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 ينسيناريوه عرضتم  تحديداً .ةمتكيّفال خوارزمياتال اءدا نيحسلت .صالتالامشكلة  عن مسبقة اتمعلوم الرسالة ههذتستقدم 
عبر ) multiuser(من المستعملين  لعدّد بثلل مشكلة تقدير القناة اسةرد تتم ، رسالةفي الجزء الاول من هذه ال .الاداء لتحسين

 تقديرالو اقل تعقيدا من  عملياآثر كون اييمكن ان ل الترددي اعلي اساس المج قناةال تقدير ان الرسالة بينت  .قناة متغيرة زمنيا
بتصميم مرشحات  تسمح لنا )التردد ، الزمن و الارتباط( المعلومات المسبقه ان ايضا  الرسالة بينت. ل الزمنياعلي اساس المج

 .عال  (Doppler)دوبلرذي محيط  لحصول على اداء جيد جدا فيبا و )Kalman Filters(آلمان 

و ال تستعمل علا قات خطأ لا خطيةز تحديداً تم دراسة المر شحات المتكيفة مع الزمن  تتم  من هذه الرسالة، في الجزء الثاني
 الطاقة علاقةاستخدمت الرسالة . علاقات لا خطية مثلىتوزيع الضجيج في الخرج لتصميم استعمال المعلومات المسبقة عن 

مربع الخطأ  المتوسطللوصول الى علاقة عامة  )mean square analysis( المتوسط مربع تحليل الفي  عادةالتي تستخدم 
)mean square analysis(  من ثم تم تصميم مرشحات متغير مع . علاقات للخطأ لا خطية عامة مرشحاتال تستخدمعندما

يات مثلى و ذات آذالك تم استخدام طريقة مما ثلة لتصميم مرشحات متكيفة مع الزمن ذات لا خط. الزمن رات لا خطيات مثلى
 .ما تستخدم عندما تكون معطيات الدخل مترابطة التي عادةو )data normalization(معطيات تسوية 



CHAPTER 1

INTRODUCTION

In a wireless system, data is sent over a time variant fading channel. At the

receiver, we get the received signal convolved and corrupted with noise. Naturally

we are interested in recovering the transmitted data. Suppose we have information

about the channel over which the data is being transmitted. In this case, we can

faithfully obtain the transmitted data by making use of the received signal and

the channel information (through equalization). In reality, we do not have the

prior knowledge of the transmission channel, and hence we have to settle for an

estimate of the channel obtained at the receiver using some estimation technique.

Channel estimation is thus an important step in receiver design. In a com-

munication system, the sole purpose of the channel estimation is to recover the

transmitted data. The aim of this thesis is to design optimum channel estima-

tors that make use of a priori information about the communication problem.

Specifically, the thesis will consider two problems in this regard

1) Frequency domain based channel estimation for multiuser OFDM system.

1



In this part, we will show how a priori information about channel correlation in

frequency and time can help reduce pilot overhead and complexity by considering

channel estimation in frequency domain.

2) An Adaptive Filter with Optimum Error Nonlinearity. The channel estima-

tor will be based on least mean squares filter that employs an error nonlinearity.

We will show that a priori knowledge about noise statistics will allow us to design

adaptive filters with optimum error nonlinearities.

Accordingly, the thesis is divided into two parts, each dealing with one of

these two problems. Part 1 consists Chapters 2 to 4 while part 2 is composed of

Chapters 5 and 6. Chapter 2 is an introduction to channel estimation in OFDM

and provides a brief survey of some approaches to channel estimation given in the

literature like pilot based channel estimation, semi blind channel estimation, blind

channel estimation and data aided channel estimation. It also surveys techniques

on the basis wether the channel estimation was performed in time domain or

frequency domain and builds the case for frequency domain channel estimation

by comparing the the merits and demerits of the two methods. Lastly it outlines

the input/output relationship in the frequency domain.

Chapter 3 explores a simple interpolation based frequency domain channel

estimation technique. Here we assume the interpolation matrix to be either linear

or quadratic. We develop the Least Square solution to this problem and introduce

a scheme to improve the channel estimate.

Chapter 4 details the eigenvalue based approach to frequency domain channel

2



estimation. Next it discusses the use of the Expectation Maximization (EM) al-

gorithm to make the channel estimation process iterative in order to improve the

estimate. It also discusses how time correlation can be incorporated in the algo-

rithm to further improve the estimate and discusses various forms of the Kalman

filter that we have used.

Chapter 5 provides a brief introduction to adaptive filters and surveys the

literature for the design of optimum nonlinearity. We take a look at the commonly

used measures for evaluating the performance of adaptive filters and give a brief

introduction to the fundamental energy conservation relation.

Chapter 6 details the design of adaptive filters with optimum error nonlinearity

at steady state. We start with deriving the expression of excess mean square error.

Next we derive the optimum choice of the nonlinearity and solve it for some special

cases. We also derive the optimum error nonlinearity with conditional analysis

and show the results for some special cases.

Chapter7 provides some concluding remarks and some insight about future

work.
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Part I

Frequency Domain Channel

Estimation in OFDM
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CHAPTER 2

INTRODUCTION TO

CHANNEL ESTIMATION

With the advent of the modern digital communication age, demands on the data

transmission rates have exceeded several Mbps and will continue to grow in the

foreseeable future as the telecommunication industry continues to offer more so-

phisticated and advanced services. Orthogonal frequency division multiplexing

(OFDM) is a technology that promises to meet these transmission demands. Since

the last decade, OFDM has attracted considerable attention. The main reason for

this interest is the substantial advantage it offers in high rate transmissions over

frequency selective fading channels like robustness to multi-path fading and capa-

bility to control the data rate according to the transmission channel [2]. OFDM

effectively divides a wide band frequency selective fading channel into a large

number of narrow band flat fading channels over which parallel data streams are

transmitted thereby increasing the symbol duration. The insertion of a cyclic pre-
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fix (CP), of adequate length, in the transmission symbol reduces the inter symbol

interference (ISI). The CP, which is a cyclic extension of the IFFT output, has

to be at least as long as the channel impulse response (CIR) in order to avoid

ISI[1]. This also enables the OFDM system to have simple receiver structure uti-

lizing a frequency-domain equalizer (FEQ) with only one complex multiplication

per subcarrier to mitigate frequency selectivity. As such, OFDM has found wide

acceptance and application. It is already a part of many digital communication

standards and is being used the world over. OFDM has been selected as the phys-

ical layer of choice for broadband wireless communications systems ([2], [3], [4],

[5], [6]).

2.1 System Model

Consider a sequence of T + 1 data symbols X 0,X 1, · · · ,X T , each of length N ,

to be transmitted in an OFDM system. Every symbol X i, undergoes an IFFT

operation to produce the time domain symbol

xi =
√

NQ∗X i
(2.1)

where Q is the N×N FFT matrix. In order to counter the effect of ISI, a length P

CP xi is appended to the symbol xi, which results in the super symbol xi, each of

length N +P . The CP serves to mitigate the multi-path effect but the estimation

of channel characteristics of fading channels require densely spaced pilot tones

6



specially for those channels with a small coherence bandwidth [32]. Figure 2.1

shows the basic elements of an OFDM transmitter.

Figure 2.1: OFDM Transmitter Block Diagram.

Let hi be the channel of maximum length P + 1. We consider a block fading

model and assume that the channel remains unchanged for each super-symbol but

varies from one super-symbol to the next according to the following state space

model.

hi+1 = Fhi + Gui
(2.2)

where ho ∼ N (0, Πo) and uo ∼ N (0, σ2
u). the matrices F and G are a function

of the doppler spread, the power delay profile (frequency correlation), and the

transmit filter. The matrices are given as

F =




α(0)

. . .

α(P )




and G =




√
1− α2(0)

. . .

√
(1− α2(P ))e−βP




α(p) is related to the Doppler frequency fD(p) by α(p) = J0(2πfDT (p)). The

variable β corresponds to the exponent of the channel decay profile while the

7



factor
√

(1− α2(p))e−βp ensures that each link maintains the exponential decay

profile (e−βp) for all time. We assume this information in known at the receiver.

The model thus captures both frequency and time correlation.

The passage of xk symbols through the channel h, produces the received se-

quence yk at the receiver. The received packet (of length N + P ) is split into

a length N packet yk and a length P prefix y
k
. The prefix absorbs all the ISI

present between the xk−1 and xk packets and is hence discarded. The time domain

relation of the input and the output can be expressed as

yi = xi ⊗ hi + ni
(2.3)

where ⊗ denotes convolution. Equation (2.3) takes a more transparent form in

the frequency domian as

Y i = diag(X i)Hi + N i
(2.4)

or

Y i = diag(X i)QP+1hi + N i
(2.5)

The relationship in (2.5) follows from the FFT relationship

Hi = Q




hi

0


 = QP+1hi (2.6)
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where QP+1 consists of the first P + 1 columns of Q. Alternatively, with

X i
∆
= diag(X i)QP+1

(2.7)

we can write

Y i = X ihi + N i
(2.8)

which is no longer diagonal. We will discuss the disadvantage of this decoupled

relationship in this part.

2.2 Literature Review

As mentioned in the introduction, our aim is to design an algorithm for channel

estimation in OFDM. In this section, we will take a look at the literature relating

to channel estimation in OFDM systems. We will provide an overview of the

various approaches to channel estimation and the different constraints assumed

on channel and data.

The availability of an accurate channel transfer function estimate is one of

the prerequisites for coherent symbol detection in an OFDM receiver. Numerous

research contributions have appeared in literature on the topic of channel esti-

mation, in recent years. One way to classify these works is as according to the

method used for channel estimation (training based, semi blind, blind and data

aided). Another approach to classify these algorithms is based on the constraints

9



used for channel and data recovery.

2.2.1 Channel Estimation using Pilots

One technique for channel estimation is to use pilots. As equalization requires

channel state information (CSI), pilots on predetermined subcarriers are sent as

training signals in OFDM systems, and the channels for pilot subcarriers are

directly estimated, while those for non pilot subcarriers need to be estimated

through interpolation with the channel estimates from adjacent pilot subcarriers

[7], [8], [9], [10], [11], [12]. This in turn, is achieved at the cost of a reduction

in the number of useful subcarriers available for data transmission. In [13], the

authors have developed a channel estimator by introducing an extended channel

and its finite impulse response approximation.

2.2.2 Blind Channel Estimation

Since the number of pilots must be greater than the number of channel taps, the

use of cyclic prefix (CP) and pilot symbols entails a significant bandwidth loss,

motivating blind methods. Several works have attempted to perform blind chan-

nel estimation in OFDM. The authors in [14] explored transmitter redundancy

for blind channel estimation while in [15], a blind identification exploiting receiver

diversity which can get CSI during one OFDM symbol was investigated. In [17]

the authors present a fast converging blind channel estimator for OFDM-systems

based on the Maximum Likelihood principle. A non redundant precoding along
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with cyclic prefix was explored in [18]. In [19], second-order cyclostationary statis-

tics and antenna precoding are used while [20] employs finite-alphabet constraint

for blind channel estimation. The authors in [21] suggest an approach which relies

on the i.i.d. assumption of the data sequence and uses the cyclic prefix redun-

dancy present in OFDM systems and [23] developed an a posteriori probability

based two dimensional channel estimation algorithm.

2.2.3 Semi Blind Channel Estimation

In semi blind methods, both the pilots and natural constraints are used for channel

estimation([24], [25]). In [26] a semi-blind channel estimation using receiver diver-

sity is proposed for OFDM systems in the presence of virtual carriers. The authors

in [27] employed a semiblind channel estimation method using selected channel

parameter estimation and error reduction algorithms. The work presented in [46]

proposes a pilot aided algorithm for frequency domain channel estimation for a

single-user and multiple receiving antennas system in the presence of synchronous

interference while the authors in [28] used delay sub-space based approach for

channel estimation. In [29], coding along with pilots was used for channel esti-

mation. Similarly other works have explored various other semi-blind techniques

for channel estimation. Coding and cyclic prefix were investigated for channel

estimation in [31]. Authors of [32] used interpolated LS by applying phase shifted

samples while [33] proposed to include a phase rotation term in the frequency

domain interpolation.
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2.2.4 Data Aided Channel Estimation

The motivation behind estimating the channel response is to recover the data

being transmitted. The detected data can be, in turn, used to improve the channel

estimate, thus giving rise to an iterative method for channel and data recovery.

Several works have explored this idea of joint data and channel estimation ([30],

[48] , [49], [50], [52], [53], [39], [43], [54], [45], [58], [59]). A data aided approach

seems most appropriate for channel estimation as it makes a collective use of data

and channel constraints for estimation.

2.2.5 Constraints Used in Channel Estimation/Data De-

tection

All the works mentioned earlier, use a subset of the following constraints on the

channel estimate or data, regardless of the estimation technique used. Following

is a survey of these constraints and the work that employs them.

Data Constraints:

Finite alphabet constraint: Data is usually drawn from a finite alphabet

set. The authors in [20], [36] and [39] make use of this constraint.

Code:Data usually exhibits some form of redundancy like a code that helps

reduce the row probability or err [23], [31], [50].

Transmit precoding: The data might also contain some form of precoding

(to facilitate equalization at the receiver) such as a cyclic prefix, silent guard bands

[47], [51] and known symbol precoding [61].
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Pilots: Pilots represent the most primitive form of redundancy and are usu-

ally inserted to perform channel estimation or simply to initialize the estimation

process [12], [8], [9], [29], [45], [13], [28].

Channel Constraints:

Finite delay spread: The channel is usually of finite impulse response with

a maximum delay spread that is assumed available to the receiver.

Sparsity: the sparsity of a multipath fading channel is defined as the ra-

tio of the time duration spanned by the multipaths to their number [16], [35],

[40]. the number of paths and their delays are usually stationary. However, their

amplitudes and relative phases usually very much more rapidly with time. this es-

sentially reduces the number of parameters to be estimated to that of the number

of multipaths in the channel.

Frequency correlation: In addition to information about which of the chan-

nel taps are inactive, we usually have additional statistical information about the

active ones. Thus, it is usually assumed that the taps are Gaussian ( zero mean

or not depending on whether the channel exhibits Rayleigh or Rician fading) with

a certain covariance matrix. this matrix is a measure of the frequency correlation

among the taps [38], [55].

Time correlation: As channels vary with time, they exhibit some form of

time correlation. time-variant behavior could also be more structured, e.g., fol-

lowing a state-space model [48], [49], [57].

13



Uncertainty information: Channel also suffers from non ideal effects such as

nonlinearities and rapid time-variations that are difficult to model. The aggregate

effect of this non ideal behavior could be represented as uncertainty information

that can be used to build robust receivers [22].

Regardless of the approach used for channel estimation or the constraints em-

ployed, estimation can be carried out in any of the two domains (time and fre-

quency). Below, we classify the approaches that are used in either of these two

domians. We also discuss the advantages and disadvantages of estimation in these

domains. All these methods for channel estimation are either in the frequency

domain or in the time domain. Below is a survey of various works in the two

domains.

2.2.6 Time Domain Channel Estimation

A lot of researchers have opted for channel estimation in the time domain. A

joint carrier frequency synchronization and channel estimation scheme using the

expectation-maximization (EM) approach is proposed in [41]. A time domain min-

imum mean square error (MMSE) channel estimation technique based on subspace

tracking for OFDM system is put forward in [42]. In [43], a joint channel and data

estimation algorithm is presented which makes a collective use of data and channel

constraints. A simplified joint frequency-offsett and channel estimation technique

for Multi-Symbol Encapsulated MSE OFDM system is proposed in [24], while au-

thors in [27] present a sequential method for channel response estimation based on
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Carrier Frequency Offset and symbol timing estimation by exploiting the struc-

ture of the packet preamble of IEEE 802.11a standard. The authors in [44] take

a statistical approach and estimate the channel based on Power Spectral Density

(PSD) and LS estimation for OFDM systems with timing offsets. An iterative

receiver structure with joint detection and channel estimation based on implicit

pilots is proposed in [45] and [46] presents a pilot aided channel estimation al-

gorithm in the presence of synchronous noise by exploiting the a priori available

information about the interference structure.

2.2.7 Frequency Domain Channel Estimation

In the past years, various techniques for channel estimation in the frequency do-

main have also been explored. Researchers in [32] apply phase shifted samples

in the frequency-domain to an interpolated LS to estimate the channel while in

[33], the authors propose to include a phase rotation term in the frequency do-

main interpolation for better CIR window location. Channel estimation using

polynomial cancelation coding (PCC) training symbols and frequency domain

windowing is proposed in [34]. A sub-band approach to channel estimation and

channel equalization is proposed in [37]. A low-complexity iterative channel es-

timator is proposed in [30]. The minimum mean square error (MMSE) channel

estimation in the frequency domain is considered in [38] while researchers in [28]

present delay subspace-based channel estimation techniques for OFDM systems

over fast-fading channels.
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2.3 Disadvantage of Performing Channel Esti-

mation in Time Domain

Most channel estimation algorithms for OFDM presented in literature perform

estimation in the time domain (instead of the frequency domain) [13], [41], [43],

[24], [27]. By performing estimation in the time domain, one can decrease the

degrees of freedom from N , the number of frequency bins, to P + 1, the number

of (time domain) channel taps. This is a drastic reduction since the number of

channel taps is usually less than the cyclic prefix which is usually designed to be

less than N
4

. The reduction in the parameter estimation space in turn results in

improved estimation accuracy.

There is a certain price that we have to pay, however, for this gain. We loose

the diagonal structure of the channel by performing the estimation in the time

domain. Thus, instead of frequency domain relationship (2.4) in which the various

equations are decoupled, we employ the time-frequency relationship (2.8) which

is no more diagonal (decoupled). This loss in transparency in return complicates

channel estimation and makes it more computationally complex. For example,

while the estimation in (2.4) is performed on a bin by bin basis according to

Ĥ(l) =
Y(l)

X (l)
l = 1, 2, · · · , N (2.9)
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channel estimation in (2.8) requires size P +1 matrix inversion

ĥ = (X∗X)−1X∗Y (2.10)

where (X∗X) is invertible. Moreover, since data detection is best performed

in the frequency domain, estimating the channel in the time domain makes it

necessary to perform an extra IFFT operation (to obtain the frequency domain

estimate H from the time domain estimate ĥ and use it for data detection). Thus,

for data-aided channel estimation techniques, each channel estimation step would

require one such IFFT operation.

Apart from the computational complexity, performing channel estimation in

the time domain might be over solving a problem. For example, in multiple access

OFDM systems, like WiMAX, users are not interested in the whole frequency

spectrum, but only in that part of the spectrum in which they are operating. In

fact these users don’t have access to the whole spectrum but only a part of it is

available to them. Moreover, even if some users were interested in estimating the

whole spectrum, many standards would not be able to support that as there are

not enough pilots to do so.
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2.4 Can We Perform Channel Estimation Reli-

ably in Frequency Domain?

Channel estimation in the frequency domain avoids the previously mentioned dis-

advantages. Moreover, the structure that characterizes the estimation problem in

the time domain continues to characterize the estimation problem in the frequency

domain. Specifically, the time and frequency correlation exhibited by the time

domain channel maps in to corresponding correlation of the channel frequency

response.

The only problem with channel estimation in the frequency domain is the in-

crease in the number of parameter to be estimated [38]. If we can reduce the

parameter estimation space, then we can avoid the one disadvantage of frequency

domain estimation as compared to time domain estimation. The frequency re-

sponse of the channel is inherently limited by the degrees of freedom of the time

domain impulse response. How does this limited degree of freedom manifests it-

self in the frequency domain? Figure 2.2 demonstrates the length 64 frequency

response resulting from a 16 tap channel with exponential decay profile similar to

the one we employ in our simulations. Note that within a narrow enough band

of spectrum, the spectrum looks linear or quadratic. As such, we employ model

reduction in this work to estimate the spectrum, thereby reducing the number of

parameters to be estimated.
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Figure 2.2: CIR in the frequency domain partitioned in four subchannels.

2.5 Input/Output Relationship in the Frequency

Domain

The input/output relationship of the OFDM system is best described in the fre-

quency domain. A frequency domain channel response of length N is shown in

figure 2.2. We start by partitioning the channel response into a number of sections

each of length Lf producing a total of d N
Lf
e sections1. Let us denote the jth section

of the frequency response by H(j). The input/output equation for this section is

given by

Y (j)
i = diag(X (j)

i )H(j)
i + N (j)

i
(2.11)

1In a multi-access OFDM system, we can choose the section length to be the number of
carriers allocated to each user. However, the sections need not have equal length over the
frequency response.
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Where Y (j), X (j), H(j) and N (j) are the jth sections of Y , X , H and N re-

spectively. From now onwards, we will drop the dependence on j for notational

convenience. Equation (2.11) can now be written as

Y
i
= diag(X i)Hi + N i

(2.12)

where N i ∼ N (0, σ2
i I) is the additive white gaussian noise.

2.6 Pilot/Output Relationship in Frequency Do-

main

In general, the receiver needs pilots to obtain a channel estimate. The pilot loca-

tions within the OFDM symbol are denoted by the index set Ip = i1, i2, · · · , iLp .

Also, let diag(X Ip) denote the matrix diag(X ) pruned of the rows that do not be-

long to Ip. Then, the pilot/output equation can be derived from the input/output

relation (2.12) as

Y
Ip

= diag(X Ip)H + N Ip
(2.13)

2.7 A Parameter Reduction Approach

The main hindrance in performing channel estimation in the frequency domain,

as opposed to the time domain estimation, is the increased number of parameters
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to be estimated. Our goal here is to apply some parameter reduction technique

to reduce the number of frequency domain parameters to be estimated. Dropping

the dependence on time index i for notational convenience, we consider that H

can be expressed as

H = V pαd (2.14)

where V p is a known matrix and αd is the vector of parameters to be determined.

We will consider two different approaches for estimating H. One approach is to

consider a linear or quadratic approximation which we will discuss in chapter 3.

Another way to go about solving for H is based on Eigenvalue decomposition and

is discussed in chapter 4.

2.8 Conclusion

In this chapter, we have given a brief literature survey of the channel estimation

problem. The frequency domain system model is given and advantages and dis-

advantages of performing channel estimation in time and frequency domains were

also discusses. We introduced the parameter reduction model in order to model

the channel in the frequency domain. In the next chapter we will take a detailed

look at the parameter reduction model.
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CHAPTER 3

INTERPOLATION BASED

FREQUENCY DOMAIN

ESTIMATION

The problem that we encounter when performing channel estimation in frequency

domain is the increased number of parameters to be estimated. For frequency

domain estimation, we require to estimate N parameters while in the case of time

domain estimate, we only need to estimate P + 1 parameters. We can eliminate

this disadvantage if we can find a way to decrease the parameter estimation space

for the frequency domain estimation, such that it is comparable to the number

of parameters needed for time domain estimation. The frequency response of

the channel is inherently limited by the degrees of freedom of the time domain

impulse response. Figure 3.1 shows a length 64 frequency response of a 16 tap

channel with an exponential delay profile similar to the one that will be use in
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simulations. We can see that with in a narrow enough band width, the spectrum

can be approximated as linear or quadratic. Mathematically speaking, let H(k)

be a sub band of the frequency spectrum of width Lf (where k = 1, 2, · · · , b N
Lf
c).

If the frequency spectrum is linear in this sub band, then we can write

H(k) =




1 1

1 2

...
...

1 Lf







α

β


 (3.1)

If the spectrum is quadratic, we can write

H(k) =




1 1 1

1 2 22

...
...

...

1 Lf L2
f







α

β

γ




(3.2)

In general, we can write

H(k) = V pαd (3.3)

where V p is the interpolation matrix and αd is the vector of interpolation para-

meters.

The input/output relation is given by equation(2.12). Replacing H from equa-
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Figure 3.1: CIR in the frequency domain divided into 4, 8 and 16 parts.
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tion (3.3) results in

Y = diag(X )V pαd + N

= Xαd + N
(3.4)

where X = diag(X )V p and N is zero mean white gaussian noise. Pruning the

above equation yields

Y
Ip

= XIp
αd + N Ip

(3.5)

3.1 Least Squares

The solution of equation (3.5) is based on minimizing

α̂d = arg minαd
{||Y

Ip
−XIpαd||2} (3.6)

Solving it as a least square problem [62], yields

α̂d = (X∗
Ip

XIp)
−1X∗

Ip
Y

Ip

(3.7)

The estimate of the jth section of the channel is thus given by

H = V pα̂d
(3.8)
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Concatenation of all M such section, will give us the complete channel response

H.

3.2 Simulation Parameters

Consider an OFDM system where an iid sequence of T + 1 data symbols X T
o are

to be transmitted. The length of each symbol, N , is 64. We use a CP of length

15. The modulation scheme used is 16 QAM with grey coding. The channel im-

pulse response(CIR) is considered to consist of 16 complex taps(maximum length

allowable for the channel with a CP length of 15). The exponential decay profile

E[|h0(k)|2] of the channel remains fixed over any OFDM symbol and is taken to

be e−0.2k. These parameters are used throughout the simulations.

3.3 Effect of Number of Pilots

By intuition, we know that increasing the number of pilots should yield a better

channel estimate and hence better BER performance. Figure 3.2 is plotted for 16

and 32 pilots. In both cases, we use 2 interpolation parameters and 8 sections.

As evident from the figure, increasing the number of pilots will lead to a better

channel estimate.
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Figure 3.2: BER curve for 8 sections 2 parameters

3.4 Effect of Section Length

Another way to improve the channel estimate would be to divide the channel into

a larger number of sections. We employ 32 pilots, 2 interpolation parameters

and divide the channel into 4, 8 and 16 sections respectively. The BER curves

for these three cases are shown in figure 3.3(a). We can see that decreasing the

section length, i.e. increasing the number of section per channel, results in a

better BER performance. Figure 3.3(b) shows BER performance for 32 pilots and

3 parameters and shows the same trend. So for a better channel estimate, we

should use a larger number of sections.
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Figure 3.3: (a) BER curve for 32 pilots and 2 parameters (b) BER curve for 32 pilots
and 3 parameters.
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Figure 3.4: BER curve using 32 pilots and 8 sections

3.5 Effect of Varying the Number of Parameters

The channel estimate is also affected by varying the number of estimation para-

meters. We plot the BER of the system using 2 and 3 interpolation parameters.

In both cases, we use 32 pilots and dived the channel into 8 sections. Figure

3.4 shows the effect of changing the number of parameter on the BER perfor-

mance. As we can see, increasing the number of parameters from 2 to 3, results

in improved BER performance specially at high SNR. So increasing the number

of interpolation parameters improves the channel estimate. For figures 3.2-3.4

above, we conclude that

• Increasing the number of pilots improves the channel estimate.

• Increasing the number of sections in which the frequency domain channel

response is divided, improves the channel estimate.
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• Increasing the number of interpolation parameters improves the channel

estimate.

However, there is a limit to the extent we can increase these parameters. Increas-

ing the number of pilots means fewer carriers are available for data transmission

purpose. The number of sections and the number of interpolation parameters are

in turn both limited by the number of pilots we use. For the Least Square solution

of equation (3.5), requires the following condition to be fulfilled

number of pilots in each section ≥ number of interpolation parameters (3.9)

So if use 32 pilots and 2 interpolation parameters, then every section of the channel

response must have at least 2 pilots. That means that at most we can divide

the channel response into 16 sections. If we increase the number of interpolation

parameters to 3, than each section must have at least 3 pilots. In this case channel

response can be divided into a maximum of 8 sections.

This limitation can be avoided if we use a regularized Least Square solution

for equation (3.5). In that case we can have as many sections and interpolation

parameters as we want as long as there is at least one pilot per section. i.e.

number of pilots in each section ≥ 1 (3.10)

30



3.6 A Scheme to Improve the Channel Estimate

The interpolation method we use in this chapter is polynomial-based. As such,

we expect the point at the edge of each section to be inflated as shown in figure

3.5(a). The first figure is for 2 interpolation parameters and the second is for 3

parameters. both have 32 pilots and 16 sections. If we can somehow correct these

inflated points, our estimate is bound to improve. In order to reduce this error,

we use an Averaging Scheme. This scheme sets the estimate of the edge point

of each section to be the average of the second last point of the current section

and the first point of the next section.

Figures 3.5(a) and 3.5(b) show the original LS based channel estimate( 32

pilots/2 parameters/16 sections) with inflated points and compares it with the

averaging scheme. We can see that using the averaging scheme improves the

channel estimate. Let us compare the performance of the two methods to get a

better idea of the advantage offered by the averaging scheme. We consider the

case of 32 pilots. Figures 3.6(a) and 3.6(b) show the Error and BER plots for the

two schemes using 3 interpolation parameters, 8 sections per channel and figures

3.7(a) and 3.7(b) show the same plots for 2 interpolation parameters, 16 sections

per channel. It is evident that the averaging scheme outperforms the LS solution

but it does so at the cost of added computational complexity. Also an interesting

observation is that the averaging scheme performs better in the case of 16 sections.

This is logical as the later case has more number of sections and more edge points

will be corrected by the averaging scheme than in the former case.
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Figure 3.5: (a) CIR inflated at the edges(32/2/16) (b) Removing inflation using aver-
aging scheme.
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Figure 3.7: (a) Error plot for LS and averaging scheme for (32/2/16) (b) BER plots
for LS and averaged scheme for (32/2/16).
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3.7 Least Squares with Regularization

Ideally, we estimate αd using some I/O relationship by maximizing the corre-

sponding log-likelihood function

α̂d = arg max
αd

{ln p(Y |X,αd) + ln p(αd)}

When the channel obeys the I/O relationship (3.4) (so that ln p(Y |X,αd) =

−‖Y −Xαd‖2
σ−2 up to some additive constant ln p(αd) = −‖αd‖2

R−1
αd

1 up to some

additive constant), then the LS estimate is given by

α̂d = arg maxαd

{
||Y

Ip
−XIp

αd||2σ−2
n I

+ ||αd||2R−1
αd

}
(3.11)

where σ2
n is the noise variance. The estimate of αd that minimizes the MSE is

given by

α̂d = Rαd
X∗

Ip
[σ−2

n I + XIp
Rαd

X∗
Ip

]−1Y
Ip

(3.12)

We will assume that Rαd
is the identity matrix, that is we assume no correlation

between parameters. The advantage of regularized LS solution is that there is

no restriction on the number of pilots per section and they can be less than the

number of parameters. This allows us to try those combinations of interpolation

parameters, number of pilots and number of sections which are not possible in the

1where αd is a column vector and and the notation ‖αd‖2R−1
αd

refers to the weighted Euclidean

norm of αd. i.e, vb‖αd‖2R−1
αd

= α∗dR
−1
αd

αd
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non-regularized case. Following are the BER curves for the regularized case with

and without averaging. Figure 3.8(a) and 3.8(b) are both plotted for 32 pilots and

16 sections. The number of interpolation parameters used is 2 and 3 respectively.

3.8 Conclusion

The interpolation techniques based on simple linearization and quadratic approx-

imation investigated in this chapter require very dense pilot placement and this

increases the number of frequency domain parameters to be estimated. The inher-

ent limit on the number of interpolation parameters per section can be removed

by considering a regularized LS solution for the estimation problem. Still, we

find that this method requires a high number of estimation parameter for channel

estimation. As such, this method proves to be too expansive. Hence the need to

explore some other method to represent the channel in frequency domain. In the

next chapter, we will consider an alternate method for this purpose.
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Figure 3.8: (a) BER curve for regularized solution with 32 pilots/2 parameters/16
sections (b) BER curve for regularized solution with 32 pilots/3 parameters/16 sections.
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CHAPTER 4

EIGENVALUE APPROACH TO

FREQUENCY DOMAIN

CHANNEL ESTIMATION

Another approach for reducing the parameters in frequency domain channel esti-

mation is the eigenvalue approach. Assuming that the second order statistics of

the channel is available at the receiver, we can find its Eigenvalue decomposition.

Using model reduction, we can represent H using dominant eigenvalue and treat

the rest as modeling noise. The block diagram of the system is given in figure 4.1.

The input/output equation that involves the jth section is given by equation

(2.12) while equation (2.13) gives its pruned form. We reproduce them here for
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Figure 4.1: Block diagram of the system.

easy reference

Y (j)
i = diag(X (j)

i )H(j)
i + N (j)

i (4.1)

Dropping the dependence on j and i for notational convenience and pruning

Y
Ip

= diag(X Ip
)H + N Ip

(4.2)

Obviously, the pilots are not enough to estimate the elements of H. So we resort

to model reduction starting from the autocorrelation function of H, that is RH.

To this end, consider the eigenvalue decomposition of RH,

RH =

Lf∑

l=1

λlvlv
T
l
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where λ1 ≥ λ2 . . . ≥ λLf
are the (ordered) eigenvalues of RH and v1, . . . ,vLf

are

the corresponding eigenvectors. We can use this decomposition to represent H as

H =

Lf∑

l=1

αlvl

where α = [α1, α2, . . . , αLf
]T is a parameter vector, to be estimated, with zero

mean and autocorrelation matrix Λ = diag(λ1, λ2, . . . , λLf
). We now represent H

using the dominant eigenvalues and treat the rest as modeling noise 1, i.e.

H = V dαd + V nαn (4.3)

Upon substituting (4.3) in (4.1), we obtain

Y = diag(X )V dαd + N + diag(X )V nαn (4.4)

= Xdαd + N ′
(4.5)

where Xd = diag(X )V d and N ′
= N + Xnαn with Xn = diag(X )V n. The

noise N ′ includes both the additive and modeling noise. We consider it to be zero

mean white gaussian noise with autocorrelation

RN ′ = RN + diag(X )V ndiag(λn)V ∗
ndiag(X )∗ (4.6)

1The cutoff between the parameters that are considered dominant and the ones that are
considered as part of the modeling noise depends on the relative values of the λ

′
js. In our

simulations, we use the condition λj+1
λj

> 5 to place our cutoff.
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Now equation (4.5) can be used to construct a pilot/output equation, similar to

(4.2), as

Y
Ip

= Xd,Ip
αd + N ′

Ip
(4.7)

Which can be used to estimate αd by maximizing the log likelihood function

α̂MAP
d = arg max

αd

{
ln p(Y

Ip
|Xd,Ip

,αd) + ln p(αd)
}

(4.8)

The maximum a posterior MAP estimate of parameter α is thus given by

α̂MAP
d = arg min

αd

{
‖Y

Ip
−Xd,Ip

αd‖2

R−1

N′
+ ‖αd‖2

Λ−1

d

}
(4.9)

which simplifies to

α̂d = ΛdX
∗
d,Ip

[
RN ′ + Xd,Ip

ΛdX
∗
d,Ip

]−1

Y
Ip

(4.10)

The resulting mean square error is given by

Re =
[
Λ−1

d + X∗
Ip

R−1

N ′XIp

]−1

(4.11)

The estimate of the jth section of the spectrum is then given by Ĥ = V dα̂d. The

concatenation of all d N
Lf
e sections produces the frequency domain based estimate

of the frequency response Ĥ.
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4.1 Iterative Channel Estimation using the Ex-

pectation Maximization Approach

Pilot based channel estimation, whether in the time domain or frequency domain,

does not make full use of the constraints on the data. One can thus implement

iterative (data-aided) techniques for channel estimation [39], [43]. Using the data

aided approach, we can improve the channel estimate [30], [43]. Thus providing

the motivation to use the expectation-maximization (EM) algorithm. The EM al-

gorithm is used to estimate a parameter in the case when some of the date required

for estimation is unobserved. The algorithm first performs an initial estimate of

the unobserved data and uses this estimate to compute the maximum-likelihood

(ML) estimate of the parameter to be estimated. This is the maximization step.

Next, the algorithm uses the estimated parameter to update the estimate of the

unobserved data. This is the expectation step. These steps are repeated itera-

tively until a convergent solution is reached [60]. Next, we will discuss the EM

algorithm in detail.

4.1.1 The Maximization Step

In the previous subsection we find α̂d by maximizing the log likelihood function

given by equation (4.8). Since the input X (and hence Xd) is not observable, we

can employ the EM algorithm and instead of maximizing (4.8) we can maximize

an averaged from of the log likelihood function. Specifically, starting from an

initial estimate α̂
(0)
d , calculated say using pilots, the estimate α̂d is calculated
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iteratively with the estimate at the kth iteration given by

α̂
(k)
d = arg max

αd

{
EXi|Yi,α̂d

(k−1) ln p(Y
Ip
|Xd,Ip

,αd) + ln p(αd)
}

(4.12)

which simplifies to 2

α̂MAP
d = arg min

αd

{
E‖[Y

Ip
−Xd,Ip

αd‖2

R−1

N′
+ ‖αd‖2

Λ−1

d

}
(4.13)

Strictly speaking, the noise correlation RN ′ is itself dependent on the input due

to the modeling noise (see equation (4.6)). Hence in performing the expectation

in (4.13), we need to take this into account. Treating the general case is difficult,

so we consider the following three cases for R−1

N ′ :

Case 1: RN ′ is a constant:

This happens when we ignore the modeling noise so that

RN ′ = σ2I

where the expectation in (4.13) is taken with respect to Xd given Y and the most

recent estimate αd. In this case RN ′ becomes independent of Xd and it would

then be straight forward to carry the expectation in (4.13). Specifically, upon

2the expectation is taken with respect to the input given the output and the most recent
estimate α̂k−1

d . This information is understood & dropped for notational convenience.
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completing the squares, (4.13) can be equivalently written as

min
αd

Y∗
i R

−1

N ′Y i −α∗
dE[X∗

d]R
−1

N ′Y i −Y∗
i R

−1

N ′E[Xd]αd

+α∗
dE[X∗

d]R
−1

N ′E[Xd]αd −α∗
dE[X∗

d]R
−1

N ′E[Xd]αd

+α∗
dE[X∗

dR
−1

N ′Xd]αd + α∗
dΛ

−1
d αd

which can be simplified to

α̂MAP
d = arg min

αd

‖Y − E[Xd]αd‖2
1

σ2
n

I
+ ‖αd‖2

1

σ2
n

Cov[X∗
d]

+ ‖αd‖2
Λ−1

d
(4.14)

Case 2: Taking Expectation of RN ′ :

Instead of ignoring the modeling noise, we can split the expectation in (4.13) into

an expectation over RN ′ and an independent expectation taken over the rest of

the terms i.e., we can approximate (4.13) as

α̂MAP
d = arg min

αd

{
E‖[Y

Ip
−Xd,Ip

αd‖2
E[RN′ ]

−1 + ‖αd‖2

Λ−1

d

}
(4.15)

Now the expectation of RN ′ is given by

E[RN ′ ] = σ2I + E[diag(X )V nΛnV
∗
ndiag(X ∗)] (4.16)

We show in Appendix A that this expectation can be expressed as

E[RN ′ ] = σ2I + E[D]V nΛnV ∗
nE[D∗] + Cov[D]diag(V nΛnV

∗
n)
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where D = diag(X ) and where diag(V nΛnV ∗
n) is a diagonal matrix whose diago-

nal coincides with the diagonal of the matrix V nΛnV
∗
n. The now averaged RN ′

does not depend on X any more. Replacing RN ′ by its expectation, it is then

straight forward to carry the expectation in (4.15) which comes out to be

α̂MAP
d = arg min

αd

‖Y − E[Xd]αd‖2
E[RN′ ]

−1 + ‖αd‖2

Cov[D]diag(V nΛnV
∗
n)

+ ‖αd‖2
Λ−1

d
(4.17)

Case 3: X is constant modulus:

In the constant modulus case, it is possible to evaluate (4.13) exactly. Specifically,

and starting from the expression for the autocorrelation RN ′

RN ′ = σ2I + DV nΛnV ∗
nD∗

we can write

R−1

N ′ = (σ2I + DV nΛnV
∗
nD

∗)−1

= D−∗(
σ2

E I + V nΛnV ∗
n)−1D−1

= D−∗R−1

N ′′D
−1

where RN ′′
∆
= σ2

E I + V nΛnV
∗
n and where we used the fact that DD∗ = EI since

the input is constant modulus. With this in mind, we conclude that

X∗
dR

−1

N ′ = V ∗
dD

∗R−1
N = V ∗

dR
−1

N ′′D
−1
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R−1

N ′Xd = D−1∗R−1

N ′′V d

and

X∗
dR

−1

N ′Xd = V ∗
dR

−1

N ′′V d

Thus, in the constant modulus case, (4.13) can be equivalently written as

α̂
(j)
d = arg min

αd

Y∗E[D−1∗]R−1

N ′′E[D−1]Y −Y∗E[D−1∗]R−1

N ′′V dαd

−α∗
dV

∗
dR

−1

N ′′E[D−1]Y + α∗
dV

∗
dR

−1

N ′′V dαd + α∗
dΛ

−1
d αd

which upon simplification becomes

α̂MAP
d = arg min

αd

‖E[D−1]Y − V dαd‖2
R−1

N′′
+ ‖αd‖2

Λ−1
d

(4.18)

In the simulations further ahead, we compare the approximate solutions (4.14) &

(4.17) with the exact EM solution (4.18) for a constant modulus input. Simula-

tions show that replacing R
′
N with its expectation is almost as good as calculating

the expectation exactly.

4.1.2 The Expectation Step

As we have seen above, the maximization step assumes the presence of some

expectations. By inspecting subsection 4.1.1, we see we need to calculate the
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following moments.

E[Xd], Cov[X∗
d], E[D], E[DBD∗], and E[D−1] (4.19)

Now as Xd = diag(X )V d = DV d we can see that we can express the moments

of Xd in terms of moments of D. Specifically we have that

E[Xd] = E[D]V d

and

Cov[X∗
d] = E[XdX

∗
d]− E[Xd]E[X∗

d]

= E[D]V dV
∗
dE[D∗] + Cov[D]diag(V dV

∗
d)− E[D]V dV

∗
dE[D∗]

= Cov[D]diag(V dV
∗
d)

Moreover, we show in appendix A that

E[DBD∗] = E[D]BE[D∗] + Cov[D]diag(B) (4.20)

From above it follows that in order to calculate the expectations in (4.19), it is

enough to calculate the following three moments

E[diag(X )], Cov[diag(X )] & E[diag(X )−1] (4.21)
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where the expectation is performed given the output Y and the most recent chan-

nel estimate Ĥ. In carrying out these expectations, we will assume that the

elements of X are independent.3. With this in mind, it is easy to see that we can

evaluate the moments in (4.21) and hence in (4.19) by calculating

E[X (l)], Cov[X (l)] = E[|X (l)|2]− |E[X (l)]|2, E[
1

X (l)
]

Now assuming that X (l) is drawn from the alphabet A = {A1, . . . , AM} with

equal probability, it is can be shown that [43]

E[X (l)|Y(l),H(l)] =

∑M
j=1 Aje

− |Y(l)−H(l)Aj |2
σ2

∑M
j=1 e−

|Y(l)−H(l)Aj |2
σ2

(4.22)

E[|X (l)|2|Y(l),H(l)] =

∑M
j=1 |Aj|2e−

|Y(l)−H(l)Aj |2
σ2

∑M
j=1 e−

|Y(l)−H(l)Aj |2
σ2

(4.23)

E[
1

X (l)
|Y(l),H(l)] =

∑M
j=1

1
Aj

e−
|Y(l)−H(l)Aj |2

σ2

∑M
j=1 e−

|Y(l)−H(l)Aj |2
σ2

(4.24)

4.1.3 Summary of the EM Algorithm

Now let us summarize the EM based estimation algorithm developed so far.

1. Calculate the initial channel estimate Ĥ0 using pilots (4.9).

2. Calculate the moments of the input given the current channel estimate Ĥi

and the output Y using equations (4.22)-(4.24).

3This is in general not true because the elements of H are not independent (as the elements
of H are the fourier transform of the impulse response h). However, we continue to use this
approximation as this maintains the transparency of element-by-element equalization in OFDM.
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3. Calculate the channel estimate using either one of the methods (4.14), (4.17)

or (4.18) outlined in Section 4.1.

4. Iterate between step 2 and 3.

We can run the algorithm for a specific number of times or until some predefined

minimum error threshold is reached.

4.2 Using Time-Correlation to Improve the Chan-

nel Estimate

The receiver developed in the previous section performs channel estimation sym-

bol by symbol. In other words, the channel is block fading & hence is totaly

independent from symbol to symbol. In a practical scenario the channel impulse

responses are correlated over time. In this section, we will show how to use time

correlation to enhance the estimate of αd. To this end, let’s first develop a model

for the time variation of the parameter αd.

4.2.1 Developing a Frequency Domain Time-Variant Model

Consider the block fading model in (2.2) and lets assume for simplicity that the

diagonal matrices F and G are actually scalar multiples of the identity, i.e.

F = fI G =
√

1− f 2I

49



where f is a function of Doppler frequency (see [43]). We will use the time domain

model in (2.2) to derive a similar model for α. To this end, recall that

Hi = QP+1hi

Thus, the jth section of Hi, H(j)
i , is related to hi by

H(j)
i = Q

(j)
P+1hi (4.25)

where Q
(j)
P+1 corresponds to the jth section of QP+1, i.e., QP+1 pruned of all its

rows except those of the jth section. Now, we can replace H(j)
i by its representation

using the dominant parameters αd, to get

V dαd,i = Q
(j)
P+1hi

or

αd,i = V +
d Q

(j)
P+1hi

where V +
d is the pseudo inverse of V d. Multiplying both sides of (2.2) by V +

d Q
(j)
P+1

yields a dynamical recursion for αd

αd,i+1 = F ααd,i + Gαui (4.26)
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where F α = fI and Gα =
√

1− f 2V +
d Q

(j)
P+1 and where

E[αd,0α
∗
d,0] = Λd

Note that the dependence of Gα and αd on j has been suppressed for notational

convenience. We are now ready to implement the EM algorithm to the frequency

domain system governed by the dynamical equation (4.26). As we have seen in

section 4.1, the algorithm will consist of an initial estimation step, a maximization

step, and an expectation step.

4.2.2 Initial (Pilot-Based) Channel Estimation

In the initial channel estimation step, the frequency domain system is described

by equations (4.7) and (4.26), reproduced here for convenience.

Y
Ip,i

= Xd,Ip,iαd,i + N ′
Ip,i (4.27)

αd,i+1 = F ααd,i + Gαui (4.28)

Now given a sequence i = 0, 1, . . . , T of pilot bearing symbols, we can obtain

the optimum estimate of {αi,d}T
i=0 by applying a forward-backward Kalman to

(4.27)-(4.28)(see [56]), i.e., by implementing the following equations
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Forward run: Starting from the initial conditions P 0|−1 = Π0 and α0|−1 = 0

and for i = 1, . . . , T, calculate

Re,i = RN ′ + Xd,Ip,iP i|i−1X
∗
d,Ip,i (4.29)

Kf,i = P i|i−1X
∗
d,Ip,iR

−1
e,i (4.30)

α̂i|i =
(
I −Kf,iXd,Ip,i

)
α̂i|i−1 + Kf,iY i (4.31)

α̂i+1|i = F αα̂i|i (4.32)

P i+1|i = F α

(
P i|i−1 −Kf,iRe,iK

∗
f,i

)
F ∗

α +
1

σ2
n

GαG∗
α (4.33)

Backward run: Starting from λT+1|T = 0 and for i = T, T − 1, . . . , 0, calculate

λi|T =
(
IP+N −X∗

d,Ip,iK
∗
f,i

)
F ∗

i λi+1|T + Xd,Ip,iR
−1
e,i

(
Y i −Xd,Ip,iα̂i|i−1

)
(4.34)

α̂i|T = α̂i|i−1 + P i|i−1λi|T (4.35)

The desired estimate is α̂i|T . This gives us an initial estimate to run the data-aided

part of the algorithm with.

4.2.3 Iterative (Data-Aided) Channel Estimation

For this part, we use the whole data symbol and not just the pilot part. Thus,

in this case our system is described by equations (4.5) and (4.26) also reproduced

52



here for convenience

Y
i

= Xd,iαi,d + N ′
i (4.36)

αd,i+1 = F ααd,i + Gαui (4.37)

If the data symbols Xd,i were known, we would have employed the forward-

backward Kalman-Filter (4.29)-(4.35) on the above state-space model. Since the

input is not available, we replace it by its estimate along an expectation maxi-

mization algorithm. Specifically, along the lines developed in [43] we can show

that the FB Kalman filter needs to be applied to the following state space model

Y
i
=




E[Xd,i]

Cov[X∗
d,i]

1
2


 αi,d +




N ′
i

0


 (4.38)

αd,i+1 = F ααd,i + Gαui (4.39)

where the expectations in (4.38) are taken given the output Y
i
and most recent

channel estimate αd,i. The expectations that appears in (4.38) are calculated as

we did in Section 4.1.2. In contrast to the symbol by symbol EM algorithm

of section 4.1, there are several ways of implementing the EM iterations in the

time-correlated multi-symbol case. In the symbol by symbol algorithm of Section

4, there was one dimension to iterate against (channel estimation versus data

detection). When the channels are time correlated over several OFDM symbols
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as is the case here, there are two dimensions we can iterate against:

1. We can iterate between channel estimation & data detection.

2. We could also iterate against time using the Kalman filter where the previous

channel estimate informs the subsequent channel estimate.

Depending on how we schedule iterations across these two dimensions, we get

different receivers. We discuss two such receivers here, the Cyclic and the Helix

Kalman based receivers.

4.2.4 Cyclic FB Kalman

In the cyclic based Kalman, we initialize the algorithm using the FB Kalman

implemented over the pilot symbols. This is then used to initialize the data aided

version, where the channel estimate is used to obtain the data estimate, and that

allows us to propagate the estimate to the next symbol. The process is continued

until the forward steps are completed followed by the backward run. The EM

steps are repeated again ( 2nd forward run followed by 2nd backward run and so

on). In other words, we iterate only once between channel estimation & data

detection before invoking the Kalman to move to the next symbol and so on. The

iterations thus trace circles over the OFDM symbols which motivates the name

Cyclic Kalman.
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4.2.5 Helix based FB Kalman

The Helix based FB Kalman is a more general version of the Cyclic Kalman. The

two filters are initialized in the same way. However at each symbol, we iterate

several times between channel estimation and data detection before moving on

the next symbol (whereas the cyclic Kalman iterates once between the channel

estimate and data estimate at each step). This allows to refine the channel es-

timate as much as possible before propagating it using the Kalman to the next

OFDM symbol. The iterations in this case draw a helix shape, hence the name.

4.2.6 Using Code to Enhance the Estimate

In any practical system, an outer code is usually implemented that extends over

several OFDM symbols. The outer code can be used to enhance the data aided

channel estimate. Specifically, following data detection, the code can be invoked

to enhance the data estimate (through error correction). Now the (hard) data

obtained is more refined and hence can be used to enhance the channel estimate

by employing the FB Kalman again. Our simulation shows that invoking the code

can have a profound effect on performance.

4.2.7 Forward Kalman Filter

One drawback of the FB Kalman implementation is the latency and memory

involved as one needs to store all symbols to perform the backward run. One way

around that is to implement the forward only Kalman which avoids the latency
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problem. The forward only Kalman thus suffers as a result in performance and is

not able to make use of the code to enhance the data estimate.

4.3 Time Domain Multiple Access Channel Es-

timation

For fair comparison, we need to compare the frequency domain (LS and Kalman)

receiver, with the time domain counter part. How do users estimate the chan-

nel in the time domain given their limited share of the spectrum? To describe

this, we just need to write the input/output equations seen by each user. The

imput/output equation for the jth user is given by (see (4.1))

Y (j)
i = diag(X (j)

i )H(j)
i + N (j)

i

Now H(j)
i is related to the impulse response by (see (4.25))

H(j)
i = Q

(j)
P+1hi

where as described in Section 4.2.1, Q
(j)
P+1 is QP+1 pruned of all rows that don’t

belong to the jth section. So, we can write

Y (j)
i = diag(X (j)

i )Q
(j)
P+1hi + N (j)

i (4.40)
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Equation (4.40) can be used for initial time-domain estimate using pilots and

for symbol-by-symbol EM-based estimation. If we use in addition the dynamic

recursion of (2.2)

hi+1 = Fhi + Gui

we can implement the various kind of Kalman filters discussed in the previous

section for time-domain channel estimation. It is important to note that the

computational complexity involved in the time domain case is much higher than

in the Eigen estimate as the significant eigenvalues αd are less than the channel

length.

4.4 Simulation Results

We consider an OFDM system that transmits 6 symbols with 64 carriers and a

cyclic prefix of length P = 15 each with a time variation of f = 0.9 . The data bits

are mapped to 16 QAM through Gray coding (except for figures 4.2(a) and 4.2(b)

which use a 4 QAM). The OFDM symbol serves 4 users each occupying 16 fre-

quency bins. In addition, the OFDM symbol carries 16 or 24 pilots equally divided

between the users. The channel impulse response consists of 15 complex taps (the

maximum length possible). It has an exponential delay profile E[|h0(k)|2] = e−0.2k

and remains fixed over any OFDM symbol. Where specified, an outer code is used

to provide robustness. The outer code is 1/2 rate convolutional code. In what

follows, we compare the performance of frequency domain based channel estima-

tion using various techniques for both the coded and uncoded cases. We also

57



benchmark our method with the time domain method briefly described in Section

4.3 (see [43] also).

4.4.1 Effect of Modeling Noise

Figures 4.2(a) and 4.2(b) show the MSE and BER curves for the three cases

considered in section 4.1 comparing the various treatment of the noise. We plot

the figures 4.2(a) and 4.2(b) for constant modulus using 16 pilots. As evident from

the graphs, the inclusion of the modeling noise improves the result.We also note

that the expectation of the noise and the exact solution have almost comparable

results.
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Figure 4.2: (a) MSE (b) BER.
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4.4.2 EM based Least Squares

For a fair comparison between the time domain and the frequency domain tech-

niques for a multiple access system, we compare the time domain LS estimate

with the frequency domain LS and LS with EM estimate. Figures 4.3-4.6 show

the MSE of the channel estimate and the BER performance for these methods for

the uncoded case. Figures 4.4 and 4.6 show the BER performance while figures

4.3 and 4.5 show the MSE at 16 and 24 pilots, respectively. Comparing them,

we see that increasing the number of pilots improves the LS estimate, with the

frequency domain method wading better than the time domain method.
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Figure 4.3: MSE comparison EM based least squares (16 pilots).
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Figure 4.4: BER comparison EM based least squares (16 pilots).

4.4.3 Kalman Filter based Receivers

Figure 4.7(a) compares the BER performance of frequency domain Forward Kalman,

Cyclic and Helical Kalman filters with the time domain LS method and Helix

Kalman for the uncoded case at 16 pilots. As expected, we see that using Kalman

filter improves the EM based estimate in the frequency domain. We also see that

Helix based Kalman performs better than other frequency domain based tech-

niques and that for the uncoded 16 pilot case, the frequency domain methods

fairs better than the time domain methods.

Figure 4.7(b) shows the same comparison for 24 pilots uncoded case. For

the case of 24 pilots, we note that though the time domain estimate methods

perform better than frequency domain methods, the performance of the frequency

domain Helix Kalman is comparable to the time domain Helix Kalman. Figure

4.8 compares the BER performances of frequency domain channel estimation of
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Figure 4.5: MSE comparison EM based least squares (24 pilots).
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Figure 4.6: BER comparison EM based least squares (24 pilots).
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Figure 4.7: BER comparison for various uncoded freq. domain methods (a) using 16
pilots (b) using 24 pilots.
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Figure 4.8: BER comparison for frequency domain coded methods (16 pilots).

various Kalman filters with the LS and LS EM estimate for the 16 pilot case.

Here we utilize the outercode to enhance the estimate. We see that the code

enhancement technique is superior to the rest of the techniques. Figure 4.9 shows

the result of the comparison of frequency domain Helix Kalman and coded Kalman

with the time domain Helix Kalman (16 pilots). We can see that for the multiple

access case, the frequency domain technique fairs better than the time domain

estimation method, while the coded Kalman outperforms all other techniques.
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Figure 4.9: BER comparison for the coded case (16 pilots).

In order to see a fair comparison between the time domain and the frequency

domain techniques for a multiple access system, we compare the frequency domain

Helix Kalman with the time domain Helix Kalman obtained from the procedure

outlined in Section 4.3. We plot figure 4.10 for 24 pilots with using the outercode

and employing 6 eigenvalues per section to estimate the channel in the frequency

domain. As we can see from the figure, the frequency domain Helix Kalman

outperforms the time domain Helix Kalman.

4.4.4 Pilot Design

From figures 4.4 and 4.6, it can be established that pilot density has a profound

effect on the channel estimation algorithm. It will be worthwhile to investigate

the effect of pilot pattern on the channel estimation algorithm as well. Here we
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Figure 4.10: BER comparison of time and frequency domain uncoded techniques (24
pilots).

find the optimal pilot pattern that minimizes the MSE of the estimate for the

pilot placement, given by (4.11), in the frequency domain. Consider the case of

16 pilots, with an OFDM symbol of length 64. Considering 4 users, each user will

have access to 16 frequency bins. Assuming the pilots be equally divided among

all the users, the spectrum available to every user will have 4 pilots each. This

means there are 1820 different combination of pilot patterns that are possible. We

perform an exhaustive search for the minimum MSE for all 1820 pilot patterns.

Figure 4.11 shows that the minimum MSE occurs at combinations 682 and 1010,

both of which are equispaced combinations. Since we are consider a block OFDM

system, we have another option of varying the pilot pattern over time, i.e., change

the pilot positions in subsequent OFDM symbols. The equidistant pilot placement

has already been established as better to the other pilot placement patterns. Now
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Figure 4.11: MSE for all pilot patterns.

we compare the BER performance of OFDM blocks which have the same equidis-

tance patterns with that of those which have alternating equidistance pilots. We

find that alternating pilot pattern provides a slightly better BER performance

than the non alternating scheme. Figure 4.12 shows the BER comparison for

equidistance non alternating and alternating schemes.

4.5 Conclusion

We present an OFDM receiver design based on a semi-blind low complexity fre-

quency domain channel estimation algorithm for multi-access OFDM system. Op-

posed to the time domain case which estimates the whole spectrum, we propose a

frequency domain approach in which the user estimates the part of the spectrum

in which he operates. The advantage of this is reduction in computational cost
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Figure 4.12: BER comparison for alternating and non alternating equidistant schemes
(16 pilots) .

incurred by each user. Also, the user might not have access to the entire spectrum.

We estimate the channel parameters based on the eigenvalue technique, greatly

reducing the number of parameters to be estimated. The receiver uses the pilots

to kick start the estimation process and then iterates between channel and data

recovery. Our receiver utilizes data (finite alphabet set, code, transmit precoding,

pilots) and channel (finite delay spread, frequency correlation, time correlation)

constraints. Thanks to the decoupled relation in the frequency domain, data re-

covery is done on an element by element basis while the channel estimation boils

down to solving a regularized least squares problem. We propose to improve the

estimate making use of the time correlation information of the channel by relaxing

the latency requirement. For this purpose, we employ Cyclic and Helix based FB

Kalman filters and use the outer code to enhance the channel estimate. We make
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use of both the frequency and time correlation which results in a relatively low

training overhead. The simulation results show the performance of our algorithm.

Our results maybe extended to multiple antenna OFDM systems.

APPENDIX A: Moment Calculation

Now to calculate an expectation of the form E[DBD], which appears in (4.16),

we note that by our assumption different elements of D are independent making

the expectation that involves them in E[DBD] separable, i.e. for these terms,

we have

E[DBD∗] = E[D]BE[D∗] (A-1)

The identical forms, however, interact according to

E[DBD] = E[Ddiag(B)D] (A-2)

= E[DD∗]E[diag(B)] (A-3)

By combining (A-1) and (A-3), we see that

E[DBD∗] = E[D]BE[D∗] + Cov[D]diag(B)
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Part II

Least Mean Square Adaptive

Filters with Optimum Error

Nonlinearity
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CHAPTER 5

INTRODUCTION TO

ADAPTIVE FILTERS

Adaptive filters are time variant systems that learn from their environment and

adapt to the variations in the signal statistics. Adaptive filters are useful whenever

we need to process a signal arising from unknown statistics. In the realm of modern

communication, the role of adaptive filters is of vital importance. For instance,

adaptive filters have been extremely important in achieving the high efficiency

and high reliability on ubiquitous telecommunication services.

In this second part of the thesis, we show how to design adaptive filters with

optimum nonlinearities from a priori information about the noise statistics. This

part is in turn divided into two chapters. The first chapter provides a quick

overview of adaptive filters with error nonlinearities. It explains how the perfor-

mance of adaptive filters is evaluated (and the assumptions needed for that) and

introduces the energy relation as a convenient tool for accessing performance.
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5.1 System Model

Consider the following system identification scenario

d(i) = uiw
o + v(i) (5.1)

where d(i) is the desired signal response, ui is an input row regression vector,

wo denotes an unknown column vector that we wish to estimate and v(i) is the

measurement noise. Various adaptive schemes ([62], [63]) have been proposed in

literature for the estimation for wo. The general form of the recursive update

equation used by these schemes can be represented as [62]

wi+1 = wi + µuT
i f [e(i)] (5.2)

where wi is the estimate of wo at time i, µ is the step-size and

e(i) = d(i)− uiwi (5.3)

is the estimation error. The nonlinearity f [e(i)] controls the correction term in

(5.2) and is known as the scalar error nonlinearity.

This class of algorithms is general enough to include the special cases listed in

Table 5.1. Several of these algorithms were already considered in the literature

(see, e.g., [64, 66, 67, 68] and the many references therein).
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Table 5.1: Examples for f [e(i)].

Algorithm Error nonlinearities f [e(i)]

LMS e(i)
LMF e3(i)

LMF family e2k+1(i)
LMMN ae(i) + be3(i)

Sign error sgn[e(i)]

Sat. nonlin.
∫ e(i)

0
exp

(
− z2

2σ2
sat

)
dz

5.2 Evaluating Adaptive Filters

As we shall see in the literature review section, many adaptive algorithms have

been suggested in literature. To evaluate the performance of these algorithms,

various error measures and performance criteria are used which are summarized

in this section. In this section, we also summarize the various assumptions that

have been used to evaluate the performance of adaptive filters.

5.2.1 Error Measures

Evaluating the performance of an adaptive filter deals with a study of the time-

evolution and the steady-state values of E[|e(i)2|] and E[||vi||2]1, where vi is the

weight error vector defined as

vi = wo −wi (5.4)

The steady-state values of E[|e(i)2|] and E[||vi||2] represent the mean-square-

error and the mean-square-deviation (MSD) performances of an adaptive filter,

respectively, whereas their time-evolution relate to the learning or the transient

1The notation ||vi||2 denotes the squared Euclidean norm of a vector, i.e., ||vi||2 = vivT
i .
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behavior of the filter. In carrying out the performance evaluation of adaptive

filters, it is convenient to define the a-priori and a-posteriori estimation errors [62]

ea(i) = uivi, and ep(i) = uivi+1 (5.5)

The estimation error e(i) and the a-priori error ea(i) are related by

e(i) = ea(i) + v(i) (5.6)

5.2.2 Various Assumptions used for Evaluating Performance

of an Adaptive Filter

Various assumptions and techniques have been employed in the literature to

characterize the performance measure of adaptive filters such as linearization

[66, 67, 69], restricted class of nonlinearities [70, 71, 72, 73], assumptions on the

statistics of the errors [66, 70, 74, 75], restricted class of inputs [66, 70, 71], inde-

pendence assumption [63], Gaussian noise [66, 70, 74] (see [76] for more details).

Most techniques in the literature use a combination of these assumptions.

5.2.3 Performance Criteria

There are different ways of evaluating the performance of an adaptive filter. Most

common performance measures of an adaptive filter are the following:

74



a) Convergence Speed. Convergence speed of an adaptive algorithm is an impor-

tant performance measure. It shows how fast an adaptive algorithm converges to

its steady-state. Different adaptive algorithms have been designed in order to im-

prove the convergence speed of adaptive filters. For example, the LMF algorithm

of [67] employs a nonlinearity of third error norm to give a faster convergence

compared to the LMS algorithm, while the NCLMS algorithm of [77] enhances

the convergence performance of the LMS algorithm by applying a constraint based

on noise variance. The NLMS [78] and the NLMF [79] algorithms enhance the

speed of the LMS in the presence of correlated input.

b) Mean and Mean-square-error Stability. Stability of an adaptive algorithm is

another important issue. The stability of an adaptive algorithm is analyzed both

in the mean and mean-square-error sense [62, 63] where we require the various

error measure to remain bounded. For thi to happen, we usually choose the step

size of the adaptive filter to be small enough.

c) Steady-state Behavior. Steady-state behavior is yet another important per-

formance measure of adaptive algorithms. Usually two measures of performance

indices are of interest: steady-state excess mean-square error (EMSE) and steady-

state mean-square-deviation (MSD) defined respectively as

EMSE = limi→∞E[|e(i)|2]− σ2
v (5.7)

MSD = limi→∞E[||vi||2] (5.8)
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This is true assuming noise is iid and independent of input.

5.3 Fundamental Energy Relation

The fundamental energy relation is a relation that makes it possible to analyze

adaptive filters under weak assumptions. The relation was originally developed

in [80, 81, 82] in the context of robustness analysis of adaptive filters within a

deterministic framework, it has since been used in [64, 83, 84] to study both the

transient and the steady state performance of adaptive filters. The energy conser-

vation relation enables us to avoid many of the assumptions mentioned in Section

5.2.2. We can thus study adaptive filters under the most general conditions.

The energy relation is easy to develop. Using error measures defined in (5.5),

we rewrite the adaptive algorithm (5.2) as follows

wo −wi+1 = wo − (wi + µuT
i f [e(i)]) (5.9)

vi+1 = vi − µuT
i f [e(i)] (5.10)

multiplying both sides of equation (5.10) by ui and keeping in view the definitions

of (5.5), we obtain the relation between ep(i), ea(i), e(i) as

uivi+1 = uivi − µuiu
T
i f [e(i)] (5.11)

ep(i) = ea(i)− µf [e(i)]||ui||2 (5.12)
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Solving the above equation for µf [e(i)] and substituting it in (5.10) leads to the

energy conservation relation

||vi+1||2 +
|ea(i)|2
||ui||2 = ||vi||2 +

|ep(i)|2
||ui||2 (5.13)

The above relation is called the fundamental energy conservation relation [83]. It

shows the time evolution of the energies of the error quantities and enables us to

perform steady state analysis in a transparent manner. Replacing the a-posteriori

error ep(i) in (5.13) by its equivalent expression in (5.12) results in the following

energy relation

||vi+1||2 = ||vi||2 − 2µea(i)f [e(i)] + µ2||ui||2f 2[e(i)] (5.14)

The above equation applies to the class of adaptive filters given by (5.2)-(5.3). It is

an exact relationship, as we we have not used any assumption or approximation in

deriving it. Consequently, the analysis based on the fundamental energy relation

will be more general and rigorous. This relation will serve as the starting point for

our discussion on the design of optimum error nonlinearities in the next chapter.

5.4 A Brief Overview of Previous Work

The LMS algorithm is a simple algorithm used to update adaptive filter coeffi-

cients. Due to its success, many variants of this algorithms have been suggested in

literature to improve its steady-state error, speed of convergence or to reduce the
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computational complexity. These variations can be classified into adaptive filters

that employ an error nonlinearity and those that employ a data nonlinearity in

the update term. Here we will discuss those adaptive filters which are nonlinear

in error only.

In the past, researchers have designed optimum error nonlinearities by first an-

alyzing the mean and the mean-square behavior of adaptive filter for general error

nonlinearities and then by optimizing the result based on the analysis. However,

as the analysis is based on restrictive assumptions (e.g. Gaussian/white input,

Gaussian noise, input regressor independence, linearization of nonlinearity), the

optimum error nonlinearity obtained is limited by the assumptions used for the

analysis. Most of these techniques can be divided into two categories:

1. Techniques with intuitively suggested error nonlinearity function [67, 78, 74,

85, 87] based on intuitive arguments.

2. Techniques which derive the optimum error nonlinearity functions under

certain assumptions [68, 86, 88].

In this part, our aim is to design a more general optimum error nonlinearity in

the steady-state by relaxing some of the assumptions previously used like the

assumption on the distribution of input regressor elements and assumption on

the distribution of noise by avoiding any linearization arguments. The optimum

nonlinearities obtained thus will not only be more general but will also encompass

more diverse scenarios of adaptive filtering. Thus, our approach first performs

a steady state mean-square analysis for a general error nonlinearity and then
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optimizes the choice of the nonlinearity by minimizing the steady state error.

In analyzing the optimum error nonlinearity, we rely on the fundamental energy

relation which is discussed next.
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CHAPTER 6

OPTIMUM ERROR NON

LINEARITY–AT STEADY

STATE

As we pointed out in the previous chapter, many adaptive algorithms have been

proposed in literature employing various kind of error nonlinearities. These non-

linearities were obtained under various restrictions and assumptions or were even

simply intuitively motivated. Here, we use the energy relation to derive the EMSE

from adaptive filters employing a general error nonlinearity under quite general

assumptions. We use that in Section 6.3 to derive the optimum error nonlinearity

and in Section 6.5 to derive the conditional error nonlinearity (both of which turn

to be a function of the additive noise). In Section 6.4 we demonstrate how the

nonlinearity manifests itself for various noise distributions. Finally, Section 6.9

demonstrates the performance of the optimum nonlinearity in various scenarios.
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6.1 The MSE for General Error Nonlinearity

In this section, we use the energy relation to derive the mean square error for the

general error nonlinearity. Specifically, starting from the energy relation (5.14)

and taking expectation of both sides we obtain

E
[||vi+1||2

]
= E

[||vi||2]− 2µE
[
ea(i)f [e(i)]] + µ2E

[||ui||2f 2[e(i)]] (6.1)

We assume the filter to be stable, so it will eventually reach steady-state. Such

that at i →∞, E
[||vi+1||2

]
= E

[||vi||2
]
. Then at steady state, (6.1) becomes

lim
i→∞

E
[
ea(i)f [e(i)]

]
=

µ

2
lim
i→∞

E
[||ui||2f 2[e(i)]

]
(6.2)

In order to evaluate the two expectations in (6.2), we will introduce the following

assumptions:

AN. The noise sequence {v(i)} is independent, identically distributed, and

independent of the input sequence {ui}.

AG. The filter is long enough such that ea(i) is Gaussian.

AU. The random variables ||ui||2 and f 2[e(i)] are asymptotically uncorrelated,

i.e.,

lim
i→∞

E
[||ui||2f 2[e(i)]] = E

[||ui||2
]

lim
i→∞

E[f 2[e(i)]] (6.3)

Assumptions AG and AU get more realistic with the increase in the length of the

filter. We can use the central limit theorem to justify assumption AG. Assumption
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AU is a weaker assumption than the independence assumption usually employed

in literature. We can justify it for long filters using an ergodic argument on ||ui||2.

With these assumptions let’s first evaluate the left hand side of (6.2). TO do

so, we will use Price’s Theorem [65]

E
[
xf [y + z]

]
=

E[xy]

E[y2]
E

[
f [y + z]

]

where x and y are jointly Gaussian and independent of z. Using this result,

together with assumptions AN and AG, we can rewrite the left hand side of

(6.2) as

E
[
ea(i)f [e(i)]

]
= E

[
ea(i)f [ea(i) + v(i)]

]

= E
[
e2

a(i)
]E

[
ea(i)f [ea(i) + v(i)]

]

E[e2
a(i)]

(6.4)

where the expectation E
[
ea(i)f [e(i)]

]
depends on ea(i) through the second mo-

ment E[e2
a(i)] only and therefore the ratio in (6.4) is a function of E[e2

a(i)]. This

leads us to define

hG[E[e2
a(i)]] , E[ea(i)f [e(i)]]

E[e2
a(i)]

(6.5)

Combining (6.4) and (6.5), we get

E
[
ea(i)f [e(i)]

]
= E

[
e2

a(i)
]
hG[E[e2

a(i)]] (6.6)
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Now employing the assumption AU, we see that the expectation on the right

hand side of (6.2) can be split as

E
[||ui||2f 2[e(i)]] = E

[||ui||2
]
E[f 2[e(i)]] (6.7)

Also as ea(i) is zero mean Gaussian by assumption AG and independent of the

noise, so E
[
f 2[e(i)]

]
will also depend on ea(i) through its second moment only.

Thus, we define

hU [E[e2
a(i)]] , E[f 2[e(i)]] (6.8)

Combining (6.7) and (6.8) yields

E
[||ui||2f 2[e(i)]] = E

[||ui||2
]
hU [E[e2

a(i)]] (6.9)

Replacing the expectations of (6.2) by those in (6.6) and (6.9), the energy relation

takes on the form

lim
i→∞

E
[
e2

a(i)
]

lim
i→∞

hG[E[e2
a(i)]] =

µ

2
E

[||ui||2
]

lim
i→∞

hU [E[e2
a(i)]] (6.10)

The above relation was derived for a general memoryless error nonlinearity. Next,

we calculate the excess mean square error using these results.

83



6.2 Excess Mean Square Error

To calculate the excess mean square error, we rearange (6.10) as

lim
i→∞

E
[
e2

a(i)
]

=
µ

2
E

[||ui||2
] limi→∞ hU [E[e2

a(i)]]

limi→∞ hG[E[e2
a(i)]]

=
µ

2
Tr(R)

limi→∞ hU [E[e2
a(i)]]

limi→∞ hG[E[e2
a(i)]]

(6.11)

as both hU and hG are analytic in their arguments and denoting the excess mean-

square error by S = limi→∞ E[e2
a(i)], we can write

lim
i→∞

hU [E[e2
a(i)]] = hU [S]

lim
i→∞

hG[E[e2
a(i)]] = hG[S] (6.12)

This means that the EMSE satisfies the nonlinear relationship

S =
µ

2
Tr(R)

hU [S]

hG[S]
(6.13)

The EMSE can then be calculated by evaluating hU and hG for a given error

nonlinearity f and solving for the fixed point equation (6.13).
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6.3 Optimum Choice of the Nonlinearity

Consider the expression of the excess mean-square error (6.13) rewritten as

S =
µ

2
Tr(R)

E[f 2[e(i)]]

E[f ′ [e(i)]]
(6.14)

Now the excess mean-square error cannot be less than the Cramer-Rao bound of

the underlying estimation process (i.e., estimating uiw
o from uiwi). Thus we can

write

E[f 2[e(i)]]

E[f ′ [e(i)]]
≥ 2

µTr(R)
α = α

′
(6.15)

where α
′
is non zero because the adaptive filters does not have infinite memory

as we are using an adaptive filter with non-vanishing step size. The α used in

equation (6.16) is nothing but the EMSE at steady state. Now denoting the pdf

of e(i) with pe and assuming it is differentiable, we claim that the nonlinearity

f [e(i)] = −α
′ p
′
e[e(i)]

pe[e(i)]
(6.16)

is optimum in the sense that it attains the lower bound on the EMSE. To prove this

claim, let us evaluate the numerator and denominator of (6.15) for the optimum
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choice of f . The numerator will be

E
[
f 2[e(i)]

]
=

∫ ∞

−∞
f 2[e(i)]pe[e(i)]de(i)

= (α
′
)2

∫ ∞

−∞

(
p
′
e[e(i)]

pe[e(i)]

)2

pe[e(i)]de(i)

= (α
′
)2

∫ ∞

−∞

(p
′
e[e(i)])

2

pe[e(i)]
de(i) (6.17)

and the denominator will be

E
[
f
′
[e(i)]

]
=

∫ ∞

−∞
f
′
[e(i)]pe[e(i)]de(i)

= f [e(i)]pe[e(i)]|∞−∞ −
∫ ∞

−∞
f [e(i)]p

′
e[e(i)]de(i) (6.18)

Now for the same choice of f , we have

E
[
f
′
[e(i)]

]
= −α

′
p
′
e[e(i)]|∞−∞ + α

′
∫ ∞

−∞

(p
′
e[e(i)])

2

pe[e(i)]
de(i)

= α
′
∫ ∞

−∞

(p
′
e[e(i)])

2

pe[e(i)]
de(i) (6.19)

assuming p
′
e decays to zero as e(i) reaches ±∞. Using (6.17) and (6.19) we attain

the desired lower bound

E[f 2[e(i)]]

E[f ′ [e(i)]]
= α

′
(6.20)
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which validates our claim of (6.16). As α is just EMSE at steady-state, therefore

the value of α
′
in equation (6.16) can be set as

α
′
=

2σ2
ea

µTr(R)
(6.21)

The optimum error nonlinearity is thus given by

f [e(i)] = − 2σ2
ea

µTr(R)

p
′
e[e(i)]

pe[e(i)]
(6.22)

6.4 Optimum Error Nonlinearity for Some Spe-

cial Cases

In the previous section, we derived the non linearity in (6.22) under weaker as-

sumption as compared to what is already available in literature. For example, we

have not assumed any restriction on the statistics of the noise or the symmetry

of its pdf. The nonlinearity (6.22) also holds true irrespective of the input sta-

tistics and color. We have not used any linearization argument in deriving (6.22)

which makes our result accurate over all stages of adaptation. Note that assump-

tion AU that assumes ||ui||2 and f 2[e(i)] asymptotically uncorrelated which is a

weaker condition than the independence assumption usually taken in literature.

Also this expression is generic as we have not placed any restriction on the class

of the error nonlinearities as is sometimes done in the literature.

Now e(i) is the sum of two independent variables ea(i) and v(i) and its pdf is
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given by the convolution of the two pdf’s. By assumption AG, we know the pdf

of ea(i) is zero mean Gaussian. Thus we just need to model the noise statistics in

order to complete the modeling of pe

pe[e(i)] = pea [e(i)] ∗ pv[e(i)]

=
1√

2πσ2
ea

e
− e2

2σ2
ea ∗ pv[e(i)] (6.23)

where ∗ is the convolutional operator. Let us see how the error nonlinearity will

manifest itself for different noise statistics.

6.4.1 Gaussian Noise

For the case when noise v(i) is Gaussian with mean zero and variance σ2
v , and

since ea(i) is also Gaussian with mean zero and variance σ2
ea the error e(i) will

be Gaussian with zero mean and variance σ2
e = σ2

v + σ2
ea. The pdf of e(i) is thus

given as

pe[e(i)] =
1√

2π(σ2
ea + σ2

v)
exp

[ −e2(i)

2(σ2
v + σ2

ea)

]
(6.24)

and its derivative is given as

p
′
e[e(i)] = − e(i)

(σ2
v + σ2

ea)
√

2π(σ2
ea + σ2

v)
exp

[ −e2(i)

2(σ2
v + σ2

ea)

]
(6.25)
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Figure 6.1: Error nonlinearity for the Gaussian case

Replacing (6.24) and (6.25) in (6.22), we get the optimum nonlinearity for the

Gaussian noise

fopt[e(i)] =
2σ2

ea

µTr(R)(σ2
ea + σ2

v)
e(i) (6.26)

The shape of the nonlinearity is shown in Figure 6.1

6.4.2 Laplacian Noise

For the case of Laplacian noise, the pdf of the noise is given by

pv[e(i)] =
1

2b
e
−|v|

b (6.27)

The constant b is related to the noise variance as

σ2
v = 2b2 or b =

√
σ2

v

2
(6.28)
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Substituting (6.27) in (6.23) yields

pe[e(i)] =
1√

2πσ2
ea

e
− e2

2σ2
ea ∗ 1

2b
e
−|v|

b (6.29)

The convolution is evaluated in Appendix A. After evaluating p
′
e[e(i)] we arrive

at the following expression for the nonlinearity

fopt[e(i)] = − 2σ2
ea

µTr(R)

{
ee(i)/bγ1[e(i)]− e−e(i)g−[e(i)]

ee(i)/b
(
1− erf

[
b e(i)+σ2

ea

b
√

2σ2
ea

])
+ e−e(i)/b

(
1 + erf

[
b e(i)−σ2

ea

b
√

2σ2
ea

])
}

(6.30)

where

γ1[e(i)] =
1

b
− 1

b
erf

[
b e(i) + σ2

ea

b
√

2σ2
ea

]
−

√
2

πσ2
ea

e(b e(i)+σ2
ea)2/2b2σ2

ea (6.31)

g−[e(i)] =
1

b
+

1

b
erf

[
b e(i)− σ2

ea

b
√

2σ2
ea

]
−

√
2

πσ2
ea

e(b e(i)−σ2
ea)2/2b2σ2

ea (6.32)

The general shape of the nonlinearity is demonstrated in Figure 6.2

6.4.3 Binary Noise

In the Binary noise case, we have

v(i) =





b with probability 1/2

−b with probability 1/2

(6.33)
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Figure 6.2: Error nonlinearity for the Laplacian case

We can show (see Appendix B for derivation) that the optimal nonlinearity takes

the following form

fopt[e(i)] =
2

µTr(R)

[
e(i)− b tanh

(
b e(i)

σ2
ea

)]
(6.34)

The general shape of the nonlinearity is shown in Figure 6.3

6.4.4 Gaussian Mixture

In the Gaussian Mixture noise case, we have a mixture of two Gaussian noises of

variances σ2
v1

& σ2
v2

. The two noises are weighted by coefficients m and 1−m

v = mv1 + (1−m)v2 (6.35)
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Figure 6.3: Error nonlinearity for the Binary case

This makes the noise Gaussian with variance given by (σ2
v = m2σ2

v1
+(1−m)2σ2

v2
).

Hence the nonlinearity in this case is similar as that in the Gaussian case and is

given by

fopt[e(i)] =
2σ2

ea

µTr(R)(σ2
ea + m2σ2

v1
+ (1−m)2σ2

v2
)
e(i) (6.36)

The general shape of the nonlinearity is show in Figure 6.4

6.5 Optimum Error Nonlinearity with Conditional

Analysis

Is it possible to derive an adaptive filter that combines error nonlinearity with

a simple data nonlinearity? Specifically how can we obtain a normalized LMS
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Figure 6.4: Error nonlinearity for the Gaussian mixture case

algorithm with an error nonlinearity. i.e., an algorithm having the update

wi = wi−1 + µf [e(i)]
ui

||ui||2 (6.37)

One motivation for this normalization is that it allows us to deal better with

correlated input. It turns out that we can do so by repeating the same analysis

we performed in the Section 6.3 conditioned on the input. Specifically starting

again from the energy relation (5.14) and taking the expectation on both sides

conditioned on ui yields

E
[||vi+1||2

∣∣ui

]
= E

[||vi||2
∣∣ui

]− 2µE
[
ea(i)f [e(i)]

∣∣ui

]
+ µ2||ui||2E

[
f 2[e(i)]

∣∣ui

]

= E
[||vi||2

∣∣ui

]− 2µE
[
ea(i)

∣∣uif [e(i)
∣∣ui]

]
+ µ2||ui||2E

[
f 2[e(i)

∣∣ui]
]

(6.38)
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Assuming that the filter is stable, it should eventually reach its steady-state

wherein E
[||vi+1||2

∣∣ui

]
= E

[||vi||2
∣∣ui

]
as i → ∞. By assuming the stationarity

of ui, it can be shown that

lim
i→∞

E
[
ea(i)

∣∣uif [e(i)
∣∣ui]

]
=

µ

2
||ui||2 lim

i→∞
E

[
f 2[e(i)

∣∣ui]
]

(6.39)

Next, the expectation E
[
ea(i)

∣∣uif [e(i)
∣∣ui]

]
in the above equation is evaluated

using Price’s Theorem and can be setup to the following

E
[
ea(i)

∣∣uif [e(i)
∣∣ui]

]
= E

[
e2

a(i)
∣∣ui

]
hG

[
E

[
e2

a(i)
∣∣ui

]]
(6.40)

where

hG

[
E

[
e2

a(i)
∣∣ui

]]
=

E
[
ea(i)

∣∣uif [e(i)
∣∣ui]

]

E
[
e2

a(i)
∣∣ui

] . (6.41)

Knowing that hG

[
E

[
e2

a(i)
∣∣ui

]]
can take the alternative form of E

[
f
′
[e(i)

∣∣ui]
]
,

we can write the above equation as follows

E
[
ea(i)

∣∣uif [e(i)
∣∣ui]

]
= E

[
e2

a(i)
∣∣ui

]
E

[
f
′
[e(i)

∣∣ui]
]

(6.42)

Finally, by substituting the value of the above expectation in equation (6.39), the

following relation is obtained

S =
µ

2
||ui||2

limi→∞ E
[
f 2[e(i)

∣∣ui]
]

limi→∞ E
[
f ′ [e(i)

∣∣ui]
] , (6.43)
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where S = limi→∞ E
[
e2

a(i)
∣∣ui

]
. Therefore, by using the same approach devel-

oped for the case optimum error nonlinearity, we get the following optimum error

nonlinearity with conditional analysis

fopt[e(i)
∣∣ui] = −α

′ p
′
e[e(i)

∣∣ui]

pe[e(i)
∣∣ui]

(6.44)

where

α
′
=

2σ2
ea

µ||ui||2 . (6.45)

This is the same nonlinearity (6.22) obtained earlier except that Tr(R) is now

replaced by ||ui||2.

6.6 The Conditional Error Nonlinearities for Spe-

cial Noise Cases

Given the similarity between the optimum nonlinearity and the conditional non-

linearity, we can easily deduce the conditional nonlinearity for the four noise

cases studied earlier. Specifically, the optimum conditional nonlinearity for the

Gaussian noise is given by

fopt[e(i)] =
2σ2

ea

µ||ui||2(σ2
ea + σ2

v)
e(i) (6.46)
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For the Laplacian Noise case, we have

fopt[e(i)] = − 2σ2
ea

µ||ui||2
{

ee(i)/bγ1[e(i)]− e−e(i)g−[e(i)]

ee(i)/b
(
1− erf

[
b e(i)+σ2

ea

b
√

2σ2
ea

])
+ e−e(i)/b

(
1 + erf

[
b e(i)−σ2

ea

b
√

2σ2
ea

])
}

(6.47)

where γ1[e(i)] and g−[e(i)] are defined in equation (6.31) and (6.32). For Binary

Noise case, the optimum nonlinearity in the conditional analysis case comes out

to be

fopt[e(i)] =
2σ2

ea

µ||ui||2(σ2
ea + σ2

v)

(
e(i)− e

−
(

e2(i)+1

2σ2
ea

)
tanh

[
e(i)

σ2
ea

])
(6.48)

and the nonlinearity for the Gaussian mixture case is given by

fopt[e(i)] =
2σ2

ea

µ||ui||2(σ2
ea + m2σ2

v1 + (1−m)2σ2
v2)

e(i) (6.49)

6.7 Role of the Variance of ea(i)

By investigating the expressions of the optimum error nonlinearities derived above,

we see that they all depend on the variance of ea(i).Thus the choice of the variance

of ea(i) plays a vital role in the performance of the adaptive filter with optimum

nonlinearity in any noise environment. Consider the case of Gaussian noise, for

example, if we substitute the value of fopt[e(i)] in equation (5.2), the weight update
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rule of the LMS algorithm is modified to the following

wi+1 = wi +
2σ2

ea

Tr(R)(σ2
ea + σ2

v)
e(i)uT

i (6.50)

It can be observed that the weight update rule for the optimum nonlinearity is

independent of the step-size value µ. Moreover since, the values of Tr(R) and

σ2
v are fixed for a given system, the variance of ea(i) (σ2

ea) is the only parameter

which can control the step-size of the adaptive filter. Therefore, the optimum

nonlinearity for Gaussian noise can be considered as the LMS algorithm with a

new and actually variable step-size µ
′

= 2σ2
ea

Tr(R)(σ2
ea+σ2

v)
. In the case of laplacian

and binary noise, we have totally different nonlinearities as compared to the LMS

algorithm. There σ2
ea plays the same role of controlling the step-size of the adaptive

rule as well as controlling the general shape of the nonlinearity.

6.8 Calculating the Variance of ea(i)

It has been established in the previous section that the value of ea(i) plays an

important role in the performance of optimum nonlinearity. Now we will consider

how to estimate this variance. Note that ea(i) is time variant and therefore must

be estimated online. The problem is that ea(i) is not accessible, so we calculate

σ2
ea from e(i) using the fact that

σ2
e = σ2

ea + σ2
v (6.51)
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In practice, we estimate σ2
ea by estimating the variance of e(i) over a window of

samples of e(i) and subtracting the noise variance i.e.,

σ̂2
ea = σ̂e

2 − σ2
v (6.52)

To assure the stability of the algorithm, we enforce that the value of σ̂2
ea stays

within an interval [a, b] where the limits a and b are experimentally derived.

At the early stages of adaptation however, there are not enough samples of

e(i) and so we can not estimate σ̂2
e reliably. In this case, we simply employ the

LMS update equation. When enough samples of e(i) are available, we can estimate

σ2
e(i) reliably so we switch to the optimal non linearity. So, the actual nonlinearity

implemented is

f [e(i)] =





µe(i) for early stages

fopt[e(i)] when enough samples of e(i) are available

(6.53)

There is another justification for this switching approach. The derivation of the

optimum nonlinearity suggests that the optimum rule should work well when the

steady-state has been reached. Therefore, it is best to implement the nonlinearity

in two modes. In the transient mode, the LMS algorithm is implemented. In the

second (steady-state) mode, the algorithm switches to the optimum nonlinearity.

The switching is activated on the basis of the energy of the estimation error e(i).

If this energy is less than a certain threshold γ, the algorithm switches from mode
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1 to mode 2, that is

f [e(i)] =





e(i) if |e(i)|2 ≥ γ

fopt[e(i)] if |e(i)|2 < γ

In the 2nd mode, i.e. when |e(i)|2 ≥ γ, σ2
ea is either set to a fixed value or

calculated using the windowing method (i.e. by averaging e2(i) over a window,

estimating σ2
e and using that to estimate σ2

ea). The advantage of doing so is that

in the steady state, ea(i) is much more stable and hence calculating σ2
ea(i) should

be easy.

6.9 Simulation Results

In this section, some simulations are carried out to validate the theoretical findings

in system identification scenario. The unknown system to be identified is an FIR

system with impulse response [0.0351, − 0.0688, 0.1205, − 0.258, 0.9054,

−0.2561, 0.1018, −0.0731, 0.0673, −0.0673]T . The performance measure is the

mean square deviation (MSD). We investigate our results for four different noise

environments, Gaussian, Laplacian, Binary and Gaussian mixture. The signal to

noise ratio used is always set to 10 dB. The results are averaged over 100 runs.

6.9.1 The Effect of Varying σ2
ea

Here we investigate the effect of varying σ2
ea on the MSD of the optimum non

linearity algorithm as discussed in Section 6.7. The convergence rate of our al-
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Figure 6.5: MSD of Optimum filter at various values of σ2
ea in Gaussian Noise

gorithms is not dependent on the step size µ, but rather on the value of σ2
ea

Here, three different values of σ2
ea (0.03, 0.01, 0.005) are used. Figure 6.5

shows the MSD curves for various values of σ2
ea in Gaussian Noise. It can be seen

from the figure that the convergence speed of the optimum nonlinearity decreases

with decreasing σ2
ea. However the steady state value of the MSD decreases with

decreasing σ2
ea. Figure 6.7 plot the same result for the Laplacian noise case and

shows the same trend. Figure 6.6 shows the same plot for the binary noise case

which is plotted for σ2
ea = 2.5, 1.3, 1.

From above, we can see that the variance σ2
ea plays a role similar to the step

size in an adaptive filter. It can be used to decrease the steady-state error but that

results in slower convergence speed (and vice versa). It will be thus worthwhile

to study the effect of changing the variance of ea(i) on the convergence speed and
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Figure 6.6: MSD Optimum filter at various values of σ2
ea in Binary Noise
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Figure 6.7: MSD Optimum filter at various values of σ2
ea in Laplacian Noise
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Figure 6.8: Effect of value of σ2
ea onMSD (Gaussian noise).

the steady state MSD achieved. Figure 6.8 plots the steady state MSD versus σ2
ea

and Figure 6.9 plots the number of iterations vs σ2
ea required to reach steady state

(convergence). In both cases, we vary the variance σ2
ea in steps of 0.0005. Figures

6.10 and 6.11 compare the same for the Binary Noise case. All these figures show

essentially the same trend: decreasing σ2
ea speed will result in a lower steady-state

MSD, slower convergence speed & vice versa. It is up to the designer to decide

what matters to him.

6.9.2 Switched Mode Case

The derivation of the optimum nonlinearity suggests that it will perform better

if invoked at the steady state. As we explained in Section 6.8, in the switched

mode case, the optimum nonlinearity works in two modes. In mode 1, it follows

that same update rule as LMS, while in mode 2 it switches to the optimum
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Figure 6.9: Effect of value of σ2
ea on convergence speed (Gaussian noise).
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Figure 6.10: Effect of value of σ2
ea on MSD (Binary noise).
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Figure 6.12: Effect of value of σ2
ea on MSD (Laplacian noise).
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Figure 6.13: Effect of value of σ2
ea on convergence speed (Laplacian noise).

update equation in which the optimum nonlinearity uses a fixed value of σ2
ea(i).

The algorithm switches from mode 1 to mode 2 when the error energy reaches

a predefined threshold. We run these simulations by fixing the variance σ2
ea.

Simulation are carried out for Gaussian noise, Laplacian noise, Binary noise and

Gaussian mixture noise. (see Figures 6.14, 6.15, 6.16 and 6.17). The Figures

compare the learning curves of the LMS, conditional nonlinearity and the optimum

nonlinearity in the four noise environments. The value of σ2
ea for the Gaussian and

Laplacian noise environments is set to 0.001 and is set to 1 for the Binary noise

case. It can be depicted form the figures that there is a great improvement in

the steady-state MSD for the conditional and optimum nonlinearity as compared

to the LMS (Note also that all three algorithms maintain the same convergence

speed).
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Figure 6.14: MSD learning curves for Gaussian noise (switched mode case)
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Figure 6.15: MSD learning curves for Laplacian noise (switched mode case)
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Figure 6.16: MSD learning curves for Binary noise (switched mode case)
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Figure 6.17: MSD learning curves for Gaussian mixture noise with m=0.3,
σ2

v1
=100 and σ2

v2
= 1(switchedmodecase)
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Figure 6.18: MSD learning curves for Gaussian noise windowing method

6.9.3 Using Averaged Value of σ2
ea Over a Window Size

In the previous simulation, we fixed the value of σ2
ea throughout the simulation.

Here, as opposed to fixing σ2
ea, we run the adaptive filters here by estimating σ2

ea

and averaging it over a window size of 10 (as explained in Section 6.8). Simulation

experiments are carried out for all the four noise environments. In the first 10

iterations, where there are not enough samples of e(i) to estimate σ2
e(i), we use

the LMS update rule(as explained in Section 6.8). Figures 6.18 - 6.21 compare

the performance of the LMS and the adaptive filter with optimum and conditional

nonlinearities. It can be seen from these figures that there is substantial improve-

ment in the steady-state MSD of the optimum nonlinearity as compared to that

of the LMS algorithm.
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Figure 6.19: MSD learning curves for Laplacian windowing method
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Figure 6.20: MSD learning curves for Binary noise windowing method
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Figure 6.21: MSD learning curves for Gaussian mixture noise windowing method

6.9.4 The Effect of Window Size

How does the window size used in the window size used in the estimation of σ2
ea

affect the performance of the adaptive filter? In subsection 6.9.3, we used a window

size of 10. Here we demonstrate how the window size is varied. We demonstrate

that for binary noise (6.22) and Laplacian noise (6.23) when the window size is

varied over the range 1− 40. We see that there is a marginal improvement in the

MSD with increasing window size.
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Figure 6.22: Steady state value of MSD vs window size (Binary Noise)
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Figure 6.23: Steady state value of MSD vs window size (Laplacian noise)
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6.9.5 Time Variant Channels

Adaptive algorithms are most valuable when the environment is time variant. In

the ensuing we compare the performance of the LMS to the two adaptive algorithm

derived in this thesis for time variant channels.

Here we will compare LMS with the optimum error nonlinearity and the op-

timum error nonlinearity with conditional analysis algorithms. We will study

the behavior of these algorithms for three channel models [77]: 1) random walk

2) auto-regressive (AR) model and 3) probabilistic AR model. We assume the

channel to be of length 10. The input vector is assumed to be a white Gaussian

sequence, as normally considered in literature. We use the windowing technique

to estimate the value of σ2
ea with a window length of 5. The LMS is set for fast

convergence time and uses a step size of 0.1. The signal to noise ratio is set to

10 dB and the results are averages over 100 runs. Next we present the channel

models and their respective results.

1. Random Walk : The random walk model for channel coefficient is given by the

following equation

ck+1 = ck + δk (6.54)

where δk is a white Gaussian sequence whose elements are uncorrelated with

a mean of zero and variance σ2
δ = 10−5. Figures 6.24 and 6.25 compare the

three algorithm (optimal, conditional and LMS) in the the random walk channel

model for Gaussian and Binary cases. We see that the optimum and conditional

nonlinearities perform much better than the LMS.
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Figure 6.24: MSD for RW time varying channel in Gaussian noise
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Figure 6.25: MSD for RW time varying channel in Binary noise

113



0 200 400 600 800 1000
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2

 Iterations

 M
S

D
 (

d
B

)

 

 
LMS
Optimum
Conditional

Figure 6.26: MSD for AR time varying channel in Gaussian noise

2. AR Model : The AR model for the variation of channel coefficient is given as

ck+1 = ack + δk (6.55)

where 0 < a < 1(we use a = 0.90) and δ is the same as in the random walk

model. Figures (6.26) and (6.27) compare the MSD learning curves of the LMS,

the optimum error non linearity and the optimum error with conditional analysis

for Gaussian and Binary noise cases.
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Figure 6.27: MSD for AR time varying channel in Binary noise

3. Probabilistic AR Model : In the probabilistic AR model, the channel coeffi-

cients still vary according to (6.55) but with a probability p. In our simulations,

we vary the channel taps with probability p = 0.05. The results of the probabilis-

tic channel for Gaussian and Binary noise cases are shown is figures (6.28) and

(6.29).
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Figure 6.28: MSD for probabilistic AR time varying channel in Gaussian noise
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Figure 6.29: MSD for probabilistic AR time varying channel in Binary noise
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6.10 Conclusion

In this second part of the thesis we have designed steady-state optimum error non-

linearity for adaptive filters. We used the energy relation to derive the steady state

behavior of adaptive filters with general error nonlinearities. The nonlinearity was

derived under weaker conditions as compared to what is normally employed in lit-

erature hence it is more general. The nonlinearity turns out to be a function of

the pdf of additive noise and variance of estimation error. A conditional optimum

error nonlinearity is also derived along the same lines. A major issue was the eval-

uation of variance of estimation error which is time variant. Extensive simulations

were carried out which have demonstrated that optimum nonlinearity outperforms

the LMS. This was also demonstrated in time variant case. The proper online esti-

mation of the variance of estimation error, which is needed in the implementation

of the optimum nonlinearity, is still in need of further investigation.
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APPENDIX A: Error Nonlinearity for Laplacian

Noise

The solution of equation 6.29 is given as

pe[e(i)] =

∫ ∞

−∞
pea[e(i)− t]pv[t]dt

=

∫ ∞

−∞

1√
2πσ2

ea

exp

[
−(e(i)− t)2

2σ2
ea

]
1

2b
exp

[−|t|
b

]
dt

=
1√

2πσ2
ea

1

2b

(∫ 0

−∞
exp

[
−(e(i)− t)2

2σ2
ea

]
exp

[−t

b

]
dt+

∫ ∞

0

exp

[
−(e(i)− t)2

2σ2
ea

]
exp

[
t

b

]
dt

)

Now performing the substitution

e(i)− t√
2σ2

ea

= u ⇒ e(i)−
√

2σ2
eau = t

−dt√
2σ2

ea

= du ⇒ dt = −
√

2σ2
eadu
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So the above equation becomes

pe[e(i)] = − 1√
2πσ2

ea

1

2b

(∫ e(i)√
2σ2

ea

−∞
exp

[−u2
]
exp

[
−e(i) +

√
2σ2

eau

b

]√
2σ2

eadu

+

∫ ∞

e(i)√
2σ2

ea

exp
[−u2

]
exp

[
e(i)−√

2σ2
eau

b

]√
2σ2

eadu




= − 1√
π

1

2b

(∫ e(i)√
2σ2

ea

−∞
exp

[−u2
]
exp

[−e(i)

b

]
exp

[√
2σ2

eau

b

]
du

+

∫ ∞

e(i)√
2σ2

ea

exp
[−u2

]
exp

[
e(i)

b

]
exp

[
−√

2σ2
eau

b

]
du




= − 1√
π

1

2b
.


e

−e(i)
b

∫ e(i)√
2σ2

ea

−∞
exp


−(u2 − 2(u)

(√
2σ2

ea

2b

)
+

(√
2σ2

ea

2b

)2

−
(√

2σ2
ea

2b

)2

)


 du

+ e
e(i)

b

∫ ∞

e(i)√
2σ2

ea

exp


−(u2 + 2(u)

(√
2σ2

ea

2b

)
+

(√
2σ2

ea

2b

)2

−
(√

2σ2
ea

2b

)2

)


 du




= − 1√
π

1

2b
.


e

−e(i)
b

∫ e(i)√
2σ2

ea

−∞
exp


−

(
u−

√
2σ2

ea

2b

)2

 e

 √
2σ2

ea
2b

!2

du

+ e
e(i)

b

∫ ∞

e(i)√
2σ2

ea

exp


−

(
u +

√
2σ2

ea

2b

)2

 e

 √
2σ2

ea
2b

!2

du


 (A-1)

Performing another substitution

u−
√

2σ2
ea

2b
= w and u +

√
2σ2

ea

2b
= v
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in (A-1), we get

pe[e(i)] = − 1

2b
√

π
exp

[
σ2

ea

2b2

] (
e
−e(i)

b

∫ y

−∞
e−w2

dw + e
e(i)

b

∫ ∞

z

e−v2

dv

)
(A-2)

where

e(i)√
2σ2

ea

−
√

2σ2
ea

2b
= y ⇒ b e(i)− σ2

ea

b
√

2σ2
ea

= y

e(i)√
2σ2

ea

+

√
2σ2

ea

2b
= z ⇒ b e(i) + σ2

ea

b
√

2σ2
ea

= z

also erf(x) =
2√
π

∫ x

0

e−t2dt

which simplifies to

pe[e(i)] = − 1

2b
√

π
exp

[
σ2

ea

2b2

] √
π

2

(
e
−e(i)

b (1 + erf(y)) + e
e(i)

b (1− erf(z))
)

= − 1

4b
eσ2

ea/2b2

{
e

e(i)
b

(
1− erf

[
b e(i) + σ2

ea

b
√

2σ2
ea

])
+ e

−e(i)
b

(
1 + erf

[
b e(i)− σ2

ea

b
√

2σ2
ea

])}

(A-3)

and

p
′
e[e(i)] = − 1

4
eσ2

ea/2b2

{
ee(i)/b

(
1

b
− 1

b
erf

[
b e(i) + σ2

ea

b
√

2σ2
ea

]
−

√
2

πσ2
ea

e(b e(i)+σ2
ea)2/2b2σ2

ea

)

+ e−e(i)/b

(
1

b
+

1

b
erf

[
b e(i)− σ2

ea

b
√

2σ2
ea

]
−

√
2

πσ2
ea

e(b e(i)−σ2
ea)2/2b2σ2

ea

)}
(A-4)
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Replacing equations (A-3) and (A-4) in (6.22), the optimum nonlinearity for the

case of Laplacian noise will become

fopt[e(i)] = − 2σ2
ea

µTr(R)

{
ee(i)/bγ1[e(i)]− e−e(i)γ2[e(i)]

ee(i)/b
(
1− erf

[
b e(i)+σ2

ea

b
√

2σ2
ea

])
+ e−e(i)/b

(
1 + erf

[
b e(i)−σ2

ea

b
√

2σ2
ea

])
}

(A-5)

where

γ1[e(i)] =
1

b
− 1

b
erf

[
b e(i) + σ2

ea

b
√

2σ2
ea

]
−

√
2

πσ2
ea

e(b e(i)+σ2
ea)2/2b2σ2

ea (A-6)

γ2[e(i)] =
1

b
+

1

b
erf

[
b e(i)− σ2

ea

b
√

2σ2
ea

]
−

√
2

πσ2
ea

e(b e(i)−σ2
ea)2/2b2σ2

ea (A-7)

APPENDIX B: Error Nonlinearity for Binary Noise

In the binary noise case, the noise pdf is given as

pv[e(i)] =





b with probability 0.5

−b with probability 0.5

(B-1)

substituting it in (6.23), we get

pe[e(i)] =
1√

2πσ2
ea

e
− e2(i)

2σ2
ea ∗ pv[e(i)]

=
1

2

1√
2πσ2

ea

e
− (e(i)−b)2

2σ2
ea +

1

2

1√
2πσ2

ea

e
− (e(i)+b)2

2σ2
ea

=
1

2

1√
2πσ2

ea

e
− e(i)2+b2

2σ2
ea

[
e

b e(i)

σ2
ea + e

− b e(i)

σ2
ea

]
(B-2)
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and its differentiation yields

p
′
e[e(i)] = − 1

4σ2
ea

2e(i)√
2πσ2

ea

e
− e(i)2+b2

2σ2
ea

[
e

b e(i)

σ2
ea + e

− b e(i)

σ2
ea

]

+
1

2

1√
2πσ2

ea

e
− e(i)2+b2

2σ2
ea

[
b

σ2
ea

e
b e(i)

σ2
ea − b

σ2
ea

e
− b e(i)

σ2
ea

]
(B-3)

Replacing (B-2) and (B-3) in (6.22), we get the optimum error nonlinearity for

the binary noise case as

fopt[e(i)] =
2

µTr(R)

[
e(i)− b tanh

(
b e(i)

σ2
ea

)]
(B-4)
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CHAPTER 7

CONCLUSION AND FUTURE

WORK

7.1 Conclusion

In part 1 of the thesis, we investigate two parameter reduction approaches for

channel estimation in the frequency domain for channel estimation in multiuser

systems, where each user has access to a limited portion of the spectrum. First we

investigated a simple linearization and quadratic approach. As the results show,

this technique requires dense pilot placement and a large number of interpolation

parameters, stressing the system. As such this limits the scope of this approach.

Thus motivating us to use a more innovative approach. Next we investigated the

eigenvalue based interpolation technique for channel estimation. The channel is

initially estimated using pilots. This initial pilot based estimate is improved using

a data aided approach. For this purpose we use the EM algorithm. We first
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estimate the data and then use it to estimate the channel. By iterating between

these two steps, the receiver improves the channel estimate. By incorporating

time correlation information, we can further improve the estimate. To this end

we employ the Kalman Filter. If we relax the latency constraint, we can further

improve the channel estimate by employing Cyclic and Helix based Kalman Filters.

When an outer code is used, the code will reduce the number of errors in the

received data and this corrected data can in turn be used to further enhance the

channel estimate.

In part 2, we have designed the steady state optimum error nonlinearity for

long adaptive filters. Starting from an averaged form of energy conservation re-

lation, we have derived the relation of optimum error nonlinearity and optimum

nonlinearity with conditional analysis. Closed form expressions for some special

cases of intrust have also been derived. A windowed approach is suggested to make

a real time estimate of the variance of e. This provides a practical implementation

option and also shows an improvement in the performance of the optimum and

conditional case as compared to the LMS.

7.2 Future Work

It has been shown in Section 4.4.4 that the performance of the channel estimation

algorithm is affected by the pilot pattern used. The pilot design in Section 4.4.4

was 1 dimensional, meaning that we consider pilot placement only in the frequency

domain. One direction of further research could be investigating 2 dimensional
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optimal pilot design for this technique, considering pilot placement in both the

time and the frequency domains.

The Eigenvalue approach here has been developed for the SISO case. We have

demonstrated the viability of this technique. Future research on this work can

focus on adapting this technique for the MIMO case. The adaptation will follow

the same design procedure as in the SISO case and most of the design parameters

would also be unchanged.

In part 2, we have designed the optimum error nonlinearity and the condi-

tional error nonlinearity. Future work on this part can derive the optimum Data

nonlinearity for long adaptive filters along similar lines. Also the effect of variance

of σ2
ea on the window size can be further explored.
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