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During the different phases of a software project, the manager is faced with many 

prediction problems, particularly the software development effort and quality. Early 

prediction of quality helps the management to have the knowledge of targeted software 

product quality as early as possible, which helps to identify design errors and avoid 

expensive rework. 

Many predication models have been proposed in the research community in order 

to achieve accuracy in software engineering related prediction problems. However, none 

of the existing prediction models proved to be suitable under most circumstances.  

The main objective of this thesis is to build different ensemble models, and 

evaluate their accuracy against stand-alone prediction models. Several linear and 

nonlinear ensembles were proposed, and three empirical studies were conducted to 

evaluate them in the context of fault and maintenance effort prediction. Empirical results 

indicate that ensembles in general offer better, or at least competitive, performance by 

comparison with individual models, and nonlinear ensembles were the best among 

ensembles.      
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 ملخص الرسالة
حمود ابراهيم الجمعان              : الاسم   

"انسامبل"اموعة تقييم جودة البرمجيات باستخدام نماذج      :عنوان الرسالة  

و المعلومات الآلي علوم الحاسب           :التخصص  

  هـ1430جمادى الآخرة        :تاریخ الشھادة

واجه العديد من المشاكل مثل يمدير مشروع البرمجيات  البرمجيات،مشروع من  خلال المراحل المختلفة
 دارةالإالبرمجيات تساعد لجودة المبكر  التنبؤ. ودة المستقبلية للبرمجياتالبرمجيات ونوعية الجتطور بالتنبؤ 

مما يساعد على تحديد وتصميم  ممكن،المنتجات المستهدفة في أقرب وقت  جودة نوعيةلمعرفة  على تكوين
  .البرمجيات عادة صياغةلإكلفة المخطاء الأوتجنب 

دقيق لهندسة البرمجيات الأجل بناء نماذج للتنبؤ  من يد من التقنيات المقترحةلعدهناك ا ,الأبحاثفي مجتمع 
 .الظروف معظمفي ظل  ةمناسب اأ تثبتألتنبؤ القائمة اإلا أن أيا من نماذج  ,التنبؤ بمشاكل ذات الصلة

مقارنة  تنبؤها دقة وتقييم ، مختلفة" انسامبل" نماذج مجموعة بناء هو الأطروحة لهذه الرئيسي الهدف
وقد أجريت  ، الخطية وغير الخطية " انسامبل" نماذج من مجموعة اقترحنا .الموجودة الفردية التقنياتب

 نماذج أنتشير  التجريبية النتائج. بأخطاء وصيانة البرامج التنبؤ سياق في هاملتقيي تجريبية دراسات ثلاث
إضافة  ، لأداء التقنيات الفردية الموجودة منافس الأقل على أو أفضل، تقدم بشكل عام أداء" انسامبل"
 ."انسامبل" نماذج بين أفضل هي الخطية غير" انسامبل" نماذج أثبتت  لكلذ
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CHAPTER 1 

Introduction 

Software project management is the art of making the right decision [98] among a huge 

number of choices during the different phases of a project. The success and failure of 

projects is highly dependent on the manager’s decisions. Managers should be encouraged 

to use any means necessary to help them make their decisions as accurate as possible to 

increase the overall project success rate. 

Software project management is a major application area for prediction models. 

During the different phases of a project, the manager is faced with many prediction 

problems such as predicting the development effort, cost and quality. Prediction models 

can be used to help and guide software project managers to make right estimates when a 

prediction problem is faced. Software project managers can utilize such prediction 

models besides their work experience to come up with decisions that increase the overall 

project success. 

1.1 Problem statement 

Software quality assessment can be seen as a learning concept [3], where we can utilize 

prediction models as an application to it. Assessing software quality, as shown below, 

involves predicting several software attributes, such as maintainability, reliability, fault-

proneness … etc. 
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Figure 1: Software Quality Assessment 

 

An important software quality attribute is maintainability. Nowadays, many 

software systems are currently in use and the largest cost associated with any product 

over its lifetime is the maintenance cost [66, 108]. Fault-proneness is another important 

aspect of quality. Faults are defined as defects that might cause failures. Predicting theses 

prone parts is a challenge for developers before the software is released [56]. 

Building accurate prediction models helps software project mangers increase the 

success of their software project. However, none of the existing prediction models proved 

to be suitable under most circumstances. In fact, for a given dataset one model may 

outperform other models. But, when a different dataset is used, the model used could 

produce the worst prediction accuracy. Ensemble models were proposed as a candidate 

approach to build an accurate prediction model by taking advantage of stand-alone 

prediction models capabilities towards the dataset to come up with the best, or at least 

competitive, prediction accuracy. 

 

Software Quality Assessment

Fault proneness

Class Module ......

Maintainability Reliability ......
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1.2 Software engineering prediction problems 

A software project manager may face many prediction problems during the different 

phases of a project. Such predictions include: 

• Software Quality 

Predicting software quality involves predicting maintainability, fault-proneness, etc... 

o Software maintainability 

Many definitions exist for maintainability. Pressman defined maintainability as “the 

ease with which repair may be made” [82]. Also, following IEEE Standard Glossary 

of Software Engineering Terminology, maintainability is defined as “The ease with 

which a system or component can be modified to correct faults, improve performance 

or other attributes, or adapt to a changed environment” [52].  

Maintainability is typically measured as change effort [62, 95]. Change effort 

can mean either the average effort to make a change to a class, or the total effort spent 

on changing a class [62, 95], and this is how software maintainability is addressed in 

this thesis. 

o Fault-proneness 

Software fault is defined as a defect (e.g. programmer error) in an executable product 

that may cause a failure [41, 52]. However, not all faults result in a failure, as shown 

in the Figure 2 [41]. A fault becomes a failure, once it is activated. 



4 
 

 

Figure 2: Software errors, faults and failures 

Fault prediction can be in many forms. Examples include predicting faulty 

parts, before its release, or it may involve predicting the fault density of faulty parts… 

etc 

o Software reliability 

Reliability, according to ANSI standards, is defined as “the probability of failure-free 

operation for a specified period of time in a specified environment” [73].  Reliability 

is another factor for quantitatively characterizing quality and estimating the duration 

of testing period. 

• Software Cost 

Cost estimation may be used to establish a budget for the project. Cost usually includes 

effort (i.e. the cost of labor) and schedule (i.e. the cost of time), and therefore, we can 

define cost estimation as an empirical process of estimating the effort and time costs for 
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any product before developing it [11]. Thus, the costs of development are primarily the 

costs of the effort and time involved. 

The primary topic and scope of this thesis is software quality, and specifically 

maintainability, and fault proneness at the class level. We approach the quality 

assessment by estimating the fault proneness and maintainability, since it provides us 

with assurances about quality [95]. Estimating class fault proneness is used to assess and 

shed the light on overall quality. If we can identify the important drivers of fault 

proneness, we can use them as candidates for quality benchmarks [7, 19, 28]. In addition, 

the more faults are found, the better the quality and maintainability of the system [104]. 

Also, quality can be assessed by estimating the maintainability (e.g. the number of lines 

changed per class) [72, 95, 108]. 

1.3 Motivation 

Early prediction of software quality helps the management to have the knowledge of 

targeted product quality as early as possible, which helps to identify design errors and 

avoid expensive rework. Quality prediction models can be utilized as a tool for focusing 

quality assurance activities. 

Software maintainability prediction is an important quality prediction problem. 

Many systems are currently in use and the largest cost associated with any product over 

its lifetime is the maintenance cost, thus, it is important for those systems to be 

maintained effectively and efficiently [5]. Maintainability prediction model enables 

organizations to predict maintainability of a system and assists them with managing 

maintenance resources. Accurate maintainability prediction enables developers to better 
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identify the determinants of quality and thus help them improve design or code, also it 

can provide project managers with useful information to help them plan the use of 

valuable resources [62]. In addition, if an accurate maintainability prediction model is 

available for a software system, a defensive design can be adopted. This would minimize, 

or at least reduce future maintenance effort of the system [67]. 

Software fault prediction is another important quality prediction problem. The 

majority of faults in a software system are found in a few of its components [12, 81]. 

Thus, early prediction of faults is a challenging task for the developers before the release 

[56]. Accurate fault prediction models enables developers to focus quality assurance 

activities and allocate effort and resources more efficiently [47]. Therefore, predicting 

fault-proneness is important for minimizing cost and improving the effectiveness of the 

testing process. As a result, accurate prediction models can lead to a substantial 

improvement in quality [61]. 

Building quality prediction models that are accurate and suitable under most 

circumstances is critical for the overall project success. Ensemble models are a candidate 

approach for this goal. They take advantage of stand-alone prediction models capabilities 

towards the dataset to come up with competitive prediction accuracy.  

Our hypothesis is that ensemble models will help project managers to make more 

accurate predictions. Once supported, project managers can utilize ensemble models 

besides their work experience to come up with decisions that increase the overall project 

success. 
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1.4 Thesis objective 

The main objective of this thesis is to build different ensemble models, and evaluate their 

prediction accuracy against stand-alone prediction models for fault and maintainability 

prediction. To accomplish this, we carried out the following tasks: 

• Survey existing prediction models and identify the most commonly used models. 

• Propose different linear and nonlinear ensembles from existing stand-alone 

prediction models. 

• Search for different datasets for software engineering quality prediction problems. 

• Empirically validate the ensemble models with respect to their prediction 

accuracy over other stand-alone prediction models. 

1.5 Thesis organization 

The remaining of this thesis is organized as follows: Chapter 2 reviews the related work 

done in the field of software fault and maintainability prediction. Chapter 3 provides the 

common technical background for all conducted experiments. Chapter 4 describes 

building ensembles from a single model, and presents the empirical study conducted to 

evaluate them. Chapter 5 and 6 describe building ensembles using different models for 

classification and regression problems respectively, and then present the empirical studies 

conducted to evaluate them. Chapter 7 discusses thesis conclusions, and provides 

directions for future work.  
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CHAPTER 2 

Literature review 
 

This chapter reviews the related work done in the area of software fault and 

maintainability prediction. It shows the use of object oriented metrics as quality 

indicators, work done in the area of ensemble models, and the related work done in 

predicting maintainability and class fault proneness. 

2.1 Object-Oriented design metrics as quality indicators 

Nowadays object oriented (OO) approach to software development is widely used in the 

software industry. OO promises better management of system complexity and 

improvement in project outcomes such as software quality. Thus, a wide variety of OO 

design metrics have been proposed to assess the quality of an OO system [9, 16, 20, 22, 

50, 55, 65, 66].  

The most widely used OO design metrics suite is Chidamber and Kemerer’s suite 

[22]. This suite mainly focuses on classes and can capture different aspects of an OO 

design. It helps to identify areas of the application that may require more rigorous testing 

and areas that are candidates for redesign. In addition, it helps in predicting certain 

project outcomes and external software qualities such as software faults. 
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2.1.1 Relationships between object-oriented design metrics and class fault 

proneness 

Recent research studies validated the use of OO design metrics as quality measurement of 

an OO system. By relating metrics to fault-proneness, we can identify the important 

drivers of fault-proneness. Thus, OO design metrics can be used as early quality 

indicators and detectors of faulty classes. 

Many researchers investigated the use of OO design metrics as early quality 

indicators and tried to define suitable metrics for fault detection. Their studies provided 

empirical evidence that a correlation exists between some software metrics and class 

fault-proneness [7, 18, 19, 28, 34, 93, 104].  

Briand et al. [19] investigated the relationship between existing design 

measurement in OO systems and the quality of the software developed. Univariate 

analysis results have shown that many coupling and inheritance measures are strongly 

related to the probability of fault detection in a class. However, cohesion does not seem 

to have a significant impact on fault proneness.  

Basili et al. [7] assessed the use of  OO design metrics as predictors of fault-prone 

classes. Based on empirical and quantitative analysis, their results showed that five out of 

the six Chidamber and Kemerer’s OO metrics appear to be useful in predicting class 

fault-proneness during the high- and low-level design phases of the life-cycle. In 

addition, Chidamber and Kemerer’s OO metrics were shown to be better predictors than 

the best set of traditional code metrics, which can only be collected during later phases of 

the software development processes.  
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El-Emam et al. [28] performed a validation study to determine which OO design 

metrics were associated with fault-proneness. Their results indicate that an inheritance 

and an export coupling (EC) metrics were strongly associated with fault proneness.  

Fioravanti  and Nesi [34] have extracted over 200 different OO metrics to identify 

a suitable model for detecting fault-proneness of classes. They concluded that only a few 

of them were relevant for identifying fault prone classes. 

Yu et al. [104] empirically evaluated a set of OO metrics in terms of their 

usefulness in predicting fault-proneness. Their validation is carried out using two data 

analysis techniques: regression analysis and discriminant analysis. 

Subramanyam and Krishnan [93] validated the association between a subset of 

C&K metrics and faults detected during acceptance testing and those reported by 

customers. Based on industry data, results indicate that even after controlling the size of 

the software, they found that some of the measures in the CK suite of OO design 

complexity metrics significantly associated with faults. 

2.1.2 Relationships between object-oriented design metrics and 

maintainability 

 

Many researchers investigated the relationship between OO metrics and the 

maintainability of a software system. OO metrics was found correlated with software 

maintainability [5, 17, 33, 66, 72]. Thus, they can be used as good predictors of software 

maintainability. 
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Bandi et al. [5] empirically validated three existing OO design complexity metrics 

(Interaction Level, Interface Size, and Operation Argument Complexity), and assess their 

ability to predict maintenance time. Each of the three metrics by itself was found to be 

useful in predicting maintenance time.  

Fioravanti and Nesi [33] presented metrics for prediction of adaptive maintenance 

effort, and validated them against real data by using statistical analysis. The validation 

has shown that several well-known metrics can be profitably employed for the prediction 

of maintenance effort. In another study, Misra [72] used a suite of twenty design/code 

measures to obtain indications of their effect on maintainability. 

 Li and Henry [66] validated the relationship of various metrics including all 

C&K metrics suite [22], except CBO, with maintenance effort in two commercial 

systems. They found a strong relationship between the metrics and maintenance effort in 

OO systems.  

2.2 Class fault prediction 

In OO systems, one approach to identify faulty classes early in development is to 

construct prediction models using OO design metrics. Predicting class fault proneness 

can be considered either a classification problem (e.g. a class is faulty or not), or a 

regression problem (e.g. fault density or number of faults).  

Many research studies investigated the use of prediction models in fault 

prediction problem using OO design metrics. Most of these prediction models are built 

using statistical models [19, 28, 55, 104]. However, since the relationships between 

software metrics and quality factors are often complex and nonlinear, this limits the 
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accuracy of such models. As a result, research studies have investigated the use of 

computational intelligence models for software quality prediction due to their capabilities 

of modeling nonlinear functional relationships [29]. 

Research studies employed the use of computational intelligence models to 

predict class fault proneness, either as a regression or a classification problem. For 

regression problems, artificial neural networks (ANNs) have been used [44, 95] as well 

as decision trees [44]. For classification problems, ANNs have been also used [69].  

Thwin and Quah [95] presented the application of neural networks in software 

quality estimation, in terms of predicting number of faults, using OO metrics. They used 

two neural network models, Ward neural network and general regression neural network 

(GRNN) to predict fault proneness classes using CK [22] and Tang et al. [94] metrics 

suite. Experimental results showed that OO metrics chosen in their study appear to be 

useful in predicting software quality. These software metrics are significantly related to 

the number of faults. In addition, GRNN network model is found to predict more 

accurately than Ward network model. 

Gyimothy et al. [44] employed statistical (logical and linear regression) and 

machine learning (decision tree and neural network) methods to assess the applicability 

of the well-known OO metrics to predict the number of bugs in classes of Mozilla 

system. However, their results indicate that the precision of employed models is not yet 

satisfactory, and suggested combining multiple models (e.g. majority voting) as a future 

work. 
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Mahaweerawat et al. [69] proposed the use of ANNs as a new approach for 

predicting and classifying class faults in OO software systems. Multilayer perceptron 

neural network has been used to identify faulty classes, while radial basis function neural 

network is used to categorize the faults according to several defined fault types. It is 

concluded that the proposed model provides high accuracy in discrimination between 

faulty and fault-free classes.  

It can be noticed that the number of investigated models for fault prediction at the 

class-level is limited, and these models are mainly statistical regression and neural 

networks. 

2.3 Maintainability prediction 

Research studies investigated the use of prediction models in software maintainability 

prediction. OO Software maintainability prediction models were constructed using OO 

metrics. Such models include TreeNet [30], multivariate adaptive regression splines 

[108], multivariate linear regression [108], multiple linear regression [62], naïve bayes 

[62], artificial neural network [95, 108], regression tree [62, 108], support vector 

regression [108].  

Thwin  and Quah [95] predicted the software maintainability as the number of 

lines changed per class. Their experimental results found that General Regression neural 

network predict more accurately than Ward network model.  

Koten and Gray [62] evaluated and compared the naïve Bayes classifier with 

commonly used regression based models. The results suggest that the naïve bayes model 

can predict maintainability more accurately than the regression-based models for one 
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system, and almost as accurately as the best regression based model for the other 

system.  

Zhou and Leung [108] explored the employment of multiple adaptive regression 

splines (MARS) in building software maintainability prediction models. MARS was 

evaluated and compared against multivariate linear regression models, artificial neural 

network models, regression tree models, and support vector models. The results suggest 

that for one system MARS can predict maintainability more accurately than the other 

four typical modeling techniques. Then, Elish [30] extended the work done by Zhou 

[108] to investigate the capability of TreeNet technique in software maintainability 

prediction. Their results indicate that TreeNet yielded improved, or at least competitive, 

prediction accuracy over previous maintainability prediction models. 

2.4 Ensemble models 

Both theoretical [46, 63] and empirical [48, 77, 78] research studies have demonstrated 

that a good ensemble is one where the individual prediction models in the ensemble are 

both accurate and make their errors on different parts of the input space. 

Recently, ensemble models have received much attention and have demonstrated 

promising capabilities in improving classification accuracy over single classifiers [14, 

92]. Some of these models are simple ensemble [92], AdaBoost [37], bagging [15] and 

boosting [38, 88]. Ensemble models have been used in the area of software engineering 

prediction problems. They have been used in software reliability prediction [107], 

software project effort estimation [14], and software module fault prediction [57]. In 

addition, they have been used in many real applications such as face recognition [43, 51], 
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OCR [70], seismic signal classification [90] and protein structural class prediction [10]. 

However, none of the ensemble models have been used in the area of class fault 

prediction and software maintainability prediction. 

Neural networks ensembles received most attention from research community. 

Hansen and Salamon [46] showed that the generalization ability of a neural network 

system can be significantly improved through ensembling training several neural 

networks and combining their results. Sollich [92] defined neural network ensemble as a 

collection of a finite number of neural networks that are trained for the same task. Zhou 

et al. [109] proposed GASEN (Genetic Algorithm based Selective Ensemble) a neural 

network ensemble that utilizes all available neural networks to constitute an ensemble. 

They assigned random weights to neural networks and employs genetic algorithm GA to 

evolve the weights. Then, they select some neural networks based on the evolved weights 

to make up the ensemble. Empirical study shows that their ensemble is superior to both 

bagging and boosting in both regression and classification. 

In summary, ensemble models demonstrate a high potential in providing reliable 

predictions. However, they have not been applied and evaluated in the context of 

identifying faulty classes in OO software, and predicting software maintainability. 

2.5 Summary 

This literature review presented the related work done in the area of predicting software 

quality as fault and maintainability prediction. We surveyed the computational 

intelligence models used in that area and we summarized these studies in the below table. 

In addition to the summary table, we came up with the following remarks: 
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• There are a limited number of studies done in the area of class fault prediction as 

a regression problem. Thus, more studies should be conducted toward this area. 

• More computational intelligence models should be investigated to build more 

accurate software prediction models. 

• OO metrics are found to be correlated with software quality, such as fault 

proneness and maintainability. Therefore, they can be used as early software 

quality indicators. 

• Ensembles demonstrate a high potential in providing reliable predictions. Thus, 

they should be investigated in the context of software quality assessment 
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Table 1: Literature review summary 
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CHAPTER 3 

Technical background 

This chapter gives an overview over the general technical background of the empirical 

studies conducted in this thesis. First, it gives the technical background of the 

investigated stand-alone prediction models, along with their parameters initialization. 

Next, it describes the datasets used across different experiments. After that, it formulates 

the evaluation measures used to evaluate the performance of prediction models. Finally, it 

sheds the light on different validation techniques exist in literature. 

3.1 Individual prediction models 

In this section, we describe the investigated individual prediction models that we used as 

base for our ensemble models. Selection of prediction models was based on a couple of 

criteria. We wanted to select models across different categories to achieve a balance 

between established prediction models, and we selected the models that are commonly 

and widely used in the literature of software quality prediction. 

Different prediction models may be grouped into different categories of statistical 

approaches, neural networks, support vector machines, and tree based models. The 

following table presents the selected individual prediction models: 
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Prediction model abbreviation Category  Type 

Multilayer Perceptron  MLP Neural network Classification 

and regression 

Radial Basis Function Network  RBF Neural network Classification 

and regression 

Bayesian Belief Network  BBN Statistical Classification 

Naïve Bayes  NB Statistical Classification 

Support Vector Machines  SVM Support vector machine Classification 

Support Vector regression SVMreg Support vector machine Regression 

Decision Tree DT Tree Classification 

M5 Model tree M5P Tree Regression 

 Table 2: Selected individual prediction models 

3.1.1 Artificial Neural Networks 

Artificial Neural Network (ANN) [49, 53] is a mathematical model or computational 

model consists of an interconnected group of artificial neurons and processes information 

using a connectionist approach to computation. ANN is a non-linear statistical data 

modeling tools used to model complex relationships between inputs and outputs. ANN is 

an adaptive system that changes its structure based on external or internal information 

that flows through the network during the learning phase. 

 ANN architecture consists of several layers of computing nodes; input layer, 

hidden layers and output layer. ANN can be viewed as weighted directed graphs in which 

artificial neurons are nodes and directed edges (with weights) are connections between 

neuron outputs and neuron inputs. 
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Artificial neurons, shown below, take a set of inputs x ,….,x , along with their 

weights, to produce the output O using the following formula: 

                                               O =  (         ) =    (∑         )                                             (1) 

 

Figure 3: Artificial neuron [2] 

Where  w  is the weight vector, and the function f( network )   is referred to as an 

activation function. The variable network is defined as a scalar product of the weight and 

input vectors, 

                                           network =      + ….. +                                                       (2) 

Based on various ANN’s architectures, ANN can be classified into two categories: 

• Feed-forward networks, in which graphs have no loops in network 

• Recurrent (feedback) networks, in which we have loops in network 

The most famous networks in feed-forward networks are multilayer perceptron 

(MLP), and radial basis function (RBF) networks. Their neurons are organized into layers 

that have unidirectional connections between them as shown in the figure below: 



21 
 

 

Figure 4: Feed-forward artificial neural network architecture [2] 

 

3.1.1.1 Multilayer Perceptron (MLP) 
Multilayer Perceptron [49, 53], shown below, is a feed-forward network that consists of 

an input layer, one or more hidden layers of nonlinearly activating nodes and an output 

layer. Each node in one layer connects with a certain weight to every other node in the 

following layer, and no computation is involved in the input layer. 
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Figure 5: Example of a multilayer perceptron network [102] 

 

MLP neuron, shown below, computes the weighted sum of the inputs at the 

presence of the bias, and passes this sum through the activation function. This process is 

described as follows: 

      =    (  )                                                                   (3) 

 

     =  ∑          +                                                                   (4) 
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Figure 6: MLP neuron [102] 

 

where v  is the linear combination of inputs x ,…, x , θ  is the bias, w   is the weight 

between the input x  and the neuron j, and f ( ) is the activation function of the jth neuron, 

and y  is the output. 

 The sigmoid function is a common choice of the activation function. The bias 

term θ  contributes to the left or right shift of the sigmoid activation function, depending 

on whether θ  takes a positive or negative value. The sigmoid function is calculated using 

this formula: 

      ( ) =                                                              (5) 

MLP uses backpropagation algorithm as the standard learning algorithm for any 

supervised-learning. Backpropagation algorithm requires that all activation functions 

used by the artificial neurons must be differentiable. It is used to calculate the error 

gradient of the network with respect to its modifiable weights, and find weights that 

minimize the error [45]. 
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In backpropagation algorithm, choosing the learning rate is difficult, if the 

learning rate is set small enough to minimize the total error, the learning process will be 

slowed down. On the other hand, a larger learning rate may speed up learning process at 

the risk of potential oscillation. However, backpropagation algorithm uses momentum 

term to avoid oscillation problems during the search for the minimum error value [4]. 

3.1.1.2 Radial Basis Function Network (RBF)  

Radial Basis Function network [21, 79, 80] is a three layer feed-forward network, as 

shown below, that uses a linear activation function for the output units and a nonlinear 

activation function for the hidden layer neurons. Input to each hidden neuron is the 

distance between the network inputs and center of that neuron’s activation function. The 

simplest way to define centers setting it randomly to the training inputs, but this approach 

is prone to over fitting. An alternative is to cluster the training patterns into groups 

according to some similarity measurement and then assigning nodes to each cluster. The 

typical method to determine such clusters is by the k means clustering algorithm. 

Figure 7 shows the general architecture of an RBF network with k input vector x, 

then the network computes the output as a scalar value using the following formula:  

 

    =  (         ) =    + ∑    (  )                                               (6) 

 

Where w  is the bias, w  is the weight parameter, n is the number of nodes in the hidden 

layers of the RBF neural network, and φ(D ) is the radial basis function. 
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Figure 7: Radial basis function network [103] 

 

RBF uses radial basis functions as activation functions to provide a flexible way 

to generalize linear regression function. Commonly used types of radial basis functions 

include Gaussian, Multiquadric, and Polyharmonic spline. However, RBF models with 

Gaussian basis functions intend to possess desirable mathematical properties of universal 

approximation and best approximation, and it is calculated as follows: 

    (  ) = exp ( −    ⁄ )                                                          (7) 

Where σ is the radius of the cluster represented by the center node, the D  represents the 

distance between the input vector X and all the data centers. Usually, the Euclidean norm 

is used to calculate distance as follows: 

 

      =   ∑ (  −     )                                                               (8) 

Where c is a cluster center for any of the given nodes in the hidden layer. 

3.1.2 Statistical 

Statistical classifiers strive to construct a Bayes optimal classifier by estimating either 

posterior probabilities directly, or class conditional probabilities. Both Bayesian belief 
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network and naïve bayes estimated class conditional probabilities, which are 

subsequently converted into posterior probabilities using Bayes theorem. These bayes 

networks are only applicable in the classification problem domain. 

3.1.2.1 Bayesian Belief Network (BBN)  

Bayesian Belief Network [40, 54] is a probabilistic directed acyclic graph that represents 

a set of random variables and their probabilistic independencies. The variable values can 

be discrete or continuous values according to a probability distribution, which can be 

different for each variable. In BBN graph, each node represents a random variable, while 

the directed edges between the nodes represent probabilistic dependencies among the 

corresponding random variables.  

Figure 8 shows an example of a Bayesian belief network consisting of three 

variables, X , X , and Y. In the below figure, a variable is shown as an ellipse and a 

directed edge is shown as an arrow. This example shows that X  and X  has an 

association or a causal relationship with Y, (i.e. outcomes of the events X  and X  have an 

effect on the outcome of the event Y). 

 

 

Figure 8: Example of Bayesian Belief Network 
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In a Bayesian belief network, a relationship between events is defined as a 

conditional probability, P(Y/X), which is the probability of the variable Y conditional on 

a given outcome of variable X. The conditional probability is calculated using Bayes’ 

Theorem [54]: 

     (  ⁄ ) =   (  )  ( )⁄ ( )                                          (9) 

Where P(X Y)⁄  is the conditional probability of the variable X given the variable Y, and P(X) and P(Y) are the probabilities of variables X and Y, respectively. This probabilistic 

dependency is maintained by the conditional probability table (CPT), which is assigned 

to the corresponding variable. 

3.1.2.2 Naïve Bayes (NB)  

Naïve Bayes [42, 64, 86] is the simplest form of Bayesian network, in which all attributes 

are independent given the value of the class variable (i.e. conditional independence). The 

naïve bayes structure is unique, since it has one root node (called parent), representing the 

class node, and several independent children, corresponding to attribute nodes. Therefore, 

in presence of a training set we should only compute conditional probabilities in a 

frequent manner. 

Once the Naïve Bayes is constructed, it can be used to classify any new instance 

characterized by a set of attributes x ,…., x  by computing for each possible class c  its 

posterior probability and then by taking the highest one. More formally the most probable 

class C is computed as follows: 

     =      max (  ) ∏  (    )⁄                                     (10) 
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Although independence is generally a poor assumption, in practice naïve bayes 

competes well with more sophisticated classifiers, especially where the features are not 

strongly correlated [64]. 

3.1.3 Support Vector Machines 

Support Vector Machines (SVMs) [24, 25, 96], proposed by Vapnik et al. [96], are a 

group of supervised learning methods, whose idea is based on the structured risk 

minimization (SRM) principle. Recently, it gained wide popularity due to its many 

attractive features and promising empirical performance. The main advantage of SVM is 

that it adopts the structure risk minimization (SRM) principle, which has been shown to 

be superior to the traditional empirical risk minimization (ERM) principle, employed by 

conventional neural networks [96]. 

Support vector machine (SVM) was originally developed for solving the 

classification problems [24, 96], but recently it was extended to the domain of regression 

problems [91, 97]. 

3.1.3.1 Support Vector Machines (SVM)  

SVMs main aim is to minimize the empirical error and maximize the geometric margin. 

SVMs try to separate a given set of binary labeled training data with a hyperplane that is 

maximally distant from them (i.e. maximum margin hyperplane). As Figure 9 shows, the 

input space of N training data points (x , y ), ….. , (x , y ) can be separated by a 

hyperplane  H ∶ w x + b = 0. This hyperplane H is located by determining two parallel 

hyperplanes H1, H2 that have the maximum margin  ‖ ‖  with the conditions that there 

are no data points between them. 
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Figure 9: Maximal margin hyperplane 

 

 

In case of training data is linearly separable by hyperplane, we separate the data 

with the maximal margin hyperplane as follows: 

                                                                        (11) 

          :   (    +  ) ≥ 1,  = 1, … . ,  

where (x , y ) is the training data, and L is the total number of training sets. 
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 In case of training data is linearly non-separable, we want to separate the training 

data with a minimal number of errors. This yields the introduction of positive slack 

variables δ ≥ 0 in the constraints to measure how much the margin constraints are 

violated: 

             ,          +  ∑                                               (12) 

          :          ≥ 0                 
  (    +  ) ≥ 1 −   ,  = 1, … . ,   

where C is the regularizing (margin) parameter that determines the trade-off between the 

maximization of the margin and minimization of the classification error. 

 Various kernel functions are employed in order to transform the data into a non-

linear feature space, as shown in the below figure. The hyperplane found by the SVM 

training algorithm in the transformed feature space corresponds to a non-linear decision 

boundary in the initial input space. The most famous kernel functions are radial basis 

function (RBF) and polynomial.  
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Figure 10: Data transformation into a non-linear space 

 

3.1.3.2 Support vector regression (SVMreg) 

The basic idea of SVM for regression (SVMreg) is to introduce kernel function, map the 

input space into a high-dimensional feature space via a nonlinear mapping and to perform 

a linear regression in this feature space [96]. 

Suppose we are given a set of L training data {(x , y ), . . . , (x , y )}, where x  ∈ ℝ  denotes the ith input pattern from the d dimension input space and has a 

corresponding target value  y  ∈ ℝ for i = 1,. . . , L, where R is the set of real number. The 

goal of support vector regression (SVMreg) is to find a function that approximates the 

actually obtained targets y  for all the training data, and has a minimum generalization 

error. The general form of a SVMreg function can be given by: 

      (   ) =  ∗  ∅( ) +                                               (13) 

where w ∈ ℝ , b ∈ ℝ, * denotes the dot product in ℝ , and ∅ is a non-linear 

transformation from ℝ  to the high dimensional space ℝ . Our goal is to determine the 

value of w and b such that f(x) can be determined by minimizing the regression risk 
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        ( ) =   ∑  ( (  ) −   )    +   ‖ ‖                            (14) 

where δ is a cost function, C is a constant that represents penalties for estimation error. A 

heavier penalty trains the regression to minimize errors by making fewer generalizations. 

SVMreg function can be reformulated as: 

     ( ) =  ∑ (∝ −∝ ∗) (  , )    +                                          (15) 

where k(x , x) is called the kernel function. Common kernel functions include Gaussian, 

linear, and polynomial. 

 When applying SVMreg in real applications, we need to give a kernel function 

and the penalty C. 

3.1.4 Tree 

Tree algorithm models recursively partition the training data by means of attribute splits. 

These tree algorithms differ mainly in the splitting criterion, which determines the 

attributes to separate the data. We have chosen Decision Tree (DT) for classification 

problems, while M5 Model tree (M5P) for regression problems. 

3.1.4.1 Decision Tree (DT) 

Decision Tree [71, 84, 105] is a flow chart-like tree structure that does mapping from 

observations about an item to conclusions about its target value. Figure 11 show the 

general structure of a decision tree. In DT, the topmost node is the root node, each 

internal node denotes an attribute test, each branch represents an outcome of the test, and 

each leaf node represents classes. 
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Figure 11: A decision tree [87] 

Decisions trees are created typically using C4.5 algorithm developed by Quinlan 

[84]. C4.5 creates decision tree whose structure consists of leaves using a top-down, 

divide-and-conquer approach. C4.5 algorithm steps can be summarized in the following 

step: 

• DT Construction: creates unpruned decision tree by recursively 

partitioning the data. 

• Pruned decision tree: in this step the idea is to remove parts of the tree that 

do not contribute to classification accuracy, since the resulting unpruned 

decision tree is often complex and overfits the data. 

3.1.4.2 M5 Model tree (M5P) 

M5 Model tree [85, 100] is an algorithm for generating M5 model trees that predicts 

numeric values for a given instance. The algorithm requires the output attribute to be 

numeric while the input attributes can be either discrete or continuous. 
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 To build a model tree as shown in Figure 12, using the M5 algorithm, we start 

with a set of training instances. The tree is built using a divide-and-conquer method. At a 

node, starting with the root node, the instance set that reaches it is either associated with a 

leaf or a test condition is chosen that splits the instances into subsets based on the test 

outcome. In M5 the test that maximizes the error reduction is used. Once the tree has 

been built, a linear model is constructed at each node. The linear model is a regression 

equation. 

 

Figure 12: M5 Model tree [8] 

As shown in Figure 12, where a  are the split nodes and M  are the models, if a 

new instance is given, the tree is traversed from top to bottom until a leaf node is reached. 

At each node in the tree a decision is made to follow a particular branch based on a test 
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condition on the attribute associated with that node. Each leaf has a linear regression 

model associated with the form: 

     +     + ⋯+                                                             (16) 

based on some of the input attributes a ,…., a  in the instance and whose respective 

weights w , w ,…, w  are calculated using standard regression. As the leaf nodes 

contain a linear regression model to obtain the predicted output, the tree is called a model 

tree. 

3.1.5 Parameter initialization 

The parameters of the base prediction models were initialized with the default settings set 

by WEKA tool as follows: 

• MLP: trained using backpropagation algorithm. Sigmoid was used as an activation 

function. Number of hidden layers was 5. Learning rate was 0.3 with momentum 0.2. 

Network was set to reset with a lower learning rate. Number of epochs to train 

through was 500. Validation threshold was 20.     

• RBF: implements a normalized Gaussian radial basis function network. Random seed 

to pass on to K-means clustering algorithm was 1. Number of clusters for K-means 

clustering algorithm to generate was 2, with minimum standard deviation for clusters 

set to 0.1.  

• BBN: used SimpleEstimator for estimating the conditional probability table of a 

Bayes network with 0.5 as the initial count for each value. Hill climbing algorithm 

was used as a search algorithm. 

• NB: no parameters were required. 
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• SVM: cost parameter C was set to 1 and RBF was used as a kernel. The tolerance of 

termination criterion was 0.001. 

• SVMreg: cost parameter C was set to 1, with polynomial as SVMreg kernel. WEKA 

implements various algorithms for parameter learning, it uses the most popular 

(RegSMOImproved) algorithm [89], as a default learner. 

• DT: used C4.5 algorithm [84] to generate decision tree. Confidence factor used for 

pruning was set to 25%. Minimum number of instance per leaf was 2. 

• M5P: used M5 algorithm for generating M5 model trees [85, 100]. Pruned M5 model 

trees were built, with 4 instances as the minimum number of instances allowed at a 

leaf node.  

3.2 Datasets 

Choosing the appropriate dataset in an empirical study is the most important and crucial 

step. We realized that choosing public datasets makes our research verifiable, repeatable, 

and reputable [26]. The following table summaries the characteristics  of the public 

datasets used in this research: 
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Dataset 

name 
Domain Type 

# 

observations 
Language Description 

KC1 
Fault 

proneness 
Classification 145 C++ 

Storage 

management for 

receiving and 

processing ground 

data 

KC1 
Fault  

density 
Regression 60 C++ 

Storage 

management for 

receiving and 

processing ground 

data 

UIMS 
Maintenance 

effort 
Regression 39 Ada 

User interface 

management 

system 

QUES 
Maintenance 

effort 
Regression 71 Ada 

Quality evaluation 

system 

Table 3: Software quality datasets 

3.2.1 Class fault datasets 

KC1 dataset has two versions, that has the same independent variables, but different in 

dependent variables. The first dataset is for class fault proneness, while the second 

dataset is for class fault density estimation.   

  KC1 (classification) is a class level defect dataset from a mission critical NASA 

software project, which is publicly available from the repository of the NASA IV&V 

Facility Metrics Data Program [1]. This project is a storage management system for 

receiving and processing ground data. It is written in C++ and consists of 145 classes 

with more than 43 KLOC. This dataset consists of class-level metrics data and the 

associated fault data that has been collected since the beginning of the project. 
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The dependent (output) variable “FAULTY” is a binary variable indicating 

whether or not a class is faulty. Around 40% of the classes are faulty. The independent 

(input) variables are nine class-level metrics. Six out of these nine metrics are the well-

known Chidamber and Kemerer’s metrics [22], i.e., Weighted Methods per Class 

(WMC), Depth of Inheritance Tree (DIT), Number of Children (NOC), Coupling 

Between Object classes (CBO), Response For a Class (RFC), and Lack of Cohesion in 

Methods (LCOM).  The other three metrics are Fan-in (FIN), Percentage of 

Public/Protected Data (PPD), and Dependency on Child (DOC).  Table 4 provides brief 

description for each metric. 

The other version of KC1 is used for class fault density estimation. KC1 

(regression) share the same independent variables as in KC1 (classification), but they 

differ in dependent variable and number of observations. Dependent (output) variable for 

KC1 (regression) is the class fault density, which is measured as the total number of 

faults divided by total size (LOC), and the total number of observations are 60.  
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Metric Description 

WMC Count of methods implemented within a class 

DIT Level for a class within its class hierarchy 

NOC Number of immediate subclasses of a class 

CBO 
Number of distinct non-inheritance-related classes on which a class 
depends 

RFC 
Count of methods implemented within a class plus the number of methods 
accessible to an object class due to inheritance 

LCOM 
The average percentage of methods in a class using each data field in the 
class subtracted from 100% 

FIN Number of classes that depend upon a class 

PPD Percentage of public and protected data in a class 

DOC Whether a class is dependent on a descendant 

Faulty Binary variable: a class is faulty, or not faulty 

Fault Density The number of faults divided by total size 

Table 4: KC1 independent and dependent variables 

 

3.2.2 Maintainability datasets 

We used two popular OO maintainability datasets published by Li and Henry [66]: UIMS 

and QUES datasets. The UIMS dataset contains class-level metrics data collected from 

39 classes of a user interface management system, whereas the QUES dataset contains 

the same metrics collected from 71 classes of a quality evaluation system. Both systems 

were implemented in Ada. Both datasets consist of eleven class-level metrics: ten 

independent variables and one dependent variable. 
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The independent (input) variables are five Chidambar and Kemerer metrics [22]: 

WMC, DIT, NOC, RFC, and LCOM; four Li and Henry metrics [66], i.e., Message 

Passing Coupling (MPC), Data Abstraction Coupling (DAC), Number Of Methods 

(NOM), and Number of properties (SIZE2); and one traditional lines of code metric 

(SIZE1). Table 5 provides brief description for each metric.  

The dependent (output) variable is a maintenance effort represented by measure 

“CHANGE”, which is the number of lines in the code that were changed per class during 

a 3-year maintenance period. A line change could be an addition or a deletion. A change 

in the content of a line is counted as a deletion and an addition. 

The analysis done in [30] on both datasets, indicates that both datasets have 

different characteristics,  and therefore, considered heterogeneous and a separate 

maintainability prediction model is built for each dataset. 
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Metric Description 

WMC Count of methods implemented within a class 

DIT Level for a class within its class hierarchy 

NOC Number of immediate subclasses of a class 

RFC 
Count of methods implemented within a class plus the number of methods 
accessible to an object class due to inheritance 

LCOM 
The average percentage of methods in a class using each data field in the 
class subtracted from 100% 

MPC The number of messages sent out from a class 

DAC The number of instances of another class declared within a class 

NOM The number of methods in a class 

SIZE1 The number of lines of code excluding comments 

SIZE2 
The total count of the number of data attributes and the number of local 
methods in a class 

Change 
The number of lines added and deleted in a class, change of the content is 
counted as 2 

Table 5: UIMS & QUES independent and dependent variables 

3.3 Tool 

WEKA, short for Waikato Environment for Knowledge Analysis), is a software tool used 

to conduct this research [101]. It is an open source tool, implemented in java, that 

contains a collection of machine learning algorithms for data mining tasks and tools for 

data pre-processing, classification, regression, clustering, association rules, and 

visualization.  

The use of an open source tools should be encouraged, since it makes the findings 

more open to the public, and increases the contribution to the research. 
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3.4 Evaluation measures 

In this section, we will describe the evaluation measures used in evaluating prediction 

models performance. Evaluation measures can be divided into two categories (i.e. 

classification and regression). The selection of these measures varied form one study to 

another. We selected the measures based on the most commonly and widely used in the 

literature. Future research should use the most commonly used measures to make their 

findings more consistent with others. 

3.4.1 Classification evaluation measures 

The evaluation measures of a prediction model for binary classification problems (i.e., 

correctly or not correctly classified cases) are derived from a confusion matrix, like the 

one shown in Table 6. The confusion matrix has four categories [27]: True positives (TP) 

are cases correctly classified as positives. False negatives (FN) are positive cases 

incorrectly classified as negative. False positives (FP) are negative cases incorrectly 

classified as positive. Finally, true negatives (TN) refer to negative cases correctly 

classified as negative. 

 Predicted Class 

Positive Negative 

Actual 

Class 

Positive True Positive (TP) False Negative (FN) 

Negative False Positive (FP) True Negative (TN) 

Table 6: Confusion matrix for binary classification problems 
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3.4.1.1 Accuracy 

Accuracy, also know as correct classification rate, can be seen as proportion of true 

results (i.e. both true positives and true negatives) in the population. It is calculated as the 

sum of correct classifications divided by the total number of classifications [101]:    

            =                                                     (17) 

3.4.1.2 Recall 

Recall, also know as true positive rate and sensitivity, is the percentage of true positives 

that are classified correctly. It is calculated as follows [101]: 

          =                                                               (18) 

 

3.4.1.3 Precision 

Precision, also know as specificity, is the ratio between the number of correctly identified 

positives and predicted positives. It is calculated as follows [101]: 

             =                                                         (19) 

3.4.1.4 F- measure 

F-measure is the harmonic average of precision and recall. F-measure is commonly used 

measure along with precision and recall, since it integrates the trade-off between 

precision and recall [101]. It is calculated as follows: 

      _       =    ∗         ∗                                                                (20) 

In all previous measures, the higher the value is, the better prediction model will be. 
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3.4.1.5 ROC 

Receiver operating characteristics (ROC) graphs are useful for organizing classifiers and 

visualizing their performance. ROC graphs are another way besides confusion matrices to 

examine the performance of classifiers, they have been increasingly used in 

computational intelligence research [31].  

 

Figure 13: A ROC graph 

ROC graphs, shown for two prediction models A and B in Figure 13, plot the 

false positive rate (x-axis) (i.e. 1- specificity), versus true positive rate (y–axis) (i.e. 

sensitivity). Each point represents the output of the prediction model, with respect to the 

threshold. ROC graphs description is summarized in the following points: 

• Point (0,1) corresponds to perfect classification. Better models intend to have (FP, 

TP) values closer to this point. 

• Point (1,0) is a classifier which misclassifies every case 

• Point (1,1) is a classifier that classifies every case as positive 

• Point (0,0) is a classifier which classifies every case as negative 
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However, in ROC graph, if two models curve intersects, we relay on Area Under 

Curve (AUC) measure to compare their performance. Model with higher AUC, is 

expected to perform better. The reference line in Figure 13 represents model with (0.5) 

AUC. 

 We will list all equations required to plot the ROC curve, and calculating the 

AUC [13]:  

False positive rate =  1 −  speci icity =  FPFP +  TN 

True positive rate =  sensitivity = Recall =  TPTP + FN 

      =  ∑  (1 −   ∗  ∆∝) +   [∆(1 −  ) ∗ ∆∝]                                 (21) 

 ℎ   :   
∝ =                    , 

1 −  =                    

∆(1 −  ) = (1 −   ) −  (1 −     ) 

∆∝ = ∝ − ∝    

3.4.2 Regression evaluation measures  

Many regression measures have been proposed to evaluate regression prediction models. 

However, most of the commonly used regression measures are derived from magnitude 

of relative error (MRE). MRE was introduced in 1986 by Conte et al.[23]. Since then, it 
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became the standard evaluation criterion to assess software prediction models. It is 

defined as follows: 

         =  |                    |                                    (22) 

The regression measures that are based on MRE are: mean magnitude of relative 

error (MMRE), Standard deviation magnitude of relative error (StdMRE), and prediction 

at level q (Pred(q)) measures. Since StdMRE, MMRE and Pred(k) are well-known 

evaluation criteria, they have been adopted as evaluation measures for regression models. 

3.4.2.1 MMRE 

MMRE calculates the MRE value for each observation i predicted. The aggregation of 

MRE over multiple observations (N) can be achieved through the Mean MRE (MMRE) 

as follows [59]: 

        =     ∑                                             (23) 

3.4.2.2 StdMRE 

Standard deviation magnitude of relative error is less sensitive to the extreme values 

compared to the MMRE, and it is more likely to select the true model based on StdMRE 

if the underestimate is served [35].  

3.4.2.3 Pred( 0.3 ) 

Pred(q) is the percentage of observations whose MRE is less than or equal to level q. It is 

calculated as follows [32]: 

                 ( ) =                 (24) 
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Where k is the number of observations whose MRE is less than or equal to the 

selected level q, and n is the total number of observations in the dataset. An acceptable 

value for level q is 0.3, as indicated in the literature [23, 62, 108]. Therefore, we adopted 

this value in our empirical studies. Furthermore, for a regression model to be considered 

accurate, it is suggested in the literature that Pred(0.3) value should be larger than or 

equal to 70% [32, 68]. 

3.5 Validation techniques 

In this section, we will give an overview of the most used validation techniques in the 

literature. Validation techniques are used to evaluate the performance of prediction 

models. These techniques can be categorized into two categories: cross validation and 

holdout method. 

3.5.1 Cross validation 

In k-fold cross validation, we resample train and test set k times. This is explained in the 

following steps: 

• Randomly divide dataset into k equal-sized folds 

• Train on k-1 folds, test on remaining fold 

• Repeat to use each fold once for testing 

3.5.1.1 10 fold cross validation 

A 10 fold cross validation [60] (i.e. k-fold cross validation, with k set to 10), is a common 

validation technique used to evaluate the performance of the prediction models. In 10 

fold cross validation; a dataset is randomly partitioned into 10 folds of equal size. For 10 

times, 9 folds are picked to train the models and the remaining fold is used to test them, 

each time leaving out a different fold. 
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3.5.1.2 Leave-one-out 

A leave-one-out cross-validation (LOOCV) procedure is another commonly used 

validation technique; it is a special type of k folds cross validation, whereas k is set to the 

total number of dataset observations. In this procedure, one observation is removed from 

the dataset, and then each model is built with the remaining n-1 observations and 

evaluated in predicting the value of the observation that was removed. The process is 

repeated each time removing a different observation. This procedure has a number of 

advantages [74, 101]: (i) it is closer to a real world situation than k-cross validation from 

a practitioner’s point of view (ii) it is deterministic (no sampling is involved); and (iii) it 

ensures the largest possible amount of data is used for training. 

3.5.2 Holdout method 

Holdout method splits the dataset into two sets, called the training set and the testing set. 

The most common split percentage is 70% for training and 30% for testing [74]. 
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CHAPTER 4 

Single model ensembles (Classification) 

4.1 Single model ensembles for classification 

In classification, a single model ensemble (i.e. single classifier ensemble), as shown 

below, consists of a set of individually trained classifiers of the same type whose 

classifications are combined to produce the final classification. The simplest way to 

combine classifiers is by voting. Bagging [15] and boosting [36] are well known single 

model ensemble models, which implement this approach in different ways using a single 

base classifier. 
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Figure 14: Single classifier ensemble 
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4.1.1 Bagging 

Bagging, short for bootstrap aggregating, is an ensemble technique proposed by Breiman 

[15] to improve the accuracy of classification models by combining classifications of 

same type (i.e., based on the same base classifier) of randomly generated training sets. 

Bagging assigns equal weight to models created, thus helps in reducing the variance 

associated with classification, which in turn improves the classification process. Bagging 

technique has presented good results whenever the learning algorithm is unstable [15]. 

The following figure states the bagging algorithm [101]: 

 Model generation 

 Let n be the number of instances in the training data 

 For each of t iterations: 

     Sample n instances with replacement from training data 

      Apply the learning algorithm to the sample 

     Store the resulting model 

 Classification 

 For each of the t models: 

  Predict class of instance using model 

 Return class that has been predicted most often 

Figure 15: Bagging algorithm 

Bagging technique requires three parameters: 

• classifier: the base classifier to apply bagging on. 

• bagSizePercent: size of each bag, as a percentage of the training set size. 

• numIterations: number of instances of the base classifiers to be created, i.e. the 
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ensemble size. In this thesis, we prefer to use the term ensemble size for clarity. 

4.1.2 Boosting 

Boosting is an ensemble technique proposed by Freund [36] to build a classifier ensemble 

incrementally, by adding one classifier at a time. The training set used for each member 

of the ensemble is chosen based on the performance of the earlier classifiers in the 

ensemble. The following figure states the boosting algorithm [101]: 

 
 Model generation 

 Assign equal weight to each training instance. 

         For each of t iterations: 

         Apply learning algorithm to weighted dataset and store resulting model. 

         Compute error e of model on weighted dataset and store error. 

         If e equal to zero, or e greater or equal to 0.5: 

                  Terminate model generation. 

         For each instance in dataset: 

                  If instance classified correctly by model: 

                           Multiply weight of instance by e / (1 – e). 

        Normalize weight of all instances. 

 Classification 

 Assign weight of zero to all classes. 

 For each of the t (or less) models: 

        Add –log(e / (1 – e)) to weight of class predicted by model. 

 Return class with highest weight. 

Figure 16: Boosting algorithm 

Boosting technique requires three parameters: 
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• classifier: the base classifier to apply boosting on. 

• Resampling/Reweighting: which approach is used (resampling or reweighting) 

• numIterations: number of instances of the base classifiers to be created, i.e. the 

ensemble size. In this thesis, we prefer to use the term ensemble size for clarity 

purpose. 

There are a family of boosting algorithms [39]. In this thesis, we used AdaBoost 

algorithm proposed by Freund et al. [37]. AdaBoost was proposed to improve other 

learning algorithms performance. There are two approaches implemented in AdaBoost: 

resampling and reweighting. In resampling, the fixed training sample size and training 

examples are resampled according to a probability distribution used in each iteration. In 

reweighting, all training examples with weights assigned to each example are used in 

each iteration to train the base classifier. In this paper, we used the resampling approach, 

because it has been reported to yield better accuracy [6, 106]. 

There is no conclusion on which ensemble technique is superior to the other. 

However, several observations have been made [6, 10, 76, 83]:  

• In some cases, boosting can significantly outperform bagging, while in some other 

cases, it can also be substantially worse than bagging (in a few cases even worse 

than individual classifiers) 

• bagging’s improvement over individual classifiers is more consistent on various 

data sets than boosting’s. 

The following table summarizes the similarities and differences between bagging 

and boosting techniques: 
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 Bagging Boosting 

Similarities • Uses voting 
• Combines models of the same type 

Differences 

Individual models are built 
separately 

Each new model is influenced by 
the performance of those built 
previously 

Equal weight is given to all 
models 

Weights a model’s contribution by 
its performance 

Table 7: Comparison between bagging and boosting 

4.2 Experiment design 

4.2.1 Goal 

The main goal of this experiment is to determine the extent to which bagging and 

boosting ensemble techniques offer an increase in classification accuracy over single 

classifiers in the context of identifying faulty classes in OO software. 

4.2.2 Settings 

The following table presents the settings for the conducted experiment: 

Experiment type Classification 

Investigated models 

BBN 

NB 

MLP 

RBF 

SVM 

DT 

Data set KC1 

Evaluation measure Accuracy 

Validation technique Leave-one-out (LOO) 

Table 8: Experiment settings for single classifier ensemble (classification) 
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4.2.3 Bagging and boosting parameters 

Parameters of the bagging and boosting ensemble techniques were initialized as follows. 

In bagging, the bag size was set to 100. In boosting (Adaboost), resampling was used 

instead of reweighting. Boosting by resampling improves the classification accuracy, the 

execution speed as well as the robustness to classification noise [106]. We have applied 

bagging and boosting to all of the investigated classification models. We used ensemble 

sizes from 5 to 50 with an increment of 5. This approach was used previously in the 

literature [15, 99]. Hence, we can investigate the effect of the ensemble size on the 

classification accuracy of these ensemble techniques. 

4.3 Results 

In this section, we present and analyze the results obtained from the conducted 

experiment. First, we compare the classification accuracy of the investigated 

classification models as base classifiers without applying ensemble techniques on them. 

Then, we compare the classification accuracy results after applying bagging and boosting 

techniques on each base classifier. Finally, we discuss the effect of applying bagging and 

boosting on each base classifier.  

Table 9 shows the classification accuracy for each of the investigated 

classification models without applying ensemble techniques on them, i.e., classification 

accuracy of single classifiers. It is clear that MLP outperformed all other models in 

accuracy. However, SVM and BBN produced the worst accuracy. There is a significant 

difference in accuracy, nearly 9%, between the highest accuracy (78.62%) achieved by 

MLP and the second highest accuracy (69.66%) achieved by NB. 
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Model Accuracy 

MLP 78.62 

RBF 68.28 

BBN 62.76 

NB 69.66 

SVM 62.76 

DT 63.45 

Table 9: Classification accuracy of single classifiers 

 
Table 10 presents the achieved accuracy by each classification model after 

applying bagging on it using different ensemble size. Bold values indicate that bagging 

resulted in improved accuracy over the single classifier reported in Table 4. It can be 

observed that bagging improved the accuracy of MLP, RBF, BBN, NB and DT. 

However, bagging SVM resulted in lower accuracy compared to single SVM in general. 

In case of RBF and DT, it can be observed that bagging increased their classification 

accuracy regardless of the ensemble size. However, in case of MLP and BBN, bagging 

increased their classification accuracy when the ensemble size is 20 or more. 

Table 11 presents the achieved accuracy by each classification model after 

applying boosting on it using different ensemble size. Bold values indicate that boosting 

resulted in improved accuracy over the single classifier reported in Table 4. Clearly, 

boosting improved the accuracy of RBF, BBN and DT regardless of the ensemble size. 

However, applying boosting on MLP, NB and SVM reduced their classification accuracy 

regardless of the ensemble size. 
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Ensemble size MLP RBF BBN NB SVM DT 

5 74.48 69.66 57.24 69.66 62.07 66.90 

10 77.93 72.41 62.07 70.34 62.07 67.59 

15 78.62 71.03 61.38 68.97 60.69 68.28 

20 79.31 73.10 63.45 70.34 61.38 68.97 

25 80.00 71.72 64.83 70.34 62.07 68.97 

30 80.00 72.41 65.52 70.34 62.76 69.66 

35 80.00 72.41 64.83 70.34 62.76 70.34 

40 80.00 73.10 66.21 70.34 62.76 69.66 

45 80.00 72.41 67.59 70.34 62.07 71.72 

50 80.00 73.10 66.90 70.34 62.07 71.72 

Table 10: Classification accuracy after applying bagging on base classifiers using 
different ensemble size 

 

Ensemble size MLP RBF BBN NB SVM DT 

5 73.79 72.41 64.83 67.59 60.00 70.34 

10 74.48 75.17 64.83 68.28 60.69 70.34 

15 73.79 74.48 64.83 69.66 62.07 73.10 

20 73.10 75.17 64.83 68.97 60.69 71.72 

25 73.10 74.48 64.83 68.97 61.38 73.79 

30 73.10 74.48 64.83 68.97 61.38 73.79 

35 73.10 73.79 64.83 68.97 60.69 73.79 

40 73.10 73.79 64.83 68.97 62.07 73.79 

45 73.10 73.79 64.83 68.97 62.07 73.79 

50 73.10 73.79 64.83 68.97 62.07 73.79 

Table 11: Classification accuracy after applying boosting on base classifiers using 
different ensemble size 
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Figure 17 compares the effect of applying bagging and boosting on each base 

classifier by plotting the accuracy of bagging and boosting with different ensemble size 

against the single classifier (i.e. without applying bagging and boosting) accuracy which 

is marked as a black horizontal line in the figures. It is observed that applying bagging 

and boosting on RBF and DT improved their accuracy in all different ensemble size. In 

addition, in case of MLP and NB, bagging produced higher accuracy than boosting. In 

case of RBF and DT, boosting accuracy was higher than bagging. In case of BBN, 

boosting accuracy was stable and bagging produced better accuracy than boosting as we 

increase the ensemble size, starting from ensemble size 30. In contrast, neither bagging 

nor boosting SVM improved its accuracy. 

 

Figure 17: Single classifier Vs Bagging Vs Boosting 
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Figure 18: (a) Bagging all classifiers, (b) Boosting all classifiers 

 

Figure 18 (a) and (b) plot the accuracy of bagging and boosting for each base 

classifier with different ensemble size, respectively. Figure 18 (a) indicates that bagging 

MLP improved its accuracy significantly and made it superior compared to the other 

models. Bagging DT improved its accuracy considerably and made it competitive with 

RBF and NB. However, even after applying bagging on SVM and BBN, they produced 

the worst accuracy. Figure 18 (b) indicates that boosting made MLP, RBF and DT close 

to each other to compete for the best accuracy; Boosting RBF and DT had a positive 

effect on these models accuracy, but boosting MLP decreased its accuracy. As in 

bagging, SVM and BBN produced the worst accuracy after applying boosting on them 

compared to the other boosted models. 

(a) Bagging

5 10 15 20 25 30 35 40 45 50

Ensemble Size

55

60

65

70

75

80

85

Ac
cu

ra
cy

(b) Boosting

5 10 15 20 25 30 35 40 45 50

Ensemble Size

55

60

65

70

75

80

85

Ac
cu

ra
cy

 MLP
 RBF
 BBN
 NB
 SVM
 DT



60 
 

There is a tradeoff between the incremental performance gains and the 

computational time that should be taken in consideration when applying ensemble 

techniques [6, 99]. Fortunately, we observed that when ensemble size was set to 25 and 

more, bagging and boosting did not produce significant different results over smaller 

ensemble sizes, i.e., most results are stable. As a result, we believe that ensemble size 25 

is an appropriate value for ensemble size parameter in bagging and boosting for this 

dataset.  

Figure 19 summarizes the comparison between the accuracy of single classifiers 

and their bagging and boosting when we set the ensemble size to 25. It can be observed 

that bagging improved the accuracy of 5 out of the 6 investigated models, whereas 

boosting improved the accuracy of only 3 out of the 6 models. In case of MLP and NB, 

the best accuracy was achieved by bagging. In case of RBF and DT, the best accuracy 

was achieved by boosting. In case of BNN, both bagging and boosting achieved the same 

accuracy. In case of SVM, neither bagging nor boosting improved its accuracy. Even 

after bagging and boosting, MLP remained as the best model in classification accuracy 

and boosting increased DT considerably and made it competitive with RBF for second 

highest.  
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Figure 19: Single classifier Vs Bagging (25) Vs Boosting (25)  

 

In summary of this chapter, empirical results indicate that bagging and boosting 

yield improved classification accuracy over most of the investigated single classifiers. 

However, bagging and boosting performance varied from one classifier to another. In 

some cases, bagging outperforms boosting, while in some other cases, boosting 

outperforms bagging. In case of MLP and NB, bagging produced the best accuracy. In 

case of RBF and DT, boosting produced the best accuracy. However, in case of SVM, 

bagging and boosting resulted in detrimental in accuracy. This result is supported by 

another study which states that SVM ensembles are not always better than a single SVM 

[99], which indicates that SVM is a stable method for the dataset in this experiment. 
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CHAPTER 5 

Multi-model ensembles (Classification) 

5.1 Multi-model ensembles for classification 

In classification, a multi-model ensemble consists of a set of individually trained 

classifiers, whose predictions are combined into something called an arbitrator, which 

produce the final output [75]. Multi-model ensembles can be classified into linear and 

nonlinear ensembles based on the design of their arbitrator [58]. 

5.1.1 Linear ensembles 

In linear ensembles, the arbitrator assigns prediction weights for each individual 

classifier, in a linear fashion as shown in Figure 20. There are a number of linear 

approaches to implement the linear architecture of the arbitrator. These approaches are 

majority voting, average probability, best probability, and weighted probability, as 

described in the following sections. 
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Figure 20: Multi-model linear ensemble (classification) 
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5.1.1.1 Majority voting 

Majority voting ensemble assigns equal weight to the output of each prediction model. 

For each observation, the output classification (i.e. positive or negative) of each 

individual prediction model is taken as an input to the ensemble. Then, the majority 

voting ensemble will output the class (i.e. positive or negative), with the highest vote. 

However, since we have an even number of prediction models, an equal vote may be 

expected. In this situation, we will make the ensemble output the class as positive. Below 

figure, gives a formal description about this ensemble: 

Model generation 

Choose dataset with N observations 

Choose M classifiers 

For each m ∈ M model 

 Perform K fold cross validation 

 Store output of each model 

Classification (majority voting ensemble) 

For each n ∈ N observations 

 Return class that has been predicted most often 

Figure 21: Majority voting linear ensemble 

5.1.1.2 Average probability 

Same as majority voting ensemble, each prediction model output has the same weight. 

For each observation, the probability values of the individual prediction models are taken 

as an input to the ensemble. Then, ensemble arbitrator outputs the average of these 

models probabilities. The following figure, gives a formal description about average 

ensemble:  
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Model generation 

Choose dataset with N observations 

Choose M classifiers 

For each m ∈ M model 

 Perform K fold cross validation 

 Store output of each model 

Classification (average probability ensemble) 

For each n ∈ N observations 

 average = ∑                 / M 

if( average > 0.5 ) 

 predict it as FALSE class 

else 

 predict it as TRUE class 

Figure 22: Average probability linear ensemble 

5.1.1.3 Best probability 

Best probability ensemble takes the advantage of the fact that classifiers have different 

errors across the used dataset partitions. The idea behind best probability ensemble is that 

across the dataset partitions, take the best trained classifier output performed in that 

partition. The following figure states the best linear ensemble approach: 
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Model generation 

Choose dataset with N observations 

Choose M classifiers 

Set K for K folds cross validation 

For each k ∈ K fold 

 For each m ∈ M model 

  Apply model m on training set for fold(k) 

  Calculate training error E, based on a certain criterion 

  Store error E 

 Rank M models, based on training error E 

 Classification (best probability ensemble) 

Apply first ranked model on testing set for fold(k)  

Figure 23: Best probability linear ensemble 

 

5.1.1.4 Weighted probability 

Weighted probability ensemble gives weight for individual models probability values, 

based upon a certain criterion. This criterion could be the accuracy evaluation measure. 

Prediction models with high error rate will be given less weight. The following figure, 

describes the formal approach of weight ensemble: 
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Model generation 

Choose dataset with N observations 

Choose M classifiers 

Set K for K folds cross validation 

For each k ∈ K fold cross validation 

 For each m ∈ M models 

  Apply m on training set for fold(k) 

  Calculate training error E, based on a certain criterion 

  Store error E 

 Rank M models, based on training error E 

 For each m ∈ M model 

  Apply model m on testing set fold(k) 

  Multiply model m probability by its rank 

  Store as probability(m) 

Classification (weight probability ensemble) 

For each n ∈ N observations in fold(k) 

  Probability  = ∑ probability     / ∑ i       

  if(Probability  > 0.5 ) 

   predict as FALSE 

  else 

   predict as TRUE 

Figure 24: Weight probability linear ensemble 
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5.1.2 Nonlinear ensembles 

Nonlinear ensembles, as shown below, use nonlinear models to build its arbitrator. In 

arbitrator design, nonlinear model is used to assign the weights. Output from individual 

classifiers is fed to this nonlinear model as input to train it and assign weights 

accordingly. In our approach, we used the list of individual investigated models as our 

potential list of nonlinear arbitrators. 
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Figure 25: Multi-model nonlinear ensemble (classification) 
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Model generation 

Choose dataset with N observations 

Choose M classifiers 

Set K for K folds cross validation 

Choose nonlinear arbitrator 

For each k ∈ K fold cross validation 

 (Training) 

 For each m ∈ M models 

  Apply m on training set for fold(k) 

  Store model training output 

 Train nonlinear arbitrator by supplying models training output 

 For each m ∈ M models 

  Apply m on testing set for fold(k) 

  Store model testing output 

 Test nonlinear arbitrator by supplying models testing output 

 Figure 26: Nonlinear ensemble 

5.2 Experiment design 

5.2.1 Goal 

This experiment incorporates many goals within it. The first goal is to examine the 

capabilities of individual classifiers. The second goal is to build different linear 

ensembles (i.e. majority voting, average probability, best probability, and weight 

probability) from chosen individual models, and examine to which extent they provide 

competitive results. The third goal is to build different nonlinear ensembles based on 

different nonlinear arbitrators (i.e. BBN, NB, MLP, RBF, SVM, and DT arbitrators), and 
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study their performance. Finally, we will compare the best model taken form each 

category (i.e. best model from individual models, linear ensembles, and nonlinear 

ensembles), and draw our conclusions. 

5.2.2 Settings 

The following table presents the settings for the conducted experiment: 

Experiment type Classification 

Investigated models 

BBN 

NB 

MLP 

RBF 

SVM 

DT 

Data set KC1 

Evaluation measures Accuracy, precision, recall, and f-measure 

Validation technique 10 fold cross validation 

Table 12: Experiment settings for multi-model ensemble (classification) 

 

5.3 Results 

Table 13 presents the results obtained from applying individual classifiers on KC1 

dataset, with bold values indicating the best achieved result. Overall results show the 

superiority of MLP over all other models. MLP achieved the highest accuracy, with NB 

as second best. Moreover, there is a significant difference in accuracy, nearly 7%, 

between the highest accuracy (75.86%) achieved by MLP and the second highest 

accuracy (68.96%) achieved by NB. In the other hand, BBN produced the lowest 

accuracy. 
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 In terms of precision, all models were competing for the best precision. However, 

MLP scored the highest precision value (0.67), with both SVM and NB as second 

highest, with no significant difference. Also, MLP scored the highest recall, and f-

measure values (i.e. (0.81) and (0.73), respectively). However, SVM scored a very low 

results in the two measures (i.e. recall and f-measure) compared with other models. 

Another observation from Table 13 is that SVM achieved a relatively moderate 

accuracy value, but a competing precision value. However, its performance, in terms of 

recall and f-measure, was the worst. This indicates that recall is encouraged to be used as 

a supporting measure for precision, and encourages the use of f-measure, since it 

represents the harmonic average of precision and recall. 

 

Individual models 

 
BBN NB MLP RBF SVM DT 

Accuracy 58.62 68.96 75.86 63.44 61.37 65.51 

Precision 0.5 0.64 0.67 0.58 0.64 0.59 

Recall 0.66 0.56 0.81 0.38 0.15 0.53 

F -measure 0.57 0.60 0.73 0.46 0.24 0.56 

Table 13: KC1 results for individual models (classification) 
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Figure 27 plots individual classifiers ROC graph points, with different decision 

thresholds. It is observed that MLP curve intends to move to the northwest corner (i.e. 

best classifier). However, SVM was clearly the worst performed model, since its curve is 

the closest to southeast corner.  

Table 14 presents the AUC values obtained from different individual models. 

MLP achieved the highest AUC value, and that means if other models curve intersect 

with MLP curve in some threshold, MLP will still give the best overall performance. 

 

Figure 27: KC1 ROC graph for individual models (classification) 
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Individual models Area Under Curve (AUC) 

BBN 0.628 

NB 0.683 

RBF 0.631 

SVM 0.459 

DT 0.729 

MLP 0.809 

Table 14: Individual models AUC (KC1 classification) 

 

Table 15 presents the results obtained from building different linear ensembles 

(i.e. majority voting, average probability, best probability, and weight probability), 

evaluated in the context of KC1 dataset. Weight ensemble achieved the highest accuracy, 

with majority voting and average ensembles competing for second highest. In terms of 

precision, recall, and f-measure, all linear ensembles were competing for the highest 

value, except for best ensemble, which scored the lowest values in all evaluation 

measures. 

Best ensemble achieved the lowest accuracy among linear ensembles, because of 

its construction limitation. Best ensemble is based on the best trained classifier in each 

partition. In this case, SVM was the best trained classifier in most partitions, however, 

SVM was the one of worst in testing. This yielded in overall degraded accuracy of best 

ensemble. 
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Linear Ensemble 

 
Majority Average Best Weight 

Accuracy 71.03 69.65 60 
 

73.79 

Precision 0.64 0.64 0.55 0.68 

Recall 0.68 0.6 0.16 0.68 

F -measure 0.66 0.62 0.25 
 

0.68 

Table 15: KC1 results for linear ensembles (classification) 

 

 Figure 28 plots all linear ensemble models ROC graph points, except for majority 

voting ensemble, since it is not applicable. It is observed that both average and weight 

ensemble curves are competing for the best performance (i.e. curve more towards the 

northwest corner, and intersecting more often). However, from Table 16, we can 

conclude the weight probability ensemble is better, since it achieved the highest AUC 

value (0.775). 
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Figure 28: KC1 ROC graph for linear ensembles (classification) 

 

Linear ensemble Area Under Curve (AUC) 

Average Probability 0.772 

Best Probability 0.671 

Weight Probability 0.775 

Table 16: Linear ensemble models AUC (KC1 classification) 

 

 Table 17 presents the results obtained from building different nonlinear ensembles 

from different nonlinear arbitrators (i.e. BBN, NB, MLP, RBF, SVM, and DT), evaluated 

in the context of KC1 dataset. Overall results show the superiority of SVM nonlinear 

ensemble over all other nonlinear ensembles. SVM ensemble achieved the highest 

accuracy, precision, recall, and f-measure, with DT as second best in all measures.  
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  Nonlinear Ensemble 

 
BBN NB MLP RBF SVM DT 

Accuracy 71.03 71.03 69.65 69.65 75.86 72.41 

Precision 0.64 0.64 0.62 0.62 0.67 0.65 

Recall 0.68 0.68 0.65 0.65 0.81 0.71 

F -measure 0.66 0.66 0.63 0.63 0.73 0.68 

Table 17: KC1 results for nonlinear ensembles (classification) 

 

  Figure 29 plots all nonlinear ensemble models ROC graph points, with different 

decision thresholds. It is observed from ROC graph, that nonlinear ensembles compete 

for best model, as we change threshold. In addition, Table 18 gives close AUC values 

between different nonlinear ensembles. However, both MLP and NB nonlinear ensembles 

achieved the hioghest AUC value (0.744).  

In general, we relay on our main evaluation measures (i.e. accuracy, precision, 

recall, and f-measure), to come with out best performed nonlinear ensemble. So, we 

conclude that SVM ensemble is the best performed nonlinear ensemble. 
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Figure 29: KC1 ROC graph for nonlinear ensembles (classification) 

 

Linear ensemble Area Under Curve (AUC) 

BBN 0.743 

NB 0.744 

MLP 0.744 

RBF 0.694 

SVM 0.670 

DT 0.66 

Table 18: Nonlinear ensemble models AUC (KC1 classification) 
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Now, we discussed the performance of various models in each category (i.e. 

individual, linear ensemble, nonlinear ensemble models). Next, we pick the best model 

from each category as Table 19 shows, and compare them, to examine to which extent 

ensembles offer an increase in performance. MLP was the best model as an individual 

model, weight ensemble as linear ensemble, and SVM ensemble as nonlinear ensemble. 

Table 19 shows that weight ensemble was slightly lower than MLP model in 

accuracy, and f-measure, and slightly higher in precision. However, SVM nonlinear 

ensemble produced competitive results against MLP. 

 
Individual 

model 
Linear 

ensemble 
Nonlinear 
ensemble 

 
MLP 

Weight 
SVM 

Accuracy 

Accuracy 75.86 73.79 75.86 

Precision 0.67 0.68 0.67 

Recall 0.81 0.68 0.81 

F -measure 0.73 0.68 0.73 

Table 19: KC1 comparison of individual Vs best linear Vs best nonlinear 
(classification) 

 

From figure and table below, MLP curve competed with weight linear ensemble 

curve for best model performance. However, MLP scored higher AUC value than weight 

linear ensemble, with a difference of (0.034). Based on results in Table 19, we concluded 

that ensembles in general offer competitive results against individual models. 



80 
 

 

Figure 30: KC1 ROC graph for comparison of individual Vs best linear Vs best 
nonlinear (classification) 

 

Model Area Under Curve (AUC) 

MLP 0.809 

Weight probability 0.775 

SVM nonlinear 0.670 

Table 20: Comparison of individual Vs best linear Vs best nonlinear AUC 
(classification)  
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CHAPTER 6 

Multi-model ensembles     (Regression) 

6.1 Multi-model ensembles for regression 

In regression, a multi-model ensemble consists of a set of individually trained regression 

models, whose predictions are combined into something called an arbitrator, which 

produce the final output [75]. Multi-model ensembles can be classified into linear and 

nonlinear ensembles based on the design of their arbitrator [58]. 

6.1.1 Linear ensembles 

In linear ensembles, the arbitrator assigns prediction weights for each individual 

regression model, in a linear fashion as shown in Figure 31. There are a number of linear 

approaches to implement the linear architecture of the arbitrator. These approaches are 

average, best, and weight, as described in the following sections. 
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Figure 31: Multi-model linear ensemble (regression) 
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6.1.1.1 Average 

Average linear ensemble is the simplest ensemble model, where each prediction model 

has the same weight. For each observation, the output values of the individual prediction 

models are taken as input to the ensemble and the average of these values as the output 

by the ensemble. The following figure, gives a formal description about average 

ensemble: 

Model generation 

Choose dataset with N observations 

Choose M individual regression models 

For each m ∈ M model 

 Perform K fold cross validation 

 Store output of each model 

Regression (average ensemble) 

For each n ∈ N observations 

 Take average of all M models outputs 

Figure 32: Average linear ensemble 

 

6.1.1.2 Best 

Best linear ensemble takes the advantage of the fact that regression models have different 

errors across the used dataset partitions. The idea behind best linear ensemble is that 

across the dataset partitions, take the best trained regression model performed in that 

partition. The following figure states the best linear ensemble approach: 
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Model generation 

Choose dataset with N observations 

Choose M individual regression models 

Set K for K folds cross validation 

For each k ∈ K fold 

 For each m ∈ M model 

  Apply model m on training set for fold(k) 

  Calculate training error E, based on a certain criterion 

  Store error E 

 Rank M models, based on training error E 

 Regression (best ensemble) 

Apply first ranked model on testing set for fold(k)  

Figure 33: Best linear ensemble 

6.1.1.3 Weight 

Individual output values are given weights based upon a certain criterion. This criterion 

could be mean magnitude of relative error (MMRE). Prediction models with high error 

rate will be given less weight. The following figure, describes the formal approach of 

weight ensemble: 
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Model generation 

Choose dataset with N observations 

Choose M individual regression models 

Set K for K folds cross validation 

For each k ∈ K fold cross validation 

 For each m ∈ M models 

  Apply m on training set for fold(k) 

  Calculate training error E, based on a certain criterion 

  Store error E 

 Rank M models, based on training error E 

 For each m ∈ M model 

  Apply model m on testing set fold(k) 

  Multiply model m output by its rank 

  Store as output(m) 

Regression 

For each n ∈ N observations fold(k) 

          = ∑            / ∑         

Figure 34: Weight linear ensemble 

6.1.2 Nonlinear ensembles 

Nonlinear ensembles, as shown below, use nonlinear models to build its arbitrator. In 

arbitrator design, nonlinear model is used to assign the weights. Output from individual 

regression models is fed to this nonlinear model as input to train it and assign weights 

accordingly. In our approach, we used the list of individual investigated models as our 

potential list of nonlinear arbitrators. 
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Figure 35: Multi-model nonlinear ensemble (regression) 
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Model generation 

Choose dataset with N observations 

Choose M individual regression models 

Set K for K folds cross validation 

Choose nonlinear arbitrator 

For each k ∈ K fold cross validation 

 (Training) 

 For each m ∈ M models 

  Apply m on training set for fold(k) 

  Store model training output 

 Train nonlinear arbitrator by supplying models training output 

 For each m ∈ M models 

  Apply m on testing set for fold(k) 

  Store model testing output 

 Test nonlinear arbitrator by supplying models testing output   

Figure 36: Nonlinear ensemble 

6.2 Experiment design 

6.2.1 Goal 

This experiment has many goals to achieve. The first goal is to examine the capabilities 

of individual regression models. The second goal is to build different linear ensembles 

(i.e. average, best, and weight) from chosen individual models, and examine to which 

extent they provide competitive results. The third goal is to build different nonlinear 

ensembles based on different nonlinear arbitrators (i.e. MLP, RBF, SVMreg, and M5P 

arbitrators), and study their performance. Finally, we will compare the best model taken 
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form each category (i.e. best model from individual models, linear ensembles, and 

nonlinear ensembles), and draw our conclusions. 

6.2.2 Settings 

In this experiment, we used three datasets KC1, UIMS, and QUES. KC1 is from the class 

fault domain, while the other two (i.e. UIMS and QUES) taken from the maintainability 

domain. The following table presents the settings for the conducted experiment: 

Experiment type Regression 

Investigated models 

MLP 

RBF 

SVMreg 

M5P 

Data set KC1, UIMS, and QUES 

Evaluation measure 
MMRE, StdMRE, and 
Pred(0.3) 

Validation technique 10 fold cross validation 

Table 21: Experiment settings for multi-model ensemble (regression) 

6.3 Results 

6.3.1 KC1 

Table 22 presents the results obtained from applying individual prediction models on 

KC1 dataset, with bold values as indication of best achieved result. Overall results show a 

competition between RBF and SVMreg. SVMreg achieved the best MMRE, and RBF 

was second best with a minor MMRE difference of (0.06). However, RBF was better 

than MLP in StdMRE with (0.62) difference. In Pred(0.3), SVMreg and M5P got the best 

result. The worst model in performance was MLP (i.e. worst in MMRE, and Pred(0.3)). 
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Individual models 

 
MLP RBF SVMreg M5P 

MMRE 2.19 1.68 1.62 1.91 

StdMRE 2.73 2.68 3.30 3.98 

Pred(0.3) 20 21.66 23.33 23.33 

Table 22: KC1 results for individual models (regression) 

 

Figure 37 box plots KC1 results obtained from individual regression models. RBF 

was the best model, since it had the narrowest box and smallest whisker. However, 

SVMreg was competitive with RBF in the lower box. The worst model was MLP (i.e. 

biggest box and longest whisker).  

In summary, RBF and SVMreg showed close and competitive results, but 

superior to other models. We chose SVMreg as best individual regression model, since it 

achieved the best MMRE and Pred(0.3). 
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Figure 37: KC1 box plots for individual models (regression) 

 

Table 23 presents the results obtained from building different linear ensembles 

(i.e. average, best, and weight). Linear ensembles show close and competitive results. 

Weight ensemble achieved the lowest MMRE, but the difference between it and average 

and best ensembles was (0.02) and (0.05) respectively. Also, weight ensemble achieved 

the lowest in StdMRE, with minor difference than second lowest (i.e. average ensemble) 

around (0.1). In terms of Pred(0.3), weight and average ensembles got the best results. 
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Linear Ensemble 

 Average 
Best Weight 

 
MMRE MMRE 

MMRE 1.74 1.77 1.72 

StdMRE 3.05 3.39 2.95 

Pred(0.3) 26.66 25 26.66 

Table 23: KC1 results for linear ensembles (regression) 

 

Figure 38 box plots KC1 results obtained from created linear ensemble models. 

Boxes sizes seem to be close to each other, and they are at the same level. However, 

weight ensemble had the smallest whisker compared with others. 

In summary, results were close and competitive. However, weight ensemble was 

slightly better than average and best ensembles.  
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Figure 38: KC1 box plots for linear ensembles (regression) 

 

Table 24 presents the results obtained by building nonlinear ensembles using 

nonlinear arbitrators (i.e. different nonlinear models). SVMreg nonlinear ensemble 

outperformed all other nonlinear ensembles in all performance measures. RBF nonlinear 

ensemble came second best, with minor difference between it and best nonlinear 

ensemble (i.e. SVMreg nonlinear ensemble), in terms of MMRE and StdMRE, (0.03) and 

(0.3), respectively. However, in Pred(0.3) SVMreg nonlinear ensemble was superior over 

other nonlinear ensembles with Pred(0.3) value of 26.6%. 
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Nonlinear Ensemble 

 
Nonlinear models 

 
MLP RBF SVMreg M5P 

MMRE 2.29 1.70 1.67 2.12 

StdMRE 4.32 2.66 2.35 2.77 

Pred(0.3) 16.66 20 26.66 15 

Table 24: KC1 results for nonlinear ensembles (regression) 

Figure 39 box plots KC1 results obtained from created nonlinear ensemble 

models. SVMreg nonlinear ensemble had the narrowest box, smallest whisker, and the 

lowest box and whisker among the other models, which means that it’s the best nonlinear 

ensemble. On the other hand, MLP nonlinear ensemble was the worst (i.e. biggest box 

and longest whisker). 

  

Figure 39: KC1 box plots for nonlinear ensembles (regression) 
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Now, we discussed the performance of various models in each category (i.e. 

individual, linear ensemble, nonlinear ensemble models). Next, we pick the best model 

from each category as Table 25 shows, and compare them, to examine to which extent 

ensembles offer an increase in performance. SVMreg was the best model as an individual 

model, weight ensemble as linear ensemble, and SVMreg ensemble as nonlinear 

ensemble.  

As Table 25 shows, best individual model achieved the lowest MMRE, with a 

minor difference between it and second lowest MMRE (i.e. nonlinear ensemble) around 

(0.05). However, both ensembles were better than individual in StdMRE and Pred(0.3). 

In overall, nonlinear ensemble outperformed other models, since it shows competitive 

results. 

Moreover, we performed Wilcoxon significance test at p-level equal to (0.1), to 

examine the MRE significance difference between the best model in each category. Table 

26 shows the results in terms of p-value (upper cell) and z-value (lower cell). Bold values 

indicate significant difference. Results show that the difference between ensembles (i.e. 

linear and nonlinear) and SVMreg was significant. However, the difference between 

linear and nonlinear ensemble was not significant. 

 
individual 

Linear 
Nonlinear 

 
Weight 

 
SVMreg MMRE SVMreg 

MMRE 1.62 1.72 1.67 

StdMRE 3.30 2.95 2.35 

Pred(0.3) 23.33 26.66 26.66 

Table 25: KC1 comparison of individual Vs best linear Vs best nonlinear (regression) 
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 SVMreg Weight linear 
ensemble 

SVMreg nonlinear 
ensemble 

SVMreg 
   

Weight linear 
ensemble 

0.057 
  1.907 

SVMreg nonlinear 
ensemble 

0.035 0.740 
 2.105 0.331 

Table 26: Wilcoxon MRE significance test of KC1 individual, best linear, and best 
nonlinear (p-level = 0.1) 

Figure 40 box plots KC1 best individual model against best linear and nonlinear 

ensembles. Both ensembles, has smaller box, and whisker than best individual (i.e. better 

in performance). However, nonlinear ensemble had the narrowest box, and the smallest 

whisker (i.e. the best prediction model). Furthermore, Figure 40 supports our hypothesis 

that ensembles offer competitive, even better performance than individual models. 

Between ensembles, nonlinear ensembles proved to be the best candidate for building 

future prediction models, since it provides promising results. 
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Figure 40: KC1 box plots of best individual Vs best linear Vs best nonlinear 
(regression) 

6.3.2 UIMS 

Table 27 compares the results obtained from applying individual regression models on 

UIMS maintainability dataset. MLP achieved the best MMRE, and StdMRE, while 

SVMreg was second best with a minor difference in both measures of (0.25), and (0.02), 

respectively. Also, MLP scored the best Pred(0.3), alongside with M5P. However, RBF 

was the worst performed regression model in all measures. 

 
Individual models 

 
MLP RBF SVMreg M5P 

MMRE 1.39 3.23 1.64 1.67 

StdMRE 2.40 4.43 2.38 2.75 

Pred(0.3) 23.33 15 20 23.33 

Table 27: UIMS results for individual models (regression) 
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Figure 41 shows the MRE box plots of individual regression models. It is 

observed that both MLP and SVMreg compete for the narrowest box, and smallest 

whisker. However, both MLP box and whisker are lower than SVMreg (i.e. MLP better 

than SVMreg). It is clear that RBF had the biggest box and longest whisker (i.e. worst 

performed model).  

 

Figure 41: UIMS box plots for individual models (regression) 
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Table 28 compares the results obtained from different constructed linear 

ensembles (i.e. average, best, and weight) applied on UIMS maintainability dataset. Best 

ensemble achieved the lowest MMRE and StdMRE, and highest Pred(0.3). This is due to 

the reason that different prediction models were chosen for different folds, and these 

models produced the lowest error. Therefore, best ensemble shows superior performance 

over average, and weight ensembles. 

 
Linear Ensemble 

 Average 
Best Weight 

 
MMRE MMRE 

MMRE 1.46 0.97 1.21 

StdMRE 2.08 1.61 1.78 

Pred(0.3) 23.33 25 23.33 

Table 28: UIMS results for linear ensembles (regression) 

 

Figure 42 shows the MRE box plots of constructed linear ensemble models. Best 

ensemble box and whisker is lower than of those average, and weight ensemble. Also, 

best ensemble had the smallest whisker. However, average ensemble had the largest box, 

and longest whisker.  
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Figure 42: UIMS box plots for linear ensembles (regression) 

 

Table 29 compares the results obtained from nonlinear ensembles constructed 

using different nonlinear arbitrators (i.e. MLP, RBF, SVMreg, and M5P) applied on 

UIMS maintainability dataset. SVMreg nonlinear ensemble achieved the best MMRE, 

and StdMRE, with M5P nonlinear ensemble as second best in both measures with 

difference of (0.3) and (0.49), respectively. But, M5P nonlinear ensemble scored the 

highest Pred(0.3) value (i.e. 25%), and SVMreg nonlinear ensemble had the second 

highest Pred(0.3) value. However, RBF nonlinear ensemble was the worst performed 

nonlinear ensemble, since it scored the worst values in all evaluation measures. 
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Nonlinear Ensemble 

 
Nonlinear models 

 
MLP RBF SVMreg M5P 

MMRE 1.26 3.03 0.93 1.23 

StdMRE 2.07 3.98 1.24 1.73 

Pred(0.3) 15 13.33 21.66 25 

Table 29: UIMS results for nonlinear ensembles (regression) 

Figure 43  shows the MRE box plot of different nonlinear ensembles. It is clearly 

observed that SVMreg nonlinear ensemble outperformed all other nonlinear ensembles, 

since it had the narrowest box, smallest whisker, and the lowest box and whisker. While, 

RBF nonlinear ensemble was the worst among nonlinear ensembles (i.e. biggest box, and 

longest whisker). 

 

Figure 43: UIMS box plots for nonlinear ensembles (regression) 
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Now, we discussed the performance of various models in each category (i.e. 

individual, linear ensemble, nonlinear ensemble models). Next, we pick the best model 

from each category as Table 30 shows, and compare them, to examine to which extent 

ensembles offer an increase in performance. MLP was the best model as an individual 

model, best ensemble as linear ensemble, and SVMreg ensemble as nonlinear ensemble. 

As Table 30 shows, SVMreg nonlinear ensemble achieved the best MMRE (i.e. 

0.93), and StdMRE (i.e. 1.24), with best linear ensemble as second best. However, best 

linear ensemble scored the highest Pred(0.3) value (i.e. 25%). Both linear and nonlinear 

ensembles offer a considerable amount of increase in performance over individual 

models. 

Moreover, Table 31 supports our findings, since the difference between SVMreg 

nonlinear ensemble and MLP is significant. However, the difference between linear and 

nonlinear ensembles was not significant. 

 
Individual Linear Nonlinear 

  Best  

 
MLP MMRE SVMreg 

MMRE 1.39 0.97 0.93 

StdMRE 2.40 1.61 1.24 

Pred(0.3) 23.33 25 21.66 

Table 30: UIMS comparison of individual Vs best linear Vs best nonlinear 
(regression) 
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MLP Weight linear 

ensemble 
SVMreg nonlinear 

ensemble 
MLP 

   
Weight linear 

ensemble 
0.376 

  0.885 
SVMreg nonlinear 

ensemble 
0.074 0.209 

 1.786 1.256 
Table 31: Wilcoxon MRE significance test of UIMS individual, best linear, and best 

nonlinear (p-level = 0.1) 

 

Figure 44 shows the MRE box plot of best individual regression model against 

linear and nonlinear ensembles. It is observed that both ensembles outperformed best 

individual model, since they have smaller boxes and whiskers, and lower than those of 

MLP (i.e. best individual model). In addition, between ensembles, nonlinear ensemble 

had the smallest box and whisker, and lower than those of linear ensemble. 

In summary, ensembles in general offer competitive, in fact, better performance 

than individual models, and nonlinear ensembles proved to be the best among ensembles, 

since it provides promising results in the field of software maintainability prediction.   
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Figure 44: UIMS box plots of best individual Vs best linear Vs best nonlinear 
(regression) 

   

6.3.3 QUES  

 

Table 32 compares the results obtained from applying individual regression models on 

QUES maintainability dataset. SVMreg outperformed MLP, RBF, and M5P in all 

evaluation measures. SVMreg achieved the best value in both MMRE and StdMRE (i.e. 

lowest MMRE value). Moreover, SVMreg scored the highest Pred(0.3) value (i.e. 

56.6%). However, M5P showed a competitive result compared with SVMreg, it was 

achieved the second best in all evaluation measures. RBF was the worst performed model 

(i.e. highest MMRE and StdMRE, and lowest Pred(0.3) value). 

Best individual Vs Best Linear Ensemble Vs Best Nonlinear Ensemble

MLP
Best Linear Ensemble

Best Nonlinear Ensemble
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4.0
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Individual model 

 
MLP RBF SVMreg M5P 

MMRE 0.71 0.96 0.44 0.54 

StdMRE 0.65 1.52 0.39 0.56 

Pred(0.3) 40 36.66 56.66 51.66 

Table 32: QUES results for individual models (regression) 

Figure 45 shows the MRE box plots of individual regression models. It clearly 

observed that SVMreg outperformed other regression models, since it had the narrowest 

box, smallest whisker, and the level of its box and whisker is lower than those of other 

regression models. In the other hand, RBF had the biggest box, longest whisker (i.e. 

worst model). 

  

Figure 45: QUES box plots for individual models (regression) 

Individual models

MLP RBF SVMreg M5P
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0
 Mean  ±SE  ±SD 
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Table 33 compares the results obtained from different constructed linear 

ensembles (i.e. average, best, and weight) applied on QUES maintainability dataset. All 

created linear ensembles shows competitive results, however, best ensemble 

outperformed all other linear ensembles in all evaluation measures. Best ensemble 

achieved the lowest MMRE and StdMRE (i.e. 0.4 and 0.3, respectively), and highest 

Pred(0.3) value (i.e. 60%). 

 
Linear Ensemble 

 Average 
Best Weight 

 
MMRE MMRE 

MMRE 0.58 0.41 0.49 

StdMRE 0.69 0.32 0.51 

Pred(0.3) 53.33 60 53.33 

Table 33: QUES results for linear ensembles (regression) 

 

Figure 46 shows the MRE box plots of constructed linear ensembles. It is clearly 

observed that best ensemble outperformed all other linear ensembles. Best ensemble had 

the narrowest box, and smallest whisker. Furthermore, the level of its box and whisker is 

lower than those of average and weight ensemble. However, average ensemble was the 

worst linear ensemble (i.e. biggest box and longest whisker). 
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Figure 46: QUES box plots for linear ensembles (regression) 

 

Table 34 compares the results obtained from nonlinear ensembles constructed 

using different nonlinear arbitrators (i.e. MLP, RBF, SVMreg, and M5P) applied on 

QUES maintainability dataset. SVMreg and M5P nonlinear ensembles are competing for 

the best nonlinear ensemble. However, SVMreg ensemble was slightly better than M5P 

ensemble in all evaluation measures with difference of (0.06), (0.04), and (1.7%) in 

MMRE, StdMRE, and Pred(0.3), respectively. Therefore, it can be concluded that 

SVMreg ensemble is the best nonlinear ensemble. However, RBF ensemble was the 

worst performed model (i.e. highest MMRE and StdMRE, and lowest Pred(0.3) value). 

  

Linear ensembles

Average Best Weight
-0.2
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0.2

0.4

0.6

0.8

1.0

1.2
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Nonlinear Ensemble 

 
Nonlinear models 

 
MLP RBF SVMreg M5P 

MMRE 0.57 0.92 0.38 0.44 

StdMRE 0.54 1.44 0.35 0.39 

Pred(0.3) 50 41.66 60 58.33 

Table 34: QUES results for nonlinear ensembles (regression) 

Figure 47 shows the MRE box plots of constructed nonlinear ensembles. Both 

SVMreg and M5P ensembles is competing for the smallest box. However, it can be 

clearly observed that SVMreg ensemble had smaller whisker than other nonlinear 

ensembles, and the level of its box and whisker is lower than those of MLP, RBF, and 

M5P ensembles. RBF ensemble was the worst linear ensemble (i.e. biggest box and 

longest whisker). 
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Figure 47: QUES box plots for nonlinear ensembles (regression) 

Now, we discussed the performance of various models in each category (i.e. 

individual, linear ensemble, nonlinear ensemble models). Next, we pick the best model 

from each category as Table 35 shows, and compare them, to examine to which extent 

ensembles offer an increase in performance. SVMreg was the best model as an individual 

model, best ensemble as linear ensemble, and SVMreg ensemble as nonlinear ensemble. 

As Table 35, nonlinear ensemble achieved the best MMRE (i.e. 0.38), with linear 

ensemble as second best MMRE achieved (i.e. 0.41). In the other hand, linear ensemble 

had the best StdMRE (i.e. 0.32), with nonlinear ensemble as second best StdMRE (i.e. 

0.35). In terms of Pred(0.3) , both ensembles (i.e. linear and nonlinear) scored the highest 

Pred(0.3) value (i.e. 60%). However, the difference between individual model and 

ensembles was not significant, as indicated by Table 36.  

Nonlinear models

MLP RBF SVMreg M5P
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individual Linear Nonlinear 

  
Best 

 

 
SVMreg MMRE SVMreg 

MMRE 0.44 0.41 0.38 

StdMRE 0.39 0.32 0.35 

Pred(0.3) 56.66 60 60 

Table 35: QUES comparison of individual Vs best linear Vs best nonlinear 
(regression) 

 
MLP Best linear 

ensemble 
SVMreg nonlinear 

ensemble 
MLP 

   
Best linear 
ensemble 

0.281 
  1.079 

SVMreg nonlinear 
ensemble 

0.122 0.289 
 1.547 1.060 

Table 36: Wilcoxon MRE significance test of QUES individual, best linear, and best 
nonlinear (p-level = 0.1) 

 

Figure 48 shows the MRE box plot of best individual regression model against 

linear and nonlinear ensembles. It is observed that both ensembles have smaller whisker 

than best individual model, and the level of their box and whisker is lower than those of 

best individual model. Thus, both ensembles offer an increase in performance over best 

individual model. Between ensembles, nonlinear box is lower than the box of best linear 

ensemble. However, best linear ensemble has smaller whisker, and slightly smaller box. 

In summary of this chapter, ensembles in general offer competitive, or even, 

better performance than individual models, and they provide promising results in the field 

of software maintainability prediction.   
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Figure 48: QUES box plots of best individual Vs best linear Vs best nonlinear 
(regression) 

  

Best individual Vs Best Linear Ensemble Vs Best Nonlinear Ensemble

SVMreg
Best Linear Ensemble

Best Nonlinear Ensemble
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
 Mean  ±SE  ±SD 



111 
 

CHAPTER 7  

Conclusion 

The main objective of this thesis was to build different ensemble models, and evaluate 

their prediction accuracy against stand-alone prediction models. Several linear and 

nonlinear ensembles were built, and three empirical studies were conducted to evaluate 

them in the context of fault and maintenance effort prediction.  

Overall empirical results produced in this thesis show that ensembles in general 

offer better, or at least competitive, performance than individual models. In addition, 

nonlinear ensembles achieved the best accuracy among ensembles. 

The rest of this chapter is organized as follows: thesis contributions are discussed 

in the next section. After that, the limitations of this thesis are discussed. Finally, 

directions for future work were provided. 

7.1 Thesis contributions 

Throughout our empirical studies, we provided empirical evidences and interesting 

results for both software quality assurance and computational intelligence communities. 

These contributions are summarized below:  

• Investigated six popular and common computational intelligence models (i.e. 

BBN, NB, MLP, RBF, SVM, DT) in identifying faulty classes. Some of these 

models, such as SVM and BBN, were not investigated before for the same 

purpose.  
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o Results indicate that MLP was superior over other individual models. 

• Evaluated the prediction capability of single model ensembles (i.e. bagging and 

boosting) over individual models, in the context of identifying faulty classes in a 

software system. 

o Empirical results indicate that bagging and boosting yield improved 

classification accuracy over most of the investigated single classifiers. 

However, bagging and boosting performance varied from one classifier to 

another. In some cases, bagging outperforms boosting, while in some 

other cases, boosting outperforms bagging.  

o In case of MLP and NB, bagging produced the best accuracy. In case of 

RBF and DT, boosting produced the best accuracy. However, in case of 

SVM, bagging and boosting resulted in detrimental in accuracy. 

• Proposed different multi-model linear ensembles for classification domain (i.e. 

majority voting, average probability, best probability, and weighted probability 

ensembles). 

• Evaluated the proposed multi-model linear ensembles (classification) against 

individual prediction models, in the context of identifying faulty classes in a 

software system.  

o Empirical results indicate that multi-model linear ensembles show 

competitive results in classification accuracy. 

• Proposed different nonlinear arbitrators to build different multi-model nonlinear 

ensembles for classification domain 
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o Empirical studies indicate that nonlinear ensembles are promising models 

for providing improved accuracy. 

• Proposed different multi-model linear ensembles for regression domain (i.e. 

average, best, and weight ensembles). 

• Evaluated the proposed multi-model linear ensembles (regression) against 

individual prediction models, in the context of estimating the fault density of 

faulty classes, and maintenance effort.  

o Experimental results indicate that multi-model linear ensembles in general 

offer better, or at least competitive, performance. 

• Proposed different nonlinear arbitrators to build different multi-model nonlinear 

ensembles for regression domain. 

o Empirical studies indicate that nonlinear ensembles are promising models 

for providing improved accuracy. 

7.2 Limitations 

We will list limitations faced in this research, along with our point of view for these 

limitations: 

• Choice of individual models: we chose six individual models for classification 

domain, while only four out of these six were applicable in the regression domain. 

However, we selected these models across different categories to achieve a 

balance between established prediction models, and we selected the models that 

are commonly and widely used in the literature of software quality prediction. 

• Parameter initialization: in our experiments, we set the models parameters, to the 

default settings in WEKA, without any parameter optimization. However, our 
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goal was to build different ensemble models from stand-alone models, without 

taking into consideration the optimization issue. In addition, it has been observed 

that the default settings were used in many papers in the literature. Further studies 

are needed to further support findings of this research. 

• Generalization: we used one dataset for class fault classification, one dataset for 

class fault density estimation, and two datasets for maintenance effort prediction. 

More studies are needed to further support the findings of this research. 

• Some models perform well in training; however, in testing they may perform the 

worst. This will decrease the accuracy of linear ensembles performance, since, 

these models relay on training performance for their construction (e.g. weight and 

best probability ensemble in classification domain). 

7.3 Future work 

The field of software quality prediction is an interesting field, which provides valuable 

information for both software quality assurance and computational intelligence 

communities. After conducting this research, we thought of a number of suggestions to 

extend the directions of this research. Such suggestions include: 

• Consider other stand-alone prediction models to construct different ensembles. 

• Apply ensemble models to other software quality prediction problems. 

• Try parameter optimization, before ensemble building. 

• Propose and evaluate other weight mechanisms for building weight ensembles. 

• In weight and best ensembles, try different error criterion for ranking (e.g. 

Pred(0.3) for regression and F-measure for classification). 
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Appendix A – Detailed experiment 

results 

KC1 (classification) results 

 BBN NB MLP RBF SVM DT 

Actual Pred
icte
d 

Proba
bility 

Pred
icte
d 

Prob
abilit
y 

Pred
icte
d 

Prob
abilit
y 

Pred
icte
d 

Prob
abilit
y 

Pred
icte
d 

Prob
abilit
y 

Pred
icte
d 

Prob
abilit
y 

T F 0.914 T 0.003 T 0 T 0.305 F 0.619 T 0 

T F 0.914 T 0.004 T 0.055 T 0.304 F 0.619 T 0 

T T 0.42 T 0.064 T 0.078 T 0.37 F 0.619 T 0.125 

T F 0.914 T 0.019 T 0.053 T 0.308 F 0.619 T 0 

T T 0.42 T 0.11 T 0 T 0.338 F 0.619 T 0 

T T 0.42 T 0.448 T 0.202 F 0.528 F 0.747 T 0.125 

T T 0.42 T 0.007 T 0.055 T 0.304 F 0.619 F 0.727 

T T 0.42 T 0.274 T 0.012 T 0.386 F 0.618 T 0 

T F 0.914 F 0.984 T 0.089 F 0.936 F 0.619 F 0.857 

T F 0.914 F 0.984 T 0.089 F 0.936 F 0.619 F 0.857 

T T 0.42 F 1 F 0.992 F 0.939 F 0.612 F 0.857 

F T 0.42 F 0.628 F 0.746 F 0.633 F 0.619 F 1 

T T 0.42 F 0.774 T 0.172 T 0.345 F 0.615 T 0.3 

F T 0.42 F 1 F 1 F 0.936 F 0.62 F 0.857 

F T 0.471 F 0.876 T 0.146 F 0.575 T 0.2 T 0.414 

T T 0.471 T 0.001 T 0.001 T 0.081 F 0.588 T 0.056 

T T 0.471 T 0.048 T 0.008 T 0.097 F 0.588 T 0.056 

F T 0.471 F 0.511 F 0.647 F 0.724 F 0.588 F 1 

F F 0.984 F 0.876 F 0.98 F 0.811 F 0.588 F 1 

F T 0.471 F 0.79 F 0.79 F 0.618 F 0.642 T 0.414 

T T 0.471 F 0.846 T 0.186 F 0.541 F 0.598 T 0.414 

F F 0.984 F 0.962 F 1 F 0.739 F 0.787 F 1 

F F 0.984 F 0.962 F 1 F 0.739 F 0.787 F 1 

F T 0.471 F 0.505 T 0.055 F 0.726 F 0.588 T 0.414 

T T 0.471 T 0.372 T 0.01 F 0.601 T 0.357 T 0.056 

T T 0.471 T 0.398 T 0.015 F 0.722 F 0.588 T 0.414 
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T T 0.471 T 0.408 T 0.02 F 0.681 F 0.588 T 0.414 

T T 0.471 F 0.972 F 0.995 F 0.837 F 0.614 T 0.414 

T T 0.462 F 0.507 F 0.827 F 0.736 F 0.584 T 0 

F F 0.983 F 0.821 F 0.847 F 0.973 F 0.584 F 1 

F F 0.983 F 0.93 F 0.788 F 0.927 F 0.697 F 1 

T T 0.462 F 0.863 F 1 F 0.949 F 0.583 F 0.846 

T T 0.462 F 0.91 F 0.999 F 0.861 F 0.584 F 1 

F T 0.462 F 0.827 F 0.983 F 0.867 F 0.533 F 1 

F T 0.462 F 0.829 T 0.302 F 0.975 F 0.548 F 0.846 

F F 0.983 F 0.968 F 1 F 0.95 F 0.692 F 1 

F T 0.462 F 0.887 F 1 F 0.793 F 0.587 F 0.8 

F F 0.983 F 0.954 F 1 F 0.969 F 0.584 F 1 

F F 0.983 F 0.9 F 0.997 F 0.889 F 0.796 F 1 

T T 0.462 T 0.236 T 0.018 F 0.597 F 0.584 T 0.167 

F T 0.462 F 0.753 T 0.415 F 0.975 F 0.584 F 0.846 

T T 0.462 F 0.677 F 0.769 F 0.739 F 0.584 F 0.8 

F T 0.375 F 0.93 F 0.996 F 0.837 F 0.557 T 0.414 

T T 0.375 F 0.693 T 0.002 T 0.213 F 0.545 T 0.414 

F T 0.375 F 0.549 T 0.318 F 0.748 T 0.45 F 0.615 

T F 0.896 F 0.925 T 0.272 F 0.795 T 0.469 T 0.414 

F F 0.896 F 0.925 T 0.272 F 0.795 T 0.469 T 0.414 

T F 0.896 F 0.925 T 0.272 F 0.795 T 0.469 T 0.414 

T T 0.375 T 0.032 T 0.017 T 0.049 F 0.557 F 0.615 

F T 0.375 T 0.342 T 0.01 F 0.634 F 0.557 F 0.615 

F F 0.98 T 0.002 T 0.11 T 0.02 F 0.557 F 1 

T T 0.375 T 0.427 F 0.781 F 0.742 F 0.563 F 0.615 

T T 0.375 T 0 T 0.096 T 0.019 F 0.557 T 0.414 

F T 0.375 T 0.267 F 0.714 T 0.266 F 0.557 F 0.615 

F T 0.375 F 0.605 F 0.978 F 0.739 F 0.557 F 0.615 

F T 0.375 F 0.849 F 0.999 F 0.816 F 0.573 T 0.414 

F F 0.507 F 0.882 F 0.937 F 0.722 F 0.714 T 0.382 

F F 0.507 F 0.928 T 0.144 T 0.388 T 0.227 T 0.382 

F F 0.985 F 0.946 F 0.999 F 0.664 F 0.832 F 1 

F F 0.507 F 0.996 F 0.967 F 0.664 F 0.551 F 1 

F F 0.507 T 0.019 T 0.157 T 0.145 F 0.551 T 0.111 

F T 0.023 T 0.003 T 0.119 T 0.114 F 0.551 T 0 

T F 0.507 T 0.019 T 0.422 T 0.137 F 0.551 T 0.111 

F T 0.023 T 0.005 T 0.049 T 0.116 F 0.551 T 0 

F T 0.023 T 0.005 T 0.049 T 0.116 F 0.551 T 0 

F F 0.507 T 0.144 T 0.169 T 0.342 F 0.551 T 0.111 

F F 0.507 T 0.302 T 0.213 F 0.538 F 0.551 F 0.708 
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F F 0.507 F 0.655 F 0.786 F 0.618 F 0.551 F 0.708 

F T 0.023 T 0.107 T 0.056 T 0.233 F 0.551 T 0 

F F 0.507 T 0.161 T 0.159 T 0.357 F 0.544 T 0.111 

F T 0.476 F 0.675 F 0.745 F 0.735 F 0.641 F 0.603 

F F 0.984 F 0.831 F 0.97 F 0.733 F 0.595 F 1 

F F 0.984 F 0.941 F 0.931 F 0.778 F 0.61 F 1 

F F 0.984 F 0.938 F 0.942 F 0.736 F 0.598 F 1 

F F 0.984 F 0.997 F 0.991 T 0.091 F 0.797 F 1 

T T 0.476 T 0.243 T 0.104 F 0.646 F 0.595 F 0.603 

F T 0.476 F 0.664 F 0.766 F 0.728 F 0.595 F 0.603 

F T 0.476 T 0 T 0.066 T 0.052 F 0.595 T 0 

T T 0.476 T 0.008 T 0.003 T 0.066 F 0.595 T 0 

T T 0.476 T 0.149 T 0.007 T 0.186 F 0.595 F 0.603 

T T 0.476 T 0.215 T 0.007 T 0.308 F 0.595 F 0.603 

T T 0.476 T 0.359 T 0.144 F 0.69 F 0.631 T 0.071 

T T 0.476 F 0.816 T 0.166 T 0.474 F 0.585 F 0.603 

T T 0.476 F 0.884 T 0.169 F 0.507 T 0.485 F 0.603 

T F 0.501 F 0.635 F 0.833 F 0.756 F 0.611 F 0.607 

T F 0.501 F 0.952 T 0.449 F 0.75 T 0.446 F 0.607 

T F 0.501 F 0.968 T 0.489 F 0.768 F 0.816 F 0.607 

F F 0.501 F 0.89 F 0.62 F 0.731 F 0.611 F 0.607 

F F 0.985 F 0.968 F 0.988 F 0.776 F 0.617 F 1 

T F 0.501 T 0.196 T 0.003 F 0.697 F 0.611 T 0 

T F 0.501 T 0.174 T 0.001 F 0.534 F 0.611 F 0.737 

T F 0.501 T 0.277 T 0.003 F 0.699 F 0.611 T 0 

T F 0.501 T 0.344 T 0.28 F 0.684 F 0.611 T 0.111 

T F 0.501 F 0.76 T 0.239 F 0.569 T 0.248 F 0.607 

F F 0.501 F 0.703 F 0.875 F 0.776 F 0.611 T 0.111 

T F 0.501 F 0.567 T 0.003 T 0.175 F 0.611 T 0 

T F 0.501 F 0.825 T 0.239 F 0.691 F 0.612 F 0.607 

T F 0.501 F 0.858 T 0.065 F 0.632 F 0.602 F 0.607 

F T 0.425 F 0.784 F 0.784 F 0.665 F 0.56 F 0.56 

F T 0.425 T 0.367 T 0.367 F 0.748 F 0.577 T 0.1 

F T 0.425 F 0.81 F 0.81 F 0.534 F 0.555 F 0.556 

F F 0.985 F 0.905 F 0.905 F 0.748 F 0.568 F 1 

T T 0.425 T 0.166 T 0.166 F 0.655 F 0.553 F 0.556 

F T 0.425 T 0.238 T 0.238 F 0.744 F 0.555 F 0.556 

T T 0.425 T 0.409 T 0.409 T 0.445 F 0.555 F 0.556 

F T 0.425 T 0.377 T 0.377 F 0.747 F 0.554 F 0.556 

T T 0.425 F 0.708 F 0.708 F 0.746 F 0.555 F 0.556 

F T 0.425 F 0.989 F 0.989 T 0.469 T 0.446 T 0.105 
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F T 0.425 T 0.29 T 0.29 F 0.714 F 0.555 F 0.556 

F T 0.425 F 0.979 F 0.979 F 0.748 F 0.555 F 0.556 

F F 0.985 F 0.969 F 0.969 F 0.773 F 0.555 F 1 

F T 0.425 F 0.787 F 0.787 F 0.767 F 0.559 F 0.56 

F T 0.393 F 0.565 F 0.776 F 0.799 F 0.56 T 0.2 

F T 0.393 F 0.511 T 0.062 F 0.523 F 0.629 T 0.059 

F T 0.393 T 0.451 F 0.504 F 0.802 F 0.559 F 1 

T F 0.843 F 0.907 T 0.198 F 0.741 T 0.402 T 0.3 

F F 0.978 F 0.992 F 0.973 F 0.521 F 0.727 F 1 

F F 0.997 F 0.94 F 0.994 F 0.719 F 0.841 F 1 

F F 0.997 F 0.94 F 0.994 F 0.719 F 0.841 F 1 

T T 0.393 T 0.178 T 0.364 F 0.722 F 0.559 F 1 

T T 0.393 T 0.317 T 0.004 T 0.347 T 0.251 T 0.059 

F T 0.393 T 0.392 T 0.005 T 0.269 F 0.557 T 0.059 

F F 0.978 F 0.899 F 0.982 F 0.811 F 0.559 F 1 

T T 0.393 T 0.465 F 0.94 F 0.746 F 0.659 F 1 

F F 0.978 F 0.876 F 0.999 F 0.775 F 0.577 F 1 

T T 0.393 T 0.144 T 0.015 T 0.145 F 0.559 F 0.818 

T T 0.453 T 0.459 T 0.024 F 0.516 F 0.544 T 0.125 

T T 0.453 F 0.71 T 0.328 T 0.418 T 0.34 T 0.125 

F T 0.453 F 0.85 F 0.974 F 0.773 F 0.561 F 0.769 

T T 0.453 F 0.722 F 0.944 F 0.771 F 0.546 F 0.71 

F T 0.453 F 0.733 F 0.91 F 0.666 F 0.534 F 0.71 

F T 0.453 F 0.878 F 0.736 T 0.314 F 0.548 F 0.769 

F F 0.978 F 0.935 F 0.998 F 0.666 F 0.554 F 1 

F T 0.453 F 0.837 F 1 F 0.77 F 0.548 F 0.71 

F F 0.978 F 0.932 F 0.997 F 0.624 F 0.554 F 1 

F F 0.978 F 0.898 F 0.839 F 0.719 F 0.549 F 1 

F F 0.978 F 0.88 F 0.994 F 0.772 F 0.781 F 1 

F F 0.978 F 0.914 F 0.941 F 0.649 F 0.671 F 1 

F F 0.978 F 0.914 F 0.941 F 0.649 F 0.671 F 1 

F F 0.978 F 0.939 F 0.978 F 0.772 F 0.548 F 1 

F F 0.978 F 0.906 F 0.996 F 0.667 F 0.781 F 1 

F F 0.978 T 0.009 F 0.999 T 0.182 F 0.548 F 1 

F F 0.978 F 0.591 F 1 F 0.667 F 0.565 F 1 

F F 0.978 F 0.855 F 0.611 F 0.773 F 0.548 F 1 

F F 0.978 F 0.935 F 0.998 F 0.666 F 0.554 F 1 

 

 Linear Ensemble 

 Majority Voting Average 
Probability 

Best Weight 
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Actual     Accuracy   Accuracy Accuracy 

T T 0.370333333 T SVM 0 F T 

T T 0.3795 T 0 F T 

T T 0.342833333 T 0.125 F T 

T T 0.382333333 T 0 F T 

T T 0.311333333 T 0 F T 

T T 0.453833333 T 0.125 F T 

T T 0.418833333 T 0.727 F T 

T T 0.348666667 T 0 F T 

T F 0.796666667 F 0.857 F F 

T F 0.796666667 F 0.857 F F 

T F 0.868 F 0.857 F F 

F F 0.737833333 F 1 F F 

T T 0.501833333 T 0.3 F T 

F F 0.868833333 F 0.857 F F 

F T 0.413666667 T SVM 0.414 T T 

T T 0.268333333 T 0.056 F T 

T T 0.28 T 0.056 F T 

F F 0.7255 F 1 F F 

F F 0.941833333 F 1 F F 

F F 0.6805 F 0.414 F F 

T T 0.576333333 F 0.414 F T 

F F 0.9475 F 1 F F 

F F 0.9475 F 1 F F 

F T 0.5285 T 0.414 F T 

T T 0.251666667 T 0.056 T T 

T T 0.503333333 T 0.414 F T 

T T 0.499 T 0.414 F T 

T F 0.7815 F 0.414 F F 

T F 0.588666667 F SVM 0 F T 

F F 0.937333333 F 1 F F 

F F 0.938 F 1 F F 

T F 0.853333333 F 0.846 F F 

T F 0.872 F 1 F F 

F F 0.8565 F 1 F F 

F F 0.735666667 F 0.846 F F 

F F 0.9835 F 1 F F 

F F 0.823666667 F 0.8 F F 

F F 0.984333333 F 1 F F 

F F 0.9615 F 1 F F 

T T 0.413333333 T 0.167 F T 
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F F 0.741833333 F 0.846 F F 

T F 0.741166667 F 0.8 F F 

F F 0.758666667 F SVM 0.414 F F 

T T 0.4495 T 0.414 F T 

F T 0.434166667 F 0.615 T F 

T T 0.550333333 F 0.414 T F 

F T 0.550333333 F 0.414 T F 

T T 0.550333333 F 0.414 T F 

T T 0.348 T 0.615 F T 

F T 0.496 T 0.615 F T 

F T 0.518666667 T 1 F T 

T F 0.656666667 F 0.615 F F 

T T 0.317333333 T 0.414 F T 

F T 0.5395 T 0.615 F F 

F F 0.718666667 F 0.615 F F 

F F 0.742166667 F 0.414 F F 

F F 0.738333333 F SVM 0.382 F F 

F T 0.3915 T 0.382 T T 

F F 0.932333333 F 1 F F 

F F 0.855666667 F 1 F F 

F T 0.323166667 T 0.111 F T 

F T 0.209833333 T 0 F T 

T T 0.366 T 0.111 F T 

F T 0.198833333 T 0 F T 

F T 0.198833333 T 0 F T 

F T 0.378833333 T 0.111 F T 

F F 0.544666667 T 0.708 F T 

F F 0.712333333 F 0.708 F F 

F T 0.2365 T 0 F T 

F T 0.3825 T 0.111 F T 

F F 0.705666667 F SVM 0.603 F F 

F F 0.919666667 F 1 F F 

F F 0.939 F 1 F F 

F F 0.933333333 F 1 F F 

F F 0.843833333 F 1 F F 

T T 0.512 T 0.603 F T 

F F 0.706166667 F 0.603 F F 

F T 0.265666667 T 0 F T 

T T 0.258833333 T 0 F T 

T T 0.4035 T 0.603 F T 

T T 0.434833333 T 0.603 F T 
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T T 0.456666667 T 0.071 F T 

T T 0.589166667 F 0.603 F T 

T T 0.439833333 F 0.603 T T 

T F 0.722 F SVM 0.607 F F 

T F 0.709833333 F 0.607 T F 

T F 0.722166667 F 0.607 F F 

F F 0.724833333 F 0.607 F F 

F F 0.952833333 F 1 F F 

T T 0.3995 T 0 F T 

T F 0.491166667 T 0.737 F T 

T T 0.413333333 T 0 F T 

T T 0.486666667 T 0.111 F T 

T F 0.446 T 0.607 T T 

F F 0.661 F 0.111 F F 

T T 0.374333333 T 0 F T 

T F 0.643833333 F 0.607 F F 

T F 0.6105 F 0.607 F T 

F F 0.703 F SVM 0.56 F F 

F T 0.501166667 T 0.1 F T 

F F 0.689166667 F 0.556 F F 

F F 0.923833333 F 1 F F 

T T 0.494666667 T 0.556 F T 

F T 0.5335 T 0.556 F T 

T T 0.540666667 T 0.556 F T 

F T 0.580333333 F 0.556 F F 

T F 0.6905 F 0.556 F F 

F T 0.496166667 F 0.105 T F 

F T 0.545833333 T 0.556 F T 

F F 0.781166667 F 0.556 F F 

F F 0.949333333 F 1 F F 

F F 0.721 F 0.56 F F 

F F 0.622166667 F DT 0.2 T F 

F T 0.424666667 T 0.059 T T 

F F 0.691666667 F 1 F F 

T T 0.498166667 F 0.3 T F 

F F 0.910666667 F 1 F F 

F F 0.941666667 F 1 F F 

F F 0.941666667 F 1 F F 

T T 0.6095 F 1 F F 

T T 0.186666667 T 0.059 T T 

F T 0.353 T 0.059 T T 
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F F 0.945 F 1 F F 

T F 0.757333333 F 1 F F 

F F 0.938 F 1 F F 

T T 0.419166667 T 0.818 F T 

T T 0.4295 T SVM 0.544 T T 

T T 0.339 T 0.34 T T 

F F 0.803166667 F 0.561 F F 

T F 0.766666667 F 0.546 F F 

F F 0.745333333 F 0.534 F F 

F F 0.691666667 F 0.548 F F 

F F 0.9295 F 0.554 F F 

F F 0.795 F 0.548 F F 

F F 0.921833333 F 0.554 F F 

F F 0.905666667 F 0.549 F F 

F F 0.937333333 F 0.781 F F 

F F 0.913666667 F 0.671 F F 

F F 0.913666667 F 0.671 F F 

F F 0.9445 F 0.548 F F 

F F 0.9245 F 0.781 F F 

F F 0.694666667 F 0.548 F F 

F F 0.872666667 F 0.565 F F 

F F 0.8695 F 0.548 F F 

F F 0.9295 F 0.554 F F 

 

BBN NB MLP RBF SVM DT  

Predicted Predicted Predicted Predicted Predicted Predicted Majority Voting 

F T T T F T T 

F T T T F T T 

T T T T F T T 

F T T T F T T 

T T T T F T T 

T T T F F T T 

T T T T F F T 

T T T T F T T 

F F T F F F F 

F F T F F F F 

T F F F F F F 

T F F F F F F 

T F T T F T T 

T F F F F F F 

T F T F T T T 
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T T T T F T T 

T T T T F T T 

T F F F F F F 

F F F F F F F 

T F F F F T F 

T F T F F T T 

F F F F F F F 

F F F F F F F 

T F T F F T T 

T T T F T T T 

T T T F F T T 

T T T F F T T 

T F F F F T F 

T F F F F T F 

F F F F F F F 

F F F F F F F 

T F F F F F F 

T F F F F F F 

T F F F F F F 

T F T F F F F 

F F F F F F F 

T F F F F F F 

F F F F F F F 

F F F F F F F 

T T T F F T T 

T F T F F F F 

T F F F F F F 

T F F F F T F 

T F T T F T T 

T F T F T F T 

F F T F T T T 

F F T F T T T 

F F T F T T T 

T T T T F F T 

T T T F F F T 

F T T T F F T 

T T F F F F F 

T T T T F T T 

T T F T F F T 

T F F F F F F 

T F F F F T F 
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F F F F F T F 

F F T T T T T 

F F F F F F F 

F F F F F F F 

F T T T F T T 

T T T T F T T 

F T T T F T T 

T T T T F T T 

T T T T F T T 

F T T T F T T 

F T T F F F F 

F F F F F F F 

T T T T F T T 

F T T T F T T 

T F F F F F F 

F F F F F F F 

F F F F F F F 

F F F F F F F 

F F F T F F F 

T T T F F F T 

T F F F F F F 

T T T T F T T 

T T T T F T T 

T T T T F F T 

T T T T F F T 

T T T F F T T 

T F T T F F T 

T F T F T F T 

F F F F F F F 

F F T F T F F 

F F T F F F F 

F F F F F F F 

F F F F F F F 

F T T F F T T 

F T T F F F F 

F T T F F T T 

F T T F F T T 

F F T F T F F 

F F F F F T F 

F F T T F T T 

F F T F F F F 
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F F T F F F F 

T F F F F F F 

T T T F F T T 

T F F F F F F 

F F F F F F F 

T T T F F F T 

T T T F F F T 

T T T T F F T 

T T T F F F T 

T F F F F F F 

T F F T T T T 

T T T F F F T 

T F F F F F F 

F F F F F F F 

T F F F F F F 

T F F F F T F 

T F T F F T T 

T T F F F F F 

F F T F T T T 

F F F F F F F 

F F F F F F F 

F F F F F F F 

T T T F F F T 

T T T T T T T 

T T T T F T T 

F F F F F F F 

T T F F F F F 

F F F F F F F 

T T T T F F T 

T T T F F T T 

T F T T T T T 

T F F F F F F 

T F F F F F F 

T F F F F F F 

T F F T F F F 

F F F F F F F 

T F F F F F F 

F F F F F F F 

F F F F F F F 

F F F F F F F 

F F F F F F F 
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F F F F F F F 

F F F F F F F 

F F F F F F F 

F T F T F F F 

F F F F F F F 

F F F F F F F 

F F F F F F F 

 

BBN NB MLP RBF SVM  DT   

Probabilit
y 

Probabilit
y 

Probabilit
y 

Probabilit
y 

Probabilit
y 

Probabilit
y 

Average prob  

0.914 0.003 0 0.305 0.619 0 0.306833333 T 

0.914 0.004 0.055 0.304 0.619 0 0.316 T 

0.42 0.064 0.078 0.37 0.619 0.125 0.279333333 T 

0.914 0.019 0.053 0.308 0.619 0 0.318833333 T 

0.42 0.11 0 0.338 0.619 0 0.247833333 T 

0.42 0.448 0.202 0.528 0.747 0.125 0.411666667 T 

0.42 0.007 0.055 0.304 0.619 0.727 0.355333333 T 

0.42 0.274 0.012 0.386 0.618 0 0.285 T 

0.914 0.984 0.089 0.936 0.619 0.857 0.733166667 F 

0.914 0.984 0.089 0.936 0.619 0.857 0.733166667 F 

0.42 1 0.992 0.939 0.612 0.857 0.803333333 F 

0.42 0.628 0.746 0.633 0.619 1 0.674333333 F 

0.42 0.774 0.172 0.345 0.615 0.3 0.437666667 T 

0.42 1 1 0.936 0.62 0.857 0.8055 F 

0.471 0.876 0.146 0.575 0.2 0.414 0.447 T 

0.471 0.001 0.001 0.081 0.588 0.056 0.199666667 T 

0.471 0.048 0.008 0.097 0.588 0.056 0.211333333 T 

0.471 0.511 0.647 0.724 0.588 1 0.656833333 F 

0.984 0.876 0.98 0.811 0.588 1 0.873166667 F 

0.471 0.79 0.79 0.618 0.642 0.414 0.620833333 F 

0.471 0.846 0.186 0.541 0.598 0.414 0.509333333 F 

0.984 0.962 1 0.739 0.787 1 0.912 F 

0.984 0.962 1 0.739 0.787 1 0.912 F 

0.471 0.505 0.055 0.726 0.588 0.414 0.459833333 T 

0.471 0.372 0.01 0.601 0.357 0.056 0.311166667 T 

0.471 0.398 0.015 0.722 0.588 0.414 0.434666667 T 

0.471 0.408 0.02 0.681 0.588 0.414 0.430333333 T 

0.471 0.972 0.995 0.837 0.614 0.414 0.717166667 F 

0.462 0.507 0.827 0.736 0.584 0 0.519333333 F 

0.983 0.821 0.847 0.973 0.584 1 0.868 F 



139 
 

0.983 0.93 0.788 0.927 0.697 1 0.8875 F 

0.462 0.863 1 0.949 0.583 0.846 0.783833333 F 

0.462 0.91 0.999 0.861 0.584 1 0.802666667 F 

0.462 0.827 0.983 0.867 0.533 1 0.778666667 F 

0.462 0.829 0.302 0.975 0.548 0.846 0.660333333 F 

0.983 0.968 1 0.95 0.692 1 0.932166667 F 

0.462 0.887 1 0.793 0.587 0.8 0.754833333 F 

0.983 0.954 1 0.969 0.584 1 0.915 F 

0.983 0.9 0.997 0.889 0.796 1 0.9275 F 

0.462 0.236 0.018 0.597 0.584 0.167 0.344 T 

0.462 0.753 0.415 0.975 0.584 0.846 0.6725 F 

0.462 0.677 0.769 0.739 0.584 0.8 0.671833333 F 

0.375 0.93 0.996 0.837 0.557 0.414 0.684833333 F 

0.375 0.693 0.002 0.213 0.545 0.414 0.373666667 T 

0.375 0.549 0.318 0.748 0.45 0.615 0.509166667 F 

0.896 0.925 0.272 0.795 0.469 0.414 0.6285 F 

0.896 0.925 0.272 0.795 0.469 0.414 0.6285 F 

0.896 0.925 0.272 0.795 0.469 0.414 0.6285 F 

0.375 0.032 0.017 0.049 0.557 0.615 0.274166667 T 

0.375 0.342 0.01 0.634 0.557 0.615 0.422166667 T 

0.98 0.002 0.11 0.02 0.557 1 0.444833333 T 

0.375 0.427 0.781 0.742 0.563 0.615 0.583833333 F 

0.375 0 0.096 0.019 0.557 0.414 0.2435 T 

0.375 0.267 0.714 0.266 0.557 0.615 0.465666667 T 

0.375 0.605 0.978 0.739 0.557 0.615 0.644833333 F 

0.375 0.849 0.999 0.816 0.573 0.414 0.671 F 

0.507 0.882 0.937 0.722 0.714 0.382 0.690666667 F 

0.507 0.928 0.144 0.388 0.227 0.382 0.429333333 T 

0.985 0.946 0.999 0.664 0.832 1 0.904333333 F 

0.507 0.996 0.967 0.664 0.551 1 0.780833333 F 

0.507 0.019 0.157 0.145 0.551 0.111 0.248333333 T 

0.023 0.003 0.119 0.114 0.551 0 0.135 T 

0.507 0.019 0.422 0.137 0.551 0.111 0.291166667 T 

0.023 0.005 0.049 0.116 0.551 0 0.124 T 

0.023 0.005 0.049 0.116 0.551 0 0.124 T 

0.507 0.144 0.169 0.342 0.551 0.111 0.304 T 

0.507 0.302 0.213 0.538 0.551 0.708 0.469833333 T 

0.507 0.655 0.786 0.618 0.551 0.708 0.6375 F 

0.023 0.107 0.056 0.233 0.551 0 0.161666667 T 

0.507 0.161 0.159 0.357 0.544 0.111 0.3065 T 

0.476 0.675 0.745 0.735 0.641 0.603 0.645833333 F 
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0.984 0.831 0.97 0.733 0.595 1 0.852166667 F 

0.984 0.941 0.931 0.778 0.61 1 0.874 F 

0.984 0.938 0.942 0.736 0.598 1 0.866333333 F 

0.984 0.997 0.991 0.091 0.797 1 0.81 F 

0.476 0.243 0.104 0.646 0.595 0.603 0.4445 T 

0.476 0.664 0.766 0.728 0.595 0.603 0.638666667 F 

0.476 0 0.066 0.052 0.595 0 0.198166667 T 

0.476 0.008 0.003 0.066 0.595 0 0.191333333 T 

0.476 0.149 0.007 0.186 0.595 0.603 0.336 T 

0.476 0.215 0.007 0.308 0.595 0.603 0.367333333 T 

0.476 0.359 0.144 0.69 0.631 0.071 0.395166667 T 

0.476 0.816 0.166 0.474 0.585 0.603 0.52 F 

0.476 0.884 0.169 0.507 0.485 0.603 0.520666667 F 

0.501 0.635 0.833 0.756 0.611 0.607 0.657166667 F 

0.501 0.952 0.449 0.75 0.446 0.607 0.6175 F 

0.501 0.968 0.489 0.768 0.816 0.607 0.6915 F 

0.501 0.89 0.62 0.731 0.611 0.607 0.66 F 

0.985 0.968 0.988 0.776 0.617 1 0.889 F 

0.501 0.196 0.003 0.697 0.611 0 0.334666667 T 

0.501 0.174 0.001 0.534 0.611 0.737 0.426333333 T 

0.501 0.277 0.003 0.699 0.611 0 0.3485 T 

0.501 0.344 0.28 0.684 0.611 0.111 0.421833333 T 

0.501 0.76 0.239 0.569 0.248 0.607 0.487333333 T 

0.501 0.703 0.875 0.776 0.611 0.111 0.596166667 F 

0.501 0.567 0.003 0.175 0.611 0 0.3095 T 

0.501 0.825 0.239 0.691 0.612 0.607 0.579166667 F 

0.501 0.858 0.065 0.632 0.602 0.607 0.544166667 F 

0.425 0.784 0.784 0.665 0.56 0.56 0.629666667 F 

0.425 0.367 0.367 0.748 0.577 0.1 0.430666667 T 

0.425 0.81 0.81 0.534 0.555 0.556 0.615 F 

0.985 0.905 0.905 0.748 0.568 1 0.851833333 F 

0.425 0.166 0.166 0.655 0.553 0.556 0.420166667 T 

0.425 0.238 0.238 0.744 0.555 0.556 0.459333333 T 

0.425 0.409 0.409 0.445 0.555 0.556 0.4665 T 

0.425 0.377 0.377 0.747 0.554 0.556 0.506 F 

0.425 0.708 0.708 0.746 0.555 0.556 0.616333333 F 

0.425 0.989 0.989 0.469 0.446 0.105 0.5705 F 

0.425 0.29 0.29 0.714 0.555 0.556 0.471666667 T 

0.425 0.979 0.979 0.748 0.555 0.556 0.707 F 

0.985 0.969 0.969 0.773 0.555 1 0.875166667 F 

0.425 0.787 0.787 0.767 0.559 0.56 0.6475 F 



141 
 

0.393 0.565 0.776 0.799 0.56 0.2 0.548833333 F 

0.393 0.511 0.062 0.523 0.629 0.059 0.362833333 T 

0.393 0.451 0.504 0.802 0.559 1 0.618166667 F 

0.843 0.907 0.198 0.741 0.402 0.3 0.565166667 F 

0.978 0.992 0.973 0.521 0.727 1 0.865166667 F 

0.997 0.94 0.994 0.719 0.841 1 0.915166667 F 

0.997 0.94 0.994 0.719 0.841 1 0.915166667 F 

0.393 0.178 0.364 0.722 0.559 1 0.536 F 

0.393 0.317 0.004 0.347 0.251 0.059 0.2285 T 

0.393 0.392 0.005 0.269 0.557 0.059 0.279166667 T 

0.978 0.899 0.982 0.811 0.559 1 0.8715 F 

0.393 0.465 0.94 0.746 0.659 1 0.7005 F 

0.978 0.876 0.999 0.775 0.577 1 0.8675 F 

0.393 0.144 0.015 0.145 0.559 0.818 0.345666667 T 

0.453 0.459 0.024 0.516 0.544 0.125 0.3535 T 

0.453 0.71 0.328 0.418 0.34 0.125 0.395666667 T 

0.453 0.85 0.974 0.773 0.561 0.769 0.73 F 

0.453 0.722 0.944 0.771 0.546 0.71 0.691 F 

0.453 0.733 0.91 0.666 0.534 0.71 0.667666667 F 

0.453 0.878 0.736 0.314 0.548 0.769 0.616333333 F 

0.978 0.935 0.998 0.666 0.554 1 0.855166667 F 

0.453 0.837 1 0.77 0.548 0.71 0.719666667 F 

0.978 0.932 0.997 0.624 0.554 1 0.8475 F 

0.978 0.898 0.839 0.719 0.549 1 0.8305 F 

0.978 0.88 0.994 0.772 0.781 1 0.900833333 F 

0.978 0.914 0.941 0.649 0.671 1 0.858833333 F 

0.978 0.914 0.941 0.649 0.671 1 0.858833333 F 

0.978 0.939 0.978 0.772 0.548 1 0.869166667 F 

0.978 0.906 0.996 0.667 0.781 1 0.888 F 

0.978 0.009 0.999 0.182 0.548 1 0.619333333 F 

0.978 0.591 1 0.667 0.565 1 0.800166667 F 

0.978 0.855 0.611 0.773 0.548 1 0.794166667 F 

0.978 0.935 0.998 0.666 0.554 1 0.855166667 F 

 

 Train set# 

Accura
cy 

1 2 3 4 5 6 7 8 9 10 

BBN 66.412
21 

64.122
14 

64.122
14 

71.755
73 

70.992
37 

63.358
78 

62.595
42 

67.938
93 

69.465
65 

62.698
41 

NB 65.648
85 

67.938
93 

70.992
37 

73.282
44 

70.992
37 

67.938
93 

72.519
08 

71.755
73 

71.755
73 

69.841
27 

MLP 90 89.312 88.549 93.893 91.603 89.312 90.076 91.603 90.076 87.301
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98 62 13 05 98 34 05 34 59 

RBF 71.755
73 

71.755
73 

80.152
67 

77.862
6 

76.335
88 

77.862
6 

72.519
08 

75.572
52 

71.755
73 

71.428
57 

SVM 97.709
92 

98.473
28 

97.709
92 

97.709
92 

98.473
28 

97.709
92 

90.839
69 

96.946
56 

64.122
14 

96.825
4 

DT 85.496
18 

82.442
75 

89.312
98 

77.099
24 

83.206
11 

77.099
24 

78.625
95 

74.045
8 

90.839
69 

83.333
33 

 

 Train set# 

Rankin
g 

1 2 3 4 5 6 7 8 9 10 

BBN 2 1 1 1 1 1 1 1 2 1 

NB 1 2 2 2 2 2 2 2 3 2 

MLP 5 5 4 5 5 5 5 5 5 5 

RBF 3 3 3 4 3 4 3 4 4 3 

SVM 6 6 6 6 6 6 6 6 1 6 

DT 4 4 5 3 4 3 4 3 6 4 

 

BBN Wei
ght 

NB Wei
ght 

MLP Wei
ght 

RBF Wei
ght 

SVM Wei
ght 

DT Wei
ght 

Total Predi
ction 

0.91
4 

2 0.00
3 

1 0 5 0.30
5 

3 0.61
9 

6 0 4 0.30
7619 

T 

0.91
4 

2 0.00
4 

1 0.05
5 

5 0.30
4 

3 0.61
9 

6 0 4 0.32
0619 

T 

0.42 2 0.06
4 

1 0.07
8 

5 0.37 3 0.61
9 

6 0.12
5 

4 0.31
5143 

T 

0.91
4 

2 0.01
9 

1 0.05
3 

5 0.30
8 

3 0.61
9 

6 0 4 0.32
1429 

T 

0.42 2 0.11 1 0 5 0.33
8 

3 0.61
9 

6 0 4 0.27
0381 

T 

0.42 2 0.44
8 

1 0.20
2 

5 0.52
8 

3 0.74
7 

6 0.12
5 

4 0.42
2095 

T 

0.42 2 0.00
7 

1 0.05
5 

5 0.30
4 

3 0.61
9 

6 0.72
7 

4 0.41
219 

T 

0.42 2 0.27
4 

1 0.01
2 

5 0.38
6 

3 0.61
8 

6 0 4 0.28
7619 

T 

0.91
4 

2 0.98
4 

1 0.08
9 

5 0.93
6 

3 0.61
9 

6 0.85
7 

4 0.62
8905 

F 

0.91
4 

2 0.98
4 

1 0.08
9 

5 0.93
6 

3 0.61
9 

6 0.85
7 

4 0.62
8905 

F 

0.42 2 1 1 0.99
2 

5 0.93
9 

3 0.61
2 

6 0.85
7 

4 0.79
6048 

F 

0.42 2 0.62
8 

1 0.74
6 

5 0.63
3 

3 0.61
9 

6 1 4 0.70
5286 

F 

0.42 2 0.77
4 

1 0.17
2 

5 0.34
5 

3 0.61
5 

6 0.3 4 0.39
9952 

T 

0.42 2 1 1 1 5 0.93 3 0.62 6 0.85 4 0.79 F 
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6 7 981 

0.47
1 

1 0.87
6 

2 0.14
6 

5 0.57
5 

3 0.2 6 0.41
4 

4 0.35
8762 

T 

0.47
1 

1 0.00
1 

2 0.00
1 

5 0.08
1 

3 0.58
8 

6 0.05
6 

4 0.21
3 

T 

0.47
1 

1 0.04
8 

2 0.00
8 

5 0.09
7 

3 0.58
8 

6 0.05
6 

4 0.22
1429 

T 

0.47
1 

1 0.51
1 

2 0.64
7 

5 0.72
4 

3 0.58
8 

6 1 4 0.68
7048 

F 

0.98
4 

1 0.87
6 

2 0.98 5 0.81
1 

3 0.58
8 

6 1 4 0.83
7952 

F 

0.47
1 

1 0.79 2 0.79 5 0.61
8 

3 0.64
2 

6 0.41
4 

4 0.63
6333 

F 

0.47
1 

1 0.84
6 

2 0.18
6 

5 0.54
1 

3 0.59
8 

6 0.41
4 

4 0.47
4286 

T 

0.98
4 

1 0.96
2 

2 1 5 0.73
9 

3 0.78
7 

6 1 4 0.89
7476 

F 

0.98
4 

1 0.96
2 

2 1 5 0.73
9 

3 0.78
7 

6 1 4 0.89
7476 

F 

0.47
1 

1 0.50
5 

2 0.05
5 

5 0.72
6 

3 0.58
8 

6 0.41
4 

4 0.43
419 

T 

0.47
1 

1 0.37
2 

2 0.01 5 0.60
1 

3 0.35
7 

6 0.05
6 

4 0.25
8762 

T 

0.47
1 

1 0.39
8 

2 0.01
5 

5 0.72
2 

3 0.58
8 

6 0.41
4 

4 0.41
3905 

T 

0.47
1 

1 0.40
8 

2 0.02 5 0.68
1 

3 0.58
8 

6 0.41
4 

4 0.41
019 

T 

0.47
1 

1 0.97
2 

2 0.99
5 

5 0.83
7 

3 0.61
4 

6 0.41
4 

4 0.72
5762 

F 

0.46
2 

1 0.50
7 

2 0.82
7 

4 0.73
6 

3 0.58
4 

6 0 5 0.49
981 

T 

0.98
3 

1 0.82
1 

2 0.84
7 

4 0.97
3 

3 0.58
4 

6 1 5 0.83
0286 

F 

0.98
3 

1 0.93 2 0.78
8 

4 0.92
7 

3 0.69
7 

6 1 5 0.85
5143 

F 

0.46
2 

1 0.86
3 

2 1 4 0.94
9 

3 0.58
3 

6 0.84
6 

5 0.79
8238 

F 

0.46
2 

1 0.91 2 0.99
9 

4 0.86
1 

3 0.58
4 

6 1 5 0.82
6905 

F 

0.46
2 

1 0.82
7 

2 0.98
3 

4 0.86
7 

3 0.53
3 

6 1 5 0.80
2238 

F 

0.46
2 

1 0.82
9 

2 0.30
2 

4 0.97
5 

3 0.54
8 

6 0.84
6 

5 0.65
5762 

F 

0.98
3 

1 0.96
8 

2 1 4 0.95 3 0.69
2 

6 1 5 0.90
1 

F 

0.46
2 

1 0.88
7 

2 1 4 0.79
3 

3 0.58
7 

6 0.8 5 0.76
8429 

F 

0.98
3 

1 0.95
4 

2 1 4 0.96
9 

3 0.58
4 

6 1 5 0.87
1524 

F 

0.98
3 

1 0.9 2 0.99
7 

4 0.88
9 

3 0.79
6 

6 1 5 0.91
4952 

F 
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0.46
2 

1 0.23
6 

2 0.01
8 

4 0.59
7 

3 0.58
4 

6 0.16
7 

5 0.33
981 

T 

0.46
2 

1 0.75
3 

2 0.41
5 

4 0.97
5 

3 0.58
4 

6 0.84
6 

5 0.68
0333 

F 

0.46
2 

1 0.67
7 

2 0.76
9 

4 0.73
9 

3 0.58
4 

6 0.8 5 0.69
5857 

F 

0.37
5 

1 0.93 2 0.99
6 

5 0.83
7 

4 0.55
7 

6 0.41
4 

3 0.72
1286 

F 

0.37
5 

1 0.69
3 

2 0.00
2 

5 0.21
3 

4 0.54
5 

6 0.41
4 

3 0.33
9762 

T 

0.37
5 

1 0.54
9 

2 0.31
8 

5 0.74
8 

4 0.45 6 0.61
5 

3 0.50
4762 

F 

0.89
6 

1 0.92
5 

2 0.27
2 

5 0.79
5 

4 0.46
9 

6 0.41
4 

3 0.54
0095 
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T 
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6 0.11
1 

4 0.26
2619 

T 
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0.50
7 

1 0.01
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9 
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1 
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7238 

T 

0.02 1 0.00 2 0.04 5 0.11 3 0.55 6 0 4 0.18 T 
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3 5 9 6 1 7238 
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5524 
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1 0.30
2 

2 0.21
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0.50
7 

1 0.65
5 

2 0.78
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6 0.60
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5 0.77
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4 0.61 6 1 3 0.82
3476 
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8 
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0.98
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1 0.99
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2 0.99
1 

5 0.09
1 

4 0.79
7 
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5667 

F 

0.47
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3 
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4 
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6 
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5 
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3 
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9762 

T 
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1 0.66
4 

2 0.76
6 

5 0.72
8 

4 0.59
5 

6 0.60
3 
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1 0 2 0.06
6 

5 0.05
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8286 
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2 0.00
3 

5 0.06
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6714 
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6 0.60
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0095 
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2 0.00
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5 0.30
8 

4 0.59
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6 0.60
3 

3 0.35
9619 

T 

0.47
6 

1 0.35
9 
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4 

5 0.69 4 0.63
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6 0.07
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3 0.41
3 

T 

0.47
6 
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6 
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6 

5 0.47
4 

4 0.58
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6 0.60
3 

3 0.48
3476 
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0.47
6 

1 0.88
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2 0.16
9 

5 0.50
7 
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6 0.60
3 

3 0.46
8381 

T 

0.50
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1 0.63
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2 0.83
3 

5 0.75
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3 0.61
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6 0.60
7 

4 0.68
0857 
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1 

1 0.95
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1619 

F 
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5 0.76
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0.50
1 
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7 
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F 

0.98
5 

1 0.96
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8 

5 0.77
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3 0.61
7 

6 1 4 0.85
1952 

F 

0.50
1 

1 0.19
6 

2 0.00
3 

5 0.69
7 

3 0.61
1 

6 0 4 0.31
7381 

T 
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3 0.61
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6 0.73
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1905 

T 
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0905 
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5714 
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0.50
1 

1 0.56
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8524 
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2 
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7 
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8952 

T 

0.42
5 

1 0.78
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4 

5 0.66
5 

4 0.56 6 0.56 3 0.64
8238 

F 

0.42
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1 0.36
7 

2 0.36
7 

5 0.74
8 

4 0.57
7 

6 0.1 3 0.46
419 

T 

0.42
5 

1 0.81 2 0.81 5 0.53
4 

4 0.55
5 

6 0.55
6 
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9952 
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0.98
5 
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5 
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8 

4 0.56
8 
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619 

F 

0.42
5 

1 0.16
6 

2 0.16
6 

5 0.65
5 

4 0.55
3 

6 0.55
6 

3 0.43
7762 

T 

0.42
5 

1 0.23
8 

2 0.23
8 

5 0.74
4 

4 0.55
5 

6 0.55
6 

3 0.47
9286 

T 

0.42
5 

1 0.40
9 

2 0.40
9 

5 0.44
5 

4 0.55
5 

6 0.55
6 

3 0.47
9333 

T 

0.42
5 

1 0.37
7 

2 0.37
7 

5 0.74
7 

4 0.55
4 

6 0.55
6 

3 0.52
5905 

F 

0.42
5 

1 0.70
8 

2 0.70
8 

5 0.74
6 

4 0.55
5 

6 0.55
6 

3 0.63
6333 

F 

0.42
5 

1 0.98
9 

2 0.98
9 

5 0.46
9 

4 0.44
6 

6 0.10
5 

3 0.58
1667 

F 

0.42
5 

1 0.29 2 0.29 5 0.71
4 

4 0.55
5 

6 0.55
6 

3 0.49
0905 

T 

0.42
5 

1 0.97
9 

2 0.97
9 

5 0.74
8 

4 0.55
5 

6 0.55
6 

3 0.72
7048 

F 

0.98
5 

1 0.96
9 

2 0.96
9 

5 0.77
3 

4 0.55
5 

6 1 3 0.81
8571 

F 

0.42
5 

1 0.78
7 

2 0.78
7 

5 0.76
7 

4 0.55
9 

6 0.56 3 0.66
8381 

F 

0.39
3 

2 0.56
5 

3 0.77
6 

5 0.79
9 

4 0.56 1 0.2 6 0.53
8905 

F 

0.39
3 

2 0.51
1 

3 0.06
2 

5 0.52
3 

4 0.62
9 

1 0.05
9 

6 0.27
1619 

T 

0.39
3 

2 0.45
1 

3 0.50
4 

5 0.80
2 

4 0.55
9 

1 1 6 0.68
6952 

F 

0.84 2 0.90 3 0.19 5 0.74 4 0.40 1 0.3 6 0.50 F 
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0.97
8 

1 0.93
9 

2 0.97
8 

5 0.77
2 

3 0.54
8 

6 1 4 0.82
619 

F 

0.97
8 

1 0.90
6 

2 0.99
6 

5 0.66
7 

3 0.78
1 

6 1 4 0.87
8905 

F 



148 
 

0.97
8 

1 0.00
9 

2 0.99
9 

5 0.18
2 

3 0.54
8 

6 1 4 0.65
8333 

F 

0.97
8 

1 0.59
1 

2 1 5 0.66
7 

3 0.56
5 

6 1 4 0.78
8143 

F 

0.97
8 

1 0.85
5 

2 0.61
1 

5 0.77
3 

3 0.54
8 

6 1 4 0.73
0952 

F 

0.97
8 

1 0.93
5 

2 0.99
8 

5 0.66
6 

3 0.55
4 

6 1 4 0.81
7143 

F 

 

 

  



149 
 

KC1 (regression) results 

 
Actual MLP RBF SVMreg M5P 

8.13 3.036 32.609 20.209 9.981 

13.1 -14.656 32.609 8.812 18.202 

1.97 24.797 32.609 48.164 52.642 

13.49 -3.47 32.609 14.62 14.913 

11.9 32.002 32.609 24.625 22.719 

7.43 35.319 32.609 28.765 33 

10.24 6.999 23.713 22.424 22.195 

7.87 17.064 23.731 24.987 26.036 

16.53 -72.187 23.713 6.515 27.113 

12.93 -72.187 23.713 6.515 27.113 

18.66 14.302 23.713 -52.487 47.238 

30.3 27.199 43.108 35.086 47.238 

18.33 -10.493 23.511 20.67 27.432 

30.82 10.502 23.511 21.475 8.498 

12.58 35.34 42.261 30.673 41.587 

38.67 33.814 42.035 26.7 23.205 

31.25 29.531 25.536 22.808 30.558 

26.22 35.365 42.261 27.248 28.719 

140.13 -1.751 37.779 30.686 36.653 

6.29 38.588 26.632 31.661 28.529 

5.47 28.709 37.659 28.354 36.653 

23.26 16.973 27.883 21.015 28.529 

6.83 30.063 32.748 26.182 28.529 

17.24 20.813 28.575 25.144 28.529 

72.16 30.701 40.523 25.881 42.477 

15.63 43.993 40.573 34.258 47.165 

34.78 43.993 40.573 34.258 47.165 

10.02 70.368 22.005 14.527 17.144 

50.96 69.367 24.124 24.996 41.025 

35.03 -20.434 22.005 -0.1 17.821 

6.56 39.999 28.713 24.384 28.881 

13.26 36.511 28.713 20.493 28.881 

23.92 35.518 28.713 26.227 19.206 

21.15 47.1 28.713 15.897 28.881 

36.17 50.41 28.713 17.965 28.881 

28.37 58.803 28.713 24.271 28.881 

13.42 110.068 37.425 35.996 23.923 
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31.58 70.217 37.425 34.963 23.923 

26.09 78.704 23.207 16.974 22.483 

58.62 31.465 37.425 32.176 23.923 

77.59 29.064 37.425 33.122 40.058 

61.07 47.029 23.155 36.564 23.923 

60.79 19.66 21.807 20.402 18.386 

33.82 44.11 21.807 41.474 29.334 

14.29 38.135 21.807 14.134 22.769 

12.35 39.46 38.591 30.459 28.371 

43.8 36.973 38.637 36.521 32.912 

105.56 45.759 38.636 31.479 34.677 

83.87 35.002 27.01 37.207 37.312 

4.28 40.514 27.01 24.578 30.709 

3.38 38.77 39.261 31.756 52.557 

2.94 26.021 27.044 20.37 32.36 

6.17 41.57 27.01 34.397 38.413 

64.68 20.022 27.919 10.669 21.266 

17.62 80.645 41.533 36.369 56.553 

33.52 27.223 21.023 14.536 13.094 

47.41 34.911 21.023 -9.218 -4.237 

68.32 69.827 41.393 37.017 57.57 

18.99 58.223 41.579 32.164 30.424 

105.69 64.224 21.023 24.179 24.647 

 
 Linear Ensemble 

 Average Best Weight 

Actual   MMRE MMRE 

8.13 16.45875 SVMreg 20.209 16.5143 

13.1 11.24175 8.812 7.47 

1.97 39.553 48.164 38.4907 

13.49 14.668 14.62 12.8201 

11.9 27.98875 24.625 28.2443 

7.43 32.42325 28.765 31.9235 

10.24 18.83275 MLP 6.999 16.3371 

7.87 22.9545 17.064 21.902 

16.53 -3.7115 -72.187 -19.1264 

12.93 -3.7115 -72.187 -19.1264 

18.66 8.1915 14.302 1.7936 

30.3 38.15775 27.199 35.1638 

18.33 15.28 MLP -10.493 9.4492 

30.82 15.9965 10.502 16.1953 
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12.58 37.46525 35.34 35.9488 

38.67 31.4385 33.814 32.2631 

31.25 27.10825 29.531 26.8178 

26.22 33.39825 35.365 33.6445 

140.13 25.84175 MLP -1.751 19.7265 

6.29 31.3525 38.588 33.1128 

5.47 32.84375 28.709 31.1869 

23.26 23.6 16.973 21.5232 

6.83 29.3805 30.063 29.2823 

17.24 25.76525 20.813 24.4363 

72.16 34.8955 SVMreg 25.881 32.1104 

15.63 41.49725 34.258 40.3914 

34.78 41.49725 34.258 40.3914 

10.02 31.011 14.527 32.5505 

50.96 39.878 24.996 41.4259 

35.03 4.823 -0.1 -0.4055 

6.56 30.49425 SVMreg 24.384 28.1436 

13.26 28.6495 20.493 26.2384 

23.92 27.416 26.227 26.4977 

21.15 30.14775 15.897 25.4589 

36.17 31.49225 17.965 26.6171 

28.37 35.167 24.271 29.9788 

13.42 51.853 SVMreg 35.996 40.0671 

31.58 41.632 34.963 35.6688 

26.09 35.342 16.974 26.0463 

58.62 31.24725 32.176 30.6788 

77.59 34.91725 33.122 35.6576 

61.07 32.66775 36.564 31.1364 

60.79 20.06375 SVMreg 20.402 19.7893 

33.82 34.18125 41.474 36.3925 

14.29 24.21125 14.134 22.292 

12.35 34.22025 30.459 32.446 

43.8 36.26075 36.521 35.7403 

105.56 37.63775 31.479 36.0101 

83.87 34.13275 SVMreg 37.207 35.5468 

4.28 30.70275 24.578 30.8282 

3.38 40.586 31.756 38.7709 

2.94 26.44875 20.37 25.1307 

6.17 35.3475 34.397 36.6134 

64.68 19.969 10.669 17.3193 

17.62 53.775 SVMreg 36.369 47.8846 
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33.52 18.969 14.536 16.6695 

47.41 10.61975 -9.218 2.7374 

68.32 51.45175 37.017 47.3391 

18.99 40.5975 32.164 36.1309 

105.69 33.51825 24.179 27.6927 

 
 
 
 
 
 

 Train set# 

MMRE 1 2 3 4 5 6 7 8 9 10 

MLP 1.0426
43 

0.8644
56 

0.8135
27 

0.7867
56 

0.9859
14 

2.0581
92 

2.6677
75 

1.4610
55 

1.1818
73 

1.7672
39 

RBF 1.4835
59 

1.5711
7 

1.6831
14 

1.4850
09 

1.5793
73 

1.6819
89 

1.5739
61 

1.5198
86 

1.3756
06 

1.4314
84 

SVMre
g 

0.9304
25 

1.0304
98 

1.0734
44 

1.0574
34 

0.9813
1 

1.0392
21 

0.9897
27 

1.2185
01 

0.7143
13 

1.1803
14 

M5P 1.5552
85 

1.4401
9 

1.9143
39 

1.5079
21 

1.4348
39 

1.7314
28 

1.3427
7 

1.3643
13 

1.2688
09 

1.3041
81 

 
 Train set# 

Rankin
g 

1 2 3 4 5 6 7 8 9 10 

MLP 3 4 4 4 3 1 1 2 3 1 

RBF 2 1 2 2 1 3 2 1 1 2 

SVMre
g 

4 3 3 3 4 4 4 4 4 4 

M5P 1 2 1 1 2 2 3 3 2 3 

 
MLP Weight RBF Weight SVMreg Weight M5P Weight Total 

3.036 3 32.609 2 20.209 4 9.981 1 16.5143 

-14.656 3 32.609 2 8.812 4 18.202 1 7.47 

24.797 3 32.609 2 48.164 4 52.642 1 38.4907 

-3.47 3 32.609 2 14.62 4 14.913 1 12.8201 

32.002 3 32.609 2 24.625 4 22.719 1 28.2443 

35.319 3 32.609 2 28.765 4 33 1 31.9235 

6.999 2 23.713 1 22.424 4 22.195 3 19.3992 

17.064 2 23.731 1 24.987 4 26.036 3 23.5915 

-72.187 2 23.713 1 6.515 4 27.113 3 -1.3262 

-72.187 2 23.713 1 6.515 4 27.113 3 -1.3262 

14.302 2 23.713 1 -52.487 4 47.238 3 -1.5917 
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27.199 2 43.108 1 35.086 4 47.238 3 37.9564 

-10.493 3 23.511 1 20.67 4 27.432 2 12.9576 

10.502 3 23.511 1 21.475 4 8.498 2 15.7913 

35.34 3 42.261 1 30.673 4 41.587 2 35.4147 

33.814 3 42.035 1 26.7 4 23.205 2 29.6687 

29.531 3 25.536 1 22.808 4 30.558 2 26.6477 

35.365 3 42.261 1 27.248 4 28.719   25.7348 

-1.751 2 37.779 1 30.686 4 36.653 3 26.698 

38.588 2 26.632 1 31.661 4 28.529 3 31.6039 

28.709 2 37.659 1 28.354 4 36.653 3 31.8452 

16.973 2 27.883 1 21.015 4 28.529 3 23.1476 

30.063 2 32.748 1 26.182 4 28.529 3 28.3189 

20.813 2 28.575 1 25.144 4 28.529 3 25.6364 

30.701 3 40.523 1 25.881 4 42.477 2 32.1104 

43.993 3 40.573 1 34.258 4 47.165 2 40.3914 

43.993 3 40.573 1 34.258 4 47.165 2 40.3914 

70.368 3 22.005 1 14.527 4 17.144 2 32.5505 

69.367 3 24.124 1 24.996 4 41.025 2 41.4259 

-20.434 3 22.005 1 -0.1 4 17.821 2 -0.4055 

39.999 3 28.713 1 24.384 4 28.881 2 30.4008 

36.511 3 28.713 1 20.493 4 28.881 2 27.798 

35.518 3 28.713 1 26.227 4 19.206 2 27.8587 

47.1 3 28.713 1 15.897 4 28.881 2 29.1363 

50.41 3 28.713 1 17.965 4 28.881 2 30.9565 

58.803 3 28.713 1 24.271 4 28.881 2 35.9968 

110.068 1 37.425 2 35.996 4 23.923 3 40.0671 

70.217 1 37.425 2 34.963 4 23.923 3 35.6688 

78.704 1 23.207 2 16.974 4 22.483 3 26.0463 

31.465 1 37.425 2 32.176 4 23.923 3 30.6788 

29.064 1 37.425 2 33.122 4 40.058 3 35.6576 

47.029 1 23.155 2 36.564 4 23.923 3 31.1364 

19.66 2 21.807 1 20.402 4 18.386 3 19.7893 

44.11 2 21.807 1 41.474 4 29.334 3 36.3925 

38.135 2 21.807 1 14.134 4 22.769 3 22.292 

39.46 2 38.591 1 30.459 4 28.371 3 32.446 

36.973 2 38.637 1 36.521 4 32.912 3 35.7403 

45.759 2 38.636 1 31.479 4 34.677 3 36.0101 

35.002 1 27.01 2 37.207 4 37.312 3 34.9786 
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40.514 1 27.01 2 24.578 4 30.709 3 28.4973 

38.77 1 39.261 2 31.756 4 52.557 3 40.1987 

26.021 1 27.044 2 20.37 4 32.36 3 25.8669 

41.57 1 27.01 2 34.397 4 38.413 3 34.8417 

20.022 1 27.919 2 10.669 4 21.266 3 18.2334 

80.645 2 41.533 1 36.369 4 56.553 3 51.7958 

27.223 2 21.023 1 14.536 4 13.094 3 17.2895 

34.911 2 21.023 1 -9.218 4 -4.237 3 4.1262 

69.827 2 41.393 1 37.017 4 57.57 3 50.1825 

58.223 2 41.579 1 32.164 4 30.424 3 37.7953 

64.224 2 21.023 1 24.179 4 24.647 3 32.0128 

 
 Nonlinear models 

Actual MLP RBF SVMreg M5P 

8.13 2.027 31.932 20.066 10.29 

13.1 -3.239 31.932 7.27 -6.075 

1.97 24.229 32.145 28.586 30.42 

13.49 -0.377 31.932 14.408 4.272 

11.9 34.603 31.946 29.739 37.085 

7.43 38.609 32.287 30.114 40.153 

10.24 1.202 25.752 18.469 16.497 

7.87 5.448 25.752 29.636 30.377 

16.53 -47.379 25.752 -43.094 -55.501 

12.93 -47.379 25.752 -43.094 -55.501 

18.66 -1.004 25.752 29.346 50.216 

30.3 27.732 41.141 36.559 46.855 

18.33 -2.72 24.95 6.139 1.589 

30.82 14.96 24.95 23.425 20.791 

12.58 34.894 40.094 33.626 43.508 

38.67 43.872 40.094 32.428 42.112 

31.25 28.877 24.95 35.739 38.195 

26.22 43.585 40.094 33.31 43.531 

140.13 -11.299 37.239 17.504 9.262 

6.29 19.884 26.661 36.541 45.411 

5.47 19.865 37.239 28.003 36.558 

23.26 17.544 26.661 20.758 26.041 

6.83 42.848 36.126 29.34 37.772 

17.24 16.315 26.662 25.055 29.483 

72.16 49.118 42.788 32.356 41.306 

15.63 54.989 42.818 40.013 54.395 
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34.78 54.989 42.818 40.013 54.395 

10.02 38.968 20.932 35.516 51.699 

50.96 56.905 20.932 47.391 68.381 

35.03 -19.122 20.932 -0.964 -13.873 

6.56 29.442 27.321 25.679 28.887 

13.26 28.053 27.321 22.833 25.845 

23.92 27.059 27.321 23.345 24.979 

21.15 40.446 27.321 24.429 35.081 

36.17 44.005 27.321 26.432 37.968 

28.37 53.117 27.322 31.969 45.289 

13.42 58.973 39.832 51.399 78.056 

31.58 53.968 39.832 29.617 42.861 

26.09 73.385 20.959 35.75 49.231 

58.62 14.069 39.832 8.274 8.637 

77.59 4.265 39.832 28.378 19.127 

61.07 38.143 20.959 22.211 22.383 

60.79 12.96 20.839 15.537 13.479 

33.82 18.741 20.839 33.695 30.252 

14.29 18.634 20.839 34.344 20.194 

12.35 17.677 41.097 25.846 28.777 

43.8 15.225 41.142 27.421 35.734 

105.56 22.886 41.179 36.891 38.439 

83.87 39.975 27.296 35.483 33.358 

4.28 41.948 27.296 26.355 39.479 

3.38 100.042 39.196 32.681 37.543 

2.94 41.923 27.296 21.6 23.386 

6.17 41.116 27.296 34.348 40.652 

64.68 42.072 27.296 12.732 16.724 

17.62 101.94 43.14 54.875 74.239 

33.52 9.954 19.91 12.248 9.647 

47.41 15.013 19.91 4.69 -1.823 

68.32 82.648 43.139 52.122 69.804 

18.99 20.712 42.621 31.525 40.183 

105.69 34.128 20.24 30.684 38.054 
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UIMS (regression) results 

 

Actual MLP RBF SVMreg M5P 

14 13.818 23.515 33.759 36.906 

18 22.782 23.515 27.557 17.167 

2 8.486 23.515 2.25 -4.419 

2 1.155 23.515 -7.535 2.643 

10 11.189 136.286 76.679 112.286 

16 112.783 22.929 91.079 7.709 

16 7.301 22.929 26.404 21.338 

18 13.177 22.929 28.471 18.318 

2 5.235 22.096 -8.22 1.555 

16 29.142 22.096 20.492 20.34 

2 0.88 22.096 2.158 -6.704 

48 7.117 22.096 27.976 9.931 

205 103.066 124.833 141.518 151.921 
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30 31.534 22.068 33.553 46.394 

30 21.333 22.068 8.936 9.053 

2 12.192 22.068 2.437 -6.765 

12 22.916 20.15 5.834 5.095 

50 24.956 20.15 35.326 42.908 

26 50.581 153.792 124.292 131.097 

39 28.845 20.15 44.49 36.247 

15 27.213 19.16 4.325 4.675 

119 12.628 19.16 46.214 75.935 

2 25.641 19.16 7.187 2.273 

18 26.354 19.16 -2.341 3.15 

26 18.973 21.813 57.025 74.09 

2 3.013 21.813 -9.508 -20.828 

2 13.191 21.813 21.627 15.486 

48 9.91 21.813 6.108 2.979 

34 34.595 22.199 49.877 39.596 

93 70.683 138.599 111.486 71.382 

2 14.41 22.199 3.073 3.907 

168 119.234 138.599 133.37 151.742 

30 28.066 20.418 20.488 25.906 

17 33.263 146.721 132.98 123.93 

27 46.497 20.418 13.354 37.163 

30 29.254 20.418 34.436 37.174 

253 121.435 101.8 122.82 76.764 

192 223.682 101.8 152.223 175.343 

20 33.201 22 23.638 29.091 

 
 
 

 Ensemble 

 Average Best Weight 

Actual   MMRE MMRE 

14 26.9995 MLP 13.818 25.7023 

18 22.75525 22.782 22.1258 

2 7.458 8.486 4.8702 

2 4.9445 1.155 2.0994 

10 84.11 MLP 11.189 67.1258 

16 58.625 112.783 67.9346 

16 19.493 7.301 16.8955 

18 20.72375 13.177 18.7533 

2 5.1665 MLP 5.235 3.1261 

16 23.0175 29.142 24.0668 
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2 4.6075 0.88 0.982 

48 16.78 7.117 13.6309 

205 130.3345 SVMreg 141.518 130.3945 

30 33.38725 33.553 34.367 

30 15.3475 8.936 13.9917 

2 7.483 2.437 5.4862 

12 13.49875 MLP 22.916 13.9506 

50 30.835 24.956 31.1768 

26 114.9405 50.581 99.1186 

39 32.433 28.845 34.1494 

15 13.84325 M5P 4.675 9.7208 

119 38.48425 75.935 49.333 

2 13.56525 2.273 9.4614 

18 11.58075 3.15 7.0251 

26 42.97525 MLP 18.973 41.696 

2 -1.3775 3.013 -3.6315 

2 18.02925 13.191 17.043 

48 10.2025 9.91 8.5735 

34 36.56675 M5P 39.596 39.9404 

93 98.0375 71.382 89.9951 

2 10.89725 3.907 7.5866 

168 135.73625 151.742 138.4145 

30 23.7195 SVMreg 20.488 23.622 

17 109.2235 132.98 111.6957 

27 29.358 13.354 27.8317 

30 30.3205 34.436 32.8192 

253 105.70475 SVMreg 122.82 111.0913 

192 163.262 152.223 173.2424 

20 26.9825 23.638 27.4337 

    

 
 
 

 Train set# 

MMRE 1 2 3 4 5 6 7 8 9 10 

MLP 0.8644
13 

0.6482
96 

0.4094
59 

1.4093
53 

0.9221
47 

2.7612
99 

0.9238
9 

1.7898
9 

1.5853
41 

0.7652
43 

RBF 2.8130
18 

3.2779
16 

2.6906
67 

2.8853
73 

2.8749 2.5843
5 

2.6546
58 

2.9338
53 

3.0068
07 

3.0898
67 

SVMre
g 

1.2394
26 

1.4577
31 

1.2636
53 

0.8221
22 

1.7581
24 

1.1994
84 

1.0193
67 

1.0075
23 

1.1303
36 

0.7208
13 

M5P 1.0917
66 

1.0264
88 

1.2037
02 

1.4904
18 

1.8108
03 

0.7406
51 

1.7640
25 

0.7174
08 

1.2705
95 

1.3878
79 
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 Train set# 

Rankin
g 

1 2 3 4 5 6 7 8 9 10 

MLP 4 4 4 3 4 1 4 2 2 3 

RBF 1 1 1 1 1 2 1 1 1 1 

SVMre
g 

2 2 2 4 3 3 3 3 4 4 

M5P 3 3 3 2 2 4 2 4 3 2 

 
 

MLP Weight RBF Weight SVMreg Weight M5P Weight Total 

13.818 4 23.515 1 33.759 3 36.906 2 25.3876 

22.782 4 23.515 1 27.557 3 17.167 2 23.1648 

8.486 4 23.515 1 2.25 3 -4.419 2 5.5371 

1.155 4 23.515 1 -7.535 3 2.643 2 1.0816 

11.189 3 136.286 1 76.679 4 112.286 2 70.1141 

112.783 3 22.929 1 91.079 4 7.709 2 74.1012 

7.301 3 22.929 1 26.404 4 21.338 2 19.3124 

13.177 3 22.929 1 28.471 4 18.318 2 21.298 

5.235 4 22.096 1 -8.22 3 1.555 2 2.1486 

29.142 4 22.096 1 20.492 3 20.34 2 24.082 

0.88 4 22.096 1 2.158 3 -6.704 2 1.8682 

7.117 4 22.096 1 27.976 3 9.931 2 15.4354 

103.066 4 124.833 1 141.518 3 151.921 2 126.5493 

31.534 4 22.068 1 33.553 3 46.394 2 34.1651 

21.333 4 22.068 1 8.936 3 9.053 2 15.2314 

12.192 4 22.068 1 2.437 3 -6.765 2 6.4617 

22.916 4 20.15 1 5.834 3 5.095 2 13.9506 

24.956 4 20.15 1 35.326 3 42.908 2 31.1768 

50.581 4 153.792 1 124.292 3 131.097 2 99.1186 

28.845 4 20.15 1 44.49 3 36.247 2 34.1494 

27.213 3 19.16 1 4.325 4 4.675 2 12.7449 

12.628 3 19.16 1 46.214 4 75.935 2 39.377 

25.641 3 19.16 1 7.187 4 2.273 2 12.9377 

26.354 3 19.16 1 -2.341 4 3.15 2 9.5158 

18.973 3 21.813 1 57.025 4 74.09 2 45.5012 

3.013 3 21.813 1 -9.508 4 -20.828 2 -4.8836 

13.191 3 21.813 1 21.627 4 15.486 2 17.8866 

9.91 3 21.813 1 6.108 4 2.979 2 8.1933 

34.595 2 22.199 1 49.877 3 39.596 4 39.9404 

70.683 2 138.599 1 111.486 3 71.382 4 89.9951 

14.41 2 22.199 1 3.073 3 3.907 4 7.5866 



160 
 

119.234 2 138.599 1 133.37 3 151.742 4 138.4145 

28.066 3 20.418 1 20.488 4 25.906 2 23.838 

33.263 3 146.721 1 132.98 4 123.93 2 102.629 

46.497 3 20.418 1 13.354 4 37.163 2 28.7651 

29.254 3 20.418 1 34.436 4 37.174 2 32.0272 

121.435 3 101.8 1 122.82 4 76.764 2 111.0913 

223.682 3 101.8 1 152.223 4 175.343 2 173.2424 

33.201 3 22 1 23.638 4 29.091 2 27.4337 

 
 Nonlinear models 

Actual MLP RBF SVMreg M5P 

14 13.776 18.733 15.654 14.261 

18 18.445 18.732 20.961 23.236 

2 6.846 18.732 6.454 8.922 

2 3.755 18.732 1.07 1.582 

10 18.463 151.537 26.553 13.562 

16 106.179 147.229 97.876 114.934 

16 5.999 19.169 11.62 9.683 

18 10.334 19.169 15.817 15.546 

2 3.348 18.05 4.621 10.878 

16 22.301 18.05 29.127 34.7 

2 -1.998 18.05 1.096 6.539 

48 3.135 18.05 11.042 12.753 

205 98.767 127.953 107.819 102.466 

30 28.93 18.148 29.524 27.718 

30 16.694 18.146 12.924 17.059 

2 7.67 18.146 2.85 7.507 

12 19.297 17.153 16.538 21.359 

50 24.928 17.153 24.611 23.452 

26 52.831 151.245 54.366 49.744 

39 28.98 17.153 27.665 27.443 

15 25.135 19.568 8.15 16.258 

119 13.326 28.02 33.086 1.025 

2 23.756 19.568 6.204 14.616 

18 24.381 19.568 6.565 15.361 

26 18.322 18.664 28.259 18.267 

2 3.777 18.555 -5.701 2.103 

2 12.176 18.555 11.518 12.411 

48 9.456 18.555 5.063 9.088 

34 30.819 17.786 28.675 29.285 

93 56.842 148.784 68.367 65.68 
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2 11.49 17.781 3.122 8.929 

168 113.867 148.784 129.405 114.643 

30 24.578 17.603 23.432 25.401 

17 30.645 143.501 66.132 50.637 

27 43.398 17.603 37.388 43.117 

30 26.37 17.603 30.018 28.793 

253 131.905 120.67 117.969 118.592 

192 209.051 120.67 210.249 213.055 

20 32.317 18.782 29.461 31.118 

 
 
 

 

 

 

 

 

 

 

 

 

  



162 
 

QUES (regression) results 

 

Actual MLP RBF SVMreg M5P 

102 280.161 57.846 84.178 68.136 

85 81.491 56.883 49.121 51.343 

38 60.786 56.883 36.522 36.448 

81 76.445 84.991 72.988 73.462 

55 105.476 84.991 46.478 59.269 

101 230.77 84.991 105.836 130.597 

38 42.765 84.991 30.38 42.566 

157 116.41 57.649 99.159 88.549 

68 89.559 82.615 57.461 76.784 

26 82.995 57.649 42.437 63.407 

24 48.057 68.29 34.114 41.225 

86 125.873 57.649 67.505 64.008 

26 51.898 57.649 42.41 53.796 

47 52.927 82.037 47 59.516 

78 100.279 57.498 56.061 55.433 

88 93.322 81.28 64.335 89.383 

124 136.317 57.498 73.257 61.976 

28 65.041 57.498 55.68 56.35 

62 91.68 57.498 49.695 47.677 

35 102.332 57.498 54.209 63.208 

41 58.99 57.498 51.233 65.21 

49 100.731 59.822 83.278 84.617 

9 24.628 59.822 5.322 26.3 

70 208.525 61.963 136.533 103.448 

46 50.458 59.822 87.609 47.316 

42 105.19 59.822 83.907 61.088 

92 161.97 80.754 98.938 97.664 

48 91.174 59.822 74.785 61.734 

56 71.903 74.233 66.458 66.868 

217 347.932 74.233 147.654 167.422 

45 90.006 58.697 78.49 81.067 

24 40.463 62.198 32.927 34.977 

85 73.511 58.697 55.147 55.205 

10 33.261 58.697 20.963 19.031 

100 99.609 58.697 65.628 81.52 
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72 100.146 80.123 77.939 77.964 

48 86.887 61.112 57.077 65.937 

24 56.519 61.138 13.045 58.008 

16 62.499 61.112 27.553 43.371 

14 51.453 61.164 27.019 23.565 

82 104.478 61.112 56.896 59.825 

39 86.021 61.112 48.345 66.093 

98 40.939 62.819 78.105 114.787 

56 63.519 62.819 86.094 78.992 

146 208.11 59.834 196.599 89.101 

25 45.496 62.819 70.42 90.963 

68 87.483 62.819 57.152 63.52 

48 42.483 62.819 40.018 53.793 

170 60.974 59.834 79.732 96.405 

80 87.311 87.24 101.988 88.553 

148 122.701 56.818 71.753 84.416 

30 49.75 56.818 36.263 50.31 

28 22.48 57.098 23.928 20.411 

35 20.881 87.24 18.829 11.069 

77 105.704 56.818 61.728 78.67 

45 71.64 87.24 56.758 58.712 

52 69.697 54.851 45.165 51.707 

70 146.683 82.487 60.454 51.076 

188 157.792 54.851 84.456 64.692 

79 99.475 54.851 60.474 61.097 

30 49.174 54.851 36.961 52.518 

75 103.625 54.851 59.7 56.402 

64 71.033 54.851 45.313 52.881 

107 128.705 59.027 68.712 57.328 

8 12.922 59.027 19.311 24.307 

6 13.934 59.027 18.579 20.447 

24 37.902 59.027 54.909 62.63 

52 26.061 59.027 32.508 42.504 

38 0.649 88.264 44.209 73.485 

41 30.853 88.264 46.098 65.019 

94 58.643 59.027 54.031 64.982 

 
 Ensemble 

 Average Best Weight 

Actual   MMRE MMRE 

102 122.58025 SVMreg 84.178 115.9288 
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85 59.7095 49.121 57.0378 

38 47.65975 36.522 43.3887 

81 76.9715 72.988 75.0219 

55 74.0535 46.478 65.9662 

101 138.0485 105.836 136.1666 

38 50.1755 30.38 41.9739 

157 90.44175 SVMreg 99.159 95.2752 

68 76.60475 57.461 72.1929 

26 61.622 42.437 58.3608 

24 47.9215 34.114 42.4535 

86 78.75875 67.505 77.1439 

26 51.43825 42.41 49.2473 

47 60.37 47 55.4439 

78 67.31775 SVMreg 56.061 64.8599 

88 82.08 64.335 79.3413 

124 82.262 73.257 80.9088 

28 58.64225 55.68 57.935 

62 61.6375 49.695 58.2669 

35 69.31175 54.209 66.8622 

41 58.23275 51.233 57.604 

49 82.112 SVMreg 83.278 84.8247 

9 29.018 5.322 20.9266 

70 127.61725 136.533 133.5489 

46 61.30125 87.609 65.3122 

42 77.50175 83.907 78.9094 

92 109.8315 98.938 109.3438 

48 71.87875 74.785 72.6512 

56 69.8655 M5P 66.868 68.4885 

217 184.31025 167.422 188.2747 

45 77.065 81.067 79.8447 

24 42.64125 34.977 38.1813 

85 60.64 55.205 59.198 

10 32.988 19.031 26.4232 

100 76.3635 81.52 78.0879 

72 84.043 SVMreg 77.939 82.6063 

48 67.75325 57.077 66.1005 

24 47.1775 13.045 40.038 

16 48.63375 27.553 42.6435 

14 40.80025 27.019 34.2841 

82 70.57775 56.896 67.7127 

39 65.39275 48.345 62.4813 
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98 74.1625 SVMreg 78.105 80.1478 

56 72.856 86.094 77.1209 

146 138.411 196.599 152.9753 

25 67.4245 70.42 70.838 

68 67.7435 57.152 65.6953 

48 49.77825 40.018 46.9236 

170 74.23625 79.732 78.9925 

80 91.273 SVMreg 101.988 93.5473 

148 83.922 71.753 84.248 

30 48.28525 36.263 45.23 

28 30.97925 23.928 25.9003 

35 34.50475 18.829 23.7525 

77 75.73 61.728 75.1148 

45 68.5875 56.758 63.3688 

52 55.355 SVMreg 45.165 54.8016 

70 85.175 60.454 86.6504 

188 90.44775 84.456 99.5435 

79 68.97425 60.474 71.7366 

30 48.376 36.961 45.5253 

75 68.6445 59.7 71.733 

64 56.0195 45.313 55.4964 

107 78.443 MLP 128.705 89.4639 

8 28.89175 12.922 21.7262 

6 27.99675 13.934 21.1394 

24 53.617 37.902 50.0622 

52 40.025 26.061 34.5803 

38 51.65175 0.649 37.0457 

41 57.5585 30.853 48.0008 

94 59.17075  58.643 58.5656 

 
 

 Train set# 

MMRE 1 2 3 4 5 6 7 8 9 10 

MLP 0.5997
94 

0.8506
51 

0.9067
63 

0.4945
02 

0.5583
18 

0.7206
68 

0.5831
78 

0.3592
47 

0.3430
78 

0.2621
09 

RBF 0.9711
21 

0.9445
32 

0.9729
06 

0.9500
04 

0.8950
87 

0.9503
55 

1.0024
43 

0.9429
68 

0.9377
54 

0.7498
11 

SVMre
g 

0.2893
25 

0.3697
04 

0.3567
11 

0.3050
58 

0.3007
35 

0.3340
08 

0.2467
24 

0.2845
06 

0.3113
28 

0.3300
26 

M5P 0.3266
71 

0.5340
99 

0.5139
07 

0.3557
17 

0.2702
93 

0.5675
17 

0.2650
12 

0.3149
07 

0.5053
92 

0.5119
83 

 
 Train set# 
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Rankin
g 

1 2 3 4 5 6 7 8 9 10 

MLP 2 2 2 2 2 2 2 2 3 4 

RBF 1 1 1 1 1 1 1 1 1 1 

SVMre
g 

4 4 4 4 3 4 4 4 4 3 

M5P 3 3 3 3 4 3 3 3 2 2 

 
MLP Weight RBF Weight SVMreg Weight M5P Weight Total 

280.161 2 57.846 1 84.178 4 68.136 3 115.9288 

81.491 2 56.883 1 49.121 4 51.343 3 57.0378 

60.786 2 56.883 1 36.522 4 36.448 3 43.3887 

76.445 2 84.991 1 72.988 4 73.462 3 75.0219 

105.476 2 84.991 1 46.478 4 59.269 3 65.9662 

230.77 2 84.991 1 105.836 4 130.597 3 136.1666 

42.765 2 84.991 1 30.38 4 42.566 3 41.9739 

116.41 3 57.649 2 99.159 4 88.549 1 94.9713 

89.559 3 82.615 2 57.461 4 76.784 1 74.0535 

82.995 3 57.649 2 42.437 4 63.407 1 59.7438 

48.057 3 68.29 2 34.114 4 41.225 1 45.8432 

125.873 3 57.649 2 67.505 4 64.008 1 82.6945 

51.898 3 57.649 2 42.41 4 53.796 1 49.4428 

52.927 3 82.037 2 47 4 59.516 1 57.0371 

100.279 1 57.498 3 56.061 4 55.433 2 60.7883 

93.322 1 81.28 3 64.335 4 89.383 2 77.3268 

136.317 1 57.498 3 73.257 4 61.976 2 72.5791 

65.041 1 57.498 3 55.68 4 56.35 2 57.2955 

91.68 1 57.498 3 49.695 4 47.677 2 55.8308 

102.332 1 57.498 3 54.209 4 63.208 2 61.8078 

58.99 1 57.498 3 51.233 4 65.21 2 56.6836 

100.731 3 59.822 1 83.278 4 84.617 2 86.4361 

24.628 3 59.822 1 5.322 4 26.3 2 20.7594 

208.525 3 61.963 1 136.533 4 103.448 2 144.0566 

50.458 3 59.822 1 87.609 4 47.316 2 65.6264 

105.19 3 59.822 1 83.907 4 61.088 2 83.3196 

161.97 3 80.754 1 98.938 4 97.664 2 115.7744 

91.174 3 59.822 1 74.785 4 61.734 2 75.5952 

71.903 2 74.233 1 66.458 3 66.868 4 68.4885 

347.932 2 74.233 1 147.654 3 167.422 4 188.2747 

90.006 2 58.697 1 78.49 3 81.067 4 79.8447 

40.463 2 62.198 1 32.927 3 34.977 4 38.1813 

73.511 2 58.697 1 55.147 3 55.205 4 59.198 
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33.261 2 58.697 1 20.963 3 19.031 4 26.4232 

99.609 2 58.697 1 65.628 3 81.52 4 78.0879 

100.146 3 80.123 2 77.939 4 77.964 1 85.0404 

86.887 3 61.112 2 57.077 4 65.937 1 67.713 

56.519 3 61.138 2 13.045 4 58.008 1 40.2021 

62.499 3 61.112 2 27.553 4 43.371 1 46.3304 

51.453 3 61.164 2 27.019 4 23.565 1 40.8328 

104.478 3 61.112 2 56.896 4 59.825 1 72.3067 

86.021 3 61.112 2 48.345 4 66.093 1 63.976 

40.939 2 62.819 1 78.105 4 114.787 3 80.1478 

63.519 2 62.819 1 86.094 4 78.992 3 77.1209 

208.11 2 59.834 1 196.599 4 89.101 3 152.9753 

45.496 2 62.819 1 70.42 4 90.963 3 70.838 

87.483 2 62.819 1 57.152 4 63.52 3 65.6953 

42.483 2 62.819 1 40.018 4 53.793 3 46.9236 

60.974 2 59.834 1 79.732 4 96.405 3 78.9925 

87.311 4 87.24 1 101.988 3 88.553 2 91.9554 

122.701 4 56.818 1 71.753 3 84.416 2 93.1713 

49.75 4 56.818 1 36.263 3 50.31 2 46.5227 

22.48 4 57.098 1 23.928 3 20.411 2 25.9624 

20.881 4 87.24 1 18.829 3 11.069 2 24.9389 

105.704 4 56.818 1 61.728 3 78.67 2 82.2158 

71.64 4 87.24 1 56.758 3 58.712 2 66.1498 

69.697 4 54.851 2 45.165 3 51.707 1 57.5692 

146.683 4 82.487 2 60.454 3 51.076 1 98.4144 

157.792 4 54.851 2 84.456 3 64.692 1 105.893 

99.475 4 54.851 2 60.474 3 61.097 1 75.0121 

49.174 4 54.851 2 36.961 3 52.518 1 46.9799 

103.625 4 54.851 2 59.7 3 56.402 1 75.9704 

71.033 4 54.851 2 45.313 3 52.881 1 58.2654 

128.705 4 59.027 2 68.712 3 57.328 1 89.6338 

12.922 4 59.027 2 19.311 3 24.307 1 25.1982 

13.934 4 59.027 2 18.579 3 20.447 1 24.9974 

37.902 4 59.027 2 54.909 3 62.63 1 49.7019 

26.061 4 59.027 2 32.508 3 42.504 1 36.2326 

0.649 4 88.264 2 44.209 3 73.485 1 38.5236 

30.853 4 88.264 2 46.098 3 65.019 1 50.3253 

58.643 4 59.027 2 54.031 3 64.982 1 57.9701 

 
 Nonlinear models 

Actual MLP RBF SVMreg M5P 
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102 237.308 56.001 223.747 245.007 

85 72.161 56.001 56.913 61.702 

38 52.847 56.001 36.158 39.795 

81 73.192 90.299 64.308 61.854 

55 96.647 88.134 82.896 85.09 

101 222.674 92.948 203.348 213.646 

38 45.069 85.139 27.551 24.798 

157 101.127 58.36 89.448 89.182 

68 78.906 80.847 67.854 73.498 

26 63.32 57.825 48.456 53.852 

24 41.409 80.847 23.929 22.328 

86 116.71 57.848 85.328 99.187 

26 41.723 57.826 25.879 20.973 

47 53.198 80.847 37.683 34.473 

78 91.675 56.43 62.209 72.234 

88 90.529 86.575 70.556 70.145 

124 131.252 56.43 93.697 109.97 

28 61.982 56.43 36.766 36.532 

62 82.949 56.43 54.063 51.232 

35 94.375 56.43 62.908 74.229 

41 59.607 56.43 30.758 31.5 

49 93.213 58.975 83.746 87.387 

9 22.353 58.975 8.561 11.043 

70 209.583 58.975 174.767 183.524 

46 41.517 58.975 44.453 37.184 

42 97.68 58.975 85.075 86.79 

92 158.06 85.827 138.564 142.446 

48 82.54 58.975 73.185 74.872 

56 66.589 90.378 60.416 57.075 

217 196.079 100.965 287.892 306.162 

45 75.656 53.596 72.13 75.304 

24 35.231 51.399 25.317 23.617 

85 61.216 51.165 53.518 55.477 

10 25.749 50.761 14.886 13.802 

100 86.095 52.343 79.14 83.212 

72 90.815 76.373 80.852 82.022 

48 76.43 62.09 58.453 61.646 

24 52.098 62.099 26.101 31.131 

16 53.905 62.092 31.862 37.132 

14 42.758 62.126 20.876 26.048 

82 94.291 62.09 72.411 79.328 
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39 75.418 62.089 56.454 60.775 

98 59.243 61.501 55.574 44.53 

56 61.396 61.436 57.844 54.44 

146 221.501 62.267 164.16 178.119 

25 56.43 61.444 49.373 42.353 

68 75.218 61.423 63.705 70.624 

48 44.448 61.439 31.591 30.476 

170 67.731 62.075 65.613 56.689 

80 86.543 95.863 86.141 78.606 

148 124.397 55.76 101.471 114.3 

30 55.484 55.76 36.96 41.534 

28 30.353 55.76 11.877 9.118 

35 43.099 86.389 20.066 13.096 

77 108.9 55.76 86.441 98.485 

45 75.753 88.421 67.649 66.99 

52 64.766 53.579 57.658 61.564 

70 147.663 90.3 140.223 145.877 

188 149.016 53.579 139.862 147.393 

79 100.45 53.579 85.28 90.576 

30 44.632 53.579 38.326 41.568 

75 104.318 53.579 89.284 94.619 

64 66.605 53.579 58.796 62.865 

107 125.595 55.344 115.85 120.812 

8 6.317 55.564 13.817 14.657 

6 7.594 56.054 14.008 15.333 

24 36.414 54.86 44.428 42.952 

52 22.103 54.883 28.564 28.344 

38 18.518 74.476 14.64 9.919 

41 43.815 69.362 37.096 35.234 

94 52.605 54.889 60.31 59.865 
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