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THESIS ABSTRACT

NAME: Adeniran Ahmed Adebowale
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Characterization
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One of the major objectives of the petroleum industry is to obtain an accurate
estimate of initial hydrocarbon in place before investing in development and production.
Porosity, permeability and fluid saturation are the key variables for characterizing a
reservoir in order to estimate the volume of hydrocarbons and their flow patterns to
optimize the production of a field. Many empirical equations are available to transform
well log data to predict these properties. Recently, researchers utilized artificial neural
networks (ANNSs), particularly feed forward back propagation neural networks (FFNN),
to develop more accurate predictions. The success of FFNN opens the door to both
machine learning and soft-computing techniques to play a major role in the petroleum,
oil, and gas industries. Unfortunately, the developed FFNN correlations have some

drawbacks, and as a result several improvements have been proposed.
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This thesis investigated the suitability of some of the recently proposed advances

in neural networks technique including, functional networks (FN), cascaded correlation
neural networks, polynomial networks, and general regression neural networks for
predicting porosity and water saturation from well logs. Since there is no fully developed
software for functional networks, we described both the steps and procedures in
developing functional networks to predict these properties. We also compared the
performance of these techniques with standard FFNN as well as the empirical correlation

models.

Generally, the results show that the performance of General Regression neural
networks, Functional networks and Cascaded Correlation networks outperform that of
standard neural networks. In addition, General Regression Neural networks are more
robust while Functional networks are easier and quicker to train with no over-fitting
problem, and more importantly we have more insight into the coefficients of the network.
Therefore, we believe that the use of these better techniques will be valuable for

Petroleum Engineering scientists.
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CHAPTER ONE

INTRODUCTION

3.1 Overview

Reservoir rocks vary from homogeneous to heterogeneous. There are different
kinds and levels of heterogeneity: either fluid or lithology. Understanding the form and
spatial distribution of these heterogeneities is important in petroleum reservoir
characterization. Porosity, permeability and fluid saturation are the key variables for
characterizing a reservoir in order to estimate the volume of hydrocarbons and their flow
patterns to optimize the production of a field. These characteristics are different for

different rocks.

Porosity is described as the ratio of the aggregate volume of interstices in a rock
to its total volume, whereas permeability, defined as the capacity of a rock or sediment
for fluid transmission, is a measure of the relative ease of fluid flow under pressure
gradients. Knowledge of permeability in formation rocks is crucial for estimating the oil
production rate and for reservoir flow simulations for enhanced oil recovery. Reliable
predictions of porosity and permeability are also crucial for evaluating hydrocarbon
accumulations in a basin-scale fluid migration analysis, and for mapping potential

pressure seals to reduce drilling hazards.



No well log can directly determine porosity, but well logging measures the
physical properties depending on porosity, and then the formation porosity is deduced.
Several relationships have been identified which can relate porosity to wireline readings,
such as the sonic transit time and density logs. However, the conversion from density and
transit time to equivalent porosity values is not trivial (Helle et al. 2001). The common
conversion formulas contain terms and factors that depend on the individual location and
lithology. For example, conversion from density depends on clay content, pore fluid type,
and grain density while conversion from sonic log depends grain transit time. These
terms and factors are unknowns and thus remain to be determined from rock sample

analysis.

Finding the distribution and composition of subsurface fluids is another main
objective in hydrocarbon exploration, field development and production. Since direct
sampling of underground fluids and determination of fluid saturation in the laboratory is
an expensive and time-consuming procedure, indirect determination from log
measurements is the common approach. The common practice in the industry is to
determine water saturation from empirical formulas using resistivity, gamma ray logs and
porosity estimates. The hydrocarbon saturation is then calculated from the water

saturation, as both water and hydrocarbon form the composite pore fluid.

Water saturation is basically defined as the fraction of the pore volume of
formation rock which is filled with water, where the rest of the pore space is filled with

either oil or gas. Therefore, inaccurate determination of water saturation leads to either



underestimation or overestimation of reserves. The standard practice in the industry for
calculating water saturation is by using different models. But these models should be
tuned to the area of work, which requires the estimation of parameters in the laboratory.
Thus it would be better to calculate water saturation by using different means that will

avoid depending on the auxiliary parameters explicitly.

Artificial intelligence (AI) may be defined as a collection of new analytic tools
that attempt to imitate life (Mohaghegh, 2000). AI techniques exhibit an ability to learn
and deal with new situations. Artificial neural networks, genetic algorithm, particle
swamp optimization, fuzzy logic and functional networks are among the paradigms that
are classified as artificial intelligence tools. Al has drawn the attention of many
researchers over the last two decades (Sandha et al., 2005). The main interest in Al has its
roots in the efficient and fast way of computation in complex tasks such as speech and
other pattern recognition problems. For about two decades now, Al techniques such as
neural networks, genetic algorithm, and fuzzy logic have continued to draw increasing
attention from researchers in the petroleum industry to address fundamental problems.
These include, for example, the determination of formation permeability, porosity, and
water saturation from well logs, or specific problems such as forecasting the post-fracture
well performance in the absence of engineering data, which conventional computing has

been unable to solve or posed a lot of problems.

Artificial Neural Networks (ANNs) have been applied in a wide variety of fields

to solve problems such as classification, feature extraction, diagnosis, function



approximation and optimization (e.g. Haykin, 1999). Although it seems clear that neural
networks should not be used where an effective conventional solution exists, there are
many tasks for which neural computing can offer a unique solution, in particular those
where the data is noisy, where explicit knowledge of the task is not available, or when
unknown non-linearity between input and output may exist. These are in many respects
features of conventional earth science data, and are the main reasons for the increasing
popularity of ANN in geosciences and petroleum engineering (Mohaghegh, 2000;

Nikravesh et al., 2001).

Functional network (FN) is another network structure which is also gaining
attention in the field of Al. Functional network is a powerful extension and network-
based alternative to the neural networks paradigm (Castillo et al., 2000a; Castillo 1998).
In functional networks, neural functions are allowed to be not only multivariate but also
truly multiargument and different for all neurons. Thus, neural functions are learned
instead of weights. In addition, outputs coming from different neurons can be connected,
that is, forced to output the same values. The topology and neuron functions of functional
networks can be selected according to the data, the domain knowledge, or a combination
of the two. Functional equations play an important role in functional networks, since the
preceding types of connections lead to functional equations that impose a substantial
reduction in the degrees of freedom of the initial neural functions. This kind of network
exhibits more versatility than neural networks, and so it can be successfully applied to
several problems. Castillo et al. (2000b) shows that every problem that can be solved by a

neural network can also be formulated by functional networks. More importantly, some



problems that cannot be solved by using neural networks can be naturally formulated by

using functional networks.

In this thesis, we explored recent advances in neural networks, including
functional networks, cascaded correlation neural networks, and polynomial neural
networks architectures for predicting porosity and water saturation from well logs, and

we also carried out a comparative analysis vis-a-vis the standard neural networks.

1.1 Problem Statement

One of the major objectives of the petroleum industry is to obtain an accurate
estimate of the hydrocarbon in place. This is required either at an early stage of the well
exploration or in the production management of a developed reservoir. An accurate
determination of porosity and water saturation parameters is a must for evaluating any
reservoir and for drafting any development plan for a reservoir. Neural networks for
quantitative analysis of reservoir properties from well logs have been demonstrated in
several practical applications (e.g. Huang et al., 1996; Huang and Williamson, 1997;
Zhang et al., 2000; Helle et al., 2001), where the artificial neural network approach is
shown to be a simple and accurate alternative for converting well logs to common
reservoir properties such as porosity and water saturation. Multilayer perceptrons (MLP)
trained by a back-propagation algorithm have been the popular tool for most practical

applications over the last decade.



MLP trained by back-propagation learning techniques have been shown to be a
universal approximator, implying that they will approximate any static function provided
that sufficiently representative input-output sample pairs of the function are given.
However, one major problem encountered in the back-propagation algorithm is its slow

convergence during learning.

Another problem is the structure of the network. The number of hidden units and
their interconnections is defined by the programmer, while the learning rule can modify
only the connection weights. There is no rule which allows one to determine the
necessary structure from a given application or training set. Lastly, the MLP may be
caught by local minima, which reduce the network performance. A common approach is
to train as many networks as possible and to select the one that yields the best
generalization performance. Hence the solution may not be unique especially for noisy
data commonly encounter in well logging. Thus, to overcome the potential drawbacks of
neural networks, we are interested in designing and investigating new adequate intelligent
system techniques which have been proposed either as an alternative or as an
improvement to neural networks, and can be utilized in estimation of water saturation and

porosity.

1.2 Thesis Objectives

The main objective of this work is to explore the use of recent advances in
artificial intelligence techniques, particularly neural networks, to estimate porosity and

water saturation from well logs. This study aims to develop better approaches for the



estimation of these reservoir parameters. More specifically, the study aims to achieve the

following:

e Investigate and develop functional networks for the estimation of porosity

and water saturation.

e Investigate the suitability of estimating porosity and water saturation from
well logs by using other recently proposed neural networks such as cascaded
correlation neural networks, polynomial networks and general regression

neural networks.
e Compare all the techniques along with standard neural networks (MLP).

e Evaluate the performance and accuracy of the proposed methods, their
applications, and the limitations in the reservoir characterization from well

logs.

1.3  Scope of Thesis

In this thesis we investigate the use of the some proposed improvements to neural
networks to predict porosity and water saturation from well logs. Although there has been
an exponential increase in the literature on advances in neural networks, we limit this
study to some of these proposed advances: functional networks (FN), cascaded
correlation neural networks (CCNN), polynomial networks (POLYNET) and general

regression neural networks (GRNN)).



1.4 Thesis Organization

In Chapter one, we present an introduction to this study, which clearly highlights
the motivation behind this work. Chapter two highlights some of the research done in
context of estimation of porosity and water saturation with particular focus on the neural
networks modeling approach. A brief discussion on empirical model and statistical

models is also presented.

Furthermore, as the main technique under which other techniques are
based, neural networks are discussed in detail in Chapter three. Some proposed advances
to neural networks which are our concern in this work are also discussed. Functional
networks are presented in Chapter four as the main recent advances under study. Chapter
five presents functional networks design for the prediction of porosity and water
saturation. Chapter six focuses on implementation of FN, CCNN, GRNN, POLYNET
and GRNN for the prediction of porosity and water saturation. In Chapter seven, the
performance analysis and comparative studies are discussed and recommendation are

made for further research



CHAPTER TWO

LITERATURE SURVEY

2.1 Overview

In a number of petroleum engineering problems, there is a necessity to forecast
and classify the petrophysical properties in series signals. PVT properties, porosity, water
saturation, permeability, lithofacies types, seismic pattern recognition are important
properties for the oil and gas industry. Predicting these properties in the laboratories is
very expensive and the computations are not accurate. Yet, the accuracy of such
predictions is critical and not often known in advance. This chapter presents a brief
introduction to the reservoir rock properties concerned in this thesis, and it discusses the
most common empirical models and neural network approaches that have been used in

predicting porosity and water saturation rock properties..

2.2 Reservoir Characterization and Rock Properties

One of the major obstacles that impact reservoir production is that most reservoirs
show some degree of heterogeneity. This heterogeneity is known as the non-uniform,
non-linear spatial distribution of rock properties. Understanding the form and spatial
distribution of this heterogeneity is important in petroleum reservoir evaluation. Detailed

information regarding the type and physical properties of rocks and reservoir fluids (such
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as porosity and water saturation) is essential for understanding and evaluating the
potential performance or productivity of a given petroleum reservoir (Abhijit, 2006).
Wireline logs, core analysis, production data, pressure buildups, and tracer tests provide
quantitative measurements of the reservoir rock properties in the vicinity of the wellbore.
This wellbore data must be integrated with a geological model to display the properties in

three-dimensional space.
2.2.1 Porosity

Porosity is an important rock property, as it measures the potential storage volume
for hydrocarbons. It is described as the ratio of the aggregate volume of interstices in a
rock to its total volume. Porosity in carbonate reservoirs ranges from 1 to 35%. The terms
effective porosity or connected pore space are commonly used to denote porosity that is
most available for fluid flow. Porosity is a scalar quantity, because it is a function of the

bulk volume used to define the sample space.

Porosity is determined by visual methods and by laboratory measurements from
core samples. This is an expensive exercise, and hence not a routine in all drilled wells.
Several relationships have been identified which can relate porosity to wireline readings,
such as the sonic transit time and density logs. Equation 2.1 shows an example of a
common relationship (Dresser, 1982) used in this study.

¢ — I:\)m_pb
° R -R,*09 2.1)
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where Rp is the matrix density, p,is the bulk density measurement and Ry is the

resistivity factor.

This common conversion formula contains terms and factors that depend on the
individual location and lithology e.g. clay content, pore fluid type, and grain density,
which in general are unknowns and thus remain to be determined from rock sample

analysis.

2.2.2 Water saturation

Water saturation is defined as the fraction of the pore volume of formation rock
which is filled with water. Water, oil, and gas may be found simultaneously in reservoirs.
However, due to specific gravity, fluids tend to segregate with the reservoir. When
considering a possible production interval, the fraction portion of the pore space which
does not contain formation water is assumed to contain hydrocarbon. This can be

expressed mathematically by using the relationship:

S, =1-5

w

2.2)

where Sy, is hydrocarbon saturation and Sy, is the water saturation. The determination of
water saturation allows the log analyst to estimate the amount of hydrocarbons present in
a given formation. This formation, along with porosity and permeability, can be used to

predict the wells’ ultimate production.
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The standard practice in industry for calculating water saturation is by using
different models. But these models should be tuned to the area of work, which requires
the estimation of parameters in the laboratory. A popular model derived from the Archie

formulae and the Fertl equation is given below (Dresser, 1982).

"R (2.3)

where n is the saturation exponent, (normally equal to 2) a is the constant determined
empirically, m is the cementation exponent, Ry, is the resistivity, and Ry is the resistivity

derived from the induction log.

2.3  Well log Analysis

Well logging is the technique of analyzing and recording the character of a
formation penetrated by a drill hole in petroleum exploration and exploitation. Well logs
are a fundamental method of formation analysis, since they measure the physical
properties of the rock matrix and pore fluids. The primary purpose in the analysis of most
wells is to describe the lithology of the reservoir rock and the fluid properties for the
section cut by that particular well. Generally, logs are available on all wells drilled in a

reservoir, and therefore they represent the most complete set of reservoir descriptive data.

Various types of well logs are commonly used for reservoir evaluation. The types
of interest in this study include: Sonic log (DT), Neutron log (NPHI), Density log

(RHOB), Gamma Ray (GR), Laterlog (Rt), and Photoelectric Factor log (PEF).



13

2.4 Approaches to Predicting Porosity and Water Saturation

The most accurate method for the determination of these important properties is
core analysis. However, the core data are not always available for most wells in a given
field or at every depth, either due to the borehole condition or due to the high cost of
obtaining cores. Hence, log analyses which are usually available are utilized by
correlating well logs with core data of the cored wells, and subsequently by using the
correlation model to predict these properties at the uncored intervals and wells. This is
possible not only because log analysis can provide a continuous record over the entire
well where coring is impossible but also because they are economical and quick to

obtain.

Many empirical equations are available to transform well log data to porosity and
water saturation. For example, porosity has been related to wireline readings such as the
sonic transit time and density logs. Water saturation, on the other hand, can also be
determined from empirical formulas using resistivity, gamma ray logs and porosity
estimates. Unfortunately, these models are not universally applicable, as they should be
tuned to the area of work by estimating parameters in the laboratory. Moreover, some of

these required parameters are not easily obtainable (Helle et al., 2001; Jun, 2002).

Parametric methods, such as statistical regression, provide another versatile way
to estimate these properties, where a functional relationship is developed between the
core data and well log data (Jun, 2002). This however requires the assumption and

satisfaction of multi-normal behavior and linearity (Jong-se and Jungwhan, 2004).
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Therefore, neural networks, or more specifically, multilayer perceptrons (MLP), have
been increasingly applied to predict reservoir properties by using well log data (Jong-se

and Jungwhan, 2004; Balan et al., 1995).

Neural networks are characterized as computational models with abilities to
adapt, learn, generalize, recognize, and organize data. The advantages of neural networks
include their high computational efficiency, adaptability, non-linear characteristics,
generation properties, fault tolerance, freedom from a priori selection of mathematical
models, and ease of working with high-dimensional data. Neural networks have been
demonstrated in several practical applications for estimation of porosity and water
saturation from well logs (e.g. Huang and Williamson, 1997; Helle et al., 2001; Shokir,
2004; Hamada and Elshafei, 2007; Al-Bulushi et al., 2007, etc). Multilayer perceptrons
(MLP) trained by a back-propagation algorithm have been the conventional work for
most practical applications over the last decade. Despite their wide applications, MLP
show two major drawbacks. First, their network architecture and parameters is often by
trail and error. Secondly, they have the possibility of being caught by local minima,
which reduces network performance. A common approach is to train as many networks
as possible and select the one that yields the best generalization performance. Hence the

solution may not be unique, especially for the noisy data commonly encountered in well

logging.
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2.5 Review of Estimating Porosity and Water saturation Using Neural

Networks

Neural networks for quantitative analysis of reservoir properties from well logs
have been demonstrated in several practical applications (e.g. Huang et al., 1996; Huang
and Williamson, 1997; Zhang et al., 2000; Helle et al., 2001). They were shown to be
simple and accurate alternative for converting well logs to common reservoir properties

such as porosity, permeability and water saturation.

Soto et al. (1997) developed a back propagation neural network with four layers
to predict permeability and porosity from log data. Gamma ray and neutron porosity were
used as inputs to the porosity predictor network, with two hidden layers of two and three
neurons respectively (2-2-3-1). Porosity, resistivity and spontaneous potential were used
as inputs to the permeability predictor network, with two hidden layers of fifteen and
twelve neurons respectively (3-15-12-1). A relatively good correlation was achieved.
However, due to the use of trial and error in obtaining the network, this is time-

consuming and cannot guarantee that the network is optimal.

Ahmed et al. (1997) also predicted permeability and porosity with neural
networks from 3D seismic data (seismic amplitudes grid coordinate and instantaneous
amplitude) and well logs (neuron porosity, density porosity) data. Those researchers tried
to make the porosity prediction more reliable by using ten random seed values to generate

ten different porosity networks, and the four networks with the least error were averaged
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together to give a better result. This was done to avoid the effect of local minimal as a

result of initial random weight. This is also time consuming and needs refinement.

Stan and Pedro, (1998) used artificial neural networks to classify and identify
lithofacies, and they predicted permeability and porosity from well logs (Gamma ray,
density log and deep resistivity) corresponding to each facies. The use of back-

propagation suggests the weakness in their approach.

Bhatt et al. (2001a) demonstrated the prediction of porosity and permeability by
using single neural networks. While using the committee machine approach of neural
networks, Bhatt and Helle (2001) demonstrated better porosity and permeability
predictions from well logs by using an ensemble combination of neural networks rather
than selecting the single best by trial and error. Bhatt et al. (2001b) successfully applied a
committee machine by using a combination of back propagation neural networks and

recurrent neural networks for the identification of lithofacies.

Shokir (2004) proposed a back-propagation multilayer artificial neural network to
predict water saturation from convectional well-log data (deep resistivity, self-potential,
gamma-ray, litho-density, and neutron porosity log values) in a shaly Bahariya formation
of the western desert of Egypt. The best performance network topology was found to be
two hidden layers, each of 22 neurons. Although the predicted water saturation follows
the trend very closely, the use of back-propagation indicates its inherent drawback. EI-

sayeed (2004) proposed the use of a model with two artificial neural networks to identify
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the flow regime, and to estimate the liquid holding in horizontal multiphase flow with

superficial gas and liquid velocities, pressure, temperature, and fluid properties.

Jong-se and Jungwhan (2004) and Jong-se (2005) proposed the use of combined
fuzzy logic artificial neural networks to predict porosity and permeability. Fuzzy curve
analysis was used to select the best inputs for the artificial neural network from the
available conventional well log data (NPHI, DT, GR, CAL, LLD, RHOB, and LLS) by
identifying the strength of their relationship with core permeability and porosity data.
NPHI, CAL, LLD, LLS, RHOB, and SP were selected as inputs for porosity, while
NPHI, DT, LLD, RHOB, and SP were selected for permeability prediction. Although

reasonable results were obtained, the use of trial and error was a defect.

Bueno et al. (2006) developed artificial neural networks to predict open-hole logs
from a cased hole paused neutron log (PNL) in a low porosity naturally fractured
formation of the Bermudez basin in southern Mexico due to the drilling obstacles which
prohibit the running of convectional open-well logs. The results clearly show good
correlation between the predicted and the actual curves. they also observed that the use of
artificial neural networks using PNL to detect open natural fractures may be problematic

except where the natural fracture system has high radioactivity due to uranium.

Hamada and Elshafei (2007) also estimated formation porosity and water
saturation of a sandstone reservoir with relatively satisfactory results by using two
separate neural networks from well logging measurements (GR, LLD, RHOB, NPHI,

PET, ST). The predicted values were used to calculate index values for porosity, water
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saturation and shade volume, and subsequently to predict the possible pay zone in the

tested well.

Nabil Al-Buhushi et al. (2007) developed a neural networks model for predicting
water saturation in shaly formations by using wireline well logs and core data. A general
workflow (methodology) was constructed in order to cover different design issues in the
ANN modeling. The workflow shows how the neural network results can be interpreted
by investigating the contribution of input variables, finding the optimum number of
hidden neurons, and evaluating the different learning algorithms. In addition, the
workflow focuses on the relevance of the statistics and on the importance of determining
the uncertainties in the original data before using it in the model. A three layered feed-
forward neural network model with five hidden neurons and the Resilient Back-
Propagation (PROP) algorithm was found to be the best design. The input variables to the
model are density, neutron, resistivity and photo-electric wireline logs. The neural
network model was able to predict the water saturation directly from wireline logs with a
correlation factor of 0.91 and a root mean square error (RMSE) of 2.5%. It was also
found that Levenberg-Marquardt (LM) performs similarly to the PROP algorithm and
better than back propagation. However, the optimum number of networks was still based

on trial and error, which is time-consuming.
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2.6 Statistical Quality Measures

To compare the performance and accuracy of the desired particular networks
model to other models, statistical error analysis is performed. The statistical parameters
used for comparison are: average percent relative error, average absolute percent relative
error, minimum and maximum absolute percent error, root mean squares error, and the
correlation coefficient. The corresponding mathematical equations for those parameters

are given below:

i. Average Percent Relative Error: It is the measure of the relative deviation

from the experimental data, that is,

n

E-13E 2.1)
n "

i=1

where €is a relative error deviation between estimated value Y, and

experimental value Yy

exp *

e =|| J= Yot | k100 i=12,....n. (22)
yexp i

ii. Average Absolute Percent Relative Error: It measures the relative absolute

deviation from the experimental values, that is:

Ea = | Ei | (23)

1 n
N5
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where E;is given as:
Ei = Yoy Yo )i =120l (2.5)

iii. Minimum and Maximum Absolute Percent Relative Error: This error type
is used to define the range of error for each correlation. The calculated absolute
percent relative error values are scanned to determine the minimum and

maximum values, that is:

E. = miin\Ei | (2.6)

E, . = max || 2.7)

mi

iv. Root Mean Squares Error: It measures the data dispersion around zero

deviation, that is:

RMSE = { (2.8)

S| =
N
Im

\S]
[

v. The Correlation coefficient: It represents the degree of success in reducing the

standard deviation by regression analysis, that is:

>

r=\/l— > [ Voo You ] /2 [Yoy ~ 7] (29)
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CHAPTER THREE

NEURAL NETWORKS

3.2 Overview

Artificial neural networks (ANNSs) developed significantly in the mid-1980s after
major developments in neuroscience. A broad category of computer algorithms were
designed to imitate the function of the biological neurons of the human brain. Neural
networks are well suited to complex problems. They generally have large degrees of
freedom, and thus they can capture the non-linearity of the process being studied better
than conventional regression methods. ANNs are relatively insensitive to data noise, as
they can determine the underlying relationship between model inputs and outputs,
resulting in good generalization ability. They can make extensive use of prior knowledge,
and they are not limited by the assumptions of the underlying model (Essenreiter et al.,
1998). In predictive modeling, the goal is to map a set of input patterns onto a set of
output patterns. Neural networks accomplish this task by learning from a series of
input/output data sets presented to the network. The trained network is then used to apply

what it has learned to approximate or predict the corresponding output.

Generally, neural networks are capable of solving several types of problems;

including function approximation, pattern recognition and classification, optimization and

22
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automatic control (Maren et al., 1990). The major element of the ANNSs is the perceptron
or artificial neuron. These neurons mimic the action of the abstract biological neuron.

The most common type of neural networks is the multi-layer perceptron (MLP).

3.3 Structure of Neural Networks

Artificial neural networks (ANNs) are composed of signal processing elements

called neurons. The model of a neuron is as shown in Figure 3.1. Its basic elements are:

i) A set of synapses or connecting links, each characterized by a weight of its
own. A signal X; at the input of synapse j connected to neuron K is multiplied by

the synaptic weight ;.

1) An adder for summing the input signals, weighted by the respective synapses

of the neuron.

iii) An activation function for limiting the amplitude of the output of a neuron. It
limits the permissible amplitude range of the output signal to some finite

value.

The neuronal model also includes an externally applied bias (by) which has the
effect of increasing or lowering the net input of the activation function, depending on

whether it is positive or negative respectively.
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Figure 3.1: Model of a Neuron

Mathematically the function of the neuron k can be expressed by equation 3.1:

Yi = (U, +Dby) (3.1)
where
u = W,. X,
‘ ; o (32)

and where X; is the input signal from an m dimensional input, Wy is the synaptic weights
of neuron K, Uy is the linear combiner output due to the input signals, by is the bias, ¢.) is
the activation function, and Yy is the output signal of the neuron. The relation between the

linear combiner output Uk and the activation potential vy is

vV, =u, +b, (3.3)
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The activation function ¢@( v ) defines the output of a neuron in terms of the

induced local field v. There are different types of activation function, and the most the

commonly used are:

1.

Threshold Function. A threshold (hard-limiter) activation is either a binary type or

a bipolar type, for example for binary:

V)= 1 ifv>0
P ifv<o

Piecewise -Linear Function. This type of activation function is also referred to as
saturating linear function and can have either binary or bipolar range for the
saturating limits of the output. The mathematical model for a symmetric

saturation is described as follows:

1 v>!

N

p(V)=qv  if +1>V>—2

0 ifv<—!

Sigmoid (S shaped) Function. The sigmoid function is by far the most common
form of activation function used in the construction of artificial neural network. It
is defined as strictly increasing function that exhibits smoothness and asymptotic

properties. An example of the sigmoid is the logistic function, defined by
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1

pV)=——
l1+e

where a is the slope parameter of the sigmoid function. By varying the parameter a,

we can obtain sigmoid function of different slopes.

3.4

Tangent Hyperbolic Function: This transfer (activation) function is sometime
used in place of sigmoid function and is described by the following mathematical

form:

av —av
€

(V) = tanh(v) == —°
e +e

Multilayer Perceptron Feedforward Neural networks (MLP)

The most common neural networks in the literature are multilayer feedforward

neural networks (MLPFFN) and recurrent neural networks (RNN). Generally,

feedforward neural networks are the most commonly used neural network in both

computational intelligence and petroleum engineering. In feedforward neural networks,

the neurons are organized in different layers, and each of the neurons in one layer can

receive an input from units in the previous layers without loss of generality. Figure 3.2

gives a simple example of a three-layer neural network that contains an input layer, two

hidden layers, and an output layer, interconnected by modifiable weights, represented by
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links between layers. A network that has only a single layer is referred to as a single-layer

network, the term “single layer” referring to the output layer of computational neurons.

Figure 3.2: Structure of Feedforward Neural Network
The presence of one or more hidden layers, whose neurons are correspondingly
called hidden neurons, enables the network to extract higher order statistics. thus network
acquires a global perspective, despite its local connectivity, by virtual of the extra set of
synaptic connections and the extra dimension of neural interaction. Such a network is

called a “multilayer feedforward network”.

3.3.1 MLP Learning

The basic idea in the learning procedures is to provide the network with a training
set of patterns having inputs and outputs. Real valued m—dimensional input feature

vectors x are presented to each of the first hidden layer units through the weight vector w.



28

Hidden layer unit k receives input j through the synaptic weight, wyj, k=1,2,....,n, and j =
1,2,.....m. Unit kK computes a function of the input signal x and the weights wij and then it
passes its output forward to all of the units in the next successive layer. Like the first
hidden layer, the units of the second hidden layer are fully connected to the previous
layer through the synaptic weights. These units also compute a function of their inputs
and their synaptic weight and they pass their output on to the next layer. The output of
one layer becomes the input to the following layer. Then, at the output, the unit error is
calculated between the target value and the computed value of the pattern. This process is
repeated until the final computation is produced by the output unit. The learning
algorithm for this type of network is called the backpropagation (BP) algorithm, and it
was published in the mid-1980s for multilayer perceptrons. This architecture of the
network is the basic unit in this study. Hornik et al. (1989) suggested that, if a sufficient
number of hidden units are available, then an MLP with one hidden layer having a
sigmoid transfer function in the hidden layer and a linear transfer function in the output

layer can approximate any function to any degree of accuracy.

Back-propagation is a systematic method for training multilayer neural networks
due to its strong mathematical foundation. Despite its limitations, back-propagation has
dramatically expanded the range of problems it can solve. Many successful
implementations demonstrate its power. The steps to implement the back-propagation

algorithm are gives as follows:
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The error signal at the output of neuron j at iteration n (i.e. presentation of the nth

training pattern) is defined by

ej(n):dj(n)_yj(n) (3.4)

where

dj(n) is the desired response for neuron j

yi(n) is the function signal appearing at the output of neuron j
ej(n) refers to the error signal at the output of neuron j.

The instantaneous value of the sum of squared errors is obtained by summing the square

error over all neurons in the output layer; which is written as:

Em =5 e
J<C (3.5)

The net internal activity level v;(n) produced at the input of the nonlinearity

associated with neuron j is therefore written as:

Vj (n) = iji (n)yi (n)
i=0 (3.6)
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where p is the total number of inputs (excluding the threshold ) applied to neuron j and
w;i(n) denote the synaptic weight connecting the output of neuron i to the input of neuron

J at iteration n. Hence the output of neuron j at iteration n is given as:

y;(n)=g;(v;(n)) (3.7)

The instantaneous gradient which is proportional to the weight correction term is

given as:

0E(N) _ 2£(n) de;(m) By;(n) dvy(m)
dwy ()~ Ge;(n) dy,(m) &v,(n) ow(n)

9s(n)
aWji(n)

=—e;(N)g;(v;(n)y;(n)
(3.8)

The correction Aw;;(n) applied to w;(n) is defined by the delta rule as:

9g(n)
6Wji(n)

AWji(n) =7

Aw; (n)= 775,' (N)y;(n)

8,(m) =e;(N)g;(v;(n) (3.9)
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When neuron j is located in a hidden layer of the network, the local gradient is

redefined as:

__0s(n)
o;(n) = ayj(n)éﬁj(vj(n))

&,(n) = @;(v;(M) D F,wy (n)
: (3.10)

where the o, requires the knowledge of the error signals e, for all those neurons that lie
in the layer to the immediate right of hidden neuron j. The W, (n) consists of the synaptic

weights associated with these connections. We are now ready to put forward the weight

correction update for the back-propagation algorithm, which is defined by the delta rule:

Aw;i(N) =770;Y; G1)

It is important to note that weight correction term depends on whether neuron j is

an output node or a hidden node:
a. if neuron j is an output node, equation 3.10 is used for the computation of the
local gradient.

b. if neuron j is a hidden node, equation 3.11 is used for the computation of local

gradients.
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The network performance is check by monitoring the average square error. The

average squared error is obtained by summing &(n) over all n and then normalizing with

respect to N (number of training patterns)

1 N
gav = W Z g(n)
n=lI (3.12)
Both the instantaneous and average square errors are functions of free parameters
(synaptic weights and biases). The process is repeated several times for each pattern in
the training set, until the total output squared error converges to a minimum, or until

some limit is reached in the number of training iterations.

One of the major problems with the BP algorithm has been the long training times
due to the steepest descent method of minimization, which is simple but slow. The
learning rate is sensitive to the weight changes. The smaller the learning rate, the smaller
will be the changes to the synaptic weights from one iteration to the next, and the

smoother will be the trajectory in the weight space.

On the other hand, if the learning rate is chosen too large in order to speed up the
rate of learning, the resulting large changes in the synaptic weights make the network
unstable. In order to speed up the convergence of the BP algorithm, along with improved
stability, a momentum term is added to the weight update of the BP algorithm. A
momentum term is simple to implement, and this significantly increases the speed of

convergence. The inclusion of momentum term represents a minor modification to the
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weight update. The inclusion of momentum may also have the benefit of preventing the

learning process from terminating in shallow local minima on the error surface.

The second method of accelerating the BP algorithm is by using the Levenberg -
Marquardt BP (LMBP) algorithm (Hagan et al., 1996). It is based on Newton’s
optimisation method (Hagan et al., 1996) and differs from the usual BP algorithm in the
manner in which the resulting derivatives are used to update the weights. The main
drawback of the LMBP algorithm is the need for large memory and storage space of the
free parameters in the computers. If the network has more than a few thousand
parameters, the algorithm becomes impractical on current machines. In this study, the
feedforward network architecture used for our comparison has been designed to have
several free parameters to be smaller than the number of training patterns in order for

LMBP algorithm to be adequate for training the network.

3.3.2 Generalization

In training MLP by the back-propagation algorithm, we compute the synaptic
weights of a MLP by using as many training examples as possible into the network. The
hope is that the neural network so designed will generalize. A network is said to
generalize well when the input-output mapping computed by the network is correct for
test data which is unknown to the network. A well designed neural network will produce
a correct input-output mapping, even when the input is slightly different from the
examples used to train the network. However, when a neural network has too many

hidden neurons, the network may end up memorizing the training data. It may do so by
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finding a feature that is present in the training data (noise) but not true of the underlying
function that is to be modeled. This phenomenon is referred to as overfitting. Overfitting
is the result of more hidden neurons than actually necessary, with the result that
undesired contributions in the input space due to noise are stored in synaptic weights.
However, if the number of hidden neurons is less than the optimum number, then the
network is unable to learn the correct input-output mapping. Hence it is important to

determine the optimum number of hidden neurons for a given problem.

Generalization is influenced by three factors (Haykin, 1999): (i) the size of the
training set, (ii) the architecture of the neural network, and (iii) the complexity of the
problem at hand. We cannot control the latter. In the context of the first two, for a good
generalisation to occur, we may vary the size of the training set by keeping the
architecture of the network fixed or vice versa. This problem can be resolved in terms of
the Vapnik-Chervonenkis (VC) dimension, which is a measure of the capacity or
expressive power of the family of classification functions realised by a network. It can be
defined as the maximum number of training examples for which a function can correctly
classify all the patterns in a test dataset (Haykin, 1999). The bounds specified by the VC
dimension can be simply stated as follows: for an accuracy level of at least 90%, one
should use ten times as many training examples as there are weights in the network. It has
been suggested that, to achieve a good generalization, the size of the training set, N,

should satisfy the condition

N=0%)
€ (3.13)
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where W is the total number of free parameters (i.e. synaptic weight and biases) in the
network, and € denotes the fraction of classification errors permitted on the test data, and

O(.) denotes the order of quantity enclosed within.

3.5 Advantages and Disadvantages of Neural Networks

An MLP network generates a nonlinear relationship between inputs and outputs
by the interconnection of nonlinear neurons. The nonlinearity is distributed throughout
the network. It does not require any assumption about the underlying data distribution for
designing the networks. Hence the data statistics do not need to be estimated. MLP
parallel structure makes it realizable in parallel computers. The network exhibits a great
degree of robustness or fault tolerance because of built-in redundancy. Damage to a few
nodes or links thus need not impair overall performance significantly. It can form any
unbounded decision region in the space spanned by the inputs. Such regions include
convex polygons and unbounded convex regions. The network has a strong capability for
function approximation. The abilities to learn and generalize are additional qualities.
Previous knowledge of the relationship between input and output is not necessary, unlike
for statistical methods. The MLP has a built-in capability to adapt its synaptic weights to

changes in the surrounding environment by adjusting the weights to minimize the error.

Experience with neural networks has revealed a number of drawbacks for the
technique. For an MLP network, the topology is important for the solution of a given
problem, i.e. the number of hidden neurons, the size of the training dataset, and the type

of transfer function(s) for neurons in the various layers. Learning algorithm parameters to
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be determined include initial weights, learning rate, and momentum. With no analytical
guidance on the choice of many design parameters of the network, the developer often
follows an ad hoc, trial-and-error approach of manual exploration that naturally focuses
on just a small region of the potential search space. Although acceptable results may be
obtained with effort, it is obvious that potentially superior models can be overlooked, and
the considerable amount of user intervention certainly slows down model development.
Because of the distributed nonlinearity and the high connectivity of the network, a
theoretical analysis of the network response is difficult to undertake. The use of hidden
neurons makes the learning process harder to visualize. The associated lack of
explanation capabilities is a handicap in many decision support applications such as
medical diagnostics, where the user would usually like to know how the model came to a
certain conclusion. Additional analysis is required to derive explanation facilities from
neural network models; e.g. through rule extraction [Kartoatmodjo and Schmidt, 1994].
Model parameters are buried in large weight matrices, making it difficult to gain insight
into the modeled phenomenon or to compare the model with available empirical or
theoretical models. Large-scale MLP networks have extremely low training rates when
the back-propagation algorithm is used, since the networks are highly nonlinear in the
weights and thresholds. Using the LM algorithm, as mentioned previously, is one of the
ways used now to overcome this problem. The mean square error surface of a multiple
network can have many local minima and a global minimum, and the network may get

stuck in the local minima instead of converging into the global minimum. As a result, the
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output of a single network may not be satisfactory. In order to address some of these

problems, a number of improvements have been proposed.

3.6 Advances in Neural Networks

The problems of back propagation as discussed above, and the need for finding
the appropriate architecture, are still challenging tasks. This, however, has produced
some algorithms that either provide alternative approaches to neural networks (e.g.
function networks) or improvements to the neural networks design (e.g. cascaded
correlation neural networks) to learn the necessary architecture from data. Over the years,
some methods have been developed to improve neural network topology design. These
are categorized into three major groups according to how they handle the problem of
constructing network structures (Stepniewskir and Keane, 1997). A particular problem
can allow a topology to (i) shrink only, (ii) expand only, (iii) shrink and expand. The
shrinking approach starts with a large network, and then, it gradually removes the
unnecessary nodes and connections. This is also known as pruning (Thomas et al., 1997).
In the expand approach, also known as the constructive approach, the algorithm starts
with a small network, and it constructs the network by adding nodes and connections.
Cascade correlation neural networks are probably the most known example that utilizes
this approach (Stepniewskir and Keane, 1997). The shrink-expand approach utilizes
optimization techniques such as genetic algorithm for network pruning and also for the

schemes that allow networks to grow and shrink. These types of neural network are
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called evolutionary neural networks. Below are some of the advances in neural networks

used in this thesis.

3.5.1 Cascade Correlation Neural Networks (CCNN)

Cascade-correlation Neural Network (CCNN) is a constructive approach
generally prefered to pruning. It was designed by Fahlman and Lebiere (1990) to
optimize the network topology. CCNN combines two main ideas. The first is, the cascade
architecture, in which hidden units are added to the network one at a time, and do not
change after they have been added. The second is the learning algorithm, which creates
and installs the new hidden units. For each new hidden unit, an attempt is made to
maximize the magnitude of the correlation between the new unit’s output and the residual

error signal. The algorithm is summarized as follows:

The network starts with a minimal topology, consisting only of the required input
and output units (and a bias input that is always equal to 1). This net is trained until no
further improvement is obtained. The error for each output until is then computed

(summed over all training patterns).

Next, one hidden unit is added to the net in a two-step process. During the first
step, a candidate unit is connected to each of the input units, but not to the output units.
The weights on the connections from the input units to the candidate unit are adjusted to

maximize the correlation between the candidate’s output and the residual error at the
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output units. The residual error is the difference between the target and the computed
output, multiplied by the derivative of the output unit’s activation function, i.e. the
quantity that would be propagated back from the output units in the back-propagation
algorithm. When this training is completed, the weights are frozen, and the candidate unit
becomes a hidden unit in the net. The second step, in which the new unit is added to the
net, now begins. The new hidden unit is then connected to the output units, with the
weights on the connections being adjustable. Now all connections to the output units are
trained. (Here the connections from the input units are trained again, and the new

connections from the hidden unit are trained for the first time.)

A second hidden unit is then added by using the same process. However, this unit
receives an input signal from the both input units and the previous hidden unit. All
weights on these connections are adjusted and then frozen. The connections to the output
units are then established and trained. The process of adding a new unit, training its
weights from the input units and the previously added hidden units, and then freezing the
weights, followed by training all connections to the output units, is continued until the
error reaches an acceptable level or the maximum number of epochs (or hidden units) is

reached. Figure 3.3 shows the cascaded correlation architecture.
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The CCNN architecture is faster, and it also avoids trial and error in selecting the
number of hidden layer neurons with less error (Mckenna et al., 1997; Schetinin, 2003;
Hamidreza and karim, 2004; Chandra and Paul, 2007). However, cascaded correlation
neural networks have been criticized for not finding the desired solution sometimes due
to the freezing of the existing weight which allows the solution to be found only in an
affine subset of the weight space (Oya and Ethhem, 2003). This thesis investigates the
application CCNN in reservoir characterization as one of the advancement to neural

networks.

3.5.2. Polynomial Networks (Abductive Networks)

An abductive network, like a neural network, is a set of interconnected nodes. In
most types of neural nets, each node performs the same kind of simple computation. In an
abductive network, the nodes' computations can differ from one another and become
mathematically complex. Abductive modeling is the search for the types of nodes and the
architecture of their interconnections that minimize the predictive error in a set of training

data. The goal is to build a model that generalizes well to a set of test data.

Abductive networks are an alternative modeling tool that avoids many of the
neural networks limitations. While the processing elements in neural networks are
restricted by the neuron analogy, abductive networks use various types of more powerful
polynomial functional elements based on prediction performance. Based on the self-

organizing algorithm called the group method of data handling (GMDH) (Farlow, 1984),
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this technique uses well-proven optimization criteria to automatically determining the
network size and connectivity, the element types and coefficients for the optimum model.
Thus, GMDH reduces the modeling effort and the need for user intervention. The
abductive network model automatically selects influential input parameters, and the
input-output relationship can be expressed in polynomial form. This enhances
explanation capabilities, and it allows comparison of the resulting data-based machine

learning models with existing first principles or empirical models.

A typical structure of a polynomial network used in this thesis is shown in Figure
3.4. The models take the form of layered feed-forward abductive networks of functional
elements (nodes). Functions are selected from the set of bivariate quadratic polynomials.
The training algorithm selects the best polynomial for each combination of the input
variables by using the method of least squares. At each layer, for each pair of input
variables, the best transfer polynomial is selected and it parameters is optimized to fit the

given data in the least squared error sense as follows:

TG =" S G Lo, () ()}
)T e SRR (3.15)

where {v;(m)}, for j=1,2,...l, are the outputs of the previous layer, { f, } is a given set of

functions, W, is the vector of the parameters of the function, i.e. polynomial coefficients.
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Figure 3.4: Typical polynomial networks

The training algorithm proceeds as follows:

1. At the input layer, for each pair of input variables, we select the best transfer

polynomial which fits the given data in the least squared error sense.

3G, )= fj{i(y(m)— f, (W, % (m),x; (m))*} Fori,j=1.2..N (3.16)

The polynomial is defined by its index K, and its optimized coefficient vector u, .
For each k, we apply the LS technique to find the parameter vector », and we

compute the residual mean squared error. The best polynomial is the one which
achieves the least residual sum of squared error. Clearly, the number of the

generated nodes is N*.
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2. Next, we sort the nodes in ascending order of their LSE, and we select the best /,

nodes, where /, is the desired maximum number of nodes in the first layer.
3. Compute the outputs {»’ (=)}, for j=1,2,.../,

4. The nodes of the subsequent layers are computed by repeating the same steps, but

replacing the input X by Vv :

I D)= (M)~ f (v, (v, ()} (3.17)

The residual minimum error is then sorted and the best /, node is retained. The

output from the retained nodes are computed and used in the subsequent layers.

5. Pruning: starting from the last hidden layer, we trace back the nodes, identifying
the signal path from each node in the final layer to the input variables. We keep
only the nodes along these paths, while the unused nodes are deleted. The

network in this case will have at most /, node in the firs layer, at most /, nodes

in the second layer, and so on.

6. Finally, the weight of the output node is computed by minimizing the squared

€rror

E="" 000 =2 w0 o))

m=1

(3.18)

where /, is the number of nodes of the final hidden layer.
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3.5.3. General Regression Neural Networks

GRNN (Specht, 1991) falls into the category of probabilistic neural networks.
Although GRNN may not be considered as one of the significant advances from the
standard neural network, it is a special type neural network, and so it has some important

advantages over standard FFNN, which include:

e GRNN network is usually much faster to train than an MLP network.

e GRNN networks are often more accurate than MLP networks.

e GRNN networks are relatively insensitive to outliers (wild points).

e The additional knowledge needed to get a satisfying fit is relatively small, no

additional input by the user is required.

This makes GRNN a very useful tool to perform predictions and comparisons of
system performance in practice. The architecture of GRNN is discussed below and

illustrated in Figure 3.5:
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Figure 3.5: Typical General Regression network

All GRNN networks have four layers: Input layer — There is one neuron in the
input layer for each predictor variable. The input neurons (or processing before the input
layer) standardize the range of the values by subtracting the median and dividing by the
interquartile range. The input neurons then feed the values to each of the neurons in the

pattern layer.

Pattern layer — This layer has one neuron for each case in the training data set.
The neuron stores the values of the predictor variables for the case along with the target
value. When presented with the x vector of input values from the input layer, a pattern

neuron computes the Euclidean distance of the test case from the neuron’s center point,
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and a radial basis function (RBF) (also called a kernel function) is applied to the distance

to compute the weight (influence) for each point, Weight = RBF (distance) (equation
3.16). The calculations performed in each pattern neuron of GRNN are exp(— D/ / 20%),

with the normal distribution centered at each training sample. The radial basis function is
so named because the radius distance is the argument to the function. The farther some
other point is from the new point, the less influence it has. Different types of radial basis
functions can be used, but the most common is the Gaussian function. The peak of the
radial basis function is always centered on the point it is weighting. The function’s sigma
value (o) of the function determines the spread of the RBF function; that is, how quickly
the function declines as the distance increases from the point. With larger sigma values
and more spread, distant points have a greater influence. Then the resulting value is

passed to the neurons in the summation layer.

Summation layer — There are only two neurons in the summation layer. One
neuron is the denominator summation unit, whereas the other is the numerator summation
unit. The denominator summation unit adds up the weight values coming from each of
the hidden neurons. The numerator summation unit adds up the weight values multiplied

by the actual target value for each hidden neuron.

Decision layer/ Output — The decision layer divides the value accumulated in the
numerator summation unit by the value in the denominator summation unit, and it uses

the result as the predicted target value.
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The primary work of training a GRNN network is the selection of the optimal

sigma values to control the spread of the RBF functions.

Zn: y, exp(-D? /26?)
Y=L

;eXp(_ Di2 /20-2) (3.16)

Di2 :(X_Xi)T(X_Xi)




CHAPTER FOUR

FUNCTIONAL NETWORKS

4.1 Overview

Functional networks were introduced by Castillo et al. (1998) as a powerful
alternative to neural networks. Unlike neural networks, functional networks have the
advantage that they use domain knowledge in addition to data knowledge. The network
initial topology is derived from the modeling of the properties of the real world. Once this
topology is available, functional equations allow a much simpler equivalent topology to
be obtained. Although functional networks also can deal with data only, the class of
problems where functional networks are most convenient is the class where the two

sources of knowledge about domain and data are available (Castillo et al., 2000a).

Functional networks as a new modeling scheme has been used in solving both
prediction and classification problems. It is a general framework useful for solving a wide
range of problems in engineering, statistics, and functions approximations. Several
studies have been done to compare its performance with the performance of the most
popular predictive modeling techniques for data mining, and machine learning schemes
in the literature (Castillo, 1998). The results show that functional networks outperform

most of the popular modeling schemes including neural networks.

49
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In this chapter, we describe the functional networks, their architecture, and the
steps needed for working with them. The learning and training techniques, and the
selection criteria for choosing the best network model are discussed. The differences

between functional networks and the standard neural networks are also pointed out.

4.2 Functional Networks Background and Definition

Functional network is defined as a pair <X, I'> where X is a set of nodes

and T = {< Y, . f,.Z;>)=12,... p} is a set of neuron functions over X, such that
every node X; € X must be either an input or an output node of at least one neuron
function in I'. The node x ; € X for all j is called a multiple node, if it is an output of

more than one neuron functions. Otherwise, it is called a simple node.

Functional Unit (also called a neuron) U over the set of nodes X is a triplet
<Y,f,Z>,where Y, Z, c X; Y#O,Z #3,YNZ=J, and f:x—E is a given

function. We say that Y, Z, and f are respectively the set of input nodes, the set of output

nodes, and the processing function of the functional unit U.

Input Node in a Functional Network <X, I' > is the input node of at least one

functional unit in I and is not the output of any functional unitin T".
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Output Node in a Functional Network <X, I' > is the output node of at least

one functional unit in I" and is not the input of any functional unitin I".

Intermediate Node in a Functional Network < {x, X}, f,,{x,} > is the input node

of at least one functional unit in I' and, at the same time, is the output node of at least

one functional unit inI" .

Figure 4.1 illustrates an example of functional networks N=<X, I' > where

X =< X/, X,,.....X; > and I' consist of functional units of:

< {Xlaxz}’ fla{xs} >

< {XZaXS}a fZa{Xé} >

<06, %), F5u (%) >

It is clear from the above definitions and figure that functional networks consist of:

a) A layer of nodes for receiving the input data (x; i = 1,2,3, 4), another layer for
the output data (X7) and none or one or more layers for intermediate information

(X5 and Xg);
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b) Processing units that evaluate a set of input values and deliver a set of output

values (fj); and

c) A set of directed links that connect the inputs or intermediate layers to neurons

and neurons to intermediate or output units.

Figure 4.1: Example of Functional Network architecture

4.3 Comparison between Functional networks and Neural Networks

Although functional networks extend neural networks, both networks are different
in the way they handle problems and in structure. The characteristics and key features of
functional networks, as compared with those of neural networks, are for example as

shown in Figure 4.2 (Castillo et al., 2001).

1. In selecting the topology of functional networks, the required information can
be derived from the data, from domain knowledge, or from different combinations of the
two. In the case of standard neural networks, only the data are used. This implies that, in

addition to the data information, other properties of the function being modeled by the
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functional network can be used for selecting its topology (associativity, commutativity,

invariance, etc.). This information is available in some practical cases.

2. In standard neural networks, the neuron functions are assumed to be fixed and
known, and only the weights are learned. In functional networks, however, the functions
are learned during the structural learning (which obtains simplifed network and
functional structures) and estimated during the parametric learning (which consists of

obtaining the optimal neuron function from a given family).

3. Arbitrary neural functions can be assumed for each neuron (e.g., neurons fi, o,

f3, f4, and fs in Figure 4.2(b)), while in neural networks they are fixed sigmoidal functions.

4. In functional networks, weights are not needed, since they can be incorporated

into the neural functions.

5. The neural functions are allowed to be truly multiargument [e.g., neural
functions f, fp, f3, fs, and fs in Figure 4.2(b)]. However, in many cases, they can be
equivalently replaced by functions of single variables. Note that in standard neural
networks the neural sigmoidal functions are of a single argument, though this is a linear

combination of all inputs (pseudo-multiargument functions).

6. In functional networks, intermediate or output units can be connected (linked)
to several storing units, say m units, indicating that the associated values must be equal.
Each of these common connections represents a functional constraint in the model, and

allows writing the value of these output units in different forms (one per different link).
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Intermediate layers of units are introduced in functional network architectures to allow
several neuron outputs to be connected to the same units, which is not possible in neural

networks.

7. Functional networks are extensions of neural networks. In other words, neural
networks are special cases of functional networks. For example, in Figure 4.2, the neural
network and its equivalent functional network are shown. Note that weights are

subsumed by the neural functions.

(a)

Figure 4.2 :(a) Standard Neural Network (b) its equivalent functional network.
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4.4 Working with Functional Networks

Functional networks methodology can be more easily understood by organizing it

into the following steps:
Step 1: Statement of the problem: Understanding the problem to be solved.

Step 2: Select the suitable initial architecture: The selection of the initial topology
of a functional network is based on the characteristics and the knowledge of the problem

at hand, which usually leads to a single clear network structure.

Step 3: Simplifying the initial functional network: The initial functional network
is simplified by using functional equations. Given a functional network, we wish to
determine whether there exists another functional network giving the same output for
any given input. Functional equations are the main tool for simplifying functional
networks. Further information about the functional equations and their solutions can be
found in (Castillo et al, 2005). In general, functional network architecture can be
represented by functional equations, and their solutions lead to an equivalent but simpler

one. This will lead to the idea of network equivalence.

Equivalent Functional Networks: We say that the two functional networks

< X,I', >,< X,I', >are equivalent, if they give the same output for any given input. For

example, the functional network in Figure 4.3(a) corresponds to the functional equation:

FIP(X,Y),Z]=G[x,Q(Y,Z)] (4.1)
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which can be simplified as follows:

A general solution of functional equations in (4.1) is:

F(xy)=Kk[f()+r(y)l

P(xy)=f"Tp(x)+a(y)l,

G(x,y)=k[n()+ p(y)l, (4.2)
Q(x,y)=n"Ta(x)+r(y)l,

where f, r,k, m, p,qand n are arbitrary continuous and strictly monotonic functions.

Substituting equation 4.2 in equation 4.1, we obtain

d=D(x,y,z)=k[p(x)+q(y)+r(z)] (4.3)

Therefore, the functional network in equations 4.1 and 4.2 are equivalent but
equation 4.3 is much simpler, as can be seen in Figure 4.3(b). We note that the initial
functional network in equation 4.1 has six functions: F, G,, | , P, and Q and each of them
depend on two arguments. On the other hand, the simplified functional network in
equation 4.3 has only four functions: p, ¢, r and k and each one depends only on one
argument; yet the two networks are equivalent. The problem then reduces to estimating

these four functions based on the available data.
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Figure 4.3: (a) Initial network, (b) Equivalent simplified network.

Step 4: Checking uniqueness of representation: Before learning a functional
network, we have to find the conditions that make the neural functions of the simplified
functional network unique. That is, for a given topology, there are several sets of neuron
functions leading to exactly the same outputs for any input. Thus, we must check the
uniqueness conditions on representation of this functional network, and we must find the
constraints that neural functions of the simplified functional network must satisfy. For

example, we can find the uniqueness of equation 4.3 represented by the functional
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network shown in figure 4.3(b) by using theorem 6.5 in Castillo et al (2005, p.100).
Assume that there are two set of functions {k, p,,q,,r,}and {k,, p,,0,,r, } such that they

give the same output for the same input, i.e. the functional equation:

k [P (x)+a (y)+r@]=k[ 0, (x)+0,(¥)+n(2)] 4.4)

gives a general solution of :
u-b-c-d

k,(U) =k ——F

p,(X)=ap, () +b,
9,(Y) =aq,(y) +¢,
r(z)=ar(z)+d

(4.5)

Where a, b, ¢ and d are arbitrary constants. Thus, uniqueness in this case requires fixing

the function k, p, q, and r at a point. For example, force f (x* ) =y" to have uniqueness.

Step 5: Learning Algorithm: Once the structure of the functional network is
known in Step 2, the neural functions of the network must be learned (estimated) in order

to approximate the associated parameters of the neuron functions.

Step 6: Network model validation: After the learning algorithm process is done, it
is essential to do the test for quality of the functional network model, to assess its
performance. At this step, a test for quality and/or the cross-validation of the model is

performed. Checking the obtained error is important to see whether or not the selected
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families of approximating functions are suitable. A cross-validation of the model, using

testing data as opposed to the training set, is also important.

Step 7: Use of the functional network model: Once the functional network model

has been satisfactorily validated, it is ready to be used for the purpose in real world.
4.5 Training Functional Networks

In functional networks, two types of learning are used: (a) structural and (b)
parametric (Castillo et al., 2001). Structural learning is the simplification of the initial
topology of the network, as discussed earlier. It is based on some properties available to
the designer, initially to arrive at a topology and finally to simplify the architecture by
using functional equation. Parametric learning, on the other hand, is concerned with
estimation of the neuron functions. This can be done by considering the combination of
shape functions (basis functions), and by estimating the associated parameters from the

given data. A neuron function is represented as
= a0, (4.6)
j=1

where & is the weight to be estimated; ¢, ={¢p,,9,,...,, }is a family of linearly

independent functions, such as polynomial (1, X, X* ... X") or Fourier function (1, sin(x),
cos(x), sin(2x), cos(2x)....... sin(nx), cos(nx)) or exponential functions or any other

linearly independent function. The coefficients a; are the parameters of the functional
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networks to be determined. The learning method consists of obtaining the neural
functions based on a set of data {D = (li, Oi); i=1,2,....... ,n}. The learning process is

based on minimizing the Euclidean Norm of error function given by

1 @
E=—-) {0 -f }2
2 .2:1: 4.7)
The associated optimization function may lead to a system of linear or nonlinear

algebraic equations, which can be solved numerically by using optimization methods

such as least square, min-max, etc. The least square method is adopted in this study.
4.6 Model Selection in Functional Networks

To learn (parametric) functional networks, we can choose different sets of linearly
independent functions for the approximation of the neuron functions. This requires us to
select the best model according to some criteria of optimality. The Minimum Description
Length (MDL) principle is one of the model selection principles we can used (Castillo et
al. 1999). The idea behind the MDL measure is to find the minimum information required
to store the given training set by using the functional network model. Therefore, we can
say that the best functional network model for a given problem corresponds to that with
the minimum description length value. The code length L(x ) of x is defined as the
amount of memory needed to store the information x . For example, to store the data in

the functional network in (4.3), we have two options:
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Option 1: Store Raw Data:

Store the triplets {(X;,Y;,z,u;)|i=1,2,3....... n} . In this case, the initial description

length of the data set is

n

DL = > [L(X)+L(y)+L(z) +L(u)]
= (4.8)

Option 2: Use a Model:

By selecting a model, we try to reduce this length as much as possible. In this

case, we can store the parameters of the model {a}", and then the residuals are

~

ei=u—I2[f)(x)—Q(y)—f(z)],i:1,2 ...... n where k,p,§,and f are the approximate

neuron functions of the model. The description length becomes

n

DL, = 2L [LOG) + L(Y) + L(z)]+ zk] L(a)+ Z L(e, | model)

i=1

4.9)
where L(a) is the code length of the estimated parameters {a.}", .

Generally, the description length is a measure for comparing not only the quality
of different approximations, but also different functional network models. The
description length measure can be calculated for any model. In addition, it is used to
compare models with different parameters, because it has a penalty term for overfitting.

Moreover, it is distribution independent. This makes the minimum description length a
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convenient method for solving the model selection problem. Accordingly, the best
functional network model for a given problem corresponds to the one with the smallest

description length value. To achieve this goal, the following methods can be used:

The Exhaustive Search: This method computes the MDL measure for all
possible models, and it chooses the one leading to the smallest value of the error measure.

The obvious shortcoming of this method is its computational complexity.

The Backward-Forward method: The backward process starts with the
complete model with all parameters, and it sequentially removes the one leading to the
smallest value of the MDL measure, repeating the process until there is no further
improvement in the measure. Next, the forward process is applied, but starting from the
final model of the backward process, and it sequentially adds the one variable that leads
to the smallest value of MDL measure, repeating the process until there is no further
improvement in the measure. This process is repeated until there is no further
improvement in MDL measure is obtained, whether by removing or by adding a single

variable.

The Forward-Backward method: The forward process starts with all models of
a single parameter, and it selects the one leading to the smallest value of L(X). Next, it
incorporates one more parameter with the same criterion, and the process continues until
there is no further improvement in L(X) can be obtained by adding an extra parameter to
the previous model. Then the backward process is applied, but starting from the final

model of the forward process, and sequentially removing the one variable that is leading
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to the smallest value of MDL, repeating the process until no improvement in L(X)is
possible. The double process is repeated until no further improvement in L(X)is

obtained, whether by adding or removing a single variable.

4.7 Estimation of Porosity and Water Saturation With FN

4.7.1 Problem Statement

The main task in this problem is to estimate porosity (¢) and water saturation (Sy)
(refer to as responses) from well logs data, (refer to as predictor variables), while
minimizing the error as much as possible using a selected criteria such as mean square

€ITor.

Mathematically, these relationships can be represented as:

Sw=f(X,...x;) and ¢@=Tf,(X,...X)

where

f,()& f,(.) are models

X; 1s the predictor variables from well logs

Sw and ¢ are estimated water saturation and porosity respectively.
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However, since a general procedure is presented, we can write a general representation

as:
Y=F(X,...X,)

where Y is the response, F is the model, and X, are the predictors.

The objective is to minimize [lz {y, =9}’ , which is the mean square of the error.
i=1

4.7.2 Functional Networks Initial Architecture

The first step in functional networks is the specification of the initial topology
which is problem driven. However, since there is no idea of the problem domain, models
such as associative and uniqueness (Castillo et al. 1992) were first tried without any
encouraging result. A recommended generalized model of the form (4.10) for this kind of

situation was then used:

Ok
y=) ... Cr @ (X))o, Ou (%)
Z‘ Z 1 o (4.10)

where C, are unknown parameters (coefficients) and the set of functions ¢ =

{ors(Xs), rs =1,2,........ gs }, s= 1,2......k are linearly independent. For simplicity, Figure

5.1 shows the corresponding generalized model in equation 4.10 with two input variables.
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Figure 5.1: Generalized functional network in equation 4.10 with two inputs

4.7.3. Uniqueness of Representation

After selection of the model, the uniqueness of representation needs to be checked
before the neural functions are learned from data. This uniqueness property is very
important for some estimation methods that solve systems of equations. To check for the

uniqueness of generalized model in equation 4.10, we assumed there are two sets of

G Ok g Ok
D D Co @i (X)X =D e D Cl P (XD eee g (%)
r=l kel r=l kel (4.11)

DD Co e =C P (X P, (X)) =0 (4.12)
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Since the family of functions ¢s are linearly independent, then

Cl’l 4444444 Ik _C M. rk = 0 for all rl’ ng _____ rk' Thls lmplles Cn 4444444 Ik = M. rk for all

1,00 ... rx. Hence equation (4.10) is a unique representation.

4.7.4 Simplification of the Model

For the problem concerned in this study, the model represented by equation 4.10
was simplified further to reduce the complexity of terms to be estimated, by assuming
that all the coefficients of the cross-multiplication terms between the function of different

variables other than one is zero. This reduces equation 4.10 to the form
y=h(x)+h(X)+...h(X) (4.13)

where h(x) denotes the sum of the function basis for each predictor variable with

coefficients to be learned. This can be written as:

G 9, Ok
Y= .Cotr,(X)+ D Crotdr, (%) + e D Cron (%)
ri=l ra=| rk=1 (4 14)

This can be written in condensed form as:

(4.15)
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Or simply as:

s Ok
y :chkr¢kr (Xk)

k=t 1 (4.16)

Figure 5.2 shows the functional networks with two predictor variables for
equations 4.1)-4.1). The uniqueness of equation (4.16) follows that of the original

generalized model, which is means this simplified model is also unique.

Figure 5.2: Simplified generalized model with k=2 and q;=0,=q

Note that without loss of generality, since the first term of all the basis functions starts
with a constant and the sum will also give a constant, the constant term can be included

only in the hy(xy).
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4.7.5 Learning procedure for the simplified model

Let D = {yi, Xi1, Xi2yeer-... Xikgi =1,2, ... ,N } denotes the available data set, which
consists of n observations of the response (output) and k predictor variables (inputs).

Then, for the i observation in D, we have for the general case of the simplified model as:

s Ok

yi :chkrgokr (Xik)v i=1,2,....n

k=t v (4.17)

Since the combinations of linearly independent functions (¢x) are known, our
goal is only to learn the coefficients Cy. Examples of linearly the independent function

used in this study include:

1). Polynomial family

2). Exponential family
o={1, ex, e-x, e2x, e-2X,.....egx, e-gx;}
3). Fourier family
o= {1, sin(x), cos(x), sin(2x), cos(2x),------ sin(gx), cos(gx)}

4). Logarithms function
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o= {1, log(x+2), log(x+3), ...... , log(x+q)}

Assuming that the model in equation 4.17 provides an acceptable approximation
to the relation between the response and the predictor variables, then we can write 4.17 in

matrix form as:
Y=Wp5 (4.18)
The error & between the real output Y and the estimated output Y is thus given by:
e=Y-Y=Y-W§g (4.19)

Using the least square optimization technique, we can learn the coefficients by

minimizing the error (g).
L=c'e=(Y-WpAB)'(Y-W}) (4.20)
B=WW)"WY) (4.21)

Solving equation 4.2 gives the solution to the unknown coefficients, £ in

equation 4.1) or coefficients Cyr in equation 4.1. The learning algorithm is summarized in

Figure 4.4.
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Step 1:
From the training set D = {yi, Xi1, Xi2,-.-.... Xik; 1 =1, 2, .....,n } denotes
the available data set, which consists of n observations of the response (output)

and k predictor variables,

Select the set of linearly independent functions, (¢), and the degree of
approximation (q).

Compute matrix w of size n x (q+1)* from ¢, and A=w'w
Step 2:

Initialize the matrix S of size (q+1)*
Step 3: Compute B=w'Y, f=A"'B
Compute the model Y =w

Step 4: Select the Best coefficients from w using MDL

Compute RMSE

Compute MDL as | — %Jr %log(R MSE)

Using any of the search methods in section 4.6, select the Best coefficients from
w with the smallest L

Step 5. Validate
Test the model with testing set

If satisfactory, end if not repeat the process again

Figure 5.4 Learning algorithm for porosity and water saturation functional networks
model




CHAPTER FIVE

PREDICTION OF POROSITY AND WATER

SATURATION

5.1 Overview

The main contribution of this thesis is to investigate and develop some recent
advances in neural networks (such as functional networks, cascaded correlation neural
networks, and polynomial networks) to estimate porosity (¢) and water saturation (Sy) for

reservoir rock characterization.

In this chapter, we present the implementation process for estimation of formation
porosity (¢) and water saturation (Sy) from well logs based on the framework discussed
in the chapter 3, 4 and 5. Empirical results are presented from the implementation of
functional networks (FN) and other methods, including cascaded correlation neural
networks (CCNN), general regression neural networks (GRNN), polynomial networks

(POLYNET) as well as standard feed forward neural networks.

71
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5.2 Data acquisition and Implementation process

This study uses a data set from the Middle Eastern region which consists of well
logs, core porosity and water saturation from 206 and 211 observations of two wells
labeled A and B of respectively. We investigate these data sets, and we perform the
required statistical analysis plots to determine the hidden pattern of the relationship
among the actual outputs and the provided input features. This helps us to get more
knowledge about all the data. The two wells were combined together and divided
randomly into two sets, training and testing set of 70% and 30% respectively. The
training set was then used to build the model while the testing set was used to evaluate
the predictive capability of the model. For investigating prediction of porosity, six well
logs namely; Sonic log (DT), Neutron log (NPHI), Density log (RHOB), Gamma Ray
(GR), Resistivity (Rt), and Photoelectric Factor log (PEF) were used as inputs to all the
networks. Five inputs namely Neutron log (NPHI), Density log (RHOB), Gamma Ray
(GR), Resistivity (Rt), and Photoelectric Factor log (PEF) were used for the prediction of

water saturation. Statistical descriptions of the data are given in Tables 5.1 to 5.3.

In order to make sure the predictors variables are independent from measurement
units (since they are of different units), the predictor variables (inputs) were normalized

to interval [0, 1] by using the formula:

Id -
rew X0 —min(X)

%  max (x)—min(x) (5.1)
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To determine the performance and accuracy of the models, we made use of some
the statistical quality measures mentioned in Chapter two, namely: correlation coefficient,
absolute relative errors, average absolute error, and root mean squared error. A good
model should have a high correlation coefficient (CC) and a low root mean square error

(RMSE), an average absolute error (EA), and average absolute relative errors (ER).

Table 5.1: Statistics of the combined wells A and B

LOG TYPE MIN MAX AVERAGE | STDEV
(Predictors)
Sonic Travel time | 50.00948 | 85.73618 | 64.39576 9.759414
(DT)
Neutron porosity 0.011684 | 0.265368 | 0.122452 0.063873
Bulk density 2.20866 | 2.822594 | 2.483926 0.137241
(RHOB)
Gamma Ray 3.487981 | 27.01702 | 11.65997 3.963161
Resistivity 1.592936 | 165.3348 | 22.21751 19.8768
Photoelectric 2.693318 | 5.512973 | 4.272576 0.516099

Factor (PEF)




Table 5.2: Statistics of well A

LOG TYPE MIN MAX AVERAGE | STDEV
(Predictors)
Sonic Travel time | 50.00948 | 83.64293 | 65.11951 10.02312
(DT)
Neutron porosity 0.011684 | 0.233358 | 0.121226 0.063654
Bulk density | 2.217509 | 2.732041 | 2.467093 0.14167
(RHOB)
Gamma Ray 3.487981 |22.17721 | 11.01905 3.724572
Resistivity 5.962086 | 165.3348 | 23.35686 2147114
Photoelectric 2.88618 | 5.39553 | 4.375203 0.47247
Factor ( PEF)
Table 5.3: Statistics of well B

LOG TYPE MIN MAX AVERAGE | STDEV

(Predictors)
Sonic Travel time | 50.02477 | 85.73618 | 63.68916 9.465285
(DT)
Neutron porosity 0.025846 | 0.265368 | 0.123649 0.064215
Bulk density | 2.20866 | 2.822594 | 2.50036 0.131033
(RHOB)
Gamma Ray 5.546964 | 27.01702 | 12.2857 4.095807
Resistivity 1.592936 | 115.2886 | 21.10515 18.16862
Photoelectric 2.693318 | 5.512973 | 4.17238 0.537877

Factor (PEF)
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5.3 Experimental Results Using Functional Networks

The function network model described in section 5.4 was implemented by trying
all basis functions given in section 5.5. First, different basis was used for each function in

equation 5.4. Secondly, the same basis was used for all the functions (h,(X,),.....n,(X,)) in

order to select the one that will give best approximation. The coefficients of the network
were optimized by the backward-forward search method by using the criterion of
Minimum description length (MDL). This criterion determines the best coefficients
contributing to the network, and it chooses the best functional basis (the one with lowest
value of MDL as described in section 4.6). However, in both cases (estimation of
porosity and water saturation), it is found that using different basis functions does not
give good approximation compared to having same basis functions. Therefore, we

present only the results second try (same basis functions).

5.3.1 Porosity Estimation Results

The functional network model is able to predict formation porosity with the
Fourier basis function as the best selected basis, producing a root mean square error
(RMSE) of 0.0293 and a correlation coefficient (CC) of 0.9158 for the training set, but
RMSE of 0.0245 and CC of 0.9343 for the testing set. The results for the estimation are
shown in Table 5.2 while Figures 5.1a and 5.1b show the performance plot for the best
selected basis function (Fourier basis). Table 5.2 shows that the Fourier basis function is

the best basis, as it achieved the highest testing set correlation and lowest RMSE. For the
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sake of simplicity, performances of other basis functions are shown in appendix A. The
results show that there is a good matching between the core porosity and the estimated
porosity. Equation 5.2 shows the relationship between the predictor variable and the core

porosity for the best model.
y= h1(X1) + hz(xz) + h3(X3)+ h4(X4) + hs(xs) + hé(xé) (5.2)

where

h (%) =-0.42587+0.73647sin(2x, ) +0.40639 cos(2x,)
—0.36971sin(3x,)

h,(x,) =0.33693sin(x,)—0.10597sin(2x, )

h,(%;) =1.638sin(x;) —1.4767sin(2x,)+0.43745sin(3X,)

h,(x,)=0.023313cos(2x,)

h, (%) =0.028385sin(2x;)

h (%) =0.029636sin(2x, )

Table 5.4 RMSE and correlation coefficient (CC) of different basis functions used for Porosity estimation

MODEL Training Set Testing Set

Function RMSE CC RMSE CC
Fourier 0.0293 0.9158 0.0245 0.9343
Exponential | 0.0292 0.9159 0.0248 0.9332
Polynomial | 0.0300 0.9158 0.0249 0.9314
Logarithm | 0.0302 0.9100 0.0247 0.9328

Poly&Log | 0.0294 0.9148 0.0247 0.9331
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5.3.2 Water saturation Estimation Results

Similarly, water saturation is determined with the same model as presented in
section (5.4) using five log inputs (NPHI, RHOB, GR, Rt, and PEF). The model is able to
predict water saturation with logarithm function as the best selected basis function,
achieving a root mean square error, (RMSE) of 0.1143 and correlation coefficient (CC)
of 0.9491 for the training set, but RMSE of 0.0805 and CC of 0.9743 for the testing set.
The results for the estimation are shown in Table 5.3. Figures 5.2a & 5.2b show the
performance plot for the best selected basis within the function basis. Also, performances
of other bases were shown in appendix for simplicity. The results also show that there is a
good match between the core and estimated water saturation. Equation 5.3 shows the
relationship between the predictor variable and the water saturation for the best selected

model.

Table 5.5: RMSE and CC of different basis functions used for water estimation

MODEL Training Set Testing Set

Function RMSE CC RMSE CC
Fourier 0.1076 0.9549 0.0866 0.9730
Exponential | 0.1075 0.9549 0.0864 0.9702
Polynomial | 0.1150 0.9483 0.0827 0.9730

Logarithm 0.1143 0.9491 0.0805 0.9743
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y=hl(X1)+hz(X2)+h3(X3)+h4(X4)+h5(X5) (53)

where

h(X)=974.02—25491og(X, +2)+9745.6log(x, +3)—7%42log(X +4)
h,(x,)=—391042log(x, +3)+512.75log(X, +4)

h,(x,) =1441.6log(x, +2)—5683.3log(X, +3)+4709.41og(x, +4)
h,(x,) =—2053.4log(x, +2)+7943.3log(x, +3)—65171log(X, +4)

h(x)=-2.0153log(X; +2)
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Figure 5.2a: Performance plot for estimated water saturation using FN
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Scatter Plot of FN for Training Set
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Figure 5.2b: Scatter plot for estimated water saturation versus water saturation
using FN

5.4 Experimental Results Using CCNN

For the prediction of porosity from well logs by using CCNN, we tried different
numbers of neurons in the hidden layer and we found the optimum to be a single hidden
layer with five neurons. The hidden layer used the Gaussian activation function, while the
output layer used the sigmoid function and it trained up to 250 epochs. The water
saturation network, on the other hand, used ten neurons in the hidden layer with the
Gaussian activation function and the linear function at the output layer. The results are
shown in Figures 5.3 and 5.4 for porosity and water saturation respectively. Table 5.4

summarizes the result from the networks.
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Table 5.4: Models performance for porosity and water saturation using CCNN
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scatter plot of CCNN for Training Set
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Figure 5.4b: Scatter plot for estimated water saturation versus water saturation using
CCNN

5.5 [Experimental Results Using GRNN

GRNN was also designed to determine porosity and water saturation as done in
previous sections. The network structure was determined after a number of trials of
different numbers of spread centers. A spread of 0.07 was selected for porosity
prediction, while a spread of 0.055 was chosen for prediction of water saturation. The

summary of the results is shown in Table 5.5 and illustrated in Figures 5.5 and 5.6 below.



Table 5.5: Models performance for porosity and water saturation using GRNN

TRAINING TESTING

MODEL | Ej Er RMS CC Ea Er RMSE
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84

CC
0.9003

0.9716



Figure 5.5b: Scatter plot for estimated porosity versus Core porosity using GRNN
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scatter plot of GRNN for Training Set
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Figure 5.6b: Scatter plot for estimated water saturation versus water saturation using
GRNN

5.6 Experimental Results Using Polynet

For prediction of porosity and water saturation by using polynomial networks,
two hidden layers were used. For porosity networks, the first layer and second layer were
constructed by only 2 nodes and 1 node respectively. In water saturation network 8 nodes
were used in the first layer and 2 nodes were found to be appropriate for the second layer.

Table 5.6 summarizes the results and Figures 5.7 and 5.8 show the scatter plots.



Table 5.6: Models performance for porosity and water saturation using PolyNet

MODEL | Network

Porosity

Water
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Figure 5.7b: Scatter plot for estimated porosity versus Core porosity using Polynet
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Scatter Plot of Polynet for Training Set
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Figure 5.8b: Scatter plot for estimated water saturation versus water saturation using
Polynet

5.7 Experimental Results Using Feedforward Neural Networks

To make clear the advantages or disadvantages of the models above for standard
feed forward neural networks, we also developed a feed forward neural network, FFNN,
for the same purpose. After some trial-and-error, and experiences derived from cascaded
correlation neural networks, a network of the same structure as CCNN was used but with
the LM training algorithm. The hidden layer used tan-sigmoid while the output layer used
log-sigmoid. The network was trained with 500 epochs. Table 5.7 presents the summary

of the result obtained and Figures 5.9 and 5.10 show the plot with core values.



Table 5.7: Models performance for porosity and water saturation using FFNN

TRAINING TESTING

MODEL | Network | Ex Er RMSE CC Ea Er RMS

Porosity | 6-5-1 0.0186 0.2599 0.0265 0.9316 | 0.0210 0.2287 0.0286

Water 5-10-1 0.0222 0.1016 0.0353  0.9946 | 0.0495 0.1567 0.0807
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Figure 5.9a: Performance plot for estimated porosity using FFNN
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Figure 5.10b: Scatter plot for estimated water saturation versus water saturation using

FFNN



CHAPTER SIX

PERFORMANCE ANALYSIS AND

COMPARATIVE STUDIES

6.1 Overview

The first objective of this thesis is the development and investigation of functional
networks and other forms of recent advances in neural networks for the estimation of
reservoir rock porosity and water saturation. The other objective is to compare their
performance. In this regard, we present the comparison between the techniques presented
in Chapter six. Furthermore, we also present the comparisons of the best model(s) with

empirical models (equations 2.1 and 2.2).

We compare the performance and accuracy of all the models presented in chapter
six in four stages. The first stage involved the performance of all the models with the
combined well A and B as presented in chapter six. In the second stage, each well was
run on the models to determine further the performance and the robustness of each
model. The third stage involved comparing the best selected model(s) from the first and
second stages with the empirical models discussed in Chapter two (equations 2.1 and

2.2). In the last stage, a test well T2, which did not involve in the training of the model,
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was tested with the best selected model(s) from the first and second stages. Results from

these four stages are discussed below.

In the first stage, the results from the models as presented in chapter six are very
close but the functional networks modeling scheme outperforms all other techniques. The
model (functional network) shows a high accuracy in predicting the porosity and water
saturation values. It achieves the lowest network weights (N.wgt) with the lowest root
mean square error, and the highest correlation coefficient for the testing case (Table 6.1).
Functional network also shows relatively low execution time (Ex. Time). Scatter plots
(Figure 6.1 and Figure 6.2) of the RMSE versus the CC for all the computational
intelligence models is drawn to show the pictorial view of the performance. Each
modeling scheme is represented by a symbol, and the best modeling scheme should
appear in the upper left corner of the graph. We observe that the symbol corresponding to

functional networks scheme falls in the upper left corner.

Table 6.1A: Models performance for porosity

Training Testing
MODEL N.Wgt RMSE CC Ex. Time | RMS CC Ex. Time
FN 12 0.0293 09158 1.278 0.0245 0.9343 0.01592
FFNN 35 0.0265 0.9316 6.975 0.0286 0.9043 0.1643
CCNN 35 0.0257  0.9268 8.75 0.0259 0.9260 0.010
GRNN 350 0.0145 09732 0.529 0.0329 0.9003 0.0341

POLYNET | 18 0.0311  0.9040 0.2103 0.0245 0.9328 0.00570



MODEL

FN

FFNN

CCNN

GRNN

POLYNET

Table 6.1B: Models performance for water saturation
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Training Testing
N.Wgt RMSE CC Ex. Time RMSE CC Ex. Time
13 0.1143 0.9491 0.1809 0.0805 09743 0.01528
60 0.03525 0.9946 7.7346 0.0807 09681 0.02258
60 0.0866 0.9706  10.08 0.1048 09596 0.0089
350 0.0476 0.9907 0.7482 0.0858 09716 0.04786
60 0.1194 0.9346 0.3036 0.1013 09592 0.003093
Models Performance for porosity

(Combined Well)
__ 094 =
% 0.93 =
§ 0.9 —B—FN
% 091 —— FFNN
§ 0.9 A < —<—CCNN
2 089 —#—GRNN
g 0 0.01 0.02 0.03 0.04 —®—polynet
© Root mean square error (RMSE)

Figure 6.1: Scatter plot of CC versus RMSE for porosity prediction on testing case for all
models
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Figure 6.2: Scatter plot of CC versus RMSE for water saturation prediction on testing
case for all models

In the second stage, we tested well A and B separately on all the models
developed in the first stage. This was to test the robustness of the models, especially that
of FN, which showed the best performance in the first stage. Here, it was observed
generally that the performance of the models in well A is lower than that of well B
especially in the prediction of porosity. The statistics of these wells were compared to
those of the combined well, and it is found that the statistics of well B dominates the
training data. This might be a reason for the better performance in well B. Although all
the models show close performance, GRNN result takes a leading role in this stage. The
results also show that GRNN is consistent. This indicates that GRNN is more robust than
FN and other models. However, if we consider the GRNN model complexity from the

network weights (N.Wgt) and the execution time (Ex. Time) to that of FN, there may be
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need to make a compromise between accuracy and time complexity. The plot of each

models are presented in appendix B. However, the scatter plots for the comparison are

shown in Figures 6.3 to 6.6 and Tables 6.2 and 6.3.show the summary of the results.

Table 6.2: Models performance for porosity and water saturation for well A

MODEL

FN

FFNN

CCNN

GRNN

POLYNET

RMSE

0.0399

0.0480

0.0357

0.0312

0.0396

Porosity
CC
0.8538
0.8589
0.8761
0.9048

0.86873

Ex. Time

0.01844

0.02003

0.0042

0.066212

0.00147

RMSE

0.1390

0.1849

0.1594

0.1031

0.3368

Water saturation

CC

0.9532

0.9193

0.9505

0.9696

0.92396

Ex. Time

0.0156

0.02702

0.0072

0.0873

0.00912



Table 6.3: Models performance for porosity and water saturation for well B

Water saturation

Porosity
MODEL RMSE CC Ex. Time RMSE CC
FN 0.0194 0.9613 0.01628 0.0310 0.9211
FFNN 0.0248  0.9406 0.0160 0.1014  0.9556
CCNN 0.0241  0.9405 0.0064 0.1417 0.9136
GRNN 0.0149 09776 0.05353 0.0895 0.9584
POLYNET | 0.022 0.94996 0.00171 0.1413  0.90785
Models performance for poroisty (well A)

__ 091

,3, 0.9 ~

E 0-89 —o—FN

S 088

§ 0.87 - —B—FFNN

E 0.86 . = CCNN

‘_ﬁ 0-85 T T 1 +GRNN

§ 0.02 0.04 0.06 e POLYNET

Root Mean Square Error (RMSE)

Figure 6.3: Scatter plot of CC versus RMSE for porosity prediction on well A for all

models

Ex. Time

0.02172

0.0274

0.00812

0.08914

0.00927
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Models performance for water Saturation (well A)

0.98
0.97
0.96
0.95
0.94
0.93
0.92
0.91

* ——FN
~8—FFNN
X CCNN
B
, , , ‘ GRNN
0 0.1 0.2 03 04  —%—POLYNET

Root Mean Square Error (RMSE)

99

Figure 6.4: Scatter plot of CC versus RMSE for water saturation prediction on Well A for

all models
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Figure 6.5:

Scatter plot of CC versus RMSE for Porosity prediction on Well B for all

models
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Figure 6.6: Scatter plot of CC versus RMSE for water saturation prediction on Well B for

all models

In the third stage, the best models from the first and second stages (FN and

GRNN) were compared with the empirical models (EM) (calculated porosity (cal_por)

and water saturation (cal_swt)). The plots below (Figures 6.7 to 6.14) show that FN and

GRNN are better than EM even in porosity prediction where the accuracy is low. This

may be because the uncertainty in the empirical models can not be handled accurately or

intelligently. Therefore, FN and GRNN can always be used in place of these empirical

models.
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Table 6.4: FN, GRNN and EM models performance for porosity and water saturation for well A

Porosity Water saturation
MODEL | Ex Er RMS CC Ea Er RMSE CC
FN 0.0293  0.499 0.03840 0.8577 0.1417 0.666  0.1849 0.9489

GRNN 0.0227 0303 0.0312 0.9048 0.0584 0.2689 0.1031 0.9696

EM 0.0351 0.510 0.04391 0.8317 0.325 0.785 0.2187 0.8003

Table 6.5: FN, GRNN and EM Models performance for porosity and water saturation for well B

Porosity Water saturation
MODEL | E\ Er RMSE CC Ea Er RMSE CC
FN 0.01613 0.166 0.02057 0.95658 0.1102 0.406 0.147 0.90401

GRNN 0.0104 0.105 0.0149 09776  0.0533 0.141 0.089 0.9584

EM 0.01923 0.193  0.02815 0.92134 0.2541 0.512 0.236 0.80144
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Performance of Models for Well A
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Figure 6.9: Performance of FN, Calculated water saturation and the core water saturation
for well A
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Figure 6.10: Performance of FN, Calculated water saturation and the core water
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Figure 6.11: Performance of GRNN, Calculated porosity and the core porosity

for well A
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Figure 6.12: Performance of GRNN, Calculated porosity and the core porosity

for well B
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Figure 6.13: Performance of GRNN, Calculated water saturation and the core water
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In the last stage of our comparison, the FN and GRNN models were tested with
another well label T2 whose statistics are shown in Table 6.6. This well did not
participate in the training of the models. This is to further test for the generalization of
these models and to particularly determine if the model performance can still be accurate
or acceptable on a new well belonging to the same reservoir. The success of this will go a

long way to save money and time for the core testing of the new well.

The results of the two best selected models (FN and GRNN) on well T2, as
observed clearly from the Table 6.7 and Figures 6.15 to 6.18, are not better than the
empirical models. In fact the EM tends to have slightly lower errors and better correlation
coefficients. This may be because the uncertainty in the model variables is properly taken
care of in this case. However, the results of the FN and GRNN are still acceptable,
especially those of the functional network models which are better and can therefore be

recommended for nearby wells whose statistics are close to the training data.

Table 6.6: Statistics of Well T2

LOG TYPE MIN MAX AVERAGE | STDEV
(Predictors)
Sonic Travel time | 51.21629 | 82.67955 | 65.06333 8.247997
(DT)
Neutron porosity 0.020514 | 0.273245 | 0.126999 0.056829
Bulk density 2.185501 | 2.7303 2.472135 0.126199
(RHOB)
Gamma Ray 8.7209 35.82097 | 16.86412 5.156644
Resistivity 5.600847 | 146.1045 | 26.3729 22.11964
Photoelectric 2.97236 | 5.429557 | 4.14652 0.483861
Factor (PEF)




107

Table 6.7: Models performance for porosity and water saturation on Test well T2

Porosity Water saturation
MODEL | E, Er RMS CC Ea Er RMSE CC
FN 0.0229 0.3396 0.0297 09141 0.1603 0.796 0.211 0.8883
GRNN 0.0224 0.2442 0.0311 0.8961 0.147 0.727 0.213 0.8719
EM 0.0185 0.1001 0.0289 0.94771 0.0616 0.565 0.096 0.88385
Performance of Models on Test Well
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Figure 6.15: Performance of FN, Calculated porosity and the core porosity on Test well

T2
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Figure 6.16: Performance of GRNN, Calculated porosity and the core porosity on Test
Well T2
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Figure 6.17: Performance of FN, Calculated water saturation and the core water
saturation on Test well T2
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Figure 6.18: Performance of GRNN, Calculated water saturation and the core water
saturation on Test Well T2

6.2 Discussion

The comparative performance analysis of the five models investigated in the
previous section gives a lucid picture of the best models to use for estimation of porosity
and water saturation and also the conditions that surrounds their use. For clarity, the
summary of the performance is shown in Table 6.8. In the performance analysis, although
GRNN and FN are selected to be the best models from the five studied models, the three
other models (CCNN, Polynet & FFNN) are also adequate for the prediction of porosity
and water saturation though with some deficiency as shown in Table 6.8 (e.g. robustness

and number of network weight).

Furthermore, GRNN and FN show different strengths by the evaluation criteria as
shown in Table 6.8. FN is better than GRNN in terms of the sensitivity to a new well, the

number of network weights, the testing time, and the insight into the network. GRNN is
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better in terms of training time, accuracy, and robustness. One of the strongest points of
FN that is not shown in Table 6.8 is the access to the input/output relationship of the
network, which can be obtained from the insight of the network. For example, equation
6.2 shows that the first three variables (DT, NPHI and RHOB) are more significant in the
prediction of porosity while in equation 6.3 one variable (PEF) is insignificant in the
prediction of water saturation. The result of using the significant variables, as shown in
appendix C, is as good as using six and five variables for the prediction porosity and
water saturation respectively. This is an indication that trade-off in using either the

GRNN or the FN model should be considered.

Table 6.8: Brief Summary of all models performance for porosity and water saturation

Model FFNN | CCNN | polynet FN GRNN

Measure
Accuracy fair fair fair good very good
No. of Network large large medium | small very large
Weight
Training Time high Very very low | low low
Testing Time high low very low | low very high
Robustness weak weak weak good very good
Sensitivity to new | - - -
well Very good | good




CHAPTER SEVEN

CONCLUSION AND RECOMMENDATIONS

7.1 Summary

This study investigated the application of recent advances in neural networks
techniques in developing an accurate model for the prediction of rock properties (porosity
and water saturation). A simplified functional networks (FN) model was developed for
the prediction of porosity and water saturation. Four basis functions were tested as the

training functions on the model, and the best was selected.

The other part of the study focused on designing and investigating Cascaded
Correlation neural networks (CCNN), Polynomial neural networks (Polynet), General
regression neural networks (GRNN), and Feedforward neural networks (FFNN) for the

prediction of these rock properties.

In all the modeling techniques, data from real carbonate field were used. Three
wells were studied, labeled; well A, well B and well T2. While data from well A and B
participated in the training of the models, well T2 did not but it was used for further tests

on the models to check their robustness.
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Finally, comparative analyses were carried out between these models, to

determine not only the most accurate on the trained wells but also the robustness of the

model on untrained well. The section below gives the conclusion from the study.

7.2  Conclusion

Based on the research, experiment and analysis discussed previously in this study,

the following conclusions are reached:

Generally, all the techniques investigated in this study, (GRNN, FN, polynet
and CCNN) can be said to at least match FFNN in accuracy, and they are
better in their design and in the speed of training in predicting porosity and
water saturation. However, since CCNN is not free from the problem of
random initialization of weights, its result is not unique, which is similar to
that of standard FFNN.

Functional network is a good model, but not robust enough compared to
GRNN if the spread parameter of GRNN is well chosen. However, the training
of FN is much faster.

FN proved to have good generalization, better than GRNN. According, FN can
be used for nearby wells with statistics close to those of the training data.

FN shows that three inputs (DT, NPHI and RHOB) are adequate for the
prediction of porosity, while four inputs (NPHI, RHOB, RT and GR) are

adequate for the prediction of water saturation.
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¢ GRNN can be used when more accuracy is required on the trained well only.

e Feedforward neural networks (FFNN) can have good generalization if there is
enough time and knowledge of the network topology.

e (ascaded correlation neural network (CCNN) can be a guide in designing
FFNN as it gives a picture of the topology automatically but it is not always as

accurate as FFNN.

7.3 Recommendations for Future Work.

Although good results were obtained from the investigation carried out in this
thesis, better accuracy and generalization may be obtained from the following

recommendations:

1) Investigating combined networks in the form of committee machine or modular
networks where different networks such as Ploynet, FN and GRNN are combined.
These three models were suggested because of the unique results that can be
obtained from them. However, many factors need to be considered in developing

such architecture, including:

o There are several different methods of combining networks, depending on
the task at hand.
o Determination of training strategy for different networks to achieve more

accurate network model can be challenging. For example, do we train each
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network with the same data set, or different data sets, with overlapping or
without overlapping?

o Determination of the techniques to combine is also not an easy task.

° Model complexity versus gained accuracy is another factor to consider.

2) Investigating means to establish a relationship between a trained model and the
data of a new well such that the model can be adjusted by a factor to suit the

statistics of the new well.

3) It is also recommended to explore more FN models and basis functions. Other
optimization techniques, besides the least square method, may also be employed

for training.

It i1s hoped that implementation of these recommendations will lead to better

models for the prediction of rock properties.
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APPENDIX A: Performance of other Basis Functions
used for Functional Networks in the Combined Well

Figure A1l:

Figure A2:
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Scatter Plot of FN for Training Set
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Figure A3: Scatter plot for estimated porosity versus Core porosity using Exponential

function
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Figure A4: Scatter plot for estimated Water Saturation versus Water Saturation using

polynomial function
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Figure AS5: Scatter plot for estimated Water Saturation versus Water Saturation using
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APPENDIX B: Performance of All Models on
Wells A and B
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Figure B1: Scatter plot for estimated Porosity versus Core Porosity using functional
Network function on Well A

Performance of FN for Well B only
0.4 T T

—&— Predicted

0.3 ——— Core data

0.2k

porosity

0.1

. . .
0 50 100 150 200 250
Data Points

Performance of FN for Well B only
0.4 T T T T
CC=0.9613

0.3- ) E

0.2-

0.1f

Estimated porosity

0 L ' L L L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Core porosity

Figure B2: Scatter plot for estimated Porosity versus Core Porosity using functional
Network function on Well B



Water Saturation

Estimated Water Saturation

Performance of FN for Well A only

0.5

& | —©— Predicted

124

{ 1 1
0 50 100 150 200

250

Data Points
Performance of FN for Well A only
1
T T T T T T T ; &5
O
CC=0.8538 o0 L ov 5 ©
o % o 00
O O
a o ,

@l

L L L
0.3 0.4 0.5 0.6 0.7 0.8 0.9
Core Water Saturation

Figure B3: Scatter plot for estimated Water Saturation versus Core Water Saturation

Water Saturation

Estimated Water Saturation

0.5

0.5

using functional Network function on Well A

Performance of FN for Well B only

TR

s

—<— Predicted
——— Core data

©
0.8
200 250
Data Points
Performance of FN for Well B only
1 T T T T T =
CC=0.9211 o O
o ;Q, o o
O
1 1 1 1 1 1
0.4 0.5 0.6 0.7 0.8 0.9 1

Core Water Saturation

Figure B4: Scatter plot for estimated Water Saturation versus Core Water Saturation

using functional Network function on Well B



125

Performance of GRNN for Well A only
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Figure B7: Scatter plot for estimated Water Saturation versus Core Water Saturation
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Performance of CCNN for Well A only
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Performance of CCNN for Well A only
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Figure B16: Scatter plot for estimated Water Saturation versus Core Water Saturation

using CCNN on Well B
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Figure B18: Scatter plot for estimated Porosity versus Core Porosity using Polynet on

Well B
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Performance of Polynet for Well A only
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APPENDIX C: Result of FN with reduced inputs
from the combined well A and B

Table C1: The RMSE and correlation coefficient of different basis functions used for porosity (Three

MODEL
Function
Fourier
Exponential
Polynomial

Logarithm

predictors: DT, NPHI, RHOB)

N.Wght

11

12

Training Set

RMSE

0.0296

0.095

0.030

0.030

CC

0.9138

0.9141

0.9110

0.9104

Testing Set

RMSE CC
0.0244 0.9354
0.0243 0.9355
0.0247 0.9313

0.0248 0.9310

Table C2: The RMSE and correlation coefficient of different basis functions used for water saturation
estimation (Four predictors: NPHI, RHOB, GR, RT)

MODEL
Function
Fourier
Exponential
Polynomial

Logarithm

Training Set

RMSE

0.1105

0.1106

0.1187

0.1172

CC

0.9519

0.9524

0.9443

0.9465

Testing Set

RMSE CC
0.0856 0.9705
0.0844 0.9713
0.0824 0.9728
0.0810 0.9738
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