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ABSTRACT 

 
Student Name: Ismail Mohammad Yamin Al-Hindi 
Thesis Title: Parametric Study of Short Periodic Speed Control Humps on a Road 

Vehicle Dynamic 
Major Field: Mechanical Engineering 
Date of Degree: Jumada I 1430 H (May 2009) 
 

The purpose of speed control humps is to introduce shocks and high vibration 

levels when a vehicle passes over them in order to force the driver to slow down. 

Circular short periodic speed control humps are not observed to be effective in 

controlling speeding vehicles in many different areas such as road intersections, 

highways, checkpoints, exits, and bridge intersections as conventional speed control 

humps. However, no study is recommending to construct such humps or study of the 

relationship between the driver’s vibration and the vehicle main body’s due to passing 

over these humps. Moreover, most of the constructed circular short periodic humps 

used in different locations are not supported by efficient warning signs ahead in many 

locations.  

The main objective of this parametric study is to assess the effects of circular 

short periodic speed control humps due different height, vehicle speed, hump spacing, 

and multiplicity on the dynamic behavior of the vehicle as a whole and on the driver in 

particular. Vehicle safety and driver comfort are most important in evaluating the 

effectiveness of speed control humps. The assessment is based on two standard 

methods of measuring whole body vibration: the British standard BS 6841 and the new 
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ISO/DIS standard 2631-5. A mathematical 3-D vehicle model representation is used. 

The effects of the individual parameters on the dynamic response of the system are 

evaluated using the MATLAB program and the solver ODE45 (Runge Kutta) 

numerical method to solve the system of equations. This study focuses on the amount 

of vibration transmitted to the main vehicle body and the driver. This study shows that 

the vibration dose value (VDV) decreases as the crossing speed increases. However, 

this observation does not mean they are not harming the vehicle body. In fact, the time 

span of the car will be reduced due to fatigue failures and bolts looseness due to highly 

frequency vibration.  

 

Keywords: Short Periodic Humps, Speed Control Humps, Parametric Identification, 

Vehicle nonlinearities, Vehicle Safety, Vehicle Driver.  
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 ملخص الرسالة 5
 

إسماعيل بن محمد يامين بن عبداللطيف الهندي              :سمالإ  

.القصيرة المتكررة على المطبات المرآبةدراسة ديناميكية   :الرسالة عنوان  

الهندسة الميكانيكية       : التخصص  

)م  ٢٠٠٩الموافق مايو  (هـ  ١٤٣٠جمادي الأولى    :تاريخ الدرجة  

  

عندما تعبر  وعدم الإرتياحيةمستوى الصدمات والإهتزازات رفع  ت التحكم بالسرعة هوالهدف من مطبا

إن المطبات  من المشاهدات والواقع الملموس. بسرعة تتجاوز السرعة المسموحة بها المطبات المرآبة فوق

أغلب آما أن  ,ديةمقارنة بالمطبات التقليوتنبيه السائق سرعة المرآبة  هدئةالقصيرة غير فعالة في تالمتكررة 

والتي من شأنها أن  دهاوماآن وجلأالتحذيرية  والإرشادات المطبات المتكررة القصيرة غير مدعومة بالإشارات

و بحث العلاقة بين إهتزاز السائق ي دراسة أيثبت حتى الآن من قبل أ لمآذلك  .تدفع السائق لتهدئة سرعة المرآبة

 . متكررةت الفي المرآبة عندما تعبر فوق هذه المطبا

عند مرور المرآبة  القصيرة متكررةهو تقييم المطبات ال مروريةمن هذه الدراسة ال الهدف الرئيسإن 

, هاومدى تأثيرها على جسم المرآبة والسائق من خلال التغير في إرتفاع في التحكم بالسرعة وجدواها فوقها

على المواصفات القياسية في قياس  بناءاًهذه الدراسة وتقوم  .سرعة المرآبةو, وتعددها, والمسافات الفاصلة بينها

تم تقصي آثار هذه المطبات  قدلو. ISO/DIS 2631-5و  BS 6841: الإهتزازات للجسم الكلي للسائق وهما

حل معادلات و MATLABخلال برنامج من نموذج رياضي ثلاثي الأبعاد يمثل فيها المرآبة والسائق  بإستعمال

أن هذه المطبات  هذه الدراسة اظهرت نتائجلقد . Runge Kuttaوالمعروف بـ  ODE45النظام بإستخدام 

لاتجدي آثيراً في تحذير السائق من وجود تقاطعات مرورية أو نقاط تفتيش حيث أن السرعة القصيرة  لمتكررةا

على سلامة  العالية هي التى تعطي الجرعات الإهتزازية الأقل للسائق وجسم المرآبة بينما هذا ينعكس بدوره

بينما السرعة المتدنية تنعكس سلباً على  .المرآبة وطول عمرها في حالة عبور المرآبة بصورة متكررة عليها

 .راحة السائق وذلك من خلال مدى الإهتزازات الكبيرة مقارنة بالسرعات العالية
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CHAPTER 1 

1 INTRODUCTION 

1.1 BACKGROUND 

Speed humps are roadway geometric design features intended to reduce vehicle 

speed and they are in common use throughout the world. These traffic control devices 

offer several advantages over other traffic control methods such as one-way streets and 

turn or entry prohibitions, the most important advantage being a reduction in overall 

vehicular speed and collisions. The objective of speed control humps is to introduce 

shocks and high vibration levels when a vehicle passes over them if its speed is higher 

than the allowable speed limit. Speed humps constitute an efficient method to reduce 

car speed in residential areas. This results in reducing accidents rate. However, 

different speed limits require different speed hump profiles. Another important design 

factor is the side effect on the driver’s health; for example, old people with back 

problems should be considered in the design of speed humps. 

The ideal speed control hump should be made such that at and below the design 

speed, all drivers should be able to cross the hump without damaging the carried load 

and vehicle components, or loss of control and they should suffer no discomfort. 



2 
 

 
 

Above the design speed, the driver should suffer his violation through risk of loss of 

control or loss of driver’s comfort. Unfortunately, at least in our eastern province of 

Saudi Arabia, the type of humps commonly constructed a head of police check point is 

often short periodic hump profile as shown in Figure 1.1.  Actual photo pictures are 

taken from different road sites in Dammam, Dhahran, Tanajib, and Ras Tanura (see 

Figures 1.2., 1.3, and 1.4).  

 

 
Isometric view of circular short humps 

 

 
Isometric view of circular short humps 

 

 
Cross-Sectional View of circular short humps with 

large spacing 

 
 

 
 Cross-Sectional View of circular short humps with 

low spacing 
 

Figure  1.1: Short periodic humps. 
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Figure  1.2: Short periodic humps at Dammam-Dhahran highway and Doha. 

 

 
Figure  1.3: Short periodic humps at Tanajib/ Safaniyah main road intersection. 

 

 
Figure  1.4: Short periodic humps at Ras-Tanura. 
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In-Kingdom Local Traffic Departments are trying hard to minimize accidents at 

intersection road by constructing different speed control humps. Among these humps 

are circular, flat top, and short periodic profile. Circular short periodic speed control 

humps are observed to be not effective in controlling speeding vehicles in many 

different areas such as road intersections, highways, checkpoints, exits, and bridge 

intersections as conventional speed control humps. However, there is no research, 

standards or study up to date recommending such type of humps to be constructed nor 

study of the relationship between whole body vibration due to passing over a short 

periodic humps. Moreover, most of these humps used are not supported by efficient 

warning signs in many locations. Vehicle safety and driver comfort are the most 

significant and sufficient in evaluating the effectiveness of speed control humps. The 

primary purpose of this parametric study is to evaluate numerically the effects of short 

periodic speed control humps on vehicle dynamic at both low and high speed. The 

parameters of this study will include height, spacing, multiplicity, and vehicle speed as 

well as it includes variances in stiffness and damping such as linear and bilinear 

behavior. The development of a 3-D vehicle model is required in this study. Therefore, 

the results obtained from the simulation will provide the acceptable geometrical short 

periodic design if they are needed to be constructed at any rate. In conclusions, the 

results are analyzed with recommendations and suggestion for safe and comfortable 

driving along the roads. 
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1.2 SAUDI TRAFFIC STANDARDS: BRIEF REVIEW 

 Due to the importance of traffic safety on the roads for the vehicle and driver, 

Saudi Traffic Department has established engineering standards for constructing speed 

control humps: 

  

1.1.1 Basic Requirement for Hump Design and Construction: 

There are several types of hump design mainly speed bumps, speed humps, 

flat-top humps and raised intersection humps. The detail construction data each of 

these types are given [26] as follow: 

 

− Speed bump: 

 

 
Figure  1.5: Vehicle crossing over short bump [27]. 
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−  Speed hump: 

 

 
Figure  1.6: In-Kingdom Standard for constructing speed hump [27]. 

 

 

 

−  Flat-Top hump: 

 

 
Figure  1.7: In-Kingdom Standard for constructing Flat-Top hump [27]. 
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−  Raised Intersection hump: 

 

 
Figure  1.8: In-Kingdom Standard for Raised Intersection speed hump [27]. 
 

 

1.1.2 Locations where humps to be constructed: 

Table 1.1 list some guidelines for the locations where speed control humps 

should be constructed and safe speed for crossing according to the In-Kingdom 

Traffic Standard. 
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Table  1.1: General rules where to construct humps and corresponding speed limit [27]: 
 

Type of Road Category Speed limit 

– Local Streets 

– Residential Roads 

– Intersection Roads 

60 km/hr or Less 

 

 

1.3 HEALTH AND SAFETY ISSUES 

It is a fact that accident rates In-Kingdom with respect to other countries, are 

high due to the violation of speed limits and a shortage of traffic forces. Therefore, 

using speed control humps is a very efficient way of slowing down cars, especially in 

residential areas, and may help reduce traffic accidents. Based upon the study by 

Saadoon [18], speed control humps, which are 4 m wide and 10 cm high, are replacing 

1 m wide and 15 cm high humps on many residential roads. This is because the second 

speed bumps are found to be ineffective in controlling speed limits at the desired value 

A speed control hump is a local elevation of the road surface of limited height, 

usually from 0.075 m to 0.10 m, in order to decrease driving speeds to an acceptable 

limit known as the critical speed. A speed hump works by transmitting an upward force 

to a vehicle, and its occupants, as it traverses the hump. The force induces a front-to-

back pitching acceleration that increases as the vehicle travels faster. Watts [25] stated 

that the ideal speed control humps should be crossed without damage to load or 
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vehicle, loss of control, or driver discomfort, which means ideally zero vertical 

acceleration. If the speed control humps is crossed with a speed that is above the 

critical speed, the driver should suffer some discomfort without damaging the load or 

vehicle or risking loss of control. Drivers in vehicles are exposed to whole body 

mechanical vibration during their daily ride. Whole-body vibrations originate from two 

different types of force. A random and sudden forces designated as a shock as stated by 

Granlund [11]. When the tires hit a bump or sink into a pothole, shock occurs. If this 

shock is strong enough, it can cause severe spinal injury which is discussed in the book 

by Dupuis and Zerlett [7]. 

 

1.4 ERGONOMIC STANDARDS 

Health risks to vehicle drivers from speed control humps shocks were analyzed 

using two standards: the British standard BS-6841 [5] and the new ISO/DIS 2631-5 

standard [15]. A speed control humps experiment entails a variety of testing 

conditions: different hump profiles and dimensions, different vehicle speeds, and 

various seat locations within the vehicle. These conditions cause various types of 

repeated shocks to the vehicle and the driver. To date there has been no published 

research on whole body vibration of speed control humps and their possible hazard on 

human health. 
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1.5 VIBRATION DOSE VALUE, VDV 

Vibration measurements were analyzed using the procedure described in 

both the British Standard BS 6841 [17] and the International Standard ISO/DIS 

2631-5 [18]. International Standard ISO 2631-1 [26] is a more recent standard than 

BS 6841 that provides similar but not identical procedures for evaluation of 

vibration and shock. The differences between the ISO 2631-1 [26] and BS 6841 are 

due to variations in the shapes of the frequency weightings, the phase responses of 

the frequency weighting filters, the method of combining multiaxis vibration, and 

the assessment method [24]. 

For the British Standard BS 6841, the analysis includes the application of 

frequency weightings, the use of multiplying factors in different axes, and the 

calculation of vibration dose values (VDVs). For the International Standard 

ISO/DIS 2631-5 [18], the analysis includes the use of different multiplication 

factors in different axes.  

According to the British Standard BS 6841 [17], the VDV is defined as the 

cumulative vibration and shock measures that a person is exposed to during a given 

period of time. The VDV reflects the magnitude, and duration of the total exposure 

to vibration.  
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The VDV is described by the following equation: 

( )4 4
2

1

∫=
t

t
w dttaVDV                   (1.1) 

where ( )taw  is the weighted filtered signal 

      t1 is the initial time of the calculation period  

      t2 is the final times of the calculation period  

In our case, we obtain this value numerically directly in time domain from our 

simulation. 

 

1.6 THESIS OBJECTIVE 

It has been witnessed that most of the drivers including myself are crossing these 

humps with high speed to avoid the large fluctuation when crossing at low speed. This 

observation supports our study that these humps are not effective to force driver to 

slow down but rather they play as signs for entering or exiting intersection or 

highways.  

Short periodic speed control humps seems to be very dangerous to the road 

vehicle compared to the normal humps used internationally in many locations. Due to 

their wide existence in various locations of our east province at police check points on 
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the main highways, industrial security check points, residential areas, and at the 

entrances to the highways, this study is aiming to evaluate their dynamic and 

vibrational effects on the vehicle and the driver. In fact, these humps are not used for 

controlling vehicle speeds but rather they are used as warning signs for slowing down. 

Furthermore, circular short periodic humps are selected to measure the effects of their 

geometrical parameters of the hump on the vehicle dynamics in terms of their height, 

width, spacing, vehicle speed, and multiplicity. As well as, it includes variances in 

stiffness and damping coefficients such as linear and bilinear behavior.  

The motivation of the work when crossing these short humps we feel the 

vibration is very annoying going either with low or high speed. In this study, we would 

like to see that if there is any optimal parameter so these short humps can be utilize 

effectively with driver comfort and vehicle safety can be achieved. 

 

1.7 SCOPE OF THE PRESENT STUDY 

This study primarily is a parametric approach to evaluate the effects of short 

periodic speed control humps on vehicle dynamic for a range of speeds from low to 

high speed. The geometrical circular hump parameters to be thoroughly investigated 

are as follow: 

– Height of the hump: h1 (7.5 cm) and h2 (10 cm) height will be studied. 

– Spacing between the humps: 0 m, 0.25 m, 0.5 m, and 1.0 m as well as 0 Scr, 0.5 Scr, 

1.0 Scr, 1.5 Scr, 2.0 Scr, where Scr is the critical spacing associated with three 
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different tire radius sizes namely RT1 (13 in ≈ 33 cm), RT2 (15 in  ≈ 38 cm), and RT3 

(19 in ≈ 48 cm) and more definition of the critical spacing is explained in chapter 5. 

– Vehicle speed: a range of speed is used from 0 to 100 kh/hr for all the simulations. 

– Multiplicity of short humps: different numbers of humps are selected to evaluate 

their repetition starting with single hump to 2, 3, 5, 7, and 10 humps respectively. 

– Variances in stiffness and damping coefficients in the suspension system to 

incorporate linear and bilinear dynamic behavior and their effect on the vehicle and 

driver’s comfort when passing over these short periodic humps:  
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      where ij refer to FR (Front Right), FL (Front Left), RR (Rear Right), RL (Rear Left) 
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CHAPTER 2 

2 LITERATURE REVIEW 

2.1 ON GENERAL EVALUATION OF SPEED CONTROL HUMPS  

Ever since the creation of the first industrial machines powered by motors, a new 

nuisance for human beings has made its appearance: vibrations. In many areas, we are 

all the time more subjected to serious harmful and damaging effects of vibrations by 

different speed control humps of different profiles. Among of these are circular, 

harmonic, parabolic, sinusoidal, flat-top, short periodic humps and others that are used 

haphazardly.  

When investigating about first designs on speed control humps and their related 

studies, several previous works where explored on speed control humps according to 

the study by Griffin et al. [12], Rakheja [20], Barak [1] and Saadoon [22], who had 

verified that mechanical vibrations cause numerous pathological demonstrations due to 

the fact that they are directly transmitted to the human body through direct contact with 

solid materials on the road. These vibrations are particularly evident in the area of road 

vehicles. Since the early days of the 20th century, efforts have steadily increased to 
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eliminate or reduce this type of vibration. For instance, one such effort has been the 

suspension system installed between the excitation input and the vehicle body.  

During the history of imposing speed humps since the 1970s, several hump 

profiles were used. The shape of the speed hump has been optimized for the response 

characteristics of different types of vehicles passing over the hump. There are several 

research studies on the problem of designing a hump geometry that can satisfy vehicle 

safety and driver comfort from the dimensions point of view only as reported by 

Maemori, [17].  

 

2.2 ON MODELING APPROACH OF SPEED CONTROL HUMPS 

Through extensive literature search, it is found that very few studies have been 

reported on the use of hump profile as a design variable. Also, there has not been any 

study on the series of short humps or the humps dimensions than has been reported. 

Other works, focused on the optimum shape design of speed control humps but they 

lack the practicality of implementation in terms of cost and construction according to 

Pedersen [18]. Furthermore, continuous efforts were investigated the dynamic behavior 

of the vehicle crossing normal seen humps for different rise and return profiles such as: 

(sinusoidal, harmonic, cycloidal, circular and modified harmonic) by using 5 degrees-

of-freedom of 2-D behicle model. It is clear that hump geometry plays a major role in 

the dynamic effects on the vehicle and driver. The most important hump geometrical 
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parameters are hump profile, and dimensions which include height and width as in the 

work reported by Kassem and Al-Nassar [16]. Another design factor is the hump 

layout, or the number of humps in one road and their spacingas reported in the study of 

Fwa and Liaw, [9]. The  analytical study demonstrated that the reasonable accuracy for 

the dynamic behavior of actual road vehicle running on rough road using two degrees-

of-freedom model that studied by Gobbi and Mastinu [10]. Moreover, the dynamic 

behavior was investigated of the vehicle crossing of different profile humps from 

different rise and return profiles such as: (sinusoidal, harmonic, cycloidal, circular and 

modified harmonic) using 12 degrees-of-freedom as studied by Khorshid and Alfares 

[8]. 

It is clearly noted that a 2-D model did not allow analyzing all the motions 

generated by an actual vehicle studied the effects of vibration on the comfort and road 

holding capability of road vehicles as observed in the variation of different parameters 

such as suspension coefficients, road disturbances, and the seat position as studied by 

Bouazara and Richard [4]. Consequently, more studies were investigated for the entire 

vehicle model in a 3-D with eight degrees-of-freedom for random excitation road by 

vertical, pitching and rolling motions in terms of acceleration, velocity and movement, 

for various vehicle solid components s one can see this in the work of Bouazara and 

Richard [2]. In order to utilize this model for better understanding, a true movement 

generated by ground vehicles with the rolling motion of particular interest has been 

reported by Crolla [6], Hrovat [14] and Bouazara [3].  
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Another interesting work is carried out by Metallidis et al. [19]. In their work, a 

parametric identification and fault detection studies have been performed in nonlinear 

vehicle system for two (1-D), four (2-D), and seven (3-D) degrees-of-freedom which 

subjected to harmonic road excitations. In addition, more optimization studies were 

carried out for the suspension damping and stiffness parameters of nonlinear quarter-

car models subjected to also random road excitation involving passive damping with 

constant or dual-rate characteristics as in the study of Verros et al. [20].  
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CHAPTER 3 

3 MATHEMATICAL MODELING AND FORMULATION 

3.1 VEHICLE MODELING 

A mathematical model is required to study the parametric effects of short 

periodic speed control humps on vehicle and driver. A model that suits this study of 

whole-body vibration of road vehicles is adopted from the work by Bouazara and 

Richard [2]. The vehicle model is supported by identical front and rear suspensions 

which consist of a secondary spring, a damper, an unsprung mass and a primary spring. 

The system is made up of the following parameters: mG, mD, mFR, mFL, mRR, and mRL 

are the masses for the driver, car body, and wheel axes FR, FL, RR, and RL, 

respectively; CD, CFR, CFL, CRR, CRL are damping coefficients and KD, KFR, KFL, KRR, 

KRL are the stiffness coefficients for the seat and vehicle suspensions; KF1, KF2, KR1, 

KR2, are the tire stiffness coefficients. The model data was given in Table 3.1. This 3-D 

vehicle model has eight degrees-of-freedom as shown in Figure 3.1.  
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Figure  3.1: 3-D Model of the vehicle and the driver [2]. 
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Table  3.1: Mass, damping coefficient, spring coefficient, moment of inertia, and 

dimensions for front and rear of the vehicle main body [2]: 
 

Mass 

mFR mFL mRR mRL mD 
40 kg 40 kg 35.5 kg 35.5 kg 75 kg 
mG     

730 kg     
      

Damping 
Coefficient  

CFR CFL CRR CRL CD 
1290 Ns/m 1290 Ns/m 1620 Ns/m 1620 Ns/m 2000 Ns/m 

      

Stiffness 
Coefficient 

KFR KFL KRR KRL KD 
19.96 kN/m 19.96 kN/m 17.5 kN/m 17.5 kN/m 100 kN/m 

KF1 KF2 KR1 KR2  
175.5 kN/m 175.5 kN/m 175.5 kN/m 175.5 kN/m  

      
Moment of 

Inertia 
IGxx IGyy    

1230 kg m2 1230 kg m2    
      

Dimension 

e d a b  
1.011 m 1.803 m 0.755 m 0.755 m  

ry rx    
0.5 m 0.5 m    
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The vehicle behavior is expressed by vertical, pitching and rolling motions in 

terms of acceleration, velocity and movement, for various vehicle solid components. In 

this analysis, we do not consider yaw motion because it has been shown that its effect 

is negligible on vehicle comfort and road holding capability as explained by Hrovat 

[14]. 

 

3.2 MATHEMATICAL FORMULATION 

In order to obtain the differential equations of motion of the system represented 

in Figure 3.1, we follow energy approach in which kinetic energy, potential energy and 

damping forces of the system need to develop as follow:  
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After obtaining the above expressions, the equations of motion are developed 

using the following Lagrange equation, 
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where i stands for any of eight degrees of freedom (FR, FL, RR, RL, D, G, xθ  and yθ ) 

Consequently, eight equations of motion of the system in the vehicle are: front 

right wheel, front left wheel, rear right wheel, rear left wheel, main body of vehicle, 

driver, pitch and roll. After developing each equation with respect to the location in the 

vehicle, the linearized equations of motion for this system are obtained directly as for 

small angle xθ  and yθ : 
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3.3 SOLUTION STRATEGY 

Upon using the MATLAB program, the solver ODE45 (Runge Kutta) is used to 

solve the system of equations. However, this method or solver requires the system of 

equations to be of the first order. Therefore, each of the equations is replaced by two 

first order equations as shown in conversion Equation 3.13. The required initial 

conditions are the initial positions and velocities. The system of equations is shown in 

detail in the appendix. 
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CHAPTER 4 

4 SIMULATION STRATEGY 

4.1 INTRODUCTION 

In this chapter the effects of short periodic speed control humps on vehicle 

dynamic at both low and high speed are to be thoroughly investigated. And, these 

parameters are: 

– Effect of varying height of the hump. 

– Effect of vehicle speed. 

– Effect of different spacing between the humps. 

– Effect of multiplicity of these short humps. 

– Linear vs. bilinear behavior in the suspension system. 

 

In all the parametric study cases, the following plots are produced: 

– Hump profiles of different height of humps vs. speed for different repeated humps. 

– Max vertical acceleration of the driver and main body vs. speed. 

– Max Jerk of the driver and main body vs. speed. 

– VDV of the driver and main body vs. speed for different spacing and different tire 

sizes. 
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– VDV of the driver and main body vs. speed for multiplicity of humps. 

– VDV vs. speed of the driver and main body for linear and bilinear behavior of 

stiffness and damping coefficient. 

 

4.2 HUMP PARAMETERS 

Dimensions and configuration of the circular short periodic hump play a major 

role in its dynamic effects on the vehicle and driver. And, the following parametric 

studies parameters are of particular importance: 

 

4.2.1 HEIGHT OF HUMP 

It has been observed that low humps are ineffective comparing to high 

humps which can be very dangerous and they might cause rigorous damage to the 

vehicle underneath. Two heights have been considered in this study which are h1 

and h2. The maximum height for these humps has been identified as shown in 

Figure 4.1. The main factor in choosing a suitable height for the hump is the 

dynamic response of the vehicle as shown in Figure 4.2. 
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Figure  4.1: Vehicle tire crossing over single circular short periodic hump. 
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Figure  4.2: Effective profile of the hump when tire size is RT2. 
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(a) Zero hump spacing 

 
(b) Hump spacing, S, less than Scr 

 

 

(c) Critical hump spacing, Scr 
 

 

(d) Hump spacing, S, greater than Scr 
 
 

Figure  4.3: Vehicle tire crossing over two short humps when: (a) S = 0, (b) S <  Scr, (c) 
S =  Scr, and (d) S > Scr. 
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Figure  4.4: Actual interface between the vehicle tire size, RT2, for 2 humps  

when: (a) S < Scr, (b) S = Scr, and (c) S > Scr. 
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Figure  4.5: Actual interface between the vehicle tire size, RT2, for 10 humps  

when: (a) S < Scr, (b) S = Scr, and (c) S > Scr. 
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4.2.2 VEHICLE SPEED 

Effect of speed has been measured against vertical acceleration, jerk, and 

whole-body vibration dose value (VDV) for both the vehicle and the driver at a 

range of speeds from 0 km/hr to 100 km/hr. Furthermore, maximum acceleration 

and maximum jerk vs. speeds demonstrated high effects for the dynamic behavior 

of the driver at low speed and the vehicle safety decrease at high speed. VDV 

increases at low speeds and decreases at high speeds.  

 

4.2.3 DIFFERENT SPACING BETWEEN HUMPS 

For the feasibility of this study, seven hump spacing have been studied and 

calculated in which of two less than the critical spacing (0, and 0.5), one is equal to 

the critical spacing and two greater than the critical spacing (1.5, and 2.0). There 

are three critical spacing have been identified in this study for three different 

vehicle tire sizes RT1, RT2, and RT3 of different hump height as shown in Table 4.1.  

Critical spacing can be obtained using the following expression see Figure 4.3 (c):  

( ) r2cosrR2Scritical ×−×+×= θ                            (4.1) 
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Table  4.1: Critical spacing for different tire sizes as follows: 

Hump height h1  h2  

Scr1 for Tire Size RT1 0.3197 cm 0.3515 cm 

Scr2 for Tire Size RT2 0.3511 cm 0.3872 cm 

Scr2 for Tire Size RT3 0.4086 cm 0.4527 cm 

 

 

4.2.4 MULTIPLICITY OF CIRCULAR SHORT PERIODIC HUMPS 

With different spacing between each hump, number of humps has major 

effect on whole-body vibration. The multiplicities of humps are chosen to be one, 

two, three, five, seven, and ten humps. The hump profile refers to the geometry of 

the cross section of the hump. Such profile can be shown in Figure 4.3. In order to 

choose a specific no. of humps for this study, it can be selected depending on the 

dynamic effects on vehicle and driver which is the subject of this parametric study. 

It is observed that these humps are used in groups as shown in Figure 4.4 and 

Figure 4.6 using different spacing between humps.  
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CHAPTER 5 

5 RESULTS AND DISCUSSION 

5.1 EFFECT OF VARYING HEIGHT OF THE HUMP 

Two different heights are used in this parametric study namely h1 and h2. The 

effect of varying the heights on the amount vibrational dose value, VDV, behavior of 

the driver are given in figures 5.1, 5.2, and 5.3 for a range of approaching speeds. Only 

single tire radius size is considered in this analysis (tire radius size of RT2). 

Furthermore, three different spacing have been considered to be presented namely, 0, 

critical spacing, and double of the critical spacing with multiplicity of 2, 5, and 10 

successive short humps. The first three groups of figures (Figures 5.1 (a), (b), and (c)) 

represent 0, critical spacing, and twice the critical spacing for 2 repeated humps. While 

the second three groups of figures (Figures 5.2 (a), (b), and (c)) represent 0, critical 

spacing, and twice the critical spacing for 5 repeated humps. Finally, the last three 

groups of figures (Figure 5.3 (a), (b), and (c)) represent 0, critical spacing, and twice 

the critical spacing for 10 repeated humps. As a general observation, the amount of 

vibrational dose represented by VDV measure shows that the higher the humps, the 

more vibration does transfer to the driver. The effect of approaching speed shows that 

VDV value decreases as the approaching speed increases. This does not imply that it is 

recommended to speed up when crossing these short humps since higher crossing 
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speeds excite higher frequencies on the vehicle body which can create unforeseen 

defects in the vehicle components as looseness of bolts for example. It is clear that the 

optimal crossing speed is less than 50 km/hr. It is also observed that when the spacing 

is twice the critical spacing whether the numbers of humps are 2, 5, or 10 the behavior 

of VDV is almost the same with respect to crossing speed of 30 km/hr and above.  
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Figure  5.1: VDV vs. Speed for tire size RT2 crossing over 2 humps for Driver when:  
(a) S = 0, (b) S = Scr, and (c) S = 2.0 × Scr 
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Figure  5.2: VDV vs. Speed for tire size RT2 crossing over 5 humps for Driver when:  

(a) S = 0, (b) S = Scr, and (c) S = 2.0 × Scr. 
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Figure  5.3: VDV vs. Speed for tire size RT2 crossing over 10 humps for Driver 

when: (a) S = 0, (b) S = Scr, and (c) S = 2.0 × Scr. 
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5.2 EFFECT OF VEHICLE SPEED 

In this section, the effect of vehicle crossing speed over a single hump is being 

examined first. Figure 5.4, 5.5, 5.7, and 5.8 represent maximum absolute values of 

acceleration and jerk, and VDV for the vehicle and the driver. Three tire sizes, namely 

RT1, RT2, and RT3 are considered with fixing the height of the hump to be h2. One 

should note that the acceleration and jerk magnitudes tend to decrease with increasing 

of hump crossing speed. Also, the main body of the vehicle is exposed to a maximum 

jerk level 300 m/s3 twice as much as the driver received level 140 m/s3.    

Next, the effect of vehicle crossing speeds for 2 and 10 repeated humps are 

investigated. For clarity purpose, four constant crossing speeds are selected to display 

the dynamic behavior of the driver. They are 20 km/hr, 50 km/hr, 70 km/hr, and 100 

km/hr. Effect of three hump spacing are examined. These are zero spacing, critical 

spacing, and double of the critical spacing. In all these simulation cases, hump height 

of h2 and tire radius size of RT2 have been kept as fixed parameters. It is difficult to 

extract concrete observation from the time response behavior of the driver except that 

the displacement, acceleration, and jerk are more pronounced at low crossing speeds. 

Another remark it can be observed that series of repeated humps resulted as observed 

in a single hump and that is that the acceleration and jerk magnitudes tend to decrease 

with increasing of hump spacing and crossing speed. Again here, higher crossing 

speeds are not recommended although the driver is receiving minimum shocks and low 

discomfortable level but the vehicle body is certainly suffer a lot from these 
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disturbances due to frequently crossing and the high level of vibrational frequencies 

which leads to different failure modes or probability of accidents.   
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Figure  5.4: Max Accl. vs. Speed for single hump, h2 for Driver  

for tire size RT1/ RT2/ RT3 having absolute positive values. 
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Figure  5.5: Max Jerk vs. Speed for single hump, h2 for Driver  

for tire size RT1/ RT2/ RT3 having absolute positive values. 
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Figure  5.6: VDV vs. Speed for signle hump, h2 for Driver  

for tire size RT1/ RT2/ RT3 
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Figure  5.7: Max Accl. vs. Speed for single hump, h2 for Main Body  

for tire size RT1/ RT2/ RT3 having absolute positive values. 
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Figure  5.8: Max Jerk vs. Speed for single hump, h2 for Main Body  

for tire size RT1/ RT2/ RT3 having absolute positive values. 
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Figure  5.9: VDV vs. Speed for single hump, h2 for Main Body  

for tire size RT1/ RT2/ RT3 
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Figure  5.10: VDV vs. Speed for Driver with h2, tire size RT2  
for (a) 2 humps and (b) 10 humps when S = 0, S = Scr, and S = 2.0 of Scr 

(b) 10 humps 

(a) 2 humps 
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5.3 EFFECT OF DIFFERENT SPACING BETWEEN HUMPS 

5.3.1 Effect of different spacing ratios of critical spacing 
 

In this section, the effect of different spacing between humps is 

investigated. All simulation cases considered here are for a hump length of h2 and 

tire radius size of RT2. Various ratios hump spacing of critical spacing are 

examined namely 0, 0.5, Scr, 1.5, and 2.0. The dynamic behavior resulted are 

expressed in terms of VDV value representing the main body of the vehicle and the 

driver. Also, in these cases the effect of spacing when there are 2, 5, or 10 repeated 

humps is considered. Figure 5.11 represent the case for 2 humps for (a) the driver 

and (b) the vehicle main body. While Figure 5.12 represent the case for 5 humps. 

Finally, Figure 5.13 represents the case for 10 humps. 

The common points among all these figures is that the critical spacing is 

relatively the worst case in general in which the VDV is maximum with respect to 

other hump spacing ratio of the critical spacing for most of the approaching speeds. 

For the case of 2 repeated humps, spacing below the critical spacing provides 

relatively less VDV amount. While for the case of 5 repeated humps, spacing 

greater than the critical gives less VDV amount. And, if 2 and 5 repeated humps 

are compared to other ratios in the case of 10 repeated humps, zero spacing shows 

greater VDV amount. Another observation is that as the spacing is getting bigger 

beyond the critical spacing, the VDV level is decreasing into small compared to the 

other spacing ratios in which large spacing ratio posses lower VDV value. In order 



44 
 

 
 

to select proper spacing, one has to consider the number of humps to be used and 

the optimal approaching speed. From these simulation, it is observed that the usual 

approaching speed is 20 km/hr and higher since VDV gives low values. Therefore, 

our evaluation will be focused on this speed and higher only. For 2 repeated humps 

and at speed of 20 km/hr and higher, zero spacing gives relatively low VDV values. 

If one turns to the case of 5, 10 repeated humps, it is noted that the proper spacing 

is when S = 2.0 × Scr at an approximate speed of 30 km/hr and higher for the driver 

comfort and 50 km/hr for the vehicle body.  
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Figure  5.11: VDV vs. Speed for: 2 humps, h2, tire size RT2 
for (a) Driver and (b) Main Body 

(b) Main Body 

(a) Driver 
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Figure  5.12: VDV vs. Speed for: 5 humps, h2, tire size RT2 
for (a) Driver and (b) Main Body  

(b) Main Body 

(a) Driver 
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Figure  5.13: VDV vs. Speed for: 10 humps, h2, tire size RT2 
for (a) Driver and (b) Main Body  

 

(b) Main Body 

(a) Driver 
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5.3.1 Tire sizes effect on the hump spacing  
 

The three tire sizes of RT1, RT2, and RT3 are considered to evaluate their 

effect on the spacing between humps. Figures 5.14 to 5.19 give the VDV values 

with respect to the spacing between humps for case 2, 5, and 10 repeated humps.  

The simulation is carried out for selected speeds of 30 km/hr, 50 km/hr, 80 km/hr, 

and 100 km/hr. By examining these figures, they clearly support the early argument 

that zero spacing gives low VDV value for 2 humps case while 5, 7, and 10 humps 

having more spacing provide less VDV values. Also, the critical spacing associated 

with tire sizes show more discomfort level for both the driver and vehicle main 

body. From Figures 5.14, 5.15, 5.16, and 5.17, one can observe that for 2 and 5 

repeated humps, smaller tire size gives high VDV values than other tires sizes 

when hump spacing is below the critical spacing. Whereas the VDV values flip 

over in a way that it becomes larger with large tire size for spacing greater than the 

critical spacing for different selected speeds as shown in Figures 5.18, and 5.19.  
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(a) Speed = 30 km/hr
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(b) Speed = 50 km/hr
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(c) Speed = 80 km/hr
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(d) Speed = 100 km/hr
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Figure  5.14: VDV vs. Spacing for Driver, for: 2 humps, h2, different tire sizes RT1/ RT2/ 
RT3, speeds of (a) 30 km/hr, (b) 50 km/hr, (c) 80 km/hr and (d) 100 km/hr 
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(a) Speed = 30 km/hr
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(b) Speed = 50 km/hr

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0 0.2 0.4 0.6 0.8 1.0

Spacing

VD
V

RT1
RT2
RT3

Scr3

Scr2

Scr1

 
 



52 
 

 
 

(c) Speed = 80 km/hr
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(d) Speed = 100 km/hr
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Figure  5.15: VDV vs. Spacing for Main Body, for: 2 humps, h2, different tire sizes RT1/ 
RT2/ RT3, speeds of (a) 30 km/hr, (b) 50 km/hr, (c) 80 km/hr and (d) 100 km/hr 
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(a) Speed = 30 km/hr
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(b) Speed = 50 km/hr
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(c) Speed = 80 km/hr

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0 0.2 0.4 0.6 0.8 1.0
Spacing

VD
V

RT1
RT2
RT3

Scr3

Scr2

Scr1

 
 
 

(d) Speed = 100 km/hr
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Figure  5.16: VDV vs. Spacing for Driver, for: 5 humps, h2, different tire sizes RT1/ RT2/ 
RT3, speeds of (a) 30 km/hr, (b) 50 km/hr, (c) 80 km/hr and (d) 100 km/hr 
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(a) Speed = 30 km/hr
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(b) Speed = 50 km/hr
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(c) Speed = 80 km/hr
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(d) Speed = 100 km/hr
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Figure  5.17: VDV vs. Spacing for Main Body, for: 5 humps, h2, different tire sizes RT1/ 
RT2/ RT3, speeds of (a) 30 km/hr, (b) 50 km/hr, (c) 80 km/hr and (d) 100 km/hr 

 
 



57 
 

 
 

(a) Speed = 30 km/hr
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(b) Speed = 50 km/hr
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(c) Speed = 80 km/hr
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(d) Speed = 100 km/hr
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Figure  5.18: VDV vs. Actual Spacing for Driver, for: 10 humps, h2, different tire sizes 
RT1/ RT2/ RT3, speeds of (a) 30 km/hr, (b) 50 km/hr, (c) 80 km/hr and (d) 100 km/hr 
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(a) Speed = 30 km/hr
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(b) Speed = 50 km/hr
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(c) Speed = 80 km/hr
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(d) Speed = 100 km/hr
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Figure  5.19: VDV vs. Spacing for Main Body, for: 10 humps, h2, different tire sizes 
RT1/ RT2/ RT3, speeds of (a) 30 km/hr, (b) 50 km/hr, (c) 80 km/hr and (d) 100 km/hr 
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5.4 EFFECT OF MULTIPLICITY OF THESE CIRCULAR 

SHORT PERIODIC HUMPS 

In this part of the parametric study, the effect of the hump multiplicity is 

examined. The multiplicities of humps are 1, 2, 3, 5, 7, and 10. Four spacing are 

considered namely 0 m, 0.25 m, 0.5 m, and 1.0 m. The first two spacing are less than 

the critical spacing for all the three tire sizes considered while the other two are greater 

than the critical spacing. Figures 5.20, 5.22, 5.24, and 5.26 give the VDV amount of 

the driver when the spacing are for 0 m, 0.25 m, 0.5 m, and 1.0 m respectively. Also, 

Figures 5.21, 5.23, 5.25, and 5.27 give the VDV amount of the vehicle main body. 

Examining resulted figures of VDV vs. speed, one can observe that when spacing is 

less than the critical spacing, VDV values are high for higher multiplicities of humps. 

This is ture for all tire sizes for both the driver and vehicle body except for low 

approaching speeds. However, when the spacing between these humps is higher than 

the critical spacing, the multiplicity effect almost vanishes as the spacing is increased 

with approaching speeds of 40 km/hr and higher. The speed range of 20 km/hr to 40 

km/hr, VDV values decrease and all converge to almost one stream of a magnitude of 

VDV. 
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Figure  5.20: VDV vs. Speed for multiple humps, for Driver for: h2, different tire sizes 

(a) RT1, (b) RT2, and (c) RT3 with fixed spacing = 0 m 
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Figure  5.21: VDV vs. Speed for multiple humps, for Main Body for: h2, different tire 

sizes (a) RT1, (b) RT2, and (c) RT3 with fixed spacing = 0 m 
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Figure  5.22: VDV vs. Speed for multiple humps, for Driver for: h2, different tire sizes 

(a) RT1, (b) RT2, and (c) RT3 with fixed spacing = 0.25 m 
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Figure  5.23: VDV vs. Speed for multiple humps, for Main Body for: h2, different tire 

sizes (a) RT1, (b) RT2, and (c) RT3 with fixed spacing = 0.25 m 
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Figure  5.24: VDV vs. Speed for multiple humps, for Driver for: h2, different tire sizes 

(a) RT1, (b) RT2, and (c) RT3 with fixed spacing = 0.5 m 

(a) R T1

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120

S peed

V
D
V

2 humps

3 humps

5 humps

7 humps

10 humps

(b) R T2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 20 40 60 80 100 120

S peed

V
D
V

2 humps

3 humps

5 humps

7 humps

10 humps

(c ) R T3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 20 40 60 80 100 120

S peed

V
D
V

2 humps

3 humps

5 humps

7 humps

10 humps



67 
 

 
 

 
Figure  5.25: VDV vs. Speed for multiple humps, for Main Body for: h2, different tire 

sizes (a) RT1, (b) RT2, and (c) RT3 with fixed spacing = 0.5 m 
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Figure  5.26: VDV vs. Speed for multiple humps, for Driver for: h2, different tire sizes 

(a) RT1, (b) RT2, and (c) RT3 with fixed spacing = 1.0 m 
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Figure  5.27: VDV vs. Speed for multiple humps, for Main Body for: h2, different tire 

sizes (a) RT1, (b) RT2, and (c) RT3 with fixed spacing = 1.0 m 
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5.5 LINEAR VS. BILINEAR BEHAVIOR IN THE SUSPENSION 

SYSTEM  

In order to study the significance of the variances in stiffness and damping 

coefficients in the suspension system, linear and bilinear response behavior is 

examined. All simulation cases considered here are for a hump length of h2, tire size of 

RT2, and a multiplicity of 10 repeated humps only are investigated. The goal is to 

measure the bilinear effect namely 2, 3, and 4 of the linear magnitude. Figures 5.42 and 

5.44 give the VDV amount of the driver when the variances in stiffness and damping 

coefficients is incorporated while  Figures 5.43 and 5.45 give the VDV amount of the 

vehicle body.  Now back to Figures 5.42, and 5.43, for all ratios of stiffness, all VDV 

values are comparable to linear behavior due to the fact that the coefficients used in our 

model are of high values. However, Figures 5.44, and 5.45 show relatively increasing 

in VDV value as the ratios of damping increases.  
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Figure  5.28: VDV vs. Speed for Driver for: 10 humps, h2, tire size RT2 for Stiffness 

coefficient for linear and bilinear comparison. 
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Figure  5.29: VDV vs. Speed for Main Body for: 10 humps, h2, tire size RT2 for 

Stiffness coefficient for linear and bilinear comparison. 
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Figure  5.30: VDV vs. Speed for Driver for: 10 humps, h2, tire size RT2 for Damping 

coefficient for linear and bilinear comparison. 
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Figure  5.31: VDV vs. Speed for Main Body for: 10 humps, h2, tire size RT2 for 

Damping coefficient for linear and bilinear comparison. 
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CHAPTER 6 

6 CONCLUSION AND RECOMMENDATION 

6.1 CONCLUSION 

A 3-D vehicle model has been studied from the dynamics behavior and 

vibrational effects for both the vehicle and the driver, while crossing circular short 

periodic speed control humps to measure the effects of their geometrical parameters of 

the hump on the vehicle dynamics in terms of their height, vehicle speed, spacing and 

multiplicity as well as the variances in stiffness and damping coefficients such as linear 

and bilinear behavior. Based on the analysis of the extensive parametric analytical 

study, the following conclusions and recommendations can be specified: 

• Circular short periodic speed control humps are not effective in controlling 

the vehicle speed.  

• It is clear that vehicle and driver are exposed to serious shock magnitudes 

when crossing circular short periodic speed control humps at low speeds.  

• If these humps need to be constructed, close to critical spacing should be 

avoided. 

• The optimal approaching speed is less than 50 km/hr. 
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• If the vehicle speed is less than 50 km/hr, the driver will experience 

discomfort and if the vehicle speed is higher than the 50 km/hr, the VDV is 

decreasing and vehicle safety effect is increasing. In fact, these humps are 

trade between discomfort of the driver and vehicle safety.  

 

6.2 RECOMMENDATION 

• In order to force the driver to slow down, these humps are not 

recommended.  

• If the driver is approaching these humps with high speed, it can be 

dangerous and could have resulted in accident.  

• We even would like to emphasize that constructing common standard 

humps is better than these short humps.  

• If these humps ought to be constructed, the driver must be informed of their 

existence at an enough distance ahead through warning signs to allow all 

drivers to slow down their speeds.  

• If these humps are to be constructed, height of the short periodic hump 

should be low. 

• These humps usually are used to warn the drivers and force them to slow 

down and this study show that these are serving the main purpose. 
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6.3 FUTURE WORK 

After conducting this parametric study of circular short periodic humps, one 

can add more to improve driver comfort and vehicle safety for these humps and this 

can be achieved by: 

• Studying the same model including the child seats (back seats). 

• Repeating alos, the root mean quadrant to find the comfort level of the 

driver defined by: the British standard BS 6841 and ISO/DIS standard 

2631-5 as: 

( ) 4
1

41... ⎟
⎠
⎞

⎜
⎝
⎛= ∫ dtta

T
qmr  

and compared with VDV results and extract the best evaluation criteria for 

such a study. 

• Considering repeated grooves rather than circular periodic humps in term or 

their depth, width and spacing with different approaching speeds. 
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7 APPENDICES 
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8 Appendix ‘A’ 
 
The main MATLAB program is used to solve the system of equations using the solver 
ODE45 (Runge Kutta) numerical method is shown below with a file name 
Accl_Jerk_VDV_1km_minmax.m. All the inputs are clearly shown between the 
dashed lines in order to find the maximum positive acceleration, maximum positive 
jerk and VDV. 
 
Accl_Jerk_VDV_1kmh_minmax.m 
 
global K_FR K_FL K_RR K_RL K_F1 K_F2 K_R1 K_R2 K_D  
global C_FR C_FL C_RR C_RL C_D 
global m_FR m_FL m_RR m_RL m_G m_D  
global r_x r_y 
global a b e d  
global I_xx I_yy 
global car_speed hump_w r 
global car_span 
global hump_s 
global R_tire R 
global th_cr x_star h_star1 
global S_cr 
global th_2 x_star2 h_star2 
 
% -------------------------------------------------------------------- 
% Enter speed in km/hr (skh) and decimal of this speek (dskh): 
skh = 1; dskh = 1;  
car_speed = skh*(1000/3600); 
car_span = 2.8140; 
% -------------------------------------------------------------------- 
% Enter hump raduis or height for 7.5 cm or 10 cm: 
r = 0.10;  
% -------------------------------------------------------------------- 
% Select diameter of vehicle tire (inch) 13, 15, 19: 
R_tire = 15; 
R = R_tire * 2.54 / 100; 
% -------------------------------------------------------------------- 
% Select hump span of S_cr: 0, 0.5, equal, 1.5, 2.0: 
th_cr = asin(R /(R+r));  
S_cr = 2 * (R+r) * cos(th_cr) - 2 * r; 
hump_s = 0.75 * S_cr;  
% -------------------------------------------------------------------- 
th_2 = acos(((hump_s/2)+r)/(R+r)); 
x_star = r * cos(th_cr); 
x_star2 = r * cos(th_2); 
h_star1 = R * (1 - sin(th_cr)); 
h_star2 = r * (sin(th_2)); 
grav=9.81; 
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% -------------------------------------------------------------------- 
% Calculating the acceleration using different velocities: 
 
mm = 100/dskh; 
for i=1:mm 
t0=0;tfinal=2; 
nm=1001; 
dt=(tfinal-t0)/nm; 
tspan=[t0:dt:tfinal]; 
Initial_Cond = [0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0]; 
[t,y] = ode45(@LE_8DOF_f,tspan,Initial_Cond); 
  
sp(i) = car_speed;  
spkh(i)= skh; 
  
axD(:,1) = (1/grav) * ( 1 / m_D ) * ( ... 
- C_D * ( y(:,13) - ( y(:,14) - r_x * y(:,16) + r_y * y(:,15) ) ) ...  
- K_D * ( y(:,5)  - ( y(:,6)  - r_x * y(:,8)  + r_y * y(:,7) ) ) ); 
  
axG(:,1) = (1/grav) * ( 1 / m_G ) * ( ... 
- C_FR * ( y(:,14) - e * y(:,16) - a * y(:,15) - y(:,9) ) ... 
- C_FL * ( y(:,14) - e * y(:,16) + b * y(:,15) - y(:,10) ) ... 
- C_RR * ( y(:,14) + d * y(:,16) - a * y(:,15)- y(:,11) ) ... 
- C_RL * ( y(:,14) + d * y(:,16) + b * y(:,15) - y(:,12) ) ... 
- C_D  * ( y(:,14) - r_x * y(:,16) + r_y * y(:,15) - y(:,13) ) ... 
- K_FR * ( y(:,6) - e * y(:,8) - a * y(:,7) - y(:,1) ) ... 
- K_FL * ( y(:,6) - e * y(:,8) + b * y(:,7) - y(:,2) ) ... 
- K_RR * ( y(:,6) + d * y(:,8) - a * y(:,7) - y(:,3) ) ... 
- K_RL * ( y(:,6) + d * y(:,8) + b * y(:,7) - y(:,4) ) ... 
- K_D  * ( y(:,6) - r_x * y(:,8) + r_y * y(:,7) - y(:,5) )  ); 
  
max_Da = max(axD); 
min_Da = min(axD); 
max_Ga = max(axG); 
min_Ga = min(axG); 
del_Da(i) = max_Da - abs(min_Da); 
del_Ga(i) = max_Ga - abs(min_Ga); 
 
if abs(max_Da) > abs(min_Da) 
    maxDa(i) = max_Da; 
else 
    maxDa(i) = min_Da; 
end 
 
if abs(max_Ga) > abs(min_Ga) 
    maxGa(i) = max_Ga; 
else 
    maxGa(i) = min_Ga; 
end 
  
 
 
 
subplot(2,1,1),plot(t,axD(:,1)), hold on 
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TITLE('Acc. vs. Time for Driver') 
XLABEL('Time') 
YLABEL('Acc._D') 
subplot(2,1,2),plot(t,axG(:,1)), hold on 
TITLE('Acc. vs. Time for Main Body') 
XLABEL('Time') 
YLABEL('Acc._G') 
AXy5(:,i)=axD(:,1); 
AXy6(:,i)=axG(:,1); 
 
car_speed = car_speed + dskh*(1000/3600); 
skh = skh + dskh; 
 
for k=1:1002 
vv1(k,i)=axD(k,1)^4; 
vv2(k,i)=axG(k,1)^4; 
end 
Z1 = trapz(t,vv1(:,i)); 
Z2 = trapz(t,vv2(:,i)); 
vdvD(i)= Z1^(1/4); 
vdvG(i)= Z2^(1/4); 
end 
% -------------------------------------------------------------------- 
% Calculating the Jerk: 
nn=size(t); 
ttt=0.0; 
for ii=1:mm 
for k=1:nn-1 
    del(k) = t(k+1,1)-t(k,1); 
    tt(k)  = ttt+del(k); 
    JXy5(k,ii) = (AXy5(k+1,ii)  - AXy5(k,ii))  / del(k);  
    JXy6(k,ii) = (AXy6(k+1,ii)  - AXy6(k,ii))  / del(k); 
    ttt=tt(k); 
end 
max_Dj = max(JXy5(:,ii)); 
min_Dj = min(JXy5(:,ii)); 
max_Gj = max(JXy6(:,ii)); 
min_Gj = min(JXy6(:,ii)); 
del_Dj(ii) = max_Dj - abs(min_Dj); 
del_Gj(ii) = max_Gj - abs(min_Gj); 
  
if abs(max_Dj) > abs(min_Dj) 
    maxDj(ii) = max_Dj; 
else 
    maxDj(ii) = min_Dj; 
end 
  
if abs(max_Gj) > abs(min_Gj) 
    maxGj(ii) = max_Gj; 
else 
    maxGj(ii) = min_Gj; 
end 
end 
% -------------------------------------------------------------------- 
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% Plotting Acc. and Jerk vs. Velocity:  
figure(2); 
    subplot(2,1,1),plot(spkh,maxDa,'b-') 
    TITLE('Acc. vs. Speed for Driver') 
    XLABEL('Speed') 
    YLABEL('Acc.')  
    subplot(2,1,2),plot(spkh,maxGa,'r-') 
    TITLE('Acc. vs. Speed for Main Body') 
    XLABEL('Speed') 
    YLABEL('Acc.')  
figure(3); 
    subplot(2,1,1),plot(spkh,maxDj,'b-') 
    TITLE('Jerk vs. Speed for Driver') 
    XLABEL('Speed') 
    YLABEL('Jerk')  
    subplot(2,1,2),plot(spkh,maxGj,'r-') 
    TITLE('Jerk vs. Speed for Main Body') 
    XLABEL('Speed') 
    YLABEL('Jerk')  
% -------------------------------------------------------------------- 
% Plotting Vibration Dosing Value (VDV):  
figure(4); 
    subplot(2,1,1),plot(spkh,vdvD,'b-') 
    TITLE('VDV vs. Speed for Driver') 
    XLABEL('Speed') 
    YLABEL('VDV')     
    subplot(2,1,2),plot(spkh,vdvG,'r--') 
    TITLE('VDV vs. Speed for Main Body') 
    XLABEL('Speed') 
    YLABEL('VDV') 
figure(5); 
    subplot(2,1,1),plot(spkh,del_Da,'b-') 
    TITLE('DAcc. vs. Speed for Driver') 
    XLABEL('Speed') 
    YLABEL('DAcc.')  
    subplot(2,1,2),plot(spkh,del_Ga,'r-') 
    TITLE('DAcc. vs. Speed for Main Body') 
    XLABEL('Speed') 
    YLABEL('DAcc.')  
figure(6); 
    subplot(2,1,1),plot(spkh,del_Dj,'b-') 
    TITLE('DAcc. vs. Speed for Driver') 
    XLABEL('Speed') 
    YLABEL('DAcc.')  
    subplot(2,1,2),plot(spkh,del_Gj,'r-') 
    TITLE('DAcc. vs. Speed for Main Body') 
    XLABEL('Speed') 
    YLABEL('DAcc.')  
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9 Appendix ‘B’ 

 
To run the main program file of the MATLAB program in appendix A, the function 
file which is named LE_8DOF_F.m, includes all the system of equations and space-
state representation as per Chapter 3. 
 
LE_8DOF_F.m 
 
function dydt = LE_8DOF_f(t,y) 
global K_FR K_FL K_RR K_RL K_F1 K_F2 K_R1 K_R2 K_D  
global C_FR C_FL C_RR C_RL C_D 
global m_FR m_FL m_RR m_RL m_G m_D  
global r_x r_y 
global a b e d  
global I_xx I_yy 
 
% -------------------------------------------------------------------- 
% SELECT TYPE OF HUMP:  
yFR=yfr10hcGScr_f(t);                             yFL=yFR; 
yRR=yrr10hcGScr_f(t);                             yRL=yRR; 
% -------------------------------------------------------------------- 
% INPUT STIFFNESSE COEF.: 
K_F1=175.5e3;   K_FR=19.96e3;   K_F2=175.5e3;   K_FL=19.96e3; 
K_R1=175.5e3;   K_RR=17.5e3;    K_R2=175.5e3;   K_RL=17.5e3; 
K_D=100e3; 
% -------------------------------------------------------------------- 
% INPUT DAMPING COEF.: 
C_FR=1290;  C_FL=1290;  C_RR=1620;  C_RL=1620;  C_D=2e3; 
% -------------------------------------------------------------------- 
% INPUMT MASSES: 
m_FR=40;    m_FL=40;    m_RR=35.5;  m_RL=35.5;  m_G=730;    m_D=75; 
% -------------------------------------------------------------------- 
% INPUMT SEAT POSITION: 
r_x=0.5;      r_y=0.5; 
% -------------------------------------------------------------------- 
% POSITION FOR CENTER OF MASS: 
a=0.761;    b=0.761;    e=1.011;    d=1.803; 
% -------------------------------------------------------------------- 
% INPUT MOMENTS of Inertia: 
I_xx=1230;     I_yy=1230; 
% -------------------------------------------------------------------- 
% NOTATIONS OF DIFF. EQUATIONS: 
% y(1)  = z_FR 
% y(2)  = z_FL 
% y(3)  = z_RR 
% y(4)  = z_RL 
% y(5)  = z_D 
% y(6)  = z_G 
% y(7)  = z_theta_x 
% y(8)  = z_theta_y 
 



82 
 

 
 

% y(9)  = zdot_FR      = dydt(1) 
% y(10) = zdot_FL      = dydt(2) 
% y(11) = zdot_RR      = dydt(3) 
% y(12) = zdot_RL      = dydt(4) 
% y(13) = zdot_D       = dydt(5) 
% y(14) = zdot_G       = dydt(6) 
% y(15) = zdot_theta_x = dydt(7) 
% y(16) = zdot_theta_y = dydt(8) 
 
dydt(1)= y(9); 
dydt(2)= y(10); 
dydt(3)= y(11); 
dydt(4)= y(12); 
dydt(5)= y(13); 
dydt(6)= y(14); 
dydt(7)= y(15); 
dydt(8)= y(16); 
 
dydt(9) = ( 1 / m_FR ) * ( ... 
- C_FR * ( y(9)   - ( y(14) - e * y(16) - a * y(15) ) ) ... 
- K_FR * ( y(1)   - ( y(6)  - e * y(8)  - a * y(7) ) ) ... 
- K_F1 * ( y(1)   - yFR ) ); 
 
dydt(10) = ( 1 / m_FL ) * ( ... 
- C_FL * ( y(10) - ( y(14) - e * y(16) + b * y(15) ) ) ... 
- K_FL * ( y(2)  - ( y(6)  - e * y(8)  + b * y(7) ) ) ... 
- K_F2 * ( y(2)  - yFL ) ); 
 
dydt(11) = ( 1 / m_RR ) * ( ... 
- C_RR * ( y(11) - ( y(14) + d * y(16) - a * y(15) ) ) ... 
- K_RR * ( y(3)  - ( y(6)  + d * y(8)  - a * y(7) ) ) ... 
- K_R1 * ( y(3)  - yRR ) ); 
 
dydt(12) = ( 1 / m_RL ) * ( ... 
- C_RL * ( y(12) - ( y(14) + d * y(16) + b * y(15) ) ) ... 
- K_RL * ( y(4)  - ( y(6)  + d * y(8)  + b * y(7) ) ) ... 
- K_R2 * ( y(4)  - yRL ) );  
 
dydt(13) = ( 1 / m_D ) * ( ... 
- C_D * ( y(13) - ( y(14) - r_x * y(16) + r_y * y(15) ) ) ... 
- K_D * ( y(5)  - ( y(6)  - r_x * y(8)  + r_y * y(7) ) ) ); 
 
dydt(14) = ( 1 / m_G ) * (... 
- C_FR * ( y(14) - e * y(16) - a * y(15) - y(9) ) ... 
- C_FL * ( y(14) - e * y(16) + b * y(15) - y(10) ) ... 
- C_RR * ( y(14) + d * y(16) - a * y(15) - y(11) ) ... 
- C_RL * ( y(14) + d * y(16) + b * y(15) - y(12) ) ... 
- C_D  * ( y(14) - r_x * y(16) + r_y * y(15) - y(13) ) ...   
- K_FR * ( y(6) - e * y(8) - a * y(7) - y(1) ) ... 
- K_FL * ( y(6) - e * y(8) + b * y(7) - y(2) ) ... 
- K_RR * ( y(6) + d * y(8) - a * y(7) - y(3) ) ... 
- K_RL * ( y(6) + d * y(8) + b * y(7) - y(4) ) ... 
- K_D  * ( y(6) - r_x * y(8) + r_y * y(7) - y(5) ) ); 
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dydt(15) = ( 1 / I_xx ) * (... 
+ C_FR * ( y(14) - e * y(16) - a * y(15) - y(9) ) * ( a ) ...  
- C_FL * ( y(14) - e * y(16) + b * y(15) - y(10) ) * ( b ) ... 
+ C_RR * ( y(14) + d * y(16) - a * y(15) - y(11) ) * ( a ) ... 
- C_RL * ( y(14) + d * y(16) + b * y(15) - y(12) ) * ( b ) ... 
- C_D  * ( y(14) - r_x * y(16) + r_y * y(15) - y(13) ) * ( r_y ) ... 
+ K_FR * ( y(6) - e * y(8) - a * y(7) - y(1) ) * ( a ) ... 
- K_FL * ( y(6) - e * y(8) + b * y(7) - y(2) ) * ( b ) ... 
+ K_RR * ( y(6) + d * y(8) - a * y(7) - y(3) ) * ( a ) ... 
- K_RL * ( y(6) + d * y(8) + b * y(7) - y(4) ) * ( b ) ... 
- K_D  * ( y(6) - r_x * y(8) + r_y * y(7) - y(5) ) * ( r_y ) ); 
 
dydt(16) = ( 1 / I_yy ) * ( ... 
+ C_FR * ( y(14) - e * y(16) - a * y(15) - y(9) ) * ( e ) ... 
+ C_FL * ( y(14) - e * y(16) + b * y(15) - y(10) ) * ( e ) ... 
- C_RR * ( y(14) + d * y(16) - a * y(15) - y(11) ) * ( d ) ... 
- C_RL * ( y(14) + d * y(16) + b * y(15) - y(12) ) * ( d ) ... 
+ C_D  * ( y(14) - r_x * y(16) + r_y * y(15) - y(13) ) * ( r_x ) ... 
+ K_FR * ( y(6) - e * y(8) - a * y(7) - y(1) ) * ( e ) ... 
+ K_FL * ( y(6) - e * y(8) + b * y(7) - y(2) ) * ( e ) ... 
- K_RR * ( y(6) + d * y(8) - a * y(7) - y(3) ) * ( d ) ... 
- K_RL * ( y(6) + d * y(8) + b * y(7) - y(4) ) * ( d ) ... 
+ K_D  * ( y(6) - r_x * y(8) + r_y * y(7) - y(5) ) * ( r_x ) ); 
 
dydt = [dydt(1); dydt(2); dydt(3); dydt(4); dydt(5); dydt(6); dydt(7); 
dydt(8); dydt(9); dydt(10); dydt(11); dydt(12); dydt(13); dydt(14); 
dydt(15); dydt(16)]; 
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10 Appendix ‘C’ 

 
One of the hump profiles is shown below representing front and rear tires when passing 
over 10 humps. 
 
C10h_span_greater_Scr.m 
 
car_speed = 20*(1000/3600); 
r = 0.10; 
car_span = 2.8140; 
hump_s = 0.500; 
R_tire = 15; % diameter of vehicle tire (inch) 
R = R_tire * 2.54 / 100; 
th_cr = asin(R /(R+r)); % interfacing angle with vehicle tire 
x_star = r * cos(th_cr); 
S_cr = 2 * (R+r) * cos(th_cr) - 2 * r; 
% S_cr > hump_s; 
h_star = R * (1 - sin(th_cr)); 
 
t0z = 0.0; 
t1z = t0z+(2*x_star)/car_speed; 
t2z = t1z+(hump_s-S_cr)/car_speed; 
t3z = t2z+(2*x_star)/car_speed; 
t4z = t3z+(hump_s-S_cr)/car_speed; 
t5z = t4z+(2*x_star)/car_speed; 
t6z = t5z+(hump_s-S_cr)/car_speed; 
t7z = t6z+(2*x_star)/car_speed; 
t8z = t7z+(hump_s-S_cr)/car_speed; 
t9z = t8z+(2*x_star)/car_speed; 
t10z= t9z+(hump_s-S_cr)/car_speed; 
t11z= t10z+(2*x_star)/car_speed; 
t12z= t11z+(hump_s-S_cr)/car_speed; 
t13z= t12z+(2*x_star)/car_speed; 
t14z= t13z+(hump_s-S_cr)/car_speed; 
t15z= t14z+(2*x_star)/car_speed; 
t16z= t15z+(hump_s-S_cr)/car_speed; 
t17z= t16z+(2*x_star)/car_speed; 
t18z= t17z+(hump_s-S_cr)/car_speed; 
t19z= t18z+(2*x_star)/car_speed; 
  
t0x = car_span/car_speed; 
t1x = t0x+(2*x_star)/car_speed; 
t2x = t1x+(hump_s-S_cr)/car_speed; 
t3x = t2x+(2*x_star)/car_speed; 
t4x = t3x+(hump_s-S_cr)/car_speed; 
t5x = t4x+(2*x_star)/car_speed; 
t6x = t5x+(hump_s-S_cr)/car_speed; 
t7x = t6x+(2*x_star)/car_speed; 
t8x = t7x+(hump_s-S_cr)/car_speed; 
t9x = t8x+(2*x_star)/car_speed; 
t10x= t9x+(hump_s-S_cr)/car_speed; 
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t11x= t10x+(2*x_star)/car_speed; 
t12x= t11x+(hump_s-S_cr)/car_speed; 
t13x= t12x+(2*x_star)/car_speed; 
t14x= t13x+(hump_s-S_cr)/car_speed; 
t15x= t14x+(2*x_star)/car_speed; 
t16x= t15x+(hump_s-S_cr)/car_speed; 
t17x= t16x+(2*x_star)/car_speed; 
t18x= t17x+(hump_s-S_cr)/car_speed; 
t19x= t18x+(2*x_star)/car_speed; 
  
i=1; 
for t=0.0:0.0001:2 
tt(i) = t; 
 
if t < t0z 
y01(i) = 0; 
elseif t >= t0z & t <= t1z 
y01(i) = sqrt(r^2-(car_speed*(t-t0z))^2+(2*car_speed*(t-t0z)*x_star)-
(x_star)^2); 
elseif t >= t1z & t <= t2z 
y01(i) = 0; 
elseif t >= t2z & t <= t3z 
y01(i) = sqrt(r^2-(car_speed*(t-t2z))^2+(2*car_speed*(t-t2z)*x_star)-
(x_star)^2); 
elseif t >= t3z & t <= t4z 
y01(i) = 0; 
elseif t >= t4z & t <= t5z 
y01(i) = sqrt(r^2-(car_speed*(t-t4z))^2+(2*car_speed*(t-t4z)*x_star)-
(x_star)^2); 
elseif t >= t5z & t <= t6z 
y01(i) = 0; 
elseif t >= t6z & t <= t7z 
y01(i) = sqrt(r^2-(car_speed*(t-t6z))^2+(2*car_speed*(t-t6z)*x_star)-
(x_star)^2); 
elseif t >= t7z & t <= t8z 
y01(i) = 0; 
elseif t >= t8z & t <= t9z 
y01(i) = sqrt(r^2-(car_speed*(t-t8z))^2+(2*car_speed*(t-t8z)*x_star)-
(x_star)^2); 
elseif t >= t9z & t <= t10z 
y01(i) = 0; 
elseif t >= t10z & t <= t11z 
y01(i) = sqrt(r^2-(car_speed*(t-t10z))^2+(2*car_speed*(t-
t10z)*x_star)-(x_star)^2); 
elseif t >= t11z & t <= t12z 
y01(i) = 0; 
elseif t >= t12z & t <= t13z 
y01(i) = sqrt(r^2-(car_speed*(t-t12z))^2+(2*car_speed*(t-
t12z)*x_star)-(x_star)^2); 
elseif t >= t13z & t <= t14z 
y01(i) = 0; 
elseif t >= t14z & t <= t15z 
y01(i) = sqrt(r^2-(car_speed*(t-t14z))^2+(2*car_speed*(t-
t14z)*x_star)-(x_star)^2); 
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elseif t >= t15z & t <= t16z 
y01(i) = 0; 
elseif t >= t16z & t <= t17z 
y01(i) = sqrt(r^2-(car_speed*(t-t16z))^2+(2*car_speed*(t-
t16z)*x_star)-(x_star)^2); 
elseif t >= t17z & t <= t18z 
y01(i) = 0; 
elseif t >= t18z & t <= t19z 
y01(i) = sqrt(r^2-(car_speed*(t-t18z))^2+(2*car_speed*(t-
t18z)*x_star)-(x_star)^2); 
elseif t >= t19z 
y01(i) = 0; 
end 
 
if t < t0x 
y02(i) = 0; 
elseif t >= t0x & t <= t1x 
y02(i) = sqrt(r^2-(car_speed*(t-t0x))^2+(2*car_speed*(t-t0x)*x_star)-
(x_star)^2); 
elseif t >= t1x & t <= t2x 
y02(i) = 0; 
elseif t >= t2x & t <= t3x 
y02(i) = sqrt(r^2-(car_speed*(t-t2x))^2+(2*car_speed*(t-t2x)*x_star)-
(x_star)^2); 
elseif t >= t3x & t <= t4x 
y02(i) = 0; 
elseif t >= t4x & t <= t5x 
y02(i) = sqrt(r^2-(car_speed*(t-t4x))^2+(2*car_speed*(t-t4x)*x_star)-
(x_star)^2); 
elseif t >= t5x & t <= t6x 
y02(i) = 0; 
elseif t >= t6x & t <= t7x 
y02(i) = sqrt(r^2-(car_speed*(t-t6x))^2+(2*car_speed*(t-t6x)*x_star)-
(x_star)^2); 
elseif t >= t7x & t <= t8x 
y02(i) = 0; 
elseif t >= t8x & t <= t9x 
y02(i) = sqrt(r^2-(car_speed*(t-t8x))^2+(2*car_speed*(t-t8x)*x_star)-
(x_star)^2); 
elseif t >= t9x & t <= t10x 
y02(i) = 0; 
elseif t >= t10x & t <= t11x 
y02(i) = sqrt(r^2-(car_speed*(t-t10x))^2+(2*car_speed*(t-
t10x)*x_star)-(x_star)^2); 
elseif t >= t11x & t <= t12x 
y02(i) = 0; 
elseif t >= t12x & t <= t13x 
y02(i) = sqrt(r^2-(car_speed*(t-t12x))^2+(2*car_speed*(t-
t12x)*x_star)-(x_star)^2); 
elseif t >= t13x & t <= t14x 
y02(i) = 0; 
elseif t >= t14x & t <= t15x 
y02(i) = sqrt(r^2-(car_speed*(t-t14x))^2+(2*car_speed*(t-
t14x)*x_star)-(x_star)^2); 
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elseif t >= t15x & t <= t16x 
y02(i) = 0; 
elseif t >= t16x & t <= t17x 
y02(i) = sqrt(r^2-(car_speed*(t-t16x))^2+(2*car_speed*(t-
t16x)*x_star)-(x_star)^2); 
elseif t >= t17x & t <= t18x 
y02(i) = 0; 
elseif t >= t18x & t <= t19x 
y02(i) = sqrt(r^2-(car_speed*(t-t18x))^2+(2*car_speed*(t-
t18x)*x_star)-(x_star)^2); 
elseif t >= t19x  
y02(i) = 0; 
end 
  
i=i+1; 
 
end     
  
plot(tt,y01,tt,y02) 
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11 NOMENCLATURE 

a  :    Seat position in relation to the center of mass in the negative x-axis (m). 

b  :    Seat position in relation to the center of mass in the positive x-axis (m). 

e  :    Seat position in relation to the center of mass in the negative y-axis (m). 

d   :    Seat position in relation to the center of mass in the positive y-axis (m). 

xr  :    Seat position in relation to the center of mass in the pitch-axis (m). 

yr  :    Seat position in relation to the center of mass in the roll-axis (m). 

RFm  :    Mass of the front right wheel (kg). 

LFm  :    Mass of the front left wheel (kg). 

RRm  :    Mass of the rear right wheel (kg). 

LRm   :    Mass of the rear left wheel (kg). 

Dm  :    Mass of the driver (kg). 

Gm  :    Mass of the vehicle (kg). 

( )xxGI  :    Moment of inertia for pitching (kg m2). 

( )yyGI  :    Moment of inertia for rolling (kg m2). 

RFz  :    Displacement of the front right wheel with respect to the y-axis (m). 

LFz  :    Displacement of the front left wheel with respect to the y-axis (m). 

RRz  :    Displacement of the rear right wheel with respect to the y-axis (m). 

LRz  :    Displacement of the rear left wheel with respect to the y-axis (m). 

Dz  :    Displacement of the driver with respect to the y-axis (m). 

Gz  :    Displacement of the vehicle body with respect to the y-axis (m).  

xθ  :    Rotation of the vehicle body with respect to the pitch-axis (m). 

yθ  :    Rotation of the vehicle body with respect to the roll-axis (m). 
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RFy  :    Displacement of the front right tire. 

LFy  :    Displacement of the front left tire. 

RRy  :    Displacement of the rear right tire. 

LRy   :    Displacement of the rear left tire. 

RFz  :    Velocity of the front right wheel with respect to the y-axis (m/s). 

LFz  :    Velocity of the front left wheel with respect to the y-axis (m/s). 

RRz  :    Velocity of the rear right wheel with respect to the y-axis (m/s). 

LRz  :    Velocity of the rear left wheel with respect to the y-axis (m/s). 

Dz  :    Velocity of the driver with respect to the y-axis (m/s). 

Gz  :    Velocity of the vehicle body with respect to the y-axis (m/s). 

xθ  :    Angular velocity of the driver with respect to the pitch-axis (m/s). 

yθ  :    Angular velocity of the driver with respect to the roll-axis (m/s). 

RFz  :    Acceleration of the front right wheel with respect to the y-axis (m/s2). 

LFz  :    Acceleration of the front left wheel with respect to the y-axis (m/s2). 

RRz  :    Acceleration of the rear right wheel with respect to the y-axis (m/s2). 

LRz  :    Acceleration of the rear left wheel with respect to the y-axis (m/s2). 

Dz  :    Seat acceleration (m/s2). 

Gz  :    Sprung mass (m/s2). 

xθ  :    Pitch acceleration (m/s2). 

yθ  :    Roll acceleration (m/s2). 

RFc  :    Damping coefficients for front right wheel. 

LFc  :    Damping coefficients for front left wheel. 

RRc  :    Damping coefficients for rear right wheel. 

LRc   :    Damping coefficients for rear left wheel. 
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Dc  :    Damping coefficients for driver’s sear. 

RFk  :    Stiffness coefficients for front right wheel. 

LFk  :    Stiffness coefficients for front left wheel. 

RRk  :    Stiffness coefficients for rear right wheel. 

LRk   :    Stiffness coefficients for rear left wheel. 

Dk  :    Stiffness coefficients for driver’s sear. 

1Fk  :    Stiffness coefficients for front right tire. 

2Fk  :    Stiffness coefficients for front left tire. 

1Rk  :    Stiffness coefficients for rear right tire. 

2Rk  :    Stiffness coefficients for rear left tire.  

( )taw  :    Filtered weighted acceleration.  

t1 :    Initial times of the calculation period.  

t2 :    Final times of the calculation period.   

Scr :    Critical spacing.   

S :    Spacing between repeated humps.   

r :    Radius (or height) of the hump.   

R :    Radius of Tire Size.   

RT1 :    Radius of tire size 13 in (33 cm).  

RT2 :    Radius of tire size 15 in (38 cm). 

RT3 :    Radius of tire size 19 in (48 cm). 

Scr1 :    Critical spacing of radius of tire size RT1.   

Scr2 :    Critical spacing of radius of tire size RT2.   

Scr3 :    Critical spacing of radius of tire size RT3.   

h1 :    Height of the hump is 7.5 cm.   

h2 :    Height of the hump is 10 cm.   
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