

dl*ly(x)
D%u(x) = ~ 2.1)
0x, 1 0x% ... 0%,
a=(a, ... a,) is called a multi-index of dimension n and

n

al = a

i=1
Definition 2.1.2. The support of a continuous function f defined on R" is the closure

of the set of point where f (x) is nonzero;

supp f = {x € R™: f(x) # 0}.
The closed and bounded sets in R™ are precisely the compact sets, so if supp f is

bounded, we say f has a compact support and denote the set of such functions by

13



Co(R™). Similarly, C,(Q) denotes the set of continuous functions on € whose

supports are compact subsets of .

In addition, C3°(Q2) denotes the class of the functions u in Q such that

a) u is infinity differentiable, which means that D%u is uniformly continuous in
Q, for any a;

b) wu is compactly supported: supp u is a compact subset of Q.

Corollary 2.1.1. C™(Q) is a Banach space with respect to the norm

m = a
Il gm ) réﬁé‘%i’ég”’ u(x)| (2.2)

Remark 2.1.1. If m = 0, we denote C°(Q) = C(Q)

2.2 Lebesgue Spaces

Definition 2.2.1. [21] Let Q be a domain in R™; for 1 < p < oo, LP(Q) denote the

measurable real-valued functions u on Q for which

flu(x)lpdx < oo,
Q

In addition, L*(Q) denotes the measurable real valued functions that are essentially
bounded (bounded except on a set of measure zero). For u € LP(Q), we define the

norms

1
p

lfull, = flu(x)lpdx ) for1<p <o, (2.3)
QO

lullo = ess suplu(x)| = inf{M: u{x: u(x) > M} = 0} (2.4)

14



Lemma 2.2.1. [2]If1 <p < o,and a,b = 0, then
(a + b)? < 2P~1(aP + bP) (2.5)
Theorem 2.2.1. (Holder's inequality) [2] Let 1 < p < oo, and let q denote the

conjugate exponent defined by

p that i 1+1 1
q=——71, atis —+-—=
p—1 P q

which also satisfies 1 < g < o.Ifu € LP(Q) and v € LI(Q), then uv € L} (Q) and

flu(x)v(x)ldx < |lullpllullq (2.6)
Q

Equality holds if and only if for some constants a and 3, not both zero,
alu(x)|P = Blv(x)|? a.ein Q

Corollary 2.2.1. By taking p = q = 2, we obtain the Cauchy-Schwarz inequality

flu(x)v(x)ldx < [Jullllull, 2.7)

Q
Theorem 2.2.2. (Young'sinequality) [21] Let 1 <p,q < oo, %+ i =1 and
a,b = 0. Then for any n > 0,

ab < naP + C,bA (2.8)

1

where C77 = 7
q(p)r

For p = q = 2, the inequality takes the form

2

b <na®*+— 2.9
ab < na +477 (2.9)

15



Theorem 2.2.3. [2] LP(Q) equipped with the norm (2.3) is a Banach space if

l<p=<swm

— )

Corollary 2.2.2. [2] L?(Q) is a Hilbert space with respect to the inner product

(u,v) = f w() ) dx

Q

The associated norm is then

llull3 = (u,u)
Theorem 2.2.4. (Density Theorem) [21] If f € LP(Q), 1 < p < o, then there
exists a sequence (f,,) < Cy°(€2) which converges to f with respect to the norm ||. || ,.

This implies that C3°(Q) is dense in LP(Q).

2.3 Sobolev Spaces

Definition 2.3.1. (Weak derivative) [2] If u,v € LP(Q), v is called a weak

derivative of order ¢ of u if

j u(x)D®(x)dx = (—1)ll f v(x)@(x)dx, VP € CP(Q). (2.10)
Q Q

For the definition of @ and D*® (x) we refer to (2.1).

Definition 2.3.2. (Sobolev spaces) [2] Let Q be an open set of R", then the
Sobolev space WP (Q), 1 < p < «, k € N*(positive integer number), is the set of
all functions u € LP(Q) such that the weak derivatives D%u of order «, |a| < k, exist

and lie in L?(Q). That is

Wkr(Q) :={u € LP(Q)|D%u € LP(Q), |a| < k }

16



WP (Q) is equipped with the following norm:

P
lullip = (Z ||D“u||§) . 1<p<w
|aT=k 2.11)

u = max||D%u
lulle = maxliDeul.

Remark 2.3.1. If u € C™(Q), then all weak derivatives are classical.
Theorem 2.3.1. [2] W*P(Q) is a Banach space with respect to the norm (2.11)
Remark 2.3.2. Ifp = 2, we denote W*2(Q) by H*(Q) and it is a Hilbert space with

respect to the inner product

(u,v)p = j z Du(x)D%v(x)dx, VYu,v € H*(Q). (2.12)
Q lalsk

Definition 2.3.3. (Sobolev spaces of order one in R")

Let Q be an open domain of R® and 1 < p < 0. Then

wir(Q) = {u € LP(QY)

9
ElviELP(Q),fugz—fviqb,i:l,Z, ...,n,‘v’d)ECSO(Q)}
i
Q Q

is called the Sobolev space of order one and it is equipped with the norm

B Ju
lullp = lull, + Z ||§|| (2.13)
i=1 o

or equivalently with

1
n ou P P
llull,p = |Iu||§+2||a—|| , 1<p<w (2.14)
= ""oXilly

17



Remark 2.3.3. W2(Q) = H(Q) is a Hilbert space with respect to the inner

product

Definition 2.3.4. (The space W, P(Q)) Let Q be a domain of R” and 1 < p < oo,

we define the space W})l’p (Q) to be the closure of C3(€) with respect to the norm of

WP (Q).
Theorem 2.3.2. Ifu € Wol'p (Q) N C(Q), then u(x) = 0 for every x € 0Q.

Theorem 2.3.3. (Poincaré's inequality ) [39] Assume that Q is bounded in one

direction and 1 < p < . Then there is a positive constant C = C (€2, p) such that
lully < ClIVull,,  vu € W, P (Q)

Definition 2.3.5. Let V and W be two Banach spaces. We say that V is continuously

embedded in W and we write V & W, if we have, for some C > 0,
lvllw < Cllvlly, vvevV

Theorem 2.3.4. (An embedding theorem for L? spaces) [2] Suppose that
vol(Q)=J.dx<oo

and1 <p < q <. Ifu € L1(Q), then u € LP(Q), and
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1 1
lull, < (vol ()7 9llull,
hence
L1(Q) - LP(Q)

Theorem 2.3.5. (Sobolevembedding theorems) [2] Let Q c R" be a Lipschitz

domain, m = 1and 1 < p < oo. Then, the following mappings represent continuous

embeddings
. 1 1 m n
wmP(Q) o LP (Q), —=-——, ifm<-,
p p n p

WmP(Q) o L1(Q), 1<q<ow, ifm=

)

SHR

no_ n n
wmp(Q) o cP™ @), if S<m<o+L (2.15)
_ n
wWmP(Q) o C%%Q), 0<a<l, ifm= 5+ 1,
_ n
wmP(Q) o %1 (Q), if m> ” + 1.
Theorem 2.3.6. (Sobolev, Gagliardo, Nirenberg) [39] If 1 < p < n, then
. 1 1 1
WLP(R") & LP (R"), —=——— (2.16)
p p n

and there exists a constant C = C(n, p) such that

lull,s < Clivull,,  vu € WH(R™)

Corollary 2.3.1 If 1 < p < n, then

WY ([R") & LI(R"), 1<q<p* (2.17)
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Theorem 2.3.7. [39] If p = n, then

WYP(R") & LI(R"), n<qg< o (2.18)

Theorem 2.3.8. (Morrey) [38] Ifp > n, then
WP (R™) o L*(R")
Moreover, if u € WP (R™), then u is a continuous function.

Remark 2.3.4. The above theorems remain valid if we substitute R™ by a domain

Q c R™ with a smooth boundary 0Q.

We conclude this chapter by introducing a very important formula we use very often

to estimate some integrals and to prove many results in our problems.

2.4 Green’s Formula

Let Q be a bounded domain of R™ with a smooth boundary, then Yu € HY, Vv € H?,

we have

quvdx = — j Vu - Vvdx + juVU-Cds (2.20)
Q

Q oQ

where ( is the outer unit normal to dQ [39].

Remark 2.4.1. If u € H}(Q), then Green’s formula is reduced to

f ulAvdx = — f Vu - Vvdx
Q Q
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CHAPTER 3

EXPONENTIAL DECAY OF SOLUTION

OF A VISCOELASTIC PROBLEM

3.1 Introduction

In this chapter, we consider the viscoelastic problem

r o0
Uy — Aulx, t) + J. g(&)Au(t — s)ds = f(x,t), inQ xR*
0
) u(x,t) =0, x € 0Q), te Rt (3-1)
\u(x,0) = uy(x), u.(x,0) = uy (x), X €EQ

where Q is a bounded domain of R"(n > 1) with a smooth boundary 0Q,
f € LZ(Q x (0, +oo)) and g is a positive non-increasing function satisfying the

following conditions:

(Gy) g: R* - R* is a differentiable function such that

g(0) >0, 1—fg(s)ds=l>0

0

(G,) There exists a positive constant ¢ such that

g'(t) < —&g(t), vt=0.
Following the idea of Dafermos [20], we introduce
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nt(x,s) =ulx,t) —ulx,t—s), s=0. (3.2)

Consequently, by adding and subtracting the term Au, (3.1) transforms into

r [ee)
Uy — lAu(x, t) — f g($)Ant(x,s)ds = f(x,t), inQ x R*
0

Ug(x' S) + ng(x; S) = ut(xl t)

u(x, t) =nt(x,s) =0, X € 0Q, Vt, s=>0 (3.3)

u(x,0) = up(x), us(x,0) =u,(x), vx € Q

\n%(x,s) =no(x,s) = uy(x) —vy(x,—s),n(x,0) =0,Vx €Q, s=>0
Theorem 3.1.1. Let (ug,uy) € HY(Q) x L2(Q) and n, € L3(R*, H3(Q)) be
given. Assume that f € L? (Q x (0, +oo)) and g satisfies (G;) and (G,), then problem

(3.3) has a unique global weak solution

uEC ([0, ); H&(Q)), u € C([0,00); 12(Q)), n* € 12 (R+ x R*,H(}(Q)), (3.4)

where
1(RY, HE(Q)) = [u {RY > HY(Q) / f 9()IVu(x, )l13ds < oo,

Definition 3.1. By a weak solution, we mean (u, n“) which satisfies (3.4) and

d o0
%.f u,(x, ) ®(x)dx + l.f Vu(x, t) - Vo (x)dx + f fg(s)Vnt(x, s) - Vo (x)dsdx
Q Q Q0

= ff(x, t)P(x)dx, fora.et >0
Q
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Proof of Theorem 3.1.1. This theorem can be established by using the Galerkin
method or the linear semigroup theory as in [54] or by repeating the steps of [23] with

the necessary modification.

3.2 Modified Energy Functional

Multiply (3.3), by u; and integrate over €, we obtain

lututtdx—ll utAu(t)dx—bf Ofg(s)utm}t(s)dsdx =S[ u.f(x, t)dx (3.5)

The terms in (3.5) are estimated as follows:

First Term

1d
| et =5 el (3.6)
Q

Second Term

Using Green’s formula and the boundary conditions, we obtain

ld
—1 j uAu(t)dx = lf Vu, - Vu(t)dx = Ealqu(t)Ilg. (3.7
Q Q
Third Term

Using Green’s formula and the boundary conditions, we get

_([ Ojg(s)utAnt(s)dsdx=fg(s)l Vu, - Vnt(s)dxds.

0
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Using (3.3),, we have

o0

~ | [ gsuetntrasdx = [ o) [ i) + (52} - vt ()
Q0 Q

0

= fg(S)f Vn%(s).vnt(s)dxds+fg(s)fvng(s).vnt(s) dxds
0 ) . 2
© 4 ) o .
:%fg(s)aant(S)Ideds+§fg(s)£f|Vnt(s)|2dxds
0 Q 0 o

1d(( .
0

0] (o]

[ s Bas | -3 [ g @Itz G

0 0

g@IVn 13|, —fg’(s)uvnt(s)ngds]
0

T 2dt

Fourth term

Using Young’s inequality, we obtain for any §, > 0

1
[ ety dx < Sl + o I 015 (3.9)
2
Q

By substituting (3.6) — (3.9) in (3.5), we obtain

d(1

el + S vul2 + 2 [ s ©izds
de\ 2"t ") 2792 2
0

[oe)

1
f 9' S IV $)lzds+8llucllz + 7= 1If (x, Ol2. (3.10)
2

0

<

N| =

Set
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1 l 1
E() = 3 llull5 + > IVu(®)ll3 + > (goVnH)(t), (3.11)
where

(0]

(goV1)® = [ g )Iids.
0

E(t) is called the Modified Energy Functional

Hence (3.10) becomes

1

1, IfC O3 (3.12)

1
E'(t) < E(g’oan)(t) + 8, lluell? +

3.3 Decay of Solution

In this section we state and prove the main result in this chapter. For this purpose, we

set

F(t) = E(t) + e,y (t) + e, x(8), (3.13)

where €; and €, are positive constants to be chosen properly later and

o]

Y(t) = f uudx,  x(t) = —futfg(s)nt(s) dsdx. (3.14)

Q Q 0

Lemma 3.3.1. For €; and €, small enough, the inequality

a,F(t) < E(t) < ayF(t) (3.15)

holds for two positive constants a; and .
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Proof.

F(t) =E(@®) +¢€ | uudx —e, | us | g(s)nt(s) dsdx.
sz ]

Using Young’s inequality, we have

F(O) < B + 5 T3 + =

Q

We estimate the fourth term in the right-hand side of (3.17) as follows:

0 2 e 2

[ son s | = [ Vo® Jaon cras

0

Using Cauchy-Schwarz inequality, we have

} > - ~
jg(s)ﬂt(s)ds < fg(S)ds jg(S)Int(S)Izds
0 0 0

<\ [9was ) [ s@meras

0 0

o0 2 [oe]
[som©as) sa-o{ [ somorae)
0 0

We substitute (3.18) in (3.17), then use Poincaré’s inequality, to obtain

e(1-1D

€, te€ €
F(£) < E(6) + = lluellf + = CollVu(©)l13 + Cp(g0Vn ) ().

26
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Note the following:

1
E(t) = E(govnt)(t)-

Thus,
e,(1—1
€,(1 —DCRE(t) = "’(T) Cp(goVnt) (0. (3.20)
Similarly,
€ €
T CpE() 2 5 CpllVu(D)13 (321)
and
€, t+e€
(e + eE@® 2 9D 6.2

Hence, equation (3.19) becomes

€1

Cr E@) + (e, + €)E(t) + &,(1 — DCHE(D)

F(t) <E(t) + l

€1CP

<(1+%

+ (&1 + €) + (1= DCp ) E(t) < B1E(D),

€1Cp

[

where f; =1+ + (e, + €5) +6,(1 — DCyp,

which implies

E(t) > a,F(t), a, = é (3.23)

Similarly, from (3.16) using Young’s inequality, we obtain
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2

€+ € €
a3 -2 [ { [ gmras | dx
Q

0

F(O) = E(®) =S w3 -

Using (3.18), we have

1-0(( )
F(©) 2 E© = @l — 222 I - 6(2—)( [ sm ds).

0

Using Poincaré’s inequality, we get

PO 2 E0 - 23 g - L v -2 g o, 629
Substituting (3.20) — (3.22) in (3.24), we obtain
F(t) = (1 — Ellc" — (e, + &) — e,(1 — l)Cp) E). (3.25)
By choosing €; and €, small enough so that

a= ellCP + (e, +€)+e,(1-DCpr < 1,
we arrive at

F(t) = (1 —a)E().

Hence,

E(t) < a,F(t), a,= T i - (3.26)

Combination of (3.23) and (3.26) gives

a,F(t) < E(t) < a,F(t),

which completes the proof.

28



Lemma 3.3.2 Let (u, u,n*) be the solution of (3.3). Then under the assumptions

(G,) and (G,), the functional

Y(t) = f uu,dx

Q
satisfies, for any §; > 0,
' 2 _{! 2 11—l t 1 2
WO < el = {5 = 8,6} Iu@I3 + 5 () Gomn) © + 1~ IFC. 01
1

(3.27)

Proof.

By taking the derivative of ¢ and using (3.3);, we get

Y'(t) = Nlulls +lfu(t)Au(t)dx+ f u(t)fg(s) Ar)t(s)dsdx+fu(t)f(x, t)dx

Q Q Q

Using Green’s formula, the boundary conditions and Young’s inequality, we obtain,

forany §; >0

P ® < llullz = UVu@®II3 - f Vu(t) f g(s) Vnt(s)dsdx + & [lu(®)I3
Q 0

1

+
45,

17 ¢ Ol3.

By Poincaré’s inequality, we have
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WO < ez = (1= 8,C,)IIVu(®)l3 - ] vu(e) - f 9(5) V' ()dsdx + - IIf( DIz
Q

(3.28)
By estimating the third term in (3.28), using Young’s inequality, we obtain for any

55> 0

2

0

1
f Vu(t) - j (5) V' (s)dsdx < 83ITu@I + 55 j f 9()|Vnt(s)lds | dx.

Q Q 0

Using (3.19), we get

fVu(t) -fg(s) Vnt(s)dsdx < &;||Vu(t)||3 + (14;31).[ fg(s)|V77t(s)|2 dsdx.
Q 0 Q 0

(3.29)

By substituting (3.29) in (3.28), we obtain

(1)

P'(®) < lluell3 = {U = 83) = &: G} IVu()I3 + DO+ 451 IFC. O3

l
By choosing §5; = 5 we get

: [ 1-
WO < lll - = 56} IO + 2 (90O + 75 IFC.OIE

(3.30)

which complete the proof.
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Lemma 3.3.3 Let (u, u,nt) be the solution of (3.3). Then under the assumptions

(G,) and (G,), the functional

o0

x(@) = —futjg(s)nt(s) dsdx

Q 0

satisfies, for any 8, 6, > O,

2 2 2 1 Cp t
X6 < (6 = (1= DYl + 28 7u@ll + (1 + 55+ 75) € = D omn) @)

I (50w ) + BlFC DI (331)

Proof.

By taking the derivative of y and using (3.3),, we get

x(@® = —lfAu(t)fg(s)nt(s)dsdx
Q 0

[e¢] 0

—J- fg(s)Ant(s)ds fg(S)nt(S)ds dx

Q 0 0

[ee]

- [ e [ gmicsrasax— [ reno fw ()’ (s) dsdx.
Q 0

Q 0

Using Green’s formula and the boundary conditions, we obtain

2

o0

x(t) = lJ Vu(t)-fg(s) Vnt(s)dsdx+f jg(s) Vnt(s)ds | dx
) 0

Q 0
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[o9] [o0]

- f Uy f g(sInt(s) dsdx — f f(x,t) f g(s)nt(s) dsdx. (3.32)
Q 0

Q 0

The terms in (3.32) are estimated below.
The first Term

Using Young’s inequality and Cauchy-Schwarz inequality, we obtain, for any §, > 0,

1-D
45,

lf Vu(t) - j g(s) Vnt(s)dsdx < 126,]|Vu(t)||3 + (goVnh)(t). (3.33)
Q 0

The second Term

Using Cauchy-Schwarz inequality, we obtain

. 2

f f g(s)Vnt(s)ds | dx < (1 —1(goVnH) (). (3.34)

Q \o
The third Term

Using (3.3),, integration by parts and the initial conditions, we get

o]

~ [ we [ g@ntesrasax = - Dl + [ [g(S)nt(s)IS" - [ gem® ds] dx

Q 0 Q 0

[00]

——( = Dlwll3~ [ w [ g'GIn(s) dsdx.

Q 0

Using Young’s inequality, we obtain for any § > 0,

2

[00] [e¢]

~ [ [ gmie dsar <5 - -l + 55 [ | [ 9/ Cs2as | ax
Q

Q 0 0
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" 2
1 ! r
< (6= (1= Dl + 55 | ( [ -9 -9 <s)nt(s)ds> dx.
Q \0

Using Cauchy-Schwarz inequality, we obtain

[oe] O o0 '
~ [ [ gmicsrasar <6~ - DYt + 45 [ [ =g intCo)ase.
Q 0 Q0

By Poincaré’s inequality, we have

o)

0
- f ” f 9()MECs) dsdx < (5 — (1 — D}lluellz — %cp(g'ovnfxo. (3.35)
Q 0
The fourth Term

Using Young’s inequality, we obtain, for all § > 0,

o0 1 o0
- [ ren [ gomte dsax < slrc. 0l + 45 [ | [ g@m e asax | ax
Q 0

Q 0

Using Cauchy-Schwarz inequality and Poincaré’s inequality, we obtain

1-1
46

~ [ £ [ gt dsdx < SIFC.OI + s ColgomH®.  (336)
Q 0
By substituting (3.33), (3.34), (3.35) and (3.36), in (3.32), we obtain

x'(©) < {6 — (1 = D}lucll3 + 28,IVu(®ll3

g(0)
46

1 C
+ {(1 bt —p) (1- z)} (goVnt)(t) — === Cp(g'oVnH)() + SIIFC, )13,

45, ' 48

which completes the proof.
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THEOREM 3.3.1. Let (ug,u;) € Hj(Q) x L>(Q) and 1, € L (R*,H&(Q)) be
given. Assume that f € L? (Q x (0, +oo)) and g satisfies (G;) and(G,). Then there
exist strictly positive constants K; and K, such that, forallt > 0,

E(t) < Kje Tkt + K,e ™kt jllf(.,s)ll% eksds, vt =>0. (3.37)

Proof

Taking the derivative of F, then substituting (3.12), (3.27), (3.31) and, we obtain

[
F/© < ~{el(1 =D = 8] — & = &}luell3 — {er (3 - 8.6 ) — 128, Ivu(@) 13

1 t
+{<2z +e, (1 tat 45)> 1-— z)} (govnt) ()

1 0 1
+ {(E - SZ%CP)} (g'0Vn®)(s) + {4_62 + 4_61 + & }”f(-'t)”%-

Using (G,), we get

!
F/© < ~{el(1 =D = 8] — & = &}luelld — {er (3 - 8.6 ) — 128, Ivu(@) 13

_{EG_SZ%@)_; (1+4i&+ )](1—1)}<goVnt)(t)

gt ag T oI GOl

l

By choosing §; = i
P

04 = Z we obtain
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N
F/©) < ~{el(1 =D = 6] — & = &} luel3 — {5 — 28} Iu@13

1 g(0) &1 ¢
—{E<5—82WCP>—[2—Z+SZ (1 46 46)] (1—1)}(90%7 )(t)

1 &GCp
gt e IFC Ol (339)

Now choose § so small that,

(1—l)—6>%(1—l),

46<1(1 D)
l 4 '

Whence § is fixed, any choice of &; and &,, such that

a-on a-0n
;e <a<—;

£ (3.39)

will make

&1 -1
52((1—l)—5)>¥>81,
4 &1 =1
782 <—2 4 <€1.

Thus, we have

K0:£2[(1_l)_6]_81>0,

&l
Kl:T_825>O
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We then pick &, and &, so small that (3.15) and (3.39) remain valid and

K. = 1 g(O)C & ) 12 Cp -
~{e-etre) e &) a-o)

and take &, so small that
Kz = Ko - 62 > 0.
Finally, we choose f = min{K;, K,, K3} to obtain

F'(t) < =Blllucllz + IVu®OllZ + (goVn)(©O} + ClIF (. DI,

1 &Cp
where C = 4—52+ T + &,6.

A combination of (3.15) and (3.40) yields

F'(t) < —kF(®) +Cllf(,Dl3, k=pa; Vt=0.

We introduce the following functional:

H(t) = F(t) — Ce™ [IIf (., 9)lI3 e*ds

Taking the derivative of (3.42), we obtain

t
H'(t) =F'(t) + kCe"‘tfllf(-.S)Ilﬁ e*ds — Ce M|If (., )lI5e",
0

which implies that,

H'(t) = F'(t) + kCe"“fIlf(-,S)Ilﬁ e*ds — ClIf (., )l

By substituting (3.42) and (3.43) in (3.41), we obtain
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H'(t) < —kH(¢). (3.44)

A simple integration of (3.44) over (0, t) gives

H(t) < H(0)e ™t (3.45)

Using (3.42), we obtain

t
F(t) <{F(0) + Cfllf(.,s)ll% eksds r ek, (3.46)
0

A combination of (3.15) and (3.46) gives

t
E(t) < Kje™F + K,e ¢ jllf(.,s)ll% efsds, vt=>0, (3.47)
0

where
K, = a,F(0), K, = Ca,.
Thus the estimate (3.37) is proved.
Remark 3.3.1
1. If f=0,thenE(t) < K,e %, vt>0

2. If\IfII3 < M, thenE(t) < Kje ® + 1, Vt >0 where A = %

3. If||f]l3 < Me™"¢, then

K,M

E(t) < Kie™* + 1,e7 ", Vt>0,where}, = "

ifK #y
x* E(t) < (K, + Ayt)e™", Vvt >0,where, =K,MifK =y

In *, E(t) does not necessarily converge to zero as e 7* when t goes to +oo.
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CHAPTER 4

POLYNOMIAL DECAY OF SOLUTION OF A

VISCOELASTIC PROBLEM

4.1 Introduction

In this chapter, we consider the viscoelastic problem

( [e¢]

Uy — Au(x, t) + J- g(s)Au(t —s)ds =0 in Q x Rt
° 4.1
<u(x,t)=0, x € 09, t e R (4.1)

\ u(x, 0) = uO(x)l u’t(x! 0) =U (x)r x € Q
where Q is a bounded domain of R™(n > 1) with a smooth boundary 0Q and g is a

positive non increasing function satisfying the following conditions

(Gy) g: RT - R* is a differentiable function such that

o0

g(0) >0, 1—fg(s)ds=l>0
0

3
(G,) There exist a positive constant{ and 1 < p < 3 such that

g'(t) < —&gP(t), Vt=D0.

Following the idea of Dafermos [20], we introduce
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nt(x,s) = ulx,t) —ulx,t —s), s=0. (4.2)

Consequently, by adding and subtracting the term Au, (4.1) transforms into

e

Uy, — lAu(x, t) — j g(s)Ant(x,s)ds = f(x,t), inQ x R*
0
Tlg(x, S) + ng(x: S) = ut(x' t)

t

4.
) u(x, t) =nt(x,s) =0, x € 0Q, Vt, s=>0 (4.3)

u(x,0) = upg(x), u(x,0) =u,(x), vx € Q

\n%(x,s) =no(x,s) = up(x) — vo(x,—s),nt(x,0) =0,Vx€Q, s=>0
Theorem 4.1.1. Let (up,u;) € (H}(Q) x L*(Q)) and 1, € L2(R*, H}(Q)) be
given. Assume that g satisfies (G;) and (G,), then problem (4.3) has a unique global

weak solution

u e C([0,%); HY(Q)), u € C([0,);L2(Q)), 1t € 12 (R* x RY, HI(Q)), (4.4)

where
12(RY, HY () = {u i R* > HY(Q) / f 9()IVu(x, $)|3ds < oo
0

Proof. This result can be established by using the Galerkin method or the linear
semigroup theory as in [54] or by repeating the steps of [23] with the necessary

modification.
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4.2 Modified Energy Functional

The modified energy functional E (t) is already obtained in chapter 3. Thus we have

1 l 1
E(®) =5 llucll + > IVu(®lI3 + > (govn)(©).  (45)

Remark 4.2.1. The modified energy functional E (t) satisfies, along the solution of

(4.3),

1
E'(6) =5 (g'oVn*)(®) < 0. (4.6)
Lemma 4.2.1. Let (u, u;,n%) be a solution of (4.3). Then, there exists a constant

C > O suchthat, for1 <p < %we have,

(goVnt) (D) < C{(gPoVn®)(s)}7-7.

Proof:

[oe)

(goVn)(®) = f 9(0) 197 () 12ds

0

[oe)
27 2r—-2

= [ g IV @lizg = DTG, ds
0

Using Holder’s inequality, we obtain, for any r > 1,

o) r

(goVn®)(t) < f () IV (s)|13ds f go=2(s) V() 13ds
0 0

By taking r = 22—:;, we obtain
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2p—2 1

(mﬂ#Xﬂg([g%@MM%@Mm) (fg%ﬂmm%ﬂﬁw> . @7

0 0

We estimate the first term in the right-hand side of (4.7) as follows:

[o9) [o9]

[ 932 19 (5D 1ids = [ g3() NV, ©) = VuGe, e = s,

0 0

Using the fact that
2 2
IVu(x, 03 < TE@® < TEO),
2 2
IVu(x,t —s)|I5 < TE(t —s) < TE(O)
and
la—b|* < 2(lal* + |b|?),
we obtain
r 1 8E(0) ‘ 1
| G 1w @izas < == [ gits)as.
0 0
Note that,
r 1 r 1
[ Girds < [ G797 ds
0 0

Hence using G,, we obtain
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32p |
z (s)| < oo,
0

fi(s)ds<—1f FP(s)g (s) ds < —
JIREE =T ) IR e e

Consequently, for a constant C > 0, (4.7) becomes

(goVnt)(©) < C{(gPoVnt) (D},

which completes the proof.
4.3 Decay of Solution

In this section we state and prove the main result. For this purpose, we set

F(@) = E(®) + &y(0) + e2x(0), (4.8)
where &; and ¢, are positive constants to be chosen properly later and
w© = [wwdr, 3@ == [ u [ g dsax.

Q Q 0

Lemma 4.3.1. For ¢; and €, small enough, the inequality

a,F(t) < E(t) < a,F(t). 4.9)

Proof. For the proof of this Lemma, see the proof of Lemma 3.3.1

Lemma 4.3.2. Let (u, us, n%) be the solution of (4.3). Then under the assumptions

(Gy) and (G,), the functional

Y() =

uu;dx

O
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satisfies

o

, l 1
WO < lully = 171+ 5| [ ) ds |@Pomd@.  @.10)

0

Proof.

By taking the derivative of ¥ and using (4.3),, we obtain

Y'(t) = |lull3 +lju(t)Au(t)dx+ j u(t)jg(s) Ant(s)dsdx.
) 0

Q

Using Green’s formula, the boundary conditions and Young’s inequality, we obtain,

for any 6; > 0,

2

o0

' 1
WO < lully = = 8IT@IE + 55 [ | [ 9@ ds | ax. @1
1

Q \o
Using Cauchy-Schwarz inequality, the estimation of third term in right-hand side of

(4.11) becomes

o 2

[ [ smmesias | ax

Q 0

2

( : 2)

( 1——@) f (gz(s)> 1Vt (s)[2ds } dx
0

A
0\8
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2

0 oo

f fg(S)IVnt(sﬂds dx < jgz_p(s)ds (gPoVnH) (1), (4.12)
Q \0 0
where

[ee)

@0 = [ @I 3

0

Substituting (4.12) in (4.11), we obtain

[oe)

' 1
¥ (©) < llullz = A= sDIVu®IIZ %5, f g¥7P(s)ds | (gPoVn*)(0).
0

l
By choosing §; = 5 we obtain

o

: l 1
PO < Hlullz =5 IVu@ll + 5 fgz"’(S)dS (gPoVn®)(®),
0

which completes the proof.

Lemma 4.3.3 Let (u, us,n*) be the solution of (4.3). Then under the assumptions

(G,) and (G,), the functional

0

x(@) = —f utjg(s)nt(s) dsdx

Q 0

satisfies, for any 6, 6, > 0

x'(®) < {6 — (1 = D}lullZ + 126, IVu(®)|IZ

1

+i(1+35) f g2 s | grom) 0 - L2
0

46

48, Cp(g'0Vn")(t). (4.13)
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Proof.

By taking the derivative of y and using (4.3);, we obtain

2 =1 f Aue) f 9(s) n(s)dsdx

e}

—f fg(s)Ant(s)ds fg(s)nt(S)ds dx
o \o 0

- f utfg(s)nf(s) dsdx.
Q 0

Using Green’s formula and the boundary conditions, we obtain

2

o0

x(t) = lJ Vu(t)-fg(s) Vnt(s)dsdx+f jg(s) Vnt(s)ds | dx
) 0

Q 0

—futf g(s)nt(s) dsdx. (4.14)

Q 0

The terms in (4.14) are estimated below.
The first Term
Using Young’s inequality and Cauchy-Schwarz inequality, we obtain for any §, > 0

z f Vu(t) - f 9(s) Vnt(s)dsdx < 128, ]|Vu(t)|3
Q 0

o]

+% [ 76 ds | @rovin®. @15)
0

45



The second Term

This is the same as (4.12), hence we have

2

f f g(s) Vnt(s)ds | dx < f g?P(s)ds | (gPoVnt)(b). (4.16)
Q 0 0
The third Term

This is the same as (3.35), hence we have,

o0

0 :
~ [ [ gomecs) asax < 6~ (1~ DYl L5 ColglomO . (417)
Q 0

By substituting (4.15) — (4.17) in (4.14), we obtain

x'(®) < {6 — (1 = D}luellZ + 128, IVu®)|I3

o)

1 0
+ (1 +—) f g*P(s)ds (gpoVnt)(t)_ngs)cp(g’ovnt)(t)'

45,

which completes the proof.

Theorem 4.3.1 Let (up,u;) € HE(Q) x L*(Q) and 1, € L2(RY, H}(Q)) be given.
Assume that g satisfies (G;) and(G,). Then there exist strictly positive constants K

such that, forall t = 0,

1

E(t) < K(1 + )27, ve=0 (418

Proof.

We take the derivative of F and substitute (4.6), (4.10) and (4.13), to obtain
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1l
F () < ~(el(1 = D = 8] = elllucl3 - {5 - 28, ITu(0)

1 o0
+ {(21 + e, (1 + 4—52)> f g>7P(s)ds }(g”ovnt)(t)

0

2

(1 g0 )C")( 0T (O).

By using (G,) and letting §, = —, we get

2’

1l
F() < ~{el(1 - D - 8] - el — {5 - 20} I7u(o)l1

1 0)C 1\\[ [
(o3 298) (o5 oo

0

(4.19)

Note that g27P(s) = g?(=P)(s)gP(s).
So,

1,
gP(s) < “f g (s).

Consequently, we have
2-p L 2(1-p) '
geP(s) = - 79 (s)g (s). (4.20)

A simple integration of (4.20) over (—oo, t) yields

[00]

- g7(0) 3
“P(s)ds SE 3-2p < 4o, Vp< > 4.21)
0
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We now choose § so small that

(1-0)—6 >%(1—z),

4

1
§<=(1-D.
;0<;A-D

Whence § is fixed, any choice of €; and €,, such that

Ez(l—l)< <€z(1—l)

2 €, 3 : (4.22)
makes
4 NG
1% 4 v
4 &1 =1
7825 2 4 < 1

Consequently, we have

K1 = Ez[( 1 - l) - 5]_61 > 0,

&l
Kl :T_Szé‘ > O.

We now choose €; and €, so small that (4.9) and (4.22) remain valid and

1 g6 (e N[ am
K3—f<§—62 15 — 2_l+€2<1+4_62)] fg (s)ds | > 0.
0

Finally, we choose f = min{K;, K,, K5}, to obtain
F'®) < —Blllullz + IVu®ll3 + (gPoVn*)(®)], vt =0. (4.23)
Since E(t) < |lucll5 + [IVu(OII5 + (goVn)(t)

So,

48



E?(t) < [llwll3 + IVu®IIZ + (goVn*)(®)]°, foro > 1.
Using Lemma 2.2.1, we obtain

E?(t) < Clllucll3” + 1Vu(®)I3 + {(govn) ()}°]

E7 () < C[Ilue 3l 1577 + IVu(@) I IVu() 15| + c{(govn) ().
Since, for all C > 1, we have

lucll3 < CE(t) < CE(0).

Hence,
lu 157 < co1E~1(0).
Similarly,
Va2 < ¢o-tE7-1(0).
Thus,

E°(®) < ClIwlBC7E2~1(0) + IVu(IBC7 B~ (0)] + C{(goTn)(©)?
E(9) < CTET O llhwell3 + IVu@IZ] + Cllgomn (). (@.24)
Using Lemma 4.2.1, we obtain
E(t) < CE ()l + IVu(0IF] + € {ct(gPovnty 7]
E2(©) < CE Ol + IVu@I3] + C{(gPon) (0
Let o = 2p — 1, we have

E*P1(1) < C[[lluell3 + IVu(®l3] + (gPovn*)(®)]. (4.25)

By using (4.23), we obtain
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F'(t) < —B,E?71(1), for some 8, > 0.

A combination of (4.9) and (4.26), yields

F'(t) < —B,a; P~ F?2P~1(¢), vt > 0.

From (4.9), we know that F(t) > 0
Since 1 <p < %implies 1 < 2p — 1 < 2. Thus, we have F??71(t) > 0

Multiply (4.27) by F(1=2P)(t) and integrate over (0, t), we obtain

t t
fF(l‘Zp)(s)F'(s)ds < —fﬁzalzp‘lds
0 0

F2a-p)(g)|*

-~ < _ 2p—1
20-p) | = B2aq t

0

F2(-p) (t) — F2(1—19)(0)
2(1-p)

< _ﬁzalzp_lt.

Since p > 1 implies 2(1 —p) <0
Therefore,
F2A=P)(t) > =2B,(1 — p)a, P71t + F2(7)(0)
> 2B,(p — Da,?P~1t + F2(A-P)(0).
Also,1<p <; implies0 < 2(p—1) < 1.

Thus, 28,(p — Da; P71t >0, Vvt >0
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Hence,

F?2@=D(t) < ! .
26,(p — Da, 2Pt + F2A-P)(0)

By choosing A = min {2f,a,%P71(p — 1), F2(=P)(0)} > 0,

we obtain, F2?~D(¢) < ;
’ A1 +1¢)

1

hich implies that F(t) < < - )2“"”
which implies tha =Za+o
Thus,
-1 1
F(t) < C(A+t)2e-v, C=A)2e-, Vt=>D0. (4.28)

Combination of (4.9) and (4.28) gives

-1
E(t) <K +t)»-v, K=a,C, Vt=0,
which completes the proof.
CONCLUSION:

The above proof shows that in past history case, the polynomial decay is slower

compared to the finite history case which gives

1

E) KA+t 1, vt=>0

See [9] and [49].
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CHAPTER 5

GENERAL DECAY OF SOLUTION

OF A VISCOELASTIC PROBLEM

5.1 Introduction

In this chapter, we consider the viscoelastic problem

f t
Uy — Aulx, t) + fg(t — s)Au(s)ds = f(x,t), inQ X (0,0)

u(x,t) =0, ’ X € 0Q, t=>0 -1
U u(x,0) = ug(x), ur(x,0) = uy (%), X €EQ

where Q is a bounded domain of R™®(n > 1) with a smooth boundary 0Q,
fEelL? (Q x (0, +oo)) and g is a positive non increasing function satisfying the

following conditions

(Gy) g: RT - R* is a differentiable function such that
g(0) >0, 1—fg(s)ds=l>0
0
(Gy) There exists a differentiable function ¢ : Rt —» R* satisfying

g < —&®g), ve=0, &@® <0.
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Theorem 5.1.1. Let (uy,u,) € HY(Q) X L?(Q) be given.
Assume that f € L? (Q x (0, +oo))and g satisfies (G;) and(G,), then the problem has
a unique global weak solution

u € C([0,0); Hy (), u, € C([0,0); L2 () (5.2)
Proof. This result can be established by using the Galerkin method or the linear

semigroup theory as in [54] or by repeating the steps of [23] with the necessary

modification.

5.2 Modified Energy Functional

Multiply(5.1); by u, and integrate over €, we obtain

t
fututtdx— f uAu(x, t)dx+£[ Ofg(t—s)utAu(s)dsdxzfutf(x, t) dx.

Q Q Q
(5.3)
The terms in (5.3) are estimated as follows:
First Term
1d
| et = 5 el (54)
Q
Second Term
Using Green’s formula and the boundary conditions, we obtain
1d )
- j uAu(t)dx = f Vu, - Vu(t)dx = T [IVu(t)]3. (5.5)
Q Q
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Third Term

t

g[ofg(t—S)utAu(s)drdx = Ofg(t—s)g[ u Au(s)dxds.

Using Green’s formula and the boundary conditions, we obtain

g[ Ofg(t — s)uAu(s)dsdx = —J-g(t — S)!2 Vu, - Vu(s)dxds

t

= — j gt —ys) f Vu, - [Vu(s) — Vu(t)]dxds — j gt —2s) f Vu, - Vu(t)dxds
Q 0 Q

0

t

= %jg(t — s)%j [Vu(s) — Vu(t)|*dxds —%fg(t — S)%f IVu(t)|2dxds
0 Q 0 o

1d (|
=5E<fg(t—s)j|Vu(s)—Vu(t)|2dxds>
Q

0

_%jg'(t—s)l|Vu(s)—Vu(t)|2dxds—%%(fg(t—s)dsl|Vu(t)|2dx>
0

0

+%fg'(t—s)dsjIVu(t)Izdx+%g(O)fIVu(t)Izdx
0 ) )

_1d y 2 1 t ' 2
=o= fg(t—s)lIVu(s)—Vu(t)llzds —Efg(t—s)IIVu(s)—Vu(t)Ilzds

1d g 2 1 2
_ang(t - s)ds> IVl + 5 g @ IVu@®)13. (5.6)
0
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Fourth term

Using Young’s inequality, we obtain, for any §, > 0,

[ wef ety ax < B,lhul + 5 1 01 57
) 2

By substituting (5.4) — (5.7) in (5.3), we obtain

t

Sl + 5 IO + 53| [ 96— 9livues) - va@ias
0
1 1d ([
—5 [ 9= 9vuts) - vu@Bas - 5| [ 9= 9)3s | T2

1
+5 g(t)IIVu(t)IIZ < &, lluell3 +45 IIf Cx, D113,
2
So,
t
4 1||u ||2+£||Vu(t)||2+1f (t = 9)IIVu(s) — Vu(®)ll3ds +1 OlIvu@®)ll3
de |22 T3 272)9 2 29 2
0

1
—2 [ 9@ = )va(s) - VuC@Ii3ds < Sylluely + - IF G O 59
2
Set
1 1
B =3 Il § +5 117113 + 5 (gov) @), 59)
where
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(goVu) (D) = j 9t — ) I7uls) — Vu()||2ds.

0

E(t) is called the Modified Energy Functional.

Hence (5.8) becomes

1 1 1
E'(8) < 5(g'0Vw)(0) = 5 9 OIVUOI + 8 i3 + = 1 f G DI
2
which implies that
/ 1 / 2 1 2
E'(8) < 5 (g'0Vu)(©) + Saluell + 7= IIFCL O (5.10)
2

5.3 Decay of Solution

In this section we state and prove the main result in this chapter. For this purpose, we

set

F() = E(©) + exp(t) + 2x(0), (5.11)
where €; and €, are positive constants, to be chosen properly later and
t
Y(t) = f uudx, x(@) =-— J utfg(t — $)[u(t) — u(s)]dsdx. (5.12)

Q Q 0

Lemma 5.3.1. For €; and €, small enough, the inequality

a,F(t) < E(t) < ayF(t), (5.13)

holds for two positive constants a; and a,.
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Proof.

F(t)=E@t)+¢€; | uupdx — €, | up | gt —s)[u(t) —u(s)]dsdx.
Jrtse] ]

Q

Using Young’s inequality, we have

€ 2 €+ €
F(t)sE(t)+?1||u(t)I|2+ 12 2

2
2
- g(t — $)[u(t) —u(s)lds | dx.

0

2
||ut||2

We estimate the fourth term in the right-hand side of (5.15) as follows

0

Using Cauchy-Schwarz inequality, we have

¢ 2
(f gt —s)[ut) — u(s)]ds) dx
0

12

( g(t=s) ds) (fg(t—s)lu(t)—u(s)|2 ds>5>

0

/_\

t ¢
< gt —s)ds gt —s)|u(t) —u(s)|2ds>
[Jres)f

<=0 (j gt —s)|u(t) —u(s)|? ds).

0
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t 2 t
( j gt —s)[u(t) - u(s)]ds) dx = ( j Vgt — ) gt —)[u@) - u(s)]ds) :
0

(5.14)

(5.15)

2

(5.16)



We substitute (5.16) in (5.15), then using Poincaré’s inequality, to obtain

€1 T €

F(t) <E(t)+ >

€ e,(1-10)
el 13 + 5 CollVu(O11 + ———Co(goVu)().  (5:17)

1
Since §||utl|z < E(t), then

€+ €
2

[[uell3 < (€1 + €2)E(0) (5.18)

In the same way, we have

S ColIVu®IIE < T CE®, (5.19)
%_Z)CP(gOVu)(t) < €,(1 — DCRE(2). (5.20)

Hence, equation (5.17) becomes

€1Cp

F(t) < (1 + P L (e 4 6)) + 6,(1— z)cp) E(t) < BE(D),

€1Cp

where f; =1+ ;

+ (61 + 62) + 62(1 - l)CP,
which implies

E(t) 2 (XlF(t), a1 = - (5.21)
Similarly, from (5.14) using Young’s inequality, we obtain

2

"z -2 [ { [ 9 - 90 - usitas | ax
Q 0

€1

F® 2 E() - 2 |lu@)ll3 -

From (5.16), we have
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t
€, +¢€ (1 =1
L el - 5 [ 9= 9 u®) - u)ds.
0

FO 2 B - 2 a0} -

Using Poincaré’s inequality, we have

€4+
2

e,(1 -1

Ft) > E(t) — >

€2 2 & 2
[luell2 —?CP”Vu(t)”z - Cp(goVu) ().

Using (5.18) — (5.20), we obtain

F(t) > {1 _ (EllCP 4 (e, +6) +e,(1— l)CP)}E(t). (5.22)

By choosing €; and €, small enough so that

€1C
a = 1lP+(€1+62)+62(1_l)Cp<1,

we obtain

F(t) = (1 — a)E(L).

Hence,

1—a
Combination of (5.21) and (5.23) gives
a,F(t) < E(t) < a,F(t),

which completes the proof.
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Lemma 5.3.2 Under the assumptions (G;) and (G,) the functional

Y(t) = f u(t)udx
O

satisfies, along the solution (5.1),

l 1/1-1
WO < lully - [ = 5GP + 5 (<) (om)(© + 7= I 0l

(5.24)

Proof. By taking the derivative of ¢ and using (5.1),, we get

P'(t) = Nlull + f u(t)Au(t)dx — f u(t)fg(t — s)Au(s)dsdx
0

Q Q

+ j u(t)f(x, t)dx.

Q

Using Green’s formula and the boundary conditions, we obtain

() = llull = IVvu®ll3 + f VU(t)'jg(t—S)VU(S)dsdx+ f u(®)f (x, t)dx.

Q 0 Q

(5.25)
Using Young’s inequality and Poincaré’s inequality, we have, for all §; > 0
t
WO < lully = V@13 + | 7 - [ 9= s)0u(s)dsds
Q 0 (5.26)

+ 8, CollVu®)llz + = If ¢, O3

451
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By estimating the third term in (5.26), using Young’s inequality, we obtain,

o]

Q 0

t t 2
f Vu(t) - f gt —s)Vu(s)dsdx < %lIVu(t)Ilﬁ + %j (j gt — s)|Vu(s)|ds> dx
0

¢ 2
< %IIVu(t)II% +%f <f gt —s)[|Vu(s) —Vu(t)| + [Vu(t)]] ds) dx. (5.27)
0

Q

We estimate the second term in (5.27) as follows:

t 2
f (f gt —s)[[Vu(s) — Vu(®)| + [Vu(t)]] ds) dx
Q \0

t 2 ¢ 2
= j (jg(t—s)qu(s)—Vu(t)Ids) dx+j<jg(t—s)IVu(t)|ds> dx
Q o \0

0

Q

+2f (fg(t—s)qu(s)—Vu(t)lds) (fg(t—s)qu(t)lds)dx.

Using Young’s inequality, we obtain, for all n > 0,

" 2
f <f gt —s)[IVu(s) = Vu(®t)| + |[Vu(t)l] ds) dx

Q 0

t

<1+n) gt —s)|Vu(t)|ds | dx
[ )

0

t

2
+<1+%>bf <fg(t—s)|Vu(s)—Vu(t)|ds> dx

0
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<@ +mA-DAIvu@®I3

. 2
1
+<1 +ﬁ>bf <bf Jg(t —s)/g(t —s)|Vu(s) —Vu(t)lds) dx.

Using Cauchy-Schwarz inequality, we obtain

t 2
f ( f 9(t—1) [|\7u(s)—Vu<t)|+|Vu(t)|]ds> dx < (1 +n)(1 - D2Vl

Q 0

2

+<1+%)§[ <<Ofg(ts)ds>2<fg(ts)|Vu(s)Vu(t)|2d5>2> dx

0

1
<A +mA=DVuld)2 + (1 + 5) (1 = D (goV)(t). (5.28)

By substituting (5.28) in (5.27), we obtain

t 2
f(fg(t—r) [[Vu(r) — Vu(®)] + |Vu(t)|]dr> dx

Q

—o0

<

N =

1 1
{1+ (1 +m) = DI + 5 (1 + ﬁ) (1 -D(govuw)(®).  (5.29)
By substituting (5.29) in (5.26), we obtain

1
WO < i3 = {511 = (4 M)A = D2 = 8,6 ITa(I3
1 1 1
+3(14) A= DGoT© + 751, O

By choosingn = -7 we obtain
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[ 1/1-
WO <l - [ = 56 IO + 5 (71) 00T + 55 I .01

which completes the proof.

Lemma 4.3.3 Under the assumptions (G;) and (G,) the functional

t

2O = — f u, f gt — [u(®) — u(s)ldsdx

Q 0

satisfies, along the solution of (5.1) and for any 6§ > 0,

t
x'(t) < {5 - f g(t—s) dS} luell3 +8{1 + 2(1 = D*}IVu®lI3
0

1 G 0
(25 +o5t 46) (1- LS) Cp[—(g'oVi)(®O] + SIIfFC, DII3.

(5.30)
Proof.

By taking the derivative of y and using (5.1);, we get

t
x(t) =— f Au(t) f gt —s)[u(t) —u(s)]ldsdx
0

Q

+ f (f gt —ys) Au(s)ds) (f gt —s)[ut) — u(s)]ds) dx

Q 0 0

t
f ” f g'(t = u®) — u(s)|dsdx — { f g(t—s) ds} e 12
0

- f fx,t) f gt —s)[u(t) —u(s)]ds dx.
Q 0
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Using Green’s formula and the boundary conditions, we obtain

t t
2@ = f vu(e) f 9(t — )[Vu() — Vu(s)ldsdx — f gt —s)ds | llullz
0 0

Q

t t
— f fg(t —s)Vu(s)ds |- fg(t — 8)[Vu(t) — Vu(s)]ds | dx
0 0

Q

t
— f utfg’(t — s)[u(t) — u(s)]dsdx
o 0

—ff(x, t)jg(t—S)[u(t) —u(s)]ds dx.
Q 0

(5.31)

The terms in (5.31) are estimated below.
The first Term

By repeating the steps (5.27) — (5.29), we obtain

t
1-1

f Vu(t) - fg(t — 5)[Vu(t) — Vu(s)]dsdx < &§||Vu(t)||5 + W(goVu)(t).

Q 0

(5.32)

The second Term

Using Young’s inequality, we have, for all 6 > 0
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— f <f gt —s) Vu(s)ds) . (f gt —s)[Vu(t) — Vu(s)]ds) dx
Q \o

0

0

t 2 t 2
<6 f <f gt —ys) Vu(s)ds) dx + % (f gt —9s)[Vu(t) — Vu(s)]ds) dx
Q \o Q

2 2

t

f gt —s)Vu(s)ds

0

t

f gt —s)[Vu(t) — Vu(s)]ds

0

1
dx + — dx

45

<5

Q

<5

Q

t 2

fg(t —5) [Vu(s) — Vu(t)]ds + f gt —s)[Vu(t)]ds

0

dx

2

dx.

|

Q

jg(t — s)[Vu(t) — Vu(s)lds

0

Using Lemma 2.3.1, we obtain

t t
— f <f gt —-s) Vu(s)ds) . (f gt —s)[Vu(t) — Vu(s)]ds) dx
Q \o 0
2
26 + f <f (t —s) |Vu(s) — Vu(t)lds> dx
+26f (fg(t —5) |Vu(t)|ds> dx.

By applying Cauchy-Schwarz inequality, we obtain
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— f <f gt —s) Vu(s)ds) . (f gt —s)[Vu(t) — Vu(s)]ds) dx
Q \o

< (25 + %) (1 = D(gova)(©) + 26(1 — D2|IVu(D) |12 (5.33)

The third Term

Using Young’s inequality, we obtain, for all § > 0

— f utjg'(t — $)[u(t) — u(s)]dsdx
0

Q

t

2
1 ,
< olull3 + 45 | < | g(t—s)|u(t)—u(s)|ds> dx
Q

0

£ 2
1
< olhull3 + 45 | ( [ V=g &= =g &=l - u) |ds> dx.
Q 0

Using Cauchy-Schwarz inequality, we obtain

t

_futfg'(t—s)[u(t) — u(s)]dsdx < 8llucll?

Q 0

2

<{j -g'(t— s)ds} {f —g'(t — s)|ut) —u(s)|? ds} ) dx
0 0

17 -
SSIIutII§+E<I —g (t—s)ds)] (j —g (t = s)|u(t) —u(s)|? ds)dx
Q

0 0

f
46
Q

1 : .
< dlull3 + 55190 — 9] [ [ =g’ = @ - w1 ds dx.
Q0
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By Poincaré’s inequality, we obtain

t

— f U, J‘g/(t — )[u(t) — u(r)]drdx

Q

1 :
< &llull3 + 15 tr19(0) —g(Oll=(g oVu)(®)]

g(0)

< Slucll3 + =5

Cp[—(g"oVu)(®)].
The fourth Term

Using Young’s inequality, we obtain, for all § > 0

- [ £en [ 9= 9 - usds dx
Q 0

< 8lFC O3+ 5 f gt — )[u(®) — u(s)lds

Using Cauchy-Schwarz inequality and Poincaré’s inequality, we obtain

f D) ] (¢ = u(®) — u()lds dx < SIFC, DIIZ +

By substituting (5.32) — (5.35) in (5.31), we obtain

2 <|s- f gt —s)ds | uell3 + 6{1 + 2(1 — DAVu()]3

(0)

1 C
(25 oot 45) (1 = D(goVu)(t) +

which completes the proof.
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-1
25 Cp(goVu)(©).

(5.35)

Cp[—(g'OVu)(t)] +SlIfC, O3,



THEOREM 5.3.1 Let (ug,uy) € H3(Q) X L2(Q) be given. Assume that

f €L? (Q x (0, +oo)) and g satisfies (G;) and(G,). Then, forany t > 0

E(t) < CE(0)e o i@ds if f = 0, (5.36)

Otherwise,

t

B0 <G {E ©+ | (% +e (s)) IFC,)lizers f@dms} MO8, (537)

where C, and A are positive constants.
Proof

By taking the derivative of F and substituting (5.10), (5.24), (5.30) we obtain

1

1
’ < _ ' 2
F(t) < ) (g oVu)(t) + 8z lluclls + 45,

¢, ON3

1

+Q“W%—(é—&@yWMﬂM+%(7f>@MMXQ+IiW(imﬂ

t
re, ]| 5- ] g(t—5)ds | luellz + 811 + 2(1 = D2NVu(OI2
0

g(0)

5~ Col=(g o) (®)]

5+t CP l
+<2 +ﬁ+ﬁ> (1 —=D(goVu)(t) +

+8lfC Ol -

(5.38)
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Since g is continuous, positive and g(0) > 0, then for any t, > 0, we have

to

f g(s)ds > f g(s)ds = go V= to.

Hence (5.38) becomes

F®) < ~(ealgr ~ 8) - &4 = 8}l
e (5 8:60) - ce0l1 + 201 - DI} ITUCO I

1 1 :
+ {(21 +e, (za +o5+ 45)) (1- l)} (goVu)(t) + {— — € gig) Cp} (g oVu)(t)

1 (5.39)
—+—=C SOl3 Vvt =t.
+ (5 + a3 G €28) I, OB :
. l :
By choosing §; = ——, we obtain

4Cp

: [
F () < ~{ex(g0 = 8) = &1 = 8, Hluell3 — {7 - 2011 + 21 = D21} Ivu(@) 13

+ {(2 it+e (25 n 215 is)) (1- l)} (goVu)(t)

1 g0 1 X
—— >
{2 € — 45 CP} (g OVu)(t) + (452 +—- I CP +€; ) LG, Oz, vt = t,. (5.40)
Now choose § so small that
1
go— 6> 590'

4
S5 +2(1-D? < %.
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Whence § is fixed, any choice of €; and €,, such that

Yo Yo
ZEZ < 61 < 762,

will make

g
€2(go —6) > 7052 > €4,

4
7626[1 + 2(1 - l)Z] < %62 < 61.

Thus, we have
Ky = €,(go — 6) — €, >0,

4e
K, = Tl — 6,6[1+2(1=1D?] > 0.

We then pick €, so small that (5.13) and (5.41) remain valid and

g(0)
2

6>¢€ Cp

and 6, so small that
Kz == KO - 52 > 0.
Thus

K, _1 90

5 EZECP>O.

Hence from (5.40), we have Vt > t,
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F'(t) < —{Kolluell3 + Ky [IVu(®I13} + Ky (goVu) () + Ka(g'oVu)(®) + KslIf (., D13,

(5.42)
where
(€ 1 Cp)
K4—<2l+62(25+25+45 >(1 D,
Ke = 1 +82¢0 +e,6
Therefore,

F(0) < —{Kzllucll? + K IVu(®)llF + Ks(goVi) (D)} + K7 (goVu) (¢)
+K3(govVuw)(t) + KsllIf (., O3, vt =t
where K; = K, + K.
Choose B = min{K;, K,, K¢} to obtain
F'(6) < =Bllucll3 + IVu(®ll3 + (goVu) ()} + K7 (goVu) (t) + K3(g oVu)(t)
+KsIIf GOl Ve = ¢,
which implies that

F'(t) < —BE(t) + K,(goVu)(t) + Ks|If (., O3, Vt = t,. (5.43)

Multiply (5.43) by &(t) and use (G,), to obtain

§OF' (1) < —BEOE®) + K7 [—(g'oVW) (O] + KEOIIf ¢, OIIZ, Ve = ¢ (5.44)

Using (5.10) and the fact that E(t) > % |lugll3, we obtain, for all u > 0,
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1
—(g'oVuw)(t) < —2E'(t) + 4uE() + 2 I£C O3 (5.45)

Substitute (5.45) in (5.44), we obtain, for all u > 0,
K.
SOF'(6) = —(BS(t) — 4uK7)E(t) — 2K-E'(¢) + <2—; + st(t)> IfFC.ON5 vt =t,.

Take u = gf(t), € is a positive constant. Then, for all € > 0, we have

SOF (1) £ =(B=CeS(DE®) + < oy st(ﬂ) I£C.OIZ = CE'(0), Vt=t,.

§(t)

K7
where C = 2K, and Kg = -

Lete = ;Lc,we obtain

10) + st(ﬂ) IFC,OI% — CE'(t), Vt=t,,

SOF'(t) < =p1E(E(L) + (
where 5, = g

d Kg
2 BOF®) + CEO] = ' (OF(6) < =B EME) + ( + st(ﬂ) IFC,ON3 Ve > to.

§(0)

Since ¢'(t) < 0. Hence,

d
2 BOF@O) + CEM] < -AEOEQ + ( + Ksé’(ﬂ) I C.ONI3, Ve =t (5.46)

()

Using the fact that é(t) is non-increasing and setting R(t) = E(t)F(t) + CE(t).
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Hence,
CE(t) < R(t) < CLE(t), (5.47)
holds for two positive numbers C and C;.

Using (5.47), we obtain, Vt > t,

B

C (5.48)

K,
R'(t) < —2OR®) + | =+ KsE@® | IFC,ONZ A=

(D)
CASE1 Iff =0, then

R'(t) < —A&(t)R(t), Vt=t,.

Simple integration over (t,, t), gives,

t
R(t) < R(ty)e Mws@% e >y,

Using (5.47), we obtain, for some positive constant C,,

t
E(t) < GE(t)e M@ v > ¢,

Since E(t) < E(ty) < E(0), Vt > t,. Thus, we get

E(t) < C,E(0)erlo’ §0ds=A[6ds gy > ¢

~ t
Thus the estimate (5.36) is proved with C, = C, et (s,
CASE 2 If f(x,t) # 0,

Let’s set

t

HO = @) =0 | (% + st<s>> 1)l Mt as,

to
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which implies

t

RE) = H(E) + e Mt f (% + st(s>> IFC 93 eMfO%as. (549

to

Simple differentiation of (5.49) gives

t

RO = 1O =200 | <% + st(s>> £ )1 &M ¥ s

to

+ <% + K5€(t)> IFC,OIE, Vit t,. (5.50)

Using (5.49), we obtain

K,
R'(t) = H'(t) = A8(OR(6) + AS(OH () + (5(—:) + st(ﬂ) IFC.OlZ vt =t.

Substitute (5.51) in (5.48), we obtain

H'(t) < —A&(t)H(t), Vt=t,. (5.52)

Simple integration of (5.52) over (t,, t) gives

t
H(t) < H(ty)e Meot@% v,
which implies

t

K s _ .t ds
R(t) <{R(ty) + f(f(—E)+K5€(s)> £, s)12eM et @5 g b o=t 80y > ¢

to

(5.53)
Thus, using (5.47), we obtain, for some positive constant C’z,
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t

_ K, s t
E® < CzE(t(’”f (f(_i)“{sf(s)) £, 5)lI2e™ o 6088 g L =2l 802as g 5

to
~ t
Thus the estimate (5.37) is proved with C, = (max{C;, Ks, KS})e”oo 8

Remark 5.3.1.

1 Ifé(t) =a >0, then
g 1
E(t) < C,E(0)e~%at 4 pe~2at fllf(.,s)ll%e’lasds, b = 2 +a Vt=0
0

2 If&(t) =a>0and||f(x t)|l53 < ce™ ", then, forallt = 0,

E(t) < C,E(0)e %t + hie™t, Vt>t,

where b; = Ta if la#y

x  E(t) < (CL,E(0) + byt)e ™ if la=y
where b, = bcC,

In *, E(t) does not necessarily converge to zero as e ~**¢ when t goes to +oo.
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