r
,’:

IR e el e e e e e e e e el el el ’:\4

|
t

15131,

(e e e o e e e e 9 e e e e e e

!
)

e el

c%if‘%%

\

FINANCE-BASED SCHEDULING OF
ACTIVITY NETWORKS

BY
ANAS A. AI-GHAZI

A Thesis Presented to the
DEANSHIP OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

SYSTEMS ENGINEERING

June 2009

AN

i®

T’J%‘

RS

¢
I

’
i

v I‘/}

l

~

K

!

¥

}

%

4

R

%

B

#

¥

|
+

~

B R R SR Sk R S SR S SE SE SN SE P S St

,\u

SES

791&\?‘*?@?%@?‘}@9@9@’%

ISR

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN 31261, SAUDI ARABIA

DEANSHIP OF GRADUATE STUDIES

This thesis, written by ANAS ALSAYED MOHAMMED ALGHAZI under the
direction of his thesis advisor and approved by his thesis committee, has been presented
to and accepted by the Dean of Graduate Studies, in partial fulfillment of his
requirements for the degree of MASTER OF SCIENCE IN SYSTEMS

ENGINEERING.

Thesis Committee

S, Sat

Dr. Shokri Z. Selim (Thesis Advisor)

bt/ Py
&V St A2

Dr. AshraflM. E!—A,zguni (Member)

RPN |

Dr. Umar M. Al-Turki (Member)

—— 8 : /-\) o) N
Dr. Fouad M. Al-Sunni N Q,!\\

Department Chairman !f J (7777 ©)
’.“._)‘ L m oy 51 n;
% \'_,.i“‘ N/ -;

A"fj_ J - /‘

Dr. Salam A. Zummo
Dean of Graduate Studies

7]2]10

Date

I would like to dedicate this work to my parents, my wife

and my kids AlBatool & Omar

il

ACKNOWLEDGMENTS

In the name of Allah, the most beneficent, the most merciful

All praise goes to Allah (SWT), the Almighty, who granted me the strength and patience
to complete this work. Peace and blessings of Allah be upon his last prophet Muhammad

(PBUH), his family and his companions.

My deep appreciation and gratitude goes to my thesis advisor Prof. Shokri Selim for his
guidance, consistent help and continuous support throughout my thesis work. His
valuable suggestion and useful discussions made this work interesting to me. I am also
very grateful for my thesis committee member Dr. Ashraf El-Azouni for his invaluable
help, advice and constructive comments. [extend gratitude to my thesis committee
member Dr. Umar Al-Turki for his interest, cooperation and insightful feedback.
Acknowledgment is also due to Prof. Fouad Al-Sunni, chairman of the Systems

Engineering Department.

My family has always been a pillar of support for me. I would like to thank my brothers
and sisters for their love, support, and encouragement. Thanks to my parents who were -
after Allah- the source of success in my life. I was carried through the most difficult
moments in my life by their prayers, love, and support. Words fall short in conveying my

gratitude towards them. A prayer is the simplest means I can repay them - May Allah

il

(S.W.T.) give them good health and give me ample opportunity serve them throughout

my life.

My heartfelt appreciation and gratitude goes to my friend and wife, Afaf Effat, the one
who has been sharing with me the difficult moments before the nice ones, the one whose

support, keen understanding, patience and love enabled me to complete this work.

I am also thankful to the faculty and staff members of the Systems Engineering
department for their kind support and cooperation. The support provided by King Fahd

University of Petroleum and Minerals for completing this work is highly appreciated.

Last but not least, thanks are due to all of my friends and colleagues for their moral

support, good wishes and the memorable days shared together. These include Khaled

Al-Shareef, Syed Mujahid, Ahmad Bahjat, Muhammed Al-Durgam and Laith Al-Hadidi.

v

TABLE OF CONTENTS

ACKNOWLEDGMENTS 111

TABLE OF CONTENTS \%

LIST OF TABLES vl

LIST OF FIGURES VIII

THESIS ABSTRACT IX

Al yadla XI

NOMENCLATURE XII

CHAPTER 1: INTRODUCTION 1

1.1 FINANCE-BASED SCHEDULINGccooiiiiiiiiiiiieieee e 2

1.2 RESEARCH OBIECTIVEScciiiiiiiiiiiiieeeeeeeeeeeeeee e 5

1.3 RESEARCH METHODOLOGYceotuuvtriieeieeiiieeeeeeeeeeieitaeeeseeeeesesssresesessessisssssssesssssissssssssssmmssssssssessennns 5

1.4 THESIS ORGANIZATIONooviiiiiiiiitiieeieeeeeeieiteeeeeeeeeesesaeeeeeeeseassaareeeeeseessarreeseesseesiarseseesseenstrssesessennns 5

CHAPTER 2: LITERATURE REVIEW 7

CHAPTER 3: MODELING OF THE FINANCE BASED SCHEDULING PROBLEM..........ccccceuueee. 16

3.1 CASHFLOW IN ACTIVITY NETWORKSuuuttiiiiieiiiiiitierieeeeeeiiiiereeeeeeeeesaseeeeseeseesisseeresessessssssressesennns 16

3.2 MODELING CASH FLOW USING INTEGER PROGRAMMING........cveiiiiiiieiiireeeeeeeeeiiireeeeeeeeeesissereeeeeenns 23

3.2.1 The Mathematical Modeloooee oo 24

3.2.2 Modeling the Financing Cost Calculationccccccouoiaviiaiiaisiieiieieee e 28

3.2.3 Modeling the Last PAYIMENL................ccocceiiaiieiiiee ettt 29
CHAPTER 4: META-HEURISTIC SOLUTIONS TO THE FINANCE BASED SCHEDULING

PROBLEM 32

4.1 OVERVIEW OF THE META-HEURISTICS USED......cccitiiitutiiieeeeiieiiteeeeeeeeeesiieeeeeeeeeessaaeeeeesesesnsnaneeeees 34

411 GeRnetic AIGOVITAINSooceeeiiieie ettt ettt ettt ettt et e et e e aaeetaeenneeesee s 34

4.1.2 Shuffled Frog-Leaping AIGOFItRINcccoeevuiiiiiiiiiiiieieeieeieeieeie e 39

4.1.3 Simulated ANNEALINGccc.oocoueeiiieeieee ettt ettt ettt n 42

4.2 META-HEURISTICS’ IMPLEMENTATIONcootutriieeeeiiiiieeeeeeeeeeeiireeeeeeeeeesaseeeeeeseeesstasreeesessenssnneeeees 44

4.2.1 Common Concepts among Meta-REUFISTICS...........c...cccuercuiercueesiiierieesieeeieeeieesaeesieeesveeneees 44

4.2.2 GeNEtic AIOFIAMc..cuiviiiiiiiiiiicee et e 54

4.2.3 Shuffled Frog-Leaping AIGOFItRMc.cccooviiiiiiiiiieii ettt 59

4.2.4 Simulated ANNEATINGccoccioiiiiiieiiieee e 65

CHAPTER 5: MULTI PROJECTS FINANCE BASED SCHEDULING 69

5.1 APPROACH TO THE MULTI PROJECTS SCHEDULING PROBLEM.........ccooeiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeen 69

511 The ObJective FURCHOMNcccocuiieieiieii ettt 70

5.1.2 Genetic AIGOVIIRMoceeeiiee ettt ettt ettt ettt ettt aee s 70

5.1.3 Shuffled Frog-Leaping AIGOFItRI.................ccccceovuiiviiiianiieiieieeieeieeeieeie e 71

5.1.4 Simulated ANNEALINGccc.oovvuiiiiieiii ettt ettt n 71

5.2 CASE STUDIES ..ooiiiiiiieitttteeee e e e ettt e e e e eeeetaee et e e eeeseaaaeeeeeeeesetaareeeeeeeeastaareeeeeeeeasasreseeeseensiataereeeeeennns 72

CHAPTER 6: RESULTS AND DISCUSSION 86

6.1 META-HEURISTICS’ PARAMETERSceiiiiiiieieieee et e e e et e e e e e e e e e e e e e e e e e e eeeeeeeeeeeeeeeeeeaeeeeeeeas 87

6.2 COMPARISONS AND DISCUSSIONoiiiiieieiieieeeeeeeeeeeeeeeeeeeee e eeee et e e e e e e e e e e e e e e e eeeeeeeeeeeeeeeeeeeeeeeeeeeeseseaeeens 88

CHAPTER 7: CONCLUSION AND FUTURE RESEARCH 929
REFERENCES 101
APPENDIX 1 104
VITA 109

vi

Table 3.1:
Table 4.1:
Table 4.2:
Table 4.3:
Table 4.4:
Table 4.5:
Table 4.6 :
Table 5.1:
Table 5.2:
Table 5.3:
Table 5.4:
Table 5.5:
Table 5.6:
Table 6.1:
Table 6.2:
Table 6.3:
Table 6.4:
Table 6.5:
Table 6.6:

LIST OF TABLES

EXAMPIE CASES. ..uvviieiiiieeiiieciie ettt et e et e e s e e e e enree s 18
GA PSEUAOD COR ..ottt ettt e 38
SFLA PSEUAO COC. ..nvviiiiiiieiiieciiee ettt e 41
SA PSEUAO COUE. ...ttt ettt e e e e 43
Pseudo code for the decoder.ocooiiiiiiiiiiiiiieee e 48
Pseudo code for the initial solution generator............ccceecveevieriieiienieeiieeae 50
Pseudo code for generating a new neighbor.cccccvveiiieeiiieccieecieee, 67
The financial data and the contractual terms of the four projects.................... 75
Factor calculations for the 30-activity Project.ccceeeveeerveerieeeriieesieeeneneenn 76
Weekly expenditure and income of the individual and combined projects. 79
The cash flow parameters of the 25-activity project.......cccccceeveveercveercrveenennn. 80
The cash flow parameters of the 30-activity project..........ccceeceeeveeereerveenneenne. 81
The cash flow parameters of the tWo Projects........ccceevvieecieerciieeecieeeeeeeen. 82
Results of the single project problems.ccceeviieiiiiiiiinieniieieeeeeee 91
Details of results obtained for single project problems without using repair. . 92
Details of results obtained for single project problems using repair................ 94
Sensitivity of the GA & GA-R to the initial population in network 4. 95
Results of the multi projects problems (without repair).ccccecevveveeiennnne 96

Details of results obtained for the multi projects problems (without repair). .. 97

Vil

LIST OF FIGURES

Figure 1.1: Cash flow diagram of a typical construction project.ccceeeevveervuveerreeennne. 4
Figure 3.1: Daily cash flow example for a typical construction project.ccccueeueennee. 17
Figure 3.2: Activity network of a 13-activity project........ccceevvveerviieeriieeerieeenieeeeee s 25
Figure 4.1: The time line of different meta-heuristics. (Source: Wikipedia.com)............ 33
Figure 4.2: Activity network of a 13-activity project........ccceeveeerciieeriieeenieeenieeeeieesieeenns 45
Figure 4.3: Shift vector repreSentation.c.ceevueriereerierieneriesieee ettt 47
Figure 4.4: Decoding eXample.c.coovciiiiiiiieiiie et eieeestee e eae e et e e aeeesnee e 47
Figure 4.5: Generated schedule with ASU =5.cccoooiiiiiiiiiiiiicceee 50
Figure 4.6: Example of a generated schedule.cccoovviiiiiiiiiiiiiieeeeeeeeeee 51
Figure 4.7: Flow chart for the GA........cccooiiiiiiiie e 54
Figure 4.8: Crossover €XampPle........coouiiiiiiiiiiieieeieiee et 57
Figure 4.9: MUtation OPETatiOn.........cceevuerierieeniinienieeienitesie et et sttt st eane e 58
Figure 4.10: Flow chart for the SFLA. ... 59
Figure 4.11: Construction of MemepPleXes.cccuerueeriirieririienienieeieneese et 61
Figure 4.12: Construction of a Sub-memepleX.ccceveeriiiiiiniiiiienieeieseeeeeeee 62
Figure 4.13: Memetic evolution in SFLA.cccooiiiiiiiiiiieeeeee e 64
Figure 4.14: Flow chart for SA. ... 66
Figure 4.15: Generating a neighbor for a SOIUtION.ccceverviiiiiniriinieeeeceee 67
Figure 5.1: Activity network for the 25-activity problem.coceoiiiiiiiiiniiniiie 73
Figure 5.2: Activity network for the 30-activity project.ccoceevieriienienieeiieeieeeee 74
Figure 5.3 : A solution for the 25-activity project at a shift of two weeks and a credit limit
OF 75,000, ettt et sttt 77
Figure 5.4: A solution for the 30-activity project at a shift of two weeks and a credit limit
OF 75,000.....ceueeeieeeeeeeet ettt ettt e 78
Figure 5.5: Cash flow of the 25-activity Project.ccceeeeiieriiieeriieeriie et 83
Figure 5.6: Cash flow of the 30-actiVity Project.cevoeeriierieeiiieiieeieeee e 84
Figure 5.7: Total cash flow of the tWo Projects.........cccuverviiiiriiieeriiieeee e 85
Figure 6.1: Percent deviation from the optimal solution (Single project problems without
TEPAIT). cuvvveeereeerereeeueeeeueeeessreessseeessseeeasseeesseeasseesssseeansaeeansseeansseeassesenssesensseeansseessseennseeenns 93
Figure 6.2: Average processing time (Single project problems without repair). 93
Figure 6.3: Average processing time (Single project problems with repair). 94
Figure 6.4: Percent deviation from the best solution (Multi projects).ccceeverveenennee. 98
Figure 6.5: Average processing time (Multi projects).ccooveeerviieeriieeerieeeriee e 98

viil

THESIS ABSTRACT

Name: Anas AlSayed Mohammed AlGhazi
Title: Finance-Based Scheduling of Activity Networks
Major Field: Industrial and Systems Engineering

Date of Degree: June 2009

Contractors usually secure funds from banks by establishing credit-line accounts to
finance all ongoing projects. Due to the nature of the common contracts with different
clients, contractors often operate under cash-constrained conditions. Thus, contractors
need to have operation planning that follows along with the project’s financial planning.
That is, to develop project schedules based on cash availability. Unfortunately, this
integration between financing and scheduling tasks is rare in the literature and is missing
in commercial scheduling software. Finance-based scheduling techniques integrate
scheduling with financial planning by incorporating financing costs in scheduling
activities under cash constraints.

In this thesis, a modified cash flow model is incorporated in the mathematical
formulation of the finance based scheduling problem. This problem is then formulated as
an integer program. Due to the NP-hardness nature of the problem, the exact solution
fails to reach the optimal result in a reasonable time for large sized problems. Thus, we
have implemented three meta-heuristics to solve this problem. A representation scheme

was proposed along with a repair algorithm that guarantees the feasibility of all solutions

X

with respect to the precedence and financial constraints. In addition, the meta-heuristics
were modified and applied to the multi projects finance-based scheduling problem. The
application of this technique is illustrated by case studies solved using a program coded
in Matlab. Finally, a study was made to compare the performance among the meta-
heuristics based on a number of performance measures. We conclude this study by

discussing the results obtained and propose some future research directions.

Al) (adla

&) dana) il g S|

il Al Jysail) e dgiaall dgie 31 A sanl) sl ol i
alai e lin duia s el

1430 3_AY) alea s g AL f U

Al sa s iy ey 5 el wliiad) 38l &3 Jysail e Jgandl i)) Ul sl sl
A sall 2 giall Rapda Cun B8 Alle oy Hla ant Jaall ol glial) plama plaiascsalall 3 e SWE as i3
bl) el ae i s Al Adad e LaY o ol sliall zling el 13g] ¢ Dlanll Calite ae
5 Aie 3l Al saad) s JalSl) 138 CanSU Aaliall 400 3) sall e el o jliiall dgia 311 Jglaadl guia s 5 Y
O e sl e dsiaall dia 1 A ganll A jlasl) dia 31 A saall gl o 8 2580a 5 Y] B 52l Jy sl
dsay b 8 AV Dsaa die e V) 8 Jysal) CadlSs 280 Lea o jLiiall die 311 A panl) 5 Sl ol

Aglle 3 5
e Al dyie 3l A gaall ACE Al Aelpall 3 Il 3000 Jare 23 s adiiy s g ylaY) a8 b
g bl Gl Ll Alall 038 2 da)l 1k e gali S AlSEA Al Gl dey oy |y sl
Lalgial 3k DU apanaliy Liad ¢ My 5 3 Sl Jilsall A e die 3 3 58 (8 Jia¥) Jall Jpaa) (8 2 52aaa
ALE lacal #3al Al) ALaYL okl oda & dall Jiial alas o) 581 a3 Cua A1) o28 Jal
o 5 cclly) AileaVl AdaiiV) (a5 Aali (e gl Alall Zalill (e e sas Al A 30 Jglaal) 2w
Wk mua gl g g e e SEY dasalll o Al dpia 3l Al paal) A8 e Wb il dpalgia) (k)
Matlab alaaiuls aielua o3 o gula gl @l 4l o OV e 48 phall Gakal &5 s el 4 sl
Aol o2 380 As i)l Gudlial) (e 22 Gelal e Zabia) Lalgia¥) gkl elal 4 jlae a3 o il

Sliinn e o A (K A1 Ll ALYl Gans 71 81 5 Lo Jpeaal) o3) bl Lsiliay

X1

ELST,
EST,
ET,

ExpVal(i,t)
Ext
F
f@
f®
G

Gtotal

NOMENCLATURE

set of activities being executed at day i
Additional shift units

Cash balance at day i

Direct cost disbursement of activity p
Duration of activity p

Incurred daily interest for day i

Daily cost disbursement of day i

Extended late start of activity p

Early start of activity p

Total-cost disbursement of period t

Expected value of individual i at time t in GA
Extra duration added for the integer program
Population size in SFLA

Fitness of i in GA

Mean fitness of the population at time t in GA
Profit

Total profit of multi projects

Total financing cost for period t

Number of iterations in SFLA

Boltzmann constant in SA

Overhead cost factor

Mark-up and retainage factor

Number of periods required to complete the project
Late start of activity p

Sufficiently large number

xii

Number of working days per period
Outstanding debt of period ¢t

Number of memetic evolution steps in SFLA
Interest on the outstanding debt of period ¢t
Number of memeplexes in SFLA

Number of frogs per memeplexes in SFLA

Number of sub-memeplexes in SFLA

Triangular probability for sub-memeplex selection in SFLA

Probability of shifting an activity
Payment of period ¢

Set of all predecessors of activity p
Daily interest rate

Interest rate charged on day i
Weekly interest rate

Retained cash

Start of activity p at day i
Sufficiently small number

Week number

Project duration (days)

Multi project’s total maximum negative cash flow
Temperature in SA

Total float of activity p

Credit limit

Multi projects credit limit
Maximum negative balance
Weekly balance for period t

Start time of activity p

Cost disbursement of all activities performed at day i

Last payment indicator variable 1

xiil

Last payment indicator variable 2

Financing cost indicator variable

Energy difference in SA

Shift of activity p

Shift vector representation of a solution

Best frog within a sub-memeplex in SFLA
Global best frog in SFLA

Worst frog within a sub-memeplex in SFLA
Shift of activity p

Adjusted total float of activity p

Interest on the outstanding debt indicator variable
Standard deviation of the population at time ¢t in GA
Penalty factor

Cooling schedule factor in SA

Ceiling function

Floor function

Xiv

Chapter 1

Introduction

A crucial challenge for construction contractors to run a sustained business
represents the ability to timely procure adequate cash to execute construction operations.
Alongside payments from their customers, contractors often procure additional funds
from external sources including banks. Typically, such cash incurs financing charges.
Given the facts that customers actually pay after the accomplishment of the work while
retaining some money, and the cash that contractors can withdraw from banks is limited
in amount, contractors often operate under cash-constrained conditions. The most
proactive operating strategy contractors can follow for financial planning is to devise
project schedules based on cash availability. Unfortunately, this integration between
scheduling and financing functions is rare in the current research and is missing in the
commercial scheduling software. The concept and technique of finance-based scheduling
achieves the desired integration between scheduling and financing by incorporating
financing costs into the project total cost as well as scheduling under cash constraints.

The following section outlines the principles of the finance-based scheduling.

1.1 Finance-Based Scheduling

Contractors often procure funds from banks by establishing credit-line accounts.
Typically, cash procurement through the banks' credit lines incurs financing costs.
Contractors normally deposit the progress payments into the credit-line accounts to
continually reduce the outstanding debit and consequently the financing costs. As the
cash flow in Figure 1.1 indicates, contractors charge the expenses caused by labor,
equipment, materials, subcontractors, and overheads (cash outflows ET;) against, and
deposit progress payments (cash inflows P;) into the credit-line accounts. In practice, it
can be reasonably assumed that these transactions occur as of the cut-off times between
periods. Accordingly, the cash out flow, ET,, and the financing cost, I;, as of the cut-off
times are determined. The summations of the values of the cash out flow, ET;, and the
respective financing costs, I;, and the outstanding debt constitute the negative cumulative
balance B,,.. The cumulative net balance value, N;, constitute the cumulative balance after
depositing the progress payments. The cumulative net balance of all the cash inflows and
outflows constitutes the profit, G, as of the end of the project. The complete formulation
of the previous financial parameters will be explained later in the next chapter.

Another concern of financing, though more important than the incorporation of
financing costs, constitutes the credit-limit constraints imposed on the credit lines. The
credit limit specifies the maximum value the negative cumulative balance as of the cut-
off times are allowed to reach. Thus, finance-based scheduling achieves the desired

integration between scheduling and financing by incorporating financing costs into the

project total cost as well as scheduling activities' such that the values of the negative
cumulative balance as of the cut-off times never exceeds the specified credit limit. The
techniques employed to devise finance-based schedules normally fulfill this financial
constraint with the objective of minimizing the project’s duration or maximizing the
project’s profit.

Being an aspect of the whole corporate rather than the individual projects, contractors
manage the financing aspect at the corporate level. In other words, contractors' concern is
generally to timely procure cash for all ongoing projects. Finance-based scheduling in
this context ensures that the resulting values of the negative cumulative balances of all
projects do not add up to exceed the credit limit, whereas the positive cumulative
balances that occur in some projects are utilized to schedule activities of some other
projects. This ensures that scheduling concurrent projects can be related to the overall
liquidity situation of contractors. The sole objective of maximizing the profit of a single
project is changed in this context to the objective of maximizing the profit value of all
ongoing projects. Finance-based scheduling techniques schedule projects' activities such

that the total profit of the projects is maximized while the financial constraint is fulfilled.

333[0ad uonon.ysuod [ed1dA) € Jo weageIp Mofj yse) [3.In31q
L] LN J L] LN J
; / —
HAH Tum
/ uam Y “rﬁm C.CEMH |
X -
N - ;
I HZ _
N I-'1 I [4

SpoLIdg

yse)

1.2 Research Objectives

The objective of this research is to develop various solution methods to solve
large scale real life finance based scheduling problems within a reasonable time. Exact
solution to the problem using integer programming is given. Later, a number of meta-

heuristics will be applied to solve to the problem.

1.3 Research Methodology

1. Modify the current cash flow model to reflect accurate financing cost
calculations by incorporating the different cases of interest calculations.

2. Design an exact solution method to solve the problem by incorporating the
modified cash flow model in the integer program.

3. Employ meta-heuristics such as: genetic algorithm, shuffled-frog leaping,
simulated annealing to solve the single and multi projects finance based

scheduling problems.

1.4 Thesis Organization

The rest of this thesis is organized as follows. In chapter 2, a literature review on related
work is presented. In chapter 3, the modeling of the finance based scheduling problem is
presented and the parameters of the cash flow model are explained. In chapter 4, an

overview on the meta-heuristics used is presented followed by the implementation of the

meta-heuristics to the single project finance based scheduling problem. In chapter 5, the
implementation of the meta-heuristics to the multi projects finance based scheduling
problem is given. In chapter 6, the results of the study are presented along with a
discussion. And finally in chapter 7, the thesis concludes with a conclusion and possible

future work.

Chapter 2

Literature Review

Until the 70s of the previous century, the cost considerations in project scheduling
were only in terms of the total cost of the project and the time value of money was
entirely omitted (Kazaz and Sepil 1996). The research which considers the time value of
money addresses the financial implications of the project activities. When the financial
aspects of project management emerged, the Net Present Value (NPV) was the most
frequent criterion used in project scheduling. The NPV is being determined using cash
outflows and cash inflows of the project. For the contractor, cash outflows represent the
expenses caused by labor, equipment, materials, and subcontractors while cash inflows
represent the owner's payments. The NPV was first introduced by Russell in 1970.
Russell's model was based on Activity On Arrow (AOA) representation and assumed that
cash flows occur at the event times of AOA network nodes. Russell's model to determine
the event times which maximize the NPV with absolutely no consideration of any kind of
resource. In an extended effort, Kazaz and Sepil (1996) invalidated the assumption made
by Russell that cash inflows occur at the realization times of some events during the
course of the project. Kazaz and Sepil considered the problem of project scheduling
developed a mixed integer programming formulation to maximize the NPV where the
cash inflows occur as progress payments for the work completed during each month and

cash outflows occur at the completion of activities. Kazaz and Sepil developed a mixed

integer programming formulation that determines how much the finish time of each
activity can be delayed beyond their earliest finish times so that the NPV of the cash
flows associated with all the activities of a project is maximized. However, Kazaz and
Sepil didn't present any resource-constrained scheduling technique.

Subsequently, the problem of NPV maximization was expanded by other studies
(Russell 1986, Padman and Smith-Daniels 1997) to include resource constraints. This
problem represents a resource-constrained project scheduling problem with discounted
cash flows. These two studies evaluated the performance of heuristic rules in scheduling
resource-constrained projects to maximize the NPV of cash flows. In a more recent
research effort, Chiu and Tsai (2002), considered the significant effect of the high cost of
capital, and proposed an efficient priority-based heuristic rule for the resource-
constrained multi projects scheduling problem to maximize the project net present value.
However, the research trend in these three papers didn't present a cash-constrained
scheduling technique. The exclusive justification for using the cash flows in these three
studies was to achieve the objective of maximizing the monetary objective of NPV rather
than the traditional objective of minimizing the total project duration which was used
throughout the other resource-constrained scheduling research in the literature.

A sub problem of the previous resource-constrained scheduling with NPV
maximization represents the problem of NPV-optimal with capital-constrained
scheduling. Doersch and Patterson (1977) published the pioneer work in which the NPV
is maximized while a limit on the amount of capital is available, followed by two
remarkable papers of Smith-Daniels D.E. and Smith-Daniels V.L. (1987) and Smith-

Daniels et al. (1996). Doersch and Patterson (1977) defined the capital-constrained

project scheduling problem as scheduling a project with both the positive and negative
cash flows that take place over the course of the project, where investment in project
activities is constrained by a capital constraint. This formulation discounts all cash flows
occurring within an activity to the end of the activity. Smith-Daniels D.E. and Smith-
Daniels V.L. (1987) introduced an approach to the project scheduling problem where the
NPV of a project is maximized subject to capital and material constraints. This work
considered the integration between material acquisition decisions with the process of
scheduling the project activities. Schedules and the associated acquisition plans become
infeasible when capital constraint is relatively tight with respect to activity capital
requirements at a particular point in the project. Smith-Daniels et al. (1996) presented
heuristic methods to solve the intractability problem of optimal solution for capital-
constrained NPV-optimal problem.

The previous models of capital-constrained scheduling suffered from the major
drawback of using the time unit of month to specify the durations of activities and
determine activities' shifts which makes these models entirely invalid for the scheduling
projects such as construction projects where activities durations and shifts need to be
specified using the time unit of the working day. In other words, activities' shifts
expressed in terms of months are not acceptable at all in construction projects. In
addition, these models assumed that cash inflows occur at the realization times of some
events during the course of the project. However, this assumption contradicts the typical
practice in construction industry where cash inflows occur regularly as of the ends of
fixed periods set forth by the owner in the contract, usually as of the end of the month for

the work completed during the same month, to compensate contractors for the finished

and partially finished activities during the month. The capital-constrained scheduling
models can accommodate financial planning of a big enterprise implementing a set of
small projects each represented by a node on a large network that combines all the small
projects, the financing of each small project may yield a requirement and a payback
(Doersch and Patterson 1977). In other words, these formulations can be used to treat
any set of investments in which the desired final state is known, but the timing sequence
is optional (Doersch and Patterson 1977).

Following the same trend of research in the general area of project scheduling till
the 70s of the previous century as outlined above, the research in project scheduling,
specifically construction project scheduling, was directed towards minimizing the total
project cost with no consideration given to the time value of money. For instance, the
resource allocation techniques schedule limited resources to minimize the increase in
project time and consequently project overhead cost. The resource leveling techniques
schedule activities to minimize fluctuation in resource usage thereby minimizing the cost
of recurrent hiring and laying-off and non-efficient operation. Time/cost tradeoff
techniques minimize the total project cost considering the overhead costs and cost of
crashed-duration activities. Thus, the vast majority of cost-optimization scheduling
techniques in construction projects entirely discarded the financing cost which represents
a direct cost component for the object of the project. However, few notable research
efforts in construction have identified financing costs as a project cost component.
Karshenas and Haber (1990) divided the cost of a resource in a construction project into
resource mobilization cost and resource use cost. They identified cash as a separate

resource and argued that it is required sometimes to keep the net monthly cash flow

10

(revenues less expenses) within a certain limit. However, Karshenas and Haber didn't
identify the financing cost properly but considered the cash use cost, which is supposedly
the financing costs according to the definition given in the same paper that resource use
cost is a function of the use of resource, as the sum of activity costs for a given period. In
addition, the formulation of the constraint fulfilling that the required resources should be
less than the available resources for all project periods is absolutely not applicable to cash
as the major financing component of the owner's payments was entirely neglected.
Hegazy and Ersahin (2001) developed a spreadsheet-based model that combines a CPM
network scheduling with time/cost tradeoff analysis, resource allocation and leveling, and
cash flow management. The Genetic Algorithm (GA) technique was then used to
optimize the overall schedule, considering all aspects simultaneously. In this model, cash
flow computations were formulated regarding daily expenditures, cumulative
expenditures, owner payments, and cash flow balance. The financing cost which was
obtained from the cash flow calculations is then added to the total project cost. Li (1996)
presented a mathematical model to schedule multiple subprojects with the objective of
minimizing the construction costs. This model considered the interest cost associated
with the investments on the individual subprojects. However, Karshenas and Haber,
Hegazy and Ersahin, and Li didn't introduce the concept of finance-based scheduling
which is to devise cash-constrained schedules. Warszawski (2003) presented a parametric
model for the evaluation of financing cost in a construction project without incorporating
his model into scheduling techniques.

Apart from scheduling techniques, other related research efforts in project

management were directed to cash flow forecasting and management models. Sears

11

(1981) presented a method of accomplishing integration between project schedule and
cost. This method produces an expense flow projection by assigning estimated costs to
the time-scaled CPM network. Au and Hendrickson (1986) model allows contractors to
enter the cash inflows and outflows as of the ends of periods which could be weeks or
months, use the entered values to calculate the values of other financial parameters, and
utilize the entered and calculated values of parameters to delineate the project cash flow.
Barbosa and Pimentel (2001) developed a linear programming model for optimal cash
flow management of a single construction project. The model considered investments
with distinct asset returns and level of liquidity, and also available credit lines from
banks. The optimization algorithm finds an efficient way to manipulate the cash
transactions over the project duration, aiming at achieving a greater profitability at the
end of the project. Navon (1995) presented a resource-based computerized cash-flow
forecasting model. The model automatically integrates the bill of quantities, the estimate
and the schedule databases using a non-project-specific database. Automating the cash
flow forecast, as proposed by Navon, ensures highest accuracy, avoids manual labour,
and becomes generic enough. Kaka and Lewis (2003) presented a dynamic cash flow
forecasting model that assist contractors to effectively plan and manage the cash flow of
individual projects and at a company level. These models presented different techniques
to help contractors perform financial planning and management. However, these models
failed to address the aspect of financial planning and management through the tool of
scheduling, though this is the most effective approach since contractors have full control

on scheduling their own activities.

12

A recent study (Elazouni and Gab-Allah 2004) developed an integer-
programming model to devise finance-based schedules. This model revises CPM
activities start times to produce minimum-duration schedules that correspond to desired
credit limits. This method renders schedules executable under overdrafts of specified
credit limits. The model considers the direct expenses of activities and add indirect
expenses of job overhead, taxes, markup, and bond on a pro rata basis. However, the
integer program they developed was a static model that can’t adequately model all
expenditures and income cash flows and simultaneously perform the necessary
adjustments as the original schedule is being extended.

Genetic Algorithms (GA) technique was used (Elazouni and Metwally 2005) to
search for a solution for the problem of devising CPM schedules that correspond to
desired credit limits. For a particular project, schedules are generated using random start
times of activities while maintaining dependency between activities. The corresponding
profiles of cash requirements of these randomly generated schedules are produced. Then,
the GA procedure searches for the schedule that produces debit values below the
specified credit limit, minimizes financing costs, minimizes project indirect costs through
minimizing project duration, and ultimately maximizes project profit. The GA method
provided full flexibility to model project disbursements and income cash flows.
However, the previous two studies were concerned mainly with developing CPM

schedules financed by constricted credit limits which tend to prolong project duration.

13

Elazouni and Metwally (2007) utilized compressed activities to broaden the scope
of the finance-based scheduling introduced in Elazouni and Metwally (2005). The
broadened finance-based scheduling enables schedulers to schedule under relaxed as well
as constricted credit limits and investigates the effect of the variation in credit limits on
the total project costs. In addition, this paper employed resource allocation and leveling
techniques to schedule under resource limitations and ensure the efficient use of
resources. Consequently, the objective of the optimization is to minimize the total
project costs. The constraints to the cost minimization represent the credit limit, resource
availability. The demands of time minimization and efficient utilization of resources
were fulfilled by expressing them as overhead costs and resource un-leveling penalty.
Thus, finance-based scheduling constitutes an effective technique to manage cash, cost,
time, and resources simultaneously. The GA technique was utilized as an environment to
devise the overall-optimized project schedules.

Liu and Wang (2008) establishes a resource constrained project scheduling model
based on constraint programming, whose solution can be found by using combinatorial
optimization algorithms. The proposed model integrates the issue involving resource
constrained problems and cash flow, and maximizes net project cash flow to optimize
project profit from the perspective of contractors. They also performed model validation
and two scenarios, including multi resource, resource combination selection and various

constraints such as resource limit.

14

Elazouni (2009) proposed a heuristic method for scheduling multiple projects
subject to cash constraints. The heuristic determines cash availability during a given
period, identifies all possible activities' schedules, determines the cash requirements for
each schedule, ranks schedules based on the contribution on minimizing the increase in
the project duration, schedules all activities of the selected schedule, and determines the
impact of the scheduled activities on the project cash flow. However, a major drawback
in this heuristic is the extensive computational time needed when the set of eligible

activities for one project is big or the time span of the period is long.

15

Chapter 3

Modeling of the Finance Based Scheduling Problem

In this chapter, we will first present the cash flow model for activity networks .After that,
a mathematical model of the problem is presented followed by the modeling tricks used

to put it as an integer program.

3.1 Cash Flow in Activity Networks

The cash flow model used in this thesis is based on the model proposed by Au and
Hendrikson (1986) with some modification. The modification applied on the model made
a more accurate calculation of the total financing cost which is the sum of the daily
interest on expenditure, DI, and the periodic outstanding debt interest, NI. Moreover, this
has helped in modeling an accurate way of calculating the financing cost in the integer
program, i.e., the financing cost is only calculated if the contractor is in debt.

We consider the cash flow from the contractor’s point of view. It should be noted
that all cash-out transactions are entered as negative values and all cash-in transactions
are entered as positive values. Typical cash-out includes costs such as disbursement,
overhead and interest. In contrast, a usual cash-in is the payments received from the

client. An example of a daily cash flow is shown in Figure 3.1.

16

L1

333[0ad uonon.ysuod [ed1dA) € a0y djdwexs mopy ysed Aqre(:1°¢ 9In3dig

[) [N [) [N]
) H N\
1
'd
TﬂnH
Nve | N g e
HZ Tuz
< _ m
-1) |
:::m
T:::m
NA«EVM_
MVQEJQH

"

N.cém |

“

A 1

1

1
1 1
1 1
1 1
m.oém_ “ “
1 1
1 1
1 1
1 1
1 1
1 1
1 1
| 1
_ 1-(ur) _ -(rw) _

yoom Kep-¢

The cash flow’s daily transactions:

We assume that the contractor executing the activities borrows money from the
bank daily as needed. This assumption is valid if the contractor pays for his expenses
using checks drawn on the lending bank or a credit card provided by the lending bank. In
addition, we assume that client payments are received periodically. Thus, daily and
periodic cash flows are considered in this model where a period could be a week or a
month. In Au and Hendrikson (1986), the interest on borrowed money is approximated
by averaging the weekly debt to the bank. Usually this approximation is far from the
exact value as shown in the example in Table 3.1. The example has two cases of weekly
debt.

Table 3.1: Example cases.

Case 1 Case 2

Day 1 2 3 4 5 1 2 3 4 5

Expenditure | 1000 | 1000 | 1000 | 2000 | 8000 8000 | 2000 | 1000 | 1000 | 1000

According to Au and Hendrikson’s (1986) model, the financing cost is
approximated by I = 1. ET /2, where 7, is the weekly interest rate and ET is the total
expenditure per week. Using this approximation, the financing cost is the same in both
cases and it is equal to 19.5 for 7, =3%. However, this approximation is far from the
exact value because in this case borrowing more money at the beginning of the period

will accrue the same interest value as borrowing it at the end of the period.

18

In our cash flow model, we avoid this pitfall by considering the daily cash flow.
This way, the financing cost can be calculated on a daily basis using a daily interest rate.
The daily interest rate can be calculated using

I+ry))"=1+m,
Where r; and 7, are the daily and weekly interest rates respectively and m is the number
of working days per week. , i.e. five working days in a week.
For five working days per week, if cash is borrowed on day i of the week and the interest
is paid after the end of that week then the interest rate at day i is given by
rn=0+r)™ " -1 i =1,234,5

Using our proposed daily cash flow calculation with a weekly interest rate v =3%, the

financing cost for cases 1 and 2 respectively are equal to 14.4 and 32.4.

Let A; be the set of activities being executed at day i, and ¢, ,p € A; be the direct
cost disbursement of activity p. Then the direct cost disbursement of all activities

performed at day i , y; , is given by

yi = Z ¢ i=12...T 3.1)

PEA;
Where T is the number of days required to finish the project.

We assume that the contractor will borrow money from the lending bank at day i if there
isn’t enough money on hand to execute the activities scheduled for that day. The amount

of money needed for day i is given by

Ei = kl'yi i = 1,2, ,T (32)

19

Where E; is the daily cost disbursement of day i and k; > 0 accounts for the overhead
cost.
The cash balance in this model is updated daily, the balance at the first day is equal to the

cost disbursement at the first day, B; = E;. The cash balance is updated daily using

i=mt—3,.. mt—1
t=1,2,..,L

Where t denotes the week number and DI; is the daily interest charged at day i which is

Bi = Bi—l + DIi—l + Ei (33)
accrued only if the cash balance at day i is negative (B; < 0) . That is, the interest is only

accrued if the contractor is in debt. The daily interest at day i is given by

DIi = Tl"Ei i = 1,2, ,T (34)

The cash flow’s weekly transactions:

A project total-cost disbursement during a typical period t is given by

mt
ET, = Z ks Vi £=12, .1 (3.5)

i=m(t—-1)+1

Where L is the number of periods required to complete the project. The timing of
receiving payments from the client depends on the contract between the client and the
contractor. We assume that payments for a certain period are received at the end of that

period. This payment is given by

P, = ky.ET, t=12..,L (3.6)

20

Where k, is a multiplier that accounts for the mark-up of the contractor and the retainage
by the client, which is a held back amount of money to assure the quality of the work
done.
Moreover, If the contractor owes money to the bank at the end of period t — 1, named the
net balance N;_, then interest NI, is charged if the net balance is negative (N,_; < 0) as
follows
NI; =1,.Ni_4 t=12,..,L (3.7)

The total financing cost for period t is the sum of daily interest accrued over the week in

addition to the outstanding debt interest. The total financing cost given by

mt
I, = NI, + Z DI;_, t=12,..,L (3.9)
i=m(t—-1)+1

The cash balance at the end of period t , B+, represents the maximum cash flow at that
period and is given by

Bime = Ne—y + ETe + 1, t=12,..,L (3.9)
The net balance of period t is the balance at the end of the week after receiving the

payment and it’s given by

Ny = Baney + P t=12,..,L (3.10)

The balance at the start of the following week is given by

Bmty+1 = Ne + Egny+1 + Dlgne t=12,..,L (3.11)

21

The objective of the finance based scheduling is to come up with a schedule that
minimizes the project duration, such that the negative cash balance of each period t never

exceeds a specified credit limit W.

By > —W t=12,..,L (3.12)
In the next section, we introduce the integer program formulation of the cash flow model

discussed above.

22

3.2 Modeling Cash Flow using Integer Programming

We consider activity networks with activity on node (AoN) representation
(Demeulemeester & Herroelen, 2002). Figure 3.2 shows such a network where each node
corresponds to an activity and arcs represent the precedence constraints. For activity p ,
the early start EST,, can be found using a forward pass calculation and the latest start
LST,, can be calculated using a backward pass calculation (Uher, 2003). The total float of
activity p, TF,, is defined as the maximum shift in an activity’s starting time that will not
affect the project duration and is given by

TFE, = LST, — EST,

. The project duration T for the critical path is defined as the minimum time
needed to finish all of the activities in the network. The search for a schedule using the
exact method is bounded, that is each activity can only start between its early and late
start values. However, developing schedules that are constrained by a specific credit limit
might involve extending the project duration. That is, if the credit limit is small it may
result in delaying some activities. For the sake of modeling this problem as an integer
program, an extra duration, Ext, is added for each activity and the new extended late start
ELST, is calculated using

ELST, = EST, + TE, + Ext

Where TE, =0 for critical activities.

23

In the following subsections, the objective and the constraints of the mathematical model

are introduced followed by the tricks used to build the integer program.

3.2.1 The Mathematical Model

The decision variables of the finance based scheduling problem are the starting
times of the project activities. For a project with n activities, let x,, define the starting
time of activity p, and d,denotes the duration of activity p. The starting time of activity p
is represented by a binary variable S,,; where S,,; = 1 if activity p starts in day i and
Sp,i = 0 otherwise. Hence, the variable x;, can be defined as

ELstp

X, = Z .Sy, (3.13)

i=Esty

The completion time of the project can be defined as the completion time of the
last activity/activities in the project’s network. For example, in the activity network
shown in Figure 3.2, the maximum finishing time among activities K,L,M will define the
completion time of the project.

The objective of the finance-based scheduling is to minimize the project’s
duration Z.

Minimize Z
Subjectto Z = x, +d, p=12..,n (3.14)

24

puo
e

pud
Kreq

194

393f0ad £31ARde-€T © JO YI0M)IU AJANIY :7°€ 9IN3IY

A

A

e

A

A

el € |01 or| v |9 91¢]¢ €10
W < r < H < a
el 0Tl 0T 9 ‘ 9 € 0
0=d.L 0=dL 0=d.L 0=dL
el 0 |¢l el T |II oI €| L L]T]|S ¢
ysturg M 1 < I M D < D
el el < 6 L L 14 14 (4 0
0=dL P=dL g=dL ¢=dL g=dL
¢l| € |0l oI ¢| 8 €S
uonemq MO N < 1 < q
; el o] ¢]|° S ¢ 0
¢=dL S=dAL S=dL
Ayapoy
1IB)S or| €| L | S
Hi KJreq C| A4
a S ah 0
S=dAL S=dL

(4.1) 101 TR0,

0=4L

There are two types of constraints in the finance-based scheduling problem. These
constraints are the network related constraints (precedence constraints) and the financial
constraint. The precedence constraint between any two consecutive activities p and g

where p precedes ¢ is formulated as
Xp +d, < xq (3.15)

The financial constraint presented in (3.11) is the credit limit constraint which
guarantees that the negative cash flow at any period t of the project’s cash profile will
never exceed the specified credit limit W. In order to incorporate this constraint in the
mathematical model, the cash flow model equations are used to identify the weekly
balance variable.

The weekly balance at any period is formulated in terms of cash-outs (daily
disbursement, financing costs) and cash-ins (periodic payments). The disbursement, y;, at
day i is given by
Vi = Z Cp

DEA;
Where 4; = {p | x, <i<x,+ dp} and ¢y, is the cost of activity p.
The weekly expenditure, ET;, and the payment received at the end of each period, P, are
given by (3.5) and (3.6) respectively. The total incurred financing cost per week, I, is
given by (3.8). Finally, the balance at the end of the week, the net balance after receiving
the payment, and balance at the start of the following week, By,), Ny and Bp.)41, are

given by (3.9), (3.10) and (3.11).

26

In order to implement the finance-based scheduling model, given by the system of
equations (3.1-3.15), as an integer program, some modeling tricks are needed to employ
the IF statements that appeared in the model (Williams, 1993). These modeling tricks are
presented in the following sections.

It should be noted that this model overcomes a limitation in Elazouni et al. (2004) integer
programming model in which the cash flow of the project is assumed to be always
negative. In this thesis we allow the cash flow represented by the balance to be either
negative or positive. A negative value means that the contractor is in debt while a positive
value means that the contractor has cash on hand. It assumed in this model that contractor
will use any cash on hand to execute the project and no financing cost is accrued in this
case. On the other hand, if there is cash on hand but not enough to execute the scheduled
activities, the contractor borrows the shortage from the bank. The financing cost accrued
in this case is charged on the total daily expenditure even if the borrowed cash is less than

the total daily expenditure.

27

3.2.2 Modeling the Financing Cost Calculation

There are two sources of financing cost, the daily interest and the weekly
outstanding debt interest cost. These costs are formulated in the mathematical model,
however, they should be modeled such that they are charged only when the cash balance
is negative, i.e. the contractor is in debt. To model such condition, indicator variables are

introduced to the model to indicate the state of the balance.

1 ifB;<0

Lewi:{o if B, >0

This indicator variable can be modeled as follows

B,<(1-6).M
B, > —6.M

Where M is a sufficiently large number.
The daily interest, DI;, should be charged only if §; = 1, this can be modeled as follows

DIi < ri'Ei
DIi + (1 - SL)M > Ti'Ei
DI, —8.M <0

DI; >0

28

Similarly, the periodic outstanding debt interest cost, NI, should be charged if N;_; < 0

(1 ifN.<0
Lam‘{o if N, >0

This indicator variable can be modeled as follows

Ne<(1—p).M
Ny = —pe. M
NI;+(1—-ps).M =>1,.N;—_y
NI, —(1—ps).M <r,.N;_4
NI, —pe.M <0

NI, >0

3.2.3 Modeling the Last Payment

To assure the quality of the contractor’s work, usually the client retains some of
the money he owes the contractor. This retained money is paid to the contractor after
completing the project. This amount of retained money is a percentage of the weekly
payments and can be defined as a constant regardless of the schedule. This retained
money should be added to the last payment the contractor receives. This can be modeled
in the integer program using two indicator variables to indicate the end of the project. The
project is completed when all the activities are finished, which is equivalent to the last

period with disbursements.

29

(1 ifET,>0
mt%‘{o if ET, = 0
This variable can be modeled as

ET, —a;.M <0
ETt - (lt.Sm 2 0

Where sm is a sufficiently small number and it should be less than any non-zero
expenditure.

Another indicator variable is needed to indicate payment in which the retained amount of
cash will be added. This variable will indicate a switch in a; between any consecutive
periods.

Oft_l—atZ,Bt t:2,...,L

Finally, the retained money is added to the last payment using the formula

Py = ky. ET; + (Rc. Be) t=1,..,L

Where Rc is the amount of retained cash. It can be seen that the amount Rc will be added
only when f; = 1. In other words, the retained cash will be added to the last payment.

The complete integer programming model is presented next.

30

Minimize Z

Subject to
Xp = Zioper, bSpi p=12..,n
Z=x,+d, p=12..,n
Xp +d, < xq4 1 < p,q < n,and p precedes q
Vi = Xpea, Cp i=12..T
E; = ky.y; i=12..,T
ET; = X me-1+1 k1 Vi t=12,..,L
ET, —a,.M <0 t=12..,1L
ETy —a;.sm =0 t=12,..,L
A1 — a = ¢ t=12,..,L
P, = k,.ET, + (Rc. ;) t=12,..,L
DI, < 1,.E; i=12,..T
DI, + (1—8).M = .. E; i=12..,T
DI, — 6. M <0 i=12,..T
DI, >0 i=12,..T
N, <(1—-p).M t=12..1L
N, > —p. M t=12..L
NI, + (1 —p).M >7,.Ny_, t=1.2,..,L
NI, —(1—p).M <7, Ny, t=1.2,..,L
NI, — p,.M < 0 t=1.2,..,L
NI, >0 t=1.2,..,L
Bimty = Bamy-1 + Dlimey—1 + Egny + NI, t=12 .. 1L
B, =B;_, + DI,_, +E, i=mt—3,..,mt—1
B,<(1-6).M i=12..,T
B, > —6.M i=12..,T
N, = B,,; + P, t=1.2,..,L
Biney+1 = Ne + Egney+1 + Dlgney t=12..,L
Bimey > —W t=12..,L

Sp,i» At Bt, pt,6; =0or 1

31

Chapter 4

Meta-heuristic Solutions to the Finance Based

Scheduling Problem

Practice shows that real life engineering problems are usually of the large scale
type. For some of these problems, efficient analytically based algorithms exist, such as
linear programming, for obtaining globally optimal solutions. However, for discrete
and/or combinatorial optimization problems, no such efficient algorithms are available
for a general problem. This means that exact methods such as integer programming
usually fail to reach the optimal solution in a reasonable time. This is due to the huge and
complex solution space of these large scale problems which makes finding the optimal in
reasonable time is almost impossible. To overcome this problem, researchers came up
with “heuristics” that produce fast near optimal results for specific problems (Artigues,
Demassey & Neron, 2008).

A heuristic 1s a procedure applied to a problem in order to get a good (near
optimal) solution at a reasonable computation time and cost. In other words, it’s a rule of
thumb that will hopefully find a good answer but doesn’t guarantee optimality. Heuristic
are problem specific, that is, it’s designed to work on a certain problem. However, some
of these heuristics are alerted in a way that makes it general and not problem specific.

These heuristics are named meta-heuristics (Michalewicz & Fogel, 2002).

32

Thus, a meta-heuristic can be defined as a heuristic method for solving a very general
class of computational problems by combining a set of procedures in the hope of
obtaining a more efficient or more robust procedure to find a good solution for a problem.
Figure 4.1 shows the timeline of some of the main meta-heuristics used in the literature.
In this chapter, a description on the mechanism of each meta-heuristic is provided along
with the pseudo code for each one.
The meta-heuristics that will be used are:

a) Genetic algorithms.

b) Shuffled frog-leaping algorithm.

c¢) Simulated annealing.
A general overview of each meta-heuristic and the implementation of each to the finance

based scheduling problem will be discussed in the following subsections

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
I I I I I I I
Evolutionary prog. Genetic algorithms Simulated Annealing Ant colony Shuffled frog-leaping
Tabu search Particle swarm Artificial Bee

Evolution strategies

Figure 4.1: The time line of different meta-heuristics. (Source: Wikipedia.com)

33

4.1 Overview of the Meta-heuristics Used

4.1.1 Genetic Algorithms

Genetic Algorithms (GA) is a meta-heuristic search algorithm that is based on the
evolutionary concepts of natural selection. The basic idea behind the GA is designed to
simulate processes in natural system of evolution, specifically the principle of “survival
of the fittest”. As such it’s considered an intelligent exploitation of a random search
within a defined search space of a given problem. In other words, Genetic Algorithm is a
search technique used to find an approximate, or if lucky an exact, solutions to
optimization problems. Genetic algorithms are classified as a population based global
search heuristic and more specifically as an evolutionary algorithm that uses techniques
inspired by evolutionary biology such as inheritance, mutation, selection, and crossover.

The evolution starts from an initial population of randomly generated individuals
and occurs over generations. Individuals in this population represent possible solutions to
the problem. In each generation, the fitness of each individual in the population is
evaluated according to the fitness function, multiple individuals are then selected from
the current population (based on their fitness), and modified (recombined or randomly
mutated) to form a new population. The newly generated population is then used in the
next iteration of the algorithm. Usually, the algorithm terminates when either a maximum
number of iterations has been carried out, or an acceptable fitness level has been reached
for the population. If the algorithm has terminated due to a maximum number of
iterations, a satisfactory solution is not guaranteed (Eiben & James, 2003) (Michalewicz,

1994).

34

The major components of GA are: Representation, Fitness function (objective),
Initialization, Selection, Crossover, Mutation and Repair.
Representation:

The most important step in Genetic Algorithms is representation of the solution
domain in which the decision variables of the problem are gathered as an individual.
Decision variables (genes) are structured as a vector (chromosome) which is the solution
structure of the GA. Each chromosome is a representation of a complete solution to the
problem yet it is in some cases not a feasible solution and will require the repair operator
to return it to feasibility. The aim of the GA is to find the best feasible solution
(individual) along many generations that evolve using the genetic operations of crossover
and mutation. Thus it can be seen that the chromosome representation is a crucial step in

any GA.

Initialization:

Initially a number of individual solutions are randomly generated to form an
initial population. The population size is a parameter that depends somehow on the
complexity of the problem, and usually it ranges from several hundreds to thousands of
possible solutions. The random generation of the population should cover the entire range
of possible solutions (the search space). Typically, the initial population is generated
using an upper and lower limit for each gene. The gene is created between these limits

using a random number generator.

35

Fitness function:

For any given problem, the fitness function is defined using the objective function
of that problem. The fitness function is used to measure the quality (fitness) of a given
individual (solution). Thus, the fitness function always depends on the problem. For
instance, in the knapsack problem in which the objective is to maximize the total value of
objects that can be put in a knapsack of a fixed capacity. A representation of the solution
may be an array of bits, where each bit corresponds to an object, and the value of the bit
(0 or 1) denotes whether the object is in the knapsack or not. Not every such
representation is reasonable, as the size of objects may exceed the capacity of the
knapsack. The fitness of the solution in this example is the sum of values of all objects in

the knapsack if the representation is valid or 0 otherwise.

Selection:

In order to simulate the process of evolution, a proportion of each generation is
selected to breed the offspring which will be the new generation. Individual solutions can
be selected through different selection schemes. Most commonly, a fitness-based process
of selection is used, where fitter solutions (as measured by a fitness function) are more
likely to be selected. Certain selection methods rank the fitness of each solution and
stochastically select the best solutions. Other methods rank only a random sample of the
population, as this process may be very time-consuming if the fitness calculation
complex.

Most selection functions are stochastic and designed so that less fit solutions are

selected but in small proportions. This helps in avoiding premature convergence to poor

36

solutions by keeping a diverse population. Popular selection methods include roulette

wheel selection and tournament selection.

Crossover:

Crossover is the process of generating a new population (offspring) by mating the
selected parents of the current generation. Each new solution (child) is produced by a
selected pair of "parent" solutions from the pool selected previously. Offspring solutions
share many of the characteristics of its "parents". New parents are selected to produce a
new generation, and the process continues until the termination criterion is satisfied.
These processes yield a population of chromosomes that is different from the initial
generation. Commonly the average fitness of the population keeps improving, since only
the best individuals from the first generation are selected for breeding, along with a small

proportion of less fit individuals.

Mutation:

The process of mutation is done by randomly altering some selected individuals in
the population. This mutation is done by changing the value of one or more genes in an
individual. Mutation operation is usually used to avoid premature convergence to a local
optimal solution by introducing some variation in each population. Usually the

percentage of mutation is set to low values.

A pseudo code for the algorithm is given in Table 4.1.

37

Table 4.1: GA pseudo code.

Begin

Generate a new population of solutions;

While (terminating condition not met)

End

{

Evaluate solutions through fitness assignment;

Select best individuals to reproduce based on their fitness value;
Breed new solutions through crossover operator;

Mutate;

Repair;

b

38

4.1.2 Shuffled Frog-Leaping Algorithm

The shuffled frog-leaping algorithm (SFLA) is a memetic meta-heuristic that is
based on the evolution of memes carried by interactive individuals, and on a global
exchange of information among themselves. A meme can be defined as a transmittable
information pattern that replicates by infecting host minds and altering their behavior,
which causes them to propagate the pattern. In other words, a meme is any kind of
information that survives long enough to be recognized as such and that can pass from
mind to mind.

Eusuff, Lansey and Pasha (2006) designed this meta-heuristic by combining the
ideas of the shuffled complex evolution algorithm and the particle swarm optimization.
Traditional evolutionary algorithms like GA are based on the concept of population
which is a set of individuals. Each individual is associated with a fitness value that
measures how good it is. On the other hand, SFLA the individuals are not so important
yet they are seen as hosts of memes. Each host carries a meme that is analogous to the
chromosome in GA. While genes can only be transmitted from parents to offspring,
memes can be transmitted between any two individuals. Thus, a better individual
(solution) that takes generations to propagate takes a relatively shorter time to spread in
the SFLA population.

The name of this method came from applying this memetic approach to a group of
frogs leaping in a swamp and searching for food. The swamp has a number of stones at
discrete locations on to which the frogs can leap to find the stone that has the maximum

amount of available food. The frogs are allowed to communicate with each other, so that

39

they can improve their memes using others’ information. Improvement of a meme is done
when a frog that is far from the stone with the maximum amount of food leaps toward a
frog closer to the food. This leap results in altering the faraway frog’s position to be
closer to the stone with maximum amount of food. Here, the change of memes is only

allowed to be a discrete value by analogy with the frogs and their discrete positions.

Steps of SFLA:

The search begins with a randomly selected population of frogs covering the
entire swamp. The population is partitioned into several parallel communities, called
memeplexes, which evolve independently to search the space in different directions.
Within each memeplex, the frogs are infected by other frogs’ ideas which results in an
improvement in the individual frog’s performance towards a goal. To ensure that the
infection process is fruitful, it is required that frogs with better memes (ideas) contribute
more to the development of new ideas than frogs with poor ideas. Thus, the selection
process for frogs using a triangular probability distribution provides a competitive
advantage to better ideas.

During the evolution, the frogs may change their memes using the information
from the memeplex’s best frog or from the best frog among the entire population.
Incremental changes in memes correspond to a leaping step size and the new meme
corresponds to the frog’s new position. After an individual frog has improved its position,
the community will be able to make use of this improvement to find a better one closer to
the maximum amount of food. After a certain number of memetic evolutions between the

frogs of each memeplex, the memeplexes are forced to mix and new memeplexes are

40

formed through a shuffling process. This shuffling enhances the quality of the memes
after being infected by frogs from different regions of the swamp. This in turn accelerates
the searching procedure for frogs by sharing their experience in the form of infection and
it ensures that the cultural evolution towards any particular interest is free from regional
bias (Eusuff et al., 2006) (Chung & Lansey, 2009).

A pseudo code for the algorithm is given in Table 4.2.

Table 4.2: SFLA pseudo code.

Begin
Generate a virtual population of frogs
While (convergence criteria not met)
{
Sort the population of frogs in order of decreasing fitness value
Partition frogs into memeplexes
While (evolution for all memeplexes not done)

{

Memetic evolution within each memeplex (Local Exploration)

}

Shuffle memeplexes

}

end

41

4.1.3 Simulated Annealing

Simulated Annealing (SA) was first introduced by Kirkpatrick, Gelatt and
Vecchi (1983). In the 1980s, SA had a huge impact on the field of heuristic search for its
simplicity and efficiency in solving combinatorial optimization problems. The idea of
simulated annealing was inspired by the annealing process in metallurgy, a technique
involving the heating and controlled cooling of a material to increase the size of its
crystals and reduce their defects. For a minimization objective, the heat frees atoms to be
able to move from their initial positions (a local minimum of the internal energy) and
wander randomly through states of higher energy; the slow cooling gives those more
chances of finding configurations with lower internal energy than the initial one.

Using the same idea, this process is simulated and applied to search for a feasible
solution to an optimization problem. Starting with an initial solution, SA algorithm
searches for a nearby solution in by alerting the current solution using a generation
function. This is similar to the local neighborhood search method which usually tends to
be trapped into a local optima rather than the global one. The SA method was built to
avoid such trap by assigning a probability to accept a new solution even if it’s worse than
the current one. This acceptance probability is controlled by the Temperature parameters
which starts high and tends to cool down over the iterations. So during the initial
iterations, the temperature is high and the probability of accepting worse solution is high.
The temperature is decreased over the iteration using a certain cooling schedule which

will result is lower probabilities of accepting bad solutions. The search continues until a

42

stopping criterion is met. This simulation helps in exploring the feasible solution space at
higher temperatures and avoids premature convergence to local optima.

The pseudo code for the algorithm is given in Table 4.3.

Table 4.3: SA pseudo code.

Begin
Initialize temperature
Randomly generate an initial solution 1S
Calculate the initial solution’s energy f(15)
While (Stopping criteria is not met)
{
Update the temperature using the cooling schedule
While (number of iterations at each temperature are not met)
{
Generate a neighbor solution /S’
Calculate the new energy for this solution f (1S”)
Delta=f(IS") — £ (IS)
If Delta<0
Accept the new solution IS=1S"

Else
_ Delta
Accept the new solution with a probability e Temp
End if
}

End

43

4.2 Meta-heuristics’ Implementation

In the following subsections, the common concepts that are shared among the
heuristics are introduced first. Later, the implementation of each heuristic is illustrated

using the 13-activity project network shown in Figure 4.2.

4.2.1 Common Concepts among Meta-heuristics

In order to design a heuristic, a representation of the solutions handled by the
algorithm should be carefully chosen. In addition, the definition of the objective function
that will guide the search is also important. Choosing a good representation and defining
a suitable objective function greatly depends on the problem’s constraints. For any
optimization problem, constraints can be handled, when a heuristic is designed, using
different strategies such as rejection, penalization, decoding and repairing strategies. In
this section, the representation (encoding) of the solution is demonstrated. Then, the
objective function is defined for the penalization and the repairing strategies respectively.

Finally, the repair algorithm used for the repairing strategy is presented.

44

o1

KJreq

el € |01 or| v |9 91¢|¢ €0
A\ < r < H < a
el 01 01 9 < 9 3 0
0=d.L 0=4L 0=dL 0=d.L
el 0 |€l el C |11 oL ¢ |L LTS ¢ |¢
ystury M 1 ‘ 1 M 9 < J
el el ‘ 6 L L 14 14 [4 0
0=d.L P=d.L ¢=dL g=d.L ¢=dL
el € |01 j or|c| 8 €S
uonen(g D, | M | M d
_ el 01 L S ¢ 0
v
g=d.L G=dL S=AL
Aoy
orj e (L | S
Hi KJreq cl \4
a S b 0
(A1) 16014 1®I0L S=dL G=dL

233foad £31AndE-¢T B JO Ya0M)dU KJANIY 7§ N3]

9%

A

A

A

A

A

1E)S

0=4L

Representation:

One of the most important steps in the design of a heuristic is the encoding
(representation) of a solution as it plays a major part in the efficiency of the heuristic.
Encoding helps in handling some of the problem’s constraints and taking advantage of
this will help in improving the effectiveness of the designed heuristic. As been presented
earlier in the finance-based scheduling model (Chapter 4), there are two main constraints;
the network precedence relations constraint and the financial constraint. Choosing the
right representation will take care of one of these constraints.

In our problem, decision variables are the starting times of each activity. This can be
represented by a vector that shows the starting time of each activity. While this might
sound like the best way to represent the solution, representing the solution this way will
allow infeasibility with respect to the precedence constraint. That is, the starting time of
each activity is not forced to follow the precedence relation’s constraint. Moreover,
starting with a feasible solution or a population of feasible solutions will not solve the
problem of violating the precedence relation constraint because each heuristic has its own
method of searching and generation of new potential solutions. However, the shift vector
representation will guarantee that all solutions are feasible with respect to the precedence
relation constraint.

In the shift vector representation, each solution is represented by a vector where each
non-negative integer in a position indicates how many days the corresponding activity is
scheduled beyond its early start time. The shift vector representation is illustrated in

Figure 4.3.

46

P oe— Activity

Shift representation

Ap

Activity shift

Figure 4.3: Shift vector representation.

Let A, be the shift of activity p and A = {/11, Aoyry /1,,} be the shift vector representation
of a solution. In order to get the starting times vector (solution) from the shift vector
representation a decoder must be used. This is illustrated in Figure 4.4 using the example

network given in Figure 4.2. The decoder’s pseudo code is given in Table 4.4.

A B C D E F G H I J K L M

010 1 0]121]3 0] 3 1 0]10]101]0O0

Shift representation

Decoding

Starting time

Figure 4.4: Decoding example.

47

Table 4.4: Pseudo code for the decoder.

Let

Ap = the shift of activity p

EST, =the early start of activity p
EFT, = the early finish of activity p
d,, = the duration of activity p

Pre, = the set of all predecessors of activity p

Begin

EST;=0

EFT, = EST, + d,

For activitiesp=1ton
EST, = max{EFT,|q € Pre,} + 2,
EFT, = EST, + d,

End

It should be noted however that this representation doesn’t guarantee a financially
feasible schedule. That is, the negative cash balance may exceed the credit limit at any
point along the project’s duration. This can be treated by either adding a penalty in the
objective function (penalization strategy) or by using the repair operator (repair strategy)

as will be seen later.

48

Generation of the initial solution:

Initial solution is required for population based heuristics, like GA and SFLA, as well as
the single based heuristics such as SA. The quality of the initial solution greatly affects
the effectiveness and the efficiency of the heuristic. For the population based heuristics,
the initial population should be diverse to avoid premature convergence. Thus, it’s

important to generate a diverse population that covers the search space of the problem.

The generation is done using an upper bound to the shift vector and a uniform random
number generator. The adjusted total float, 7, can be used as the upper bound as it takes
care of the total float of each activity as well as any Additional Shift Units, ASU, added to
the total float of each activity if needed. To have a reasonable solution, not all activities
are shifted. Thus the random generator code should randomly shift some of the activities
as shown in Table 4.5. An example of a generated schedule for the example network is

given in Figures 4.5 and 4.6.

It should be noted that the precedence relation constraint is feasible in all of the generated

schedules but the repair operator should be used to repair any financial infeasibility.

49

Table 4.5: Pseudo code for the initial solution generator.

Let

Pgp; ¢ = the probability of shifting an activity

T = the adjusted total float vector.

Begin
Generate a random number for each activity
Fori=ltop
If rand ()< Pspift
A; = |rand[0,1].7;]
Else
Ai =0
End if
End
A B C D E F G H I J K L
T |10 |10 | 8 5 11010 8 |5 8 5 8 9
@ Generate
A B C D E F G H I J K L
Al O] 4]0]0]5]2]01]3 1 0| 2 7

Figure 4.5: Generated schedule with ASU =5.

50

0 4 0 0 5 2 0 3 1 0 2 7 2
A
|—
E
————————— E—
K
— — ——
B
——————— E——
F
- —— - —
L
_____________ I
C
——
M
- - — ——
G
—
1
- — EEEE——
D
|——
H
————— —E—
J_

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 4.6: Example of a generated schedule.

51

The objective function:

The objective of the finance-based scheduling is to minimize the project’s duration Z as
given in (3.13). The objective (fitness function) when using the repair strategy is

f&) =z (Repair used)

In this case the repair operation will always keep solution(s) feasible with respect to the
financial constraint. However, a penalty should be added to the objective function if the
penalization strategy is used. The objective (fitness function) function will look like

f(S) =Z + &{max(0, Byaxx — W)} (Repair not used)

Where @ is a penalty factor, B,,,, is the maximum negative balance and W 1is the

specified credit limit.

Repair algorithm:

As seen before, the encoding method guarantees feasible schedules with respect to the
precedence relation constraint but doesn’t warrant the credit limit feasibility. The repair
function will repair any financial infeasibility by shifting the starting time of some
activities in order to keep the balance within the credit limitation. For a given infeasible
schedule, the repair algorithm will identify the period in which the credit limit constraint
was violated. The algorithm will then chose an activity to be shifted according to a
certain criterion. Activities will be shifted until the credit limit constraint for that period
is satisfied .The algorithm will then move to the next period to make sure it’s financially
feasible. This is done for all the periods until the end of the project. The steps of the
algorithm are shown in Algorithm 4.1. There are different shifting criteria such as giving

priority to the minimum shift or a random activity random amount shift.

52

Algorithm 4.1: Repair

//Given: an infeasible schedule with respect to the credit limit constraint
//Output: a feasible schedule with respect to the credit limit constraint
Let:
EST, =the early start of activity p
EFT, = the early finish of activity p
cp = cost of activity p
Repair ()
{
Calculate the cash flow of the schedule, identify the period that violates the credit
limit constraint and the “amount” of cash exceeding the limit
While (not the last period)

{
While (amount > 0)

{

Set of activities in that period ={ EST,<end of period & EFT,>start of
period}

Calculate the minimum shift needed to improve for each activity

Calculate the maximum shift available to improve for each activity

Calculate the shift required to return to feasibility for each activity

Shift, = [(amount/cp)]
Choose one activity to shift according to the shift criterion
Update the shift vector

}
Check next period

}

53

4.2.2 Genetic Algorithm

In this subsection, GA will be described by explaining the different operators used

as illustrated in the flow chart in Figure 4.7.

Initialize

A 4

Population Generation

\ 4

Evaluate Population

\ 4

A 4
Sigma Scaling &

Parents’ Selection

Crossover

y

Mutation

Infeasible?

Generations?

No

End

Figure 4.7: Flow chart for the GA.

54

Initialize:
The GA algorithm is initialized by setting its parameters such as the population size, the
maximum number of generations, the probability of crossover and the probability of

mutation.

Population Generation:
A population is generated using the generator presented in section 4.2.1. The number of

solutions generated is equal to the population size determined in the initialization step.

Evaluate Population:
Each individual in the population is evaluated using the objective function presented in

section 4.2.1.

Sigma Scaling and Parents’ Selection:

The purpose of selection is to emphasize the fitter individuals in the population in hopes
that their offspring will in turn have even higher fitness. Sigma scaling is a scaling
mechanism that is applied to the population before the selection process. Originally, GA
used fitness—proportionate selection, in which the "expected value" of an individual (i.e.,
the expected number of times an individual will be selected to reproduce) is that
individual's fitness divided by the average fitness of the population. However, this
method of selection might lead to a "premature convergence." In other words,
fitness—proportionate selection early on often puts too much emphasis on "exploitation"

of highly fit individuals at the expense of exploration of other regions of the search space.

55

Later in the search, when all individuals in the population are very similar (the fitness
variance is low), there are no real fitness differences for selection to exploit, and the
evolution process will stop. To address such problems, GA researchers have
experimented with several "scaling “methods for mapping "raw" fitness values to
expected values so as to make the GA less susceptible to premature convergence. Sigma
scaling is one of these methods which keeps the selection pressure (i.e., the degree to
which highly fit individuals are allowed many offspring) relatively constant over the
course of the run rather than depending on the fitness variances in the population. Under
sigma scaling, an individual's expected value is a function of its fitness, the population

mean, and the population standard deviation

fO-f® .
ExpVal(i, t) = 1+ —ZU(t) ifo(t) #0
1.0 ifo(t)=0

Where ExpVal(i, t) is the expected value of individual i at time t, f(i) is the fitness of
i, f(t) and o(t) are the mean fitness and the standard deviation of the population at time
t respectively. If the ExpVal is negative, it’s replaced with a value of 0.1. So that
individuals with very low fitness will have slimmer chances in reproduction.

At the beginning of a run, when the standard deviation of the population’s fitness is
typically high, the fitter individuals will not be many standard deviations above the mean,
and so they will not be allocated the lion's share of offspring. Likewise, later in the run,
when the population is typically more converged and the standard deviation is typically

lower, the fitter individuals will stand out more, allowing evolution to continue (Mitchell,

1998).

56

Crossover:

A simple one point crossover is used as explained in Figure 4.8. A pair of parents is
selected using the selection method described before. The rate of crossover is determined
by a crossover probability parameter which is assumed to be 1. Thus, all the population

will reproduce and will be replaced by the offspring.

Parent 1 010 1 0| 2 3 0] 3 1 010110710

Crossover

Parent 2 1 010112 1]07]0 1 0| 2 0| 4]0]O0

Child 1 010 1 0213 1 0201|4070

Child 2 1 0Oj]0}|2]10]107]0]3 1 010|071 O0

Figure 4.8: Crossover example.

57

Mutation:

In this step, the chromosome is mutated according to the mutation probability. The
mutation (change) will affect one gene in the chromosome. This operation is necessary to
keep a diverse population in order to avoid premature convergence. Figure 4.9 explains

the mutation operator. Mutation is controlled using the mutation probability parameter.

Figure 4.9: Mutation operation.

Repair:
The repair algorithm explained before is necessary to keep the population feasible with
respect to the credit limit constraint. Several repair methods are proposed and it can be

used interchangeably to keep the diversity of the population.

58

4.2.3 Shuffled Frog-Leaping Algorithm

In this subsection, the different steps of the SFLA, illustrated in Figure 4.10, are detailed.

Initialize
y
Population
Generation
Construct
»l dl
v d Sub-memeplexes <
Evaluate Population
y Try Local Search
> Rank Population ¢
y
Construct Local Yes
Memeplexes Success?
A
Start Memetlc Try Global Search
Evolution
Global Yes
Shuffle Memeplexes < Success?
No Max Generate a New
Iterations? Solution
Update
End Memeplexes <
Max

evolutions?

Figure 4.10: Flow chart for the SFLA.

59

Exploration

Step 0 Initialize: Set the number of memeplexes, Nm, and the number of frogs in each
memeplex, Nn, the number of frogs in each sub-memeplex Nq, the number of memetic
evolution steps, Ne, and the number of iterations, iter. The population size, F, in this

caseisequal to F = Nm.Nn .

Step 1 Population Generation: This step is done using the generator presented in section

4.2.1. The number of solutions generated is equal to F. L.e., A;, Ay, ..., Ap .

Step 2 Evaluate Population: Each frog in the population is evaluated using the objective

function presented in section 4.2.1.

Step 3 Rank Population: Sort the F frogs in descending order of the fitness value.

Record the best frog, Agp, in the population.

Step 4 Construct Memeplexes: Construct memeplexes such that the i memeplex has
solutions Ay, Ajyyms Aiyonms o Ap—(vm—iy)- Figure 4.11 illustrates the memeplex

construction.

60

1
2 1 2 Nm
3 Nm+1 Nm+2 2Nm
F

F

1St 25t Nmth

memeplex memeplex memeplex
Sorted frogs
population

Figure 4.11: Construction of memeplexes.

Step 4 Memetic Evolution:
Step 4.1 Construct Sub-memeplexes: From each memeplex, randomly choose
Ngq frogs (solutions). This is accomplished by assigning a probability for each
frog in the memeplex. The probability follows a triangular discrete distribution.
The j™ frog in the memeplex will have the probability
P, =2(Nn+1-j)/Nn(Nn+1) j=12,..,Nn
Record the best and worst frogs (solutions) in the sub-memeplex as Az and Ay,

respectively. Figure 4.12 illustrates the idea of sub-memeplex construction.

61

Frog population (F=Nm.Nn)

Memeplex of Nn frogs

Sub-memeplex of Nq frogs

Best frog Ag

Worst frog A\,

Figure 4.12: Construction of a sub-memeplex.

Step 4.2 Try local search: consider a temporary solution given by
Atemp = Ay + |rand. (Ag — Ay)|
Where 0 < rand < 1 is a random number and | | is the floor function.
Evaluate the temporary solution.
Step 4.2 Local success? In this step we check if f (Atemp) < f(Aw)
Set Ay = A¢emp and go to step 4.6
Otherwise go to step 4.3
Step 4.3 Try global search: a temporary solution given by
Atemp = Ay + |rand. (Agg — Aw)]
Step 4.4 Global success? In this step we check if f (Atemp) < f(Aw)
Set Ay = Atemp and go to step 4.6

Otherwise go to step 4.5

62

Step 4.5 Generate a new solution: randomly generate a new solution to replace
the worst solution Ay, .
Step 4.6 Update memeplexes: update the worst solution in each memeplex.
Step 4.7 Max evolutions? check the if evolution counter =Ne
Go to step 5.
Otherwise go to step 4.1.
Step 5 Shuffle Memeplexes: merge all the memeplexes together into one pool.
Step 6 Max Iterations? check if the maximum number of iterations has been reached.
Stop
Otherwise go to step 3.

The mechanism of the memetic evolution in the SFLA is illustrated in Figure 4.13.

63

Local Search: leap failure

Memeplex’s best frog Memeplex’s worst frog

Global best frog
Local Search: leap successful

New global best frog

Global Search: leap successful

Figure 4.13: Memetic evolution in SFLA.

64

4.2.4 Simulated Annealing

This subsection will describe the mechanism of SA as shown in Figure 4.14.

Initialize:

Define the parameters of the SA such as the initial temperature, number of iterations per

temperature and the minimum temperature allowed.

Generate Initial Solution:

One solution is generated using the generator presented in section 4.2.1.
Evaluate Solution’s Energy:

The energy (fitness) of the solution is evaluated using the objective function presented in

section 4.2.1.
Generate a Neighbor Solution:

A neighbor solution can be obtained from the current solution by changing some parts of
the solution. This is done on the shift vector by adding a value between specified upper
and lower limits for the change. It should be noted that the change should be small, thus
the change shouldn’t affect all activates. A pseudo code for generating a new neighbor is

given in Table 4.6. An example for neighbor generation is shown in Figure 4.15.

65

Initialize

\ 4

Generate Initial
Solution

A 4

v

Evaluate Solution’s
Energy
(Old Energy)

A

\ 4

Generate a Neighbor

Solution

\ 4

Evaluate Neighbor
Solution’s Energy
(New Energy)

A4

A=0ld Energy-New Energy

No

y

’

Accept if
rand < e

A/k.Temp

A 4

Solution = Neighbor Solution

Max
Iterations?

Yes

No

Decrease Temperature

No

v

Minimum
Temperature
Reached?

End

Figure 4.14: Flow chart for SA.

66

Table 4.6 : Pseudo code for generating a new neighbor.

Begin

Given the current solution

Given the possible allowed shifts for activities

Given the probability of each shift

Generate a random number for each activity

Using the random number, determine the amount of shift for each activity
Apply changes on the solution

Remove any negative values in the new solution

End

Probability of shifts

-3 -2 -1 0 1 2

A A A A A

Random numbers E AB,.. M 1

Solution 010 1 0|23 0|3 1 010

Neighbor | 0 | 0 1 0 1 31013 1(12]107]0]3

Figure 4.15: Generating a neighbor for a solution.

67

Decrease Temperature:
In the SA algorithm, the temperature is decreased gradually through the simulation
process. The quality of the solution depends greatly on the speed of the cooling
schedules. If the temperature is decreased slowly, better solutions are obtained but more
computation time is needed. The most popular cooling function is the geometric cooling
schedule in which the temperature is updated using the formula

Temp =.Temp

Where 0 < ¢ < 1.

The process of annealing starts with the initial temperature set and the initial
solution generated. The initial solution is evaluated and then a neighbor for the initial
solution is generated and evaluated. If the neighbor solution has a better value according
to the objective function, the neighbor will replace the initial solution. Otherwise, if the
neighbor solution is not better, it will be accepted with a probability equal to e2/kTemp,
While £ is the Boltzmann constant. A number of trails are made for each temperature, it
can be seen that the acceptance of a worse solution depends on the current temperature.
Worse solutions are accepted more at the beginning of the process when the temperature
is high. After finishing the number of iterations set for a certain temperature, the

temperature is cooled using the cooling schedule discussed earlier and the process of

annealing goes on until the minimum temperature is reached.

68

Chapter 5

Multi Projects Finance Based Scheduling

Usually for a given company, contractors manage the financial aspects at the
corporate level and not at the individual project’s level. The contractor is generally
concerned about the means of timely procuring cash for all ongoing projects. In this
situation, finance based scheduling ensures that the resulting values of the negative
cumulative balances of all projects do not add up to exceed the credit limit, while
utilizing the positive cumulative balances that occur in some projects to execute others.
Thus, concurrent projects can be related to the overall liquidity situation of contractors.

In this chapter, the approach adopted to design the heuristics is presented first. Later,

multi projects case studies are presented with a solution sample.

5.1 Approach to the Multi Projects Scheduling Problem

In this section, the objective function is defined followed by the design of the GA,
SA and SFLA heuristics. The representation used in the multi projects scheduling
problem is presented earlier in section 4.2.1. Also, the generation of the initial solution is

presented in the same section.

69

5.1.1 The Objective Function

In multi projects finance based scheduling, we assume that unit-price contracts
between the client and the contractors charge a daily penalty on the late completion of
any project. Thus, the objective of minimizing the project duration is broadened to be the
profit maximization of all ongoing projects. The net profit of a single project is denoted
by G, see Figure 3.1, and can be defined as the amount of positive cumulative balance at
the end of the project’s cash flow. The total net profit of a multi projects G;,¢q; can be
defined as the total positive cumulative balance at the end of total cash flow of the multi
projects. Using the penalization strategy, the objective function (fitness function) will be
f(S) = Grotar — P{max(0, TBpax — Wiotar) }

Where @ is a penalty factor, T B,,4,1s the multi projects’ total maximum negative cash

flow and W;,¢q,1s the specified multi projects’ credit limit.

5.1.2 Genetic Algorithm

The GA used for the multi projects problem is similar to the one presented in
section 4.2.2. However, the algorithm is modified to take care of multiple projects by
generating a population for each project. For example, if we have two projects, two
populations need to be generated. The fitness of the solution depends on both projects as
Gtotar 15 the total net profit of both projects. This profit can be calculated by combining
the cash flow of i individual in the 1* population with the i individual in the 2™
population. Selection is done based on the fitness value after applying the sigma scaling
mechanism to it. The reproduction and mutation operators are applied for each

population.

70

5.1.3 Shuffled Frog-Leaping Algorithm

The SFLA used here is based on the one presented earlier in section 4.2.3. Similar
to the GA, the modification applied to the SFLA is to use multiple frog populations
instead of one. Each population will have its own memeplexes and sub-memeplexes. The
evaluation is done based on both populations and each population is sorted according to
the evaluated fitness. The final solution will consist of the best frog from each population

which is the first frog after the stopping criteria is reached.

5.1.4 Simulated Annealing

Muti projects SA is based on the one presented in section 4.2.4. An initial shift
vector is generated for each project. The energy (solution) is evaluated based on both
initial shift vectors. Then, a neighbor is generated for the shift vector of each project and
the energy of the neighbors is evaluated. The solution is accepted or rejected according to

the steps explained earlier.

71

5.2 Case Studies

In this section, two multi projects’ case studies are given. The first case study is for a
contractor executing two concurrent projects, the first is a 25-activity project and the
second is a 30-activity project. In the second case study, the concurrent projects consist of
125 and 120 activities respectively. The activity networks for the first case study are
shown in Figure 5.1 and Figure 5.2. The networks for the 125 and 120 activities are a
repeated version of the 25 and 30 networks respectively. The financial data and the
contractual terms of the four projects are shown in Table 5.1. An example on the
financial calculations for the rates of the cash outflows and inflows is given in Table 5.2.
This information is input to the program and all the cash flow calculations are based on it.
A solution for the 25-30 multi-projects case, represented by schedules obtained as an
output from the program, at a credit limit of 75,000 is presented in Figure 5.3 and Figure
5.4. In addition, the weekly expenditure and income for both of the projects are presented
in Table 5.3. Finally, cash flow details for each project are presented in Tables 5.4, 5.5
and are illustrated in Figures 5.5, 5.6. The total cash flow details of both projects are
presented in Table 5.6 and are illustrated in Figure 5.7. Further results and discussion are

presented in the following chapter.

72

‘wa[qoad AJADIB-GT AY) 10J MI0M)IIU KAV :[°S 3In31q

A

A

11e)S

A

A

17| € |ve el € 1z] 17| 1 |oz| oc| T [s1] clelo
A € 0O [« W [1 | a
| pi| |11 AE s| |¢ ¢l o
0581 0S€l 0PI 059 006
1d T st e v |81 o1 | ¥ |1 1|so NEE
A n | d < T | H [
1z] e o1 |1 si| | E ol |¢f
0001 00ZI 00S 00S 056
17| |z el s |zl 2| 9 |o or| s 11| 1zle clz|
ysmur X w L 0] w S, < J
izl iz AN | o or| || y| |z 2| o
009 00L 0SS 001 0011
| s|u HEE 9lelel clelo
S |« M i |« q
1z| Jor| N 9| |¢ el o
0S8 0S¢ 0ST1 001
1z s | | s | t|s|a als|e Llelw vlz|e
M€ q < N < r 1 [« v
o] |1z 1z| ot or| | 1| |o s| |z | o
059 009 00t 0P 0sz1 0001

393f0ad £31ARdE-(€ AY) 10J YI0M)IU AJADY :7°S 21N

YL

6C| T |LT LT|T |SC SC| T |¢C €| ¢ |1¢ ¢ |6l
L | PA R | qd LK |
6¢C LT 4 15 1< 6l L1 Sl el 11
000¢ 000¢ 000¢ 000¢ 000¢
LT|E VT ve|e |1I¢ [T € |81 81| € |SI ST € |CI
9 [4C 4G | qi [0 |
LT vC 134 0¢ 61 91 Sl 4! IT 8
0091 0091 0091 0091 0091
ve| v |0C 0c|v |91 91| v (I v |8 14
ad Pd d qa ed
Ve 0¢ 0¢ 91 91 4! 4! 8
0061 0061 0061 0061 0061
0C| ¢ |LI 91| ¢ |¢I crie|eo % ¢
9 N PO N 9 N 40 N €) \
91 el el 0T (001 L
0081 008T 0081 008T 008I
0C| T |81 91T (VI ¢l ¢ |01 [4 [4
9d Pd bt | qd ed
I 6 6 L L S
00ST 00sT 00ST 00ST 00ST
LT 1 |91 ey 1|l 1 1 1
IV < |4 < w < qv < ey
S % 4 3
00LT 00LI 00LT 00LT 00LT

SL

‘uonenp 393(o1d 12103 oy3 Surssedwooud $}IM JO JoqUUNN B

0001 0001 0001 0051 Aep 1ad Ayeuad uonordwos oje]
I I I I (sy9om) sysanbax judwAed Aed 01 Se|
! [[I A1re[ngar sysonbax Aed jrugns 01 S\

0 0 0 0 (9122 SULId) }oe)U0)
juowked jse] 1oye Asuow paurejor Ked 03 Jeg
S S S 9 sysanbax Aed Jo 93ejud010d paurejoy
e e e e juowAed d0UBAPE QAL 0] SYIIA
T C 01 6 doud piq 18103 JO a3eIuddIad JuowAed dduRAPY
! ! ! 14 o3eyuoorod wnrwaid puog
01 01 0¢ cl o3ejudorad dnprey
[4 4 4 4 o3rjuoo1ad xeJ,

gjep
01 01 S 8 93rud01ad S350 UONBZI[IQOIN
[eruRUL]
Sl Sl Sl L1 o3rju0o1ad speayionQ : :
81 LT 9 9 (S99 A\) uoneInp [euIsLI()
68 Sel 6¢C LT (sAep) uoneinp [eursL(
80 80 80 80 yoom 1od 98eIu001ad 9181 121U |)BT ISIINU]
193load 133load 133load 3393(oad wo) A103918)
Ayapoe-071| A1ADde-GTT | AANdE-OE | A)IADIE-GT

*$333f0ad anoj 3y) Jo surId) [ENILIIU0I Y} PpUE Blep [eURUL YL :I'S dqe L

Table 5.2: Factor calculations for the 30-activity project.

Direct Total Price

Activity Duration in Cost per direct per

days day cost day
Aa:Ae 1 1700 1700 2537.69
Ba:Be 2 1500 3000 2239.14
Ca:Ce 3 1800 5400 2686.97
Da:De 4 1900 7600 2836.24
Ea:Ee 3 1600 4800 2388.42
Fa:Fe 2 2000 4000 2985.52

Note: The prices in this table do not include the financing cost

Total cash outflow = 132,500;

Overheads = 19,875;

Mobilization costs = 7,618.8;

Cash outflow + Overheads + Mobilization = 159,993.8;

Taxes =3199.9

Taxes + cash outflow + Overheads + Mobilization = 163,193.7;
Bond Premium = 1,958.3;

Total Bid Price = 197,790.7;

Factor to determine price based on cash outflow (197,790.7+132,500)=1.4927

76

LL

.cccnmb JO JIWII] JIP3JD ¥ pue SHIDM 0M]) JO JJIYS & je aov_.c.:m \mam\»mao&nmN 9} JI0j uonnjos y : ¢€°c @h-wwﬁ

- -- -- v'ZS.ly 1'08SG1 108691 1'08.€1L L 08€LL ,08¥¥Z | Yeem iad enjeA psuies
- -- -- 00.¢ 05621 0SevL 0SLLL 05.8 05812 ¥8am Jad 1509 10811

€10SL | 0001 A

8006 | 009 X

86/6 | 059 n

v'1112| 0581 A

G081 | 00ZL n

6°0S0L | 00Z 1

1'9/ZL | 058 S

8006 | 009 S

19202 | 0S€l 0

9052 | 00S d

1628 | 0SS 0

G009 | oo N

6912 | 0Svl N

9052 | 00S]

¥'G2S | 0S€ M

9'G6/9 | 0S¥ r

86/6 | 059 [

Z9zvL| 066 H

€9/G1 | 0501 9

G9z/L| 0SLL 4

9'9/81 | 0521 3

I CGCL | 006 a

B 71591 00LL o)

I G 1081 | 0021 g

B 0S| 0001 v

ob Ge 0¢ 5z 0z Sl 0l Rep | Aep
Jad Jad | AuAnoy
sfeq 9ol | 150D

8L

*000°SL JO JIUII[JIPIID & PUE SIIM 0AL) JO JIYS © JE 393[0ad APADDIE-(E OY) 10§ UOYN[OS Y 'S dnS1y

1'28¢vl ¥'8.6€¢C ¥'8.9¢C¢ ¥'8.28¢ ¥'8.98¢ ¥'8.G.¢ -- - joom iad anjeA pauseq
oocltLli 0000¢ 00.8¢ 00€ve 00.¥¢ 009¢€¢ - - jaam i1ad }soo 3d911Q
. G'G86¢C 000¢ 94
. G'G86¢C 000¢ p4d
¥'88¢€¢C 0091 93
G'G86¢C 000¢ 04
I 7'88€¢C 0091 p3
¢'9€8¢ 0061 2d
G'G86¢C 000¢ q4d
¥'88¢€¢C 0091 03
¢'9€8¢ 0061 pa
6°989¢ 0081 9D
l'6€cCc 0061 od
I G'G86¢C 000¢ e
¥'88€¢C 0091 q3
2'9€8¢ 0061 oQd
] 6°989¢ 0081 PO
lL'6€CcC 0061 pd
| 1'L€SGC 00/l 9V
¥'88¢€¢C 0091 e3
2'9€8¢ 0061 aa
6°'989¢ 0081 20
L lL'6€cCc 0061 ogd
| 1 L€GC 0011 PV
2'9€8¢ 0061 eqa
6°'989¢ 0081 k]
lL'6€Cc 0061 ad
R 1 LESC 00/1 oV
| 6°'989¢ 0081 eD
I lL'6€cCc 0061 ed
] 1L€SGC 0011 qv
m 1,852 | 001 ey
s¢ o€ sz 0z st oL S Kep iad | A®P
1ad Aoy
sAkeq 8dlid }s0)

Table 5.3: Weekly expenditure and income of the individual and combined projects.

End Amount Sum for Amount Sum for
of | Expenditures [25-Act. [30-Act. | two Income 25-Act. [30-Act. two
Week Project | Project | Projects Project | Project | Projects
0 Mobilization & 11010.1 -—- 11010.1 Advance 9829.6 -- 9829.6
bond payment
1 Direct cost 21850 - - Earned value - - --
Overhead and Tax ~ 2620.2% - - Deductions - - --
Total 24470.2 -- 24480.7 Net -- -- --
2 Direct cost 8750 - - Earned value 32803.4 - -
Overhead and Tax 2630.7% - - Deductions 3606.4° -- -
Total 11380.7 9577.1¢ 20957.8 Net 29196.9 19779.1" 48976
3 Direct cost 11150 23600 -- Earned value 13136.3 -- --
Overhead and Tax 2630.7% 3978.4° -- Deductions 2426.4 -- --
Total 13780.7 27578.4 41359.1 Net 10709.9 -- 10709.9
4 Direct cost 14350 24700 -- Earned value 16739.4 35229.1 --
Overhead and Tax ~ 2630.7° 3978.4° - Deductions 26426 5057.9¢ -
Total 16980.7 28678.4 45659.1 Net 14096.8 30171.1 44268
5 Direct cost 12950 24300 -- Earned value 21543.6 36871.1 --
Overhead and Tax ~ 2630.7% 3978.4° - Deductions 2930.8 5140 --
Total 15580.7 28278.4 43859.1 Net 18612.7 31731 50343.8
6 Direct cost 3700 28700 -- Earned value 19441.8 36274 --
Overhead and Tax 1052.3% 3978.4° - Deductions 2804.7 5110.2 --
Total 4752.4 32678.4 37430.7 Net 16637 31163.8 47800.9
7 Direct cost - 20000 -- Earned value 5554.8 42842.2 --
Overhead and Tax - 3978.4° - Deductions 1971.5 5438.6 --
Total -- 23978.4 23978.4 Additions 6553.1° -- --
Net 10136.3 37403.5 47539.9
8 Direct cost -- 11200 -- Earned value -- 29855.2 --
Overhead and Tax - 3182.7° -- Deductions -- 4789.2 --
Total -- 14382.7 14382.7 Net -- 25065.9 25065.9
9 Direct cost -- -- -- Earned value -- 16718.9 --
Overhead and Tax -- -- -- Deductions -- 41324 --
Total - - - Additions - 9889. 5' --
Net -- 22475.9 22475.9

a: Overheads/day = 12367.5/27=458.1; Tax/day = 1838.54/27 = 68.09;

b: Overhead/day = 19875/29=685.34; Tax/day = 3199.88 /29 = 110.34;

c: Retained percentage and advance payment retrieval = 28674.4x0.06 + 9829.62/6 = 3358.7,
d: Retained percentage and advance payment retrieval = 30153.8x0.05 + 19779.07/7 = 4333.3;
e: Paying the retained money back = 109217.98 x 0.06 = 6553.1;

f: Paying the retained money back = 197790.68 x 0.05 = 9889.5;

g: Mobilization and bond costs for the 30-activity project.

h: Advance payment of the 30-activity project.

79

08

6'S8C01 96v1 986511~ | TCSPVI- Yoy 11- £80C8- oL ST y081°1- N 90UB[Eq 10N
€9¢c1 01 0°L£991 LC19°81 896011 6°60L°01 6'9616C 0 96786 o SWOOU]
96vl LY II- | YIIT0E | 68YS8C- | 6'€L1CC | €S0V LE | TTCOLST | 1010 TI- g 90UE[eq SALE[AWIN
0 vocl- G8LI- I'v91- LyCl- £9C 101 0 7 $1500 Surourul]
0 eSL Y L08SSI- | L0869~ | LO8LEI- | LOBETI- | LO8YYC- | TOIOTI- 14 smypuadxy
L 9 S 4 € [4 I 0 Jwered
SYIIM [eduRUL]

399foad Kyande-g7 ay) Jo sadjoweaed MO[J Ysed dY L, ;'S dIqeL

I8

8YISTIE | 8806 | €6ES 1~ | SSTLYI- | §986CI- | €T6191- | LTIV LI- | TOTOI - - N Q9UE[Eq JON
6'SLYTT | 6'S90°ST | SE0VLE | 8'E9IIE [eL1e | 1'ILTO€ 0 I'eLL6l | - - J AWOoU]
88€06 | LTOOI- | 8THOBE- | €688SH | OLILYY | ¥'€9€9Y | LTV LI- | T'LLS6- | - 7| g oour[eq aAnEnWN)
0 6'8€C SOI- r'yee 8°9v¢C- €9C €91 0 - - 1 $1800 Suroueur,|
0 L'T8EYI- | ¥'8LO €T | ¥'8LOTE- | ¥'8LT8T | ¥'8LIST- | ¥'8LSLT- | T'LLS6- | — - 7 omupuadxy
6 3 L 9 S v € Fé I 0 J1uweaed
SHOIM [euBUL]

399foad Kyande-(¢ ay) jo sadjoweaed MO[J Ysed dY L, :S°S dqeL

4]

68008 1Y | 8tCeol 99PL'8 | 8SLSYI- | I'S8S YT | v'¥P90¢- | L'OT88C- | 9°€66 1 | TTUIL ST | ¥O81I- N 90UR[Rq N
6'SLY CC 6'590°5¢C 6'6ESLY | 6008°LY | 8EVEQS 89CPr | 6°60L01 9L6 8V 0 9°6C8°6 J SWOdU]
8VYeeol SO TPL S | TEOLBE | L'9LET9- | 6C6VL~ | VCI6 VL | L'9ES6E | €S0V LE | TCIL° ST | 1010 T1- g 99UB[Eq SAIE[NWN))
0 SOI- 6'8¢C- 809¢- 14594 149 '1LT- €9 101 0 7 $1500 SuroueuI|
0 LCBEYI- | ¥8LO6ET | L'OEY LE | 1658 ¢Er- | 1659 Sy~ | T'6SE Ty~ | 8LS60C- | L'O8Y ¥C- | T'OI0TI- 7 smupuadxy
6 8 L 9 S 14 € (4 I 0 1jouered
SMIIM [euRUL]

*s393{0ad oM} 3y} Jo sadjoweaed MO[) Ysed Y[, :9°S d[qeL

€L8Y91-

€8

*393(0ad A)Ande-G7 3Y) JO Mo[) yse) :S°S 2an3I

£S0vLE-

V1120¢-
6'8Y58¢C-

6'€lIce

TT9LST-

6°S8701

0000t~

0000¢-

0000¢C-

00001~

00001

v8

393f0ad Ayapde-g¢ ay) Jo moyj yse) :9°S 3an3ig

£'68851- O LILYY- ¥ €9€9- 00006~

8'Tr68¢-
- 0000%-

—{ 0000¢-

LTeyLl-
SO°I¥LS- | 0000z

00001-

oIl 6 L 9 S % € [4 I

. — 00001
8'8€06 20201

0000T

0000€

8VISIE

¢8

*s393f0ad 0Mm) ay) Jo mopy ysed B0, :L°S 9.In31q

6eerLs 00008-

— 00009~

- 0000%-

- 0000C-

- 0000T

— 0000t
8'00811

Chapter 6

Results and Discussion

In this chapter we report our computational experience and benchmark comparisons
between the solution methods discussed in Chapter 4. The solutions reported are obtained
using integer programming, genetic algorithm, genetic algorithm with repair, shuffled
frog leaping algorithm, shuffled frog leaping algorithm with repair, simulated annealing
and simulated annealing with repair.

The optimal solutions obtained using the integer program are solved using Lingo 10
optimization package from LINDO systems. In addition, the results of the meta-heuristics
are obtained by solving the problems coded on Matlab 7.4.0. All experiments took place
on a 2 GHz intel machine with 1GB of RAM. The benchmark comparisons among
solution methods are presented for both the single project and multi projects problems.
Single project example networks consist of five 30-activity networks presented in
Appendix 1. In the single project finance based scheduling problem, contracts are
assumed to follow the unit-price contracts with a 10% overhead percentage, 20% markup
percentage and a 10% retainage. The payments are assumed to have a one week lag. On
the other hand, the multi projects example networks are illustrated in Chapter 5. The
contracts are assumed to follow the cost-plus contracts with the contractual terms

presented in Table 5.1.

86

6.1 Meta-heuristics’ Parameters

In order to obtain the most suitable parameter values that suit our problem, a large
number of experiments for each meta-heuristic were conducted. The final parameter

values adopted for each meta-heuristic are given next.

Genetic Algorithm

For the single project problem, the population size was set to 500. The crossover and
mutation probabilities were set to 1 and 0.2 respectively. The evolutionary process was
kept running until either the optimal solution of the IP is reached or until there are no
improvement in 10 consecutive generations whichever occurs first. The maximum
number of generations was set to 100. For the multi projects problem, the population size
was increased to 2000. The crossover and mutation probabilities were set to 1 and 0.05

respectively. The number of generations was increased to 1000.

Shuffled Frog Leaping Algorithm

For the single project problem, the population size was set to 600. The memeplex and
submemeplex sizes were set to 40 and 20 respectively. The number of evolutions per
iteration was set to 15 and the maximum number of iterations was 100. For the multi
projects problem, the population size was increased to 4000 and the number of iterations

was set to 150.

87

Simulated Annealing

For the single project problem, The initial temperature was set to 1 and the cooling
schedule factor, 1p,was set to 0.95. The Boltzmann constant was set to 1 and the iterations
per temperature were 600. The minimum temperature was set to 0.0001. For the multi
projects problem, The initial temperature was set to 1 and the cooling schedule factor,
P,was set to 0.98. The Boltzmann constant was set to 2000 and the iterations per

temperature were 600. The minimum temperature was set to 0.0001.

6.2 Comparisons and Discussion

The results obtained after solving the single project problems using the exact and
heuristic solutions, with and without repair, are presented in this section. Later, the multi
projects results using the heuristic solutions are presented. The heuristic results that are
presented in this section are the best results obtained out of ten runs. All problems were
solved using two different credit limits. Each problem was solved ten times and
performance measures were recorded. The performance comparison between the meta-
heuristics are based on three criteria: (1) the average and standard deviation of the
solution; (2) the percentage deviation of the average from the optimal solution obtained
from the integer program; and (3) the average processing time. In all experiments, the
heuristic is stopped when the optimal solution is reached or when the terminating criteria

of the heuristic is satisfied whichever comes first. (Elbeltagi, Hegazy & Grierson, 2005)

88

For the single project problem, the objective was to minimize the total duration of
the project under a given credit limit. Table 6.1 shows the optimal results obtained from
the integer program along with the heuristics’ best results out of ten runs. It can be seen
that for Networks 4 and 5 all heuristics have performed well and were able to reach the
optimal solution. However, not all were able to reach the optimal for the rest of the
networks. Further details of the solutions are summarized in Table 6.2 and 6.3 for
solutions obtained without repair and with repair respectively. In each table, details of the
solutions obtained using the constrained credit limit is presented including the different
performance measures. Figure 6.1 shows the percentage deviation from the optimal
solution for problems solved without repair. As shown in Figure 6.1, SFLA outperformed
GA when it comes to solution quality but SA was the best among all of the three. The
average processing time for each meta-heuristics is shown in Figure 6.2. The best
heuristic in terms in solution quality, SA, is the slowest in the speed of convergence. This
might be attributed to the mechanism of how the SA works. Furthermore, SFLA
outperformed the GA in speed. When the repair algorithm is used with these heuristics,
the solution quality improves substantially as all heuristics reached the optimal solution.
Figure 6.3 shows the average processing time for the heuristics when the repair algorithm
is used. In four of the five networks, the processing time of the GA was the least. It
should be noted that the repair algorithm also helps in reaching the optimal solution
regardless of the quality of the initial population. This is illustrated by an example on
Network 4, using GA and GA-R, in Table 6.4. Without using the repair algorithm, the

percent deviation from the optimal increases as the additional shift units, added to the

89

shift vector that is used to generate the initial population, are decreased from 5 to 0.
However, the solution quality remains the same when the repair algorithm is used.

The results obtained for the multi projects problem are summarized in Table 6.5.
The objective in this problem was to maximize the total profit of the combined projects
while keeping the total maximum negative cash flow of both projects within the specified
credit limit. Detailed results are presented in Table 6.6. According to the deviation
percentages shown in Figure 6.4, SFLA was better than GA in the case of 125-120
projects while it was a little worse for the smaller problem of the 25-30 projects.
Surprisingly, SA outperformed both the GA and the SFLA in both the quality of the
solution and the processing time. The processing time for each case is shown in Figure
6.5. It should be noted that when the size of the problem gets larger, the solution quality
gets affected as the average deviation of the solution becomes poorer when compared to
smaller problems and the processing time required becomes larger.

It’s interesting to observe that the performance of all heuristics is almost
consistent among all problems. Despite being an old heuristic, SA outperformed both of
the other heuristics for the cases of single and multi projects in solution quality. This
shows that SA is still a great tool to solve problems with a similar structure as such
heuristic exploits the structure of the problem as opposed to population based heuristics
which tend to be explorative rather than exploitative. In addition, it can be concluded that
the repair algorithm is important for both the GA and the SFLA as it improves the
solution quality drastically. This improvement however will cost more computation time.
The repair algorithm replaced the old method of discarding infeasible solutions by adding

any required shifts to repair any financial infeasibility.

90

16

Teday PIM s«

JIUWTT JIPAID) JNOITA

LT LT LT LT LT LT LT 0000V .

. Se‘09 €T S
o4 ¥4 4 o4 ¥4 o4 o4 000°9¥
23 vE 23 23 vE e 23 000°ST .

) ¥96'v€ 6¢ v
43 43 43 43 43 43 43 000°LT
9¢ 9¢ 9¢ 9¢ 9¢ 9¢ 9¢ 000°0¥ ,

) G08'€9 6¢ €
0€ o€ 0€ 1€ o€ 1€ o€ 000'6Y
Ge 13 Ge Ge 13 9¢ Ge 000'CY)

, ¥08'8L (Y4 r4
6¢ 6C 0€ o€ 6¢ o€ 6¢ 000TS
8t 8t 8t 6t 8t 6t 8Y 000°0%)

. L6T°0L 3% 1
St % St 9¥ % 9¥ % 000'St

+x4-VS VS *x8-V14S v14s *x4-VO D) di S S (sAeq)
sywi Upal) xoduejeg annedaN | cuoneing |)}JOoMiON
uoneinq |eioy ‘Xe\l jeuiSlO leuiSlO

surd[qo.d 393foad d[3urs ay) Jo SHNSAY :1°9 dqe],

6

(uoneIA(prepurlS) 9SBIAY 4

T 0 (0) LT LT 4 6'C (zvo) 8Lt | Lt 91T Tv | (P20)T'8C | (LT LT | 0000% S
A 0 (0) v€ 43 16 60 (8v0) £vE | vE ST TC | (870)Lve | ¥E ¥€ | 000S¢ v
9'vT 0 (0) 9¢ 9¢ vy €0 (eg0)T9€ | 9¢ vzt €0 | (eeo0)T9¢ | 9¢ 9¢ | 0000% €
]'€C 0 (0) g€ =3 6t vs'z | (€€°0)6'SE 3 S'6T g¢e | (bro)zoe | o€ SE | 000CY r4
L'VE L9°T | (¢vo)8s8y | 8¥ ¥'8 €ee | (L60)96Y | 6V S'CE 9v | (€9°0)T0S | 6V 8% | 0000¥% 1
ull | (%) | ogesany | 195 | PWAL | O8) | Sgeiany | 105 | PWAL L CB) | ogeiany | 195 | os

Sy *AOQ 1s9g | ‘Say *ADQ 1599 Sy *ADQ 1599 a1 1" | J4oMIaN

VS v14S V')

-aredaa Suisn Jnoyym swdfqoad 393foad S[3urs 10§ poureqo synsaa Jo spreyd(79 dqel

45 -

N

c

8

£ M GA

1

a SFLA
M SA

1 2 3 4 5

Network

Figure 6.1: Percent deviation from the optimal solution (Single project problems without repair).

40
35

0 N\
) "N

m
]
[
[]
(8)
2
E N
= 20 -
= ~
£ 15 \ —SA
.ﬁ L] O L] ——
m . ———
§ 10 S GA.
& 5 = - —
SFLA
0
1 2 3 4 5

Network

Figure 6.2: Average processing time (Single project problems without repair).

93

v6

*(aredax yyim swdfqoad 3d3foad 9[3urS) swn Surssadoad IGerdAy :¢°9 3In3I

v_._O\SuwZ
q 14 € 4 T
0
a-<cl|"4lh.h|l|\.\\“l..\|”/ ot
yviEs Z T < 0 5
—_—_— W, oe ©
H-YS ///m/ ob 8
\ . o,
~ S
1/ 0s &
N 09 w.
AN oo °
\
N 08
06
(uonerAd(g prepuelS) 93BIAAY
LT 0 (0) L2 LT 6T 0 (0) L2 LT 89T 0 (0) L2 LT | LT | 0000% S
L'TE 0 (0) v€ 143 S'8T 0 (0) v€ 143 9'ST 0 (0) v€ ¥€ | ¥E | 000SC v
6¢ 0 (0) o€ 9¢ 89 0 (0) 9¢ 9¢ ot 0 (0) o€ 9¢ | 9¢ | 0000% €
€S 0 (0) g€ 3 7'y 0 (0) s€ GE 9'G¢ 0 (0) s€ S¢ | S€ | ooozy r4
¥'T9 0 (0) 8% 87 6'08 T (es’0)s8y | 8F S8 GZT | (zs0)98y | 87 | 87 | 0000V 1
awil | (%) o%esony | 198 awil | (%) oSesany | 105 | duwu (%) ,o%esany | 1°S 105
‘Sny *ADQ 1599 ‘Sny *ADQ 1599 ‘Sny *ADQ 1599 al 1D | NIomiaN
H-vS H-v14S Y-vo

-areda.a Suisn swdqo.ad 3d3[0.ad d[3uls 10) paure)qo s)NSII Jo S[IeId(€9 dqeL

S6

0 Sl (%) rewndQ woiy uoneIAd(ISeIAY
0=siup) Yiys puonippy
143 1'6€ (sAe(Q) uonnjoS AgeIAy
0 1'C (%) [eundQ Wo.ay HoNBIAI(ISLIIAY
S=suup) Yiys puonippy
143 L'YE (sAe(Q) uonnjoS AgeIAy
A-VO VD

*p ya0m)au ul uoyendod [eniur 3y 0) Y-V ¥ VO AU) JO ANARISUIS 19 J[qEL

96

(ruwry 11pa1)) oz1s 71valoid - az1s 100fo1d 4

9¢l €98yL- 101°GL 8¢l TI6VL- | 66£TL 9¢l TE6 VL vL6°89 Gel 0L8L11 Momo%%%w
Sel 80668 | 6ST101 Sel 18868~ | €¥I°101 Gel 956°68- ThL 86 Sel 0L8L11 Momo%%mmw
(44 76865 686°9¢ (44 8L9°6S- | L9S9¢ [4% €78°65- L¥S 9€ 6¢ 99098 Soo%%%v
6¢ 916 69- oL Y 6¢ 128°69- 8TLIY 6¢ €08°69- L99°T¥ 6¢ 99098 Soo%.%mb
wu:M_mm $ mu_._M_mm $ wu:M_mm $ $
sfe uele
uonean(annesoN oag | uonean(q aAnesoN jyoag | uonean(q annesoN jgo.aq (s&eq) 1ed Grury 3paa))
e, e10], [ejol | uUonean(| dAne3dIN 5w
XBIA XBJIAl XeA eSO “XBIAl 356D
VS VT14S VO [ewisLQ

*(aredaa ynoyim) swdpqo.ad spdafoad pnuw 3y) Jo sHNSIY :5°9 dqeL

L6

(988¢) (0L5€) (6¥9€) n .

1'0L0T | 9°L 101SL | TH8T | €6 66€TL | 69T€ | 891 ﬁ vL68°9 | 000°SL | 0TI-STI
LOY69 1'2€189 9Py T9
(T61) (S°LS8) (ze9) n .

89T | LOO 6869¢ | 1601 | 8C 9%S9¢ | SEIE| L0 . L¥S°9€ | 000°09 | 0€-ST
1959¢ 8'TPSSE 9vTE9¢

awny | (%) | (A@s) | . awnL | (%) | (ka@s) | . awny [(%) | (@S | .

Bav | aaq | aSeroay | 1S | gy | aoq | oSereay | 199 | 54y | aaq | eSeaoay | 105109 | yuury ase)

1P3a.J

VS V'14S vo npaId

*(aredaa ynoyim) swdpqo.ad s3dd3foad pnuw 3y) 10J paure}qo sNsa. Jo s[re(:9°9 dqe

Deviation %

18
16
14
12
10

O N b O

HGA

4 SFLA

M SA
25-30 125-120

Case

Figure 6.4: Percent deviation from the best solution (Multi projects).

Processing Time

m GA

= SFLA

u SA

25-30 125-120

Case

Figure 6.5: Average processing time (Multi projects).

98

Chapter 7

Conclusion and Future Research

In this thesis, we have modified the cash flow model of Au and Hendrikson (1986) by
considering the daily cash flow. This has helped in formulating the problem as an integer
program with accurate financing cost calculations. We utilized some modeling tricks in
the integer programming model to accurately calculate the financing cost and the last
payment received. Due to the NP-hardness nature of this problem, we proposed different
heuristic solutions using genetic algorithm, shuffled frog leaping algorithm and simulated
annealing. In these heuristics, we have used a representation scheme that guarantees the
feasibility of the solution with respect to the precedence relation constraints. In addition,
a repair algorithm was developed to repair any infeasible solution with respect the
financial constraint. In addition, we redesigned the heuristics to deal with the multi
projects finance based scheduling problem. Finally, a study was conducted to compare
the performance and the quality of solutions produced by each heuristic.

A huge number of experiments were conducted to select the best parameters for each
heuristic. Because of the stochastic nature of such heuristics, a number of runs were
conducted and the average along with the standard deviation were used as performance
measures of the solution quality. Moreover, the processing time of each heuristic was

another performance measure which was recorded.

99

From the results of the study, we conclude that the repair algorithm is required for both
the GA and the SFLA to get good quality solutions. In addition, SA outperformed the
other heuristics in the solution quality while SFLA gave fairly better results than the GA
and was also faster in terms of processing time. This shows that SFLA is a promising fast
heuristic when compared to the GA. Furthermore, these results favored the use of one of

the oldest heuristics, SA, for this type of problem.

Further research can be carried out to further investigate several issues. In what

follows, we outline the most important issues:

1- Integer Programming: we managed to solve some instances of a 60-activity
single project problem and it took over a day to get the solution. Further IP
modeling should be considered to find a tighter set of constraints that will
improve the solution time.

2- Meta-heuristics: as SA performed well, it’s expected that other single-
solution based heuristics like Tabu search will have good performance too.
Other meta-heuristics such as ant colony and particle swarm can be applied. A
comparative study among these heuristics may further improve the quality of
the solution obtained for such problem.

3- Uncertainty: the uncertainty can be added to different parts in the finance-
based scheduling problem like the activity duration.

4- Multi-objective: different objective functions can be considered.

100

References

Artigues, C., Demassey, S. and Neron, E. (2008). Resource-constrained project
scheduling: models, algorithms, extensions and applications. ISTE Publishing
Company.

Au, T., and Hendrikson, C. (1986). “Profit Measures for Construction projects”. Journal
of Construction Engineering and Management, 115(2), 302-316.

Barbosa P. S. F., Pimentel P. R. (2001). ” A linear programming model for cash flow
management in the Brazilian construction industry”. Construction Management and
Economics, 19(5), 469-479.

Chiu, H. and Tsai, D. (2002). An efficient search procedure for the resource-constrained
multi-project scheduling problem with discounted cash flows. Construction
Management and Economics, 20(1), 55-66.

Chung, G. and Lansey, K. (2009). Application of the Shuffled Frog Leaping Algorithm
for the Optimization of a General Large-Scale Water Supply System. Water
Resources Management. 23(4), 797-823.

Demeulemeester, E. and Herroelen, W. (2002). Project scheduling: a research handbook.
Kluwer Academic Publisher.

Doersch, R. H. and Patterson, J. H. (1977). “Scheduling a project to maximize its net
present value: A zero-one programming approach”. Management Science, 23(8), 882-
889.

Eiben, A. and James, E. (2003). Introduction to evolutionary computing. Berlin,
Germany: Springer-Verlag.

Elazouni, A. (2009). "Heuristic method for multi-project finance-based scheduling”.
Construction Management and Economics, 27(2), 199-211.

Elazouni, A. and Metwally, F. (2007). “Expanding Finance-Based Scheduling to devise
overall-optimized project schedules”. Journal of Construction Engineering and
Management, 133 (1), 86-90

Elazouni, A. and Metwally, F. (2005). “Finance-Based Scheduling: Tool to Maximize

Project Profit Using Improved Genetic Algorithms”. Journal of Construction
Engineering and Management. 131(4), 400-412.

101

Elazouni, A. and Gab-Allah, A. (2004). “Finance-based scheduling of construction
projects using integer programming’. Journal of Construction Engineering and
Management, 130(1), 15-24.

Elbeltagi, E., Hegazy, T. and Grierson, D. (2005). Comparison among five evolutionary-
based optimization algorithms. Advanced Engineering Informatics. 19(1), 43-53.

Eusuff, M., Lansey, K. & Pasha, F. (2006). Shuffled frog-leaping algorithm: a memetic
meta-heuristic for discrete optimization. Engineering Optimization, 38(2), 129-154.

Hegazy, T. and Ersahin, T. (2001). “Simplified Spreadsheet Solutions. II: Overall
Schedule Optimization”. Journal of Construction Engineering and Management,
127(6), 469-475.

Kaka, A. and Lewis, J. (2003). “Development of a company-level dynamic cash flow
forecasting model (DYCAFF)”. Construction Management and Economics, 21(7),
693-705.

Karshenas, S. and Haber, D. (1990). “Economic optimization of construction project
scheduling”. Construction Management and Economics, 8(2), 135-146.

Kazaz, B. and Sepil, C. (1996). Project Scheduling with Discounted Cash Flows and
Progress payments. Journal of Operational Research Society, 47(10), 1262-1272.

Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P. (1983). Optimization by simulated
annealing. Science, 220(4598), 671-680.

Li, S. (1996). “New Approach for Optimization of Overall Construction Schedule”.
Journal of Construction Engineering and Management, 122(1), 7-13.

Liu, S.S. and Wang, C.J. (2008). ” Resource-constrained construction project scheduling
model for profit maximization considering cash flow”. Automation in Construction,

17(8), 966-974.

Michalewicz, Z. and Fogel, D. (2002). How to solve it: modern heuristics. New York :
Springer.

Michalewicz, Z. (1994). Genetic algorithms + data structures = evolution programs.
Berlin, Germany: Springer-Verlag.

Mitchell, M. (1998). An introduction to genetic algorithms. MIT Press.

Navon, R. (1995). “Resource-based model for automatic cash-flow forecasting”.
Construction Management and Economics, 13(6), 501-510.

102

Padman, R., Smith-Daniels, D.E. and Smith-Daniels V.L. (1997). "Heuristic Scheduling
of Resource-Constrained Projects with Cash Flows". Naval Research Logistics, 44(4),
365-381.

Russell, R. A. (1986). A Comparison of Heuristics for Scheduling Projects with Cash
Flows and Resource Restrictions. Management Science, 32(10), 1291-1300.

Russell, R. A. (1970). Cash flows in networks. Management Science, 16(5), 357-373.

Sears, G. A. (1981). “CPM/Cost: An Integrated Approach”. Journal of the Construction
Division, 107(2), 227-238.

Smith-Daniels, D.E., Padman, R. and Smith-Daniels, V.L. (1996). “Heuristic scheduling
of capital constrained projects”. Journal of Operations Management, 14(3), 241-254.

Smith-Daniels, D.E. and Smith-Daniels V.L. (1987). “Maximizing the net present value
of a project subject to materials and capital constraints”. Journal of Operations
Management, 7(1-2), 33-45.

Uher, T. (2003). Programming and scheduling techniques. Sydney, NSW: UNSW Press.

Warazawski, A. (2003). “The parametric analysis of the financing cost in construction
projects”. Construction Management and Economics, 21(4).

Williams, H. P. (1993). Model building in mathematical programming. New York:
Wiley.

103

Y0l

[SHOMIAN
mv_a_mv Nv_N_ov ov_m_hm hm_—_om om_N_vm vm_m_ﬁm
0€ < 67 7A 8T 7A LT < 97 < €T
Q_ _Nw wm_ _wm vm_ _ﬁm wm_ _hm wm_ __N wﬁ_ _mﬁ
000T 00LT 00ST 000¢ 00LIT 00ST
Nw_e_om cm_m_ﬁm ﬁm_v_hm NN_e__N AN_m_f
14 <€ x4 w <€ 4 <€ 07 <€
Nw_ _cm cm_ _ﬁm ﬁm_ _hm nm_ __N AN_ _f
00¥1 0051 00¢€1 00r1 0051
cm_v_mm ﬁm_m_cm cm_v_mm ﬁm_v_z :_v_n
81 LI <€ 91 <€ SI <€ €l
mm_ _mm mm_ _vm vm_ _om om_ _f :_ _n
0091 00¢¢ 000¢ 0091 000¢
Nm_m_om cm_m_mm Nm_v_wﬁ :_m_w _v_m
(4% <€ 41 <€ or <€ 8 <€ L
mm_ _om om_ _Z 2_ _mﬁ o__ _n _ _m
00LT 0oyl 0061 001 0061
mm_v_mm mN_N__N E_v_E _N_o o_m_o
9 <€ S <€ € <€ 4 <€ T
w__ _E E_ _ﬁ m_ _m _ _m m_ _o
0081 00€¢ 0081 00¢€¢ 00¢I

I xipudaddy

SOT

o_o_o

SRU3TS

o o

7 JoMION
mm_m_mm mm_ﬁ_mm NN_v_ﬁ f_v_z E_N_S ﬁ_m_h »_v_m
o€ 4 < 44 < L1 < 41 < 8 <€ s
< <€
MN_ _ON om_ _2 2_ _2 2_ _: :_ _m m_ _w v_ _o
0041 0081 00ST 00L1 0011 002 00LT
mN_N_mN w__m_ﬂ m__m_: :_m_w n_N_m
67 | £4 < 91 T AH v
(W
oN_ _f N__ _h n_ _m m_ _N N_ _o
00€T 00€T 00LT 0021 0061
mm_o_wm mm_w_om om_m_f E_m_z mﬁ_ﬁ_s »_m_v w_w_o
ysturg :14 144 (114 < ST <€ L <€ €
mN_ _wm mm_ _M: f_ _S 2_ _w w_ _h »_ _v v_ _o
0001 0091 0011 007T 0091 00€1
mN_N_mN w__m_ﬂ E_N_m_ :_v_n o_m_m
LT 61 < b1 o1 < z
MN_ _: 2_ _2 2_ _: :_ _n m_ _o
0007 002 0081 00v1 002
mN_v_: a_m_ﬁ S_m_z S_N_: :_v_h h_ﬁ_o o_m_v
<
9z €2 81 < €1 6 < 9 < 1
) Y Y
mm_ __N a_ _2 ﬁ_ _2 2_ _: m_ _w v_ _m N_ _o
0061 00S1 000C 00S1 0001 000T 0081

901
¢ SIOMION
QN_N_NN hN_N_mN mN_N_mN mN_N__N _N_N_m_
0€ 6C 8¢ LT 97
@N_ _nm mm_ _mm _N_ _m_ 2_ _2 mﬁ_ _:
000T 000T 000¢ 000T 000T
hm_m_vm ﬁm_m_ﬁm _N_m_mﬁ wﬁ_m_m_ mﬁ_m_ﬁ
14 ve 1 %4 w | 4
hm_ _vm mm_ _om 3_ _f 2_ _N_ :_ 8
0091 0091 0091 0091 0091
wm_v_om om_v_f f_v_ﬁ Nﬁ_v_w m_v_w
0¢ 61 81 L1 91
wN_ _ON ow_ _f f_ _N~ Nﬁ_ 8 _ 8 _ _ 14
0061 0061 0061 0061 0061
ow_m_z f_m_ﬂ Nﬁ_m_o m_m_m _m_
SI 141 < ¢l < (41 1 N
91 _ _ €1 [_ _ 0l 0l _ L L _ _ 14 _ _
0081 0081 0081 0081 0081
ON_N_M: f_N_v_ Nﬁ_N_oﬁ m_N_c _N_
01 6 8 L 9
mmo\\oea\|oeo\\aea\las
00ST 0051 00ST 00ST 0051
2_—_@_ mﬁ_—_ﬁ m_—_w _—_ __—_o
4 S <€ 14 <€ € (4 < !
T O G G GOE
00LT 00L1 00L1 00LT 00L1

mN_o_@N

ystugg

€—

@N_ _om

LOT

7 JI0MIDN

om_m_om om_m_: a_m_f f_m_ﬁx ﬂ_ﬁ_i E_N_S\ S_m_o

0€ < 97 < w < L1 < €1 < 6 b v €<
hVN_ _NN NN_ _: :_ _2 2_ _: h_ _o m_ _m m_ _o

05T 059 0581 0S¢l 0st1 059 006
ON_N_Z Z_N_mm NN__V_f S_w_s :_m_c c_m_m

67 < ST < K4 < 91 <€ 4 < 8
mm_ _a a_ _2 2_ _2 2_ _: :_ _c c_ _m

00L 0001 0021 00S 00$ 056

mm_m_mmx Nm_c_f S_m_:\ :_N_m m_N__ o_o_o
vT < 07 < ST m L < € < eys
wm_ _NN NN_ _S 2_ _: w_ _N N_ _o o_ _o
009 00L 0ss 0501 0011

@N_v_mmx wm_w_om :_m_c c_m_m\ m_m_o

st [€ 61 |€ 11 9 < 4 <

[~

@N_ _mm a_ _2 :_ _c c_ _m m_ _o

0sz1 0S8 0s¢ 0ST1 0021
om_m_cm cm_m_vm _Vm_m_z S_m_i E_m_o o_m_c c_N_v

Lt < €7 < 81 < bl < 01 s < 1 <—
cm_ _mm mm_ _a a_ _S 2_ _: :_ _c m_ _N N_ _o

0SS 056 009 00 oSt 0sz1 0001

801

G JIOMIDN
MN_ﬁ_NN NN_N_ON ON_@_E E_N_N_ ﬁ_m_m w_m_m
0€ < ST 0z SI 01 S €
2_ _M: E_ _2 ﬁ_ _S 2_ _m w_ _m m_ _o
0001 0SS 000T 0st 0001 0091
MN_ﬁ_NN NN_c_E ﬁ_m_: :_m_m w_m_c c_m_m
~N_ _ON om_ _2 E_ _@ @_ _o m_ _m m_ _o
0sL 00v1 00L1 00¢€ 00¥1 0t
mm_o_mm mm_w_f\ w__v_i E_,Q_E o__m_n h_ﬁ_o o_o_o o_o_O
~
AL LU M €7 € 81 < €1 < 8 < € < e
] [e mm_ _f f_ _E E_ _S E_ _h »_ _c c_ _o c_ _c
0001 0S¥ 006 0081 0001 00L
mm_m_: a_v_: :_m_ﬁ S_N_o_ E_m_h h_v_m
Lz < (44 <€ LT 4! <€ L 4 <
A
ON_ _2/ w__ _2 E_ _@ m_ _n h_ _v v_ _o
00L1 006 (ISY 00CT 0S¢C 00C1
MN_m_ON om___z @__c_ﬁ E_w_m_ S_m_» B_N_m
va < a i A
9 17 A 91 A 11 9 A I <
S_ _i x__ _: :_ _: :_ _h »_ _N N_ _o

0ov1 0S¢ 00L 0012 oSt 0001

Vita

Anas AlSayed AlGhazi
P.O. Box 1415

Dhahran 31261

Saudi Arabia

Email: aalghazi@gmail.com
Nationality: Saudi

Education

2005-2009 M.Sc. in Systems Engineering (Operations Research), King Fahd
University Of Petroleum & Minerals, Dhahran, Saudi Arabia.

1997-2003 B.Sc. (Honors) in Systems Engineering, King Fahd University Of
Petroleum & Minerals, Dhahran, Saudi Arabia.

Professional Experience

2005-Present Faculty of Systems Engineering Department, King Fahd University Of
Petroleum & Minerals, Dhahran, Saudi Arabia.

2003-2005 Assistant Consultant, MFB Consultants. Jeddah, Saudi Arabia.

109

