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CHAPTER 1

INTRODUCTION AND

MOTIVATION

1.1 Introduction

Random Matrix Theory (RMT) initially motivated by practical problems [1] [2]
[3] has now evolved into a highly influential field. Random matrix theory now
is involved in fields as diverse as communications, seismic signal processing, nu-
clear physics, neural network, information theory and statistical physics. After
the initiation of “Free probability theory” by Dan Vooiculescu in the late 1980s,
numerous literature exploiting random matrix theory has emerged [4] [5].

Under certain assumptions random matrix theory offers incite into the asymptotic
behaviors of the distribution of the eigenvalues and singular values of random ma-
trices. Random matrices of fixed and small order do not offer much information

but as the matrices grow at a fixed ratio of its number of columns and rows, the



empirical distributions converge to a non-random deterministic functions.

For example, the empirical distribution of the eigenvalues of H”H (where H is a
matrix with zero mean i.i.d Gaussian entries) almost surely converge to Marcenko
Pasture distribution as the number of rows and columns of H increases with a

fixed ratio. Figure 1.1 shows the plot of Marcenko Pasture density for different

3.5
c=0.2
————— c=0.5
3t c=1 i
25 7
3

Figure 1.1: The Marcenko Pasture density function for ¢=0.1, ¢=0,5 and c=1.

values of ¢ where ¢ is the ratio of the number of rows and the number of columns

of the matrix H.



1.2 Motivation

New tools are emerging from the literatures of random matrix theory. These tools
can be exploited for solving the problems of wireless communication and seismic
signal processing. The randomness found in both fields will prove to be useful
when carrying out parametric estimations.

In communications, processing of matrices of large dimensions can prove to be
computationally expensive. Any certainty or simplicity of the wireless channel can
be used to solve a variety of problems e.g. providing bounds on capacity, making
new decoding algorithms and developing new multi-scheduling techniques.
Similarly, the present era of high fuel and energy demand has made mapping a
seismic profile of the underground terrain for future explorations more important
than ever. Seismic data suffers from computational complexity because of the
voluminous size of the data to be processed. Random matrix theory is ideal for

applications where the dimensions of matrices are large.

1.3 Thesis Objectives

The main goal of this work is to explore different ways we can use or develop tools
from random matrix theory (RMT) for the application of wireless communications

and seismic signal processing.



1.4 Thesis Contributions

The work presents results of investigation related to the objective mentioned in

the previous section. The main contributions of this work are summarized as

follows,

This thesis develops scaling laws for the minimum of bounded i.i.d random

variables.

This thesis develops several suboptimal uplink schedulers for a VBLAST
spatial multiplexing system. The thesis provides bounds on the rate achieved

using these techniques.

This thesis develops an estimator of the distribution of randomly deployed
wireless sensors. As a consequence some parametric estimators are also

presented such as number of harmonics and noise variance.

This thesis develops a new estimator for the direction of arrivals (DOAs)
useful for seismic applications. We also provide with estimators for the
velocities of the incoming waves. The estimators are applied to narrow band
and wideband seismic models and shows significant performance. Subspace
approach estimators is also developed for simultaneously estimating velocity

and zero offset time delay.



1.5 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2 was an extension of Dr. Naffouri’s work. It provides with a scaling
law for positive i.i.d random variables and highlights its use in communication
problems.

Chapter 3 was written under the supervision of Dr. Samir Al Ghadban. This
chapter studies different scheduling schemes for VBLAST algorithm and provides
with the best suboptimal scheduling scheme. The chapter also provides with
bounds on capacity under different schemes.

Chapter 4 was written under the supervision of Dr. Merouane Debbah. In collab-
oration between KFUPM and SUPELEC institute I worked with Dr. Merouane
during the research internship in France paid by both institutes. Chapter 4 pro-
vides an estimator for the distribution of randomly deployed wireless sensors using
moments approach from RMT. The chapter also presents other parametric esti-
mators for the wireless sensors.

Chapter 5 was carried out under the supervision and guidance of Dr. Wail Mousa.
This chapter presents a new spectral estimator for the estimation of direction of
arrivals (DoAs). RMT spectral estimators are also modified to be used in the
wideband case for the estimation of velocities. These estimators are also used for
the subspace model.

This thesis ends with conclusion and future direction in Chapter 6. An appendix

is attached in the end followed by references.



CHAPTER 2

SCALING OF THE MINIMUM

OF I.I.D. RANDOM

VARIABLES

Studying the performance of multiuser MIMO communication systems can be
quite challenging. Research in this area has thus focused on the behavior of such
systems in the large number of users and antennas regimes which relies on under-
standing the scaling of a large number of iid random variables. In this chapter, we
study the scaling behavior of the max-min norm, maxp>o mv(5)y<p MiNi<i<p hill%,
where h; are iid vectors. Such a study is for example important for evaluating
the asymptotic performance of multicast systems in which a base station with M
antennas broadcasts common information to n users. We study this scaling for
various regimes including large M and large n as well as regimes where both n

and M grow simultaneously.



2.1 Introduction

Multiuser communication is currently an active area of research where one is
interested in scheduling users, maximizing system throughput, fairness issues,...
etc [24], [23], [28], [21]. Solving multiuser problems for an arbitrary number of
users might be too complex. As such, in many instances, researchers resort to
studying the asymptotic regimes of large number of users. This usually entails
studying the scaling of iid random variables.

A prerequisite to this entails finding closed form expressions for the CDF and
pdf of the variables involved which might still be too porhibitive. Moreover,
sometimes it might be easier to characterize the behavior of the characteristic
function.

In this chapter, we show how the scaling law of the minimum of iid random
variables can be obtained by studying the behavior of the CDF and its deriva-
tives at one point. This can also be obtained by studying the behavior of the

characteristic function at infinity.

2.2 What does scaling mean?

We say that a variable scales for large n scales if there are sequences a,, and b,
such that

F'a, X +b,) = G(x) asn — oo



at all continuity points of G(x). It has been shown that when such a G(x) exists,

it falls into one of three categories:

0; 2<0,a<0

Gi(za) =
exp(—z7%); x>0
exp(—(—x)%); 2<0,aa<0
Go(z; ) = 0
0; >0
Gs(r) = exp(—e™™); —oo<x <00

Similar asymptotic distributions exist for the minimum of iid random variables.
Specifically, there are three limiting distributions G} () defined in terms of the

maximum pdf counterpart

Gi(x) =1-Gyi(—x)

Example: Beamforming for Multicast In beamforming [23], the transmitter
sends M beams ¢, @9, . .., ¢nr, and asks each user to feedback the SINR associated

with each beam. For example the SINR associated with beam ¢; for user i is given



|y 1 |?
M N
% + Zm:Z hz(bm'Q

where p = % is the signal to noise ratio. Since the base station has to appeal to
all users in the group, we are constrained by the worst user. For a given beam,

the SINR;’s are iid with CDF

So the CDF of the minimum of n such SINR’s is given by

Famswr(z) = 1—(1— Fse(z))" (2.1)

= - >0 (2.2)

Now note that

' . ' (- E+M-1)
g Frwsrn \ oy, |5 aor-y (23
1+ n(;+Ml)>
= 1l—¢e"° (2.4)
- - Gh(w 1) (2.5)
This shows that for large n, min; SINR; scales as m
o

The method of Example 1 might not apply all the time as it is difficult to find

the CDF in closed form sometimes.



Example 2: Scaling of spatially correlated channel norms Consider the
issue of finding the scaling of the min; ||h;]|> when h; ~ N(m, R). When R = T
and m = 0, ||h]|? is chi-square distributed with M degrees of freedom. On the
other hand, when we deviate from this ideal case, say when m = 0, the CDF has
different forms depending on whether some of the eigenvalues of the R are the
same or not. In the case that m # 0, we don’t even have a closed expression for
the CDF (or pdf).

In the following subsection, we provide a general method for finding the scaling

of the minimum.

2.3 Scaling law for the minimum of a number of

random variables

Let X1, Xy, -+, X, be iid random variables with pdf f(x), CDF F(z), and char-
acteristic function ¢(z). Let a also be the infimum of the support of X;! We would
like to find the scaling law of the minimum, zy,(n) = {1, x2, -+ ,x,}. To this

end, note that the CDF of the minimum is given by

Fuoin(7) = 1= (1 = F(x))"

10



2.3.1 A More general way to find scaling

Let’s expand F'(z) in a Taylor series

P = 3 0w (26)

Note that F'(a) = 0 and let Fénon) (a) be the first nonzero derivative of F'(z) around

a. Then

(i0)(¢q . > , z—a) "
Fam(?) =1~ (1 - F‘()(m— a)® — Z F(l)(a)( ) >

10! 1!
0 i=io+1

Now, we claim that F(0)(q) > 0. For if it were negative, then F(=Y(aq) > 0
would be decreasing in an interval (a,a + ¢). Or as F)(a) = 0, we see that
Fo=1D(z) is negative in this interval. Continuing this way, we can show that
Fo=D(g), ... FO(z) are negative in (a, a+¢) which contradicts the nonnegative

nature of F'(x).

1
We can thus replace by —©'> 2 Then

1 ) n
ol i 1
Fain |2 ta) =1 (1= 4 0(—r)
F(’O)(a)io n i n n i

which for large n reads

1
PN .
lim Fli 10'701 xl +a|=1—exp(—a") (2.7)
n—0o F(io)(a’)% n o

11



This is of the form

lim Fpin(ane +a) = 1—exp(—a") (2.8)

n—oo

where
1
io!io 1
Up = 7 1

F(iO)(Q)E nio

2.3.2 Finding the derivatives of F(a)

It remains to find the least ig for which F"°(a) # 0. Fortunately, we can do
so without having to explicitly find the CDF and its derivatives by using the
characteristic function and relying instead on the initial value theorem. To do so,
define

D(x) = F(x+ a)
then

lim DY (z) = lim FY(z)

xz—0 Tr—a

Now recall that the pdf f(x) and the characteristic function ¢(s) form a Laplace

transform pair. Then by the time-shift and differentiation properties

D(j)(aj) — s(j_l)e_a5¢(s)

12



Now applying the initial value theorem to the Laplace transform pair above yields

lim DY) (z) = lim s7e"%¢(s)

x—0 §—00

1.e.

limm%a F(]) (x) — hms—)oo S(j_l)e_a8¢(5>

We can summarize the results of this section in the following theorem

Theorem 2.1 Let Xy, Xo, -+, X, be itd nonnegative random variables with CDF
F(x), and characteristic function ¢(x). Assume that X; is bounded from below and
let a be the infimum of the support of X;. Let Xuyin(n) denote the minimum of
these random wvariables min { Xy, X, -+, X;,}. Then a,Tmin(n) + a converges in
distribution to random variable y with CDF F,(y) = 1 —exp (—y™) where io is the
first non-zero derivative of F(x) at zero, i.e., F0)(a) # 0 and FY)(a) = 0 for all
J < ip and where
ilio 1

Ap = T 1

F(io) (a)% nio

Furthermore, we can find F%)(a) using the initial value theorem

lim, 4 F(j)(x) = limy_,o 5<j_1)6_a5¢(5)

2.3.3 Procedure to find scaling of minimum

1. Find the infimum (i.e. least value) of the random variable and denote it a.
Thus for ||h||?, @ = 0 and for det(I + H;H}), a = det(I) = 1.

13



2. Find the first derivative such that

lim F9(z) # 0

Tr—a

and use this to find the sequences a, and b, defined above. This gives the

scaling behavior.

3. If there is difficulty finding the derivative of F(z), use the characteristic

function as outlined above.

2.3.4 Examples for the Scaling of minimum of a number
of random variables

This section includes simulation results for different random distributions when

applied to (2.7). The following are a few of the distributions tested

Uniform Distribution

Let 2 be a uniform random variable, 2 € (a,b). In this simulation we take a = 3

and b = 6. The PDF is defined as f(x) = ;2. In this case we find iy = 1, with

b—a’

Fio(a) =1

b—a

U-Quadratic Distribution

Let x be a U-Quadratic random variable, x € [a,b]. The CDF is defined as
F(x) = §((x = B)* +(B—a)’), where a = ;225 and f = *§2. In this case we find
ip = 1, with Fio(q) = 3 .

b—a
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Non-Central Chi-Square Distribution

Let x be the non central random variable with n = 4, i.e. sum of 4 non cen-

tral gaussian variables with mean m, = 1. In this case ip = 1 and F(0) =

mzz

1/de? 07 o2

Chi- Square Distribution

This distribution is taken same as that of the noncentral distribution but with
mean m, = 0. Therefore, F©(0) = 1/40~*.

Irwin Hall Distribution

Irwin Hall random variable is created by summing uniform random variables. In
this simulation we are taking the sum of M = 15 uniform random variable. Here
iop =M and F(a) =1

Gamma Distribution

Here a = 0, iy = k and F°(0) = 0%, where 0 is the scale parameter and k is the
shape parameter.

Rayleigh Distribution

Let x follow rayleigh distribution. In this case ig = 2 and F(0) = %

Pareto Distribution

Here ip = 1 and F'(,,) =

m

15



Log Logistic Distribution

Here ip = 1 with [=°(0) = 1

Half Normal Distribution

With io = 1 and Fio(0) = L, /2

[ ™

Folded Normal Distribution

2

With i = 1 and Fio(0) = L,/2¢ 22

g ™

Kumaraswamy Distribution

Let x be Kumaraswamy random variable z € [0, 1], With iy = a and F(0) =

ab(a — 1)!

Beta Distribution

Let « be Beta random variable z € [0, 1], With ip = o and F(0) = @-!

2.3.5 Scaling of thH2

Considering h; to be a complex gaussian zero mean random variable with M
sums each having different variances, in this case we have i = M and F°(0) =

m Figure 2.14 shows the simulation results for M = 1 with n = 1000

Lets again consider the case with M = 5 each with different variances. As
1o increases so does the error, so we have to increase n accordingly. Figure 2.15

shows the simulation result for M = 5 and n = 10000000
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2.3.6 Scaling for Maximum

We can easily find the scaling for the maximum of a random variable by assuming
U = —x and then simply finding the minimum of U, here we take b to be the
supremum of x. It is important to note that fy(u) = fx(—z) and ¢, (s) = ¢.(—s),
here we have the following

lim Fn(anu+b) = 1—exp(—u®) (2.10)

n—o0

where
1
io!io 1
ap = — 1 1

F(io)(a)% no

The result here is supported by the following simulations,

Uniform Distribution

Here a =3, b =6, ig = a and F©(0) = (a—1)!

U-Quadratic Distribution
Here b = 5, ip = 1, with F°(q) = ;*

b—a"

Irwin Hall Distribution

Here b= M, iy = o and F(0) = (a—1)!
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The following table list the PDF, CDF, characteristic function, value of ig and

Fio(0)

Table 2.1: Scaling Table for minimum of different bounded distributions

f(x) F(x) o(s) io | F(0)
Uniform Dist. ﬁ ﬁ
B—Quatratic alz—B)* | $((z—B)+(B—)?) =
ist.
oy my —Sp g m
Non-Central me e n/2 2n/120_ne 202
Chi  Square
Dist.
[C)hi— Square W n/2 Qn/lzgg
ist.
[rwin Hall M |1
Dist.
: 279 XL _ -
Gamma Dist. | 2* 1215(,2)% V(F(ké ) (1—0s)* k| o7F
Rayleigh Dist. | 2 =" | 1 — ¢ /2" 2 | 4
Pareto Dist. | *on 1 — (2m)k -
f ot (B/a)(w/a)P—] 1
I]SC-)gt- Logistic | 1 toja)7 | T/ Lol
ist.
Half Normal oLy ety 1| L,/2
Dist.
Folded ~ Nor- Jo sme v dy 1 gﬂe—ww
] x —y—u)2 /202
mal Dist. fo 0\}%6( y=?*/20% gy
Kumaraswamy | abx® !(1— a | abla—1)!
Dist. z®)b1
] zo T(1—g)BP1 (@—1)!
Beta Dist. B(a.f) @ B(a,f)

Example 1 Revisited Let’s apply the technique just derived to the Example 1

above. Here

FSINR(JE‘) =

FS/INR@:)




Thus,

Fgnr(0) = fsinr(0) = <117 + M — 1)

So, the scaling of the minimums SINR is given by

. C; 1
min SINR, = F)(0) "
1 1
= T (2.11)
E + ]W —1n

which coincides with the result obtained the direct way.
Applying this theorem to find the scaling of min; ||h;|? is equally difficult be-

cause we need to find the CDF of ||h;]|*> before we actually evaluate its derivatives.

Example 2: Scaling of spatially correlated channel norms Let’s find the
scaling law for miny, ||h;||* when h; are iid CN(0, R). The pdf and CDF of ||k
will both have different forms depending on whether some of the eigenvalues \;
of R are the same or different, and so the direct method for scaling can be quite
challenging. On the other hand, the characteristic function takes one form and is

given by

M 1
o(s) = H >

From this, it is easy to see that

lim s'¢(s) = FW(0) =0 fori < M

§—00
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and that

bl
T N det(R)

lim sM¢(s) = F™M)(0)

We thus conclude that

11
M =
nM

min; ||h;]|? scales as C)y det(R)

2.3.7 Chapter Conclusion

This chapter develops a new method for characterizing the scaling of the minimum
of the bounded i.i.d. random variables. This method presents a tool for Extreme
Value Theory (EVT) to scale the minimum directly from the characteristic func-
tion. And we used this method to scale several random variables. The technique

developed in this chapter will also be evoked in the following chapter.
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CHAPTER 3

UPLINK SCHEDULING FOR

SPATIAL MULTIPLEXING

SYSTEMS

We study in this chapter uplink scheduling for MIMO users. The scheduler selects
one user at a time based on a certain criterion that depends on the detection
algorithm. Each user spatially multiplexes his data over the transmit antennas.
This spatial multiplexing (SM) scheme provides high data rates while a multi-user
diversity obtained from scheduling improves the performance of the uplink system.
Vertical-Bell-Labs LAyered Space Time architecture (V-BLAST) is a practical SM
scheme that uses a serial nulling and cancellation algorithm to detect each layer.
Each set of data transmitted from each antenna is called a layer. The main
results of this study show that the scheduler that maximizes the optimal MIMO

capacity doesn’t work well for a V-BLAST system. Instead, we find a scheduler
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that maximizes the V-BLAST capacity which is derived specifically from the V-
BLAST detection algorithm. Furthermore, we investigate suboptimal schedulers
and their performances. We also define some bounds on capacity for the V-BLAST
system. In addition, we look into scheduling for SM with sphere decoding and we
find that in this case, using MIMO capacity as the scheduling criterion is the best

option.

3.1 Introduction

Until recently, most of the studies on MIMO techniques were focused on opti-
mizing the physical layer. However, in a multiuser environment, optimizing the
physical layer for each user doesn’t necessary optimize the system performance
nor it takes advantage of the statistical independence of the fading channels
among the users. Furthermore, different users have different needs in terms
of data rates, power limits and Quality of Service (QoS). These requirements
make scheduling an important technique for optimizing the performance of a
communication system and utilizing the system resources efficiently. Since the
physical link of each user is a fading channel, and it is usually independent from
one user to another, scheduling transmission to the best user at a time leads to
a form of selection diversity known as multiuser diversity. In general, schedulers
are designed to maximize system throughput and/or capacity and minimize error
rates, but they should also provide fairness to users and minimize packet delays.

In addition, it is used to minimize interference, adapt to traffic loads, and satisfy
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a quality-of-service (QoS) requirement.

Scheduling is sometimes classified under radio resource management, cross-
layer optimization or multiuser diversity. In single-input single-output (SISO)
systems, where the base station and each mobile have one antenna only, it has
been shown that selecting the user who has the maximum signal to noise ratio
(MaxSNR) maximizes the total information capacity of the uplink system [34].
Similar results are also found for the downlink from the base station to the mobile
unit [39]. This scheduler is known as MaxSNR scheduling. Over MIMO channels,
most of the studies are based on theoretical information capacity [33], [30], [37]
and on the downlink, which is the broadcast channel from the base station to the
mobile unit. For example, it has been shown in [32] that space time block coding
(STBC) and scheduling aren’t a good match. In fact, scheduling to a user with
single antenna outperforms scheduling using STBC. The reason is that STBC
averages the fades while the scheduler tends to benefit from high peaks in the
fading channel. In addition, multiuser diversity obtained from scheduling is much
higher than the spatial diversity of STBC, so STBC diversity doesn’t add much
benefit. On the other hand, spatial multiplexing (SM) schemes match perfectly
with scheduling. This is because they provide high data rates while the scheduler

compensates for the lack of diversity by providing multiuser selection diversity.

In a MIMO system, scheduling could be done to a single user or multiple
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users. Scheduling to multiple users, i.e allowing more than one user to transmit
or receive at the same time, is shown to be optimal in terms of maximizing
system capacity and throughput. In [33], downlink scheduling to multiple
users improved the average throughput compared to a single user scheduling.
Furthermore, the optimal uplink MIMO scheduling based on an information
theoretical approach was considered in [35]. They showed that it should allocate
all the power to at most Mg users, where Mpg is the number of receive antennas
at the base station. Also, they found that the optimal power resource allocation
is water-filling in space and time. In [30], the authors found that multiuser
scheduling reduces the average delay experienced by the users compared to
single-user scheduling. In [38], the scheduler selects K users at a time and it
cycles through groups of users in a round robin (RR) fashion. Thus, it provides di-

versity through multiple antennas while it insures fairness through RR scheduling.

In this chapter, we investigate scheduling for uplink V-BLAST [40] users.
V-BLAST is a practical spatial multiplexing (SM) MIMO system. We focus
on single-user scheduling. Although it is not optimal, it is more practical and
easily implemented. The scheduler selects one user at a time based on a certain
criterion. Fach user spatially multiplexes their data over the transmit antennas
to provide high data rates while the multiuser diversity obtained from scheduling
improves the performance of the uplink system. Our main contribution in this

work is finding the capacity maximization scheduling criteria for V-BLAST
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uplink users. Based on the V-BLAST system we also define some bounds on
capacity. Also, we show that the optimal MIMO capacity criterion doesn’t
work well for V-BLAST. The V-BLAST maximum capacity scheduler is derived
specifically from its detection algorithm. As such, we investigate the performance
of suboptimal scheduling criteria that are based on the MIMO channel matrix
directly. In addition, we look into scheduling for spatial multiplexing with sphere
decoding and in this case shows that scheduling based on maximum MIMO

capacity provides the best performance.

‘ WE-T

Base Station |

MIMO Uplink
Scheduler

Scheduled
User

MIMO Facing
Channel

‘ User &

Feedback

Figure 3.1: Uplink MIMO Scheduling
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3.2 System Model

We consider scheduling a single user at a time. The average SNR is assumed to be
the same for all users; they are either at similar distance or they use power control.
There are K users and each user transmits through My transmit antennas and the
receiver has Mg receive antennas (Mg > Myp). The MIMO channel is assumed
to be an independent Rayleigh flat fading MIMO channel where each coefficient
is an i.i.d complex Gaussian random variable with zero mean and unit variance.

The received signal form user k is:

yi = HiXp + 15 (3.1)

where yi is an Mg x 1 received vector, Hy is an Mgz x My MIMO channel
matrix for the k™ user, x; is an My x 1 transmitted symbols from user k, and
M is an My x 1 i.i.d complex AWGN vector of zero mean and variance Ny/2 per

dimension.

3.3 Optimal MIMO scheduling

Assuming that an optimal MIMO encoder/ decoder is available, the optimal

MIMO scheduler selects the user which has a channel matrix that maximizes
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the MIMO capacity:

Chmee =  max Cj; where (3.2)
k=12,...K
SNR
Cv = logQ(det(IMR+THkaH)) (3.3)
AT

where Iy, is the identity matrix and A is the conjugate-transpose (Hermitian)
of A. Assuming that My < Mg, we can write:

My
SNR
n=1

where \,(Hj) is the n'™ eigenvalue of HyHY. The maximum capacity is
achieved when the channel is orthogonal [31] and in this case, \,(Hy) = ||H|/%,
which correspondences to the squared Frobenius norm. The resulting MIMO ca-

pacity will then be:

SNR

Cr, = Mrl 1+ —
k T OgQ( + ]\/[T |

[Hk[I7)) (3:5)

3.4 V-BLAST Scheduling

V-BLAST [40] is a practical MIMO architecture that spatially multiplexes
transmitted data over multiple transmit antennas. Data transmitted from each
antenna is called a layer of information. At the receiver, a serial interference
nulling and cancellation algorithm is used to detect each layer. Although

V-BLAST is a full spatial multiplexing scheme, it has poor energy performance
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because of the lack of spatial diversity. Therefore, it makes a good match
with scheduling since multiuser diversity obtained improves the performance

significantly.

This section proposes and evaluates scheduling algorithms for uplink V-
BLAST users. It has been shown that in single antenna systems, selecting the
user that has the maximum SNR (MaxSNR) is optimal [34] and it maximizes
the system information capacity. However, the MaxSNR scheduler is not optimal
for V-BLAST wusers as will be seen later from the simulation results. The
reason is that, unlike SISO systems, the received SNR (trace(HyHZ)) doesn’t
reflect directly the capacity of MIMO systems. Moreover, scheduling based
on maximization of MIMO channel capacity as in (3.3) is also not optimal for
V-BLAST since its detection algorithm is suboptimal. Since V-BLAST is an open
loop system and all layers have the same rate, an outage in capacity will occur
if an outage happens in at least one layer. Therefore, the V-BLAST capacity of

the k' user is dominated by the weakest layer and it is given by [36]:
SNR
CZF*VBLAST — M : 1 1 e e 36
k T % U 30

where W} is the ZF projection row for the n" layer of the k™ user and My
is the number of layers (transmit antennas). Recall that the V-BLAST detector
performs a series of interference nulling and cancellation operations. At the n'®

stage, let Hy,, be the MIMO channel matrix after canceling the n — 1 detected
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layers. The order of Hy,,, is Mg x My —n + 1. Consequently, the ZF matrix at
this stage is

Wyr = (HIL Hy,,)  HI (3.7)

Based on the V-BLAST ordering criteria, the strongest layer for detection at this

stage is the one with:
[WEplI* = min (diag ([, Hya)) ") (3.8)

and the corresponding post-processing SNR is given by,

SNR

SNR{! = ————
o Ml Wh, |

(3.9)
Therefore, the layer that determines the capacity of V-BLAST is the one with
largest norm of the ZF projection row. Let wy = maxn—12_. ay [|[W5p, || denote
the largest projection value for user k, then the scheduler that maximizes the
V-BLAST capacity will select the user with minimum wy. In other words, the
capacity maximization scheduling for V-BLAST selects the user with largest post-
processing SNR of his weakest layer. However, this scheduler needs to perform ZF
nulling and ordering to the channel matrices of all users before selecting the best
user, which requires a lot of computations. Therefore, we examine other subopti-
mal schedulers that are based on the received MIMO channels before V-BLAST
processing. These schedulers don’t take into account the V-BLAST structure. The

first one chooses the user with the largest MIMO channel power (trace(HHH))
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and we will refer to it as MaxSNR scheduler, which mimics the optimal scheduler
for single antenna systems. The next scheduler measures the eigenspread of HyHZ
and selects the user with the minimum eigenspread (MinES). The eigenspread is

defined as:

)\max
= 3.10

where A, and \.,;, are the largest and smallest eigenvalues of HkaH , respec-
tively. The eigenspread gives insight into the orthogonality of the channel. The
smaller the value of s, the closer the matrix is to be orthogonal. The minimum
value of s is one, and it occurs when the channel matrix is orthogonal. The

eigenspread is related to the condition number of H;, as:

s = cond(Hj,)?

where, cond(H,) = /™ (3.11)

Pmin

where ppee and pp,, are the largest and smallest singular values of Hy. From
this relation, we derive a scheduler that takes into account both the channel power
and the eigenspread of Hy. It selects the user that has the largest minimum

singular value of Hg. From (3.11), we have:

pmaaz — \/g
Pmin
Pmazx
min = ——— 3.12
p s (3.12)
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Thus, selecting the largest p,.;, means selecting a large puq., which measures the
norm of Hj, and hence the power, and a small eigenspread(s). We will refer to
this scheduler as MaxMinSV.

Finally, we define the scheduling scheme MinInvTrace. In this scheme we chose
the user with the minimum value of trace((HZHj)™'). This scheme is somewhat
similar to that of choosing MaxSNR (trace(HyHZY)) as can be seen from the

following inequality.

trace((HF H,) ™) (trace(H,HI)) > M2

To summarize, the scheduling algorithms considered for V-BLAST are:

e MaxVBLAST: select the user with ming—1o  g{wy}, where w, =

77777

max,—12.. 1 L |Whpal?} and Wp, is defined in (3.8).

e MinES: select the user with minimum eigenspread of HyHI as defined in

defined in (3.10).
e MaxMinSV: select the user with maximum minimum singularvalue of Hy.

e MaxSNR: select the wuser with maximum Frobenius norm of Hy

(trace(HHJ)).
e MinInvTrace: select the user with minimum value of trace((HZHy)™).

e RR: round-robin scheduling allows each user to transmit in a time-division
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fashion.

3.5 Bounds on VBLAST Capacity

In this section we will relate each of the scheduling techniques with the bounds
on the VBLAST Capacity. The best scheduling technique is the one that is able

to provide tighter bounds on

min max min ||W§Fn1||2
k n i Y

where min; [|[WZ ., ;[|* is the minimum diagonal value of (H}/ Hy )" of the n'
layer of the k* user. In this section we will find bounds that are independent of

n and i for each scheduling technique.

3.5.1 MaxMinSV

Choosing a user with maximum minimum singular value of Hj is the same as

choosing a user with maximum minimum eigenvalue of HyH. We have
. k 2 _ H -1

this means that we are looking for the minimum i** diagonal value of (Hy/, Hy,,,) .

We can write it in the form of following inequality,

N (L, H ) ™) < min [ < A%

min max

(Hy,Hyn) ™) (3.13)
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Since H,”"H,, is squared Hermetian matrix, it can be written as:

H{ H, = UA,,U" (3.14)

where U is a unitary matrix with orthonormal eigenvectors and Ay, is the
diagonal matrix of eigenvalues [A\1, Ag, ..., Ans]. Another approach is to use QR
decomposition as done in [41],[42],[43].

Using simple matrix manipulations, the inverse is written as:

[HﬁnHkm]*l = UA,;;UH (3.15)

L1 Therefore,

: -1 1 1
The diagonal elements of A, are IEDVERERED vo

1
AR (| H )T = 3.16
mm(( k, k,) ) /\ﬁizm(HkH,nHkm) ( )

1
Mo (H] Hy,)

min

(3.17)

Az ((FL Hig) )

max

For the sake of simplicity we will henceforth refer to Ab7 (H{ Hy,) and

max

Abn (HI Hy,,) as A&2and A7 respectively. We now have,

max min

. 1
pn Smin [ WEp P <o (3.18)
)\maa: ¢ )‘mm
b naxmin W, |12 ! (3.19)
X . .
min, My 0 i ZEm = min, AR
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According to the inclusion principle for matrices the minimum value of \,,;, occurs
at n = 1 and minimum vale of \,,,, occurs at n = My. Now we have an upper

bound given by,

1

max min W2 pnall® < NOR (3.20)
/\mm
or by taking minimum over K users,
: . k 2 1
min maxmin ||[Wzp, .[]* < W (3.21)
keoonod maxy A,

We will use this inequality to establish lower bounds on MaxMinSV.
For the sake of simplicity, we will focus on the case when My = Mg. The pdf

of the smallest eigenvalue for the case of My = Mg is given by [44],

P (x) = Mpe ™M y(x) (3.22)
In this case, p = j;~ and 0 = g, where p and o® represents the mean and

variance. This is demonstrated in Figure 3.2 which plots the empirical and the-
oretical PDF for A, for M7 = Mg = 10. From Chapter 10 of [47] we see that
the maximum of \,,;, will scale as ﬁ log K. Therefore we have a new bound on

the capacity of VBLAST as,

(3.23)

SNRlog, K
ClErast > Mrlog, <1 + g2>

M2
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3.5.2 MinES

In this case we start with the inequality

Akln < kit

mwn

min [Wh, <

here x(*m)

Now

max min ||W5p, . [|? < max x*")
n i e n

54
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(3.24)

is the condition number of the matrix Hy, ,H!, defined as Amaz/Amin-

(3.25)



The condition number k is maximum when n = 1 a lemma which follows from

the inclusion principle of matrices, Therefore we have,

maxmin Wy, > < &™) (3.26)
n ) Y

mljn maxmin ||WEp|? < mk;ln k) (3.27)
1 ) I’

The pdf of s the condition number of Hy for the case of My = Mg is given by

[44],

fspnar () = ;eﬁu(x) (3.28)

As k = 52, we can show using a variable transformation argument that,

4MZ _av3
= T =" u(a) (3.29)

fu(z)

12

The simulated and theoretical PDF of x is show in Figure 3.3,
Now we find the upper bound on miny x*). [46] provides with bounds on
inequalities for minimum of random variables. A random variable £ is bounded

as,

1 1
S = Emklnf <3 (3.30)

where o > 0 and 8 > 0.These inequalities exist if the random variable ¢ satisfies
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(a,3) condition defined as,

Pl <t) <at (3.31)

P(lg] > t) < e (3.32)

Using the PDF of x we find that @ = 8 = —1,. Now the upper bound on the

iz
minimum is given by,
4 M2
) o 2T
Emklnﬁ <% (3.33)
Now we have,
: : K , _ AM?Z
min max min W2 pnill” < 7 (3.34)
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3.5.3 MaxSNR

We start with the established inequality,

1 1

2
max; miny, trace(Hg ,Hy, ) ~ max;, min, A |

< min max min ||[W}, .

(3.35)

Again from the inclusion principle the minimum of the trace occurs at n = M.
Since we do now know which will be the last layer. The PDF of trace(Hy,H},)
for last n becomes conditional. If we solve for the unordered VBLAST algorithm

we will get,

1
maxy, trace(hiThy)

< m}jnmaxmjn||W§Fni||2 (3.36)
1 b bl

where hy is a row vector containing Mg i.i.d complex gaussian entries. In this
case the trace will be a chi-squared random variable with 2Mp degrees of freedom.

The PDF in this case is given as,

o Mr—1

fulz) = me

—x

u(x) (3.37)

Now we use a upper bound on the maximum of the trace. [45] provides us with a

tight upper bound,

E [mazgtrace(hjhy)] < p+ovVK —1 (3.38)
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where ;1 and 02 are mean and variances respectively. In this case, yu = 2My and

0% = 4Mp. Now we have,

Elmazgtrace(hThy)] < 2¢/Mgp(y/ Mz + VK — 1) (3.39)

Here we define an upper bound on capacity,

2SNR(vM K -1
Cipriasr® < Mplog, <1 + (VMr+ v )> (3.40)
My
3.5.4 MinInvTrace
We have,
rnkin max min ||[W}p,;|* < mkin trace((Hy Hy) ™) (3.41)

(3.41) results from the fact that the minimum diagonal entry of a matrix is less
then the trace of the matrix, the inclusion principle maximizes the equation when
n = 1. Our simulation shows that this is the tightest bound that we have but
we were not able to prove ti theoretically. This is the reason behind its good

performance.
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3.6 Simulation Results

3.6.1 BER Performance and Outage Capacity

The BER performance of the wireless uplink system over different SNR with
scheduling is shown in Figure 3.4. The MaxSNR scheduler doesn’t capture any
multiuser diversity but it gains a around 1 dB compared to the RR algorithm
due to selecting the maximum SNR. On the other hand, the best scheduler is
the one that maximizes V-BLAST capacity (MaxVBLASTCapc) by selecting the
user who has the strongest weakest layer as described earlier. The MinInvTrace
and the MaxMinSV schedulers capture the multiuser diversity but MinInvTrace
provides more gain since it proves to be the tightest bound irrespective of the
cancelation layer of VBLAST. These scheduling techniques perform very close to
MaxVBLASTCapc which has a higher diversity at high SNRs (sharper slope).
The result in this figure also shows that using maximum MIMO capacity as the
scheduling criterion, as in (3.3), doesn’t perform very well for V-BLAST. The
reason for that is the suboptimality of the V-BLAST detection algorithm.

The complementary cumulative distribution function (CCDF) of the capacity
of V-BLAST uplink scheduling is shown in Figure (3.5). The result shows that the
MaxMinSV and MinInvTrace schedulers perform very close to the MaxVBLAST-
Capc scheduler.

Figure (3.6) shows the capacity gains of uplink V-BLAST scheduling at 10% out-
age versus number of users. The optimal MIMO capacity scheduling, as defined

in (3.3), is estimated by assuming the availability of optimal MIMO modems.
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Figure 3.4: Aggregate BER of 4x4 QPSK V-BLAST users with uplink scheduling

Therefore, it provides an upper bound for the V-BLAST scheduling algorithms.
However, when using RR scheduling with optimal MIMO modems, the rates pro-
vided by V-BLAST with scheduling are higher when the number of users is greater
than five. The reason is that V-BLAST with scheduling captures K-fold diversity,
where K is the number of users, in addition to being a full spatial multiplexing
scheme while the optimal MIMO system with RR scheduling has only spatial diver-
sity. Furthermore, the MaxVBLASTCapc scheduler approaches optimal MIMO
scheduling for large number of users. Thus, scheduling greatly improves the ca-

pacity of the uplink system even with suboptimal detectors.

60



K=10 Users for 4x 4 at SNR=15dB
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Figure 3.5: Capacity CCDF of 4x4 QPSK V-BLAST with uplink scheduling

3.6.2 Effect of Suboptimal Detection

To further examine the effect of using less complex receivers for spatially multi-
plexed (SM) users with uplink scheduling, we consider two suboptimal receivers.
The first one removes the ordering process from the V-BLAST algorithm and the
second one is a simple ZF receiver. The rational is that multiuser diversity may
overcome the weakness of the suboptimal algorithms.

Similar to (3.6), the capacity of a spatial multiplexing system with ZF receiver

for user k is:

SNR
P e 3.42
SM-ZF T{ o8 ( - ]\JT”W{?]V[ZFHQ)} )

where, ||VV§M—ZF||2 = [(HkHHk)_l]n
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Rate vs. Users at 10 Outage and 4x 4 MIMO at SNR=15dB
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Figure 3.6: Capacity versus number of users at 4x4 MIMO channels and at 10%
Outage probability

Figure 3.7 compares the capacity of SM schemes with uplink scheduling versus
the number of users for different detectors. The result shows the loss in rate due
to using simpler SM detection. Since the multi-user diversity order is high, we
expect that the loss in rate will be small. The result indicates a small loss in
capacity for large number of users. When the number of transmit and receive

antennas is low, such as 2 x 2, the loss is even smaller.

3.6.3 Advantage of V-BLAST over SISO and SIMO sys-
tems

The simulation results in Figure 3.8 show the advantage of V-BLAST over receive

diversity and single-input single-output (SISO) systems. The optimal scheduler
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Figure 3.7: Capacity versus number of users at 10% Outage probability for sub-
optimal detectors

that maximizes the capacity for SISO and single-input multiple-output (SIMO)
systems is to select the user that has maximum SNR maxy_12  x{hihi}. Al-
though V-BLAST is a suboptimal detector and it suffers from noise enhancement
and error propagation, it boosts capacity by over 100% compared to SISO and
MISO systems. Furthermore, its capacity increases logarithmically with number
of users, similar to the behavior of MIMO systems when the number of transmit
antennas exceeds number of receive antennas. Moreover, the BER performance

of V-BLAST outperforms MRC by 8 dB at low BERs as shown in Figure 3.9.

3.6.4 Spatial Multiplexing with Sphere Decoding

A sphere decoder (SD) is a maximum likelihood (ML) detector that provides full
receive diversity for spatial multiplexing systems with cubic average complexity
at high SNRs. In this section, we will examine few scheduling algorithms for

spatial multiplexing with sphere decoding (SM-SD). The scheduler that maximizes
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Figure 3.8: Spectral advantage of V-BLAST over receive diversity and SISO sys-
tems with uplink scheduling

MIMO capacity, as described in (3.3), is the optimal for SD. Other schedulers
are described earlier. The BER performance is shown in Figure 3.10. The key
difference between SD and V-BLAST is the receive diversity advantage due to ML
detection. This may reduce the importance of scheduling. However, compared to
RR scheduling, multiuser diversity still gives significant gains in BER performance.
Figure 3.11 shows the capacity gains of SM-SD with different scheduling criteria
at 10% outage as a function of number of users. Notice that the performance of
the MaxSNR scheduler with SD is much better than with V-BLAST. This is a
result of the full receive diversity advantage of SD. However, MinInvTrace gives

better results compared to other scheduling techniques.
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Figure 3.9: BER Comparison of V-BLAST and MRC with uplink scheduling

K=10 Users, 4x 4 V-BLAST at 8bps/Hz
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Figure 3.10: Sphere Decoder scheduling for 4x4 spatial multiplexing uplink users
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Figure 3.11: Capacity versus number of users at 4x4 MIMO channels and at 10%
outage probability for SM-SD
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3.7 Chapter Summary

This chapter compared and evaluated the performance of several scheduling al-
gorithms for the uplink scheduling of V-BLAST users. The scheduler selects one
user at a time and each user spatially multiplexes his data over the transmit an-
tennas. The basic scheduling technique is known as round-robin in which each
user is allowed to transmit in an ordered fashion without taking any advantage of
the channel variations and statistics.

The main contribution of this chapter is finding the optimal scheduler that max-
imizes V-BLAST capacity for uplink single user scheduling. It selects the user
that has the maximum post-processing SNR of the weakest layer. It needs to
perform nulling and ordering for each MIMO channel matrix in order to evaluate
this criterion. A suboptimal scheduler that performs very close to the optimal
is to schedule to the user that has the maximum minimum singular value of the
MIMO channel. This criterion takes into account the eigenspread of the MIMO
channel and its power at the same time. The eigenspread of the MIMO channel
measures how close it is to orthogonality because orthogonal channels maximize
the MIMO capacity. This chapter also includes the different scaling results of the
scheduling techniques used.

Furthermore, we showed that scheduling based on maximum MIMO capacity is
not optimal for V-BLAST. That is due to the suboptimality of the V-BLAST
detection algorithm while the MIMO capacity criterion assumes optimal encoding

and decoding. Furthermore, scheduling for V-BLAST users outperforms optimal
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MIMO users with round-robin scheduling. This greatly emphasizes the capacity
gains that scheduling offers to wireless uplink systems. Moreover, comparing V-
BLAST to less complex MIMO receivers, such as a zero forcing filter, shows that
there is a small loss in capacity at a large number of users. When the number of
transmit-receive antennas is low, such as 2 x 2, the loss is negligible. In addition,
comparing the capacity of scheduling for V-BLAST with SISO and SIMO sys-
tems, we find huge gains in capacity. Finally, we studied scheduling for a spatial
multiplexing system when using a sphere decoder (SD) at the receiver. Since SD
is a maximum likelihood receiver, scheduling to a user who maximizes the MIMO
channel capacity performs the best. However, the gains of scheduling in this case
are less significant since SD already provides full receive diversity to the MIMO

system.
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CHAPTER 4

ESTIMATION OF THE

DISTRIBUTION OF

RANDOMLY DEPLOYED

WIRELESS SENSORS

The distribution of randomly deployed wireless sensors plays a vital role in the
quality of and methods used for data acquisition and signal reconstruction. In
this chapter we use moments approach to recover the moments of the transmitted
signal and we then relate these moments to the distribution of the randomly

deployed sensors.
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4.1 Introduction

Sensor networks can be used for a variety of important tasks, such as measuring
or monitoring temperature, sunlight or seismic activity in an area [6]. The goal
of such networks is to extract as much information as possible from an array of
randomly deployed wireless sensors.

Consider a case where wireless sensors are released from an airplane at fixed in-
tervals so that when the sensors land on earth their positions follow a random
distribution. In such a case, estimating the variance of the distribution of the
sensors might help determine the speed of wind in the area while estimating the
whole distribution can improve the signal reconstruction [7]-[8].

In environment monitoring different algorithms can be used to estimate the sensors
location [9]-[10] but these algorithms require a substantial amount of communica-
tion between the sensors in large networks. In this chapter, we represent a way to
estimate any information regarding the distribution of the sensors using a noisy
signal received from the sensors without any communication between the sensors.
This chapter is organized as follows. Section 4.2.1 describes the system model
used. Section 4.3 provides an estimate for the PDF of the distribution of the
sensors. Simulation results are summarized in Section 4.4.5 followed by the con-
clusion. Throughout the chapter Tr(A) represents a trace of a matrix A and

tr,(A) represents a normalized trace (;Tr(A)) of a matrix A.
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4.2 Sensor Deployment

4.2.1 System Model

Consider a one dimensional physical field with L sensors deployed in the interval
[0,1]. Let d; € [0,1] represent the position of the i*" sensor. In the case of Line
of Sight (LOS), the continuous-time band-limited signal y(w;) can be represented

as the weighted sum of P harmonics,

| Pl
W) = —= Y xpe i 4op, 4.1

y( Z) \/]3 e k ? ( )

where w; = 2nd;, i = 1,2, ..., L, xy is the corresponding Fourier coefficients up to

the P harmonic and n; is additive white Gaussian noise with unit variance and
o? is the variance of noise for the i** sensor. We can write this model in vector

form as

y = Vix +on (4.2)

where y is the received signal vector of length L whose i’ element is y(w;), x is
the transmitted signal of length P whose k' element is xj, n is the noise vector

of length L and V is a P x L Vandermonde matrix given by
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1 1
1 e_jwl . e_ij
V= 4.3
VP (43)
p—i(P=1)w1 o—i(P=1)wr,
Here wy, wo, . .., wy, are i.i.d random variables representing the position of di" sen-

sor with a certain distribution and are bounded within the interval [0,27). Now
suppose that we have K such observations for the received signal, then the new

model can be represented as

Y = VX + 0N (4.4)

Where Y = [y1,¥2,...,¥k|, X = [X1,X2,...,Xg] and N = [n;,n,...ng|. The
sample covariance matrix is defined as YY*Z.

In this chapter we assume that the training sequence matrix X and the noise
matrix N are zero mean Gaussian matrix with i.i.d. entries with a variance of
%. However the methods used in this chapter can also be used when the training
sequence X is deterministic. The matrices involved are of large dimension with
¢1 = limpoo £, ¢2 = limp_oo & and ¢3 = limg_,o . Through out this chapter

we will consider ¢; € [0,1] and ¢3 € [0,1] ie. L, P < K
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4.2.2 Distribution Estimation

The estimation of the distribution of w in eq (4.3) provides us with the information
of the location of the sensors in an area. This information can be either in the form
of a certain parameter regarding the distribution, the range of the distribution or
it could be the distribution of w itself. This is a difficult task when there is
no communication between the sensors as is the case here. However, as we will
show, the moments of VV# can be estimated and related to the distribution of
the deployed sensors by using the moments approach. Specifically, we relate the
moments of VV up to a certain order with a polynomial approximation of the

distribution of w.

4.3 Moments Approach

The moments approach [13] provides us with a good estimator for the moments
of the Vandermonde matrix. The moment (m,,) of a P x P matrix H is defined

as

M = trp(HY) (4.5)

where m,, is the normalized trace of the matrix. Free deconvolution [11] relates

the eigenvalue distribution of the covariance matrix (uyy#) with the eigenvalue
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distribution the Vandermonde matrix (uyv#) as

pvve = (pryyn Bey pnenr) B pixxc (4.6)

Where B, is Rectangular additive free deconvolution (section 4.3.1) and N is

multiplicative free deconvolution (section 4.3.2).

The moments estimation simply follow the following steps

4.3.1 Step 1: Rectangular additive free deconvolution

Consider the covariance matrix

YY? = (A+N)A+N)# (4.7)

where A = VZX. Rectangular additive free deconvolution (H,,) provides us with
the moments of YYH in terms of moments of AA” and moments of NN The
moments (m,,) are related to another sequence of numbers called the rectangular
free cumulants (¢,) via the probability measure €. Refer to which [13] gives the fol-
lowing set of equations for the relation between the moments and the rectangular

free cumulants.

T(2(csMga(2) + 1) (Ma2(2)+ 1)) = M2(2)
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where

T.(z) = Ztn(e)z” and Mg2(z) = Zmn(e)z”.

n>1 n>1

This equation can be written in a recursive form as

mo(e) = 1
ma(€) = tu(e)

+i€§tk(€> Z my, (E) .. .ml%(e)

li,.l2,>0
li+...4+log=n—k

Let v, n and 7 be the probability measure of YY, AAf and NN# respectively.
In this case free deconvolution the rectangular free cumulant of these probability

measure are related to each other as

tn(n) = ta(y) — ta(7)

If N is a random matrix with independent Gaussian entries with variance %
then the eigenvalue distribution of NN follows a Marchenko-Pastur distribution
with parameter é In this case the rectangular free cumulants of NN# are given
as ty(7) = dn1, ¥ n > 1 (here 0, is the dirac delta function) [14] . It is important

to note that the rectangular free cumulants of o>NN¥ are given by t,(0%7) =

(02)"tn(T) = (02)"0na
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4.3.2 Step 2: Multiplicative free deconvolution

Now that rectangular additive free deconvolution has provided us with the mo-
ments of A A, or equivalently that of VIXX”V we can extract the moments

of VVH_ We have

mp(XXEVVH) = com, (VIXXHV) (4.8)

Multiplicative free deconvolution (N) provides us with the moments of VV# in
terms of the moments of XX?VV# and moments of XX*. The moments m,, are
related to another sequence of numbers called the multiplicative free cumulants
(sn) through the probability measure e. Specifically, the relation between these

two quantities is given by [12]

M.(2)S.(M(2)) = 2(1 + M,(2))

where,

Se(z) = Z sp(€)2" 1 and M. (2) = Zmn(e)z”.

n>1 n>1

These set of equations can be represented in a recursive form as

ma(e)si(e) =1,

mp(€) = Z sk (€) Z my, (€)...my,(€)
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Let 9, ¢ and v be the probability measures of XX?VV# XX and VV# re-
spectively. Then these probability measures are related to each other thought the

multiplicative free cumulants as

s1(¢)s1(¥) = s1(9)
51(S)sn(¥) = sn(0) = sn()51(9)

For example, if X is P x K random matrix with indepentedent Gaussian entries
with variance % then the eigenvalue distribution of XX follow a Marchenko-

Pastur distribution with parameter é In this case the multiplicative free cumu-

lants of XX are given by s,(¢) = (—¢;)"t, Vn > 1.

4.3.3 Step 3: Moments of VV#

Assume w; = 27(i — 1) + w} where i = 1,2,..., L. Here w] is a random variable
with continuous (not necessaraily uniform) distribution and is bounded by [0, 27).

Then the asymptotic n* moment of the Vandermonde matrix is defined as

m, = lim Eltrp(VVH)?] (4.9)

P—oo
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In this case, the moments of the Vandermonde matrix can be calculated as [12]

Z K,ocf! (4.10)

pEP(n

where P(n) is the set of all partitions of {1,2,...,n} and p is the notation for a
particular partition in P(n), it could also be written as p = {p1, ..., pr}, Where
p; are the blocks of p and |p| is the number of blocks in p. The coeflicient K,
is called the Vandermonde mixed moment expansion coefficient and is defined as

[12]

Koo = im0 iy
n 1 _ ejP(wb(kfl)iwb(k))d d 4
[0 2m)lel 17 1 — eI P@s(h—1)=wo(k)) w1 Wip| ( )

We can write the moments of the Vandermonde matrix in terms of the PDF of w

as

Z Kpuc'1, (4.12)
pEP(n

where I, = (2m)ll! (f%p |”‘dx> and u ~ U(0,1) (here U is the uniform
distribution). It is extremely difficult an explicit expression of K, for any mo-
ments (in [12] only the first seven moments were computed). In this chapter we
numerically calculate them using the following algorithm.

Algorithm: K, can alternatively be expressed as the volume of the solution set
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of

Y =) I (4.13)

kep; kep;

here 0 < [, < 1. This volume is calculated after expressing |p| — 1 variables in
terms of n + 1 — |p| free variables and is bounded within [0,1]. We have that
K, . = 1 when the partitions of p are non-crossing [15] otherwise it is smaller the
1.

As I, depends on the block cardinalities |p;|, we can group K, for p with equal
block cardinalities together. We can group the cardinalities in descending order

ry > 1y > ... > 1, and define

Krl,rg,...,rk - Z Kp,u (414)

where |p;| = r;, Vi. Then the moments can be represented as

my, = Z Z Krl,rg,...,rkcgjk (415)

k=1,2,...n  TL,T2,Tk
ri+re++rg=n
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Using this approach the first few moments expand to

m; = Kicelh

me = Kool + K1710312

ms = Kscoly + K2,16312 + K1,1,103[3

my = Kyeoly + (Ksq + Kog)c3lo + Ko 16313
+K1,1,1,1C§I4

ms = Kseoly + (Kyq + K3,2)C§]2 + (K311 + K2,2,1)Cgf3
+Ky11160+ Ki1116515

yhyds byt

(4.16)

Corollary 4.3.1 Consider a case when w; = a/(i — 1) + w}, where a’ # 2w. The

moments in this case can be represented as

ma= Y Y @t 2L ek i

p’ET(n),p/Ep jl 7"~aj”l

Kpucf' L7171, (4.17)

where a = 7% and the sequence ji,ja, . .., jn gives rise to the partition p.

The proof of (4.17) follows in parallel with the one provided in [12].
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4.3.4 Step 4: Estimation of P

Consider the case where P < L. Conventionally the estimation of the number of
harmonics P is done by calculating the eigenvalues of the covariance matrix YY .
The covariance matrix will have . — P eigenvalues equal to \%a and P eigenvalues
greater then %o. The moments approach provides us with an alternative method

to estimate P by only using the 2"¢ moment of the covariance matrix.

Theorem 4.3.2 The number of unknown harmonics P can be estimated as

A ) K2m3(v)—2K (Ko*+2Ko?+L+K)mz(7)
Kms(y) — K —L— Ko*—2Ko* + 42K Lot 44K Lo +k2+6 K204 +4K 202
+K208+4K20%+ L2 4+2LK—4LKo?I5(0%+2)

P ==
402%(0? + 2)

(4.18)

Here  is the probability measure of the covariance matrizc YY1

The proof of (4.18) can be found in Appendix A.

4.3.5 Step 5: PDF Approximation

Now in order to estimate the PDF of w, where w is bounded within [0, 1), we use

the Weierstrass approximation and multinomial expansion to derive an alternative
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form of I,,. I, is given by

B . n—1 "
I, = tlggo(%?') Z (l{;l,...,kt>

k’l—ﬁ-“.-i-k’t:’n

<r(1 +tn— > vk )T vk, —n+ 1))
' T((t—1)n+2)

(-G ) o

where Po() represents the unknown PDF of w and

p(0), (), pu(%), - - - pw(1) are the unknowns of the weierstrass ap-
proximation. Now equating (4.19) with (4.16) will give us a set of non-linear
equations to solve. As the number of unknowns should be equal to the number
of equations, we take n = t. One can solve for the numerical values of the
unknowns by using any optimization algorithm. The proof of (4.19) can be found
in appendix B.

Weierstrass approximation considers w to be bounded within [0,1) however
we can loosen the bound on the range of w from [0,1) to [0,a) where a < 27 by

replacing ¢ by t/a in (4.19).

4.4 Simulation Results

In this section we will show the estimates for the moments of VV# P, noise

2

variance ¢° and parametric estimates for some special cases. Finally, we will

estimate the PDF of the distribution of the wireless sensors.
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4.4.1 Estimation of the moments of VV#

By applying rectangular additive free deconvolution and multiplicative free de-
convolution on the covariance matrix YY# we get the moments of VV. To
check the validity of the moments approach we plot the relative distance between
the estimated moments of VV# and the actual moments of VV. We define the

relative distance of the nt* moment for all n as

Mo [(tyyr Bes pinne) N pixx )

-1
m,[VVH]

12 —%—n=1 ! e
n=2 : //

n=3 ‘ /
107 % n=4
—=—n=5 | /
[| —©&—n=6 I //

——n=7

-/ n=8
6 n=9

Relative Distance

Figure 4.1: Relative distance of the moments of VV# and the estimated moments
by applying moments approach for varying o

Figure 4.1 is a plot of the relative distance for n = 1,2,...,9 as the noise
variance o? increases for K = L = N = 1000. The simulation result is averaged
over 10 observations when w has uniform distribution. It is clear from the plot
that as the variance of noise increases the estimation of the moments gets worse.

This result is easily understood if we define the n'" rectangular free cumulant

83



error for NN# (see Section 4.3.1) as ,. It can be represented as

actual
En = tn - 6n 1

It follows that the error for the n' free cumulant of cNN¥ is (02)"¢,. For o2 > 1

the error exponentially increases with n.

Relative Distance

0.5

0.45F

0.4r

0.35F

0.3r

0.251

0.2r

0.15F

0.1r

0.05r

20

Figure 4.2: Relative distance of the moments of VV# and the estimated moments
by applying moments approach for o2 = 1

Figure 4.2 plots the relative distance when w has a uniform distribution for

n=1,2,...,20 with K = L = P = 1000 and 02 = 1. The small relative distance

Y

between the actual moments and the estimated moments of VV ¥ indicate that

the moments approach is a good estimate for the moments of the Vandermonde

matrix.
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4.4.2 Estimation of P

Consider here the case that w has a uniform distribution. We use (4.18) to estimate

the value of the unknown harmonics. In this case I, = 27 and P is estimated as,

4 9 K?m2(v)—2K(Ko*+2Ka?+L+K)ma(v)
Kmsy(y)— K—L—Ko*—2Ko* + +2K Lot 44K Lo +k2 46 K204 44K 22
+K2(78—|—4K20'6+L2—|—2LK—8LK027r(02+2)

P =
202(02 +2)

(4.20)

6000 - * Est.of P|
% Actual P

5000 -
4000 -

3000 -

Est. of P

2000 -

1000 * * * * ]

0.6 0.8 1 1.2 1.4 1.6 1.8
Number of Observation

Figure 4.3: Estimation of P for Uniform distribution with K = L = 1000 for
varying o

Figure 4.3 estimates P as o

increases with w having a uniform distribution
and K = L = 1000. The estimation of P gets worse for small values of ¢ which
follows from (4.18) as lim, o+ P = oc.

Figure 4.4 provides an estimate of P with K = L = 1000 and 0% = 1 with w
having uniform distribution. In this figure the estimate of P is averaged over a

number of observations. The equation for estimating P is derived by using only

the first two moment estimates and because the the estimate of the first moments
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Figure 4.4: Estimation of P for Uniform distribution with K = L = 1000 with
oc=1

are better for higher o (as seen from Figure 4.1), we end up with a good estimate

for P at higher values of o.

4.4.3 Estimation of the noise variance o?

1.0025 T
+ Est ofc

Actual o
1.002 1

1.0015 1

1.001 - 1

Est. ofo

1.0005 o 1

+
o
+ " R i I, et
+ + +++ ph T e e R R
+
Heht
0.9995 - 1

0.999 - ’ y
0 20 40 60 80 100

Number of Observation

Figure 4.5: Estimation of ¢ for Uniformly distributed w with K = L = 1000

We can estimate the variance of noise o2

in a similar way to the way we
estimated the value of P. Appendix A derives an expression for estimation of o.
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Specifically, we show that (see Appendix equation (A.9)

o=+vmi(y)—1 (4.21)

where 7 is the probability measure of YY?. Figure 4.5 estimates the value of o
averaged over different number of observations when w has a uniform distribution

with K = L = N = 1000.

247 O Est ofo ||
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C
1.98 © ©
[ee)
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1.94 1

1.92F

0 200 400 600 800 1000

K,Land P

Figure 4.6: Estimation of ¢ for Uniformly distributed w with K, L and P increas-
ing asymptotically

Figure 4.6 shows the estimate of ¢ as K, L and N increases asymptotically.

We see that the higher the dimension the more accurate are the results.

4.4.4 Special Cases

In this subsection, we consider different distribution for w and try to estimate the

underlying parameters of the corresponding distribution.
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Von Mises Distribution

Let us consider the case where w has Von Mises distribution. Von Mises distribu-
tion has an inverted bell shape and is bounded within (0, 27]. It’s parameter 1/
is analogous to ¢ in a Gaussian distribution. The distribution p, of Von Mises

distribution for the angle z is given by

er cos(x—pu)

S EACH (4.22)

Po(|p, k) =

Here Jy is the bessel function of the zero order. The value of I, for a von mises

distribution is given by

J() (2/"{3)
L=""" (4.23)
Jo(k)
14 T T T
o O  Estimate of k (x=10)
Actual value of x (k=10)
121 +  Estimate of k (k=4)
—-— - Actual value of k (k=4)
o 0o o)
10 O(SS)OO @ [@] . & ) OOOm & oS
O Q o
Oooo Q@O@OO 0% o Q@g% O%éézp @f%@@@
Q OO O
v 8 O o
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e *;tﬁ *ﬁ; P, e o S it e e
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Figure 4.7: Estimation of x for Von Mises distribution with K = L = P = 100

The value of x is estimated by solving the 2" equation of (4.16) and (4.23).
Figure 4.7 shows the estimation result of x when the trace values are k = 4 and
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Figure 4.8: Estimation of s for Von Mises distribution with varying K, L and P

t = 10. In this simulation, we set K = L = P = 100.

Figure 4.8 simulates the result for the estimation of x as K, L and P
increase linearly. It can be seen that by asymptotically increasing the value of
K, L and P the estimation gets better. Figure 4.9 estimates the value of
for K = I = P = 100 for varying o. From the figure, we conclude that as we

increase the variance of the additive noise, the estimate quality gets worst.

Bounded Wigner Semi-Circle Distribution

When w has a wigner semi-circle distribution bounded within [—R, R], where

R < 7, the distribution p,, is given by,

po(a|R) = 5V R? — a? (4.24)

TR?
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Figure 4.9: Estimation of x for Von Mises distribution with K = L = P = 100
and varying o

I in this case is given by

L= " (4.25)
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Figure 4.10: Estimation of R for wigner semi-circle with K = L = P = 100 and
o?=1

Again by solving the 2"¢ equation of (4.16) and (4.25) we can estimate R.
In this case equation (4.16) is simplified to the equation (A.10) provided in the
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Appendix and R is estimated as,

3262
R = 4.26
3n(ma(y) — crca — 4cy0? — 2¢10% — 1) ( )

Figure 4.10 shows the result for R = 2 and R = 3 with K = L = P = 100 and

0% = 1 averaged over different number of observation.
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Figure 4.11: Estimation of R for wigner semi-circle with ¢? = 1 and varying K,
L and P

Figure 4.11 presents the estimation of R as the value of K, L. and P increases
asymptotically with o2 = 1. Figure 4.12 estimats the value of R for with varying

ogand K = L = P = 1000.

4.4.5 PDF Approximation

If we have the moments of the Vandermonde matrices we can extract information
about the distribution of w in equation (4.3) by using the equation (4.15). We are

calculating K, ,, statistically from (4.13).
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Figure 4.12: Estimation of R for wigner semi-circle with varying 0% and K = L =
P =1000

Moments approach give us the moments of the matrix VV. In this way we get

the estimates for I,, which are related to the distribution of w.

Beta Distribution

Now, consider a case where we have no information about the distribution of w
apart from the fact that it is bounded between [0, 1]. Consider w to have a beta
distribution with two degree of freedom. In this case the pdf is given by,

(1 — x)P

pu(z) = “Blaf) (4.27)

where B is the beta function and the pdf has two degrees of freedom o and 5. Beta
distribution was chosen for this simulation especially because for different values
of parameter o and [ we obtain totally different shapes of the pdf. For n =t
equating (4.19) with (4.16) gives us a set of non-linear equations of order n. Here

we use Least Square Mean (LSM) based algorithm to calculate the unknowns.
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Figure 4.13: Estimation of the PDF of w, where w has a beta distribution with
a=2and =5

Figure 4.13 shows the simulation result for the estimation of the PDF of w
with ¢ = 3,5,9 when w has a Beta distribution with @« = 2 and g = 5. It is
clear from the simulation result that as we increase the value of t we get accurate
results. However note also that with the increase in ¢ we are considering more and
more moments n and as higher moments have some small error the estimation of
the pdf will degrade after a certain value of . In this case while designing and
optimization algorithm to solve the unknowns more weightage must be given to
the lower moment equations. Figure 4.14 represents the estimation of the PDF
when w has beta distribution with « =1, § =3 and t = 3,5,9. Similarly, Figure

4.15 shows the estimate of the beta distribution with « =1, =3 and t = 3, 5.
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Figure 4.14: Estimation of the PDF of w, where w has a beta distribution with
a=1and =3

4.5 Chapter Conclusion

In this chapter we showed that by using the moments approach we can find an
estimate for the distribution of the sensors without any communication between
the sensors themself. This is helpful when you have a large network of randomly
deployed sensors and one needs to know their distribution. In the case where the
distribution of the sensors is already known we can estimate the values of the

parameters of the distribution or the range of the distribution.
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Figure 4.15: Estimation of the PDF of w, where w has a beta distribution with
a=2and =2
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CHAPTER 5

APPLICATION TO SEISMIC

SIGNAL PROCESSING

5.1 Introduction

Seismology plays a prominent role in the search of hydrocarbons. The seismic
data has to be processed in order to reveal under ground images that leads to
the identification of potential hydrocarbon reservoirs [49] [50]. Any information
obtained about the different layers present below the surface is valuable [53] [52]
[57].

Before going into the application of RMT for seismology first let us study the
acquisition of seismic data. Then we will revise some of the tools used in RMT

followed by the seismic modeling.
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Figure 5.1: Common Source Point.

5.1.1 Data Acquisition - Common Shot Point

The seismic data model is based on the measurement of the travel time of seismic
waves reflected by the subsurface layers at different velocities. Seismic energy is
provided by a source located on the surface also known as a "Shot’. Now there can
be many kinds of shots depending on the topology of the terrain. For example in
the shallow applications we use a hammer and a plate i.e. a weight is dropped
or an explosive charge is ignited. Nowadays we also use large vibrators as an
environmentally friendly source but an explosive source is still preferred. In the
case of marine seismic data the source is usually an airgun. This source produces
energy. The energy radiates out from the shot point in all directions. This energy
is detected on surface using a linear array (or spread) of geophones spaced at

regular intervals and the collection of such data obtained from a single source
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point is called Common Shot Point. Observation of the travel-times of the direct
and reflected signals provides information on the depth profile of the subsurfaces.
During data acquisition individual shot records are displayed as variable area
wiggle traces displaying travel time against distance. Figure 5.2 shows a typical
wiggle plot of a seismic data. The data from a single geophone is stacked vertically.
The horizontal axis represents the source receiver offset array and the vertical axis

represents time.

EraiarToet s (k|

Figure 5.2: Seismic Data(wiggle display) courtesy of Yilmaz [50].
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Figure 5.3: Multiple Layers.

5.1.2 Multiples

A downgoing event arriving later in time than the primary is defined as a multi-
path arrival or simply multiple. Depending on their time delay from the primary
events with which they are associated, multiples are characterized as short-path
or peg-leg, implying that they interfere with the primary reflection, or long-path,
where they appear as separate events. As seen in the Fig (5.3) due to multiple
reflections between different layers, we are getting a signal that does not give us

the information of the true layer.
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5.2 Sample Covariance Matrix

Consider Figure 5.1 and assume that we collect N independent samples from
an array of M equidistant sensors. Then the received signal y(n) where n =
1,2,..., N can be considered time slice of Figure 5.2 along the vertical axis. The
sample covariance matrix is defined as the average sum of vector outer products

y(n)y®(n) wheren =1,2,..., N.

Ry = > y(n)y"(n) (5.1)

In seismic signal processing the covariance matrix is a many-to-one mapping
[54]. It compresses voluminous data while retaining sufficient information for the
estimation of the unknown parameters some of them will be discussed in this
chapter. The authors of [48] provides an excellent overview of covariance analysis

for seismic signal processing.

The matrix that we have access to Ry, is the sample covariance matrix and does
not represents the true covariance matrix R, because of the added noise in the
received signal. Lets just say that we want to study the asymptotic behavior of
a certain scalar function of Ry, lets call it ¢(Ry,). Traditionally, when N — oo
and M is fixed, Ry is a good estimate of Ry, ie., |0(Ras) — ¢(Ras)| — 0.
However when M and N have the same order of magnitude and when considering

the limits N, M — oo, M/N — ¢, 0 < ¢ < oo then |¢(Ry) — ¢(Ry)| - 0 [59).
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Suppose that we needed to estimate the eigenvalues or the eigenvector of the
covariance matrix. Traditionally, we would use the sample covariance matrix to
estimate the eigenvalues or eigenvectors but the RMT provides us with other

tools to estimate such parameters.

5.3 Asymptotic Behavior of Sample Covariance

Matrix

Let the eigenvalues and eigenvectors of the sample covariance matrix R, be
M <M <...<yand €1, €, ...,e, respectively. RMT states that if certain
assumptions are met, the empirical eigenvalues of the sample covariance matrix
converge (as N, M — o00) to a non-random distribution. One can then characterize
the asymptotic behavior of the eigenvalues of the true covariance matrix R, in
terms of the sample covariance matrix Ry;. Consider Stieltjes transforms [55] of

the sample covariance matrix which are related to their eigenvalue densities,
. - 13 1 A B
mM(z) = SH(Rk[ — ZI]\/[) 1S7 b]w(z) = Mt’l“ (R]w — ZIA[> 1 (52)

And the corresponding transforms of the true covariance matrix will be,

mM(z) == SH<RJW - Z:[Jw)ils, b]\{(Z) = AZW’ [(RA{ — ZI]V[>71] (53)

where z € C* = {z € C : Im(z) > 0}, s is a deterministic M x 1 column

vector. Consider the following assumptions
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(Aspl) The covariance matrix R has uniformly bounded spectral radius for all
M and suppA{]|s||} < oo

(Asp2) The received vector y(n) can be expressed as y(n) = RY?u(n), where
u(n),n = 1,2,..., N are i.i.d. complex random vectors and R!'/? is a positive
definite Hermitian deterministic matrix.

Under the above two assumptions, 7(2) and 5M(2) are close to their respective

deterministic counterparts my;(2) and by(z), therefore we have,

ar(2) — mar(2)] = 0, |bar(2) — bar(2)| = 0 (5.4)

where by(z) = b is the unique solution to the following set of equations {b € C :

—(1—¢)/z+cbeCt}

h— L §M ! (5.5)
M= \1-c— czb) — 2
and
M H.oH
. s e el’sy
my(z) = E ~ 5.6
w(2) A1 —c—czby(z) — 2 (5.6)

Now we will consider another assumption

(Asp3) The number of samples per sensor should be greater then a pre-defined

M s 2
N 1 A
N_ 1 Am 5.7
M>Mm:1<>\m_§> (5.7)

value given by,
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where ¢ is the smallest real valued solution to the equation.

! Mﬁiﬂ =0 5.8
M%(xm—@f >

Now lets consider a traditional estimator that is related to the sample eigen-

vector and is defined as,

fim = st epef's, (5.9)

again where s; and sy are two deterministic vectors.
(Asp4) s; and sy have uniformly bounded norms for all M.

Under assumptions Aspl-Asp4 [60] [61] we have,

-0 (5.10)

M
R 1 7{ H. _H
T — — dip(2)dz | sy erey sy
Z (27TJ R, (m) PR

k=1

where IR, (m) is the negatively oriented contour around a rectangle defined as,
Ry(m) ={z € C: 0y < Re[z] < 09, [Im[2]| < y} (5.11)

here oy and o3 are such that (o1, 07) encloses the eigenvalue cluster relating to A,

and d(2) is,

1
di(z) = = = 5.12
(=) Me(1—c—czby(z) — 2 (5.12)
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[61] simplifies the expression for 7, as,

1 1
— di(2)dz = — X (w)dw (5.13)
215 Jory (m) 215 Jo (m)

here,
M )\
1 L= Cﬁ T:I(j\:\:w>2
Xk((,d) -3 1 M 5\ (514)

we solve the above integral by using the residue theorem [62] and we get,

M
Nm = Zwm(k‘)S{{ekekHSz (5.15)
k=1
here,
1_27{ r m(A;\m — bm ), k=m
W (k) = DA A= Am A= pim (5.16)
:\m _ HMm
5\1”_5\771, 5\r_,u'rn7 k # m
here fi,,, is the m!" solution to the equation,
M A
1 A 1
)= 5.17
M ; A—p ¢ (5.17)

Suppose now that instead of a single eigenvector e; we have two or more
eigenvectors stacked together Ej, in this case ej in (5.15) will be replaced by
E; and we would get a different weighting factor wy(m) by solving (5.14) over a
different value of o; and o, spanning the respective eigenvalues of eigenvectors in
E,.

Now we will use results from RMT summarized above for seismic signal processing,
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such as the estimation of direction of arrival, velocity and zero offset time. We
divide the received seismic data into a narrow band signal and a wide band signal

and then model them accordingly.

5.4 Narrow Band Case

5.4.1 System Model

If there is only one reflection then the signal received at the array of M sensors is
just a replica of the original source signal arriving at the receivers at different time
delays. We will see later in this chapter that these time delays can be translated
into direction of arrival. Lets assume that there are total of K reflections, i.e., the
received signal will be a sum of K reflected signals each arriving a sensor at a time
delay of 7;, where i = 1,2, ..., K. The narrow band models take advantage of the
fact that time delays can be translated into phase shifts in frequency domains

[63]. These shifts in time and frequency domain of a single trace are defined as,

s(t — 1) <> S(w)e T (5.18)

Here, s(t — 7) is the shifted version of the reflected signal. In the narrow band
case, the bandwidth of the reflected signal is small enough relative to the center
frequency w. that the phase shift is approximately constant over the bandwidth.

This approximation can be shown as,
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S(w)e ™47~ S(w)e 9T 3 s(t)e T (5.19)

Now, we write the received signal from the linear array of sensors as the weighted

sum of steering vectors with added noise.

y(t) = [v(01)v(6s) ... v(0k)]s(t) + ong(t) (5.20)

Here, ng(t) is a vector of independent gaussian noise at all M sensors at time ¢, o

is the variance of the noise and v(6;) is a M X 1 steering vector given by,

v(0;) =[1 e wid/Aesinbs pmjwiM—Dd/esinbT 4 o K (5.21)

here d is the distance between the sensors, \. is the wavelength, 0; is the direction

of arrival (DoA). The discrete model will look something like,

y(n) =Vs(n)+ongn), n=1,2,...,N (5.22)

Here, V is the Vandermonde matrix. If we stack all the time snaps of the received

signal, the new model will then be represented as,

Y = VS + 0N, (5.23)

where Y is a M x K matrix [y(1),...,y(N)]. Sisa K x N matrix [s(1),...,s(N)]
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and Ngis a M x N ii.d. gaussian matrix [ng(1), ..., ns(N)]. The matrices involved
are of large dimension with ¢ = limy_, %, 0 < ¢ < o0.

The data covariance matrix is defined as,

R = VP,V 4 Ry (5.24)

where P, = FE{ss”} is the source covariance matrix, it is a diagonal matrix
containing energy of each arriving wavelet. The seismic wavelet is a small wave
or ripple produced by the source, here it refers to the attenuated replica of the
original source wave as it is reflected by different layers. Ry = E{ngn,} is the

noise covariance matrix. When the noise is white Ry = 0?1 we have,

R =VP, V7 1 51 (5.25)

but in practice one has only access to the sample covariance matrix given by,

H
R:YY
N

(5.26)

5.4.2 High Resolution Spectral Estimators

When dealing with seismic data, we often consider extracting information from
the frequency domain representation of the signal. We apply FFT to either tem-
poral or spacial signal samples. However dealing with FFT's of voluminous seismic

data has some drawbacks like we end up with more data than is required, FFT is
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not ideal for small transient signals with few samples and the spectral resolution is
limited by the sampling time of the data [51]. An other useful tool that we use are
spectral estimators. They either estimate the Direction of arrival or the frequency
of the incoming signal. There are many such estimators like minimum variance
distortionless response (MVDR), the MUltiple SIgnal Classification (MUSIC) al-
gorithm [64], enhanced minimum variance, maximum entropy [66] and minimum
norm estimators.

These estimators traditionally use sample covariance matrix to estimate the un-
known parameter. In [67], a modified form of MUSIC algorithm called GMUSIC
to estimate the direction of arrivals. The results show that when the order of
the matrix is small (M and N are comparable) GMUSIC performs better but as
N — oo as M is fixed the results converge for both estimators.

In the next section we are going to apply the same technique on a different spectral

estimator and evaluate its performance.

5.4.3 Minimum Norm

The minimum norm spectral estimator was initially introduced by Kumaresan
and Tufts [56]. It adds a polynomial form constraint by minimizing the norm of a
linear combination of noise subspace and scales the first element of the noise space
eigenvector to unity. The traditional minimum norm estimator P,y is given by,

Pun(0) = 207 QL QG0 (527

(a'q)?
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where a(f) = [1 e iwd/Aesing  o—jwM-1)d/Acsin0]T " is the noise space eigen-
vectors matrix, q = [g1,1¢(1,2), - - - » q(LK)]T is the vector of the first elements of
noise eigenvectors and 1; = [100...0]T of length M.

Now we apply RMT approach to obtain a different estimator. We solve (5.13)
where the interval (o1, 0,) encloses the eigenvalue cluster only relating to noise

eigenvalues. With a little simplification we come up with,

a(0)’QWQi1,11QwQa(0)

Poyn(0) = 5.28
e (0) 1TQWQF1, (5.28)
where W is a diagonal matrix with diagonal entries given by,
1+ (ﬁm — pm ) m<M-—K
w(m,m) = PR N =Am Ar—pim (5.29)
— ]kEK Xb—nﬁm _ xr’i’Zm’ m>M-—-K
here i, is the m*" solution to the equation,
Mo
1 A 1
e - (5.30)

By searching for the local maxima of Py and Pg;,, we estimate the Direction

of arrival (DoAs).

Simulation Results

The reflected signal s(n) is generated as a Ricker Wavelet. As seen from Figure

5.4(a) the wavelet starts at a particular time ¢, and after some times dies again.
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It is important for a narrow band signal that the reflected wave has a very narrow
bandwidth and the whole bandwidth can be approximated by its center frequency.
Figure 5.4(b) shows that the center frequency of the wavelet generated is 5Hz.

Seismic data is generated according to the model (5.23) where V is the vander-
monde matrix and the rows of S are the reflected ricker wavelets. Now, consider
that there are only two reflections K = 2 coming at an angle of 35° and 37° with
a center frequency of 5Hz, in fact they superimpose each other, i.e., their time
of arrival is almost the same. Since it is a narrow band signal, the time delay
between adjacent receiver is very small. Figure 5.5 shows a noise free synthetic
data gathered by 20 sensors with a sampling rate of 10ms and gathers a total of
40 samples. As seen from the figure, it is hard to differentiate or even distinguish
the two waves with a naked eye. It looks like a single reflected wave.

For the sake of comparison Figure 5.6 and Figure 5.7 are noise added models
of Figure 5.5 with SNR of 10dB and 5dB respectively.

Figure 5.8 shows the comparison between the Min Norm and G-Min Norm
estimators when M = 20, N = 20 d/\. = 0.5 and SNR = 10dB. As it can be
seen from Figure 5.8 when M and N are of comparable magnitude, the G-Min
norm estimator detects two direction of arrivals while the traditional estimator
detects a single direction of arrival.

We now increase the sample size from N = 20 to N = 100. Figure 5.9 shows
that the Min Norm and G-Min Norm estimators give the same result.

The convergence of the traditional estimator and G-estimator as N increases
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Figure 5.4: Ricker Wavelet
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can be seen from Figure 5.10.
Figure 5.11 plots the MSE (sum of the variance and the squared bias of the
estimator) with respect to SNR. It can be clearly seen that the MSE of G-Min

Norm estimator is less then that of Min Norm estimator.

5.5 Wide Band Case

We will be comparing the results of MUSIC and GMUSIC algorithms for the
wideband seismic case by estimating the velocities of the coming wavefronts. The
spectral estimators to be maximized are Py,t,¢;0 and Pgiyprgrc and are given by
[67],

P]WUS[C(V) = aH(V)Qana(V) (531)
Ponusie(V) = a (V) QWQPa(V) (5.32)

where W is given by (5.29).

5.5.1 Before Preflattening

The seismic wavefronts arrive to the equispaced horizontal geophone array with
the model provided by (5.22). However the delay at the m'" sensor is not an
integral multiple of any intersensor delay, in fact the delay at the m* sensor

follows a hyperbolic path. The time delay 7,,; of the k" wavefront at the m!*
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sensor is approximated by [48],

nmzag%gw (5.33)

where Ty is the vertical two way travel time between the sensor and the reflected
surface and V;, is the velocity of the k% wavefront. The delay column vector in
(5.22) becomes vy, = [1 e Ik emdwkTark]T,

If the time delay 7,, from one end of the array to the other is not small enough
compared to the temporal correlation time, then the assumption of narrow band
fails to hold [58]. In this case the wavefronts lose energy into dimension of space
other then the ideal rank-K dimension of the plane wave. This loss in energy

appears as colored noise in the near diagonal elements of the covariance matrix.

5.5.2 After Preflattening

As stated earlier that the narrowband assumption does not work well when the
time delay from one sensor to the other is large. We can reduce this delay by
preflattening the data. In preflattening we shift the data set in a hyperbolic
manner. Consider that we have two wavefronts with velocities V; and V5 then we
preflatten the data to an approximate velocity V, which lies in between V; and V5

by a shift given by [48],

rn(V) = T3+ (m = 1)d/V2 = T3 + (m — 1)d/ V2 (5.34)
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5.5.3 Simulation Results

The synthetic data generated for the wideband case was generated by adding
the wavelets with a time delay given by equation (5.33). Figure 5.12 shows two
ricker wavelets (both with center frequency f. = 30Hz) traveling at velocities
Vi = 3600m/s and Vo = 7000m/s respectively. Here we have M = 20, N = 300
and d = 60m. It is clear from the figure that it does not fall under the category
of narrow band signal.

Figure 5.13 shows the two estimators. MUSIC algorithm is performing as expected
and shows multiple peeks as if there were many narrowband wavefronts. However
it is interesting to note the performance of GMUSIC, the first two peek do give
us a good estimate of the velocities.

Now consider that the two incoming wavelets have velocities V; = 2700m/s and
Vo = 3600m/s, both with ricker venter frequency of f. = 30Hz. Here M = 20,
N = 200 and the data is preflattened with an approximate velocity of V, =
3000m/s. Figure 5.14 is the wigger plot after preflattening

Now the performance of MUSIC and GMUSIC algorithm is as expected from

Figure 5.15
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Figure 5.5: Wigger Plot of the synthetic noise free received data with M = 20, N = 40,
f. =5Hz, 6; = 35° and 6, = 37°
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Figure 5.6: Wigger Plot of the synthetic received data with M = 20, N = 40, 6; = 35°,
fe = 5Hz, 0, = 37° and SNR = 10dB
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Figure 5.7: Wigger Plot of the synthetic received data with M = 20, N = 40, 6; = 35°,
fe =5Hz, 6, = 37° and SNR = 5dB
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Figure 5.9: Estimation of Direction of Arrival (DOA) with 6; = 35°, 6, = 37°, f. = 5Hz,
M =20, N =100, d/\. = 0.5, Empirical SNR = 10dB

118



39 \
G-Min Norm
Min Norm

38 b

37 B

36% o o o © i

Angles

33 1 1 1 1 1 1 1 1
15 20 25 30 35 40 45 50 55 60
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Figure 5.12: Wigger Plot of data before preflattening with f. = 30Hz, V; = 3600m/s,
Vo = 7000m/s, M =20, N = 300 and d = 60m
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Figure 5.13: Estimate of velocities V; = 3600m/s and Vo = 7000m/s before Preflat-
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Figure 5.14: Wigger Plot of data after preflattening with Vi = 2700m/s, Vo = 3600m/s,
V, = 3000m/s, f. = 30Hz, M = 20, N = 200
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with V, = 3000m/s, f. = 30Hz, M = 20, N = 200
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5.6 Subspace Approach

In this section of the chapter we will try to estimate the stacking velocity and
zero-offset time simultaneously. The zero offset time Ty is the time required for a
wave to travel vertically from the source to the reflecting surface and back. The
stacking velocity will be the average velocity of the wavelet. The Wave velocity

often is deemed useful because it gives us a hint of the media through it traveled.

5.6.1 System Model

Consider that the seismic data has a single wavefront or multiple wavefronts with
the same time delay arriving at M + 1 geophones (sensors). We are taking K

samples of the received data, then the received matrix Y (¢) can be represented as

[48]7
y(to—10) ylto—7) ylto—7) -+ ylto— Tum)
yiti—7) ylti—7) ylti—7) - ylti—7u)
Y(t) = Y(ta—710) ylta—m) ylta—71) - ylta—7m)
| Ytk = 70) yltx —n) yltx —m) - yltx — 7ur) |

If y(t — 7) is a wideband signal then it can not be expressed as y(t)e 7“7 as we
did in the narrow band case, so we apply the subspace techniques in the frequency
domain.

The discrete fourier transform (DFT) of Y (¢) can be written as,
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y(w())e_jwom y(wo)e—jwoﬁ y(wo)e—jwom . y(wo)e_jWOTM
y(wl)e—jwm y(wl)e—jﬁﬂﬁ y(wl)e—joﬂm . y(wl)e_j‘*’”M
Y(CU) = y(wg)e_jwm'o y(w2)€—jw2n y(wz)e—juum - y(wz)e—jww—M
y(wK)eiijTo y(wK)e’ijTl y(wK)efjWK‘Q e y(wK)B*ijﬂ'M

here y(wy) = [y(wr)le™’, wp = k25, k= 0,1,2,..., K. If we choose the the

first sensor to be at the location of the source, then 75 = 0 and we would get,

y(wo)  ylwo)e o™ ylwe)e o™ oo y(wp)e w0
y(uh) y(ah)e‘JW1rl y(ah)e—jwﬂv . y(aq)e‘jwlﬂw
T{(uﬁ = y(a@) y(ub>e‘7w271 y<u&)e*jwm7 ce y(u@)e‘jw2ﬂw
y(wK) y(wK)e—ijn y(wK)e—ijTz . y(wK)e‘j“KTM

Now we define a transformation matrix T(w) as,

eibo
ywo)l 0
T(w) =
elfK
0 el |
Multiplying T(w) with Y (w) we get,
1 e Jwomt ... pTiwoTm
T(w)Y(w) =
1 e JWKTL ... (e IWKTM

Dropping the first column of the matrix as it does not contain any information.

We define a new matrix A
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e JwoTi ... o—jwoTm

eTIWKTL ... eTJWKTM

Lets assume that the range of the bandwidth of signal is (P, Q) where 0 <

P < Q < K, we define wq = -2*-. Different version of A is defined as,

K+1°
| e~ JPwam - e JPwaT: |
e~ d(P+lwart ... p=i(P+1)wqtn
Aw) =
eI Q@-Dwari ... =i(Q@-1wiTn;
e IQwat ... e IQwatn

This matrix A has Vandermonde characteristics, now we can apply the spectral

estimation techniques that we discussed in the pervious section.

5.6.2 Estimation of Time Delays

We are going to find the time delays 7;, ¢ = 1,2,..., M by using MUSIC and
GMUSIC algorithm. The matrix A(w) with a order of (Q — P+ 1) x M has a
rank of M (when Q) — P+1 > M) because of this reason we can find the subspace

alternatively as [48],

Q, =AATA)TIAY Qi =1-Q, (5.35)
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In this case the MUSIC delay spectrum function as [48],

PMUSIC(T) = aH(T)QOQOa(T) (5-36)

where a(7) = [e/fwim . eQwaT]H  And the GMUSIC delay spectral function is

defined as,

Penvsic(r) = a (1) QWQ a(7) (5.37)

where W is given by (5.29). By choosing 7 corresponding to the M local maxima

of Pytsrc and Poijrgro we find the time delays.

5.6.3 Estimation of Velocity and Zero offset Time

If x;, i = 1,2,..., M is the distance of the sensors from the source. Then we
can estimate the zero offset time (7}) and stacking velocity (v) simultaneously by

solving the following equation [48],

1
r] —27m Ti

-

where 1 is the left pseudo-inverse of the matrix.
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5.6.4 Simulation Results

We generate a wide band synthetic data with a single wavefront reflection as shown
in Figure 5.16 where M = 20, K = 150, v = 600m/s, To = 0.1s, P = 20z,
Q =50Hz, f. = 40Hz and the empirical SNR = 10dB. When you look at the
figure it seems that the wavefront starts from Ty = 0.02s but actually this is the
truncated data and the original value of Ty is still the same.

Figure 5.17 and Figure 5.18 show the MUSIC and GMUSIC estimate of the
velocity and zero-offset time respectively.

It can be seen that GMUSIC gives a better result then MUSIC algorithm in

terms of RMSE which is summarized in table 5.1.

Table 5.1: RMSE for MUSIC and GMUSIC at different SNRs

RMSE MUSIC GMUSIC MUSIC GMUSIC
(SNR=10dB) | (SNR=10dB) | (SNR=20dB) | (SNR=20dB)
Velocity (m/s) 132 83 15 15
Zero offset (s) 0.0225 0.0071 0.0057 0.0057
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5.7 Chapter Conclusion

This chapter uses the results of RMT to demonstrate that for seismic data models
of comparable number of rows and columns we have a better estimate of the
function of the sample covariance matrix. However, the traditional and RMT
estimators converge when the number of rows of data matrix grows linearly while
the number of columns remains fixed. This chapter tests few of the tools present
in RMT for seismic signal processing, however we can exploit the field of RMT

further.
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Figure 5.16: Wigger Plot of the seismic data with M = 20, K = 150, v = 600m/s,
To=0.1s, P=20Hz, Q =50Hz, f. =40Hz and the empirical SNR = 10dB
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Figure 5.17: MUSIC Estimate of velocity and zero-offset time
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Figure 5.18: GMUSIC Estimate of velocity and zero-offset time
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CHAPTER 6

CONCLUSIONS AND FUTURE

WORK

6.1 Conclusion

This thesis highlights some of the uses of Random Matrix Theory (RMT) for
wireless communication and seismic signal processing. This thesis started off
with a very simple scaling law for bounded i.i.d random variables. We investi-
gated different suboptimal scheduling schemes of VBLAST system and provided
a mathematical justification for their behaviors. We invoked the power of RMT
for the estimation of the distribution of wireless sensor networks. An finally we

explored a few applications of RMT for seismic signal processing.

6.2 Future Work

This work can be extended to do future research in the following ways:
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e A scaling law could be devised for unbounded i.i.d. random variables. This

would result in a more powerful tool for Extreme Value Theory (EVT).

e The results obtained on the Vandermonde matrices could be further en-

hanced for the case defined as,

C=Vv,VI4v,vl (6.1)

where V; and V, are Vandermonde matrices of different distribution.

e For seismology, G-estimation method could be implemented for other high

resolution spectral estimators such as ESPRIT.

e There are many other aspects of seismology that are left unexplored. For
example we could use the G-estimation technique for eigenimage processing

of a seismic data.

e The RMT estimators stated in the seismic chapter could be used as a better
estimate of eigenvalues and eigenvectors when implementing facial detection

and recognition system.
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APPENDIX A

PROOF OF EQUATION (4.18)

As defined earlier, let v, 1, 7, ¥, ¢ and ¥ be the probability measure of YY 7,
VXXV, NN XXHVVH XX and VV¥ respectively. The rectangular

additive free deconvolution provides us with the following moments of VXXV

mi(n) = my(y) — o (A1)

ma(n) = ma(y) — 20%(1 + c1)ma(v) + o*(1 + 1) (A.2)

The moments of VEXXHV are related to the moments of XX7VVH as

ml(ﬁ) :szl(n) = 02<m1(7> - 02) (A~3)
ma(9) =cama(n) = cama(y) — 2c20%(1 + c1)ma (7)

+ oot (1 +¢1) (A4)
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Multiplicative free deconvolution can now be applied to get the moments of VV#

and are estimated as

my(y) =ca(mi(y) — 0?) (A.5)
ma(v) :C%(ml(V) - 02)2 — ca(ea(1 + cl)m%(v)
+20%(1 4 ¢1 — ¢y — c1c0)ma(7)

+0'(ca — e1) —ma(7)) (A.6)

The moments of VV* are also given by (4.16)

mi(y) =cs (A7)

m2(¢) =C9 + C%IQ (AS)

This simplification occurs due to the fact K3 = Ky = K;p = land I; =1
irrespective of the distribution of w. By equation the first moments of VV ¥ we

conclude

my(y) = o +1 (A.9)
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Equation the second moment of VV# gives us

L4 oLy =ma(y) + (—crc2)mi(y) + 20% (crey — e = 1)ma(7)

+ o' (1+ e — crey) (A.10)
Lt gl =ma) + (=g i) +20% (= 1= 1) m)

+ o* <1+£—[L() (A.11)
1+ ]LDI2 =my(y) — o (1 + ;) — 20° <1 - [i) - <[L(> (A.12)

Solving for P

Kma(y)—K—L-Ko*—2Ko?
J K2m2(y)—2K(Ko*+2Ko?+L+K)ma(y)
+
P =

2K Lo*4+4K Lo2+k2+6 K204 +4K?2 02
+K208+4K265+ L2 +2LK—4LK0?I2(02+42)

202(0? 4 2)

(A.13)

In the case where the estimation of P gives a complex result then the estimation

becomes a maximization problem for the following concave function

L P
fmax{P} =—1- FIZ + mQ(V) - 04 <1 + K)

— 20° (1 - ;) - (i) (A.14)

Similarly, by using higher moments we can derive alternate estimation formulas
for P but as seen from figure 4.2 the estimation of the lower moments is more

accurate then higher moments.
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APPENDIX B

PROOF OF EQUATION (4.19)

Consider the case where w has a distribution of p(z) bounded within [0,1). I, is

given by

I, = (27)" /0 po(@)da (B.1)

the probability distribution p,(x) can be represented alternatively as a Bernstein

polynomial

polz) = lim i <t - 1)pw <“ - 1) 211 = 2)t (B.2)

we get

I, = lim (27)"*

t—o0

[ECD (o) o

v=1
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we can expand the integration by using multinomial expansion defined as

n
(.fl,ﬂjg,.._,,flj’t)n: Z (kl k2 kt)l'll'g...ﬂft (B4)

ki1+ko+...+ki=n

therefore we get

I, = lim(2m)"! "
" tinéolo( ﬂ-) Z (k‘hkg, .. .,kt>

ki1+ko+..+ki=n

ESIGHIN

1
/ x22}:1(7~’*1)kv(1 _ x)Zf}:l(tfv)k“dx (BS)
0

o : n—1 n
- tliglo(27r) Z <I{31, ]{32, ey kt>

ki+ko+...+ki=n

<F(1 +in— > vk )T vk, —n+ 1))
' L((t—1)n+2)

(k=0 0l

v=1
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