A Class-based Clustering Static Compaction
Technique for Combinational Circuits

Aiman El-Maleh and Yahya Osais

The 16th International Conference on Microelectronics, pp. 522-525, 6-8 Dec. 2004.

A CLASS-BASED CLUSTERING STATIC COMPACTION TECHNIQUE FOR
COMBINATIONAL CIRCUITS

Aiman H. El-Maleh and Yahya E. Osais

King Fahd University of Petroleum & Minerals, Computer Engineering Department, Dhahran 31261, Saudi Arabia

{aimane,yosais } @ccse kfupm.edu.sa

ABSTRACT

Static compaction based on test vector merging is a very simple
and efficient technique. However, for a highly incompatible test
set, merging achieves little reduction. In this paper, we propose a
new static compaction technique in which a test vector is decom-
posed into its atomic components before it is processed. In this
way, a test vector that is originally incompatible with all other test
vectors in a given test set can be eliminated if its components can
be merged with other test vectors.

1. INTRODUCTION

As chip sizes increase, the volume of test data rises sharply. This
results in a corresponding increase in test application time and
tester storage space. Compression and compaction algorithms are
used to reduce test data volume. In compression, test data is kept
compressed while it is stored in the tester memory and transferred
to the Chip Under Test (CUT). Then, it is decompressed on the
CUT. In compaction, however, test data is manipulated to drop un-
necessary data, provided that there is no drop in fault coverage.

Test compaction algorithms are either dynamic or static. Dy-
namic compaction algorithms are integrated into the test genera-
tion process. On the other hand, static compaction algorithms are
applied on test sets after they are generated.

According to [1], static compaction algorithms for combina-
tional circuits can be classified into three broad categories: (1)
Redundant Vector Elimination, (2) Test Vector Modification, and
(3) Test Vector Addition and Removal. In the first category, the
size of a test set is reduced by removing redundant test vectors. A
redundant test vector detects no essential faults. An essential fault
is a fault detected only by one test vector. Redundant test vectors
can be identified using a set cover, e.g. [2], or fault simulation,
e.g. [3]. In the second category, however, test vectors are modified
such that they can be merged together, e.g. [4], pruned, e.g. [5], or
decomposed, e.g. [6]. Finally, in the third category, new test vec-
tors are added to the given test set to remove some of the already
existing test vectors, e.g. [7].

In this paper, we propose a new static compaction algorithm
for combinational circuits. The algorithm is referred to as Class-
Based Clustering (CBC) and is based on Test Vector Decomposi-
tion (TVD). Algorithms based on TVD are considered an improve-
ment over merging-based static compaction algorithms.

The paper is structured as follows. First, we start with some
preliminaries necessary to understand our CBC algorithm. Then,
the CBC algorithm is described. After that, we discuss the experi-

mental results. Finally, we conclude by summarizing the results of
the paper and their significance.

2. PRELIMINARIES

TVD is the process of decomposing a test vector into its atomic
components. An atomic component is a child test vector that is
generated by relaxing its parent test vector for a single fault f. That
is, the child test vector contains the assignments necessary for the
detection of f. Besides, the child test vector may detect other faults
in addition to f. For example, consider the test vector ¢, = 010110
that detects the set of faults F,, = { f1,f2,fs}. Using the relaxation
algorithm in [8], £, can be decomposed into three atomic compo-
nents, which are (f1,01xxxx), (f2,0x01xx), and (f3,x1xx10). Ev-
ery atomic component detects the fault associated with it and may
accidentally detect other faults. An atomic component cannot be
decomposed any further because it contains the assignments nec-
essary for detecting its fault.

Given the set of components of every test vector in a test set, a
test vector can be eliminated if its components can be all moved to
other test vectors. Moving a component to a test vector is imple-
mented by merging the component with the destination test vector.
Even though the idea is very simple, it is not always possible to
move a component to a new test vector. This is because of two
problems: (1) blocking and (2) conflicting components. In the for-
mer, a component ¢; is blocked from being moved to a test vector
t when it becomes incompatible with it. ¢; becomes incompatible
with ¢ when another component ¢; that is incompatible with ¢; is
moved to ¢. In the latter, however, a test vector is uneliminatable if
it contains at least one conflicting component. A conflicting com-
ponent cannot be moved to any other test vector in the given test
set.

Definition 1 (Conflicting Component)

A component ¢ of a test vector ¢ belonging to a test set 7" is called a
Conflicting Component (CC) if it is incompatible with every other
test vector in 7.

The number of CCs in a test vector determines its degree of
hardness. The degree of hardness of a test vector is basically a
measure of how much hard a test vector is to eliminate. Test vec-
tors can be classified based on their degree of hardness.

Definition 2 (Degree of Hardness of a Test Vector)
A test vector is at the nt" degree of hardness if it has n CCs.

Definition 3 (Class of a Test Vector)
A test vector belongs to class k if its degree of hardness is k.

A CC can be moved to a test vector ¢t if the characteristics of
t is changed. That is, a CC ¢; is movable to a test vector ¢, if the
components in ¢ incompatible with ¢; can be moved to other test
vectors. The set of test vectors to which ¢; can be moved is re-
ferred to as the set of candidate test vectors of ¢;. A test vector
whose CCs are all movable is referred to as a potential test vector.

Definition 4 (Movable CC)

Let ¢; be a CC in a test vector ¢, 3 be a set of components in a
test vector ¢4 such that ¢; is incompatible with every component
¢;j in B, S; be the set of test vectors compatible with ¢;. Then, ¢;
is movable to tq4 iff S; # ¢ for every ¢; in .

Definition 5 (Set of Candidate Test Vectors of a CC)
The set of candidate test vectors of a CC c;, denoted by Scana(ci),
contains all test vectors to which ¢; can be moved.

Definition 6 (Potential Test Vector)
Let « be the set of CCs in a test vector ¢. ¢ is a potential test vector
that belongs to class |a] iff for every CC ¢; in v, ¢; is movable.

3. ALGORITHM DESCRIPTION

The CBC algorithm is shown as Algorithm 1 and proceeds as fol-
lows. First, the given test set is fault simulated without fault drop-
ping. This step is performed to find the number and set of test
vectors that detect every fault. Second, test vectors are sorted in in-
creasing order of their number of faults. Then, atomic components
of test vectors are generated. Component generation is performed
such that components are extracted from essential test vectors. An
essential test vector is a test vector that detects at least one essen-
tial fault. Components are generated as follows. For every fault
f detected by ¢, if the number of test vectors that detect f is one,
i.e. f is an essential fault, the component of f is extracted from
t; otherwise, the number of test vectors that detect f is reduced by
one. Therefore, a test vector that detects no essential faults is elim-
inated. The sorting step preceding component generation improves
the number of eliminated test vectors. Note that a component of a
fault is extracted from a test vector that detects a large number of
faults.

After obtaining the set of components of every test vector, test
vectors are sorted in decreasing order of their number of compo-
nents. This helps maximize the number of redundant components.
Redundant components are dropped using fault simulation with
dropping. After that, every test vector is reconstructed by merg-
ing its components together. Then, test vectors are classified and
processed.

Class zero test vectors are processed as shown in Algorithm
2. First, test vectors are sorted in increasing order of their number
of components. This way a test vector with a small number of
components has a higher chance of getting eliminated. After that,
for every test vector, its blockage value is computed. The blockage
value of a test vector ¢, denoted by TVB(), can be defined as the
sum of the blockage values of the individual components making

Algorithm 1 CBC(T)

1. Fault simulate T without fault dropping.

2. Sort test vectors in increasing order of their number of faults.
3. Generate atomic components.

4. Sort test vectors in decreasing order of their number of com-
ponents.

5. Remove redundant components using fault dropping simula-
tion.

6. For every test vector, merge its components together.

7. Classity test vectors.

8. Process class zero test vectors (see Algorithm 2).

9. For every test vector, merge its components together.

10. Reclassify test vectors.

11. Process class one test vectors (see Algorithm 3).

12. For every test vector, merge its components together.

13. Reclassify test vectors.

14. Process class ¢ test vectors, where ¢ > 1 (see Algorithm 5).

up t. This can be shown mathematically as follows.

NumComp

TVB({t)= Y. CB(c),
i=1

where C'B(c;) is the blockage value of component ¢; belonging
to the set of components of ¢ and NumComp is the number of
components making up .

C B(c;) is mathematically defined as follows.

CB(ci) = Min{CB(ci,t;)},

where C'B(c;, t;) is the number of class zero test vectors that will
be blocked when component ¢; is moved to test vector ¢;, t; be-
longs to Scomp(ci), and Seomp(c;) is the set of test vectors com-
patible with ¢;. Note that when computing C'B(c;, t;) only com-
ponents ¢, € ¢; such that Seomp(cr) = 1 and ¢ is in conflict
with ¢; need to be considered.

Components of a test vector whose blockage value is zero can
be moved without blocking any class zero test vector. Therefore,
for any class zero test vector whose blockage value is zero, its com-
ponents are moved to appropriate test vectors and then it is elim-
inated. A component ¢; is moved to a test vector ¢; in Scomp(c;)
such that CB(c;,t;) = 0. If there is more than one test vector,
a test vector with the smallest number of components is selected.
This is based on the assumption that a test vector with a small num-
ber of components has a smaller probability of conflicts with other
components. The blockage values of the other class zero test vec-
tors must be updated after merging the components of a class zero
test vector. Note that the blockage value of a class zero test vec-
tor ¢ needs to be updated if ¢ has at least one component ¢; whose
Scomp has been modified or ¢ receives new components. Besides,
the blockage value needs to be updated if ¢ has at least one compo-
nent ¢; in conflict with another component ¢; such that Scomp(c;)
has been modified and Scomp(c;) = 1.

Next, remaining class zero test vectors, having non-zero block-
age value, are sorted in increasing order of their number of com-
ponents. A remaining test vector ¢ can be eliminated if for every
component ¢; in ¢, Scomp(ci) # ¢. A component is heuristically
moved to a test vector with the smallest number of components.

Algorithm 2 Proc_Class_0_TVs

Algorithm 4 Merge_Class_1_Potential_ TVs

1. Sort class zero test vectors in increasing order of their number
of components.
2. For every class zero test vector, compute its blockage value.
3. For every class zero test vector ¢ whose blockage value is
Zero:
3.1. Move components of ¢ to appropriate test vectors.
3.2. Eliminate ¢.
3.3. Update Scomp of components belonging to other class
Zero test vectors.
3.4. Update the blockage values of other class zero test
vectors.
4. Sort class zero test vectors in increasing order of their number
of components.
5. For every remaining class zero test vector ¢:
5.1. If components of ¢ can be all moved:
5.1.1. Move components of ¢ to appropriate test vectors.
5.1.2. Eliminate ¢.
5.1.3. Update Scomp of components belonging to other
class zero test vectors.

Algorithm 3 Proc_Class_1_TVs

1. For every class one test vector ¢:
1.1. Find S¢qna of the CC.
1.2. If Scana # ¢, mark ¢ as potential.
2. For every class one potential test vector ¢:
2.1. For every test vector in S¢q 4, find the number of class
one potential test vectors whose CCs can be moved to it.
2.2. Sort test vectors in S¢qnq according to their types.
3. Sort class one potential test vectors in decreasing order of the
number of non-potential test vectors in Seq .
4. For every unprocessed class one potential test vector t},:
4.1. Merge tzl, (see Algorithm 4). Denote by ¢4 the test vector
to which the CC of t;, has been moved.
4.2 1f tzl, has been eliminated, then for every class one
potential test vector tf, whose CC can be moved to ¢4, merge
tr.

Scomyp Of every component must be updated after eliminating ev-
ery test vector.

After processing class zero test vectors, every test vector is
reconstructed by merging its components together. Then, test vec-
tors are reclassified. After that, class one test vectors are processed
as shown in Algorithm 3. Basically, for every class one test vector,
Scana Of the CC is found and potential test vectors are marked.
Then, for every test vector in S¢q 4, the number of class one po-
tential test vectors whose CCs can be moved to it is found. Be-
sides, test vectors in S.,,q Of every class one potential test vector
are sorted according to their types, i.e. a non-potential test vector
should come before a potential test vector. If two test vectors have
the same type, they are sorted in decreasing order of the number
of CCs that can be moved to every one of them.

After processing the S.,nq of the CC of every class one po-
tential test vector, class one potential test vectors are sorted in de-
creasing order of the number of non-potential test vectors in Scqng.
This is done to reduce the number of CCs that may be moved to

1. If the CC in ¢, is movable:
1.1. Move the CC to an appropriate test vector selected from
Scand-
1.2. Move the remaining components to appropriate test
vectors.

2. Reclassify test vectors.

Algorithm 5 Proc_Remaining_Classes

1. For every class 7, where ¢ > 1:
1.1. Find the set of class ¢ potential test vectors.
1.2. For every class ¢ potential test vector ¢,:
1.2.1. For every CCin t,:
a. Move the CC to an appropriate test vector; otherwise,
go to Step 1.2.
b. Reclassify test vectors.
1.2.2. If all CCs in ¢, have been moved:
a. Move remaining components.
b. Reclassify test vectors.

potential test vectors. After that, for every class one potential test
vector t;,, its CC is moved to a test vector selected from Seq 4, call
it t4, remaining components making up tzl, are moved to appropri-
ate test vectors, and test vectors are reclassified (see Algorithm 4).
Before moving a remaining component, test vectors in its Scomp
are sorted in decreasing order of their degree of hardness. This is
to avoid increasing the number of components of test vectors hav-
ing lower degrees of hardness since they have better chances of
getting eliminated. After ¢, is eliminated, for every test vector ¢;
whose CC can be moved to ¢4, tf, is processed in the same way as
tp-

After processing class one test vectors, test vectors are recon-
structed and then reclassified. Next, test vectors in class ¢, where
¢ > 1, are processed as shown in Algorithm 5. Basically, for every
class, if the number of potential test vectors is greater than zero,
potential test vectors are marked. Then, if all the CCs of a po-
tential test vector ¢ can be moved, ¢ is marked eliminated and its
components are moved to other test vectors. If at least one CC of
t cannot be moved, ¢ is skipped. Several heuristics can be tried
when moving a component. In our case, before moving a CC ¢;,
test vectors in Scqnq(ci) are sorted in decreasing order of the num-
ber of components incompatible with ¢;. Besides, before moving
a component ¢; that is not CC, test vectors in Scomp(c;) are sorted
in decreasing order of their degree of hardness. Note that test vec-
tors are reclassified after moving every CC and set of remaining
components.

4. EXPERIMENTAL RESULTS

In order to demonstrate the effectiveness of the CBC algorithm,
we have performed experiments on a number of the ISCAS85 and
full-scanned versions of ISCAS89 benchmark circuits. The exper-
iments were run on a SUN Ultra60 (UltraSparc I1-450 MHz) with
a RAM of 512 MB. We have used test sets generated by HITEC
[9]. In addition, we have used the fault simulator HOPE [10] for
fault simulation purposes and the test relaxation algorithm in [8]
for component generation.

Table 1. Results of applying CBC on test sets first compacted by ROF+RM.

Cet TS ROF RM CBC
#TVs | #TVs | #TVs # TVs Time (sec.)
After | After After Total
Class | Class | Remaining
0 1 Classes
2670 154 106 100 94 94 94 10
3540 350 33 80 78 78 78 13.02
5315 193 119 106 96 96 95 29.03
s13207.1f | 633 476 252 243 243 243 443
515850.1f 657 456 181 147 145 145 476.02
$208.1f 78 33 33 33 33 33 0.01
32711 256 115 76 66 65 65 15.95
$3330f 704 277 2438 226 223 223 27
$3384f 240 82 75 72 72 72 11.02
s38417f 1472 822 187 146 143 143 5750
$38584f 1174 819 232 159 153 153 8813
s4863f 132 65 59 52 52 52 24.04
$5378f 359 252 145 122 117 116 52
SG66OT 138 52 v 37 37 37 50.1
s0234.1F 620 375 202 168 166 163 136
In Table 1, we give the results of applying the CBC algorithm [2] Kwame Osei Boateng, Hideaki Konishi, and Tsuneo Nakata,
on test sets first compacted by ROF+RM!. The unspecified entries “A Method of Static Compaction of Test Stimuli,” in Proc.
in test vectors are randomly filled. The first and second columns of the Asian Test Symposium, Nov. 2001, pp. 137-142.
give the circuit names and 'ongmal test set'smes, respectlv'ely. The [3] Irith Pomeranz and Sudhakar M. Reddy, “Forward-Looking
third and fourth ?olumns give the test set. sizes .after applying RQF Fault Simulation for Improved Static Compaction,” 1EEE
ar}d RM, respectlvely. Columns ﬁv.e to eight give the test set sizes Transactions on Computer-Aided Design of Integrated Cir-
after processing test vectors belonging to' class zero, class one, and cuits and Systems, vol. 20, no. 10, pp. 1262-1265, Oct. 2001.
remaining classes, respectively. The runtime of the CBC algorithm)) .
is given under the column headed Total. [4] Jau-Shlen Chang.anq Chen-.Sha.ng”Lm, Test Set. Com-
As can be seen from the results, the CBC algorithm reduces [éactlont fo;(;;)n;b[l)nat}onal/'(lfljcuusl, d’g,EE Crans;c;tm;s on
omputer-Aided Design of Integrated Circuits and Systems,
the test sets by as much as 34%, e.g. 2.5% for c3540, 23.5%-f0r vol. 14, no. 11, pp. 1370-1378, Nov. 1995.
s38417f, and 34% for s38584f. It should be observed that the im-])
provements achieved after processing class i, where i > 0, are [5] Lakshmi N. Reddy, Irith Pomeranz, and Sl.thakar M Reddy,
very small “ROTCO: A Reverse Order Test Compaction Technique,” in
' Proc. of the EURO-ASIC Conference, June 1992, pp. 189—
194.
) 5. CONCLUSIQNS)) [6] Yahya E. Osais and Aiman H. El-Maleh, “A static test com-
In this paper, we have proposed an efficient static compaction tech- paction technique for combinational circuits based on inde-
nique for combinational circuits. The technique is based on de- pendent fault clustering,” in Proc. of the 10th IEEE Int’l
composing test vectors into their atomic components and classify- Conference on Electronics, Circuits, and Systems, Dec. 2003
ing them into classes that are processed to cluster the components (To Appear).
in such a way that results in a more compacted test set. Based on [7] Seiji Kajihara, Irith Pomranz, Kozo Kinoshita, and Sud-
experimental results, the proposed technique has achieved a test hakar M. Reddy, “On Compacting Test Sets by Addition and
set reduction of as much as 34% when applied on test sets initially Removal of Test Vectors,” in VLSI Test Symposium, April
compacted by ROF+RM. 1994, pp. 25-28.
[8] Aiman El-Maleh and Ali Al-Suwaiyan, “An Efficient Test
6. ACKNOWLEDGMENT Relax’ation’Tec’hniqu? for Combinational and Full-Scan‘ Se-
The authors would like to thank King Fahd University of Petroleum quential Circuits,” in Proc. of the VLSI Test Symposium,
. 2002, pp. 53-59.
& Minerals for support.
[9] T. M. Niermann and J. H. Patel, “HITEC: A Test Generation
7. REFERENCES Package for Sequential Circuits,” in Proc. of the European
Conference on Design Automation, Feb. 1991, pp. 214-218.
[1] YahyaE. Osais, “Efficient Static Compaction Algorithms for [10] Hyung Ki Lee and Dong Sam Ha, “HOPE: An Efficient Par-

Combinational Circuits Based on Test Relaxation,” MS The-
sis, King Fahd University of Petroleum and Minerals, Oct.
2003.

IROF+RM is an abbreviation for Reverse-Order Fault simulation fol-
lowed by Random Merging.

allel Fault Simulator for Synchronous Sequential Circuits,”
1EEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 15, no. 9, pp. 1048-1058, Sept.
1996.

	Aiman El-Maleh and Yahya Osais, “A Class-based Clustering Static Compaction Technique for Combinational Circuits,” The 16th International Conference on Microelectronics, pp:
	 522–525, 6-8 Dec:
	 2004:

