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THESIS ABSTRACT 

NAME:         Adeniran Ahmed Adebowale 

TITLE OF STUDY:    Artificial Intelligence Techniques in Reservoir  

Characterization 

MAJOR FIELD:      Systems Engineering 

DATE OF DEGREE:  January, 2009 

One of the major objectives of the petroleum industry is to obtain an accurate 

estimate of initial hydrocarbon in place before investing in development and production. 

Porosity, permeability and fluid saturation are the key variables for characterizing a 

reservoir in order to estimate the volume of hydrocarbons and their flow patterns to 

optimize the production of a field. Many empirical equations are available to transform 

well log data to predict these properties. Recently, researchers utilized artificial neural 

networks (ANNs), particularly feed forward back propagation neural networks (FFNN), 

to develop more accurate predictions. The success of FFNN opens the door to both 

machine learning and soft-computing techniques to play a major role in the petroleum, 

oil, and gas industries. Unfortunately, the developed FFNN correlations have some 

drawbacks, and as a result several improvements have been proposed. 



xiv 

This thesis investigated the suitability of some of the recently proposed advances 

in neural networks technique including, functional networks (FN), cascaded correlation 

neural networks, polynomial networks, and general regression neural networks for 

predicting porosity and water saturation from well logs. Since there is no fully developed 

software for functional networks, we described both the steps and procedures in 

developing functional networks to predict these properties. We also compared the 

performance of these techniques with standard FFNN as well as the empirical correlation 

models.  

Generally, the results show that the performance of General Regression neural 

networks, Functional networks and Cascaded Correlation networks outperform that of 

standard neural networks.  In addition, General Regression Neural networks are more 

robust while Functional networks are easier and quicker to train with no over-fitting 

problem, and more importantly we have more insight into the coefficients of the network. 

Therefore, we believe that the use of these better techniques will be valuable for 

Petroleum Engineering scientists. 
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ARABIC ABSTRACT 

  احمد عديبوالي ادينيران:  الاسم

  تقنيات الذآاء الصطناعي لتوصيف المكامن:   عنوان الرسالة

  هندسة النظم:  التخصص

   2009يناير  : تاريخ التخرج 

  

احد أهم الأهداف في مجال انتاج النفط هو الحصول على تقديرات اولية لكميات الهيدروآربون المتوفرة في اي موقع 

.مار و التطوير  و الانتاج في ذلك الموقعقبل بدء الاستث   

وتعتبر المسامية والسماحية و تشبع الموائع من أهم الخصائص لوصف و تصنيف المكمن و من ثم تقدير آميات 

 . الهيدروآربونات و نمطية انسيابها،  و هما عاملان مهمان يستخدمان لايجاد امثل انتاج للحقل

    .ربية  التي تستعمل لتحويل قياسات الآبار لتقدير الخصائص الهامة للحقلوهناك الكثير من المعادلات التج 

ومؤخرا  صار الباحثون يستخدمات الشبكات العصبية الصناعية و خصوصا الشبكات العصبية ذات التغذية الامامية 

إلى فتح  (FFNN)وأدى النجاح الذي أحرزه استخدام  .للحصول على تقديرات اآثر دقة (FFNN)و الانتشار الخلفي 

إلا أن النظم التي تستعمل . الباب لتقنيات تعليم الآلة والحوسبة اللينة  لتلعب دورا هاما في مجالات انتاج النفط و الغاز

FFNN تعاني من بعض السلبيات، و لهذا تم اقتراح عدد من الطرق التحسينية. 

في مجال الشبكات العصبية و التي تشمل شبكات  وهذا البحث يدرس  مدى مناسبة استعمال بعض التطويرات الحديثة

. الدوال و الشبكات العصبية التضامنية  المتتالية وشبكات التراجع العامة، لتقدير المسامية وتشبع المياه و الانسيابية

اء ونظرا لعدم وجود برامج مكتملة البناء خاصة لبناء شبكات الدوال فقد قمنا بوصف آامل للخطوات و المنهجية لبن

  .نظام   شبكات الدوال ليستخدم في تقدير العوامل سالفة الذآر

وبشكل عام فقد . و مع اداء الطرق التجريبية FFNNآما قمنا أيضا بمقارنة أداء هذه الطرق المختلفة مع اداء طريقة 

لية و شبكات الدوال  أظهرت النتائج المتحصل عليها أن أداء آلا من شبكات التراجع العامة والشبكات التضامنية المتتا

  . آانت متفوقة على تلك الخاصة بالشبكات العصبية التقليدية

بينما . إضافة لذلك فقد وجد ان  طريقة الشبكات التراجعية العامة أآثر قدرة على التعميم والتنبؤ من مدخلات جديدة

تدريب، و الأآثر أهمية هو أننا آانت شبكات الدوال أسرع وأسهل في عملية التدريب مع تجنب مشاآل الإفراط في ال

  .  نحصل على معرفة أعمق للعلاقات الضمنية من معاملات شبكات الدوال

 .و لذا فإننا نعتقد بان استخدام هذه الطرق سيكون ذا قيمة آبيرة في مجال هندسة النفط
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CHAPTER ONE 

INTRODUCTION 

3.1 Overview 

Reservoir rocks vary from homogeneous to heterogeneous. There are different 

kinds and levels of heterogeneity: either fluid or lithology. Understanding the form and 

spatial distribution of these heterogeneities is important in petroleum reservoir 

characterization. Porosity, permeability and fluid saturation are the key variables for 

characterizing a reservoir in order to estimate the volume of hydrocarbons and their flow 

patterns to optimize the production of a field. These characteristics are different for 

different rocks.

Porosity is described as the ratio of the aggregate volume of interstices in a rock 

to its total volume, whereas permeability, defined as the capacity of a rock or sediment 

for fluid transmission, is a measure of the relative ease of fluid flow under pressure 

gradients. Knowledge of permeability in formation rocks is crucial for estimating the oil 

production rate and for reservoir flow simulations for enhanced oil recovery. Reliable 

predictions of porosity and permeability are also crucial for evaluating hydrocarbon 

accumulations in a basin-scale fluid migration analysis, and for mapping potential 

pressure seals to reduce drilling hazards. 
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No well log can directly determine porosity, but well logging measures the 

physical properties depending on porosity, and then the formation porosity is deduced. 

Several relationships have been identified which can relate porosity to wireline readings, 

such as the sonic transit time and density logs. However, the conversion from density and 

transit time to equivalent porosity values is not trivial (Helle et al. 2001). The common 

conversion formulas contain terms and factors that depend on the individual location and 

lithology. For example, conversion from density depends on clay content, pore fluid type, 

and grain density while conversion from sonic log depends grain transit time. These 

terms and factors are unknowns and thus remain to be determined from rock sample 

analysis. 

Finding the distribution and composition of subsurface fluids is another main 

objective in hydrocarbon exploration, field development and production. Since direct 

sampling of underground fluids and determination of fluid saturation in the laboratory is 

an expensive and time-consuming procedure, indirect determination from log 

measurements is the common approach. The common practice in the industry is to 

determine water saturation from empirical formulas using resistivity, gamma ray logs and 

porosity estimates. The hydrocarbon saturation is then calculated from the water 

saturation, as both water and hydrocarbon form the composite pore fluid. 

Water saturation is basically defined as the fraction of the pore volume of 

formation rock which is filled with water, where the rest of the pore space is filled with 

either oil or gas. Therefore, inaccurate determination of water saturation leads to either 
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underestimation or overestimation of reserves. The standard practice in the industry for 

calculating water saturation is by using different models. But these models should be 

tuned to the area of work, which requires the estimation of parameters in the laboratory. 

Thus it would be better to calculate water saturation by using different means that will 

avoid depending on the auxiliary parameters explicitly. 

Artificial intelligence (AI) may be defined as a collection of new analytic tools 

that attempt to imitate life (Mohaghegh, 2000). AI techniques exhibit an ability to learn 

and deal with new situations. Artificial neural networks, genetic algorithm, particle 

swamp optimization, fuzzy logic and functional networks are among the paradigms that 

are classified as artificial intelligence tools. AI has drawn the attention of many 

researchers over the last two decades (Sandha et al., 2005). The main interest in AI has its 

roots in the efficient and fast way of computation in complex tasks such as speech and 

other pattern recognition problems. For about two decades now, AI techniques such as 

neural networks, genetic algorithm, and fuzzy logic have continued to draw increasing 

attention from researchers in the petroleum industry to address fundamental problems. 

These include, for example, the determination of formation permeability, porosity, and 

water saturation from well logs, or specific problems such as forecasting the post-fracture 

well performance in the absence of engineering data, which conventional computing has 

been unable to solve or posed a lot of problems.  

Artificial Neural Networks (ANNs) have been applied in a wide variety of fields 

to solve problems such as classification, feature extraction, diagnosis, function 
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approximation and optimization (e.g. Haykin, 1999). Although it seems clear that neural 

networks should not be used where an effective conventional solution exists, there are 

many tasks for which neural computing can offer a unique solution, in particular those 

where the data is noisy, where explicit knowledge of the task is not available, or when 

unknown non-linearity between input and output may exist. These are in many respects 

features of conventional earth science data, and are the main reasons for the increasing 

popularity of ANN in geosciences and petroleum engineering (Mohaghegh, 2000; 

Nikravesh et al., 2001). 

Functional network (FN) is another network structure which is also gaining 

attention in the field of AI. Functional network is a powerful extension and network-

based alternative to the neural networks paradigm (Castillo et al., 2000a; Castillo 1998). 

In functional networks, neural functions are allowed to be not only multivariate but also 

truly multiargument and different for all neurons. Thus, neural functions are learned 

instead of weights. In addition, outputs coming from different neurons can be connected, 

that is, forced to output the same values. The topology and neuron functions of functional 

networks can be selected according to the data, the domain knowledge, or a combination 

of the two. Functional equations play an important role in functional networks, since the 

preceding types of connections lead to functional equations that impose a substantial 

reduction in the degrees of freedom of the initial neural functions. This kind of network 

exhibits more versatility than neural networks, and so it can be successfully applied to 

several problems. Castillo et al. (2000b) shows that every problem that can be solved by a 

neural network can also be formulated by functional networks. More importantly, some 
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problems that cannot be solved by using neural networks can be naturally formulated by 

using functional networks. 

In this thesis, we explored recent advances in neural networks, including 

functional networks, cascaded correlation neural networks, and polynomial neural 

networks architectures for predicting porosity and water saturation from well logs, and 

we also carried out a comparative analysis vis-à-vis the standard neural networks.  

1.1 Problem Statement 

One of the major objectives of the petroleum industry is to obtain an accurate 

estimate of the hydrocarbon in place. This is required either at an early stage of the well 

exploration or in the production management of a developed reservoir. An accurate 

determination of porosity and water saturation parameters is a must for evaluating any 

reservoir and for drafting any development plan for a reservoir. Neural networks for 

quantitative analysis of reservoir properties from well logs have been demonstrated in 

several practical applications (e.g. Huang et al., 1996; Huang and Williamson, 1997; 

Zhang et al., 2000; Helle et al., 2001), where the artificial neural network approach is 

shown to be a simple and accurate alternative for converting well logs to common 

reservoir properties such as porosity and water saturation. Multilayer perceptrons (MLP) 

trained by a back-propagation algorithm have been the popular tool for most practical 

applications over the last decade.  
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MLP trained by back-propagation learning techniques have been shown to be a 

universal approximator, implying that they will approximate any static function provided 

that sufficiently representative input-output sample pairs of the function are given. 

However, one major problem encountered in the back-propagation algorithm is its slow 

convergence during learning. 

Another problem is the structure of the network. The number of hidden units and 

their interconnections is defined by the programmer, while the learning rule can modify 

only the connection weights. There is no rule which allows one to determine the 

necessary structure from a given application or training set. Lastly, the MLP may be 

caught by local minima, which reduce the network performance.   A common approach is 

to train as many networks as possible and to select the one that yields the best 

generalization performance. Hence the solution may not be unique especially for noisy 

data commonly encounter in well logging. Thus, to overcome the potential drawbacks of 

neural networks, we are interested in designing and investigating new adequate intelligent 

system techniques which have been proposed either as an alternative or as an 

improvement to neural networks, and can be utilized in estimation of water saturation and 

porosity. 

1.2 Thesis Objectives 

The main objective of this work is to explore the use of recent advances in 

artificial intelligence techniques, particularly neural networks, to estimate porosity and 

water saturation from well logs. This study aims to develop better approaches for the 



7 

 

estimation of these reservoir parameters. More specifically, the study aims to achieve the 

following: 

• Investigate and develop functional networks for the estimation of porosity 

and water saturation. 

• Investigate the suitability of estimating porosity and water saturation from 

well logs by using other recently proposed neural networks such as cascaded 

correlation neural networks, polynomial networks and general regression 

neural networks. 

• Compare all the techniques along with standard neural networks (MLP). 

• Evaluate the performance and accuracy of the proposed methods, their 

applications, and the limitations in the reservoir characterization from well 

logs.  

1.3 Scope of Thesis 

In this thesis we investigate the use of the some proposed improvements to neural 

networks to predict porosity and water saturation from well logs. Although there has been 

an exponential increase in the literature on advances in neural networks, we limit this 

study to some of these proposed advances: functional networks (FN), cascaded 

correlation neural networks (CCNN), polynomial networks (POLYNET) and general 

regression neural networks (GRNN). 
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1.4 Thesis Organization 

In Chapter one, we present an introduction to this study, which clearly highlights 

the motivation behind this work. Chapter two highlights some of the research done in 

context of estimation of porosity and water saturation with particular focus on the neural 

networks modeling approach. A brief discussion on empirical model and statistical 

models is also presented. 

 Furthermore, as the main technique under which other techniques are 

based, neural networks are discussed in detail in Chapter three. Some proposed advances 

to neural networks which are our concern in this work are also discussed. Functional 

networks are presented in Chapter four as the main recent advances under study. Chapter 

five presents functional networks design for the prediction of porosity and water 

saturation. Chapter six focuses on implementation of FN, CCNN, GRNN, POLYNET 

and GRNN for the prediction of porosity and water saturation. In Chapter seven, the 

performance analysis and comparative studies are discussed and recommendation are 

made for further research 
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CHAPTER TWO 

LITERATURE SURVEY 

2.1 Overview 

In a number of petroleum engineering problems, there is a necessity to forecast 

and classify the petrophysical properties in series signals. PVT properties, porosity, water 

saturation, permeability, lithofacies types, seismic pattern recognition are important 

properties for the oil and gas industry. Predicting these properties in the laboratories is 

very expensive and the computations are not accurate. Yet, the accuracy of such 

predictions is critical and not often known in advance. This chapter presents a brief 

introduction to the reservoir rock properties concerned in this thesis, and it discusses the 

most common empirical models and neural network approaches that have been used in 

predicting porosity and water saturation rock properties..

2.2 Reservoir Characterization and Rock Properties 

One of the major obstacles that impact reservoir production is that most reservoirs 

show some degree of heterogeneity. This heterogeneity is known as the non-uniform, 

non-linear spatial distribution of rock properties. Understanding the form and spatial 

distribution of this heterogeneity is important in petroleum reservoir evaluation. Detailed 

information regarding the type and physical properties of rocks and reservoir fluids (such 
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as porosity and water saturation) is essential for understanding and evaluating the 

potential performance or productivity of a given petroleum reservoir (Abhijit, 2006). 

Wireline logs, core analysis, production data, pressure buildups, and tracer tests provide 

quantitative measurements of the reservoir rock properties in the vicinity of the wellbore. 

This wellbore data must be integrated with a geological model to display the properties in 

three-dimensional space. 

2.2.1 Porosity  

Porosity is an important rock property, as it measures the potential storage volume 

for hydrocarbons.  It is described as the ratio of the aggregate volume of interstices in a 

rock to its total volume. Porosity in carbonate reservoirs ranges from 1 to 35%. The terms 

effective porosity or connected pore space are commonly used to denote porosity that is 

most available for fluid flow. Porosity is a scalar quantity, because it is a function of the 

bulk volume used to define the sample space. 

Porosity is determined by visual methods and by laboratory measurements from 

core samples. This is an expensive exercise, and hence not a routine in all drilled wells. 

Several relationships have been identified which can relate porosity to wireline readings, 

such as the sonic transit time and density logs. Equation 2.1 shows an example of a 

common relationship (Dresser, 1982) used in this study. 

   *0.9
m b

c
m f

R
R R

ρφ −
=

−                                                                      (2.1) 
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where Rm is the matrix density, bρ is the bulk density measurement and Rf is the 

resistivity factor. 

This common conversion formula contains terms and factors that depend on the 

individual location and lithology e.g. clay content, pore fluid type, and grain density, 

which in general are unknowns and thus remain to be determined from rock sample 

analysis. 

2.2.2 Water saturation 

Water saturation is defined as the fraction of the pore volume of formation rock 

which is filled with water. Water, oil, and gas may be found simultaneously in reservoirs. 

However, due to specific gravity, fluids tend to segregate with the reservoir. When 

considering a possible production interval, the fraction portion of the pore space which 

does not contain formation water is assumed to contain hydrocarbon. This can be 

expressed mathematically by using the relationship: 

1h wS S= −
                                                                                  (2.2) 

where Sh is hydrocarbon saturation and Sw is the water saturation. The determination of 

water saturation allows the log analyst to estimate the amount of hydrocarbons present in 

a given formation. This formation, along with porosity and permeability, can be used to 

predict the wells’ ultimate production. 
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The standard practice in industry for calculating water saturation is by using 

different models. But these models should be tuned to the area of work, which requires 

the estimation of parameters in the laboratory. A popular model derived from the Archie 

formulae and the Fertl equation is given below (Dresser, 1982). 

                                            

n w
w m

t

aRS
Rφ

=
                                       (2.3) 

where n is the saturation exponent, (normally equal to 2) a is the constant determined 

empirically, m is the cementation exponent, Rw is the resistivity, and Rt is the resistivity 

derived from the induction log.  

2.3 Well log Analysis 

 Well logging is the technique of analyzing and recording the character of a 

formation penetrated by a drill hole in petroleum exploration and exploitation. Well logs 

are a fundamental method of formation analysis, since they measure the physical 

properties of the rock matrix and pore fluids. The primary purpose in the analysis of most 

wells is to describe the lithology of the reservoir rock and the fluid properties for the 

section cut by that particular well. Generally, logs are available on all wells drilled in a 

reservoir, and therefore they represent the most complete set of reservoir descriptive data.  

Various types of well logs are commonly used for reservoir evaluation. The types 

of interest in this study include: Sonic log (DT), Neutron log (NPHI), Density log 

(RHOB), Gamma Ray (GR), Laterlog (Rt), and Photoelectric Factor log (PEF). 
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2.4 Approaches to Predicting Porosity and Water Saturation 

The most accurate method for the determination of these important properties is 

core analysis. However, the core data are not always available for most wells in a given 

field or at every depth, either due to the borehole condition or due to the high cost of 

obtaining cores. Hence, log analyses which are usually available are utilized by 

correlating well logs with core data of the cored wells, and subsequently by using the 

correlation model to predict these properties at the uncored intervals and wells. This is 

possible not only because log analysis can provide a continuous record over the entire 

well where coring is impossible but also because they are economical and quick to 

obtain. 

Many empirical equations are available to transform well log data to porosity and 

water saturation. For example, porosity has been related to wireline readings such as the 

sonic transit time and density logs. Water saturation, on the other hand, can also be 

determined from empirical formulas using resistivity, gamma ray logs and porosity 

estimates. Unfortunately, these models are not universally applicable, as they should be 

tuned to the area of work by estimating parameters in the laboratory. Moreover, some of 

these required parameters are not easily obtainable (Helle et al., 2001; Jun, 2002). 

Parametric methods, such as statistical regression, provide another versatile way 

to  estimate these properties, where a functional relationship is developed between the 

core data and well log data (Jun, 2002). This however requires the assumption and 

satisfaction of multi-normal behavior and linearity (Jong-se and Jungwhan, 2004). 



14 

 

Therefore, neural networks, or more specifically, multilayer perceptrons (MLP), have 

been increasingly applied to predict reservoir properties by using well log data (Jong-se 

and Jungwhan, 2004; Balan et al., 1995). 

Neural networks are characterized as computational models with abilities to 

adapt, learn, generalize, recognize, and organize data. The advantages of neural networks 

include their high computational efficiency, adaptability, non-linear characteristics, 

generation properties, fault tolerance, freedom from a priori selection of mathematical 

models, and ease of working with high-dimensional data. Neural networks have been 

demonstrated in several practical applications for estimation of porosity and water 

saturation from well logs (e.g. Huang and Williamson, 1997; Helle et al., 2001; Shokir, 

2004; Hamada and Elshafei, 2007; Al-Bulushi et al., 2007, etc). Multilayer perceptrons 

(MLP) trained by a back-propagation algorithm have been the conventional work for 

most practical applications over the last decade. Despite their wide applications, MLP 

show two major drawbacks. First, their network architecture and parameters is often by 

trail and error. Secondly, they have the possibility of being caught by local minima, 

which reduces network performance. A common approach is to train as many networks 

as possible and select the one that yields the best generalization performance. Hence the 

solution may not be unique, especially for the noisy data commonly encountered in well 

logging.  
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2.5 Review of Estimating Porosity and Water saturation Using Neural 

Networks 

Neural networks for quantitative analysis of reservoir properties from well logs 

have been demonstrated in several practical applications (e.g. Huang et al., 1996; Huang 

and Williamson, 1997; Zhang et al., 2000; Helle et al., 2001). They were shown to be 

simple and accurate alternative for converting well logs to common reservoir properties 

such as porosity, permeability and water saturation. 

Soto et al. (1997) developed a back propagation neural network with four layers 

to predict permeability and porosity from log data. Gamma ray and neutron porosity were 

used as inputs to the porosity predictor network, with two hidden layers of two and three 

neurons respectively (2-2-3-1). Porosity, resistivity and spontaneous potential were used 

as inputs to the permeability predictor network, with two hidden layers of fifteen and 

twelve neurons respectively (3-15-12-1). A relatively good correlation was achieved. 

However, due to the use of trial and error in obtaining the network, this is time-

consuming and cannot guarantee that the network is optimal. 

Ahmed et al. (1997) also predicted permeability and porosity with neural 

networks from 3D seismic data (seismic amplitudes grid coordinate and instantaneous 

amplitude) and well logs (neuron porosity, density porosity) data. Those researchers tried 

to make the porosity prediction more reliable by using ten random seed values to generate 

ten different porosity networks, and the four networks with the least error were averaged 
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together to give a better result. This was done to avoid the effect of local minimal as a 

result of initial random weight. This is also time consuming and needs refinement. 

Stan and Pedro, (1998) used artificial neural networks to classify and identify 

lithofacies, and they predicted permeability and porosity from well logs (Gamma ray, 

density log and deep resistivity) corresponding to each facies. The use of back-

propagation suggests the weakness in their approach.  

Bhatt et al. (2001a) demonstrated the prediction of porosity and permeability by 

using single neural networks. While using the committee machine approach of neural 

networks, Bhatt and Helle (2001) demonstrated better porosity and permeability 

predictions from well logs by using an ensemble combination of neural networks rather 

than selecting the single best by trial and error. Bhatt et al. (2001b) successfully applied a 

committee machine by using a combination of back propagation neural networks and 

recurrent neural networks for the identification of lithofacies. 

Shokir (2004) proposed a back-propagation multilayer artificial neural network to 

predict water saturation from convectional well-log data (deep resistivity, self-potential, 

gamma-ray, litho-density, and neutron porosity log values) in a shaly Bahariya formation 

of the western desert of Egypt. The best performance network topology was found to be 

two hidden layers, each of 22 neurons. Although the predicted water saturation follows 

the trend very closely, the use of back-propagation indicates its inherent drawback.  El-

sayeed (2004) proposed the use of a model with two artificial neural networks to identify 
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the flow regime, and to estimate the liquid holding in horizontal multiphase flow with 

superficial gas and liquid velocities, pressure, temperature, and fluid properties. 

Jong-se and Jungwhan (2004) and Jong-se (2005) proposed the use of combined 

fuzzy logic artificial neural networks to predict porosity and permeability. Fuzzy curve 

analysis was used to select the best inputs for the artificial neural network from the 

available conventional well log data (NPHI, DT, GR, CAL, LLD, RHOB, and LLS) by 

identifying the strength of their relationship with core permeability and porosity data. 

NPHI, CAL, LLD, LLS, RHOB, and SP were selected as inputs for porosity, while 

NPHI, DT, LLD, RHOB, and SP were selected for permeability prediction. Although 

reasonable results were obtained, the use of trial and error was a defect. 

Bueno et al. (2006) developed artificial neural networks to predict open-hole logs 

from a cased hole paused neutron log (PNL) in a low porosity naturally fractured 

formation of the Bermudez basin in southern Mexico due to the drilling obstacles which 

prohibit the running of convectional open-well logs. The results clearly show good 

correlation between the predicted and the actual curves. they also observed that the use of 

artificial neural networks using PNL to detect open natural fractures may be problematic 

except where the natural fracture system has high radioactivity due to uranium. 

Hamada and Elshafei (2007) also estimated formation porosity and water 

saturation of a sandstone reservoir with relatively satisfactory results by using two 

separate neural networks from well logging measurements (GR, LLD, RHOB, NPHI, 

PET, ST). The predicted values were used to calculate index values for porosity, water 
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saturation and shade volume, and subsequently to predict the possible pay zone in the 

tested well. 

Nabil Al-Buhushi et al. (2007) developed a neural networks model for predicting 

water saturation in shaly formations by using wireline well logs and core data. A general 

workflow (methodology) was constructed in order to cover different design issues in the 

ANN modeling. The workflow shows how the neural network results can be interpreted 

by investigating the contribution of input variables, finding the optimum number of 

hidden neurons, and evaluating the different learning algorithms.  In addition, the 

workflow focuses on the relevance of the statistics and on the importance of determining 

the uncertainties in the original data before using it in the model. A three layered feed-

forward neural network model with five hidden neurons and the Resilient Back-

Propagation (PROP) algorithm was found to be the best design. The input variables to the 

model are density, neutron, resistivity and photo-electric wireline logs. The neural 

network model was able to predict the water saturation directly from wireline logs with a 

correlation factor of 0.91 and a root mean square error (RMSE) of 2.5%. It was also 

found that Levenberg-Marquardt (LM) performs similarly to the PROP algorithm and 

better than back propagation. However, the optimum number of networks was still based 

on trial and error, which is time-consuming.  
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2.6 Statistical Quality Measures 

To compare the performance and accuracy of the desired particular networks 

model to other models, statistical error analysis is performed. The statistical parameters 

used for comparison are: average percent relative error, average absolute percent relative 

error, minimum and maximum absolute percent error, root mean squares error, and the 

correlation coefficient. The corresponding mathematical equations for those parameters 

are given below: 

i. Average Percent Relative Error: It is the measure of the relative deviation      

from the experimental data, that is, 
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where ie is a relative error deviation between estimated value esty  and 

experimental value  expy . 

              

exp

exp

100    i 1,2,......... .
⎡ ⎤⎛ ⎞−

= × =⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

est
i

i

y y
e n

y
                                          (2.2) 

ii. Average Absolute Percent Relative Error: It measures the relative absolute 

deviation from the experimental values, that is: 
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where Ei is given as: 

exp i( -y )    i 1, 2,......... .= =i estE y n                      (2.5) 

iii. Minimum and Maximum Absolute Percent Relative Error: This error type 

is used to define the range of error for each correlation. The calculated absolute 

percent relative error values are scanned to determine the minimum and 

maximum values, that is: 

                min min= ii
E E                                                              (2.6) 

     max max= ii
E E                                                            (2.7) 

iv. Root Mean Squares Error: It measures the data dispersion around zero   

deviation, that is:
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v. The Correlation coefficient: It represents the degree of success in reducing the 

standard deviation by regression analysis, that is: 

            

2

exp exp
1 1

1 /
= =

⎡ ⎤ ⎡ ⎤= − − −⎣ ⎦ ⎣ ⎦∑ ∑
n n

est
i i

r y y y y                                                   (2.9) 

 



21 

 

where             

                  exp
1

1 [ ]
n

i
y y

n =

= ∑  



 

22 

CHAPTER THREE 

NEURAL NETWORKS 

3.2 Overview

Artificial neural networks (ANNs) developed significantly in the mid-1980s after 

major developments in neuroscience. A broad category of computer algorithms were 

designed to imitate the function of the biological neurons of the human brain. Neural 

networks are well suited to complex problems. They generally have large degrees of 

freedom, and thus they can capture the non-linearity of the process being studied better 

than conventional regression methods. ANNs are relatively insensitive to data noise, as 

they can determine the underlying relationship between model inputs and outputs, 

resulting in good generalization ability. They can make extensive use of prior knowledge, 

and they are not limited by the assumptions of the underlying model (Essenreiter et al., 

1998). In predictive modeling, the goal is to map a set of input patterns onto a set of 

output patterns. Neural networks accomplish this task by learning from a series of 

input/output data sets presented to the network. The trained network is then used to apply 

what it has learned to approximate or predict the corresponding output. 

Generally, neural networks are capable of solving several types of problems; 

including function approximation, pattern recognition and classification, optimization and 
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automatic control (Maren et al., 1990). The major element of the ANNs is the perceptron 

or artificial neuron. These neurons mimic the action of the abstract biological neuron. 

The most common type of neural networks is the multi-layer perceptron (MLP).  

3.3 Structure of Neural Networks 

Artificial neural networks (ANNs) are composed of signal processing elements 

called neurons. The model of a neuron is as shown in Figure 3.1. Its basic elements are: 

i) A set of synapses or connecting links, each characterized by a weight of its 

own. A signal xj at the input of synapse j connected to neuron k is multiplied by 

the synaptic weight wkj. 

ii) An adder for summing the input signals, weighted by the respective synapses 

of the neuron. 

iii) An activation function for limiting the amplitude of the output of a neuron. It     

limits the permissible amplitude range of the output signal to some finite 

value. 

The neuronal model also includes an externally applied bias (bk) which has the 

effect of increasing or lowering the net input of the activation function, depending on 

whether it is positive or negative respectively. 
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Figure 3.1: Model of a Neuron 

Mathematically the function of the neuron k can be expressed by equation 3.1: 

( )k k ky u bϕ= +                                                                          (3.1) 

where  

1

m

k kj j
j

u w x
=

=∑
                                                                          (3.2) 

and where xj is the input signal from an m dimensional input, wkj is the synaptic weights 

of neuron k, uk is the linear combiner output due to the input signals, bk is the bias, ϕ(.) is 

the activation function, and yk is the output signal of the neuron. The relation between the 

linear combiner output uk and the activation potential vk is 

                 k k kv u b= +        (3.3) 
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The activation function ϕ( v ) defines the output of a neuron in terms of the 

induced local field v. There are different types of activation function, and the most the 

commonly used are:  

1. Threshold Function. A threshold (hard-limiter) activation is either a binary type or 

a bipolar type, for example for binary: 

1       if 0
( )

0      if 0
v

v
v

ϕ
≥⎧

= ⎨ <⎩
 

2. Piecewise -Linear Function. This type of activation function is also referred to as 

saturating linear function and can have either binary or bipolar range for the 

saturating limits of the output. The mathematical model for a symmetric 

saturation is described as follows:  
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3. Sigmoid (S shaped) Function. The sigmoid function is by far the most common 

form of activation function used in the construction of artificial neural network. It 

is defined as strictly increasing function that exhibits smoothness and asymptotic 

properties. An example of the sigmoid is the logistic function, defined by 
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where a is the slope parameter of the sigmoid function. By varying the parameter a, 

we can obtain sigmoid function of different slopes. 

4. Tangent Hyperbolic Function: This transfer (activation) function is sometime 

used in place of sigmoid function and is described by the following mathematical 

form:  

( ) tanh( )
av av

av av

e ev v
e e

ϕ
−

−

−
= =

+  

 

3.4 Multilayer Perceptron Feedforward Neural networks (MLP) 

The most common neural networks in the literature are multilayer feedforward 

neural networks (MLPFFN) and recurrent neural networks (RNN). Generally, 

feedforward neural networks are the most commonly used neural network in both 

computational intelligence and petroleum engineering. In feedforward neural networks, 

the neurons are organized in different layers, and each of the neurons in one layer can 

receive an input from units in the previous layers without loss of generality. Figure 3.2 

gives a simple example of a three-layer neural network that contains an input layer, two 

hidden layers, and an output layer, interconnected by modifiable weights, represented by 



27 

 

links between layers. A network that has only a single layer is referred to as a single-layer 

network, the term “single layer” referring to the output layer of computational neurons.  

 

Figure 3.2: Structure of Feedforward Neural Network 

The presence of one or more hidden layers, whose neurons are correspondingly 

called hidden neurons, enables the network to extract higher order statistics. thus network 

acquires a global perspective, despite its local connectivity, by virtual of the extra set of 

synaptic connections and the  extra dimension of neural interaction. Such a network is 

called a “multilayer feedforward network”. 

 

3.3.1 MLP Learning 

The basic idea in the learning procedures is to provide the network with a training 

set of patterns having inputs and outputs. Real valued m–dimensional input feature 

vectors x are presented to each of the first hidden layer units through the weight vector w. 
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Hidden layer unit k receives input j through the synaptic weight, wkj, k = 1,2,….,n, and j = 

1,2,….,m. Unit k computes a function of the input signal x and the weights wkj and then it 

passes its output forward to all of the units in the next successive layer. Like the first 

hidden layer, the units of the second hidden layer are fully connected to the previous 

layer through the synaptic weights. These units also compute a function of their inputs 

and their synaptic weight and they pass their output on to the next layer. The output of 

one layer becomes the input to the following layer. Then, at the output, the unit error is 

calculated between the target value and the computed value of the pattern. This process is 

repeated until the final computation is produced by the output unit. The learning 

algorithm for this type of network is called the backpropagation (BP) algorithm, and it 

was published in the mid-1980s for multilayer perceptrons. This architecture of the 

network is the basic unit in this study. Hornik et al. (1989) suggested that, if a sufficient 

number of hidden units are available, then an MLP with one hidden layer having a 

sigmoid transfer function in the hidden layer and a linear transfer function in the output 

layer can approximate any function to any degree of accuracy. 

Back-propagation is a systematic method for training multilayer neural networks 

due to its strong mathematical foundation. Despite its limitations, back-propagation has 

dramatically expanded the range of problems it can solve. Many successful 

implementations demonstrate its power. The steps to implement the back-propagation 

algorithm are gives as follows: 
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The error signal at the output of neuron j at iteration n (i.e. presentation of the nth 

training pattern) is defined by 

( ) ( ) ( )j j je n d n y n= −
                                        (3.4) 

where 

dj(n) is the desired response for neuron j  

yj(n) is the function signal appearing at the output of neuron j 

ej(n) refers to the error signal at the output of neuron j.  

The instantaneous value of the sum of squared errors is obtained by summing the square 

error over all neurons in the output layer; which is written as: 
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The net internal activity level ( )jv n  produced at the input of the nonlinearity 

associated with neuron j is therefore written as: 
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where p is the total number of inputs (excluding the threshold ) applied to neuron j and 

wji(n) denote the synaptic weight connecting the output of neuron i to the input of neuron 

j at iteration n. Hence the output of neuron j at iteration n is given as: 

( ) ( ( ))j j jy n v nϕ=
                                        (3.7) 

 

The instantaneous gradient which is proportional to the weight correction term is 

given as: 
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The correction ( )jiw n∆  applied to ( )jiw n  is defined by the delta rule as: 

                         

( )( )
( )ji

ji

nw n
w n
ξη ∂

∆ =
∂

 

                                  
( ) ( ) ( )ji j iw n n y nηδ∆ =

 

 
'( ) ( ) ( ( ))j j j jn e n v nδ ϕ=

                                            (3.9) 



31 

 

When neuron j is located in a hidden layer of the network, the local gradient is 

redefined as: 

'( )( ) ( ( ))
( )j j j
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nn v n
y n
ξδ ϕ∂

= −
∂

 

 

'( ) ( ( )) ( )j j j k kj
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n v n w nδ ϕ δ= ∑
                           (3.10) 

where the kδ  requires the knowledge of the error signals ke  for all those neurons that lie 

in the layer to the immediate right of hidden neuron j. The ( )kjw n  consists of the synaptic 

weights associated with these connections. We are now ready to put forward the weight 

correction update for the back-propagation algorithm, which is defined by the delta rule: 

 
( )ji j jw n yηδ∆ =

                                              (3.11) 

It is important to note that weight correction term depends on whether neuron j is 

an output node or a hidden node:  

a. if neuron j is an output node, equation 3.10 is used for the computation of the 

local gradient.  

b. if neuron j is a hidden node, equation 3.11 is used for the computation of local 

gradients.  
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The network performance is check by monitoring the average square error. The 

average squared error is obtained by summing ( )nξ  over all n and then normalizing with 

respect to N (number of training patterns) 

 1
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av
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n
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ξ ξ
=
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                                                    (3.12) 

Both the instantaneous and average square errors are functions of free parameters 

(synaptic weights and biases).  The process is repeated several times for each pattern in 

the training set, until the total output squared error converges to a minimum, or until 

some limit is reached in the number of training iterations. 

One of the major problems with the BP algorithm has been the long training times 

due to the steepest descent method of minimization, which is simple but slow. The 

learning rate is sensitive to the weight changes. The smaller the learning rate, the smaller 

will be the changes to the synaptic weights from one iteration to the next, and the 

smoother will be the trajectory in the weight space.  

On the other hand, if the learning rate is chosen too large in order to speed up the 

rate of learning, the resulting large changes in the synaptic weights make the network 

unstable. In order to speed up the convergence of the BP algorithm, along with improved 

stability, a momentum term is added to the weight update of the BP algorithm. A 

momentum term is simple to implement, and this significantly increases the speed of 

convergence. The inclusion of momentum term represents a minor modification to the 
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weight update. The inclusion of momentum may also have the benefit of preventing the 

learning process from terminating in shallow local minima on the error surface. 

The second method of accelerating the BP algorithm is by using the Levenberg -

Marquardt BP (LMBP) algorithm (Hagan et al., 1996). It is based on Newton’s 

optimisation method (Hagan et al., 1996) and differs from the usual BP algorithm in the 

manner in which the resulting derivatives are used to update the weights. The main 

drawback of the LMBP algorithm is the need for large memory and storage space of the 

free parameters in the computers. If the network has more than a few thousand 

parameters, the algorithm becomes impractical on current machines. In this study, the 

feedforward network architecture used for our comparison has been designed to have 

several free parameters to be smaller than the number of training patterns in order for 

LMBP algorithm to be adequate for training the network. 

3.3.2 Generalization 

In training MLP by the back-propagation algorithm, we compute the synaptic 

weights of a MLP by using as many training examples as possible into the network. The 

hope is that the neural network so designed will generalize. A network is said to 

generalize well when the input-output mapping computed by the network is correct for 

test data which is unknown to the network. A well designed neural network will produce 

a correct input-output mapping, even when the input is slightly different from the 

examples used to train the network. However, when a neural network has too many 

hidden neurons, the network may end up memorizing the training data. It may do so by 
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finding a feature that is present in the training data (noise) but not true of the underlying 

function that is to be modeled. This phenomenon is referred to as overfitting. Overfitting 

is the result of more hidden neurons than actually necessary, with the result that 

undesired contributions in the input space due to noise are stored in synaptic weights. 

However, if the number of hidden neurons is less than the optimum number, then the 

network is unable to learn the correct input-output mapping. Hence it is important to 

determine the optimum number of hidden neurons for a given problem.  

Generalization is influenced by three factors (Haykin, 1999): (i) the size of the 

training set, (ii) the architecture of the neural network, and (iii) the complexity of the 

problem at hand. We cannot control the latter. In the context of the first two, for a good 

generalisation to occur, we may vary the size of the training set by keeping the 

architecture of the network fixed or vice versa. This problem can be resolved in terms of 

the Vapnik-Chervonenkis (VC) dimension, which is a measure of the capacity or 

expressive power of the family of classification functions realised by a network. It can be 

defined as the maximum number of training examples for which a function can correctly 

classify all the patterns in a test dataset (Haykin, 1999). The bounds specified by the VC 

dimension can be simply stated as follows: for an accuracy level of at least 90%, one 

should use ten times as many training examples as there are weights in the network. It has 

been suggested that, to achieve a good generalization, the size of the training set, N, 

should satisfy the condition 

                                           
=

∈
( )wN O

                                           (3.13) 



35 

 

where w is the total number of free parameters (i.e. synaptic weight and biases) in the 

network, and ∈ denotes the fraction of classification errors permitted on the test data, and 

O(.) denotes the order of quantity enclosed within. 

3.5 Advantages and Disadvantages of Neural Networks 

An MLP network generates a nonlinear relationship between inputs and outputs 

by the interconnection of nonlinear neurons. The nonlinearity is distributed throughout 

the network. It does not require any assumption about the underlying data distribution for 

designing the networks. Hence the data statistics do not need to be estimated. MLP 

parallel structure makes it realizable in parallel computers. The network exhibits a great 

degree of robustness or fault tolerance because of built-in redundancy. Damage to a few 

nodes or links thus need not impair overall performance significantly. It can form any 

unbounded decision region in the space spanned by the inputs. Such regions include 

convex polygons and unbounded convex regions. The network has a strong capability for 

function approximation. The abilities to learn and generalize are additional qualities. 

Previous knowledge of the relationship between input and output is not necessary, unlike 

for statistical methods. The MLP has a built-in capability to adapt its synaptic weights to 

changes in the surrounding environment by adjusting the weights to minimize the error. 

Experience with neural networks has revealed a number of drawbacks for the 

technique. For an MLP network, the topology is important for the solution of a given 

problem, i.e. the number of hidden neurons, the size of the training dataset, and the type 

of transfer function(s) for neurons in the various layers. Learning algorithm parameters to 
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be determined include initial weights, learning rate, and momentum. With no analytical 

guidance on the choice of many design parameters of the network, the developer often 

follows an ad hoc, trial-and-error approach of manual exploration that naturally focuses 

on just a small region of the potential search space. Although acceptable results may be 

obtained with effort, it is obvious that potentially superior models can be overlooked, and 

the considerable amount of user intervention certainly slows down model development. 

Because of the distributed nonlinearity and the high connectivity of the network, a 

theoretical analysis of the network response is difficult to undertake. The use of hidden 

neurons makes the learning process harder to visualize. The associated lack of 

explanation capabilities is a handicap in many decision support applications such as 

medical diagnostics, where the user would usually like to know how the model came to a 

certain conclusion. Additional analysis is required to derive explanation facilities from 

neural network models; e.g. through rule extraction [Kartoatmodjo and Schmidt, 1994]. 

Model parameters are buried in large weight matrices, making it difficult to gain insight 

into the modeled phenomenon or to compare the model with available empirical or 

theoretical models. Large-scale MLP networks have extremely low training rates when 

the back-propagation algorithm is used, since the networks are highly nonlinear in the 

weights and thresholds. Using the LM algorithm, as mentioned previously, is one of the 

ways used now to overcome this problem. The mean square error surface of a multiple 

network can have many local minima and a global minimum, and the network may get 

stuck in the local minima instead of converging into the global minimum. As a result, the 
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output of a single network may not be satisfactory. In order to address some of these 

problems, a number of improvements have been proposed.  

3.6 Advances in Neural Networks 

The problems of back propagation as discussed above, and the need for finding 

the appropriate architecture, are still challenging tasks. This, however, has produced 

some algorithms that either provide alternative approaches to neural networks (e.g. 

function networks) or improvements to the neural networks design (e.g. cascaded 

correlation neural networks) to learn the necessary architecture from data. Over the years, 

some methods have been developed to improve neural network topology design. These 

are categorized into three major groups according to how they handle the problem of 

constructing network structures (Stepniewskir and Keane, 1997). A particular problem 

can allow a topology to (i) shrink only, (ii) expand only, (iii) shrink and expand. The 

shrinking approach starts with a large network, and then, it gradually removes the 

unnecessary nodes and connections. This is also known as pruning (Thomas et al., 1997). 

In the expand approach, also known as the constructive approach, the algorithm starts 

with a small network, and it constructs the network by adding nodes and connections. 

Cascade correlation neural networks are probably the most known example that utilizes 

this approach (Stepniewskir and Keane, 1997). The shrink-expand approach utilizes 

optimization techniques such as genetic algorithm for network pruning and also for the 

schemes that allow networks to grow and shrink. These types of neural network are 
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called evolutionary neural networks. Below are some of the advances in neural networks 

used in this thesis. 

 

3.5.1 Cascade Correlation Neural Networks (CCNN) 

Cascade-correlation Neural Network (CCNN) is a constructive approach 

generally prefered to pruning. It was designed by Fahlman and Lebiere (1990) to 

optimize the network topology. CCNN combines two main ideas. The first is, the cascade 

architecture, in which hidden units are added to the network one at a time, and do not 

change after they have been added. The second is the learning algorithm, which creates 

and installs the new hidden units.  For each new hidden unit, an attempt is made to 

maximize the magnitude of the correlation between the new unit’s output and the residual 

error   signal. The algorithm is summarized as follows: 

The network starts with a minimal topology, consisting only of the required input 

and output units (and a bias input that is always equal to 1). This net is trained until no 

further improvement is obtained. The error for each output until is then computed 

(summed over all training patterns). 

Next, one hidden unit is added to the net in a two-step process. During the first 

step, a candidate unit is connected to each of the input units, but not to the output units. 

The weights on the connections from the input units to the candidate unit are adjusted to 

maximize the correlation between the candidate’s output and the residual error at the 
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output units. The residual error is the difference between the target and the computed 

output, multiplied by the derivative of the output unit’s activation function, i.e. the 

quantity that would be propagated back from the output units in the back-propagation 

algorithm. When this training is completed, the weights are frozen, and the candidate unit 

becomes a hidden unit in the net. The second step, in which the new unit is added to the 

net, now begins. The new hidden unit is then connected to the output units, with the 

weights on the connections being adjustable. Now all connections to the output units are 

trained. (Here the connections from the input units are trained again, and the new 

connections from the hidden unit are trained for the first time.) 

A second hidden unit is then added by using the same process. However, this unit 

receives an input signal from the both input units and the previous hidden unit. All 

weights on these connections are adjusted and then frozen. The connections to the output 

units are then established and trained. The process of adding a new unit, training its 

weights from the input units and the previously added hidden units, and then freezing the 

weights, followed by training all connections to the output units, is continued until the 

error reaches an acceptable level or the maximum number of epochs (or hidden units) is 

reached. Figure 3.3 shows the cascaded correlation architecture. 
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Figure 3.3 Cascade architecture, initial state and after adding two hidden  units. The 
vertical lines sum all incoming activation. Boxed connections are frozen, whereas X 

connections are trained repeatedly. 
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The CCNN architecture is faster, and it also avoids trial and error in selecting the 

number of hidden layer neurons with less error (Mckenna et al., 1997; Schetinin, 2003; 

Hamidreza and karim, 2004; Chandra and Paul, 2007). However, cascaded correlation 

neural networks have been criticized for not finding the desired solution sometimes due 

to the freezing of the existing weight which allows the solution to be found only in an 

affine subset of the weight space (Oya and Ethhem, 2003). This thesis investigates the 

application CCNN in reservoir characterization as one of the advancement to neural 

networks.   

3.5.2. Polynomial Networks (Abductive Networks) 

An abductive network, like a neural network, is a set of interconnected nodes. In 

most types of neural nets, each node performs the same kind of simple computation. In an 

abductive network, the nodes' computations can differ from one another and become 

mathematically complex. Abductive modeling is the search for the types of nodes and the 

architecture of their interconnections that minimize the predictive error in a set of training 

data. The goal is to build a model that generalizes well to a set of test data.  

Abductive networks are an alternative modeling tool that avoids many of the 

neural networks limitations. While the processing elements in neural networks are 

restricted by the neuron analogy, abductive networks use various types of more powerful 

polynomial functional elements based on prediction performance. Based on the self-

organizing algorithm called the group method of data handling (GMDH) (Farlow, 1984), 
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this technique uses well-proven optimization criteria to automatically determining the 

network size and connectivity, the element types and coefficients for the optimum model. 

Thus, GMDH reduces the modeling effort and the need for user intervention. The 

abductive network model automatically selects influential input parameters, and the 

input-output relationship can be expressed in polynomial form. This enhances 

explanation capabilities, and it allows comparison of the resulting data-based machine 

learning models with existing first principles or empirical models.  

A typical structure of a polynomial network used in this thesis is shown in Figure 

3.4.  The models take the form of layered feed-forward abductive networks of functional 

elements (nodes). Functions are selected from the set of bivariate quadratic polynomials. 

The training algorithm selects the best polynomial for each combination of the input 

variables by using the method of least squares.  At each layer, for each pair of input 

variables, the best transfer polynomial is selected and it parameters is optimized to fit the 

given data in the least squared error sense as follows: 

              
2

1

min
( , ) { ( ( ) ( , ( ), ( ))) }

,

M

k k i j
m

J i j y m f w v m v m
k w =

= −∑
              (3.15) 

where { ( )},jv m for 11,2,....j l=  are the outputs of the previous layer, }{ kf is a given set of 

functions, kw is the vector of the  parameters of the function, i.e. polynomial coefficients.   
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Figure 3.4: Typical polynomial networks 

 

The training algorithm proceeds as follows: 

1. At the input layer, for each pair of input variables, we select the best transfer 

polynomial which fits the given data in the least squared error sense. 

                             For i, j=1,2….N   (3.16) 

The polynomial is defined by its index k, and its optimized coefficient vector kw . 

For each k, we apply the LS technique to find the parameter vector kw  and we 

compute the residual mean squared error. The best polynomial is the one which 

achieves the least residual sum of squared error. Clearly, the number of the 

generated nodes is N2 . 
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2.  Next, we sort the nodes in ascending order of their LSE, and we select the best 1l  

nodes, where 1l  is the desired maximum number of nodes in the first layer.  

3.  Compute the outputs 1{ ( )},jv m  for 11, 2, ....j l=  

4. The nodes of the subsequent layers are computed by repeating the same steps, but 

replacing the input x by  v : 

                                                                                                           (3.17) 

The residual minimum error is then sorted and the best il  node is retained. The 

output from the retained nodes are computed and used in the subsequent layers.  

5. Pruning: starting from the last hidden layer, we trace back the nodes, identifying 

the signal path from each node in the final layer to the input variables. We keep 

only the nodes along these paths, while the unused nodes are deleted. The 

network in this case will have at most 1l  node in the firs layer, at most 2l   nodes 

in the second layer, and so on. 

6. Finally, the weight of the output node is computed by minimizing the squared 

error 
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                                                         (3.18) 

where fl  is the number of nodes of the final hidden layer. 
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3.5.3. General Regression Neural Networks  

GRNN (Specht, 1991) falls into the category of probabilistic neural networks. 

Although GRNN may not be considered as one of the significant advances from the 

standard neural network, it is a special type neural network, and so it has some important 

advantages over standard FFNN, which include:  

• GRNN network is usually much faster to train than an MLP network.  

• GRNN networks are often more accurate than MLP networks.  

• GRNN networks are relatively insensitive to outliers (wild points).  

• The additional knowledge needed to get a satisfying fit is relatively small, no 

additional input by the user is required.  

This makes GRNN a very useful tool to perform predictions and comparisons of 

system performance in practice. The architecture of GRNN is discussed below and 

illustrated in Figure 3.5:  
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Figure 3.5: Typical General Regression network 
 

All GRNN networks have four layers: Input layer – There is one neuron in the 

input layer for each predictor variable. The input neurons (or processing before the input 

layer) standardize the range of the values by subtracting the median and dividing by the 

interquartile range. The input neurons then feed the values to each of the neurons in the 

pattern layer.  

Pattern layer – This layer has one neuron for each case in the training data set. 

The neuron stores the values of the predictor variables for the case along with the target 

value. When presented with the x vector of input values from the input layer, a pattern 

neuron computes the Euclidean distance of the test case from the neuron’s center point, 
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and a radial basis function (RBF) (also called a kernel function) is applied to the distance 

to compute the weight (influence) for each point, Weight = RBF (distance) (equation 

3.16). The calculations performed in each pattern neuron of GRNN are 2 2exp( 2 )iD σ− , 

with the normal distribution centered at each training sample. The radial basis function is 

so named because the radius distance is the argument to the function. The farther some 

other point is from the new point, the less influence it has. Different types of radial basis 

functions can be used, but the most common is the Gaussian function. The peak of the 

radial basis function is always centered on the point it is weighting. The function’s sigma 

value (σ) of the function determines the spread of the RBF function; that is, how quickly 

the function declines as the distance increases from the point. With larger sigma values 

and more spread, distant points have a greater influence. Then the resulting value is 

passed to the neurons in the summation layer.  

Summation layer – There are only two neurons in the summation layer. One 

neuron is the denominator summation unit, whereas the other is the numerator summation 

unit. The denominator summation unit adds up the weight values coming from each of 

the hidden neurons. The numerator summation unit adds up the weight values multiplied 

by the actual target value for each hidden neuron.  

Decision layer/ Output – The decision layer divides the value accumulated in the 

numerator summation unit by the value in the denominator summation unit, and it uses 

the result as the predicted target value. 
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The primary work of training a GRNN network is the selection of the optimal 

sigma values to control the spread of the RBF functions.  
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CHAPTER FOUR 

FUNCTIONAL NETWORKS 

4.1 Overview 

Functional networks were introduced by Castillo et al. (1998) as a powerful 

alternative to neural networks. Unlike neural networks, functional networks have the 

advantage that they use domain knowledge in addition to data knowledge. The network 

initial topology is derived from the modeling of the properties of the real world. Once this 

topology is available, functional equations allow a much simpler equivalent topology to 

be obtained.  Although functional networks also can deal with data only, the class of 

problems where functional networks are most convenient is the class where the two 

sources of knowledge about domain and data are available (Castillo et al., 2000a).

Functional networks as a new modeling scheme has been used in solving both 

prediction and classification problems. It is a general framework useful for solving a wide 

range of problems in engineering, statistics, and functions approximations. Several 

studies have been done to compare its performance with the performance of the most 

popular predictive modeling techniques for data mining, and machine learning schemes 

in the literature (Castillo, 1998). The results show that functional networks outperform 

most of the popular modeling schemes including neural networks. 
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In this chapter, we describe the functional networks, their architecture, and the 

steps needed for working with them. The learning and training techniques, and the 

selection criteria for choosing the best network model are discussed. The differences 

between functional networks and the standard neural networks are also pointed out. 

 

4.2 Functional Networks Background and Definition 

Functional network is defined as a pair < ,   > X Γ  where  X   is a set of nodes 

and j j j = {< Y  , f  , Z  >, j =1,2,....... p} Γ  is a set of neuron functions over X, such that 

every node jx X∈  must be either an input or an output node of at least one neuron 

function in Γ . The node jx X∈  for all j is called a multiple node, if it is an output of 

more than one neuron functions. Otherwise, it is called a simple node. 

Functional Unit (also called a neuron) U over the set of nodes X is a triplet 

 < Y, f , Z > , where Y, Z, ⊂  X;  Y , Z , Y  Z= , ≠ ∅ ≠∅ ∩ ∅  and ƒ : χ→ ξ  is a given 

function. We say that Y, Z, and f are respectively the set of input nodes, the set of output 

nodes, and the processing function of the functional unit U. 

Input Node in a Functional Network < ,   > X Γ  is the input node of at least one 

functional unit in Γ and is not the output of any functional unit in Γ . 
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Output Node in a Functional Network < ,   > X Γ  is the output node of at least 

one functional unit in Γ and is not the input of any functional unit in Γ . 

Intermediate Node in a Functional Network 5 5 4 7{ , }, ,{ }x x f x< >  is the input node 

of at least one functional unit in Γ  and, at the same time, is the output node of at least 

one functional unit inΓ . 

Figure 4.1 illustrates an example of functional networks N= < ,   > X Γ where 

1 2 7, ,.....X x x x=< >  and Γ  consist of functional units of: 

1 2 1 5{ , }, ,{ }< >x x f x  

2 3 2 6{ , }, ,{ }< >x x f x  

3 4 3 6{ , }, ,{ }< >x x f x  

5 5 4 7{ , }, ,{ }< >x x f x  

 It is clear from the above definitions and figure that functional networks consist of:  

a) A layer of nodes for receiving the input data (xi; i = 1,2,3, 4), another layer for 

the output data (x7) and none or one or more layers for intermediate information 

(x5 and x6);  
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b) Processing units that evaluate a set of input values and deliver a set of output 

values (fi); and 

c) A set of directed links that connect the inputs or intermediate layers to neurons 

and neurons to intermediate or output units. 

 

 

 

 

Figure 4.1: Example of Functional Network architecture 

 

4.3 Comparison between Functional networks and Neural Networks 

Although functional networks extend neural networks, both networks are different 

in the way they handle problems and in structure. The characteristics and key features of 

functional networks, as compared with those of neural networks, are for example as 

shown in Figure 4.2 (Castillo et al., 2001).  

1. In selecting the topology of functional networks, the required information can 

be derived from the data, from domain knowledge, or from different combinations of the 

two. In the case of standard neural networks, only the data are used. This implies that, in 

addition to the data information, other properties of the function being modeled by the 
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functional network can be used for selecting its topology (associativity, commutativity, 

invariance, etc.). This information is available in some practical cases.  

2. In standard neural networks, the neuron functions are assumed to be fixed and 

known, and only the weights are learned. In functional networks, however, the functions 

are learned during the structural learning (which obtains simplifed network and 

functional structures) and estimated during the parametric learning (which consists of 

obtaining the optimal neuron function from a given family). 

3. Arbitrary neural functions can be assumed for each neuron (e.g., neurons f1, f2, 

f3, f4, and f5 in Figure 4.2(b)), while in neural networks they are fixed sigmoidal functions. 

4. In functional networks, weights are not needed, since they can be incorporated 

into the neural functions. 

5. The neural functions are allowed to be truly multiargument [e.g., neural 

functions f1, f2, f3, f4, and f5 in Figure 4.2(b)]. However, in many cases, they can be 

equivalently replaced by functions of single variables. Note that in standard neural 

networks the neural sigmoidal functions are of a single argument, though this is a linear 

combination of all inputs (pseudo-multiargument functions). 

6. In functional networks, intermediate or output units can be connected (linked) 

to several storing units, say m units, indicating that the associated values must be equal. 

Each of these common connections represents a functional constraint in the model, and 

allows writing the value of these output units in different forms (one per different link). 
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Intermediate layers of units are introduced in functional network architectures to allow 

several neuron outputs to be connected to the same units, which is not possible in neural 

networks. 

7. Functional networks are extensions of neural networks. In other words, neural 

networks are special cases of functional networks. For example, in Figure 4.2, the neural 

network and its equivalent functional network are shown. Note that weights are 

subsumed by the neural functions. 
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Figure 4.2 :(a) Standard Neural Network (b) its equivalent functional network. 
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4.4 Working with Functional Networks 

Functional networks methodology can be more easily understood by organizing it 

into the following steps: 

Step 1: Statement of the problem: Understanding the problem to be solved.  

Step 2: Select the suitable initial architecture: The selection of the initial topology 

of a functional network is based on the characteristics and the knowledge of the problem 

at hand, which usually leads to a single clear network structure. 

Step 3: Simplifying the initial functional network: The initial functional network 

is simplified by using functional equations. Given a functional network, we wish to 

determine whether there exists another functional network giving the same output for 

any given input. Functional equations are the main tool for simplifying functional 

networks. Further information about the functional equations and their solutions can be 

found in (Castillo et al, 2005). In general, functional network architecture can be 

represented by functional equations, and their solutions lead to an equivalent but simpler 

one. This will lead to the idea of network equivalence. 

Equivalent Functional Networks: We say that the two functional networks 

1 2, , ,< Γ > < Γ >X X are equivalent, if they give the same output for any given input. For 

example, the functional network in Figure 4.3(a) corresponds to the functional equation:  

                                  [ ( , ), ] [ , ( , )]F P x y Z G x Q y Z=                                  (4.1) 
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which can be simplified as follows: 

A general solution of functional equations in (4.1) is: 

   

( )
( ) ( ) ( )
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( ) ( ) ( )
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F x y k f x r y

P x y f p x q y

G x y k n x p y

Q x y n q x r y
                                       (4.2) 

where f , r , k , m , p , q and n are arbitrary continuous and strictly monotonic functions. 

Substituting equation 4.2 in equation 4.1, we obtain 

  d = D(x , y , z ) = k [p(x ) +q (y ) + r (z )]                                (4.3) 

Therefore, the functional network in equations 4.1 and 4.2 are equivalent but 

equation 4.3 is much simpler, as can be seen in Figure 4.3(b). We note that the initial 

functional network in equation 4.1 has six functions: F, G,, I , P, and Q and each of them 

depend on two arguments. On the other hand, the simplified functional network in 

equation 4.3 has only four functions: p, q, r and k and each one depends only on one 

argument; yet the two networks are equivalent. The problem then reduces to estimating 

these four functions based on the available data. 
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Figure 4.3: (a) Initial network, (b) Equivalent simplified network. 

 

Step 4: Checking uniqueness of representation: Before learning a functional 

network, we have to find the conditions that make the neural functions of the simplified 

functional network unique. That is, for a given topology, there are several sets of neuron 

functions leading to exactly the same outputs for any input.  Thus, we must check the 

uniqueness conditions on representation of this functional network, and we must find the 

constraints that neural functions of the simplified functional network must satisfy. For 

example, we can find the uniqueness of equation 4.3 represented by the functional 



58 

 

network shown in figure 4.3(b) by using theorem 6.5 in Castillo et al (2005, p.100). 

Assume that there are two set of functions { }1 1 1 1, , ,k p q r and { }2 2 2 2, , ,k p q r such that they 

give the same output for the same input, i.e. the functional equation:  

      
( ) ( ) ( ) ( )1 1 1 1 2 2 2 2( ) ( )k p x q y r z k p x q y r z+ + = + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

                           (4.4) 

gives a general solution of : 

2 1

2 1

2 1
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                                                 (4.5) 

Where a, b, c and d are arbitrary constants. Thus, uniqueness in this case requires fixing 

the function k, p, q, and r at a point. For example, force ( )∗ ∗=f x y  to have uniqueness.  

Step 5: Learning Algorithm: Once the structure of the functional network is 

known in Step 2, the neural functions of the network must be learned (estimated) in order 

to approximate the associated parameters of the neuron functions.  

Step 6: Network model validation: After the learning algorithm process is done, it 

is essential to do the test for quality of the functional network model, to assess its 

performance. At this step, a test for quality and/or the cross-validation of the model is 

performed. Checking the obtained error is important to see whether or not the selected 
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families of approximating functions are suitable. A cross-validation of the model, using 

testing data as opposed to the training set, is also important. 

Step 7: Use of the functional network model: Once the functional network model 

has been satisfactorily validated, it is ready to be used for the purpose in real world. 

4.5 Training Functional Networks 

In functional networks, two types of learning are used: (a) structural and (b) 

parametric (Castillo et al., 2001). Structural learning is the simplification of the initial 

topology of the network, as discussed earlier. It is based on some properties available to 

the designer, initially to arrive at a topology and finally to simplify the architecture by 

using functional equation. Parametric learning, on the other hand, is concerned with 

estimation of the neuron functions. This can be done by considering the combination of 

shape functions (basis functions), and by estimating the associated parameters from the 

given data. A neuron function is represented as  

                                                       
1=

= ∑
im

i ij ij
j

f a ϕ                                                 (4.6) 

where ia  is the weight to be estimated; 1 2{ , ,.... }=
ii i i imϕ ϕ ϕ ϕ is a family of linearly 

independent functions, such as polynomial (1, x, x2 … xn) or Fourier function (1, sin(x), 

cos(x), sin(2x), cos(2x)…….sin(nx), cos(nx)) or exponential functions or any other 

linearly independent function. The coefficients ija  are the parameters of the functional 
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networks to be determined. The learning method consists of obtaining the neural 

functions based on a set of data {D = (Ii, Oi); i=1,2,…….,n}. The learning process is 

based on minimizing the Euclidean Norm of error function given by 

            
2

1

1 { }
2 =

= −∑
im

i i
i

E O f
                                    (4.7) 

The associated optimization function may lead to a system of linear or nonlinear 

algebraic equations, which can be solved numerically by using optimization methods 

such as least square, min-max, etc. The least square method is adopted in this study. 

4.6 Model Selection in Functional Networks 

To learn (parametric) functional networks, we can choose different sets of linearly 

independent functions for the approximation of the neuron functions. This requires us to 

select the best model according to some criteria of optimality. The Minimum Description 

Length (MDL) principle is one of the model selection principles we can used (Castillo et 

al. 1999). The idea behind the MDL measure is to find the minimum information required 

to store the given training set by using the functional network model. Therefore, we can 

say that the best functional network model for a given problem corresponds to that with 

the minimum description length value. The code length L(x ) of x is defined as the 

amount of memory needed to store the information x . For example, to store the data in 

the functional network in (4.3), we have two options: 
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Option 1: Store Raw Data: 

Store the triplets {( , , , ) | 1,2,3....... }=i i i ix y z u i n . In this case, the initial description 

length of the data set is 

 1

[ ( ) ( ) ( ) ( )]
=

= + + +∑
n

i i i i
i

DL L x L y L z L u
                              (4.8)  

Option 2: Use a Model: 

By selecting a model, we try to reduce this length as much as possible. In this 

case, we can store the parameters of the model 1{ } =
m

i ia  and then the residuals are 

ˆ ˆ ˆ ˆ[ ( ) ( ) ( )], 1, 2......ie u k p x q y r z i n= − − − =  where ˆ ˆ ˆ ˆ, , ,  k p q and r  are the approximate 

neuron functions of the model. The description length becomes 

model
1 1 1
[ ( ) ( ) ( )] ( ) ( | model)

= = =

= + + + +∑ ∑ ∑
n k n

i i i i i
i i i

DL L x L y L z L a L e
               (4.9) 

where ( )iL a  is the code length of the estimated parameters 1{ } =
m

i ia . 

Generally, the description length is a measure for comparing not only the quality 

of different approximations, but also different functional network models. The 

description length measure can be calculated for any model. In addition, it is used to 

compare models with different parameters, because it has a penalty term for overfitting. 

Moreover, it is distribution independent. This makes the minimum description length a 
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convenient method for solving the model selection problem. Accordingly, the best 

functional network model for a given problem corresponds to the one with the smallest 

description length value. To achieve this goal, the following methods can be used: 

The Exhaustive Search: This method computes the MDL measure for all 

possible models, and it chooses the one leading to the smallest value of the error measure. 

The obvious shortcoming of this method is its computational complexity. 

The Backward-Forward method: The backward process starts with the 

complete model with all parameters, and it sequentially removes the one leading to the 

smallest value of the MDL measure, repeating the process until there is no further 

improvement in the measure. Next, the forward process is applied, but starting from the 

final model of the backward process, and it sequentially adds the one variable that leads 

to the smallest value of MDL measure, repeating the process until there is no further 

improvement in the measure. This process is repeated until there is no further 

improvement in MDL measure is obtained, whether by removing or by adding a single 

variable. 

The Forward-Backward method: The forward process starts with all models of 

a single parameter, and it selects the one leading to the smallest value of ( )L x . Next, it 

incorporates one more parameter with the same criterion, and the process continues until 

there is no further improvement in ( )L x can be obtained by adding an extra parameter to 

the previous model. Then the backward process is applied, but starting from the final 

model of the forward process, and sequentially removing the one variable that is leading 
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to the smallest value of MDL, repeating the process until no improvement in ( )L x is 

possible. The double process is repeated until no further improvement in ( )L x is 

obtained, whether by adding or removing a single variable. 

4.7 Estimation of Porosity and Water Saturation With FN 

4.7.1 Problem Statement 

The main task in this problem is to estimate porosity (φ) and water saturation (Sw) 

(refer to as responses) from well logs data, (refer to as predictor variables), while 

minimizing the error as much as possible using a selected criteria such as mean square 

error.  

Mathematically, these relationships can be represented as: 

1 1 5( ,.... )Sw f x x=      and   2 1 6( ,.... )f x xφ =  

where  

1 2(.) & (.)f f  are models 

ix   is the predictor variables from well logs 

Sw and φ  are estimated water saturation and porosity respectively. 



64 

 

However, since a general procedure is presented, we can write a general representation 

as: 

1ˆ ( ,.... )ny F x x=  

where ŷ is the response, F is the model, and  ix  are the predictors. 

The objective is to minimize  2

1

1 ˆ[ { )} ]
n

i i
i

y y
n =

−∑  , which is the mean square of the error.     

 

4.7.2 Functional Networks Initial Architecture 

The first step in functional networks is the specification of the initial topology 

which is problem driven. However, since there is no idea of the problem domain, models 

such as associative and uniqueness (Castillo et al. 1992) were first tried without any 

encouraging result. A recommended generalized model of the form (4.10) for this kind of 

situation was then used: 

1

11

1 1

....... 1
1

...... ( )............... ( )
k

k

k

qq

r r r rk k
r r

y C x xϕ ϕ
==

=∑ ∑
                              (4.10) 

where 1....... kr rC  are unknown parameters (coefficients) and the set of  functions ϕs = 

{ϕrs(xs), rs =1,2,……..qs }, s= 1,2……k are linearly independent. For simplicity, Figure 

5.1 shows the corresponding generalized model in equation 4.10 with two input variables.  
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Figure 5.1: Generalized functional network in equation 4.10 with two inputs 

 

4.7.3. Uniqueness of Representation 

After selection of the model, the uniqueness of representation needs to be checked 

before the neural functions are learned from data. This uniqueness property is very 

important for some estimation methods that solve systems of equations. To check for the 

uniqueness of generalized model in equation 4.10, we assumed there are two sets of 

parameters 1......r rkC  and *
1......r rkC  such that  

1 1
*

1.... 1 1 1.... 1 1
1 1 1 1 1 1

..... ( )..... ( ) ..... ( )..... ( )
k kq qq q

r rk r rk k r rk r rk k
r rk r rk

C x x C x xϕ ϕ ϕ ϕ
= = = =

=∑ ∑ ∑ ∑
              (4.11) 

Then, this can be written as  

              
1

11 1

1 1

*
....... ....... 1

1
...... ( ) ( )............... ( ) 0

==

− =∑ ∑
k

k k

k

qq

r r r r r rk k
r r

C C x xϕ ϕ                     (4.12) 
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Since the family of functions ϕs are linearly independent, then 

1 1

*
....... ....... 0k kr r r rC C− =  for all r1, r2,…….rk. This implies 1 1

*
....... .......k kr r r rC C=  for all 

r1,r2……rk. Hence equation (4.10) is a unique representation. 

 

4.7.4 Simplification of the Model 

For the problem concerned in this study, the model represented by equation 4.10 

was simplified further to reduce the complexity of terms to be estimated, by assuming 

that all the coefficients of the cross-multiplication terms between the function of different 

variables other than one is zero. This reduces equation 4.10 to the form  

                               1 1 2 2( ) ( ) ....... ( )k ky h x h x h x= + +                                  (4.13) 

where h(x) denotes the sum of the function basis for each predictor variable with 

coefficients to be learned. This can be written as:  

1 2

1 1 2 2

1 2

1 2
1 1 1

( ) ( ) ................ ( )
k

k k

k

qq q

r r r r r r k
r r r

y C x C x C xϕ ϕ ϕ
= = =

= + +∑ ∑ ∑
                      (4.14) 

This can be written in condensed form as: 

1

( ),     1,2,3.......
sq

kr kr k
r

y C x k sϕ
=

= =∑
                                   (4.15) 
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Or simply as: 

11

( )
kqs

kr kr k
k r

y C xϕ
==

=∑∑
                                                 (4.16) 

Figure 5.2 shows the functional networks with two predictor variables for 

equations 4.1)-4.1). The uniqueness of equation (4.16) follows that of the original 

generalized model, which is means this simplified model is also unique. 

 

 

Figure 5.2: Simplified generalized model with k=2 and q1=q2=q 

 

Note that without loss of generality, since the first term of all the basis functions starts 

with a constant and the sum will also give a constant, the constant term can be included 

only in the h1(x1). 
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4.7.5  Learning procedure for the simplified model  

Let D = {yi, xi1, xi2,…….xik; i  = 1, 2, …..,n } denotes the available data set, which 

consists of n observations of the response (output) and k predictor variables (inputs). 

Then, for the ith observation in D, we have for the general case of the simplified model as: 

 11
( ),   1, 2,....

kqs

i kr kr ik
k r

y C x i nϕ
==

= =∑∑
                         (4.17) 

Since the combinations of linearly independent functions (ϕkr) are known, our 

goal is only to learn the coefficients Ckr. Examples of linearly the independent function 

used in this study include: 

1). Polynomial family  

     ϕ= {1, x, x2,….., xq} 

2). Exponential family  

    ϕ= {1, ex, e-x, e2x, e-2x,…..eqx, e-qx}  

3). Fourier family  

    ϕ= {1, sin(x), cos(x), sin(2x), cos(2x),------sin(qx), cos(qx)} 

4). Logarithms function 



69 

 

   ϕ= {1, log(x+2), log(x+3), ……, log(x+q)} 

Assuming that the model in equation 4.17 provides an acceptable approximation 

to the relation between the response and the predictor variables, then we can write 4.17 in 

matrix form as:  

Ŷ W β=                                                         (4.18) 

The error ε  between the real output Y  and the estimated output Ŷ  is thus given by: 

ˆY Y Y Wε β= − = −                                                      (4.19) 

Using the least square optimization technique, we can learn the coefficients by 

minimizing the error (ε). 

( ) ( )t tL Y W Y Wε ε β β= = − −                                      (4.20) 

1( ) )t tW W W Yβ −=                                                   (4.21) 

Solving equation 4.2 gives the solution to the unknown coefficients, β  in 

equation 4.1) or coefficients Ckr in equation 4.1. The learning algorithm is summarized in 

Figure 4.4.
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Figure 5.4 Learning algorithm for porosity and water saturation functional networks 
model

Step 1:  

From the training set  D = {yi, xi1, xi2,…….xik; i  = 1, 2, …..,n } denotes   
the available data set, which consists of n observations of the response (output)   
and k predictor variables, 

Select the set of linearly independent functions, (ϕ), and the degree of 
approximation (q). 

Compute matrix w of size n x (q+1)k  from ϕ, and A=wTw  

Step 2:   

Initialize the matrix β  of  size (q+1)k   

Step 3: Compute B = wTY, 1A Bβ −=  

Compute the model  ˆY w β=  

Step 4: Select the Best coefficients from w using MDL 

Compute RMSE 

Compute MDL as log( ) log( )
2 2

m n nL R M S E= +  

Using any of the search methods in section 4.6, select the Best coefficients from 
w with the smallest L 

Step 5. Validate 

Test the model with testing set  

If satisfactory, end if not repeat the process again  
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CHAPTER FIVE 

PREDICTION OF POROSITY AND WATER 

SATURATION 

5.1 Overview 

The main contribution of this thesis is to investigate and develop some recent 

advances in neural networks (such as functional networks, cascaded correlation neural 

networks, and polynomial networks) to estimate porosity (φ) and water saturation (Sw) for 

reservoir rock characterization.

In this chapter, we present the implementation process for estimation of formation 

porosity (φ) and water saturation (Sw) from well logs based on the framework discussed 

in the chapter 3, 4 and 5. Empirical results are presented from the implementation of 

functional networks (FN) and other methods, including cascaded correlation neural 

networks (CCNN), general regression neural networks (GRNN), polynomial networks 

(POLYNET) as well as standard feed forward neural networks.  
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5.2 Data acquisition and Implementation process 

This study uses a data set from the Middle Eastern region which consists of well 

logs, core porosity and water saturation from 206 and 211 observations of two wells 

labeled A and B of respectively. We investigate these data sets, and we perform the 

required statistical analysis plots to determine the hidden pattern of the relationship 

among the actual outputs and the provided input features. This helps us to get more 

knowledge about all the data. The two wells were combined together and divided 

randomly into two sets, training and testing set of 70% and 30% respectively. The 

training set was then used to build the model while the testing set was used to evaluate 

the predictive capability of the model. For investigating prediction of porosity, six well 

logs namely; Sonic log (DT), Neutron log (NPHI), Density log (RHOB), Gamma Ray 

(GR), Resistivity (Rt), and Photoelectric Factor log (PEF) were used as inputs to all the 

networks. Five inputs namely Neutron log (NPHI), Density log (RHOB), Gamma Ray 

(GR), Resistivity (Rt), and Photoelectric Factor log (PEF) were used for the prediction of 

water saturation. Statistical descriptions of the data are given in Tables 5.1 to 5.3. 

In order to make sure the predictors variables are independent from measurement 

units (since they are of different units), the predictor variables (inputs) were normalized 

to interval [0, 1] by using the formula: 

                                  
min ( )

1, 2,........
max ( ) min ( )

;
old

new i i
i

i i

x
i n

x x
xx =

−
=

−                       (5.1) 
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To determine the performance and accuracy of the models, we made use of some 

the statistical quality measures mentioned in Chapter two, namely: correlation coefficient, 

absolute relative errors, average absolute error, and root mean squared error. A good 

model should have a high correlation coefficient (CC) and a low root mean square error 

(RMSE), an average absolute error (EA), and average absolute relative errors (ER). 

 

Table 5.1: Statistics of the combined wells A and B 
 

LOG TYPE 
(Predictors) 

MIN MAX AVERAGE STDEV 

Sonic Travel time     
(DT) 

50.00948 85.73618 64.39576 9.759414 

Neutron porosity 0.011684 0.265368 0.122452 0.063873 

Bulk density  
(RHOB) 

2.20866 2.822594 2.483926 0.137241 

Gamma Ray 3.487981 27.01702 11.65997 3.963161 

Resistivity 1.592936 165.3348 22.21751 19.8768 

Photoelectric 
Factor   (PEF) 

2.693318 5.512973 4.272576 0.516099 
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Table 5.2: Statistics of well A 
 

LOG TYPE 
(Predictors) 

MIN MAX AVERAGE STDEV 

Sonic Travel time 
(DT) 

50.00948 83.64293 65.11951 10.02312 

Neutron porosity 0.011684 0.233358 0.121226 0.063654 

Bulk density  
(RHOB) 

2.217509 2.732041 2.467093 0.14167 

Gamma Ray 3.487981 22.17721 11.01905 3.724572 

Resistivity 5.962086 165.3348 23.35686 21.47114 

Photoelectric 
Factor     ( PEF) 

2.88618 5.39553 4.375203 0.47247 

 

Table 5.3: Statistics of well B 
 

LOG TYPE 
(Predictors) 

MIN MAX AVERAGE STDEV 

Sonic Travel time 
(DT) 

50.02477 85.73618 63.68916 9.465285 

Neutron porosity 0.025846 0.265368 0.123649 0.064215 

Bulk density  
(RHOB) 

2.20866 2.822594 2.50036 0.131033 

Gamma Ray 5.546964 27.01702 12.2857 4.095807 

Resistivity 1.592936 115.2886 21.10515 18.16862 

Photoelectric 
Factor (PEF) 

2.693318 5.512973 4.17238 0.537877 
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5.3 Experimental Results Using Functional Networks 

The function network model described in section 5.4 was implemented by trying 

all basis functions given in section 5.5. First, different basis was used for each function in 

equation 5.4. Secondly, the same basis was used for all the functions ( 1 1( ),..... ( )n nh x h x ) in 

order to select the one that will give best approximation. The coefficients of the network 

were optimized by the backward-forward search method by using the criterion of 

Minimum description length (MDL). This criterion determines the best coefficients 

contributing to the network, and it chooses the best functional basis (the one with lowest 

value of MDL as described in section 4.6). However, in both cases (estimation of 

porosity and water saturation), it is found that using different basis functions does not 

give good approximation compared to having same basis functions. Therefore, we 

present only the results second try (same basis functions). 

5.3.1  Porosity Estimation Results 

The functional network model is able to predict formation porosity with the 

Fourier basis function as the best selected basis, producing a root mean square error 

(RMSE) of 0.0293 and a correlation coefficient (CC) of 0.9158 for the training set, but 

RMSE of 0.0245 and CC of 0.9343 for the testing set.  The results for the estimation are 

shown in Table 5.2 while Figures 5.1a and 5.1b show the performance plot for the best 

selected basis function (Fourier basis). Table 5.2 shows that the Fourier basis function is 

the best basis, as it achieved the highest testing set correlation and lowest RMSE. For the 
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sake of simplicity, performances of other basis functions are shown in appendix A. The 

results show that there is a good matching between the core porosity and the estimated 

porosity. Equation 5.2 shows the relationship between the predictor variable and the core 

porosity for the best model.  

                   1 1 2 2 3 3 4 4 5 5 6 6( ) ( ) ( ) ( ) ( ) ( )y h x h x h x h x h x h x= + + + + +                        (5.2) 

where 

           

     

 

 

Table 5.4 RMSE and correlation coefficient (CC) of different basis functions used for Porosity estimation 
 

MODEL Training  Set Testing Set  

Function RMSE CC RMSE CC 
Fourier 0.0293 0.9158 0.0245 0.9343 

Exponential 0.0292 0.9159 0.0248 0.9332 

Polynomial 0.0300 0.9158 0.0249 0.9314 

Logarithm 0.0302 0.9100 0.0247 0.9328 

Poly&Log 0.0294 0.9148 0.0247 0.9331 

 

1 1 1 1

1

2 2 2 2

3 3 3 3 3

4 4 4

5 5

( ) 0.42587 0.73647sin(2 ) 0.40639cos(2 )
             0.36971sin(3 )

( ) 0.33693sin( ) 0.10597sin(2 )
( ) 1.638sin( ) 1.4767sin(2 ) 0.43745sin(3 )
( ) 0.023313cos(2 )
( ) 0.02838

h x x x
x

h x x x
h x x x x
h x x
h x

=− + +
−

= −
= − +
=
= 5

6 6 6

5sin(2 )
( ) 0.029636sin(2 )

x
h x x=
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                     Figure 5.1a: Performance plot for estimated porosity using FN 
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       Figure 6.1b: Scatter plot for estimated porosity versus core porosity using FN 
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5.3.2   Water saturation Estimation Results 

Similarly, water saturation is determined with the same model as presented in 

section (5.4) using five log inputs (NPHI, RHOB, GR, Rt, and PEF). The model is able to 

predict water saturation with logarithm function as the best selected basis function, 

achieving a root mean square error, (RMSE) of 0.1143 and correlation coefficient (CC) 

of 0.9491 for the training set, but RMSE of 0.0805 and CC of 0.9743 for the testing set.  

The results for the estimation are shown in Table 5.3. Figures 5.2a & 5.2b show the 

performance plot for the best selected basis within the function basis. Also, performances 

of other bases were shown in appendix for simplicity. The results also show that there is a 

good match between the core and estimated water saturation. Equation 5.3 shows the 

relationship between the predictor variable and the water saturation for the best selected 

model. 

Table 5.5: RMSE and CC of different basis functions used for water estimation 
 

MODEL Training  Set Testing Set  

Function RMSE CC RMSE CC 
Fourier 0.1076 0.9549 0.0866 0.9730 

Exponential 0.1075 0.9549 0.0864 0.9702 

Polynomial 0.1150 0.9483 0.0827 0.9730 

Logarithm 0.1143 0.9491 0.0805 0.9743 
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                    1 1 2 2 3 3 4 4 5 5( ) ( ) ( ) ( ) ( )y h x h x h x h x h x= + + + +                                   (5.3) 

where 
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Figure 5.2a: Performance plot for estimated water saturation using FN 
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         Figure 5.2b: Scatter plot for estimated water saturation versus water saturation 
using FN 

 

5.4 Experimental Results Using CCNN 

For the prediction of porosity from well logs by using CCNN, we tried different 

numbers of neurons in the hidden layer and we found the optimum to be a single hidden 

layer with five neurons. The hidden layer used the Gaussian activation function, while the 

output layer used the sigmoid function and it trained up to 250 epochs. The water 

saturation network, on the other hand, used ten neurons in the hidden layer with the 

Gaussian activation function and the linear function at the output layer. The results are 

shown in Figures 5.3 and 5.4 for porosity and water saturation respectively. Table 5.4 

summarizes the result from the networks. 
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Table 5.4: Models performance for porosity and water saturation using CCNN 
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Figure 5.3a: Performance plot for estimated porosity using CCNN 
 

 TRAINING TESTING 

MODEL Network EA ER RMS CC EA ER RMS CC 
Porosity 6-5-1 0.0200 0.1853 0.0257 0.9268 0.0188 0.2041 0.0259 0.9260 

Water 5-10-1 0.0534 0.5261 0.0866 0.9706 0.0638 0.1526 0.1048 0.9596
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Figure 5.3b: Scatter plot for estimated porosity versus Core porosity using CCNN 
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Figure 5.4a: Performance plot for estimated water saturation using CCNN 
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Figure 5.4b: Scatter plot for estimated water saturation versus water saturation using 
CCNN 

 

5.5 Experimental Results Using GRNN 

GRNN was also designed to determine porosity and water saturation as done in 

previous sections. The network structure was determined after a number of trials of 

different numbers of spread centers. A spread of 0.07 was selected for porosity 

prediction, while a spread of 0.055 was chosen for prediction of water saturation. The 

summary of the results is shown in Table 5.5 and illustrated in Figures 5.5 and 5.6 below. 
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Table 5.5: Models performance for porosity and water saturation using GRNN 
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       Figure 5.5a: Performance plot for estimated porosity using GRNN 

 

 TRAINING TESTING 

MODEL EA ER RMS CC EA ER RMSE CC 
Porosity 0.0101 0.1120 0.0145 0.97323 0.0221 0.2322 0.0329 0.9003 

Water 0.0270 .08158 0.0476 0.9907 0.0569 0.2273 0.0858 0.9716 
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Figure 5.5b: Scatter plot for estimated porosity versus Core porosity using GRNN 
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 Figure 5.6a: Performance plot for estimated water saturation using GRNN 



86 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
scatter plot of GRNN for Training Set

 water Saturation

E
st

im
at

ed
 W

at
er

 s
at

ur
at

io
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
scatter plot of GRNN for Testing Set

Water Saturation

E
st

im
at

ed
 W

at
er

 S
at

ur
at

io
n

CC=0.99007

CC=0.97155

 

Figure 5.6b: Scatter plot for estimated water saturation versus water saturation using 
GRNN 

 

5.6 Experimental Results Using Polynet 

For prediction of porosity and water saturation by using polynomial networks, 

two hidden layers were used. For porosity networks, the first layer and second layer were 

constructed by only 2 nodes and 1 node respectively. In water saturation network 8 nodes 

were used in the first layer and 2 nodes were found to be appropriate for the second layer. 

Table 5.6 summarizes the results and Figures 5.7 and 5.8 show the scatter plots. 
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Table 5.6: Models performance for porosity and water saturation using PolyNet 
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Figure 5.7a: Performance plot for estimated porosity using Polynet 

  TRAINING TESTING 

MODEL Network EA ER RMS CC EA ER RMS CC 

Porosity 6-2-1--1 0.0221 0.2955 0.0311 0.9040 0.0182 0.1553 0.0245 0.9329 

Water 5-8-2-1 0.0885 0.3480 0.1194 0.9346 0.0758 0.3338 0.1013 0.9593 
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Figure 5.7b: Scatter plot for estimated porosity versus Core porosity using Polynet 
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Figure 5.8a: Performance plot for estimated water saturation using ploynet 
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Figure 5.8b: Scatter plot for estimated water saturation versus water saturation using 
Polynet 

 

5.7 Experimental Results Using Feedforward Neural Networks 

To make clear the advantages or disadvantages of the models above for standard 

feed forward neural networks, we also developed a feed forward neural network, FFNN, 

for the same purpose. After some trial-and-error, and experiences derived from cascaded 

correlation neural networks, a network of the same structure as CCNN was used but with 

the LM training algorithm. The hidden layer used tan-sigmoid while the output layer used 

log-sigmoid. The network was trained with 500 epochs. Table 5.7 presents the summary 

of the result obtained and Figures 5.9 and 5.10 show the plot with core values. 
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Table 5.7: Models performance for porosity and water saturation using FFNN 
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Figure 5.9a: Performance plot for estimated porosity using FFNN 

  TRAINING TESTING 

MODEL Network EA ER RMSE CC EA ER RMS CC 

Porosity 6-5-1 0.0186 0.2599 0.0265 0.9316 0.0210 0.2287 0.0286 0.9043 

Water 5-10-1 0.0222 0.1016 0.0353 0.9946 0.0495 0.1567 0.0807 0.9682 



91 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

E
st

im
at

ed
 p

or
os

ity

Core Porosity

Scatter plot of FFNN for training set

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

E
st

im
at

ed
 p

or
os

ity

Core Porosity

scatter plot of FFNN for test set

CC=0.93164

CC=0.90430

 

Figure 5.9b: Scatter plot for estimated porosity versus Core porosity using FFNN 
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Figure 5.10a: Performance plot for estimated water saturation using FFNN 
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Figure 5.10b: Scatter plot for estimated water saturation versus water saturation using 
FFNN
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CHAPTER SIX 

PERFORMANCE ANALYSIS AND 

COMPARATIVE STUDIES 

6.1 Overview 

The first objective of this thesis is the development and investigation of functional 

networks and other forms of recent advances in neural networks for the estimation of 

reservoir rock porosity and water saturation. The other objective is to compare their 

performance. In this regard, we present the comparison between the techniques presented 

in Chapter six. Furthermore, we also present the comparisons of the best model(s) with 

empirical models (equations 2.1 and 2.2).

We compare the performance and accuracy of all the models presented in chapter 

six in four stages. The first stage involved the performance of all the models with the 

combined well A and B as presented in chapter six. In the second stage, each well was 

run on the models to determine further the performance and the robustness of each 

model. The third stage involved comparing the best selected model(s) from the first and 

second stages with the empirical models discussed in Chapter two (equations 2.1 and 

2.2). In the last stage, a test well T2, which did not involve in the training of the model, 
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was tested with the best selected model(s) from the first and second stages. Results from 

these four stages are discussed below.  

In the first stage, the results from the models as presented in chapter six are very 

close but the functional networks modeling scheme outperforms all other techniques. The 

model (functional network) shows a high accuracy in predicting the porosity and water 

saturation values. It achieves the lowest network weights (N.wgt) with the lowest root 

mean square error, and the highest correlation coefficient for the testing case (Table 6.1). 

Functional network also shows relatively low execution time (Ex. Time). Scatter plots 

(Figure 6.1 and Figure 6.2) of the RMSE versus the CC for all the computational 

intelligence models is drawn to show the pictorial view of the performance. Each 

modeling scheme is represented by a symbol, and the best modeling scheme should 

appear in the upper left corner of the graph. We observe that the symbol corresponding to 

functional networks scheme falls in the upper left corner. 

Table 6.1A: Models performance for porosity 
 

 Training Testing 

MODEL N.Wgt RMSE CC Ex. Time RMS CC Ex. Time 

FN 12 0.0293 0.9158 1.278 0.0245 0.9343 0.01592 

FFNN 35 0.0265 0.9316 6.975 0.0286 0.9043 0.1643 

CCNN 35 0.0257 0.9268 8.75 0.0259 0.9260 0.010 

GRNN 350 0.0145 0.9732 0.529 0.0329 0.9003 0.0341 

POLYNET 18 0.0311 0.9040 0.2103 0.0245 0.9328 0.00570 
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Table 6.1B: Models performance for water saturation 
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Figure 6.1: Scatter plot of CC versus RMSE for porosity prediction on testing case for all 
models 

 

 Training Testing 

MODEL N.Wgt RMSE CC Ex. Time RMSE CC Ex. Time 

FN 13 0.1143 0.9491 0.1809 0.0805 0.9743 0.01528 

FFNN 60 0.03525 0.9946 7.7346 0.0807 0.9681 0.02258 

CCNN 60 0.0866 0.9706 10.08 0.1048 0.9596 0.0089 

GRNN 350 0.0476 0.9907 0.7482 0.0858 0.9716 0.04786 

POLYNET 60 0.1194 0.9346 0.3036 0.1013 0.9592 0.003093 
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Figure 6.2: Scatter plot of CC versus RMSE for water saturation prediction on testing 
case for all models 

 

In the second stage, we tested well A and B separately on all the models 

developed in the first stage. This was to test the robustness of the models, especially that 

of FN, which showed the best performance in the first stage. Here, it was observed 

generally that the performance of the models in well A is lower than that of well B 

especially in the prediction of porosity. The statistics of these wells were compared to 

those of the combined well, and it is found that the statistics of well B dominates the 

training data. This might be a reason for the better performance in well B. Although all 

the models show close performance, GRNN result takes a leading role in this stage. The 

results also show that GRNN is consistent. This indicates that GRNN is more robust than 

FN and other models. However, if we consider the GRNN model complexity from the 

network weights (N.Wgt) and the execution time (Ex. Time) to that of FN, there may be 
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need to make a compromise between accuracy and time complexity. The plot of each 

models are presented in appendix B. However, the scatter plots for the comparison are 

shown in Figures 6.3 to 6.6 and Tables 6.2 and 6.3.show the summary of the results. 

 
Table 6.2: Models performance for porosity and water saturation for well A 

 

 
 
 
 
 
 
 
 
                 

Porosity Water saturation 

MODEL RMSE CC Ex. Time RMSE CC Ex. Time 

FN 0.0399 0.8538 0.01844 0.1390 0.9532 0.0156 

FFNN 0.0480 0.8589 0.02003 0.1849 0.9193 0.02702 

CCNN 0.0357 0.8761 0.0042 0.1594 0.9505 0.0072 

GRNN 0.0312 0.9048 0.066212 0.1031 0.9696 0.0873 

POLYNET 0.0396 0.86873 0.00147 0.3368 0.92396 0.00912 
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Table 6.3: Models performance for porosity and water saturation for well B 
 

 

 

0.85
0.86
0.87
0.88
0.89
0.9
0.91

0 0.02 0.04 0.06

Co
rr
el
at
io
n 
co
ef
fic
ie
nt
s (
cc
)

Root Mean Square Error (RMSE)

Models performance for poroisty (well A)

FN

FFNN

CCNN

GRNN

POLYNET

 

Figure 6.3: Scatter plot of CC versus RMSE for porosity prediction on well A for all 
models 

 

Porosity Water saturation 

MODEL RMSE CC Ex. Time RMSE CC Ex. Time 

FN 0.0194 0.9613 0.01628 0.0310 0.9211 0.02172 

FFNN 0.0248 0.9406 0.0160 0.1014 0.9556 0.0274 

CCNN 0.0241 0.9405 0.0064 0.1417 0.9136 0.00812 

GRNN 0.0149 0.9776 0.05353 0.0895 0.9584 0.08914 

POLYNET 0.022 0.94996 0.00171 0.1413 0.90785 0.00927 
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Figure 6.4: Scatter plot of CC versus RMSE for water saturation prediction on Well A for 
all models 
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Figure 6.5: Scatter plot of CC versus RMSE for Porosity prediction on Well B for all 
models 
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Figure 6.6: Scatter plot of CC versus RMSE for water saturation prediction on Well B for 
all models 

 

In the third stage, the best models from the first and second stages (FN and 

GRNN) were compared with the empirical models (EM) (calculated porosity (cal_por) 

and water saturation (cal_swt)). The plots below (Figures 6.7 to 6.14) show that FN and 

GRNN are better than EM even in porosity prediction where the accuracy is low. This 

may be because the uncertainty in the empirical models can not be handled accurately or 

intelligently. Therefore, FN and GRNN can always be used in place of these empirical 

models. 
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Table 6.4: FN, GRNN and EM models performance for porosity and water saturation for well A 
 

 
 
 
 

Table 6.5: FN, GRNN and EM Models performance for porosity and water saturation for well B 
 

 
 
 
 

Porosity Water saturation 

MODEL EA ER RMS CC EA ER RMSE CC 

FN 0.0293 0.499 0.03840 0.8577 0.1417 0.666 0.1849 0.9489

GRNN 0.0227 0.303 0.0312 0.9048 0.0584 0.2689 0.1031 0.9696 

EM 0.0351 0.510 0.04391 0.8317 0.325 0.785 0.2187 0.8003

Porosity Water saturation 

MODEL EA ER RMSE CC EA ER RMSE CC 

FN 0.01613 0.166 0.02057 0.95658 0.1102 0.406 0.147 0.90401

GRNN 0.0104 0.105 0.0149 0.9776 0.0533 0.141 0.089 0.9584 

EM 0.01923 0.193 0.02815 0.92134 0.2541 0.512 0.236 0.80144
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Figure 6.7: Performance of FN, Calculated porosity and the core porosity  

for well A 
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Figure 6.8: Performance of FN, Calculated porosity and the core porosity  
for well B 
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Figure 6.9: Performance of FN, Calculated water saturation and the core water saturation 

for well A 
 
 
 

 
Figure 6.10: Performance of FN, Calculated water saturation and the core water 

saturation for well B 
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Figure 6.11: Performance of GRNN, Calculated porosity and the core porosity  
for well A 

 
 

 

Figure 6.12: Performance of GRNN, Calculated porosity and the core porosity  
for well B 
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Figure 6.13: Performance of GRNN, Calculated water saturation and the core water 
saturation for well A 
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Figure 6.14: Performance of GRNN, Calculated water saturation and the core water 
saturation for well B 
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In the last stage of our comparison, the FN and GRNN models were tested with 

another well label T2 whose statistics are shown in Table 6.6. This well did not 

participate in the training of the models. This is to further test for the generalization of 

these models and to particularly determine if the model performance can still be accurate 

or acceptable on a new well belonging to the same reservoir. The success of this will go a 

long way to save money and time for the core testing of the new well.   

The results of the two best selected models (FN and GRNN) on well T2, as 

observed clearly from the Table 6.7 and Figures 6.15 to 6.18, are not better than the 

empirical models. In fact the EM tends to have slightly lower errors and better correlation 

coefficients. This may be because the uncertainty in the model variables is properly taken 

care of in this case. However, the results of the FN and GRNN are still acceptable, 

especially those of the functional network models which are better and can therefore be 

recommended for nearby wells whose statistics are close to the training data. 

Table 6.6: Statistics of Well T2 
 

LOG TYPE 
(Predictors) 

MIN MAX AVERAGE STDEV 

Sonic Travel time     
(DT) 

51.21629 82.67955 65.06333 8.247997 

Neutron porosity 0.020514 0.273245 0.126999 0.056829 

Bulk density  
(RHOB) 

2.185501 2.7303 2.472135 0.126199 

Gamma Ray 8.7209 35.82097 16.86412 5.156644 

Resistivity 5.600847 146.1045 26.3729 22.11964 

Photoelectric 
Factor   (PEF) 

2.97236 5.429557 4.14652 0.483861 
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Table 6.7: Models performance for porosity and water saturation on Test well T2 
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Figure 6.15: Performance of FN, Calculated porosity and the core porosity on Test well 

T2 
 
 
 
 
 

Porosity Water saturation 

MODEL EA ER RMS CC EA ER RMSE CC 

FN 0.0229 0.3396 0.0297 0.9141 0.1603 0.796 0.211 0.8883 

GRNN 0.0224 0.2442 0.0311 0.8961 0.147 0.727 0.213 0.8719 

EM 0.0185 0.1001 0.0289 0.94771 0.0616 0.565 0.096 0.88385
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Figure 6.16: Performance of GRNN, Calculated porosity and the core porosity on Test 
Well T2 
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Figure 6.17: Performance of FN, Calculated water saturation and the core water 

saturation on Test well T2 
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Figure 6.18: Performance of GRNN, Calculated water saturation and the core water 
saturation on Test Well T2 

 

6.2 Discussion 

The comparative performance analysis of the five models investigated in the 

previous section gives a lucid picture of the best models to use for estimation of porosity 

and water saturation and also the conditions that surrounds their use. For clarity, the 

summary of the performance is shown in Table 6.8. In the performance analysis, although 

GRNN and FN are selected to be the best models from the five studied models, the three 

other models (CCNN, Polynet & FFNN) are also adequate for the prediction of porosity 

and water saturation though with some deficiency as shown in Table 6.8 (e.g. robustness 

and number of network weight). 

Furthermore, GRNN and FN show different strengths by the evaluation criteria as 

shown in Table 6.8. FN is better than GRNN in terms of the sensitivity to a new well, the 

number of network weights, the testing time, and the insight into the network. GRNN is 
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better in terms of training time, accuracy, and robustness. One of the strongest points of 

FN that is not shown in Table 6.8 is the access to the input/output relationship of the 

network, which can be obtained from the insight of the network. For example, equation 

6.2 shows that the first three variables (DT, NPHI and RHOB) are more significant in the 

prediction of porosity while in equation 6.3 one variable (PEF) is insignificant in the 

prediction of water saturation. The result of using the significant variables, as shown in 

appendix C, is as good as using six and five variables for the prediction porosity and 

water saturation respectively. This is an indication that trade-off in using either the 

GRNN or the FN model should be considered. 

 
Table 6.8: Brief Summary of all models performance for porosity and water saturation 

 
 

         Model 

Measure 

FFNN CCNN polynet FN GRNN 

Accuracy fair fair fair good very good 
No. of Network 
Weight 

large large medium small very large 

Training Time high Very very low low  low 
Testing Time high low very low low very high 
Robustness weak weak weak good very good 

Sensitivity to new 
well   

- - - Very good good 
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CHAPTER SEVEN 

CONCLUSION AND RECOMMENDATIONS 

7.1 Summary 

This study investigated the application of recent advances in neural networks 

techniques in developing an accurate model for the prediction of rock properties (porosity 

and water saturation). A simplified functional networks (FN) model was developed for 

the prediction of porosity and water saturation. Four basis functions were tested as the 

training functions on the model, and the best was selected. 

The other part of the study focused on designing and investigating Cascaded 

Correlation neural networks (CCNN), Polynomial neural networks (Polynet), General 

regression neural networks (GRNN), and Feedforward neural networks (FFNN) for the 

prediction of these rock properties. 

In all the modeling techniques, data from real carbonate field were used. Three 

wells were studied, labeled; well A, well B and well T2. While data from well A and B 

participated in the training of the models, well T2 did not but it was used for further tests 

on the models to check their robustness.   
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Finally, comparative analyses were carried out between these models, to 

determine not only the most accurate on the trained wells but also the robustness of the 

model on untrained well.  The section below gives the conclusion from the study.    

7.2 Conclusion 

Based on the research, experiment and analysis discussed previously in this study, 

the following conclusions are reached: 

• Generally, all the techniques investigated in this study, (GRNN, FN, polynet 

and CCNN) can be said to at least match FFNN in accuracy, and they are 

better in their design and in the speed of training in predicting porosity and 

water saturation. However, since CCNN is not free from the problem of 

random initialization of weights, its result is not unique, which is similar to 

that of standard FFNN.  

•  Functional network is a good model, but not robust enough compared to 

GRNN if the spread parameter of GRNN is well chosen. However, the training 

of FN is much faster. 

• FN proved to have good generalization, better than GRNN. According, FN can 

be used for nearby wells with statistics close to those of the training data.  

• FN shows that three inputs (DT, NPHI and RHOB) are adequate for the 

prediction of porosity, while four inputs (NPHI, RHOB, RT and GR) are 

adequate for the prediction of water saturation. 



113 

 

• GRNN can be used when more accuracy is required on the trained well only. 

• Feedforward neural networks (FFNN) can have good generalization if there is 

enough time and knowledge of the network topology. 

• Cascaded correlation neural network (CCNN) can be a guide in designing 

FFNN as it gives a picture of the topology automatically but it is not always as 

accurate as FFNN. 

7.3 Recommendations for Future Work. 

Although good results were obtained from the investigation carried out in this 

thesis, better accuracy and generalization may be obtained from the following 

recommendations: 

1) Investigating combined networks in the form of committee machine or modular 

networks where different networks such as Ploynet, FN and GRNN are combined. 

These three models were suggested because of the unique results that can be 

obtained from them. However, many factors need to be considered in developing 

such architecture, including: 

• There are several different methods of combining networks, depending on 

the task at hand. 

• Determination of training strategy for different networks to achieve more 

accurate network model can be challenging. For example, do we train each 
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network with the same data set, or different data sets, with overlapping or 

without overlapping? 

• Determination of the techniques to combine is also not an easy task.  

• Model complexity versus gained accuracy is another factor to consider. 

2) Investigating means to establish a relationship between a trained model and the 

data of a new well such that the model can be adjusted by a factor to suit the 

statistics of the new well.  

3)   It is also recommended to explore more FN models and basis functions. Other 

optimization techniques, besides the least square method, may also be employed 

for training.   

It is hoped that implementation of these recommendations will lead to better 

models for the prediction of rock properties.
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APPENDIX A: Performance of other Basis Functions 
used for Functional Networks in the Combined Well 
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Figure A1: Scatter plot for estimated porosity versus Core porosity using  

Logarithm function 
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Figure A2: Scatter plot for estimated porosity versus Core porosity using 

Polynomial function 
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Figure A3: Scatter plot for estimated porosity versus Core porosity using Exponential 
function 
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Figure A4: Scatter plot for estimated Water Saturation versus Water Saturation using 
polynomial function 

 



122 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

E
st

im
at

ed
 W

at
er

 S
at

ur
at

io
n

 Core Water Saturation

Scatter Plot of FN for Training Set

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

E
st

im
at

ed
 W

at
er

 S
at

ur
at

io
n

 Core Water Saturation

Performance of FN for  Testing  Set

CC=0.9703

CC=0.9549

 

Figure A5: Scatter plot for estimated Water Saturation versus Water Saturation using 
Exponential function 
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Figure A6: Scatter plot for estimated Water Saturation versus Water Saturation using 
Fourier function 
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APPENDIX B: Performance of All Models on 

Wells A and B 
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Figure B1: Scatter plot for estimated Porosity versus Core Porosity using functional 
Network function on Well A 
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Figure B2: Scatter plot for estimated Porosity versus Core Porosity using functional 
Network function on Well B 
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Figure B3: Scatter plot for estimated Water Saturation versus Core Water Saturation 
using functional Network function on Well A 
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Figure B4: Scatter plot for estimated Water Saturation versus Core Water Saturation 
using functional Network function on Well B 
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Figure B5: Scatter plot for estimated Porosity versus Core Porosity  

using GRNN on Well A 
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Figure B6: Scatter plot for estimated Porosity versus Core Porosity  

using GRNN on Well B 
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Figure B7: Scatter plot for estimated Water Saturation versus Core Water Saturation 
using GRNN on Well A 
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Figure B8: Scatter plot for estimated Water Saturation versus Core Water Saturation 
using GRNN on Well B 
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Figure B9: Scatter plot for estimated Porosity versus Core Porosity  

using FFNN on Well A 
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Figure B10: Scatter plot for estimated Porosity versus Core Porosity  

using FFNN on Well B 
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FigureB11:Scatter plot for estimated Water Saturation versus Core Water Saturation 
using FFNN on Well A 
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Figure B12: Scatter plot for estimated Water Saturation versus Core Water Saturation 
using FFNN on Well B 
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Figure B13: Scatter plot for estimated Porosity versus Core Porosity 

using CCNN on Well A 
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Figure B14: Scatter plot for estimated Porosity versus Core Porosity 

 using CCNN on Well B 
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Figure B15: Scatter plot for estimated Water Saturation versus Core Water Saturation 
using CCNN on Well A 
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Figure B16: Scatter plot for estimated Water Saturation versus Core Water Saturation 
using CCNN on Well B 
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Figure B17: Scatter plot for estimated Porosity versus Core Porosity 

 using Polynet on Well A 
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Figure B18: Scatter plot for estimated Porosity versus Core Porosity  using Polynet on 
Well B 
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Figure B19: Scatter plot for estimated Water Saturation versus Core Water Saturation 
using Polynet on Well A 
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Figure B20: Scatter plot for estimated Water Saturation versus Core Water Saturation 
using Polynet on Well B 
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APPENDIX C: Result of FN with reduced inputs 
from the combined well A and B 

 
Table C1: The RMSE and correlation coefficient of different basis functions used for porosity (Three 

predictors: DT, NPHI, RHOB) 

 

 

 

 

 

Table C2:  The RMSE and correlation coefficient of different basis functions used for water saturation 
estimation (Four predictors: NPHI, RHOB, GR, RT) 

 

 

 

 

 

MODEL Training  Set Testing Set  

Function N.Wght RMSE CC RMSE CC 

Fourier 11 0.0296 0.9138 0.0244 0.9354 

Exponential 12 0.095 0.9141 0.0243 0.9355 

Polynomial 6 0.030 0.9110 0.0247 0.9313 

Logarithm 7 0.030 0.9104 0.0248 0.9310 

 

MODEL  Training  Set Testing Set  

Function N.Wght RMSE CC RMSE CC 

Fourier 14 0.1105 0.9519 0.0856 0.9705 

Exponential 14 0.1106 0.9524 0.0844 0.9713 

Polynomial 11 0.1187 0.9443 0.0824 0.9728 

Logarithm 11 0.1172 0.9465 0.0810 0.9738 
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Figure C1: Performance plot for estimated Porosity versus Core Porosity using 
three inputs FN on combined well 
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Figure C2: Scatter plot for estimated Porosity versus Core Porosity using three 
inputs FN on combined well 
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Figure C3: Performance plot for estimated Water Saturation versus Core Water 
Saturation using four inputs FN on combined well 
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Figure C4: Scatter plot for estimated Water Saturation versus Core Water 
Saturation using four inputs FN on combined well 
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