
i

ii

iii

DEDICATION

To my father and mother

To my wife

To my brother and sisters

iv

ACKNOWLEDGMENT

All praise is due to Allah the Almighty for his countless blessings and enlightenments

throughout my studies.

I would like to express my gratitude to my advisor, Dr. Mahmoud Elish, for his

wise guidance and motivation. I really enjoyed working with him, and I think he sets an

example of what an advisor should be. My gratitude is extended to my committee

members, Dr. Muhammed Al-Mulhem and Dr. Mohammad Alshayeb, for their

continuous support and encouragement. Their valuable feedback improved the content of

this research. Furthermore, I would like to thank my friends and colleagues, who we

shared knowledge throughout my graduate studies.

I would like to acknowledge the support of King Fahd University of Petroleum

and Minerals in the development of this research. Also, special thanks are due to King

Abdulaziz City for Science and Technology (KACST) for funding this research. This

research is done under project number GSP-17-132.

Sincere admiration is for my father Dr. Ibrahim Aljamaan, and I am proud to be

your son. My mother is my constant refuge, and I am proud to share my life with my

wife.

v

TABLE OF CONTENTS

DEDICATION .. I

ACKNOWLEDGMENT ... IV

TABLE OF CONTENTS ... V

LIST OF TABLES ... IX

THESIS ABSTRACT... XIII

الرسالة ملخص ... XIV

CHAPTER 1 ..1

INTRODUCTION ...1

1.1 Problem statement ... 1

1.2 Software engineering prediction problems ... 3

1.3 Motivation .. 5

1.4 Thesis objective ... 7

1.5 Thesis organization ... 7

CHAPTER 2 ..8

LITERATURE REVIEW ...8

2.1 Object-Oriented design metrics as quality indicators .. 8
2.1.1 Relationships between object-oriented design metrics and class fault proneness 9
2.1.2 Relationships between object-oriented design metrics and maintainability 10

2.2 Class fault prediction ... 11

2.3 Maintainability prediction ... 13

vi

2.4 Ensemble models .. 14

2.5 Summary ... 15

CHAPTER 3 ... 18

TECHNICAL BACKGROUND .. 18

3.1 Individual prediction models ... 18
3.1.1 Artificial Neural Networks... 19

3.1.1.1 Multilayer Perceptron (MLP) ... 21
3.1.1.2 Radial Basis Function Network (RBF) .. 24

3.1.2 Statistical .. 25
3.1.2.1 Bayesian Belief Network (BBN) ... 26
3.1.2.2 Naïve Bayes (NB) .. 27

3.1.3 Support Vector Machines ... 28
3.1.3.1 Support Vector Machines (SVM) ... 28
3.1.3.2 Support vector regression (SVMreg) .. 31

3.1.4 Tree ... 32
3.1.4.1 Decision Tree (DT) .. 32
3.1.4.2 M5 Model tree (M5P) .. 33

3.1.5 Parameter initialization ... 35

3.2 Datasets .. 36
3.2.1 Class fault datasets .. 37
3.2.2 Maintainability datasets ... 39

3.3 Tool ... 41

3.4 Evaluation measures ... 42
3.4.1 Classification evaluation measures .. 42

3.4.1.1 Accuracy .. 43
3.4.1.2 Recall ... 43
3.4.1.3 Precision .. 43
3.4.1.4 F- measure .. 43
3.4.1.5 ROC .. 44

3.4.2 Regression evaluation measures .. 45
3.4.2.1 MMRE .. 46
3.4.2.2 StdMRE .. 46
3.4.2.3 Pred(0.3) ... 46

3.5 Validation techniques ... 47
3.5.1 Cross validation ... 47

3.5.1.1 10 fold cross validation .. 47
3.5.1.2 Leave-one-out .. 48

3.5.2 Holdout method .. 48

vii

CHAPTER 4 ... 49

SINGLE MODEL ENSEMBLES (CLASSIFICATION)... 49

4.1 Single model ensembles for classification ... 49
4.1.1 Bagging ... 51
4.1.2 Boosting ... 52

4.2 Experiment design... 54
4.2.1 Goal .. 54
4.2.2 Settings ... 54
4.2.3 Bagging and boosting parameters ... 55

4.3 Results .. 55

CHAPTER 5 ... 62

MULTI-MODEL ENSEMBLES (CLASSIFICATION) ... 62

5.1 Multi-model ensembles for classification .. 62
5.1.1 Linear ensembles ... 62

5.1.1.1 Majority voting ... 64
5.1.1.2 Average probability .. 64
5.1.1.3 Best probability .. 65
5.1.1.4 Weighted probability ... 66

5.1.2 Nonlinear ensembles .. 68

5.2 Experiment design... 70
5.2.1 Goal .. 70
5.2.2 Settings ... 71

5.3 Results .. 71

CHAPTER 6 ... 81

MULTI-MODEL ENSEMBLES (REGRESSION) ... 81

6.1 Multi-model ensembles for regression .. 81
6.1.1 Linear ensembles ... 81

6.1.1.1 Average ... 83
6.1.1.2 Best .. 83
6.1.1.3 Weight ... 84

6.1.2 Nonlinear ensembles .. 85

viii

6.2 Experiment design... 87
6.2.1 Goal .. 87
6.2.2 Settings ... 88

6.3 Results .. 88
6.3.1 KC1 .. 88
6.3.2 UIMS ... 96
6.3.3 QUES ... 103

CHAPTER 7 .. 111

CONCLUSION ... 111

7.1 Thesis contributions ...111

7.2 Limitations ...113

7.3 Future work ...114

REFERENCES ... 115

APPENDIX A – DETAILED EXPERIMENT RESULTS .. 127

VITA .. 170

ix

LIST OF TABLES

Table 1: Literature review summary .. 17
Table 2: Selected individual prediction models .. 19
Table 3: Software quality datasets ... 37
Table 4: KC1 independent and dependent variables .. 39
Table 5: UIMS & QUES independent and dependent variables ... 41
Table 6: Confusion matrix for binary classification problems .. 42
Table 7: Comparison between bagging and boosting... 54
Table 8: Experiment settings for single classifier ensemble (classification) 54
Table 9: Classification accuracy of single classifiers .. 56
Table 10: Classification accuracy after applying bagging on base classifiers using different
ensemble size... 57
Table 11: Classification accuracy after applying boosting on base classifiers using different
ensemble size... 57
Table 12: Experiment settings for multi-model ensemble (classification) 71
Table 13: KC1 results for individual models (classification) ... 72
Table 14: Individual models AUC (KC1 classification) ... 74
Table 15: KC1 results for linear ensembles (classification) .. 75
Table 16: Linear ensemble models AUC (KC1 classification) .. 76
Table 17: KC1 results for nonlinear ensembles (classification) .. 77
Table 18: Nonlinear ensemble models AUC (KC1 classification).. 78
Table 19: KC1 comparison of individual Vs best linear Vs best nonlinear (classification).............. 79
Table 20: Comparison of individual Vs best linear Vs best nonlinear AUC (classification) 80
Table 21: Experiment settings for multi-model ensemble (regression) .. 88
Table 22: KC1 results for individual models (regression) ... 89
Table 23: KC1 results for linear ensembles (regression) .. 91
Table 24: KC1 results for nonlinear ensembles (regression) .. 93
Table 25: KC1 comparison of individual Vs best linear Vs best nonlinear (regression).................. 94
Table 26: Wilcoxon MRE significance test of KC1 individual, best linear, and best nonlinear (p-
level = 0.1) .. 95
Table 27: UIMS results for individual models (regression) ... 96
Table 28: UIMS results for linear ensembles (regression) .. 98
Table 29: UIMS results for nonlinear ensembles (regression) ... 100
Table 30: UIMS comparison of individual Vs best linear Vs best nonlinear (regression) 101
Table 31: Wilcoxon MRE significance test of UIMS individual, best linear, and best nonlinear (p-
level = 0.1) .. 102
Table 32: QUES results for individual models (regression) .. 104
Table 33: QUES results for linear ensembles (regression).. 105
Table 34: QUES results for nonlinear ensembles (regression) ... 107

x

Table 35: QUES comparison of individual Vs best linear Vs best nonlinear (regression) 109
Table 36: Wilcoxon MRE significance test of QUES individual, best linear, and best nonlinear (p-
level = 0.1) .. 109

xi

LIST OF FIGURES

Figure 1: Software Quality Assessment ... 2
Figure 2: Software errors, faults and failures .. 4
Figure 3: Artificial neuron [2] .. 20
Figure 4: Feed-forward artificial neural network architecture [2] ... 21
Figure 5: Example of a multilayer perceptron network [102] .. 22
Figure 6: MLP neuron [102] .. 23
Figure 7: Radial basis function network [103] ... 25
Figure 8: Example of Bayesian Belief Network .. 26
Figure 9: Maximal margin hyperplane ... 29
Figure 10: Data transformation into a non-linear space .. 31
Figure 11: A decision tree [87].. 33
Figure 12: M5 Model tree [8] ... 34
Figure 13: A ROC graph ... 44
Figure 14: Single classifier ensemble ... 50
Figure 15: Bagging algorithm .. 51
Figure 16: Boosting algorithm .. 52
Figure 17: Single classifier Vs Bagging Vs Boosting ... 58
Figure 18: (a) Bagging all classifiers, (b) Boosting all classifiers ... 59
Figure 19: Single classifier Vs Bagging (25) Vs Boosting (25) .. 61
Figure 20: Multi-model linear ensemble (classification) .. 63
Figure 21: Majority voting linear ensemble... 64
Figure 22: Average probability linear ensemble ... 65
Figure 23: Best probability linear ensemble .. 66
Figure 24: Weight probability linear ensemble ... 67
Figure 25: Multi-model nonlinear ensemble (classification) .. 69
Figure 26: Nonlinear ensemble .. 70
Figure 27: KC1 ROC graph for individual models (classification) ... 73
Figure 28: KC1 ROC graph for linear ensembles (classification)... 76
Figure 29: KC1 ROC graph for nonlinear ensembles (classification) .. 78
Figure 30: KC1 ROC graph for comparison of individual Vs best linear Vs best nonlinear
(classification) .. 80
Figure 31: Multi-model linear ensemble (regression) .. 82
Figure 32: Average linear ensemble ... 83
Figure 33: Best linear ensemble ... 84
Figure 34: Weight linear ensemble .. 85
Figure 35: Multi-model nonlinear ensemble (regression) .. 86
Figure 36: Nonlinear ensemble .. 87

xii

Figure 37: KC1 box plots for individual models (regression) .. 90
Figure 38: KC1 box plots for linear ensembles (regression) ... 92
Figure 39: KC1 box plots for nonlinear ensembles (regression) .. 93
Figure 40: KC1 box plots of best individual Vs best linear Vs best nonlinear (regression) 96
Figure 41: UIMS box plots for individual models (regression) ... 97
Figure 42: UIMS box plots for linear ensembles (regression) .. 99
Figure 43: UIMS box plots for nonlinear ensembles (regression) .. 100
Figure 44: UIMS box plots of best individual Vs best linear Vs best nonlinear (regression) 103
Figure 45: QUES box plots for individual models (regression) ... 104
Figure 46: QUES box plots for linear ensembles (regression) .. 106
Figure 47: QUES box plots for nonlinear ensembles (regression) ... 108
Figure 48: QUES box plots of best individual Vs best linear Vs best nonlinear (regression) 110

xiii

THESIS ABSTRACT

Name: Hamoud Ibrahim Aljamaan

Title: Software Quality Assessment using Ensemble Models

Major Field: Information & Computer Science

Date of Degree: June 2009

During the different phases of a software project, the manager is faced with many

prediction problems, particularly the software development effort and quality. Early

prediction of quality helps the management to have the knowledge of targeted software

product quality as early as possible, which helps to identify design errors and avoid

expensive rework.

Many predication models have been proposed in the research community in order

to achieve accuracy in software engineering related prediction problems. However, none

of the existing prediction models proved to be suitable under most circumstances.

The main objective of this thesis is to build different ensemble models, and

evaluate their accuracy against stand-alone prediction models. Several linear and

nonlinear ensembles were proposed, and three empirical studies were conducted to

evaluate them in the context of fault and maintenance effort prediction. Empirical results

indicate that ensembles in general offer better, or at least competitive, performance by

comparison with individual models, and nonlinear ensembles were the best among

ensembles.

xiv

 ملخص الرسالة
حمود ابراهيم الجمعان : الاسم

"انسامبل"اموعة تقييم جودة البرمجيات باستخدام نماذج :عنوان الرسالة

و المعلومات الآلي علوم الحاسب :التخصص

 هـ1430جمادى الآخرة :تاریخ الشھادة

واجه العديد من المشاكل مثل يمدير مشروع البرمجيات البرمجيات،مشروع من خلال المراحل المختلفة
 دارةالإالبرمجيات تساعد لجودة المبكر التنبؤ. ودة المستقبلية للبرمجياتالبرمجيات ونوعية الجتطور بالتنبؤ

مما يساعد على تحديد وتصميم ممكن،المنتجات المستهدفة في أقرب وقت جودة نوعيةلمعرفة على تكوين
 .البرمجيات عادة صياغةلإكلفة المخطاء الأوتجنب

دقيق لهندسة البرمجيات الأجل بناء نماذج للتنبؤ من يد من التقنيات المقترحةلعدهناك ا ,الأبحاثفي مجتمع
 .الظروف معظمفي ظل ةمناسب اأ تثبتألتنبؤ القائمة اإلا أن أيا من نماذج ,التنبؤ بمشاكل ذات الصلة

مقارنة تنبؤها دقة وتقييم ، مختلفة" انسامبل" نماذج مجموعة بناء هو الأطروحة لهذه الرئيسي الهدف
وقد أجريت ، الخطية وغير الخطية " انسامبل" نماذج من مجموعة اقترحنا .الموجودة الفردية التقنياتب

 نماذج أنتشير التجريبية النتائج. بأخطاء وصيانة البرامج التنبؤ سياق في هاملتقيي تجريبية دراسات ثلاث
إضافة ، لأداء التقنيات الفردية الموجودة منافس الأقل على أو أفضل، تقدم بشكل عام أداء" انسامبل"
 ."انسامبل" نماذج بين أفضل هي الخطية غير" انسامبل" نماذج أثبتت لكلذ

1

CHAPTER 1

Introduction

Software project management is the art of making the right decision [98] among a huge

number of choices during the different phases of a project. The success and failure of

projects is highly dependent on the manager’s decisions. Managers should be encouraged

to use any means necessary to help them make their decisions as accurate as possible to

increase the overall project success rate.

Software project management is a major application area for prediction models.

During the different phases of a project, the manager is faced with many prediction

problems such as predicting the development effort, cost and quality. Prediction models

can be used to help and guide software project managers to make right estimates when a

prediction problem is faced. Software project managers can utilize such prediction

models besides their work experience to come up with decisions that increase the overall

project success.

1.1 Problem statement

Software quality assessment can be seen as a learning concept [3], where we can utilize

prediction models as an application to it. Assessing software quality, as shown below,

involves predicting several software attributes, such as maintainability, reliability, fault-

proneness … etc.

2

Figure 1: Software Quality Assessment

An important software quality attribute is maintainability. Nowadays, many

software systems are currently in use and the largest cost associated with any product

over its lifetime is the maintenance cost [66, 108]. Fault-proneness is another important

aspect of quality. Faults are defined as defects that might cause failures. Predicting theses

prone parts is a challenge for developers before the software is released [56].

Building accurate prediction models helps software project mangers increase the

success of their software project. However, none of the existing prediction models proved

to be suitable under most circumstances. In fact, for a given dataset one model may

outperform other models. But, when a different dataset is used, the model used could

produce the worst prediction accuracy. Ensemble models were proposed as a candidate

approach to build an accurate prediction model by taking advantage of stand-alone

prediction models capabilities towards the dataset to come up with the best, or at least

competitive, prediction accuracy.

Software Quality Assessment

Fault proneness

Class Module

Maintainability Reliability

3

1.2 Software engineering prediction problems

A software project manager may face many prediction problems during the different

phases of a project. Such predictions include:

• Software Quality

Predicting software quality involves predicting maintainability, fault-proneness, etc...

o Software maintainability

Many definitions exist for maintainability. Pressman defined maintainability as “the

ease with which repair may be made” [82]. Also, following IEEE Standard Glossary

of Software Engineering Terminology, maintainability is defined as “The ease with

which a system or component can be modified to correct faults, improve performance

or other attributes, or adapt to a changed environment” [52].

Maintainability is typically measured as change effort [62, 95]. Change effort

can mean either the average effort to make a change to a class, or the total effort spent

on changing a class [62, 95], and this is how software maintainability is addressed in

this thesis.

o Fault-proneness

Software fault is defined as a defect (e.g. programmer error) in an executable product

that may cause a failure [41, 52]. However, not all faults result in a failure, as shown

in the Figure 2 [41]. A fault becomes a failure, once it is activated.

4

Figure 2: Software errors, faults and failures

Fault prediction can be in many forms. Examples include predicting faulty

parts, before its release, or it may involve predicting the fault density of faulty parts…

etc

o Software reliability

Reliability, according to ANSI standards, is defined as “the probability of failure-free

operation for a specified period of time in a specified environment” [73]. Reliability

is another factor for quantitatively characterizing quality and estimating the duration

of testing period.

• Software Cost

Cost estimation may be used to establish a budget for the project. Cost usually includes

effort (i.e. the cost of labor) and schedule (i.e. the cost of time), and therefore, we can

define cost estimation as an empirical process of estimating the effort and time costs for

5

any product before developing it [11]. Thus, the costs of development are primarily the

costs of the effort and time involved.

The primary topic and scope of this thesis is software quality, and specifically

maintainability, and fault proneness at the class level. We approach the quality

assessment by estimating the fault proneness and maintainability, since it provides us

with assurances about quality [95]. Estimating class fault proneness is used to assess and

shed the light on overall quality. If we can identify the important drivers of fault

proneness, we can use them as candidates for quality benchmarks [7, 19, 28]. In addition,

the more faults are found, the better the quality and maintainability of the system [104].

Also, quality can be assessed by estimating the maintainability (e.g. the number of lines

changed per class) [72, 95, 108].

1.3 Motivation

Early prediction of software quality helps the management to have the knowledge of

targeted product quality as early as possible, which helps to identify design errors and

avoid expensive rework. Quality prediction models can be utilized as a tool for focusing

quality assurance activities.

Software maintainability prediction is an important quality prediction problem.

Many systems are currently in use and the largest cost associated with any product over

its lifetime is the maintenance cost, thus, it is important for those systems to be

maintained effectively and efficiently [5]. Maintainability prediction model enables

organizations to predict maintainability of a system and assists them with managing

maintenance resources. Accurate maintainability prediction enables developers to better

6

identify the determinants of quality and thus help them improve design or code, also it

can provide project managers with useful information to help them plan the use of

valuable resources [62]. In addition, if an accurate maintainability prediction model is

available for a software system, a defensive design can be adopted. This would minimize,

or at least reduce future maintenance effort of the system [67].

Software fault prediction is another important quality prediction problem. The

majority of faults in a software system are found in a few of its components [12, 81].

Thus, early prediction of faults is a challenging task for the developers before the release

[56]. Accurate fault prediction models enables developers to focus quality assurance

activities and allocate effort and resources more efficiently [47]. Therefore, predicting

fault-proneness is important for minimizing cost and improving the effectiveness of the

testing process. As a result, accurate prediction models can lead to a substantial

improvement in quality [61].

Building quality prediction models that are accurate and suitable under most

circumstances is critical for the overall project success. Ensemble models are a candidate

approach for this goal. They take advantage of stand-alone prediction models capabilities

towards the dataset to come up with competitive prediction accuracy.

Our hypothesis is that ensemble models will help project managers to make more

accurate predictions. Once supported, project managers can utilize ensemble models

besides their work experience to come up with decisions that increase the overall project

success.

7

1.4 Thesis objective

The main objective of this thesis is to build different ensemble models, and evaluate their

prediction accuracy against stand-alone prediction models for fault and maintainability

prediction. To accomplish this, we carried out the following tasks:

• Survey existing prediction models and identify the most commonly used models.

• Propose different linear and nonlinear ensembles from existing stand-alone

prediction models.

• Search for different datasets for software engineering quality prediction problems.

• Empirically validate the ensemble models with respect to their prediction

accuracy over other stand-alone prediction models.

1.5 Thesis organization

The remaining of this thesis is organized as follows: Chapter 2 reviews the related work

done in the field of software fault and maintainability prediction. Chapter 3 provides the

common technical background for all conducted experiments. Chapter 4 describes

building ensembles from a single model, and presents the empirical study conducted to

evaluate them. Chapter 5 and 6 describe building ensembles using different models for

classification and regression problems respectively, and then present the empirical studies

conducted to evaluate them. Chapter 7 discusses thesis conclusions, and provides

directions for future work.

8

CHAPTER 2

Literature review

This chapter reviews the related work done in the area of software fault and

maintainability prediction. It shows the use of object oriented metrics as quality

indicators, work done in the area of ensemble models, and the related work done in

predicting maintainability and class fault proneness.

2.1 Object-Oriented design metrics as quality indicators

Nowadays object oriented (OO) approach to software development is widely used in the

software industry. OO promises better management of system complexity and

improvement in project outcomes such as software quality. Thus, a wide variety of OO

design metrics have been proposed to assess the quality of an OO system [9, 16, 20, 22,

50, 55, 65, 66].

The most widely used OO design metrics suite is Chidamber and Kemerer’s suite

[22]. This suite mainly focuses on classes and can capture different aspects of an OO

design. It helps to identify areas of the application that may require more rigorous testing

and areas that are candidates for redesign. In addition, it helps in predicting certain

project outcomes and external software qualities such as software faults.

9

2.1.1 Relationships between object-oriented design metrics and class fault

proneness

Recent research studies validated the use of OO design metrics as quality measurement of

an OO system. By relating metrics to fault-proneness, we can identify the important

drivers of fault-proneness. Thus, OO design metrics can be used as early quality

indicators and detectors of faulty classes.

Many researchers investigated the use of OO design metrics as early quality

indicators and tried to define suitable metrics for fault detection. Their studies provided

empirical evidence that a correlation exists between some software metrics and class

fault-proneness [7, 18, 19, 28, 34, 93, 104].

Briand et al. [19] investigated the relationship between existing design

measurement in OO systems and the quality of the software developed. Univariate

analysis results have shown that many coupling and inheritance measures are strongly

related to the probability of fault detection in a class. However, cohesion does not seem

to have a significant impact on fault proneness.

Basili et al. [7] assessed the use of OO design metrics as predictors of fault-prone

classes. Based on empirical and quantitative analysis, their results showed that five out of

the six Chidamber and Kemerer’s OO metrics appear to be useful in predicting class

fault-proneness during the high- and low-level design phases of the life-cycle. In

addition, Chidamber and Kemerer’s OO metrics were shown to be better predictors than

the best set of traditional code metrics, which can only be collected during later phases of

the software development processes.

10

El-Emam et al. [28] performed a validation study to determine which OO design

metrics were associated with fault-proneness. Their results indicate that an inheritance

and an export coupling (EC) metrics were strongly associated with fault proneness.

Fioravanti and Nesi [34] have extracted over 200 different OO metrics to identify

a suitable model for detecting fault-proneness of classes. They concluded that only a few

of them were relevant for identifying fault prone classes.

Yu et al. [104] empirically evaluated a set of OO metrics in terms of their

usefulness in predicting fault-proneness. Their validation is carried out using two data

analysis techniques: regression analysis and discriminant analysis.

Subramanyam and Krishnan [93] validated the association between a subset of

C&K metrics and faults detected during acceptance testing and those reported by

customers. Based on industry data, results indicate that even after controlling the size of

the software, they found that some of the measures in the CK suite of OO design

complexity metrics significantly associated with faults.

2.1.2 Relationships between object-oriented design metrics and

maintainability

Many researchers investigated the relationship between OO metrics and the

maintainability of a software system. OO metrics was found correlated with software

maintainability [5, 17, 33, 66, 72]. Thus, they can be used as good predictors of software

maintainability.

11

Bandi et al. [5] empirically validated three existing OO design complexity metrics

(Interaction Level, Interface Size, and Operation Argument Complexity), and assess their

ability to predict maintenance time. Each of the three metrics by itself was found to be

useful in predicting maintenance time.

Fioravanti and Nesi [33] presented metrics for prediction of adaptive maintenance

effort, and validated them against real data by using statistical analysis. The validation

has shown that several well-known metrics can be profitably employed for the prediction

of maintenance effort. In another study, Misra [72] used a suite of twenty design/code

measures to obtain indications of their effect on maintainability.

 Li and Henry [66] validated the relationship of various metrics including all

C&K metrics suite [22], except CBO, with maintenance effort in two commercial

systems. They found a strong relationship between the metrics and maintenance effort in

OO systems.

2.2 Class fault prediction

In OO systems, one approach to identify faulty classes early in development is to

construct prediction models using OO design metrics. Predicting class fault proneness

can be considered either a classification problem (e.g. a class is faulty or not), or a

regression problem (e.g. fault density or number of faults).

Many research studies investigated the use of prediction models in fault

prediction problem using OO design metrics. Most of these prediction models are built

using statistical models [19, 28, 55, 104]. However, since the relationships between

software metrics and quality factors are often complex and nonlinear, this limits the

12

accuracy of such models. As a result, research studies have investigated the use of

computational intelligence models for software quality prediction due to their capabilities

of modeling nonlinear functional relationships [29].

Research studies employed the use of computational intelligence models to

predict class fault proneness, either as a regression or a classification problem. For

regression problems, artificial neural networks (ANNs) have been used [44, 95] as well

as decision trees [44]. For classification problems, ANNs have been also used [69].

Thwin and Quah [95] presented the application of neural networks in software

quality estimation, in terms of predicting number of faults, using OO metrics. They used

two neural network models, Ward neural network and general regression neural network

(GRNN) to predict fault proneness classes using CK [22] and Tang et al. [94] metrics

suite. Experimental results showed that OO metrics chosen in their study appear to be

useful in predicting software quality. These software metrics are significantly related to

the number of faults. In addition, GRNN network model is found to predict more

accurately than Ward network model.

Gyimothy et al. [44] employed statistical (logical and linear regression) and

machine learning (decision tree and neural network) methods to assess the applicability

of the well-known OO metrics to predict the number of bugs in classes of Mozilla

system. However, their results indicate that the precision of employed models is not yet

satisfactory, and suggested combining multiple models (e.g. majority voting) as a future

work.

13

Mahaweerawat et al. [69] proposed the use of ANNs as a new approach for

predicting and classifying class faults in OO software systems. Multilayer perceptron

neural network has been used to identify faulty classes, while radial basis function neural

network is used to categorize the faults according to several defined fault types. It is

concluded that the proposed model provides high accuracy in discrimination between

faulty and fault-free classes.

It can be noticed that the number of investigated models for fault prediction at the

class-level is limited, and these models are mainly statistical regression and neural

networks.

2.3 Maintainability prediction

Research studies investigated the use of prediction models in software maintainability

prediction. OO Software maintainability prediction models were constructed using OO

metrics. Such models include TreeNet [30], multivariate adaptive regression splines

[108], multivariate linear regression [108], multiple linear regression [62], naïve bayes

[62], artificial neural network [95, 108], regression tree [62, 108], support vector

regression [108].

Thwin and Quah [95] predicted the software maintainability as the number of

lines changed per class. Their experimental results found that General Regression neural

network predict more accurately than Ward network model.

Koten and Gray [62] evaluated and compared the naïve Bayes classifier with

commonly used regression based models. The results suggest that the naïve bayes model

can predict maintainability more accurately than the regression-based models for one

14

system, and almost as accurately as the best regression based model for the other

system.

Zhou and Leung [108] explored the employment of multiple adaptive regression

splines (MARS) in building software maintainability prediction models. MARS was

evaluated and compared against multivariate linear regression models, artificial neural

network models, regression tree models, and support vector models. The results suggest

that for one system MARS can predict maintainability more accurately than the other

four typical modeling techniques. Then, Elish [30] extended the work done by Zhou

[108] to investigate the capability of TreeNet technique in software maintainability

prediction. Their results indicate that TreeNet yielded improved, or at least competitive,

prediction accuracy over previous maintainability prediction models.

2.4 Ensemble models

Both theoretical [46, 63] and empirical [48, 77, 78] research studies have demonstrated

that a good ensemble is one where the individual prediction models in the ensemble are

both accurate and make their errors on different parts of the input space.

Recently, ensemble models have received much attention and have demonstrated

promising capabilities in improving classification accuracy over single classifiers [14,

92]. Some of these models are simple ensemble [92], AdaBoost [37], bagging [15] and

boosting [38, 88]. Ensemble models have been used in the area of software engineering

prediction problems. They have been used in software reliability prediction [107],

software project effort estimation [14], and software module fault prediction [57]. In

addition, they have been used in many real applications such as face recognition [43, 51],

15

OCR [70], seismic signal classification [90] and protein structural class prediction [10].

However, none of the ensemble models have been used in the area of class fault

prediction and software maintainability prediction.

Neural networks ensembles received most attention from research community.

Hansen and Salamon [46] showed that the generalization ability of a neural network

system can be significantly improved through ensembling training several neural

networks and combining their results. Sollich [92] defined neural network ensemble as a

collection of a finite number of neural networks that are trained for the same task. Zhou

et al. [109] proposed GASEN (Genetic Algorithm based Selective Ensemble) a neural

network ensemble that utilizes all available neural networks to constitute an ensemble.

They assigned random weights to neural networks and employs genetic algorithm GA to

evolve the weights. Then, they select some neural networks based on the evolved weights

to make up the ensemble. Empirical study shows that their ensemble is superior to both

bagging and boosting in both regression and classification.

In summary, ensemble models demonstrate a high potential in providing reliable

predictions. However, they have not been applied and evaluated in the context of

identifying faulty classes in OO software, and predicting software maintainability.

2.5 Summary

This literature review presented the related work done in the area of predicting software

quality as fault and maintainability prediction. We surveyed the computational

intelligence models used in that area and we summarized these studies in the below table.

In addition to the summary table, we came up with the following remarks:

16

• There are a limited number of studies done in the area of class fault prediction as

a regression problem. Thus, more studies should be conducted toward this area.

• More computational intelligence models should be investigated to build more

accurate software prediction models.

• OO metrics are found to be correlated with software quality, such as fault

proneness and maintainability. Therefore, they can be used as early software

quality indicators.

• Ensembles demonstrate a high potential in providing reliable predictions. Thus,

they should be investigated in the context of software quality assessment

17

Study Domain Models used
Metrics

independent dependent
Thwin and

Quah [95]
Cl

as
s

Fa
ul

t p
ro

ne
ne

ss

 Regression Artificial neural

networks

C&K and Tang

[94]metrics suite

Number of

faults

Gyimothy et al.

[44]
Regression

Artificial neural

networks &

Decision trees

C&K, one more

OO metric

(LCOMN), and

traditional code-

size metric (LOC)

Number of

faults

Mahaweerawat

et al. [69]

Classification Artificial neural

networks

C&K and Tang

metrics suite

Binary (Faulty

or not faulty)

Elish [30]

M
ai

nt
ai

na
bi

lit
y

Regression
TreeNet

C&K, and Li &

Henry [66] metrics

Maintenance

effort

Zhou and Leung
[108]

Regression

Multivariate

adaptive

regression

splines (MARS),

regression tree,

and support

vector machines

C&K, and Li and

Henry metrics

Maintenance

effort

Koten and Gray
[62]

Regression
Naïve bayes

C&K, and Li and

Henry metrics

Maintenance

effort

Thwin and
Quah [95]

Regression

Artificial neural

networks

C&K, and Li and

Henry metrics

Maintenance

effort

Table 1: Literature review summary

18

CHAPTER 3

Technical background

This chapter gives an overview over the general technical background of the empirical

studies conducted in this thesis. First, it gives the technical background of the

investigated stand-alone prediction models, along with their parameters initialization.

Next, it describes the datasets used across different experiments. After that, it formulates

the evaluation measures used to evaluate the performance of prediction models. Finally, it

sheds the light on different validation techniques exist in literature.

3.1 Individual prediction models

In this section, we describe the investigated individual prediction models that we used as

base for our ensemble models. Selection of prediction models was based on a couple of

criteria. We wanted to select models across different categories to achieve a balance

between established prediction models, and we selected the models that are commonly

and widely used in the literature of software quality prediction.

Different prediction models may be grouped into different categories of statistical

approaches, neural networks, support vector machines, and tree based models. The

following table presents the selected individual prediction models:

19

Prediction model abbreviation Category Type

Multilayer Perceptron MLP Neural network Classification

and regression

Radial Basis Function Network RBF Neural network Classification

and regression

Bayesian Belief Network BBN Statistical Classification

Naïve Bayes NB Statistical Classification

Support Vector Machines SVM Support vector machine Classification

Support Vector regression SVMreg Support vector machine Regression

Decision Tree DT Tree Classification

M5 Model tree M5P Tree Regression

 Table 2: Selected individual prediction models

3.1.1 Artificial Neural Networks

Artificial Neural Network (ANN) [49, 53] is a mathematical model or computational

model consists of an interconnected group of artificial neurons and processes information

using a connectionist approach to computation. ANN is a non-linear statistical data

modeling tools used to model complex relationships between inputs and outputs. ANN is

an adaptive system that changes its structure based on external or internal information

that flows through the network during the learning phase.

 ANN architecture consists of several layers of computing nodes; input layer,

hidden layers and output layer. ANN can be viewed as weighted directed graphs in which

artificial neurons are nodes and directed edges (with weights) are connections between

neuron outputs and neuron inputs.

20

Artificial neurons, shown below, take a set of inputs x ,….,x , along with their

weights, to produce the output O using the following formula:

 O = () = (∑) (1)

Figure 3: Artificial neuron [2]

Where w is the weight vector, and the function f(network) is referred to as an

activation function. The variable network is defined as a scalar product of the weight and

input vectors,

 network = + ….. + (2)

Based on various ANN’s architectures, ANN can be classified into two categories:

• Feed-forward networks, in which graphs have no loops in network

• Recurrent (feedback) networks, in which we have loops in network

The most famous networks in feed-forward networks are multilayer perceptron

(MLP), and radial basis function (RBF) networks. Their neurons are organized into layers

that have unidirectional connections between them as shown in the figure below:

21

Figure 4: Feed-forward artificial neural network architecture [2]

3.1.1.1 Multilayer Perceptron (MLP)
Multilayer Perceptron [49, 53], shown below, is a feed-forward network that consists of

an input layer, one or more hidden layers of nonlinearly activating nodes and an output

layer. Each node in one layer connects with a certain weight to every other node in the

following layer, and no computation is involved in the input layer.

22

Figure 5: Example of a multilayer perceptron network [102]

MLP neuron, shown below, computes the weighted sum of the inputs at the

presence of the bias, and passes this sum through the activation function. This process is

described as follows:

 = () (3)

 = ∑ + (4)

23

Figure 6: MLP neuron [102]

where v is the linear combination of inputs x ,…, x , θ is the bias, w is the weight

between the input x and the neuron j, and f () is the activation function of the jth neuron,

and y is the output.

 The sigmoid function is a common choice of the activation function. The bias

term θ contributes to the left or right shift of the sigmoid activation function, depending

on whether θ takes a positive or negative value. The sigmoid function is calculated using

this formula:

 () = (5)

MLP uses backpropagation algorithm as the standard learning algorithm for any

supervised-learning. Backpropagation algorithm requires that all activation functions

used by the artificial neurons must be differentiable. It is used to calculate the error

gradient of the network with respect to its modifiable weights, and find weights that

minimize the error [45].

24

In backpropagation algorithm, choosing the learning rate is difficult, if the

learning rate is set small enough to minimize the total error, the learning process will be

slowed down. On the other hand, a larger learning rate may speed up learning process at

the risk of potential oscillation. However, backpropagation algorithm uses momentum

term to avoid oscillation problems during the search for the minimum error value [4].

3.1.1.2 Radial Basis Function Network (RBF)

Radial Basis Function network [21, 79, 80] is a three layer feed-forward network, as

shown below, that uses a linear activation function for the output units and a nonlinear

activation function for the hidden layer neurons. Input to each hidden neuron is the

distance between the network inputs and center of that neuron’s activation function. The

simplest way to define centers setting it randomly to the training inputs, but this approach

is prone to over fitting. An alternative is to cluster the training patterns into groups

according to some similarity measurement and then assigning nodes to each cluster. The

typical method to determine such clusters is by the k means clustering algorithm.

Figure 7 shows the general architecture of an RBF network with k input vector x,

then the network computes the output as a scalar value using the following formula:

 = () = + ∑ () (6)

Where w is the bias, w is the weight parameter, n is the number of nodes in the hidden

layers of the RBF neural network, and φ(D) is the radial basis function.

25

Figure 7: Radial basis function network [103]

RBF uses radial basis functions as activation functions to provide a flexible way

to generalize linear regression function. Commonly used types of radial basis functions

include Gaussian, Multiquadric, and Polyharmonic spline. However, RBF models with

Gaussian basis functions intend to possess desirable mathematical properties of universal

approximation and best approximation, and it is calculated as follows:

 () = exp (− ⁄) (7)

Where σ is the radius of the cluster represented by the center node, the D represents the

distance between the input vector X and all the data centers. Usually, the Euclidean norm

is used to calculate distance as follows:

 = ∑ (−) (8)

Where c is a cluster center for any of the given nodes in the hidden layer.

3.1.2 Statistical

Statistical classifiers strive to construct a Bayes optimal classifier by estimating either

posterior probabilities directly, or class conditional probabilities. Both Bayesian belief

26

network and naïve bayes estimated class conditional probabilities, which are

subsequently converted into posterior probabilities using Bayes theorem. These bayes

networks are only applicable in the classification problem domain.

3.1.2.1 Bayesian Belief Network (BBN)

Bayesian Belief Network [40, 54] is a probabilistic directed acyclic graph that represents

a set of random variables and their probabilistic independencies. The variable values can

be discrete or continuous values according to a probability distribution, which can be

different for each variable. In BBN graph, each node represents a random variable, while

the directed edges between the nodes represent probabilistic dependencies among the

corresponding random variables.

Figure 8 shows an example of a Bayesian belief network consisting of three

variables, X , X , and Y. In the below figure, a variable is shown as an ellipse and a

directed edge is shown as an arrow. This example shows that X and X has an

association or a causal relationship with Y, (i.e. outcomes of the events X and X have an

effect on the outcome of the event Y).

Figure 8: Example of Bayesian Belief Network

27

In a Bayesian belief network, a relationship between events is defined as a

conditional probability, P(Y/X), which is the probability of the variable Y conditional on

a given outcome of variable X. The conditional probability is calculated using Bayes’

Theorem [54]:

 (⁄) = () ()⁄ () (9)

Where P(X Y)⁄ is the conditional probability of the variable X given the variable Y, and P(X) and P(Y) are the probabilities of variables X and Y, respectively. This probabilistic

dependency is maintained by the conditional probability table (CPT), which is assigned

to the corresponding variable.

3.1.2.2 Naïve Bayes (NB)

Naïve Bayes [42, 64, 86] is the simplest form of Bayesian network, in which all attributes

are independent given the value of the class variable (i.e. conditional independence). The

naïve bayes structure is unique, since it has one root node (called parent), representing the

class node, and several independent children, corresponding to attribute nodes. Therefore,

in presence of a training set we should only compute conditional probabilities in a

frequent manner.

Once the Naïve Bayes is constructed, it can be used to classify any new instance

characterized by a set of attributes x ,…., x by computing for each possible class c its

posterior probability and then by taking the highest one. More formally the most probable

class C is computed as follows:

 = max () ∏ ()⁄ (10)

28

Although independence is generally a poor assumption, in practice naïve bayes

competes well with more sophisticated classifiers, especially where the features are not

strongly correlated [64].

3.1.3 Support Vector Machines

Support Vector Machines (SVMs) [24, 25, 96], proposed by Vapnik et al. [96], are a

group of supervised learning methods, whose idea is based on the structured risk

minimization (SRM) principle. Recently, it gained wide popularity due to its many

attractive features and promising empirical performance. The main advantage of SVM is

that it adopts the structure risk minimization (SRM) principle, which has been shown to

be superior to the traditional empirical risk minimization (ERM) principle, employed by

conventional neural networks [96].

Support vector machine (SVM) was originally developed for solving the

classification problems [24, 96], but recently it was extended to the domain of regression

problems [91, 97].

3.1.3.1 Support Vector Machines (SVM)

SVMs main aim is to minimize the empirical error and maximize the geometric margin.

SVMs try to separate a given set of binary labeled training data with a hyperplane that is

maximally distant from them (i.e. maximum margin hyperplane). As Figure 9 shows, the

input space of N training data points (x , y), ….. , (x , y) can be separated by a

hyperplane H ∶ w x + b = 0. This hyperplane H is located by determining two parallel

hyperplanes H1, H2 that have the maximum margin ‖ ‖ with the conditions that there

are no data points between them.

29

Figure 9: Maximal margin hyperplane

In case of training data is linearly separable by hyperplane, we separate the data

with the maximal margin hyperplane as follows:

 (11)

 : (+) ≥ 1, = 1, … . ,

where (x , y) is the training data, and L is the total number of training sets.

30

 In case of training data is linearly non-separable, we want to separate the training

data with a minimal number of errors. This yields the introduction of positive slack

variables δ ≥ 0 in the constraints to measure how much the margin constraints are

violated:

 , + ∑ (12)

 : ≥ 0
 (+) ≥ 1 − , = 1, … . ,

where C is the regularizing (margin) parameter that determines the trade-off between the

maximization of the margin and minimization of the classification error.

 Various kernel functions are employed in order to transform the data into a non-

linear feature space, as shown in the below figure. The hyperplane found by the SVM

training algorithm in the transformed feature space corresponds to a non-linear decision

boundary in the initial input space. The most famous kernel functions are radial basis

function (RBF) and polynomial.

31

Figure 10: Data transformation into a non-linear space

3.1.3.2 Support vector regression (SVMreg)

The basic idea of SVM for regression (SVMreg) is to introduce kernel function, map the

input space into a high-dimensional feature space via a nonlinear mapping and to perform

a linear regression in this feature space [96].

Suppose we are given a set of L training data {(x , y), . . . , (x , y)}, where x ∈ ℝ denotes the ith input pattern from the d dimension input space and has a

corresponding target value y ∈ ℝ for i = 1,. . . , L, where R is the set of real number. The

goal of support vector regression (SVMreg) is to find a function that approximates the

actually obtained targets y for all the training data, and has a minimum generalization

error. The general form of a SVMreg function can be given by:

 () = ∗ ∅() + (13)

where w ∈ ℝ , b ∈ ℝ, * denotes the dot product in ℝ , and ∅ is a non-linear

transformation from ℝ to the high dimensional space ℝ . Our goal is to determine the

value of w and b such that f(x) can be determined by minimizing the regression risk

32

 () = ∑ (() −) + ‖ ‖ (14)

where δ is a cost function, C is a constant that represents penalties for estimation error. A

heavier penalty trains the regression to minimize errors by making fewer generalizations.

SVMreg function can be reformulated as:

 () = ∑ (∝ −∝ ∗) (,) + (15)

where k(x , x) is called the kernel function. Common kernel functions include Gaussian,

linear, and polynomial.

 When applying SVMreg in real applications, we need to give a kernel function

and the penalty C.

3.1.4 Tree

Tree algorithm models recursively partition the training data by means of attribute splits.

These tree algorithms differ mainly in the splitting criterion, which determines the

attributes to separate the data. We have chosen Decision Tree (DT) for classification

problems, while M5 Model tree (M5P) for regression problems.

3.1.4.1 Decision Tree (DT)

Decision Tree [71, 84, 105] is a flow chart-like tree structure that does mapping from

observations about an item to conclusions about its target value. Figure 11 show the

general structure of a decision tree. In DT, the topmost node is the root node, each

internal node denotes an attribute test, each branch represents an outcome of the test, and

each leaf node represents classes.

33

Figure 11: A decision tree [87]

Decisions trees are created typically using C4.5 algorithm developed by Quinlan

[84]. C4.5 creates decision tree whose structure consists of leaves using a top-down,

divide-and-conquer approach. C4.5 algorithm steps can be summarized in the following

step:

• DT Construction: creates unpruned decision tree by recursively

partitioning the data.

• Pruned decision tree: in this step the idea is to remove parts of the tree that

do not contribute to classification accuracy, since the resulting unpruned

decision tree is often complex and overfits the data.

3.1.4.2 M5 Model tree (M5P)

M5 Model tree [85, 100] is an algorithm for generating M5 model trees that predicts

numeric values for a given instance. The algorithm requires the output attribute to be

numeric while the input attributes can be either discrete or continuous.

34

 To build a model tree as shown in Figure 12, using the M5 algorithm, we start

with a set of training instances. The tree is built using a divide-and-conquer method. At a

node, starting with the root node, the instance set that reaches it is either associated with a

leaf or a test condition is chosen that splits the instances into subsets based on the test

outcome. In M5 the test that maximizes the error reduction is used. Once the tree has

been built, a linear model is constructed at each node. The linear model is a regression

equation.

Figure 12: M5 Model tree [8]

As shown in Figure 12, where a are the split nodes and M are the models, if a

new instance is given, the tree is traversed from top to bottom until a leaf node is reached.

At each node in the tree a decision is made to follow a particular branch based on a test

35

condition on the attribute associated with that node. Each leaf has a linear regression

model associated with the form:

 + + ⋯+ (16)

based on some of the input attributes a ,…., a in the instance and whose respective

weights w , w ,…, w are calculated using standard regression. As the leaf nodes

contain a linear regression model to obtain the predicted output, the tree is called a model

tree.

3.1.5 Parameter initialization

The parameters of the base prediction models were initialized with the default settings set

by WEKA tool as follows:

• MLP: trained using backpropagation algorithm. Sigmoid was used as an activation

function. Number of hidden layers was 5. Learning rate was 0.3 with momentum 0.2.

Network was set to reset with a lower learning rate. Number of epochs to train

through was 500. Validation threshold was 20.

• RBF: implements a normalized Gaussian radial basis function network. Random seed

to pass on to K-means clustering algorithm was 1. Number of clusters for K-means

clustering algorithm to generate was 2, with minimum standard deviation for clusters

set to 0.1.

• BBN: used SimpleEstimator for estimating the conditional probability table of a

Bayes network with 0.5 as the initial count for each value. Hill climbing algorithm

was used as a search algorithm.

• NB: no parameters were required.

36

• SVM: cost parameter C was set to 1 and RBF was used as a kernel. The tolerance of

termination criterion was 0.001.

• SVMreg: cost parameter C was set to 1, with polynomial as SVMreg kernel. WEKA

implements various algorithms for parameter learning, it uses the most popular

(RegSMOImproved) algorithm [89], as a default learner.

• DT: used C4.5 algorithm [84] to generate decision tree. Confidence factor used for

pruning was set to 25%. Minimum number of instance per leaf was 2.

• M5P: used M5 algorithm for generating M5 model trees [85, 100]. Pruned M5 model

trees were built, with 4 instances as the minimum number of instances allowed at a

leaf node.

3.2 Datasets

Choosing the appropriate dataset in an empirical study is the most important and crucial

step. We realized that choosing public datasets makes our research verifiable, repeatable,

and reputable [26]. The following table summaries the characteristics of the public

datasets used in this research:

37

Dataset

name
Domain Type

observations
Language Description

KC1
Fault

proneness
Classification 145 C++

Storage

management for

receiving and

processing ground

data

KC1
Fault

density
Regression 60 C++

Storage

management for

receiving and

processing ground

data

UIMS
Maintenance

effort
Regression 39 Ada

User interface

management

system

QUES
Maintenance

effort
Regression 71 Ada

Quality evaluation

system

Table 3: Software quality datasets

3.2.1 Class fault datasets

KC1 dataset has two versions, that has the same independent variables, but different in

dependent variables. The first dataset is for class fault proneness, while the second

dataset is for class fault density estimation.

 KC1 (classification) is a class level defect dataset from a mission critical NASA

software project, which is publicly available from the repository of the NASA IV&V

Facility Metrics Data Program [1]. This project is a storage management system for

receiving and processing ground data. It is written in C++ and consists of 145 classes

with more than 43 KLOC. This dataset consists of class-level metrics data and the

associated fault data that has been collected since the beginning of the project.

38

The dependent (output) variable “FAULTY” is a binary variable indicating

whether or not a class is faulty. Around 40% of the classes are faulty. The independent

(input) variables are nine class-level metrics. Six out of these nine metrics are the well-

known Chidamber and Kemerer’s metrics [22], i.e., Weighted Methods per Class

(WMC), Depth of Inheritance Tree (DIT), Number of Children (NOC), Coupling

Between Object classes (CBO), Response For a Class (RFC), and Lack of Cohesion in

Methods (LCOM). The other three metrics are Fan-in (FIN), Percentage of

Public/Protected Data (PPD), and Dependency on Child (DOC). Table 4 provides brief

description for each metric.

The other version of KC1 is used for class fault density estimation. KC1

(regression) share the same independent variables as in KC1 (classification), but they

differ in dependent variable and number of observations. Dependent (output) variable for

KC1 (regression) is the class fault density, which is measured as the total number of

faults divided by total size (LOC), and the total number of observations are 60.

39

Metric Description

WMC Count of methods implemented within a class

DIT Level for a class within its class hierarchy

NOC Number of immediate subclasses of a class

CBO
Number of distinct non-inheritance-related classes on which a class
depends

RFC
Count of methods implemented within a class plus the number of methods
accessible to an object class due to inheritance

LCOM
The average percentage of methods in a class using each data field in the
class subtracted from 100%

FIN Number of classes that depend upon a class

PPD Percentage of public and protected data in a class

DOC Whether a class is dependent on a descendant

Faulty Binary variable: a class is faulty, or not faulty

Fault Density The number of faults divided by total size

Table 4: KC1 independent and dependent variables

3.2.2 Maintainability datasets

We used two popular OO maintainability datasets published by Li and Henry [66]: UIMS

and QUES datasets. The UIMS dataset contains class-level metrics data collected from

39 classes of a user interface management system, whereas the QUES dataset contains

the same metrics collected from 71 classes of a quality evaluation system. Both systems

were implemented in Ada. Both datasets consist of eleven class-level metrics: ten

independent variables and one dependent variable.

40

The independent (input) variables are five Chidambar and Kemerer metrics [22]:

WMC, DIT, NOC, RFC, and LCOM; four Li and Henry metrics [66], i.e., Message

Passing Coupling (MPC), Data Abstraction Coupling (DAC), Number Of Methods

(NOM), and Number of properties (SIZE2); and one traditional lines of code metric

(SIZE1). Table 5 provides brief description for each metric.

The dependent (output) variable is a maintenance effort represented by measure

“CHANGE”, which is the number of lines in the code that were changed per class during

a 3-year maintenance period. A line change could be an addition or a deletion. A change

in the content of a line is counted as a deletion and an addition.

The analysis done in [30] on both datasets, indicates that both datasets have

different characteristics, and therefore, considered heterogeneous and a separate

maintainability prediction model is built for each dataset.

41

Metric Description

WMC Count of methods implemented within a class

DIT Level for a class within its class hierarchy

NOC Number of immediate subclasses of a class

RFC
Count of methods implemented within a class plus the number of methods
accessible to an object class due to inheritance

LCOM
The average percentage of methods in a class using each data field in the
class subtracted from 100%

MPC The number of messages sent out from a class

DAC The number of instances of another class declared within a class

NOM The number of methods in a class

SIZE1 The number of lines of code excluding comments

SIZE2
The total count of the number of data attributes and the number of local
methods in a class

Change
The number of lines added and deleted in a class, change of the content is
counted as 2

Table 5: UIMS & QUES independent and dependent variables

3.3 Tool

WEKA, short for Waikato Environment for Knowledge Analysis), is a software tool used

to conduct this research [101]. It is an open source tool, implemented in java, that

contains a collection of machine learning algorithms for data mining tasks and tools for

data pre-processing, classification, regression, clustering, association rules, and

visualization.

The use of an open source tools should be encouraged, since it makes the findings

more open to the public, and increases the contribution to the research.

42

3.4 Evaluation measures

In this section, we will describe the evaluation measures used in evaluating prediction

models performance. Evaluation measures can be divided into two categories (i.e.

classification and regression). The selection of these measures varied form one study to

another. We selected the measures based on the most commonly and widely used in the

literature. Future research should use the most commonly used measures to make their

findings more consistent with others.

3.4.1 Classification evaluation measures

The evaluation measures of a prediction model for binary classification problems (i.e.,

correctly or not correctly classified cases) are derived from a confusion matrix, like the

one shown in Table 6. The confusion matrix has four categories [27]: True positives (TP)

are cases correctly classified as positives. False negatives (FN) are positive cases

incorrectly classified as negative. False positives (FP) are negative cases incorrectly

classified as positive. Finally, true negatives (TN) refer to negative cases correctly

classified as negative.

 Predicted Class

Positive Negative

Actual

Class

Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

Table 6: Confusion matrix for binary classification problems

43

3.4.1.1 Accuracy

Accuracy, also know as correct classification rate, can be seen as proportion of true

results (i.e. both true positives and true negatives) in the population. It is calculated as the

sum of correct classifications divided by the total number of classifications [101]:

 = (17)

3.4.1.2 Recall

Recall, also know as true positive rate and sensitivity, is the percentage of true positives

that are classified correctly. It is calculated as follows [101]:

 = (18)

3.4.1.3 Precision

Precision, also know as specificity, is the ratio between the number of correctly identified

positives and predicted positives. It is calculated as follows [101]:

 = (19)

3.4.1.4 F- measure

F-measure is the harmonic average of precision and recall. F-measure is commonly used

measure along with precision and recall, since it integrates the trade-off between

precision and recall [101]. It is calculated as follows:

 _ = ∗ ∗ (20)

In all previous measures, the higher the value is, the better prediction model will be.

44

3.4.1.5 ROC

Receiver operating characteristics (ROC) graphs are useful for organizing classifiers and

visualizing their performance. ROC graphs are another way besides confusion matrices to

examine the performance of classifiers, they have been increasingly used in

computational intelligence research [31].

Figure 13: A ROC graph

ROC graphs, shown for two prediction models A and B in Figure 13, plot the

false positive rate (x-axis) (i.e. 1- specificity), versus true positive rate (y–axis) (i.e.

sensitivity). Each point represents the output of the prediction model, with respect to the

threshold. ROC graphs description is summarized in the following points:

• Point (0,1) corresponds to perfect classification. Better models intend to have (FP,

TP) values closer to this point.

• Point (1,0) is a classifier which misclassifies every case

• Point (1,1) is a classifier that classifies every case as positive

• Point (0,0) is a classifier which classifies every case as negative

1, 11, 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Se
ns

it
iv

it
y

1 - Specificity

Model 1

Model 2

Reference line

45

However, in ROC graph, if two models curve intersects, we relay on Area Under

Curve (AUC) measure to compare their performance. Model with higher AUC, is

expected to perform better. The reference line in Figure 13 represents model with (0.5)

AUC.

 We will list all equations required to plot the ROC curve, and calculating the

AUC [13]:

False positive rate = 1 − speci icity = FPFP + TN

True positive rate = sensitivity = Recall = TPTP + FN

 = ∑ (1 − ∗ ∆∝) + [∆(1 −) ∗ ∆∝] (21)

 ℎ :
∝ = ,

1 − =

∆(1 −) = (1 −) − (1 −)

∆∝ = ∝ − ∝

3.4.2 Regression evaluation measures

Many regression measures have been proposed to evaluate regression prediction models.

However, most of the commonly used regression measures are derived from magnitude

of relative error (MRE). MRE was introduced in 1986 by Conte et al.[23]. Since then, it

46

became the standard evaluation criterion to assess software prediction models. It is

defined as follows:

 = | | (22)

The regression measures that are based on MRE are: mean magnitude of relative

error (MMRE), Standard deviation magnitude of relative error (StdMRE), and prediction

at level q (Pred(q)) measures. Since StdMRE, MMRE and Pred(k) are well-known

evaluation criteria, they have been adopted as evaluation measures for regression models.

3.4.2.1 MMRE

MMRE calculates the MRE value for each observation i predicted. The aggregation of

MRE over multiple observations (N) can be achieved through the Mean MRE (MMRE)

as follows [59]:

 = ∑ (23)

3.4.2.2 StdMRE

Standard deviation magnitude of relative error is less sensitive to the extreme values

compared to the MMRE, and it is more likely to select the true model based on StdMRE

if the underestimate is served [35].

3.4.2.3 Pred(0.3)

Pred(q) is the percentage of observations whose MRE is less than or equal to level q. It is

calculated as follows [32]:

 () = (24)

47

Where k is the number of observations whose MRE is less than or equal to the

selected level q, and n is the total number of observations in the dataset. An acceptable

value for level q is 0.3, as indicated in the literature [23, 62, 108]. Therefore, we adopted

this value in our empirical studies. Furthermore, for a regression model to be considered

accurate, it is suggested in the literature that Pred(0.3) value should be larger than or

equal to 70% [32, 68].

3.5 Validation techniques

In this section, we will give an overview of the most used validation techniques in the

literature. Validation techniques are used to evaluate the performance of prediction

models. These techniques can be categorized into two categories: cross validation and

holdout method.

3.5.1 Cross validation

In k-fold cross validation, we resample train and test set k times. This is explained in the

following steps:

• Randomly divide dataset into k equal-sized folds

• Train on k-1 folds, test on remaining fold

• Repeat to use each fold once for testing

3.5.1.1 10 fold cross validation

A 10 fold cross validation [60] (i.e. k-fold cross validation, with k set to 10), is a common

validation technique used to evaluate the performance of the prediction models. In 10

fold cross validation; a dataset is randomly partitioned into 10 folds of equal size. For 10

times, 9 folds are picked to train the models and the remaining fold is used to test them,

each time leaving out a different fold.

48

3.5.1.2 Leave-one-out

A leave-one-out cross-validation (LOOCV) procedure is another commonly used

validation technique; it is a special type of k folds cross validation, whereas k is set to the

total number of dataset observations. In this procedure, one observation is removed from

the dataset, and then each model is built with the remaining n-1 observations and

evaluated in predicting the value of the observation that was removed. The process is

repeated each time removing a different observation. This procedure has a number of

advantages [74, 101]: (i) it is closer to a real world situation than k-cross validation from

a practitioner’s point of view (ii) it is deterministic (no sampling is involved); and (iii) it

ensures the largest possible amount of data is used for training.

3.5.2 Holdout method

Holdout method splits the dataset into two sets, called the training set and the testing set.

The most common split percentage is 70% for training and 30% for testing [74].

49

CHAPTER 4

Single model ensembles (Classification)

4.1 Single model ensembles for classification

In classification, a single model ensemble (i.e. single classifier ensemble), as shown

below, consists of a set of individually trained classifiers of the same type whose

classifications are combined to produce the final classification. The simplest way to

combine classifiers is by voting. Bagging [15] and boosting [36] are well known single

model ensemble models, which implement this approach in different ways using a single

base classifier.

50

Figure 14: Single classifier ensemble

Input

Input

Input

Output

Output

Output

Voting Final

Output

51

4.1.1 Bagging

Bagging, short for bootstrap aggregating, is an ensemble technique proposed by Breiman

[15] to improve the accuracy of classification models by combining classifications of

same type (i.e., based on the same base classifier) of randomly generated training sets.

Bagging assigns equal weight to models created, thus helps in reducing the variance

associated with classification, which in turn improves the classification process. Bagging

technique has presented good results whenever the learning algorithm is unstable [15].

The following figure states the bagging algorithm [101]:

 Model generation

 Let n be the number of instances in the training data

 For each of t iterations:

 Sample n instances with replacement from training data

 Apply the learning algorithm to the sample

 Store the resulting model

 Classification

 For each of the t models:

 Predict class of instance using model

 Return class that has been predicted most often

Figure 15: Bagging algorithm

Bagging technique requires three parameters:

• classifier: the base classifier to apply bagging on.

• bagSizePercent: size of each bag, as a percentage of the training set size.

• numIterations: number of instances of the base classifiers to be created, i.e. the

52

ensemble size. In this thesis, we prefer to use the term ensemble size for clarity.

4.1.2 Boosting

Boosting is an ensemble technique proposed by Freund [36] to build a classifier ensemble

incrementally, by adding one classifier at a time. The training set used for each member

of the ensemble is chosen based on the performance of the earlier classifiers in the

ensemble. The following figure states the boosting algorithm [101]:

 Model generation

 Assign equal weight to each training instance.

 For each of t iterations:

 Apply learning algorithm to weighted dataset and store resulting model.

 Compute error e of model on weighted dataset and store error.

 If e equal to zero, or e greater or equal to 0.5:

 Terminate model generation.

 For each instance in dataset:

 If instance classified correctly by model:

 Multiply weight of instance by e / (1 – e).

 Normalize weight of all instances.

 Classification

 Assign weight of zero to all classes.

 For each of the t (or less) models:

 Add –log(e / (1 – e)) to weight of class predicted by model.

 Return class with highest weight.

Figure 16: Boosting algorithm

Boosting technique requires three parameters:

53

• classifier: the base classifier to apply boosting on.

• Resampling/Reweighting: which approach is used (resampling or reweighting)

• numIterations: number of instances of the base classifiers to be created, i.e. the

ensemble size. In this thesis, we prefer to use the term ensemble size for clarity

purpose.

There are a family of boosting algorithms [39]. In this thesis, we used AdaBoost

algorithm proposed by Freund et al. [37]. AdaBoost was proposed to improve other

learning algorithms performance. There are two approaches implemented in AdaBoost:

resampling and reweighting. In resampling, the fixed training sample size and training

examples are resampled according to a probability distribution used in each iteration. In

reweighting, all training examples with weights assigned to each example are used in

each iteration to train the base classifier. In this paper, we used the resampling approach,

because it has been reported to yield better accuracy [6, 106].

There is no conclusion on which ensemble technique is superior to the other.

However, several observations have been made [6, 10, 76, 83]:

• In some cases, boosting can significantly outperform bagging, while in some other

cases, it can also be substantially worse than bagging (in a few cases even worse

than individual classifiers)

• bagging’s improvement over individual classifiers is more consistent on various

data sets than boosting’s.

The following table summarizes the similarities and differences between bagging

and boosting techniques:

54

 Bagging Boosting

Similarities • Uses voting
• Combines models of the same type

Differences

Individual models are built
separately

Each new model is influenced by
the performance of those built
previously

Equal weight is given to all
models

Weights a model’s contribution by
its performance

Table 7: Comparison between bagging and boosting

4.2 Experiment design

4.2.1 Goal

The main goal of this experiment is to determine the extent to which bagging and

boosting ensemble techniques offer an increase in classification accuracy over single

classifiers in the context of identifying faulty classes in OO software.

4.2.2 Settings

The following table presents the settings for the conducted experiment:

Experiment type Classification

Investigated models

BBN

NB

MLP

RBF

SVM

DT

Data set KC1

Evaluation measure Accuracy

Validation technique Leave-one-out (LOO)

Table 8: Experiment settings for single classifier ensemble (classification)

55

4.2.3 Bagging and boosting parameters

Parameters of the bagging and boosting ensemble techniques were initialized as follows.

In bagging, the bag size was set to 100. In boosting (Adaboost), resampling was used

instead of reweighting. Boosting by resampling improves the classification accuracy, the

execution speed as well as the robustness to classification noise [106]. We have applied

bagging and boosting to all of the investigated classification models. We used ensemble

sizes from 5 to 50 with an increment of 5. This approach was used previously in the

literature [15, 99]. Hence, we can investigate the effect of the ensemble size on the

classification accuracy of these ensemble techniques.

4.3 Results

In this section, we present and analyze the results obtained from the conducted

experiment. First, we compare the classification accuracy of the investigated

classification models as base classifiers without applying ensemble techniques on them.

Then, we compare the classification accuracy results after applying bagging and boosting

techniques on each base classifier. Finally, we discuss the effect of applying bagging and

boosting on each base classifier.

Table 9 shows the classification accuracy for each of the investigated

classification models without applying ensemble techniques on them, i.e., classification

accuracy of single classifiers. It is clear that MLP outperformed all other models in

accuracy. However, SVM and BBN produced the worst accuracy. There is a significant

difference in accuracy, nearly 9%, between the highest accuracy (78.62%) achieved by

MLP and the second highest accuracy (69.66%) achieved by NB.

56

Model Accuracy

MLP 78.62

RBF 68.28

BBN 62.76

NB 69.66

SVM 62.76

DT 63.45

Table 9: Classification accuracy of single classifiers

Table 10 presents the achieved accuracy by each classification model after

applying bagging on it using different ensemble size. Bold values indicate that bagging

resulted in improved accuracy over the single classifier reported in Table 4. It can be

observed that bagging improved the accuracy of MLP, RBF, BBN, NB and DT.

However, bagging SVM resulted in lower accuracy compared to single SVM in general.

In case of RBF and DT, it can be observed that bagging increased their classification

accuracy regardless of the ensemble size. However, in case of MLP and BBN, bagging

increased their classification accuracy when the ensemble size is 20 or more.

Table 11 presents the achieved accuracy by each classification model after

applying boosting on it using different ensemble size. Bold values indicate that boosting

resulted in improved accuracy over the single classifier reported in Table 4. Clearly,

boosting improved the accuracy of RBF, BBN and DT regardless of the ensemble size.

However, applying boosting on MLP, NB and SVM reduced their classification accuracy

regardless of the ensemble size.

57

Ensemble size MLP RBF BBN NB SVM DT

5 74.48 69.66 57.24 69.66 62.07 66.90

10 77.93 72.41 62.07 70.34 62.07 67.59

15 78.62 71.03 61.38 68.97 60.69 68.28

20 79.31 73.10 63.45 70.34 61.38 68.97

25 80.00 71.72 64.83 70.34 62.07 68.97

30 80.00 72.41 65.52 70.34 62.76 69.66

35 80.00 72.41 64.83 70.34 62.76 70.34

40 80.00 73.10 66.21 70.34 62.76 69.66

45 80.00 72.41 67.59 70.34 62.07 71.72

50 80.00 73.10 66.90 70.34 62.07 71.72

Table 10: Classification accuracy after applying bagging on base classifiers using
different ensemble size

Ensemble size MLP RBF BBN NB SVM DT

5 73.79 72.41 64.83 67.59 60.00 70.34

10 74.48 75.17 64.83 68.28 60.69 70.34

15 73.79 74.48 64.83 69.66 62.07 73.10

20 73.10 75.17 64.83 68.97 60.69 71.72

25 73.10 74.48 64.83 68.97 61.38 73.79

30 73.10 74.48 64.83 68.97 61.38 73.79

35 73.10 73.79 64.83 68.97 60.69 73.79

40 73.10 73.79 64.83 68.97 62.07 73.79

45 73.10 73.79 64.83 68.97 62.07 73.79

50 73.10 73.79 64.83 68.97 62.07 73.79

Table 11: Classification accuracy after applying boosting on base classifiers using
different ensemble size

58

Figure 17 compares the effect of applying bagging and boosting on each base

classifier by plotting the accuracy of bagging and boosting with different ensemble size

against the single classifier (i.e. without applying bagging and boosting) accuracy which

is marked as a black horizontal line in the figures. It is observed that applying bagging

and boosting on RBF and DT improved their accuracy in all different ensemble size. In

addition, in case of MLP and NB, bagging produced higher accuracy than boosting. In

case of RBF and DT, boosting accuracy was higher than bagging. In case of BBN,

boosting accuracy was stable and bagging produced better accuracy than boosting as we

increase the ensemble size, starting from ensemble size 30. In contrast, neither bagging

nor boosting SVM improved its accuracy.

Figure 17: Single classifier Vs Bagging Vs Boosting

MLP

 BaggingMLP
 BoostingMLP
 MLP

5 10 15 20 25 30 35 40 45 50
Ensemble Size

72

74

76

78

80

82

A
cc

ur
ac

y

RBF

 BaggingRBF
 BoostingRBF
 RBF

5 10 15 20 25 30 35 40 45 50
Ensemble Size

68

70

72

74

76

A
cc

ur
ac

y

BBN

 BaggingBBN
 BoostingBBN
 BBN

5 10 15 20 25 30 35 40 45 50
Ensemble Size

57

60

63

66

69

A
cc

ur
ac

y

NB

 BaggingNB
 BoostingNB
 NB

5 10 15 20 25 30 35 40 45 50
Ensemble Size

67

68

69

70

71

A
cc

ur
ac

y

SVM

 BaggingSVM
 BoostingSVM
 SVM

5 10 15 20 25 30 35 40 45 50
Ensemble Size

60

61

62

63

A
cc

ur
ac

y

DT

 BaggingDT
 BoostingDT
 DT

5 10 15 20 25 30 35 40 45 50
Ensemble Size

63

66

69

72

75

A
cc

ur
ac

y

59

Figure 18: (a) Bagging all classifiers, (b) Boosting all classifiers

Figure 18 (a) and (b) plot the accuracy of bagging and boosting for each base

classifier with different ensemble size, respectively. Figure 18 (a) indicates that bagging

MLP improved its accuracy significantly and made it superior compared to the other

models. Bagging DT improved its accuracy considerably and made it competitive with

RBF and NB. However, even after applying bagging on SVM and BBN, they produced

the worst accuracy. Figure 18 (b) indicates that boosting made MLP, RBF and DT close

to each other to compete for the best accuracy; Boosting RBF and DT had a positive

effect on these models accuracy, but boosting MLP decreased its accuracy. As in

bagging, SVM and BBN produced the worst accuracy after applying boosting on them

compared to the other boosted models.

(a) Bagging

5 10 15 20 25 30 35 40 45 50

Ensemble Size

55

60

65

70

75

80

85

Ac
cu

ra
cy

(b) Boosting

5 10 15 20 25 30 35 40 45 50

Ensemble Size

55

60

65

70

75

80

85

Ac
cu

ra
cy

 MLP
 RBF
 BBN
 NB
 SVM
 DT

60

There is a tradeoff between the incremental performance gains and the

computational time that should be taken in consideration when applying ensemble

techniques [6, 99]. Fortunately, we observed that when ensemble size was set to 25 and

more, bagging and boosting did not produce significant different results over smaller

ensemble sizes, i.e., most results are stable. As a result, we believe that ensemble size 25

is an appropriate value for ensemble size parameter in bagging and boosting for this

dataset.

Figure 19 summarizes the comparison between the accuracy of single classifiers

and their bagging and boosting when we set the ensemble size to 25. It can be observed

that bagging improved the accuracy of 5 out of the 6 investigated models, whereas

boosting improved the accuracy of only 3 out of the 6 models. In case of MLP and NB,

the best accuracy was achieved by bagging. In case of RBF and DT, the best accuracy

was achieved by boosting. In case of BNN, both bagging and boosting achieved the same

accuracy. In case of SVM, neither bagging nor boosting improved its accuracy. Even

after bagging and boosting, MLP remained as the best model in classification accuracy

and boosting increased DT considerably and made it competitive with RBF for second

highest.

61

Figure 19: Single classifier Vs Bagging (25) Vs Boosting (25)

In summary of this chapter, empirical results indicate that bagging and boosting

yield improved classification accuracy over most of the investigated single classifiers.

However, bagging and boosting performance varied from one classifier to another. In

some cases, bagging outperforms boosting, while in some other cases, boosting

outperforms bagging. In case of MLP and NB, bagging produced the best accuracy. In

case of RBF and DT, boosting produced the best accuracy. However, in case of SVM,

bagging and boosting resulted in detrimental in accuracy. This result is supported by

another study which states that SVM ensembles are not always better than a single SVM

[99], which indicates that SVM is a stable method for the dataset in this experiment.

MLP RBF BBN NB SVM DT
50

55

60

65

70

75

80

85
Ac

cu
ra

cy

 Single
 Bagging
 Boosting

62

CHAPTER 5

Multi-model ensembles (Classification)

5.1 Multi-model ensembles for classification

In classification, a multi-model ensemble consists of a set of individually trained

classifiers, whose predictions are combined into something called an arbitrator, which

produce the final output [75]. Multi-model ensembles can be classified into linear and

nonlinear ensembles based on the design of their arbitrator [58].

5.1.1 Linear ensembles

In linear ensembles, the arbitrator assigns prediction weights for each individual

classifier, in a linear fashion as shown in Figure 20. There are a number of linear

approaches to implement the linear architecture of the arbitrator. These approaches are

majority voting, average probability, best probability, and weighted probability, as

described in the following sections.

63

Figure 20: Multi-model linear ensemble (classification)

Input

Input

Input

Output

Output

Output

Linear

Arbitrator

Final

Output
Input

Input

Input

Output

Output

Output

Average
probability

Weight
probability

Majority
voting

Best
probability

64

5.1.1.1 Majority voting

Majority voting ensemble assigns equal weight to the output of each prediction model.

For each observation, the output classification (i.e. positive or negative) of each

individual prediction model is taken as an input to the ensemble. Then, the majority

voting ensemble will output the class (i.e. positive or negative), with the highest vote.

However, since we have an even number of prediction models, an equal vote may be

expected. In this situation, we will make the ensemble output the class as positive. Below

figure, gives a formal description about this ensemble:

Model generation

Choose dataset with N observations

Choose M classifiers

For each m ∈ M model

 Perform K fold cross validation

 Store output of each model

Classification (majority voting ensemble)

For each n ∈ N observations

 Return class that has been predicted most often

Figure 21: Majority voting linear ensemble

5.1.1.2 Average probability

Same as majority voting ensemble, each prediction model output has the same weight.

For each observation, the probability values of the individual prediction models are taken

as an input to the ensemble. Then, ensemble arbitrator outputs the average of these

models probabilities. The following figure, gives a formal description about average

ensemble:

65

Model generation

Choose dataset with N observations

Choose M classifiers

For each m ∈ M model

 Perform K fold cross validation

 Store output of each model

Classification (average probability ensemble)

For each n ∈ N observations

 average = ∑ / M

if(average > 0.5)

 predict it as FALSE class

else

 predict it as TRUE class

Figure 22: Average probability linear ensemble

5.1.1.3 Best probability

Best probability ensemble takes the advantage of the fact that classifiers have different

errors across the used dataset partitions. The idea behind best probability ensemble is that

across the dataset partitions, take the best trained classifier output performed in that

partition. The following figure states the best linear ensemble approach:

66

Model generation

Choose dataset with N observations

Choose M classifiers

Set K for K folds cross validation

For each k ∈ K fold

 For each m ∈ M model

 Apply model m on training set for fold(k)

 Calculate training error E, based on a certain criterion

 Store error E

 Rank M models, based on training error E

 Classification (best probability ensemble)

Apply first ranked model on testing set for fold(k)

Figure 23: Best probability linear ensemble

5.1.1.4 Weighted probability

Weighted probability ensemble gives weight for individual models probability values,

based upon a certain criterion. This criterion could be the accuracy evaluation measure.

Prediction models with high error rate will be given less weight. The following figure,

describes the formal approach of weight ensemble:

67

Model generation

Choose dataset with N observations

Choose M classifiers

Set K for K folds cross validation

For each k ∈ K fold cross validation

 For each m ∈ M models

 Apply m on training set for fold(k)

 Calculate training error E, based on a certain criterion

 Store error E

 Rank M models, based on training error E

 For each m ∈ M model

 Apply model m on testing set fold(k)

 Multiply model m probability by its rank

 Store as probability(m)

Classification (weight probability ensemble)

For each n ∈ N observations in fold(k)

 Probability = ∑ probability / ∑ i

 if(Probability > 0.5)

 predict as FALSE

 else

 predict as TRUE

Figure 24: Weight probability linear ensemble

68

5.1.2 Nonlinear ensembles

Nonlinear ensembles, as shown below, use nonlinear models to build its arbitrator. In

arbitrator design, nonlinear model is used to assign the weights. Output from individual

classifiers is fed to this nonlinear model as input to train it and assign weights

accordingly. In our approach, we used the list of individual investigated models as our

potential list of nonlinear arbitrators.

69

Input

Input

Input

Output

Output

Output

Nonlinear

Arbitrator

Final

Output
Input

Input

Input

Output

Output

Output

Nonlinear
models

Figure 25: Multi-model nonlinear ensemble (classification)

70

Model generation

Choose dataset with N observations

Choose M classifiers

Set K for K folds cross validation

Choose nonlinear arbitrator

For each k ∈ K fold cross validation

 (Training)

 For each m ∈ M models

 Apply m on training set for fold(k)

 Store model training output

 Train nonlinear arbitrator by supplying models training output

 For each m ∈ M models

 Apply m on testing set for fold(k)

 Store model testing output

 Test nonlinear arbitrator by supplying models testing output

 Figure 26: Nonlinear ensemble

5.2 Experiment design

5.2.1 Goal

This experiment incorporates many goals within it. The first goal is to examine the

capabilities of individual classifiers. The second goal is to build different linear

ensembles (i.e. majority voting, average probability, best probability, and weight

probability) from chosen individual models, and examine to which extent they provide

competitive results. The third goal is to build different nonlinear ensembles based on

different nonlinear arbitrators (i.e. BBN, NB, MLP, RBF, SVM, and DT arbitrators), and

71

study their performance. Finally, we will compare the best model taken form each

category (i.e. best model from individual models, linear ensembles, and nonlinear

ensembles), and draw our conclusions.

5.2.2 Settings

The following table presents the settings for the conducted experiment:

Experiment type Classification

Investigated models

BBN

NB

MLP

RBF

SVM

DT

Data set KC1

Evaluation measures Accuracy, precision, recall, and f-measure

Validation technique 10 fold cross validation

Table 12: Experiment settings for multi-model ensemble (classification)

5.3 Results

Table 13 presents the results obtained from applying individual classifiers on KC1

dataset, with bold values indicating the best achieved result. Overall results show the

superiority of MLP over all other models. MLP achieved the highest accuracy, with NB

as second best. Moreover, there is a significant difference in accuracy, nearly 7%,

between the highest accuracy (75.86%) achieved by MLP and the second highest

accuracy (68.96%) achieved by NB. In the other hand, BBN produced the lowest

accuracy.

72

 In terms of precision, all models were competing for the best precision. However,

MLP scored the highest precision value (0.67), with both SVM and NB as second

highest, with no significant difference. Also, MLP scored the highest recall, and f-

measure values (i.e. (0.81) and (0.73), respectively). However, SVM scored a very low

results in the two measures (i.e. recall and f-measure) compared with other models.

Another observation from Table 13 is that SVM achieved a relatively moderate

accuracy value, but a competing precision value. However, its performance, in terms of

recall and f-measure, was the worst. This indicates that recall is encouraged to be used as

a supporting measure for precision, and encourages the use of f-measure, since it

represents the harmonic average of precision and recall.

Individual models

BBN NB MLP RBF SVM DT

Accuracy 58.62 68.96 75.86 63.44 61.37 65.51

Precision 0.5 0.64 0.67 0.58 0.64 0.59

Recall 0.66 0.56 0.81 0.38 0.15 0.53

F -measure 0.57 0.60 0.73 0.46 0.24 0.56

Table 13: KC1 results for individual models (classification)

73

Figure 27 plots individual classifiers ROC graph points, with different decision

thresholds. It is observed that MLP curve intends to move to the northwest corner (i.e.

best classifier). However, SVM was clearly the worst performed model, since its curve is

the closest to southeast corner.

Table 14 presents the AUC values obtained from different individual models.

MLP achieved the highest AUC value, and that means if other models curve intersect

with MLP curve in some threshold, MLP will still give the best overall performance.

Figure 27: KC1 ROC graph for individual models (classification)

74

Individual models Area Under Curve (AUC)

BBN 0.628

NB 0.683

RBF 0.631

SVM 0.459

DT 0.729

MLP 0.809

Table 14: Individual models AUC (KC1 classification)

Table 15 presents the results obtained from building different linear ensembles

(i.e. majority voting, average probability, best probability, and weight probability),

evaluated in the context of KC1 dataset. Weight ensemble achieved the highest accuracy,

with majority voting and average ensembles competing for second highest. In terms of

precision, recall, and f-measure, all linear ensembles were competing for the highest

value, except for best ensemble, which scored the lowest values in all evaluation

measures.

Best ensemble achieved the lowest accuracy among linear ensembles, because of

its construction limitation. Best ensemble is based on the best trained classifier in each

partition. In this case, SVM was the best trained classifier in most partitions, however,

SVM was the one of worst in testing. This yielded in overall degraded accuracy of best

ensemble.

75

Linear Ensemble

Majority Average Best Weight

Accuracy 71.03 69.65 60

73.79

Precision 0.64 0.64 0.55 0.68

Recall 0.68 0.6 0.16 0.68

F -measure 0.66 0.62 0.25

0.68

Table 15: KC1 results for linear ensembles (classification)

 Figure 28 plots all linear ensemble models ROC graph points, except for majority

voting ensemble, since it is not applicable. It is observed that both average and weight

ensemble curves are competing for the best performance (i.e. curve more towards the

northwest corner, and intersecting more often). However, from Table 16, we can

conclude the weight probability ensemble is better, since it achieved the highest AUC

value (0.775).

76

Figure 28: KC1 ROC graph for linear ensembles (classification)

Linear ensemble Area Under Curve (AUC)

Average Probability 0.772

Best Probability 0.671

Weight Probability 0.775

Table 16: Linear ensemble models AUC (KC1 classification)

 Table 17 presents the results obtained from building different nonlinear ensembles

from different nonlinear arbitrators (i.e. BBN, NB, MLP, RBF, SVM, and DT), evaluated

in the context of KC1 dataset. Overall results show the superiority of SVM nonlinear

ensemble over all other nonlinear ensembles. SVM ensemble achieved the highest

accuracy, precision, recall, and f-measure, with DT as second best in all measures.

77

 Nonlinear Ensemble

BBN NB MLP RBF SVM DT

Accuracy 71.03 71.03 69.65 69.65 75.86 72.41

Precision 0.64 0.64 0.62 0.62 0.67 0.65

Recall 0.68 0.68 0.65 0.65 0.81 0.71

F -measure 0.66 0.66 0.63 0.63 0.73 0.68

Table 17: KC1 results for nonlinear ensembles (classification)

 Figure 29 plots all nonlinear ensemble models ROC graph points, with different

decision thresholds. It is observed from ROC graph, that nonlinear ensembles compete

for best model, as we change threshold. In addition, Table 18 gives close AUC values

between different nonlinear ensembles. However, both MLP and NB nonlinear ensembles

achieved the hioghest AUC value (0.744).

In general, we relay on our main evaluation measures (i.e. accuracy, precision,

recall, and f-measure), to come with out best performed nonlinear ensemble. So, we

conclude that SVM ensemble is the best performed nonlinear ensemble.

78

Figure 29: KC1 ROC graph for nonlinear ensembles (classification)

Linear ensemble Area Under Curve (AUC)

BBN 0.743

NB 0.744

MLP 0.744

RBF 0.694

SVM 0.670

DT 0.66

Table 18: Nonlinear ensemble models AUC (KC1 classification)

79

Now, we discussed the performance of various models in each category (i.e.

individual, linear ensemble, nonlinear ensemble models). Next, we pick the best model

from each category as Table 19 shows, and compare them, to examine to which extent

ensembles offer an increase in performance. MLP was the best model as an individual

model, weight ensemble as linear ensemble, and SVM ensemble as nonlinear ensemble.

Table 19 shows that weight ensemble was slightly lower than MLP model in

accuracy, and f-measure, and slightly higher in precision. However, SVM nonlinear

ensemble produced competitive results against MLP.

Individual

model
Linear

ensemble
Nonlinear
ensemble

MLP

Weight
SVM

Accuracy

Accuracy 75.86 73.79 75.86

Precision 0.67 0.68 0.67

Recall 0.81 0.68 0.81

F -measure 0.73 0.68 0.73

Table 19: KC1 comparison of individual Vs best linear Vs best nonlinear
(classification)

From figure and table below, MLP curve competed with weight linear ensemble

curve for best model performance. However, MLP scored higher AUC value than weight

linear ensemble, with a difference of (0.034). Based on results in Table 19, we concluded

that ensembles in general offer competitive results against individual models.

80

Figure 30: KC1 ROC graph for comparison of individual Vs best linear Vs best
nonlinear (classification)

Model Area Under Curve (AUC)

MLP 0.809

Weight probability 0.775

SVM nonlinear 0.670

Table 20: Comparison of individual Vs best linear Vs best nonlinear AUC
(classification)

81

CHAPTER 6

Multi-model ensembles (Regression)

6.1 Multi-model ensembles for regression

In regression, a multi-model ensemble consists of a set of individually trained regression

models, whose predictions are combined into something called an arbitrator, which

produce the final output [75]. Multi-model ensembles can be classified into linear and

nonlinear ensembles based on the design of their arbitrator [58].

6.1.1 Linear ensembles

In linear ensembles, the arbitrator assigns prediction weights for each individual

regression model, in a linear fashion as shown in Figure 31. There are a number of linear

approaches to implement the linear architecture of the arbitrator. These approaches are

average, best, and weight, as described in the following sections.

82

Figure 31: Multi-model linear ensemble (regression)

Average

Weight

Best

Input

Input

Output

Output

Linear

Arbitrator

Final

Output

Input

Input

Output

Output

83

6.1.1.1 Average

Average linear ensemble is the simplest ensemble model, where each prediction model

has the same weight. For each observation, the output values of the individual prediction

models are taken as input to the ensemble and the average of these values as the output

by the ensemble. The following figure, gives a formal description about average

ensemble:

Model generation

Choose dataset with N observations

Choose M individual regression models

For each m ∈ M model

 Perform K fold cross validation

 Store output of each model

Regression (average ensemble)

For each n ∈ N observations

 Take average of all M models outputs

Figure 32: Average linear ensemble

6.1.1.2 Best

Best linear ensemble takes the advantage of the fact that regression models have different

errors across the used dataset partitions. The idea behind best linear ensemble is that

across the dataset partitions, take the best trained regression model performed in that

partition. The following figure states the best linear ensemble approach:

84

Model generation

Choose dataset with N observations

Choose M individual regression models

Set K for K folds cross validation

For each k ∈ K fold

 For each m ∈ M model

 Apply model m on training set for fold(k)

 Calculate training error E, based on a certain criterion

 Store error E

 Rank M models, based on training error E

 Regression (best ensemble)

Apply first ranked model on testing set for fold(k)

Figure 33: Best linear ensemble

6.1.1.3 Weight

Individual output values are given weights based upon a certain criterion. This criterion

could be mean magnitude of relative error (MMRE). Prediction models with high error

rate will be given less weight. The following figure, describes the formal approach of

weight ensemble:

85

Model generation

Choose dataset with N observations

Choose M individual regression models

Set K for K folds cross validation

For each k ∈ K fold cross validation

 For each m ∈ M models

 Apply m on training set for fold(k)

 Calculate training error E, based on a certain criterion

 Store error E

 Rank M models, based on training error E

 For each m ∈ M model

 Apply model m on testing set fold(k)

 Multiply model m output by its rank

 Store as output(m)

Regression

For each n ∈ N observations fold(k)

 = ∑ / ∑

Figure 34: Weight linear ensemble

6.1.2 Nonlinear ensembles

Nonlinear ensembles, as shown below, use nonlinear models to build its arbitrator. In

arbitrator design, nonlinear model is used to assign the weights. Output from individual

regression models is fed to this nonlinear model as input to train it and assign weights

accordingly. In our approach, we used the list of individual investigated models as our

potential list of nonlinear arbitrators.

86

Nonlinear
models

Input

Input

Output

Output

Nonlinear

Arbitrator

Final

Output

Input

Input

Output

Output

Figure 35: Multi-model nonlinear ensemble (regression)

87

Model generation

Choose dataset with N observations

Choose M individual regression models

Set K for K folds cross validation

Choose nonlinear arbitrator

For each k ∈ K fold cross validation

 (Training)

 For each m ∈ M models

 Apply m on training set for fold(k)

 Store model training output

 Train nonlinear arbitrator by supplying models training output

 For each m ∈ M models

 Apply m on testing set for fold(k)

 Store model testing output

 Test nonlinear arbitrator by supplying models testing output

Figure 36: Nonlinear ensemble

6.2 Experiment design

6.2.1 Goal

This experiment has many goals to achieve. The first goal is to examine the capabilities

of individual regression models. The second goal is to build different linear ensembles

(i.e. average, best, and weight) from chosen individual models, and examine to which

extent they provide competitive results. The third goal is to build different nonlinear

ensembles based on different nonlinear arbitrators (i.e. MLP, RBF, SVMreg, and M5P

arbitrators), and study their performance. Finally, we will compare the best model taken

88

form each category (i.e. best model from individual models, linear ensembles, and

nonlinear ensembles), and draw our conclusions.

6.2.2 Settings

In this experiment, we used three datasets KC1, UIMS, and QUES. KC1 is from the class

fault domain, while the other two (i.e. UIMS and QUES) taken from the maintainability

domain. The following table presents the settings for the conducted experiment:

Experiment type Regression

Investigated models

MLP

RBF

SVMreg

M5P

Data set KC1, UIMS, and QUES

Evaluation measure
MMRE, StdMRE, and
Pred(0.3)

Validation technique 10 fold cross validation

Table 21: Experiment settings for multi-model ensemble (regression)

6.3 Results

6.3.1 KC1

Table 22 presents the results obtained from applying individual prediction models on

KC1 dataset, with bold values as indication of best achieved result. Overall results show a

competition between RBF and SVMreg. SVMreg achieved the best MMRE, and RBF

was second best with a minor MMRE difference of (0.06). However, RBF was better

than MLP in StdMRE with (0.62) difference. In Pred(0.3), SVMreg and M5P got the best

result. The worst model in performance was MLP (i.e. worst in MMRE, and Pred(0.3)).

89

Individual models

MLP RBF SVMreg M5P

MMRE 2.19 1.68 1.62 1.91

StdMRE 2.73 2.68 3.30 3.98

Pred(0.3) 20 21.66 23.33 23.33

Table 22: KC1 results for individual models (regression)

Figure 37 box plots KC1 results obtained from individual regression models. RBF

was the best model, since it had the narrowest box and smallest whisker. However,

SVMreg was competitive with RBF in the lower box. The worst model was MLP (i.e.

biggest box and longest whisker).

In summary, RBF and SVMreg showed close and competitive results, but

superior to other models. We chose SVMreg as best individual regression model, since it

achieved the best MMRE and Pred(0.3).

90

Figure 37: KC1 box plots for individual models (regression)

Table 23 presents the results obtained from building different linear ensembles

(i.e. average, best, and weight). Linear ensembles show close and competitive results.

Weight ensemble achieved the lowest MMRE, but the difference between it and average

and best ensembles was (0.02) and (0.05) respectively. Also, weight ensemble achieved

the lowest in StdMRE, with minor difference than second lowest (i.e. average ensemble)

around (0.1). In terms of Pred(0.3), weight and average ensembles got the best results.

Individual models

MLP RBF SVMreg M5P
-3

-2

-1

0

1

2

3

4

5

6

7
 Mean ±SE ±SD

91

Linear Ensemble

 Average
Best Weight

MMRE MMRE

MMRE 1.74 1.77 1.72

StdMRE 3.05 3.39 2.95

Pred(0.3) 26.66 25 26.66

Table 23: KC1 results for linear ensembles (regression)

Figure 38 box plots KC1 results obtained from created linear ensemble models.

Boxes sizes seem to be close to each other, and they are at the same level. However,

weight ensemble had the smallest whisker compared with others.

In summary, results were close and competitive. However, weight ensemble was

slightly better than average and best ensembles.

92

Figure 38: KC1 box plots for linear ensembles (regression)

Table 24 presents the results obtained by building nonlinear ensembles using

nonlinear arbitrators (i.e. different nonlinear models). SVMreg nonlinear ensemble

outperformed all other nonlinear ensembles in all performance measures. RBF nonlinear

ensemble came second best, with minor difference between it and best nonlinear

ensemble (i.e. SVMreg nonlinear ensemble), in terms of MMRE and StdMRE, (0.03) and

(0.3), respectively. However, in Pred(0.3) SVMreg nonlinear ensemble was superior over

other nonlinear ensembles with Pred(0.3) value of 26.6%.

Linear ensembles

Average Best Weight
-2

-1

0

1

2

3

4

5

6
 Mean ±SE ±SD

93

Nonlinear Ensemble

Nonlinear models

MLP RBF SVMreg M5P

MMRE 2.29 1.70 1.67 2.12

StdMRE 4.32 2.66 2.35 2.77

Pred(0.3) 16.66 20 26.66 15

Table 24: KC1 results for nonlinear ensembles (regression)

Figure 39 box plots KC1 results obtained from created nonlinear ensemble

models. SVMreg nonlinear ensemble had the narrowest box, smallest whisker, and the

lowest box and whisker among the other models, which means that it’s the best nonlinear

ensemble. On the other hand, MLP nonlinear ensemble was the worst (i.e. biggest box

and longest whisker).

Figure 39: KC1 box plots for nonlinear ensembles (regression)

Nonlinear ensembles

MLP RBF SVMreg M5P
-3

-2

-1

0

1

2

3

4

5

6

7
 Mean ±SE ±SD

94

Now, we discussed the performance of various models in each category (i.e.

individual, linear ensemble, nonlinear ensemble models). Next, we pick the best model

from each category as Table 25 shows, and compare them, to examine to which extent

ensembles offer an increase in performance. SVMreg was the best model as an individual

model, weight ensemble as linear ensemble, and SVMreg ensemble as nonlinear

ensemble.

As Table 25 shows, best individual model achieved the lowest MMRE, with a

minor difference between it and second lowest MMRE (i.e. nonlinear ensemble) around

(0.05). However, both ensembles were better than individual in StdMRE and Pred(0.3).

In overall, nonlinear ensemble outperformed other models, since it shows competitive

results.

Moreover, we performed Wilcoxon significance test at p-level equal to (0.1), to

examine the MRE significance difference between the best model in each category. Table

26 shows the results in terms of p-value (upper cell) and z-value (lower cell). Bold values

indicate significant difference. Results show that the difference between ensembles (i.e.

linear and nonlinear) and SVMreg was significant. However, the difference between

linear and nonlinear ensemble was not significant.

individual

Linear
Nonlinear

Weight

SVMreg MMRE SVMreg

MMRE 1.62 1.72 1.67

StdMRE 3.30 2.95 2.35

Pred(0.3) 23.33 26.66 26.66

Table 25: KC1 comparison of individual Vs best linear Vs best nonlinear (regression)

95

 SVMreg Weight linear
ensemble

SVMreg nonlinear
ensemble

SVMreg

Weight linear
ensemble

0.057
 1.907

SVMreg nonlinear
ensemble

0.035 0.740
 2.105 0.331

Table 26: Wilcoxon MRE significance test of KC1 individual, best linear, and best
nonlinear (p-level = 0.1)

Figure 40 box plots KC1 best individual model against best linear and nonlinear

ensembles. Both ensembles, has smaller box, and whisker than best individual (i.e. better

in performance). However, nonlinear ensemble had the narrowest box, and the smallest

whisker (i.e. the best prediction model). Furthermore, Figure 40 supports our hypothesis

that ensembles offer competitive, even better performance than individual models.

Between ensembles, nonlinear ensembles proved to be the best candidate for building

future prediction models, since it provides promising results.

96

Figure 40: KC1 box plots of best individual Vs best linear Vs best nonlinear
(regression)

6.3.2 UIMS

Table 27 compares the results obtained from applying individual regression models on

UIMS maintainability dataset. MLP achieved the best MMRE, and StdMRE, while

SVMreg was second best with a minor difference in both measures of (0.25), and (0.02),

respectively. Also, MLP scored the best Pred(0.3), alongside with M5P. However, RBF

was the worst performed regression model in all measures.

Individual models

MLP RBF SVMreg M5P

MMRE 1.39 3.23 1.64 1.67

StdMRE 2.40 4.43 2.38 2.75

Pred(0.3) 23.33 15 20 23.33

Table 27: UIMS results for individual models (regression)

Best individu al Vs B est Linear Ense mble Vs Best Nonlinear Ensemble

SVMr eg
Best Linear Ensemble

Best No nl in ea r E nsemb le
-2

-1

0

1

2

3

4

5

6
 Mean ±SE ±SD

97

Figure 41 shows the MRE box plots of individual regression models. It is

observed that both MLP and SVMreg compete for the narrowest box, and smallest

whisker. However, both MLP box and whisker are lower than SVMreg (i.e. MLP better

than SVMreg). It is clear that RBF had the biggest box and longest whisker (i.e. worst

performed model).

Figure 41: UIMS box plots for individual models (regression)

Individual models

MLP RBF SVMreg M5P
-2

-1

0

1

2

3

4

5

6

7

8

9
 Mean ±SE ±SD

98

Table 28 compares the results obtained from different constructed linear

ensembles (i.e. average, best, and weight) applied on UIMS maintainability dataset. Best

ensemble achieved the lowest MMRE and StdMRE, and highest Pred(0.3). This is due to

the reason that different prediction models were chosen for different folds, and these

models produced the lowest error. Therefore, best ensemble shows superior performance

over average, and weight ensembles.

Linear Ensemble

 Average
Best Weight

MMRE MMRE

MMRE 1.46 0.97 1.21

StdMRE 2.08 1.61 1.78

Pred(0.3) 23.33 25 23.33

Table 28: UIMS results for linear ensembles (regression)

Figure 42 shows the MRE box plots of constructed linear ensemble models. Best

ensemble box and whisker is lower than of those average, and weight ensemble. Also,

best ensemble had the smallest whisker. However, average ensemble had the largest box,

and longest whisker.

99

Figure 42: UIMS box plots for linear ensembles (regression)

Table 29 compares the results obtained from nonlinear ensembles constructed

using different nonlinear arbitrators (i.e. MLP, RBF, SVMreg, and M5P) applied on

UIMS maintainability dataset. SVMreg nonlinear ensemble achieved the best MMRE,

and StdMRE, with M5P nonlinear ensemble as second best in both measures with

difference of (0.3) and (0.49), respectively. But, M5P nonlinear ensemble scored the

highest Pred(0.3) value (i.e. 25%), and SVMreg nonlinear ensemble had the second

highest Pred(0.3) value. However, RBF nonlinear ensemble was the worst performed

nonlinear ensemble, since it scored the worst values in all evaluation measures.

Linear ensembles

Average Best Weight
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
 Mean ±SE ±SD

100

Nonlinear Ensemble

Nonlinear models

MLP RBF SVMreg M5P

MMRE 1.26 3.03 0.93 1.23

StdMRE 2.07 3.98 1.24 1.73

Pred(0.3) 15 13.33 21.66 25

Table 29: UIMS results for nonlinear ensembles (regression)

Figure 43 shows the MRE box plot of different nonlinear ensembles. It is clearly

observed that SVMreg nonlinear ensemble outperformed all other nonlinear ensembles,

since it had the narrowest box, smallest whisker, and the lowest box and whisker. While,

RBF nonlinear ensemble was the worst among nonlinear ensembles (i.e. biggest box, and

longest whisker).

Figure 43: UIMS box plots for nonlinear ensembles (regression)

Nonlinear ensembles

MLP RBF SVMreg M5P
-2

-1

0

1

2

3

4

5

6

7

8
 Mean ±SE ±SD

101

Now, we discussed the performance of various models in each category (i.e.

individual, linear ensemble, nonlinear ensemble models). Next, we pick the best model

from each category as Table 30 shows, and compare them, to examine to which extent

ensembles offer an increase in performance. MLP was the best model as an individual

model, best ensemble as linear ensemble, and SVMreg ensemble as nonlinear ensemble.

As Table 30 shows, SVMreg nonlinear ensemble achieved the best MMRE (i.e.

0.93), and StdMRE (i.e. 1.24), with best linear ensemble as second best. However, best

linear ensemble scored the highest Pred(0.3) value (i.e. 25%). Both linear and nonlinear

ensembles offer a considerable amount of increase in performance over individual

models.

Moreover, Table 31 supports our findings, since the difference between SVMreg

nonlinear ensemble and MLP is significant. However, the difference between linear and

nonlinear ensembles was not significant.

Individual Linear Nonlinear

 Best

MLP MMRE SVMreg

MMRE 1.39 0.97 0.93

StdMRE 2.40 1.61 1.24

Pred(0.3) 23.33 25 21.66

Table 30: UIMS comparison of individual Vs best linear Vs best nonlinear
(regression)

102

MLP Weight linear

ensemble
SVMreg nonlinear

ensemble
MLP

Weight linear

ensemble
0.376

 0.885
SVMreg nonlinear

ensemble
0.074 0.209

 1.786 1.256
Table 31: Wilcoxon MRE significance test of UIMS individual, best linear, and best

nonlinear (p-level = 0.1)

Figure 44 shows the MRE box plot of best individual regression model against

linear and nonlinear ensembles. It is observed that both ensembles outperformed best

individual model, since they have smaller boxes and whiskers, and lower than those of

MLP (i.e. best individual model). In addition, between ensembles, nonlinear ensemble

had the smallest box and whisker, and lower than those of linear ensemble.

In summary, ensembles in general offer competitive, in fact, better performance

than individual models, and nonlinear ensembles proved to be the best among ensembles,

since it provides promising results in the field of software maintainability prediction.

103

Figure 44: UIMS box plots of best individual Vs best linear Vs best nonlinear
(regression)

6.3.3 QUES

Table 32 compares the results obtained from applying individual regression models on

QUES maintainability dataset. SVMreg outperformed MLP, RBF, and M5P in all

evaluation measures. SVMreg achieved the best value in both MMRE and StdMRE (i.e.

lowest MMRE value). Moreover, SVMreg scored the highest Pred(0.3) value (i.e.

56.6%). However, M5P showed a competitive result compared with SVMreg, it was

achieved the second best in all evaluation measures. RBF was the worst performed model

(i.e. highest MMRE and StdMRE, and lowest Pred(0.3) value).

Best individual Vs Best Linear Ensemble Vs Best Nonlinear Ensemble

MLP
Best Linear Ensemble

Best Nonlinear Ensemble
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
 Mean ±SE ±SD

104

Individual model

MLP RBF SVMreg M5P

MMRE 0.71 0.96 0.44 0.54

StdMRE 0.65 1.52 0.39 0.56

Pred(0.3) 40 36.66 56.66 51.66

Table 32: QUES results for individual models (regression)

Figure 45 shows the MRE box plots of individual regression models. It clearly

observed that SVMreg outperformed other regression models, since it had the narrowest

box, smallest whisker, and the level of its box and whisker is lower than those of other

regression models. In the other hand, RBF had the biggest box, longest whisker (i.e.

worst model).

Figure 45: QUES box plots for individual models (regression)

Individual models

MLP RBF SVMreg M5P
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0
 Mean ±SE ±SD

105

Table 33 compares the results obtained from different constructed linear

ensembles (i.e. average, best, and weight) applied on QUES maintainability dataset. All

created linear ensembles shows competitive results, however, best ensemble

outperformed all other linear ensembles in all evaluation measures. Best ensemble

achieved the lowest MMRE and StdMRE (i.e. 0.4 and 0.3, respectively), and highest

Pred(0.3) value (i.e. 60%).

Linear Ensemble

 Average
Best Weight

MMRE MMRE

MMRE 0.58 0.41 0.49

StdMRE 0.69 0.32 0.51

Pred(0.3) 53.33 60 53.33

Table 33: QUES results for linear ensembles (regression)

Figure 46 shows the MRE box plots of constructed linear ensembles. It is clearly

observed that best ensemble outperformed all other linear ensembles. Best ensemble had

the narrowest box, and smallest whisker. Furthermore, the level of its box and whisker is

lower than those of average and weight ensemble. However, average ensemble was the

worst linear ensemble (i.e. biggest box and longest whisker).

106

Figure 46: QUES box plots for linear ensembles (regression)

Table 34 compares the results obtained from nonlinear ensembles constructed

using different nonlinear arbitrators (i.e. MLP, RBF, SVMreg, and M5P) applied on

QUES maintainability dataset. SVMreg and M5P nonlinear ensembles are competing for

the best nonlinear ensemble. However, SVMreg ensemble was slightly better than M5P

ensemble in all evaluation measures with difference of (0.06), (0.04), and (1.7%) in

MMRE, StdMRE, and Pred(0.3), respectively. Therefore, it can be concluded that

SVMreg ensemble is the best nonlinear ensemble. However, RBF ensemble was the

worst performed model (i.e. highest MMRE and StdMRE, and lowest Pred(0.3) value).

Linear ensembles

Average Best Weight
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
 Mean ±SE ±SD

107

Nonlinear Ensemble

Nonlinear models

MLP RBF SVMreg M5P

MMRE 0.57 0.92 0.38 0.44

StdMRE 0.54 1.44 0.35 0.39

Pred(0.3) 50 41.66 60 58.33

Table 34: QUES results for nonlinear ensembles (regression)

Figure 47 shows the MRE box plots of constructed nonlinear ensembles. Both

SVMreg and M5P ensembles is competing for the smallest box. However, it can be

clearly observed that SVMreg ensemble had smaller whisker than other nonlinear

ensembles, and the level of its box and whisker is lower than those of MLP, RBF, and

M5P ensembles. RBF ensemble was the worst linear ensemble (i.e. biggest box and

longest whisker).

108

Figure 47: QUES box plots for nonlinear ensembles (regression)

Now, we discussed the performance of various models in each category (i.e.

individual, linear ensemble, nonlinear ensemble models). Next, we pick the best model

from each category as Table 35 shows, and compare them, to examine to which extent

ensembles offer an increase in performance. SVMreg was the best model as an individual

model, best ensemble as linear ensemble, and SVMreg ensemble as nonlinear ensemble.

As Table 35, nonlinear ensemble achieved the best MMRE (i.e. 0.38), with linear

ensemble as second best MMRE achieved (i.e. 0.41). In the other hand, linear ensemble

had the best StdMRE (i.e. 0.32), with nonlinear ensemble as second best StdMRE (i.e.

0.35). In terms of Pred(0.3) , both ensembles (i.e. linear and nonlinear) scored the highest

Pred(0.3) value (i.e. 60%). However, the difference between individual model and

ensembles was not significant, as indicated by Table 36.

Nonlinear models

MLP RBF SVMreg M5P
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5
 Mean ±SE ±SD

109

individual Linear Nonlinear

Best

SVMreg MMRE SVMreg

MMRE 0.44 0.41 0.38

StdMRE 0.39 0.32 0.35

Pred(0.3) 56.66 60 60

Table 35: QUES comparison of individual Vs best linear Vs best nonlinear
(regression)

MLP Best linear

ensemble
SVMreg nonlinear

ensemble
MLP

Best linear
ensemble

0.281
 1.079

SVMreg nonlinear
ensemble

0.122 0.289
 1.547 1.060

Table 36: Wilcoxon MRE significance test of QUES individual, best linear, and best
nonlinear (p-level = 0.1)

Figure 48 shows the MRE box plot of best individual regression model against

linear and nonlinear ensembles. It is observed that both ensembles have smaller whisker

than best individual model, and the level of their box and whisker is lower than those of

best individual model. Thus, both ensembles offer an increase in performance over best

individual model. Between ensembles, nonlinear box is lower than the box of best linear

ensemble. However, best linear ensemble has smaller whisker, and slightly smaller box.

In summary of this chapter, ensembles in general offer competitive, or even,

better performance than individual models, and they provide promising results in the field

of software maintainability prediction.

110

Figure 48: QUES box plots of best individual Vs best linear Vs best nonlinear
(regression)

Best individual Vs Best Linear Ensemble Vs Best Nonlinear Ensemble

SVMreg
Best Linear Ensemble

Best Nonlinear Ensemble
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
 Mean ±SE ±SD

111

CHAPTER 7

Conclusion

The main objective of this thesis was to build different ensemble models, and evaluate

their prediction accuracy against stand-alone prediction models. Several linear and

nonlinear ensembles were built, and three empirical studies were conducted to evaluate

them in the context of fault and maintenance effort prediction.

Overall empirical results produced in this thesis show that ensembles in general

offer better, or at least competitive, performance than individual models. In addition,

nonlinear ensembles achieved the best accuracy among ensembles.

The rest of this chapter is organized as follows: thesis contributions are discussed

in the next section. After that, the limitations of this thesis are discussed. Finally,

directions for future work were provided.

7.1 Thesis contributions

Throughout our empirical studies, we provided empirical evidences and interesting

results for both software quality assurance and computational intelligence communities.

These contributions are summarized below:

• Investigated six popular and common computational intelligence models (i.e.

BBN, NB, MLP, RBF, SVM, DT) in identifying faulty classes. Some of these

models, such as SVM and BBN, were not investigated before for the same

purpose.

112

o Results indicate that MLP was superior over other individual models.

• Evaluated the prediction capability of single model ensembles (i.e. bagging and

boosting) over individual models, in the context of identifying faulty classes in a

software system.

o Empirical results indicate that bagging and boosting yield improved

classification accuracy over most of the investigated single classifiers.

However, bagging and boosting performance varied from one classifier to

another. In some cases, bagging outperforms boosting, while in some

other cases, boosting outperforms bagging.

o In case of MLP and NB, bagging produced the best accuracy. In case of

RBF and DT, boosting produced the best accuracy. However, in case of

SVM, bagging and boosting resulted in detrimental in accuracy.

• Proposed different multi-model linear ensembles for classification domain (i.e.

majority voting, average probability, best probability, and weighted probability

ensembles).

• Evaluated the proposed multi-model linear ensembles (classification) against

individual prediction models, in the context of identifying faulty classes in a

software system.

o Empirical results indicate that multi-model linear ensembles show

competitive results in classification accuracy.

• Proposed different nonlinear arbitrators to build different multi-model nonlinear

ensembles for classification domain

113

o Empirical studies indicate that nonlinear ensembles are promising models

for providing improved accuracy.

• Proposed different multi-model linear ensembles for regression domain (i.e.

average, best, and weight ensembles).

• Evaluated the proposed multi-model linear ensembles (regression) against

individual prediction models, in the context of estimating the fault density of

faulty classes, and maintenance effort.

o Experimental results indicate that multi-model linear ensembles in general

offer better, or at least competitive, performance.

• Proposed different nonlinear arbitrators to build different multi-model nonlinear

ensembles for regression domain.

o Empirical studies indicate that nonlinear ensembles are promising models

for providing improved accuracy.

7.2 Limitations

We will list limitations faced in this research, along with our point of view for these

limitations:

• Choice of individual models: we chose six individual models for classification

domain, while only four out of these six were applicable in the regression domain.

However, we selected these models across different categories to achieve a

balance between established prediction models, and we selected the models that

are commonly and widely used in the literature of software quality prediction.

• Parameter initialization: in our experiments, we set the models parameters, to the

default settings in WEKA, without any parameter optimization. However, our

114

goal was to build different ensemble models from stand-alone models, without

taking into consideration the optimization issue. In addition, it has been observed

that the default settings were used in many papers in the literature. Further studies

are needed to further support findings of this research.

• Generalization: we used one dataset for class fault classification, one dataset for

class fault density estimation, and two datasets for maintenance effort prediction.

More studies are needed to further support the findings of this research.

• Some models perform well in training; however, in testing they may perform the

worst. This will decrease the accuracy of linear ensembles performance, since,

these models relay on training performance for their construction (e.g. weight and

best probability ensemble in classification domain).

7.3 Future work

The field of software quality prediction is an interesting field, which provides valuable

information for both software quality assurance and computational intelligence

communities. After conducting this research, we thought of a number of suggestions to

extend the directions of this research. Such suggestions include:

• Consider other stand-alone prediction models to construct different ensembles.

• Apply ensemble models to other software quality prediction problems.

• Try parameter optimization, before ensemble building.

• Propose and evaluate other weight mechanisms for building weight ensembles.

• In weight and best ensembles, try different error criterion for ranking (e.g.

Pred(0.3) for regression and F-measure for classification).

115

References

[1] "NASA IV&V Facility Metrics Data Program,"

http://mdp.ivv.nasa.gov/index.html.

[2] A. Abraham, "Artificial Neural Networks."

[3] M. A. D. Almeida and S. Matwin, "Machine Learning Method for Software

Quality Model Building," in Proceedings of the 11th International Symposium

on Foundations of Intelligent Systems: Springer-Verlag, 1999.

[4] N. Baba, "A new approach for finding the global minimum of error

function of neural networks," Neural Network, vol. 2, pp. 367-373, 1989.

[5] R. K. Bandi, V. K. Vaishnavi, and D. E. Turk, "Predicting Maintenance

Performance Using Object-Oriented Design Complexity Metrics," IEEE

Transactions on Software Engineering, vol. 29, pp. 77-87, 2003.

[6] R. Banfield, L. Hall, K. Bowyer, and W. Kegelmeyer, "A Comparison of

Decision Tree Ensemble Creation Techniques," IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 29, 2007.

[7] V. R. Basili, L. C. Briand, and W. L. Melo, "A Validation of Object-Oriented

Design Metrics as Quality Indicators," IEEE Transactions on Software

Engineering, vol. 22, pp. 751 - 761, 1996.

[8] B. Bhattacharya and D. P. Solomatine, "Machine learning in sedimentation

modelling," Neural Netw., vol. 19, pp. 208-214, 2006.

[9] J. M. Bieman and B.-K. Kang, "Cohesion and Reuse in an Object-Oriented

System," in ACM Symposium on Software Reusability (SSR’94), 1995, pp. 259-

262.

http://mdp.ivv.nasa.gov/index.html

116

[10] V. G. Bittencourt, M. C. C. Abreu, M. C. P. d. Souto, and A. M. d. P.

Canuto, "An empirical comparison of individual machine learning

techniques and ensemble approaches in protein structural class

prediction," in International Joint Conference on Neural Networks, 2005, pp.

527 - 531.

[11] B. W. Boehm, Software Engineering Economics: Prentice Hall PTR, 1981.

[12] B. W. Boehm and P. N. Papaccio, "Understanding and Controlling

Software Costs," IEEE Transactions on Software Engineering, vol. 14, pp.

1462-1477, 1988.

[13] A. P. Bradley, "The use of the area under the ROC curve in the evaluation

of machine learning algorithms," Pattern Recognition, vol. 30, pp. 1145-

1159, 1997.

[14] P. L. Braga, A. L. I. Oliveira, G. H. T. Ribeiro, and S. R. L. Meira, "Bagging

Predictors for Estimation of Software Project Effort," in International Joint

Conference on Neural Networks, 2007, pp. 1595 - 1600.

[15] L. Breiman, "Bagging predictors," Machine Learning, vol. 24, pp. 123-140,

1996.

[16] L. Briand, P. Devanbu, and W. Melo, "An Investigation into Coupling

Measures for C++," in Proceedings of the 19th international conference on

Software engineering (ICSE ‘97), Boston, USA, 1997, pp. 412-421.

[17] L. C. Briand, C. Bunse, and J. W. Daly, "A Controlled Experiment for

Evaluating Quality Guidelines on the Maintainability of Object-Oriented

Designs," IEEE Transactions on Software Engineering, vol. 27, pp. 513-530,

2001.

[18] L. C. Briand, W. L. Melo, and J. Wüst, "Assessing the Applicability of

Fault-Proneness Models Across Object-Oriented Software Projects " IEEE

Transactions on Software Engineering, vol. 28, pp. 706 - 720, 2002.

117

[19] L. C. Briand, J. Wüst, J. W. Daly, and D. V. Porter, "Exploring the

Relationships between Design Measures and Software Quality in Object-

Oriented Systems," Journal of Systems and Software, vol. 51, pp. 245 - 273,

2000.

[20] M. Cartwright and M. Shepperd, "An Empirical Investigation of an Object-

Oriented Software System," IEEE Transactions on Software Engineering, vol.

26, pp. 786 - 796, 2000.

[21] S. Chen, C. F. N. Cowan, and P. M. Grant, "Orthogonal least squares

learning algorithm for radial basis function networks," IEEE Transactions

on Neural Networks, vol. 2, pp. 302–309, 1991.

[22] S. R. Chidamber and C. F. Kemerer, "A Metrics Suite for Object Oriented

Design," IEEE Transactions on Software Engineering, vol. 20, pp. 476 - 493,

1994.

[23] S. D. Conte, H. E. Dunsmore, and V. Y. Shen, Software engineering metrics

and models: Benjamin-Cummings Publishing Co., Inc., 1986.

[24] C. Cortes and V. Vapnik, "Support-Vector Networks," Machine Learning,

vol. 20, pp. 273-297, 1995.

[25] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector

Machines and Other Kernel-based Learning Methods. Cambridge, UK:

Cambridge University Press, 2000.

[26] B. Cukic, "Guest Editor's Introduction: The Promise of Public Software

Engineering Data Repositories," IEEE Software, vol. 22, pp. 20 - 22, 2005.

[27] J. Davis and M. Goadrich, "The Relationship Between Precision-Recall and

ROC Curves," in 23rd international conference on Machine learnin, 2006, pp.

233-240.

118

[28] K. El-Emam, W. Melo, and J. C. Machado, "The Prediction of Faulty

Classes Using Object-Oriented Design Metrics," Journal of Systems and

Software, vol. 56, pp. 63 - 75, 2001.

[29] K. O. Elish and M. O. Elish, "Predicting defect-prone software modules

using support vector machines," Journal of Systems and Software, vol. 81, pp.

649-660, 2008.

[30] M. O. Elish and K. O. Elish, "Application of TreeNet in Predicting Object-

Oriented Software Maintainability: A Comparative Study," in 13th

European Conference on Software Maintenance and Reengineering (CSMR '09)

2009, pp. 69 - 78.

[31] T. Fawcett, "An introduction to ROC analysis," Pattern Recognition Letters,

vol. 27, pp. 861-874, 2006.

[32] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and Practical

Approach: PWS Publishing Co., 1998.

[33] F. Fioravanti and P. Nesi, "Estimation and Prediction Metrics for Adaptive

Maintenance Effort of Object-Oriented Systems," IEEE Transactions on

Software Engineering, vol. 27, pp. 1062-1084, 2001.

[34] F. Fioravanti and P. Nesi, "A study on fault-proneness detection of object-

oriented systems," in Fifth European Conference on Software Maintenance and

Reengineering, 2001, pp. 121-130.

[35] T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit, "A Simulation Study

of the Model Evaluation Criterion MMRE," IEEE Transactions on Software

Engineering, vol. 29, pp. 985-995, 2003.

[36] Y. Freund, "Boosting a weak learning algorithm by majority," Information

and Computation, vol. 121, pp. 256–285, 1995.

119

[37] Y. Freund and R. E. Schapire, "A decision-theoretic generalization of on-

line learning and an application to boosting," in European Conference on

Computational Learning Theory, 1995, pp. 23-37.

[38] Y. Freund and R. E. Schapire, "Experiments with a new boosting

algorithm," in In Proceedings of the Thirteenth International Conference on

Machine Learning, Italy, 1996, pp. 148-156.

[39] Y. Freund and R. E. Schapire, "Experiments with a new boosting

algorithm," in Thirteenth International Conference on Machine Learning, Italy,

1996, pp. 148-156.

[40] N. Friedman, D. Geiger, and M. Goldszmidt, "Bayesian Network

Classifiers," Machine Learning, vol. 29, pp. 131-163, 1997.

[41] D. Galin, Software Quality Assurance, From Theory to Implementation, 1st ed.:

Pearson, Addison-Wesley, 2004.

[42] D. Grossman and P. Domingos, "Learning Bayesian network classifiers by

maximizing conditional likelihood," in Proceedings of the twenty-first

international conference on Machine learning Banff, Alberta, Canada: ACM,

2004.

[43] S. Gutta and H. Wechsler, "Face Recognition Using Hybrid Classifier

Systems," in IEEE International Conference on Neural Networks, 1996, pp.

1017-1022.

[44] T. Gyimothy, R. Ferenc, and I. Siket, "Empirical Validation of Object-

Oriented Metrics on Open Source Software for Fault Prediction," IEEE

Transactions on Software Engineering, vol. 31, pp. 897 - 910, 2005.

[45] M. T. Hagan, H. B. Demuth, and M. Beale, Neural network design: PWS

Publishing Co., 1996.

120

[46] L. Hansen and P. Salamon, "Neural Network Ensembles," IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 12, pp. 993-

1001, 1990.

[47] W. Harrison, "Using software metrics to allocate testing resources," Journal

of Management Information Systems, vol. 4, pp. 93-105, 1988.

[48] S. Hashem, B. Schmeiser, and Y. Yih, "Optimal linear combinations of

neural networks." vol. 3: Neural Networks, 1994, pp. 1507-1512.

[49] S. Haykin, Neural Networks: A Comprehensive Foundation New Jersey, USA:

Prentice Hall, 1999.

[50] M. Hitz and B. Montazeri, "Measuring Coupling and Cohesion in Object-

Oriented Systems," in International Symposium on Applied Corporate

Computing Mexico, 1995.

[51] F. J. Huang, Z. Zhou, H.-J. Zhang, and T. Chen, "Pose invariant face

recognition," in In Proc. 4th IEEE Int. Conf. on Automatic Face and Gesture

Recognition, France, 2000, pp. 245-250.

[52] IEEE, "IEEE standard glossary of software engineering terminology,

report IEEE Std 610.12-1990," IEEE, 1990.

[53] A. K. Jain, J. Mao, and K. M. Mohiuddin, "Artificial neural networks: a

tutorial," IEEE Computer Magazine, vol. 29, pp. 31-44, 1996.

[54] F. V. Jensen and T. D. Nielsen, Bayesian Networks and Decision Graphs,

Second ed.: Springer Verlag 2007.

[55] T. Kamiya, S. Kusumoto, and K. Inoue, "Prediction of fault-proneness at

early phase in object-oriented development," in Second IEEE International

Symposium on Object Oriented Real-Time Distributed Computing, 1999, pp.

253 – 258.

121

[56] S. Kanmani, V. R. Uthariaraj, V. Sankaranarayanan, and P. Thambidurai,

"Object-oriented software fault prediction using neural networks,"

Information and Software Technology, vol. 49, pp. 483-492, 2007.

[57] T. M. Khoshgoftaar, E. Geleyn, and L. Nguyen, "Empirical Case Studies of

Combining Software Quality Classification Models," in Third International

Conference on Quality Software, 2003, p. 40.

[58] N. R. Kiran and V. Ravi, "Software reliability prediction by soft computing

techniques," Journal of Systems and Software, vol. 81, pp. 576-583, 2008.

[59] B. A. Kitchenham, L. M. Pickard, S. G. MacDonell, and M. J. Shepperd,

"What accuracy statistics really measure," IEEE Software, vol. 148, pp. 81-

85, 2001.

[60] R. Kohavi, "A study of cross-validation and bootstrap for accuracy

estimation and model selection," in Proceedings of the 14th International Joint

Conference on Artificial Intelligence (IJCAI), 1995, pp. 1137-1143.

[61] A. G. Koru and H. Liu, "Building Defect Prediction Models in Practice,"

IEEE Software, vol. 22, pp. 23-29, 2005.

[62] C. v. Koten and A. R. Gray, "An application of Bayesian network for

predicting object-oriented software maintainability," Information and

Software Technology, vol. 48, pp. 59 - 67, 2006.

[63] A. Krogh and J. Vedelsby, "Neural Network Ensembles, Cross Validation,

and Active Learning," Advances in Neural Information Processing Systems,

vol. 7, pp. 231-238, 1995.

[64] P. Langley, W. Iba, and K. Thompson, "An analysis of Bayesian

classifiers," in National Conference on Artificial Intelligence 1992, pp. 223-228

[65] Y. Lee, B. Liang, S. Wu, and F. Wang, "Measuring the Coupling and

Cohesion of an Object-Oriented Program Based on Information Flow," in

International Conference on Software Quality Slovenia, 1995.

122

[66] W. Li and S. Henry, "Object-oriented metrics that predict maintainability,"

Journal of Systems and Software, vol. 23, pp. 111-122, 1993.

[67] A. D. Lucia, E. Pompella, and S. Stefanucci, "Assessing effort estimation

models for corrective maintenance through empirical studies," Information

and Software Technology, vol. 47, pp. 3 - 15, 2005.

[68] S. G. MacDonell, "Establishing relationships between specification size

and software process effort in case environment," Information and Software

Technology, vol. 39, pp. 35-45, 1997.

[69] A. Mahaweerawat, P. Sophatsathit, C. Lursinsap, and P. Musilek, "Fault

Prediction in Object-Oriented Software Using Neural Network

Techniques," in International Conference on Intelligent Technologies, 2004, pp.

27-34.

[70] J. Mao, "A case study on bagging, boosting and basic ensembles of neural

networks for OCR," in In Proc. IEEE Int. Joint Conf. on Neural Networks,

1998, pp. 1828-1833.

[71] J. Mingers, "An Empirical Comparison of Pruning Methods for Decision

Tree Induction," Machine Learning, vol. 4, pp. 227-243, 1989.

[72] S. C. Misra, "Modeling Design/Coding Factors That Drive Maintainability

of Software Systems," Software Quality Control, vol. 13, pp. 297-320, 2005.

[73] J. D. Musa, Software Reliability Engineering: More Reliable Software Faster and

Cheaper: Authorhouse, 2004.

[74] I. Myrtveit and M. Shepperd, "Reliability and validity in comparative

studies of software prediction models," IEEE Transactions on Software

Engineering, vol. 31, pp. 380 - 391, 2005.

[75] D. Opitz and R. Maclin, "Popular Ensemble Methods: An Empirical

Study," Journal of Artificial Intelligence Research, vol. 11, pp. 169-198, 1999.

123

[76] D. W. Opitz and R. F. Maclin, "An empirical evaluation of bagging and

boosting for artificial neural networks," in International Joint Conference on

Neural Networks, 1997, pp. 1401-1405.

[77] D. W. Opitz and J. W. Shavlik, "Actively searching for an effective neural-

network ensemble," Connection Science, vol. 8, pp. 337-353, 1996.

[78] D. W. Opitz and J. W. Shavlik, "Generating Accurate and Diverse

Members of a Neural-Network Ensemble," Advances in Neural Information

Processing Systems, vol. 8, pp. 535--541, 1996.

[79] J. Park and I. W. Sandberg, "Universal approximation using radial-basis-

function networks," Neural Computation, vol. 3, pp. 246-257, 1991.

[80] T. Poggio and F. Girosi, "Networks for approximation and learning,"

Proceedings of the IEEE, vol. 78, pp. 1481-1497, 1990.

[81] A. A. Porter and R. W. Selby, "Empirically Guided Software Development

Using Metric-Based Classification Trees," IEEE Software, vol. 7, pp. 46-54,

1990.

[82] R. S. Pressman, Software engineering: a practitioner's approach (Sixth ed.):

McGraw-Hill, Inc., 1986.

[83] J. R. Quinlan, "Bagging, boosting, and c4.5," in Thirteenth National

Conference on Artificial Intelligence, 1996, pp. 725-730.

[84] J. R. Quinlan, C4.5: Programs for Machine Learning: Morgan Kaufmann

Publishers, 1993.

[85] R. J. Quinlan, "Learning with Continuous Classes," in 5th Australian Joint

Conference on Artificial Intelligence, Singapore, 1992, pp. 343-348.

[86] I. Rish, "An empirical study of the naive Bayes classifier," in Workshop on

Empirical Methods in Artificial Intelligence (IJCAI 2001), 2001.

124

[87] S. R. Safavian and D. Landgrebe, "A Survey of Decision Tree Classifier

Methodology," IEEE transactions on Systems, Man and Cybernetics, vol. 21,

pp. 660-674, 1991.

[88] R. E. Schapire, "The strength of weak learnability," Machine Learning, vol.

5, pp. 197-227, 1990.

[89] S. K. Shevade, S. S. Keerthi, C. Bhattacharyya, and K. R. K. Murthy,

"Improvements to the SMO Algorithm for SVM Regression," IEEE

Transactions on neural networks, vol. 11, pp. 1188-1193, 2000.

[90] Y. Shimshoni and N. Intrator, "Classification of seismic signals by

integrating ensembles of neural networks," IEEE Transactions on Signal

Processing, vol. 46, pp. 1194-1201, 1998.

[91] A. J. Smola and B. Schlkopf, "A tutorial on support vector regression,"

Statistics and Computing, vol. 14, pp. 199-222, 2004.

[92] P. Sollich, "Learning with Ensembles: How over-fitting can be useful,"

Advances in Neural Information Processing Systems, vol. 8, pp. 190-196, 1996.

[93] R. Subramanyam and M. S. Krishnan, "Empirical Analysis of CK Metrics

for Object-Oriented Design Complexity: Implications for Software

Defects," IEEE Transactions on Software Engineering, vol. 29, pp. 297 - 310,

2003.

[94] M.-H. Tang, M.-H. Kao, and M.-H. Chen, "An empirical study on object-

oriented metrics," in 6th International Symposium on Software Metrics, 1999,

p. 242.

[95] M. M. T. Thwin and T.-S. Quah, "Application of Neural Networks for

Software Quality Prediction Using Object-Oriented Metrics," Journal of

Systems and Software, vol. 76, pp. 147 - 156, 2005.

[96] V. Vapnik, The Nature of Statistical Learning Theory. New York: Springer,

1995.

125

[97] V. Vapnik, S. E. Golowich, and A. Smola, "Function Approximation,

Regression Estimation, and Signal Processing," in Advances in Neural

Information Processing Systems 9: MIT Press, 1997, pp. 281–287.

[98] L. Virine and M. Trumper, Project Decisions: The Art and Science

Management Concepts, 2008.

[99] S.-j. Wang, A. Mathew, Y. Chen, L.-f. Xi, L. Ma, and J. Lee, "Empirical

analysis of support vector machine ensemble classifiers," 2008.

[100] Y. Wang and I. H. Witten, "Induction of model trees for predicting

continuous classes," in Poster papers of the 9th European Conference on

Machine Learning, 1997.

[101] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and

Techniques, second ed. San Francisco: Morgan Kaufmann, 2005.

[102] H. Yan, Y. Jiang, J. Zheng, C. Peng, and Q. Li, "A multilayer perceptron-

based medical decision support system for heart disease diagnosis," Expert

Systems with Applications, vol. 30, pp. 272–281, 2003.

[103] L. Yu, K. K. Lai, and S. Wang, "Multistage RBF neural network ensemble

learning for exchange rates forecasting," Neurocomputing, vol. 71, pp. 3295-

3302, 2008.

[104] P. Yu, T. Systä, and H. A. Müller, "Predicting Fault-Proneness Using OO

Metrics: An Industrial Case Study," in 6th European Conference on Software

Maintenance and Reengineering, 2002, pp. 99 - 107.

[105] Y. Yuan and M. J. Shaw, "Induction of fuzzy decision trees," Fuzzy Sets and

Systems vol. 69, pp. 125-139, 1995.

[106] C.-X. Zhang, J.-S. Zhang, and G.-Y. Zhang, "An efficient modified boosting

method for solving classification problems," Journal of Computational and

Applied Mathematics, 2007.

126

[107] J. Zheng, "Predicting software reliability with neural network ensembles,"

Expert Systems with Applications, 2007.

[108] Y. Zhou and H. Leung, "Predicting object-oriented software

maintainability using multivariate adaptive regression splines," Journal of

Systems and Software, vol. 80, pp. 1349-1361, 2007.

[109] Z.-H. Zhou, J. Wu, and W. Tang, "Ensembling neural networks: many

could be better than all," Artificial Intelligence, vol. 137, pp. 239-263, 2002.

127

Appendix A – Detailed experiment

results

KC1 (classification) results

 BBN NB MLP RBF SVM DT

Actual Pred
icte
d

Proba
bility

Pred
icte
d

Prob
abilit
y

Pred
icte
d

Prob
abilit
y

Pred
icte
d

Prob
abilit
y

Pred
icte
d

Prob
abilit
y

Pred
icte
d

Prob
abilit
y

T F 0.914 T 0.003 T 0 T 0.305 F 0.619 T 0

T F 0.914 T 0.004 T 0.055 T 0.304 F 0.619 T 0

T T 0.42 T 0.064 T 0.078 T 0.37 F 0.619 T 0.125

T F 0.914 T 0.019 T 0.053 T 0.308 F 0.619 T 0

T T 0.42 T 0.11 T 0 T 0.338 F 0.619 T 0

T T 0.42 T 0.448 T 0.202 F 0.528 F 0.747 T 0.125

T T 0.42 T 0.007 T 0.055 T 0.304 F 0.619 F 0.727

T T 0.42 T 0.274 T 0.012 T 0.386 F 0.618 T 0

T F 0.914 F 0.984 T 0.089 F 0.936 F 0.619 F 0.857

T F 0.914 F 0.984 T 0.089 F 0.936 F 0.619 F 0.857

T T 0.42 F 1 F 0.992 F 0.939 F 0.612 F 0.857

F T 0.42 F 0.628 F 0.746 F 0.633 F 0.619 F 1

T T 0.42 F 0.774 T 0.172 T 0.345 F 0.615 T 0.3

F T 0.42 F 1 F 1 F 0.936 F 0.62 F 0.857

F T 0.471 F 0.876 T 0.146 F 0.575 T 0.2 T 0.414

T T 0.471 T 0.001 T 0.001 T 0.081 F 0.588 T 0.056

T T 0.471 T 0.048 T 0.008 T 0.097 F 0.588 T 0.056

F T 0.471 F 0.511 F 0.647 F 0.724 F 0.588 F 1

F F 0.984 F 0.876 F 0.98 F 0.811 F 0.588 F 1

F T 0.471 F 0.79 F 0.79 F 0.618 F 0.642 T 0.414

T T 0.471 F 0.846 T 0.186 F 0.541 F 0.598 T 0.414

F F 0.984 F 0.962 F 1 F 0.739 F 0.787 F 1

F F 0.984 F 0.962 F 1 F 0.739 F 0.787 F 1

F T 0.471 F 0.505 T 0.055 F 0.726 F 0.588 T 0.414

T T 0.471 T 0.372 T 0.01 F 0.601 T 0.357 T 0.056

T T 0.471 T 0.398 T 0.015 F 0.722 F 0.588 T 0.414

128

T T 0.471 T 0.408 T 0.02 F 0.681 F 0.588 T 0.414

T T 0.471 F 0.972 F 0.995 F 0.837 F 0.614 T 0.414

T T 0.462 F 0.507 F 0.827 F 0.736 F 0.584 T 0

F F 0.983 F 0.821 F 0.847 F 0.973 F 0.584 F 1

F F 0.983 F 0.93 F 0.788 F 0.927 F 0.697 F 1

T T 0.462 F 0.863 F 1 F 0.949 F 0.583 F 0.846

T T 0.462 F 0.91 F 0.999 F 0.861 F 0.584 F 1

F T 0.462 F 0.827 F 0.983 F 0.867 F 0.533 F 1

F T 0.462 F 0.829 T 0.302 F 0.975 F 0.548 F 0.846

F F 0.983 F 0.968 F 1 F 0.95 F 0.692 F 1

F T 0.462 F 0.887 F 1 F 0.793 F 0.587 F 0.8

F F 0.983 F 0.954 F 1 F 0.969 F 0.584 F 1

F F 0.983 F 0.9 F 0.997 F 0.889 F 0.796 F 1

T T 0.462 T 0.236 T 0.018 F 0.597 F 0.584 T 0.167

F T 0.462 F 0.753 T 0.415 F 0.975 F 0.584 F 0.846

T T 0.462 F 0.677 F 0.769 F 0.739 F 0.584 F 0.8

F T 0.375 F 0.93 F 0.996 F 0.837 F 0.557 T 0.414

T T 0.375 F 0.693 T 0.002 T 0.213 F 0.545 T 0.414

F T 0.375 F 0.549 T 0.318 F 0.748 T 0.45 F 0.615

T F 0.896 F 0.925 T 0.272 F 0.795 T 0.469 T 0.414

F F 0.896 F 0.925 T 0.272 F 0.795 T 0.469 T 0.414

T F 0.896 F 0.925 T 0.272 F 0.795 T 0.469 T 0.414

T T 0.375 T 0.032 T 0.017 T 0.049 F 0.557 F 0.615

F T 0.375 T 0.342 T 0.01 F 0.634 F 0.557 F 0.615

F F 0.98 T 0.002 T 0.11 T 0.02 F 0.557 F 1

T T 0.375 T 0.427 F 0.781 F 0.742 F 0.563 F 0.615

T T 0.375 T 0 T 0.096 T 0.019 F 0.557 T 0.414

F T 0.375 T 0.267 F 0.714 T 0.266 F 0.557 F 0.615

F T 0.375 F 0.605 F 0.978 F 0.739 F 0.557 F 0.615

F T 0.375 F 0.849 F 0.999 F 0.816 F 0.573 T 0.414

F F 0.507 F 0.882 F 0.937 F 0.722 F 0.714 T 0.382

F F 0.507 F 0.928 T 0.144 T 0.388 T 0.227 T 0.382

F F 0.985 F 0.946 F 0.999 F 0.664 F 0.832 F 1

F F 0.507 F 0.996 F 0.967 F 0.664 F 0.551 F 1

F F 0.507 T 0.019 T 0.157 T 0.145 F 0.551 T 0.111

F T 0.023 T 0.003 T 0.119 T 0.114 F 0.551 T 0

T F 0.507 T 0.019 T 0.422 T 0.137 F 0.551 T 0.111

F T 0.023 T 0.005 T 0.049 T 0.116 F 0.551 T 0

F T 0.023 T 0.005 T 0.049 T 0.116 F 0.551 T 0

F F 0.507 T 0.144 T 0.169 T 0.342 F 0.551 T 0.111

F F 0.507 T 0.302 T 0.213 F 0.538 F 0.551 F 0.708

129

F F 0.507 F 0.655 F 0.786 F 0.618 F 0.551 F 0.708

F T 0.023 T 0.107 T 0.056 T 0.233 F 0.551 T 0

F F 0.507 T 0.161 T 0.159 T 0.357 F 0.544 T 0.111

F T 0.476 F 0.675 F 0.745 F 0.735 F 0.641 F 0.603

F F 0.984 F 0.831 F 0.97 F 0.733 F 0.595 F 1

F F 0.984 F 0.941 F 0.931 F 0.778 F 0.61 F 1

F F 0.984 F 0.938 F 0.942 F 0.736 F 0.598 F 1

F F 0.984 F 0.997 F 0.991 T 0.091 F 0.797 F 1

T T 0.476 T 0.243 T 0.104 F 0.646 F 0.595 F 0.603

F T 0.476 F 0.664 F 0.766 F 0.728 F 0.595 F 0.603

F T 0.476 T 0 T 0.066 T 0.052 F 0.595 T 0

T T 0.476 T 0.008 T 0.003 T 0.066 F 0.595 T 0

T T 0.476 T 0.149 T 0.007 T 0.186 F 0.595 F 0.603

T T 0.476 T 0.215 T 0.007 T 0.308 F 0.595 F 0.603

T T 0.476 T 0.359 T 0.144 F 0.69 F 0.631 T 0.071

T T 0.476 F 0.816 T 0.166 T 0.474 F 0.585 F 0.603

T T 0.476 F 0.884 T 0.169 F 0.507 T 0.485 F 0.603

T F 0.501 F 0.635 F 0.833 F 0.756 F 0.611 F 0.607

T F 0.501 F 0.952 T 0.449 F 0.75 T 0.446 F 0.607

T F 0.501 F 0.968 T 0.489 F 0.768 F 0.816 F 0.607

F F 0.501 F 0.89 F 0.62 F 0.731 F 0.611 F 0.607

F F 0.985 F 0.968 F 0.988 F 0.776 F 0.617 F 1

T F 0.501 T 0.196 T 0.003 F 0.697 F 0.611 T 0

T F 0.501 T 0.174 T 0.001 F 0.534 F 0.611 F 0.737

T F 0.501 T 0.277 T 0.003 F 0.699 F 0.611 T 0

T F 0.501 T 0.344 T 0.28 F 0.684 F 0.611 T 0.111

T F 0.501 F 0.76 T 0.239 F 0.569 T 0.248 F 0.607

F F 0.501 F 0.703 F 0.875 F 0.776 F 0.611 T 0.111

T F 0.501 F 0.567 T 0.003 T 0.175 F 0.611 T 0

T F 0.501 F 0.825 T 0.239 F 0.691 F 0.612 F 0.607

T F 0.501 F 0.858 T 0.065 F 0.632 F 0.602 F 0.607

F T 0.425 F 0.784 F 0.784 F 0.665 F 0.56 F 0.56

F T 0.425 T 0.367 T 0.367 F 0.748 F 0.577 T 0.1

F T 0.425 F 0.81 F 0.81 F 0.534 F 0.555 F 0.556

F F 0.985 F 0.905 F 0.905 F 0.748 F 0.568 F 1

T T 0.425 T 0.166 T 0.166 F 0.655 F 0.553 F 0.556

F T 0.425 T 0.238 T 0.238 F 0.744 F 0.555 F 0.556

T T 0.425 T 0.409 T 0.409 T 0.445 F 0.555 F 0.556

F T 0.425 T 0.377 T 0.377 F 0.747 F 0.554 F 0.556

T T 0.425 F 0.708 F 0.708 F 0.746 F 0.555 F 0.556

F T 0.425 F 0.989 F 0.989 T 0.469 T 0.446 T 0.105

130

F T 0.425 T 0.29 T 0.29 F 0.714 F 0.555 F 0.556

F T 0.425 F 0.979 F 0.979 F 0.748 F 0.555 F 0.556

F F 0.985 F 0.969 F 0.969 F 0.773 F 0.555 F 1

F T 0.425 F 0.787 F 0.787 F 0.767 F 0.559 F 0.56

F T 0.393 F 0.565 F 0.776 F 0.799 F 0.56 T 0.2

F T 0.393 F 0.511 T 0.062 F 0.523 F 0.629 T 0.059

F T 0.393 T 0.451 F 0.504 F 0.802 F 0.559 F 1

T F 0.843 F 0.907 T 0.198 F 0.741 T 0.402 T 0.3

F F 0.978 F 0.992 F 0.973 F 0.521 F 0.727 F 1

F F 0.997 F 0.94 F 0.994 F 0.719 F 0.841 F 1

F F 0.997 F 0.94 F 0.994 F 0.719 F 0.841 F 1

T T 0.393 T 0.178 T 0.364 F 0.722 F 0.559 F 1

T T 0.393 T 0.317 T 0.004 T 0.347 T 0.251 T 0.059

F T 0.393 T 0.392 T 0.005 T 0.269 F 0.557 T 0.059

F F 0.978 F 0.899 F 0.982 F 0.811 F 0.559 F 1

T T 0.393 T 0.465 F 0.94 F 0.746 F 0.659 F 1

F F 0.978 F 0.876 F 0.999 F 0.775 F 0.577 F 1

T T 0.393 T 0.144 T 0.015 T 0.145 F 0.559 F 0.818

T T 0.453 T 0.459 T 0.024 F 0.516 F 0.544 T 0.125

T T 0.453 F 0.71 T 0.328 T 0.418 T 0.34 T 0.125

F T 0.453 F 0.85 F 0.974 F 0.773 F 0.561 F 0.769

T T 0.453 F 0.722 F 0.944 F 0.771 F 0.546 F 0.71

F T 0.453 F 0.733 F 0.91 F 0.666 F 0.534 F 0.71

F T 0.453 F 0.878 F 0.736 T 0.314 F 0.548 F 0.769

F F 0.978 F 0.935 F 0.998 F 0.666 F 0.554 F 1

F T 0.453 F 0.837 F 1 F 0.77 F 0.548 F 0.71

F F 0.978 F 0.932 F 0.997 F 0.624 F 0.554 F 1

F F 0.978 F 0.898 F 0.839 F 0.719 F 0.549 F 1

F F 0.978 F 0.88 F 0.994 F 0.772 F 0.781 F 1

F F 0.978 F 0.914 F 0.941 F 0.649 F 0.671 F 1

F F 0.978 F 0.914 F 0.941 F 0.649 F 0.671 F 1

F F 0.978 F 0.939 F 0.978 F 0.772 F 0.548 F 1

F F 0.978 F 0.906 F 0.996 F 0.667 F 0.781 F 1

F F 0.978 T 0.009 F 0.999 T 0.182 F 0.548 F 1

F F 0.978 F 0.591 F 1 F 0.667 F 0.565 F 1

F F 0.978 F 0.855 F 0.611 F 0.773 F 0.548 F 1

F F 0.978 F 0.935 F 0.998 F 0.666 F 0.554 F 1

 Linear Ensemble

 Majority Voting Average
Probability

Best Weight

131

Actual Accuracy Accuracy Accuracy

T T 0.370333333 T SVM 0 F T

T T 0.3795 T 0 F T

T T 0.342833333 T 0.125 F T

T T 0.382333333 T 0 F T

T T 0.311333333 T 0 F T

T T 0.453833333 T 0.125 F T

T T 0.418833333 T 0.727 F T

T T 0.348666667 T 0 F T

T F 0.796666667 F 0.857 F F

T F 0.796666667 F 0.857 F F

T F 0.868 F 0.857 F F

F F 0.737833333 F 1 F F

T T 0.501833333 T 0.3 F T

F F 0.868833333 F 0.857 F F

F T 0.413666667 T SVM 0.414 T T

T T 0.268333333 T 0.056 F T

T T 0.28 T 0.056 F T

F F 0.7255 F 1 F F

F F 0.941833333 F 1 F F

F F 0.6805 F 0.414 F F

T T 0.576333333 F 0.414 F T

F F 0.9475 F 1 F F

F F 0.9475 F 1 F F

F T 0.5285 T 0.414 F T

T T 0.251666667 T 0.056 T T

T T 0.503333333 T 0.414 F T

T T 0.499 T 0.414 F T

T F 0.7815 F 0.414 F F

T F 0.588666667 F SVM 0 F T

F F 0.937333333 F 1 F F

F F 0.938 F 1 F F

T F 0.853333333 F 0.846 F F

T F 0.872 F 1 F F

F F 0.8565 F 1 F F

F F 0.735666667 F 0.846 F F

F F 0.9835 F 1 F F

F F 0.823666667 F 0.8 F F

F F 0.984333333 F 1 F F

F F 0.9615 F 1 F F

T T 0.413333333 T 0.167 F T

132

F F 0.741833333 F 0.846 F F

T F 0.741166667 F 0.8 F F

F F 0.758666667 F SVM 0.414 F F

T T 0.4495 T 0.414 F T

F T 0.434166667 F 0.615 T F

T T 0.550333333 F 0.414 T F

F T 0.550333333 F 0.414 T F

T T 0.550333333 F 0.414 T F

T T 0.348 T 0.615 F T

F T 0.496 T 0.615 F T

F T 0.518666667 T 1 F T

T F 0.656666667 F 0.615 F F

T T 0.317333333 T 0.414 F T

F T 0.5395 T 0.615 F F

F F 0.718666667 F 0.615 F F

F F 0.742166667 F 0.414 F F

F F 0.738333333 F SVM 0.382 F F

F T 0.3915 T 0.382 T T

F F 0.932333333 F 1 F F

F F 0.855666667 F 1 F F

F T 0.323166667 T 0.111 F T

F T 0.209833333 T 0 F T

T T 0.366 T 0.111 F T

F T 0.198833333 T 0 F T

F T 0.198833333 T 0 F T

F T 0.378833333 T 0.111 F T

F F 0.544666667 T 0.708 F T

F F 0.712333333 F 0.708 F F

F T 0.2365 T 0 F T

F T 0.3825 T 0.111 F T

F F 0.705666667 F SVM 0.603 F F

F F 0.919666667 F 1 F F

F F 0.939 F 1 F F

F F 0.933333333 F 1 F F

F F 0.843833333 F 1 F F

T T 0.512 T 0.603 F T

F F 0.706166667 F 0.603 F F

F T 0.265666667 T 0 F T

T T 0.258833333 T 0 F T

T T 0.4035 T 0.603 F T

T T 0.434833333 T 0.603 F T

133

T T 0.456666667 T 0.071 F T

T T 0.589166667 F 0.603 F T

T T 0.439833333 F 0.603 T T

T F 0.722 F SVM 0.607 F F

T F 0.709833333 F 0.607 T F

T F 0.722166667 F 0.607 F F

F F 0.724833333 F 0.607 F F

F F 0.952833333 F 1 F F

T T 0.3995 T 0 F T

T F 0.491166667 T 0.737 F T

T T 0.413333333 T 0 F T

T T 0.486666667 T 0.111 F T

T F 0.446 T 0.607 T T

F F 0.661 F 0.111 F F

T T 0.374333333 T 0 F T

T F 0.643833333 F 0.607 F F

T F 0.6105 F 0.607 F T

F F 0.703 F SVM 0.56 F F

F T 0.501166667 T 0.1 F T

F F 0.689166667 F 0.556 F F

F F 0.923833333 F 1 F F

T T 0.494666667 T 0.556 F T

F T 0.5335 T 0.556 F T

T T 0.540666667 T 0.556 F T

F T 0.580333333 F 0.556 F F

T F 0.6905 F 0.556 F F

F T 0.496166667 F 0.105 T F

F T 0.545833333 T 0.556 F T

F F 0.781166667 F 0.556 F F

F F 0.949333333 F 1 F F

F F 0.721 F 0.56 F F

F F 0.622166667 F DT 0.2 T F

F T 0.424666667 T 0.059 T T

F F 0.691666667 F 1 F F

T T 0.498166667 F 0.3 T F

F F 0.910666667 F 1 F F

F F 0.941666667 F 1 F F

F F 0.941666667 F 1 F F

T T 0.6095 F 1 F F

T T 0.186666667 T 0.059 T T

F T 0.353 T 0.059 T T

134

F F 0.945 F 1 F F

T F 0.757333333 F 1 F F

F F 0.938 F 1 F F

T T 0.419166667 T 0.818 F T

T T 0.4295 T SVM 0.544 T T

T T 0.339 T 0.34 T T

F F 0.803166667 F 0.561 F F

T F 0.766666667 F 0.546 F F

F F 0.745333333 F 0.534 F F

F F 0.691666667 F 0.548 F F

F F 0.9295 F 0.554 F F

F F 0.795 F 0.548 F F

F F 0.921833333 F 0.554 F F

F F 0.905666667 F 0.549 F F

F F 0.937333333 F 0.781 F F

F F 0.913666667 F 0.671 F F

F F 0.913666667 F 0.671 F F

F F 0.9445 F 0.548 F F

F F 0.9245 F 0.781 F F

F F 0.694666667 F 0.548 F F

F F 0.872666667 F 0.565 F F

F F 0.8695 F 0.548 F F

F F 0.9295 F 0.554 F F

BBN NB MLP RBF SVM DT

Predicted Predicted Predicted Predicted Predicted Predicted Majority Voting

F T T T F T T

F T T T F T T

T T T T F T T

F T T T F T T

T T T T F T T

T T T F F T T

T T T T F F T

T T T T F T T

F F T F F F F

F F T F F F F

T F F F F F F

T F F F F F F

T F T T F T T

T F F F F F F

T F T F T T T

135

T T T T F T T

T T T T F T T

T F F F F F F

F F F F F F F

T F F F F T F

T F T F F T T

F F F F F F F

F F F F F F F

T F T F F T T

T T T F T T T

T T T F F T T

T T T F F T T

T F F F F T F

T F F F F T F

F F F F F F F

F F F F F F F

T F F F F F F

T F F F F F F

T F F F F F F

T F T F F F F

F F F F F F F

T F F F F F F

F F F F F F F

F F F F F F F

T T T F F T T

T F T F F F F

T F F F F F F

T F F F F T F

T F T T F T T

T F T F T F T

F F T F T T T

F F T F T T T

F F T F T T T

T T T T F F T

T T T F F F T

F T T T F F T

T T F F F F F

T T T T F T T

T T F T F F T

T F F F F F F

T F F F F T F

136

F F F F F T F

F F T T T T T

F F F F F F F

F F F F F F F

F T T T F T T

T T T T F T T

F T T T F T T

T T T T F T T

T T T T F T T

F T T T F T T

F T T F F F F

F F F F F F F

T T T T F T T

F T T T F T T

T F F F F F F

F F F F F F F

F F F F F F F

F F F F F F F

F F F T F F F

T T T F F F T

T F F F F F F

T T T T F T T

T T T T F T T

T T T T F F T

T T T T F F T

T T T F F T T

T F T T F F T

T F T F T F T

F F F F F F F

F F T F T F F

F F T F F F F

F F F F F F F

F F F F F F F

F T T F F T T

F T T F F F F

F T T F F T T

F T T F F T T

F F T F T F F

F F F F F T F

F F T T F T T

F F T F F F F

137

F F T F F F F

T F F F F F F

T T T F F T T

T F F F F F F

F F F F F F F

T T T F F F T

T T T F F F T

T T T T F F T

T T T F F F T

T F F F F F F

T F F T T T T

T T T F F F T

T F F F F F F

F F F F F F F

T F F F F F F

T F F F F T F

T F T F F T T

T T F F F F F

F F T F T T T

F F F F F F F

F F F F F F F

F F F F F F F

T T T F F F T

T T T T T T T

T T T T F T T

F F F F F F F

T T F F F F F

F F F F F F F

T T T T F F T

T T T F F T T

T F T T T T T

T F F F F F F

T F F F F F F

T F F F F F F

T F F T F F F

F F F F F F F

T F F F F F F

F F F F F F F

F F F F F F F

F F F F F F F

F F F F F F F

138

F F F F F F F

F F F F F F F

F F F F F F F

F T F T F F F

F F F F F F F

F F F F F F F

F F F F F F F

BBN NB MLP RBF SVM DT

Probabilit
y

Probabilit
y

Probabilit
y

Probabilit
y

Probabilit
y

Probabilit
y

Average prob

0.914 0.003 0 0.305 0.619 0 0.306833333 T

0.914 0.004 0.055 0.304 0.619 0 0.316 T

0.42 0.064 0.078 0.37 0.619 0.125 0.279333333 T

0.914 0.019 0.053 0.308 0.619 0 0.318833333 T

0.42 0.11 0 0.338 0.619 0 0.247833333 T

0.42 0.448 0.202 0.528 0.747 0.125 0.411666667 T

0.42 0.007 0.055 0.304 0.619 0.727 0.355333333 T

0.42 0.274 0.012 0.386 0.618 0 0.285 T

0.914 0.984 0.089 0.936 0.619 0.857 0.733166667 F

0.914 0.984 0.089 0.936 0.619 0.857 0.733166667 F

0.42 1 0.992 0.939 0.612 0.857 0.803333333 F

0.42 0.628 0.746 0.633 0.619 1 0.674333333 F

0.42 0.774 0.172 0.345 0.615 0.3 0.437666667 T

0.42 1 1 0.936 0.62 0.857 0.8055 F

0.471 0.876 0.146 0.575 0.2 0.414 0.447 T

0.471 0.001 0.001 0.081 0.588 0.056 0.199666667 T

0.471 0.048 0.008 0.097 0.588 0.056 0.211333333 T

0.471 0.511 0.647 0.724 0.588 1 0.656833333 F

0.984 0.876 0.98 0.811 0.588 1 0.873166667 F

0.471 0.79 0.79 0.618 0.642 0.414 0.620833333 F

0.471 0.846 0.186 0.541 0.598 0.414 0.509333333 F

0.984 0.962 1 0.739 0.787 1 0.912 F

0.984 0.962 1 0.739 0.787 1 0.912 F

0.471 0.505 0.055 0.726 0.588 0.414 0.459833333 T

0.471 0.372 0.01 0.601 0.357 0.056 0.311166667 T

0.471 0.398 0.015 0.722 0.588 0.414 0.434666667 T

0.471 0.408 0.02 0.681 0.588 0.414 0.430333333 T

0.471 0.972 0.995 0.837 0.614 0.414 0.717166667 F

0.462 0.507 0.827 0.736 0.584 0 0.519333333 F

0.983 0.821 0.847 0.973 0.584 1 0.868 F

139

0.983 0.93 0.788 0.927 0.697 1 0.8875 F

0.462 0.863 1 0.949 0.583 0.846 0.783833333 F

0.462 0.91 0.999 0.861 0.584 1 0.802666667 F

0.462 0.827 0.983 0.867 0.533 1 0.778666667 F

0.462 0.829 0.302 0.975 0.548 0.846 0.660333333 F

0.983 0.968 1 0.95 0.692 1 0.932166667 F

0.462 0.887 1 0.793 0.587 0.8 0.754833333 F

0.983 0.954 1 0.969 0.584 1 0.915 F

0.983 0.9 0.997 0.889 0.796 1 0.9275 F

0.462 0.236 0.018 0.597 0.584 0.167 0.344 T

0.462 0.753 0.415 0.975 0.584 0.846 0.6725 F

0.462 0.677 0.769 0.739 0.584 0.8 0.671833333 F

0.375 0.93 0.996 0.837 0.557 0.414 0.684833333 F

0.375 0.693 0.002 0.213 0.545 0.414 0.373666667 T

0.375 0.549 0.318 0.748 0.45 0.615 0.509166667 F

0.896 0.925 0.272 0.795 0.469 0.414 0.6285 F

0.896 0.925 0.272 0.795 0.469 0.414 0.6285 F

0.896 0.925 0.272 0.795 0.469 0.414 0.6285 F

0.375 0.032 0.017 0.049 0.557 0.615 0.274166667 T

0.375 0.342 0.01 0.634 0.557 0.615 0.422166667 T

0.98 0.002 0.11 0.02 0.557 1 0.444833333 T

0.375 0.427 0.781 0.742 0.563 0.615 0.583833333 F

0.375 0 0.096 0.019 0.557 0.414 0.2435 T

0.375 0.267 0.714 0.266 0.557 0.615 0.465666667 T

0.375 0.605 0.978 0.739 0.557 0.615 0.644833333 F

0.375 0.849 0.999 0.816 0.573 0.414 0.671 F

0.507 0.882 0.937 0.722 0.714 0.382 0.690666667 F

0.507 0.928 0.144 0.388 0.227 0.382 0.429333333 T

0.985 0.946 0.999 0.664 0.832 1 0.904333333 F

0.507 0.996 0.967 0.664 0.551 1 0.780833333 F

0.507 0.019 0.157 0.145 0.551 0.111 0.248333333 T

0.023 0.003 0.119 0.114 0.551 0 0.135 T

0.507 0.019 0.422 0.137 0.551 0.111 0.291166667 T

0.023 0.005 0.049 0.116 0.551 0 0.124 T

0.023 0.005 0.049 0.116 0.551 0 0.124 T

0.507 0.144 0.169 0.342 0.551 0.111 0.304 T

0.507 0.302 0.213 0.538 0.551 0.708 0.469833333 T

0.507 0.655 0.786 0.618 0.551 0.708 0.6375 F

0.023 0.107 0.056 0.233 0.551 0 0.161666667 T

0.507 0.161 0.159 0.357 0.544 0.111 0.3065 T

0.476 0.675 0.745 0.735 0.641 0.603 0.645833333 F

140

0.984 0.831 0.97 0.733 0.595 1 0.852166667 F

0.984 0.941 0.931 0.778 0.61 1 0.874 F

0.984 0.938 0.942 0.736 0.598 1 0.866333333 F

0.984 0.997 0.991 0.091 0.797 1 0.81 F

0.476 0.243 0.104 0.646 0.595 0.603 0.4445 T

0.476 0.664 0.766 0.728 0.595 0.603 0.638666667 F

0.476 0 0.066 0.052 0.595 0 0.198166667 T

0.476 0.008 0.003 0.066 0.595 0 0.191333333 T

0.476 0.149 0.007 0.186 0.595 0.603 0.336 T

0.476 0.215 0.007 0.308 0.595 0.603 0.367333333 T

0.476 0.359 0.144 0.69 0.631 0.071 0.395166667 T

0.476 0.816 0.166 0.474 0.585 0.603 0.52 F

0.476 0.884 0.169 0.507 0.485 0.603 0.520666667 F

0.501 0.635 0.833 0.756 0.611 0.607 0.657166667 F

0.501 0.952 0.449 0.75 0.446 0.607 0.6175 F

0.501 0.968 0.489 0.768 0.816 0.607 0.6915 F

0.501 0.89 0.62 0.731 0.611 0.607 0.66 F

0.985 0.968 0.988 0.776 0.617 1 0.889 F

0.501 0.196 0.003 0.697 0.611 0 0.334666667 T

0.501 0.174 0.001 0.534 0.611 0.737 0.426333333 T

0.501 0.277 0.003 0.699 0.611 0 0.3485 T

0.501 0.344 0.28 0.684 0.611 0.111 0.421833333 T

0.501 0.76 0.239 0.569 0.248 0.607 0.487333333 T

0.501 0.703 0.875 0.776 0.611 0.111 0.596166667 F

0.501 0.567 0.003 0.175 0.611 0 0.3095 T

0.501 0.825 0.239 0.691 0.612 0.607 0.579166667 F

0.501 0.858 0.065 0.632 0.602 0.607 0.544166667 F

0.425 0.784 0.784 0.665 0.56 0.56 0.629666667 F

0.425 0.367 0.367 0.748 0.577 0.1 0.430666667 T

0.425 0.81 0.81 0.534 0.555 0.556 0.615 F

0.985 0.905 0.905 0.748 0.568 1 0.851833333 F

0.425 0.166 0.166 0.655 0.553 0.556 0.420166667 T

0.425 0.238 0.238 0.744 0.555 0.556 0.459333333 T

0.425 0.409 0.409 0.445 0.555 0.556 0.4665 T

0.425 0.377 0.377 0.747 0.554 0.556 0.506 F

0.425 0.708 0.708 0.746 0.555 0.556 0.616333333 F

0.425 0.989 0.989 0.469 0.446 0.105 0.5705 F

0.425 0.29 0.29 0.714 0.555 0.556 0.471666667 T

0.425 0.979 0.979 0.748 0.555 0.556 0.707 F

0.985 0.969 0.969 0.773 0.555 1 0.875166667 F

0.425 0.787 0.787 0.767 0.559 0.56 0.6475 F

141

0.393 0.565 0.776 0.799 0.56 0.2 0.548833333 F

0.393 0.511 0.062 0.523 0.629 0.059 0.362833333 T

0.393 0.451 0.504 0.802 0.559 1 0.618166667 F

0.843 0.907 0.198 0.741 0.402 0.3 0.565166667 F

0.978 0.992 0.973 0.521 0.727 1 0.865166667 F

0.997 0.94 0.994 0.719 0.841 1 0.915166667 F

0.997 0.94 0.994 0.719 0.841 1 0.915166667 F

0.393 0.178 0.364 0.722 0.559 1 0.536 F

0.393 0.317 0.004 0.347 0.251 0.059 0.2285 T

0.393 0.392 0.005 0.269 0.557 0.059 0.279166667 T

0.978 0.899 0.982 0.811 0.559 1 0.8715 F

0.393 0.465 0.94 0.746 0.659 1 0.7005 F

0.978 0.876 0.999 0.775 0.577 1 0.8675 F

0.393 0.144 0.015 0.145 0.559 0.818 0.345666667 T

0.453 0.459 0.024 0.516 0.544 0.125 0.3535 T

0.453 0.71 0.328 0.418 0.34 0.125 0.395666667 T

0.453 0.85 0.974 0.773 0.561 0.769 0.73 F

0.453 0.722 0.944 0.771 0.546 0.71 0.691 F

0.453 0.733 0.91 0.666 0.534 0.71 0.667666667 F

0.453 0.878 0.736 0.314 0.548 0.769 0.616333333 F

0.978 0.935 0.998 0.666 0.554 1 0.855166667 F

0.453 0.837 1 0.77 0.548 0.71 0.719666667 F

0.978 0.932 0.997 0.624 0.554 1 0.8475 F

0.978 0.898 0.839 0.719 0.549 1 0.8305 F

0.978 0.88 0.994 0.772 0.781 1 0.900833333 F

0.978 0.914 0.941 0.649 0.671 1 0.858833333 F

0.978 0.914 0.941 0.649 0.671 1 0.858833333 F

0.978 0.939 0.978 0.772 0.548 1 0.869166667 F

0.978 0.906 0.996 0.667 0.781 1 0.888 F

0.978 0.009 0.999 0.182 0.548 1 0.619333333 F

0.978 0.591 1 0.667 0.565 1 0.800166667 F

0.978 0.855 0.611 0.773 0.548 1 0.794166667 F

0.978 0.935 0.998 0.666 0.554 1 0.855166667 F

 Train set#

Accura
cy

1 2 3 4 5 6 7 8 9 10

BBN 66.412
21

64.122
14

64.122
14

71.755
73

70.992
37

63.358
78

62.595
42

67.938
93

69.465
65

62.698
41

NB 65.648
85

67.938
93

70.992
37

73.282
44

70.992
37

67.938
93

72.519
08

71.755
73

71.755
73

69.841
27

MLP 90 89.312 88.549 93.893 91.603 89.312 90.076 91.603 90.076 87.301

142

98 62 13 05 98 34 05 34 59

RBF 71.755
73

71.755
73

80.152
67

77.862
6

76.335
88

77.862
6

72.519
08

75.572
52

71.755
73

71.428
57

SVM 97.709
92

98.473
28

97.709
92

97.709
92

98.473
28

97.709
92

90.839
69

96.946
56

64.122
14

96.825
4

DT 85.496
18

82.442
75

89.312
98

77.099
24

83.206
11

77.099
24

78.625
95

74.045
8

90.839
69

83.333
33

 Train set#

Rankin
g

1 2 3 4 5 6 7 8 9 10

BBN 2 1 1 1 1 1 1 1 2 1

NB 1 2 2 2 2 2 2 2 3 2

MLP 5 5 4 5 5 5 5 5 5 5

RBF 3 3 3 4 3 4 3 4 4 3

SVM 6 6 6 6 6 6 6 6 1 6

DT 4 4 5 3 4 3 4 3 6 4

BBN Wei
ght

NB Wei
ght

MLP Wei
ght

RBF Wei
ght

SVM Wei
ght

DT Wei
ght

Total Predi
ction

0.91
4

2 0.00
3

1 0 5 0.30
5

3 0.61
9

6 0 4 0.30
7619

T

0.91
4

2 0.00
4

1 0.05
5

5 0.30
4

3 0.61
9

6 0 4 0.32
0619

T

0.42 2 0.06
4

1 0.07
8

5 0.37 3 0.61
9

6 0.12
5

4 0.31
5143

T

0.91
4

2 0.01
9

1 0.05
3

5 0.30
8

3 0.61
9

6 0 4 0.32
1429

T

0.42 2 0.11 1 0 5 0.33
8

3 0.61
9

6 0 4 0.27
0381

T

0.42 2 0.44
8

1 0.20
2

5 0.52
8

3 0.74
7

6 0.12
5

4 0.42
2095

T

0.42 2 0.00
7

1 0.05
5

5 0.30
4

3 0.61
9

6 0.72
7

4 0.41
219

T

0.42 2 0.27
4

1 0.01
2

5 0.38
6

3 0.61
8

6 0 4 0.28
7619

T

0.91
4

2 0.98
4

1 0.08
9

5 0.93
6

3 0.61
9

6 0.85
7

4 0.62
8905

F

0.91
4

2 0.98
4

1 0.08
9

5 0.93
6

3 0.61
9

6 0.85
7

4 0.62
8905

F

0.42 2 1 1 0.99
2

5 0.93
9

3 0.61
2

6 0.85
7

4 0.79
6048

F

0.42 2 0.62
8

1 0.74
6

5 0.63
3

3 0.61
9

6 1 4 0.70
5286

F

0.42 2 0.77
4

1 0.17
2

5 0.34
5

3 0.61
5

6 0.3 4 0.39
9952

T

0.42 2 1 1 1 5 0.93 3 0.62 6 0.85 4 0.79 F

143

6 7 981

0.47
1

1 0.87
6

2 0.14
6

5 0.57
5

3 0.2 6 0.41
4

4 0.35
8762

T

0.47
1

1 0.00
1

2 0.00
1

5 0.08
1

3 0.58
8

6 0.05
6

4 0.21
3

T

0.47
1

1 0.04
8

2 0.00
8

5 0.09
7

3 0.58
8

6 0.05
6

4 0.22
1429

T

0.47
1

1 0.51
1

2 0.64
7

5 0.72
4

3 0.58
8

6 1 4 0.68
7048

F

0.98
4

1 0.87
6

2 0.98 5 0.81
1

3 0.58
8

6 1 4 0.83
7952

F

0.47
1

1 0.79 2 0.79 5 0.61
8

3 0.64
2

6 0.41
4

4 0.63
6333

F

0.47
1

1 0.84
6

2 0.18
6

5 0.54
1

3 0.59
8

6 0.41
4

4 0.47
4286

T

0.98
4

1 0.96
2

2 1 5 0.73
9

3 0.78
7

6 1 4 0.89
7476

F

0.98
4

1 0.96
2

2 1 5 0.73
9

3 0.78
7

6 1 4 0.89
7476

F

0.47
1

1 0.50
5

2 0.05
5

5 0.72
6

3 0.58
8

6 0.41
4

4 0.43
419

T

0.47
1

1 0.37
2

2 0.01 5 0.60
1

3 0.35
7

6 0.05
6

4 0.25
8762

T

0.47
1

1 0.39
8

2 0.01
5

5 0.72
2

3 0.58
8

6 0.41
4

4 0.41
3905

T

0.47
1

1 0.40
8

2 0.02 5 0.68
1

3 0.58
8

6 0.41
4

4 0.41
019

T

0.47
1

1 0.97
2

2 0.99
5

5 0.83
7

3 0.61
4

6 0.41
4

4 0.72
5762

F

0.46
2

1 0.50
7

2 0.82
7

4 0.73
6

3 0.58
4

6 0 5 0.49
981

T

0.98
3

1 0.82
1

2 0.84
7

4 0.97
3

3 0.58
4

6 1 5 0.83
0286

F

0.98
3

1 0.93 2 0.78
8

4 0.92
7

3 0.69
7

6 1 5 0.85
5143

F

0.46
2

1 0.86
3

2 1 4 0.94
9

3 0.58
3

6 0.84
6

5 0.79
8238

F

0.46
2

1 0.91 2 0.99
9

4 0.86
1

3 0.58
4

6 1 5 0.82
6905

F

0.46
2

1 0.82
7

2 0.98
3

4 0.86
7

3 0.53
3

6 1 5 0.80
2238

F

0.46
2

1 0.82
9

2 0.30
2

4 0.97
5

3 0.54
8

6 0.84
6

5 0.65
5762

F

0.98
3

1 0.96
8

2 1 4 0.95 3 0.69
2

6 1 5 0.90
1

F

0.46
2

1 0.88
7

2 1 4 0.79
3

3 0.58
7

6 0.8 5 0.76
8429

F

0.98
3

1 0.95
4

2 1 4 0.96
9

3 0.58
4

6 1 5 0.87
1524

F

0.98
3

1 0.9 2 0.99
7

4 0.88
9

3 0.79
6

6 1 5 0.91
4952

F

144

0.46
2

1 0.23
6

2 0.01
8

4 0.59
7

3 0.58
4

6 0.16
7

5 0.33
981

T

0.46
2

1 0.75
3

2 0.41
5

4 0.97
5

3 0.58
4

6 0.84
6

5 0.68
0333

F

0.46
2

1 0.67
7

2 0.76
9

4 0.73
9

3 0.58
4

6 0.8 5 0.69
5857

F

0.37
5

1 0.93 2 0.99
6

5 0.83
7

4 0.55
7

6 0.41
4

3 0.72
1286

F

0.37
5

1 0.69
3

2 0.00
2

5 0.21
3

4 0.54
5

6 0.41
4

3 0.33
9762

T

0.37
5

1 0.54
9

2 0.31
8

5 0.74
8

4 0.45 6 0.61
5

3 0.50
4762

F

0.89
6

1 0.92
5

2 0.27
2

5 0.79
5

4 0.46
9

6 0.41
4

3 0.54
0095

F

0.89
6

1 0.92
5

2 0.27
2

5 0.79
5

4 0.46
9

6 0.41
4

3 0.54
0095

F

0.89
6

1 0.92
5

2 0.27
2

5 0.79
5

4 0.46
9

6 0.41
4

3 0.54
0095

F

0.37
5

1 0.03
2

2 0.01
7

5 0.04
9

4 0.55
7

6 0.61
5

3 0.28
1286

T

0.37
5

1 0.34
2

2 0.01 5 0.63
4

4 0.55
7

6 0.61
5

3 0.42
0571

T

0.98 1 0.00
2

2 0.11 5 0.02 4 0.55
7

6 1 3 0.37
8857

T

0.37
5

1 0.42
7

2 0.78
1

5 0.74
2

4 0.56
3

6 0.61
5

3 0.63
4524

F

0.37
5

1 0 2 0.09
6

5 0.01
9

4 0.55
7

6 0.41
4

3 0.26
2619

T

0.37
5

1 0.26
7

2 0.71
4

5 0.26
6

4 0.55
7

6 0.61
5

3 0.51
0952

F

0.37
5

1 0.60
5

2 0.97
8

5 0.73
9

4 0.55
7

6 0.61
5

3 0.69
6095

F

0.37
5

1 0.84
9

2 0.99
9

5 0.81
6

4 0.57
3

6 0.41
4

3 0.71
4857

F

0.50
7

1 0.88
2

2 0.93
7

5 0.72
2

3 0.71
4

6 0.38
2

4 0.71
1143

F

0.50
7

1 0.92
8

2 0.14
4

5 0.38
8

3 0.22
7

6 0.38
2

4 0.33
9857

T

0.98
5

1 0.94
6

2 0.99
9

5 0.66
4

3 0.83
2

6 1 4 0.89
7905

F

0.50
7

1 0.99
6

2 0.96
7

5 0.66
4

3 0.55
1

6 1 4 0.79
2

F

0.50
7

1 0.01
9

2 0.15
7

5 0.14
5

3 0.55
1

6 0.11
1

4 0.26
2619

T

0.02
3

1 0.00
3

2 0.11
9

5 0.11
4

3 0.55
1

6 0 4 0.20
3429

T

0.50
7

1 0.01
9

2 0.42
2

5 0.13
7

3 0.55
1

6 0.11
1

4 0.32
4571

T

0.02
3

1 0.00
5

2 0.04
9

5 0.11
6

3 0.55
1

6 0 4 0.18
7238

T

0.02 1 0.00 2 0.04 5 0.11 3 0.55 6 0 4 0.18 T

145

3 5 9 6 1 7238

0.50
7

1 0.14
4

2 0.16
9

5 0.34
2

3 0.55
1

6 0.11
1

4 0.30
5524

T

0.50
7

1 0.30
2

2 0.21
3

5 0.53
8

3 0.55
1

6 0.70
8

4 0.47
2762

T

0.50
7

1 0.65
5

2 0.78
6

5 0.61
8

3 0.55
1

6 0.70
8

4 0.65
4238

F

0.02
3

1 0.10
7

2 0.05
6

5 0.23
3

3 0.55
1

6 0 4 0.21
5333

T

0.50
7

1 0.16
1

2 0.15
9

5 0.35
7

3 0.54
4

6 0.11
1

4 0.30
4905

T

0.47
6

1 0.67
5

2 0.74
5

5 0.73
5

4 0.64
1

6 0.60
3

3 0.67
3619

F

0.98
4

1 0.83
1

2 0.97 5 0.73
3

4 0.59
5

6 1 3 0.80
9429

F

0.98
4

1 0.94
1

2 0.93
1

5 0.77
8

4 0.61 6 1 3 0.82
3476

F

0.98
4

1 0.93
8

2 0.94
2

5 0.73
6

4 0.59
8

6 1 3 0.81
4381

F

0.98
4

1 0.99
7

2 0.99
1

5 0.09
1

4 0.79
7

6 1 3 0.76
5667

F

0.47
6

1 0.24
3

2 0.10
4

5 0.64
6

4 0.59
5

6 0.60
3

3 0.44
9762

T

0.47
6

1 0.66
4

2 0.76
6

5 0.72
8

4 0.59
5

6 0.60
3

3 0.66
3095

F

0.47
6

1 0 2 0.06
6

5 0.05
2

4 0.59
5

6 0 3 0.21
8286

T

0.47
6

1 0.00
8

2 0.00
3

5 0.06
6

4 0.59
5

6 0 3 0.20
6714

T

0.47
6

1 0.14
9

2 0.00
7

5 0.18
6

4 0.59
5

6 0.60
3

3 0.33
0095

T

0.47
6

1 0.21
5

2 0.00
7

5 0.30
8

4 0.59
5

6 0.60
3

3 0.35
9619

T

0.47
6

1 0.35
9

2 0.14
4

5 0.69 4 0.63
1

6 0.07
1

3 0.41
3

T

0.47
6

1 0.81
6

2 0.16
6

5 0.47
4

4 0.58
5

6 0.60
3

3 0.48
3476

T

0.47
6

1 0.88
4

2 0.16
9

5 0.50
7

4 0.48
5

6 0.60
3

3 0.46
8381

T

0.50
1

1 0.63
5

2 0.83
3

5 0.75
6

3 0.61
1

6 0.60
7

4 0.68
0857

F

0.50
1

1 0.95
2

2 0.44
9

5 0.75 3 0.44
6

6 0.60
7

4 0.57
1619

F

0.50
1

1 0.96
8

2 0.48
9

5 0.76
8

3 0.81
6

6 0.60
7

4 0.69
0952

F

0.50
1

1 0.89 2 0.62 5 0.73
1

3 0.61
1

6 0.60
7

4 0.65
0857

F

0.98
5

1 0.96
8

2 0.98
8

5 0.77
6

3 0.61
7

6 1 4 0.85
1952

F

0.50
1

1 0.19
6

2 0.00
3

5 0.69
7

3 0.61
1

6 0 4 0.31
7381

T

146

0.50
1

1 0.17
4

2 0.00
1

5 0.53
4

3 0.61
1

6 0.73
7

4 0.43
1905

T

0.50
1

1 0.27
7

2 0.00
3

5 0.69
9

3 0.61
1

6 0 4 0.32
5381

T

0.50
1

1 0.34
4

2 0.28 5 0.68
4

3 0.61
1

6 0.11
1

4 0.41
6714

T

0.50
1

1 0.76 2 0.23
9

5 0.56
9

3 0.24
8

6 0.60
7

4 0.42
0905

T

0.50
1

1 0.70
3

2 0.87
5

5 0.77
6

3 0.61
1

6 0.11
1

4 0.60
5714

F

0.50
1

1 0.56
7

2 0.00
3

5 0.17
5

3 0.61
1

6 0 4 0.27
8143

T

0.50
1

1 0.82
5

2 0.23
9

5 0.69
1

3 0.61
2

6 0.60
7

4 0.54
8524

F

0.50
1

1 0.85
8

2 0.06
5

5 0.63
2

3 0.60
2

6 0.60
7

4 0.49
8952

T

0.42
5

1 0.78
4

2 0.78
4

5 0.66
5

4 0.56 6 0.56 3 0.64
8238

F

0.42
5

1 0.36
7

2 0.36
7

5 0.74
8

4 0.57
7

6 0.1 3 0.46
419

T

0.42
5

1 0.81 2 0.81 5 0.53
4

4 0.55
5

6 0.55
6

3 0.62
9952

F

0.98
5

1 0.90
5

2 0.90
5

5 0.74
8

4 0.56
8

6 1 3 0.79
619

F

0.42
5

1 0.16
6

2 0.16
6

5 0.65
5

4 0.55
3

6 0.55
6

3 0.43
7762

T

0.42
5

1 0.23
8

2 0.23
8

5 0.74
4

4 0.55
5

6 0.55
6

3 0.47
9286

T

0.42
5

1 0.40
9

2 0.40
9

5 0.44
5

4 0.55
5

6 0.55
6

3 0.47
9333

T

0.42
5

1 0.37
7

2 0.37
7

5 0.74
7

4 0.55
4

6 0.55
6

3 0.52
5905

F

0.42
5

1 0.70
8

2 0.70
8

5 0.74
6

4 0.55
5

6 0.55
6

3 0.63
6333

F

0.42
5

1 0.98
9

2 0.98
9

5 0.46
9

4 0.44
6

6 0.10
5

3 0.58
1667

F

0.42
5

1 0.29 2 0.29 5 0.71
4

4 0.55
5

6 0.55
6

3 0.49
0905

T

0.42
5

1 0.97
9

2 0.97
9

5 0.74
8

4 0.55
5

6 0.55
6

3 0.72
7048

F

0.98
5

1 0.96
9

2 0.96
9

5 0.77
3

4 0.55
5

6 1 3 0.81
8571

F

0.42
5

1 0.78
7

2 0.78
7

5 0.76
7

4 0.55
9

6 0.56 3 0.66
8381

F

0.39
3

2 0.56
5

3 0.77
6

5 0.79
9

4 0.56 1 0.2 6 0.53
8905

F

0.39
3

2 0.51
1

3 0.06
2

5 0.52
3

4 0.62
9

1 0.05
9

6 0.27
1619

T

0.39
3

2 0.45
1

3 0.50
4

5 0.80
2

4 0.55
9

1 1 6 0.68
6952

F

0.84 2 0.90 3 0.19 5 0.74 4 0.40 1 0.3 6 0.50 F

147

3 7 8 1 2 3

0.97
8

2 0.99
2

3 0.97
3

5 0.52
1

4 0.72
7

1 1 6 0.88
6095

F

0.99
7

2 0.94 3 0.99
4

5 0.71
9

4 0.84
1

1 1 6 0.92
8619

F

0.99
7

2 0.94 3 0.99
4

5 0.71
9

4 0.84
1

1 1 6 0.92
8619

F

0.39
3

2 0.17
8

3 0.36
4

5 0.72
2

4 0.55
9

1 1 6 0.59
9381

F

0.39
3

2 0.31
7

3 0.00
4

5 0.34
7

4 0.25
1

1 0.05
9

6 0.17
8571

T

0.39
3

2 0.39
2

3 0.00
5

5 0.26
9

4 0.55
7

1 0.05
9

6 0.18
9238

T

0.97
8

2 0.89
9

3 0.98
2

5 0.81
1

4 0.55
9

1 1 6 0.92
219

F

0.39
3

2 0.46
5

3 0.94 5 0.74
6

4 0.65
9

1 1 6 0.78
6857

F

0.97
8

2 0.87
6

3 0.99
9

5 0.77
5

4 0.57
7

1 1 6 0.91
6952

F

0.39
3

2 0.14
4

3 0.01
5

5 0.14
5

4 0.55
9

1 0.81
8

6 0.34
9524

T

0.45
3

1 0.45
9

2 0.02
4

5 0.51
6

3 0.54
4

6 0.12
5

4 0.32
3952

T

0.45
3

1 0.71 2 0.32
8

5 0.41
8

3 0.34 6 0.12
5

4 0.34
7952

T

0.45
3

1 0.85 2 0.97
4

5 0.77
3

3 0.56
1

6 0.76
9

4 0.75
1619

F

0.45
3

1 0.72
2

2 0.94
4

5 0.77
1

3 0.54
6

6 0.71 4 0.71
6476

F

0.45
3

1 0.73
3

2 0.91 5 0.66
6

3 0.53
4

6 0.71 4 0.69
1

F

0.45
3

1 0.87
8

2 0.73
6

5 0.31
4

3 0.54
8

6 0.76
9

4 0.62
8333

F

0.97
8

1 0.93
5

2 0.99
8

5 0.66
6

3 0.55
4

6 1 4 0.81
7143

F

0.45
3

1 0.83
7

2 1 5 0.77 3 0.54
8

6 0.71 4 0.74
119

F

0.97
8

1 0.93
2

2 0.99
7

5 0.62
4

3 0.55
4

6 1 4 0.81
0619

F

0.97
8

1 0.89
8

2 0.83
9

5 0.71
9

3 0.54
9

6 1 4 0.78
1905

F

0.97
8

1 0.88 2 0.99
4

5 0.77
2

3 0.78
1

6 1 4 0.89
0952

F

0.97
8

1 0.91
4

2 0.94
1

5 0.64
9

3 0.67
1

6 1 4 0.83
2571

F

0.97
8

1 0.91
4

2 0.94
1

5 0.64
9

3 0.67
1

6 1 4 0.83
2571

F

0.97
8

1 0.93
9

2 0.97
8

5 0.77
2

3 0.54
8

6 1 4 0.82
619

F

0.97
8

1 0.90
6

2 0.99
6

5 0.66
7

3 0.78
1

6 1 4 0.87
8905

F

148

0.97
8

1 0.00
9

2 0.99
9

5 0.18
2

3 0.54
8

6 1 4 0.65
8333

F

0.97
8

1 0.59
1

2 1 5 0.66
7

3 0.56
5

6 1 4 0.78
8143

F

0.97
8

1 0.85
5

2 0.61
1

5 0.77
3

3 0.54
8

6 1 4 0.73
0952

F

0.97
8

1 0.93
5

2 0.99
8

5 0.66
6

3 0.55
4

6 1 4 0.81
7143

F

149

KC1 (regression) results

Actual MLP RBF SVMreg M5P

8.13 3.036 32.609 20.209 9.981

13.1 -14.656 32.609 8.812 18.202

1.97 24.797 32.609 48.164 52.642

13.49 -3.47 32.609 14.62 14.913

11.9 32.002 32.609 24.625 22.719

7.43 35.319 32.609 28.765 33

10.24 6.999 23.713 22.424 22.195

7.87 17.064 23.731 24.987 26.036

16.53 -72.187 23.713 6.515 27.113

12.93 -72.187 23.713 6.515 27.113

18.66 14.302 23.713 -52.487 47.238

30.3 27.199 43.108 35.086 47.238

18.33 -10.493 23.511 20.67 27.432

30.82 10.502 23.511 21.475 8.498

12.58 35.34 42.261 30.673 41.587

38.67 33.814 42.035 26.7 23.205

31.25 29.531 25.536 22.808 30.558

26.22 35.365 42.261 27.248 28.719

140.13 -1.751 37.779 30.686 36.653

6.29 38.588 26.632 31.661 28.529

5.47 28.709 37.659 28.354 36.653

23.26 16.973 27.883 21.015 28.529

6.83 30.063 32.748 26.182 28.529

17.24 20.813 28.575 25.144 28.529

72.16 30.701 40.523 25.881 42.477

15.63 43.993 40.573 34.258 47.165

34.78 43.993 40.573 34.258 47.165

10.02 70.368 22.005 14.527 17.144

50.96 69.367 24.124 24.996 41.025

35.03 -20.434 22.005 -0.1 17.821

6.56 39.999 28.713 24.384 28.881

13.26 36.511 28.713 20.493 28.881

23.92 35.518 28.713 26.227 19.206

21.15 47.1 28.713 15.897 28.881

36.17 50.41 28.713 17.965 28.881

28.37 58.803 28.713 24.271 28.881

13.42 110.068 37.425 35.996 23.923

150

31.58 70.217 37.425 34.963 23.923

26.09 78.704 23.207 16.974 22.483

58.62 31.465 37.425 32.176 23.923

77.59 29.064 37.425 33.122 40.058

61.07 47.029 23.155 36.564 23.923

60.79 19.66 21.807 20.402 18.386

33.82 44.11 21.807 41.474 29.334

14.29 38.135 21.807 14.134 22.769

12.35 39.46 38.591 30.459 28.371

43.8 36.973 38.637 36.521 32.912

105.56 45.759 38.636 31.479 34.677

83.87 35.002 27.01 37.207 37.312

4.28 40.514 27.01 24.578 30.709

3.38 38.77 39.261 31.756 52.557

2.94 26.021 27.044 20.37 32.36

6.17 41.57 27.01 34.397 38.413

64.68 20.022 27.919 10.669 21.266

17.62 80.645 41.533 36.369 56.553

33.52 27.223 21.023 14.536 13.094

47.41 34.911 21.023 -9.218 -4.237

68.32 69.827 41.393 37.017 57.57

18.99 58.223 41.579 32.164 30.424

105.69 64.224 21.023 24.179 24.647

 Linear Ensemble

 Average Best Weight

Actual MMRE MMRE

8.13 16.45875 SVMreg 20.209 16.5143

13.1 11.24175 8.812 7.47

1.97 39.553 48.164 38.4907

13.49 14.668 14.62 12.8201

11.9 27.98875 24.625 28.2443

7.43 32.42325 28.765 31.9235

10.24 18.83275 MLP 6.999 16.3371

7.87 22.9545 17.064 21.902

16.53 -3.7115 -72.187 -19.1264

12.93 -3.7115 -72.187 -19.1264

18.66 8.1915 14.302 1.7936

30.3 38.15775 27.199 35.1638

18.33 15.28 MLP -10.493 9.4492

30.82 15.9965 10.502 16.1953

151

12.58 37.46525 35.34 35.9488

38.67 31.4385 33.814 32.2631

31.25 27.10825 29.531 26.8178

26.22 33.39825 35.365 33.6445

140.13 25.84175 MLP -1.751 19.7265

6.29 31.3525 38.588 33.1128

5.47 32.84375 28.709 31.1869

23.26 23.6 16.973 21.5232

6.83 29.3805 30.063 29.2823

17.24 25.76525 20.813 24.4363

72.16 34.8955 SVMreg 25.881 32.1104

15.63 41.49725 34.258 40.3914

34.78 41.49725 34.258 40.3914

10.02 31.011 14.527 32.5505

50.96 39.878 24.996 41.4259

35.03 4.823 -0.1 -0.4055

6.56 30.49425 SVMreg 24.384 28.1436

13.26 28.6495 20.493 26.2384

23.92 27.416 26.227 26.4977

21.15 30.14775 15.897 25.4589

36.17 31.49225 17.965 26.6171

28.37 35.167 24.271 29.9788

13.42 51.853 SVMreg 35.996 40.0671

31.58 41.632 34.963 35.6688

26.09 35.342 16.974 26.0463

58.62 31.24725 32.176 30.6788

77.59 34.91725 33.122 35.6576

61.07 32.66775 36.564 31.1364

60.79 20.06375 SVMreg 20.402 19.7893

33.82 34.18125 41.474 36.3925

14.29 24.21125 14.134 22.292

12.35 34.22025 30.459 32.446

43.8 36.26075 36.521 35.7403

105.56 37.63775 31.479 36.0101

83.87 34.13275 SVMreg 37.207 35.5468

4.28 30.70275 24.578 30.8282

3.38 40.586 31.756 38.7709

2.94 26.44875 20.37 25.1307

6.17 35.3475 34.397 36.6134

64.68 19.969 10.669 17.3193

17.62 53.775 SVMreg 36.369 47.8846

152

33.52 18.969 14.536 16.6695

47.41 10.61975 -9.218 2.7374

68.32 51.45175 37.017 47.3391

18.99 40.5975 32.164 36.1309

105.69 33.51825 24.179 27.6927

 Train set#

MMRE 1 2 3 4 5 6 7 8 9 10

MLP 1.0426
43

0.8644
56

0.8135
27

0.7867
56

0.9859
14

2.0581
92

2.6677
75

1.4610
55

1.1818
73

1.7672
39

RBF 1.4835
59

1.5711
7

1.6831
14

1.4850
09

1.5793
73

1.6819
89

1.5739
61

1.5198
86

1.3756
06

1.4314
84

SVMre
g

0.9304
25

1.0304
98

1.0734
44

1.0574
34

0.9813
1

1.0392
21

0.9897
27

1.2185
01

0.7143
13

1.1803
14

M5P 1.5552
85

1.4401
9

1.9143
39

1.5079
21

1.4348
39

1.7314
28

1.3427
7

1.3643
13

1.2688
09

1.3041
81

 Train set#

Rankin
g

1 2 3 4 5 6 7 8 9 10

MLP 3 4 4 4 3 1 1 2 3 1

RBF 2 1 2 2 1 3 2 1 1 2

SVMre
g

4 3 3 3 4 4 4 4 4 4

M5P 1 2 1 1 2 2 3 3 2 3

MLP Weight RBF Weight SVMreg Weight M5P Weight Total

3.036 3 32.609 2 20.209 4 9.981 1 16.5143

-14.656 3 32.609 2 8.812 4 18.202 1 7.47

24.797 3 32.609 2 48.164 4 52.642 1 38.4907

-3.47 3 32.609 2 14.62 4 14.913 1 12.8201

32.002 3 32.609 2 24.625 4 22.719 1 28.2443

35.319 3 32.609 2 28.765 4 33 1 31.9235

6.999 2 23.713 1 22.424 4 22.195 3 19.3992

17.064 2 23.731 1 24.987 4 26.036 3 23.5915

-72.187 2 23.713 1 6.515 4 27.113 3 -1.3262

-72.187 2 23.713 1 6.515 4 27.113 3 -1.3262

14.302 2 23.713 1 -52.487 4 47.238 3 -1.5917

153

27.199 2 43.108 1 35.086 4 47.238 3 37.9564

-10.493 3 23.511 1 20.67 4 27.432 2 12.9576

10.502 3 23.511 1 21.475 4 8.498 2 15.7913

35.34 3 42.261 1 30.673 4 41.587 2 35.4147

33.814 3 42.035 1 26.7 4 23.205 2 29.6687

29.531 3 25.536 1 22.808 4 30.558 2 26.6477

35.365 3 42.261 1 27.248 4 28.719 25.7348

-1.751 2 37.779 1 30.686 4 36.653 3 26.698

38.588 2 26.632 1 31.661 4 28.529 3 31.6039

28.709 2 37.659 1 28.354 4 36.653 3 31.8452

16.973 2 27.883 1 21.015 4 28.529 3 23.1476

30.063 2 32.748 1 26.182 4 28.529 3 28.3189

20.813 2 28.575 1 25.144 4 28.529 3 25.6364

30.701 3 40.523 1 25.881 4 42.477 2 32.1104

43.993 3 40.573 1 34.258 4 47.165 2 40.3914

43.993 3 40.573 1 34.258 4 47.165 2 40.3914

70.368 3 22.005 1 14.527 4 17.144 2 32.5505

69.367 3 24.124 1 24.996 4 41.025 2 41.4259

-20.434 3 22.005 1 -0.1 4 17.821 2 -0.4055

39.999 3 28.713 1 24.384 4 28.881 2 30.4008

36.511 3 28.713 1 20.493 4 28.881 2 27.798

35.518 3 28.713 1 26.227 4 19.206 2 27.8587

47.1 3 28.713 1 15.897 4 28.881 2 29.1363

50.41 3 28.713 1 17.965 4 28.881 2 30.9565

58.803 3 28.713 1 24.271 4 28.881 2 35.9968

110.068 1 37.425 2 35.996 4 23.923 3 40.0671

70.217 1 37.425 2 34.963 4 23.923 3 35.6688

78.704 1 23.207 2 16.974 4 22.483 3 26.0463

31.465 1 37.425 2 32.176 4 23.923 3 30.6788

29.064 1 37.425 2 33.122 4 40.058 3 35.6576

47.029 1 23.155 2 36.564 4 23.923 3 31.1364

19.66 2 21.807 1 20.402 4 18.386 3 19.7893

44.11 2 21.807 1 41.474 4 29.334 3 36.3925

38.135 2 21.807 1 14.134 4 22.769 3 22.292

39.46 2 38.591 1 30.459 4 28.371 3 32.446

36.973 2 38.637 1 36.521 4 32.912 3 35.7403

45.759 2 38.636 1 31.479 4 34.677 3 36.0101

35.002 1 27.01 2 37.207 4 37.312 3 34.9786

154

40.514 1 27.01 2 24.578 4 30.709 3 28.4973

38.77 1 39.261 2 31.756 4 52.557 3 40.1987

26.021 1 27.044 2 20.37 4 32.36 3 25.8669

41.57 1 27.01 2 34.397 4 38.413 3 34.8417

20.022 1 27.919 2 10.669 4 21.266 3 18.2334

80.645 2 41.533 1 36.369 4 56.553 3 51.7958

27.223 2 21.023 1 14.536 4 13.094 3 17.2895

34.911 2 21.023 1 -9.218 4 -4.237 3 4.1262

69.827 2 41.393 1 37.017 4 57.57 3 50.1825

58.223 2 41.579 1 32.164 4 30.424 3 37.7953

64.224 2 21.023 1 24.179 4 24.647 3 32.0128

 Nonlinear models

Actual MLP RBF SVMreg M5P

8.13 2.027 31.932 20.066 10.29

13.1 -3.239 31.932 7.27 -6.075

1.97 24.229 32.145 28.586 30.42

13.49 -0.377 31.932 14.408 4.272

11.9 34.603 31.946 29.739 37.085

7.43 38.609 32.287 30.114 40.153

10.24 1.202 25.752 18.469 16.497

7.87 5.448 25.752 29.636 30.377

16.53 -47.379 25.752 -43.094 -55.501

12.93 -47.379 25.752 -43.094 -55.501

18.66 -1.004 25.752 29.346 50.216

30.3 27.732 41.141 36.559 46.855

18.33 -2.72 24.95 6.139 1.589

30.82 14.96 24.95 23.425 20.791

12.58 34.894 40.094 33.626 43.508

38.67 43.872 40.094 32.428 42.112

31.25 28.877 24.95 35.739 38.195

26.22 43.585 40.094 33.31 43.531

140.13 -11.299 37.239 17.504 9.262

6.29 19.884 26.661 36.541 45.411

5.47 19.865 37.239 28.003 36.558

23.26 17.544 26.661 20.758 26.041

6.83 42.848 36.126 29.34 37.772

17.24 16.315 26.662 25.055 29.483

72.16 49.118 42.788 32.356 41.306

15.63 54.989 42.818 40.013 54.395

155

34.78 54.989 42.818 40.013 54.395

10.02 38.968 20.932 35.516 51.699

50.96 56.905 20.932 47.391 68.381

35.03 -19.122 20.932 -0.964 -13.873

6.56 29.442 27.321 25.679 28.887

13.26 28.053 27.321 22.833 25.845

23.92 27.059 27.321 23.345 24.979

21.15 40.446 27.321 24.429 35.081

36.17 44.005 27.321 26.432 37.968

28.37 53.117 27.322 31.969 45.289

13.42 58.973 39.832 51.399 78.056

31.58 53.968 39.832 29.617 42.861

26.09 73.385 20.959 35.75 49.231

58.62 14.069 39.832 8.274 8.637

77.59 4.265 39.832 28.378 19.127

61.07 38.143 20.959 22.211 22.383

60.79 12.96 20.839 15.537 13.479

33.82 18.741 20.839 33.695 30.252

14.29 18.634 20.839 34.344 20.194

12.35 17.677 41.097 25.846 28.777

43.8 15.225 41.142 27.421 35.734

105.56 22.886 41.179 36.891 38.439

83.87 39.975 27.296 35.483 33.358

4.28 41.948 27.296 26.355 39.479

3.38 100.042 39.196 32.681 37.543

2.94 41.923 27.296 21.6 23.386

6.17 41.116 27.296 34.348 40.652

64.68 42.072 27.296 12.732 16.724

17.62 101.94 43.14 54.875 74.239

33.52 9.954 19.91 12.248 9.647

47.41 15.013 19.91 4.69 -1.823

68.32 82.648 43.139 52.122 69.804

18.99 20.712 42.621 31.525 40.183

105.69 34.128 20.24 30.684 38.054

156

UIMS (regression) results

Actual MLP RBF SVMreg M5P

14 13.818 23.515 33.759 36.906

18 22.782 23.515 27.557 17.167

2 8.486 23.515 2.25 -4.419

2 1.155 23.515 -7.535 2.643

10 11.189 136.286 76.679 112.286

16 112.783 22.929 91.079 7.709

16 7.301 22.929 26.404 21.338

18 13.177 22.929 28.471 18.318

2 5.235 22.096 -8.22 1.555

16 29.142 22.096 20.492 20.34

2 0.88 22.096 2.158 -6.704

48 7.117 22.096 27.976 9.931

205 103.066 124.833 141.518 151.921

157

30 31.534 22.068 33.553 46.394

30 21.333 22.068 8.936 9.053

2 12.192 22.068 2.437 -6.765

12 22.916 20.15 5.834 5.095

50 24.956 20.15 35.326 42.908

26 50.581 153.792 124.292 131.097

39 28.845 20.15 44.49 36.247

15 27.213 19.16 4.325 4.675

119 12.628 19.16 46.214 75.935

2 25.641 19.16 7.187 2.273

18 26.354 19.16 -2.341 3.15

26 18.973 21.813 57.025 74.09

2 3.013 21.813 -9.508 -20.828

2 13.191 21.813 21.627 15.486

48 9.91 21.813 6.108 2.979

34 34.595 22.199 49.877 39.596

93 70.683 138.599 111.486 71.382

2 14.41 22.199 3.073 3.907

168 119.234 138.599 133.37 151.742

30 28.066 20.418 20.488 25.906

17 33.263 146.721 132.98 123.93

27 46.497 20.418 13.354 37.163

30 29.254 20.418 34.436 37.174

253 121.435 101.8 122.82 76.764

192 223.682 101.8 152.223 175.343

20 33.201 22 23.638 29.091

 Ensemble

 Average Best Weight

Actual MMRE MMRE

14 26.9995 MLP 13.818 25.7023

18 22.75525 22.782 22.1258

2 7.458 8.486 4.8702

2 4.9445 1.155 2.0994

10 84.11 MLP 11.189 67.1258

16 58.625 112.783 67.9346

16 19.493 7.301 16.8955

18 20.72375 13.177 18.7533

2 5.1665 MLP 5.235 3.1261

16 23.0175 29.142 24.0668

158

2 4.6075 0.88 0.982

48 16.78 7.117 13.6309

205 130.3345 SVMreg 141.518 130.3945

30 33.38725 33.553 34.367

30 15.3475 8.936 13.9917

2 7.483 2.437 5.4862

12 13.49875 MLP 22.916 13.9506

50 30.835 24.956 31.1768

26 114.9405 50.581 99.1186

39 32.433 28.845 34.1494

15 13.84325 M5P 4.675 9.7208

119 38.48425 75.935 49.333

2 13.56525 2.273 9.4614

18 11.58075 3.15 7.0251

26 42.97525 MLP 18.973 41.696

2 -1.3775 3.013 -3.6315

2 18.02925 13.191 17.043

48 10.2025 9.91 8.5735

34 36.56675 M5P 39.596 39.9404

93 98.0375 71.382 89.9951

2 10.89725 3.907 7.5866

168 135.73625 151.742 138.4145

30 23.7195 SVMreg 20.488 23.622

17 109.2235 132.98 111.6957

27 29.358 13.354 27.8317

30 30.3205 34.436 32.8192

253 105.70475 SVMreg 122.82 111.0913

192 163.262 152.223 173.2424

20 26.9825 23.638 27.4337

 Train set#

MMRE 1 2 3 4 5 6 7 8 9 10

MLP 0.8644
13

0.6482
96

0.4094
59

1.4093
53

0.9221
47

2.7612
99

0.9238
9

1.7898
9

1.5853
41

0.7652
43

RBF 2.8130
18

3.2779
16

2.6906
67

2.8853
73

2.8749 2.5843
5

2.6546
58

2.9338
53

3.0068
07

3.0898
67

SVMre
g

1.2394
26

1.4577
31

1.2636
53

0.8221
22

1.7581
24

1.1994
84

1.0193
67

1.0075
23

1.1303
36

0.7208
13

M5P 1.0917
66

1.0264
88

1.2037
02

1.4904
18

1.8108
03

0.7406
51

1.7640
25

0.7174
08

1.2705
95

1.3878
79

159

 Train set#

Rankin
g

1 2 3 4 5 6 7 8 9 10

MLP 4 4 4 3 4 1 4 2 2 3

RBF 1 1 1 1 1 2 1 1 1 1

SVMre
g

2 2 2 4 3 3 3 3 4 4

M5P 3 3 3 2 2 4 2 4 3 2

MLP Weight RBF Weight SVMreg Weight M5P Weight Total

13.818 4 23.515 1 33.759 3 36.906 2 25.3876

22.782 4 23.515 1 27.557 3 17.167 2 23.1648

8.486 4 23.515 1 2.25 3 -4.419 2 5.5371

1.155 4 23.515 1 -7.535 3 2.643 2 1.0816

11.189 3 136.286 1 76.679 4 112.286 2 70.1141

112.783 3 22.929 1 91.079 4 7.709 2 74.1012

7.301 3 22.929 1 26.404 4 21.338 2 19.3124

13.177 3 22.929 1 28.471 4 18.318 2 21.298

5.235 4 22.096 1 -8.22 3 1.555 2 2.1486

29.142 4 22.096 1 20.492 3 20.34 2 24.082

0.88 4 22.096 1 2.158 3 -6.704 2 1.8682

7.117 4 22.096 1 27.976 3 9.931 2 15.4354

103.066 4 124.833 1 141.518 3 151.921 2 126.5493

31.534 4 22.068 1 33.553 3 46.394 2 34.1651

21.333 4 22.068 1 8.936 3 9.053 2 15.2314

12.192 4 22.068 1 2.437 3 -6.765 2 6.4617

22.916 4 20.15 1 5.834 3 5.095 2 13.9506

24.956 4 20.15 1 35.326 3 42.908 2 31.1768

50.581 4 153.792 1 124.292 3 131.097 2 99.1186

28.845 4 20.15 1 44.49 3 36.247 2 34.1494

27.213 3 19.16 1 4.325 4 4.675 2 12.7449

12.628 3 19.16 1 46.214 4 75.935 2 39.377

25.641 3 19.16 1 7.187 4 2.273 2 12.9377

26.354 3 19.16 1 -2.341 4 3.15 2 9.5158

18.973 3 21.813 1 57.025 4 74.09 2 45.5012

3.013 3 21.813 1 -9.508 4 -20.828 2 -4.8836

13.191 3 21.813 1 21.627 4 15.486 2 17.8866

9.91 3 21.813 1 6.108 4 2.979 2 8.1933

34.595 2 22.199 1 49.877 3 39.596 4 39.9404

70.683 2 138.599 1 111.486 3 71.382 4 89.9951

14.41 2 22.199 1 3.073 3 3.907 4 7.5866

160

119.234 2 138.599 1 133.37 3 151.742 4 138.4145

28.066 3 20.418 1 20.488 4 25.906 2 23.838

33.263 3 146.721 1 132.98 4 123.93 2 102.629

46.497 3 20.418 1 13.354 4 37.163 2 28.7651

29.254 3 20.418 1 34.436 4 37.174 2 32.0272

121.435 3 101.8 1 122.82 4 76.764 2 111.0913

223.682 3 101.8 1 152.223 4 175.343 2 173.2424

33.201 3 22 1 23.638 4 29.091 2 27.4337

 Nonlinear models

Actual MLP RBF SVMreg M5P

14 13.776 18.733 15.654 14.261

18 18.445 18.732 20.961 23.236

2 6.846 18.732 6.454 8.922

2 3.755 18.732 1.07 1.582

10 18.463 151.537 26.553 13.562

16 106.179 147.229 97.876 114.934

16 5.999 19.169 11.62 9.683

18 10.334 19.169 15.817 15.546

2 3.348 18.05 4.621 10.878

16 22.301 18.05 29.127 34.7

2 -1.998 18.05 1.096 6.539

48 3.135 18.05 11.042 12.753

205 98.767 127.953 107.819 102.466

30 28.93 18.148 29.524 27.718

30 16.694 18.146 12.924 17.059

2 7.67 18.146 2.85 7.507

12 19.297 17.153 16.538 21.359

50 24.928 17.153 24.611 23.452

26 52.831 151.245 54.366 49.744

39 28.98 17.153 27.665 27.443

15 25.135 19.568 8.15 16.258

119 13.326 28.02 33.086 1.025

2 23.756 19.568 6.204 14.616

18 24.381 19.568 6.565 15.361

26 18.322 18.664 28.259 18.267

2 3.777 18.555 -5.701 2.103

2 12.176 18.555 11.518 12.411

48 9.456 18.555 5.063 9.088

34 30.819 17.786 28.675 29.285

93 56.842 148.784 68.367 65.68

161

2 11.49 17.781 3.122 8.929

168 113.867 148.784 129.405 114.643

30 24.578 17.603 23.432 25.401

17 30.645 143.501 66.132 50.637

27 43.398 17.603 37.388 43.117

30 26.37 17.603 30.018 28.793

253 131.905 120.67 117.969 118.592

192 209.051 120.67 210.249 213.055

20 32.317 18.782 29.461 31.118

162

QUES (regression) results

Actual MLP RBF SVMreg M5P

102 280.161 57.846 84.178 68.136

85 81.491 56.883 49.121 51.343

38 60.786 56.883 36.522 36.448

81 76.445 84.991 72.988 73.462

55 105.476 84.991 46.478 59.269

101 230.77 84.991 105.836 130.597

38 42.765 84.991 30.38 42.566

157 116.41 57.649 99.159 88.549

68 89.559 82.615 57.461 76.784

26 82.995 57.649 42.437 63.407

24 48.057 68.29 34.114 41.225

86 125.873 57.649 67.505 64.008

26 51.898 57.649 42.41 53.796

47 52.927 82.037 47 59.516

78 100.279 57.498 56.061 55.433

88 93.322 81.28 64.335 89.383

124 136.317 57.498 73.257 61.976

28 65.041 57.498 55.68 56.35

62 91.68 57.498 49.695 47.677

35 102.332 57.498 54.209 63.208

41 58.99 57.498 51.233 65.21

49 100.731 59.822 83.278 84.617

9 24.628 59.822 5.322 26.3

70 208.525 61.963 136.533 103.448

46 50.458 59.822 87.609 47.316

42 105.19 59.822 83.907 61.088

92 161.97 80.754 98.938 97.664

48 91.174 59.822 74.785 61.734

56 71.903 74.233 66.458 66.868

217 347.932 74.233 147.654 167.422

45 90.006 58.697 78.49 81.067

24 40.463 62.198 32.927 34.977

85 73.511 58.697 55.147 55.205

10 33.261 58.697 20.963 19.031

100 99.609 58.697 65.628 81.52

163

72 100.146 80.123 77.939 77.964

48 86.887 61.112 57.077 65.937

24 56.519 61.138 13.045 58.008

16 62.499 61.112 27.553 43.371

14 51.453 61.164 27.019 23.565

82 104.478 61.112 56.896 59.825

39 86.021 61.112 48.345 66.093

98 40.939 62.819 78.105 114.787

56 63.519 62.819 86.094 78.992

146 208.11 59.834 196.599 89.101

25 45.496 62.819 70.42 90.963

68 87.483 62.819 57.152 63.52

48 42.483 62.819 40.018 53.793

170 60.974 59.834 79.732 96.405

80 87.311 87.24 101.988 88.553

148 122.701 56.818 71.753 84.416

30 49.75 56.818 36.263 50.31

28 22.48 57.098 23.928 20.411

35 20.881 87.24 18.829 11.069

77 105.704 56.818 61.728 78.67

45 71.64 87.24 56.758 58.712

52 69.697 54.851 45.165 51.707

70 146.683 82.487 60.454 51.076

188 157.792 54.851 84.456 64.692

79 99.475 54.851 60.474 61.097

30 49.174 54.851 36.961 52.518

75 103.625 54.851 59.7 56.402

64 71.033 54.851 45.313 52.881

107 128.705 59.027 68.712 57.328

8 12.922 59.027 19.311 24.307

6 13.934 59.027 18.579 20.447

24 37.902 59.027 54.909 62.63

52 26.061 59.027 32.508 42.504

38 0.649 88.264 44.209 73.485

41 30.853 88.264 46.098 65.019

94 58.643 59.027 54.031 64.982

 Ensemble

 Average Best Weight

Actual MMRE MMRE

102 122.58025 SVMreg 84.178 115.9288

164

85 59.7095 49.121 57.0378

38 47.65975 36.522 43.3887

81 76.9715 72.988 75.0219

55 74.0535 46.478 65.9662

101 138.0485 105.836 136.1666

38 50.1755 30.38 41.9739

157 90.44175 SVMreg 99.159 95.2752

68 76.60475 57.461 72.1929

26 61.622 42.437 58.3608

24 47.9215 34.114 42.4535

86 78.75875 67.505 77.1439

26 51.43825 42.41 49.2473

47 60.37 47 55.4439

78 67.31775 SVMreg 56.061 64.8599

88 82.08 64.335 79.3413

124 82.262 73.257 80.9088

28 58.64225 55.68 57.935

62 61.6375 49.695 58.2669

35 69.31175 54.209 66.8622

41 58.23275 51.233 57.604

49 82.112 SVMreg 83.278 84.8247

9 29.018 5.322 20.9266

70 127.61725 136.533 133.5489

46 61.30125 87.609 65.3122

42 77.50175 83.907 78.9094

92 109.8315 98.938 109.3438

48 71.87875 74.785 72.6512

56 69.8655 M5P 66.868 68.4885

217 184.31025 167.422 188.2747

45 77.065 81.067 79.8447

24 42.64125 34.977 38.1813

85 60.64 55.205 59.198

10 32.988 19.031 26.4232

100 76.3635 81.52 78.0879

72 84.043 SVMreg 77.939 82.6063

48 67.75325 57.077 66.1005

24 47.1775 13.045 40.038

16 48.63375 27.553 42.6435

14 40.80025 27.019 34.2841

82 70.57775 56.896 67.7127

39 65.39275 48.345 62.4813

165

98 74.1625 SVMreg 78.105 80.1478

56 72.856 86.094 77.1209

146 138.411 196.599 152.9753

25 67.4245 70.42 70.838

68 67.7435 57.152 65.6953

48 49.77825 40.018 46.9236

170 74.23625 79.732 78.9925

80 91.273 SVMreg 101.988 93.5473

148 83.922 71.753 84.248

30 48.28525 36.263 45.23

28 30.97925 23.928 25.9003

35 34.50475 18.829 23.7525

77 75.73 61.728 75.1148

45 68.5875 56.758 63.3688

52 55.355 SVMreg 45.165 54.8016

70 85.175 60.454 86.6504

188 90.44775 84.456 99.5435

79 68.97425 60.474 71.7366

30 48.376 36.961 45.5253

75 68.6445 59.7 71.733

64 56.0195 45.313 55.4964

107 78.443 MLP 128.705 89.4639

8 28.89175 12.922 21.7262

6 27.99675 13.934 21.1394

24 53.617 37.902 50.0622

52 40.025 26.061 34.5803

38 51.65175 0.649 37.0457

41 57.5585 30.853 48.0008

94 59.17075 58.643 58.5656

 Train set#

MMRE 1 2 3 4 5 6 7 8 9 10

MLP 0.5997
94

0.8506
51

0.9067
63

0.4945
02

0.5583
18

0.7206
68

0.5831
78

0.3592
47

0.3430
78

0.2621
09

RBF 0.9711
21

0.9445
32

0.9729
06

0.9500
04

0.8950
87

0.9503
55

1.0024
43

0.9429
68

0.9377
54

0.7498
11

SVMre
g

0.2893
25

0.3697
04

0.3567
11

0.3050
58

0.3007
35

0.3340
08

0.2467
24

0.2845
06

0.3113
28

0.3300
26

M5P 0.3266
71

0.5340
99

0.5139
07

0.3557
17

0.2702
93

0.5675
17

0.2650
12

0.3149
07

0.5053
92

0.5119
83

 Train set#

166

Rankin
g

1 2 3 4 5 6 7 8 9 10

MLP 2 2 2 2 2 2 2 2 3 4

RBF 1 1 1 1 1 1 1 1 1 1

SVMre
g

4 4 4 4 3 4 4 4 4 3

M5P 3 3 3 3 4 3 3 3 2 2

MLP Weight RBF Weight SVMreg Weight M5P Weight Total

280.161 2 57.846 1 84.178 4 68.136 3 115.9288

81.491 2 56.883 1 49.121 4 51.343 3 57.0378

60.786 2 56.883 1 36.522 4 36.448 3 43.3887

76.445 2 84.991 1 72.988 4 73.462 3 75.0219

105.476 2 84.991 1 46.478 4 59.269 3 65.9662

230.77 2 84.991 1 105.836 4 130.597 3 136.1666

42.765 2 84.991 1 30.38 4 42.566 3 41.9739

116.41 3 57.649 2 99.159 4 88.549 1 94.9713

89.559 3 82.615 2 57.461 4 76.784 1 74.0535

82.995 3 57.649 2 42.437 4 63.407 1 59.7438

48.057 3 68.29 2 34.114 4 41.225 1 45.8432

125.873 3 57.649 2 67.505 4 64.008 1 82.6945

51.898 3 57.649 2 42.41 4 53.796 1 49.4428

52.927 3 82.037 2 47 4 59.516 1 57.0371

100.279 1 57.498 3 56.061 4 55.433 2 60.7883

93.322 1 81.28 3 64.335 4 89.383 2 77.3268

136.317 1 57.498 3 73.257 4 61.976 2 72.5791

65.041 1 57.498 3 55.68 4 56.35 2 57.2955

91.68 1 57.498 3 49.695 4 47.677 2 55.8308

102.332 1 57.498 3 54.209 4 63.208 2 61.8078

58.99 1 57.498 3 51.233 4 65.21 2 56.6836

100.731 3 59.822 1 83.278 4 84.617 2 86.4361

24.628 3 59.822 1 5.322 4 26.3 2 20.7594

208.525 3 61.963 1 136.533 4 103.448 2 144.0566

50.458 3 59.822 1 87.609 4 47.316 2 65.6264

105.19 3 59.822 1 83.907 4 61.088 2 83.3196

161.97 3 80.754 1 98.938 4 97.664 2 115.7744

91.174 3 59.822 1 74.785 4 61.734 2 75.5952

71.903 2 74.233 1 66.458 3 66.868 4 68.4885

347.932 2 74.233 1 147.654 3 167.422 4 188.2747

90.006 2 58.697 1 78.49 3 81.067 4 79.8447

40.463 2 62.198 1 32.927 3 34.977 4 38.1813

73.511 2 58.697 1 55.147 3 55.205 4 59.198

167

33.261 2 58.697 1 20.963 3 19.031 4 26.4232

99.609 2 58.697 1 65.628 3 81.52 4 78.0879

100.146 3 80.123 2 77.939 4 77.964 1 85.0404

86.887 3 61.112 2 57.077 4 65.937 1 67.713

56.519 3 61.138 2 13.045 4 58.008 1 40.2021

62.499 3 61.112 2 27.553 4 43.371 1 46.3304

51.453 3 61.164 2 27.019 4 23.565 1 40.8328

104.478 3 61.112 2 56.896 4 59.825 1 72.3067

86.021 3 61.112 2 48.345 4 66.093 1 63.976

40.939 2 62.819 1 78.105 4 114.787 3 80.1478

63.519 2 62.819 1 86.094 4 78.992 3 77.1209

208.11 2 59.834 1 196.599 4 89.101 3 152.9753

45.496 2 62.819 1 70.42 4 90.963 3 70.838

87.483 2 62.819 1 57.152 4 63.52 3 65.6953

42.483 2 62.819 1 40.018 4 53.793 3 46.9236

60.974 2 59.834 1 79.732 4 96.405 3 78.9925

87.311 4 87.24 1 101.988 3 88.553 2 91.9554

122.701 4 56.818 1 71.753 3 84.416 2 93.1713

49.75 4 56.818 1 36.263 3 50.31 2 46.5227

22.48 4 57.098 1 23.928 3 20.411 2 25.9624

20.881 4 87.24 1 18.829 3 11.069 2 24.9389

105.704 4 56.818 1 61.728 3 78.67 2 82.2158

71.64 4 87.24 1 56.758 3 58.712 2 66.1498

69.697 4 54.851 2 45.165 3 51.707 1 57.5692

146.683 4 82.487 2 60.454 3 51.076 1 98.4144

157.792 4 54.851 2 84.456 3 64.692 1 105.893

99.475 4 54.851 2 60.474 3 61.097 1 75.0121

49.174 4 54.851 2 36.961 3 52.518 1 46.9799

103.625 4 54.851 2 59.7 3 56.402 1 75.9704

71.033 4 54.851 2 45.313 3 52.881 1 58.2654

128.705 4 59.027 2 68.712 3 57.328 1 89.6338

12.922 4 59.027 2 19.311 3 24.307 1 25.1982

13.934 4 59.027 2 18.579 3 20.447 1 24.9974

37.902 4 59.027 2 54.909 3 62.63 1 49.7019

26.061 4 59.027 2 32.508 3 42.504 1 36.2326

0.649 4 88.264 2 44.209 3 73.485 1 38.5236

30.853 4 88.264 2 46.098 3 65.019 1 50.3253

58.643 4 59.027 2 54.031 3 64.982 1 57.9701

 Nonlinear models

Actual MLP RBF SVMreg M5P

168

102 237.308 56.001 223.747 245.007

85 72.161 56.001 56.913 61.702

38 52.847 56.001 36.158 39.795

81 73.192 90.299 64.308 61.854

55 96.647 88.134 82.896 85.09

101 222.674 92.948 203.348 213.646

38 45.069 85.139 27.551 24.798

157 101.127 58.36 89.448 89.182

68 78.906 80.847 67.854 73.498

26 63.32 57.825 48.456 53.852

24 41.409 80.847 23.929 22.328

86 116.71 57.848 85.328 99.187

26 41.723 57.826 25.879 20.973

47 53.198 80.847 37.683 34.473

78 91.675 56.43 62.209 72.234

88 90.529 86.575 70.556 70.145

124 131.252 56.43 93.697 109.97

28 61.982 56.43 36.766 36.532

62 82.949 56.43 54.063 51.232

35 94.375 56.43 62.908 74.229

41 59.607 56.43 30.758 31.5

49 93.213 58.975 83.746 87.387

9 22.353 58.975 8.561 11.043

70 209.583 58.975 174.767 183.524

46 41.517 58.975 44.453 37.184

42 97.68 58.975 85.075 86.79

92 158.06 85.827 138.564 142.446

48 82.54 58.975 73.185 74.872

56 66.589 90.378 60.416 57.075

217 196.079 100.965 287.892 306.162

45 75.656 53.596 72.13 75.304

24 35.231 51.399 25.317 23.617

85 61.216 51.165 53.518 55.477

10 25.749 50.761 14.886 13.802

100 86.095 52.343 79.14 83.212

72 90.815 76.373 80.852 82.022

48 76.43 62.09 58.453 61.646

24 52.098 62.099 26.101 31.131

16 53.905 62.092 31.862 37.132

14 42.758 62.126 20.876 26.048

82 94.291 62.09 72.411 79.328

169

39 75.418 62.089 56.454 60.775

98 59.243 61.501 55.574 44.53

56 61.396 61.436 57.844 54.44

146 221.501 62.267 164.16 178.119

25 56.43 61.444 49.373 42.353

68 75.218 61.423 63.705 70.624

48 44.448 61.439 31.591 30.476

170 67.731 62.075 65.613 56.689

80 86.543 95.863 86.141 78.606

148 124.397 55.76 101.471 114.3

30 55.484 55.76 36.96 41.534

28 30.353 55.76 11.877 9.118

35 43.099 86.389 20.066 13.096

77 108.9 55.76 86.441 98.485

45 75.753 88.421 67.649 66.99

52 64.766 53.579 57.658 61.564

70 147.663 90.3 140.223 145.877

188 149.016 53.579 139.862 147.393

79 100.45 53.579 85.28 90.576

30 44.632 53.579 38.326 41.568

75 104.318 53.579 89.284 94.619

64 66.605 53.579 58.796 62.865

107 125.595 55.344 115.85 120.812

8 6.317 55.564 13.817 14.657

6 7.594 56.054 14.008 15.333

24 36.414 54.86 44.428 42.952

52 22.103 54.883 28.564 28.344

38 18.518 74.476 14.64 9.919

41 43.815 69.362 37.096 35.234

94 52.605 54.889 60.31 59.865

170

VITA

Personal information
• Hamoud Ibrahim Hamad Aljamaan
• Saudi nationality
• Born in Kuwait, 1985
• Married

Education
• Masters degree in Computer Science, King Fahd University of Petroleum and

Minerals (KFUPM), Dhahran, Saudi Arabia. Expected graduation date, June, 2009.

• Bachelor’s degree in Computer Science, King Saud University (KSU), Riyadh,
Saudi Arabia, June 2006.

Research and Publications
• Hamoud Aljamaan, Mahmoud Elish, "An Empirical Study of Bagging and Boosting

Ensembles for Identifying Faulty Classes in Object-Oriented Software", IEEE
Symposium on Computational Intelligence and Data Mining (CIDM), March 2009,
(Paper was presented by me).

• A. Bahjat, H. Aljamaan, M. Alshayeb; "SQL-GUARD DESIGN PATTERN".
SEDE-2009 - 18th International Conference on Software Engineering and Data
Engineering, USA, June 2009.

Professional Experience
• 2006, November – Present, graduate assistant (GA), department ICS, KFUPM.

• 2005 summer, developed and enhanced an image processing program, Integrated

Solution Service Department (ISSD) of Saudi Aramco, Dhahran, Saudi Arabia.

Research Interests
• Software quality assessment
• Utilization of data mining in software engineering
• Empirical software engineering
• Software project management
• Software privacy and protection

