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In this thesis we investigate asymptotic behavior of solutions of some viscoelastic 

problems in bounded domains and establish some stability results for the problems. 

In this regard, we establish exponential, polynomial and general decay rate results. 

The decay results are established in the absence, as well as in the presence of a 

source term.  

 

  



VIII 
 

 ملخص الرسالة

:الإسم تيجاني عبد العزيز أبلارا      

 

:العنوان السلوك التقاربي لحلول بعض مسائل المرونة اللزجة     

 

:المشرف سليم مسعودي. د     

 

:أعضاء اللجنة نصر الدين تطار. د    

فراتي خالد. د      

 

:لتخصصا رياضيات     

 

:تاريخ الشھادة   2010يونيو   

  

في ھذه الرسالة نفحص السلوك التقاربي لحلول بعض مسائل المرونة اللزجة في 

.مجالات محدودة ونثبت بعض النتائج المتعلقة باستقرار ھذه المسائل  

ة وجود في ھذا الإطار، قمنا باثبات نتائج تھافت أسي، جبري، وكذلك عام في حال

.وغياب حد المنبع  



1 
 

CHAPTER   1 

INTRODUCTION 

 1.1    Viscoelastic Materials 

Elasticity is the material deformation behavior described by Hooke's law which states 

that displacement is linearly proportional to the applied load. An elastic material 

returns to the undeformed state once the loads are removed and the effects of multiple 

load systems can be computed by simple linear superposition. Moreover, the work 

done by the forces is calculated by multiplying the loads by the displacements. On the 

other hand, viscosity is an internal property of a fluid that offers resistance to flow.  

Viscous liquid has no definite shape, and it flows irreversibly under the action of 

external forces. However, there are materials with properties that are intermediate 

between elasticity and viscosity.  

Viscoelasticity, as its name suggests, incorporates aspects of both time dependent fluid 

behavior (viscous) and time independent solid behavior (elastic). Viscoelastic 

materials share some properties with elastic solids and some others with Newtonian 

viscous fluid. They exhibit an instantaneous elasticity effect and creep characteristics 

at the same time. In fact they can display all the intermediate range of properties. For 

instance, at low temperatures, or high frequencies of measurement, a polymer may be 

glass-like and it will break or flow at great strains. On the other hand, at high 

temperatures, permanent deformation occurs under load, and polymer behaves like a 
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highly viscous liquid. However, in an intermediate temperature or frequency range, 

commonly called the glass transition range, the polymer is neither glassy nor rubber-

like. Hence, polymers are usually described as viscoelastic materials and may dissipate 

a considerable amount of energy on being strained. In the rubber-like state, a polymer 

may be subjected to large deformation and still shows a complete recovery. To a good 

approximation, this is an elastic behavior at large strain [22], [34]. 

The importance of the viscoelastic properties of materials has been realized because of 

the rapid developments in rubber and plastics industry. Many advances in the studies 

of constitutive relations, failure theories and life prediction of viscoelastic materials 

and structures were reported and reviewed in the last two decades [18]. Time 

dependence of mechanical behavior of viscoelastic materials reveals the existence of 

inner clock or intrinsic time, which can be influenced by many factors such as 

temperature [3], physical aging [11], [55], [58], damage, pressure and solvent 

concentration [31], [38], strain and stress level [7], [33], [53], etc. 

Depending on the change of strain rate versus stress inside a material the viscosity can 

be categorized as having a linear, non-linear, or plastic response. When a material 

exhibits a linear response it is categorized as a Newtonian material. In this case the 

stress is linearly proportional to the strain rate. If the material exhibits a non-linear 

response to the strain rate, it is categorized as Non-Newtonian fluid. There is also an 

interesting case where the viscosity decreases as the shear/strain rate remains constant. 

A material which exhibits this type of behavior is known as thixotropic. In addition, 

when the stress is independent of this strain rate, the material exhibits plastic 

deformation [35].  
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Viscoelastic behavior can be represented by combinations of springs and dashpots 

(pistons that move inside a viscous fluid). While linear springs instantaneously 

produce deformation proportional to the load, a dashpot produces a velocity 

proportional to the load at each instant. If a spring and a dashpot are placed in parallel 

one obtains Maxwell's viscoelastic model. If they are arranged in series, one has 

Voigt's model. Finally, a series/parallel arrangement yields Kelvin's model [35] 

Two commonly observed viscoelastic behaviors are stress relaxation and (low 

temperature, viscoelastic) creep. Stress relaxation describes the time dependent change 

in stress following the application of an instantaneous strain. Alternatively, creep is 

the time dependent change of strain following the application of an instantaneous 

stress. Hence, creep is in some sense the inverse of stress relaxation, and refers to the 

general characteristic of viscoelastic materials to undergo increased deformation under 

a constant stress, until an asymptotic level of strain is reached. Any materials that 

exhibit hysteresis, creep or stress relaxation can be considered viscoelastic materials. 

In comparison, elastic materials do not exhibit energy dissipation or hysteresis as their 

loading and unloading curve is the same. Indeed, the fact that all energy due to 

deformation is stored is a characteristic of elastic materials. Furthermore, under fixed 

stress, elastic materials will reach a fixed strain and stay at that level. However, under 

fixed strain, elastic materials will reach a fixed stress and stay at that level with no 

relaxation [35]. 

Boltzmann (1844-1906) first proposed to use superposition to compute the stress-

strain response of a viscoelastic solid subjected to an arbitrary loading history. He 

assumed that creep at any time is a function of the entire prior loading history and that 
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each loading step makes an independent contribution to the deformation. Hence for an 

applied stress , the strain is 

 

where  is time dependent creep compliance  

Likewise, if a strain  is applied 

 

where  time dependent stress relaxation modulus [35]. 

We consider viscoelasticity in the isothermal approximation, which means that the 

temperature does not enter the model (state and constitutive relation). So the state 

involves the deformation gradient only while the constitutive equation is in fact a 

stress-strain relation. We obtain [10], [35] 

0  

The integrating functions  are mechanical properties of the material and are called 

“relaxation functions”. It can be considered to be the formulation of Boltzmann’s 

superposition principle such that the current stress is determined by the superposition 

of the responses to the complete spectrum of increments of strain. More so, the right 

hand side is called the convolution of  and  [35].  

The relaxation function  brings about damping effect of the solutions to the problem. 

This viscous damping ensures global existence of smooth solutions decaying 

uniformly under constant density as time goes to infinity. This is true for sufficiently 
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smooth and/or small data and history. We shall mainly be concerned with this 

phenomenon in our problems  

 

 1.2   Literature Review 

In [26], Giorgi C. et al considered the following semilinear hyperbolic equation with 

linear memory in a bounded domain Ω   

0 ∆ ′ ∆ in Ω

∞

 (1.1)

with 0 , ∞ 0 and ′ 0,  and established longtime behavior of 

solutions. In particular, in the autonomous case, they established existence of global 

attractors for the solutions. Later, Monica Conti and Vittorino Pata [19] considered  

0 ∆ ′ ∆ , in Ω

∞

 (1.2)

where  is a nonlinear term of (at most) cubic growth satisfying some 

dissipativity conditions and the memory kernel  is a convex decreasing smooth 

function such that 0 ∞ 0 and established the existence of a regular global 

attractor, thereby improving the result of [26].  

In [4], Appleby J. A. D et al investigated the linear integro-differential equation  

′′ 0, 0 (1.3)
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 and established results concerning the exponential decay of strong solutions in Hilbert 

space. Recently, Vittorino Pata in [54] discussed the decay properties of the semigroup 

generated by a linear integro-differential equation in a Hilbert space, which is an 

abstract version of the equation: 

∆ ∆ 0, (1.4)

describing the dynamics of linearly viscoelastic bodies and established the necessary 

as well as the sufficient conditions for the exponential stability.  

For the finite history case, Cavalcanti et al. in [15] investigated the following 

viscoelastic problem: 

∆ ∆ 0, inΩ 0,∞         

0,                                                                         on  0,∞             

0,           on  0,∞             

, 0 ,        , 0 , Ω,         

 (1.5)

where Ω is a bounded domain of Rn with a smooth boundary Ω .  Here,  

and   are closed and disjoint, with meas ( 0,  is the unit outward normal to 

Ω, and  and  are specific functions. They established a global existence result for 

strong and weak solutions. In addition, some uniform decay rate results were proved 

under quite restrictive assumptions on both the damping function  and the kernel . 

In fact, the function  had to behave exactly like , 0, and the function  had 

a polynomial behavior near zero. Later, Cavalcanti et al. [14] considered 1.1  without 
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imposing a growth assumption on  and under weaker conditions on . They 

improved the result of [15] and established uniform stability depending on the 

behavior of  near the origin and on the behavior of  at infinity provided that 

,  is small enough. In particular, they obtained explicit decay rate results for 

some special cases. This result has been recently improved by Messaoudi and 

Mustapha [46]. All these results are in the spirit of the work of Fabrizio et al. [22] in 

which they considered 

∆ ∆ 0, inΩ 0,∞  (1.6)

and showed that the exponential decay of the relaxation function is a necessary 

condition for the exponential decay of the solution energy. In other words, the 

presence of the memory term may prevent the exponential decay due to the linear 

frictional damping term. They also obtained a similar result for the polynomial decay 

case.  

In [50], Muñoz Rivera considered equations for linear isotropic homogeneous 

viscoelastic solids of integral type which occupy a bounded domain or the whole space 

, with zero boundary and history data, and in the absence of body forces. In the 

bounded domain case, an exponential decay result was proved for exponentially 

decaying memory kernels. For the whole space case, a polynomial decay result was 

established and the rate of the decay was given. This result was later generalized to a 

situation, where the kernel is decaying algebraically but not exponentially by 

Cabanillas and Rivera [12]. In this paper, the authors showed that the decay of 

solutions is also algebraic, at a rate which can be determined by the rate of the decay 
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of the relaxation function. Also, the authors considered both cases the bounded 

domains and that of a material occupying the entire space. This result was later 

improved by Baretto et al. in [6], where equations related for linear viscoelastic plates 

were treated. Precisely, they showed that the solution energy decays at the same decay 

rate of the relaxation function. For partially viscoelastic materials, Rivera et al. [52] 

showed that solutions decay exponentially to zero, provided the relaxation function 

decays in similar fashion, regardless to the size of the viscoelastic part of the material. 

In [16], Cavalcanti et al. considered  

∆ ∆ | | 0, inΩ 0,∞ , (1.7)

for Ω , a function which may vanish on a part Ω of positive measure. 

Under some geometry restrictions on  and for 

0,           

,      0, 

the authors established an exponential rate of decay. Berrimi and Messaoudi [8] 

improved Cavalcanti’s result by introducing a different functional which allowed them 

to weaken the conditions on both  and .  Furthermore, Berrimi and Messaoudi [9] 

considered  

∆ ∆  (1.8)

in a bounded domain and 2. They established a local existence and showed, under 

weaker conditions than those in [16], that the local solution is global and decays 
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uniformly if the initial data are small enough. In particular, the function  can vanish 

on the whole domain Ω and consequently the geometry condition is no longer needed.          

In [17], Cavalcanti et al considered 

∆ 0  (1.9)

under similar conditions on the relaxation function  and 0, for 

all Ω. They improved the result of [16] by establishing exponential stability for  

decaying exponentially and  linear and polynomial stability for  decaying 

polynomially and  nonlinear. For quasilinear viscoelastic equations, Cavalcanti et al 

[13] studied, in a bounded domain, the following equation: 

| | ∆ ∆ ∆ ∆ 0, 0 (1.10)

and proved a global existence result for 0 and an exponential decay for   0. 

This latter result has been extended to a situation, where a source term is competing 

with the strong mechanism damping and the one induced by the viscosity, by 

Messaoudi and Tatar [47]. Furthermore, Messaoudi and Tatar [49], [48] established, 

for 0, exponential and polynomial decay results in the absence, as well as in the 

presence, of a source term. Messaoudi [42] considered the equation 

∆ ∆ | | | | , inΩ 0,   ∞  (1.11)

and showed, under suitable conditions on , that solutions with negative energy blow 

up in finite time if  , and continue to exist if .  
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In the absence of the viscoelastic term 0 , the problem has been extensively 

studied and many results concerning global existence and nonexistence have been 

proved. For instance, for the problem 

∆ | | | | , inΩ 0, ∞  (1.12)

with , 0,  it is well known that, for 0,  the source term | |    0  

causes finite time blow up of solutions with negative initial energy [5], [28] and for 

0, the damping term | |  assures global existence for arbitrary initial data 

[27], [32]. The interaction between the damping and the source terms was first 

considered by Levine [37], [36] in the linear damping case 0 .  He showed that 

solutions with negative initial energy blow up in finite time. Georgiev and Todorova 

[25] extended Levine’s result to the nonlinear damping case 0 . In their work, 

the authors introduced a different method and determined suitable relations between 

 and  and for which there is global existence or alternatively finite time blow up. 

Precisely; they showed that solutions with negative energy continue to exist globally 

’in time’ if , and  blow up in finite time if  and the initial energy is 

sufficiently negative. Without imposing the condition that the initial energy is 

sufficiently negative, Messaoudi [41] extended the blow up result of [25] to solutions 

with negative initial energy only.  

Recently, Messaoudi [44], [45] considered 

∆ ∆ | | , inΩ 0,∞  (1.13)
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for 0 and 1 and for a wider class of relaxation functions. He established a 

more general decay result, from which the usual exponential and polynomial decay 

results are only special cases. 

 A related result is the work of Kawashima [29], in which he considered a one-

dimensional model equation for viscoelastic materials of integral type where the 

memory function is allowed to have an integrable singularity. For small initial data, 

Mu oz Rivera and Baretto [51] proved that the first and the second–order energies of 

the solution to a viscoelastic plate, decay exponentially provided that the kernel of the 

memory decays exponentially. Kirane and Tatar [30] considered a mildly damped 

wave equation and proved that any small integral dissipation is sufficient to uniformly 

stabilize the solution by means of a nonlinear feedback of memory type acting on a 

part of the boundary. This result was established without any restriction on the space 

dimension or geometrical conditions on the domain or its boundary. For more about 

the subject see [1], [24], [40], [43], [57] and [56]. 
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1.3   Results Description  

The aim of this thesis is to investigate the asymptotic behavior of solutions of some 

viscoelastic problems in bounded domains. In this regard, we study several problems 

and establish exponential, polynomial and general decay rate results. The decay results 

are established in the absence, as well as in the presence of a source term.               

This thesis contains five chapters. In Chapter 1, we discuss in much details the 

properties and significance of viscoelastic materials and we end the chapter by 

reviewing some literatures related to our problems.  In Chapter 2, we present some 

principal concepts, some theorems on Sobolev embeddings and some lemmas which 

are of essential use in the proofs of our results. We devote the other chapters to the 

discussion of our problems which is to study the asymptotic behaviors of solutions of 

some viscoelastic problems. In Chapter 3, we study the case when the relaxation 

function is decaying exponentially in the presence of a source term. In this regard, we 

establish a decay result which depends on the behavior of the external force. The case 

when the relaxation function is decaying polynomially in the absence of a source term 

is treated in Chapter 4. In the last chapter, we study a general decay result for the finite 

history case in the presence of an external force.   
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CHAPTER 2 

PRINCIPAL CONCEPTS 

The main objective of this chapter is to present without proof brief discussion of some 

concepts and properties related to our problems. Reader should consult [2], [21] and 

[39] for proofs and more details. 

2.1   Preliminaries 

Definition  2.1.1.   Let Ω be a domain in  and let m be a non-negative integer. We 

define by C Ω  the linear space of continuous functions on Ω whose partial 

derivatives D u, |α| m, exist and continuous, where   

| |

… . .
 (2.1)

, ……  is called a multi-index of dimension  and  

| |  

Definition  2.1.2.  The support of a continuous function  defined on  is the closure 

of the set of point where  is nonzero; 

  : 0 . 

The closed and bounded sets in  are precisely the compact sets, so if    is 

bounded, we say  has a compact support and denote the set of such functions by 
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. Similarly, Ω  denotes the set of continuous functions on Ω whose 

supports are compact subsets of Ω.  

In addition, ∞ Ω  denotes the class of the functions    Ω such that  

   is infinity differentiable, which means that   is uniformly continuous in 

         Ω, for any  ; 

     is compactly supported: supp   is a compact subset of  Ω. 

Corollary 2.1.1.  Ω  is a Banach space with respect to the norm 

| | Ω
| |  (2.2)

Remark 2.1.1.  If  0, we denote  Ω Ω   

2.2   Lebesgue Spaces 

Definition  2.2.1. [21] Let Ω be a domain in ; for 1 ∞, Ω  denote the 

measurable real-valued functions  on Ω for which 

| | ∞.
Ω

 

In addition, ∞ Ω  denotes the measurable real valued functions that are essentially 

bounded (bounded except on a set of measure zero). For Ω , we define the 

norms 

| |
Ω

, 1 ∞, (2.3)

  | | : : 0  (2.4)

 



15 
 

Lemma  2.2.1.  [2] If 1 ∞, and , 0, then  

2  (2.5)

Theorem  2.2.1.  ö     [2] Let 1 ∞, and let  denote the 

conjugate exponent defined by 

1
,   that is   

1 1
1 

which also satisfies  1 ∞. If Ω  and Ω , then Ω  and  

| |
Ω

 (2.6)

Equality holds if and only if for some constants  and  , not both zero,   

| | | |    .  in Ω 

Corollary  2.2.1.  By taking 2, we obtain the Cauchy-Schwarz inequality 

| |
Ω

 (2.7)

Theorem  2.2.2.      [21]  Let 1 , ∞, 1 and 

, 0. Then for any 0, 

 (2.8)

where 
1

 

For 2, the inequality takes the form 

4
 (2.9)
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Theorem  2.2.3.  [2]  Ω  equipped with the norm 2.3  is a Banach space if           

1 ∞,  

 Corollary  2.2.2.  [2]  Ω  is a Hilbert space with respect to the inner product 

,
Ω

 

The associated norm is then 

,  

Theorem  2.2.4.      [21]  If  Ω , 1 ∞,  then there 

exists a sequence  ∞ Ω  which converges to  with respect to the norm . . 

This implies that ∞ Ω  is dense in  Ω .  

2.3   Sobolev Spaces 

Definition  2.3.1.      [2] If , Ω ,   is called a weak 

derivative of order  of    if  

1 | |

ΩΩ

, ∞ Ω . (2.10)

For the definition of  and  we refer to 2.1 . 

Definition  2.3.2.      [2]  Let Ω be an open set of , then the 

Sobolev space , Ω , 1 ∞, positive integer number , is the set of 

all functions Ω  such that the weak derivatives  of order , | | , exist 

and lie in Ω . That is  

, Ω Ω | Ω , | |    
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, Ω  is equipped with the following norm: 

,
| |

, 1 ∞ 

                                , | | ∞ 

(2.11)

 

Remark  2.3.1.  If Ω , then all weak derivatives are classical. 

Theorem  2.3.1.  [2]  , Ω  is a Banach space with respect to the norm 2.11  

Remark  2.3.2.   If 2, we denote , Ω  by  Ω  and it is a Hilbert space with 

respect to the inner product 

,
| |Ω

, , Ω . (2.12)

Definition  2.3.3.               

Let Ω be an open domain of  and 1 ∞. Then 

, Ω Ω Ω ,
Ω Ω

, 1, 2, … , , ∞ Ω  

is called the Sobolev space of order one and it is equipped with the norm 

,  (2.13)

or equivalently with 

, , 1 ∞  (2.14)
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Remark  2.3.3.  , Ω Ω  is a Hilbert space with respect to the inner 

product 

,
ΩΩ

 

Definition  2.3.4.      , Ω      Let Ω be a domain of  and 1 ∞, 

we define the space , Ω  to be the closure of Ω  with  respect to the norm of 

, Ω .  

Theorem  2.3.2.  If , Ω Ω , then  0 for every  Ω. 

Theorem  2.3.3.   é′       [39]  Assume that Ω is bounded in one 

direction and 1 ∞. Then there is a positive constant Ω,  such that  

,       , Ω  

Definition  2.3.5. Let  and   be two Banach spaces. We say that  is continuously 

embedded in  and we write , if we have, for some 0, 

,        

Theorem  2.3.4.              [2] Suppose that 

  Ω ∞

Ω

 

and 1 ∞.  If Ω , then Ω , and  
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  Ω
   

 

hence 

Ω Ω  

Theorem  2.3.5.        [2] Let Ω  be a Lipschitz 

domain, 1 and 1 ∞. Then, the following mappings represent continuous 

embeddings 

                        , Ω Ω ,
1 1

, ,  

    , Ω Ω ,     1 ∞,      ,                 

   , Ω
,

Ω ,       1,             

  , Ω , Ω ,    0 1,      1,   

, Ω , Ω , 1.  

(2.15)

Theorem  2.3.6.  , ,   [39]  If 1 , then  

                      , ,
1 1 1

 (2.16)

and there exists a constant ,  such that  

,       ,  

Corollary 2.3.1  If 1 , then 

                        , , 1  (2.17)
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Theorem  2.3.7.  [39]  If ,  then  

                       , , ∞ (2.18)

Theorem  2.3.8.    [38]  If ,  then  

                                                 , ∞  

Moreover, if  , , then  is a continuous function. 

Remark  2.3.4.  The above theorems remain valid if we substitute  by a domain 

Ω  with a smooth boundary Ω. 

We conclude this chapter by introducing a very important formula we use very often 

to estimate some integrals and to prove many results in our problems. 

2.4   Green’s Formula 

Let Ω be a bounded domain of  with a smooth boundary, then , , 

we have  

∆
Ω

·
Ω

·
Ω

 (2.20)

where  is the outer unit normal to Ω  [39].  

Remark  2.4.1.  If  Ω ,  then Green’s formula is reduced to    

∆
Ω

·
Ω
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CHAPTER 3 

EXPONENTIAL DECAY OF SOLUTION 

OF A VISCOELASTIC PROBLEM  

3.1   Introduction  

In this chapter, we consider the viscoelastic problem 

∆ ,

∞

∆ , , inΩ

, 0,                     Ω,                                              
                                                                              

, 0 ,          , 0 , Ω   

 (3.1)

where Ω is a bounded domain of 1  with a smooth  boundary Ω,                   

Ω  0, ∞  and  is a positive non-increasing function satisfying the 

following conditions: 

             :   is a differentiable function such that 

0 0, 1 0

∞

 

          There exists a positive constant    such that 

′ ,     0. 

Following the idea of Dafermos [20], we introduce  
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, , , , 0. (3.2)

Consequently, by adding and subtracting the term ∆ , 3.1  transforms into  

∆ , ∆ , , , inΩ                

, , ,                                                                                
            

, , 0,              Ω,             ,    0                                 
                                                                              

, 0 ,    , 0 ,    Ω                                                  

, , , , , 0 0, Ω,    0  

(3.3)

   . . .   Let , Ω Ω  and  , Ω  be 

given. Assume that Ω  0, ∞  and  satisfies  and  , then problem 

3.3  has a unique global weak solution 

0,∞ ; Ω ,    0,∞ ; Ω , , Ω , (3.4)

where   

, Ω Ω , ∞ . 

Definition 3.1.     By a weak solution, we mean ,  which satisfies 3.4  and  

, Φ
Ω

, · Φ
Ω

∞

0

, · Φ
Ω

 

             , Φ
Ω

,    for  .   0 
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Proof of    . . . This theorem can be established by using the Galerkin 

method or the linear semigroup theory as in [54] or by repeating the steps of [23] with 

the necessary modification. 

3.2   Modified Energy Functional 

Multiply 3.3  by  and integrate over Ω, we obtain 

Ω

∆
Ω

∞

∆
Ω

,
Ω

 (3.5)

The terms in 3.5  are estimated as follows: 

First Term 

Ω

1
2

. (3.6)

Second Term 

Using Green’s formula and the boundary conditions, we obtain 

∆
Ω

·
Ω

2
. (3.7)

Third Term 

Using Green’s formula and the boundary conditions, we get 

∞

∆
Ω

∞

·
Ω

. 
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Using 3.3 , we have 

∞

∆

∞

·
ΩΩ

 

∞

·

∞

·
ΩΩ

 

1
2

∞

0

| |
Ω

1
2

∞

0

| |2

Ω

 

1
2

∞

0

2
2 1

2 2
2

∞

0

2
2  

 
1

2

1

2
. (3.8)

Fourth term 

Using Young’s inequality, we obtain for any 0 

,
Ω

1
4

, . (3.9)

By substituting 3.6 3.9  in  3.5 , we obtain 

1
2 2

1
2

 

           
1
2

1
4

, . (3.10)

Set 
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1
2 2

1
2

, (3.11)

where 

                               . 

E t  is called the Modified Energy Functional  

Hence 3.10  becomes 

1
2

1
4

. , . (3.12)

3.3   Decay of Solution 

In this section we state and prove the main result in this chapter.  For this purpose, we 

set  

, (3.13)

where   and   are positive constants to be chosen properly later and  

,
Ω

    

∞

.
Ω

 (3.14)

Lemma 3.3.1.   For  and  small enough, the inequality 

 (3.15)

holds for two positive constants α  and α .   
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Proof. 

Ω

.  (3.16)

Using Young’s inequality, we have 

2 2 2

∞

. (3.17)

We estimate the fourth term in the right-hand side of (3.17) as follows: 

∞

  . 

Using Cauchy-Schwarz inequality, we have 

∞

| |  

                                       | |  

∞

1 | | . (3.18)

We substitute (3.18) in (3.17), then use Poincaré’s inequality, to obtain 

2 2
1
2

. (3.19)
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Note the following: 

                       
1
2

. 

 Thus,  

1
1
2

. (3.20)

Similarly, 

                                         
2

 (3.21)

 and 

                                 
2

. (3.22)

Hence, equation (3.19) becomes 

1  

           1 1 , 

where  1 1 , 

which implies 

,
1
.  (3.23)

Similarly, from (3.16) using Young’s inequality, we obtain 
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2 2 2

∞

Ω

. 

Using (3.18), we have 

2 2
1
2

| |
2

∞

0

. 

Using Poincaré’s inequality, we get 

2 2
1
2

. (3.24)

Substituting 3.20 3.22  in  3.24 , we obtain 

1 1 . (3.25)

By choosing  and   small enough so that  

  1 1, 

we arrive at 

                                      1 . 

Hence,  

,
1

1
. (3.26)

Combination of  3.23  and  3.26  gives 

,                                          

which completes the proof. 
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Lemma 3.3.2  Let , ,  be the solution of 3.3 . Then under the assumptions 

 and , the functional  

Ω

 

satisfies, for any 0, 

2
1
2
1 1

4
. , . 

 (3.27)

.   

By taking the derivative of  and using 3.3 , we get 

′ ∆
Ω Ω

∞

∆ ,
Ω

 

Using Green’s formula, the boundary conditions and Young’s inequality, we obtain, 

for any 0 

′ u u ·
Ω

∞

 

                  
1
4

. , . 

By Poincaré’s inequality, we have 



30 
 

′ ·
Ω

∞
1
4

. , . 

 (3.28)

By estimating the third term in 3.28 , using Young’s inequality, we obtain for any 

0  

·
Ω

∞
1
4

| |

∞

Ω

. 

Using 3.19 ,  we get 

·
Ω

∞
1

4
| |

2

∞

0Ω

. 

 (3.29)

By substituting 3.29  in (3.28), we obtain 

′ 1

4
1
4

. , . 

By choosing 
2
,we get 

′

2
1
2

1
4

. , , 

 (3.30)

which complete the proof. 
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Lemma 3.3.3   Let , ,  be the solution of 3.3 . Then under the assumptions 

 and ,  the functional  

∞

Ω

 

satisfies, for any , 0, 

1 1
1
4 4

1  

                 
0

4
. ,  (3.31)

. 

By taking the derivative of  and using 3.3 , we get 

   ′ ∆

∞

Ω

 

                  

∞

∆

∞

Ω

 

                 
Ω

, .
Ω

 

Using Green’s formula and the boundary conditions, we obtain 

′ ·

∞

Ω

∞

Ω
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Ω

,
Ω

. (3.32)

The terms in 3.32  are estimated below. 

The first Term 

Using Young’s inequality and Cauchy-Schwarz inequality, we obtain, for any 0, 

·

∞

Ω

1

4
. (3.33)

The second Term 

Using Cauchy-Schwarz inequality, we obtain 

Ω

1 . (3.34)

The third Term 

Using 3.3 , integration by parts and the initial conditions, we get 

Ω

∞

1
Ω

|  

                                                          1
Ω

. 

Using Young’s inequality, we obtain for any 0, 

Ω

1 2
2 1

4

∞

Ω
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                                            1
1
4

∞

0

2

Ω

. 

Using Cauchy-Schwarz inequality, we obtain 

Ω

∞

1
0
4

′

∞

0

| |2

Ω

. 

By Poincaré’s inequality, we have 

1
0
4

. (3.35)

The fourth Term 

Using Young’s inequality, we obtain, for all 0, 

,

∞

Ω

. ,
1
4

∞

.
Ω

 

Using Cauchy-Schwarz inequality and Poincaré’s inequality, we obtain 

,
Ω

. ,
1
4

. (3.36)

By substituting 3.33 , 3.34 , 3.35  and  3.36 , in 3.32 , we obtain 

1  

1
1
4 4

1
0
4

. , , 

which completes the proof. 
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  . . .   Let , Ω Ω   and  , Ω  be 

given. Assume that Ω  0, ∞  and  satisfies  and .  Then there 

exist strictly positive constants  and  such that, for all 0, 

. , , 0. (3.37)

 

Taking the derivative of , then substituting 3.12 , 3.27 , 3.31  and , we obtain 

1
2

u  

               
2

1
1
4 4

1  

               
1
2

0
4

1
4 4

. , . 

Using  , we get 

1
2

u  

 
1
2

0
4 2

1
1
4 4

1  

                
1
4 4

. , . 

By choosing 
4

,    ,   we obtain 
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1
4

u  

                 
1
2

0
4 2

1
4 4

1  

               
1
4

. , . (3.38)

Now choose  so small that,  

1
1
2
1 , 

             
4 1

4
1 . 

Whence  is fixed, any choice of  and , such that 

                           
1
4

1
2

 (3.39)

will make  

          1
1
2

, 

        
4 1

4
. 

Thus, we have 

                    1 0, 

4
0. 
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We then pick  and   so small that 3.15  and  3.39  remain valid and  

1
2

0
4 2

1
4 4

1 0 

and take  so small that 

0. 

Finally, we choose min , ,  to obtain 

u . , , (3.40)

where 
1
4

. 

A combination of 3.15  and  3.40  yields 

. , , 0. (3.41)

We introduce the following functional: 

              . ,  (3.42)

Taking the derivative of 3.42 , we obtain 

                . , . , , 

which implies that, 

. , . ,  (3.43)

By substituting 3.42  and  3.43  in  3.41 , we obtain   
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. (3.44)

A simple integration of 3.44  over 0,  gives 

0 . (3.45)

Using 3.42 , we obtain   

0 . , . (3.46)

A combination of 3.15  and  3.46  gives 

. , , 0, (3.47)

where   

0 , . 

Thus the estimate 3.37  is proved. 

Remark 3.3.1 

1. If  0, then  ,     0  

2. If , then ,     0 where  

3. If , then 

                           ,     0, where   if    

                      ,     0, where   if    

In ,   does not necessarily converge to zero as  when  goes to ∞. 
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CHAPTER 4 

POLYNOMIAL DECAY OF SOLUTION OF A 

VISCOELASTIC PROBLEM 

4.1   Introduction 

In this chapter, we consider the viscoelastic problem 

∆ ,

∞

∆ 0 in Ω

, 0,          Ω,                                               
                                                         

, 0 ,     , 0 , Ω

  (4.1)  

where Ω is a bounded domain of 1  with a smooth  boundary Ω and  is a 

positive non increasing function satisfying the following conditions 

             :   is a differentiable function such that 

0 0, 1 0

∞

 

         There exist a positive constant   and 1
3
2
 such that 

′ ,     0. 

Following the idea of Dafermos [20], we introduce  
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, , , , 0. (4.2)  

Consequently, by adding and subtracting the term ∆ , 4.1  transforms into  

∆ , ∆ , , , inΩ                

, , ,                                                                                 
            

, , 0,              Ω,             ,    0                                  
                                                                              

, 0 ,    , 0 ,    Ω                                                   

, , , , , 0 0, Ω,    0   

  (4.3)  

   . . .   Let , Ω Ω  and  , Ω  be 

given. Assume that  satisfies  and  , then problem 4.3  has a unique global 

weak solution 

0,∞ ; Ω ,    0,∞ ; Ω , , Ω ,  (4.4)  

where   

, Ω Ω , ∞  

Proof.  This result can be established by using the Galerkin method or the linear 

semigroup theory as in [54] or by repeating the steps of [23] with the necessary 

modification. 
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4.2   Modified Energy Functional 

The modified energy functional  is already obtained in chapter 3. Thus we have  

                                    
1
2 2

u
1
2

. (4.5)  

Remark 4.2.1. The modified energy functional  satisfies, along the solution of 

4.3 , 

1
2

0. (4.6)  

Lemma 4.2.1.    Let , ,  be a solution of 4.3 . Then, there exists a constant 

0 such that, for 1  we have,  

. 

Proof:   

 

                        . 

Using Hölder’s inequality, we obtain, for any 1, 

. 

By taking , we obtain 
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.  (4.7)  

We estimate the first term in the right-hand side of 4.7  as follows: 

, , . 

Using the fact that 

,
2 2

0 , 

,
2 2

0  

and  

|a | 2 | | | | , 

we obtain 

8 0
. 

Note that, 

. 

Hence using , we obtain 
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1 ′ 2
3 2

∞. 

Consequently, for a constant 0, 4.7  becomes 

, 

which completes the proof. 

4.3   Decay of Solution 

In this section we state and prove the main result. For this purpose, we set  

         , (4.8)  

where  and   are positive constants to be chosen properly later and  

,
Ω

       

∞

.
Ω

 

Lemma 4.3.1.   For   and   small enough, the inequality 

                                      . (4.9)  

Proof.  For the proof of this Lemma, see the proof of Lemma 3.3.1 

  . . .  Let , ,  be the solution of 4.3 .  Then under the assumptions 

 and ,  the functional  

Ω
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satisfies 

′

2
u

1
2

. (4.10)  

. 

By taking the derivative of  and using 4.3 ,  we obtain 

′ ∆
Ω Ω

∞

∆ . 

Using Green’s formula, the boundary conditions and Young’s inequality, we obtain, 

for any 0, 

′ 1
4

| |

∞

.
Ω

 (4.11)  

Using Cauchy-Schwarz inequality, the estimation of third term in right-hand side of 

4.11  becomes 

| |

∞

Ω

 

| |
Ω

 



44 
 

| |

∞

Ω

, (4.12)  

where 

. 

Substituting 4.12  in 4.11 , we obtain 

′ 1
4

. 

By choosing 
2
,we obtain 

′

2
1
2

, 

which completes the proof. 

Lemma  4.3.3  Let , ,  be the solution of 4.3 . Then under the assumptions 

 and ,  the functional  

∞

Ω

 

satisfies, for any , 0 

1                       

     1
1
4

0
4

. (4.13)  
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Proof. 

By taking the derivative of  and using 4.3 , we obtain 

   ′ ∆

∞

Ω

 

                       

∞

∆

∞

Ω

Ω

. 

Using Green’s formula and the boundary conditions, we obtain 

′ ·

∞

Ω

∞

Ω

 

                   
Ω

.  (4.14)  

The terms in 4.14  are estimated below. 

The first Term 

Using Young’s inequality and Cauchy-Schwarz inequality, we obtain for any 0 

·

∞

Ω

 

                            
1
4

∞

.  (4.15)  
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The second Term 

This is the same as 4.12 ,  hence we have 

Ω

.  (4.16)  

The third Term 

This is the same as 3.35 ,  hence we have, 

Ω

∞

1 2
2 0

4
′ .  (4.17)  

By substituting 4.15 4.17   in 4.14 , we obtain 

1                       

            1
1
4

0
4

, 

which completes the proof. 

  . .    Let , Ω Ω  and , Ω  be given. 

Assume that  satisfies  and .  Then there exist strictly positive constants  

such that, for all 0, 

                                      1 , 0 (4.18)  

Proof. 

We take the derivative of  and substitute (4.6), (4.10) and (4.13), to obtain 
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′ 1
2

 

              
2

1
1
4

 

              
1
2

0
4

. 

By using   and letting  , we get 

′ 1
2

 

1
2

0
4 2

1
1
4

. 

  (4.19)  

Note that  . 

So, 

                                       
1
  ′ .   

Consequently, we have 

                   
1 ′ . (4.20)  

A simple integration of (4.20) over ∞,  yields 

             
1 0
3 2

∞,
3
2
. (4.21)  



48 
 

We now choose  so small that 

 1  
1
2
   1 ,   

             
4 1

4
1 . 

Whence  is fixed, any choice of  and , such that 

               
  1

4
1
2

, (4.22)  

makes 

        
4 1

4
, 

        
4 1

4
. 

Consequently, we have  

                          1 0, 

4
0. 

We now choose   and   so small that  4.9  and  4.22  remain valid and  

1
2

0
4 2

1
1
4

0. 

Finally, we choose min , , , to obtain 

                       ′ , 0. (4.23)  

Since   

So, 
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                                   ,       for  1. 

Using Lemma  2.2.1, we obtain 

              

                 . 

Since, for all 1, we have 

  0 . 

Hence, 

  0 .  

Similarly, 

  0 . 

Thus, 

0 0  

0 . (4.24)  

Using Lemma 4.2.1, we obtain 

            0  

  0 . 

Let   2 1,   we have  

         . (4.25)  

By using (4.23), we obtain  
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′ , for some 0. (4.26)  

A combination of  (4.9) and (4.26), yields 

′ , 0. (4.27)  

From 4.9 ,  we know that 0 

Since 1  implies 1 2 1 2. Thus, we have 0 

Multiply  4.27  by   and integrate over  0, , we obtain 

′  

2 1
 

0
2 1

. 

Since  1 implies 2 1 0 

Therefore, 

2 1 0  

                  2 1 0 . 

Also, 1
3
2
 implies 0 2 p 1 1.  

Thus,  2 1 0,    0 
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Hence,   

1
2 1 0

. 

By choosing   min   2 1 ,    0 0,   

we obtain,   
1
1

. 

which implies that  
1
1

 

Thus, 

                         1 , , 0. (4.28)  

Combination of  4.9  and  4.28  gives 

1 ,     ,      0,  

which completes the proof. 

CONCLUSION:   

The above proof shows that in past history case, the polynomial decay is slower 

compared to the finite history case which gives  

1 ,    0 

See [9] and [49].  
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CHAPTER 5 

GENERAL DECAY OF SOLUTION 

OF A VISCOELASTIC PROBLEM 

5.1   Introduction 

In this chapter, we consider the viscoelastic problem 

∆ , ∆ , , Ω 0,∞      

, 0,                     Ω,              0                                
                                                                              

, 0 ,          , 0 , Ω   

 (5.1)

where Ω is a bounded domain of 1  with a smooth  boundary Ω,                   

Ω  0, ∞  and  is a positive non increasing function satisfying the 

following conditions 

             :   is a differentiable function such that 

0 0, 1 0

∞

 

          There exists a differentiable function   satisfying 

′ ,     0,       ′ 0. 
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   . . .   Let , Ω Ω  be given.                             

Assume that Ω  0, ∞ and  satisfies  , then the problem has 

a unique global weak solution 

0,∞ ; Ω , 0,∞ ; Ω  (5.2)

Proof. This result can be established by using the Galerkin method or the linear 

semigroup theory as in [54] or by repeating the steps of [23] with the necessary 

modification. 

5.2   Modified Energy Functional 

Multiply 5.1   by u  and integrate over Ω, we obtain 

Ω

∆ ,
Ω

∆
Ω

,
Ω

. 

 (5.3)

The terms in 5.3  are estimated as follows: 

First Term 

Ω

1
2

. (5.4)

Second Term 

Using Green’s formula and the boundary conditions, we obtain 

∆
Ω

·
Ω

1
2

. (5.5)
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Third Term 

∆
Ω

∆ .
Ω

 

Using Green’s formula and the boundary conditions, we obtain 

∆
Ω

·
Ω

 

·
Ω

·
Ω

 

1
2

s | |
Ω

1
2

s | |
Ω

 

1
2

s | |
Ω

 

1
2

′ s | |
Ω

1
2

s | |
Ω

 

        
1
2

′ | |
Ω

1
2

0 | |
Ω

 

1
2

s ds
1
2

s  

1
2

s ds
1
2

. (5.6)
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Fourth term 

Using Young’s inequality, we obtain, for any 0, 

,
Ω

1
4

, . (5.7)

By substituting 5.4 5.7  in  5.3 ,  we obtain 

1
2

|| ||
1
2

|| ||
1
2

 

1
2

1
2

s ds  

                
1
2

1
4

, . 

So, 

1
2
| |

2
| |

1
2

1
2

 

1
2

|| ||
1
4

, . (5.8)

Set 

1
2
|| ||

2
|| ||

1
2

, (5.9)

where 
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  . 

E t  is called the Modified Energy Functional.  

Hence 5.8  becomes 

1
2

1
2

1
4

, , 

which implies that  

1
2

1
4

. , . (5.10)

5.3   Decay of Solution 

In this section we state and prove the main result in this chapter.  For this purpose, we 

set  

, (5.11)

where  and  are positive constants, to be chosen properly later and   

,
Ω

       
Ω

. (5.12)

Lemma 5.3.1. For   and   small enough, the inequality 

, (5.13)

holds for two positive constants α  and α .  
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Proof. 

Ω

.     
Ω

 (5.14)

Using Young’s inequality, we have 

2
| |

2
| |  

2
.

Ω

 (5.15)

We estimate the fourth term in the right-hand side of (5.15) as follows 

  . 

Using Cauchy-Schwarz inequality, we have 

 

        | |  

        | |  

        1 | | . (5.16)
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We substitute (5.16) in (5.15), then using Poincaré’s inequality, to obtain 

2
|| ||

2
|| ||

1
2

. (5.17)

Since 
1
2
| | , then 

          
2

|| ||  (5.18)

In the same way, we have 

2
|| || , (5.19)

                         
1
2

1 . (5.20)

Hence, equation (5.17) becomes 

1 1 , 

where  1 1 , 

which implies 

,
1
β
. (5.21)

Similarly, from (5.14) using Young’s inequality, we obtain 

2
|| ||

2
|| ||

2
.

Ω

 

From (5.16), we have 
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2
|| ||

2
|| ||

1
2

. 

Using Poincarè’s inequality, we have  

2
|| ||

2
|| ||

1
2

. 

Using 5.18 5.20 ,  we obtain 

          1 1 . (5.22)

By choosing      small enough so that  

                                 1 1, 

we obtain 

1 . 

Hence,  

                         ,
1

1
. (5.23)

Combination of  5.21  and  5.23  gives   

, 

which completes the proof. 
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Lemma 5.3.2  Under the assumptions   and   the functional  

Ω

 

satisfies, along the solution 5.1 , 

  
2

1
2
1 1

4
. , . 

 (5.24)

. By taking the derivative of  and using 5.1 , we get 

′ ∆
Ω Ω

∆

,
Ω

. 

Using Green’s formula and the boundary conditions, we obtain 

′ u t
Ω

· u ,
Ω

. 

 (5.25)

Using Young’s inequality and Poincarè’s inequality, we have, for all 0   

′ u t
Ω

· u

1
4

. , . 

(5.26)
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By estimating the third term in (5.26), using Young’s inequality, we obtain,  

u t
Ω

· u
1
2 2

2 1
2

| u |
Ω

 

1
2

1
2

| u u | | u | .
Ω

 (5.27)

We estimate the second term in (5.27) as follows: 

| u u | | u |
Ω

 

| u u |
Ω 0

| u |

2

Ω

 

2 | u u | | u |
Ω

. 

Using Young’s inequality, we obtain, for all 0, 

| u u | | u |
Ω

 

1 | u |
Ω

 

            1
1

| u u |
Ω
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1 1 u  

            1
1

| u u | .
Ω

 

Using Cauchy-Schwarz inequality, we obtain  

| u u | | u |
Ω

1 1 u  

1
1

| u u |
Ω

 

1 1 u 1
1

1 . (5.28)

By substituting 5.28  in (5.27), we obtain 

∞

| u u | | u |
Ω

 

1
2
1 1 1 u

1
2
1

1
1 . (5.29)

By substituting 5.29  in  5.26 , we obtain 

u
1
2
1 1 1 u  

1
2
1

1
1

1
4

. , . 

By choosing 
1

,we obtain 
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   u
2

u
1
2
1 1

4
. , , 

which completes the proof. 

Lemma 4.3.3  Under the assumptions  G  and  G  the functional  

Ω

 

satisfies, along the solution of  5.1  and for any δ 0, 

1 2 1  

2
1
2 4

1
0
4

. , . 

 (5.30)

. 

By taking the derivative of  and using 5.1 , we get 

   ′ ∆
Ω

 

  ∆
Ω

 

      ′

Ω

 

                          , .
Ω
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Using Green’s formula and the boundary conditions, we obtain 

′ ·
Ω

 

             ·
Ω

 

             ′

Ω

 

            , .
Ω

 

 (5.31)

The terms in 5.31  are estimated below. 

The first Term 

By repeating the steps 5.27 5.29 ,  we obtain 

·
Ω

|| ||
1
4

. 

 (5.32)

The second Term 

Using Young’s inequality, we have, for all 0 
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·
Ω

 

Ω

1
4

Ω

 

Ω

1
4

Ω

 

 

      
1
4

Ω

. 

Using Lemma  2.3.1, we obtain 

·
Ω

 

2
1
4

| |
Ω

 

          2 | | .
Ω

 

By applying Cauchy-Schwarz inequality, we obtain 
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·
Ω

 

          2
1
4

1 2 1 . (5.33)

The third Term 

Using Young’s inequality, we obtain, for all 0 

′

Ω

 

            
1
4

′ | |
Ω

 

1
4

′ ′ | |
Ω

. 

Using Cauchy-Schwarz inequality, we obtain 

′

Ω

 

              
1
4

′ ′ | |
Ω

 

1
4

′ ′ | |
Ω

 

1
4

0 ′ | |
Ω

. 



67 
 

By Poincaré’s inequality, we obtain 

′

∞Ω

1
4

0 ′  

         
0
4

. (5.34)

The fourth Term 

Using Young’s inequality, we obtain, for all 0 

,
Ω

. ,
1
4

.
Ω

 

Using Cauchy-Schwarz inequality and Poincaré’s inequality, we obtain 

,
Ω

. ,
1
4

. 

 (5.35)

By substituting 5.32 5.35  in  5.31 , we obtain 

1 2 1  

2
1
2 4

1
0
4

′ . , , 

which completes the proof. 
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  . .     Let , Ω Ω  be given. Assume that                   

Ω  0, ∞  and  satisfies  and .  Then, for any 0 

0 if 0. (5.36)

Otherwise, 

0
1

. , , (5.37)

where  and   are positive constants. 

 

By taking the derivative of  and substituting 5.10 , 5.24 , 5.30  we obtain 

′ 1
2

′ 1
4

. ,  

          u
2

u
1
2
1 1

4
. ,    

      1 2 1

2
1
2 4

1
0
4

′

. , . 

 

 
(5.38)
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Since  is continuous, positive and 0 0, then for any 0, we have  

,       . 

Hence 5.38  becomes 

′
2  

2
1 2 1 u   

2
2

1
2 4

1
1
2

0
4

′  

     
1
4 2 4 1

2 . , , . 
(5.39)

By choosing 
4

,we obtain 

′

4
1 2 1 u  

2
2

1
2 4

1  

1
2

0
4

′
1
4

. , , . (5.40)

Now choose  so small that 

                                                              
1
2

, 

4
1 2 1

4
. 
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Whence  is fixed, any choice of  and , such that 

4 2
, (5.41)

will make  

2
, 

4
1 2 1

4
. 

Thus, we have 

                                                 0, 

4
1 2 1 0. 

We then pick  so small that 5.13  and  5.41  remain valid and  

                                                  
0
2

 

and  so small that  

0.                                  

Thus  

1
2

0
4

0.                   

Hence from 5.40 , we have  
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′ u ′ . , ,  

 (5.42)

where  

          
2

2
1
2 4

1 , 

                                                  
1
4

. 

Therefore, 

′ u  

                     ′ . , ,    , 

where  .  

Choose  min , ,   to obtain 

′ u ′   

                         . , ,    , 

which implies that  

′ . , , . (5.43)

Multiply 5.43  by  and use , to obtain 

. , , . (5.44)

Using 5.10  and the fact that  , we obtain, for all 0,  
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2 4
1
2

. , . (5.45)

Substitute 5.45  in  5.44 , we obtain, for all 0, 

4 2
2

. , ,     . 

Take  ,     is a positive constant. Then, for all 0, we have 

. , ,    . 

where  2     . 

Let 
2

, we obtain 

. , ,    , 

where 
2
. 

. , , . 

Since  0. Hence, 

. , ,  (5.46)

Using the fact that  is non-increasing and setting . 
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Hence, 

, (5.47)

holds for two positive numbers     . 

Using 5.47 , we obtain,  

. , , .  (5.48)

CASE 1     If 0, then  

               ,      . 

Simple integration over , , gives,  

,           . 

Using 5.47 , we obtain, for some positive constant , 

        ,       .        

Since 0 ,    .  Thus, we get 

                         0 ,       .        

Thus the estimate 5.36  is proved with . 

CASE 2  If  , 0,   

Let’s set  

. , , 
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which implies 

. , . (5.49)

Simple differentiation of 5.49  gives 

. ,  

                                    . , ,   .    (5.50)

Using 5.49 , we obtain 

. , , . 

 (5.51)

Substitute 5.51  in  5.48 , we obtain  

, . (5.52)

Simple integration of 5.52  over ,  gives 

,           , 

which implies 

. , , . 

 (5.53)

Thus, using 5.47 , we obtain, for some positive constant , 
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2 . , , . 

Thus the estimate 5.37  is proved with , ,  

Remark 5.3.1.  

1 If 0,  then  

0 . , ,
1

,     0 

2 If 0 and , ,  then, for all 0, 

0 ,       

                                               where       if    

          0   if     

                                                  where   

In ,   does not necessarily converge to zero as  when  goes to ∞. 
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