

iii

DEDICATION

To my father and mother

To my brothers and sisters

To my friends and colleagues

iv

ACKNOWLEDGMENTS

All praise is due to Allah the Almighty for his countless blessings and

enlightenments throughout my studies.

Acknowledgement is due to King Fahd University of Petroleum &

Minerals and ICS Department for supporting this research. My sincere

appreciation goes to Dr. Mahmoud Elish, for all assistance, advice, encouragement

and invaluable support given as my advisor and mentor throughout the period of

this research. His constructive criticism and feedback proved invaluable to the

development of this thesis. Great thanks are also due to my thesis committee

members, Dr. Muhammad Al-Mulhem and Dr. Sajjad Mahmood, for their

cooperation, comments, support, and contributions.

I wish to express my appreciation to my entire family for their love,

support, prayers and encouragement throughout my life. In addition, I am thankful

to my friends for their encouragement and friendship.

v

TABLE OF CONTENTS

DEDICATION .. III

ACKNOWLEDGMENTS .. IV

TABLE OF CONTENTS ... V

LIST OF FIGURES... VII

LIST OF TABLES... VIII

THESIS ABSTRACT ... X

الرسالة ملخص .. XI

CHAPTER 1 .. 1

INTRODUCTION ... 1

1.1 PROBLEM STATEMENT .. 3
1.2 MOTIVATION .. 3

1.2.1 Fault Prediction ... 5
1.2.2 Change Prediction ... 5
1.2.3 Implementation Effort Estimation .. 6

1.3 LITERATURE REVIEW.. 7
1.4 RESEARCH CONTRIBUTIONS ... 9
1.5 ORGANIZATION OF THE THESIS ... 9

CHAPTER 2 .. 10

2. BACKGROUND .. 10

2.1 CHARACTERISTICS OF OOD.. 10
2.2 SOFTWARE METRICS IN OOD ... 12
2.3 C&K METRICS SUITE ... 14
2.4 MOOD METRICS SUITE .. 24
2.5 MARTIN METRICS ... 35

3. CHAPTER 3 .. 41

EMPIRICAL STUDY 1: FAULTS AND PACKAGE METRICS .. 41

3.1 GOAL .. 41
3.2 HYPOTHESES .. 41
3.3 SUBJECT ... 42
3.4 EXPERIMENTAL VARIABLES ... 43
3.5 TOOL .. 44
3.6 DATA COLLECTION ... 46
3.7 RESULTS AND DISCUSSION ... 46

3.7.1 Descriptive statistics .. 47
3.7.2 Univariate Analysis ... 55
3.7.3 Multivariate Analysis ... 70
3.7.4 Evaluation Measures ... 71
3.7.5 PreFD, PostFD and package-level metrics ... 75
3.7.6 PPreF and package-level metrics .. 79
3.7.7 PPostF and package-level metrics .. 80

3.8 CONFOUNDING EFFECT OF PACKAGE SIZE .. 82

vi

3.9 CONCLUSION .. 85

4. CHAPTER 4 .. 87

EMPIRICAL STUDY 2: CHANGE DENSITY AND PACKAGE METRICS 87

4.1 GOAL .. 87
4.2 HYPOTHESES .. 87
4.3 SUBJECTS .. 87
4.4 EXPERIMENTAL VARIABLES ... 88
4.5 DATA COLLECTION ... 89
4.6 RESULTS AND DISCUSSION ... 89

4.6.1 Descriptive statistics .. 90
4.6.2 Univariate Analysis ... 95
4.6.3 Multivariate Analysis ... 105

4.7 CONFOUNDING EFFECT OF PACKAGE SIZE .. 109
4.8 CONCLUSION .. 111

5. CHAPTER 5 .. 113

EMPIRICAL STUDY 3: IMPLEMENTATION EFFORT & PACKAGE METRICS 113

5.1 GOAL .. 113
5.2 HYPOTHESES .. 113
5.3 SUBJECTS .. 113
5.4 EXPERIMENTAL VARIABLES ... 114
5.5 TOOL .. 114
5.6 DATA COLLECTION ... 114
5.7 RESULTS AND DISCUSSION ... 115

5.7.1 Univariate Analysis ... 115
5.7.2 Multivariate Analysis ... 123

5.8 CONFOUNDING EFFECT OF PACKAGE SIZE .. 128
5.9 CONCLUSION .. 129

6. CHAPTER 6 .. 131

CONCLUSIONS AND FUTURE WORK ... 131

6.1 THREATS TO VALIDITY ... 134
6.1.1 Conclusion Validity ... 134
6.1.2 Internal Validity ... 135
6.1.3 Construct Validity .. 136
6.1.4 External Validity .. 137

6.2 MAJOR CONTRIBUTION ... 138
6.3 FUTURE WORK ... 138

7. REFERENCES .. 140

APPENDIX A – BEST SUBSETS .. 146

APPENDIX B – REGRESSION MODELS .. 150

8. VITA ... 157

vii

LIST OF FIGURES

Figure 1: Description of software metrics .. 13

Figure 2: References in Package A .. 16

Figure 3: Class Car ... 18

Figure 4: Class Truck .. 19

Figure 5: Class C1 ... 21

Figure 6: Example of inheritance in Package A ... 23

Figure 7: Classes Cat and WildCat ... 28

Figure 8: Classes in Package A .. 33

Figure 9: Dependencies between Packages A, B, C, D and E 38

Figure 10: Relationship between Packages A, B, C, D and E 39

Figure 11: Box Plot for PreFD in Eclipse 2.1 ... 76

Figure 12: Figure Box plot for PostFD in Eclipse 2.1 .. 77

Figure 13: Box Plot for PreFD in Eclipse 3.0 ... 78

Figure 14: Box Plot for PostFD in Eclipse 3.0 ... 78

Figure 15: Accuracy of the classification results .. 82

Figure 16: Box Plot for change density models in Eclipse 107

Figure 17: Box Plot for change density models in GanttProject 109

Figure 18: Box Plot for implementation effort models in Eclipse 125

Figure 19: Box Plot for implementation effort models in GanttProject 127

viii

LIST OF TABLES

Table 1: Ca, Ce, “I”, A and D values for packages in Figure 10. 40

Table 2: Summary of Eclipse system ... 43

Table 3: Descriptive statistics for the proposed metrics in Eclipse 2.0 51

Table 4: Descriptive statistics for the proposed metrics in Eclipse 2.1 52

Table 5: Descriptive statistics for the proposed metrics in Eclipse 3.0 53

Table 6: Descriptive statistics for Fault in Eclipse 2.0 ... 54

Table 7: Descriptive statistics for Fault in Eclipse 2.1 ... 54

Table 8: Descriptive statistics for Fault in Eclipse 3.0 ... 55

Table 9: PreFD and package-level metrics ... 59

Table 10: PostFD and package-level metrics ... 62

Table 11: PPreF and packages-level metrics .. 65

Table 12: PPostF and package-level metrics .. 67

Table 13: Best indicators for fault in a package ... 68

Table 14: Confusion matrix for binary classification problems [27] 73

Table 15: Classification accuracy for PreFD, PostFD and package-level metrics 76

Table 16: Classification accuracy for Package-level Metrics ... 80

Table 17: Classification accuracy for Package-level Metrics ... 81

Table 18: Results of the model after controlling the size for Eclipse 84

Table 19: Summary of GanttProject system ... 88

Table 20: Descriptive statistics for the package-level metrics in GanttProject 2.0.6 93

Table 21: Descriptive statistics for the package-level metrics in GanttProject 2.0.7 94

Table 22: Descriptive statistics for change in Eclipse and GanttProject releases. 95

ix

Table 23: Correlation between change density in Eclipse .. 98

Table 24: Correlation between change density in GanttProject 101

Table 25: Best indicators for change density .. 103

Table 26: Classification accuracy for change density in Eclipse 106

Table 27: Classification accuracy for change density in GanttProject 108

Table 28: Result of the model after controlling the size for Eclipse and
GanttProject .. 110

Table 29: Correlation between implementation effort in Eclipse 2.0 117

Table 30: Implementation effort and package-level metrics in GanttProject 119

Table 31: Best metrics for implementations effort estimation 121

Table 32: Classification accuracy for implementation effort in Eclipse 124

Table 33: Classification accuracy for implementation effort in GanttProject 126

Table 34: Result of the model after controlling the size for Eclipse and
GanttProject .. 129

Table 35: Best subsets of package-level metrics in Empirical Study 1 146

Table 36: Best subsets of package-level metrics in Empirical Study 2 148

Table 37: Best subsets of package-level metrics in Empirical Study 3 149

Table 38: PPreF model for Eclipse (Train 2.0 & 2.1 and Test 3.0) 150

Table 39: Fault density model for Eclipse (Train 2.0 and Test 2.1) 151

Table 40: Fault density model for Eclipse (Train 2.0 &2.1 and Test 3.0) 152

Table 41: Change density model for Eclipse .. 153

Table 42: Change density model for GanttProject .. 154

Table 43: Implementation effort model for Eclipse ... 155

Table 44: Implementation effort model for GanttProject ... 156

x

THESIS ABSTRACT

NAME: ALI HASEHM ALI

TITLE: A COMPREHENSIVE EMPIRICAL VALIDATION OF

PACKAGE-LEVEL METRICS FOR OO SYSTEMS

MAJOR FIELD: COMPUTER SCIENCE

DATE OF DEGREE: June 2010.

During the last few years, several package-level metrics have been developed and

used to characterize the attributes of packages in object-oriented software design.

These metrics provide ways to evaluate the quality of software. But how do we

know which metrics are useful in capturing important quality attributes. Empirical

studies are needed to provide relevant answers.

The proposed work will study sets of package-level metrics and empirically

validate them against some implementation and quality assessment attributes. In

addition, these metrics have been implemented in this work, to automate the

extraction of the package level metrics. The collected metrics have been

investigated to explore their capability to identify and predict pre- and post-release

fault, change density and implementation effort for software packages. The results

show that some of the package-level metrics are good indicators for change

prediction, fault prediction and implementation effort estimation, even after

controlling for package size.

xi

 الرسالة ملخص

 .علي ھاشم علي : مـــــالإس

 .الحزم في البرامج غرضیة التوجھمقدرة مقاییس من حققللتدراسة تطبیقیة شاملة : عنوان الدراسة

 .علوم الحاسب الالي : التخصص

 .م 2010 یونیو : تاریخ التخرج

 تخدمتالتي طورت واس الحزممستوى مقاییس على االظھرت العدید من ، خلال السنوات القلیلة الماضیة

لبرمجیات تقییم جودة اسبل ل توفرھذه المقاییس . لتشخیص سمات الحزم في تصمیم البرامج غرضیة التوجھ

 لتقاطمفیدة في اال المقاییس ولكن كیف نعرف. مجیاتفي المراحل الاولى من مراحل تطویر البر واستخدامھا

عبارة ھو العمل المقترح .ذه الأسئلةلمثل ھلتقدیم أجوبة قیةتطبیدراسات عمل لا بد .الجودة المھمةسمات

. تنفیذ وتقییم الجودةالمن بعض سمات التحقق تطبیقیا یشمل ایضا و حزمالمجموعة من مقاییس لدراسة عن

داة أتطویر كذلك تم. لتكون على مستوى الحزمبعض مقاییس المصفوفھ تعریف عادة إ في ھذه الدراسة سیتم

تعرف الة تم التحري عنھا لاكتشاف قدرتھا على المقاییس المجمع .ستخراج ھذه المقاییسإیة ة عململأتم

 قدو. درجة التغیر في الحزم والجھد المبذول لتنفیذ الحزمواصدار البرنامج وبعده، أخطاء ماقبل بوالتنبؤ

جھد والالحزم تغیرو بالأخطاء، للتنبؤا جید امؤشرالحزم تعد مقاییس بعض أن الإختبارات نتائجأظھرت

 .المبذول في تنفیذھا حتى بعد التحكم في حجم الحزم

1

Chapter 1

Introduction

The use of Object-Oriented Design (OOD) paradigm for designing and developing

software has become quite widespread [1]. Designers are using OOD as it is a faster

development process, module based architecture, includes high reusable features,

increases design quality and so on [2]. Objects are the basic units of OOD. Identity,

states and behaviors are the main characteristics of any object. A collection of objects

which have common behaviors are called class. A class identifies the abstract

characteristics of object, including the object's characteristics (its attributes or

properties) and the behaviors (methods or operations). Jacobson defined class as follow

[3]: “A class represents a template for several objects and describes how these objects

are structured internally. Objects of the same class have the same definition both for

their operation and for their information structure”

Since object-oriented software applications grow in size and complexity, they

require some kind of high-level organization. Classes, while a very convenient unit for

organizing small applications, are too finely grained to be used as the sole

organizational unit for large applications. This is where packages come in; packages are

mechanism for organizing classes into namespaces. A package is a basic development

unit that can be separately created, maintained, released, tested, and assigned to a team

2

[4]. Niemeyer defined Java packages as follow 1[5]:“A java package is a group of

classes that are related by purpose or by application. Classes in the same package have

special access privilege with respect to one another and may be designed to work

together closely.”

The purpose of a package is to increase the design quality of large applications

by grouping classes that belong to the same category or providing similar functionality

into packages [6].

Object-oriented metrics such as class and package-level metrics are used to

measure properties of OOD. These metrics are used to characterize the attributes of

software in OOD at different levels (e.g. class and package-levels). They provide ways

to evaluate the quality of software and their use in earlier phases of software

development [7]. They also help organizations in assessing large software development

quickly and at a low cost [8, 9, 10, 11].

Studying and analyzing packages in object-oriented software in order to evaluate

the quality of software is becoming increasingly important as OOD continues to

increase in popularity, the size and number of packages of these software increases [12,

13, 14]. Consequently, several package-level metrics have been developed and used to

characterize the attributes of packages in object-oriented software design. Many of these

attributes have relation, in one way or the other, with the quality of the software being

produced. Such attributes include: size, complexity, coupling and cohesion. Package-

level design metrics can be used to measure these attributes. However, some of these

1 Niemeyer definition has been used to define a package in this research

3

metrics may not really measure the intended quality attributes of software. Thus,

empirical validation is necessary to demonstrate the usefulness of these metrics in

practical applications [7]. This research will empirically investigate and study the effect

of package-level design metrics on the quality of software. Moreover, sets of system

and class-level metrics will be redefined and implemented so that they can be collected

at the package-level. The package-level metrics will be investigated against some

implementation and quality assessment attributes, mainly: package fault prediction,

change prediction and implementation effort estimation.

1.1 Problem Statement

Several package-level metrics have been proposed and claimed to provide ways to

evaluate the quality of software in earlier phases of software development. However,

these metrics were not empirically validated. Therefore, empirical validation is

necessary to demonstrate the usefulness of such metrics.

1.2 Motivation

With the rapid increase of the size and number of packages of software systems, several

package-level metrics have been developed and used to characterize the packages in

object-oriented software design. Once the design has been implemented, it is difficult

and expensive to change. Therefore, the design should be good from the start. Package

4

design metrics can help to evaluate and improve the quality of a design [12]. Studying

design metrics at the package-level has many advantages:

- Since packages can be considered as subsystems and represent the coarse grained

structure of an application [14], they can be used as early indicator for the design

quality of the whole system.

- Package-level metrics can be collected easily and they are applicable to use in many

stages through software development lifecycle, to enhance the quality of milestone

of this stage. This is because these metrics don’t require source code before they can

be collected. For example, software designers can collect design package metrics at

the design phase from UML diagrams and then use these mercies to evaluate

systems designed whereby early preparation and planning for development are

considered of special importance in order to save money in the long run.

- Package-level metrics can be also collected from source code during the

implementation or testing phase. Developers and quality assurance engineers can

use these metrics to determine change-prone packages or to identify faulty packages

while they are implementing and testing the system.

- Software project managers can utilize package-level metrics to early estimate the

implementation effort for the system packages which will help them in allocating

the proper amount of resources to each package, and hence to the system, in early

phases.

Quality models that investigate the relationship between package-level metrics,

implementation and quality assessment attributes such as change prediction, fault

5

prediction and effort estimation are needed to use these metrics effectively. Therefore,

by empirically validating these metrics, software managers can find opportunities of

improvements in the software as early as possible and to latter make plans for

modifications that need to be implemented in the future. The importance of the

attributes that will be measured and empirically validated is described as follow.

1.2.1 Fault Prediction

One of the most important goals of industrial software development is to achieve high

reliability and quality of the released product. This quality is crucially influenced by the

number of residual faults present in the product. A fault can be pre-release or post-

release fault. Pre-release fault is a defect (e.g. programmer error) that causes a failure

before a release, typically during software testing, while post-release fault is defect that

causes a failure after a release and initial customer use [15]. It is therefore possible to

increase the reliability of a product by reducing the number of residual faults present in

the product. This can be achieved, among other things, by using metrics that measure

factors that influence the number of faults in the packages. In addition, if a set of

package-level metrics, extracted from packages in a release, are known to be a good

predictor of fault (pre- or post-release) in that release, developer and quality team can

focus on those packages to increase the reliability of the release of the software.

1.2.2 Change Prediction

In OOD, a software system consists of one or more packages. Each package consists of

a set of classes. When a software changes, some classes will change (i.e. added,

6

deleted or modified). Changes in these classes ripple through the system [16], affecting

other packages and relationships to be reengineered. Since object-oriented software

development is affected by change-prone classes (i.e. volatile classes) in packages,

which requires effort and resources consumptions in development and maintenance [2],

change-prone classes, and hence packages, need more investigation and research in

purpose to recognize these packages by identifying their characteristics. Once this is

achieved, developers can develop and apply certain actions on these packages of

developed software as next increment that make the software in high quality level. Peer-

reviews, testing, inspections, and refactoring are some examples of the expected actions

on those packages. This, in turn, will help software developers to utilize their resources

more efficiently and deliver higher quality products within time and budget.

1.2.3 Implementation Effort Estimation

Because of the growing diffusion of the size, number of packages in object-oriented

software and the need of maintaining the process of software development under

control, industries are looking for metrics capable of producing suitable implementation

effort estimation [17]. These metrics have to produce results with a known confidence

since the early phases of software life-cycle in order to establish a process of prediction

and correction of costs. To this end, package metrics are needed to be empirically

validated in order to estimate effort in object-oriented system development.

7

1.3 Literature Review

There are many studies that empirically investigated OOD metrics against change

prediction [12, 18, 19, 20, 21, 22, 23, 24], fault prediction [15, 2, 25, 26, 27] and

development effort estimation [28, 29]. However, the metrics used in these studies were

at the class-level and not at the package-level. This work, however, is a comprehensive

study that empirically investigates sets of OOD package-level metrics against the

mentioned attributes.

Package-level metrics such as coupling and stability metrics have been studied

by many researchers. Martin introduced a set of package-level metrics that are related to

dependencies, abstraction and stability [12]. He proposed these metrics based on the

Stable Dependencies Principle for volatile packages and Stable Abstraction Principle

[12]. However, these metrics have not been empirically validated.

 Zimmermann, Premraj and Zeller [15] used bug database to calculate pre- and

post-release faults for every package and file in the Eclipse releases 2.0, 2.1, and 3.0.

Then, they aggregated some of method and class-level complexity metrics at package-

level and correlated them with pre- and post-release faults of a package. The results

showed that the combination of complexity metrics can predict defects, suggesting that

the more complex code it, the more faults it has. However, the predictions were far from

being perfect [15].

8

Yau and Collofello [30] used measures based on algorithm for estimating the

stability of a program and the packages of which the program is composed. They used

computation based on data abstraction and global variable to find the logical stability.

D’Ambros and Lanza [31] proposed evolution radar, which is interactive visualization

technique, to understand the package coupling based on their evolution. On the other

hand, Ducasse and colleagues [14] proposed a generic visualization technique that can

be used to visualize, analyze and understand package relationships. They have applied

this technique to several large applications to indicate badly designed packages.

Wilhelm and dehl [32] used Martin and size metrics to build a tool that helps to

control package dependencies to avoid degeneration of package designs and hence

increase the quality of the software. In addition, Reibing used these metrics to build a

model called ODEM (Object-Oriented Design Model) [33]. This model can serve as a

foundation for the formal definition of object-oriented design metrics and it provides a

formal model of object-oriented designs expressed in UML.

This research will study sets of OOD metrics at package-level and empirically

validate them against some of implementation and quality assessment attributes (i.e.

change prediction, fault prediction and implementation effort estimation). These metrics

include widely know class and system-lever metrics, which will be redefined here at

package-level. In addition, prediction models will be produced for change prediction,

fault prediction and implementation effort estimation.

9

1.4 Research Contributions

1- Empirically investigating sets of OOD metrics at the package-level to determine

the usefulness of these metrics in identifying and predicting faults in object-

oriented packages.

2- Empirically investigating sets of ODD metrics at the package-level to determine

the usefulness of these metrics in identifying and predicting change in object-

oriented packages.

3- Empirically investigating sets of OOD metrics at the package-level to determine

the usefulness of these metrics in estimating implementation effort in object-

oriented packages.

4- Redefining some of design metrics at the package-level and implementing them,

to automate the extraction of these metrics.

1.5 Organization of the Thesis

The rest of the thesis is organized as follows: Chapter 2 provides a background of

package-level metrics. Chapters 3, 4 and 5 present three empirical studies that

investigate package-level metrics against fault prediction, change prediction and

implementation effort estimation. Chapter 6 discusses thesis conclusion, limitation and

provides directions for future work.

10

Chapter 2

2. Background

This chapter gives technical background about OOD and software metrics in OOD. In

addition, it defines metrics that will be investigated in this study (i.e. Martin, C&K and

MOOD metrics).

2.1 Characteristics of OOD

OOD is the process of planning a system of interacting objects for the use of solving a

software problem [34]. It is one approach to software design. It is concerned with

building an object-oriented module of a software system to apply the identified

requirements. Designer will use OOD because it is a faster development process,

module based architecture, includes high reusable features, increases design quality and

so on [11]. Booch defined OOD as follow [35]:“Object-oriented design is a method of

design encompassing the process of object oriented decomposing and a notation for

depicting both logical and physical as well as static and dynamic models of the system

under design”

There are a number of essential characteristics in object-oriented design. These

characteristics are generally support object oriented design in the context of measuring.

These are as follow:

11

o Cohesion

Cohesion answers the question, should an object be only one object or more than

one object? A cohesive object can be defined as the object that cannot easily be

divided into multiple objects [36]. It is an object that has one clear purpose and

one clear entity that it matches to. A class or package is cohesive when its

components are highly correlated. It should be difficult to split a cohesive class

or package. Cohesion can be utilized to recognize the weakly designed classes

and packages. Booch defined cohesion as follow: “Cohesion measures the

degree of connectivity among the elements of a single class or object” [36].

o Coupling

Coupling shows the non-inheritance relationship or interdependency between

modules (i.e. classes or packages). A class is coupled to another if methods of

one class use non-inheritance methods or attributes of the other, or vice versa

[37]. Similarly, a package is coupled to another if methods of one package use

methods or attributes of the other, or vice versa. Coupling is a measure of

interconnecting among modules in a software structure.

o Inheritance

Inheritance is the ability for a class to extend or override functionality of another

class. Inheritance occurs in all levels of a class hierarchy. Rumbaugh [38]

defined inheritance as “Inheritance is the sharing of attributes and operations

among classes based on a hierarchical relationship”.

o Polymorphism:

12

Polymorphism which means many forms can be defined as the ability to replace

an object with its sub-objects [39]. Polymorphism gives a generic software

interface so that a collection of different types of objects may be manipulated

uniformly.

2.2 Software Metrics in OOD

The definition of software metrics is introduced by Norman Fenton [40]: “Software

metrics is a collective term used to describe the very wide range of activities concerned

with measurement in software engineering. These activities range from producing

numbers that characterize properties of software code through to models that help

predict software resource requirement and software quality. The subject also includes

the quantitative aspects of quality control and assurance - and this covers activities like

recording and monitoring faults during development and testing”.

Therefore, software metric is an attributes of software or its specifications. A

measure is the value of this attribute. Example of software metrics are lines of source

code (LOC) and faults per line of source code. They have long been studied as a way to

evaluate the quality of large software systems [41]. Software metrics are used when a

certain property of a software system is of interest, a set of one or more metrics are then

measured to characterize that property.

13

Figure 1: Description of software metrics

Figure 1 explains the term metric. When an attribute is measured, the result is a

value. In this process, a metric is defined as the attribute and the applied method of

carrying out the measurement. The metrics describes what the attribute is assume to be

measured and how the measuring is carrying out, e.g. manually or automatically [13].

The metrics for OOD focus on measurements that are applied to the class,

package and design characteristics. These measurements permit designers to assess the

software early in process, making changes that will reduce complexity and improve the

continuing capability of the design. Mens [42] states in that:“Improving software

quality, performance and productivity is a key objective for any organization that

develops software. Quantitative measurements and software metrics in particular can

help with this, since they provide a formal means to estimate software quality and

complexity”.

14

2.3 C&K Metrics Suite

The most commonly cited software metrics to be calculated for OOD are the so called

C&K (Chidamber and Kemmerer) metric suite which was proposed by Chidamber and

Kemerer [43]. This metric suite presents informative insight into whether developers are

using OOD principles in their design [43]. Chidamber and Kemerer claim that using

some of their metrics collectively helps managers and designers to make better design

decision. C&K metrics have generated a significant amount of interest and are currently

the most well known suite of measurements for OO software. C&K suite consists of six

metrics that characterize complexity, inheritance, coupling and cohesion of software

classes. Since these are class-level metrics, each metric will be aggregated at package-

level. Total and average were used as aggregators so that metric values at class-level

will be combined into single values at package level [15]. The following discussion

presents these metrics [34, 43]:

o Weighted Method per Class (WMC)

The WMC is the sum of the complexities of the methods implemented within a

class. Complexity of a class can for example be calculated by the cyclomatic

complexities (CC) of its methods. If the CC of each method is considered to be

1, then WMC will be the total number of methods in this class. High2 value of

WMC means the class is more complex than that of low values. Thus, class with

2 The terms “high” and “low” in this study will be used to indicate the magnitude of the metrics value. It
is up to the developer to find a proper threshold value of the current system, since there is no empirically
found one. The developer have to take in consider the specific properties of the system.

15

less WMC is more desirable. WMC metric is redefined at the package-level

(total and average) as follow:

§ Total WMC in a Package (TWMP)

TWMP is the total number of methods in a package, assuming that all

complexities are considered to be unity. Therefore,

TWMP =å
=

TC

1i
iWMC

Where the summation occurs over i =1 to TC. TC is defined as Total

number of Classes in a package. For example, if Package A has 40

classes and each one has 10 methods then, TWMP = å
=

40

1i
iWMC = 40 * 10

= 400.

§ Average Weighted Methods per Package (AWMP)

AWMP =
TC

TWMP

So, if TWMP for a package that has 20 classes is 100, then AWMP= 100

/ 20 = 5 which is the average number of methods for each class in that

package.

o Coupling Between Object (CBO)

CBO for a class is a count of the number of other classes to which it is coupled.

A class is coupled to another if methods of one class use methods or attributes of

the other, or vice versa. In other words, CBO is total number of classes that a

16

class referenced plus the number of classes that referenced the class (but not

counted twice). An increase of CBO indicates the reusability of a class will

decrease. Consequently, the CBO values for each class should be kept as low as

possible. CBO will be redefined at the package-level as follow:

§ Total CBO in a Package (TCBO)

TCBO = å
=

TC

1i
iCBO

Where the summation occurs over i=1 to TC. TC is defined as Total

number of Classes in a package. As an example, consider Package A in

Figure 2. It consists of 5 classes. The total references (CBO) for Class1

is 3 since there are three classes coupled to Class1 (i.e. Class2 Class3

and Class4). CBO for Class2 is 2 since it is coupled to two classes (i.e.

Class1 and Class4). Similarly, CBO for Class3 and Class5 is 2. CBO for

Class4 is 3. Therefore, TCBO for Package A = å
=

5

1i
iCBO = 3 + 2 + 2 + 2

+ 3 = 12.

Figure 2: References in Package A

17

§ Average CBO (ACBO)

ACBO =
TC

TCBO
in the previous example, ACBO for Package A = 12 / 5

= 2.4.

o Lack of Cohesion of Methods (LCOM)

This metric measures the correlation between the methods and the local instance

variables of a class; high cohesion points to good class subdivision. Sellers [44]

built mathematical and normalized definition for LCOM based on C&K suite.

Sellers calculate LCOM as follow [44]:

LCOM = (M – sum (MF) / F) (M-1) Where

o M is the number of Methods in class

o F is the number of instance Fields in the class.

o MF is the number of Methods of the class accessing a particular instance

Field.

o Sum (MF) is the sum of MF over all instance fields of the class.

To illustrate this consider Class Car and Truck in Figure 3 and 4. Class Car has

2 methods and 3 instance fields (i.e. M = 2 and F=3). Both of turnRight and turnLift

methods access all instance fields (x, y and z) in the Car Class. Hence, MF = 3 + 3

= 6. Accordingly, LCOM for class Car = (2 -
3
6

) (2 - 1) = 0, which indicates that

Class Car is completely cohesive (since all its methods use all its instance fields).

18

On the other hand, Class Truck in Figure 4 has 2 methods and 3 instance fields.

Method turnRight access all instance fields (x, y and z). However, Method turnLift

access only 1 instance field (only z). Therefore, MF = 3 + 1 = 4. Consequently,

LCOM for Class Truck = (2 -
3
4

) (2 - 1) = 0.66.

public class Car {

 int x, y, z;

 public void turnRifght() {

 x = 10;

 y = 20;

 z = x + y;

 return z;

 }

 public void turnLift() {

 x = -10;

 y = -20;

 z = x + y;

 return z; }

 }

Figure 3: Class Car

19

public class Truck{

 int x, y, z;

 public void turnRifght() {

 x = 10;

 y = 20;

 z = x + y;

 return z,

 }

 public void turnLift() {

 z = -4;

 return z;

 }

 }

Figure 4: Class Truck

LCOM takes its values in the range [0-2] where values bigger than 1 should be

considered alarming. LCOM increases complexity. Hence, classes with high LCOM

(i.e. low cohesion) could probably be subdivided into two or more subclasses with

increased cohesion. LCOM is aggregated at package-level as follow:

§ Total LCOM in a Package (TLCOM)

TLCOM= å
=

TC

1i
iLCOM

20

Where the summation occurs over i=1 to TC. TC is defined as Total

number of Classes in a package.

For example, suppose that Package Vehicle consists of two classes: Car

and Truck, shown in Figure 3 and 4. Then, TLCOM for Package

Vehicles:

TLCOM (Vehicle) = å
=

2

1i
iLCOM = CarLCOM + TruckLCOM

= 0 + 0.66 = 0.66

§ Average LCOM in a Package (ALCOM)

ALCOM =
TC

TLCOM

o Response for a Class (RFC)

RFC is the number of methods that can be invoked in response to a message in a

class. It is calculated by adding the number of methods in the class (not

including inherited methods) plus the number of distinct method calls made by

the methods in the class. For example, Class C1 in Figure 5 has 2 Methods

(method1C1 and method2C1). Method method1C1 calls Method method1C2 in

Class C2 and Method method2C1 calls Method method1C3 in Class C3.

Therefore, RFC for C1 = 2 + 1 + 1 = 4.

21

public class C1 {

public void method1C1(C2 aC2) {

return aC2.method1C2(); }

public void method2C1(C3 aC3) {

return aC3.method1C3(); }

 }

Figure 5: Class C1

When RFC increases, the overall design complexity of the class will increase

and becomes hard to understand. RFC will be modified here to be at the

package-level as follow:

§ Total RFC in a Package (TRFC):

TRFC= å
=

TC

1i
iRFC

Where the summation occurs over i=1 to TC. TC is defined as Total

number of Classes in a package.

§ Average RFC in a Package (ARFC)

ARFC =
TC

TRFC

o Depth of Inheritance Tree (DIT)

The DIT measures the level for a class within its class hierarchy. DIT metric is

the length of the maximum path from the node to the root of the tree. As a result,

22

this metric determined how far down a class is declared in the inheritance

hierarchy. DIT will be modified here to be at the package-level as follow:

§ Total DIT in a Package (TDIT)

 TDIT= å
=

TC

1i
iDIT

Where the summation occurs over i=1 to TC. TC is defined as Total number

of Classes in a package. For example, Package A in figure 6, contains Class

Class1 which has 4 subclasses and Class Class6 which has 3 subclasses

(direct and indirect subclasses). Since Class1 and Class6 are root classes, the

DIT for both of them are 0. Class2, Class3 and Class4 directly inherit

Class1. Therefore, DIT for all of them is 1. Similarly, DIT for Class7 and

Class9 are 1. Since the maximum inheritance path from class5 to the root

class is 2 (from Class5 to Class1), DIT for Class8 is 2. Similarly, DIT for

Class6 is 2. Thus, TDIT for Package A = å
=

9

1i
iDIT = 0 + 1 + 1 + 1 + 2 + 0 +

1 + 1 + 2 = 9.

§ Average DIT in a Package (ADIT)

ADIT=
TC

TDIT

In the previous example, TC in Package A is 9. Hence, ADIT for

Package A = 9 / 9 = 1.

23

Class1

Class2Class3Class4

Class5

Package A

Class6

Class7

Class8

Class9

Figure 6: Example of inheritance in Package A

o Number of Children (NOC)

NOC measures how many immediate subclasses are going to inherit the

methods of the parent class. For example, NOC for Class1 in Figure 6 is 3 since

there are 3 immediate subclasses (Class2, Class3 and Class4) that inherit the

methods in Class1. Similarly, NOC for Class6 is 2 since there are only 2

immediate subclasses (Class7 and Class9) inherit the methods in Class6. In the

same way, NOC for Class3 is 1. However, NOC for Class4 is 0 as there are no

immediate subclasses for Class4. The size of NOC can be utilized to show the

level of reuse in a system. For example, If NOC raises it means reuse increases.

Alternatively, as NOC increases, the amount of testing will also increase as

more children in a class show more responsibility. Thus, NOC correspond to the

24

effort required to test the class and reuse. NOC will be aggregated and averaged

at the package-level as follow:

§ Total NOC in a Package (TNOC):

TNOC = å
=

TC

1i
iNOC

Where the summation occurs over i=1 to TC. TC is defined as Total

number of Classes in a package. In Figure 6, TNOC for Package A =

å
=

9

1i
classiNOC = 3 + 0 + 1 + 0 + 0 + 2 + 1 + 0 + 0= 7.

§ Average NOC in a Package (ANOC)

ANOCP =
TC

TNOC

ANOC for Package A = 7 / 9 =0.77.

2.4 MOOD Metrics suite

Abreu proposed a set of metrics for OOD called MOOD (Metrics for Object-Oriented

Design) [39]. MOOD denotes a basic structural mechanism of the object-oriented

paradigm as encapsulation, inheritance, polymorphism, and message passing at system-

level. This section will discuss these metrics and show how they can be redefined here

to be at the package-level.

o Method Hiding Factor (MHF)

Abreu et al. [39] defined MHF metric as the sum of the invisibilities of all

methods in all classes. The invisibility of a method is the percentage of the total

25

class from which the method is hidden. Thus, MHF is proposed as a measure of

information hiding for a system. It is calculated as follow [39]:

MHF=

å

å

=

=
N

1

N

1i

)(

)(

i
id

ih

CM

CM

Here,)(id CM =)(iv CM +)(ih CM

)(id CM = the number of Methods defined in class iC .

)(iv CM = the number of Methods that visible in class iC .

)(ih CM = the number of Methods hidden in iC .

Where the summation occurs over i = 1 to N. N is defined as total Number of

classes in a system. MHF at package-level (MHFP) is calculated as follow:

MHFP=

å

å

=

=
TC

i
id

ih

CM

CM

1

TC

1i

)(

)(

Here,)(id CM =)(iv CM +)(ih CM

)(id CM = the number of Methods defined in class iC .

)(iv CM = the number of Methods that visible in the class iC .

)(ih CM = the number of Methods hidden in iC .

Where the summation occurs over i = 1 to TC. TC is defined as Total number of

Classes in a package.

26

To illustrate this, suppose that we have a Package called Animal that

contains two Classes: Cat and WildCat (shown in Figure 7). Class Cat consists

of 6 Methods (2 public and 4 private). Hence,)(CatM d = 6,)(CatMv = 2 and

)(CatM h = 4. Class WildCat contains 4 Methods (2 public and 2 private), which

means that)(WildCatMd = 4 and)(WildCatMv =)(WildCatM h = 2. Therefore,

MHFP for Package Animal = ((4+2) / (6+4) = 0.6.

If the value of MHFP is (100%), it means all methods are private which

indicates very little functionality. Thus it is not possible to reuse methods with

high MHFP. MHFP with (0%) value indicate all methods are public that means

most of the methods are unprotected.

o Attribute Hiding Factor (AHF)

AHF measures the invisibilities of attributes in all classes. The invisibility of an

attribute is the percentage of the sum of all classes in a system from which the

attribute is not visible (hidden). They can be kept from being accessed by other

objects by being declared to be not visible (i.e. private in Java). An attribute is

identified as visible if it can be accessed by another class or object. AHF is

defined as follow:

AHF=

å

å

=

=
N

1

N

1i

)(

)(

i
id

ih

CA

CA

27

Here,)(id CA =)(iv CA +)(ih CA

)(id CA = the number of Attributes defined in class iC .

)(iv CA = the number of Attributes that visible in the class iC .

)(ih CA = the number of Attributes hidden in iC .

Where the summation occurs over i=1 to N. N is defined as total Number of

classes in a system. AHF at package-level (AHFP) is calculated as follow:

AHFP=

å

å

=

=
TC

i
id

ih

CA

CA

1

TC

1i

)(

)(

Here,)(id CA =)(iv CA +)(ih CA

)(id CA = the number of Attributes defined in class iC .

)(iv CA = the number of Attributes that visible in the class iC .

)(ih CA = the number of Attributes hidden in iC .

Where the summation occurs over i=1 to TC. TC is defined as Total number of

Classes in a package.

Class Cat in the previous example (Figure 7) has 9 attributes (3 public

and 6 private). On the other hand, Class WildCat has 6 attributes (3 public and 3

private). Therefore, AHFP for the Animal Package = ((3+6) / (9+6)) = 0.6.

If the value of AHFP is (100%), it means all attributes are private. AHFP with

(0%) value indicates all attributes are public.

28

Class Cat {

Private int a, b, c;

Private string d, e, f;

public double j,h,i;

public void turnRight() {…..}

public void turnLeft() {…..}

private void method1() {…..}

private void method2() {…..}

private void method3() {…..}

private void method4(){…..}

 }

Class WildCat extends Cat {

//Inherits turnRight and turnLeft. Inherits j, h and i attributes.

private int j, k,l;

public string m,n,o;

public void move() {……}

public void increaseSpeed() {……}

private void method5() {…}

private void method6() {…}

 }

Figure 7: Classes Cat and WildCat

o Method Inheritance Factor (MIF):

MIF is proposed as a measure of level of reuse in all classes of the system. It is defined

as the ratio of the sum of the inherited methods in all classes of the system as follow:

29

MIF=

å

å

=

=
N

1

N

1i

)(

)(

i
ia

ii

CM

CM

Here,)(ia CM =)(id CM +)(iCMi

)(iCMi = inherited Methods in iC .

)(id CM = the number of Methods defined in iC .

Where the summation occurs over i=1 to N. N is defined as total Number of classes in a

system. MIF is calculated at package-level (MIFP) as follow:

MIFP=

å

å

=

=
TC

i
ia

ii

CM

CM

1

TC

1i

)(

)(

Here,)(ia CM =)(id CM +)(iCMi

)(iCMi = inherited Methods in iC .

)(id CM = the number of Methods defined in iC .

Where the summation occurs over i=1 to TC. TC is defined as Total

number of Classes in a package.

In Figure 7, the WildCat Class extends the Cat Class. Hence, it has

access to all public methods in class Cat. Accordingly,)(WildCatMi = 2.

However, Class Cat does not inherit any methods, thus)(CatM i = 0. Since total

30

number of methods (inherited and defined) in Package Animal is 10, MIFP for

the Animal package = (2+0) / (6+4) = 0.2.

Since the methods available in a leaf class (as in Class Cat in the previous

example),)Leaf_Class(aM are not inheritable, the MIFP denominator, by

including leaf classes in the)(ia CM sum does not represent the maximum

possible inheritance. It is actually represents a value greater than the maximum.

Therefore, the value for MIFP, for any package, can never be 1. When this value is

close to 1, it indicates superfluous inheritance or too wide member scopes.

However, if the value of MIFP is (0%), it means that there is no method exists in

the class as well as the class is lacking an inheritance statement.

o Attribute Inheritance Factor (AIF)

Similar to MIF, AIF is defined as the ratio of the sum of inherited attributes in

all classes of the system. AIF denominator is the sum of available attributes for

all classes In other words, AIF is defined as follows:

AIF=

å

å

=

=
N

1

N

1i

)(

)(

i
ia

ii

CA

CA

Here,)(ia CA =)(id CA +)(ii CA

)(ii CA = inherited Attributes in iC .

)(id CA = the number of Attributes defined in iC .

31

Where the summation occurs over i=1 to N. N is defined as Total number of

Classes a system. AIF at Package-level (AIFP) is calculated as follow:

AIFP=

å

å

=

=
TC

i
ia

ii

CA

CA

1

TC

1i

)(

)(

Here,)(ia CA =)(id CA +)(ii CA

)(id CA = inherited Attributes in iC .

)(ii CA = the number of Attributes defined in iC .

Where the summation occurs over i=1 to TC. TC is defined as Total number of

Classes in a package.

Since j, h, I in Class Cat (in Figure 7) will be accessed by WildCat,

)(WildcatAi = 3. However,)(CatAi = 0 as it does not inherit any attribute. The

total number of attributes in Class WildCat is 6 and 9 in Class Cat. Thus, AHFP

for the Animal Package = (3 + 0) / (6 + 9) = 0.2. When this value is close to 1, it

indicates superfluous inheritance or too wide member scopes. However, If the

value of AIFP is low (0%), it means that there is no attribute exists in the class

as well as the class lacking an inheritance statement.

o Polymorphism Factor (PF)

Polymorphism is an important characteristic in OOD. It measures the degree of

overriding in the class inheritance tree. It corresponds to the number of actual

32

method overrides divided by the maximum number of possible method overrides.

So, PF is defined as follows:

PF=
[]å
å

=

=

´
N

i iio

N

i io

CDCCM

CM

1

1

)()(

)(

Where

)(iCM
o

=the number of overriding Methods in class iC .

)(iCM
n

= the number of new Methods in iC .

DC)(iC = the Descendants count in Class)(iC . N is defined as total

Number of classes in a system.

Polymorphism Factor at Package-level (PFP) measures the degree of method

overriding in the class inheritance tree. It equals the number of actual method

overrides divided by the maximum number of possible method overrides.

PFP = []å
å

=

=

´
TC

j iin

TC

j i

CDCCM

CM

o

o

1

1

)()(

)(
 Where

)(iCM
o

= overriding Methods in class iC .

)(iCM
n

= new Methods in iC .

DC)(iC = number of Descendants of Class iC .

TC is defined as Total number of Classes in a package.

To illustrate this, consider Package A in Figure 8. It has 4 classes that

contain 8 new methods and 4 overriding methods. The number of descendants of

33

Class1 is 3 (i.e. Class3, Class2 and Class4). Class2 has one descendant while

Class3 and Class4 have nothing. Thus, PFP (A) =

)02()02()12()32(
112

´+´+´+´
++

 = 0.5

Figure 8: Classes in Package A

The value of PFP can differ between 0% and 100%. If a package has 0%

PFP, it indicates the package uses no polymorphism and 100% PFP indicates that

all methods are overridden in all derived classes.

o Coupling Factor (CF)

Coupling shows the relationship between classes. The CF is defined as the ratio of

the actual non-inheritance number of coupling to the maximum possible non-

inheritance number of couplings in the system to. In other words, CF is:

34

CF=
ë û

NN

CCclientis
N

i

N

j ji

-

å å= =

2

1 1
),(_

Where

),(_ ji CCclientis = 1 if (cC à sC) ^ (cC ≠ sC)

 0 otherwise.

Where the summation occurs over i=1 to N. N is defined as Total number of Classes

in the system. The client-supplier relation, represented by (cC à sC), means that cC

(client Class) contains at least one non inheritance reference to a feature (method or

attribute) of class sC (supplier Class). Coupling Factor at Package-level (CFP) is

calculated as follow:

CFP =
ë û

TCTC

CCclientis
TC

i

TC

j ji

-
å å= =

2

1 1
),(_

Where

),(_ ji CCclientis = 1 if (cC à sC) ^ (cC ≠ sC)

 0 otherwise.

The summation occurs over i=1 to TC. TC is defined as Total number of Classes

in a package.

The client-supplier relation, represented by (cC à sC), means that cC

(client class) contains at least one reference to a feature (method or attribute) of

class sC (supplier class). For example, Package A in Figure 2 consists of 5

classes. The client-supplier relations of these classes are as follow:

35

Class1 does not have any reference to any class. (i.e. (cC à sC), = 0)

(cClass2 à sClass1) = 1.

(cClass3 à sClass1) = 1.

(cClass4 à sClass2) = 1 & (cClass4 à sClass1) =1.

(cClass5 à sClass3) = 1 & (cClass5 à sClass4) = 1.

Hence, CFP for Package A will be as follow: CFP (A) =
55

22110
2 -

++++

= 0.3

2.5 Martin Metrics

Martin has proposed a set of package-level metrics that are related to stability,

dependencies and abstraction [12] in OOD. The stability of a package is related to the

amount of work required to make a change to that package. Martin presents the Stable

Dependencies Principle (SDP) for such volatile packages. The SDP says that "the

dependencies between packages in a design should be in the direction of stability. A

Package should only depend upon packages that are more stable than it is". Martin

used the number of dependencies that enter and leave that package to measure the

Instability (I) of a package. Three metrics have been identified [12]:

o Afferent Couplings (Ca): The number of classes outside this package that

depend upon classes inside this package.

o Efferent Couplings (Ce): The number of classes inside this package that

depend upon classes outside this package.

36

o Instability (I): (Ce ÷ (Ca + Ce): This metric has the range [0, 1]. Where I = 0

indicates a maximally stable package and I = 1 indicates a maximally Instable

package. In other words, when "I" is one it means that no other package depends

upon this package and when the "I" metric is zero it means that the package is

depended upon by other packages, but doesn’t itself depend upon any other

packages.

Martin thinks that if classes are abstract, then they are highly stable since they

depend upon nothing and are depended upon by others that extend the abstract classes.

Martin states that if a package (or category3) is happening to be stable, it should consist

of abstract classes so that it can be extended. He also said that: “Stable packages that

are extensible are flexible and do not constrain the design. If stable packages should be

highly abstract, one might infer that Instable packages should be highly concrete. In

fact, this stands to reason. An abstract category must have dependents since there must

be classes, outside the abstract category, that inherit from it and implement the missing

pure interfaces. However, we do not want to encourage dependencies upon Instable

categories. Thus, Instable categories should not be abstract, they should be concrete”.

Based on this, Martin defines a metric which measures the “Abstractness” of a package

as follows:

3 The term category is usually used as a synonym for package.

37

o Abstractness (A): Number of Abstract classes in a package (NOA) divided by

total number of classes in this package. This metric range is [0, 1]. 0 means

concrete and 1 means completely abstract.

He also introduces the stable abstraction principle (SAP). SAP states that a package

should be as abstract as it is stable [12]. Using the Abstraction and the Instability,

Martin proposed another metric called Normalized Distance (D):

o Normalized Distance (D): |A + I - 1|.

This is used as indicator for packages with a high “D” (near to 1) are candidates for

reexamining and restructuring as they are either not abstract enough or they depend too

much on other classes.

To understand Martin metrics, consider the following example in Figure 9.

Figure 9 shows the dependencies between Packages A, B, C, D and E. The dashed

arrows between the Packages represent packages dependencies. The relationships

between the classes of those packages are shown in Figure 10. It shows how those

dependencies are actually implemented. There are inheritance, aggregation, and

association relationship.

38

Figure 9: Dependencies between Packages A, B, C, D and E

Now, suppose that we want to calculate Ca, Ce, “I”, A and D of Package A. These are

calculated as follow:

o Ca: Since the number of external classes coupled to classes in Package A

due to outgoing coupling is 3, then Ca = 3.

o Ce: The number of classes inside Package A that depend upon classes

outside this package are 5. Hence, Ce = 5.

o “I”: Instability is (Ce ÷ (Ca + Ce)) =0.625. “I” is an indicator of the

package's resilience to change which is here 62%.

o “A”: Abstractness of Package A is the ratio of the number of abstract

classes (NOA) to the total number of classes in this package. Package A

39

contains one abstract Class (C2) and 4 concrete Classes (C1, C3, C4 and

C5). Therefore, Abstractness of Package A = 1 / (4 + 1) = 0.20.

o “D”: Normalized Distance is |(A + I - 1)|, therefore, D for Package A =

0.2 + 0.625 - 1= 0.175. According to Martin this package does not have

to be restructured since its value near to 0.

Figure 10: Relationship between Packages A, B, C, D and E

40

Package Ce Ca I A D

A 5 3 0.625 0.2 0.175

B 2 0 1 0 0

C 1 0 1 0.33 0.33

D 0 3 0 0.25 0.75

E 0 2 0 0 1

Table 1: Ca, Ce, “I”, A and D values for packages in Figure 10.

41

3. Chapter 3

Empirical Study 1: Faults and Package Metrics

3.1 Goal

The goal of this empirical study can be defined, using the GQM template [45], as

follows: investigate the significant correlation between faulty packages and the sets of

package-level metrics for the purpose of identifying and characterizing faulty packages

from the point of view of researchers and practitioners in the context of OO software.

3.2 Hypotheses

The following hypotheses will be investigated in this research. The metric m, used in

the below hypotheses, ranges over the set of package metrics under investigation in this

research.

Hypothesis 1

o H0-PreFD (Null Hypothesis): There is no significant correlation between metric

m and the Pre-release Fault Density (PreFD) of a package in a system.

o H1-PreFD (Alternative Hypothesis): There is significant correlation between

metric m and the Pre-release Fault Density of a package in a system.

Hypothesis 2

o H0-PostFD (Null Hypothesis): There is no significant correlation between

metric m and the Post-release Fault Density (PostFD) of a package in a system.

42

o H1-PostFD (Alternative Hypothesis): There is significant correlation between

metric m and the Post-release Fault Density of a package in a system.

Hypothesis 3

o H0-PPreF (Null Hypothesis): There is no significant correlation between metric

m and the Presence of a Pre-release Fault in a package (PPreF).

o H1-PPreF (Alternative Hypothesis): There is significant correlation between

metric m and the Presence of a Pre-release Fault in a package.

Hypothesis 4

o H0-PPostF (Null Hypothesis): There is no significant correlation between metric

m and the Presence of a Post-release Fault in a package (PPostF).

o H1-PPostF (Alternative Hypothesis): There is significant correlation between

metric m and the Presence of a Post-release Fault in a package.

3.3 Subject

The subject of this empirical study is Eclipse system. Eclipse was selected for two

reasons:

o Eclipse is well known system that is used in many researches and universities

[46].

o Faults data for Eclipse releases were publically available [47].

Eclipse is an open source Integrated Development Environments (IDE) developed

by IBM. It is written mainly in Java and can be used to create diverse end-to-end

43

computing solutions for multiple execution environments. The platform consists of

open source software components that tool vendors use to build solutions that plug in to

integrated software workbenches [47]. The Eclipse platform incorporates technology

expressed through a well-defined design and implementation framework. It includes

extensible frameworks, tools and runtimes for building, deploying and managing

software across the lifecycle. Great number of research organizations, major technology

dealers, several universities, and individual researchers extended hands to support the

Eclipse platform [48]. Eclipse releases 2.0, 2.1 and 3.0 were selected to be subjects for

this study as the fault data were only available for those releases. Table 2 gives a brief

description about these releases. It shows that release 3.0 has the maximum number of

packages, classes, methods, LOC and faults whereas release 2.0 has the lowest.

Release Date
of

Packages

of

Classes

of

Methods
LOC

of

Pre-

Release

Faults

of

Post-

Release

Faults

Eclipse 2.0 27-6-2002 378 7688 77617 524388 4297 917

Eclipse 2.1 27-3-2003 428 9243 94111 647864 2977 662

Eclipse 3.0 25-6-2004 645 12642 125532 870435 4579 1511

Table 2: Summary of Eclipse system

3.4 Experimental Variables

The independent variables are the metrics under investigation. The dependent variables

in this study are:

44

o Pre- release Fault Density for a package (PreFD):

The following formula was used for measuring the pre-release fault density for

each package in a release i:

PreFD =
 package in this LOC ofNumber
packge afor Faults release-Pre ofNumber

o Post- release Fault Density for a package (PostFD):

PostFD for each package in a release i is calculated as follow:

 PostFD =
 package in this LOC ofNumber
packge afor Faults release-Post ofNumber

o Binary variable indicates the Presence of a Pre-release Fault in a package

(PPreF).

o Binary variable indicates the Presence of a Post-release Fault in a package

(PPostF).

3.5 Tool

The tool that was used to collect the package metrics in this study is JHawk [47].

JHawk is Eclipse plug-in supplied by Virtual Machinery. It measures various metrics at

a system’s package, class or method level on Java code. JHawk doesn’t have any

graphical view of the metrics, only text, but it is possible to export the results of an

analyzed system to .xml or .csv files.

45

JHawk was used in this study to collect Martin metrics. In addition, this tool was

extended to automate the extraction of C&K and MOOD metrics. MOOD and C&K

metrics were redefined and implemented at the package-level by aggregating them. The

implementation procedure used to extend this tool was as follow:

1- Calculating C&K and MOOD metrics at the package-level by adding new methods in

the following classes:

- JavaParserMethodRecord: it has methods used to calculate metrics at method-level.

- JavaParserClassRecord: it contains methods used to calculate metrics at class-level.

This class uses methods in JavaParserMethodRecord to calculate the class metrics.

- JavaParserPackageRecord: it contains methods that calculate the metrics at package-

level. C&K and MOOD metrics were aggregated and defined in this class by

aggregating the methods in JavaParserClassRecord Class. For example, Method

getMHF() was used to calculate MHFP in JavaParserPackageRecord Class.

Method getMHF() calculate the total number of hidden methods in a package. It

uses getPrivateMethods() Method in JavaParserClassRecord Class to obtain the

number of hidden methods in a class. To do this, getPrivateMethods() uses a

Boolean method called isPrivate() in JavaParserMethodRecord Class to check if a

method is private or not.

 2- Adding the created metrics to the existing metrics in JHawk at the package-level.

This was done by adding these metrics to “PACKAGE_METRIC_CODES” Array in

JHawkPreferenceConstants Class.

46

3- Finally, these metrics were displayed in Eclipse by adding them in

JHawkDefaultPreferences. Header name, description, position and threshold level (i.e.

warning level) for each metrics can be defined or changed using this class.

4- Sort the metrics output: PackageSorter Class was used to sort metrics results. The

objective of this step is to give a user the option to sort the metrics output according to

their values or to the package names. In this research, the metrics results were sorted by

package names and then exported to CSV format, which will make the results more

organized and easier to deal with.

3.6 Data Collection

JHawk was used to extract the package-level metrics from Eclipse 2.0, 2.1 and 3.0. The

faults data were taken from Zimmermann’s work [15]. Then, the dependent variables

were calculated according to section 3.4. After that, univariate regression [49] was

carried out to determine if each individual independent variable is significantly

correlated to the dependent variables. Finally, multivariate regression [49] was used to

build models for fault prediction.

3.7 Results and Discussion

The following sections present descriptive statistic for the collected metrics, results of

univariate, multivariate analysis and the regression models built for fault prediction.

47

3.7.1 Descriptive statistics

Tables 3, 4 and 5 present descriptive statistics (minimum, maximum, mean, median,

standard deviation) for the collected metrics in Eclipse releases 2.0, 2.1 and 3.0. Tables

6, 7 and 8 show descriptive statistics for faults found in Eclipse packages. Low variance

(standard deviation) measures do not differentiate packages very well and therefore are

not likely to be helpful predictors in our dataset. Analyzing and presenting the

distribution of measures is important for comparison of the results with replicated

studies [50]. It allows researchers to determine if the data gathered across studies come

from similar populations. If not, this information will probably be useful to explain

different findings across studies.

3.7.1.1 Descriptive statistics for metrics results

The studied metrics can be categorized into coupling, inheritance, cohesion, visibility

and polymorphism. The following can be observed from the values of these metrics:

Coupling metrics:

- The largest maximum value is for TRFC in release 2.1, which also has the largest

mean and standard deviation (StdDev). This may be explained by the fact that

TRFC is the only measure to count indirect coupling, while all other coupling

measures count connections to directly coupled classes only.

- Coupling between packages (i.e. Ca and Ce) was minimum in release 2.0 and

maximum in release 3.0. Ca and Ce also have largest mean and standard deviation

in 3.0. This might be due to the fact that the greatest number of packages was in

48

Eclipse release 3.0 (645 packages) whereas the minimum number of packages (378)

was in release 2.0.

- Coupling between classes in packages were sometimes maximum in release 3.0 (as

in CFP and ACBO) and sometimes in release 2.1 (as in TRFC and ARFC).

Similarly mean and standard deviation were either maximum in 2.1 or 3.0. This is

might be due to the fact that release 2.1 has, on average, the greatest number of

classes in each package whereas release 3.0 has the greatest number of packages in

Eclipse releases.

- The lowest mean, maximum and standard deviation values were for CFP compared

to other coupling metrics. This is because CFP measures actual direct coupling

between classes in a package over maximum possible number of coupling between

these classes. This is because the denominator (counting a maximum number of

possible coupling) for CFP grows proportionally faster than the numerator (actual

number of coupling).

Inheritance metrics:

Distributions of the values of the inheritance metrics show that inheritance has been

used cautiously within the three releases (i.e. low standard deviation, mean and median

values for ADIT and ANOC). However, there is sufficient variance in TDIT and TNDC

to proceed with the analysis.

49

Size metrics:

The highest mean, maximum and standard deviation values for No. classes, TWMP and

AWMP were in Release 2.1. However, this release has fewer packages than 3.0, but

more abstract classes.

Stability metrics:

The descriptive statistics for the stability measures do not show any interesting or

surprising trends. Instability (I) values were maximum in release 3.0. This is because

“I” depend on the number of classes inside this package that depend upon other

packages, which is maximum in release 3.0 (i.e. Ce mean is 11.3). However, D values

are not maximum in release 3.0. This is because D depends on “A” which was

minimum in 3.0.

Cohesion metrics

TLCOM has the third largest mean, maximum and standard deviation values in Tables

3, 4 and 5. ALCOM indicates the average LCOM for a class in Eclipse. ALCOM is

around 2 in each class, which indicates low cohesion. This is because of the presence of

access methods which are typically only reference one attributes, and consequently

increase the number of pairs of methods in the class that do not use attributes in

common.

Visibility

Hidden attribute was used a lot in Eclipse releases (mean is between 0.52 and 0.62).

However, hidden method was used cautiously within these releases.

50

Polymorphism

Packages in Eclipses releases have low PFP (mean is between 1.26 and 0.138). PFP

measures the degree of method overriding in the class inheritance tree. This may be

explained by the fact that PFP depend on inheritance, which was low in Eclipse

packages, as discussed above.

51

Table 3: Descriptive statistics for the proposed metrics in Eclipse 2.0

Category Minimum Maximum Mean Median StdDev

 Martin Metrics

Size
No. Classes 1 242 20.39 13 24.91

NOA 0 76 4.39 2 7.59

Stability

A 0 1 0.23 0.13 0.28

I 0 1 0.61 0.69 0.34

D 0 1 0.23 0.13 0.25

Coupling
Ca 0 242 10.33 3 23.78

Ce 0 49 10.39 8 9.54

 C&K Suite

Cohesion
TLCOM 0 1667.6 39.80 9.81 135.75

ALCOM 0 94.87 2.12 0.65 7.88

Coupling

TRFC 1 16756 532.10 293 1055.11

ARFC 1 147 24.88 23.05 15.41

TCBO 0 6171 188.30 89 429.86

ACBO 0 292.67 8.97 6.86 17.96

Size
TWMP 1 7970 206.18 107 463.99

AWMP 1 64.29 9.65 8.24 6.90

Inheritance

TDIT 0 179 3.98 1 13.07

ADIT 0 1.36 0.12 0.05 0.18

TNDC 0 950 11.59 2.5 52.28

ANDC 0 8.9 0.40 0.17 0.85

 MOOD Suite

Visibility
MHFP 0 0.7 0.13 0.09 0.09

AHFP 0 1 0.53 0.6 0.35

Polymorphism PFP 0 3.65 0.11 0.01 0.01

Coupling CFP 0 0.5 0.03 0.01 0.01

Inheritance
MIFP 0 0.93 0.47 0.53 0.53

AIFP 0 0.98 0.40 0.41 0.31

52

Category Minimum Maximum Mean Median StdDev

 Martin Metrics

Size
No. Classes 1 247 21.60 14 26.84

NOA 0 85 4.35 2 7.80

Stability
A 0 1 0.22 0.12 0.28

I 0 1 0.60 0.67 0.34

D 0 1 0.22 0.13 0.24

Coupling
Ca 0 283 11 3 26.34

Ce 0 53 11.08 8 10.13

 C&K Suite

Cohesion
TLCOM 0 1782.6 41.81 10.37 138.33

ALCOM 0 99.53 2.01 0.69 6.92

Coupling

TRFC 1 18092 586.70 302 1131.54

ARFC 1 149 220.19 23.66 15.37

TCBO 0 6360 206.79 88 457.93

ACBO 0 349 9.39 6.88 20.69

Size
TWMP 1 8549 220.19 115 478.90

AWMP 1 50 9.47 8.4 5.5

Inheritance

TDIT 0 178 3.83 1 12.41

ADIT 0 1.36 0.11 0.06 0.16

TNDC 0 997 11.83 2 52.41

ANDC 0 10.8 0.39 0.18 0.89

 MOOD Suite

Visibility
MHFP 0 0.7 0.14 0.11 0.14

AHFP 0 1 0.55 0.63 0.35

Polymorphism PFP 0 3.65 0.11 0.03 0.23

Coupling CFP 0 0.5 0.03 0.01 0.07

Inheritance
MIFP 0 0.96 0.51 0.59 0.31

AIFP 0 0.99 0.42 0.44 0.31

Table 4: Descriptive statistics for the proposed metrics in Eclipse 2.1

53

Category Minimum Maximum Mean Median StdDev

 Martin Metrics

Size
No. Classes 1 245 19.60 12 24.53

NOA 0 95 4.18 2 7.66

Stability
A 0 1 0.24 0.12 0.30

I 0 1 0.62 0.72 0.34

D 0 1 0.20 0.12 0.23

Coupling
Ca 0 40.3 11.21 3 31.08

Ce 0 65 11.30 8 10.70

 C&K Suite

Cohesion
TLCOM 0 2064.6 34.33 8.76 117.68

ALCOM 0 113.2 1.92 0.65 7.50

Coupling

TRFC 0 17283 527.32 252 990.28

ARFC 0 149 24.38 22.54 15.84

TCBO 0 5981 181.80 69 428.23

ACBO 0 456 8.94 5.94 24.22

Size
TWMP 0 7907 194.93 96 400.80

AWMP 0 40 8.90 8 5.50

Inheritance

TDIT 0 148 3.05 1 10.06

ADIT 0 1.45 0.10 0.04 0.15

TNDC 0 745 9.25 2 36.52

ANDC 0 11.5 0.33 0.14 0.80

 MOOD Suite

Visibility
MHFP 0 0.81 0.13 0.10 0.13

AHFP 0 1 0.57 0.66 0.35

Polymorphism PFP 0 2.4 0.09 0 0.18

Coupling CFP 0 1 0.04 0.01 0.09

Inheritance MIFP 0 0.98 0.47 0.52 0.32

AIFP 0 1 0.40 0.39 0.32

Table 5: Descriptive statistics for the proposed metrics in Eclipse 3.0

54

3.7.1.2 Descriptive statistics for Eclipse faults

Tables 6, 7 and 8 show descriptive statistics for faults found in Eclipse packages. It can

be observed from these tables that post-release faults are much less than pre-release

faults in all Eclipse releases. Consequently, PostFD and PPostF are less than PreFD and

PPreF. Another observation is that PreFD and PostFD decrease when we go from

release i to i+1. This is because LOC (denominator) increases dramatically from release

i to i+1.

Table 6: Descriptive statistics for Fault in Eclipse 2.0

Table 7: Descriptive statistics for Fault in Eclipse 2.1

Dependent

Variables
Minimum Maximum Mean Median StdDev

Pre-Release Faults 0 179 11.84 3 23.35

Post-Release Faults 0 88 2.60 1 7.61

PreFD 0 0.33 012 0.01 0.02

PostFD 0 0.13 0.002 0.0004 0.01

PPreF 0 1 75% 1 0.43

PPostF 0 1 50.52% 1 0.50

Dependent

Variables
Minimum Maximum Mean Median StdDev

Pre-Release Faults 0 151 6.97 2 13.96

Post-Release Faults 0 71 1.57 0 4.48

PreFD 0 1 0.011 0.003 0.06

PostFD 0 0.125 0.002 0 0.008

PPreF 0 1 66.97% 1 0.47

PPostF 0 1 45.43% 0 0.5

55

3.7.2 Univariate Analysis

To test the hypotheses defined in Section 3.2 statistically, we used Spearman’s

correlation analysis with a level of significance α = 0.05, which investigates the

relationship between a dependent variable and the independent variables. Spearman’s

correlation was chosen because it does not require any underlying distribution in the

data. By using the proposed metrics, the Spearman’s correlation coefficient and the p-

value were calculated. The correlation coefficient ranges from -1 for perfect negative

correlation, through 0 when there is no correlation, to 1 for perfect positive correlation.

The p-value determines whether the correlation is significant (if p-value < 0.05) or not.

Tables 9, 10, 11 and 12 show the results of the Spearman’s correlation with the p-value

(shown between brackets) between dependant variables and independent variables for

the 3 consecutive releases of Eclipse. The bold values indicate significant correlation.

The results discussions of the correlations were organized based on the categories of the

studied metrics (i.e. Martin, C&K and MOOD metrics).

Dependent

Variables
Minimum Maximum Mean Median StdDev

Pre-Release Faults 0 220 7.12 2 15.90

Post-Release Faults 0 65 2.35 0 5.60

PreFD 0 1 0.01 0.003 0.04

PostFD 0 0.06 0.002 0 0.004

PPreF 0 1 63.45% 1 0.48

PPostF 0 1 47.74% 0 0.50

Table 8: Descriptive statistics for Fault in Eclipse 3.0

56

3.7.2.1 PreFD and Package-Level Metrics

The correlation analysis shows that Martin metrics have positive significant correlation

with PreFD except for Instability “I” and Distance from the main sequence (D), as

shown in Table 9. Ca and Ce have positive significant correlation with PreFD in all

Eclipse releases while “A” has negative significant correlation in release 2.1 and

positive correlation in 2.0 and 3.0. The negative coefficient of “A” indicates that a

package is more likely to have more faults when the ratio between abstract classes and

total number of classes (i.e. NOA / No. Classes) in a package decreases whereas

positive coefficient indicates that fault decreases when this ratio increases. This is

because the numerator (NOA) has negative significant correlation in 2.1 and positive

significant correlation in the others. An explanation for this is that, increasing abstract

classes in a package reduces possibility of faults as abstract classes do not have

implementation for methods defined in these classes. However, abstract classes need to

be extended by other classes and consequently methods need to be implemented (either

by classes in the same package or in different packages) which, in turn, increases

possibility of faults. This might explains why NOA and “A” have negative and positive

coefficients in Eclipse releases. On the other hand, No. Classes has positive significant

correlation in two releases (2.0 and 3.0) and positive correlation (with p-value 0.13) in

release 2.1, which is close to be significant. This is might be because there were some

faults that could not be discovered through the testing phase (i.e. pre-release faults),

however, they were found after releasing the system. In fact, No. classes were

significant with PostFD in all releases, as this can be seen in PostFD section.

57

For C&K suite, all metrics have positive significant correlation with PreFD

except for TDIT, ADIT and ANDC. In general, inheritance metrics did not have

significant correlation with PreFD, except for TNDC in release 3.0. This might be

because their mean values and standard deviations were relatively low. ADIT has

negative correlation in all releases while TDIT, TNDC and ANDC have negative

correlation in release 2.1 and positive for the others. The negative coefficient of DIT

indicates that fault-proneness decreases with the depth of the class, which means that

classes located deeper in the inheritance hierarchy are less fault-prone while the positive

correlation indicates that classes located deeper in the inheritance hierarchy are more

likely to have more faults.

The relationships of CBO metrics to PreFD are particularly strong. In fact,

ACBO and TCBO have the highest correlation among all the package-level metrics in

release 2.0, although that release 2.1 has the maximum statistical values (e.g. mean and

variance), as shown in section 3.7.1.1. Moreover, ACBO has higher correlation than

TRFC, which has the highs statistical values in Eclipses releases. This indicates that

ACBO is very good indicator for faults in package. This might be due to the fact that

CBO measures are the only measures that count both inward and outward coupling

which increases the complexity of a package and so increases the possible faults in that

package. On the other hand, MOOD metrics were not as good as C&K and Martin

metrics. AHFP, MHFP and CFP have positive significant correlation only in one release

(release 2.0 for AHFP, MHFP and 2.1 for CFP). In addition, MHFP and CFP have also

positive correlation close to be significant (with p-value 0.0502 for MHFP and 0.063 for

58

CFP) in release 2.1 and positive correlation (not significant) in release 3.0. This can be

explained by the fact that PreFD decreases from release i to i+1 (it was 0.333 in release

2.0, 0.1202 in 2.1 and 0.00944 in 3.0).

Since Ca, Ce, TLCOM, TRFC, TWMP, TCBO and ACBO metrics have

significant correlation through all releases, the H1-PreFD hypothesis will be accepted

with respect to these metrics and the H0-PreFD will be rejected.

In summary, the above results indicate that faults are more likely to increase

when coupling between packages (e.g. Ca and Ce) increases. In addition, increasing

coupling between object (CBO) and number of methods (as in TWMP and AWMP) in a

package will increase the possibility of faults in this package. However, increasing

cohesion in a package (i.e. decreasing TLCOM) will decrease the faults in that package.

The result also shows that CBO metrics are better than the others. In fact, ACBO is the

best metrics that can be used as indicator for PreFD. This is because the larger ACBO in

a package, the more complexity there is to manage and so the more likely to have more

faults in this package. TCBO comes second and Ce comes third. It can be also shown

from Table 9 that C&K-Total metrics have higher correlation than C&K-Average. In

addition, it can be observed that C&K suite is the best indicator for PreFD, Martin

metrics come second and finally MOOD metrics come last.

59

Pair of Variables

Spearman Rank Order Correlations
(Eclipse releases) Marked correlations are

significant at p<.05000
2.0 2.1 3.0

Martin Metrics

No. Classes
0.114759

(0.026067)
0.072051

(0.137164)
0.150756

(0.000124)

A
0.017345

(0.737442)
-0.156452
(0.001188)

0.007075
(0.856278)

I
0.016323

(0.752391)
0.090736

(0.061022)
-0.007131
(0.856781)

D -0.049042
(0.737442)

0.056976
(0.240051)

0.040105
(0.309925)

Ca
0.186075

(0.000286)
0.098509

(0.00)
0.166412

(0.000022)

Ce
0.251647

(0.000001)
0.264205

(0.00)
0.203499

(0.00)

NOA
0.04791

(0.354155)
-0.09591
(0.04761)

0.080308
(0.041775)

C & K Suite

TLCOM
0.103963
(0.00001)

0.112725
(0.019809)

0.226685
(0.00)

ALCOM
0.034956

(0.499182)
0.087355

(0.071348)
0.201688

(0.00)

TRFC
0.171620
(0.000833)

0.171022
(0.000385)

0.150856
(0.000123)

ARFC
0.142826
(0.005529)

0.177732
(0.000223)

0.070149
(0.075479)

TWMP
0.147824
(0.004070)

0.122087
(0.011575)

0.154015
(0.000088)

AWMP
0.090175
(0.080759)

0.121614
(0.011903)

0.066803
(0.090544)

TDIT
0.003873
(0.940327)

-0.047089
(0.331678)

0.013970
(0.723660)

ADIT
-0.025421
(0.623162)

-0.076792
(0.113078)

-0.021685
(0.583088)

TNDC 0.024114
(0.641143)

-0.007688
(0.490616)

0.085445
(0.030280)

ANDC
-0.006622
(0.898165)

-0.033448
(0.490616)

0.063226
(0.109217)

TCBO
0.256165

(0.00)
0.190235

(0.000076)
0.218063

(0.00)

ACBO
0.306274

(0.00)
0.257854

(0.00)
0.192641

(0.000001)
MOOD Suite

MHFP
0.115380

(0.025265)
0.094792

(0.050294)
0.038553

(0.329035)

MIFP
0.080125
(0.120900)

0.013340
(0.783430)

0.031895
(0.419429)

PFP
0.035858
(0.488177)

0.015751
(0.745522)

-0.012779
(0.746381)

CFP
0.129160
(0.012187)

0.089908
(0.063430)

0.009914
(0.801877)

AIFP
0.067760
(0.189841)

0.027344
(0.573106)

0.027287
(0.489743)

AHFP
0.190049
(0.752391)

0.143569
(0.002945)

0.045561
(0.248637)

Table 9: PreFD and package-level metrics

60

3.7.2.2 PostFD and Package-Level Metrics

Table 10 shows that all Martin metrics have positive significant correlation with PostFD

except for “I”. Number of classes (No. Classes), Ca and Ce have positive significant

correlation with PostFD through all Eclipse releases whereas NOA has significant

correlation only in one release (release 3.0). This might be due to the fact that packages

in release 3.0 have more NOA than in 2.0 and 2.1 (as shown in Tables 3, 5 and 6). On

the other hand, “A” has negative significant correlation in 2.0 and 2.1 but not significant

in 3.0, which has the highest statistical values of “A” compared to 2.0 and 2.1 packages.

Table 10 shows also that TCBO, ACBO, TRFC, ARFC, TWMP, AWMP and

TLCOM have positive significant correlation with PostFD in all Eclipse releases. As in

PreFD, TCBO has the strongest correlation in the studied metrics. In addition, it is it is

interesting to note that TCBO was highest (0.34) in release 2.0, although release 2.1 has

the maximum statistical values, as shown in Table 4. Moreover, TCBO has higher

correlation than TRFC, which has the highs statistical values in Eclipses releases. In

fact, Empirical Study 34 shows that TRFC is more correlated to size than TCBO. This

indicates that TCBO is very good indicator for faults in package. TWMP, which is a

size metrics, has the second highest correlation in Table 10 while TRFC was the third.

Although inheritance was not used that much in Eclipse releases, TDIT, ADIT, TNDC

and ANDC have positive significant correlation with PostFD in release 2.0 and 3.0.

However, ANDC and ADIT were not having significant correlation with PostFD. This

4 Empirical Study 3 investigates correlation between the proposed metrics and effort in term of LOC

61

might be because packages in release 2.1 have, on average, more classes, which is the

denominator for ANDC and ADIT, than the other releases.

As in PreFD, MOOD metrics were not as good as C&K and Martin metrics.

AIFP, MHFP and CFP have positive significant correlation only in one release (release

2.0 for CFP and 3.0 for AIFP and MHFP) while PFP has positive significant correlation

in 2.0 and 3.0 but not in 2.1. This is because the denominator (counting a maximum

number of possible method overrides) for PFP grows proportionally faster than the

numerator (actual number of method overrides).

Since No. Classes, Ca, Ce TLCOM, TRFC, ARFC, TWMP, AWMP, TCBO and

ACBO metrics have significant correlation through all releases, H1-PostFD hypothesis

will be accepted with respect to these metrics and H0-PostFD will be rejected.

In summary, as in PreFD, the results show that faults increase when coupling

between packages increases. Also, increasing number of methods in a package will

increase the possibility of faults in this package. However, increasing cohesion and

abstractness in packages will decrease the faults. The results also show that CBO

metrics are better than the others. Actually, TCBO was the best metrics that can be used

as indicator for faults. TRFC was the second best and TWMP is the third. It can be also

shown from Table 10 that C&K-Total metrics have higher correlation than C&K-

Average. In addition, it can be observed that C&K suite is the best indicator for PostFD

prediction, Martin metrics come second and finally MOOD metrics come last.

62

Pair of Variables

Spearman Rank Order Correlations
(Eclipse releases) Marked correlations are

significant at p<.05000
2.0 2.1 3.0

Martin Metrics

 No. Classes
0.272478

(0.00)
0.194208

(0.000053)
0.261093

(0.00)

 A
-0.155322
(0.002527)

-0.102007
(0.035145)

-0.031102
(0.431259)

 I
0.075723

(0.142773)
0.007659

(0.874606)
0.020804

(0.598493)

 D 0.046665
(0.366868)

0.142194
(0.003233)

0.102490
(0.009304)

 Ca
0.135689

(0.008425)
0.155909

(0.001229)
0.212355

(0.00)

 Ce
0.242739

(0.000002)
0.176263

(0.000252)
0.292377

(0.00)

NOA
-0.00821

(0.873787)
0.0202

(0.676849)
0.1222783
(0.001894)

C & K Suite

 TLCOM
0.236299

(0.000004)
0.211346

(0.000011)
0.251191

(0.00)

 ALCOM
0.094456

(0.067315)
0.152813

(0.001540)
0.129151

(0.001030)

 TRFC
0.337038

(0.00)
0.229355

(0.000002)
0.316878

(0.00)

 ARFC
0.241714

(0.00)
0.143144

(0.003031)
0.234399

(0.00)

 TWMP
0.316744

(0.000002)
0.218217

(0.000005)
0.296625

(0.00)

 AWMP
0.199194

(0.000101)
0.130742

(0.006823)
0.201842

(0.00)

 TDIT
0.156168

(0.002391)
0.071119

(0.142335)
0.149695

(0.000139)

 ADIT
0.130693

(0.011191)
0.032742

(0.499820)
0.113200

(0.004052)

 TNDC
0.161774

(0.001648)
0.087055

(0.072330)
0.204968

(0.00)

 ANDC
0.106300

(0.039378)
0.031281

(0.519153)
0.169194

(0.000016)

 TCBO
0.341808

(0.00)
0.255153
(0.0000)

0.323976
(0.00)

 ACBO
0.267513

(0.00)
0.222677

(0.000003)
0.262954

(0.00)
MOOD Suite

 MHFP
0.073681

(0.153895)
0.071282

(0.141420)
0.129105

(0.001034)

 MIFP 0.072378
(0.161325)

-0.017112
(0.724394)

0.067319
(0.088075)

 PFP
0.116562

(0.023796)
0.006266

(0.897276)
0.140807

(0.000342)

 CFP
0.128445

(0.012678)
0.084003

(0.082953)
0.030365

(0.442097)

 AIFP
0.100788

(0.050842)
0.026986

(0.578141)
0.084591

(0.031979)

 AHFP
0.033832

(0.513090)

0.061673
(0.203412)

0.017183
(0.663632)

Table 10: PostFD and package-level metrics

63

3.7.2.3 PPreF and Package-Level Metrics:

Table 11 shows that all Martin metrics have positive significant correlation with PPreF

except “I”. No. of classes, Ca and Ce have positive significant correlation in all Eclipse

releases while NOA (as in PostFD) has positive significant correlation in two releases

2.0 and 3.0. Table 11 also shows that all C&K metrics have positive significant

correlation with PPreF in all Eclipse releases except TDIT, ADIT and ANDC in release

2.0 (as in PostFD). However, TDIT was very close to be significant (p-value 0.09). This

is because, unlike PreFD and PostFD, PPreF has larger mean (0.699) than PreFD and

PostFD, as shown in Table 7. For the same reason, MOOD metrics achieved better

correlation than PreFD and PostFD. In fact, MHFP and PFP have positive significant

correlation with PPreF in all releases. Moreover, MIFP, CFP and AIFP have positive

significant correlation in tow releases of Eclipse.

Since No. Classes, Ca, Ce TLCOM, TRFC, ARFC, TWMP, AWMP, TCBO,

ACBO, MHFP and PFP metrics have significant correlation through all releases, the

H1-PPreF hypothesis will be accepted with respect to these metrics and the H0-PPreF

will be rejected.

To summarize this, the above results show that faulty packages increase when

coupling between packages increases. Also, increasing number of methods, private

methods (i.e. MHFP), overriding methods (i.e. PFP) and classes in a package will

increase the possibility of finding fault in this package and hence the number of faulty

packages in a system. However, increasing cohesion and abstractness in packages will

64

decrease possibility of finding faults in a package. Among all the metrics in Tables 11,

TRFC, TWMP and TCBO have the strongest correlation (between 0.42 and 0.39). In

addition, as in PostFD, C&K-Total metrics have higher correlation than C&K-Average.

Furthermore, it can be observed from the above that C&K suite is the best indicator for

PPreF, Martin metrics come second and finally MOOD metrics come last.

3.7.2.4 PPostF and Package-Level Metrics:

Table 12 shows the correlation result between PPostF and the proposed metrics. The

result was very close to the one in Table 12. As in PPreF, No. of classes, Ca and Ce

have positive significant correlation in all Eclipse releases with PPostF while NOA has

positive significant correlation in two releases 2.0 and 3.0. In addition, all C&K metrics

have positive significant correlation with PPostF in all Eclipse releases except ANDC in

release 2.1, which has p-value very close to 0.05. MHFP and PFP have positive

significant correlation with PPostF in all Eclipse releases. Furthermore, MIFP have

positive significant correlation in tow releases of Eclipse and CFP and AIFP have

positive significant correlation in one release and very close to be significant in the

second release.

Since No. Classes, Ca, Ce TLCOM, TRFC, ARFC, TWMP, AWMP, TCBO,

ACBO, MHFP and PFP metrics have significant correlation through all releases, the

H1-PPostF hypothesis will be accepted with respect to these metrics and the H0-PPreF

will be rejected.

65

Pair of Variables

Spearman Rank Order Correlations
(Eclipse releases) Marked correlations are

significant at p<.05000

2.0 2.1 3.0
Martin Metrics

 No. Classes
0.343632

(0.00)
0.266185

(0.0)
0.333896

(0.00)

 A
0.016846

(0.744740)
-0.154870
(0.001332)

-0.036467
(0.356814)

 I
-0.016143
(0.755042)

0.091381
(0.059199)

0.036170
(0.359828)

 D
0.063606
(0.218511)

0.140640
(0.003590)

0.063663
(0.106781)

 Ca
0.234750
(0.00004)

0.169050
(0.000451)

0.199103
(0.00)

 Ce
0.252351
(0.00001)

0.318676
(0.00)

0.318726
(0.00)

NOA
0.16237

(0.001582)
-0.0019

(0.96834)
0.15065627
(0.000126)

C & K Suite

 TLCOM
0.315914
(0.00000)

0.263833
(0.00)

0.352712
(0.00)

 ALCOM
0.120579

(0.019342)
0.121894

(0.011708)
0.226378

(0.00)

 TRFC
0.412864

(0.00)
0.393529

(0.00)
0.362755
(0.000)

 ARFC
0.250246

(0.000001)
0.302832

(0.00)
0.219328

(0.00)

 TWMP
0.426556

(0.00)
0.355638

(0.00)
0.361620

(0.00)

 AWMP
0.273134

(0.00)
0.275768

(0.00)
0.211423

(0.00)

 TDIT
0.182082

(0.000387)
0.092580

(0.055931)
0.160942

(0.000041)
 ADIT 0.126213

(0.014325)
0.032489

(0.503135)
0.099353

(0.011713)
 TNDC 0.225289

(0.00)
0.125595

(0.009378)
0.216120

(0.00)
 ANDC 0.159166

(0.000257)
0.052061

(0.283112)
0.152336

(0.000105)
 TCBO 0.390443

(0.00)
0.332088

(0.00)
0.381643

(0.00)
 ACBO 0.274783

(0.00)
0.270274

(0.00)
0.263770

(0.00)
MOOD Suite

 MHFP 0.126311
(0.021310)

0.166955
(0.024853)

0.130447
(0.000915)

 MIFP 0.103561
(0.005615)

0.055962
(0.248537)

0.114996
(0.003500)

 PFP 0.177531
(0.000006)

0.155552
(0.001262)

0.126809
(0.001272)

 CFP 0.171790
(0.011653)

0.136935
(0.004587)

0.062103
(0.115668)

 AIFP 0.110975
(0.001721)

0.086627
(0.073748)

0.100842
(0.010508)

 AHFP 0.146627
(0.220699)

0.126728
(0.008752)

0.062082
(0.115787)

Table 11: PPreF and packages-level metrics

66

In summary, as in PPreF, the results show that faulty packages increase when

coupling between packages increases. Also, increasing number of methods, private

methods, overriding methods and classes in a package will increase the possibility of

finding faults in this package and hence the number of faulty packages in a system.

However, increasing cohesion and abstractness in packages will decrease possibility of

finding faults in a package. Among all the metrics in Tables 12, TRFC, TWMP and

TCBO have the strongest correlation (0.48, 0.46 and 0.44 respectively). In addition, as

in PostFD, C&K-Total metrics have higher correlation than C&K-Average. It can be

observed also from the above that C&K suite is the best indicator for predicting PPreF,

Martin metrics come second and finally MOOD metrics come last.

3.7.2.5 Summary
The overall results showed that package-level metrics can be used as good indicator for

fault prediction in term of PreFD, PostFD, PPreF and PPostF. Table 13 gives the best

suites metrics that achieved significant correlation through all Eclipse releases. Among

all Martin’s metrics, No. Classes, Ca and Ce were the best. TLCOM, TRFC, ARFC,

TWMP, AWMP, TCBO and ACBO were the best fault prediction indicators in C&K

suite. PFP and MHFP were the best predictors for fault in MOOD suite.

An interesting observation is that coupling metrics were good indicators for

faults in a package while inheritance metrics (e.g. TDIT, ADIT, TNDC and ANDC)

were not always good indicators for PreFD and PostFD. However, they were good in

predicting PPreF and PPostF. This is because PPreF and PPostF have higher mean and

67

Pair of Variables

Spearman Rank Order Correlations
(Eclipse releases) Marked correlations are

significant at p<.05000
2.0 2.1 3.0

Martin Metrics

 No. Classes
0.404232

(0.00)
0.343007

(0.00)
0.388326

(0.00)

 A
-0.137226
(0.744740)

-0.085528
(0.077560)

-0.070385
(0.074536)

 I
0.061301

(0.755042)
0.010973

(0.821133)
0.040367

(0.306771)

 D
0.075594

(0.218511)
0.160484

(0.000874)
0.119162

(0.002473)

 Ca
0.202954
(0.00004)

0.214302
(0.00001)

0.242059
(0.00)

 Ce
0.325386
(0.00001)

0.263478
(0.00)

0.381972
(0.00)

NOA
0.07863
(0.00)

0.0117
(0.15566)

0.15065627
(0.000047)

C & K Suite

 TLCOM
0.338205

(0.00)
0.325572

(0.00)
0.351577

(0.00)

 ALCOM
0.114130

(0.00)
0.160773

(0.000856)
0.150157

(0.000132)

 TRFC
0.487245

(0.00
0.401729

(0.00)
0.471944

(0.00)

 ARFC
0.308976

(0.00)
0.242628

(0.00)
0.340752

(0.00)

 TWMP
0.466300

(0.00)
0.386030

(0.00)
0.441722

(0.00)

 AWMP
0.263057

(0.00)
0.219240

(0.000005)
0.295901

(0.00)

 TDIT
0.256839

(0.00)
0.180083

(0.000183)
0.231721

(0.00)

 ADIT
0.200034

(0.000094)
0.104051

(0.031584)
0.164170

(0.000029)

 TNDC
0.271922

(0.00)
0.186192

(0.000109)
0.277250

(0.00)

 ANDC
0.187444

(0.000257)
0.082286

(0.089461)
0.199737

(0.00)

 TCBO
0.448345

(0.00)
0.388267

(0.00)
0.433005

(0.00)

 ACBO
0.290382

(0.00)
0.273024

(0.00)
0.293932

(0.00)
MOOD Suite

 MHFP
0.118715

(0.021310)
0.125186

(0.009613)
0.204323

(0.00)

 MIFP
0.142567

(0.00)
0.037359

(0.441300)
0.116301

(0.00)

 PFP
0.230775

(0.00)
0.114159

(0.018286)
0.231204

(0.003143)

 CFP
0.129967

(0.001721)
0.080493

(0.096687)
0.059806

(0.129790)

 AIFP
0.161137

(0.220699)
0.083852

(0.083507)
0.132878

(0.000730)

 AHFP
0.063305

(0.235690)
0.061483

(0.204814)
0.030722

(0.436753)

Table 12: PPostF and package-level metrics

68

than PreFD and PostFD, as shown in Table 7. Therefore, they will be considered as

good indicator for faults in package. Another interesting observation is that C&K suite

is the best indicator for fault, Martin metrics come second and finally MOOD metrics

come last. Among all the studied metrics, TRFC and TCBO are the best metrics that can

be used as indicators for fault, as they have the strongest correlation across Eclipse

releases.

Suites Metrics Category

Martin Ca, Ce Coupling

No. Classes Size

C&K

TLCOM Cohesion

TRFC, ARFC, TCBO, ACBO Coupling

TWMP, AWMP Size

MOOD MHFP Visibility
PFP Polymorphism

Table 13: Best indicators for fault in a package

From the above analysis, the following points can be used to characterize faulty

packages and improve the quality of packages in OOD:

- Size of package: the larger the package, the more likely to have more faults.

Whether measured in number of methods or classes, the larger a package the more

code it contains and the more things that could impose a fault.

- Cohesion: decreasing cohesion in a package will increase the possible faults in that

package. Low cohesion in a package makes its elements (e.g. methods and

69

variables) more difficult to understand and so harder to maintain. Consequently, this

will increase the likelihood of errors during the development of this package.

- Number of Afferent Coupling: more packages that depend upon classes inside this

package implies more possible faults. If there are a greater number of other

packages that depended upon this package, this indicates that this package has more

functions in the system and a lot of relationships with other packages which

increases the likelihood of errors in this package.

- Number of Efferent Coupling: more classes inside this package that depend upon

classes outside this package implies more possible faults in this package as this

increases complexity between packages, which increases the likelihood of faults

during development.

- Internal coupling (CBO): increasing coupling between classes inside a package

increases the complexity of this package and hence increases the possible faults in

that package.

- Abstractness: Package that has low abstractness is likely to have more fault than

package with high Abstractness. This is because abstract classes do not contain

implementation code for functions defined in this package.

- Polymorphism Factor: increasing total degree of methods overriding in the class

inheritance tree in a package obviously increase it complexity. This in turn increases

likelihood of faults in this package.

70

- Method Hiding Factor: increasing hidden (private) methods increases possibility of

faults in this package. This is because private methods do not allow other classes to

use them outside the class that defined them. Consequently, new methods need to be

created, which increase the possibility of faults.

- Inheritance: the more of depth of inheritance tree and number of descendents classes

in package, the more complicate the package will be and hence the more likely to

have more faults.

3.7.3 Multivariate Analysis

Multivariate regression [49] is used to determine whether a particular combination of

the package-level metrics provides the best estimate for the external quality attributes.

Thus, the studied metrics were used to build the best models for each independent

variable. These metrics were categorized into 6 groups:

o All-Suites: it includes the best subset of C&K, MOOD and Martin metrics.

o Martin: It contains the best subset of Martin metrics.

o MOOD: It contains the best subset of MOOD metrics.

o C&K-All: It contains the best subset of C&K metrics (Total and Average).

o C&K-Total: It contains the best subset of C&K-Total metrics.

o C&K-Average: It contains the best subset of C&K-Average metrics.

71

Stepwise regression was done using Minitab tool (using default setting: forward and

backward with alpha to enter as 0.15 and alpha to remove as 0.15) [51], which is well

known statistical tool, to determine the best subset of each group for PreFD, PostFD,

PPreF and PPostF in Eclipse 2.0, 2.1 and 3.0 datasets. The best subset for each group is

shown in Appendix A. Ca, Ce, TLCOM, TWMP, TCBO, TRFC, ARFC, CFP and

MHFP were the most common metrics that appear in these subsets.

After that, the best subset of each group was used to build regression or

classification model for faults prediction in Eclipse packages. Weka [52], which is an

open source machine-learning tool, was used to build and validate the regression

models. To estimate the accuracy of a classification or regression model, the dataset

was divided into training and testing sets. More specific, Eclipse 2.0 dataset was used to

train the model in Weka and Eclipse 2.1 dataset was used to test it. Then, Eclipse 2.0

and 2.1 datasets were combined together, to increase the size of training dataset, and

used as training dataset. After that, Eclipse 3.0 dataset was used to test that model.

These models are presented in Appendix B.

3.7.4 Evaluation Measures

This section presents evaluation measures used to evaluate the performance of

prediction models. Evaluation measures can be divided into two groups: classification

and regression. These measures have been selected based on the most commonly and

widely used in the literature.

72

3.7.4.1 Regression Evaluation Measures

There are several measures used to evaluate regression prediction models. However,

most of the commonly used regression measures are derived from Magnitude of

Relative Error (MRE). MRE is the standard evaluation criterion to assess software

prediction models. It is defined as follows [53]:

MRE i =
i

ii

Actual

|PredictedActual| -

The regression measures that were derived from MRE are MMRE and Pred (25).

MMRE

Mean Magnitude of Relative Error (MMRE) [54], which is well-known evaluation

criteria, was used to evaluate the performance of regression prediction models. MMRE

is the mean of MRE. In other words, it is the aggregation of MRE i values over multiple

observations (N):

MMRE =
n
1 å

N

i

 MRE i

Pred(25)

Another measure, which is derived from MRE, called Pred(25) was used to evaluate the

regression model. Pre(25) is the percentage of observations whose MRE is less than or

equal to level 0.25. It is calculated as follow [54]:

Pred(25) =
n
C

73

Where C is the number of observations (cases) whose MRE is less than or equal to the

0.25, and n is the total number of observations in the dataset. Higher score of Pred(25%)

implies better predictive accuracy. By contrast, lower score of MMRE indicate better

predictive accuracy.

3.7.4.2 Classification Evaluation Measures

The evaluation measures of a prediction model for correctly or not correctly classified

packages (as faulty or not-faulty) can be obtained from a confusion matrix, similar to

the one shown in Table 14. The confusion matrix has four categories [15, 54]: True

Positives (TP) are packages correctly classified as positives. False Negatives (FN) are

positive packages incorrectly classified as negative. False Positives (FP) are negative

packages incorrectly classified as positive. Finally, True Negatives (TN) refers to

negative packages correctly classified as negative.

Table 14: Confusion matrix for binary classification problems [27]

To assess the quality of a classification model, the following measures have been used:

74

Recall

Recall is the percentage of true positives that are classified correctly (predicted and

observed as faulty packages). It is calculated as follows [55]:

Recall =
FNTP

TP
+

A value close to one is superlative and would mean that every package that had faults

observed was predicted to have faults.

Precision

Precision is the ratio between the number of correctly identified positives (predicted and

observed as faulty packages) and number of packages predicted as faulty. It is

calculated as follows [54]:

Precision =
FPTP

TP
+

A value close to one is desirable and would mean that every package that was predicted

to have faults actually had faults.

Accuracy

The classification accuracy, or correct classification rate, can be defined as number of

correct classifications (i.e. both true positives and true negatives) to the total number of

packages (i.e. classifications) [15, 55].

Accuracy =
FNFPTNTP

TNTP
+++

+

75

A value of one is best and would mean that the model classified perfectly (i.e. all cases

have been correctly classified).

The evaluation measures for each model created in the previous sections are as

follow:

3.7.5 PreFD, PostFD and package-level metrics

Table 15 presents the results obtained by building regression models for PreFD and

PostFD based on the best subsets of the proposed metrics, with bold values as indication

of best achieved result. The best Pred(25%) for PreFD model was achieved by using

Martin metrics (28.36 %) in dataset 3.0 and the best MMRE was produced by C&K-

Total (2.906). In addition, C&K-Total achieved the best Pred(25%) and MMRE

(28.57% and 1.019 respectively) for PostFD in dataset 3.0. However, Martin was

second best with a small MMRE difference of (0.009).

The performance of these models was not perfect. This is because of the low

variance of PreFD and PostFD. In addition, this performance can be improved by using

some of AI techniques such as Artificial Neural network and hybrid techniques [57].

However, since we are not interested here in getting the best accurate results, by

applying different AI techniques, this will be considered as one direction for future

work.

76

Models

2.1 (Train 2.0 Test2.1) 3.0 (Train 2.0-2.1 Test3.0)

PreFD PostFD PreFD PostFD

All-Suites
PRED (25%) 14.33% 13.45% 12.56% 25.78%

MMRE 3.451 1.775 2.916 1.276

Martin
PRED (25%) 10.13% 13.45% 28.36% 20.90%

MMRE 3.644 1.761 5.996 1.028

MOOD
PRED (25%) 10.48% 15.78% 14.53% 24.04%

MMRE 3.682 1.721 2.997 1.1233

C&K

All
PRED (25%) 11.18% 12.28% 13.05% 25.05%

MMRE 3.464 2.00 3.042 1.376

Total
PRED (25%) 11.18% 13.45% 12.31% 28.57%

MMRE 3.464 1.763 2.906 1.019

Average
PRED (25%) 11.18% 11.69% 12.56% 24.73%

MMRE 3.464 1.903 2.934 1.2355
Table 15: Classification accuracy for PreFD, PostFD and package-level metrics

Figure 11 shows the MRE box plots of Eclipse 2.1 results obtained from PreFD

regression models. Boxes sizes seem to be close to each other, and they are almost at

the same level. However, C&K models were the best model as they had the narrowest

boxes and smallest whiskers. On the other hand, Martin and MOOD models were the

worst as they have the highest boxes and longest whiskers compared with others.

Mean; Box: Mean±SE; Whisker: Mean±SD

 Mean
 Mean±SE
 Mean±SD All

Martin
MOOD

C&K All
C&K Total

C&K Av erage

-2

0

2

4

6

8

10

Figure 11: Box Plot for PreFD in Eclipse 2.1

77

Figure 12 box plots Eclipse 2.1 results obtained from PostFD regression models.

C&K-Total and Martin metrics were the best, since they had the narrowest boxes and

smallest whiskers. On the other hand, C&K-All and MOOD models were the worst as

they have the highest boxes and longest whiskers compared with others.

Mean; Box: Mean±SE; Whisker: Mean±SD

 Mean
 Mean±SE
 Mean±SD All

Martin
MOOD

C&K All
C&K Total

C&K Average

-1

0

1

2

3

4

5

Figure 12: Figure Box plot for PostFD in Eclipse 2.1

Figure 13 box plots Eclipse 3.0 results obtained from PreFD regression models.

Boxes sizes seem to be close to each other, and they are almost at the same level.

However, C&K-Total was the best since it had the lowest box and smallest whisker.

78

PreFD in Eclipse 3.0

Mean; Box: Mean±SE; Whisker: Mean±SD

 Mean
 Mean±SE
 Mean±SD All

Martin
MOOD

C&K All
C&K Total

C&K Average

-2

0

2

4

6

8

Figure 13: Box Plot for PreFD in Eclipse 3.0

Figure 14 box plots Eclipse 3.0 results obtained from PostFD regression models.

C&K-Total has the narrowest box and the smallest whisker. However, Martin model

was competitive with them in the lower box and whisker.

Mean; Box: Mean±SE; Whisker: Mean±SD

 Mean
 Mean±SE
 Mean±SD All

Martin
MOOD

C&K All
C&K Total

C&K Average

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Figure 14: Box Plot for PostFD in Eclipse 3.0

79

In summary, the above results show that C&K models achieved the best

performance in predicting PreFD and PostFD, which supports our finding. In addition,

Martin models showed close and competitive results in PreFD and PostFD. However,

MOOD was the worst model, which also supports our findings discussed in the

univariate analysis. C&K-Total was chosen to be best regression model, since it

achieved the best MMRE and Pred(0.25), as shown in Table 14 .

3.7.6 PPreF and package-level metrics

Table 16 presents the accuracy of the classification results obtained from applying

classification regression on PPreF based on the best subsets of the proposed metrics,

with bold values indicating the best achieved result. Overall results show a competition

between the models, which is built from these subsets. The accuracy of these models

was between 63.5% and 74.47% depending on the metrics used to build the model. The

best accuracy was accomplished by using All-Suites metrics with 74.47 % in release

2.1. However, C&K-All produced the best precision and accuracy in release 3.0

(69.05%), as shown in table 16. C&K-Total scored the best precision and recall in 2.1

(with a minor difference from All Suite) and the best recall in 3.0.

80

Models Measures

2.1

(Train 2.0

Test 2.1)

3.0

(Train 2.0 & 2.1

Test 3.0)

All-Suites

Accuracy 74.47% 69.05%

Precision 0.755 0.691

Recall 0.916 0.926

Martin

Accuracy 66.97% 66.71%

Precision 0.67 0.668

Recall 1 0.946

MOOD

Accuracy 67.2% 64.38%

Precision 0.671 0.641

Recall 0.997 0.998

C&K

All

Accuracy 70.72 % 69.67%

Precision 0.707 0.702

Recall 0.962 0.907

Total

Accuracy 66.97% 63.45%

Precision 0.76 0.635

Recall 1 1

Average

Accuracy 68.61% 66.56%

Precision 0.685 0.673

Recall 0.983 0.922

Table 16: Classification accuracy for Package-level Metrics

3.7.7 PPostF and package-level metrics

Table 17 presents the accuracy of the classification results obtained from applying

classification regression on PPostF based on the best subsets of the proposed metrics.

The accuracy results were between 57% and 68% depending on the metrics used to

build the model. The best accuracy for this model was produced by using the C&K-

Total and All-Suites models (67.91%) in release 2.1. C&K-Total also produced the best

accuracy in release 3.0 (it correctly classifies 68.1 % of the 3.0 packages). Moreover,

81

C&K-Total scored the best recall in 2.1 and 3.0. However, All Suite scored the best

precision in 2.1 and 3.0.

Models Measures

2.1

Train 2.0

Test 2.1

3.0

Train 2.0 & 2.1

Test 3.0

All-Suites

Accuracy 67.91% 66.09%

Precision 0.72 0.65

Recall 0.674 0.78

Martin

Accuracy 64.40% 66.25%

Precision 0.65 0.64

Recall 0.737 0.80

MOOD

Accuracy 55.26% 57.85%

Precision 0.6 0.58

Recall 0.541 0.67

C&K

All

Accuracy 67.49% 66.25%

Precision 0.66 0.64

Recall 0.77 0.83

Total

Accuracy 67.91% 67.03%

Precision 0.69 0.64

Recall 0.75 0.85

Average

Accuracy 60.88% 62.20%

Precision 0.65 0.61

Recall 0.61 0.75

Table 17: Classification accuracy for Package-level Metrics

In summary, overall results showed that these models gave competitive results

against PPreF and PPostF. These can be shown from Figure 15 which compares the

accuracy of these models against PPreF and PPostF in Eclipse datasets 2.1 and 3.0. All-

Suites models produced the best accuracy. C&K-All comes second with a minor

difference between it and both C&K-Total and Martin. An explanation for this is that,

All-Suites group contains the best metrics

and C&K-All (e.g. TLCOM, TCBO,

addition, the majority of C&K

TCBO, TRFC, TLCOM and TWMP), as shown in Appendix B.

Figure

3.8 Confounding Effect of Package Size

It has been proposed in many studies

confounding variable when validating object

studies was to explore, after controlling the size confounder, whether all associations

between investigated metrics and the dependent variables

prediction, exist or not.

0

10

20

30

40

50

60

70

80

contains the best metrics in both Martin (e.g. No. Class, A, Ca and Ce)

All (e.g. TLCOM, TCBO, TWMP, TRFC, ARFC and ACBO) subsets.

C&K-All subset contains the best metrics in C&K

, TLCOM and TWMP), as shown in Appendix B.

Figure 15: Accuracy of the classification results

Confounding Effect of Package Size

in many studies that size should be taken into account as a

ariable when validating object-oriented metrics [58, 59]. The goal of

to explore, after controlling the size confounder, whether all associations

between investigated metrics and the dependent variables, such as fault

82

Class, A, Ca and Ce)

, TRFC, ARFC and ACBO) subsets. In

All subset contains the best metrics in C&K-Total (e.g.

that size should be taken into account as a

The goal of such

to explore, after controlling the size confounder, whether all associations

such as fault and change-

PPreF 2.1

PPreF 3.0

PPostF 2.1

PPostF 3.0

83

In this section, the confounding effect of package size in the result presented in

section 3.7 will be examined to demonstrate whether the association between the

investigated metrics and fault prediction is real or not. To do that, the prediction model

has been created twice for each metric in section 3.7 to predict fault proneness of

packages: first based on individual metric m and second based on m and size. Size is

considered as number of classes in a package. Then, the Wilcoxon test has been

performed to compare the results obtained from each model. The Wilcoxon test is a

nonparametric test that compares two paired groups. It calculates the difference between

each set of pairs, ranks them from smallest to largest by absolute value and analyzes

them. The P value determines whether populations have different medians or not. If the

P value is small (i.e. < 0.05), the idea that the difference is due to chance could be

rejected and it can be concluded instead that the populations have different medians.

However, If the P value is large (i.e. > 0.05), the data do not give any reason to

conclude that the overall medians differ [60], which indicates that there is no

confounding effect of package size with the investigated metrics.

Table 18 presents the results of Eclipse. The bolded values indicate those

metrics which are significant at a p-value less than 0.05. The result of Wilcoxon test

showed that all models built using metrics that found to be good indicators for faults in

PreFD were significant (p-value < 0.05) with models built by using each one of these

metrics and Number of classes in a package. This indicates that the association between

these metrics and fault prediction of packages disappears (i.e. was not real) after

controlling for the size confounding. Therefore, it can be concluded that size of a

84

package in term of number of classes could be used as indicator for pre-release faults

during the testing phase instead of these metrics.

PreFD Post FD

Metrics Z p-value Z p-value

Ca 7.155176 0.000000 3.323387 0.000889

Ce 4.641500 0.000003 1.536532 0.124409

TLCOM 6.240398 0.000000 1.976662 0.048081

TRFC 3.890027 0.000100 1.972504 0.058553

TCBO 5.770644 0.000000 1.63527 0.10199

ACBO 5.024547 0.000001 1.841966 0.065481

TWMP 4.863031 0.000001 1.678096 0.093329
Table 18: Results of the model after controlling the size for Eclipse

In PostFD, the result of Wilcoxon test showed that models built using Ce,

TRFC, TCBO, ACBO and TWMP were insignificant (p-value > 0.05) with models built

by using each one of these metrics and number of classes in a package. This indicates

that the association between these metrics and fault prediction of packages is real

regardless of the package's size. On the other hand, the association disappears when Ca

and TLCOM metrics were used to build the models. As a result, no conclusion can be

obtained for these two metrics.

From the above results, it can be observed that association between PLM and

fault- prediction disappears after controlling for the size confounding in PreFD.

85

Therefore, the null hypotheses (H0-PreFD) will be accepted and the alternative (H1-

PreFD) hypothesis will be rejected. However, the results of PostFD showed that Ce,

TRFC, TCBO, ACBO and TWMP have real association with post-release faults for a

package after controlling the package size. Therefore, the alternative hypothesis (H1-

PostFD) will be accepted and null hypotheses (H0-PostFD) will be rejected with respect

to these metrics.

3.9 Conclusion

Overall empirical results, produced in this chapter, showed that some of the proposed

metrics are good indicators for fault prediction in term of PreFD, PostFD, PPreF and

PPostF. More specific, No. Classes, Ca and Ce were the best in Martin’s metrics. In

addition, TLCOM, TRFC, ARFC, TWMP, AWMP, TCBO and ACBO were the best

fault prediction indicators in C&K suite. PFP and MHFP are the best predictors for fault

in MOOD suite.

The results also showed that size of package in term of number of classes may

affect the validity of the investigated metrics in predicting pre-release faults. On the

other hand, some of these metrics have real association with post-release faults in a

package. As a result, it can be concluded that number of classes in a package could be

used to predict faults during testing face (i.e. pre-release faults) whereas Ce, TRFC,

TCBO, ACBO and TWMP metrics can be used to predict faults after releasing the

system. Among the investigated metrics, TCBO were the best metric that can be used as

86

indicators for fault prediction as it has no confounding effect with size and has the

strongest correlation with faults.

In general, C&K suite was the best indicator for fault prediction. Martin metrics

come second and finally MOOD metrics come last. These results have been supported

by our findings from the regression analyses. The accuracy of the predictions models

reached to more than 74% in predicting faulty packages. Furthermore, the accuracy can

be improved by using some of AI technique such as Artificial Neural network and

hybrid techniques.

87

4. Chapter 4

Empirical Study 2: Change Density and Package Metrics

4.1 Goal

The goal of this empirical study can be defined as follows: investigate the correlation

between change proneness of a package and sets of package-level metrics for the

purpose of identifying and characterizing change-prone packages from the point of view

of researchers and practitioners in the context of OO software.

4.2 Hypotheses

The following hypotheses will be investigated in this research. The metric m, used in

the below hypotheses, ranges over the set of object-oriented metrics studied in this

research.

o H0-ChD (Null Hypothesis): There is no correlation between metric m and the

Change Density (ChD) of a package from releases i to release i+1.

o H1-ChD (Alternative Hypothesis): There is correlation between metric m and

the Change Density (ChD) of a package from releases i to release i+1.

4.3 Subjects

As in Empirical Study 1, Eclipse was used as subject for this empirical study. In

addition, a second system called GanttProject was used as another subject for this study.

88

GanttProject is a project scheduling application written in Java and featuring Gantt

chart, resource management, calendaring, import/export (MS Project, HTML, PDF,

spreadsheets) [61]. GanttProject has three releases. Table 18 contains a summary of

GanttProject releases.

Release Date Release No. packages No. Classes No. Methods LOC

2007-12-17 2.0.6 55 737 5450 29459

2008-06-10 2.0.7 55 737 5498 29772

2008-11-04 2.0.8 55 737 5518 29901

Table 19: Summary of GanttProject system

4.4 Experimental Variables

The independent variables are the metrics under investigation. The dependent variable

in this study is the change density. Change density is measured by dividing the amount

of lines of code (LOC) changed in a package from release i to i+1 by the total number

of LOC of this package in release i [62]. More specific, the amount of change is defined

as: LOC added, deleted and modified from release i to i +1.

Therefore, Change Density (ChD) =

 i relasein packagein that LOC Total
1+ i toi release from package afor modified) and deleted (added, LOC of #

89

4.5 Data Collection

JHawk was used to extract the package-level metrics (independent variables), by

considering Eclipse releases (2.0, 2.1 and 3.0) and GanttProject releases (2.0.6, 2.0.7

and 2.0.8). Then, DiffDocpro [63], which is visual file and directory comparison tool,

was used to calculate the amount of change in a package between release i and i+1 in

term of LOC. During the comparison between each two releases, comments, blank lines

and white space in line were excluded from the comparison process (option in

DiffDocpro tool). Then, change density was calculated by dividing this number by the

total number of LOC of this package in release i. Change density was used as a proxy

for measuring the change in a package from release i to release i+1. Next, structural

properties of packages in release i, as measured by the studied metrics, were then

associated with the change density between release i and i+1 (using univariate

regression), to determine if each individual package-level metric is significantly

correlated to the change density. Finally, multivariate regression was used to build

models for change prediction in software packages.

4.6 Results and Discussion

The following sections present descriptive statistics for the collected metrics, results of

univariate, multivariate analysis and the regression models for change prediction.

90

4.6.1 Descriptive statistics

The descriptive statistics for Eclipse has been discussed previously in section 3.7

(Empirical Study 1). This section presents descriptive statistics for GanttProject

releases. In addition, it shows descriptive statistics for change density in Eclipse and

GanttProject packages.

4.6.1.1 Descriptive statistics for metrics results

This section shows descriptive statistic for metrics results in GanttProject releases.

Tables 19 and 20 present descriptive statistics (minimum, maximum, mean, median,

and standard deviation) for the collected metrics in GanttProject releases 2.0.6 and

2.0.7. These metrics can be categorized into coupling, inheritance, cohesion, visibility

and polymorphism. The following can be observed from these metrics:

Coupling metrics:

- As in Eclipse system, the largest maximum value is for TRFC compared to other

metrics in Table 19 and 20. It also has the largest mean and standard deviation

(variance). This may be explained by the fact that TRFC is the only measure to

count indirect coupling, whereas all other coupling measures count connections to

directly coupled classes only.

- The lowest mean, maximum and standard deviation values are for CFP compared to

other coupling metrics. This is because CFP measures actual direct coupling

between classes in a package (i.e. denominator) over maximum possible number of

91

coupling between these classes (i.e. numerator), which is grows proportionally

faster than the numerator.

- In general, all coupling metrics were higher in 2.0.7 than in 2.06. This might be due

to the fact that the 2.0.7 has more methods than in 2.0.6.

Inheritance metrics:

Distributions of the values of the metrics show that inheritance has been used cautiously

within the two releases (i.e. low standard deviation, mean and median values for ADIT

and ANOC). However, there is sufficient variance in TDIT and TNDC to proceed with

the analysis.

Size metrics:

All size metrics were higher in 2.0.7 than in 2.06. This is due to the fact that the 2.0.7

has more methods and LOC than in 2.0.6.

Stability metrics:

It can be observed that packages in GanttProject have less Abstractness than in Eclipse.

This is because Eclipse releases have more abstract classes than GanttProject. The

descriptive statistics for the other stability measures do not show any interesting or

surprising trends.

Cohesion metrics

ALCOM indicates the average LCOM for a class in GanttProject packages. ALCOM is

bigger than 1 in each class (i.e. mean 1.09), which indicates relatively low cohesion.

This is because of the presence of access methods which are typically only reference

92

one attributes, and consequently increase the number of pairs of methods in the class

that do not use attributes in common. Since Eclipse releases have much more classes

and methods than in GanttProject, LCOM metrics were much less in GanttProject than

in Eclipse releases.

Visibility

As in Eclipse, hidden attribute was used a lot in GanttProject releases (around 0.71).

However, hidden method was used cautiously within the two releases.

Polymorphism

Packages in GanttProject releases have low PFP (mean is around 0.0692). This may be

explained by the fact that PFP depend on inheritance, which was low in GanttProject, as

discussed above.

93

Category Minimum Maximum Mean Median StdDev

 Martin Metrics

Size
No. Classes 1 104 13.4 8 18.15

NOA 0 17 2.86 1 4.37

Stability
A 0 0.67 0.16 0.15 0.18

I 0 1 0.58 0.67 0.38

D 0 1 0.317 0.25 0.32

Coupling
Ca 0 30 4.33 1 6.64

Ce 0 29 4.33 2 5.23

 C & K Suite

Cohesion
TLCOM 0 159.48 11.16 4.55 23.70

ALCOM 0 19.93 1.09 0.5 2.97

Coupling

TRFC 0 4114 273.51 117 601.32

ARFC 0 39.56 15.36 14.5 8.65

TCBO 0 484 41.87 16 78.23

ACBO 0 27.67 3.05 2.2 3.84

Size
TWMP 0 1382 99.09 39 208.65

AWMP 0 13.28 5.47 5 2.74

Inheritance

TDIT 0 5 0.8 0 1.13

ADIT 0 0.5 0.062 0 0.095

TNDC 0 27 3.05 1 5.22

ANDC 0 2.67 0.22 0.05 0.42

 MOOD Suite

Visibility
MHFP 0 0.35 0.09 0.59 0.99

AHFP 0 1 0.71 0.8 0.34

Polymorphism PFP 0 0.67 0.07 0 0.15

Coupling CFP 0 1 0.05 0.01 0.15

Inheritance MIFP 0 0.93 0.27 0.18 0.29

AIFP 0 0.92 0.26 0. 10 0.30

Table 20: Descriptive statistics for the package-level metrics in GanttProject 2.0.6

94

Category Minimum Maximum Mean Median StdDev

 Martin Metrics

Size
No. Classes 1 104 13.4 8 18.15

NOA 0 17 2.86 1 4.37

Stability
A 0 0.67 0.17 0.15 0.18

I 0 1 0.58 0.67 0.38

D 0 1 0.317 0.25 0.31

Coupling
Ca 0 30 4.33 1 6.64

Ce 0 29 4.33 2 5.23

 C & K Suite

Cohesion
TLCOM 0 159.48 11.19 4.55 23.37

ALCOM 0 19.93 1.09 0.5 2.97

Coupling

TRFC 0 4126 276.02 118 605.88

ARFC 0 39.67 15.45 14.5 8.65

TCBO 0 488 42.33 16 78.66

ACBO 0 28 3.08 2.2 3.87

Size
TWMP 0 1390 99.96 39 210.58

AWMP 0 13.37 5.51 5 2.76

Inheritance

TDIT 0 6 0.87 0 1.35

ADIT 0 0.5 0.07 0 0.104

TNDC 0 27 3.05 1 5.22

ANDC 0 2.67 0.22 0.05 0.42

 MOOD Suite

Visibility
MHFP 0 0.35 0.09 0.59 0.99

AHFP 0 1 0.71 0.81 0.35

Polymorphism PFP 0 0.67 0.07 0 0.15

Coupling CFP 0 1 0.05 0.01 0.15

Inheritance MIFP 0 0.93 0.27 0.18 0.30

AIFP 0 0.92 0.26 0.01 0.30

Table 21: Descriptive statistics for the package-level metrics in GanttProject 2.0.7

95

4.6.1.2 Descriptive statistics for change density

Table 21 shows descriptive statistics for change (LOC and change density) occurred in

Eclipse and GanttProject packages from release i to i+1. It can be observed from this

table that change density in Eclipse datasets were close to each other, although that

number of LOC changed in 2.1-3.0 dataset is more than 2.0-2.1. This is because LOC of

a package in Eclipse (i.e. denominator) increases dramatically from release i to i+1.

Another observation is that change between releases 2.0.6 and 2.07 in GanttProject is

more than the one between 2.0.7 and 2.0.8.

Table 22: Descriptive statistics for change in Eclipse and GanttProject releases.

4.6.2 Univariate Analysis

As in Empirical Study 1, Spearman’s correlation was performed with a level of

significance α = 0.05 (95% level of confidence) between change density and package-

level metrics. The results are presented in the following sections.

4.6.2.1 Change density and package-level metrics in Eclipse

Table 22 shows the correlation result between change density and the package-level

metrics in Eclipse datasets (2.0-2.1 and 2.1-3.0). The result shows that all metrics have

System From - To Amount of
Change

Minimum Maximum Mean Median StdDev

Eclipse
2.0 - 2.1

LOC 0 51774 1438.09 492.5 3503.14
ChD 0 26.67 1.18 0.82 2.06

2.1-3.0
LOC 0 320338 2607.5 641.5 16332.86

 ChD 0 14.62 1.29 1 1.319

GanttProject
2.0.6-2.0.7

LOC 0 1158 49.13 0 187.30
ChD 0 1.12 0.05 0 0.17

2.0.7-2.0.8
LOC 0 136 5.29 0 20.36

 ChD 0 0.08 0.005 0 0.016

96

significant correlation with change density except for D, NOA, TDIT, TNDC and

ANDC. The correlation was negative in “A” and positive for the others. The negative

coefficient of “A” indicates that a package is more likely to have more change when the

Abstractness of a package (the ratio between abstract classes and total number of

classes in a package) decreases. This is actually consistent with the Stable

Dependencies Principle which states that a package should be as abstract as it is stable

[12]. On the other hand, Ce has positive significant correlation with change density in

both datasets. Furthermore, Ce has the highest correlation (0.379) in Table 22, which

indicates that the more classes in a package that depends on other packages, the more

likely this package will be exposed to high amount of changes in the next release, as

any change of these packages may propagate a change out to the depending package.

Insatiability also has positive significant correlation with change density in both

datasets whereas No. Classes and Ca have significant correlation in 2.0-2.1.

For C&K suite, all metrics have positive significant correlation with change

density except for TDIT, ADIT, TNDC and ANDC. The correlations of these metrics

were mixed (i.e. positive and negative) and not significant, except for ADIT in 2.1-3.0

which has negative significant correlation. This is might be because their mean and

standard deviations values are relatively low. The negative coefficient of DIT indicates

that change density decreases with the depth of the class, which means that packages

that have classes located deeper in the inheritance hierarchy are less change-prone.

TLCOM has positive significant correlation with change density in both dataset (2.0-2.1

and 2.1-3.0) while ALCOM has positive significant correlation with change density in

97

dataset (2.0-2.1). On the other hand, CBO metrics have positive significant correlation

with change density in both dataset (2.0-2.1 and 2.1-3.0). In fact, ACBO and TCBO

have the highest correlation among all the C&K metrics. They also have higher

correlation than TRFC, which has the highs statistical values in Eclipses releases. This

indicates that they are very good indicators for change density in a package.

For MOOD metrics, MHFP is the only metrics that has positive significant correlation

in both datasets. All the other metrics have positive significant correlation with change

density in only the first dataset (2.0-2.1). This is might be because of the low variance

of these metrics.

In Summary, the above result shows that Ce, ”I”, ”A”, TLCOM, TRFC, ARFC,

TWMP, AWMP, TCBO, ACBO and MHFP metrics have significant correlation

through all datasets. Therefore, they are considered to be good indicators for change in

software packages.

98

Table 23: Correlation between change density in Eclipse

Pair of Variables

Spearman Rank Order Correlations
(Eclipse releases) Marked correlations are

significant at p<.05000
2.0 – 2.1 2.1 – 3.0

Martin Metrics

No. Classes
0.147337

(0.005031)
0.085241

(0.104451)

A
-0.136136
(0.009606)

-0.173565
(0.000883)

I
0.116729

(0.026572)
0.128895

(0.013856)

D 0.056070
(0.288026)

-0.018180
(0.729582)

Ca
0.162064

(0.002008)
0.093020

(0.076319)

Ce
0.379772

(0.00)
0.274763

(0.00)

NOA
-0.027692
(0.599988)

-0.052633
(0.316631)

C & K Suite

TLCOM
0.171778

(0.001050)
0.124401

(0.017573)

ALCOM
0.083426

(0.113567)
0.134521

(0.010189)

TRFC
0.287708

(0.00)
0.185027

(0.000387)

ARFC
0.269651

(0.00)
0.232196

(0.027877)

TWMP
0.198172

(0.000151)
0.115271
(0.00008)

AWMP
0.119611

(0.023033)
0.123428

(0.018484)

TDIT
0.043256

(0.412556)
-0.057724
(0.272012)

ADIT -0.026868
(0.610888)

-0.118369
(0.023913)

TNDC
0.060332

(0.252882)
-0.020521
(0.696376)

ANDC
0.002016

(0.969544)
-0.083505
(0.111728)

TCBO
0.314935

(0.00)
0.182254

(0.000475)

ACBO
0.318227

(0.00)
0.198364

(0.000139)
MOOD Suite

MHFP
0.348752

(0.00)
0.213755

(0.000039)

MIFP
0.149813

(0.004335)
0.008511

(0.871440)

PFP
0.123973

(0.018453)
-0.013098
(0.803324)

CFP
0.165021

(0.001655)
0.019383

(0.712456)

AIFP
0.138974

(0.008189)
0.027725

(0.598025)

AHFP
0.285855

(0.00)
0.090600

(0.084322)

99

4.6.2.2 Change density and package-level metrics in GanttProject

Table 23 shows the correlation result between change density and the package-level

metrics in GanttProject datasets (2.0.6-2.0.7 and 2.0.7-2.0.8). No. classes, Ca, Ce, and

NOA have positive correlation with change density in all GanttProject datasets. No.

Classes has the highest correlation in Martin metrics (i.e. 0.46). This is because the

more classes in a package, the more code it contains and hence the more things that

could require a change. Ce was the second highest (with 0.45) which indicates that the

more classes in a package that depended on other packages, the more likely change will

be in this package, as any change of these packages may propagate a change out to the

depending package. NOA has also high correlation (i.e. 0.423) with change density.

This indicates that the more abstract classes and interfaces in a package, the more likely

to have change. This can be explained by the fact that if a package has more interfaces

and abstract classes, then it will provide more services and hence it will have more

functions requests, which increases the possibility of package change (e.g. adding new

function or modifying existing function) in the next release. On the other hand, Ca has

the lowest significant correlation in both datasets (coefficient is 0.34 and 0.27

respectively) in Table 23. The positive significant correlation of Ca can be explained as

follow: if there are more packages outside this package that depend upon classes inside

this package, then any change in this package will propagate and affect all other

packages that depend upon it. However, according to Martin [12], this package (because

of the high dependences) should be more stable, which might explain the low value of

correlation coefficient compared to the other metrics.

100

TLCOM, TRFC, ARFC, TWMP, AWMP and TCBO have, as in Eclipse,

positive significant correlation in all datasets. Among them, TWMP has the highest

correlation values (i.e. 0.56), as the more methods in a package, the more code it

contains and the more things that could demand a change. However, inheritance metrics

were not good indicators for change density. This is might be because inheritance has

been used cautiously in GanttProject.

Unlike Eclipse, MOOD metrics did not show to be good indicators for change.

Only PFP has significant correlation with change density and in one dataset. The other

metrics have only correlation that is not significant. This is might be because of the low

mean and variance for change density in 2.0.7-2.0.8 dataset.

An interesting observation here is that the correlation result in GanttProject for

some of C&K and Martin metrics is higher than in Eclipse even though the change

density and size of packages that changed from release i to i+1 in Eclipse are larger than

in GanttProject (more than 80% of packages in Eclipse has been changed whereas it is

less than 20% in GanttProject). This indicates that some of C&K and Martin Metrics

were good indicators for change and are not affected by the size of packages in the

studied systems (this will be discussed in section 4.7).

In Summary, the above result shows that No. Classes, Ce, NOA, TLCOM,

TRFC, ARFC, TWMP, AWMP and TCBO metrics have significant correlation through

all datasets. Therefore, they can be considered as good indicators for package change.

101

Pair of Variables

Spearman Rank Order Correlations
(GanttProject release)

Marked correlations are significant at p<.05000
2.0.6 – 2.0.7 2.0.7 – 2.0.8

Martin Metrics

No. Classes
0.463109

(0.000370)
0.361074

(0.006763)

A
0.230271

(0.090774)
0.218636

(0.108787)

I
-0.038635
(0.779443)

-0.003702
(0.978603)

D
0.059612

(0.665503)
0.110600

(0.421476)

Ca
0.341454

(0.010732)
0.279790

(0.038561)

Ce
0.402989

(0.002285)
0.450860

(0.000551)

NOA
0.423210

(0.001285)
0.326605

(0.014946)
C & K Suite

TLCOM
0.405501

(0.002131)
0.321255

(0.016778)

ALCOM
0.094397

(0.493013)
0.088346

(0.521263)

TRFC
0.520509

(0.000046)
0.434276

(0.000924)

ARFC
0.390257

(0.003224)
0.416643

(0.001555)

TWMP
0.563665

(0.000007)
0.415100

(0.001626)

AWMP
0.542573

(0.000019)
0.384456

(0.003756)

TDIT
0.253914

(0.061399)
0.179911

(0.188724)

ADIT
0.121855

(0.375482)
0.058523

(0.671263)

TNDC
0.242265

(0.074738)
0.259990

(0.055243)

ANDC
0.095214

(0.489262)
0.134831

(0.326368)

TCBO
0.391075

(0.003155)
0.491056

(0.000141)

ACBO
068372

(0.619898)
0.409911

(0.001884)
MOOD Suite

MHFP
0.060908

(0.658678)
0.223947

(0.100252)

MIFP
0.073931

(0.591665)
0.019111

(0.889855)

PFP
0.348525

(0.009116)
0.092093

(0.503675)

CFP
0.140364

(0.306721)
0.052329

(0.704371)

AIFP
0.102043

(0.458493)
0.002268

(0.986887)

AHFP
-0.144061
(0.294026)

-0.179973
(0.188568)

Table 24: Correlation between change density in GanttProject

102

4.6.2.3 Summary

From the correlation results, we can conclude that change is more likely to increase

when coupling between packages (e.g. Ce and Ca) increases. In addition, increasing

coupling between object and number of methods in a package will increase the

possibility of change in this package. On the other hand, increasing cohesion in a

package (i.e. decreasing TLCOM), will decrease likelihood of change in this package.

The results also show that TWMP is the best indicator for change, as it has the highest

correlation (i.e. 0.56 in GanttProject). An explanation for this is that, when system

moves from release i to i+1, new functions will be added in the next release. This will

lead to creating new methods or modifying the existing methods to implement these

functions in the next release. In addition, any additional features or change in

requirements (e.g. functions or features requested by the users) leads to modifying the

existing methods or creating new methods in the next release.

Table 24 presents the best indicators for change density in Eclipse and

GanttProject. Bold values indicate the common metrics in Eclipse and GanttProject. It

can be observed from this table that No. Classes, Ce, TLCOM, TRFC, ARFC, TWMP,

AWMP and TCBO were the best indicators for change as they have high significant

correlation with change density in all releases of the studied systems. It can be observed

also that MOOD metrics were not good indicators for change as they did not show

significant correlation in all systems datasets. Only MHFP and PFP were good

indicators in Eclipse but not in GanttProject. This is might be because of the low

103

variance and mean of MOOD metrics and the low value of change density in

GanttProject system.

It can be observed from the overall results that C&K-Total metrics have higher

correlation than C&K-Average. In addition, it can be observed that C&K suite is the

best indicator for change. Martin metrics were the second best and competitive to C&K.

However, MOOD metrics were not as good as C&K and Martin.

Suites
Metrics

Category
Eclipse GanttProject

Martin

Ce Ca, Ce Coupling

 No. Classes Size

A NOA Abstractness

I Stability

C&K

TLCOM TLCOM Cohesion

TRFC, ARFC,TCBO and
ACBO

TRFC, ARFC and TCBO Coupling

TWMP, AWMP TWMP, AWMP Size

MOOD MHFP Visibility

Table 25: Best indicators for change density

From the above analysis, the following points can be used to characterize packages

that are more likely to change in the next release of a system:

- Size of package: the larger the package, the more likely to have more change.

Whether measured in number of methods or classes, the larger a package the more

code it contains and the more things that could impose a change.

104

- Number of Afferent Coupling: more packages that depend upon classes inside this

package implies more possible change. If there are a greater number of other

packages that depended upon this package, this indicates that this package has more

functions in the system and a lot of relationships with other packages. Any change

of this package may propagate a change out to the depending packages which in

turn increases the likelihood of change in those packages.

- Number of Efferent Coupling: more classes inside this package that depend upon

classes outside this package implies more possible change in this package. This is

because there will be more reasons that they may change as requesting changes

from the depended upon package increases the likelihood of change of this package.

- Internal coupling (CBO): increasing coupling between classes in a package

increases likelihood of change. This is because increasing coupling increases the

dependency between classes in package. Any change in the depended upon class

propagate a change out to the depending classes which in turn increases the

likelihood of change in this package. In addition, increasing coupling between

classes increases the likelihood of faults in a package, as seen in Empirical Study 1,

and so increases the likelihood of change, to fix these faults.

- Cohesion: decreasing cohesion in a package will increase the likelihood of change

for this package. This is because low cohesion in a class indicates that it might be a

good idea to split the class into two or more sub-classes, which increases the change

in a package.

105

4.6.3 Multivariate Analysis

As in Empirical Study 1, stepwise regression was used to determine the best subset of

All-Suites, Martin, MOOD, C&K-All, C&K-Average and C&K-Total (Shown in

Appendix A). Ca, Ce, TLCOM, TWMP, TCBO, TRFC, ARFC, CFP and MHFP were

the most common metrics that appear in these subsets. Then, the best subset is used to

build prediction model for each group (shown in Appendix B). Eclipse 2.0-2.1 dataset

was used to train the regression models and Eclipse 2.1-3.0 dataset was used to test

them. Similarly, GanttProject 2.0.6-2.07 was used to train the models and GanttProject

2.0.7-2.0.8 was used to test them. The results are presented in Tables 25 and 26.

Table 25 presents the results obtained by building regression models for change

density in Eclipse based on the best subsets of the studied metrics, with bold values as

indication of best achieved result. Overall results showed that the performance of these

models was not perfect. This is because of the low variance of change density. In

addition, the results showed a competition between metrics suites (Pred(0.25) was

between 24% and 25%). However, All-Suites achieved the best performance, since it

has the best Pred(0.25) and MMRE values, with minor difference between it and

Martin.

106

Models (Train 2.0-2.1 Test 2.1- 3.0)

All-Suites
PRED (25%) 25%

MMRE 2.17

Martin
PRED (25 %) 24.94%

MMRE 2.25

MOOD
PRED (25 %) 24.33 %

MMRE 2.28

C&K

All
PRED (25%) 24.85%

MMRE 2.41

Total
PRED (25%) 24.85%

MMRE 2.41

Average
PRED (25%) 24.64%

MMRE 2.41

Table 26: Classification accuracy for change density in Eclipse

Figure 16 box plots Eclipse results obtained from change density regression

models. Boxes sizes seem to be close to each other, and they are almost at the same

level. However, All-Suites model was the best, since it had the lowest box and smallest

whisker, with minor difference between it and Martin.

The performance of these models was not perfect. This is because of the low

variance of change density. In addition, as mentioned in Empirical Study 1, the

performance of these models can be improved by using some AI techniques such as

Artificial Neural network and hybrid techniques, which could be one direction for

future work.

107

Mean; Box: Mean±SE; Whisker: Mean±SD

 Mean
 Mean±SE
 Mean±SD All

Martin
MOOD

C&K All
C&K Total

C&K Average

-6

-4

-2

0

2

4

6

8

10

12

Figure 16: Box Plot for change density models in Eclipse

Table 26 presents the results obtained from evaluating regression models created

in multivariate analysis. The performance measures of the created models were not

good enough (best value for Pred(0.25) was 11.11%). This is because of the low

variance of change density and small size of the dataset (around 10% of the packages

have been changed from release 2.0.7 to 2.0.8). All-Suites was superior over other

models with Pred(0.25) value of 11.11%. However, Martin, C&K-Total were the best in

performance since it has the best MMRE values (i.e. 21.6).

108

Models

2.08
(Train 2.0.7 Test

2.0.8)

All-Suites
PRED (25%) 11.11%

MMRE 29.18

Martin
PRED (25 %) 0

MMRE 21.60

MOOD
PRED (25 %) 0

MMRE 30.18

C&K

All
PRED (25%) 0

MMRE 98.72

Total
PRED (25%) 0

MMRE 21.60

Average
PRED (25%) 0

MMRE 98.72
Table 27: Classification accuracy for change density in GanttProject

Figure 17 box plots GanttProject results obtained from change density

regression models. C&K-Total and Martin metrics were the best, since they had the

narrowest boxes and smallest whiskers. On the other hand, C&K-All and C&K-Average

models were the worst as they have the highest boxes and longest whiskers compared

with others.

109

Mean; Box: Mean±SE; Whisker: Mean±SD

 Mean
 Mean±SE
 Mean±SD All

Martin
MOOD

C&K All
C&K Total

C&K Average

-200

-100

0

100

200

300

400

Figure 17: Box Plot for change density models in GanttProject

In summary, results were close and competitive. However, Martin was slightly

better than C&K-Total and All-Suites.

4.7 Confounding Effect of Package Size

The objective of this analysis is to explore whether the association between the

investigated metrics and change-density of packages (refer to section 3.8 for more

detail) was real or not.

Table 28 shows the results for Eclipse and GanttProject respectively after

controlling the package size. These results are only for those metrics found to be

110

significant in univariate analysis (section 4.6.2). The bolded values in the tables indicate

those metrics whose p-value is less than 0.05.

Eclipse GanttProject

Metrics Z p-value Z p-value

Ce 2.573731 0.010061 2.100420 0.035693

TLCOM 2.573731 0.010061 0.050965 0.959354

TRFC 1.097063 0.272615 1.274118 0.202623

ARFC 0.279611 0.779776 0.050965 0.959354

TCBO 1.841889 0.065492 1.540308 0.123486

TWMP 0.449433 0.653120 1.579906 0.114129

AWMP 1.311646 0.189641 1.172189 0.241122

Table 28: Result of the model after controlling the size for Eclipse and GanttProject

The results show that all the investigated metrics were found to have no

confounding effect of package-size except Ce in Eclipse, GanttProject and TLCOM in

Eclipse (i.e. p-value < 0.05). The association with the change density of packages

disappears for Ce and TLCOM, after controlling the size, while it remains for the other

metrics (i.e. Ca, TRFC, ARFC, TCBO, TWMP and AWMP). Since the association of

these metrics was real, the alternative hypothesis (H1-ChD) will be accepted with

respect to these metrics and null hypothesis will be rejected.

111

4.8 Conclusion

Overall empirical results, produced in this chapter, showed that package-level metrics

can be used as good indicators of change density. More specific, TLCOM, TRFC,

ARFC, TWMP, AWMP, TCBO and ACBO are the best indicators for change in C&K

suite. MHFP is the best indicator for change in MOOD suite. Ca, Ce, NOA,

Abstractness and No. classes are the best indicators in Martin metrics. In addition, it can

be observed that all of the correlations were positive except for Abstractness, which was

negative. In fact, the negative correlation indicates that the amount of change in a

package will decrease if the abstractness of that package increases, which is true

according to Stable Abstraction Principle.

The results also showed that Ca, TRFC, ARFC, TWMP, AWMP and TCBO

were the best metrics that can be used as indicators for change in this study, as they

have significant correlation with change density in all datasets and they have no

confounding effect of package-size. C&K metrics were the best indicators for change.

Furthermore, C&K-Total metrics were better indicators of change than C&K-Average.

Martin metrics come second, and they were competitive to C&K. Finally MOOD

metrics come last.

The evaluation results of regression models showed that models built using

Martin metrics, C&K-Total and All-Suites outperforms other models. The performance

of these models was not perfect. This is because of the low variance of change density

112

and small size of the dataset. In addition, as mentioned in Empirical Study 1, the

performance of these models can be improved by using some AI techniques such as

Artificial Neural network and hybrid techniques. However, as we are not interested here

in getting the best accurate results by applying different AI techniques, this could be

considered as one direction for future work.

113

5. Chapter 5

Empirical Study 3: Implementation Effort & Package

Metrics

5.1 Goal

The goal of this empirical study can be defined as follows: investigate the correlation

between implementation effort of a package and the set of package-level metrics for the

purpose of estimating implementation effort of software packages from the point of

view of researchers and practitioners in the context of OO software.

5.2 Hypotheses

The following hypotheses will be investigated in this research. The metric m, used in

the below hypotheses, ranges over the set of package metrics studied in this research.

o H0-Eff (Null Hypothesis): There is no correlation between metric m and the

implementation effort (in term of LOC) done on a package in a system.

o H1-Eff (Alternative Hypothesis): There is correlation between metric m and the

implementation effort (in term of LOC) done on a package in a system.

5.3 Subjects

Since we are interested here in estimating the implementation effort, and not the

modification effort, the first release of Eclipse and GanttProject (discussed in Empirical

114

Study 2) was measured to estimate the effort required to implement system packages.

Hence, Eclipse 2.0 and GanttProject 2.0.6 will be the subjects of this study.

5.4 Experimental Variables

The independent variables are the package-level metrics under investigation. The

dependent variable in this study is the implementation effort. The total LOC for each

package of the system will be used as a proxy for measuring implementation effort that

has been done on that package.

5.5 Tool

As in the previous studies, JHawk was used to collect the independent and dependant

variables of this study.

5.6 Data Collection

JHawk was used to extract the package-level metrics (independent variables) and total

LOC of a package (dependent variable), by considering Eclipse releases 2.0 and

GanttProject releases 2.0.6. Then, these metrics were associated with the total LOC of a

package (using univariate regression), to determine if each individual package-level

metric is correlated to the implementation effort. Finally, multivariate regression was

used to build prediction models to estimate the implementation effort for each package

of the system.

115

5.7 Results and Discussion

The results of descriptive statistics for Eclipse 2.0 and GanttProject 2.0.6 have been

discussed previously in Empirical Study 1 and 2. The following sections present results

of univariate, multivariate analysis and the regression models built for predicting the

implementation effort of software packages.

5.7.1 Univariate Analysis

Spearman’s correlation was performed with a level of significance α = 0.05 (95% level

of confidence) between implementation effort and the package-level metrics in Eclipse

and GanttProject. The results are shown as follow:

5.7.1.1 Implementation effort and package-level metrics in Eclipse

The correlation result between implementation effort and the package-level metrics in

Eclipse is shown in Table 27. The bold values indicate significant correlation. The

result shows that all metrics have significant correlation with implementation effort

except “A” and CFP. The result also shows that all correlations were positive except

“A”. The negative coefficient of “A” indicates that a package is more likely to need less

effort when the Abstractness of this package increases. An explanation for this is that

abstract classes (or interfaces) don’t need to have implementation for all of their

methods, as they are abstract methods. Thus, they required less effort than concrete

classes.

116

It can be observed from Table 27 that No. classes has the strongest correlation in

Martin metrics, as the more classes in a system the more effort will be needed to

implement these classes. In addition, it can be observed that TRFC has the strongest

correlation (0.96) in C&K metrics. In fact, it has the strongest correlation in Table 27.

This may be explained by the fact that TRFC has the largest mean and variance in

Eclipse. In addition, TRFC is the only measure to count direct and indirect coupling.

TWMP has the second largest correlation value (0.91) in Table 27. This is because

TWMP counts the number of methods in a package. Consequently, increasing the

methods will increase the implementation effort required to implement these methods.

PFP has the strongest correlation value (0.5134) in MOOD metrics. This is

because increasing PFP will increase the degree of methods overriding in the package.

This in turn increases the implementation effort required to redefine these methods.

117

Pair of Variables

Spearman Rank Order
Correlations

(Eclipse release 2.0) Marked
correlations are significant at

p<.05000

Martin Metrics

No.Classes
0.801613

(0.00)

A
-0.071265
(0.167883)

I
0.130675

(0.011202)

D
0.129384

(0.012037)

Ca
0. 244191
(0.000002)

Ce
0.608720

(0.00)

NOA
0.339046

(0.00)
C & K Suite

TLCOM
0.669142

(0.00)

ALCOM
0.213866

(0.000029)

TRFC
0.964776

(0.00)

ARFC
0.557107

(0.00)

TWMP
0.917208

(0.00)

AWMP
0.500863

(0.00)

TDIT
0.537819

(0.00)

ADIT
0.376302

(0.00)

TNDC
0.508403

(0.00)

ANDC
0.308339

(0.00)

TCBO
0.760968

(0.00)

ACBO
0.350366

(0.00)
MOOD Suite

MHFP
0.354035

(0.00)

MIFP
0.313531

(0.00)

PFP
0.513480

(0.00)

CFP
0.076777

(0.097285)

AIFP
0.347604

(0.00)

AHFP
0.112976

(0.00)

Table 29: Correlation between implementation effort in Eclipse 2.0

118

In summary, the above result indicates that the studied metrics are very good

indicators for implementation efforts. In addition, it can be observed that C&K-Total

metrics have higher correlation than C&K-Average. In addition, it can be observed from

the above that C&K suite is the best indicator for implementation effort, Martin metrics

come second and finally MOOD metrics come last.

5.7.1.2 Implementation effort and package-level metrics in GanttProject

Table 28 shows the correlation between implementation effort and the package-level

metrics in GanttProject. All metrics have positive significant correlation with the

implementation effort except I, D, MIFP, CFP, AIFP and AHFP.

As in Eclipse, No. Classes has the strongest correlation in Martin metrics. In

addition, TRFC has the highest correlation in C&K metrics and MHFP has the highest

correlation in MOOD metrics, with minor difference between it and PFP. Furthermore,

as in Eclipse, TRFC has the highest correlation value (0.99) among the studied metrics

in GanttProject. TWMP was the second (0.96) and No. Classes was the third (0.90).

In summary, the above result indicates that the studied metrics are very good

indicators for implementation efforts. In addition, it can be observed that C&K-Total

metrics have higher correlation than C&K-Average. Moreover, it can be observed from

the above that C&K suite is the best indicator for implementation effort, Martin metrics

come second and finally MOOD metrics come last.

119

Pair of Variables

Spearman Rank Order
Correlations (GanttProject 2.0.6)

Marked correlations are
significant at p<.05000

Martin Metrics

No.Classes
0.906805

(0.00)

A
0.386193

(0.003539)

I
0.004825

(0.972112)

D
0.024976

(0.856366)

Ca
0.528753

(0.000033)

Ce
0.756672

(0.00)

NOA
0.678673

(0.00)
C & K Suite

TLCOM
0.783153

(0.00)

ALCOM
0.282037

(0.036964)

TRFC
0.991052

(0.00)

ARFC
0.675434

(0.00)

TWMP
0.947663

(0.00)

AWMP
0.607690

(0.00)

TDIT
0.566061

(0.00)

ADIT
0.346570

(0.00)

TNDC
0.610171

(0.00)

ANDC
0.391424

(0.00)

TCBO
0.803520

(0.00)

ACBO
0.306522

(0.00)
MOOD Suite

MHFP
0.571959

(0.00)

MIFP
0.143074

(0.297379)

PFP
0.499695

(0.000103)

CFP
0.186760

(0.172163)

AIFP
0.178931

(0.191185)

AHFP
0.152171

(0.267394)

Table 30: Implementation effort and package-level metrics in GanttProject

120

5.7.1.3 Summary

The above results showed that package-level metrics are good indicators for

implementation effort estimation. More specific, the results showed that C&K suite was

the best indicator for implementation effort, as it has the highest correlation, Martin

metrics come second and finally MOOD metrics come last. In addition, C&K-Total

metrics where better than C&K-Average. This is might be because C&K-Total metrics

have larger variance and mean than C&K-Average. Among all the studied metrics,

TRFC, TWMP and No. classes are the best metrics that can be used to estimate the

implementation effort, as they have the strongest correlation across the studied systems

(between 0.99 and 0.90).

Table 29 gives the best metrics that achieved significant correlation through

Eclipse and GanttProject. Bold values indicate the common metrics in Eclipse and

GanttProject. An interesting observation in this table is that PFP and MHFP were the

only metrics in MOOD metrics that have significant correlation in both systems. An

explanation of this is that increasing PFP will increase the degree of methods overriding

in the package which will increase the effort needed to implements these methods. In

addition, increasing hidden methods will prevent developers from reusing these

methods, which will increase effort needed to implement new methods in a package.

Unlike MHFP, AHFP was significant in Eclipse and close to significant in GanttProject.

This is might be because defining new hidden variables is much easier than methods

and hence it will need less effort than MHFP. Another interesting observation is that

Abstractness had negative correlation in Eclipse and significant positive correlation in

121

GanttProject. This indicates that this metric is not good indicator for estimating

implementation effort. This is because increasing abstractness in a package might

decrease the implementation effort in this package, as its classes defined as abstract

classes, however, this might also increase the effort needed to implement concrete

classes that extend the abstract classes in this package.

Suites Metrics
Category

Eclipse GanttProject

Martin

Ca and Ce Ca and Ce Coupling

No. Classes No. Classes Size

A NOA Abstractness

 I Stability

C&K

TLCOM, ALCOM TLCOM, ALCOM Cohesion

TRFC,ARFC,
TCBO and ACBO

TRFC,ARFC,
TCBO and ACBO

Coupling

TWMP, AWMP TWMP, AWMP Size

TDIT,ADIT

TNDC, ANDC
TDIT,ADIT

TNDC, ANDC
Inheritance

MOOD
MIFP, AIFP Inheritance

MHFP,AHFP MHFP Visibility

PFP PFP Polymorphism
Table 31: Best metrics for implementations effort estimation

From the above analysis, the following points can be used to estimate implementation

effort in software packages:

122

- Size of package: the larger the package, the more likely to require more

implementation effort. Whether measured in number of methods or classes, clearly

the larger a package the more effort it needs to implement this package.

- Cohesion: decreasing cohesion in a package will increase the likelihood of change

for this package (as shown in Empirical Study 2). This is because low cohesion in a

class indicates that it might be a good idea to split the class into two or more sub-

classes, which increases the implementation effort to split such classes.

- Number of Afferent Coupling: more packages that depend upon classes inside this

package implies more possible faults and change (as discussed in Empirical Study 1

and 2), which increase implementation effort needed to fix these faults and maintain

changes in this package , as any change of this package may propagate a change out

to the depending packages.

- Number of Efferent Coupling: more classes inside this package that depend upon

classes outside this package implies more possible faults and changes in this

package, as this increases complexity between packages, which in turn increases

implementation effort for that package required to fix these faults and maintain

change in the package.

- Coupling between Object: increasing coupling between classes in a package

increases the complexity of this package and hence increases the possible faults and

change in that package (as discussed in Empirical Study 1 and 2). As a result, this

will increase implementation effort for this package.

123

- Polymorphism Factor: increasing degree of methods overriding in the package will

increase the implementation effort since these methods need to be redefined. In

addition, increasing Polymorphism Factor in a package obviously increase it

complexity. This in turn increases likelihood of faults and hence the implementation

effort needed to fix these faults in this package.

- Method Hiding Factor: increasing hidden methods increases implementation effort

in this package. This is because private methods do not allow other classes to use

them outside the class that defined them. Consequently, new methods need to be

created, which obviously increases the implementation effort for that package.

- Inheritance: the more of depth of inheritance tree and number of descendents classes

in package, the more effort is needed to implements these classes.

5.7.2 Multivariate Analysis

As in Empirical Study 1 and 2, stepwise regression was used to determine the best

subset from the following groups: All-Suites, Martin, MOOD, C&K-All, C&K-Average

and C&K-Total metrics. The results are shown in Appendix B. No. Classes, TNDC,

TWMP, TCBO, ACBO, TRFC, ARFC, CFP and AHFP were the most common metrics

that appear in these subsets. Then, the best subset of each group is used to build

prediction model (using regression) for each group as in Empirical Study 1 and 2.

However, since only one dataset (i.e. dataset for the first release) was used in this study,

dataset was split into two parts: 66% as training dataset and 34% for testing (default

setting in Weka).

124

Table 30 presents the results obtained by building regression models for

implementation effort based on the best subsets of the studied metrics, with bold values

as indication of best achieved result. It can be observed from this table that the best Pred

(0.25) was achieved by using the C&K-All subsets (49.2%), with minor difference

(0.73) between it and All-Suites. However, the best MMRE value was for C&K-Total

(i.e. 1.19).

Models Eclipse 2.0

All-Suites
PRED (25%) 49.20%

MMRE 1.67

Martin PRED (25 %) 18.61%
MMRE 2.16

MOOD PRED (25 %) 17.81%
MMRE 8.73

C&K

All PRED (25%) 48.47%
MMRE 1.66

Total PRED (25%) 45.6%
MMRE 1.19

Average PRED (25%) 17.55%
MMRE 6.85

Table 32: Classification accuracy for implementation effort in Eclipse

Figure 18 box plots Eclipse accuracy results obtained from implementation

effort regression models. C&K-Total model was the best, since it has the narrowest box

and smallest whisker, with minor difference between it and Martin. On the other hand,

MOOD model was the worst as it has the highest box and longest whisker compared

with others.

125

Mean; Box: Mean±SE; Whisker: Mean±SD

 Mean
 Mean±SE
 Mean±SD All

Martin
MOOD

C&K All
C&K Total

C&K Average

-40

-30

-20

-10

0

10

20

30

40

50

60

Figure 18: Box Plot for implementation effort models in Eclipse

Table 31 shows the results obtained by building regression models for

implementation effort based on the best subsets in each group of the studied metrics in

GanttProject. C&K-All model achieved the best Pred(25%) value (i.e. 73.21%), which

means that 73% of cases estimates are within the inside 25% of its actual value.

However, the best MMRE value was for C&K-Total (0.47), which has also the second

best Pred(25) value (i.e. 69%). This can be explained by the fact that CK-All subset

consists of all of C&K-Total metrics (i.e. TRFC, TCBO and TNDC) and ANDC, as

shown in Appendix A.

126

 Models GanttProject 2.0.6

All-Suites PRED (25%) 63.63%

MMRE 0.81

Martin PRED (25 %) 18.18%
MMRE 8.13

MOOD PRED (25 %) 9.09%
MMRE 17.38

C&K

All PRED (25%) 73.21%
MMRE 2.99

Total PRED (25%) 69.09%
MMRE 0.48

Average PRED (25%) 16.36%
MMRE 27.52

Table 33: Classification accuracy for implementation effort in GanttProject

Figure 19 box plots Eclipse results obtained from implementation effort

regression models. C&K-Total model was the best, since it has the narrowest box and

smallest whisker, with minor difference between it and All-Suite. On the other hand,

C&K-Average model was the worst as it has the highest box and longest whisker

compared with others.

127

Mean; Box: Mean±SE; Whisker: Mean±SD

 Mean
 Mean±SE
 Mean±SD All

Martin
MOOD

C&K All
C&K Total

C&K Average

-150

-100

-50

0

50

100

150

200

Figure 19: Box Plot for implementation effort models in GanttProject

In summary, the above results showed that C&K-Total models achieved the best

performance in estimating effort in Eclipse and GanttProject, which supports our

finding in the univariate regression. In addition, Martin models showed close and

competitive results. However, C&K-Average and MOOD were the worst models.

C&K-Total was chosen to be best regression model, since it achieved the best MMRE

value in the studied systems, as shown in Table 30 and 31.

128

5.8 Confounding Effect of Package Size

As in sections 3.8 and 4.7, this section will explore whether the association between the

investigated metrics and implementation effort of packages was real or not. Table 34

shows the results for Eclipse and GanttProject respectively after controlling the package

size. These results are for those metrics found to be significant in univariate analysis

(section 5.7.1). The bolded values in the tables indicate those metrics whose p-value is

less than 0.05.

Eclipse’s result shows that all metrics which showed a significant association

with the implementation effort of packages in univariate analysis were found to have no

confounding effect of package-size. However, some of these metrics were found to have

confounding effect of package-size in GanttProject.

Since the association between some of the investigated metrics (Ca, Ce,

TLCOM, TRFC, ARFC, TCBO, ACBO and AWMP) and implementation effort of

packages is real, the alternative hypothesis (H1-Eff) will be accepted with respect to

these metrics and the null hypothesis (H0-Eff) will be rejected.

129

Eclipse GanttProject

Metrics Z p-value Z p-value

Ca 0.125678 0.899987 1.382460 0.166831

Ce 1.550031 0.121135 0.108921 0.913265

TLCOM 0.083785 0.933227 0.281695 0.778177

ALCOM 0.527849 0.597605 2.404643 0.016189

TRFC 0.041893 0.966584 0.204943 0.837617

ARFC 0.511091 0.609287 0.965812 0.334139

TCBO 1.927066 0.053972 0.930019 0.352362

ACBO 0.527849 0.597605 0.321937 0.747500

TWMP 0.502713 0.615166 3.619533 0.000295

AWMP 0.469199 0.638928 0.695420 0.486793

TDIT 1.876795 0.060547 2.345994 0.018977

ADIT 1.323811 0.185567 2.404643 0.016189

TNDC 1.524896 0.127286 2.790057 0.005270

ANDC 0.527849 0.597605 2.404643 0.016189

MHF 0.636770 0.524275 2.429779 0.015109

PF 0.779205 0.435860 2.723028 0.006469

Table 34: Result of the model after controlling the size for Eclipse and GanttProject

5.9 Conclusion

Overall empirical results, produced in this chapter, showed that package-level metrics

can be used as a good indicator to estimate implementation effort in software packages.

More specific, Ca, Ce, TLCOM, TRFC, ARFC, TCBO, ACBO and AWMP are the best

indicators for implementation effort, as they showed significant correlation in both

Eclipse and GanttProject systems and have no confounding effect of package-size.

TRFC and TWMP are the best metrics that can be used to estimate the implementation

effort, as they have the strongest correlation across the studied systems (between 0.99

and 0.90). In addition, the results showed that C&K-Total suite was the best indicator

130

for implementation effort. Martin metrics come second. C&K-Average come third and

MOOD metrics come last. These results have been supported by the evaluation results

of the regression models, created by using the above metrics. The evaluation results of

regression models showed that models built using C&K-Total metrics outperforms

other models, as they achieved the best MMRE in the studied systems. Martin and All-

Suite models showed close and competitive results to C&K-Total. On the other hand,

MOOD and C&K-Averages were the worst and not as good as the others.

131

6. CHAPTER 6

Conclusions and Future Work

The goal of this study was to empirically investigate whether a set of package-level

metrics are good indicators for implementation and quality assessment attributes such as

change prediction, fault prediction and implementation effort estimation. The package-

level metrics used in this study were Martin related metrics, C&K and MOOD suites.

C&K and MOOD metrics were redefined here (by aggregating them) to be at the

package-level. After that, JHawk tool was extended to automate the extraction of these

metrics from two java open source systems. Then, each one of the collected metrics was

correlated with change density of a package between release i and i+1, faults (i.e. fault

density and whether a package is faulty or not) and implementation effort. Finally,

regression models were created for each one of them.

Overall empirical results produced in this thesis showed that package-level

metrics are good indicators for change prediction, fault prediction and implementation

effort estimation. It showed also that C&K metrics were the best. More specific, C&K-

Total metrics were the best metrics. Martin metrics come second and MOOD metrics

come last.

Based on the above studies, the following guidelines can be considered to enhance

the quality of the design in OOD:

132

o Size of package: the larger the package, the more likely to have more faults

(more specific pre-release fault), change and the more likely to require more

implementation effort. Whether measured in number of methods or classes, the

larger a package the more code it contains, the more effort it needs and more

things that could impose a fault and change.

o Cohesion: decreasing cohesion in a package will increase the possible faults,

change and implementation effort in that package. Low cohesion in a package

makes its elements (e.g. methods and variables) more difficult to understand and

so harder to maintain. Consequently, this will increase the likelihood of faults,

change and effort during the development of this package. A package that has

classes with High LCOM could probably be subdivided into two or more

subclasses with increased cohesion.

o Number of Efferent Coupling: when the number of classes inside a package that

depend upon classes outside this package increases (outgoing coupling), the

possible number of faults, changes and implementation effort will increase.

Hence, designers should put this into consideration when designing a package.

o Number of Afferent Coupling: more packages that depend upon classes inside

this package implies more possible faults and change, which increases

implementation effort to fix these faults and update change in this package , as

any change of this package may propagate a change out to the depending

packages. Therefore, designers should give extra care about such packages.

o The TCBO/ACBO metrics give a good insight in where the in- and outgoing

coupling resides in a package. This metric doesn’t show that there is a design

133

flaw but it demonstrates where it might be difficult to alter the code due to

dependencies. Results show this metrics is the best indicator for faults. Too

high TCBO increases the possible number of faults, changes and

implementation effort required in a package and could be an indication of

misplaced methods. TCBO can be minimized by moving the misplaced method

to the class it mostly relates to.

o Designers should try to minimize TRFC /ARFC, which is the total number of

methods that are executed in response to a message being received by an object

of that class. Results show that TRFC is the best metrics that can be used as an

indicator for change prediction and implementation effort estimation. When

TRFC/ARFC increases, the overall design complexity of the package will

increase and becomes hard to understand. It also increases the possible number

of faults, changes and implementation effort required in a package. If a package

has high value of TRFC/ARFC, this may be an indicator of misplaced methods.

Designer has to review the design to identify these methods.

o Abstractness: Package that has low abstractness is more likely to have more

faults than package with high Abstractness. This is because abstract classes do

not contain implementation code for functions defined in this package.

o Polymorphism Factor: increasing total degree of methods overriding in the class

inheritance tree in a package obviously increase it complexity. This in turn

increases likelihood of faults in this package. In addition, increasing overriding

methods will increase change and the implementation effort in this package.

134

Therefore, designers should put this into consideration when designing a

package.

o Method Hiding Factor: increasing hidden (private) methods increases possibility

of faults in this package. This is because private methods do not allow other

classes to use them outside the class that defined them. Consequently, new

methods need to be created, which increases implementation effort and the

possibility of faults.

o Inheritance: the more of depth of inheritance tree and number of descendents

classes in package, the more complicate the package will be and hence the more

likely to have more faults.

6.1 Threats to Validity

The four threats to validity (conclusion, internal, construct and external) outlined in [64]

is used in this section to describe the validity of the studies.

6.1.1 Conclusion Validity

Conclusion validity concerns issues that affect the ability to draw the correct conclusion

about relations between the treatment and the outcome. The total number of packages

that changed in GanttProject from release 2.0.6 to 2.0.7 was about 20% of the overall

packages in 2.0.6 and about 10% from release 2.0.7 to 2.0.8. The statistical validity of

this study is the size of the sample data (only 10% of packages changed in

GanttProject) perhaps not enough for the statistic tests [65]. However, it was interesting

135

to use case (as in GanttProject) where size of system releases (in term of LOC) has been

relatively stable and see how change increase or decreases over releases.

6.1.2 Internal Validity

Internal validity is the degree to which conclusions can be drawn regarding the causal

effect of independent variables on the dependent variable. The following possible

threats have been identified:

1. Internal validity issues arise when there are errors in measurement. This is

negated to an extent by the fact that the entire data collection process is

automated via the JHawk and DiffDocpro tools. However, DiffDocpro does not

calculate the changes at the package-level. It calculated them at the class level.

Therefore, spread sheet was used to aggregate the changes at the package-level.

This concern is alleviated by the cross check among the measures to identify

abnormal values for any of the measures.

2. During the comparison between each two releases in Empirical Study 2,

comments, blank lines and white space in line were excluded from the

comparison process (option in DiffDocpro tool).

3. Since writing comments takes some effort, comments were taken in

consideration when measuring the implementation effort (i.e. LOC) for a

package.

136

6.1.3 Construct Validity

Construct validity refers to the extent to which the setting actually reflects the construct

under study. It measures the degree to which the independent and dependent variables

accurately measure the concepts they purport to measure. The independent variables

used in these studies are martin related metrics, C&K and MOOD suites. As mentioned

earlier, Martin metrics are well known metrics at the package-level. C&K and MOOD

suites are considered the best object-oriented design metrics. C&K metrics are class-

level metrics. They were adapted to be at package-level by aggregating them at

package-level. The aggregated metrics give the overall view of C&K metrics at

package-level. However, there might be better ways to redefine these metrics at the

package-level. On the other hand, since MOOD metrics are system-level metrics, they

were redefined to be at package-level by considering a package as small system and so

measuring its attributes.

The dependent variables for the first empirical study are pre and post-release

fault density and binary variable that indicate the presence of a fault in package. The

faults were obtained from Zimmermann, Premraj and Zeller’s work [15]. They used

very systematic procedure to calculated faults. In addition, cross checking among the

measures was done to enhance the quality of fault dataset.

The density in the first and second studies was obtained by dividing the number

of faults and the amount of changes in a package by total LOC for that package. This

was done to limit the influence of the possible positive correlation between the package

137

size and number of faults or amount of changes in that package. In the third study, LOC

was used as a proxy for measuring implementation effort. LOC have been used as

measure for effort in many researches, their advantages and drawbacks are well

documented in [66]. LOC may not indicate the actual effort done on a system; this is

because there are many tools that can generate tens of lines of code within few clicks. In

addition, the implementing effort required for each LOC in a system is not consistence.

For example, the required effort to define a variable is not as the one for creating for

loop. However, measuring process of LOC is simple comparable to other measures: it

can be specified unambiguously, so that when applied to the same code by different

people, the results are guaranteed to be identical [66].

6.1.4 External Validity

External validity concerns the ability to generalize results outside the settings used. It is

the degree to which the results of the research can be generalized to the population

under study and other research settings. Our finding is limited to systems implemented

using java language. However, since java shares the same concepts of object-oriented

design (e.g. inheritance, coupling dependencies) with other OO languages, it is expected

to have similar results when the empirical study is repeated with other systems

implemented in other OO languages. However, this issue could be addressed as future

work.

138

6.2 Major Contribution

1- Several OOD metrics at the package-level have been empirically investigated to

determine the usefulness of these metrics in identifying and predicting faults of

object-oriented packages.

2- Several OOD metrics at the package-level have been empirically investigated to

determine the usefulness of these metrics in identifying and predicting change of

object-oriented packages.

3- Several OOD metrics at the package-level have been empirically investigated to

determine the usefulness of these metrics in estimating implementation effort of

object-oriented packages.

4- Sets of well known design metrics (i.e. C&K and MOOD suites) have been

redefined and implemented at the package-level to automate the extraction of

these metrics.

6.3 Future Work

Several paths can be taken to extend on this work. Such paths include:

o Conducting additional empirical studies with different open sources and commercial

systems to support findings of this thesis.

o Investigating the correlation of change-proneness, fault prediction and

implementation effort estimation with other package-level metrics.

o In this study, linear regression was used to build models for change prediction, fault

prediction and implementation effort estimation. It would also be of interest to

139

investigate the use of decision trees, neural network, support vector machine and

other artificial intelligence techniques in order to increase the accuracy of the

prediction models.

o Experiments might be done on the package-level metrics to determine proper

threshold for the collected metrics. This threshold could be utilized by project

managers to increase the quality of software design.

140

7. References

[1] R. Harrison, S. J. Counsell and R.V. Nithi, “An Evaluation of the MOOD Set of
Object-Oriented Software Metrics,” in IEEE Transactions on Software Engineering,
1998, pp. 491-496.

[2] A. Koru and H. Liu, "Identifying and characterizing change-prone classes in two
large-scale open-source products," Journal of Systems and Software, 2006.

[3] I. Jacobson, M. Christerson, P. Jonsson and G. Overgaard, Object-Oriented
Software Engineering: A Use-Case Driven Approach: Addison- Wesley, 1992.

[4] Desmond F. D’Souza and Alan C. Wills. Objects, Components and Frameworks
with UML: The Catalysis Approach: Addison-Wesley, 1998.

[5] P. Niemeyer, J. Knudsen, Learning Java, 3rd ed, 2005, pp. 38.

[6] V. Basili, L. Briand, and W. Melo, “A Validation of Object- Oriented Design
Metrics as Quality Indicators,” IEEE Transactions on Software Engineering, vol. 22,
no. 10, pp. 751-761, 1996.

[7] K. El Emam, S. Benlarbi, N. Goel and S. Rai, “A Validation of Object-Oriented
Metrics,” Technical Report ERB-1063, National Research Council of Canada (NRC),
1999.

[8] L.H. Etzkorn, S. Gholston, J.L. Fortune, C.E. Stein, D. Utley, P.A. Farrington, and
G.W. Cox, “A Comparison of Cohesion Metrics for Object-Oriented Systems,”
Information and Software Technology, vol. 46, no. 10, pp. 677-687, Aug. 2004.

[9] F. Abreu, S. Esteves and M. Goulao, “The Design of Eiffel Programs: Quantitative
Evaluation Using the MOOD Metrics,” in Proceedings of TOOLS'96, Santa Barbara,
CA, USA, 1996.

[10] H. Melton, E. Tempero, ”The CRSS metric for package design quality,” in
Proceedings of the thirtieth Australasian conference on Computer science, January 30-
February 02, 2007, Ballarat, pp. 201-210.

[11] H. Kabaili , R. Keller , F. Lustman, Cohesion as Changeability Indicator in Object-
Oriented Systems, in Proceedings of the Fifth European Conference on Software
Maintenance and Reengineering, 2001, p.39.

[12] R. Martin, "Stability," C+ + Report, Vol. 9, No. 2 (Feb 1997).

141

[13] S. Roger, Software Engineering, Fifth edition, McGraw-Hill, 2000.

[14] S. Ducasse, M. Lanza and L. Ponisio, “Butterflies: A Visual Approach to
Characterize Packages,” in Proceedings of the 11th IEEE International Software
Metrics Symposium (METRICS’05), IEEE Computer Society, 2005, pp. 70-77.

[15] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting Defects for Eclipse,” in
PROMISE ’07: Proceedings of the Third Intrnational Workshop on Predictor Models in
Software Engineering, Washington, DC, USA, 2007, pp. 9+.

[16] M. Elish and D. Rine, "Investigation of Metrics for Object-Oriented Design
Logical Stability," in Proceedings of the Seventh European Conference on Software
Maintenance And Reengineering (CSMR’03), 2003.

[17] F. Fioravanti, P. Nesi, and S. Perli, “Assessment of System Evolution Through
Characterization,” Proc. Int’l Conf. Software Eng. (ICSE ’98), 1998.

[18] K. Welker, W. Oman, Software Maintainability Metrics Models in Practise, 2004.
[Online]. Available: http://www.stsc.hill.af.mil/crosstalk/1995/11/Maintain.asp.

[19] S. Henry and D. Kafura, “Software Structure Metrics Based on Information Flow,”
IEEE Transactions on Software Engineering, vol. 7, no. 5, pp. 510- 518, Sept. 1981.

[20] D. Kafura and S. Henry, “Software Quality Metrics Based on Interconnectivity,” J.
Systems and Software, vol. 2, pp. 121-131, Feb. 1982.

[21] B. Kitchenham, L. M. Pickard, and S.J. Linkman, “An Evaluation of Some Design
Metrics,” IEEE Software Eng. Journal, vol. 5, no. 1, pp. 50- 58, Jan. 1990.

[22] S. R. Chidamber, D.P. Darcy, and C.F. Kemerer. “Managerial Use of Metrics for
Object Oriented Software: An Exploratory Analysis,” IEEE Transactions on Software
Engineering, pp. 629-639, 1998.

[23] W. Li and S. Henry, “Object-Oriented Metrics that Predict Maintainability,” J.
Systems and Software, vol. 23, no. 2, pp. 111-122, 1993.

[24] R. Subramanyam and M. S. Krishnan, “Empirical analysis of ck metrics for object-
oriented design complexity: Implications for software defects,” IEEE Transactions on
Software Engineering, pp.297–310, 2003.

[25] A. B. Binkley and S. R. Schach, “Validation of the coupling dependency metric as
a predictor of run-time failures and maintenance measures,” in Proceedings of the
International Conference on Software Engineering, 1998, pp. 452–455.

142

[26] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to predict component
failure,” in Proceedings of the International Conference on Software Engineering
(ICSE 2006), ACM, May 2006.

[27] A. Schröter, T. Zimmermann, A. Zeller, “Predicting Component Failures at Design
Time,” in Proceedings of the 5th International Symposium on Empirical Software
Engineering (ISESE), Rio de Janeiro, Brazil, September 2006.

[28] P. Nesi and T. Querci, “Effort Estimation and Prediction of Object-Oriented
Systems,” Journal of Systems and Software, pp. 89-102, 1998.

[29] R. Lind, K. Vairavan, “An experimental investigation of software metrics and their
relationship to software development effort,” IEEE Transactions on Software
Engineering, pp. 649–653.

[30] S. Yau and J. Collofello, “Design Stability Measures for Software Maintenance,”
IEEE Transactions on Software Engineering, vol. SE-11, no. 9, pp. 849-856, Sep. 1985.

[31] M. D 'Ambros and M. Lanza, “Reverse engineering with logical coupling,” in
Working Conference on Reverse Engineering, 2006, pp. 189 - 198.

[32] M. Wilhelm, S. Diehl,DependencyViewer, “A Tool for Visualizing Package
Design Quality Metrics,” IEEE, pp.125-126, 2005.

[33] R. Reibing, “Towards a Model for Object-Oriented Design Measurement,”
Institute of Computer Science, University of Stuttgart, 2002.

[34] P. Sandhu and H. Singh, "A Critical Suggestive Evaluation of C&K Metric," in
PACIS 2005 Proceedings, 2005.

[35] G. Booch, “Object-Oriented Analysis and Design with Applications”, 2nd ed.:
Benjamin Cummings, 1994.

[36] H. S. Chae, Y. R. Kwon, D. Bae, “A Cohesion Measure for Object-Oriented
classes," Software-Practice & Experience, v.30, n.12, pp.1405-1431, Oct. 2000.

[37] C. Larman, Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and the Unified Process, 3rd edition: Prentice-Hall, 2002.

[38] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorenses, Object-
Oriented. Modeling and Design, Prentice Hall, 1991.

143

[39] F. Brito, E. Abreu and W. Melo, “Evaluating the Impact of Object- Oriented
Design on Software Quality,” Proc. Third Int’l Software Metrics Symp., 1996, pp. 90-
99.

[40] N. Fenton and M. Neil, “Software metrics: roadmap,” in ICSE – Future of SE
Track 2000, pp. 357–370.

[41] N. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and Practical
Approach. London: International Thomson Computer Press, 1997.

[42] T. Mens and S. Demeyer, “Evolution Metrics,” in Proceedings of the 4th
international workshop on Principles of software evolution, September 10-11, 2001.

[43] S. R. Chidamber, and R. F. Kemerer, “A metrics suite for object oriented design,”
IEEE Transactions on Software Engineering, pp. 476-493, 1994.

[44] B. H. Sellers, Object-Oriented Metrics-Measures of Complexity: Prentice Hall,
1996.

[45] V. Basili and H. Rombach, "The TAME Project: Towards Improvement-Oriented
Software Environment," IEEE Transactions on Software Engineering, vol. 14, pp. 758-
773, 1988.

[46] http://www.eclipse.org

[47] http://www.st.cs.uni-sb.de/softevo/

[48] www.virtualmachinery.com/JHawkprod.htm

[49] M. H. Olague, L. H. Etzkorn, S. Gholston and S. Quattlebaum, “Empirical
Validation of Three Software Metrics Suites to Predict Fault-Proneness of Object-
Oriented Classes Developed Using Highly Iterative or Agile Software Development
Processes,” IEEE Transactions on Software Engineering, pp. 402-419, 2007.

[50] L. C. Briand , J. Wüst , J. W. Daly and D. V. Porter, “Exploring the relationship
between design measures and software quality in object-oriented systems,” Journal of
Systems and Software, v.51 n.3, pp. 245-273, 2000.

[51] http://www.minitab.com/en-US/products/minitab/documentation.aspx

[52] http://www.cs.waikato.ac.nz/ml/weka/

144

[53] S. D. Conte, H. E. Dunsmore, and V. Y. Shen, Software engineering metrics and
models: Benjamin-Cummings Publishing Co., Inc., 1986.

[54] B. A. Kitchenham, L. M. Pickard, S. G. MacDonell, and M. J. Shepperd,"What
accuracy statistics really measure," IEEE Software, vol. 148, pp. 81-85, 2001.

[55] J. Davis and M. Goadrich, "The Relationship Between Precision-Recall and ROC
Curves," in 23rd international conference on Machine learning, 2006, pp. 233-240.

[56] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and
Techniques, second ed. San Francisco: Morgan Kaufmann, 2005.

[57] M. M. Thwin and T. S. Quah, "Application of Neural Networks for Software
Quality Prediction Using Object-Oriented Metrics," Journal of Systems and Software,
vol. 76, pp. 147 - 156, 2005.

[58] S. El Emam, N. Benlarbi and S. Rai, “The Confounding Effect of
Class Size on the Validity of Object-Oriented Metrics,” IEEE Transactions on
Software Engineering, vol. 27, pp. 630-650, 2001.

[59] W.M. Evanco, “Comments on ‘the Confounding Effect of Class Size on the
Validity of Object-Oriented Metrics’,” Transactions on Software Engineering. vol. 29,
no. 7, pp. 670-672, July 2003.

[60] G. Kanji, 100 Statistical Tests. Thousand Oaks, CA: SAGE Publications, p. 110,
1999.

[61] http://www.ganttproject.biz/

[62] P. Mohagheghi, R. Conradi, O. M. Killi and H. Schwarz, “An Empirical Study of
Software Reuse vs. Defect Density and Stability,” in Proc. 26th Int’l Conference o
Software Engineering (ICSE’2004), 23-28 May 2004, Edinburgh, Scotland, pp. 282-
291.

[63] http://www.prestosoft.com/ps.asp?page=edpexam

[64] T. D. Cook and D. T. Campbell, Quasi-Experimentation: Design and Analysis
Issues for Field Settings. New York: Houghton Mifflin Company, 1979.

[65] L. Briand, K. El Emam, and S. Morasca, “Theoretical and empirical validation of
software product measures,” International Software Engineering Research Network,
1995.

145

[66] J. S. Poulin, Measuring Software Reuse: Principles, Practices, and Economic
Model: Addison-Wesley, 1997.

146

Appendix A – Best Subsets

Table 35: Best subsets of package-level metrics in Empirical Study 1

Eclipse Model Metrics Train 2.0 &Test 2.1 Train 2.0-2.1 & Test 3.0 Common

Fault

Pre –

release

PPreF

All

No Class, A ,D, I, CE, Ca, TLCOM,

ARFC, ACBO, TNDC, ANDC, MIFP

and CFP

Ca, Ce, TLCOM, AWMP, ANDC , AHFP

and CFP

Ca, Ce, ANDC

and TLCOM

Martin D, I, Ca and Ce No. Class, A ,Ca and Ce Ca and Ce

C&K

All TLCOM, TCBO and ARFC
TLCOM, TWMP, TRFC, TCBO, ANDC

and AWMP

TLCOM and

TCBO

Total TLCOM, TWMP, TRFC and TNDC TLCOM, TWMP, TRFC and TCBO
TLCOM, TRFC

and TWMP

Average ARFC and ANDC ALCOM, ARFC, ANDC and AWMP
ARFC AND

ANDC

MOOD AHFP and CFP AHFP, AIFP, MIFP and CFP AHFP and CFP

PreFD

All
I, Ca, TLCOM, AWMP, MIFP,

AHFP, AIFP and PFP
A,NOA, ALCOM, AWMP and TWMP AWMP

Martin I, Ca, and No. Class No. Class, NOA and Ce No. CLASS

C&K

All ARFC TLCOM, TRFC, TNDC, ANDC and TCBO None

Total TLCOM, TWMP, TNDC and TCBO TLCOM, TRFC, TNDC and TCBO
TLCOM, TNDC

and TCBO

Average ARFC AWMP and ADIT None

MOOD AHFP and CFP AIFP, MHFP, AHFP, CFP and PFP CFP

Post – PPostF All No Class, D, CE, TLCOM and ARFC
No. Class, A, Ca, Ce, TLCOM, AWMP,

ANDC, TNDC, ALCOM, ACBO and CFP

No. Class, Ca,

Ce, and

147

release TLCOM.

Martin No Class, A,D and Ce No. Class, A ,Ca and Ce
No. Class, A

and Ce

C&K

All
TLCOM, TWMP, TRFC, ARFC and

TCBO

TLCOM, TWMP, TRFC, TCBO,TNDC,

ANDC and ACBO

TLCOM,

TWMP, TRFC

and TCBO

Total TLCOM, TWMP, TRFC and TCBO TLCOM, TWMP, TRFC and TCBO

TLCOM,

TWMP, TRFC

and TCBO

Average ARFC and ADIT ARFC, and ANDC ARFC

MOOD MHFP MHFP, MIFP,PFP and CFP MHFP

 All
A, TLCOM, ARFC, MIFP, AHFP,

MIFP and PFP

No. Class, Ce, TRFC, ALCOM, ARFC

and MIFP
ARFC and MIFP

PostFD

Martin Ca and Ce No. Class, A and Ce Ce

C&K

All ARFC and ADIT
TRFC, TDIT,TCBO,TNDC, AWMP and

ARFC
None

Total TRFC TRFC and TWMP TRFC

Average ARFC and ADIT ARFC and LCOM ARFC

MOOD MIFP, MHFP, AHFP, CFP and PFP MIFP, MHFP and PFP
MIFP, MHFP

and PFP

148

Table 36: Best subsets of package-level metrics in Empirical Study 2

Model Suite Metrics

ChD-Eclipse

(Training using 2.1 and
Testing using 3.0)

All ARFC, ADIT,TNDC and ANDC

Martin A

C&K
All ARFC, ADIT,TNDC and ANDC

Total TNDC ,TDIT and TRFC
Average ARFC & ADIT

MOOD MHFP

ChD GanttProject
(Training using 2.0.7 and

Testing using 2.0.8)

All AHFP, Ce, NO. Class. NOA
Martin No. Classes, I,D, Ca, Ce and NOA

C&K
All ALCOM, ACBO, ADIT and ANDC

Total TLCOM, TRFC,TWMP, TDIT, TNDC and TCBO
Average ALCOM, ACBO, ADIT and ANDC

MOOD MHFP, AHFP

149

Table 37: Best subsets of package-level metrics in Empirical Study 3

Eclipse Model Suite Metrics

Eclipse (2.0)
Effort

All No. Classes, A, TLCOM, ALCOM,TRFC,TWMP, TDIT, ADIT ,PFP, AHFP and NOA

Martin No. Classes, D, Ca, Ce and NOA

C&K

All TLCOM,ALCOM,TRFC,ARFC,TWMP,TNDC and ANDC

Total TLCOM, TRFC,TWMP, TNDC and TCBO

Average ARFC, AWMP, ADIT and ANDC

MOOD MIFP, CFP and AHFP

GanttProject(2.0.6)
Effort

All No. Classes, TCBO,TRFC, MHFP and AHFP

Martin No. Classes, Ca, Ce and NOA

C&K

All TRFC,TCBO,TNDC and ANDC

Total TRFC, TNDC and TCBO

Average ARFC and AWMP

MOOD PFP

150

Appendix B – Regression models
Table 38: PPreF model for Eclipse (Train 2.0 & 2.1 and Test 3.0)

Eclipse Pre-Release Faulty / Not Faulty Package Post-Release Faulty / Not Faulty Packages

Suites
Metrics All-

Suites
Martin MOOD C&K All C&K

Total
C&K
Avg

All-
Suites

Martin MOOD C&K All C&K
Total

C&K
Avg

Martin

No. Classes 0 0.0234 0 0 0 0 -0.0229 -0.0283 0 0 0 0
A 0 -0.9986 0 0 0 0 1.345 1.3361 0 0 0 0
I 0 0 0 0 0 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0 0 0 0 0 0
Ca 0.0126 0.0139 0 0 0 0 -0.0056 -0.0068 0 0 0 0
Ce 0.0421 0.0343 0 0 0 0 -0.0307 -0.0274 0 0 0 0

NOA 0 0 0 0 0 0 0 0 0 0 0 0

C&K

TLCOM 0.0037 0 0 0.002 0.0014 0 0 0 0 -0.0045 -0.0037 0
ALCOM 0 0 0 0 0 0.0061 -0.0144 0 0 0 0 0

TRFC 0 0 0 0.0018 0.0012 0 0 0 0 -0.0021 -0.0023 0
ARFC 0 0 0 0 0 0.0435 0 0 0 -0.0202 0 -0.0344

TWMP 0 0 0 -0.0016 0.0019 0 0 0 0 0.0027 0.002 0
AWMP 0.1181 0 0 0 0 0 -0.0583 0 0 -0.013 0 0

TDIT 0 0 0 0 0 0 0 0 0 0 0 0
ADIT 0 0 0 0 0 0 0 0 0 0 0 0
TNDC 0 0 0 0 0 0 -0.0103 0 0 -0.013 0 0
ANDC 0.4573 0 0 0.3412 0 0.6906 -0.0876 0 0 -0.053 0 -0.2827
TCBO 0 0 0 0.0011 0.0007 0 0 0 0 -0.0003 -0.0003 0
ACBO 0 0 0 0 0 0 0.0038 0 0 0.0018 0 0

MOOD

MHFP 0 0 0 0 0 0 0 0 -0.9455 0 0 0
MIFP 0 0 0.1625 0 0 0 0 0 -0.5761 0 0 0
PFP 0 0 0 0 0 0 0 0 -0.0515 0 0 0
CFP -1.9205 0 -2.5037 0 0 0 0.112 0 1.9494 0 0 0
AIFP 0 0 0.1544 0 0 0 0 0 0 0 0 0
AHFP 0.7602 0 0.8229 0 0 0 0 0 0 0 0 0

Intercept -1.2269 0.2814 0.4223 -0.6974 0.045 -0.6929 1.2908 0.705 0.4291 1.389 0.9637 1.0491
The model at Suite S is given by the followings equation:

M = No. Classes × S + A × S + I × S + D × S + Ca × S + Ce × S + NOA × S + TLCOM × S +ALCOM × S + TRFC × S + ARFC × S + TWMP × S + AWMP × S +
TDIT × S + ADIT × S + TNDC × S + ANDC × S + TCBO × S + ACBO × S + MHFP × S + MIFP × S + PFP × S + CFP × S + AIFP × S + AHFP + InterceptS

151

Table 39: Fault density model for Eclipse (Train 2.0 and Test 2.1)

 Pre-Release Fault Density Post-Release Fault Density

Suites Metrics All-
Suites

Martin MOOD C&K
All

C&K
Total

C&K
Avg

All-
Suites

Martin MOOD C&K
All

C&K
Total

C&K
Avg

Martin

No. Classes 0 0 0 0 0 0 0 0 0 0 0 0
A 0 0 0 0 0 0 0 0 0 0 0 0
I -0.0142 -0.0175 0 0 0 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0 0 0 0 0 0
Ca -0.0001 -0.0002 0 0 0 0 0 0 0 0 0 0
Ce 0 0 0 0 0 0 0 -0.0002 0 0 0 0

NOA 0 0 0 0 0 0 0 0 0 0 0 0

C&K

TLCOM 0 0 0 0 0 0 0 0 0 0 0 0
ALCOM 0 0 0 0 0 0 0 0 0 0 0 0

TRFC 0 0 0 0 0 0 0 0 0 0 0 0
ARFC 0 0 0 -0.0003 -0.0003 -0.0003 0 0 0 -0.0002 0 0

TWMP 0 0 0 0 0 0 0 0 0 0 0 0

AWMP -0.0007 0 0 0 0 0 0 0 0 0 0 0
TDIT 0 0 0 0 0 0 0 0 0 0 0 0
ADIT 0 0 0 0 0 0 0 0 0 -0.0106 0 -0.0072
TNDC 0 0 0 0 0 0 0 0 0 0 0 0
ANDC 0 0 0 0 0 0 0 0 0 0 0 0
TCBO 0 0 0 0 0 0 0 0 0 0 0 0
ACBO 0 0 0 0 0 0 0 0 0 0 0 0

MOOD

MHFP 0 0 0 0 0 0 -0.01 0 0 0 0 0
MIFP 0 0 -0.0084 0 0 0 0 0 0 0 0 0
PFP -0.0191 0 -0.0191 0 0 0 -0.0094 0 0 0 0 0
CFP 0 0 0 0 0 0 0 0 0.1587 0 0 0
AIFP 0 0 0 0 0 0 0 0 0 0 0 0
AHFP -0.0085 0 -0.0084 0 0 0 0 0 -0.0053 0 0 0

Intercept 0.0417 0.0287 0.025 0.0243 0.0243 0.0243 0.0081 0.0076 0.0034 0.0126 0.0057 0.006
The model at Suite S is given by the followings equation:

M = No. Classes × S + A × S + I × S + D × S + Ca × S + Ce × S + NOA × S + TLCOM × S +ALCOM × S + TRFC × S + ARFC × S + TWMP × S + AWMP × S +
TDIT × S + ADIT × S + TNDC × S + ANDC × S + TCBO × S + ACBO × S + MHFP × S + MIFP × S + PFP × S + CFP × S + AIFP × S + AHFP + InterceptS

152

Table 40: Fault density model for Eclipse (Train 2.0 &2.1 and Test 3.0)

 Pre-Release Fault Density Post-Release Fault Density
Suites Metrics All-

Suites
Martin MOOD C&K

All
C&K
Total

C&K
Avg

All-
Suites

Martin MOOD C&K
All

C&K
Total

C&K
Avg

Martin

No. Classes 0 -0.0001 0 0 0 0 0.0001 0 0 0 0 0
A 0.0483 0 0 0 0 0 0 0 0 0 0 0
I 0 0 0 0 0 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0 0 0 0 0 0
Ca 0 0 0 0 0 0 0 0 0 0 0 0
Ce 0 -0.0005 0 0 0 0 0 -0.0002 0 0 0 0

NOA -0.0011 0 0 0 0 0 0 0 0 0 0 0

C&K

TLCOM 0 0 0 0 0 0 0 0 0 0 0 0
ALCOM 0 0 0 0 0 0 0 0 0 0 0 0

TRFC 0 0 0 0 0 0 0 0 0 0 0 0

ARFC 0 0 0 0 0 0 -0.0002 0 0 -0.0001 0 -0.0001

TWMP 0 0 0 0 0 0 0 0 0 0 0 0
AWMP -0.0012 0 0 0 0 -0.0013 0 0 0 0 0 0

TDIT 0 0 0 0 0 0 0 0 0 0 0 0
ADIT 0 0 0 0 0 -0.0241 0 0 0 0 0 0
TNDC 0 0 0 0.0001 0 0 0 0 0 0 0 0
ANDC 0 0 0 0.0051 0 0 0 0 0 0 0 0
TCBO 0 0 0 0 0 0 0 0 0 0 0 0
ACBO 0 0 0 0 0 0 0 0 0 0 0 0

MOOD

MHFP 0 0 -0.0481 0 0 0 0 0 -0.0126 0 0 0
MIFP 0 0 0 0 0 0 -0.0037 0 -0.0053 0 0 0
PFP 0 0 -0.024 0 0 0 0 0 -0.0089 0 0 0
CFP 0 0 0 0 0 0 0 0 0 0 0 0
AIFP 0 0 -0.0198 0 0 0 0 0 0 0 0 0
AHFP 0 0 0 0 0 0 0 0 0 0 0 0

Intercept 0.0244 0.0254 0.0339 0.0223 0.0187 0.0322 0.014 0.0086 0.0104 0.0087 0.0057 0.0084
The model at Suite S is given by the followings equation:

M = No. Classes × S + A × S + I × S + D × S + Ca × S + Ce × S + NOA × S + TLCOM × S +ALCOM × S + TRFC × S + ARFC × S + TWMP × S + AWMP × S +
TDIT × S + ADIT × S + TNDC × S + ANDC × S + TCBO × S + ACBO × S + MHFP × S + MIFP × S + PFP × S + CFP × S + AIFP × S + AHFP+ InterceptS

153

Table 41: Change density model for Eclipse
Change density & package-level metrics

Suites Metrics All-Suites Martin MOOD C&K All C&K Total C&K Average

Martin

No. Classes 0 0 0 0 0 0
A 0 0 0 0 0 0
I 0 0 0 0 0 0
D 0 0 0 0 0 0
Ca 0 0 0 0 0 0
Ce 0 0 0 0 0 0

NOA 0 0 0 0 0 0

C&K

TLCOM 0 0 0 0 0 0
ALCOM 0 0 0 0 0 0

TRFC 0 0 0 0 0 0
ARFC 0 0 0 0 0 0

TWMP 0 0 0 0 0 0
AWMP 0 0 0 0 0 0

TDIT 0 0 0 0 0 0
ADIT 0 0 0 0 0 0
TNDC 0 0 0 0 0 0
ANDC 0 0 0 0 0 0
TCBO 0 0 0 0 0 0
ACBO 0 0 0 0 0 0

MOOD

MHFP 0 0 2.0308 0 0 0
MIFP 0 0 0 0 0 0
PFP 0 0 0 0 0 0
CFP 0 0 0 0 0 0
AIFP 0 0 0 0 0 0
AHFP 0 0 0 0 0 0

Intercept 1.2397 1.2397 0.9597 1.2397 1.2397 1.2397
The model at Suite S is given by the followings equation:

M = No. Classes × S + A × S + I × S + D × S + Ca × S + Ce × S + NOA × S + TLCOM × S +ALCOM × S + TRFC × S + ARFC × S + TWMP × S +
AWMP × S + TDIT × S + ADIT × S + TNDC × S + ANDC × S + TCBO × S + ACBO × S + MHFP × S + MIFP × S + PFP × S + CFP × S + AIFP × S +
AHFP+ InterceptS

154

Table 42: Change density model for GanttProject
Change density & packages-level metrics

Suites Metrics All-Suites Martin MOOD C&K-All C&K-Total C&K-Average

Martin

No. Classes 0 0 0 0 0 0
A 0 0 0 0 0 0
I 0 0 0 0 0 0
D 0 0 0 0 0 0
Ca 0 0 0 0 0 0
Ce -0.004 0 0 0 0 0

NOA 0.0041 0 0 0 0 0

C&K

TLCOM 0 0 0 0 0 0
ALCOM 0 0 0 1.6355 0 1.6355

TRFC 0 0 0 0 0 0
ARFC 0 0 0 0 0 0

TWMP 0 0 0 0 0 0
AWMP 0 0 0 0 0 0

TDIT 0 0 0 0 0 0
ADIT 0 0 0 2.6437 0 2.6437
TNDC 0 0 0 0 0 0
ANDC 0 0 0 -0.5204 0 -0.5204
TCBO 0 0 0 0 0 0
ACBO 0 0 0 -0.0736 0 -0.0736

MOOD

MHFP 0 0 2.9523 0 0 0
MIFP 0 0 0 0 0
PFP 0 0 0 0 0 0
CFP 0 0 0 0 0 0
AIFP 0 0 0 0 0 0
AHFP 0 0 0.9696 0 0 0

Intercept 0.0521 0.2115 -0.7617 -0.5573 0.2115 -0.5573
The model at Suite S is given by the followings equation.

M = No. Classes × S + A × S + I × S + D × S + Ca × S + Ce × S + NOA × S + TLCOM × S +ALCOM × S + TRFC × S + ARFC × S +
TWMP × S + AWMP × S + TDIT × S + ADIT × S + TNDC × S + ANDC × S + TCBO × S + ACBO × S + MHFP × S + MIFP × S + PFP × S
+ CFP × S + AIFP × S + AHFP+ InterceptS

155

Eclipse 2.0 Table 43: Implementation effort model for Eclipse
Suites Metrics All-Suites Martin MOOD C&K-All C&K-Total C&K-Average

Martin

No. Classes -19.6197 146.0989 0 0 0 0
A -265.5915 0 0 0 0 0
I 0 0 0 0 0 0
D 0 -1175.454 0 0 0 0
Ca 0 21.5698 0 0 0 0
Ce 0 -79.4332 0 0 0 0

NOA -11.6841 -180.6308 0 0 0 0

C&K

TLCOM -2.1542 0 0 -2.9586 -2.7051 0
ALCOM 0 0 0 13.2221 0 0

TRFC 1.3433 0 0 0.297 0.6523 0
ARFC 0 0 0 16.9447 0 065.312

TWMP 5.4541 0 0 6.9676 6.4178 0
AWMP 0 0 0 -32.0398 0 0

TDIT 11.6729 0 0 13.6052 0 0
ADIT 0 0 0 -484.1904 0 5169.7273
TNDC 0 0 0 0 0 0
ANDC 0 0 0 0 0 544.1254
TCBO 0 0 0 0 0 0
ACBO 0 0 0 0 0 0

MOOD

MHFP 0 0 0 0 0 0
MIFP 0 0 2006.2502 0 0 0
PFP 224.1131 0 0 0 0 0
CFP 0 0 -5254.758 0 0 0
AIFP 0 0 0 0 0 0
AHFP -491.5567 0 -888.2309 0 0 0

Intercept 338.7079 73.9807 1084.296 -225.5899 -169.5533 0-1048.469
The model at Suite S is given by the followings equation:

M = No. Classes × S + A × S + I × S + D × S + Ca × S + Ce × S + NOA × S + TLCOM × S +ALCOM × S + TRFC × S + ARFC × S +
TWMP × S + AWMP × S + TDIT × S + ADIT × S + TNDC × S + ANDC × S + TCBO × S + ACBO × S + MHFP × S + MIFP × S +
PFP × S + CFP × S + AIFP × S + AHFP+ InterceptS

156

GanttProject 2.0 Table 44: Implementation effort model for GanttProject
Suites Metrics All-Suites Martin MOOD C&K-All C&K-Total C&K-Average

Martin

No. Classes 3.8552 0.0087 0 0 0 0
A 0 0 0 0 0 0
I 0 0 0 0 0 0
D 0 0 0 0 0 0
Ca 0 0 0 0 0 0
Ce 0 0.5015 0 0 0 0

NOA 0 1.5374 0 0 0 0

C&K

TLCOM 0 0 0 0 0 0
ALCOM 0 0 0 0 0 0

TRFC 1.9263 0 0 2.0165 2.0242 0
ARFC 0 0 0 0 0 39.5952

TWMP 0 0 0 0 0 0
AWMP 0 0 0 0 0 141.3918

TDIT 0 0 0 0 0 0
ADIT 0 0 0 0 0 0
TNDC 0 0 0 7.1523 4.0553 0
ANDC 0 0 0 -49.6819 0 0
TCBO -1.0413 0 0 -0.999 0.998 0
ACBO 0 0 0 0 0 0

MOOD

MHFP 241.1874 0 0 0 0 0
MIFP 0 0 0 0 0 0
PFP 0 0 1597.3074 0 0 0
CFP 0 0 0 0 0 0
AIFP 0 0 0 0 0 0
AHFP -54.6178 0 0 0 0 0

Intercept 18.1359 2.1667 422.3599 15.0732 0.998 -847.1114
The model at Suite S is given by the followings equation:

M = No. Classes × S + A × S + I × S + D × S + Ca × S + Ce × S + NOA × S + TLCOM × S +ALCOM × S + TRFC × S + ARFC × S +
TWMP × S + AWMP × S + TDIT × S + ADIT × S + TNDC × S + ANDC × S + TCBO × S + ACBO × S + MHFP × S + MIFP × S + PFP
× S + CFP × S + AIFP × S + AHFP+ InterceptS

8. VITA

Ali Hashem Ali was born on 1981. He obtained his Bachelor of Science (B.S.) degree

with a second honor in Computer Science from King Fahd University of Petroleum and

Minerals (KFUPM), Dhahran, Saudi Arabia in January 2005. His COOP project

"Housing Units portal” was awarded as one of the best university projects in the 2004

annual exhibition.

Since 2005, He is working in Arabian Advanced Systems, which is the leading IT

regional company in providing Knowledge solutions and services. It gave him the

exposure to real world information technology deployments, inside and outside Saudi

Arabia. While working in the company, He was pursuing the master’s degree in computer

science as a part time student.

Ali received his Master degree in Computer Science (with a second honor) from KFUPM

in June 2010. His research areas are in software engineering and in artificial intelligent.

Email: ali.alsaadi7@gmail.com

