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THESIS ABSTRACT 

NAME:               Munirudeen Ajadi Oloso 

TITLE OF STUDY:    Prediction of Crude Oil PVT Properties                                       
    by Soft Computing Techniques 
 
MAJOR FIELD:      Systems Engineering 

DATE OF DEGREE:  June, 2009 

 
 Characterization of Pressure-Volume-Temperature (PVT) properties of crude oil 
is important for many types of petroleum calculations, such as, determination of 
hydrocarbon flowing properties, gas-lift and pipeline design, calculation of oil recovery 
both from natural depletion and recovery techniques. Two of these important properties 
are the oil viscosity and gas/oil ratio. An experimental analysis which is both time-
consuming and costly is used to determine these properties over the entire range of 
pressures. 

To solve the problem of going through these rigorous laboratory experimentations 
which gulp valuable production resources, time and money, equations of states (EOS) 
and empirically derived correlations have been used to predict these reservoir fluid 
properties. These two methods were used for a long time until Soft Computing (SC) 
/Artificial Intelligence (AI) techniques, basically Neural Networks, were introduced to 
improve the prediction performances. However, all the prediction methods up to date are 
for predicting single or multi-data points, even for PVT properties that are generated as 
curves  

In this study, we have developed a new approach for predicting PVT properties 
that need to be described by curves over specific ranges of reservoir pressures. This 
approach is demonstrated with oil viscosity and gas/oil ratio curves. First, a thorough 
study of the target reservoir properties based on the data collected from PVT laboratory 
analyses of crude oil were carried out. Also, a statistical analysis was conducted on the 
data to detect the outliers. We then explored the capabilities of different Soft Computing 
techniques for predicting these properties. Different prediction models using Support 
Vector Regression (SVR), Functional Networks (FN), Adaptive Neuro-Fuzzy Inference 

xv 
 



Systems (ANFIS) and Artificial Neural Networks (ANN) and also two hybrid models: 
Differential Evolution Algorithm with ANN (DE+ANN) and Genetic Algorithm with 
ANFIS (GA+ANFIS) have been developed. A very small root mean square error and 
absolute average percent error for the developed models were recorded. 

Any PVT property which can be described as a curve can easily be estimated 
using the outlined approach in this work. Therefore, this work will hopefully be a very 
fast and low cost method for predicting PVT properties for optimizing the oil production 
operation. 
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  الرسالة خلاصة
 

  منير الدين أجادي أولوسو    : الاسم
  التنبؤ بخصائص الضغط والحجم والحرارة للنفط الخام باستخدامم التقنيات البرمجية  : عنوان البحث
  ھندسة النظم  : التخصص

  2009يونيو   : تاريخ الرسالة
 
  

إن توصيف خصائص الضغط والحجم والحرارة للنفط الخام أمر مھم جدا للعديد من الحسابات النفطية كتحديد 
الطبيعي ستنفاد حسابات استرداد المخازن بالاوخصائص الھيدروكربونات المائعة ورفع الغاز وتصميم الأنابيب 

ويتم تحديد ھذه الخواص عن . ونسبة الغاز إلى النفطومن ھذه الخواص الھامة خاصيتا اللزوجة . الانتعاشتقنيات و
وللاستعاضة عن ھذه التحاليل . طريق التحاليل التجريبية لمختلف قيم الضغط، مما يترتب عليه إنفاق للوقت والمال

ً  EOSالتجريبية المضنية، والمستنفزة للمصادر والمال والزمن، فقد تم اشتقاق معادلات الأحوال  المخبرية  تجريبيا
  .للتنبؤ بخواص المخازن

  
ولقد استمر العمل على ھاتين الطريقتين ردحا من الزمن حتى بزغت الطرق البرمجية والمعتمدة على الذكاء 

لكن ھذه الأساليب كلھا حتى وقتنا الحاضر لا تزال تعتمد . الصناعي، وخاصة الخلايا العصبية، لتحسين أداء المتنبئات
و بالنقط العديدة، حتى وإن احتيج لمنحنيات كاملة لتمثيل بعض الخواص كالضغط والحجم على التنبؤ بالنقطة الواحدة أ

  .والحرارة
  

قمنا في ھذه الدراسة بتطوير طريقة جديدة للتنبؤ بخصائص الضغط والحجم والحرارة التي تحتاج في تمثيلھا 
وقد . اللزوجة والنسبة بين الغاز والنفط للمنحنيات التي تنتمي قيم المدخلات فيھا لمدى معين، مع تبيان ذلك بمثالي

تمت في البداية دراسة عميقة لخصائص المخازن المستھدفة بالاستعانة بنتائج التحاليل المخبرية للضغط والحجم 
ثم تم استكشاف إمكانات التقنيات . كما أخضعت البيانات لبعض التحاليل الإحصائية لتحديد المتطرفات. والحرارة

 (SVR)فتم تطوير العديد من نماذج التنبؤ باستخدام انحدار المتجھات الداعمة . لفة للتنبؤ بھذه الخواصالبرمجية المخت
والشبكات الوظيفية والأنظمة العصبية الضبابية المتكيفة والشبكات العصبية الصناعية بالإضافة لنظامين ھجينين 

والخوارزميات الجينية مع الأنظمة العصبية  مع الشبكات العصبية،تطور التفاضلية الخوارزمية يعتمدان على 
وكانت النتيجة الحصول على نسبة خطأ صغيرة بمعياري جذر معدل المربعات ومعدل القيم . الضبابية المتكيفة

  .المطلقة
ھذا، ونشير إلى أن الطريقة المتبعة في ھذا البحث تصلح لأي خاصية من خصائص الضغط والحجم والحرارة ذات 

وعليه، فإننا نرجو أن يمثل ھذا العمل طريقة سريعة ورخيصة للتنبؤ . وحة على مدى معين من الضغطالقيم المترا
  .بخصائص الضغط والحجم والحرارة للوصول لأكبر انتاجية نفطية ممكنة

 
 



CHAPTER ONE 

INTRODUCTION 

1.1. Overview 

In petroleum engineering, characterization of reservoir fluids plays an important 

role in developing strategies for operating and managing existing reservoirs and 

development of new ones. These reservoir fluid properties are important for petroleum 

engineering computations to determine: the amount of oil or gas present in reservoirs; the 

amount that can be recovered (reserve); the flow rate of oil or gas; the forecast of future 

production and the design parameters for production facilities. 

 Traditionally, these properties are determined from laboratory studies on samples 

collected from the bottom of the wellbore or after recombining the liquid and vapour 

samples collected from the separator at the surface. Such experimental data are, however, 

not always available or very expensive to obtain. Also, the experimental analysis that is 

used to determine these properties takes a lot of time and a very high expertise is required 

for it.  

There are basically two laboratory methods for determining Pressure-Volume-

Temperature (PVT) properties; flash test and differential liberation test, Dake [16]. In the 

former test, the pressure in the Pressure-Volume (PV) cell is initially raised to a value far 

in excess of the bubble point. The pressure is subsequently reduced in stages, and on each 

occasion the total volume of the cell contents is recorded. As soon as the bubble point 

pressure is reached, gas is liberated from the oil and the overall compressibility of the 

system increases significantly. Thereafter, small changes in pressure will result in large 

changes in the total fluid volume contained in the PV cell. In this manner, the flash 
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expansion experiment can be used to "feel" the bubble point. Since the cell used is 

usually opaque, the separate volumes of oil and gas below bubble point pressure cannot 

be measured in the experiment and therefore, only total fluid volumes are recorded. In the 

laboratory analysis, the basic unit of volume against which all others are compared, is the 

volume of saturated oil at the bubble point, irrespective of its magnitude. This test is 

essential for determination of gas/oil ratio. 

The second test, differential liberation test is used to generate viscosity curve. 

Prediction of These two important curves is the focus of this work. In differential 

liberation test, the associated and free gases are removed at each stage of separation as 

the pressure on the oil is reduced. The liberated gas is composed mainly of lighter 

components. When the gas is separated in this manner, a large amount of heavy and 

intermediate components will remain in the liquid and there will be minimal oil shrinkage 

in the stock tank, hence, resulting in greater oil recovery. To recover the gas fractions 

produced in the separators operating at medium and low pressure, it is necessary to re-

compress them to the pressure of the high-pressure separator. In this case, all liquids 

collected in compressor suction tanks are recycled to the production unit. However, re-

compression is sometimes considered to be too costly, hence, the usual gas flaring. 

 To solve the problem of going through these rigorous laboratory experimentations 

which consume valuable production resources: time and money, empirically derived 

correlations and Equations of States (EOS) have been used to predict these reservoir fluid 

properties. These two methods were used for a long period of time until Artificial 

Intelligence (AI)/Soft Computing (SC) Techniques were implemented to improve the 

prediction performances. Of all the existing SC techniques, the most widely used in 
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Petroleum Engineering is Artificial Neural Networks (ANN), Mohaghegh [52]. 

 According to Zadeh, “Soft computing differs from conventional (hard) computing 

in that, unlike hard computing, it is tolerant of imprecision, uncertainty, and partial truth”, 

Nikravesh et al [54]. No doubt these techniques provide the opportunity to achieve 

robust, tractable solution whilst, at the same time, offering low cost. Now, soft computing 

like evolutionary algorithms, machine reasoning, fuzzy logic, neural systems, etc., crowd 

the computational landscape and new techniques are being developed every day. Though 

these techniques have not been widely-utilised in Petroleum Engineering compared with 

some other fields of lives, they have been applied successfully in some Petroleum 

Engineering problems with exceptional and acceptable performance. 

 In this research work, we will utilise four of these soft computing techniques, 

namely: Feedforward Neural Network (FFNN), Adaptive Neuro-Fuzzy Inference 

Systems (ANFIS), Functional Networks (FN) and Support Vector Regression (SVR), and 

two hybrid frameworks: Differential Evolution Algorithm with ANN (DE+ANN) and 

Genetic Algorithm with ANFIS (GA+ANFIS), in a heuristic approach to predict viscosity 

and gas/oil ratio curves. 

 

1.2. Problem Statement 

 There is necessity to have accurate prediction of reservoir fluid and rock 

properties in petroleum engineering. At every stage of the petroleum exploration and 

production business, a priori knowledge of how the fluids will behave under a wide 

range of pressure and temperature conditions, particularly in terms of their volumetric 

and thermo physical properties, is always required. Hence, the need for the prediction of 

3 
 



PVT properties that is done through the use of equations of states (EOS). After EOS, 

empirical correlations which are now widely used were introduced. However, the EOS 

are derived for pure substances and hence, there is a need to always add correction 

factor(s) when used on practical data. Likewise, most of the existing correlations were 

developed using regional crude oils and their performance on crude oils from other 

regions are usually unacceptable. 

 To improve the accuracy of the predictions, some AI techniques have been 

applied. However, some of these properties that are in form of curves are predicted 

through single or multi- data points. Meanwhile, the usual single or multi-data point 

predictions could comprise the original shape of the curves. Hence, there is a need to 

predict the entire measurements that are described by curves for some of these properties. 

Two examples of such PVT properties are oil viscosity and gas/oil ratio. These two 

properties vary with pressure and there is always the need to have their values over a 

certain range of pressures.  

 

1.3. Thesis Objectives 

 This study introduces a new direction in prediction of PVT properties. In this 

study, instead of predicting single or multi-data points for a PVT property curve, the 

entire curve is estimated.  Specifically, the following tasks were performed. 

• A new approach has been formulated for predicting PVT properties that are 

generated as curves. 

• All relevant physical laws have been taken into consideration and most 

importantly, the shapes of the curves are preserved in the formulation 
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• Computer models for predicting viscosity and gas-to-oil curves were developed 

using soft computing techniques for almost hundred samples from different crude 

oil wells. 

• The soft computing techniques that have been exploited are: Artificial Neural 

Networks (ANN), Adaptive Neuro-Fuzzy Inference Systems (ANFIS), Support 

Vector Regression (SVR) and Functional Networks (FN), and two hybrid 

frameworks, DE-Optimized ANN (DE+ANN) and GA-Optimized ANFIS 

(GA+ANFIS). 

• Graphical and Numerical comparisons vis-à-vis the accuracy of the four 

techniques in the prediction have also been presented. 

 

1.4. Scope of the Thesis 

 In this study, a new approach to predict some PVT properties that are in curve 

form is proposed. We have limited ourselves to two of the properties based on the tasks 

involved and availability of data. For all required predictions in this work, we have 

implemented four independent soft computing techniques: ANN, FN, SVR, ANFIS and 

two hybrids frameworks: DE+ANN and GA+ANFIS. 

 

1.5. Thesis Organization 

 The rest of the thesis is organized as follows. Chapter two gives a detailed 

literature survey in the area of PVT properties prediction. In chapter three, adequate 

information about the implemented independent soft computing techniques including the 

hybrids is presented. In chapter four, information about the data sets used for this study, 
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problem formulation approach and implementation of the SC techniques is given. 

Subsequently, we present the simulation results and a comparative study is carried out in 

chapter five. Lastly, we draw conclusions in chapter six and state the contributions that 

have been achieved in this study. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1. Introduction 

 From the onset, relationships between pressure, volume and temperature of a fluid 

are expressed through the use of equations of state. An Equation of State (EOS) is used to 

define the state of the system and to determine the properties of the system at that state. It 

is a functional relationship between state variables — usually a complete set of such 

variables. Most EOS are written to express functional relationships between P, T and V. 

The most fundamental EOS, equation 2.1, is the combination of Boyle’s and Charles’ 

Laws to represent the PVT behaviour of an ideal gas [48] 

                                                             PV nRT=           (2.1) 

 However, no gas behaves ideally in reality. Therefore, the ideal EOS is not useful 

for practical applications, although it is important as the basis for understanding of gas 

behaviour. These gases that do not behave ideally are referred to as real gases. In this 

regard, a correction factor is introduced to account for the discrepancies between 

experimental observations of real gases and predictions from the ideal model. Hence we 

have equation 2.2, representing PVT behaviour of a real gas. 

                                              PV ZnRT=     (2.2) 

Where Z is the correction factor/ compressibility factor and Z=1 for ideal gases.  

These two equations are the foundations for all other modern EOS. The main setback of 

equations of state is that, they are developed for pure substances and their application to 

mixtures requires an additional variable. To improve on the estimation of PVT properties 

through EOS, correlations and soft computing techniques have been applied. 
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  The most common empirical methods and the published artificial intelligence 

techniques that have been used in predicting PVT properties are reviewed in this chapter. 

In addition, the most common limitations of the popular techniques for predicting PVT 

properties especially the widely used empirical methods are discussed. 

 

2.2. Empirical Models for Predicting PVT Properties and Their Evaluations 

Realizing the need and significance of predicting PVT properties, researchers 

have developed several empirical models to estimate these properties in the last six 

decades. Regression analysis is the widely used approach in developing these 

correlations. In this regard, several correlations have been developed especially for 

regional crude oils, and this is one of the problems associated with this conventional long 

time approach. A correlation that is developed for predicting a crude oil property of a 

particular region often fails to give a satisfactory performance when used on crude oils 

from another region. The main reason is the difference in crude oil compositions. 

Katz [40] presented graphical methods for predicting the reservoir oil shrinkage 

and it is called the Katz empirical correlation. Oil shrinkage is the inverse of oil 

formation volume factor. The complexity in the use of Katz correlation lies in the need to 

combine graphical interpretations with calculations. Standing [63, 64, and 65] presented 

correlations for bubble point pressure ( ) and oil formation volume factor (bP oB ). 

Standing’s correlations were based on reports from laboratory experiments that were 

carried out on 105 oil samples from 22 different crude oils in California, U.S.A. These 

two correlations developed by Standing are functions of: solution gas/oil ratio ( ), 
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reservoir temperature, oil gravity and gas gravity. He was the first researcher to correlate 

( ) and ( ) with those four parameters.  

Vazquez and Beggs [70] presented correlations for ,sR  oB  for saturated and 

undersaturated oils (i.e. below and above bubble point pressures respectively), and also 

for oil viscosity above bubble point pressure (undersaturated oil viscosity). sR  was 

correlated as a function of oil gravity, gas gravity and temperature. oB  for saturated oil 

was correlated with , temperature ( ), oil gravity and gas gravity. On the other hand, 

 for undersaturated oil was given as a function of oil compressibility, reservoir pressure 

( P ) and . The oil compressibility was correlated as an intermediate result with bP ,sR  

 oil gravity, gas gravity and . Lastly, the undersaturated viscosity was correlated 

with oil viscosity at bubble point (

,T P

obμ ), pressure P and . To use Vazquez and Beggs 

correlations, gas gravity must be normalized to separator conditions of 100 psig.  

bP

 Glaso [24] developed his own correlations for estimating bubble point pressure 

, saturation pressure), oil formation volume factor (( bP oB ) at   and total formation 

volume factor below . These correlations were based on 45 oil samples from North Sea 

hydrocarbon mixtures and they were developed as a function of reservoir temperature, 

total surface gravity, producing 

bP

bP

sR  and stock-tank oil gravity. Glaso also developed a 

correlation for dead oil viscosity based on 26 crude oil samples. Given the usual 

variations of crude compositions, Glaso presented correction factors for the effect of non-

hydrocarbons that could be present in crude oils. In essence, he aimed to solve the usual 

problem that is faced in using a correlation for crude oils that might have not been used in 

developing the correlation. 
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 Al-Marhoun [1] published his correlations for estimating  and oil formation 

volume factor at  (

bP

bP obB ) for Middle East crude oils. Data sets that were used for his 

study were from PVT analyses of 69 bottomhole fluid samples from 69 Middle Eastern 

reservoirs. He used 160 experimentally obtained data points to develop each of the 

correlations. The correlations were developed as functions of ,sR  total surface gas 

relative density, stock-tank oil relative density and reservoir temperature. He compared 

the accuracy of his correlations with those of Standing [63] and Glaso [24]. He reported 

lower average percentage absolute error (AAPRE) of 3.66% for  against 12.08% for 

Standing [63] and 25.22% for Glaso [24]. For 

bP

,obB  he reported AAPRE of 0.88% against 

2.32% for Glaso [24]. The comparison was meant to establish that PVT correlations are 

actually regional sensitive since the properties of the crude oils vary. Labedi [45] 

presented new correlations for oil formation volume factor for African crude oils. He 

used 97, 28 and 4 data sets from Libya, Nigeria, and Angola respectively to develop his 

correlations.   

 Dokla and Osman [18] developed correlations for estimating bubble point 

pressure and obB  for UAE crude oil using 51 data sets. In developing their correlations, 

they calculated new coefficients for Al-Marhoun’s correlations [1]. The AAPREs of 

Dokla and Osman’s correlations for  and bP obB  were 7.61% and 1.225% respectively. 

They also performed the same comparison as in [1] by applying the correlations in [64], 

[24] and [1] on the UAE crude oil. Their correlations, as expected, gave the best results. 

However, Al-Yousef and Al-Marhoun [8] pointed out that Dokla and Osman’s 

correlation [18] contradicts physical laws; the  decreases with temperature and it is bP
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insensitive to changes in oil-gravity. Also, Al-Marhoun [2] presented new correlations 

for oil formation volume factor at bubble point pressure using 4012 experimentally 

obtained data points. The data set represented samples from all over the world, but mostly 

from Middle East and North America. The AAPRE for this Al-Marhoun’s new 

correlation was 0.28%.  

 Petrosky and Farshad [60] developed correlations for predicting , bP obB , sR and 

undersaturated isothermal oil compressibility for Mexico crude oils. Their correlations 

for , bP obB  and sR were derived from Standing’s correlations [63], while their 

undersaturated oil compressibility correlation is similar to that of Vazquez and Beggs 

[70]. A total of 81 laboratory PVT analyses were used to develop the correlations. 

Comparisons were made between the performance of their correlations and those in [64], 

[70], [24] and [1] when used for Mexico crude oils. The AAPREs for Petrosky and 

Farshad’s correlations were 3.28%, 3.8%, 0.64% and 6.66% for bubble point pressure, 

solution gas/oil ratio, bubble point oil formation volume factor and undersaturated 

isothermal oil compressibility respectively. 

 Almehaideb [5] presented new correlations for UAE crude oils to estimate the 

formation volume factor at bubble point pressure, oil compressibility, bubble point 

pressure and bubble point oil viscosity and undersaturated oil viscosity. He used data sets 

from more than 15 reservoirs in UAE. He showed the need for regional correlations by 

comparing his results with those in [64], [70], [24], [1] and [18] among others. The 

AAPREs for Almehaideb’s correlations were 1.35%, 9.88%, 4.997%, 13% and 2.885% 

for bubble point oil formation volume factor, oil compressibility, bubble point pressure, 

bubble point oil viscosity and undersaturated oil viscosity respectively. Hemmati and 
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Kharrat [33] presented correlations for estimating  bubble point pressure, solution gas/oil 

ratio ( sR ), and oil formation volume factor at   for Iranian crude oils. The data that 

were used to develop the correlations covered a wide range of reservoirs with oil gravity 

of 18.8 to 48.34 API. They also demonstrated that their newly developed correlations 

performed better than any previous one in predicting PVT properties of Iranian crude 

oils. The AAPREs for Hemmati and Kharrat’s correlations are 3.67%, 1.08% and 4.07% 

for , 

bP

bP obB  and sR respectively.  

 Farshad et al [23] presented correlations to estimate bubble point pressure, 

solution gas oil ratio, oil formation volume factor and isothermal compressibility for 

Colombian crude oils. Separator conditions were taken into consideration in developing 

the correlations and a total of 98 reservoir fluid samples were used. A correlation was 

developed for each PVT property under consideration for different separator stages, and 

the results were evaluated using average percent relative error and error standard 

deviation. Velarde et al [71] also presented correlations for black oils. The correlations 

were developed for oil formation volume factors, bubble point pressure and gas/oil ratio 

with AAPREs of 1.74%, 11.5% and 4.73% respectively. They reported to have taken into 

consideration the material balance between their inputs and the reservoir oil density.  

 Petrosky and Farshad [59] presented new empirical correlations for dead oil, 

saturated and undersaturated oil viscosities with AAPREs of 12.4%, 14.5% and 2.9% 

respectively. They compared the performance of the correlations with some of the 

previous ones. Khan et al [43] presented three different correlations for viscosities 

(below, at and above) bubble point pressure with AAPREs of 5.157%, 12.148% and 

1.915% respectively. For viscosity at bubble point pressure, the independent variables 

12 
 



were gas relative density, solution gas/oil ratio, relative temperature and relative density 

at the reference point. For viscosity above and below bubble point, the correlating 

variables were bubble point oil viscosity, pressure and bubble point pressure. Also, 

 Omar and Todd [55] developed correlations for bubble point pressure and bubble 

point oil formation volume factor with AAPREs of 7.17% and 1.44% respectively. A 

total of 93 PVT data sets from Malaysian crude oils were used. These new black oil 

correlations were based on those of Standing.  

         Sidqi and Al-Marhoun [62] developed a new PVT correlation for finding 

viscosity at bubble point pressure, bμ  for Canadian and Middle Eastern crude oils. The 

correlation was developed as a function of ,obB gγ , sR and oil relative density at bubble 

point pressure, oγ . An AAPRE of 4.91% was reported with correlation of 0.997. 

Meanwhile, several authors have evaluated the accuracy and reliability of the existing 

correlations. What they do basically is to apply some commonly used correlations for 

predicting PVT Properties of their regional crude oils, and also improve on the 

correlations with the ultimate aim of improving the prediction accuracy. 

   Sunday et al [66] evaluated existing correlations for Niger Delta crude oils. They 

used a total of 237 PVT reports for their study. The analysis was done for a quite number 

of PVT properties using many of the existing correlations. Also, Ghetto et al [27], 

Elsharkawy et al [21], Mahmood and Al-Marhoun [47], Hemmati and Kharrat [34], Al-

Marhoun [3], McCain et al [49], Hanafy [31] and Al-Shammasi [7], all evaluated some 

already developed correlations on their regional data to indicate the best one to 

characterise PVT for the used data. Normally, the correlations coefficients are re-

calculated for the best representation to improve the prediction accuracy during an 
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evaluation study. Also, Ayoub et al [9] evaluated existing PVT correlations of viscosity 

below bubble point pressure for Pakistani crude oil. 

 

2.3 Artificial Intelligence/Soft Computing Techniques for Predicting PVT Properties 

The first AI technique that was applied in prediction of PVT properties is 

Artificial Neural Networks (ANNs). ANNs are parallel-distributed information 

processing models that can recognize highly complex patterns within available data. In 

recent years, neural networks have gained popularity in petroleum applications. Many 

authors discussed the applications of neural networks in petroleum engineering [6, 44, 52 

and 53]. Recently, it was shown in both machine learning and data mining communities 

that artificial neural networks have the capacity to learn complex linear/nonlinear 

relationships amongst input and output data. There are many different types of neural 

networks. The most widely used neural network in the literature is the feedforward neural 

networks with back propagation training algorithm.  

This type of neural networks is a good computational intelligence modeling 

scheme in both prediction and classification tasks, though with some drawbacks that 

researchers have emphasized. Relatively, a quite number of studies have been carried out 

in the petroleum industry to model PVT properties using neural networks. Though it used 

not to be quite popular within the petroleum industry, it has gained awareness and opened 

ways for other AI techniques within the petroleum industry.   

Gharbi and Elsharkawy [25] and Osman et al [56] carried out comparative studies 

between the performances of feedforward neural networks and the four empirical 

correlations in [2, 24, 60 and 64]. In [25], the authors published neural network models 
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for estimating bubble point pressure and oil formation volume factor for Middle East 

crude oils. They used a neural system with log sigmoid activation function and 

backpropagation with momentum for training. Two neural networks were trained 

separately to estimate the bubble point pressure ( ) and oil formation volume factorbP

( )oB , respectively. The input data were solution gas/oil ratio, reservoir temperature, oil 

gravity, and gas relative density. They used two hidden layers (2HL) neural networks: the 

first neural network, (4-8-4-1) to predict the bubble point pressure and the second neural 

network, (4-6-6-1) to predict the oil formation volume factor. Both neural networks were 

built using a data set of size 520 observations from Middle East region. The input data set 

was divided into a training set of 498 data points and a testing set of 22 data points. The 

AAPREs for  and bP oB  during ANN testing were 6.89% and 2.79% respectively and the 

ANN testing correlations were 0.962 and 0.979 respectively. 

Osman et al [56] used the feedforward ANN to estimate the formation volume 

factor at the bubble point pressure. The neural network model was developed using 803 

data which were gathered from Malaysia, Middle East, Gulf of Mexico, and Colombia. 

They designed one hidden layer (1HL) feedforward neural network (4-5-1) with the back 

propagation learning algorithm. The input layer has four neurons covering the input data 

of gas/oil ratio, API oil gravity, relative gas density, and reservoir temperature, one 

hidden layer with five neurons and single neuron for the formation volume factor in the 

output layer. The results of the developed neural network model outperformed most 

common empirical correlations techniques with testing absolute average error of 1.789%, 

and correlation coefficient of 0.988.  
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Al-Shammasi [7] presented neural network models for predicting PVT properties 

and compared the performances of the developed ANN models with those of empirical 

correlations. He concluded that statistical and trend performance analysis showed that 

some of the correlations violate the physical behaviours of hydrocarbon fluid properties. 

In addition, he pointed out that the published neural network models missed major model 

parameters to be reproduced. He used 2 hidden layers (2HL) neural networks, (4-5-3-1) 

structure for predicting bubble point pressure and oil formation volume factor. He 

evaluated published correlations and neural-network models for bubble point pressure, 

, and oil formation volume factor (bP oB ) for their accuracy and flexibility in 

representing hydrocarbon mixtures from different locations worldwide. The study 

presented a new and improved correlation for  based on global data. For his ANN 

models, the testing AAPREs were 19.86% and 11.68% for  and 

bP

bP oB  respectively. On 

the other hand, his newly developed correlations gave APPREs of 17.8% and 1.806% for 

 and bP oB  respectively. 

Varotsis et al [69] introduced a novel approach for predicting the complete PVT 

behavior of reservoir oils and gas condensates using two-hidden-layer neural networks. 

This network was trained by a PVT database of over 650 reservoir fluids originating from 

all parts of the world. It was reported that during testing of the ANN models, most of the 

PVT properties were estimated with a very low mean relative error of 0.5-2.5% and no 

one was in excess of 5%.  

Al-Marhoun and Osman [4] developed two new ANN models to predict the 

bubble point pressure, and the oil formation volume factor at the bubble-point pressure 

for Saudi crude oils. The developed ANN architectures were 4-7-1 and 4-8-1 for  and bP
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obB  respectively. The two networks were trained using backpropagation with sigmoid 

function. The models were developed using 283 data sets collected from different Saudi 

oil fields. Out of the 283 data sets, 142 were used to train the obB  and  ANN models, 

71 to cross-validate the relationships established during the training process and adjust 

the calculated weights, and the remaining 70 to test the model to evaluate its accuracy. 

The results showed that the developed 

bP

obB  model provides better predictions and higher 

accuracy than the published empirical correlations. The neural networks model predicted 

obB  with an absolute average percent error of 0.5116%, standard deviation of 0.6626 and 

correlation coefficient of 0.9989. In addition, the developed ANN model for  

outperformed the published empirical correlations. Prediction of  gave an absolute 

average percent error of 5.8915%, standard deviation of 8.6781 and correlation 

coefficient of 0.9965.  

bP

bP

 Goda et al [28] developed feedforward neural networks to estimate both bubble 

point pressure ( ) and oil formation volume factor (bP )oB  through two linked 

feedforward neural networks from 180 data sets. For  the inputs were: gas/oil ratio, 

API oil gravity, relative gas density, and reservoir temperature. These four inputs into the 

 ANN model along with the predicted  were used as inputs for 

,bP

bP bP oB  model. For , a 

two hidden layers (2HL) neural network (4-10-10-1) was used and also, a two hidden 

layers ANN was used for 

bP

oB  prediction with structure (5-8-8-1). The training algorithm 

that was adopted by these authors was the commonly used backpropagation with log 

sigmoid function. The testing correlations of the ANN models for  and bP oB  are 0.9981 

and 0.9936, and the average absolute errors are 0.030704 and 0.00368 respectively. 
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 Osman and Al-Marhoun [58] developed two new ANN models to predict 

different brine properties. The first model, using Radial Basis Function of architecture (3-

38-3), predicted brine density, formation volume factor, and isothermal compressibility 

as a function of pressure, temperature and salinity. The second model, using 

backpropagation with network structure (2-2-1), was developed to predict brine viscosity 

as a function of temperature and salinity only. The models were developed using 1040 

data sets. These data were divided into three groups: training, cross-validation and 

testing. Trend analysis was performed to ensure that the developed model followed the 

physical laws. The AAPREs of the developed correlations were 0.0981%, 1.0643%, 

0.1305% and 1.908% for brine formation volume factor, compressibility, density and 

viscosity respectively. 

 Gharbi et al [26] presented an ANN model for predicting bubble point pressure 

and oil formation volume factor based on 5200 training and 234 testing data sets. The 

architecture of the ANN model was (4-5-1) using backpropagation with momentum 

training. The inputs into the network were gas/oil ratio, gas specific gravity, oil specific 

gravity and the reservoir temperature. For ANN testing data, the AAPREs for bubble 

point pressure and oil formation volume factor were 6.48% and 1.97%, and the 

correlations were 0.9891 and 0.9875 respectively. 

        Elsharkawy [22] presented Radial Basis Function Neural Network (RBFN) 

models to predict PVT properties of crude oil and natural gas. Two models were 

developed to predict solution gas/oil ratio, oil formation volume factor, oil viscosity, oil 

density, undersaturated oil compressibility and gas gravity with AAPREs of 4.53%, 

0.53%, 8.72%, 0.4%, 5.98% and 3.03% respectively. The first RBF (4-100-100-4)  model 
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was used to predict the first four listed PVT properties while the second model (with 4-

100-100-1 structure) was used to predict the last two properties, undersaturated oil 

compressibility and gas gravity. He used differential PVT data of ninety samples for 

training and another ten samples for testing the model. As stated by the author, input data 

to the RBFN models included reservoir pressure, temperature, stock tank oil gravity, and 

separator gas gravity.  

 Osman and Abdel-Aal [57] introduced the Abductive Network as an alternative 

modeling tool to predict both bubble point pressure ( ) and bubble point oil formation 

volume factor (

bP

obB ) for Saudi crude oils using 283 PVT observations. Out of 283 data 

sets, 198 data points were used for training and 85 for testing. Unlike neural network, the 

abductive network uses various types of more powerful polynomial functional elements 

based on prediction performance, which is based on the self-organizing group method of 

data handling (GMDH). The correlation and AAPRE for  prediction were 0.9898 and 

5.62% respectively, and for 

bP

,obB  they were 0.9959 and 0.86% respectively. Unlike what 

could be found in some other research works, the authors predicted obB  as a function of 

only reservoir temperature and gas/oil.  

 Ayoub et al [9] constructed a neural network model to predict the viscosity below 

bubble point pressure for Pakistani crude oil in addition to the evaluation of the existing 

correlations on the crude oil. The correlating parameters were: pressure, reservoir 

temperature, bubble point pressure, oil FVF, solution GOR, gas specific gravity and API 

gravity. The neural network correlation outperformed all the evaluated empirical 

correlations with testing correlation coefficient of 99.3% and AAPRE of 1.171%. An 

ANN of (7-8-8-1) structure with backpropagation training was used by the authors.  
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    El-Sebakhy et al [20] developed a Support Vector Machines framework to predict 

bubble point pressure ( ) and bubble point oil formation volume factor (bP obB ), using a 

collection of 782 data sets from some previous researchers. They reported to have carried 

out quality to remove redundant data and unuseful observations. They compared their 

results with those of ANN model and correlations in [1, 24 and 64] and SVM had the best 

performance. Lastly, Hajizadeh [30] predicted viscosity for Iranian crude oil using 

Genetic Algorithms. The input parameters are: pressure, temperature, gas/oil ratio and oil 

density. He reported a testing correlation coefficient of 99.74%. 

In all these predictions, data points are being predicted even for properties like gas 

oil ratio and viscosity that are usually represented by curves over required reservoir 

pressure.  However, if we predict the data points and want to plot the regular curves, we 

might rather have a scattered plot; hence, compromising the consistency in the behaviour 

of the fluid property and such a resulting curve will have no practical use. This is what 

this work aims to address; prediction of the entire curve for some PVT properties over the 

required reservoir pressure.  
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CHAPTER THREE 

SOFT COMPUTING TECHNIQUES 

3.1. Artificial Neural Networks (ANN) 

 Neural Networks or Artificial Neural Networks to be more precise, represent an 

emerged technology rooted in many disciplines. They are endowed with some unique 

attributes (just like other soft computing (SC)/Artificial Intelligence (AI)) techniques: 

universal approximation (input-output mapping), the ability to learn from data and adapt 

to their environment and the ability to invoke weak assumptions about the underlying 

physical phenomena responsible for the generation of the input data. A neural Network is 

a massively parallel distributed processor that has a natural propensity for storing 

experimental knowledge and making it available for use. It resembles the brain in two 

respects: 

1. Knowledge is acquired by the network through a learning process. 

2. Interneuron connection strengths known as synaptic weights are used to store 

knowledge. 

The procedure to perform the learning process is called a learning algorithm. The 

synaptic weights of the network are modified in an orderly fashion so as to attain a 

desired design objective [39]. 

3.1.1. Benefits of Neural Networks 

 The use of neural networks offers the following useful properties and capabilities: 

1. Neurobiological Analogy: The design of a neural network is motivated by  

analogy with brain, which is a living proof that fault-tolerant parallel processing is 

not only physically possible but also fast and powerful. 
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2. Nonlinearity: A neuron is basically a nonlinear device. Consequently, a neural 

network, made up of an interconnection of neurons, is itself nonlinear. Moreover, 

the nonlinearity is of a special kind in the sense that it is distributed throughout 

the network. Nonlinearity is a very important property, particularly if the 

underlying physical mechanism responsible for the generation of an input signal 

(e.g., speech signal) is inherently nonlinear. 

3. Input-Output Mapping: A popular paradigm of learning called supervised learning 

involves the modification of the synaptic weights of a neural network by applying 

a set of labeled samples or task examples. The network is presented an example 

picked at random from the set, and the synaptic weights of the network are 

modified so as to minimize the difference between the desired response and the 

actual response of the network produced by the input signal in accordance with an 

appropriate statistical criterion. Thus the network learns from the examples by 

constructing an input-output mapping for the problem at hand. 

4. Adaptivity: Neural Networks have a built-in capability to adapt their synaptic 

weights to changes in the surrounding environment. In particular, a neural 

network trained to operate in a specific environment can be easily retrained to 

deal with minor changes in the operating environmental conditions. The natural 

architecture of a neural network for pattern classification, signal processing, and 

control applications, coupled with the adaptive capability of the network, make it 

an ideal tool for use in adaptive pattern classification, adaptive signal processing, 

and adaptive control.  
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5. Evidential Response: In the context of pattern classification, a neural network can 

be designed to provide information not only about which particular pattern to 

select, but also to reject ambiguous patterns, should they arise, and thereby 

improve the classification performance of the network. This is the same for 

prediction. 

6. Contextual Tolerance: Knowledge is represented by the very structure and 

activation state of a neural network. Every neuron in the network is potentially 

affected by the global activity of all other neurons in the network. Consequently, 

contextual information is dealt with naturally by a neural network. 

7. Fault Tolerance: A neural network, implemented in hardware form, has the 

potential to be inherently fault tolerant in the sense that its performance is 

degraded gracefully under adverse operating condition. 

8. VLSI Implementability: The massively parallel nature of a neural network makes 

it potentially fast for the computation of certain tasks. This same feature makes a 

neural network ideally suited for implementation using very-large-scale-

integrated (VLSI) technology. The particular virtue of VLSI is that it provides a 

means of capturing truly complex behaviour in a highly hierarchical fashion, 

Mead and Conway [50]. This makes it possible to use a neural network as a tool 

for real-time applications involving pattern recognition, signal processing, and 

control. 

9. Uniformity of Analysis and Design: Basically, neural network enjoy universality 

as information processors. 
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3.1.2. Model of a Neuron 

 A neuron is an information-processing unit that is fundamental to the operation of 

a neural network. In essence, it composes of signal processing elements called neurons. 

The model of a neuron is shown in Figure 3.1.The three basic elements of the neuron are 

described thus. 

1. A set of synapses or connecting links, each of which is characterised by a 

weight or strength of its own. Specifically, a signal   at the input of synapse j 

connected to neuron k is multiplied by the synaptic weight . kjw

2. An adder for summing the input signals, weighted by the respective synapses 

of the neuron. 

3. An activation function for limiting the amplitude of the output of a neuron. 

The activation function is also referred to as squashing function. Typically, 

the normalized amplitude range of the output of a neuron is written as the 

closed unit interval [0 1] or alternatively [-1 1]. 

 

 

 

Figure 3.1: Nonlinear Model of a Neuron 
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Mathematically, 
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Where , , ……… ,  are the input signals. , ,…………..,  are the synaptic 

weights of neuron j,    is the bias,  is the linear combiner output, ( ) is an activation 

function and   is the output signal of the neuron. 

Some commonly used activation functions are: 

1. Threshold Function: For this type of activation function, we have 
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2. Piecewise-Linear Function: This activation function is also referred to as 

saturating linear function. It can be a linear combiner if the region of operation 

is maintained without running into saturation. Also, it can reduce to a 

threshold function if the amplification factor of the linear region is made 

infinitely large.        
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3.  Sigmoid Function: The sigmoid function is by far the most common form of  

          activation function used in the construction of ANN’s. It is defined as a strict  

      activation function that exhibits smoothness and asymptotic properties. An  

      example of the sigmoid is the logistic function, defined by; 
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    where “a” is the slope parameter of the sigmoid function. When we vary the        

    parameter “a”, we obtain sigmoid functions of different slopes. 

           4. Tangent Hyperbolic Function: This transfer function is often used in place     

              of sigmoid function. It is described by the following mathematical form 

         
( ) tanh( )

av av

av av

e ev v
e e

ϕ
−

−

−
= =

+       (3.6) 
 

3.1.3. ANN Architectures 

 The manner in which the neurons of a neural network are structured is intimately 

linked with the learning algorithm used to train the network. Therefore, people speak of 

learning algorithms (rules) used in the design of neural networks as being structured. In 

general, there are four different classes of network architecture. 

1. Single-Layer Feedforward Network 

 A layered neural network is a network of neurons organized in the form of layers. 

In the simplest form of a layered network, we just have an input layer of source nodes 

that project unto an output layer of   neurons (computation nodes), but not vice versa. In 

other words, this network is strictly of a feedforward type. It is illustrated in Figure 3.2 

for the case of four nodes in both input and output layers. Such a network is called a 

single-layer network, Haykin [32]. 
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Figure 33.2: Single LLayer Feedfoorward Netwwork 
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3. Reecurrent Networks 
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3.1.4. Learning Algorithm for Neural Networks 

 We consider briefly the common learning algorithm for the mostly used ANN, 

MLP. The basic idea in the learning procedure is to provide the network with a training 

set of patterns having inputs and outputs. Real valued m–dimensional input feature 

vectors x are presented to each of the first hidden layer units through weight vector w. A 

hidden layer unit k receives input j through the synaptic weight, , k = 1, 2,….,n, and j 

= 1,2,….,m. The unit k computes a function of the input signal x and the weights   and 

passes its output to all of the units in the next successive layer. Like the first hidden layer, 

the units of the second hidden layer are fully connected to the previous layer through the 

synaptic weights. These units also compute a function of their inputs and their synaptic 

weights and pass their outputs on to the next layer. The output of one layer becomes the 

input to the subsequent layer. Then at the output unit, an error is calculated between the 

target value and the computed value of the pattern. This process is repeated until the final 

computation is produced by the output unit when some criteria are met. The learning 

algorithm for this type of network is called the backpropagation (BP) algorithm which 

was published in the mid 1980s for multilayer perceptrons. Hornik et al [36] suggested 

that if a sufficient number of hidden units are available then an MLP with one hidden 

layer having a sigmoid transfer function in the hidden layer and a linear transfer function 

in the output layer can approximate any function to any degree of accuracy. 

kjw

Backpropagation is a systematic method for training multilayer neural networks 

due to its strong mathematical foundation. The steps to implement the backpropagation 

algorithm are gives as follows: 
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• The error signal at the output of neuron j at iteration n (i.e. presentation of the nth 

training pattern) is defined by 

                         (3.7)  ( ) ( ) ( )j j je n d n y n= −

where dj(n) refers to the desired response for the neuron j and yj(n) is the function signal 

appearing at the output of neuron j and ej(n) refers to the error signal at the output of 

neuron j. The instantaneous value of the sum of squared errors is obtained by summing 

square error over all neurons in the output layer; which is written as: 

                                       (3.8) 

21( ) ( )
2 j

j C

n eξ
∈

= ∑

• The net internal activity level  produced at the input of the nonlinearity 

associated with neuron j is therefore 

( )jv n

                                    (3.5) 

n

i
0

( ) ( ) ( )
P

j ji
i

v n w n y n
=

=∑

where p is the total number of inputs (excluding the threshold) applied to neuron j and 

wji(n) denote the synaptic weight connecting the output of neuron i  to the input of neuron 

j at iteration n. Hence the output of neuron j at iteration n is 

                                    (3.10)      ( ) ( ( ))j j jy n v nϕ=

• The instantaneous gradient which is proportional to the weight correction term is 

given as: 

                                   

( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( )

j j j

ji j j j ji

e n y n v nn n
w n e n y n v n w n
ξ ξ ∂ ∂ ∂∂ ∂

=
∂ ∂ ∂ ∂ ∂

                        (3.11) 

'( ) ( ) ( ( )) ( )
( ) j j j j

ji

n e n v n y n
w n
ξ ϕ∂

= −
∂
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• The correction ∆  applied to  is defined by the delta rule 

                          

( )( )
( )ji

ji

nw n
w n
ξη ∂

Δ =
∂

                                   ( ) ( ) ( )ji j iw n n y nηδΔ =

                                              (3.12)      

               

'( ) ( ) ( ( ))j j j jn e n v nδ ϕ=

• When neuron j is located in a hidden layer of the network, the local gradient is 

redefined as  

                                     (3.13) 

'( )( ) ( ( ))
( )j j

j

nn v
y n j nξδ ϕ∂

= −
∂

                                                                (3.14)  

where the   requires the knowledge of the error signals   for all those neurons that lie 

in the layer to the immediate right of hidden neuron j. The  , consists of the 

synaptic weights associated with these connections. We are now ready to put forward the 

weight correction update for the back-propagation algorithm, which is defined by the 

delta rule: 

'( ) ( ( )) ( )j j j k kj
k

n v n wδ ϕ δ= n∑

                              (3.15)  ( )ji jw n y jηδΔ =

It is important to note that weight correction term depends on whether neuron j is an 

output node or a hidden node:  

a. If neuron j is an output node, equation (3.14) is used for the computation of the 

local gradient.  

b. If neuron j is a hidden node, equation (3.15) is used for the computation of local 

gradients.  
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• The network performance is checked by monitoring the average squared error. The 

average square error is obtained by summing ( )nξ  over all n and then normalizing 

with respect to N (number of training patterns) 

                                          (3.16) 1

1 ( )
N

av
n

n
N

ξ ξ
=

= ∑

Both the instantaneous and average squared errors are functions of free 

parameters (synaptic weights and biases).  The process is repeated a number of times for 

each pattern in the training set until the total output squared error converges to a 

minimum or until some limit is reached in the number of training iterations. One of the 

major problems with BP algorithm is the long training time due to the steepest descent 

method, as it is a simple but slow minimization method. The learning rate is sensitive to 

the weight changes. The smaller the learning rate the smaller will be the changes to the 

synaptic weights from one iteration to the next, and the smoother will be the trajectory in 

the weight space.  

On the other hand, if the learning rate is chosen to be too large in order to speed 

up the rate of learning, the resulting large changes in the synaptic weights make the 

network unstable. In order to speed up the convergence of BP algorithm along with 

improved stability, a momentum term is added to the weight update of the BP algorithm. 

A momentum term is simple to implement and this significantly increases the speed of 

convergence. The inclusion of momentum term represents a minor modification to the 

weight update. The inclusion of momentum may also have the benefit of preventing the 

learning process from terminating in shallow local minima on the error surface. 
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The second method of accelerating BP algorithm is by using Levenberg -

Marquardt BP (LMBP) algorithm, Hagan et al. [29]. It is based on Newton’s optimization 

method (Hagan et al. [29]) and differs from the usual BP algorithm in the manner in 

which the resulting derivatives are used to update the weights. The main drawback of the 

algorithm is the need for large memory and storage space of the free parameters in the 

computers. If the network has more than a few thousand parameters, the algorithm can 

take a long time to converge. In this study, the feed forward network architecture used for 

our comparison has been designed to have number of free parameters to be smaller than 

the number of training patterns in order for Levenberg-Marquardt BP (LMBP) algorithm 

to be adequate for training the network. 

 

3.1.5. Drawbacks of Artificial Neural Network 

The main problem of ANN is its opacity or black-box nature. The associated lack 

of explanation capabilities is a handicap in some decision support applications such as 

medical diagnostics, where the user would usually like to know how the model came to a 

certain conclusion. Model parameters are buried in large weight matrices, making it 

difficult to gain insight into the modelled phenomenon or compare the model with 

available empirical or theoretical models. Information on the relative importance of the 

various inputs to the model is not readily available, which hampers efforts for model 

reduction by discarding less significant inputs. Additional processing techniques such as 

the principal component analysis may be required for this purpose. 
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3.2. Overview of Support Vector Machines (SVM) 

 Support Vector Machines are an attractive approach to data modelling. They 

combine generalisation control with a technique to address the curse of dimensionality. 

The formulation results in a global quadratic optimisation problem with box constraints, 

which is readily solved by interior point methods. The kernel mapping provides a 

unifying framework for most of the commonly employed model architectures, enabling 

comparisons to be performed. SVM which was primarily developed for classification 

problems has also been recently extended to regression problems. In classification 

problems, generalisation control is obtained by maximising the margin, which 

corresponds to minimising the weight vector in a canonical framework. The solution is 

obtained as a set of support vectors that can be sparse. These lie on the boundary and as 

such summarise the information required to separate the data. Figure 3.6 shows how a 

margin is created between two sets of data in a classification problem. 

 

Figure 3.6: Creation of margins between two data sets by support vectors  
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3.2.1. Suppport Vectoor Regressioon (SVR) 
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Figure 3.8: The error function 
 

Figure 3.8 shows how the error of SVR is calculated. Up until the threshold is reached, 

the error is considered 0, after that it is calculated as “error-epsilon”. The solution to the 

problem is known as a “tube”, Figure 3.9. 

                         

Figure 3.9: The Support Vector Regression Tube 
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Mathematically, since the main idea is to optimize the margin then the quadratic 

optimization problem becomes    

     1
2min T

w
W W  

    
( ( ) )

. .
( ( ) )

T
i

T
i

y W X b
s t

W X b y

φ ε

φ ε

⎧ ⎫− + ≤⎪ ⎪
⎨ ⎬

+ − ≤⎪ ⎪⎩ ⎭
                        (3.17)               

Where ( )Xφ  is the kernel function, W is the margin and the pair ( , )i ix y  is the training 

set. Then we add a bound in order to set the tolerance on errors number that can be 

committed:                                  

    *

, 1

1min . ( )
2

l
T

i iW b i

W W C ξ ξ
=

+ +∑       (3.18)     

   
*
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T
i i

T
i

i i

y W X b

s t W X b y

i l
i

φ ε ξ

φ ε ξ

ξ ξ

⎧ ⎫− + ≤ +
⎪ ⎪

+ − ≤ +⎨ ⎬
⎪ ⎪≥ =⎩ ⎭

   (3.19) 

This principle is similar to SVM for classification. Once it is trained, SVR will generate 

predictions using the following formula:                         

    
1

( ) ( , )
l

i i
i

f X X Xθ φ
=

b= +∑    (3.20) 

For the kernel, possible options are functions such as: Gaussian, polynomial, radial basis 

and wavelet. The kernel plays the most important role in determining the accuracy of 

SVR prediction. Of all the kernels that we tested in our simulations, Gaussian kernel gave 

the best performances in predictions. Next to it was the polynomial kernel. 
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3.2.2. Description of SVR Parameters 

1. Kernel Function: The kernel function is responsible for transforming the data set into 

hyperplane. The variables of the kernel must be computed accurately since they 

determine the structure of high-dimensional feature space which governs the complexity 

of the final solution. The most commonly used kernel functions in the literature are: 

I. Linear: ( , ) ( T
i jX X X X )φ γ= +   

II. Polynomial:  ( , ) ( )T d
i jX X X Xφ δ γ= +

III. Gaussian:  
2

2( , ) exp
2

i j
i j

X X
X Xφ

σ

⎛ ⎞−⎜ ⎟=
⎜ ⎟−
⎝ ⎠

 

IV. Sigmoid: ( , ) tan ( ( )i j i jX X sh X X )φ γ δ= −   

V. Fourier series: 
( )1

2

sin(2 1)( )
( , )

sin ( )
i j

i j
i j

n X X
X X

X X
φ

+ −
=

−
 

Where  is the gain,   is the offset , d  is the degree of the polynomial kernel and  is 

the bandwidth of the Gaussian kernel. 

2. Regularization parameters (C): This determines the trade-off cost between minimizing 

the training error and minimizing the model’s complexity. 

3. The tube size of the ε -insensitive loss function (ε ): This is equivalent to the 

approximation accuracy placed on the training data. 

4. Bandwidth of the kernel function 2σ : This represents the variance of the Gaussian 

kernel function.  
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3.3. Functional Networks 

 Functional networks were introduced as a powerful alternative to neural networks, 

Castillo [11] and Castillo et al. [13]. Unlike neural networks, functional networks have 

the advantage that they use domain knowledge in addition to data knowledge. The 

network initial topology can be derived based on the modeling of the properties of the 

real world. Once this topology is available, functional equations allow one to obtain a 

much simpler equivalent topology.  Although functional networks also can deal with data 

only, the class of problems where functional networks are most convenient is the class 

where the two sources of knowledge about domain and data are available, Castillo et al. 

[12]. 

Functional networks as a new modelling scheme have been used in solving both 

prediction and classification problems. It is a general framework that is useful for solving 

a wide range of problems in engineering, statistics, and functions approximations. 

 

3.3.1. Background and Definition of Functional Networks 

A functional network is defined as a pair, ( , )X ϕ  where  is a set of nodes and  

, 1, 2,j{( , , ) ....., }j j jY f Z mϕ = = is a set of neuron functions/functional units over X, such 

that, every node  must be either an input or an output node of at least one neuron 

function in ϕ . For all j , a node jX X∈ is called a multiple node if it is an output of 

more than one neuron function. Otherwise, it is called a simple node. Other facts about 

functional networks are itemized as following. 

• A functional unit (also called a neuron) ϕ over the set of nodes X is a triplet 

( , , ),X f Z  where (Y, Z) ⊂  X; Y Z, ,Y Zφ φ φ≠ ≠ ∩ =  and :f Y Z→  is a given 
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function. We say that Y, Z, and f  are the set of input nodes, the set of output nodes, 

and the processing function of the functiona  respectively. l unit 

• An input node in a Functional Network ,   is the input node of at least one 

functional unit in  and is not the output of any functional unit in  . 

• An output node in a Functional Network  ( , )X ϕ  is the output node of at least one 

functional unit in  and is not the input of any functional unit inϕ . 

• An intermediate node in a Functional Network is the input node of at least one 

functional unit in  and, at the same time, is the output node of at least one functional 

unit inϕ . 

 

3.3.2. Differences between Functional and Neural Networks 

There is no doubt that functional networks are motivated from neural networks, 

however, their structures and the way they handle a problem are different. The 

characteristics and key features of functional networks, as compared with those of neural 

networks are shown in Figures 3.10 and 3.11. 

1. In selecting the topology of functional networks, the required information can be 

derived from the data, from domain knowledge, or from different combinations of the 

two. In the case of standard neural networks, only the data are used. This implies that, in 

addition to the data information, other properties of the function being modelled by the 

functional networks can be used for selecting its topology (associativity, commutativity, 

invariance, etc.). This information is available in some practical cases.  

2. Unlike standard neural networks, where the neuron functions are assumed to be fixed 

and known and only the weights are learned, in functional networks, the functions are 
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learned during the structural learning (which obtains simplifed network and functional 

structures) and estimated during the parametric learning (which consists of obtaining the 

optimal neuron function from a given family). 

3. Arbitrary neural functions can be assumed for each neuron, while in neural networks, 

they are fixed sigmoidal functions. 

4. In functional networks, weights are not needed, since they can be incorporated into the 

neural functions. 

5. The neural functions are allowed to be truly multiargument in functional networks[e.g., 

neural functions 1f , 2f  and 3f  in Figure 3.11]. However, in many cases, they can be 

equivalently replaced by functions of single variables. Note that in standard neural 

networks the neural sigmoidal functions are of a single argument though this is a linear 

combination of all inputs (pseudo-multiargument functions). 

6. In functional networks, intermediate or output units can be connected (linked) to 

several storing units, say m units, indicating that the associated values must be equal. 

Each of these common connections represents a functional constraint in the model and 

allows writing the value of these output units in different forms (one per different link). 

This leads to a system of m − 1 functional equations. By solving this system, the initial 

neuron functions can be simplified, for example, by reducing the number of arguments. 

Intermediate layers of units are introduced in functional network architectures to allow 

several neuron outputs to be connected to the same units, which is not possible in neural 

networks. 

7. Functional networks are extensions of neural networks. In other words, neural 

networks are special cases of functional networks. For example, in Figure 3.11, the neural 
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network and its equivalent functional network are shown. Note that weights are 

subsumed by the neural functions. 

 

3.3.3. Methods of Selecting Functional Network Models 

To learn (parametric) functional networks, we can choose different sets of linearly 

independent functions for the approximation of the neuron functions. At this same time, 

there is need for us to select the best model according to some criterion of optimality. 

Minimum Description Length Principle (MDLP) is one of the model selection principles 

we can use as discussed in Castillo et al. [13]. 
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Figure 3.10: A Standard Neural Network  
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Figure 3.11: A Standard Functional Network 
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The idea behind the MDLP measure is to find the minimum information required 

to store the given training set using the functional network model. Therefore, we can say 

that the best functional network model for a given problem corresponds to that with the 

minimum description length value. The code length L(x) of x is defined as the amount of 

memory needed to store the information x. For example, assume we have a data set 

, , , … . , , |  where , , , … . , |   are the inputs and 

  is the output. (NOTE: This actually refers to our case). To store these data we 

have two options: 

Optio 1: or  Rn  St e aw Data: 

Store  , , , … . , , | . In this case, the initial description length of the data 

set is 

                                    (3.21) 1 2 13
1

[ ( ) ( ) ........... ( ) ( )]
n

j j j
j

DL L x L x L x L y
=

= + + + +∑ j

⎤⎞
⎟⎥

J

j

Option 2: Use a Model: 

By selecting a model, we try to reduce this length as much as possible. In this case, we 

can store the parameters of the model ,  and then the residuals are          

       (3.22) 
1

1 2 13( ) ( ) ..... ( ) ,j j j j je y g g x g x g x j J
−∧ ∧ ∧ ∧⎡ ⎛= − + + + ∈⎜⎢ ⎝ ⎠⎣ ⎦

 where  are the approximate neuron functions of the model. The description length 

becomes:      

g
∧

mod

1 2 13
1 1

( ) ( ) .... ( ) ( ) ( | mod )

el

J K

j j j k j
j k

DL

L x L x L x L L e eβ
= =

=

⎡ ⎤+ + + + +⎣ ⎦∑ ∑ l∑
        (3.23) 
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Where ( kL )β  is the code length of the estimated parameters ,k k Kβ ∈ . 

Generally, the description length is a measure that allows comparing not only the quality 

of different approximations, but also different functional network models. The 

description length measure can be calculated for any model. In addition, it is used to 

compare models with different parameters, because it has penalty term for over-fitting. 

Moreover, it is distribution independent. This makes the minimum description 

length a convenient method for solving the model selection problem. Accordingly, the 

best functional network model for a given problem corresponds to the one with the 

smallest description length value. To achieve this goal the following methods could be 

used: 

The Exhaustive Search: This method computes the MDL measure for all possible models 

and choose the one leading to the smallest value of the error measure. The obvious 

shortcoming of this method is its computational complexity. 

The Forward Method: This method starts with all models of a single parameter and 

selects the one leading to the smallest value of ( )L x . Next, it incorporates one more 

parameter by selecting the new one leading to the smallest value of ( )L x . The process 

continues until no improvement in ( )L x  is obtained. 

The Backward method: This method starts with the model with all parameters and first 

removes the one leading to the smallest value of ( )L x . Next, removes one more 

parameter by selecting the one leading to the smallest value of ( )L x .The process 

continues until no improvement in  ( )L x  is obtained. 

The Backward-Forward method: The backward process starts with the complete model 

with all parameters and sequentially removes the one leading to the smallest value of the 
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MDL measure, repeating the process until no improvement in the measure. Next, the 

forward process is applied, but starting from the final model of the backward process, and 

sequentially adds the one variable that leads to the smallest value of MDL measure, 

repeating the process until no improvement in the measure. This process is repeated until 

no further improvement in MDL measure is obtained neither by removing nor by adding 

a single variable. 

The Forward-Backward method: The forward process starts with all models of a single 

parameter and selects the one leading to the smallest value of ( )L x . Next, it incorporates 

one more parameter with the same criterion and the process continues until no 

improvement in ( )L x  can be obtained by adding an extra parameter to the previous 

model. Then the backward process is applied, but starting from the final model of the 

forward process and sequentially remove the one variable that is leading to the smallest 

value of MDL measure, repeating the process until no improvement in ( )L x  is possible. 

The double process is repeated until no further improvement in ( )L x  is obtained neither 

by adding nor by removing a single variable.    

3.3.4. Development of Functional Network Model 

The functional network that was finally adopted is summarized as follows. 

•   Objective 

Given a data set | ; 1,2, … .  &  1,2, … . ,13  where ’s  are the predictors 

and  is the output. Mathematically, the relationship is given by 

                                                 (3.24) 1 2 13( , ,........, )Y f X X X=
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The aim is to get  which is an estimate of Y such that the square of the error is 

minimized. That is    

 

^
Y

2

1

1min
n

i i
i

Y Y
n

∧

=

⎧ ⎫⎪ ⎪⎛ ⎞−⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∑  

• Functional Network Model 

A generalised model of functional network that learns from data is given as  

                   (3.25)  
1

1 2 1

1

..... 1..... ( ).... ( )
k

k k

k

m m

r r r r r k
r r

y C xϕ ϕ=∑ ∑ x

)Where are the unknown parameters and 1 2..... kr r rC ( 1,2,...,jr j kϕ =  are linearly 

independent functions.     

• Uniqueness and Simplification of the Model 

To prove the uniqueness of the generalized model in equation (3.25), we assume two sets 

of parameters  and such that: 1 2..... kr r rC 1 2

*
..... kr r rC

1 1

1 1 1 2 1

1 1

.... 1 ..... 1.... ( ).... ( ) .... * ( )... ( )
k k

k k k k

k k

m m m m

r r r r k r r r r r k
r r r r

C x x C x xϕ ϕ ϕ ϕ=∑ ∑ ∑ ∑       (3.26) 

This equation can be re-written as: 

1

1 1 1

1

*
.... ..... 1.... ( ) ( ).... ( ) 0

k

k k k

k

m m

r r r r r r k
r r

C C x xϕ ϕ−∑ ∑ =

)

    (3.27) 

Since the set of functions ( 1,2,...,jr j kϕ =  are linearly independent, then 

  for all .This implies  and hence, 

equation (3.26) is unique. 

1 1 2

*
.... .....( )kr r r r rC C− k

0= 1..... kr r
1

*
.... .....kr r r rC C= 1 k
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 In the same vein, we can simplify the general functional form further by assuming 

that all coefficients of the cross-multiplication terms between the functions of different 

variables rather than one are equal to zero. Then equation (3.25) becomes 

                             (3.28) 1 1 2 2( ) ( ) ..... ( )k ky f x f x f x= + + +

That is; 

       (3.29) 
1 2

1 1 2 2

1 2

1 2( ) ( ) ...... ( )
k

k k

k

m m m

r r r r r r k
r r r

y C x C x C xϕ ϕ ϕ= + + +∑ ∑ ∑

where ( )f x  is the sum of the basis functions for each predictor. 

Equation (3.29) can further be written as: 

        (3.30) 
1

(
k

k k

k

mp

r r k
k r

y C ϕ
=

=∑∑ )x

n

• Learning  F tthe unctional Ne work Model 

Given the data set  , , …… . . , | ; , 1,2, … .  , the general form of a 

functional network that learns from the data has earlier been reduced to 

                                                        (3.31) 
1

( ) , 1,2,......,
k

k k

k

mp

i r r ik
k r

y C x iϕ
=

= =∑∑

where  is the number of observations of response Y  and  is the number of 

predictors. 

n k

rkϕ is the linear combinations of selected linearly independent functions and 

are the coefficients of krC rkϕ . Some of the commonly used linearly independent (basis) 

functions are: 

1). Polynomial function: 2{1, , ,....., }mx x xϕ =  

2). Exponential Function: 2 2{1, , , , ,......, , }x x x x mx mxe e e e e eϕ − − −=  
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3). Fourier Function: {1,sin( ), cos( ),sin(2 ), cos(2 ),........, sin( ), cos( )}x x x x mx mxϕ =  

4). Logarithm Function: {1,log( 2),log( 3),....., log( )}x x x mϕ = + + +  

NOTE: It is possible to use different combinations of these basis functions. 

 If    is the estimate of from equation (3.31), the problem reduces to 

minimization of the error 

Y

ε  between and YY
∧

. Hence, we have 

                          (3.32) m )Y Yε
∧

= −in(

From equation (3.31), we can       write  as

               (3.33) 

                     min( WC*)Yε = −        (3.34) 

Using least square optimiz tio nique, equation 3.34 is solved for  and we have a n tech

                                                                                       (3.35) 

Equation 3.35 gives the unknown optimal coefficients, . 

 

3.4. Adaptive Network Fuzzy Inference System (ANFIS) 

 This is also known as Adaptive Neuro-Fuzzy Inference System or Neuro-Fuzzy 

Systems or Fuzzy Neural Networks (FNN).The word “neuro” or “neural” is actually used 

because the inference system borrows learning methodology from ANN which has been 

well-established before it, Jang [37] and Mendel [51].  

3.4.1. Development of Fuzzy Inference System 

The concept of uncertainty / vagueness that fuzzy logic was developed to handle 

has been with us for long. Vagueness and uncertainty has been discussed extensively by 

philosophers both past and present, Russell [61], Black [10], and Keefe and Smith [41]. 

Lotfi Zadeh was the first person to use the term fuzzy logic, Zadeh [74]  
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It is an established fact that the world is imprecise, uncertain and vague, and 

decision making systems usually emulate human expertise, hence the needs for fuzzy 

logic based reasoning to cater for natural uncertainties. Ever since its introduction, fuzzy 

logic has witnessed unprecedented successes particularly in the area of Applications in 

Control. Fuzzy systems have a number of attractions:  

•  They allow for linguistic description of a problem by an expert; 

•  They are often more robust than traditional mathematical approaches; 

•  The underlying reasoning process can be examined. 

They do however have a major drawback in that they do not learn and therefore 

require significant human intervention from an expert. In particular the membership 

functions of the fuzzy sets have to be determined. This problem has been tackled by a 

number of researchers, Wang [72], Watanabe [73], and Turksen [68], but these 

approaches are often domain dependent and still require input from human expertise. An 

alternative approach is an adaptive fuzzy system, which offers the ability to learn from 

data, Cox [15] and Jang [38]. 

3.4.2   Learning Algorithm for ANFIS 

To illustrate how ANFIS works, we assume the fuzzy inference system under 

consideration has two inputs x and y and one output z. Suppose that the rule base 

contains two fuzzy if-then-rules of Takagi and Sugeno’s type as follows [67]. 

Rule1:  If x is A1 and y is B1 then f1=p1x+q1y+r1, 

Rule2:  If x is A2 and y is B2 then f2=p2x+q2y+r2, 
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Then the fuzzy reasoning and the corresponding equivalent ANFIS architecture are 

shown in Figure 3.12. 

 

       
 
 

 
Figure 3.12:  Fuzzy Reasoning and Its Equivalent ANFIS  

 
The node functions in the same layer are of the same function family as described below: 

Layer 1: Every node i in this layer is a square node with a node function: 

     1 ( ),i iO A xμ=

where x  is the input to node , and  is the linguistic label (small, large, etc.) 

associated with this node function. In other words,  is the membership function of  

and it specifies the degree to which the given 

i iA

1
iO iA

x  satisfies the quantifier . Usually we 

choose 

iA

( )iA xμ  to be bell-shaped with maximum and minimum equal to 1 and 0 
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respectively, such as:               
2

1( ) ,
1 [( ) ] i

i
bi

i

A x x c
a

μ =
−

+
                   

(3.36a) 

Or                 2( ) exp{ [( ) ] },ibi
i

i

x cA x
a

μ −
= −              (3.36b)     

where {  is the parameter set. As the values of these parameters change, the bell-

shaped functions vary accordingly, thus exhibiting various forms of membership 

functions on linguistic label . In fact, any continuous and piecewise differentiable 

functions are also qualified candidates for the node functions in this layer. Parameters in 

this layer are referred to as premise parameters. 

, , }i i ia b c

iA

Layer 2: Every node in this layer is a circle node labelled Π  which multiplies the 

incoming signals and sends the product out. For instance, 

    ( ) ( ) , 1i i iw A x B y i , 2.μ μ= × =       (3.37) 

 Each node output represents the firing strength of a rule. In fact, it must be noted here 

that other firing T-norm operators that perform generalized AND can be used as the node 

function in this layer. 

 Layer 3: Every node in this layer is a circle node labelled N. The  i-th node calculates 

the ratio of the i-th rule’s firing strength to the sum of all rules’ firing strengths: 

     
1 2

, 1, 2i
i

ww i
w w

=
+

.=      (3.38) 

For convenience, output of this layer is usually called normalized firing strengths. 

Layer 4: Every node in this layer is a square node with a node function 

    
4 ( )i i i i i i iO w f w p x q y r= = + + ,           (3.39)  
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where iw  is the output of layer 3, and { , , }i i ip q r  is the parameter set. Parameters in this 

layer will be referred to as consequent parameters. 

Layer 5: The single node in this layer is a circle node labelled Σ that computes the 

overall output as the summation of all incoming signals, that is, 

    5
1

i ii
i i

i ii

w f
O w f

w
= = ∑∑ ∑

       (3.40) 

The network described has a number of parameters to be learnt. Firstly, there are 

parameters for the membership grades of the antecedent type-1 fuzzy sets. Since the 

output of the network is numeric, this can be compared with the expected output from a 

supervisor (i.e. supervised learning) and back propagation (BP) and/or least mean square 

(LMS) algorithms can be used to feed the error back to adjust the parameters in the 

nodes.  

 

3.5. Genetic Algorithm 

 Genetic algorithms (GA) are inspired by Darwin's theory about evolution. The 

solution to a problem solved by genetic algorithms is said to be evolved. The algorithm 

starts with a set of solutions (represented by chromosomes) called initial population 

[75]. Solutions from one population are taken and used to form a new population. This is 

motivated by a hope, that the new population will be better than the old one.  

3.5.1. General Overview of Genetic Algorithm 

 In what follows, a brief overview of common terms in GA is presented. 

Chromosomes: These contain information about the solution(s) which they represent. In 

ANN, the weights are the chromosomes while these are the subtractive clustering radii in 
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ANFIS in our models. These chromosomes are initiated in a population before genetic 

operations, basically crossover and mutation, are performed on them. These 

chromosomes must be encoded before genetic operations are performed on them. Some 

of the common encoding methods are: Binary, Value, Permutation, Tree and Simulated 

Binary encodings. An encoding method should be chosen based on the problem at hand 

[17]. 

Crossover: This is the process of selecting genes from the parent chromosomes and 

creating new offspring. This process can be rather complicated and it depends on the 

method used for encoding the chromosomes. Specific crossover made for a specific 

problem can improve the performance of GA. 

Mutation: After a crossover is performed, mutation takes place. Ordinarily, it introduces 

random changes into the characteristics of chromosomes and prevents falling of all 

solutions (chromosomes) in a population into a local minimum of the solved problem. 

Basically, mutation changes randomly the new offspring. Mutation depends on the 

encoding methods as well as the crossover. 

Crossover Probability: This determines how often crossover will be performed. If there 

is crossover, offspring are made from parts of parents’ chromosomes. Crossover is 

performed with the hope that new chromosomes will have good part of old chromosomes 

and may be the new chromosomes will be better. 

Mutation Probability: This determines the frequency of mutating parts of 

chromosomes. If there is no mutation, offspring are taken after crossover without any 

change, or else some of the chromosomes are crossovered while some are mutated. 

Population Size: This is the number of chromosomes in a population. If there are too few 
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chromosomes, GA has a few possibilities to perform crossover and only a very few 

solution search space is explored. On the other hand, if there are too many chromosomes, 

GA slows down and hence takes a long time to complete. 

Methods for Chromosome Selection: In selecting chromosomes from the population for 

genetic operation (crossover and mutation), several methods have been proposed. The 

selection process is often done based on the principle of “survival of the fittest”. Among 

them are: roulette wheel selection, tournament selection, rank selection and elitism. In 

roulette wheel selection, fitness is assigned to possible solutions (chromosomes) based on 

a pre-defined fitness function. The fitness level is then used to assign probability of 

selection to each individual chromosome. Because of probabilistic selection that is 

involved, roulette wheel selection allows some weak chromosomes to be selected for 

crossover. 

   In tournament selection, a "tournament" is run among a few individuals 

(chromosomes) chosen at random from the population and the winner (the one with the 

best fitness) is elected for crossover. This method can easily be adjusted by changing the 

tournament size. If the tournament size is larger, weak individuals have a smaller chance 

to be selected. 

 For the rank selection method, chromosomes are evaluated and ranked. The 

chromosome with the highest rank receives the highest fitness. A selection for crossover 

is then made based on the fitness for crossover. This method can lead to slower 

convergence when the best chromosomes are not so much different from others. 

 Another commonly used selection method of chromosomes for crossover is 

elitism. This method aims to solve the problem of losing the best chromosomes while 
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creating new population by genetic operators (crossover and mutation).In elitism, the best 

chromosomes or a few best chromosomes are first copied into the new population before 

performing any classical selection process. 

3.5.2. Steps for Implementing a Genetic Algorithm 

We outline the procedure for carrying out a simple genetic algorithm for an optimization 

task within a given solution space.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Evaluate population P(g)  { i.e., compute fitness values }  

   while the termination criterion is not met, do  

      g:=g+1  

      Select P(g) from P(g-1)  

      Crossover P(g)  

      Mutate P(g)  

      Evaluate P(g)  

   end while  

end GA 

Initialize population P(g)  

state termination criterion/criteria (e.g. maximum no of generations allowed) 

 g:=0  { generation counter } 

begin GA 

Figure 3.13:  Pseudo-code for a Simple Genetic Algorithm 
 
 

 In this study, two GA based hybrids have also been implemented for ANN and 

ANFIS. For the hybrid ANN, we used Differential Evolution (DE), which borrows its 
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concept from the traditional GA. In short, it is a genetic type of algorithm which was 

developed by Ken Price of Berkley University, USA [42]. Ilonen et al [37] first 

introduced a variant of DE for training neural networks. We used DE to train the 

feedforward neural network to form what is henceforth referred to as DE+ANN. 

On the other hand, we built the hybrid ANFIS by developing and implementing 

the traditional concept of GA to search for the optimal radii of the data set in subtractive 

clustering during ANFIS implementation. This is also one of the contributions of this 

study. 
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CHAPTER FOUR 

DATA ACQUISITION, APPROACH AND IMPLEMENTATION 

4.1. Introduction 

 The main contribution of this work is to develop a new approach in predicting 

viscosity and gas/oil ratio curves of PVT properties. Unlike the usual practice in 

prediction of PVT properties where a property that is generated as a curve is predicted 

through single or multi-data points, we present a simple way to predict any PVT 

properties that are generated as curves and vary over the entire required reservoir 

pressures. This has been demonstrated for two important PVT properties, viscosity and 

gas/oil ratio. 

 We implemented four independent Soft Computing techniques the predictions. 

These techniques are: Functional Network (FN), Support Vector Regression (SVR, may 

also referred to as SVM)), Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and 

Artificial Neural Network (ANN). Tow hybrid techniques are also introduced: 

Differential Evolution Algorithm with ANN (DE+ANN) and Genetic Algorithm with 

ANFIS (GA+ANFIS). That is, we have developed different models based on each of 

these overall six techniques for complete curve predictions of the considered PVT 

properties (viscosity and gas/oil ratio). 

 In our implementation, we optimized the MATLAB source codes for ANN and 

ANFIS for our models. Before implementation of ANFIS for prediction, we applied 

Subtractive Clustering to improve the performance of the predictions. Also for SVM and 

FN, we implemented the frameworks discussed in chapters four and five, using partially 

the source codes provided by the inventors of these techniques. For DE+ANN, we used 
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partially the source code for Differential Evolution developed by the authors in [37]. 

Lastly, we developed GA from scratch to implement GA+ANFIS. All simulations were 

carried out with MATLAB 7.5.0 (R2007b) on Pentium IV. 

 

4.2. PVT Data Acquisition and Processing 

 There are three categories of data sets for the experimentations, namely, data sets 

A, B and C. Data set A consists of the hydrocarbon and non-hydrocarbon components of 

the crude oil and other relevant reservoir parameters. Data set B consists of viscosity-

pressure measurements to generate viscosity curves for the corresponding wells in data 

set A, while data set C consists of gas/oil ratio-pressure measurements to generate gas/oil 

ratio curves for corresponding wells in A. These data were from Middle East crude oil.  

 Initially, there were 106 data points in set A. Statistical distribution of the data set 

A (which consists of the predictors) is shown in table 4.1. In preprocessing the data, we 

applied two different outlier-detection methods on it before utilizing it for prediction. The 

methods are: Cook’s distance method and Chauvenet’s criterion [35]. The former method 

was implemented using “STATISTICA” software while details on the latter method can 

be found in [35]. Only data points that were detected to be outliers by the two methods 

were declared as such and removed. Eventually, seven data points were declared as 

outliers. After removal of the outliers from data set A and the corresponding viscosity-

pressure and gas/oil ratio-pressure measurements from data sets B and C respectively, 

data set A contains 99 points while data sets B and C have 1705 and 841 data points 

respectively. 
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Explanation of Data  
The following should be noted for the reported data in table 1. 

• Mol_n2, Mol_co2 and Mol_h2s: the mole fractions of gases  ,     , and  
respectively. 

 Sum_mol_C1-C3: summation of mole fractions of gases labelled C1, C2 and C3. 
 Sum_mol_C4-C6: summation of mole fractions of hydrocarbons labelled iC4, 

nC4, iC5, nC5 and C6 
 C7+: mole fraction of hydrocarbons C7+ 
 SumA pmol_C1-C3:summation of  apparent molecular weights of C1-C3 p
 SumAppmol_C4-C6: summation of  apparent molecular weights of C4-C6 
 BPP( ): bubble point pressure 
 API: oil specific gravity 
 Res_Temp: reservoir temperature  
 odμ : dead oil viscosity 

 obμ : viscosity at bubble point pressure 

 sbR : gas/oil ratio at bubble point pressure 
 

Table 4.1: Description of Data Set A 
Parameter Max. Value Min.Value 

Mol_N2 2.43 0 
Mol_CO2 8.66 0 
Mol_H2S 

12.6 0 
Sum_mol_C1-C3 

57.69 20.03 
Sum_mol_C4-C6 

18.72 8.8 
Mol_C7 

59.09 26.45 
SumAppmol_C1-C3 

33.28048 21.00485 
SumAppmol_C4-C6 

72.40335 66.67617 
bP  3202 381 

API gravity 
48 24.2 

Res_Temp 
240 130 

odμ  5.99 0.85 
obμ  1.84 0.255 
sbR  1334 184 
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  As recommended and usually done, we normalized the predictors between   0 1   

using the formula in equation 4.1. This ensures that the predictors are independent of the 

measurement units. 

                         
 ( min( )) ;

old
new i ix xx −

=
(max( ) min( ))i

i ix x−
n 1, 2,.......,i =   (4.1)

 The data set (data set A) was then divided into training and testing sets. The 

training set consists of 70% (approx. 70 data points) while the testing set consists of 30% 

(approx. 29 points). 

 

4.3. Approach and Problem Formulation  

 The approach used for formulating the problem of curve prediction before 

implementing the Soft Computing techniques for prediction is presented in what follows. 

This simple approach is being formulated for the first time. This formulation can be 

generalised for all PVT properties that can be generated as curves. The principle is 

pivoted on “anchoring” of the curve to a (or some) parameter that can easily be acquired. 

 4.3.1. Viscosity Curve Prediction 

 A typical viscosity curve is shown in Figure 4.1 below. At point “a”, the viscosity 

is called dead oil viscosity ( ). Relatively, it is a parameter that can easily be acquired 

for a new well before the commencement of exploration. It is the viscosity of a fresh 

reservoir fluid. As the pressure increases, the fluid viscosity decreases until the saturation 

pressure (bubble point pressure) is reached at point “b”. This transition between “a” and 

“b” constitute the viscosity below bubble point ( bμ ). As the pressure increases above this 
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saturation point, the fluid viscosity increases linearly as shown in Figure 4.1 between 

points “b” and “c”. The viscosity between “b” and “c” is called viscosity above bubble 

point ( aμ ).      

 Meanwhile, the two transitions that exist between “a” and “b”, and between “b” 

and “c” (for bμ  and aμ  respectively) can easily be depicted perfectly with the following 

two equations respectively. 

     b od d

ob od b d

P P
P P

β
μ μ
μ μ

⎛ ⎞− −
= ⎜ ⎟− −⎝ ⎠

             (4.2)  

    (a ob bP P )μ μ α= + −           (4.3) 
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Figure 4.1:  A Typical Viscosity Curve 

 

Equation (4.2) is for the part “a” to “b” while equation (4.3) is for the linear part “b” to 

“c”. Equation (4.2) can be re-written as:                       
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          ( ) d
b od ob od

b d

P P
P P

β

μ μ μ μ
⎛ ⎞−

= + − ⎜ −⎝ ⎠
⎟            (4.4) 

 
where α andβ  are the fitting viscosity curve coefficients. 

 From these equations, there are three parameters that are needed to be predicted to 

generate a viscosity curve for a new oil well. These are obμ , α and β . While we can 

easily predict obμ from the first 12 variables shown in table 1, the problem arises on how 

to come about α and β  for a new well. The existing curves can be fitted using non-linear 

least square method to generate these two coefficients. A sample of a fitted viscosity 

curve is shown in Figure 4.2. 
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Figure 4.2:  A fitted Viscosity Curve  

 The resulting α  and β which were generated from the non-linear least square 

curve fitting can then be trained using a SC technique. It should be noted that the 
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predicted viscosity curve is always anchored to the dead oil viscosity. All the six 

techniques mentioned in section 4.1 have been implemented for predicting each of the 

required variables ( ,α β and obμ ). Seventy oil wells were used for training and 29 for 

testing. These simulation resources are aimed to be a useful tool that will save a lot of 

money and time that are always invested in the laboratory experimentations to generate 

viscosity and gas/oil ratio curves for the new wells.  

 4.3.2. Gas/Oil Ratio Curve Prediction 

 A typical gas/oil ratio curve is shown in Figure 4.3. The highest value of gas/oil 

ratio in the curve is at the bubble point pressure. Following the same trend as we did 

for viscosity, the curve is fitted and the only coefficient of the fitted curves as well as 

the gas/oil ratio at the bubble point pressures is predicted. 

 A perfect equation for fitting this curve is given in equation 4.5.This equation 

resembles that of oil viscosity between dead oil viscosity and viscosity at bubble 

point pressure. The main difference is that the gas/oil ratio which is equivalent to 

dead oil viscosity is zero. In a nutshell, the minimum gas/oil ratio is zero. 

A sample of a fitted gas/oil ratio curve is shown in Figure 4.4. 

    d
s sb

b d

P PR R
P P

τ
⎛ −

= ⎜ −⎝ ⎠

⎞
⎟                          (4.5) 

 

where τ is the fitting gas/oil ratio curve coefficient. 
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Figure 4.3: A Typical Gas/Oil Ratio Curve 
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Figure 4.4: A fitted Gas/Oil Ratio Curve 
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 The required parameters to be predicted are two: the fitting coefficient, , and the 

gas/oil ratio at bubble point pressure ( ). As we had under viscosity 

experimentation, there are two types of data sets, namely: data sets A and C. The data 

set C consists of gas/oil ratio-pressure measurements which are used to generate the 

curves and hence the fitting coefficients. Similar to viscosity curve prediction, data 

set A is used here also as predictors, with 70 wells for training and the remaining 29 

for testing. 

Table 4.2 Distribution of the Fitting Coefficients 
Parameter Max. Value Min. Value 

α  1.90E-04 1.49E-05 
β  0.924 0.1331 
τ  0.922647 0.43773 

 

4.4. Implementation of the Soft Computing Techniques 

 In what follows, we briefly describe the basis of all the designed Soft Computing 

Techniques: ANN, SVM, FN and ANFIS, and the two hybrid models: DE+ANN and 

GA+ANFIS. All these are put into three categories: 

i) ANN and DE+ANN 

  ii)     SVM and FN 

iii) ANFIS and GA+ANFIS 

 
 All in all, there are just five variables , , ,obα β μ τ and sbR  to be predicted in order 

to predict both viscosity and gas/oil ratio curves (see sections 4.3.1 and 4.3.2).  
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4.4.1. ANN and DE+ANN Implementation 

 One of the commonly emphasised drawbacks of ANN is the unrestricted trial and 

error method used in selecting the number of hidden layers and their neurons that can 

correctly map and capture the non-linear relationship between the inputs and output(s).At 

the same time, Hornik et al [36] suggested that a sufficient number of neurons in a hidden 

layer can approximate any function to any degree of accuracy. However, such a system 

may not be stable. In developing the ANN (feedforward neural network, FFNN) models 

for the five aforementioned predicting variables, a number of trials were made viz: 

selecting the number of hidden layers, number of neurons in each hidden layer and the 

training algorithm. For obμ  and sbR , we eventually used two hidden layers with thirteen 

and six neurons respectively. Hence, we have 12-12-6-1 ANN structure, (12 input 

neurons, 12 neurons in the first hidden layer, 6 neurons in the second hidden layer and 1 

output neuron), in each case. For the three fitting variables, we used 12-12-5-1 ANN 

(FFNN) architecture. In all cases, tangent sigmoid transfer function and Levenberg-

Marquardt training optimization were eventually used, and the best network out of 1000 

runs in each case was taken. The architectures of the ANN above were retained during 

the implementation of DE+ANN. As earlier said, a variant of Differential Evolution (DE) 

called “traindiffevol”, (see [37]), was used for building the DE+ANN models. 
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4.4.2. SVR and FN Implementation 

 A. Support Vector Regression (Support Vector Machines Framework) 

 Support Vector Regression (SVR), a variant of SVM for regression, is a robust 

machine learning algorithm which is unique, optimal and unlikely to generate local 

minima. Cortes and Vapnik [14] first introduced it as an advancement to neural network. 

We have highlighted the conventional implementation of SVR in sub-section 3.2.1.: 

For the five predicting variables, the selected optimal relevant variables are stated as 

fo ws. llo

1.  : C =10000; lambda = 1e-7; epsilon = 0.09; kerneloption =0.9; kernel= 'poly'; 

          verbose=1. 

2.   : C =60; lambda = 1e-7; epsilon = 0.08; kerneloption =0.8; kernel= 'poly'; 

          verbose=1. 

3. μ : C= 40000; lambda = 1e-7; epsilon = 0.001; kerneloption =0.994;  

          kernel= 'gaussian’ ; verbose=1.  

4.  : C=100000; lambda = 1e-7;epsilon = 0.001; kerneloption =2.8;     

    kernel='poly'. 

5.  : C= 500000; lambda = 1e-7;epsilon = 0.001; kerneloption =0.12;     

      kernel='gaussian'. 

 After selection of a kernel, the other highly influential parameters in any SVR 

model based on observation are “C” and “kerneloption”. For ‘poly’ kernel, kerneloption 

denotes the degree of the kernel polynomial while it denotes kernel bandwidth for 

‘gaussian’. “C” is the trade-off between achieving minimal training error and complexity 

of the model.   
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B. Functional Networks 

 In functional networks, neural functions are to be learned instead of weights. To 

learn these neural functions, a set of linearly independent functions have to be used. 

These are called basis functions. Possible basis functions are: polynomial, exponential, 

Fourier and logarithm functions or their combinations. Selection of the basis function 

along with the possible learning method is essential in developing FN model .Section 3.3 

gives detailed explanation on this. Details about the basis function that gave best results 

in each of the five cases are given in what follows. As explained in section 3.3, Minimum 

Description Length Principle (MDLP) was used to optimize the network and select the 

best model. The output is given by: 

              (4.6) 1 1 2 2 3 3 12 12( ) ( ) ( ) ...... ( )y f x f x f x f x= + + + +

A. For α , polynomial family of degree 3 was used and 1 1.... 2f f
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B. For , polynomial family of degree 3 gave the  best result and 1 1.... 2f f

2

 are
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D. For  logarithm family gave the best result and 1 1.... 2f f
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E. For  sbR   logarithm family  gave the  best result and 1 1.... 2f f  are 
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9 9 9 9 9

10 10 10 10 11 11

12 12 12 12 12

9 9 9( ) 1.47 10 log( 2) 2.9 10 log( 3) 1.48 10 log( 4);
5 5( ) 5 10 log( 3) 5.119 10 log( 4); ( ) 0;
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f x x x
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It is noteworthy that in some cases some functions are zero, this means that the 

corresponding input to that node does not really affect the predicting output at that 

instance. 

 

4.4.3. ANFIS and GA+ANFIS Implementation  

 Rather than the traditional fuzzy system, ANFIS offers an adaptive fuzzy system 

where rules are learnt from the data. However, its implementation could result in 

generating a large set of rules. To reduce the number of rules that are generated during 

ANFIS implementation, different clustering methods have been proposed, e.g. subtractive 

clustering and fuzzy-C mean. Subtractive clustering is the most widely used clustering 

method in ANFIS implementation. Two important variables in the subtractive clustering 

are the clustering “radii”, (a vector whose length is equal to the number of columns in the 

data set and each radius has a value between 0 and 1), and “options” (with variables: 

quashFactor, acceptRatio, rejectRatio and Verbose). “Verbose” in the “options” is totally 

insignificant as it only relates to choice of information display during ANFIS execution. 

In our case, the dimension of radii is 1x13 since there are 12 predictors and one output. It 

should also be noted that each optimal radius is always in the neighbourhood of the 

centre of the radius, i.e. 0.5. 
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A. ANFIS Modelling 

 The following are the values of “radii” and “options” chosen by trial and error 

m hod for predicting the five required variables:  , , μ ,  and    et

1. : radii=[0.5 0.4 0.5 0.3 0.3 0.5 0.3 0.4 0.3 0.3 0.3 0.3 0.25];  
     options=[1.2 0.4 0.2 0] 

2.  : radii= [0.5 0.38 0.3 0.3 0.3 0.423 0.3 0.388 0.3 0.3 0.3 0.3 0.25]; 

        options=[1.2 0.4 0.2 0] 

3.μ : radii= [0.5 0.38 0.3 0.5 0.3 0.403 0.38 0.388 0.3 0.3 0.3 0.3 0.25]; 

          options=[1.0 0.44 0.125 0] 

4.  : radii=[0.5 0.4 0.4 0.5 0.4 0.4 0.38 0.388 0.4 0.4 0.3 0.45 0.45] 

         options=[1.0 0.4 0.12 0] 

5.   : radii=[0.5 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.25] 

 options=[1.2 0.4 0.2 0] 

 Based on our observation, “radii” and “quashfactor” are the most influential out 

of all parameters to be selected for ANFIS with subtractive modelling. Appropriate 

selection of these two parameters easily prevents overfitting and underfitting. 

 

B. GA+ANFIS Modelling 

 To improve the performance of ANFIS, a hybrid ANFIS model called 

GA+ANFIS has been built and implemented for predicting all the five variables. It is 

obvious that trial and error searching for 13(or generally n) parameters in the radii will 

not give optimal results. In this regard, we introduced intelligent search using GA for 

finding the optimal radii in the solution space. The step-by-step implementation of 

GA+ANFIS is given as follows. 
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• Initialize the population size, N, and the termination criterion 

NOTE: The termination is either maximum number of generation or the error 

goal. 

• Generate randomly N number of  radii, radii=[ , , …… . . , ] in the solution 

space 

NOTE: Here radii’s are synonymous with chromosomes. Each population now 

has (  chromosomes. )N n×

• Evaluate the whole population in the generation through ANFIS implementation, 

using root mean squared error of the testing data as the criterion. 

• Select the suitable chromosomes from the population for genetic operations 

(Tournament selection) 

• Perform crossover and mutation of selected chromosomes to generate child 

population approximately equal to the parent population size and evaluate ANFIS 

testing output using root mean squared error of the testing phase. 

• Select approximately N best individuals from the  parent and child populations 

(elitism) 

• These new  N individuals form the parent population for the next generation 

• Repeat the process until the termination criterion is met. 

 The results for GA+ANFIS show a significant improvement for both viscosity 

and Gas/Oil ratio predictions than when trial-and-error selection method for the radii was 

used. 
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CHAPTER FIVE 

EXPERIMENTAL RESULTS AND DISCUSSION 

5.1. Introduction 

 In this study, models based on four independent soft computing techniques: ANN, 

SVR and FN, and two hybrid frameworks, DE+ANN and GA+ANFIS, have been 

developed. In what follows, we present and compare the results based on categorization 

during the implementation in section 4.4. The criteria for prediction performance 

evaluation are: 

(i) The plots of the experimental and the predicted curves. Only few plots are 

shown here for comparison.  

(ii) The root means square errors (RMSE) of the training and testing wells. 

(iii) The average absolute percent relative error (AAPRE) of the training and 

testing wells. 

The formulae for the two statistical measures mentioned above are given as follows: 

1. Root mean Square Error 

              = 
2 2

1 1 2 2( ) ( ) ... ( )n nx y x y x y
n

− + − + + − 2

                  (5.1)                        

2. Average absolute percent relative error                      

                          100  ;     1,2,3, …… . . ,                         .  

                           1 n

i
i

AAPRE E
n

= ∑              (5.2) 

 Where 'x s  are the predicted values and  are the actual values and “n” is the total 

number of data points in all the training wells (70) or testing wells (29). A good model 

should have low RMSE and AAPRE values. 

'y s
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5.2. Results and Discussion for Viscosity Curve Prediction 

 Statistical description of the data sets used for training our models is shown in 

Table 4.1.The first twelve variables are the predictors while the thirteenth variable 

(viscosity at bubble point pressure) is the predicted. Also, other variables (α and β  ) 

from the fitting curves were also predicted using the first twelve variables. We used 70% 

of the data for training and 30% for testing. Once again, each data point corresponds to 

the properties of an individual oil well. 

 

5.2.1. ANN and DE+ANN for Viscosity Curve Prediction 

 The models for ANN and DE+ANN as described in section 4.4.1 were 

implemented. Sample predicted plots for training and testing wells are shown in Figures 

5.1 through 5.6. The predicted viscosity curves from DE+ANN have better matching with 

the experimental curves than those of ANN. Also, from Table 5.1, the RMSE and APPRE 

for DE+ANN predictions are 0.07681 and 8.982%  respectively for testing wells, while 

the corresponding RMSE and AAPRE for ANN predictions are 0.08712 and 10.2457% 

respectively. Since DE+ANN predictions give lower RMSE and AAPRE than ANN, its 

overall performance is better than ANN in predicting viscosity curves. Though the 

performance in the training phase is not as important as the testing phase, DE+ANN 

overall performance is also better than that of ANN during training because of its lower 

RMSE and AAPRE. This shows consistency in the results of DE+ANN. The predicted 

curves from the two frameworks show good matching with the experimental curves for 

training wells with some deviations for some testing wells. Likewise, Table 5.2 shows 
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the predicted parameters of the viscosity curves in Figures 5.1 through 5.6 based on ANN 

and DE+ANN models. 

 

Table 5.1: Statistical Performance Measures of ANN and DE+ANN Models for Viscosity 
Curve Prediction 

MODEL ANN DE+ANN 

 RMSE AAPRE% RMSE AAPRE% 

TRAINING 0.08664 8.33945 0.07409 6.77273 

TESTING 0.08712 10.24569 0.07681 8.98202 
 
 

Table 5.2: Sample Predicted Viscosity Curve Parameters by ANN and DE+ANN  Models 
 ACTUAL ANN DE+ANN 

TRAINING: α  7.19E-05 5.7914E-05 5.79E-05 
 1.09E-4 1.08E-4 1.08E-4 
 8.59E-05 5.6E-05 5.6E-05 
β  0.6688 0.50256 0.50256 
 0.6201 0.5881 0.5981 
 0.923938 0.6266 0.7265 
obμ  0.69 0.6628 0.7125 
 0.9 0.8643 0.8986 
 0.77 0.6356 0.6811 

TESTING: α  3.87E-05 4.32E-05 4.32E-05 
 3.02E-05 4.85E-05 4.85E-05 
 5.81E-05 5.11E-05 5.11E-05 
β  0.3388 0.4889 0.4889 
 0.3352 0.4594 0.4594 
 0.4121 0.4785 0.4785 
obμ  0.58 0.5228 0.5434 
 0.54 0.5131 0.5629 
 0.719 0.5753 0.6755 
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Figure 5.1: Viscosity vs Pressure Plot for Sample Well TR1 
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Figure 5.2: Viscosity vs Pressure Plot for Sample Well TR2 
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Figure 5.3: Viscosity vs Pressure Plot for Sample Well TR3 
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Figure 5.4: Viscosity vs Pressure Plot for Sample Well TS1 

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

Viscosity Curve - Experimental and Predicted (Testing)

V
is

co
si

ty
 (c

P
)

Pressure (psi)

 

 
Experimental
ANN
DE+ANN

79 
 



 
Figure 5.5: Viscosity vs Pressure Plot for Sample Well TS2 
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Figure 5.6: Viscosity vs Pressure Plot for Sample Well TS3 
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5.2.2. SVR and FN for Viscosity Curve Prediction 

  We implemented SVR and FN as described in section 4.4.2. Here also, 

sample predicted plots of training and testing wells from the two frameworks are shown 

in Figures 5.7 through 5.12.The statistical performance measures for the two frameworks 

are shown in Table 5.3. For this pair of techniques, the performance of both frameworks, 

SVR and FN, are very competitive. While FN performance is better than that of SVR in 

the training phase with lower RMSE and AAPRE, which are 0.06765 and 5.4% 

respectively, against those of SVR which are 0.07495 and 6.3953% respectively, SVR 

performance is very competitive with that of FN for the testing wells . For the testing 

phase, FN has lower AAPRE of 8.5514%, against that of SVR which is 8.5969%, while 

SVR has lower RMSE, 0.0765, against that of FN which is 0.07941.In essence, the 

results for these two frameworks are very competitive for viscosity curve prediction. The 

predicted curves from the two SC techniques show good matching with the experimental 

curves for both training and testing wells with little deviation in some testing wells. 

Likewise, Table 5.4 shows the predicted parameters of the viscosity curves in Figures 5.7 

through 5.12 based on SVR and FN models 

 
 

Table 5.3: Statistical Performance Measures of SVR and FN Models for Viscosity Curve 
Prediction 

MODEL SVR FN 

 RMSE AAPRE% RMSE AAPRE% 

TRAINING 0.07495 6.3953 0.067648 5.400661 

TESTING 0.07659 8.5969 0.079412 8.551437 
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Table 5.4: Sample Predicted Viscosity Curve Parameters by SVR and FN Models 
 ACTUAL SVR FN 

TRAINING: α  
7.19E-05 5.79E-05 5.89E-05 

 
1.09E-4 7.27E-05 8.07E-05 

 
8.59E-05 5.86E-05 5.71E-05 

β  
0.6688 0.626296 0.625281 

 
0.6201 0.67805 0.593434 

 
0.923938 0.833985 0.89791 

obμ  
0.69 0.686544 0.71764 

 
0.9 0.782032 0.877111 

 
0.77 0.652283 0.658631 

TESTING: α  
3.87E-05 4.88E-05 5.38E-05 

 
3.02E-05 4.57E-05 4.48E-05 

 
5.81E-05 5.10E-05 5.56E-05 

β  
0.3388 0.3386 0.3190 

 
0.3352 0.3426 0.3712 

 
0.4121 0.3781 0.4204 

obμ  
0.58 0.5736 0.5549 

 
0.54 0.5378 0.5690 

 
0.719 0.6835 0.6767 

 

82 
 



 
Figure5.7: Viscosity vs Pressure Plot for Sample Well TR1 
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Figure 5.8: Viscosity vs Pressure Plot for Sample Well TR2 
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Figure 5.9: Viscosity vs Pressure Plot for Sample Well TR3 
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Figure 5.10: Viscosity vs Pressure Plot for Sample Well TS1 
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Figure5.11: Viscosity vs Pressure Plot for Sample Well TS2 
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Figure 5.12: Viscosity vs Pressure Plot for Sample Well TS3 
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5.2.3. ANFIS and GA+ANFIS for Viscosity Curve Prediction 

  The implementation of these two frameworks have been highlighted in 

section 4.4.3 The aim of the developed GA+ANFIS framework is to improve the 

performance of independent ANFIS prediction which relies heavily on the right choice 

for subtractive clustering radii for the data set. Wrong choice of radii leads easily to 

over-fitting, giving good performance for training but very poor for testing, or even 

under-fitting. Following the same trend of the previous sections, sample predicted plots 

of the training and testing wells from the two frameworks are shown in Figures 5.13 

through 5.18. The RMSE and AAPRE for the training and testing wells for the two SC 

techniques are given in Table 5.5. 

Based on the three evaluation criteria, GA+ANFIS gives better performance than 

ANFIS. The RMSE and AAPRE for GA+ANFIS framework amount to 0.0686 and 

7.7602% respectively for the testing wells, and the corresponding values for independent 

ANFIS are 0.08516 and 10.18525% respectively. These values of the RMSE and AAPRE 

for GA+ANFIS hybrid are far lower than those of ANFIS. Hence, GA+ANFIS hybrid 

gives better performance than ANFIS alone. This affirms the problem of possible over-

fitting associated with the use of subtractive clustering in ANFIS implementation. In the 

case of GA+ ANFIS, GA has been used to search within the solution space and the 

implementation has avoided radii’s that could lead to local optimal. Though 

implementing GA with ANFIS, as we did in this case , to search for optimal radii  is very 

slow, it enhances appropriate selection of radii and hence, improvement of the results. 

Even for the training wells, GA+ANFIS shows better performance than the ordinarily 

implemented ANFIS where trial-and-error methods have been used to choose the optimal 
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radii. Likewise, Table 5.7 shows the predicted parameters of the viscosity curves in 

Figures 5.13 through 5.18 based on ANFIS and GA+ANFIS models. 

Table 5.5: Statistical Performance Measures of ANFIS and GA+ANFIS Models for 
Viscosity Curve Prediction 

MODEL ANFIS GA+ANFIS 

 RMSE AAPRE% RMSE AAPRE% 

TRAINING 0.06177 5.221732 0.05241 4.551326 

TESTING 0.08516 10.18525 0.068587 7.760236 
 

Table 5.6: Sample Predicted Viscosity Curve Parameters by ANFIS and GA+ANFIS 
Models 

 ACTUAL ANFIS GA+ANFIS 

TRAINING: α  7.19E-05 5.78E-05 5.97E-05 
 1.09E-4 1.01E-4 1.04E-4 
 8.59E-05 5.89E-05 5.48E-05 
β  0.6688 0.6112 0.6716 
 0.6201 0.6109 0.6124 
 0.923938 0.6751 0.8963 
obμ  0.69 0.6923 0.7261 
 0.9 0.9059 0.8843 
 0.77 0.6472 0.7156 

TESTING: α  3.87E-05 4.66E-05 4.91E-05 
 3.02E-05 4.3E-05 4.13E-05 
 5.81E-05 4.47E-05 4.76E-05 
β  0.3388 0.3081 0.3289 
 0.3352 0.3442 0.3378 
 0.4121 0.5201 0.3204 
obμ  0.58 0.5899 0.5835 
 0.54 0.5613 0.5590 
 0.719 0.6345 0.6823 

 

87 
 



 
Figure 5.13: Viscosity vs Pressure Plot for Sample Well TR1 
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Figure 5.14: Viscosity vs Pressure Plot for Sample Well TR2 
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Figure 5.15: Viscosity vs Pressure Plot for Sample Well TR3 
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Figure 5.16: Viscosity vs Pressure Plot for Sample Well TS1 
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Figure 5.17: Viscosity vs Pressure Plot for Sample Well TS2 
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Figure 5.18: Viscosity vs Pressure Plot for Sample Well TS3 
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Similar to the case of viscosity curve prediction, 70% of the data set, equivalent to the 

number of oil wells, was used for training and 30% for testing. 

 

5.3.1. ANN and DE+ANN for Gas/Oil Ratio Curve Prediction 

 We implemented the models of ANN and DE+ANN as described in section 4.4.1 

Sample plots of training and testing wells for the predicted gas/oil ratio curves are shown 

in Figures 5.23 through 5.28. The statistical measures for evaluating the performance of 

the two techniques in predicting gas/oil ratio curves are also shown in Table 5.8. In this 

case, ANN really displays one of its drawbacks of getting stuck at “local optimal”. In the 

training phase, ANN has higher performance with lower RMSE (23.5217) and AAPRE 

(8.804342%) than DE+ANN hybrid which has RMSE of 23.5843 and AAPRE of 

9.0266%. However, for the testing wells, the predicted curves from DE+ANN hybrid 

framework have better matching with the experimental curves than those of ANN. Also 

from Table 5.8, the RMSE and AAPRE for DE+ANN predictions for the testing wells are 

37.17693 and 12.1026% respectively, while the RMSE and AAPRE for ANN predictions 

are 39.0161 and 12.701% respectively. Since DE+ANN prediction gives lower RMSE 

and AAPRE than ANN for testing wells, its overall performance is better than ANN in 

predicting gas/oil ratio curves. Likewise, Table 5.9 shows the predicted parameters of the 

gas/oil ratio curves in Figures 5.23 through 5.28 based on ANN and DE+ANN models. 

 

 

 

 

94 
 



Table 5.8: Statistical Performance Measures of ANN and DE+ANN Models for Gas/Oil 
Ratio Curve Prediction 

MODEL ANN DE+ANN 

 RMSE AAPRE% RMSE AAPRE% 

TRAINING 23.5217 8.804342  23.5843  9.0266 

TESTING 39.0161 12.701  37.1769  12.1026 
 
 

Table 5.9: Sample Predicted Gas/Oil Ratio Curve Parameters by ANN and DE+ANN 
Models 

 ACTUAL ANN DE+ANN 

TRAINING: τ  0.7662 0.6558 0.6499 
 0.6081 0.5788 0.5887 
 0.7114 0.6346 0.6821 

Rsb  548 559.3255 561.1312 
 400 414.8949 385.8212 
 571 567.7372 562.8003 

TESTING: τ  0.6200 0.6468 0.6030 
 0.7014 0.6797 0.6864 
 0.6502 0.6827 0.7153 

Rsb  688 692.3316 690.6501 
 702 695.099 685.3666 
 633 585.6081 562.4248 
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Figure 5.23: Gas/Oil Ratio vs Pressure Plot for Sample Well TR1 
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Figure 5.24: Gas/Oil Ratio vs Pressure Plot for Sample Well TR2 
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Figure 5.25: Gas/Oil Ratio vs Pressure Plot for Sample Well TR3 
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Figure 5.26: Gas/Oil Ratio vs Pressure Plot for Sample Well TS1 
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Figure 5.27: Gas/Oil Ratio vs Pressure Plot for Sample Well TS2 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

100

200

300

400

500

600

700

800

900

1000

Solution Gas/Oil Ratio Curve - Experimental and Predicted (Testing)

S
ol

ut
io

n 
G

as
/O

il 
R

at
io

 (S
C

F/
S

TB
) 

Pressure (psi)

 

 
Experimental
ANN
DE+ANN

 

 
Figure 5.28: Gas/Oil Ratio vs Pressure Plot for Sample Well TS3 
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5.3.2. SVR and FN for Gas/Oil Ratio Curve Prediction 

 The SVR and FN frameworks described in section 4.4.2 were implemented to 

predict the required variables, τ and sbR . Similar to other previous cases, only sample 

training and testing plots of the predicted gas/oil ratio curves are shown in Figures 5.29 

through 34. Table 5.10 shows the statistical measures for evaluating the performance of 

SVR and FN techniques in predicting gas/oil ratio curves. The predicted curves from 

these two techniques show good matching with the experimental curves for training and 

testing wells. In this case, unlike the viscosity curve prediction where performances of 

both SVR and FN are very competitive, SVR has better average performance than FN in 

both training and testing phases, based on the statistical measures used for evaluation. For 

the training, SVR has RMSE 19.0043 and AAPRE of 7.5279%, while FN has RMSE of 

21.6942 and AAPRE of 8.4167%. For testing, SVR has RMSE of 30.0170 and AAPRE 

of 9.0757%, while FN has RMSE of 32.8196 and AAPRE of 10.2012%. Based on the 

preceding analysis, though performance of FN is also good, SVR framework gives better 

performance in predicting gas/oil ratio than FN. This is also evident from the sample 

predicted curves. Likewise, Table 5.11 shows the predicted parameters of the gas/oil ratio 

curves in Figures 5.29 through 5.34 based on SVR and FN models. 
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Table 5.10: Statistical Performance Measures of SVR and FN Models for Gas/Oil Ratio 
Curve Prediction 

MODEL SVR FN 

 RMSE AAPRE% RMSE AAPRE% 

TRAINING 19.0043 7.5279 21.6942 8.4167 

TESTING 30.0170 9.0757 32.8196 10.2012 
 
 

Table 5.11: Sample Predicted Gas/Oil Ratio Curve Parameters by SVR and FN Models 
 ACTUAL SVR FN 

TRAINING: τ  0.7662 0.6655 0.6813 
 0.6081 0.6099 0.6259 
 0.7114 0.6445 0.6762 

Rsb  548 584.0497 593.5556 
 400 400.0016 405.2821 
 571 571.0214 562.5857 

TESTING: τ  0.6200 0.6397 0.5983 
 0.7014 0.6773 0.6497 
 0.6502 0.6834 0.7090 

Rsb  688 688.0279 668.7892 
 702 695.2134 693.5055 
 633 634.6559 602.0884 
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Figure5.29: Gas/Oil Ratio vs Pressure Plot for Sample Well TR1 

0 200 400 600 800 1000 1200 1400 1600 1800
0

100

200

300

400

500

600

700

800
Solution Gas/Oil Ratio Curve - Experimental and Predicted (Training)

S
ol

ut
io

n 
G

as
/O

il 
R

at
io

 (S
C

F/
S

TB
)

Pressure (psi)

 

 
Experimental
SVR
FN

 

 
Figure 5.30: Gas/Oil Ratio vs Pressure Plot for Sample Well TR2 
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Figure 5.31: Gas/Oil Ratio vs Pressure Plot for Sample Well TR3 
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Figure 5.32: Gas/Oil Ratio vs Pressure Plot for Sample Well TS1 
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Figure 5.33: Gas/Oil Ratio vs Pressure Plot for Sample Well TS2 
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Figure 5.34: Gas/Oil Ratio vs Pressure Plot for Sample Well TS3 
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5.3.3. ANFIS and GA+ANFIS for Gas/Oil Ratio Curve Prediction 

  Details of how these two frameworks were implemented for gas/oil ratio 

curve prediction have been highlighted in sub-section 4.4.3. As explained under section 

5.2.3, selection of radii in ANFIS implementation with subtractive clustering is very 

critical for its good performance. It affects the overall performance of the adaptive fuzzy 

inference system. Hence, there is a need to make correct selection of the subtractive 

clustering radii. This is the role that GA plays in the GA+ANFIS hybrid framework. 

Without incorporating intelligent searching algorithm into the ANFIS, trial-and-error 

method has to be used for selecting optimal radii. However, this does not guarantee 

optimal radii. 

 Similar to other previous cases, sample plots of the predicted curves for training 

and testing wells from the two frameworks are shown in Figures 5.35 through 5.40. The 

predicted curves for training and testing show a very good matching with the 

experimental curves. Also, Table 5.12 shows the statistical measures used for evaluating 

the performance of the two models. It is obvious that GA+ANFIS has better performance 

than ANFIS. GA+ANFIS has lower RMSE and AAPRE for both training and testing 

cases. Likewise, Table 5.13 shows the predicted parameters of the gas/oil ratio curves in 

Figures 5.35 through 5.40 based on ANFIS and GA+ANFIS models. 
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Table 5.12: Statistical Performance Measures of ANFIS and GA+ANFIS Models for 
Gas/Oil Ratio Curve Prediction 

MODEL ANFIS GA+ANFIS 

 RMSE AAPRE% RMSE AAPRE% 

TRAINING 22.8593 8.5440 19.8938 7.6141 

TESTING 29.1187 8.8059 26.0679 8.3404 
 

 

Table 5.13: Sample Predicted Gas/Oil Ratio Curve Parameters by ANFIS and 
GA+ANFIS Models 

 ACTUAL ANFIS GA+ANFIS 

TRAINING: τ  
0.7662 0.657453 0.678454 

 
0.6081 0.595331 0.609004 

 
0.7114 0.653415 0.650429 

Rsb  
548 569.4485 587.3192 

 
400 410.4573 403.0655 

 
571 564.5945 573.7231 

TESTING: τ  
0.6200 0.617005 0.612312 

 
0.7014 0.658996 0.651872 

 
0.6502 0.658569 0.682761 

Rsb  
688 674.8576 687.2239 

 
702 701.0758 699.2593 

 
633 620.3292 613.7657 
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Figure 5.35: Gas/Oil Ratio vs Pressure Plot for Sample Well TR1 
 

 
Figure 5.36: Gas/Oil Ratio vs Pressure Plot for Sample Well TR2 
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Figure 5.37: Gas/Oil Ratio vs Pressure Plot for Sample Well TR3 
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Figure 5.38: Gas/Oil Ratio vs Pressure Plot for Sample Well TS1 
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Figure 5.39: Gas/Oil Ratio vs Pressure Plot for Sample Well TS2 
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Figure 5.40: Gas/Oil Ratio vs Pressure Plot for Sample Well TS3 
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CHAPTER SIX 

CONCLUSION 

6.1 Summary 

 We have presented a new approach to predict crude oil Pressure-Volume-

temperature (PVT) properties that need to be represented as curves over a specified range 

of reservoir pressures. Instead of the usual single or multi-data points’ prediction, which 

could distort the consistency of the curve’s shape, an efficient approach for predicting 

such PVT properties that are represented as curves has been introduced and implemented. 

 In all the predictions, we have implemented four different independent soft computing 

techniques, viz: Feedforward Neural Network, Support Vector Regression (a variant of 

Support Vector Machines), Functional Networks and Adaptive Neuro-Fuzzy Inference 

Systems. We have also implemented two hybrid systems, DE+ANN and GA+ANFIS. 

We have formulated and implemented our approach for the prediction of viscosity and 

gas/oil ratio curves. 

 In the first phase of the experimentation, we examined the raw data from PVT 

laboratory analyses and explored two different techniques for outliers’ detection. This 

was done only for the predictors, i.e. data set A, but the corresponding viscosity-pressure 

and gas/oil ratio-pressure measurements for those outlier oil wells were also removed 

from data sets B (viscosity-pressure measurements) and C (gas/oil ratio-pressure 

measurements). Only data points that were jointly detected as outliers by the two 

techniques were declared as such. 

 We then developed different models based on each of the four soft computing 

techniques and the hybrid frameworks for predicting both viscosity and gas/oil ratio 
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curves. All the techniques were categorised into three and comparisons based on 

graphical representation and statistical errors between the predicted curves and the actual 

curves have been carried out. 

 Considering the state of the art comparison of the implemented techniques, 

GA+ANFIS can be said to be the most sophisticated. Its highest performance can be 

ascribed to the intelligent searching role played by GA. The next to GA+ANFIS are SVR 

and ordinary ANFIS. Clearly, standalone ANN (feedforward neural network) is the least 

robust. 

 

6.2. Contribution to Knowledge 

This work has achieved the following: 

 A comprehensive literature survey has been carried out vis-à-vis prediction of 

PVT properties. 

 A new approach has been introduced for predicting PVT properties. Instead of 

single or multi-data points prediction for PVT properties that are generated as 

curves, our approach predicts the entire curve. Most importantly, the shapes of the 

predicted curves are consistent with the physical laws and 

experimental/laboratory results. 

 We have successfully implemented our approach through the prediction of 

viscosity and gas/oil ratio curves. Also, we have developed six different complete 

models for prediction of these two important PVT properties using the following 

Soft Computing techniques: Feedforward Neural Network (FFNN or ANN), 

Support Vector Regression (SVR), Functional Networks and Adaptive Neuro-
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Fuzzy Inference Systems (ANFIS), and two hybrid frameworks: DE+ANN and 

GA+ANFIS. 

 Though prediction results from all the models are good for viscosity and gas/oil 

ratio curves, GA+ANFIS hybrid framework has the best performance, viz: 

accuracy of results with respect to the performance criteria we have used for 

evaluation and comparisons for both predicted curves. 

 In essence, this work will hopefully be a fast and low cost efficient simulation 

tool for predicting PVT properties for optimizing oil production operations.  

 

6.3. Recommendations 

 One of the greatest challenges that researchers of applications of Soft Computing 

in petroleum engineering do face is the availability of data or adequate data for 

experimentation. In view of this, there will be need for more collaboration between 

researchers from relevant fields so as to explore more opportunities in the petroleum 

industry. Some of the issues in petroleum engineering that still need to be addressed 

include but are not definitely limited to the following: 

 Slug control 

 Prediction of gas condensate properties and outputs of separator stages 

 Experimentations with some other SC techniques (e.g. Multi-Objective genetic 

Algorithm) in predicting other PVT properties by utilizing and improvement on 

the approach used in this study. 
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Nomenclature 

AAPRE= average absolute percent relative error 
oB = oil formation volume factor (FVF) , RB/STB( ) 3 3/m m

obB = oil formation volume factor (FVF) at bubble point pressure, RB/STB ( ) 3 3/m m
P = pressure, psi 

bP = bubble point pressure, psi 
RMSE= root mean square error 

sR = solution gas/oil ratio, SCF/STB ( ) 3 3/m m

sbR = bubble point solution gas/oil ratio, SCF/STB ( ) 3 3/m m
T = temperature, oF 
V = volume,  3m

gγ = gas relative density (air=1) 

oγ = oil relative density (water=1) 

A PIγ = stock tank oil gravity, oAPI 

aμ  = viscosity above bubble point, cP  
bμ  = viscosity below bubble point, cP  

oμ = oil viscosity, cP  
obμ = bubble point/gas-saturated oil viscosity, cP  

odμ = dead oil viscosity, cP  
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