
HIGH SPEED LOW POWER GF(2k) ELLIPTIC CURVE
CRYPTOGRAPY PROCESSOR ARCHITECTURE

Adnan Abdul-Aziz Gutub

Computer Engineering Department
King Fahd University of Petroleum and Minerals

Dhahran 31261, SAUDI ARABIA
Email: gutub@ccse.kfupm.edu.sa

Abstract. A new elliptic curve cryptographic processor architecture is proposed in this paper. It gives a
choice of performance base depending on the importance of speed and/or power consumption. This
flexibility is accomplished by utilizing the normal parallelism in the elliptic curve point operations. Scalable
multipliers are adopted to compensate for the extra hardware due to parallelism instead of using the
conventional parallel multipliers. It is shown in the paper that this parallelism can be exploited either to
increase the speed of operation or to reduce power consumption by reducing the frequency of operation.

1. Introduction
RYPTOGRAPHY is a well-recognized technique for

 information protection. It is used effectively to
protect sensitive data such as passwords that are
stored in a computer, as well as information being
transmitted through different communication media.
Encryption is the transformation of data into a form,
which is very hard to retransform back by anyone
without a secret decryption key. Even if someone
steals the encrypted information, he can not make
any use of it.

Depending on the encryption/decryption key,
cryptographic systems can be classified into two
main categories: secret key cryptosystems and public
key cryptosystems. The secret key cryptosystems
uses one key for both encryption and decryption.
Public key cryptosystems, however, use two different
keys, one for encryption and the other for decryption.

In 1985, Niel Koblitz and Victor Miller proposed
the Elliptic Curve Cryptosystem (ECC) [1-9], a
method based on the Discrete Logarithm problem
over the points on an elliptic curve. Since that time,
ECC has received considerable attention from
mathematicians around the world, and no significant
breakthroughs have been made in determining
weaknesses in the algorithm. Although critics are still
skeptical as to the reliability of this method, several
encryption techniques have been developed recently
using these properties. The fact that the problem
appears so difficult to crack means that key sizes can
be reduced in size considerably, even exponentially
[2,5,8], especially when compared to the key size
used by other cryptosystems. This made ECC
become a challenge to the RSA, one of the most
popular public key methods known. ECC is showing
to offer equal security to RSA but with much smaller
key size [2].

Several recent crypto processors have been
proposed in the literature [4,7,17]. A common feature
of these processors is that they remove the need for
an inversion circuit. It is well known that point

operations over an elliptic curve would require an
inversion calculation, which is the most time-
consuming computation over GF(2k) [18,19]. To
eliminate the need for performing inversion in
GF(2k), designs replace the inversion by several
multiplication operations by converting the elliptic
curve points as projective coordinate points
[1,4,7,9,17]. This approach is also adopted in the
processor proposed in this paper, which converts the
normal elliptic curve points (x,y) to (X,Y,Z), where
x=X/Z2 and y=Y/Z3 [9]. It is assumed that the reader is
familiar with the elliptic curve arithmetic. Some
necessary theoretical background of point operations,
encryption and decryption are covered briefly to lead
the reader to the proposed hardware design.

The proposed GF(2k) projective coordinate
elliptic curve processor architecture enjoys three
main features:

− It takes advantage of the natural parallelism
in the computation of the elliptic curve point
operations, which gains the maximum
possible reduction in the number of
multiplication iterations in the algorithm.

− It adopts scalable multipliers, which allows a
small hardware to iteratively compute the
multiplication process of large numbers
using practical hardware area especially
when using several multipliers.

− It consumes less power than the traditional
single multiplier designs assuming the
overall computation time is the same.

After comparing the proposed hardware with

different designs, our proposed architecture
demonstrated significant improvement in the speed,
cost: AT2, and in the power consumption. It also
showed possibility to operate at a higher clock
frequency (to gain more speed) with the expense of
higher power consumption.

The next section (Section 2) presents the reason
behind choosing scalable multipliers in the hardware.

C

Then, some brief elliptic curve theoretical
background is given in Section 3, followed by
Section 4 where a cryptographic illustration of
encryption and decryption is presented. Section 5
outlines the algorithm used for ECC multiplication
which is the basic theory behind using elliptic curve
in cryptography. The elliptic curve point addition and
doubling are elaborated using projective coordinates
in Section 6 followed by the description of the
proposed hardware architecture in Section 7. Section
8 compares the design with others and Section 9
concludes the paper.

2. Scalable Multipliers

An arithmetic unit is called scalable if it can be
reused or replicated in order to generate long
precision results independently of the data path
precision for which the unit was originally designed.
To speed up the multiplication operation, various
dedicated multiplier modules were developed in [20-
22]. These designs operate over fixed finite fields.
For example, the multiplier designed for 155 bits [21]
cannot be used for any other field of higher degree.
When a need for multiplication of larger precision
appears, a new multiplier must be designed. Another
way to avoid redesigning the module is to use
software implementations and fixed precision
multipliers. However, software implementations are
inefficient in utilizing inherent concurrency of the
multiplication because of the inconvenient pipeline
structure of the microprocessors being used.
Furthermore, software implementations on fixed digit
multipliers are more complex and require excessive
effort in coding. Therefore, a scalable hardware
module specifically tailored to take advantage of the
concurrency of the multiplication algorithm becomes
extremely attractive [15,16]. Also computation of
elliptic point doubling, addition and the algorithm of
computing multiples of the base point is such that the
multiplication of one stage must be completed before
starting the multiplication of the subsequent stage.
Therefore pipelining the digits to further stages is not
applicable, even if fast digit serial multipliers are
used, the throughput of such multipliers can not be
exploited since the next multiplication operation can
not begin until the multiplication operations in the
previous stage has fully completed.

3. Elliptic Curves Over GF(2k)
It will be assumed that the reader is familiar with the
arithmetic over elliptic curve. For a good review the
reader is referred to [9]. The elliptic curve equation
over GF(2k) is: y2+xy=x3+ax2+b; where x, y, a, b ∈
GF(2k) and b≠ 0.
The addition of two different points on the elliptic
curve is computed as shown below:

(x1 , y1) + (x2 , y2) = (x3 , y3) ; where x1 ≠ x2
λ = (y2 + y1)/(x2 + x1)
x3 = λ2 + λ + x1 + x2 + a
y3 = λ(x1 + x3) + x3 + y1

The addition of a point to itself (Doubling a point) on
the elliptic curve is computed as shown below:

(x1 , y1) + (x1 , y1) = (x3 , y3) ; where x1 ≠ 0
λ = x1

 + (y1)/(x1)
x3 = λ2 + λ + a
y3 = (x1)2 + (λ + 1) x3

To add two different points in GF(2k) we need: nine
additions, one inversion, one squaring, and two
multiplication operations. To double a point we
require: five additions, one inversion, two squaring,
and two multiplication computations. Addition of
field elements is performed by bit-wise XOR-ing the
vector representations. The multiplication rule
depends on the selected basis. There are many
different bases of GF(2k) over GF(2). Some bases
lead to more efficient software or hardware
implementations of the arithmetic in GF(2k) than
other bases [9]. The most popular two bases used are
the polynomial and the normal bases. The point
operations will be discussed for ECC crypto
processors in section 5.

4. Encryption and Decryption
There are many ways to apply elliptic curves for
encryption/decryption purposes. In its most basic
form, users randomly chose a base point (x,y), lying
on the elliptic curve E. The plaintext (the original
message to be encrypted) is coded into an elliptic
curve point (xm,ym). Each user selects a private key
‘n’ and compute his public key P = n(x, y). For
example, user A’s private key is nA and his public key
is PA = nA(x, y).

For any one to encrypt and send the message
point (xm,ym) to user A, he/she needs to choose a
random integer k and generate the ciphertext:

Cm = {k(x, y) , (xm, ym)+ kPA }.
The ciphertext pair of points uses A’s public key,
where only user A can decrypt the plaintext using his
private key.

To decrypt the ciphertext Cm, the first point in
the pair of Cm, k(x,y), is multiplied by A’s private key
to get the point: nA (k(x,y)). Then this point is
subtracted from the second point of Cm, the result
will be the plaintext point (xm,ym). The complete
decryption operations are:
 ((xm,ym)+kPA)-nA[k(x,y)]=(xm,ym)+k(nA(x,y))-nA(k(x,y))=(xm,ym)

5. Point Operation Algorithm

The ECC algorithm used for calculating nP from P is
the binary method, since it is known to be efficient
and practical to implement in hardware [2,5,7,9,10].
This binary method algorithm is shown below:
Define k: number of bits in n and ni: the ith bit of n
Input: P (a point on the elliptic curve).
Output: Q = nP (another point on the elliptic curve).

1. if nk-1 = 1, then Q:=P else Q:=0;
2. for i = k-2 down to 0;
3. { Q := Q+Q ;
4. if ni = 1 then Q:= Q+P ; }
5. return Q;

Basically, the binary method algorithm scans the bits
of n and doubles the point Q k-times. Whenever, a
particular bit of n is found to be one, an extra
operation is needed. This extra operation is Q+P.

As can be seen from the description of the above
binary algorithm, adding two elliptic curve points
and doubling a point are the most basic operations in
each iteration. As mentioned earlier, adding two
points over elliptic curve requires inversion which is
the most expensive operation in ECC [9]. A common
approach (adopted in this paper) is to eliminate the
need for an inversion circuit by representing the
elliptic curve points as projective coordinate points
[1,4,7,9,17].

6. Projective Coordinates
To eliminate the need for performing inversion in
GF(2k), its coordinates (x,y) are projected to (X, Y, Z),
where x=X/Z2, and y=Y/Z3. The projected elliptic
curve equation becomes: Y2+XYZ=X3+a X2Z2+bZ6.
The formulas for projective point addition of two
elliptic curve points are as follows:
P=(X1,Y1,Z1);Q=(X2,Y2,Z2);P+Q=(X3,Y3,Z3); where P ≠ ±Q

(x, y) = (X/Z2,Y/Z3) (X,Y,Z)
λ1 = X1 Z2

2 2M
λ2 = X2 Z1

2 2M
λ3 = λ1 + λ2
λ4 = Y1 Z2

3 2M
λ5 = Y2 Z1

3 2M
λ6 = λ4 + λ5

λ7 = Z1 λ3 1M
λ8 = λ6 X2 + λ7Y2 2M
Z3 = λ7 Z2 1M
λ9 = λ6 + Z3

X3 = a Z3
2 + λ6 λ9 + λ3

3 5M
Y3 = λ9 X3 + λ8 λ7

2 3M

 20M

The formulas for projective point doubling of P are
given by:

P = (X1,Y1,Z1); P+P = (X3,Y3,Z3)
Z3 = X1 Z1

2 2M
X3 = (X1 + bZ1

2)4 3M
λ = Z3 + X1

2 + Y1
 Z1 2M

Y3 = X1
4 Z3 + λ X3 3M

 10M

The complete data flow graph for doubling a point is
shown in Figure 1. It requires ten multiplications and
four addition (k-bit XOR) operations. Figure 2 shows
the data flow graph for adding two elliptic curve
points. It requires twenty multipliers and seven k-bit
XOR gates. From the binary method, any elliptic
curve crypto processor that uses projective
coordinates must implements the dataflow graphs in
Figure 1 and 2 iteratively.

7. Proposed Architecture

The architecture of the new processor is shown in
Figure 3. It has the following features:
• It has four scalable multipliers,

• It can perform multiply-add operation within the
same instruction because GF(2k) modulo adder is to
be implemented in bit parallel fashion since the
adders’ area is not significant compared to the
multipliers’ size and minimizing the addition time
will reduce the overall multiply-add cycle time.

The basic motivation behind the design of the
proposed architecture is to exploit, as much as
possible, the full parallelism that exists in the ECC.
The trade-off between power and time can be
achieved by reducing the clock frequency and hence
consequently the source voltage. It is well known
that reducing the source power is the most effective
means of reducing power consumption. In the
proposed design here, this is exploited at the
algorithmic level by using more than one multiplier.
The benefits of parallel implementation of ECC on
power are discussed in more details in section 7.

Fig 1. Doubling an elliptic curve point Data flow graph

The reason for using four multipliers only is as
follows. From Figures 1 and 2, the corresponding
critical path of each dataflow diagram is effectively
of 5 GF(2k) multiplications and 7 GF(2k)
multiplications, respectively. Here the time GF(2k)
addition is ignored since it is negligible compared to
multiplication. Therefore, the lower bound of the
minimum computation time to perform one elliptic
point operation in the calculation of nP is 12 GF(2k)
 multiplications. It can be easily seen from Figures 1
and 2 that performing four multiplications in parallel
will meet this lower bound, and any further
concurrent multiplications will not actually achieve
any further reduction in the computation time.

X1

X1
2

Z1 Y1

Y1Z1

Z1 Z1

 Z1
2

b

 bZ1
2

X1

X1Z1
2

Z3

X1+bZ1
2

X3

X1

(X1+bZ1
2)2

(X1+bZ1
2)4

Y1Z1+ X1
2

Y1Z1+ X1
2+Z3

λ

 X1
4

 Z3X1
4

Z3

λX3

 Z3X1
4+λX3

Y3

The advantage of performing multiply-add
operation in one instruction is that the dataflow in
Figures 1 and 2 include many computations where
the addition of the output of two multipliers must be
carried out. Such a feature will avoid the need to
store these values back in the registers and fetching
them back again for their subsequent addition. This
will save both in cycles and power.

Fig 2. Data flow graph for adding two points

The purpose of the power management unit is to

ensure that the power consumption of blocks that are
not used is kept to a minimum. This is achieved by

clock-gating the registers of these blocks and
ensuring that the logic in these blocks is static. There
are two possible cases where blocks are not used.
The first is when not all four multipliers are used, and
the second is when the application word-length is
less than the word-length of the processor.

Fig 3. The ECC point operations hardware

8. Performance Comparisons

Since Power, P=fCVS
2 and assuming that VS=kfo,

where fo is the maximum operating frequency for the
given Vs, then P=kf3C. The power consumption of
using four multipliers is compared with that of using
a single multiplier and two multipliers in Figure 4 for
different execution times. Here time is computed as
the number of cycles multiplied by the frequency per
cycle.

Fig 4. Different number of multipliers comparison.

In existing designs [4,6], a single multiplier is

used to perform all the multiplications needed in
Figures 1 and 2. The reason is that using more than
one multiplier is perceived to be too expensive.
However, as can be seen from Figure 4, the proposed

Z2

 Z2
2

 Z2
3

X1

X1Z2
2

λ1

Z1
 Z1

2

 Z1
3

X

X2Z1
2

λ2

λ1+λ2

λ3 Y1

Y1Z2
3

λ4

Z3

Y2

Y2Z1
3

λ5

Z1λ3

λ4+λ
λ6

λ6Z2λ7

λ5

λ7Y2 X2λ6

X2λ6+λ7Y2

λ9

Z1

λ7

X2 Y2

 λ8

Z2

Z3+λ6

 Z3
2

 aZ3
2

a λ6λ9

λ3
2

λ3
2

λ3

λ3
3

λ3
3

aZ3
2+λ6λ9+λ3

3

 X3

λ3
3

λ7
2

λ7
2

λ7

λ7
2λ8

λ7
2λ8

X3λ9

λ9

X3λ9+λ8λ7
2

 Y3

Z3

architecture would lead to much lower power
consumption than using one or two multipliers for
the same execution time.

It is also clear that using four scalable multipliers
gives a wider range of trade-off between power and
speed. In fact, the case of using two multipliers does
not provide any advantage over the other two
options. Finally, the proposed architecture can
support a further reduction in power by switching to
one multiplier based operation in cases where a
further reduction in power is required. In this case the
power management unit will simply ensure that the
other two multipliers do not consume any dynamic
power.

9. Conclusion
A novel GF(2k) elliptic curve crypto processor is
proposed in this paper. The new architecture results
in reduction in power consumption as well as
offering users a range of trade-off between power
and time. The basic feature of the new architecture is
that it exploits the inherent parallelism in the
computation of doubling and adding points over an
elliptic curve as well as in multiplication. The
achievement have been achieved through projective
coordinates technique of elliptic curve arithmetic.
Performance evaluation shows a considerable
advantage over sequential implementation in terms of
speed and power consumption.

10. Acknowledgments
The Author would like to thank Professor
Mohammad K. Ibrahim for his valuable suggestions
and comments given to improve this work. Also we
show appreciation to King Fahd University of
Petroleum and Minerals for its support of this
research.

11. References
[1] Miyaji A., “Elliptic Curves over FP Suitable for

Cryptosystems”, Advances in cryptology-
AUSCRUPT’92, Australia, December 1992.

[2] Stallings, W. “Cryptography and Network Security:
Principles and Practice”, Second Edition, Prentice
Hall Inc., New Jersey, 1999.

[3] Chung, Sim, and Lee, “Fast Implementation of
Elliptic Curve Defined over GF(pm) on CalmRISC
with MAC2424 Coprocessor”, Workshop on
Cryptographic Hardware and Embedded Systems,
CHES 2000, Massachusetts, August 2000.

[4] Okada, Torii, Itoh, and Takenaka, “Implementation
of Elliptic Curve Cryptographic Coprocessor over
GF(2m) on an FPGA”, Workshop on Cryptographic
Hardware and Embedded Systems, CHES 2000,
Massachusetts, August 2000.

[5] Crutchley, D. A., “Cryptography And Elliptic
Curves”, Master Thesis under Supervision of Prof.
Gareth Jones, submitted to the Faculty of
Mathematics at University of Southampton, England,
May 1999.

[6] Orlando, and Paar, “A High-Performance
Reconfigurable Elliptic Curve Processor for GF(2m)”,

Workshop on Cryptographic Hardware and
Embedded Systems, CHES 2000, Massachusetts,
August 2000.

[7] Stinson, “Cryptography: Theory and Practice”, CRC
Press, Boca Raton, Florida, 1995.

[8] Paar, Fleischmann, and Soria-Rodriguez, “Fast
Arithmetic for Public-Key Algorithms in Galois
Fields with Composite Exponents”, IEEE
Transactions on Computers, 48(10), October 1999.

[9] Blake, Seroussi, and Smart, “Elliptic Curves in
Cryptography”, Cambridge University Press: New
York, 1999.

[10] Hankerson, Hernandez, and Menezes, “Software
Implementation of Elliptic Curve Cryptography Over
Binary Fields”, Workshop on Cryptographic
Hardware and Embedded Systems, CHES 2000,
Massachusetts, August 2000.

[11] Orton, Roy, Scott, Peppard, and Tavares, “VLSI
implementation of public-key encryption
algorithms”, Advances in Cryptology - CRYPTO '86,
volume 263 of Lecture Notes in Computer Science,
pages 277-301, 11-15 August 1986. Springer-Verlag,
1987.

[12] Scott, Norman R., “Computer Number Systems and
Arithmetic”, Prentice-Hall Inc., New Jersey, 1985.

[13] Tocci, and Widmer, “Digital Systems: Principles and
Applications”, 8th Edition, Prentice-Hall Inc., New
Jersey, 2001.

[14] Ercegovac, Lang, and Moreno, “Introduction to
Digital System”, John Wiley & Sons, Inc., New
York, 1999.

[15] Alexandre F. Tenca and Cetin Koc, “A Scalable
Architecture for Montgomery Multiplication”,
Proceedings of the Workshop on Cryptographic
Hardware and Embedded Systems - CHES'99,
August, 1999, Worcester, Massachusetts, USA.

[16] Erkay Savas, Alexandre F. Tenca, and Cetin K. Koc,
“A Scalable and Unified Multiplier Architecture for
Finite Fields GF(p) and GF(2m)”, Proceedings of the
Workshop on Cryptographic Hardware and
Embedded Systems – CHES2000, Worcester, MA,
USA, August 2000.

[17] Orlando, and Paar, "A scalable GF(p) elliptic curve
processor architecture for programmable hardware",
Cryptographic Hardware and Embedded Systems,
CHES 2001, May 14-16, 2001, Paris, France.

[18] Gutub, Adnan Abdul-Aziz, Tenca, A., and Koc,C.,
“Scalable VLSI architecture for GF(p) Montgomery
modular inverse computation”, IEEE Computer
Society Annual Symposium on VLSI, pages 53-58,
Pittsburgh, Pennsylvania, April 25-26, 2002.

[19] Gutub, Adnan Abdul-Aziz, Tenca,A.F., and Koc,C.,
“Scalable and Unified Hardware to Compute
Montgomery Inverse in GF(p) and GF(2^n)”,
Cryptographic Hardware and Embedded Systems -
CHES 2002, pages 485-500, August 13-15, 2002.

[20] Royo, Moran, and Lopez, “Design and
implementation of a coprocessor for cryptography
applications”, European Design and Test Conference
Proceedings, pages 213–217, Paris, France, March
17-20 1997.

[21] Agnew, Mullin, and Vanstone, “An implementation
of elliptic curve cryptosystems over F2

155 ”, IEEE
Journal on Selected Areas in Communications,
11(5):804–813, June 1993.

[22] Naccache and MRaihi, “Cryptographic smart cards”,
IEEE Micro, 16(3):14–24, June 1996.

