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Nomenclature

Symbols

Ji Cost function.

M Misadjustment.

µ Step-size.

ui Regressor vector (a row vector).

vi Additive noise.

yi Adaptive filter output.

di Desired signal.

ei Estimation error signal.

wi Weight vector (a column vector).

w̃i Weight error vector (a column vector).

M Filter length.

eai
a priori estimation error.

epi
a posteriori estimation error.

σ2
u Regressor variance.

σ2
v Noise variance.

R Regressor covariance matrix.

µi Pseudo-inverse of the regressor vector.

ξk
v kth order moment of vi.

ζ Excess-mean-square error.
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||x||2 Squared Euclidean norm of x.

||x||2W Weighted squared Euclidean norm of x.

ρ Eigenvalue spread.

Operators

( )∗ Hermitian transpose operation.

( )T Transpose operation.

Re(x) Real part of x.

lim Limit operator.

Tr(A) Trace of the matrix A.

sign[ui] Sign function of the regressor vector.

csgn[ui] Complex sign function of the regressor vector.

g[ei] Some function of the estimation error signal.

H[ui] Some positive-definite Hermitian matrix-valued function of ui.

E[ ] Expectation operation.

Abbreviations

LMS Least mean squares algorithm.

LMF Least mean fourth algorithm.

SA Sign algorithm.

SRA Signed regressor algorithm.

SSA Sign sign algorithm.

SRLMS Signed regressor least mean squares algorithm.

SRLMF Signed regressor least mean fourth algorithm.

FIR Finite impulse response.
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MSE Mean-square error.

MSD Mean-square deviation.

EMSE Excess-mean-square error.

AWGN Additive white Gaussian noise.

SNR Signal-to-noise ratio.

ISI Inter-symbol-interference.

LPC Linear prediction coding.

i.i.d. Independent and identically distributed.

MIMO Multiple-input–multiple-output.

OFDM Orthogonal frequency division multiplexing.

SM Spatial modulation.
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CHAPTER 1

INTRODUCTION

The subject of adaptive filters constitutes an important part of the statistical

signal processing. When the filter is required to operate in a stationary environ-

ment, where the signal statistics (i.e., mean and correlation) are known, the use

of Wiener filter provides a solution, which is optimum in the mean-square error

sense. However, when the filter is required to operate in a nonstationary environ-

ment, where the signal statistics are unknown, the use of an adaptive filter offers

an attractive solution to the problem. In a nonstationary environment, adaptive

filters provide significant improvement in performance over fixed filters, which are

designed by conventional methods. Therefore, adaptive filters have been success-

fully applied in many diverse fields such as biomedicine, communications, control,

radar, sonar, seismology, just to name a few [1].
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1.1 Adaptive Filters

Adaptive filters have the ability of adapting their characteristics in order to achieve

the desired objectives. Adaptation is accomplished automatically by adjusting the

filter coefficients in accordance with the input data. Thus making the adaptive

filter nonlinear. The performance of an adaptive filter is evaluated in terms of its

transient behavior and its steady-state behavior. The former provides information

about how fast a filter learns, while the latter provides information about how well

a filter learns. Such performance analysis are usually challenging since adaptive

filters are, by design, time-variant, nonlinear, and stochastic systems [2]. For this

reason, it has been common in the literature to study different adaptive schemes

separately due to the differences that exist in their update equations. An adaptive

filter is said to be linear if its input-output map obeys the principle of superposition

whenever, at any particular instant of time, the filter’s parameters are all fixed

[1].

The adaptive filter usually relies on a recursive algorithm for its operation,

which makes it possible for the filter to perform satisfactorily in an environment

where complete knowledge of the relevant signal characteristics is not available.

The algorithm starts from some predetermined set of initial conditions, repre-

senting complete ignorance about the environment. In a stationary environment,

after successive iterations, the algorithm tries to converge to the optimum Wiener

solution in some statistical sense. In a nonstationary environment, the algorithm

offers a tracking abilty, in that it can track time variations in the statistics of the

2



input data, provided that the variations are sufficiently slow [1].

1.2 Applications of Adaptive Filters

Adaptive filters have been successfully applied in many diverse fields such as

biomedicine, communications, control, radar, sonar, seismology, just to name a

few. Although these applications are quite different in nature, nevertheless, they

have one basic common feature: An input signal and a desired response are used

to compute an estimation error, which is in turn used to control the values of a set

of adjustable filter coefficients. Depending on the filter structure employed, the

adjustable coefficients may take the form of tap weights, reflection coefficients, or

rotation parameters. However, the main difference among the various applications

arises in the manner in which the desired response is extracted. On this basis,

adaptive filters are classified into the following four basic classes [1].

1.2.1 Identification

In this class of applications, an adaptive filter is used to provide a linear model

that represents the best fit to an unknown plant as shown in Fig. 1.1. Both

the adaptive filter and the unknown plant are driven by the same input ui. vi is

the additive noise. The adaptive filter output yi is subtracted from the unknown

plant output di. The resulting error signal ei is used to update the adaptive filter

coefficients. The unknown plant to be identified can be either stationary or time

varying. This class of adaptive filters are used in system identification and layered

3



earth modeling [1].

Figure 1.1: Identification scenario.

1.2.2 Inverse Modelling

In this class of applications, the adaptive filter is used to provide an inverse model

that represents the best fit of an unknown plant as shown in Fig. 1.2. Thus, at

convergence, the adaptive filter has a best transfer function equal to the reciprocal

of the unknown plant’s transfer function, such that the combination of the two

constitutes an ideal transmission medium. A delayed version of the unknown plant

input serves as the desired response di for the adaptive filter. In some applications,

the unknown plant input is used without delay as the desired response. This class

of adaptive filters are used in equalization to mitigate the effect of inter-symbol-

interference (ISI) in digital receivers [3].

4



Figure 1.2: Inverse Modelling scenario.

1.2.3 Prediction

In this class of applications, the adaptive filter is used to provide the best predic-

tion of the present value of a random signal as shown in Fig. 1.3. The present

value of the random signal serves as the desired response di for the adaptive filter.

Past values of the random signal supply the input ui to the adaptive filter. De-

pending on the application of interest, the adaptive filter output or the estimation

(prediction) error may serve as the system output. In the former case, the system

operates as a predictor, whereas in the latter case, it operates as a prediction-error

filter. This class of adaptive filters are used in linear prediction coding (LPC) of

speech [4] and spectrum analysis [1].

5



Figure 1.3: Prediction scenario.

1.2.4 Interference Cancellation

Finally, in this class of applications, the adaptive filter is used to cancel the un-

known interference contained in a primary signal as shown in Fig. 1.4. The

primary signal serves as the desired response di for the adaptive filter. A ref-

erence (auxiliary) signal derived from a sensor is applied as the input ui to the

adaptive filter. This class of adaptive filters are used in beamforming [1] and noise

cancellation [5].

Figure 1.4: Interference Cancellation scenario.
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1.3 Adaptive Filtering Algorithms

An adaptive algorithm refers to the criteria by which a filter is adapted in response

to the outside environment. Let wi be a vector of length M whose elements

represent a time-varying finite impulse response (FIR) of the adaptive filter. A

general update form for the algorithm that adapts the filter coefficient or weight

vector wi is given by

wi = wi−1 + µ u∗i g[ei], i ≥ 0, (1.1)

where µ is called the step-size parameter since it affects how small or how large

the correction term is, ui is the input sequence, g[ei] denotes some function of the

estimation error signal, and ei = di − uiwi−1. Some of the well known algorithms

are presented below.

1.3.1 The LMS Algorithm

If g[ei] = ei in (1.1), the least mean squares (LMS) algorithm [6] is obtained

wi = wi−1 + µ u∗i ei, i ≥ 0. (1.2)

If we assume that the data is real-valued then (1.2) can be written as

wi = wi−1 + µ uT
i ei, i ≥ 0. (1.3)
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The LMS algorithm allows error minimization in the mean square sense. It is

one of the most commonly used algorithm in adaptive filtering as it is relatively

simple to implement and requires less number of computations. It is capable of

achieving satisfactory performance under the right conditions. Its major limitation

is relatively slower rate of convergence for the case of highly correlated data.

In a non-stationary environment, the orientation of the error-performance sur-

face varies continuously with time. In this case, the LMS algorithm has the added

task of continually tracking the bottom of the error performance surface. Indeed,

tracking will occur provided that the input data varies slowly compared to the

learning rate of the LMS algorithm [1].

1.3.2 The LMF Algorithm

If g[ei] = e3
i in (1.1), the least mean fourth (LMF) algorithm [7] is obtained

wi = wi−1 + µ u∗i e
3
i , i ≥ 0. (1.4)

If we assume that the data is real-valued then (1.4) can be written as

wi = wi−1 + µ uT
i e3

i , i ≥ 0. (1.5)

Adaptive algorithms based on higher order moments of the error signal have

been shown to perform better mean square estimation than the well known LMS

algorithm in some important applications. The LMF is one such algorithm. It
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allows error minimization in the mean fourth sense and can be viewed as an ex-

tension of the Widrow-Hoff LMS algorithm. It has been shown that the LMF

algorithm can outperform the LMS algorithm for Gaussian, uniform, and sinu-

soidal noise distributions [7]–[8]. In such a case, the LMF algorithm can lead

to considerably smaller excess-mean-square error (EMSE) for the same speed of

convergence.

Strictly speaking, it has been shown in [9] that the LMF algorithm can never

be mean-square stable for any step-size when the regressor sequence is not strictly

bounded. For input distributions with infinite support, even for the Gaussian

distribution, the LMF algorithm always has a nonzero probability of divergence,

no matter how small the step-size is chosen. Since practically all actual regressor

sequences are bounded, this means that the algorithm is very sensitive to larger

values of the regressor sequence, even if they occur very rarely, as in the case of

Gaussian regressors.

1.3.3 The SRLMS Algorithm

New algorithms that make use of the signum (polarity) of either the estimation

error or the input data, or both, have been derived from the LMS algorithm for

the simplicity of implementation, enabling a significant reduction in computing

time, particularly the time required for “multiplications” [10]–[12]. It should be

noted that clipping either the estimation error or the input data, or both, basically

reduces the number of multiplications necessary at each algorithm iteration.
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The algorithm based on clipping of the input data is known as the signed

regressor algorithm (SRA) [13]–[16]. The SRA or the signed regressor least mean

squares (SRLMS) algorithm is given by

wi = wi−1 + µ csgn[ui]
∗ei, i ≥ 0. (1.6)

If we assume that the data is real-valued then (1.6) can be written as

wi = wi−1 + µ sign[ui]
Tei, i ≥ 0. (1.7)

1.4 Thesis Objectives and Organization

In this thesis, the signed regressor least mean fourth (SRLMF) algorithm is pro-

posed. On the basis of the above discussion, the update recursion for the SRLMF

algorithm can be written as follows:

wi = wi−1 + µ csgn[ui]
∗e3

i , i ≥ 0. (1.8)

If we assume that the data is real-valued then (1.8) can be written as

wi = wi−1 + µ sign[ui]
Te3

i , i ≥ 0. (1.9)

The objectives of this thesis are as follows: First, to derive the SRLMF al-

gorithm update recursion and to estimate the computational load per iteration
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of the proposed algorithm. Second, to study the steady-state performance of the

SRLMF algorithm and to derive expressions for the steady-state EMSE in a sta-

tionary environment. Third, to study the tracking performance of the SRLMF

algorithm and to derive expressions for the tracking EMSE in a nonstationary en-

vironment. Fourth, to study the transient performance of the SRLMF algorithm

and to derive expressions for the mean-square error (MSE) and the mean-square

deviation (MSD) during the transient phase. Finally, to support the analytical

results by computer simulations.

This thesis is organized as follows: In Chapter 2, the motivation behind this

work is presented and the update recursion of the SRLMF algorithm is derived.

Also in Chapter 2, a comparison between the computational load of the SRLMF

algorithm and the LMF algorithm is presented.

In Chapter 3, expressions for the steady-state EMSE in a stationary envi-

ronment are derived. The framework used in this study, and pursued further in

Chapters 4 and 5, relies on energy-conservation arguments [2].

In Chapter 4, expressions for the tracking EMSE in a nonstationary environ-

ment are derived. An optimum value of the step-size µ is also derived. The

presentation in Chapter 4 will reveal that the tracking results can be obtained by

inspection from the mean-square results as there are only minor differences.

Transient analysis is more conveniently performed by relying on a weighted

energy-conservation relation, as opposed to the unweighted version that was em-

ployed in Chapters 3 and 4. In Chapter 5, the weighted variance relation has been
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extended in order to derive expressions for the MSE and the MSD of the SRLMF

algorithm during the transient phase.

In Chapter 6, computer simulations are carried out to corroborate the theo-

retical findings, where it is shown that the theoretical and simulated results are in

good agreement. Moreover, the results show that both the SRLMF algorithm and

the LMF algorithm have a similar performance for the same steady-state EMSE.

Finally, conclusions, contributions and recommendations for future work are

presented in Chapter 7.
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CHAPTER 2

THE SRLMF ALGORITHM

2.1 Introduction

In this chapter, the motivation behind this work is presented and the update

recursion of the SRLMF algorithm is derived. Also in Chapter 2, a comparison

between the computational load of the SRLMF algorithm and the LMF algorithm

is presented.

2.2 Motivation

Reduction in complexity of the least mean square (LMS) algorithm has always

received attention in the area of adaptive filtering [17]–[19]. This reduction is

usually done by clipping either the estimation error or the input data, or both to

reduce the number of multiplications necessary at each algorithm iteration. The

algorithm based on clipping of the estimation error is known as the signed error or

more commonly the sign algorithm (SA) [20]–[24], the algorithm based on clipping
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of the input data is known as the signed regressor algorithm (SRA) [13]–[16], and

the algorithm based on clipping of both the estimation error and the input data

is known as the sign sign algorithm (SSA) [25]–[26]. These algorithms result in a

performance loss when compared with the conventional LMS algorithm [13]–[14].

However, significant reduction in computational cost and simplified hardware im-

plementation can justify this poor performance in applications requiring reduced

implementation costs [10]–[11].

The behavior of the SRA algorithm depends on the input data. It is shown in

[15] that for some inputs the LMS algorithm is stable while the SRA algorithm is

unstable. This is a drawback of the SRA algorithm when compared with the SA

algorithm since the latter is more stable than the LMS algorithm [11], [20]. The

SRA algorithm is always stable when the input data is Gaussian as in the case of

speech processing. Also, the performance of the SRA algorithm is superior to that

of the SA algorithm for Gaussian input data. It is shown in [14] that the SRA

algorithm is much faster than the SA algorithm in achieving the desired steady-

state mean-square error for white Gaussian data. Theoretical studies of the SRA

algorithm with correlated Gaussian data in both stationary and nonstationary

environments are found in [16].

The convergence rate and the steady-state mean-square error of the SRA algo-

rithm is only slightly inferior to those of the LMS algorithm for the same parameter

setting. In [14], the convergence rate of the SRA algorithm is compared with that

of the LMS algorithm to show that the SRA algorithm converges slower than the
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LMS algorithm by a factor of 2/π for the same steady-state mean-square error.

It is shown in [27] that the SRA algorithm exhibits significantly higher robust-

ness against the impulse noise than the LMS algorithm.

The above mentioned advantages motivates us to analyze and design the pro-

posed signed regressor least mean fourth (SRLMF) adaptive algorithm.

2.3 The SRLMF Algorithm Update Recursion

The SRLMF algorithm is based on clipping of the regression vector ui (row vector).

Consider now the adaptive filter, which updates its coefficients according to the

following recursion [2]:

wi = wi−1 + µ H[ui]u
∗
i g[ei], i ≥ 0, (2.1)

where wi (column vector) is the updated weight vector at time i, µ is the step-

size, H[ui] is some positive-definite Hermitian matrix-valued function of ui, g[ei]

denotes some function of the estimation error signal given by

ei = di − uiwi−1, (2.2)

where di is the desired signal. When the data is real-valued, the general update

form in (2.1) becomes

wi = wi−1 + µ H[ui]u
T
i g[ei], i ≥ 0. (2.3)
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The error function for LMF is g[ei] = e3
i . Therefore, (2.3) becomes

wi = wi−1 + µ H[ui]u
T
i e3

i , i ≥ 0. (2.4)

Now if

H[ui] = diag

{
1

|ui1|
,

1

|ui2|
, . . . ,

1

|uiM |
}

, (2.5)

then the update form in (2.4) reduces to

wi = wi−1 + µ diag

{
1

|ui1|
,

1

|ui2|
, . . . ,

1

|uiM |
}

uT
i e3

i , i ≥ 0,

= wi−1 + µ sign[ui]
Te3

i , i ≥ 0, (2.6)

where M is the filter length. The SRLMF algorithm update recursion in (2.6) can

be regarded as a special case of the general update form in (2.4) for some matrix

data nonlinearity that is implicitly defined by the following relation:

sign[ui]
T = H[ui]u

T
i . (2.7)

For complex-valued data, the update recursion in (2.6) becomes

wi = wi−1 + µ csgn[ui]
∗e3

i , i ≥ 0. (2.8)

16



2.4 Computational Load

Tables 2.1 and 2.2 present the estimated computational load per iteration for

both real- and complex-valued data in terms of the number of real additions, real

multiplications, real divisions, and comparisons with zero (or sign evaluations).

We know that one complex multiplication requires four real multiplications and

two real additions, while one complex addition requires two real additions.

Table 2.1: Computational load per iteration for LMF and SRLMF algorithms
when data is real.

Algorithm + × / sign
LMF 2M 2M + 3
SRLMF 2M 2M + 2 1

Table 2.2: Computational load per iteration for LMF and SRLMF algorithms
when data is complex.

Algorithm + × / sign
LMF 8M + 1 8M + 5
SRLMF 6M + 1 6M + 3 2

2.5 Conclusion

In this chapter, we have presented the motivation behind this work and the deriva-

tion for the update recursion of the SRLMF algorithm. It should be noted that

replacement of the regressor by its sign in the update recursion limits the range

of search directions that are followed by the SRLMF algorithm and, therefore,

performance degradation in terms of convergence speed (and even possibly diver-

gence) can occur relative to a conventional LMF algorithm. Also in Chapter 2, a

comparison between the estimated computational load per iteration of the SRLMF
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algorithm and the LMF algorithm is presented for both real- and complex-valued

data. It should be noted that clipping the input data basically reduces the number

of multiplications necessary at each algorithm iteration.
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CHAPTER 3

STEADY-STATE ANALYSIS OF

THE SRLMF ALGORITHM

3.1 Introduction

In this chapter, expressions for the steady-state EMSE of the SRLMF algorithm

in a stationary environment are derived. The framework used in this chapter, and

pursued further in Chapters 4 and 5, relies on energy conservation arguments [2].

Steady-state behavior relates to determining the steady-state values of E[||w̃i||2], E[|eai
|2], and E[|ei|2],

where w̃i is the weight error vector defined by w̃i = wo − wi, eai
is the a priori

estimation error defined by eai
= uiw̃i−1, and ei is the estimation error defined in

(2.2).

19



An adaptive filter is said to operate in steady-state if it holds that

lim
i→∞

E[w̃i] = lim
i→∞

E[w̃i−1]. (3.1)

lim
i→∞

E [w̃iw̃
∗
i ] = lim

i→∞
E

[
w̃i−1w̃

∗
i−1

]
= C. (3.2)

That is, the mean and covariance matrix of the weight error vector tend to some

finite constant values. In particular, it follows that the following condition holds:

lim
i→∞

E[||w̃i||2] = lim
i→∞

E[||w̃i−1||2] = Tr(C). (3.3)

3.2 Stationary Data Model

We shall assume that the data {di,ui} satisfy the following conditions of the

stationary data model [2]:

A.1 There exists an optimal weight vector wo such that di = uiw
o + vi.

A.2 The noise sequence vi is independent and identically distributed (i.i.d.) with

variance σ2
v = E[|vi|2] and is independent of uj for all i, j.

A.3 The initial condition w−1 is independent of the zero mean random variables

{di,ui, vi}.

A.4 The regressor covariance matrix is R = E [u∗i ui] > 0.
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3.3 Energy-Conservation Relation

Let us consider the adaptive filter updates of the generic form given below:

wi = wi−1 + µ H[ui]u
∗
i g[ei], i ≥ 0. (3.4)

Subtracting both sides of (3.4) from wo we get

w̃i = w̃i−1 − µ H[ui]u
∗
i g[ei]. (3.5)

If we multiply both sides of (3.5) by ui from the left we get

epi
= eai

− µ||ui||2Hg[ei], (3.6)

where epi
is the a posteriori estimation error defined by epi

= uiw̃i, and ||ui||2H =

uiH[ui]u
∗
i . Two cases can be considered here, that is,

Case 1: ||ui||2H = 0.

In this case, w̃i = w̃i−1 and eai
= epi

so that ||w̃i||2 = ||w̃i−1||2 and |eai
|2 = |epi

|2.

Case 2: ||ui||2H 6= 0.

In this case, we use (3.6) to solve for g[ei],

g[ei] =
1

µ||ui||2H
(eai

− epi
), (3.7)
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and substitute into (3.5) to obtain

w̃i = w̃i−1 − H[ui]u
∗
i

||ui||2H
(eai

− epi
). (3.8)

Expression (3.8) can be rearranged as

w̃i +
H[ui]u

∗
i

||ui||2H
eai

= w̃i−1 +
H[ui]u

∗
i

||ui||2H
epi

. (3.9)

By evaluating the energies (i.e, squared Euclidean norms) of both sides of (3.9)

we find,
∣∣∣∣
∣∣∣∣w̃i +

H[ui]u
∗
i

||ui||2H
eai

∣∣∣∣
∣∣∣∣
2

=

∣∣∣∣
∣∣∣∣w̃i−1 +

H[ui]u
∗
i

||ui||2H
epi

∣∣∣∣
∣∣∣∣
2

. (3.10)

After a straightforward calculation, the following energy-conservation results [2]:

||w̃i||2 +
1

||ui||2H
|eai

|2 = ||w̃i−1||2 +
1

||ui||2H
|epi
|2. (3.11)

The energy-conservation relation in (3.11) can be further simplified to look like

||w̃i||2 + µi|eai
|2 = ||w̃i−1||2 + µi|epi

|2, (3.12)

where

µi =





1
||ui||2H

, if ui 6= 0,

0, otherwise.

(3.13)
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3.4 Variance Relation

By taking expectation on both sides of (3.12) we get

E[||w̃i||2] + E
[
µi|eai

|2] = E[||w̃i−1||2] + E
[
µi|epi

|2] . (3.14)

Taking the limit as i →∞ and using the steady-state condition (3.3), we obtain

lim
i→∞

E
[
µi|eai

|2] = lim
i→∞

E
[
µi|epi

|2] . (3.15)

Substituting (3.6) into (3.15) we get

lim
i→∞

E
[
µi|eai

|2] = lim
i→∞

E
[
µi|eai

− µ||ui||2Hg[ei]|2
]
. (3.16)

This relation can be simplified by expanding the term on the right-hand side as

follows (the argument of g is dropped for compactness of notation):

µi|eai
− µ||ui||2Hg|2 = µi|eai

|2 + µ2µi||ui||4H|g|2 − µµi||ui||2Hge∗ai

−µµi||ui||2Hg∗eai
. (3.17)

From (3.13) it is obvious that the product µi||ui||2H is unity for all ui except for

the single event ui = 0, we find that

µi|eai
− µ||ui||2Hg|2 = µi|eai

|2 + µ2||ui||2H|g|2 − µeai
g∗ − µe∗ai

g. (3.18)
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Taking expectations of both sides of (3.18) we obtain

E
[
µi|eai

− µ||ui||2Hg|2] = E
[
µi|eai

|2] + µ2E
[||ui||2H|g|2

]− µE [eai
g∗]

−µE
[
e∗ai

g
]
. (3.19)

Substituting this result into (3.16) leads to

lim
i→∞

µE
[||ui||2H|g|2

]
= lim

i→∞
E[eai

g∗ + e∗ai
g], (3.20)

which can be written as [2]:

lim
i→∞

µE
[||ui||2H|g[ei]|2

]
= lim

i→∞
2Re(E

[
e∗ai

g[ei]
]
). (3.21)

The variance relation in (3.21) holds for any adaptive filter of the form (3.4), and

for any data {di,ui}, assuming filter operation in steady-state.

For real-valued data, this variance relation becomes

lim
i→∞

µE
[||ui||2Hg2[ei]

]
= lim

i→∞
2E [eai

g[ei]] . (3.22)
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3.5 Mean-Square Analysis of the SRLMF algo-

rithm

Let us distinguish between real- and complex-valued data as the definition of the

sign function is different in both cases. However, the final expression for the EMSE

turns out to be identical except for a scaling factor.

3.5.1 Real-Valued Data

Since

ei = eai
+ vi, (3.23)

therefore, when the data is real-valued, g[ei] becomes

g[ei] = e3
i ,

= (eai
+ vi)[e

2
ai

+ v2
i + 2eai

vi]. (3.24)

By using the fact that eai
and vi are independent, we reach at the following

expression for the term E [eai
g[ei]]:

E [eai
g[ei]] = 3σ2

vE[e2
ai

] + E[e4
ai

]. (3.25)
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If we ignore third- and higher-order terms of eai
, then (3.25) becomes

E [eai
g[ei]] ≈ 3σ2

vE[e2
ai

],

≈ aE[e2
ai

], (3.26)

where a = 3σ2
v. Ignoring higher order terms of eai

is reasonable since the error eai

becomes small in steady-state. To get more accurate expression for the steady-

state EMSE we may consider the higher-order terms of eai
.

To evaluate the term E [||ui||2Hg2[ei]], we start by noting that

g2[ei] = e6
i ,

= e6
ai

+ 6e5
ai

vi + 6eai
v5

i + 15e4
ai

v2
i + 15e2

ai
v4

i + 20e3
ai

v3
i + v6

i . (3.27)

If we multiply (3.27) by ||ui||2H from the left, use the fact that vi is independent

of both ui and eai
, and if we again ignore third- and higher-order terms of eai

, we

obtain

E
[||ui||2Hg2[ei]

] ≈ 6E[||ui||2Heai
v5

i ] + 15E[||ui||2He2
ai

v4
i ] + E[||ui||2Hv6

i ],

≈ 6E[||ui||2Heai
]E[v5

i ] + 15E[||ui||2He2
ai

]E[v4
i ] + E[||ui||2H]E[v6

i ],

≈ 6E[||ui||2Heai
]E[v5

i ] + 15E[||ui||2He2
ai

]ξ4
v + E[||ui||2H]ξ6

v , (3.28)

where ξ4
v = E[|vi|4], and ξ6

v = E[|vi|6] denote the forth- and sixth-order moments

of vi, respectively.
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From Price’s theorem [28] we have

E[x sign(y)] =

√
2

π

1

σy

E [xy] , (3.29)

where x and y denote two real-valued zero-mean jointly-Gaussian random variables

with variances σ2
x and σ2

y, respectively. Therefore, using (3.29), in the case of the

SRLMF algorithm the evaluation of E[||ui||2H] becomes straight forward and is

given by

E[||ui||2H] = E[uiH[ui]u
T
i ],

= E[uisign[ui]
T],

=

√
2

πσ2
u

Tr(R). (3.30)

Substituting (3.30) into (3.28) we get

E
[||ui||2Hg2[ei]

] ≈ 6E[||ui||2Heai
]E[v5

i ] + 15E[||ui||2He2
ai

]ξ4
v +

√
2

πσ2
u

Tr(R)ξ6
v ,

≈ b

√
2

πσ2
u

Tr(R) + cE[||ui||2He2
ai

] + 6E[||ui||2Heai
]E[v5

i ], (3.31)

where b = ξ6
v and c = 15ξ4

v .

Substituting (3.26) and (3.31) into (3.22) we get

2aE[e2
ai

] = µb

√
2

πσ2
u

Tr(R) + µcE[||ui||2He2
ai

] + 6µE[||ui||2Heai
]E[v5

i ]. (3.32)
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In order to simplify (3.32) and arrive at an expression for the steady-state

EMSE ζ = E[e2
ai

], we consider two cases:

1. Sufficiently small step-sizes:

Small step-sizes lead to small values of E[e2
ai

] and eai
at steady-state. Therefore,

for smaller values of µ, the last two terms in (3.32) can be ignored, and therefore

we get

ζ =
µb

2a

√
2

πσ2
u

Tr(R). (3.33)

Substituting the values of a and b in (3.33) results in

ζ =
µξ6

v

6σ2
v

√
2

πσ2
u

Tr(R). (3.34)

2. Separation principle:

For larger values of µ, we resort to the separation assumption, namely, that at

steady-state, ||ui||2H is independent of eai
. In this case, the last term in (3.32) will

be zero since eai
has zero mean, we then obtain

2aE[e2
ai

] = µb

√
2

πσ2
u

Tr(R) + µc

√
2

πσ2
u

Tr(R)E[e2
ai

]. (3.35)

Ultimately, the EMSE of the SRLMF algorithm after substituting the values of

a, b and c in (3.35) looks like the following:

ζ =
µξ6

v

√
2

πσ2
u
Tr(R)

(
6σ2

v − 15µξ4
v

√
2

πσ2
u
Tr(R)

) . (3.36)
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3.5.2 Complex-Valued Data

When the data is complex-valued, g[ei] becomes

g[ei] = |ei|3,

= |eai
|3 + eai

|vi|2 + eai
[e∗ai

vi + eai
v∗i ] + vi|eai

|2 + |vi|3

+vi[e
∗
ai

vi + eai
v∗i ]. (3.37)

For complex-valued data, we assume further that the noise sequence vi is circular

i.e., E[v2
i ] = 0. This assumption leads to the following expression for the term

E
[
e∗ai

g[ei]
]
:

E
[
e∗ai

g[ei]
]

= E
[|eai

|2|vi|2
]
+ E

[|eai
|2[e∗ai

vi + eai
v∗i ]

]

+E
[
e∗ai

vi[e
∗
ai

vi + eai
v∗i ]

]
. (3.38)

If we ignore third- and higher-order terms of eai
, then (3.38) becomes

E
[
e∗ai

g[ei]
] ≈ 2σ2

vE[|eai
|2],

≈ a′E[|eai
|2], (3.39)

where a′ = 2σ2
v .

To evaluate the term E [||ui||2H|g[ei]|2], we start by noting that (time index i is
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omitted for compactness of notation):

|g[e]|2 = |e|6,

= |ea|6 + |v|6 + 3|ea|4[e∗av + eav
∗] + 3|v|4[e∗av + eav

∗]

+|ea|2e∗av[3e∗av + 2eav
∗] + |ea|2eav

∗[3eav
∗ + 2e∗av] + 5|v|2|ea|4

+5|ea|2|v|4 + |v|2e∗av[3e∗av + 2eav
∗] + |v|2eav

∗[3eav
∗ + 2e∗av]

+9|v|2|ea|2[e∗av + eav
∗] + e∗3a v3 + e3

av
∗3. (3.40)

If we multiply (3.40) by ||ui||2H from the left, use the fact that vi is independent

of both ui and eai
, and if we again ignore third- and higher-order terms of eai

, we

obtain

E
[||ui||2H|g[ei]|2

] ≈ ξ6
vE[||ui||2H] + 9ξ4

vE[||ui||2H|eai
|2]

+3E
[||ui||2H|vi|4[e∗ai

vi + eai
v∗i ]

]
. (3.41)

From Price’s theorem [28] we have

E [Re[x∗csgn(y)]] =

√
2

π

√
2

σy

E [Re[x∗y]] , (3.42)

where x = xr + jxi and y = yr + jyi denote two complex-valued jointly-Gaussian

random variables. Therefore, E[||ui||2H] as evaluated in Appendix A results in

E[||ui||2H] =
4Tr(R)√

πσ2
u

. (3.43)
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Substituting (3.43) into (3.41) we get

E
[||ui||2H|g[ei]|2

] ≈ b′
[

4Tr(R)√
πσ2

u

]
+ c′E[||ui||2H|eai

|2]

+3E
[||ui||2H|vi|4[e∗ai

vi + eai
v∗i ]

]
, (3.44)

where b′ = ξ6
v and c′ = 9ξ4

v .

Substituting (3.39) and (3.44) into (3.21) we get

2a′E[|eai
|2] = µb′

[
4Tr(R)√

πσ2
u

]
+ µc′E[||ui||2H|eai

|2]

+3µE
[||ui||2H|vi|4[e∗ai

vi + eai
v∗i ]

]
. (3.45)

Here too, as was in the case of real-valued data, in order to simplify (3.45) and

arrive at an expression for the steady-state EMSE of the SRLMF algorithm, we

consider two cases:

1. Sufficiently small step-sizes:

For smaller values of µ, the last two terms in (3.45) can be ignored, we get

ζ =
µb′

2a′

[
4√
πσ2

u

]
Tr(R). (3.46)

Substituting the values of a′ and b′ in (3.46) results in

ζ =
µξ6

vTr(R)

σ2
v

√
πσ2

u

. (3.47)
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2. Separation principle:

For larger values of µ, the last term in (3.45) will be zero, we then obtain

ζ =

µb′
[

4√
πσ2

u

]
Tr(R)

(
2a′ − µc′

[
4√
πσ2

u

]
Tr(R)

) . (3.48)

Ultimately, the EMSE of the SRLMF algorithm after substituting the values of

a′, b′ and c′ in (3.48) looks like the following:

ζ =

µξ6
v

[
4√
πσ2

u

]
Tr(R)

(
4σ2

v − 9µξ4
v

[
4√
πσ2

u

]
Tr(R)

) . (3.49)

3.6 Conclusion

In this chapter, expressions for the steady-state EMSE of the SRLMF algorithm

are evaluated by relying on energy conservation arguments. In the process of this

evaluation, we distinguished between real- and complex-valued data as the defini-

tion of the sign function is different in both cases. However, the final expression

for the EMSE of the SRLMF algorithm turned out to be identical except for a

scaling factor. A conclusion that stands out from the expressions for the steady-

state EMSE is that the performance of the SRLMF algorithm is dependent on the

step-size µ and the input covariance matrix R.
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CHAPTER 4

TRACKING ANALYSIS OF

THE SRLMF ALGORITHM

4.1 Introduction

In this chapter, expressions for the tracking EMSE of the SRLMF algorithm in a

nonstationary environment are derived. As in the case of Chapter 3, this chapter

proceeds by defining some important assumptions that will be used in the study of

the tracking of the SRLMF algorithm. Finally, an optimum value of the step-size

µ of the SRLMF algorithm is obtained.

4.2 Nonstationary Data Model

We shall assume that the data {di,ui} satisfy the following conditions of the

nonstationary data model [2]:

33



A.5 There exists an optimal weight vector wo
i such that di = uiw

o
i + vi.

A.6 The weight vector varies according to the random-walk model wo
i = wo

i−1+qi,

and the sequence qi is i.i.d. with covariance matrix Q. Moreover, qi is

independent of {vj,uj} for all i, j.

A.7 The initial conditions {w−1,w
o
−1} are independent of the zero mean random

variables {di,ui, vi,qi}.

In this regard, the energy-conservation relation in (3.12) can be set up accord-

ingly to look like

||wo
i −wi||2 + µi|eai

|2 = ||wo
i −wi−1||2 + µi|epi

|2. (4.1)

By taking expectation on both sides of (4.1) we get

E[||w̃i||2] + E
[
µi|eai

|2] = E
[||wo

i −wi−1||2
]
+ E

[
µi|epi

|2] . (4.2)

The random-walk model used in this study is governed by the following recursion:

wo
i = wo

i−1 + qi. (4.3)
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Eventually, this random-walk model allows us to relate E [||wo
i −wi−1||2] to E[||w̃i−1||2]

as follows:

E
[||wo

i −wi−1||2
]

= E
[||wo

i−1 + qi −wi−1||2
]
,

= E
[||w̃i−1 + qi||2

]
,

= E [(w̃i−1 + qi)
∗(w̃i−1 + qi)] ,

= E[||w̃i−1||2] + E[||qi||2] + E
[
w̃∗

i−1qi

]
+ E [q∗i w̃i−1] ,

= E[||w̃i−1||2] + Tr(Q), (4.4)

where Tr(Q) = E[||qi||2].

Substituting (4.4) into (4.2) we get

E[||w̃i||2] + E
[
µi|eai

|2] = E[||w̃i−1||2] + Tr(Q) + E
[
µi|epi

|2] . (4.5)

Taking the limit as i →∞ and using the steady-state condition (3.3), we obtain

lim
i→∞

E
[
µi|eai

|2] = lim
i→∞

Tr(Q) + E
[
µi|epi

|2] . (4.6)

Also, by substituting (3.6) into (4.6) we get

lim
i→∞

E
[
µi|eai

|2] = lim
i→∞

Tr(Q) + E
[
µi|eai

− µ||ui||2Hg[ei]|2
]
. (4.7)
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This relation can be simplified by expanding the term on the right-hand side as

follows (the argument of g is dropped for compactness of notation):

µi|eai
− µ||ui||2Hg|2 = µi|eai

|2 + µ2µi||ui||4H|g|2 − µµi||ui||2Hge∗ai

−µµi||ui||2Hg∗eai
. (4.8)

But since the product µi||ui||2H is unity for all ui except for the single event

ui = 0, we find that

µi|eai
− µ||ui||2Hg|2 = µi|eai

|2 + µ2||ui||2H|g|2 − µeai
g∗ − µe∗ai

g. (4.9)

Taking expectations of both sides of (4.9) we obtain

E
[
µi|eai

− µ||ui||2Hg|2] = E
[
µi|eai

|2] + µ2E
[||ui||2H|g|2

]− µE [eai
g∗]

−µE
[
e∗ai

g
]
. (4.10)

Substituting this result into (4.7) leads to

µE
[||ui||2H|g|2

]
+ µ−1Tr(Q) = E[eai

g∗ + e∗ai
g],

which can be written as [2]:

lim
i→∞

µE
[||ui||2H|g[ei]|2

]
+ µ−1Tr(Q) = lim

i→∞
2Re(E

[
e∗ai

g[ei]
]
). (4.11)
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The variance relation in (4.11) holds for any adaptive filter of the form (3.4), and

for any data {di,ui}, assuming filter operation in steady-state.

For real-valued data, this variance relation becomes

lim
i→∞

µE
[||ui||2Hg2[ei]

]
+ µ−1Tr(Q) = lim

i→∞
2E [eai

g[ei]] . (4.12)

4.3 Tracking Analysis of the SRLMF algorithm

In this section, the tracking performance of the SRLMF algorithm is carried out

for two scenarios, the real- and complex-valued data. Each of these scenarios will

be dealt alone.

4.3.1 Real-Valued Data

Tracking results can be obtained by inspection from the mean-square results as

there are only minor differences. Therefore, by substituting (3.26) and (3.31) into

(4.12) we get

2aE[e2
ai

] = µ−1Tr(Q) + µb

√
2

πσ2
u

Tr(R) + µcE[||ui||2He2
ai

]

+6µE[||ui||2Heai
]E[v5

i ], (4.13)

where a = 3σ2
v, b = ξ6

v and c = 15ξ4
v .

In order to simplify (4.13) and arrive at an expression for the tracking EMSE

of the SRLMF algorithm, we consider two cases:
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1. Sufficiently small step-sizes:

Small step-sizes lead to small values of E[e2
ai

] and eai
at steady-state. Therefore,

for smaller values of µ, the last two terms in (4.13) can be ignored, and therefore

we get

ζ =
µ−1Tr(Q) + µb

√
2

πσ2
u
Tr(R)

2a
. (4.14)

An optimum value of the step-size of the SRLMF algorithm is obtained by

minimizing (4.14) with respect to µ. Setting the derivative of ζ with respect to µ

equal to zero gives

µopt =

√√√√ Tr(Q)

b
√

2
πσ2

u
Tr(R)

. (4.15)

2. Separation principle:

For larger values of µ, the last term in (4.13) will be zero, we then obtain

ζ =
µ−1Tr(Q) + µb

√
2

πσ2
u
Tr(R)

(
2a− µc

√
2

πσ2
u
Tr(R)

) , (4.16)

and eventually the optimum step-size of the SRLMF algorithm is given by

µopt =

√√√√√Tr(Q)


c2Tr(Q)

4a2b2
+

1

b
√

2
πσ2

u
Tr(R)


− c

2ab
Tr(Q). (4.17)
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4.3.2 Complex-Valued Data

Similarly, by substituting (3.39) and (3.44) into (4.11) we get

2a′E[|eai
|2] = µ−1Tr(Q) + µb′

[
4Tr(R)√

πσ2
u

]
+ µc′E[||ui||2H|eai

|2]

+3µE
[||ui||2H|vi|4[e∗ai

vi + eai
v∗i ]

]
, (4.18)

where a′ = 2σ2
v , b′ = ξ6

v and c′ = 9ξ4
v .

In order to simplify (4.18) and arrive at an expression for the tracking EMSE

of the SRLMF algorithm, we consider two cases:

1. Sufficiently small step-sizes:

For smaller values of µ, the last two terms in (4.18) can be ignored, we get

ζ =

µ−1Tr(Q) + µb′
[

4√
πσ2

u

]
Tr(R)

2a′
, (4.19)

and the associated optimum step-size value is equal to

µopt =

√√
πσ2

uTr(Q)

4b′Tr(R)
. (4.20)

2. Separation principle:
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For larger values of µ, the last term in (4.18) will be zero, we then obtain

ζ =

µ−1Tr(Q) + µb′
[

4√
πσ2

u

]
Tr(R)

(
2a′ − µc′

[
4√
πσ2

u

]
Tr(R)

) , (4.21)

and finally the optimum step-size corresponding to this scenario is given by

µopt =

√√√√Tr(Q)

[
c′2Tr(Q)

4a′2b′2
+

√
πσ2

u

4b′Tr(R)

]
− c′

2a′b′
Tr(Q). (4.22)

4.4 Conclusion

In this chapter, expressions for the tracking EMSE of the SRLMF algorithm are

evaluated by relying on energy conservation arguments. The term µ−1Tr(Q) in

the tracking EMSE of the SRLMF algorithm reflects the effect of the nonstation-

arity on filter performance. We observe that Tr(Q) appears multiplied by µ−1 so

that the larger the step-size the smaller the effect of the nonstationarity on the

EMSE. This behavior is intuitive since a smaller step-size signifies faster adapta-

tion, in which case the SRLMF algorithm will have a better chance at learning

and at following the data statistics. A small step-size, on the other hand, leads to

smaller EMSE under stationary conditions, but it may also lead to poor tracking

performance. This discussion suggests that there exists a compromise choice for

the step-size µ. Therefore, an optimum value of the step-size is also evaluated in

Chapter 4.

40



CHAPTER 5

TRANSIENT ANALYSIS OF

THE SRLMF ALGORITHM

5.1 Introduction

Transient analysis is more conveniently performed by relying on a weighted energy-

conservation relation, as opposed to the unweighted version that was employed in

Chapters 3 and 4. In this chapter, the weighted variance relation presented in [2]

has been extended in order to derive expressions for the MSE and the MSD of the

SRLMF algorithm during the transient phase.

Here, we shall assume that the data {di,ui} satisfy the conditions of the sta-

tionary data model described in Chapter 3.
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5.2 Weighted Energy-Conservation Relation

To be able to analyze the transient behavior of the SRLMF algorithm, the energy-

conservation relation developed earlier in the previous chapters needs to be revis-

ited for this purpose. In the ensuing analysis the derivation of the weighted

energy-conservation relation is developed.

Theorem 1: For any adaptive filter of the form (3.4), any positive-definite

Hermitian matrix Σ, and for any data {di,ui}, it holds that [2]:

||ui||2HΣH||w̃i||2Σ + |eHΣ
ai
|2 = ||ui||2HΣH||w̃i−1||2Σ + |eHΣ

pi
|2, (5.1)

where eHΣ
ai

= uiH[ui]Σw̃i−1, eHΣ
pi

= uiH[ui]Σw̃i, w̃i = wo −wi, and ||ui||2HΣH =

ui(H[ui]ΣH[ui])u
∗
i .

Proof: Let us consider the adaptive filter updates of the generic form given

below:

wi = wi−1 + µ H[ui]u
∗
i g[ei], i ≥ 0. (5.2)

Subtracting both sides of (5.2) from wo we get

w̃i = w̃i−1 − µ H[ui]u
∗
i g[ei]. (5.3)
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If we multiply both sides of (5.3) by uiH[ui]Σ from the left we get

eHΣ
pi

= eHΣ
ai
− µ||ui||2HΣHg[ei]. (5.4)

Two cases can be considered here.

Case 1: ||ui||2HΣH = 0.

In this case, w̃i = w̃i−1 and eHΣ
ai

= eHΣ
pi

so that ||w̃i||2Σ = ||w̃i−1||2Σ and |eHΣ
ai
|2 =

|eHΣ
pi
|2.

Case 2: ||ui||2HΣH 6= 0.

In this case, we use (5.4) to solve for g[ei],

g[ei] =
1

µ||ui||2HΣH

(
eHΣ

ai
− eHΣ

pi

)
. (5.5)

Substituting (5.5) into (5.3) we get

w̃i = w̃i−1 − H[ui]u
∗
i

||ui||2HΣH

(
eHΣ

ai
− eHΣ

pi

)
. (5.6)

Expression (5.6) can be rearranged as

w̃i +
H[ui]u

∗
i

||ui||2HΣH

eHΣ
ai

= w̃i−1 +
H[ui]u

∗
i

||ui||2HΣH

eHΣ
pi

. (5.7)

Evaluating the energies of both sides of (5.7) results in

∣∣∣∣
∣∣∣∣w̃i +

H[ui]u
∗
i

||ui||2HΣH

eHΣ
ai

∣∣∣∣
∣∣∣∣
2

Σ

=

∣∣∣∣
∣∣∣∣w̃i−1 +

H[ui]u
∗
i

||ui||2HΣH

eHΣ
pi

∣∣∣∣
∣∣∣∣
2

Σ

. (5.8)
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After a straightforward calculation, the following weighted energy-conservation

results:

||w̃i||2Σ +
1

||ui||2HΣH

|eHΣ
ai
|2 = ||w̃i−1||2Σ +

1

||ui||2HΣH

|eHΣ
pi
|2. (5.9)

The weighted energy-conservation relation in (5.9) can also be written as

||ui||2HΣH||w̃i||2Σ + |eHΣ
ai
|2 = ||ui||2HΣH||w̃i−1||2Σ + |eHΣ

pi
|2. (5.10)

5.3 Weighted Variance Relation

Similarly here, in this section, the weighted variance relation is developed.

Theorem 2: For any adaptive filter of the form (5.2), any positive-definite

Hermitian matrix Σ, and for any data {di,ui}, it holds that

E[||w̃i||2Σ] = E[||w̃i−1||2Σ] + µ2E
[||ui||2HΣH|g[ei]|2

]

−2µRe
(
E

[
eHΣ∗

ai
g[ei]

])
, as i →∞. (5.11)

Similarly, for real-valued data, the above weighted variance relation becomes

E[||w̃i||2Σ] = E[||w̃i−1||2Σ] + µ2E
[||ui||2HΣHg2[ei]

]

−2µE
[
eHΣ

ai
g[ei]

]
, as i →∞. (5.12)
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Proof: Squaring both sides of (5.4) we get

|eHΣ
pi
|2 = |eHΣ

ai
− µ||ui||2HΣHg[ei]|2. (5.13)

For compactness of notation let us omit the argument of g so that (5.13) looks

like

|eHΣ
pi
|2 = |eHΣ

ai
|2 + µ2||ui||4HΣH|g|2 − µeHΣ

ai
||ui||2HΣHg∗ − µeHΣ∗

ai
||ui||2HΣHg. (5.14)

Substituting (5.14) into (5.10) we get

||ui||2HΣH||w̃i||2Σ = ||ui||2HΣH||w̃i−1||2Σ + µ2||ui||4HΣH|g|2 − µeHΣ
ai
||ui||2HΣHg∗

−µeHΣ∗
ai

||ui||2HΣHg. (5.15)

Dividing both sides of (5.15) by ||ui||2HΣH (of course here ||ui||2HΣH 6= 0) we get

||w̃i||2Σ = ||w̃i−1||2Σ + µ2||ui||2HΣH|g|2 − µeHΣ
ai

g∗ − µeHΣ∗
ai

g. (5.16)

Taking expectations of both sides of (5.16) we obtain

E[||w̃i||2Σ] = E[||w̃i−1||2Σ] + µ2E
[||ui||2HΣH|g[ei]|2

]

−µE
[
eHΣ

ai
g[ei]

∗ + eHΣ∗
ai

g[ei]
]
. (5.17)
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or in the following format:

E[||w̃i||2Σ] = E[||w̃i−1||2Σ] + µ2E
[||ui||2HΣH|g[ei]|2

]

−2µRe(E
[
eHΣ∗

ai
g[ei]

]
), as i →∞. (5.18)

For real-valued data, the weighted variance relation in (5.18) becomes

E[||w̃i||2Σ] = E[||w̃i−1||2Σ] + µ2E
[||ui||2HΣHg2[ei]

]

−2µE
[
eHΣ

ai
g[ei]

]
, as i →∞. (5.19)

5.4 Transient Analysis of the SRLMF algorithm

The transient analysis of the class of filters in (5.2) is more challenging due to

the presence of the error nonlinearity. Nevertheless, by using some approxima-

tions, the analysis can be carried out to provide some useful insights about the

performance of the SRLMF algorithm.

To start, the expectations E [||ui||2HΣHg2[ei]] and E
[
eHΣ

ai
g[ei]

]
are evaluated in

the ensuing analysis in terms of the weighted norm of w̃i−1. Since, these ex-

pectations are involved mathematically; therefore, we shall rely on the following

assumption in order to facilitate their evaluation [2]:

A.8 The a priori estimation errors {eai
, eHΣ

ai
} are jointly circular Gaussian.

Evaluation of E
[
eHΣ

ai
g[ei]

]
:

From Price’s theorem, if x and y are jointly Gaussian random variables that
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are independent from a third random variable z, then it holds that [28]:

E [xg(y + z)] =
E [xy]

E[y2]
E [yg(y + z)] . (5.20)

Applying this result to the term E
[
eHΣ

ai
g[ei]

]
, and using (3.23), we get

E
[
eHΣ

ai
g[ei]

]
= E

[
eHΣ

ai
g[eai

+ vi]
]
,

= E
[
eHΣ

ai
eai

] [
E [eai

g[ei]]

E[e2
ai

]

]
. (5.21)

In view of the assumption (A.8), the expectation E [eai
g[ei]] depends on eai

only

through its second moment, E[e2
ai

]. Therefore, we can define the following function

of E[e2
ai

]:

Z1 =
E [eai

g[ei]]

E[e2
ai

]
. (5.22)

For the SRLMF algorithm, g[ei] = e3
i , therefore

E[eai
g[ei]] = E[eai

(eai
+ vi)

3],

= E[e4
ai

+ 3e3
ai

vi + 3e2
ai

v2
i + v3

i eai
]. (5.23)

Now since eai
and vi are zero mean Gaussian and independent random variables

with variances E
[
e2

ai

]
and σ2

v , respectively, we obtain

E[eai
g[ei]] = E[e4

ai
] + 3σ2

vE[e2
ai

]. (5.24)
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By using the fact that for circular Gaussian eai
it holds that E[e4

ai
] = 3E[e2

ai
]2, we

get

E[eai
g[ei]] = 3E[e2

ai
]2 + 3σ2

vE[e2
ai

],

= 3E[e2
ai

]
[
E[e2

ai
] + σ2

v

]
. (5.25)

Substituting (5.25) into (5.22) we get

Z1 = 3
[
E[e2

ai
] + σ2

v

]
. (5.26)

The expression for Z1 is related to the desired term E
[
eHΣ

ai
g[ei]

]
through the

equality

E
[
eHΣ

ai
g[ei]

]
= Z1E

[
eHΣ

ai
eai

]
. (5.27)

Evaluation of E [||ui||2HΣHg2[ei]] :

In order to facilitate the evaluation of the term E [||ui||2HΣHg2[ei]] we use the

separation principle, namely, we assume that the filter is long enough (say filter

length of five, M = 5) so that the following assumption holds [2]:

A.9 ||ui||2HΣH is independent of ei.

Therefore,

E
[||ui||2HΣHg2[ei]

]
=

(
E

[||ui||2HΣH

]) (
E

[
g2[ei]

])
. (5.28)

Since eai
is Gaussian and independent of the noise, the expectation E [g2[ei]] de-

pends on eai
through its second moment only. Therefore, we can define the fol-
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lowing function of E
[
e2

ai

]
:

Z2 = E
[
g2[ei]

]
. (5.29)

For the SRLMF algorithm, g[ei] = e3
i . Since eai

and vi are zero mean Gaussian

and independent random variables with variances E
[
e2

ai

]
and σ2

v , we have σ2
e =

E [e2
i ] = E

[
e2

ai

]
+ σ2

v . Moreover from [2], E [e6
i ] = 15σ6

e . Thus

Z2 = E
[
e6

i

]
,

= 15σ6
e ,

= 15(σ2
e)

3,

= 15
(
E

[
e2

ai

]
+ σ2

v

)3
,

= 15
(
E

[
e2

ai

])3
+ 45σ2

v

(
E

[
e2

ai

])2
+ 45ξ4

vE
[
e2

ai

]
+ 15ξ6

v . (5.30)

The expression for Z2 is related to the desired term E [||ui||2HΣHg2[ei]] through the

equality

E
[||ui||2HΣHg2[ei]

]
= Z2E

[||ui||2HΣH

]
,

= Z2E
[||sign[ui]||2Σ

]
. (5.31)
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Since

E
[||ui||2HΣH

]
= E[uiH[ui]ΣH[ui]u

T
i ],

= E[sign[ui]Σsign[ui]
T],

= E
[||sign[ui]||2Σ

]
. (5.32)

Substituting (5.27) and (5.31) into (5.19) we get

E
[||w̃i||2Σ

]
= E

[||w̃i−1||2Σ
]
+ µ2Z2E

[||sign[ui]||2Σ
]− 2µZ1E

[
eHΣ

ai
eai

]
. (5.33)

Independence Assumption

If we assume that the regressor sequence {ui} is i.i.d. then

E
[
eHΣ

ai
eai

]
= E

[
w̃T

i−1ΣH[ui]u
T
i uiw̃i−1

]
,

= E
[
||w̃i−1||2ΣHuT

i ui

]
. (5.34)

In this way, the terms {E [
eHΣ

ai
eai

]
,Z1,Z2} become all functions of w̃i−1. There-

fore, (5.33) becomes

E
[||w̃i||2Σ

]
= E

[||w̃i−1||2Σ
]
+ µ2Z2E

[||sign[ui]||2Σ
]− 2µZ1E

[
||w̃i−1||2ΣHuT

i ui

]
,

= E
[||w̃i−1||2Σ

]
+ µ2Z2E

[||sign[ui]||2Σ
]− 2µZ1E

[
||w̃i−1||2Σsign[ui]Tui

]
,

= E
[||w̃i−1||2Σ

]
+ µ2Z2E

[||sign[ui]||2Σ
]−

√
8

πσ2
u

µZ1E
[||w̃i−1||2ΣR

]
.

(5.35)
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We thus find that studying the transient behavior of the SRLMF algorithm in

effect has reduced to evaluating the functions Z1 and Z2 and studying the resulting

variance relation (5.35). Let us now illustrate the application of the above results

for white and correlated input data:

White Input Data

For white input data R is diagonal, say R = σ2
uI. Therefore, if we select Σ = I,

the variance relation (5.35) becomes

E
[||w̃i||2

]
= E

[||w̃i−1||2
]
+µ2Z2E

[||sign[ui]||2
]−

√
8σ2

u

π
µZ1E

[||w̃i−1||2
]
. (5.36)

Now since

e2
ai

= w̃T
i−1u

T
i uiw̃i−1,

= ||w̃i−1||2uT
i ui

. (5.37)

Substituting (5.37) into (5.30) we get

Z2 = 15
(
E

[
||w̃i−1||2uT

i ui

])3

+ 45σ2
v

(
E

[
||w̃i−1||2uT

i ui

])2

+ 45ξ4
vE

[
||w̃i−1||2uT

i ui

]

+15ξ6
v ,

= 15
(
E

[||w̃i−1||2R
])3

+ 45σ2
v

(
E

[||w̃i−1||2R
])2

+ 45ξ4
vE

[||w̃i−1||2R
]
+ 15ξ6

v ,

= 15
(
σ2

uE
[||w̃i−1||2

])3
+ 45σ2

v

(
σ2

uE
[||w̃i−1||2

])2
+ 45ξ4

vσ
2
uE

[||w̃i−1||2
]

+15ξ6
v . (5.38)
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Similarly by substituting (5.37) into (5.26) we get

Z1 = 3
(
σ2

uE
[||w̃i−1||2

]
+ σ2

v

)
. (5.39)

Substituting (5.38) and (5.39) into (5.36) we get

E
[||w̃i||2

]
= E

[||w̃i−1||2
]
+ µ2[15

(
σ2

uE
[||w̃i−1||2

])3
+ 45σ2

v

(
σ2

uE
[||w̃i−1||2

])2

+45ξ4
vσ

2
uE

[||w̃i−1||2
]
+ 15ξ6

v ]E
[||sign[ui]||2

]

−3

√
8σ2

u

π
µ

(
σ2

uE
[||w̃i−1||2

]
+ σ2

v

)
E

[||w̃i−1||2
]
. (5.40)

Since E [||sign[ui]||2] = M , the recursion in (5.40) becomes

E
[||w̃i||2

]
= E

[||w̃i−1||2
]
+ 15µ2Mσ6

u

(
E

[||w̃i−1||2
])3

+ 45µ2Mσ2
vσ

4
u

(
E

[||w̃i−1||2
])2

+45µ2Mξ4
vσ

2
uE

[||w̃i−1||2
]
+ 15µ2Mξ6

v − 6

√
2σ2

u

π
µσ2

u

(
E

[||w̃i−1||2
])2

−6

√
2σ2

u

π
µσ2

vE
[||w̃i−1||2

]
,

= fE
[||w̃i−1||2

]
+ 15µ2Mξ6

v , (5.41)

where

f = 1 + 3µ

(
15µMσ2

uξ
4
v − 2

√
2σ2

u

π
σ2

v

)
+ 3µσ2

u

(
15µMσ2

uσ
2
v − 2

√
2σ2

u

π

)
E

[||w̃i−1||2
]

+15µ2Mσ6
u

(
E

[||w̃i−1||2
])2

. (5.42)

We see that the transient behavior of the SRLMF algorithm is described by a
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nonlinear recursion in E [||w̃i||2] due to the presence of the factor E [||w̃i−1||2]

inside f .

Correlated Input Data

For uncorrelated data, the variance relation (5.36) shows that only unweighted

norms of w̃i and w̃i−1 appear on both sides of the equation. However, for corre-

lated data, different weighing matrices will appear on both sides of (5.36).

If Σ = I in (5.35) we get

E
[||w̃i||2

]
= E

[||w̃i−1||2
]
+ µ2Z2E

[||sign[ui]||2
]

−
√

8

πσ2
u

µZ1E
[||w̃i−1||2R

]
. (5.43)

If Σ = R in (5.35) we get

E
[||w̃i||2R

]
= E

[||w̃i−1||2R
]
+ µ2Z2E

[||sign[ui]||2R
]

−
√

8

πσ2
u

µZ1E
[||w̃i−1||2R2

]
. (5.44)

Similarly if Σ = RM−1 in (5.35) we get

E
[||w̃i||2RM−1

]
= E

[||w̃i−1||2RM−1

]
+ µ2Z2E

[||sign[ui]||2RM−1

]

−
√

8

πσ2
u

µZ1E
[||w̃i−1||2RM

]
. (5.45)
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The term E
[||w̃i||2RM

]
can be inferred from the prior weighting factors

{E [||w̃i||2
]
, E

[||w̃i||2R
]
, E

[||w̃i||2R2

]
, . . . , E

[||w̃i||2RM−1

]}, (5.46)

by expressing RM as a linear combination of its lower-order powers using the

Cayley-Hamilton theorem. Thus let p(x) = det(xI−R) denote the characteristic

polynomial of R, say

p(x) = xM + pM−1x
M−1 + pM−2x

M−2 + . . . + p1x + p0. (5.47)

Then we know that [2]:

RM = −pM−1R
M−1 − pM−2R

M−2 − . . .− p1R− p0I. (5.48)

Using this fact we have

E
[||w̃i||2RM

]
= −p0E

[||w̃i||2
]− p1E

[||w̃i||2R
]− . . .− pM−1E

[||w̃i||2RM−1

]
. (5.49)

We can collect the above results into a compact vector notation by writing (5.43)–

(5.45) as

Wi = FWi−1 + µ2Z2Y , (5.50)
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where the M × 1 vectors {Wi,Y} are given by

Wi =




E [||w̃i||2]

E [||w̃i||2R]

...

E
[||w̃i||2RM−1

]




, Y =




E [||sign[ui]||2]

E [||sign[ui]||2R]

...

E
[||sign[ui]||2RM−1

]




, (5.51)

and the M ×M coefficient matrix F is given by

F =




1 −
√

8
πσ2

u
µZ1

0 1 −
√

8
πσ2

u
µZ1

0 0 1 −
√

8
πσ2

u
µZ1

...

0 0 1 −
√

8
πσ2

u
µZ1

√
8

πσ2
u
µp0Z1

√
8

πσ2
u
µp1Z1 · · ·

√
8

πσ2
u
µpM−2Z1 1 +

√
8

πσ2
u
µpM−1Z1




.

(5.52)

As seen in (5.50) the transient behavior of the SRLMF algorithm is described by

an M−dimensional state-space recursion as opposed to one-dimensional in the

white input case (5.36).

We know that, the mean-square error is defined as

MSE
4
= lim

i→∞
E

[|ei|2
]
, (5.53)
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and the excess mean-square error is defined as

EMSE
4
= lim

i→∞
E

[|eai
|2] , (5.54)

where

E
[|eai

|2] = E
[||w̃i−1||2R

]
. (5.55)

The evolution of E [|eai
|2] is described by the second entry of the state vector Wi

in (5.50). The resulting learning curve of the filter is E [|ei|2] = σ2
v + E [|eai

|2].

We know that, the mean-square deviation is defined as

MSD
4
= lim

i→∞
E

[||w̃i||2
]
. (5.56)

The evolution of E [||w̃i||2] is described by the first entry of the state vector Wi

in (5.50).

5.5 Conclusion

The transient analysis is challenging due to the presence of the error nonlinearity

in the update recursion of the SRLMF algorithm. Nevertheless, by using some

simplifying assumptions, the analysis has been carried out in order to provide

useful insights about the performance of the proposed algorithm. Also, transient

analysis can be more conveniently performed by relying on a weighted energy-

conservation relation, as opposed to the unweighted version that was employed
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in Chapters 3 and 4. In this chapter, we have extended the weighted variance

relation presented in [2] in order to derive expressions for the MSE and the MSD

of the SRLMF algorithm during the transient phase for the case of white and

correlated input data.
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CHAPTER 6

PERFORMANCE ANALYSIS

OF THE SRLMF ALGORITHM

6.1 Introduction

In this chapter, simulations are carried out to corroborate the theoretical findings,

where it is shown that the theoretical and simulated results are in good agreement.

Moreover, the results show that both the SRLMF algorithm and the LMF algo-

rithm have a similar performance for the same misadjustment. The simulations

reported in this chapter are based on unknown system identification setup shown

in Fig. 1.1 with filter length of five (M = 5).

The different performance indexes studied in the previous chapters are tested

to find out the closeness of the simulations to the theoretical findings. Mean-square

performance, tracking performance, and transient performance of the SRLMF

algorithm are all investigated in different scenarios to prove their effectiveness.
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6.2 Mean-Square Performance of the SRLMF

algorithm

In this section, the SRLMF algorithm is compared with the LMF algorithm in

terms of convergence rate. The comparison is made in the presence of three dif-

ferent noise environments namely Gaussian, uniform, and Laplacian and for three

different signal-to-noise ratios equal to 0 dB, 10 dB, and 20 dB. It has been shown

that both the SRLMF algorithm and the LMF algorithm take approximately the

same number of iterations to converge to the same steady-state value in all the

studied noise environments and signal-to-noise ratios.

In order to compare the performance of adaptive filters, it is customary to

adopt a common performance measure across filters. The practice that is most

widely used in the literature of adaptive filtering is to have the same misadjust-

ment, which is defined as

M 4
=

EMSE

Jmin

, (6.1)

where Jmin is the minimum value of the cost function which is equal to the variance

of the noise vi, i.e., Jmin = σ2
v . Therefore, setting the misadjustment of the SRLMF

algorithm equal to that of the LMF algorithm gives:

µSRLMFξ6
v

6σ2
v

√
2

πσ2
u

Tr(R) =
µLMFξ6

v

6σ2
v

Tr(R), (6.2)

which can be used to solve for the step-size of the SRLMF algorithm in terms of
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the LMF algorithm

µSRLMF =

√
πσ2

u

2
µLMF. (6.3)

Assume regressor variance is σ2
u = 1. Therefore, the step-size of the SRLMF

algorithm used in this part of the simulations is given by:

µSRLMF =

√
π

2
µLMF. (6.4)

Hence, whatever value of µLMF used, the step-size corresponding to the SRLMF

algorithm is set by (6.4).

Figures 6.1-6.22 use the following specifications: Let us consider a real-valued

white Gaussian regression sequence. Run the filter for 12000 iterations and the

MSE learning curve is the average over 1000 independent runs. The unknown

system is characterized by the following channel:

wo = [0.227 0.460 0.688 0.460 0.227]T. (6.5)

The results in Figs. 6.1, 6.3 and 6.5 show that both the SRLMF algorithm

and the LMF algorithm converge to the same steady-state value in approximately

1000, 6000, and 9000 iterations in an additive white Gaussian noise (AWGN) envi-

ronment with signal-to-noise ratios equal to 0 dB, 10 dB, and 20 dB, respectively.

The result in Fig. 6.2 shows that the behavior of the third-tap weight learning

curves is same for both the algorithms in an AWGN environment with SNR = 0

dB. However, this behavior of the third-tap weight learning curve gets slightly bet-
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ter for the LMF algorithm than the SRLMF algorithm for higher signal-to-noise

ratios as seen from Figs. 6.4 and 6.6.

The result in Fig. 6.7 shows that both the SRLMF algorithm and the LMF

algorithm converge to the same steady-state value in approximately 8000 iterations

when there is a sudden burst in an AWGN environment with SNR = 20 dB. Also,

the behavior of the third-tap weight learning curve gets slightly better for the

LMF algorithm than the SRLMF algorithm as seen from Fig. 6.8.

Figure 6.1: Comparison of the MSE learning curves of LMF and SRLMF algo-
rithms in an AWGN environment with SNR=0 dB.

61



Figure 6.2: Comparison of the third-tap weight learning curves of LMF and
SRLMF algorithms in an AWGN environment with SNR=0 dB.
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Figure 6.3: Comparison of the MSE learning curves of LMF and SRLMF algo-
rithms in an AWGN environment with SNR=10 dB.
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Figure 6.4: Comparison of the third-tap weight learning curves of LMF and
SRLMF algorithms in an AWGN environment with SNR=10 dB.
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Figure 6.5: Comparison of the MSE learning curves of LMF and SRLMF algo-
rithms in an AWGN environment with SNR=20 dB.
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Figure 6.6: Comparison of the third-tap weight learning curves of LMF and
SRLMF algorithms in an AWGN environment with SNR=20 dB.
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Figure 6.7: Comparison of the MSE learning curves of LMF and SRLMF algo-
rithms when there is a sudden burst in an AWGN environment with SNR=20
dB.
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Figure 6.8: Comparison of the third-tap weight learning curves of LMF and
SRLMF algorithms when there is a sudden burst in an AWGN environment with
SNR=20 dB.
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The results in Figs. 6.9, 6.11 and 6.13 show that both the SRLMF algorithm

and the LMF algorithm converge to the same steady-state value in approximately

1000, 6000, and 10000 iterations in uniform noise environment with signal-to-

noise ratios equal to 0 dB, 10 dB, and 20 dB, respectively. The result in Fig.

6.10 shows that the behavior of the third-tap weight learning curves is same for

both the algorithms in uniform noise environment with SNR = 0 dB. However,

this behavior of the third-tap weight learning curve gets slightly better for the

LMF algorithm than the SRLMF algorithm for higher signal-to-noise ratios as

seen from Figs. 6.12 and 6.14.

The results in Figs. 6.15, 6.17 and 6.19 show that both the SRLMF algorithm

and the LMF algorithm converge to the same steady-state value in approximately

1500, 7000, and 11000 iterations in Laplacian noise environment with signal-to-

noise ratios equal to 0 dB, 10 dB, and 20 dB, respectively. The result in Fig.

6.16 shows that the behavior of the third-tap weight learning curves is same for

both the algorithms in Laplacian noise environment with SNR = 0 dB. However,

this behavior of the third-tap weight learning curve gets slightly better for the

LMF algorithm than the SRLMF algorithm for higher signal-to-noise ratios as

seen from Figs. 6.18 and 6.20.

The result in Fig. 6.21 shows that SRLMF converges to the same steady-state

value in approximately 1500, 3000, and 8000 iterations in uniform, Gaussian, and

Laplacian noise environments, respectively, with SNR = 10 dB. Also, the behavior

of the third-tap weight learning curve is better for uniform noise environment as
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compared to Gaussian and Laplacian noise environments as seen from Fig. 6.22.

Figure 6.9: Comparison of the MSE learning curves of LMF and SRLMF algo-
rithms in uniform noise environment with SNR=0 dB.
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Figure 6.10: Comparison of the third-tap weight learning curves of LMF and
SRLMF algorithms in uniform noise environment with SNR=0 dB.
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Figure 6.11: Comparison of the MSE learning curves of LMF and SRLMF algo-
rithms in uniform noise environment with SNR=10 dB.
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Figure 6.12: Comparison of the third-tap weight learning curves of LMF and
SRLMF algorithms in uniform noise environment with SNR=10 dB.
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Figure 6.13: Comparison of the MSE learning curves of LMF and SRLMF algo-
rithms in uniform noise environment with SNR=20 dB.
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Figure 6.14: Comparison of the third-tap weight learning curves of LMF and
SRLMF algorithms in uniform noise environment with SNR=20 dB.
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Figure 6.15: Comparison of the MSE learning curves of LMF and SRLMF algo-
rithms in Laplacian noise environment with SNR=0 dB.
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Figure 6.16: Comparison of the third-tap weight learning curves of LMF and
SRLMF algorithms in Laplacian noise environment with SNR=0 dB.
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Figure 6.17: Comparison of the MSE learning curves of LMF and SRLMF algo-
rithms in Laplacian noise environment with SNR=10 dB.
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Figure 6.18: Comparison of the third-tap weight learning curves of LMF and
SRLMF algorithms in Laplacian noise environment with SNR=10 dB.
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Figure 6.19: Comparison of the MSE learning curves of LMF and SRLMF algo-
rithms in Laplacian noise environment with SNR=20 dB.
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Figure 6.20: Comparison of the third-tap weight learning curves of LMF and
SRLMF algorithms in Laplacian noise environment with SNR=20 dB.
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Figure 6.21: Comparison of the MSE learning curves of the SRLMF algorithm in
Gaussian, uniform and Laplacian noise environments with SNR=10 dB.
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Figure 6.22: Comparison of the third-tap weight learning curves of the SRLMF
algorithm in Gaussian, uniform and Laplacian noise environments with SNR=10
dB.
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In order to validate the theoretical findings extensive simulations are carried

out for different scenarios. Figs. 6.23-6.25 use the following specifications: Run

the filter for 1 × 106 iterations, the MSE learning curve is the average over 100

independent runs and the SNR is set to 30 dB. The average of the last 1 × 105

entries of the ensemble-average curve is used as the experimental value for the

MSE.

In the case of Fig. 6.23, the regressors, with shift structure, are generated

by feeding a unit-variance white process into a tapped delay line. However, in

Fig. 6.24, the regressors, with shift structure, are generated by passing correlated

data into a tapped delay line. Here, the correlated data are obtained by passing a

unit-variance i.i.d. Gaussian data through a first-order auto-regressive model with

transfer function
√

1−a2

(1−az−1)
and a = 0.8. To further test the validity of the results,

Gaussian regressors with an eigenvalue spread of five without a shift structure

are used, this is depicted in Fig. 6.25. As it can be seen form these figures, the

simulation results match very well the theoretical results ((3.34) and (3.36)).
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Figure 6.23: Theoretical and simulated MSE of the SRLMF algorithm using white
Gaussian regressors with shift structure with SNR=30 dB.
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Figure 6.24: Theoretical and simulated MSE of the SRLMF algorithm using cor-
related Gaussian regressors with shift structure with SNR=30 dB.
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Figure 6.25: Theoretical and simulated MSE of the SRLMF algorithm using Gaus-
sian regressors with an eigenvalue spread=5 without shift structure with SNR=30
dB.
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6.3 Tracking Performance of the SRLMF algo-

rithm

In this section, the tracking performance of the SRLMF algorithm is investigated

for a random-walk and Rayleigh fading channels. All the simulations in this

section use the following common specifications: Let us consider a real-valued

white Gaussian regression sequence. Run the filter for 50000 iterations and the

MSE learning curve is the average over 50 independent runs.

6.3.1 Random-Walk Channel

Here, the random-walk channel behaves according to

wo
i = wo

i−1 + qi, (6.6)

where qi is a Gaussian sequence with zero mean and variance σ2
q = 10−9 and

wo
−1 = [0.227 0.460 0.688 0.460 0.227]T.

The result in Fig. 6.26 shows the MSE as a function of the step-size when the

SRLMF algorithm is used to track a random-walk channel (6.6) with an SNR =

30 dB. As observed from Fig. 6.26, the simulation results corroborate closely the

theoretical results ((4.14) and (4.16)).
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Figure 6.26: Theoretical and simulated MSE of the SRLMF algorithm for a
random-walk channel as a function of the step-size with SNR=30 dB.
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6.3.2 Rayleigh Fading Channel

Single-path

Let us consider a wireless channel with one Rayleigh fading ray, which is assumed

to fade at a Doppler frequency of fD = 10Hz. Let us fix the sampling period at

Ts = 0.025µs. Let the SNR be 30 dB. The weight vector we wish to estimate has

the form:

[0 0 x1(n) 0 0], (6.7)

where x1(n) represents the second Rayleigh fading ray.

The result in Fig. 6.27 shows the MSE as a function of the step-size when the

SRLMF algorithm is used to track a single-path Rayleigh fading channel (6.7).

The theoretical values are obtained by using the expressions ((4.14) and (4.16)). It

is seen that there is a good match between between the theoretical and simulated

results.

The result in Fig. 6.28 shows the MSE as a function of the Doppler frequency

over the range 10Hz to 20Hz. Here the step-size is fixed at µ = 0.01. The

theoretical values are obtained by using the expressions ((4.14) and (4.16)). It

is seen that as the Doppler frequency increases, the tracking performance of the

SRLMF algorithm deteriorates. This behavior is expected since higher Doppler

frequencies correspond to faster variations in the channel.
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Figure 6.27: Theoretical and simulated MSE of the SRLMF algorithm for a single-
path Rayleigh fading channel as a function of the step-size with SNR=30 dB.

91



Figure 6.28: Theoretical and simulated MSE of the SRLMF algorithm for a single-
path Rayleigh fading channel as a function of the Doppler frequency with SNR=30
dB and step-size=0.01.
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Multipath

Let us consider a wireless channel with two Rayleigh fading rays; both rays are

assumed to fade at the same Doppler frequency. The weight vector we wish to

estimate has the form:

[0 0 x1(n) 0 x2(n)], (6.8)

where x1(n) and x2(n) represent the second and fourth Rayleigh fading rays re-

spectively.

The result in Fig. 6.29 shows the MSE as a function of the step-size when the

SRLMF algorithm is used to track a multipath Rayleigh fading channel (6.8). It

is seen that the tracking performance of the SRLMF algorithm deteriorates for

the multipath case.

The result in Fig. 6.30 shows the MSE as a function of the Doppler frequency

over the range 15Hz to 20Hz. It is seen that as the Doppler frequency increases,

the tracking performance of the SRLMF algorithm deteriorates.

The result in Fig. 6.31 shows a typical trajectory of the amplitude of the first

Rayleigh fading ray and its estimate by the SRLMF algorithm operating with a

step-size µ = 0.01 and SNR = 20 dB. Here, the channel rays are assumed to fade

at fD = 10Hz and the sampling period is fixed at Ts = 0.8µs.
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Figure 6.29: Theoretical and simulated MSE of the SRLMF algorithm for a mul-
tipath Rayleigh fading channel as a function of the step-size with SNR=30 dB.
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Figure 6.30: Theoretical and simulated MSE of the SRLMF algorithm for a multi-
path Rayleigh fading channel as a function of the Doppler frequency with SNR=30
dB and step-size=0.01.
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Figure 6.31: A typical trajectory of the amplitude of the first Rayleigh fading ray
and its estimate with SNR=20 dB and step-size=0.01.
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6.4 Transient Performance of the SRLMF algo-

rithm

In this section, we examine the transient behavior of the SRLMF algorithm for

both cases of Gaussian and non-Gaussian data. All the simulations in this section

use the following specifications: Let us consider a real-valued regression sequence

{ui} with covariance matrix R whose eigenvalue spread we set at ρ = 5. Run

the filter for 100000 iterations and the MSE learning curve is the average over 30

independent runs. Let the SNR be 50 dB and the step-size is fixed at µ = 0.01.

The stationary channel in (6.5) is considered here.

The result in Fig. 6.32 shows the theoretical and simulated MSD and MSE

learning curves of the SRLMF algorithm using white Gaussian regressors. The

theoretical values are obtained by using the expression (5.50). As can be seen

here, an excellent match between the theoretical and simulated results.

The result in Fig. 6.33 shows the theoretical and simulated MSD and MSE

learning curves of the SRLMF algorithm using white non-Gaussian regressors. It

is seen that the theoretical MSD and MSE learning curves are converging to a

steady-state value that is approximately 1 dB lower than the simulated.

The results in Figs. 6.34 and 6.35 show the theoretical and simulated MSD and

MSE learning curves of the SRLMF algorithm using Gaussian and non-Gaussian

regressors with an eigenvalue spread equal to 5, respectively. It is seen that there

is a good match between the theoretical and simulated results.
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Figure 6.32: Theoretical and simulated MSD (top) and MSE (bottom) learning
curves of the SRLMF algorithm using white Gaussian regressors with SNR=50
dB and step-size=0.01.
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Figure 6.33: Theoretical and simulated MSD (top) and MSE (bottom) learn-
ing curves of the SRLMF algorithm using white non-Gaussian regressors with
SNR=50 dB and step-size=0.01.
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Figure 6.34: Theoretical and simulated MSD (top) and MSE (bottom) learning
curves of the SRLMF algorithm using Gaussian regressors with an eigenvalue
spread=5, SNR=50 dB and step-size=0.01.
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Figure 6.35: Theoretical and simulated MSD (top) and MSE (bottom) learning
curves of the SRLMF algorithm using non-Gaussian regressors with an eigenvalue
spread=5, SNR=50 dB and step-size=0.01.
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6.5 Conclusion

In this chapter, computer simulations are carried out to corroborate the theoretical

findings, where it is shown that the theoretical and simulated results are in good

agreement. Moreover, the results show that both the SRLMF algorithm and the

LMF algorithm have a similar performance for the same steady-state EMSE.
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CHAPTER 7

THESIS CONTRIBUTIONS,

CONCLUSIONS AND

RECOMMENDATIONS FOR

FUTURE WORK

7.1 Thesis Contributions

The thesis has four main contributions:

1. The first contribution is the derivation of the expressions for the steady-state

EMSE of the SRLMF algorithm in a stationary environment.

2. The second contribution is the derivation of the expressions for the track-

ing EMSE of the SRLMF algorithm in a nonstationary environment. An

optimum value of the step-size µ is also evaluated.
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3. The third contribution is the extension of the weighted variance relation.

4. The fourth contribution is the derivation of the expressions for the MSE and

the MSD of the SRLMF algorithm during the transient phase.

7.2 Conclusions

A new adaptive algorithm, called the SRLMF algorithm, has been presented in

this work. Monte Carlo simulations have shown that there is a good agreement

between the theoretical and simulated results. The simulation results indicate

that both the SRLMF algorithm and the LMF algorithm converge at the same

rate resulting in no performance loss. The analysis developed in this paper is

believed to make practical contributions to the design of adaptive filters using the

SRLMF algorithm instead of the LMF algorithm in pursuit of the reduction in

computational cost and complexity while still maintaining good performance.

7.3 Recommendations for Future Work

In this thesis, the steady-state, the tracking, and the transient performance of the

SRLMF algorithm have been studied with constant step-size. Many recommen-

dations for future work can be made here and among them are the following:

1. The performance of the SRLMF algorithm can be examined with time-

variant step-size. The update recursion of the SRLMF algorithm with a
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time-variant step-size for real-valued data can be suggested as follows:

wi = wi−1 + µi sign[ui]
Te3

i , i ≥ 0, (7.1)

where µi is the step-size at time i.

2. The performance of the SRLMF algorithm can also be examined by including

the normalization factor in the update recursion. The correction term that

is added to wi−1 in the update recursion is normalized with respect to the

squared-norm of the regressor ui. Moreover, the positive constant ε in the

denominator avoids division by zero or by a small number when the regressor

is zero or close to zero. The update recursion of the ε-NSRLMF algorithm

for real-valued data can be suggested as follows:

wi = wi−1 +
µ

ε + ||ui||2 sign[ui]
Te3

i , i ≥ 0. (7.2)
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APPENDIX A

Price’s Theorem for Complex Sign
Function

From Price’s theorem [28] we have

E [Re[x∗csgn(y)]] =

√
2

π

√
2

σy

E [Re[x∗y]] , (A.1)

where x = xr + jxi and y = yr + jyi denote two complex-valued jointly-Gaussian

random variables. Therefore,

E[||ui||2H] = E[uiH[ui]u
∗
i ],

= E [Re[uicsgn[ui]
∗]] ,

= E[ursign(ur)
T + uisign(ui)

T],

=

√
2

π

1

σur

Tr(R) +

√
2

π

1

σui

Tr(R). (A.2)

Assuming now that the real and imaginary parts of ui have identical variances,

i.e., σ2
ur

= σ2
ui

so that σ2
u = 2σ2

ur
. Therefore,

σur = σui
=

σu√
2
. (A.3)
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Substituting (A.3) into (A.2) we get

E[||ui||2H] =
4Tr(R)√

πσ2
u

. (A.4)
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