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ABSTRACT 

Full Name :   Walid Al-Zu’bi 

Thesis Title :   Process Targeting for Multi-stage Production System:  

    A Network Approach 

Major Field :   Systems Engineering  

Date of Degree :   January, 2010 

In recent industrial settings, products are often processed through multi-stage production 

systems that produce the same end product but at varying cost depending on quality. If 

the probabilities associated with its scrap, rework and accept states are known, we can 

better understand the nature of a production system and thus better capture the optimum 

target for a process.  

This study develops a network-based model for determining the optimum process target 

levels within the framework of a multi-stage network production system. The proposed 

models are then illustrated through numerical examples, and sensitivity analysis is 

performed.     

Key words: Production Process; Process Target; Production Planning. 
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CHAPTER ONE 

BACKGROUND 

The cost of quality has a significant factor on the cost of sales in typical companies. To 

tackle this issue, many companies have turned to improving the processes of achieving 

quality in order to reduce costs. A new perspective has led companies to reexamine the 

traditional assumptions and approaches used to achieve quality improvement. The 

classical approach of quality control, which focused on screening and correction of 

defects, is giving way to new methodologies that emphasize prevention. Unlike the 

classical approach, which assumes determined process settings (mean and/ or variance), 

the new approach views process settings as variables that can be controlled through 

investments in improved raw materials, worker training, and process capabilities. This 

new approach is called "process targeting".  

Process targeting is one of the important problems in economics and quality control . In 

process targeting, it is assumed that process parameters or machine settings are variables, 

thus the objective of the problem is to find the optimum values of process parameters or 

machine settings that will achieve certain economical objectives. To effectively carry out 

this new approach, companies need methods to evaluate investments that are aimed at 

changing process settings. 

The initial process targeting problem addressed is the "can filling problem". The first real 

attempt to tackle the can filling problem was in Springer [1951]. In general, the can 
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filling problem is described as follows: Consider a filling problem in which cans are 

produced continuously. The quality characteristic of interest is the net weight of the filled 

can. The value of this quality characteristic is a random variable X. A lower specification 

limit L exists for X. A can is accepted if X ≥ L and rejected otherwise. Accepted cans are 

sold at a fixed price a, while rejected cans are sold at a reduced price r, where r < a. In 

this problem, it was assumed that X follows a normal distribution with mean µ and 

standard deviation σ. Moreover, 100 percent inspection was used for product quality 

control and inspection is assumed to be error free. The objective of this problem is to find 

the optimal mean (target) µ so that the net income for the process is maximized. It is 

assumed that µ is a parameter that can be controlled by the filling machine setting.  

Many research papers have addressed the process targeting problem. Each paper 

considers the problem with different assumptions. As a result, different models and 

solution methods exist in the literature. Despite the wide spectrum of variation of the 

process targeting problem that have been addressed, very few have considered the case 

where the product goes through two processes instead of one. Considering such a 

problem gives another dimension to the classical process targeting problem. Moreover, 

such a problem widely exists in multistage serial production systems, such as the 

electronics industry.  

1.1. Key factors in process targeting problems 

Process targeting problems are affected by many important factors. The main factors 

include quality characteristic distribution, product specification, process costs and market 

prices. 
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Quality characteristic distribution plays an important role in modeling the process 

targeting problem. In the literature, quality characteristic is assumed to be normally 

distributed with known variance. It is highly recommended to test the distribution using 

standard goodness of fit tests such as the Chi-square test and Kolmogorov test to ensure 

that this assumption is satisfied.    

The specification limits on the quality characteristic determines the product acceptance 

criteria. The specification limits are usually determined by market and technical fitness 

and accurate information about them is necessary for realistic process targeting model.    

There are many costs involved in the process targeting problem. These costs are 

production costs, material costs, inspection costs and rework costs. Knowledge about 

these costs is essential for obtaining realistic solutions for the process targeting problem.    

Sometimes selling prices are included in the process targeting model and the objective in 

this case would be to maximize the expected profit. Therefore, market study is essential 

in developing the process targeting model. The market study determines the selling prices 

for all kind of items. Accepted items are sold at their regular market price a1, while 

defective items are sold at a lower secondary market price a2, where a1 > a2. 

1.2. Quality control schemes 

Various quality control schemes have evolved over time. These schemes include product 

control, process control and process capability analysis. Product control can be achieved 

by two techniques. The first technique is called acceptance sampling. This technique is 

concerned with inspection and decision making regarding products based on a sample 



 

 6

taken from the lot. The other technique is called 100% inspection in which a decision 

regarding products is made based on inspecting the whole lot.  

Statistical Process Control (SPC) is a diagnostic tool that allows you to determine 

“assignable” versus “common” causes of variation. Common causes of variation are 

normal and affect every process while assignable causes of variation occur when 

something happens that is not usually part of the process. SPC allows you to identify 

when these assignable causes occur so that you can eliminate them and bring 

predictability, or “control” to a process without overreacting to normal variability. 

Control charts are one of the most effective SPC tools. Other SPC tools include 

Histogram, Check Sheet, Scatter Diagram and Pareto Chart.    

Process capability analysis is an engineering study to estimate process capability. The 

estimate of process capability may be in the form of a probability distribution having a 

specified shape, center (mean), or spread (standard deviation). 

1.3. Inspection 

Inspection is often used to appraise the quality of purchased and manufactured items. 

Inspections can be divided into: 100 % inspections, sampling plans, and repeat 

inspections.  

The first inspection scheme, 100 % Inspection, involves inspecting every product 

received. It is usually applicable in situations where the component is extremely critical 

and passing any defectives would result in an unacceptably high failure cost. The 
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disadvantages of this method are: it is expensive; it can not be used for destructive 

testing; it may cause a delay in the production schedule.  

Sampling plans involve inspecting a sample of products drawn from a lot. The whole lot 

will be judged based on the sample. If the sample meets specifications, then we accept 

the whole lot otherwise lot will be rejected. This method has many advantages over the 

100 % inspection. It costs less, involves less damage to the products, applicable to 

destructive testing, and involves fewer personnel.  

1.4. Inspection error 

The manufacture of quality products demands measurements that are both high precision 

and high accuracy because inspection is used to determine whether or not a product meets 

specifications. The inspection results are commonly used to influence the operation in 

making the current part or the production of the next part, thereby, correcting a potential 

quality problem before a product is completed. Hence, the accuracy and effectiveness of 

the inspection procedures and equipments are essential for precision manufacturing.  

Unfortunately, there are always sources of errors in measuring equipments and 

measurement systems. The sources of errors that come from the measuring equipments 

include imperfect mechanical structure, errors in control systems, and environmental 

disturbances. As measurement error is defined as the discrepancy between actual and 

measured dimensions, it will be affected not only by the error resulted from the 

measuring equipment and the repeatability of the measurement, but also by the error 

resulted from the compound effect of machine errors, and the geometric characteristic of 

the measured surfaces. A variety of techniques have been developed to deal with machine 
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error modeling and compensation as well as uncertainty in inspection. Another source of 

error is the error coming from the sampling inspection. This type of error exists when the 

product's quality is controlled by sampling plan instead of 100% inspection. 

Next, chapter two introduces the problem of process targeting, and provides a summary 

of previous work done in this field. In chapter three, the proposed network approach is 

first introduced after which few models of production systems are developed using that 

approach. In chapter four, numerical analysis is performed followed by an overall 

discussion for the study in chapter five.    
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CHAPTER TWO 

INTRODUCTION 

Automation is pervasive in most of complex manufacturing systems, nowadays, due to 

recent advances in relevant technologies. This trend is understandable since automated 

systems can perform rigorous procedures while providing consistent results and superior 

performance. In this context, the concern in product inspection is highly valued; product 

inspection is one of the major functions that ensure the quality of products and customer 

satisfaction. To achieve best product performance and consistent product, screening 

100% inspection is becoming more attractive than traditional sampling techniques, 

recently. Highly automated inspection systems have found increasing applications in 

quality control processes. These systems are very useful in reducing error rates, 

inspection times, and inspection costs.  

For a production process where products are produced continuously, screening limits are 

usually implemented based on a quality evaluation system that focuses primarily on the 

cost of nonconformance. Consider a certain quality characteristic, where products with a 

quality characteristic that either falls above an upper screening limit or below a lower 

screening limit are rejected, and a rejection cost is incurred. If the quality characteristic of 

a product is higher than the upper limit, the product can be reworked. Otherwise, the 

product is scrapped if the quality characteristic is below a lower limit. The proportion of 

rejected products largely depends on the levels and tolerance of screening limits. It is 

observed that the closer the upper and lower limits to one another, the higher the quality 

outcome. However, this may create higher rejection costs due to scrap and rework 
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procedures. Looser limits, on the other hand, reduce rejection costs while lowering the 

quality outcome (Phillips and Cho 2000) and increasing quality loss for customers. 

Selecting the optimum process target is critically important since it affects the process 

defective rate, material cost, scrap or rework cost, and loss to the customer due to the 

deviation of the product’s performance from an ideal target value (Phillips and Cho, 

2000). 

2.1. Literature review 

The selection of appropriate process parameters i.e., mean and variance is of importance 

in reducing operational costs while maintaining high quality level in production processes. 

The selection of the appropriate process target has been studied extensively in the 

literature and is often referred to as the “filling or canning” problem. The initial work on 

this problem probably began with Springer (1951) who considered the problem of finding 

the optimal process mean for a canning process when both upper and lower control limits 

are specified. He assumed that the cost of producing under-limit and over-limit products 

is fixed. 

Bettes (1962) studied the same problem as in Springer (1951) except that only the lower 

limit was specified. He found the optimal process mean and the upper limit for a fixed 

lower limit using an empirical method that depends on trial and error.  

Hunter and Kartha (1977) addressed the problem of finding the optimal process mean 

with only a specified lower limit and in which under-filled items are sold at reduced 
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prices. They also assumed that conforming items are sold at a fixed price with a penalty 

cost due to excess in quality.  

Nelson (1978) considered the same problem by Hunter and Kartha (1977). The objective 

of the paper was to find the best target value that will balance the give-away cost and the 

loss associated with rejected items so as to maximize net income. A four-cycle arithmetic 

graph is provided for determining the target value.  

Nelson (1979) considered the same problem by Springer (1951). A nomograph is 

provided to set the process mean so that scrap cost is minimized.   

Bisgaard et al. (1984) extended the model in W. Hunter and C. Kartha (1977) such that 

cans filled below specification limit are sold in a secondary market at a price proportional 

to the filled quantity. Carlsson (1984) included a more general income function for the 

same problem, and Arcelus and Banerjee (1985) extended the work assuming a linear 

shift in the process mean.  

Golhar (1987) investigated the problem of selecting the optimum process mean in a 

canning process in which cans filled above the lower limit are sold at a fixed price, while 

the underfilled cans are emptied and refilled at a reprocessing cost. He determined, 

without measurement error, the optimum process mean that maximizes the expected 

profit per container. 

Golhar and Pollock (1988) extended D. Golhar (1987) model to a process where both the 

process mean and the upper limit can be controlled. Underfilled and overfilled cans are 
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emptied and refilled. Simple approximate analytical expressions relating the optimal 

values to fundamental process parameters are given. 

Rahim and Banerjee (1988) considered the problem of selecting the optimal production 

run for a process with random linear drifts. A cost function per unit of finished product is 

derived. A search algorithm and a graphical method were suggested to find the optimal 

production run. 

Golhar (1988) considered the same problem stated in Golhar and Pollock (1988). A 

computer program is developed that calculates the desired optimal values. 

Arcelus and Rahim (1990) presented an economic model which incorporates the joint 

control of both variable and attribute quality characteristics of a product. Items are 

acceptable if they meet the specifications for both types of characteristics at the same 

time. The objective is to simultaneously select the appropriate target values for the 

characteristics so as to maximize the expected income per lot.  

Boucher and Jafari (1991) extended the line of research by evaluating the problem of 

finding the optimum target value under a sampling plan as opposed to 100% inspection. 

Both conditions when sampling results in destructive testing and nondestructive testing 

were examined.  

Schmidt and Pfeifer (1991) extended the model by Golhar and Pollock (1988) to a 

capacitated (bottleneck) production process. A closed-form expression for the optimal 
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upper control limit is developed, and a one-way table and an approximating equation are 

provided for the optimal mean.  

Al-Sultan (1994) extended the model of Boucher and Jafari (1991) to the case of two 

machines in series. He developed an algorithm for finding optimum target values for the 

two machines when a sampling plan is used.  

Das (1995) determined the optimal process targets when lower specification limits were 

given by maximizing expected profits.  

Chen and Chung (1996) and Hong and Elsayed (1999) studied the effects of inspection 

errors.  

Usher et al. (1996) considered the process target problem in a situation where demand for 

a product did not exactly meet the capacity of a filling operation.  

Liu and Taghavachari (1997) extended the model given by Schmidt and Pfeifer (1991) to 

the case where the amount of fill follows an arbitrary continuous distribution. The best 

process mean setting as well as the best upper specification limit are sought to maximize 

the expected profit per fill attempt. They found that the optimal upper limit is given by a 

very simple formula regardless of the shape of the distribution, while the optimal process 

mean is determined using a general condition.  

Pollock and Golhar (1998) considered the canning process with constant demand and 

capacity constraint for the production process. They assumed that there is a penalty for 

producing a nonconforming cans. 
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Pakkala and Rahim (1999) presented a model for the most economical process target and 

production run.  

Wen and Mergen (1999) described a method for setting the optimum process mean when 

a process was not capable of meeting specifications in the short term. They assumed that 

the process mean could be changed easily, and selected the process mean based on 

minimizing the costs of exceeding the upper specification limit and falling below the 

lower specification limit.  

Al-Sultan and Pulak (2000) considered a manufacturing system with two machines in 

series. The manufactured product is assumed to have two attributes which are related to 

the processing of the product, by machine 1 and machine 2 respectively. Each attribute 

has a lower specification limit (LSL) set for it, and if the measured attribute for a certain 

product is less than its LSL, the product is recycled at a certain cost. A mathematical 

model is developed for finding the optimum setting point for each machine, and a 

numerical approach is suggested for solving this model. 

The problem of jointly determining the process target and variance, as opposed to 

assuming a given variance, was studied by Rahim and Shaibu (2000), Rahim and Al-

Sultan (2000), and Rahim et al. (2002).  

Al-Fawzan and Rahim (2001) applied the Taguchi loss function to determine the optimal 

process target and variance.  
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Kim et al. (2000) proposed a model for determining the optimal process target while 

considering variance reduction and process capability.  

Phillips and Cho (2000) proposed a model for the optimal process target under the 

situation in which a process distribution is skewed.  

Teeravaraprug et al. (2000) developed a model for the most cost-effective process target 

using regression analysis for a case where empirical data concerning the costs associated 

with product performance were available.  

Lee et al. (2001) considered determining the optimum target value of the quality 

characteristic and the screening limits for a correlated variable under single and two-stage 

screenings, with the assumption that the quality characteristic and the correlated variable 

were normally distributed.  

Cho (2002) and Teeravaraprug and Cho (2002) studied the process target problem with 

the consideration of multiple quality characteristics using a quality loss function.  

Chen et al. (2002) developed a model for determining the optimum process mean under a 

quality loss function by further modifying Wen and Mergen’s cost model with both linear 

and quadratic asymmetrical quality loss functions of products within specifications. They 

also proposed a method of determining the optimum process mean for a poor process.  

Chen and Chou (2002) determined the optimum process mean for a one-sided 

specification limit assuming that the quality characteristic followed a normal, lognormal, 

or exponential distribution.  
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Chen and Chou (2003a) developed a model for determining the optimum manufacturing 

target based on an asymmetric quality loss function assuming that the quality 

characteristic followed a uniform or triangular distribution. Chen and Chou (2003b) 

developed a similar model under bivariate quality characteristics with quadratic 

asymmetrical quality loss. Chen and Chou (2003c) modified a model by Phillips and Cho 

with linear quality loss for determining the optimum process mean under a given 

truncated beta distribution.  

Chen (2003) considered the same optimal process mean problem, but for a larger-the-

better Weibull quality characteristic by modifying a model by Cho and Leonard (1997), 

who considered a piecewise linear loss function. He determined the most economic target 

value of a process assuming a quadratic quality loss function under normally-distributed 

quality characteristics, with known mean and variance.  

Tuffaha and Rahim (2004) studied the problem of process mean and production run 

under the quadratic loss function. 

Most models for determining the optimum process target reported in the literature were 

derived assuming a single-stage production process, with a few exceptions, e.g. Al-Sultan 

and Pulak (2000). Furthermore, most of the process target models available in the 

literature have been developed using short-term probabilities of rework, scrap, etc, except 

for Bowling et al. (2004), which does not give a true representation of the system 

dynamics. Bowling et al. (2004) employs Markov principles to develop a model for 

optimum process target levels for multi-stage production system. However, Al-Zu’bi and 

Selim (2010) showed that the absorption probabilities are partially generated through that 
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approach. None the less, most complex modern manufacturing settings are not simply 

serial production systems which have not been analyzed in the literature. To address these 

issues, this study develops a model by employing a network approach (long-term 

probabilities) within for multi-stage network production systems.  

2.2 Example Application from the industry 

One example application for network production systems suggested in this study is in the 

Iron and Steel Industry. The example of interest is concerned with cast iron production.  

Iron production is relatively unsophisticated. It mostly involves re-melting charges 

consisting of pig iron, steel scrap, foundry scrap, and ferroalloys to give the appropriate 

composition. The cupola, which resembles a small blast furnace, is the most common 

melting unit. Cold pig iron and scrap are charged from the top onto a bed of hot coke 

through which air is blown. Alternatively, a metallic charge is melted in a coreless 

induction furnace or in a small electric-arc furnace. 

Cast iron is an alloy of iron that contains 2 to 4 percent carbon, along with varying 

amounts of silicon and manganese and traces of impurities such as sulfur and phosphorus. 

It is made by reducing iron ore in a blast furnace. The liquid iron is cast, or poured and 

hardened, into crude ingots called pigs, and the pigs are subsequently re-melted along 

with scrap and alloying elements in cupola furnaces and recast into molds for producing 

variety of products.  

An illustrative production system is shown in Fig. 1 below. The first two stages in this 

system involve Metal Cutting. The cast iron pipe is inspected for its diameter’s 
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conformance with the specifications. If the diameter is within the specification limits, the 

tube is passed for the next stage. Otherwise, the tube is reworked its diameter is smaller 

than the specification limits, and scrapped if its diameter is larger than the specification 

limits. The same applies for the next stage in the production process where inspection is 

performed for the conformance of the length of tube with the specification limits. 

The third processing stage is heat treatment. Heat treatment is used to harden, soften, or 

modify other properties of materials that have different crystal structures at low and high 

temperatures. Upon inspection, the part is scrapped in case of non-conformance to 

specifications.  

The final processing stage in this production system is plating. Plating is coating a metal 

or other material with a hard, nonporous metallic surface to improve durability and 

beauty. Such surfaces as gold, silver, stainless steel, palladium, copper, and nickel are 

formed by dipping an object into a solution containing the desired surface material, which 

is deposited by chemical or electrochemical action. Plating is done for decorative 

purposes, to increase the durability and corrosion-resistance, or for durability. The part is 

reworked or scrapped in case of non-conformance to specifications. 

The four-stage network production system shown in Fig.1 consists of four processing 

stages; stages D (Diameter Inspection), stage L (Length Inspection), stage H (Heat 

Treatment), and stage P (Plating). This production system can produce four different 

products, P1 … P4, at different costs and selling prices. Product P1 is processed 

consecutively in stages D, L and P, product P2 in stages D, H and P, product P3 stages D 

and P, and product P4 in all four stages as illustrated below. 
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Fig.  1: Illustrative example application of network production system. 

 

2.3. Motivation 

Bowling et al. (2004) introduced a Markovian approach to study imperfect production 

systems where the output of a stage could be scraped, reworked, or accepted according to 

its conformance with defined specification limits of that stage. The approach is supposed 

to generate the absorption probabilities into scrap, rework, and accept states for each 

production stage. We show below that these probabilities are partially generated through 

that approach.  To demonstrate our arguments we consider the two-stage production 

system shown in Fig. 2 below. 
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Bowling et al. (2004) introduced a transition probability matrix, P, to describe the 

transitions among four states. State 1 indicates processing an item at production stage 1, 

state 2 indicates processing an item at production stage 2, state 3 indicates that an item 

has been processed successfully at production stage 2, and state 4 indicates that an item is 

scraped.  The "short-term" probabilities p11 and p22 are the rework probabilities 

associated with stages 1 and 2, respectively.  p12 and p23 are the probabilities associated 

with accepting a product at stage 1 and 2, respectively. Finally, p14 and p24 are the 

probabilities of scrapping a product following stage 1 and 2, respectively. Matrix F 

shows the long-term absorption probabilities. 
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The entries in F should be carefully interpreted. f23 is the long-term probability that an 

item is processed successfully through stage 2.  However, f13 is the long-term probability 

that an item has been processed successfully through both stages 1 and 2. 



 

 21

To obtain the probability that an item has successfully passed from production stage 1 to 

production stage 2, one could lump states 2 and 3 and get the corresponding F matrix. 

However, a simple argument shows that this probability is given by 12

111
p

p−
.  

The term f24 is the long-term probability of an item being scraped after production stage 2. 

However, f14 is not only the long-term probability an item has been scraped after stage 1, 

but also that it has successfully passed stage 1 before being scrapped at stage 2.  

Therefore, the expected profit per item for a two-stage serial production system can be 

expressed as follows: 

( ) [ ] 12 12
14 1 2 1 14 2 24

11 11

12
1 11 2 22

11

(1- ) - -
(1- ) (1- )

- ( -1) ( -1)
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p p
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p p

p
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p

⎡ ⎤ ⎡ ⎤
= + +⎢ ⎥ ⎢ ⎥
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where E(PR) is the expected profit per item, SPi is the selling price per item, PCi is the 

processing cost per item associated with stage i, SCi is the scrap cost per item associated 

with stage i, and RCi  rework cost per item associated with stage i. 

 

Fig.  2: Two-stage production system- Bowling et al. (2004). 
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CHAPTER THREE 

MODELS DEVELOPMENT 

Consider a multi-stage production system in which products are being produced 

continuously. Each stage is defined as having a single machine and a single inspection 

station. At each stage, the item is processed and the quality characteristic associated with 

the stage is examined at an inspection station. The item is then reworked, accepted or 

scrapped. Therefore, the expected profit per item can be expressed as follows: 

E(PR) = E(BF) – E(PC) – E(SC) – E(RC)    (1) 

The purpose of this study is to develop a network model for determining the optimum 

process target value for each production stage. The study starts by developing the model 

for a serial single-stage and two-stage production systems. Then, a production system 

with a network of four stages is tackled raising the issue of single-entry for the raw 

material and single-exit for the finished products.  

In this model the product has an entry stage (single entry point) for raw material after 

which the product is processed in one stage, two stages, three stages, or sent directly to 

the final exit stage.  

The study then generalizes the model for n-stage production system. After that the study 

develops a model for production systems with multiple entry and exit points. In this 
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model raw material is passed to the system at multiple stages and products exit from 

multiple stages.  

3.1. Notation and assumption 

The developed model is based on the following assumptions: 

1. Products are produced continuously. 

2. All product items are subject to inspection. 

3. When product performance falls below a lower specification limit or above an 

upper specification limit, a product is reworked or scrapped, respectively. 

4. Each product requires the same inspection cost, which is included in the 

processing cost. 

5. Quality characteristic, Xi, is a normally distributed random variable with mean µi 

and variance σi
2

. 

6. The process is under control. 

7. The machine sequence is fixed i.e., products have to be processed at stage i before 

stage j > i. 

The following is a summary of the notation used in this study: 

E(PR) expected profit per item 

E(BF) expected benefit per item 

E(PC) expected processing cost per item 

E(SC) expected scrap cost per item 

E(RC) expected rework cost per item 
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SPi selling price per item of product Pi 

PCi processing cost per item associated with stage i 

SCi scrap cost per item associated with stage i 

RCi rework cost per item associated with stage i 

SPui selling price per unit of raw material of product Pi 

PCui processing cost per unit of raw material associated with stage i 

SCui scrap cost per unit of raw material associated with stage i 

RCui rework cost per unit of raw material associated with stage i 

n number of stages 

Xi quality characteristic associated with stage i 

µi process mean setting for machine i 

σ2
i process variance setting for machine i 

Li lower specification limit associated with stage i 

Ui upper specification limit associated with stage i 

Ф(x) cumulative normal function 

pij the probability of going from state i to state j in a single step 
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α percentage of products passed from stage 1 to stage 2 after passing inspection at stage 1 

in a four-stage network production system.    

β percentage of products passed from stage 1 to stage 3 after passing inspection at stage 1 

in a four-stage network production system. 

γ percentage of products passed from stage 1 to stage 4 after passing inspection at stage 1 

in a four-stage network production system. 

θ1 percentage of products passed from stage 2 to stage 3 after passing inspection at stage 

2 in a four-stage network production system. 

θ2 percentage of products passed from stage 2 to stage 4 after passing inspection at stage 

2 in a four-stage network production system. 

fij percentage of products passed from stage i to stage j after passing inspection at stage i 

in a network production system. 

Ri units of raw material source associated with stage i.    

fk/h,i,j is the distribution factor fk when raw material source is Rh, Ri, or Rj. 

ζ percentage of finished products coming out of stage 1 in a four-stage, multi-input, 

multi-output, network production system. 

δ1/h,i,j percentage of products passed from stage 3 to stage 4 when raw material source is 

Rh, Ri, or Rj in a four-stage, multi-input, multi-output, network production system. 
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δ2/h,i,j percentage of finished products coming out of stage 3 when raw material source is 

Rh, Ri, or Rj in a four-stage, multi-input, multi-output, network production system. 

θ1/h,i percentage of products passed from stage 2 to stage 4 when raw material source is 

Rh, or Ri in a four-stage, multi-input, multi-output, network production system. 

θ2/h,i percentage of products passed from stage 2 to stage 3 when raw material source is 

Rh, or Ri in a four-stage, multi-input, multi-output, network production system. 

3.2. Single-stage system  

Consider a single-stage production system as shown in Fig. 3. The single-step network is 

shown in Fig. 4. 

 

Fig.  3: A single-stage production system- Bowling et al. (2004). 
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Fig.  4: Single-step network for a single-stage production system 

where p11 is the probability of an item being reworked, p12 is the probability of an item 

being accepted, and p13 is the probability of an item being scrapped. Assuming a 

normally distributed quality characteristics as shown in Fig. 4, these probabilities can be 

expressed as follows: 
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Fig.  5: Illustration of absorption probabilities for a normally-distributed quality characteristic- 

Bowling et al. (2004). 

On the long-term, the behavior of the single-step network approaches that of the Primary 

network shown in Fig. 6. That is to say, eventually, products will end up in either of the 

two absorbing states i.e., states 2 and 3 after being reworked 0, 1, 2 … times. Therefore, 

the probabilities of being accepted and scraped, and the number of rework cycles can be 

expressed as follows: 
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Fig.  6: Primary network for a single-stage production system 

The expected profit can be obtained by using Eq. (1). As can be seen, Eq. (1) consists of 

the benefit, processing costs, scrap cost, and rework cost per item. The expected benefit is 

the selling price per item (SP1) multiplied by the long-term percentage of accepted 

products. The benefit from selling product P1 is the selling price per item for product P1, 

SP1, multiplied by the long-term percentage of accepted products at stage 1 passed to 

stage 2. 

The expected processing cost for a single-stage system is the expected processing cost 

per item at stage 1 (i.e., PC1). The expected scrap cost per item is the scrap cost (SC1) 

multiplied by the long-term percentage of scrapped products at stage 1. The expected 

rework cost per item is the rework cost (RC1) multiplied by the long-term percentage of 

reworked products at stage 1. 

Therefore, the expected profit per item for a single-stage production system can be 

expressed as follows: 

( )
1312 11

1 1 1 1
11 11 11

[ ] (4)
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pp pE PR SP PC SC RC
p p p
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The equation can then be rewritten in terms of cumulative normal distribution as follows: 

1 1
1 1 1 1

1 1 1

( ) ( ) 1[ ] 1 -1 (5)
( ) ( ) ( )
L LE PR SP PC SC RC
U U U

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Φ Φ
= − − − −

Φ Φ Φ
 

The terms 1( )UΦ and 1( )LΦ  are functions of the decision variables µ1, the process mean 

for machine 1. Obviously, one would like to find the value of µ1 that maximizes the 

expected profit. This can be performed numerically using a number of nonlinear 

optimization software packages. 

3.3. Two-stage serial system 

Consider a two-stage serial production system as shown in Fig. 7. The single-step 

network is shown in Fig. 8. 

 

Fig.  7: A two-stage serial production system- Bowling et al. (2004). 
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Fig.  8: Single-step network for two-stage serial production system 

where pi,i is the rework probability associated with stage i, pi,i+1 is the probability 

associated with accepting a product at stage i, and pi,n+2 is the probability of scrapping a 

product at stage i, where n is the number of stages. Assuming a normally distributed 

quality characteristics as shown in Fig. 5, these probabilities can be expressed as follows: 
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On the long-term, the behavior of the single-step network approaches that of the Primary 

network shown in Fig. 9. That is to say, eventually, products will end up in either of the 
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two absorbing states i.e., states n and n +1 after being reworked 0, 1, 2 … times. 

Therefore, the probabilities of being accepted, scraped and reworked can be expressed as 

follows:
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Fig.  9: Primary network for two-stage serial production system 

The expected profit can be obtained by using Eq. (1). As can be seen, Eq. (1) consists of 

the benefit, processing costs, scrap cost, and rework cost per item. The expected benefit is 

the selling price per item (SP1) multiplied by the long-term percentage of accepted 

products. The benefit from selling product P1 is the selling price per item for product P1 

(SP1) multiplied by the long-term percentage of accepted products at stage 1 multiplied 

by the long-term percentage of accepted products at stage 2. 
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The expected processing cost for a two-stage serial system is the expected processing 

cost per item at stage 1 (PC1) plus the expected processing cost per item at stage 2 (PC2) 

multiplied by the long-term percentage of accepted products at stage 1.  

The expected scrap cost per item is the scrap cost at stage 1 (SC1) multiplied by the long-

term percentage of scrapped products at stage 1 plus the scrap cost at stage 1 (SC1) and 

the scrap cost at stage 2 (SC2) multiplied by the long-term percentage of scrapped 

products at stage 2 multiplied by the long-term percentage of accepted products at stage 1.  

The expected rework cost per item is the rework cost at stage 1 (RC1) multiplied by the 

long-term percentage of reworked products at stage 1 plus the rework cost at stage 2 

(RC2) multiplied by the long-term percentage of reworked products at stage 2 multiplied 

by the long-term percentage of accepted products at stage 1. 

Therefore, the expected profit per item for a two-stage serial production system can be 

expressed as follows: 
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The equation can then be rewritten in terms of cumulative normal distribution as follows: 
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The terms 1( )UΦ , 1( )LΦ , 2( )UΦ and 2( )LΦ  are function of the decision variables µ1 and 

µ2 which are the process mean for machines 1 and 2, respectively. 

3.4. N-stage serial system 

Consider n-stage production system as shown in Fig. 10. The single-step network is 

shown in the Fig. 11.  The Primary network is shown in the Fig. 12. 

 

 Fig.  10: N-stage serial production system- Bowling et al. (2004). 
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Fig.  11: Single-step network for n-stage serial production system 

 

 

Fig.  12: Primary network for n-stage serial production system 

The expected profit per item for n-stage serial production system can be expressed as 

follows: 
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3.5. Four-stage network system 

Consider a four-stage network production system as shown in Fig. 13. The single-step 

network is shown in Fig. 14.  

pii is the rework probability associated with stage i, pi,i+1 is the probability associated with 

accepting a product at stage i, and pi,n+2 is the probability of scrapping a product at stage i, 

where n is the number of stages.  

,:ij i jf p represents that ,i jp is ijf percent of , 1i ip + . ijf is the percentage of production 

passed from stage i to stage j after passing inspection at stage i. Therefore, 

12: pα represents that 12p isα percent of 1, 1ip + , 13: pβ  represents that 13p is β percent 

of 1, 1ip + , 14: pγ  represents that 14p is γ percent of 1, 1ip + , 1 24: pθ  represents that 

24p is 1θ percent of 2, 1ip + , and 2 23: pθ  represents that 23p is 2θ percent of 2, 1ip + . Hence, 

1α β γ+ + =  since , , and α β γ  represent the percentages at which the production 

accepted at stage 1 is distributed amongst stages 2, 3, and 4, respectively. By the same 

token, 1 2 1θ θ+ =  since 1 2 and θ θ  represent the percentages at which the production 

accepted at stage 2 is distributed amongst stages 4 and 3, respectively. 
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Fig.  13: A four-stage network production system 

Assuming a normally distributed quality characteristics as shown in Fig. 5, these 

probabilities can be expressed as follows: 
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Fig.  14: Single-step network for four-stage network production system 

On the long-term, the behavior of the single-step network approaches that of the Primary 

network shown in Fig. 15. That is to say, eventually, products will end up in either of the 

two absorbing states i.e., states n and n +1 after being reworked 0, 1, 2 … times. 

Therefore, the probabilities of being accepted and scraped, and the number of rework 

cycles can be expressed consecutively as , 1 ,
(1- )
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The four-stage network production system can produce four different products (P1…P4) 

at different costs and selling prices. Product P1 is processed consecutively in stages 1, 2 
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and 4, P2 in stages 1, 3 and 4, P3 stages 1 and 4, and P4 in all four stages as represented 

next. 

 

Fig.  15: Primary network for four-stage network production system 

 

 

The percentage of products that survive the inspection criterion at one stage (i.e., 

products with performance within the lower and upper specification limits) are passed to 

the next stage(s) according to distribution factors α, β, γ, θ1 and θ2, which determine the 
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percentage output of each product as represented in Fig. 14. The percentage of the 

products P1 and P4 is set by α, β determines that of P2, and γ P3, hence, α + β + γ = 1. 

Likewise, θ1 and θ2 set the percentages of products P1 and P4, respectively, hence, θ1 + 

θ2 = 1. These distribution factors, in a sense, allocate raw material, unfinished products 

and processing resources to products.  

The expected profit can be obtained by using Eq. (1). As can be seen, Eq. (1) consists of 

the benefit, processing costs, scrap cost, and rework cost per item. The expected benefit is 

the selling price per item (SPi) multiplied by the long-term percentage of accepted 

products. The benefit from selling product P1, for example, is the selling price per item 

for product P1, SP1, multiplied by the long by the portion of the long-term percentage of 

accepted products at stage 1 passed to stage 2, 12

111
p

p
⎛ ⎞
⎜ ⎟−⎝ ⎠

, multiplied by the portion of the 

percentage of accepted products at stage 2 passed to stage 4, 24

221
p

p
⎛ ⎞
⎜ ⎟−⎝ ⎠

, multiplied by the 

percentage of accepted products at stage 4, 45

441
p

p
⎛ ⎞
⎜ ⎟−⎝ ⎠

. Likewise, the expected benefit for 

P2, P3 and P4 are formulated by performing a path-based analysis. 

 

The expected processing cost for a four-stage network production system is the expected 

processing cost per item at stage 1, PC1, plus the expected processing cost at stage 2 

which is PC2 multiplied by the portion of the long-term percentage of products accepted 
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at stage 1 passed to stage 2, 12

111
p

p
⎛ ⎞
⎜ ⎟−⎝ ⎠

. Similarly, the analysis is continued to formulate 

the expected processing cost at stages 3 and 4.  

 

The expected scrap cost per item is the scrap cost at stage 1, SC1, multiplied by the long-

term percentage of scrapped products at stage 1, 16

111
p

p
⎛ ⎞
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, plus (SC1+SC2)  multiplied 

by the long-term percentage of scrapped products at stage 2 , 26
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, multiplied by the 

long-term percentage of accepted products at stage 1 passed to stage 2, 12

111
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p
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. The 

expected scrap cost at stages 3 and 4 is formulated, similarly.  

The expected rework cost per item is the rework cost at stage 1, RC1, multiplied by the 

long-term percentage of reworked products at stage 1, 11

111
p

p
⎛ ⎞
⎜ ⎟−⎝ ⎠

, plus the rework cost at 

stage 2, RC2, multiplied by the long-term percentage of reworked products at stage 

2 , 22

221
p

p
⎛ ⎞
⎜ ⎟−⎝ ⎠

, multiplied by the long-term percentage of accepted products at stage 1 

passed to stage 2, 12

111
p

p
⎛ ⎞
⎜ ⎟−⎝ ⎠

. The expected rework cost at stages 3 and 4 is formulated, 

similarly.  

Therefore, the expected profit per item for a four-stage network production system can be 

expressed as follows: 
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The equation can then be rewritten in terms of cumulative normal distribution as shown 

in Eq. (13). The terms 1( )UΦ , 1( )LΦ , 2( )UΦ , 2( )LΦ , 3( )UΦ , 3( )LΦ , 4( )UΦ and 4( )LΦ are 

function of the decision variables µ1, µ2, µ3 and µ4 which are the process mean for 

machines 1, 2, 3 and 4, respectively. Obviously, one would like to find the value of µ1, µ2, 

µ3 and µ4 that maximizes the expected profit. This can be performed numerically using a 

number of nonlinear optimization software packages. 
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3.6. Introducing a production planning aspect to the model 

We started our analysis to formulate the expected profit function in Eq. (12) previously 

assuming that the distribution factors, α, β, γ, θ1 and θ2, are set according to the 

producer’s preference, or experience. For example, the decision to set (α, β, γ, θ1, θ2) = 

(0.30, 0.20, 0.50 0.05, 0.25), means that 30% of the products that survive inspection at 

stage 1 are passed to stage 2, 20% to stage 3, and 50% to stage 4. Furthermore, 5% of the 

products that survive inspection at stage 2 are passed to stage 4, and 25% to stage 3. In 
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other words, 30% of the products that survive inspection at stage 1 are used to produce 

products P1 and P4, 20% to produce product P2, and 50% produce product P3.  

However, when substituting back in Eq. (12) the optimum process mean for machines 1, 

2, 3 and 4, µ1*, µ2*, µ3* and µ4*, respectively, and solving for the distribution factors, α, 

β, γ, θ1 and θ2, as the decision variables, the model reduces to the following equation 

(c1…c8 here are constants):  

1 2 3 4 1 5 2

6 7 1 8 2

1 2

1

, , , , 0 (14)

Maximize c c c c c
subject to

c c c

α β γ αθ αθ
α β γ
α θ θ

α β γ θ θ

+ + + +
+ + =
= +

≥

 

c1…c5 are obtained directly from substituting the optimum process mean for machines 1, 

2, 3 and 4, µ1*, µ2*, µ3* and µ4*, respectively, in Eq. (12). c6…c8, however, are obtained 

as follows: 
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3.7. N-stage network system  

The four-stage network production system is generalized as n-stage network production 

system as shown in the single-step network in Fig. 16.  
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Fig.  16: Single-step network for n-stage network production system. 

Next, we build the primary-network shown in Fig. 17, and formulate the objective 

function as before. 

3.8. Multiple-input, multiple-output network system  

Raw material or semi-processed products could also be made to enter the production 

process at any stage of the system, and finished products could exit the system from any 

stage, as well. (See Fig. 18 below for the corresponding single-step network)  
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Fig.  17: Primary network for n-stage network production system. 

3.9. Taking machine variance into account  

In the context of a production process, the reduction in operational costs while 

maintaining a high quality level is a desirable ultimate goal for engineers and 

practitioners for many years. The selection of appropriate process parameters i.e., mean 

and variance is of major interest and importance in satisfying such a desirable goal. 

In the previously developed models, optimum process variance, σ2, is not targeted. A cost 

function corresponding to the cost of precision of the machine, for example, ( )f eσσ =  

could be added to the objective function to evaluate for optimum process target variance, 

in addition to process mean.     
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Fig.  18: Single-step network for multi-input, multi-output, n-stage network production system. 

3.10 System operational aspects 

One operational decision running such the production systems suggested earlier is how 

much raw material is needed to produce X amount of Product X? 

Referring to our four-stage network production system shown in Fig. 15., to produce a 

certain quantity of product P1, A(P1), for example, we know that P1 runs through stages 

1, 2 and 4 serially, with distribution factors α from stage 1 to stage 2, and θ1 from stage 2 

to stage 4. Therefore, the amount of raw materials, R, required in this case can be 

evaluates as follows: 
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3.11. Production costs computation revisited  

Another approach to compute the production costs incurred in the system is to count the 

all possible outcome of the production process. Consider single-stage production system 

shown in Fig. 2. The product could be accepted after a single processing cycle for which 

only processing cost at stage 1 (i.e., PC1) is incurred at probability pi,i+1. By the same 

token, the product could be scrapped after a single processing cycle with probability pi,n+2 

incurring processing and scrap costs (PC1 & SC1).    

Furthermore, the product could be accepted or scraped after 1, 2, 3 … rework cycles 

incurring the following costs, consecutively: 

2 3 2 3
1 , 1 1 , 1

2 3 2 3
1 , 2 1 , 2

2 3
1 , 2

( ...) ( 2 3 ...) (16 )

( ...

................................................

) ( 2 3 ...)

( ...)

i i ii ii ii i i ii ii ii
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i n ii ii ii

PC p p p p RC p p p p a

PC p p p p RC p p p p

SC p p p p

+ +

+ +

+

+ + + + + + +

+ + + + + + +

+ + + + ........(16 )b

 

And when we sum all the possible cases in which a product could be found, the outcome 

is similar to our previous analysis in Eq. (4). 

On the other hand, another point worth elaborating is that scrap cost computation being a 

cumulative quantity from one stage to the next. That is to say, you might be tempted at 

first glance to formulate scrap cost for four-stage network production system, for 

example, as follows:  
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However, we believe that scrap cost is a cumulative cost. That is, if raw-material, or 

semi-processed material flaws out of a certain stage of the production system but gets 

scrapped at a later stage, this means that the former stage suffers an additional scrap cost; 

the cost of lost raw material and production resources. Thus, we formulate scrap cost for 

four-stage network production system as follows: 
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CHAPTER FOUR 

NUMERICAL EXAMPLES 

4.1. Two-stage serial system 

Using the model developed earlier, we solved example 5.2 given in Bowling et al. (2004) 

for two-stage production system based on the same parameters; SP1 = 120, PC1 = 25, 

PC2 = 20, RC1 = 10, RC2 = 17, SC1 = 15, SC2 = 12, σ  = 1.0, L1 = 8.0, L2 = 13.0, U1 = 

12.0 and U2 = 17.0. Using exhaustive search, the expected profit is maximized at *
1µ = 

10.572 and *
2µ = 15.5089 with an expected profit of 71.3575. Fig. 18 shows the expected 

profit as a function of the process means, 1µ and 2µ . 

4.2. Multi-stage serial system 

Using the model developed earlier, we solved example 5.3 given in Bowling et al. (2004) 

for single-stage, two-stage, three-stage, four-stage, and five-stage production systems. 

Based on the same parameters, shown in Table 1, the optimum process means and 

expected profit for these cases are shown in Table 2. 
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Fig.  19: Effect of changing process means on the expected profit for two-stage serial system. 

Table 1: Data for a multi-stage serial production system- Bowling et al. (2004). 

Parameter Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

PC 25 20 12 15 4 

RC 15 12 8 10 2 

SC 10 17 5 12 3 

σ  1.0 1.0 1.0 1.0 1.0 

L 8 13 10 7 18 

U 12 17 14 11 22 
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Table 2: Optimum process means and expected profit for a multi-stage serial production system 

Parameter Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

*
1µ  10.5095 10.466 10.43 10.39 10.37 

*
2µ   15.591 15.57 15.54 15.53 

*
3µ    12.69 12.67 12.66 

*
4µ     9.66 9.65 

*
5µ      21.04 

Expected profit 93.061531 71.411986 58.  144561  41.  752236  37. 218684 

4.3. Four-stage network system 

Consider a four-stage production system and the following parameters: SP1=120, 

SP2=125, SP3=115, SP4=140, PC1=30, PC2=25, PC3=20, PC4=15, RC1=10, RC2=17, 

RC3=20, RC4=23, SC1=15, SC2=12, SC3=9, SC4=6, σ  = 1.0, α =0.20, β = 0.30, 

γ =0.50, 1θ =0.40, 2θ =0.60, L1=8, L2=13,L3=18, L4=23, U1=12, U2=17, U3=22, and 

U4=27. Using exhaustive search, the expected profit is maximized at *
1µ = 10.6, *

2µ = 

15.7, *
3µ = 20.2, *

4µ = 25.4 with an expected profit of 57.7477.  

4.4. Four-stage network system with variable distribution factors 

Consider a four-stage production system and the following parameters: SP1=120, 

SP2=125, SP3=115, SP4=140, PC1=30, PC2=25, PC3=20, PC4=15, RC1=10, RC2=17, 
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RC3=20, RC4=23, SC1=15, SC2=12, SC3=9, SC4=6, σ  = 1.0, α =0.30, β = 0.70, L1=8, 

L2=13,L3=18, L4=23, U1=12, U2=17, U3=22, and U4=27. The manufacturer is not 

producing P1 and P3, hence, γ =0, 1θ =0, 2θ =1.  

Using exhaustive search, the expected profit is maximized at *
1µ = 10.4, *

2µ = 15.8, *
3µ = 

20.4, *
4µ = 25.4 with an expected profit of 50.19529 using the initial distribution factors:  

α =0.30, andβ = 0.70.  

Then, when we use exhaustive search to solve for distribution factors by using the 

previously obtained process means, the expected profit is maximized at α =0, andβ = 1 

with an expected profit of 54.11505 (see Table 3). Using these distribution factors values, 

we use exhaustive search to maximize the expected profit at *
1µ = 10.4, *

2µ = 17, *
3µ = 

19.6, *
4µ = 25.4 with an expected profit of 55.27775. This approach could lead to hitting 

a local optimum point; however, it is closer to optimum than none.  

Table 3: Optimum process distribution factors, means and expected profit for a four-stage network 

production system with variable distribution factors 

α  0.001 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.999 
β  0.999 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.001 
EPR  

 
55.3482 53.4205 51.8369 50.3833 48.9998 47.6482 46.3413 45.0504 43.7808 42.5331 41.312 

µ1 
— 

10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 

µ2 
 

17 16 15.8 15.8 15.7 15.6 15.6 15.6 15.6 15.5 15.5 

µ3 
 

19.7 20 20.1 20.2 20.3 20.3 20.4 20.4 20.4 20.5 20.5 

µ4 
— 

25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 
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4.5. Four-stage, multi-input, multi-output network system 

Consider a four-stage, multi-input, multi-output production system, as shown in Fig. 19 

below. Product 1, P1, is supplied with raw material source 1, R1, and processed in stages 

1, 2 and 4, consecutively. Product 2, P2, is supplied with raw material source 2, R2, and 

processed in stages 2, 3 and 4, consecutively. Product 3, P3, is supplied with raw material 

source 3, R3, and processed in stages 3 and 4, consecutively. Product 4, P4, is supplied 

with raw material source 2, R2, and processed in stages 2 and 4, consecutively. 

Production costs in this case are per unit of raw material, instead of per item as in the 

single-input, single-output production lines, since there are multiple sources for raw 

material of different prices. The notation used for distribution factors is modified to 

consider the source material such that,  fk/h,i,j is the distribution factor fk when raw material 

source is Rh, Ri, or Rj. 

Consider the following parameters: SPu1(R1:1-2— 4)=120, SPu2(R2:2-3-4)=125, 

SPu3(R3:3-4)=115, SPu4(R2:2-4)=110, PCu1=30, PCu2=25, PCu3=20, PCu4=15, 

RCu1=10, RCu2=17, RCu3=20, RCu4=23, SCu1=15, SCu2=12, SCu3=9, SCu4=6, σ  = 

1.0, α =1, β = 0, γ =0, ζ =0, 1/1θ =1, 1/ 2θ =0.2, 2/ 2θ =0.8, 3/1,2θ =0, 1/ 2δ =1, 1/ 3δ =1, 

2/1,2,3δ =0, L1=8, L2=13,L3=18, L4=23, U1=12, U2=17, U3=22, and U4=27. Using 

exhaustive search, the expected profit is maximized at *
1µ = 10.4 , *

2µ = 15.4, *
3µ = 

20.6, *
4µ = 25.4 with an expected profit of 17874. 
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Fig.  20: Primary network for four-stage, multi-input, multi-output network production system. 
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CHAPTER FIVE 

DISCUSSION 

It is very beneficial to perform sensitivity analysis of the proposed model parameters to 

illustrate the possible impact of estimated parameters on the optimal process mean and 

the optimal expected profit. The rework and scrap cost were varied in the two-stage serial 

system and four-stage network system and their effects are shown in the following 

sections. 

Tables 1 show the behavior of the optimum process mean and the optimum expected 

profit with the variation of the scrap and rework costs. Notice that in all cases the 

optimum process mean and expected profit is sensitive to changes in the rework and 

scrap cost values.  

5.1. Sensitivity Analysis for Two-stage serial system 

Table 1 shows the behaviors of the optimum process mean and the optimum expected 

profit with the variation of the scrap and rework costs for a two-stage serial production 

system. For cases 1–6, as scrap cost for stage 1 increases, the optimum means for both 

stages increase slightly. For cases 7–11, as scrap cost for stage 2 increases, the optimum 

mean for stage 1 remains relatively constant and that of stage 2 increases slightly. For 

cases 12–18, as rework cost for stage 1 increases, the optimum means for stage 1 

decreases and that of stage 2 remains constant. For cases 19–23, as rework cost for stage 

2 increases, the optimum mean for stage 1 remains relatively constant and that of stage 2 
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decreases. It is observed that the optimum expected profit decreases as scrap and rework 

costs increase for any of the stages.  

Table 4: Sensitivity analysis for a two-stage serial production system 

Cost 
parameter 

Case # Parameter 
value 

Optimum 
process mean 
1- exhaustive 
search 

Optimum 
process mean 
2- exhaustive 
search 

Optimum 
expected 
profit- 
exhaustive 
search 

SC1  7 
11 
15 
19 
23 
27 
 

10.55 
10.56 
10.57 
10.58 
10.59 
10.60 

15.50 
15.50 
15.51 
15.52 
15.52 
15.53 

71.4548 
71.4057 
71.3575 
71.3101 
71.2638 
71.2182 

SC2  4 
8 
12 
16 
20 

10.57 
10.57 
10.57 
10.57 
10.57 
 

15.50 
15.50 
15.51 
15.52 
15.52 

71.41 
71.3835 
71.3575 
71.3318 
71.3067 

RC1  2 
6 
10 
14 
15 
18 
19 

10.95 
10.69 
10.57 
10.49 
10.48 
10.43 
10.42 
 

15.51 
15.51 
15.51 
15.51 
15.51 
15.51 
15.51 

72.2509 
71.7293 
71.3575 
71.0526 
70.9833 
70.7885 
70.7273 

RC2  9 
13 
17 
21 
25 

10.57 
10.57 
10.57 
10.57 
10.57 

15.66 
15.57 
15.51 
15.46 
15.42 

72.0259 
71.6665 
71.3575 
71.0825 
70.8328 

5.2. Conclusion  

In this study, the optimum process target (mean) levels for multi-stage network 

production system have been determined numerically using a network approach. The 
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study starts by developing a general model for the expected profit per item by taking into 

account processing, scrap, and rework costs. The general model for the expected profit 

for an n-stage serial production system was then presented. Further more, the model was   

developed for n-stage network production system and multi-input, multi-output network 

production system with an aspect of production planning. The effect of process standard 

deviation was also discussed. In addition, some operational aspects of running the 

production systems were discussed. By varying the cost parameters, such as scrap cost 

and rework cost, the sensitivity analysis showed the behavior of the optimum process 

target under different conditions. 
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Minerals 
Department of Systems Engineering 

Dhahran, Saudi Arabia 

Feb, 2007 ~ Jan, 2010 
 

Research Assistant 
Duties  
 Conduct scientific research in Quality Control, Process Targeting, Production Planning, 
Inventory Control, Computer Architecture and Computer Networks. 

 Assist in teaching courses 
 Bear administrative tasks 

McKinsey & Company 
Management Consulting 

Dubai, UAE 

1st July ~ 15th Sep, 2008

Business Analyst - Summer Program  
Duties  
 Conducting business analysis in client engagement team setting. 
 Working with subject experts to develop perspectives and insights for the client. 
 Undertook Functional Knowledge Training: Mini - Basic Consulting Readiness, Corporate 
Finance, Organization, Strategy, Operations 

Princess Sumaya University for Technology 
Department of Computer Engineering 

Amman, Jordan 

Aug. 2004 ~ Feb, 2007

Teaching Assistant 
Duties  
 Teach Computer and  Electrical Eng. Labs: Digital Logic, Microprocessor and Electronics 
Circuits 

 Train Cisco Academy Computer Networks courses: CCNA & Wireless LAN - Scored 100% 
in CCNA 
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Royal Scientific Society 
Measurement and Calibration Laboratory 

Amman, Jordan 

July ~ Aug, 2004 

Quality and Testing Engineer  
Duties  
 Testing electrical appliances for compliance with international safety and performance 

standards: IEC, ISO 

e-Tech Systems 
Pre-sales Department 

Amman, Jordan 

April ~ July, 2004

Solution Architect 
Duties  
 Design, architect solutions  
 Respond to RFP's 
 Coordinate processes between involved parties: Internal departments and clientele 

University of Illinois at Urbana - Champaign 
Department of Electrical Engineering 

IL, USA 

May ~ Aug, 2002

Research Assistant 
Duties 
 Conduct scientific research and experimentation in Electrical Eng: Inverter-fed induction 
machines, motors performance testing and motor tests 

 

Language Skills  

English 
   Test scores          

Excellent 
TOEFL 273CBT (equivalent to 640PBT) 
IELTS 7.5/9 
Test of Spoken English at UIUC 4/4                         

French  
   Test score  

Fair 
DELF A1 78/100 

Arabic Native 
 


